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Summary

A quantum theory of gravity remains one of the greatest challenges of contemporary
physics. It is well established that a perturbative treatment of gravity as a quantum field
theory leads to a non-renormalisable setup. However gravity could still exist as a consist-
ent and predictive quantum field theory on a non-perturbative level. This is explored in
the asymptotic safety scenario which was initially proposed by S. Weinberg.
In this thesis we investigate the ultraviolet behaviour of gravity within the asymptotic
safety conjecture and discuss phenomenological implications. We start out by introducing
the concept of the functional renormalisation group and its application to gravity. This
non-perturbative tool is the technical basis for our investigation of a template quantum
gravity action, namely a function f(R) in the Ricci scalar in four dimensions. We com-
pute exact fixed point solutions to very high polynomial orders via the development of
a dedicated high performance code. The picture of an interacting UV fixed point that
receives only small quantitative corrections from higher derivative operators is confirmed
and extended.
The results are then expanded to include minimally coupled matter fields and we in-
vestigate the matter effects on the gravitational fixed point. We determine regimes of
compatibility in the vicinity of the purely gravitational setup but also find constraints on
the number of matter fields.
Finally we look at the phenomenological implications of a running Newton’s coupling, one
of the key features of the asymptotic safety setup, to graviton-mediated eikonal scattering
amplitudes. In this kinematic regime we investigate the possibility of a TeV-sized funda-
mental Planck mass via the introduction of compact extra dimensions. We identify the
fingerprints of asymptotic safety in the t-channel scattering amplitude and find crucial
differences compared to semi-classical computations.
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The most terrifying fact about the universe is not that it is hostile

but that it is indifferent; but if we can come to terms with this

indifference and accept the challenges of life within the boundaries of

death - however mutable man may be able to make them - our

existence as a species can have genuine meaning and fulfillment.

However vast the darkness, we must supply our own light.

- Stanley Kubrick [1]
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Chapter 1

Introduction

Quantum field theory has proven to be one of the most successful and versatile frame-

works in physics. It successfully combines the principles of special relativity with those

of quantum physics to describes a whole range of interactions, such as quantum chromo-

dynamics and electroweak interactions. It is not only limited to fundamental forces of

nature, but can also be applied to effective models in solid state physics. There is a range

of techniques available which allow for a consistent and systematic approach when calcu-

lating observables: perturbation theory, lattice simulations, Schwinger-Dyson equations

and functional RG.

In this context the highly successful theory of general relativity proves to be a challenge,

as it cannot be perturbatively quantised. In a perturbative expansion of the dimensionless

Newton’s coupling in four spacetime dimensions g = GN E
2, where GN is the dimension-

ful Newton’s coupling and E denotes an energy scale, canonical power counting already

suggests the perturbative non-renormalisability, as GN has negative mass dimension −2.

When examined in more detail it is found that the theory becomes perturbatively non-

renormalisable at two loop level [3]. The presence of matter fields actually shifts the

perturbative non-renormalisability already to the one loop level [4].

These results have raised the question whether gravity can exist as fundamental quantum

field theory, and thereby inspired a whole range of approaches to gravity at high energies

such as string theory [5] and loop quantum gravity [6]. In these approaches one has to

make different assumptions about the fundamental nature of spacetime compared to clas-

sical general relativity which serves as the classical limit.

However there is compelling evidence that gravity can be meaningful within the quantum

field theory framework when one makes use of non-perturbative methods. This is a con-

servative approach because it aims to understand gravity without further postulates about
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its fundamental nature. First hints already arise at the perturbative level. If one treats the

spacetime dimensionality as a continuous parameter, a perturbatively meaningful regime

can be identified close to 2 dimensions in an ε expansion [7, 8, 9].

For small energies, gravity can be successfully studied via an effective field theory approach

with a UV cutoff at the Plack scale [10] (for review see [11]).

Going beyond the Einstein-Hilbert action, there are stabilising effects for perturbation

theory from higher derivative operators [12]. There can even be a fully perturbatively

renormalisable theory of gravity including all fourth order derivative operators [13]. How-

ever, it cannot be a contender for a fundamental theory of gravity as it violates unitarity.

A breakthrough was achieved via Weinberg’s seminal idea to go beyond perturbative renor-

malisability as criterium for a predictive quantum field theory [7]. It has inspired a whole

body of work investigating the non-perturbative properties of gravity (cf. [14, 15, 16, 17,

18, 19, 20, 12, 21] for reviews). In order for a meaningful UV-behaviour of gravity to exist

within the framework of quantum field theory, it must be governed by an interacting fixed

point of the couplings that has only a finite number of relevant directions. Thereby gravity

would be completely described by a finite number of parameters in the high energy limit.

The interacting fixed point can be attained as the anomalous dimension can grow large

for non-vanishing coupling values and thereby counterbalance the canonical dimension.

The main tool for this non-perturbative examination is the functional renormalisation

group (further details in Chapter 2) as introduced by [22, 23] and its application to grav-

ity [24]. It is rooted in the renormalisation group as introduced by Wilson [25, 26] and

its application to a path integral description of quantum field theory. A momentum sep-

aration scale k is introduced to discriminate between high and low momentum modes.

The high momentum modes are fully integrated out whereas the low momentum modes

are suppressed. The infinitesimal change with respect to the separation scale k is then

determined by integrating out only infinitesimal momentum shells around k. This is de-

scribed by a flow equation for an effective average action Γk, a scale dependent version

of the full quantum effective action. It leads to scale dependent correlation functions and

couplings, which have the interpretation of encoding the physics at this particular mo-

mentum scale k. The effective average action contains the operators and couplings of the

theory, and the flow equation describes the running with the renormalisation group scale k.

For gravity the theory space in terms of allowed operators in the running effective ac-
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tion, Γk, is a priori only constrained by diffeomorphism invariance. Therefore an infinite

number of operators with associated couplings are in principle allowed. At present date

a calculation including all diffeomorphism invariant operators is not feasible. One of the

main approximations within this analysis is to pick a finite amount or an infinite class of

operators for which the RG-running in the framework of the functional renormalisation

group can be calculated. The approximation is then justified a posteriori by showing the

stability of its fixed point behaviour against the inclusion of further operators. The sta-

bility is still a question of ongoing research.

Strong evidence for the existence of a non-trivial fixed point exists within various approx-

imation approaches [24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39].

In Chapter 3 of this thesis we focus on a systematic study of a template action for quantum

gravity, building on the work of [39, 40]. We investigate a class of operators known as

ploynomial f(R) gravity. It is of particular importance since it includes the Einstein Hil-

bert effective action as a subset and features generically an infinite set of operators with

increasing mass dimension. Here we will investigate the UV fixed point properties under

subsequent addition of higher polynomial orders in the f(R) effective action.

As already noted matter can have a strong influence on the behaviour of perturbative

gravity [4]. Therefore the question of matter implications to the asymptotic safety scen-

ario [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 35, 52] not only naturally arises but is

also of great importance. In Chapter 4 we will extend the setup of Chapter 3 with the

introduction of minimally coupled matter fields and investigate their impact on the fixed

point and its properties.

In the final part of the thesis, Chapter 5, we consider phenomenological effects of the

running Newton’s coupling as predicted by asymptotic safety [32, 53, 54]. We examine

the kinematic regime of eikonal scattering for graviton-mediated processes [55, 56] in

spacetimes with compact and flat extra dimensions. These extra dimensions may facilitate

a TeV-sized fundamental Planck mass [57] and can thereby move quantum gravity effects

within the reach of current particle accelerators, in particular the LHC [58, 59, 60, 61, 62,

63].
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Chapter 2

Functional renormalisation

In this chapter we will review the techniques necessary to calculate the beta-functions for

our setup of gravity and introduce our notation and conventions. We will consider gravity

within the framework of quantum field theory. As general relativity is perturbatively non-

renormalisable [3, 4] (cf. Chapter 1), we will have to rely on non-perturbative approaches.

Broadly applied techniques are functional renormalisation, Schwinger-Dyson equations and

lattice methods. Here we will focus on the functional renormalisation group [22, 23] which

employs a Wilson-type coarse graining procedure [25, 26]. Functional renormalisation is a

powerful method and has proven its usefulness in a wide a range of applications to quantum

chromodynamics, solid state physics and gravity. We will here focus on its application to

gravity [24] and derive a flow equation for polynomial f(R) gravity in the spirit of [34].

Generally we will follow the reviews in [64, 65, 18, 66, 67]. For an introductory overview

to quantum field theory, we refer to the textbook [68].

2.1 Effective action

Any observable linked to a quantum field theory, eg. a scattering amplitude, can be

calculated using n-point correlation functions of the underlying quantum fields:

〈ϕ(x1) . . . ϕ(xn)〉 (2.1)

These n-point correlators can be expressed via the path integral formalism, using a

weighted integral over all possible and allowed field configurations:

〈ϕ(x1) . . . ϕ(xn)〉 =

∫
Dϕϕ(x1) . . . ϕ(xn) exp(−S[ϕ])∫

Dϕ exp(−S[ϕ])
(2.2)

Here the underlying spacetime is Euclidean and S[ϕ] is the action governing the physical

theory. The functional integral in (2.2) is still not rigorously defined at this point and
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generally requires further specification through a regularisation procedure to become well-

defined. We will provide this in Section 2.2.

An elegant way of expressing the n-point correlation functions is via the generating func-

tional Z[J ], which introduces a dependence on an external source term J :

Z[J ] ≡ exp(W [J ]) =

∫
Dϕ exp

(
−S[ϕ] +

∫
J ϕ

)
. (2.3)

Derivatives of the generating functional, with respect to the source J at J = 0, yield

n-point functions of the theory. The same is true for W , which gives n-point functions of

connected diagrams. Either functional contains the information of the theory.

The source-dependent vacuum expectation value of the field ϕ is called the classical field

φ and arises for the first derivative of W with respect to the source J :

φ ≡ δW [J ]

δJ
=

1

Z[0]

δZ[J ]

δJ
= 〈ϕ〉J . (2.4)

It can be used to define yet another functional containing the full information of the theory

via a Legendre transform of W [J ], the effective action Γ,

Γ[ξ] = sup
J

∫
ξ J −W [J ]. (2.5)

The supremum value is attained if ξ is equal to the classical field φ = δW/δJ . Thereby

we have

Γ[φ] =

∫
φJ −W [J ] (2.6)

as a convex functional in the classical field. It generates the one-particle irreducible cor-

relation functions. The effective action can be viewed as the quantum counterpart of the

classical action S since it satisfies an analogous equation of motion

δΓ[φ]

δφ
= J. (2.7)

And J is the source of the quantum fluctuations.The classical equations of motion do not

exhibit such a source term.

The second functional derivative of the effective action, with respect to J , corresponds to

the inverse exact propagator (2 point correlator) of the theory.

From the definition of the effective action (2.6) it is clear that it can be re-expressed via

the insertion of (2.3) and (2.4) into the exponentiation of (2.6) and turned into a defining

equation without any explicit dependence on the external source J :

exp(−Γ[φ]) =

∫
Dχ exp

(
−S[φ+ χ] +

δΓ[φ]

δφ
χ

)
. (2.8)
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Here, a shift in the integration field χ = ϕ − φ has been used. This integro-differential

equation is the starting point for a vertex expansion of the the effective action

Γ[φ] =
∞∑
n=0

1

n!

∫
dDx1 · · · dDxnΓ(n)(x1, · · · , xn)φ(x1) · · ·φ(xn), (2.9)

where D denotes the dimensionality of the underlying spacetime. Subsequent insertion

of (2.9) into (2.8) yields a series of equations to determine the vertex coefficients Γ(n)

which correspond to the one particle irreducible proper vertices. These equations are the

Dyson-Schwinger equations.

2.2 Renormalisation group

The effective average action Γk[φ] is a scale-dependent functional that interpolates between

the bare action S = Γk→∞ and the full quantum effective action Γ = Γk=0. This functional

can be viewed as a scale dependent version of the effective action (2.6) and is the central

quantity within the framework of the functional renormalisation group. It includes a

regularisation procedure and is therefore better defined than the generating functional

(2.3). The momentum scale k discriminates between high momentum modes, p2 � k2,

and low momentum modes, p2 � k2, of the field ϕ. The low momentum or IR modes

will be suppressed, whereas the high momentum or UV modes will be integrated out. At

the level of the scale-dependent generating functional Zk[J ], this amounts to a momentum

dependent mass term as a regulator Rk:

Zk[J ] ≡ exp(Wk[J ]) =

∫
Dϕ exp

(
−S[ϕ] +

∫
J ϕ−

∫
1

2
ϕRk(−∂2)ϕ

)
. (2.10)

The specific shape of the regulator Rk is subject to constraints in its high and low mo-

mentum limits:

Rk(p2)→


k2 p2 � k2

0 p2 � k2

. (2.11)

For a discussion of the fundamental properties this limiting behaviour is enough and

knowledge of the specific shape is not needed.

In the limit of k → 0, the whole regulator term vanishes from the generating functional

Zk[J ], and we fall back onto the scale independent generating functional Z[J ] (2.3). In

the limit of k →∞, we encounter a heavy suppression of all modes. Therefore the integral

will be dominated by a stationary point of the exponent.

For explicit calculations the shape of the regulator becomes very important as it has direct

influence on the stability and convergence of the flow (2.13) [69, 70, 71, 72, 73].
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The effective average action Γk is defined analogously to the effective action in (2.5) except

for an additional regulator dependent term that ensures the UV limit Γk→∞ = S:

Γk[φ] =

(
sup
J

∫
φJ −Wk[J ]

)
−
∫

1

2
φRk(−∂2)φ. (2.12)

Again the supremum condition is satisfied for the now k-dependent field condition φ =

δWk[J ]/δJ .

The effective average action can be interpreted as continuous interpolation between the

bare action S and the full quantum effective action Γ. At a given scale k, it encodes

the physics relevant for this energy scale as higher momenta/energies are integrated out

and lower momenta/energies are suppressed. The effective average action, introduced

in Section 2.2, allows for a continuous interpolation between the full quantum effective

and the bare action. One can subsequently integrate out momentum shells to vary the

renormalisation scale k. This evolution is governed by an exact, first order differential

equation [22, 23]:

k ∂k Γk[φ] =
1

2
Tr

[
k ∂kRk

Γ
(2)
k +Rk

]
. (2.13)

This is the central equation of the exact functional renormalisation group (FRG). Γ
(2)
k

denotes the second functional derivative of Γk with respect to the field (Hessian). It can

be directly derived from first principles without any approximations and is therefore exact.

It exhibits a one-loop structure where it can be shown that (Γ
(2)
k +Rk)−1 is the connected

2-point function (propagator) of the theory.

The flow (2.13) has a very close relationship to the Callan -Symanzik equation (Rk → k2)

[74] and, via a Legendre transformation, to the Wilson-Polchinski equation [19, 75, 64]. In

the local potential approximation the equivalence between the flow (2.13) and the Wilson-

Polchinski equation is only exact for the optimised regulator. This was first demonstrated

in [76], formallly shown in [77] and numerically confirmed in [78].

The flow equation (2.13) constitutes an a priori non-perturbative tool to examine quantum

field theories. However, in the approximation of weak couplings, it reproduces standard

perturbation theory to all loop orders [79, 80]. The main application of (2.13) lies in

systematic approximations that go beyond the weak coupling limit such as the derivat-

ive expansion and the vertex expansion. Within these approaches, the stability and and

convergence can be assessed and optimised via certain techniques [69, 70, 71, 72, 73]. Sys-

tematic uncertainties can be assessed as well [81].
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In order to calculate the flow of Γk for a given theory of fields that respects certain

symmetries and lives in a particular spacetime dimensionality, one has to consider all

compatible operators of the theory. Assuming that there is a local functional basis, the

effective average action is simply a sum over all compatible operators Oi dressed with their

associated couplings gi:

Γk[φ] =
∑
i

giOi. (2.14)

Typically the number of compatible operators is infinite. Thus, any explicit calculation of

the flow relies on the choice of a finite subset of operators which constitutes an approxim-

ation. Please note that this is a priori no perturbative approximation as no constraint on

any coupling values being small is imposed at this point. This approximation constitutes

a truncation of the theory space and can be justified by showing that the inclusion of

further operators only leads to minor corrections in physical observables. In setups such

as gravity, the approximation is usually justified a posteriori by demonstrating the minor

corrections through explicit studies.

The introduction of an approximation to the flow equation (2.13) also leads to a non-trivial

regulator dependence of the flow [82, 83, 84], which vanishes in the limit k → 0, as this

removes the regulator. Therefore some regulator choices might prove to be better suited

for certain approximations than others [69, 70].

2.3 Gravitatonal renormalisation group

The flow equation (2.13) from Section 2.2 has various applications in different fields of

theoretical physics such as quantum chromodynamics or solid state physics. We are par-

ticularly interested in a formulation for gravity. In this section we will introduce the basic

ideas and terminology to construct a background field independent flow [24]. In the follow-

ing Section 2.4 we give details to explicitly construct such a flow for an effective average

action that encodes the gravitational dynamics as a function of the scalar curvature f(R)

[34]. The aim of this is to provide ourselves with all the necessary tools for the analysis

in the subsequent Chapters 3 and 4.

The principal symmetry for general relativity is diffeomorphism invariance or general co-

ordinate transformations. As the metric γµν is taken as the carrier of the fundamental

degrees of freedom, the path integral of the generating functional will be a functional

integral with the measure Dγµν . A gauge fixing condition is now needed to eliminate
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physically equivalent metric configurations from the path integral. This leads to a func-

tional determinant in the path integral which can be reexpressed as an additional term

in the action. In order to facilitate the transformation into an additional action term,

new fields need to be introduced which violate the spin statistic theorem. The fields are

not physical and referred to as Faddeev-Popov ghosts. They should be thought of as a

mathematical trick and not as physical objects. Correspondingly the additional terms in

the generating functional are called ghost terms.

In order to retain a notion of diffeomorphism invariance on the level of the action S, we

employ the background field method [24, 73, 85, 86, 87], where the metric is decomposed

into a fluctuation part γ̃µν and a background part γ̄µν :

γµν = γ̃µν + γ̄µν . (2.15)

The background is viewed as fixed and non-propagating. Its explicit form is a priori arbit-

rary and only needs to be specified later for an explicit evaluation (cf. Section 2.4, where a

spherically symmetric background is chosen in (2.24) and (2.25)). Any field, including the

fluctuating metric, is thought of as living on this background and transforming according

to the coordinate transformations of the background metric. The generating functional

Zk has the structure

Zk =

∫
Dγµν DC̄µDCµDbµ exp

(
−S[γ]− Sgf[γ]− Sgh[γ,C, C̄, b]− Ssource − Sreg

)
,

(2.16)

where Sgf represents the gauge fixing, Sgh the ghosts, Ssource the source terms and Sreg

the regulator terms. The ghost fields, arising from the Faddeev-Popov procedure, are an

anti-commuting complex-conjugate pair Cµ and C̄µ and a commuting real ghost bµ.

In analogy to the previously dicussed bare scalar field ϕ (Sections 2.1, 2.2), for gravity

we have so far discussed a set of bare fields ϕ = {γ,C, C̄, b} following the bare action

Sbare = S + Sgf + Sgh. Now we switch to the effective average action Γk, which is a

functional of the corresponding expectation values φ = {g, z, z̄, B}. It is defined as

exp(−Γk[φ; ḡ])

=

∫
Dϕ exp

(
−Sbare[γ; ḡ] +

∫
(ϕ− φ)

δ

δφ
Γk[φ; ḡ]

)
− 1

2

∫
(ϕ− φ)Rk[ḡ] (ϕ− φ),

(2.17)

where ϕ and φ are now understood as vectors of fields as defined above. The regulator

term is again quadratic in the fields.
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The flow equation for gravity then has the form

k ∂k Γk[φ; ḡ] =
1

2
STr

[
k ∂kRk[ḡ]

Γ
(2)
k [φ; ḡ] +Rk[ḡ]

]
. (2.18)

The supertrace STr is understood as sum over all fields φ, a contraction over all indices

and an integral over all momenta in momentum space.

The momenta in Rk are measured with respect to the background metric ḡ, eg. via −∇̄2,

where ∇̄ is the background covariant derivative. This procedure leads to a flow equation

for ḡ [87, 49] similar to (2.18). We will identify the background metric ḡ with the dy-

namical mean field metric g and thereby the background metric is dynamically adjusted

along the flow. This is consistent with the interpretation that the metric constitutes both

a background and a dynamical object at the same time.

There is also an alternative treatment available, where both the dynamics of the propagat-

ing and the background field are retained independently. For these so-called bi-metric ap-

proaches see [37, 88, 89, 90, 91]. Complementary approaches are presented in [92, 93, 94].

2.4 Quantum gravity

In this section we consider the application of the functional flow equation (2.18) to polyno-

mial f(R) gravity. We view it as a template action for quantum gravity because it includes

the essential gravitational couplings, the cosmological constant and Newton’s coupling, as

well as infinitely many higher operators of increasing mass dimension.

Previous studies started out by considering the Einstein-Hilbert approximation which re-

tains the terms that govern classical general relativity. It can be viewed as the subset

of the f(R) approximation where only terms up to linear order in R are considered.

These studies [24, 41, 95, 29, 30, 96, 31, 32, 94] established a picture of a non-gaussian

fixed point that governs the UV of gravity and exhibits a finite number of relevant dir-

ections. The Einstein-Hilbert approximation was also analysed for non-trivial IR fixed

points [92, 93, 97, 98]. The results of the Einstein-Hilbert approximation proved to be re-

markably stable under extensions of the Einstein-Hilbert picture, such as higher derivative

operators [30, 33, 34, 99, 100, 101, 102, 39, 40] or quantum fluctuations in the ghost sector

[36, 103, 104]. Conceptual extensions are the consideration of higher dimensions d > 4

[32, 53, 54] and the inclusion of matter fields [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 35, 52].

Reviews can be found in [54, 21, 12, 20, 105, 17, 16].

Another direction is the subsequent addition of higher powers of the Ricci scalar to the

Einstein-Hilbert action. This is known as polynomial f(R) gravity [34, 99, 100]. So far
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a picture of a three dimensional attractive surface at the UV fixed-point could be estab-

lished up until order R34 [39, 40]. Here we will extend this picture until R70 (cf. Chapter 3).

Since we want to consider polynomial F (R) gravity, we choose the ansatz

Γk =

∫
ddx
√
g F (R) + Sgf + Sgh. (2.19)

The expansion of F (R) in powers of the scalar curvature R yields back the Einstein-Hilbert

approximation when truncating after the linear term:

F (R) =
Λk

8πGk
− R

16πGk
+O(R2). (2.20)

The running cosmological constant Λk and the running Newton’s constant Gk are the

only couplings that are retained in this approximation. For our purpose we will do an

expansion of F (R) retaining N couplings

F (R) =

N−1∑
i=0

λ̃i(k)Ri. (2.21)

Comparison with (2.20) gives the translation between the two notations for N = 2:

Λk = − λ̃0

2 λ̃1

, (2.22)

Gk = − 1

16π λ̃1

. (2.23)

We follow [34] for the derivation of the flow equation in d dimensions. Later we will

set d = 4 to obtain explicit results in a classical dimensional setup without any extra-

dimensions.

For our purpose, differentiating between powers of R in the flow, it suffices to assume

a spherically symmetric background metric ḡµν . It is important to note that such a

background cannot discriminate between tensor structures of the Riemann tensor and

powers of the Ricci scalar of the same mass dimension. In principle any diffemorphism-

invariant operator can be generated through the flow equation (2.18) dynamically along

the flow. The choice of a spherically symmetric background projects all those Riemannian

operators back onto their corresponding power of the Ricci scalar. The viability of such

a procedure can be assessed by comparing it to more complicated setups where further

operator defferentiation is retained. These studies [33, 99, 101, 102] indicate that the

qualitative behaviour of the scalar operators is not altered.

The spherical symmetry leads to simplifed expression for the Riemann and Ricci tensor
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of the background, as they become proportional to the Ricciscalar:

R̄µνρσ =
R̄

d (d− 1)
(ḡµρ ḡνσ − ḡµσ ḡνρ) , (2.24)

R̄µν = ḡµν
R̄

d
. (2.25)

The metric fluctuations hµν = gµν − ḡµν are split up according to [106] into a transverse-

traceless decomposition:

hµν = hTµν + ∇̄µ ξν + ∇̄ν ξµ + ∇̄µ ∇̄ν σ −
1

d
ḡµν ∇̄2 σ +

1

d
ḡµν h (2.26)

hTµν = hTνµ (2.27)

hT
µ
µ = 0 (2.28)

∇̄ν hT
ν
µ = 0 (2.29)

∇̄µ ξµ = 0 (2.30)

The lowest two modes of σ and the lowest mode of ξµ are unphysical and will be excluded

from the trace. The ghosts can be split up in transverse and scalar modes:

Cµ = CTµ + ∇̄µ η (2.31)

C̄µ = C̄Tµ + ∇̄µ η̄ (2.32)

bµ = bTµ + ∇̄µ θ (2.33)

The lowest two mode of the scalar fields η, η̄ and θ, and the lowest mode of the transverse

vectors CTµ , C̄
T
µ and bTµ are unphysical and have to be excluded [34].

The decomposition of the fluctuation metric and the ghosts leads to a change of variables

in the functional measure. The accompanying functional determinants can be re-expressed

as an additional term in the bare action that originates from these variable transforma-

tions Strans. The additional fields being introduced are anti-commuting complex scalars

λ, λ̄, a commuting real scalar ω, anti-commuting complex vectors cT , c̄T , commuting real

transverse vectors ζT , commuting complex scalars s, s̄, anti-commuting complex scalars

ψ, ψ̄ and a commuting real scalar w. The transformation part of the action reads

Strans =

∫
ddx
√
ḡ
(
λ̄Mσ λ+ ωMσ ω + c̄TµM

µν
ξ cTν + ζTµ M

µν
ξ ζTν

)
+

∫
ddx
√
ḡ
(
s̄Mη s+ ψ̄Mθ ψ + wMθ w

)
(2.34)
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with the Jacobians from the transformation Mϕ

Mσ =

[(
1− 1

d

)
∇̄2 ∇̄2 +

R̄

d
∇̄2

]′′
(2.35)

Mξ = −2 ḡµν
[
∇̄2 +

R̄

d

]′
(2.36)

Mη =Mθ =
[
−∇̄2

]′′
(2.37)

where the number of primes indicates the number of lowest modes that have to be excluded

from the trace. That number is inherited from the fields in the transformation.

The whole set of fields thereby becomes

ϕ =
{
hT , ξ, σ, h, CT , C̄T , η, η̄, bT , θ, λ, λ̄, ω, cT , c̄T , ζT , s, s̄, ψ, ψ̄, w

}
(2.38)

where every ϕ has a corresponding expectation value φ. The bare action Sbare consists of

four terms:

Sbare = S + Sgf + Sgh + Strans. (2.39)

The gauge fixing, the ghosts and the transformation fields are treated classically, meaning

that we approximate their Hessians of the effective average action Γ
(2)
k simply by the

Hessians of the classical action S(2).

2.4.1 Gauge fixing and ghosts

The gauge fixing term Sgf has the structure

Sgf =
1

2

∫
ddxFµGµν F

ν , (2.40)

where Fµ = lµ is the actual gauge fixing condition and Gµν comes from performing a

Gaussian functional integral over the functions lµ centered around lµ ≡ 0 to smear out the

delta distribution.

We choose a gauge fixing condition Fµ = 0, which is linear in the full metric γµν , such

that it simplifies to only act on the fluctuation part Fµ = Fαβµ γαβ = Fαβµ hαβ. We employ

Fαβµ = δβµ ∇̄α −
1 + ρ

d
ḡαβ ∇̄µ, (2.41)

where ρ is a dimensionless parameter and thereby classifies a family of gauges.

The choice ρ = d
2 − 1 is called harmonic gauge. We choose the so-called geometric gauge

ρ = 0, as it simplifies our flow equation compared to the harmonic gauge [99].

The Gaussian tensor introduces two dimensionful gauge parameters α and β:

Gµν =
√
ḡḡµν

(
α+ β ∇̄2

)
. (2.42)
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Thereby the full gauge fixing term reads explicitly

Sgf =
1

2

∫
ddx
√
ḡ

[
α

(
(∇̄σ hσµ)(∇̄λ hµλ)−

(
1 + ρ

d

)2

h∇̄2 h+
2 (1 + ρ)

d
h ∇̄µ ∇̄λ hµλ

)

+β

(
(∇̄σ hσµ)∇2 (∇̄λ hµλ)−

(
1 + ρ

d

)2

h∇µ ∇̄2∇µ h+
2 (1 + ρ)

d
h ∇̄µ∇2 ∇̄λ hλµ

)]
.

(2.43)

The ghost term has the structure

Sgh =

∫
ddx
√
ḡ C̄µ ḡ

µλ (α+ β ∇̄2)Mν
λ Cν +

1

2

∫
ddx
√
ḡ bµ ḡ

µν (α+ β ∇̄2) bν , (2.44)

where the Fadeev-Popov operator Mµν is given as

ḡαγ ∇̄γ (γµν ∇α + γαν∇µ)− 2 (1 + ρ)

d
ḡαβ ∇̄µ(γνβ ∇α). (2.45)

Three gauge parameters α, β and ρ are retained which in general could be scale-dependent.

In order to remove the running, a gauge needs to be chosen where Gµν → ∞. Here, we

choose α =∞ and β = 0 together with ρ = 0 [99]. This choice simplifes the flow equation

drastically because it removes any mixing terms of σ and h and also only leaves the traces

of hT and h dependent of the function Fk(R).

2.4.2 Second variation of Γk

The second variation of Γk is computed and afterwards it is evaluated on the spherical

background gµν = ḡµν . As a shorthand the bars of background quantities are now dropped.

Due to the identification there is no ambiguity in this shorthand notation:

δ2

δφi δφj
Γk ≡ Γ

(2)
φi φj

√
g δ(x− y). (2.46)
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The Hessians Γ
(2)
φi φj

are usually diagonal, except for a mixing term for the expectation

value of the σ and h fields. The gravitational Hessians are

Γ
(2)

hT hT
= −1

2
F (R) + F ′(R)

(
1

2
∇2 +

R (d− 2)

d (d− 1)

)
(2.47)

Γ
(2)
ξξ = F (R)

(
∇2 +

R

d

′

F
(R)

(
2R

d
∇2 +

2R2

d2

)
+ α

(
∇4 +

2R

d
∇2 +

R2

d2

)
+β

(
∇6 +

2R

d
∇4 +

R2

d2
∇2

))
(2.48)

Γ(2)
σσ = −1

2
F (R)

(
d− 1

2
∇4 +

R

d
∇2

)
+ F ′(R)

(
R2

d2
∇2 +

R

2 d
∇4 − (d− 1) (d− 2)

2 d2
∇6

)
+ F ′′(R)

(
(d− 1)2

d2
∇8 +

2 (d− 1)R

d2
∇6 +

R2

d2

)
− α

(
(d− 1)2

d2
∇6 +

2 (d− 1)R

d2
∇4 +

R2

d2
∇2

)
− β

(
R3

d3
∇2 +

(3 d− 2)R2

d3
∇4 +

(1− 4 d+ 3 d2)R

d3
∇6 +

(d− 1)2

d2
∇8

)
(2.49)

Γ
(2)
σh = F ′(R)

(
(d− 1) (d− 2)

2 d2
∇4 +

d− 2

2 d2
∇2R

)
− F ′′(R)

(
(d− 1)2

d2
∇6 +

2 (d− 1)R

d2
∇4 +

R2

d2
∇2

)
+ αρ

(
d− 1

d2
∇4 +

R

d2
∇2

)
+ β ρ

(
d− 1

d2
∇6 +

(2 d− 1)R

d3
∇4 +

R2

d3
∇2

)
(2.50)

Γ
(2)
hh = F (R)

d− 2

4 d
+ F ′(R)

(
−(d− 2)R

d2
− (d− 1) (d− 2)

2 d2
∇2

)
+ F ′′(R)

(
R2

d2
+

2 (d− 1)

d2
∇2R+

(d− 1)2

d2
∇4

)
− ρ2

d2

(
α∇2 + β

(
∇4 +∇2 R

d

))
. (2.51)

The ghost Hessians are

Γ
(2)

C̄TCT =
(
α+ β∇2

) (
∇2 +

R

d

)
(2.52)

Γ
(2)

bT bT
= α+ β∇2 (2.53)

Γ
(2)
η̄η =

(
α+ β

(
∇2 +

R

d

)) (
2 (1 + ρ)

d
∇4 − 2∇4 − 2R

d
∇2

)
(2.54)

Γ
(2)
θθ = −

(
α+ β

(
∇2 +

R

d

))
∇2. (2.55)
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The transformation field Hessians are

Γ
(2)

c̄T cT
= −2

(
∇2 +

R

d

)
(2.56)

Γ
(2)

ζT ζT
= −4

(
∇2 +

R

d

)
(2.57)

Γ
(2)

λ̄λ
=

(
1− 1

d

)
∇4 +

R

d
∇2 (2.58)

Γ(2)
ωω = 2

((
1− 1

d

)
∇4 +

R

d
∇2

)
(2.59)

Γ
(2)
s̄s = Γ

(2)

ψ̄ψ
= Γ(2)

ww = −∇2. (2.60)

All these second variations are the basis to compute the RHS of the flow equation (2.18)

in Section 2.4.3.

2.4.3 Regulators

The regulator Rk is a part of the full inverse propagator Γ̃
(2)
k = Γ

(2)
k + Rk. The second

variation Γ
(2)
k (∆) is viewed as dependent on a differential operator ∆:

Γ
(2)
k =

∑
n

An ∆n (2.61)

The operator ∆ has the general structure

∆ = −∇2 + E (2.62)

with a potential term E. The potential term classifies the regulator. It can vanish (type

I), depend on the scalar curvature R (type II) or can depend on the Ricci scalar R and

the couplings (type III) [99]. We choose the regulator in such a way that it leads to the

replacement

Γ̃
(2)
k = Γ

(2)
k (∆→ ∆ +Rk(∆)) (2.63)

with the regulator shape function Rk. Thereby, the choice of ∆ directly influences the way

in which the IR modes are regulated. In contrast to [39, 40], we employ type I and type

II regulators in order to improve the properties of the flow (cf. Section 3.1).

From condition (2.63) together with the general form of Γ
(2)
k (2.61), we can write down

the full inverse propagator

Γ
(2)
k +Rk =

∑
n

An (∆ +Rk)
n . (2.64)

Using (2.64), we can solve for the full regulator term

Rk =
∑
n

An ((∆ +Rk)
n −∆n) . (2.65)
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The right-hand-side of the flow equation (2.18) also requires the logarithmic derivative

∂t ≡ k ∂k of the regulator Rk, which can be expressed using (2.65) as

∂tRk =
∑
n

(
∂tAn ((∆ +Rk)

n −∆n) +An n (∆ +Rk)
n−1 ∂tRk

)
(2.66)

Now we can write the full flow equation with the traces on the right-hand-side:

∂tΓk = Sgravity

=
1

2
Tr

[
∂tRh

T hT

k

Γ
(2)

hT hT
+RhT hTk

]
+

1

2
Tr′

 ∂tRξξk
Γ

(2)
ξξ +Rξk

+
1

2
Tr′′

[
∂tRωωk

Γ
(2)
ωω +Rωωk

]

+
1

2
Tr′

 ∂tRζ
T ζT

k

Γ
(2)

ζT hT
+Rζ

T ζT

k

+ Tr′′

[
∂tRs̄sk

Γ
(2)
s̄s +Rs̄sk

]
− Tr′′

[
∂tRλ̄λk

Γ
(2)

λ̄λ
+Rλ̄λk

]

− Tr′′

[
∂tRη̄ηk

Γ
(2)
η̄η +Rη̄ηk

]
− Tr′

[
∂tRc̄

T cT

k

Γ
(2)

c̄T cT
+Rc̄T cTk

]
− Tr′

[
∂tRC̄

TCT

k

Γ
(2)

C̄TCT +RC̄TCT

k

]

+
1

2
Tr′′

[(
Γ̃

(2)
hh Γ̃(2)

σσ − Γ̃
(2)
σh Γ̃

(2)
σh

)−1 (
Γ̃

(2)
hh ∂tR

σσ
k + Γ̃(2)

σσ ∂tRhhk − 2 Γ̃
(2)
σh ∂tR

σh
k

)]
+

1

2

1∑
l=0

Dl,0
∂tRhhk (λl,0)

Γ
(2)
hh (λl,0) +Rhhk (λl,0)

+
1

2
Tr′

[
∂tRb

T bT

k

Γ
(2)

bT bT
+RbT bTk

]

+
1

2
Tr′′

[
∂tRθθk

Γ
(2)
θθ +Rθθk

]
− Tr′′

 ∂tRψ̄ψk
Γ

(2)

ψ̄ψ
+Rψ̄ψk

+
1

2
Tr′′

[
∂tRwwk

Γ
(2)
ww +Rwwk

]
. (2.67)

Due to the mixing of the σ and h modes, the full inverse propagator there corresponds to

a matrix inversion. Because the lowest two modes of σ have to be excluded and there is no

exclusion for h, we explicitly include the lowest two modes of h into the right-hand-side.

The scalar eigenvalues of ∆ are denoted by λl,0 with corresponding multiplicities Dl,0.

Since we employ type I and type II cutoffs in (2.67), as we will explain in detail later (cf.

Section 3.1), in principle each trace should be thought of as having their own individual

∆.

2.4.4 Trace evaluation

When evaluating the traces in the flow equation (2.67), we encounter in general a function

W of a differential operator ∆:

Tr [W (∆)] (2.68)

In principle these traces could be computed with the eigenvalue spectrum of ∆, including

the multiplicities of each eigenvalue. It turns out that it is more practical to utilise heat

kernel methods for the trace computation. Therefore we have to reexpress W (∆) via its
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anti-Laplace transform W̃ (τ)

W (∆) =

∞∫
0

dτ exp(−τ ∆) W̃ (τ), (2.69)

where the exponential exp(−τ ∆) is called the heat kernel. It has an asymptotic expansion

which is used to expand the trace:

Tr [W (∆)] =

∞∫
0

dτ Tr [exp(−τ ∆)] W̃ (τ),

= Vd

∞∑
n=0

b2nQd/2−n(W ). (2.70)

The b2n are called heat-kernel coefficients and can be calculated for all the relevant fields

(scalars, transverse vectors, transverse-traceless tensors) using recursion relations [107].

As we employ a spherical background, the heat kernel coefficients will be proportional to

powers of the Ricci scalar R. The volume of the sphere Vd is given as

Vd = (4π)d/2
Γ(d/2)

Γ(d)

(
d (d− 1)

R

)d/2
. (2.71)

The Q-functions encode the shape of W :

Qm(W ) =

∞∫
0

dτ τ−m W̃ (τ). (2.72)

The expression for Qm can be related back to W instead of its anti-Laplace transform

W̃ (τ). Since we will later take d = 4, it suffices to consider integer values of m (cf.

(2.70)):

Qm(W ) =


1

Γ(m)

∞∫
0

dz zm−1W (z) m > 0

(−1)−mW (−m)(0) m ≤ 0

. (2.73)

Due to the regulator implementation (cf. Section 2.4.3), the general shape function in our

case is

W (∆) =
1

2

∑
n

(
∂tAn ((∆ +Rk)

n −∆n) +An n (∆ +Rk)
n−1 ∂tRk

)∑
n An (∆ +Rk)

n . (2.74)

We choose the optimised cutoff [69, 70] for the regulator shape function Rk:

Rk(z) = (k2 − z) θ(k2 − z), (2.75)

and get

Qm(W ) =


1

2 Γ(m+1)

∑
n k2n+2m( n

n+m
∂tAn+2nAn)∑

nAn k2n
m > 0

1
2

∑
n=1 k

2n(∂tAn+2nAn)∑
nAn k2n

m = 0

(−1)−m+1

2
(−m)! ∂tA−m∑

n An k2n
m ≤ 0

. (2.76)
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Since for our particular gauge choice, all Am = 0 for m < −2 are zero, the heat kernel

expansion naturally truncates without the imposition of any further approximation.

2.5 Beta functions and fixed points

In this section we introduce the basic concepts and notation to analyse the flow equation

in the UV limit.

So far we have dealt with dimensionful quantities, such as couplings λ̃i (2.21), the Ricci

scalar R to build up a polynomial F (R). We will now switch to dimensionless quantities

by rescaling with the RG scale k for further analysis. This will make the search for fixed

points easier.

We define:

vd ≡ kdVd (2.77)

λi ≡ 16π k2 i−dλ̃i (2.78)

ρ ≡ k−2R (2.79)

f(ρ) ≡ 16π k−d F (R). (2.80)

The conventional factor of 16π generates a very simple relationship between the coupling

λ1 and the dimensionless Newton’s constant (cf. (2.20)) The dimensionless Ricci scalar ρ

is not to be confused with the gauge parameter ρ. In a context where there might be an

ambiguity, we will denote the gauge parameter by ρ = ρgauge.

In dimensionless notation the left hand side of the flow equation has the structure

∂tf + d f − 2 ρ f ′. (2.81)

We will later observe (cf. (3.5)) that the right hand side of the flow equation I[f ] for the

mentioned dimensionality and gauge choices has homogenity degree 0 in f . Therefore any

rescaling of f with a constant, merely leads to an overall constant factor on the left hand

side of the flow equation.

The right hand side of the flow equation is given through (2.67) and will be explicitly

calculated in Section 3.1. We review the flow equation and key results of [39, 40, 66, 67]

in Section 2.6 in order to point out the differences to our treatment in Section 3.1.

We examine the flow equation (2.67) for its compatibility with the asymptotic safety

scenario. For this to be realised, the effective average action has to approach a fixed point
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action in the UV limit k →∞. This means that the dimensionless couplings λi = k−di λ̃i

exhibit a vanishing beta function βi = k ∂k λi, where di = 2 i − 4 denotes the canonical

mass dimension of λ̃i. This implies that close to the UV- fixed-point the beta functions

βi are well-described by the linearised flow around the fixed points λ∗i :

βi =
∑
j

Mij (λj − λ∗j ) + subleading, (2.82)

whereMij = ∂βi/∂λj |∗ is called the stability matrix. The eigenvalues−θn and eigenvectors

Vn,i of Mij determine the UV properties of the flow which has the form

λi − λ∗i =
∑
n

CnVn,ie
−θnt + subleading. (2.83)

A positive eigenvalue (real part) −θn corresponds to an irrelevant direction which is not

part of the asymptotic safety scenario; their coefficients Cn are set to zero. A negat-

ive eigenvalue (real part) −θn corresponds to a relevant direction. Trajectories in these

directions are renormalisable since they are forced into the fixed point as k → ∞. The

asymptotic safety scenario includes all attractive directions. If their number turns out to

be finite, the theory is governed by a finite number of couplings and therefore predictive.

2.6 Previous f(R) results

Polynomial f(R) quantum gravity was studied up until order 6 [34, 100] and order 8 [99] in

the Ricci scalar. The study in [108] pushed it to order 10, but did not feature an analysis

of the critical behaviour at the fixed point. A global analysis of solutions f(R) to the

flow presented in [109] was undertaken in [110, 111]. In this section we review the flow

equation and results presented in [39, 40, 66, 67] in more detail to highlight similarities

and differences in our treatment (cf. Section 3.1).

The derivation of their flow equation follows the same conventions as presented in this

chapter. The crucial difference is type of regulator used. They solely apply a type I

regulator

∆ = −∇2 (2.84)

on the right hand side of the flow equation (2.67). In contrast, we will employ a mixture

of both type I and type II regulators. The treatment in [39, 40, 66, 67] leads to a flow

equation of the form

ḟ − 2 ρ f ′ + 4 f = c I[f ] = c
(
I0[f ] + I1[f ] ḟ ′ + I2[f ] ḟ ′′

)
(2.85)

c =
1

24π
(2.86)
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A dot denotes a logarithmic derivative with respect to k, whereas a prime denotes a

derivative with respect to ρ. The contributions to the right hand side I[f ] are given as:

I0[f ] =
PS0
DS

0

+
P V0
DV

0

+
PS1

0 f ′ + PS2
0 f ′′ + PS3

0 f ′′′

DS
+
P T1

0 f ′ + P T2
0 ρ f ′′

DT
(2.87)

I1[f ] =
PS1
DS

+
P T1
DT

(2.88)

I2[f ] =
PS2
DS

. (2.89)

The superscripts T (tensor), V (vector) and S (scalar) provide additional structural in-

formation about the type of field that generates the contribution P .

The denominators D (excluding DS
0 and DV

0 ) are

DS = 2 f + (3− 2 ρ) f ′ + (3− ρ)2 f ′′ (2.90)

DT = 3 f − (ρ− 3) f ′ (2.91)

The polynomials P0 of I0[f ] (excluding PS0 and P V0 ) are

PS1
0 =

37

756
ρ3 +

29

15
ρ2 + 18 ρ+ 48 (2.92)

PS2
0 = − 37

756
ρ4 − 29

10
ρ3 − 121

5
ρ2 − 12 ρ+ 216 (2.93)

PS3
0 =

181

1680
ρ4 +

29

15
ρ3 +

91

10
ρ2 − 54 (2.94)

P T1
0 =

311

756
ρ3 − 1

3
ρ2 − 90 ρ+ 240 (2.95)

P T2
0 = −311

756
ρ3 +

1

6
ρ2 + 30 ρ− 60. (2.96)

The polynomials P1 of I1[f ] are

PS1 =
37

1512
ρ3 +

29

60
ρ2 + 3 ρ+ 6 (2.97)

P T1 = − 181

3360
ρ4 − 29

30
ρ3 − 91

20
ρ2 + 27. (2.98)

And finally the polynomial P2 of I2[f ] is

PS2 =
311

1512
ρ3 − 1

12
ρ2 − 15 ρ+ 30. (2.99)

The overall flow equation (2.85) has the same structure as our flow equation (3.5). The

functions DS , DT , PS1
0 , PS2

0 , PS3
0 , P T1

0 , P T2
0 , PS1 , P T1 and PS2 are the same functions as

in our flow equation (cf. equations (3.10) to (3.21), excluding (3.12) and (3.13)). The

difference lies in the explicit form of I0[f ] which features two rational functions as f -
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independent terms with

PS0 =
511

30
ρ2 − 12 ρ− 36 (2.100)

DS
0 = 3− ρ (2.101)

P V0 =
607

15
ρ2 − 24 ρ− 144 (2.102)

DV
0 = 4− ρ. (2.103)

This introduces two poles into the flow equation, namely at ρ = 3 from (2.101) and at

ρ = 4 from (2.103). These poles potentially influence the physical properties of the flow

and could limit the radius of convergence of a series expansion of f(ρ). In our flow equation

(3.5), the f -independent term is reduced to two polynomials via a different regulator choice

(3.2) for certain modes. The denominators DS
0 and DV

0 are simply 1 and can be eliminated

from our flow. The polynomials PS0 and P V0 are different function and given in (3.12) and

(3.13).

The flow equation in [39, 40, 66, 67] has been analysed up to N = 35 in polynomial

order. A stable fixed point pattern is found with three relevant directions. The irrelevant

directions exhibit a behaviour very close to canonical scaling.

The polynomial expansion of f(ρ) around ρ = 0 has a finite radius of convergence of [66]

ρc ≈ 0.83± 5%. (2.104)

This completes our summary of the tools necessary for our treatment of f(R) gravity. In

the next Chapter 3 we use those techniques to analyse a slightly different flow and push

fixed point searches to even higher orders.
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Chapter 3

Pure gravity in the f (R)

approximation

In this chapter we derive a flow equation for polynomial f(R) gravity in four spacetime

dimensions explicity, as outlined in Chapter 2. Our main motivation to introduce an

improved flow for this template action of quantum gravity is the following:

It has been found in the past that the flow equation may develop poles for finite Ricci

curvature at certain points in field space [39, 40, 66, 67]. One would expect for a fixed point

solution to be finite for all real Ricci curvature values. In principle this can be achieved

with the existing flows. But the occurrence of too many poles in the flow can lead to

the absence of a globally defined fixed point solution [110]. The poles can be related

to technical choices regarding the cutoff function. We exploit the freedom to choose a

Wilsonian cutoff, in order to remove certain poles. The differential equation of the flow

(cf. Section 2.6 equations (2.85) and (2.87)) develops poles in the dimensionless Ricci

scalar ρ via DS
0 (2.101) and DV

0 (2.103). They have the location ρ = 3 and ρ = 4.

Our main achievement is an improved flow equation in which these explicit poles in the

Ricci scalar are removed (cf. Section 3.1). We confirm and extend the picture of an

interacting UV fixed point where higher order operators generate increasingly irrelevant

directions.

For the analysis we developed and used a new code to efficiently compute the fixed point

algebraically to the previously inaccessible order Nmax = 71. We numerically extend these

findings up to Nmax = 1001.
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3.1 Improved functional flow

We will now explicitly evaluate the terms on the right hand side of the flow equation in

(2.67). First we state the second variations Γ
(2)
φiφi

with the cutoff choice ∆φiφi and then the

trace. The cutoff is always chosen to remove explicit poles in ρ for the traces compared

to [39, 40, 66, 67]. The fields obtaining a different treatment are the gravitational scalar

mode σ, the ghost scalar mode η, the auxiliary scalar modes λ and ω and the gravitational

vector ξ. We will thereby be sensitive to potential effects of the system due to the (absence

of) poles and determine their physical significance.

The different contributions to the right hand side of the flow equation are given explicitly

in Appendix A. In this particular gauge, there are no contributions from the ghost b and

all associated fields, namely bT , θ, ψ, w.

The prerequisite of removing the explicts poles in ρ leads to type II regulator for the

gravitational vector mode ξ (A.4) and to some scalar modes being regularised in a more

involved manner (σ (A.7) and (A.8), η (A.17) and (A.18), λ (A.27) and (A.28), ω (A.34)

and (A.35)). The key observation here is that the Hessians have a generic product structure

Γ(2)
xx = c

(
−∇2

) (
−∇2 − ρ

3

)n
, (3.1)

where c is a constant prefactor and the power n in our case takes integer values 1 and 2.

We now define the regulator Rxxk implicitly via the inverse propagator

Γ(2)
xx +Rxxk = c

[
−∇2 +Rk(−∇2)

] [
−∇2 − ρ

3
+Rk(−∇2 − ρ

3
)
]n
, (3.2)

in which the same shape function Rk is used with two different arguments. Thereby the

trace Sxx can be expressed as the sum of two traces:

Sxx =
1

2
Tr′′

[
∂tRxxk

Γ
(2)
xx +Rxxk

]
(3.3)

=
1

2
Tr′′

[
∂tRk(−∇2)

−∇2 +Rk(−∇2)

]
+

1

2
Tr′′

[
n∂tRk(−∇2 − ρ

3)

−∇2 − ρ
3 +Rk(−∇2 − ρ

3)

]
. (3.4)

This ensures that the traces in question do not contribute any poles in ρ to the flow

equation.

The full flow equation reads:

ḟ − 2 ρ f ′ + 4 f = c I[f ] = c
(
I0[f ] + I1[f ] ḟ ′ + I2[f ] ḟ ′′

)
(3.5)

c =
1

24π
. (3.6)
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A dot denotes a logarithmic derivative with respect to k, whereas a prime denotes a

derivative with respect to ρ. The contributions to the right hand side I[f ] are given as:

I0[f ] = PS0 + P V0 +
PS1

0 f ′ + PS2
0 f ′′ + PS3

0 f ′′′

DS
+
P T1

0 f ′ + P T2
0 ρ f ′′

DT
(3.7)

I1[f ] =
PS1
DS

+
P T1
DT

(3.8)

I2[f ] =
PS2
DS

. (3.9)

The superscripts T (tensor), V (vector) and S (scalar) provide additional structural in-

formation about the type of field that generates the contribution P .

Please note again that the non-f -dependent contribution to I0 consists just of two poly-

nomials PS0 and P V0 and therefore does not contain poles in ρ, as in previous treatments

(cf. Section 2.6). The denominators D are

DS = 2 f + (3− 2 ρ) f ′ + (3− ρ)2 f ′′ (3.10)

DT = 3 f − (ρ− 3) f ′. (3.11)

The polynomials P0 of I0[f ] are

PS0 =
271

45
ρ2 +−24 ρ− 24 (3.12)

P V0 =
191

15
ρ2 − 48 ρ− 72 (3.13)

PS1
0 =

37

756
ρ3 +

29

15
ρ2 + 18 ρ+ 48 (3.14)

PS2
0 = − 37

756
ρ4 − 29

10
ρ3 − 121

5
ρ2 − 12 ρ+ 216 (3.15)

PS3
0 =

181

1680
ρ4 +

29

15
ρ3 +

91

10
ρ2 − 54 (3.16)

P T1
0 =

311

756
ρ3 − 1

3
ρ2 − 90 ρ+ 240 (3.17)

P T2
0 = −311

756
ρ3 +

1

6
ρ2 + 30 ρ− 60. (3.18)

The polynomials P1 of I1[f ] are

PS1 =
37

1512
ρ3 +

29

60
ρ2 + 3 ρ+ 6 (3.19)

P T1 = − 181

3360
ρ4 − 29

30
ρ3 − 91

20
ρ2 + 27. (3.20)

And finally the polynomial P2 of I2[f ] is

PS2 =
311

1512
ρ3 − 1

12
ρ2 − 15 ρ+ 30. (3.21)

The explicit flow equation can now be analysed for fixed points and their critical behaviour

(cf. Section 2.5) using the method presented in the following Section 3.2.
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3.2 Bootstrap

The analysis of the flow equation (3.5) is carried out via a polynomial expansion of the

function f(ρ) around ρ = 0. The approximation is controlled by the highest power of ρ

accounted for in the approximated flow.

The basic assumption behind this procedure is that all non-attractive couplings λi can

be described by the weak-coupling limit, meaning that their critical behaviour at the

fixed point is mainly described by their canonical mass dimension di and that any cor-

rections due to interactions are small. The Gaussian scaling corresponds to an eigenvalue

−θG,i = −di. The corrections induced by a coupling are assumed to decrease with de-

creasing mass dimension di. Note that the mass dimensions are negative here. We cannot

prove this assumption a priori, but it is consistent with the findings in [39, 40, 66, 67]

tested up to polynomial order R34 which provides an a posteriori justification.

Since the so-far observed attractive directions in f(R) theory appear in the R2 approx-

imation with no further directions appearing with the addition of higher order terms, the

assumption motivates an iterative procedure of analysis: We study a polynomial gravita-

tional effective action Γk that includes all powers of R up to a maximal order N−1, which

includes N couplings, and therefore we approximate

f(ρ) ≈ fN (ρ) =
N−1∑
n=0

λn ρ
n. (3.22)

For fixed N , the canonical mass dimension of the couplings λi is bounded by di ≥

−2 (N − 1) + 4. We can calculate the beta functions for a fixed N and analyse them

for their fixed point properties, namely the number of attractive directions and the eigen-

values of the stability matrix. This procedure is then iterated by going from N to N + 1.

In each iteration one new coupling is accounted for that has a canonical mass dimension

less than any other previously included coupling. We performed this analysis from N = 2

to N = 71 and thereby went significantly beyond the range of [39, 40, 66, 67].

At the heart of our subsequent calculation lies a recursion relation of the couplings at the

fixed point. To obtain it, first we need to set all scale derivatives in (3.5) to 0. The fixed

point equation then reads

4 f(ρ)− 2 ρ f ′(ρ) = I0[f ] (3.23)

with I0 given in (3.7). This equation encodes all the information of the fixed point. In

order to access it, the equation is rearranged such that we get rid of all denominators that
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contain any ρ or f structure. We call this equation

A[f ] ≡ DS DT
(
4 f(ρ)− 2 ρ f ′(ρ)− c I0[f ]

)
= 0. (3.24)

Then we can take n derivatives with respect to ρ of the equation and evaluate it at ρ = 0.

We observe that the resulting equation

A(n)(f, f ′, . . . , f (n+2)) = 0 (3.25)

depends in principle on all derivatives of f up to f (n+2). In particular it is linear in

the highest derivative f (n+2). Therefore the equation can always be rearranged for this.

Bearing in mind that f (i)(ρ = 0) = i!λi we obtain

λn+2 = X̃n+2(λ0, λ1, . . . , λn+1). (3.26)

Since there are also equations for λn+1 down to λ2, we can recursively simplify this equation

to yield

λn+2 = Xn+2(λ0, λ1). (3.27)

This means that through the knowledge of the first two couplings at the fixed point, all

other couplings in f(ρ) are fixed. The challenge of this method is solving the recursion

relation encoded in the functions X̃i to obtain Xi. A dedicated C++ program was de-

veloped to compute the Xi (cf. Section 3.3). The results are exact because the Xi can

be expressed as rational functions in λ0, λ1 with integer coefficients. The efficiency and

speed of this program makes it possible to go up to N = 71 and thereby double the order

previously achieved [39, 40, 66, 67].

At a given approximation order N , we impose that the next two couplings, namely λN

and λN+1, vanish:

λN = 0 = λN+1. (3.28)

The boundary condition (3.28) fixes λ0 and λ1 and with them all other couplings at ap-

proximation order N . The condition (3.28) is solved using the functions XN and XN+1

by numerically looking at the intersections of their nullclines. In a typical setup there are

more than one intersection. The choice is made using consistency requirements.

Firstly the fixed point coordinates λ0 and λ at the considered order should be close to

the choice in the previous order. Secondly the fixed point coordinates should be stable

over the orders. Sometimes there are solutions to the boundary condition that are close
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to the fixed point coordinates from the previous order. But tracking this candidate over

several orders shows that it is moving its location rapidly with the orders. Thirdly the

critical behaviour should be close to the one of the previous order fixed point, in particular

regarding the relevant eigenvalues. The combination of all of these three criteria allowed

for a unique choice of a fixed point candidate among several other candidates that could

be deemed spurious.

The boundary condition we impose is not unique. The choice of the boundary condition

may influence the speed of coupling convergence over the approximation orders. It does

not affect the coupling values in the limit N →∞.

The set of fixed point coordinates {λ0, . . . , λN−1} at a given approximation order N is

then used to analyse the fixed point for its scaling properties. The stability matrixM can

be calculated from the flow equation (3.5). We define

B[f, ḟ ] ≡ DS DT
(
ḟ − c I1[f ] ḟ ′ − c I2[f ] ḟ ′′

)
(3.29)

and use it to rewrite the flow equation in a way that gets rid of all denominators with a

ρ or f structure:

A[f ] +B[f, ḟ ] = 0. (3.30)

The term B[f, ḟ ] vanishes at the fixed point (ḟ (i) = 0) and we would have equation (3.24)

again. Then we take n derivatives with respect to ρ of this equation and evaluate at ρ = 0.

This yields

An +
n+2∑
m=0

Bnm βm = 0 (3.31)

with An = ∂nρA|ρ=0 and
n+2∑
m=0

Bnm βm = ∂nρB|ρ=0. Now we take the partial derivative with

respect to coupling λj and evaluate at the fixed point

A∗nj +B∗nmMmj = 0 (3.32)

with A∗nj − ∂λjAn|∗ ≡ A, B∗nm = Bnm|∗ ≡ B and Mmj = ∂λj βm|∗ ≡M. Summation over

double occurring indices is implied. This matrix equation can be solved for the stability

matrix M

M = −B−1 · A (3.33)
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The eigenvalues −θ of M are the negative critical exponents θ. The number of relevant

directions should be finite in order to be compatible with the asymptotic safety conjecture.

As a cross-check to the method of computing the stability matrix involving derivatives

of the flow (3.32), we also employed an integral method a la [112], using orthogonal

polynomials to project out the desired contributions. The results were found to be in

complete agreement with (3.33).

3.3 Code

The main challenge on the technological side of systematically solving the fixed point

equation (3.23), is finding solutions Xn+2 (3.27) to the recursion relation (3.26).

The solutions are rational functions of the lowest two couplings λ0 and λ1:

λn+2 = Xn+2(λ0, λ1) =
Pn+2(λ0, λ1)

Qn+2(λ0, λ1)
, (3.34)

where P and Q are polynomials. The terms X̃n+2 are known from (3.25) have the structure

λn+2 = X̃n+2(λ0, · · · , λn+1) =

(∑
i,j,k

a
(3)
i,j,k λi, λj λk

)
+

(∑
i,j,k

a
(2)
i,j λi, λj

)
+

(∑
i
a

(1)
i λi

)
Dn+2(λ0, λ1)

,

(3.35)

where Dn+2 is a polynomial that is at most quadratic in λ0 and linear in λ1. The summed

over indices in (3.35) range from 0 to n+1. The coefficients a in (3.35) can be made integer

by appropriate choice of the scaling factor c in the flow equations (3.5). Remember that a

particular choice of c corresponds to a certain renormalisation of the couplings. Generally

the coefficients do still depend on the number n of the coupling considered.

3.3.1 Algorithm

The designed C++ program can solve any recursion relation that can be written as (3.35).

The results P and Q are exact and contain no numerical approximation.

The recursion relation defined via λn+2 = X̃n+2 (3.26) can be solved by subsequently

inserting the known λi into (3.35), starting at n = 0 and going up until the desired order.

The denominators Q of the solution are determined by taking the denominators of the

previously calculated λi and determining the smallest product possible that by multiplica-

tion makes the numerator in (3.35) a polynomial and multiplying it with the denominator
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of(3.35). The numerator P of a particular solution is computed by carrying out the sums

in the numerator of (3.35) explicitly and each part needs to be multiplied by the denom-

inator Q of that solution, excluding the factor of D. The computation of P is the limiting

factor for solving this recursion relation because it needs the most operations.

3.3.2 Implementation

The polynomials P and Q of the solution are represented as connected lists with two in-

dices, meaning that only non-zero coefficients are stored. This has two advantages. First,

the allocated space for a polynomial is reduced, because otherwise a stored 0 takes up

space as well. Second, the polynomial multiplication becomes faster since only non-trivial

operations are carried out.

The polynomial coefficients of the solutions P and Q are large integers and will exceed

the data range of any standard integer type as the recursion is carried out and polynomial

coefficients are multiplied. Therefore we use a dynamical integer data type from the GNU

Multiple Precision Library [113] that grows in size as the stored integer grows. Thereby

always the exact result of an integer multiplication is stored and we obtain an exact solu-

tion to the recursion relation.

The algorithm can be parallelised due to the sum structure in the numerator of (3.35).

The sums can be divided up into various subsums. Each subsum can be computed in a

different thread and, once all are finished, they will be recombined to yield the full solu-

tion.

However, each subsum potentially requires knowledge of all the solutions λi of the previous

orders. If all threads had shared access to one copy of the already computed solutions,

clashes could occur where two threads try to access the same information during overlap-

ping time intervals. This can be avoided either by introducing muticies that make threads

wait while another thread is accessing a shared variable or by making full copies of the

previous solutions for each individual thread. The first approach leads to slowed down

computations as threads can become idle while they wait. The second approach does not

have this problem but requires a substantial amount of memory that scales directly with

the number of threads spawned. We employ the second approach as speed is paramount

for us.

For the handling of parallel threads, the boost Thread library [114] is used.
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number of terms in Λn=
Pn

Qn

Pn

Qn

0 10 20 30 40 50 60 70

1

10

100

1000

104

105

n

Figure 3.1: The number of non-vanishing monomials λi0 λ
j
1 in the polynomials Pn , Qn is

plotted against the index n of the corresponding coupling fixed point solution λn. The

fixed point solutions grows in size with increasing order n.

3.3.3 Performance

The code was executed on the University of Sussex high performance cluster apollo. It

solved the recursion relation up until λ72. We used 40 threads in each iteration while

focusing mainly on the splitting up of the sum in (3.35), featuring a product of three λs.

Those required the most computational effort.

The computation took ∼ 46 days and used ∼ 959 days of CPU time, leading to an effective

parallelisation factor of ∼ 20. The code allocated at most ∼ 100 GB of memory during

its runtime at a single moment. The created output (files containing the P s and Qs) has

a size of ∼ 3.6 GB. In order to assess the size of the resulting polynomials P and Q, we

provide a plot of the number of nonzero monomials in λn Figure 3.1 and a plot of the

highest powers of λ0 and λ1 occuring in λn in Figure 3.2.

The output is loaded into Mathematica where it is checked and used for the analysis (cf.

following Section 3.4).
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largest power in PnHΛ0,Λ1L

Λ0

Λ1

0 10 20 30 40 50 60 70

0

100

200

300

400

500

600

n

Figure 3.2: The largest power of λ0, λ1 occurring in the numerator Pn of the fixed point

solution of λn is plotted against the index n. The degree of the polynomial Pn in both

variables is increasing with n.

3.4 Results

In this section we present the results of our analysis of the flow equation (3.5), ranging up

until order N = 71 in the polynomial approximation.

We present the calculated eigenvalues from N = 2 to N = 71 in Figure 3.3.

We find a stable fixed point in each order that can be connected back to the preceding

orders in terms of convergence of the couplings λ∗i and the eigenvalues −θn. Numerical

values of the fixed point coordinates, the relevant critical exponents and the smallest

irrelevant eigenvalue for each approximation order is provided in Table 3.1. We find

three attractive eigendirections in each order, where two of those constitute a complex-

conjugate pair. This is in agreement with [39, 40, 66, 67] and extends the findings towards

N = 71. We also note that the different treatment of the modes σ, η, λ and ω compared

to [39, 40, 66, 67] made no difference to our qualitative results.

Complex conjugate pairs of eigenvalues also occur for repulsive directions. They are a

signifier for degeneracies in the theory and could be lifted through extensions of the f(R)

theory where other invariants are also accounted for (eg. Weyl tensor) or through further

improvement of the RG dynamics (eg. dynamical ghosts).
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Figure 3.3: The sorted eigenvalues −θn (real part) are plotted for different polynomial

approximations fN (ρ), for N ranging from 2 to 71. The solid blue line corresponds to

the Gaussian values for the eigenvalues, whereas the black dashed line shows the linear fit

function for the calculated eigenvalues. The irrelevant eigenvalues seem to exhibit a linear

hierarchy close to Gaussian behaviour.
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Figure 3.4: The ith largest eigenvalues Di (real part) are plotted as a function of the

approximation order N . For better visibility a horizontal shift of 4 (i − 1) is introduced.

All Di grow on average with the approximation order N , thereby supporting the bootstrap

hypothesis.
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N λ g Re(θ0) Im(θ0) θ2 θ3

2 0.118673 0.943051 2.411 1.947

3 0.101365 1.52932 1.632 1.868 29.30

4 0.120840 0.967938 2.727 2.046 2.080 -3.863

5 0.113193 0.922501 2.856 2.244 1.602 -3.417

6 0.113725 0.925186 2.503 2.428 1.880 -3.921+4.814 i

7 0.111616 0.911629 2.467 2.218 1.539 -3.993

8 0.110467 0.902707 2.536 2.257 1.296 -3.864

9 0.112294 0.914044 2.359 2.371 1.532 -2.966+4.839 i

10 0.113302 0.920969 2.265 1.989 1.463 -2.668+8.457 i

11 0.113563 0.922230 2.446 2.044 1.299 -3.470

12 0.114132 0.927485 2.600 2.209 1.657 -3.826

13 0.113875 0.925648 2.621 2.284 1.664 -3.904

14 0.113907 0.925845 2.453 2.230 1.702 -3.922

15 0.113539 0.923394 2.514 2.188 1.593 -3.827

16 0.113521 0.923090 2.542 2.223 1.582 -3.843

17 0.113867 0.925244 2.452 2.265 1.670 -3.373+6.053 i

18 0.113877 0.925310 2.449 2.132 1.585 -3.768

19 0.113931 0.925554 2.518 2.161 1.562 -3.754

20 0.114081 0.926930 2.572 2.209 1.643 -3.822

21 0.114077 0.926839 2.565 2.267 1.681 -3.896

22 0.114053 0.926686 2.484 2.198 1.668 -3.856

23 0.113923 0.925801 2.528 2.189 1.620 -3.815

24 0.113938 0.925827 2.544 2.216 1.626 -3.838

25 0.114070 0.926654 2.475 2.237 1.679 -3.782+6.794 i

26 0.114043 0.926473 2.491 2.159 1.615 -3.788

27 0.114065 0.926564 2.529 2.181 1.609 -3.793

28 0.114157 0.927349 2.566 2.210 1.648 -3.824

29 0.114184 0.927497 2.533 2.255 1.694 -3.891

30 0.114141 0.927219 2.505 2.189 1.657 -3.831

31 0.114079 0.926789 2.536 2.191 1.633 -3.814

32 0.114096 0.926867 2.545 2.215 1.644 -3.838

33 0.114163 0.927285 2.480 2.221 1.681 -3.866

34 0.114133 0.927079 2.510 2.170 1.629 -3.797
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35 0.114145 0.927126 2.534 2.188 1.628 -3.805

36 0.114202 0.927612 2.562 2.211 1.653 -3.826

37 0.114227 0.927760 2.516 2.241 1.695 -3.878

38 0.114188 0.927508 2.515 2.187 1.655 -3.822

39 0.114153 0.927262 2.540 2.193 1.641 -3.814

40 0.114169 0.927339 2.544 2.215 1.653 -3.838

41 0.114207 0.927578 2.537 2.022 1.539 -3.687

42 0.114180 0.927399 2.520 2.176 1.636 -3.801

43 0.114189 0.927432 2.537 2.192 1.638 -3.811

44 0.114238 0.927832 2.560 2.214 1.659 -3.830

45 0.114257 0.927947 2.503 2.222 1.691 -3.863

46 0.114221 0.927713 2.524 2.186 1.653 -3.816

47 0.114201 0.927566 2.543 2.195 1.646 -3.816

48 0.114216 0.927648 2.543 2.217 1.660 -3.840

49 0.114237 0.927778 2.490 2.195 1.672 -3.837

50 0.114215 0.927630 2.526 2.180 1.641 -3.804

51 0.114268 0.928026 2.547 2.195 1.656 -3.816

52 0.114260 0.927963 2.557 2.215 1.662 -3.832

53 0.114272 0.928039 2.503 2.210 1.685 -3.850

54 0.114243 0.927848 2.528 2.187 1.653 -3.814

55 0.114230 0.927750 2.544 2.196 1.649 -3.816

56 0.114244 0.927825 2.541 2.217 1.665 -3.841

57 0.114254 0.927891 2.498 2.189 1.667 -3.827

58 0.114237 0.927774 2.530 2.183 1.645 -3.806

59 0.114243 0.927800 2.540 2.197 1.649 -3.817

60 0.114269 0.927960 2.525 2.215 1.669 -3.843

61 0.114275 0.928001 2.503 2.174 1.653 -3.805

62 0.114260 0.927954 2.533 2.188 1.653 -3.813

63 0.114253 0.927896 2.546 2.198 1.652 -3.818

64 0.114266 0.927974 2.537 2.220 1.671 -3.846

65 0.114268 0.927985 2.507 2.184 1.661 -3.819

66 0.114255 0.927896 2.534 2.185 1.647 -3.808

67 0.114261 0.927924 2.542 2.199 1.652 -3.820

68 0.114282 0.928054 2.522 2.215 1.673 -3.844
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69 0.114283 0.928055 2.510 2.175 1.652 -3.804

70 0.114280 0.928030 2.535 2.184 1.645 -3.804

71 0.114296 0.928123 2.537 2.199 1.655 -3.820

Table 3.1: The fixed point coordinates λ and g, the relevant

critical exponents θ0 and θ2, and the first irrelevant critical

exponents θ3 are given for each approximation order N . The

relevant direction θ1 is the complex conjugate of θ0

We also test the hypothesis of near-Gaussianity which was found in [39, 40, 66, 67]. We

perform a fit to the linear function

θn ≈ an− b. (3.36)

In the pure Gaussian case the values would read aG = 2 and bG = 4. We use the data sets

from N = 11 to N = 71 where we always exclude the largest two eigenvalues of each set

as they can exhibit a degeneracy due to the truncation of the series and therefore exhibit

a larger deviation from the next order as a truncation artefact. We find:

a = 2.042± 0.002 (3.37)

b = 2.91± 0.05. (3.38)

The slope a is very close to the Gaussian value whereas the constant b exhibits a significant

deviation to its Gaussian value. This is also visible in Figure 3.3 where the vast majority

of the points lies above the Gaussian line.

The fit gives strong evidence for a linear growth of the eigenvalues, especially since the

error bar on the slope a is less than 0.1%.

The same fit as in (3.36) was carried out in [39, 40] for fixed point data up until N = 35.

They found a = 2.17 ± 5% and b = 4.06 ± 10%. While the corrections from the higher

orders to the slope a move it closer to Gaussian value, the constant b moves further out.

It still retains a weak dependence on the approximation order N .

Another confirmation of the growth of the eigenvalues can be obtained by considering the

ith largest eigenvalue (real part) of a given approximation order

Di(N) = −θN−i(N), (3.39)
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if −θn(N) are the sorted eigenvalues with increasing real part. The bootstrap hypothesis

(cf. Section 3.2) is supported, if the Di turn out to be increasing function of the approx-

imation order. The on-average-growth of the Di can be observed in Figure 3.4, thereby

providing strong evidence for the continued growth of the eigenvalues. Please note that for

N = 3 Table 3.1 and Figure 3.8 differ in −θ0,1, −θ2 from strict definition of the −θn(N)

having increasing real part with n. There −θ0,1 feature the relevant complex conjugate

and −θ2 features the real relevant eigenvalue. At N = 3 the magnitude of the real relev-

ant one is larger than the complex conjugate pair and therefore it becomes the smallest

eigenvalue of the spectrum.

Extrapolation of these results suggests that higher invariants in the Ricci scalar R do not

generate additional attractive directions but only repulsive ones with linearly increasing

magnitude (cf. Section 3.7).

3.5 Convergence

In order to assess the reliability of our results, we investigate the convergence of the coup-

lings λn and the eigenvalues −θn with increasing approximation order N . The convergence

of the couplings is displayed in Figure 3.5. We observe the relative error for each individual

coupling approaching 0 with increasing approximation order and thereby supporting the

bootstrap approach. This is best visible for low order couplings because they are present

in most of the approximation orders and have the most data points. A high order coup-

ling compared to the studies Nmax = 71 will not lead to a visible convergence pattern yet.

However from the behaviour of the lower order couplings, it is expected that they will

exhibit a similar convergence pattern if more orders were taken into account.

The relative error becomes a misleading indicator of convergence when the value of a coup-

ling at Nmax is close to 0, as this leads to large relative errors even for small deviations.

This is why λ53 was omitted in Figure 3.5. Further examples for this behaviour are λ6

and λ10. These couplings have already stabilised over many more orders compared to λ53,

so the relative error is already tamed for the higher approximation orders. It is largest at

very low approximation orders (cf. Figure 3.5).

When looking at the speed of convergence, a more detailed look at the relative error is

necessary. The convergence for λ0, λ1 and λ2 are given in Figure 3.6. From Figure 3.6 it

is clear that asymptotically roughly one digit precision is gained every 50 approximation

orders for λ0. For λ1 is converging faster and gaining roughly one digit precision every 40
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Figure 3.5: The individual couplings λn at each approximation order are compared

against its value at the highest approximation order Nmax = 71, using the relative er-

ror λn(N)/λn(Nmax) − 1. For better visibility each relative error line gets an additional

offset n + 1. Here λ53 was omitted for better visibility, as λ53(71) ≈ 0. All couplings

exhibit a convergence pattern over the approximation orders.
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Figure 3.6: The relative errors of λi(N) are given compared to λi(Nmax = 71). The

asymptotic speed of convergence is denoted by a dashed line for each coupling.

orders, although it is starting out at a lower precision. Interestingly, λ2 still has the fastest

convergence rate with roughly one digit precision gained every 33 orders. However, this

behaviour cannot persist as λ2 is a function of λ0 and λ1 and therefore it cannot exceed

the precision of those.

The couplings λn exhibit an eightfold periodicity sign pattern from n = 4 onwards. It can

be seen from the coupling values at the highest approximation order Nmax = 71 in Table

3.2. The source of this sign pattern is a complex conjugate pair of singularities in complex

ρ plane close to the origin. The distance from the origin limits the radius of convergence

of our polynomial expansion. One cannot expect to observe the sign pattern rigorously

for high order couplings larger than λ60 since they have not gone through enough orders

to settle in yet. However there are two settled-in couplings that break the sign pattern,

namely λ10 and λ53. Their values lie remarkably close to 0, especially compared to neigh-

bouring couplings. Therefore, there is still room within the error of the coupling to change

sign according to the periodicity pattern. Even a limiting value with the current sign would

be ok and implies that the oscillation angle of the couplings is close to but not quite π/4.
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λ0 λ1 λ2 λ3

0.2463 -1.077 0.008486 -0.4795

λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11

-0.3755 -0.2271 0.005958 0.1957 0.2648 0.2017 0.009851 -0.2364

λ12 λ13 λ14 λ15 λ16 λ17 λ18 λ19

-0.3643 -0.2492 0.05674 0.3575 0.4637 0.3114 -0.05698 -0.5134

λ20 λ21 λ22 λ23 λ24 λ25 λ26 λ27

-0.7805 -0.5397 0.2105 0.9892 1.200 0.6528 -0.3836 -1.476

λ28 λ29 λ30 λ31 λ32 λ33 λ34 λ35

-2.044 -1.334 0.8319 3.140 3.519 1.324 -1.954 -4.499

λ36 λ37 λ38 λ39 λ40 λ41 λ42 λ43

-5.406 -3.483 2.549 10.11 11.81 3.304 -9.369 -16.08

λ44 λ45 λ46 λ47 λ48 λ49 λ50 λ51

-14.38 -7.034 8.447 31.41 40.34 10.42 -41.43 -62.59

λ52 λ53 λ54 λ55 λ56 λ57 λ58 λ59

-35.54 0.1220 26.79 80.35 136.2 64.82 -155.2 -284.9

λ60 λ61 λ62 λ63 λ64 λ65 λ66 λ67

-123.9 128.2 168.0 144.5 340.1 354.3 -408.7 -1253.

λ68 λ69 λ70

-685.5 925.0 1254.

Table 3.2: The couplings λn at the highest approximation

order Nmax = 71.

An estimate of the radius of convergence of the polynomial expansion can be obtained by

looking at the growth rate of the couplings

ρc =

(
λn
λn+m

)1/m

(3.40)

The precise value of the estimate depends now on the explicit choices of n, m, the ap-

proximation order N and the data range over which an average is taken. m should be an

integer multiple of 8, since we observe an eightfold periodicity sign pattern in the couplings

(+ + + +−−−−). We find

ρc = 0.878 (3.41)
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as the mean value over all possible radii, where we excluded the lowest 5 and highest 10

couplings of each approximation order N .

The eigenvalues also exhibit a convergence pattern with the approximation order. This is

presented in Figure 3.7 and a more detailed look at the relevant eigenvalues in Figure 3.8.

The convergence of the eigenvalues is slower than the convergence of the couplings

3.6 Periodicity and cycle averages

The eightfold periodicity pattern was already observed in the previous section, as being

present among the couplings at a given approximation order N (cf. Table 3.2). Its origin

was identified as a complex pole in the full function f(ρ).

Analysing the convergence patterns of the couplings (cf. Figure 3.6 for best visibility)

and of the eigenvalues (cf. 3.8 for best visibility), it becomes apparent that there is also

an eightfold periodicity pattern within the convergence over the approximation orders N .

Such an eightfold periodicity pattern was also found in critical scalar field theories [112].

The source of this pattern can be traced back to our boundary condition (3.28), which

forces the highest two couplings λN and λN+1 of a given approximation order to vanish.

Thereby, these couplings break the periodicity pattern found at a given order N (cf. Table

3.2). With the variation of the approximation order, the position of the breaking is shifted

through the eightfold cycle, and this is reflected in the convergence pattern.

In order to minimise the dependence of couplings and eigenvalues on the periodicity pat-

tern, we introduce an average over the highest eightfold cycle in the approximation order

N . The average of a quantity x is denoted by 〈x〉 and defined as

〈x〉 =
1

8

Nmax∑
N=Nmax−7

x(N) (3.42)
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Figure 3.7: The real part of all eigenvalues −θi(N) is plotted against the approximation

order N up until Nmax = 71. The index i denotes the ith lowest eigenvalue. From left to

right the fluctuations of the eigenvalues get smaller, showing convergence.
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Figure 3.8: The real part of all eigenvalues −θi(N) is plotted against the approximation

order N up until Nmax = 71. This is a close up for the relevant eigenvalues, including the

imaginary part of the complex conjugate pair. From left to right the fluctuations of the

eigenvalues get smaller, showing convergence.
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For the first seven couplings the averages are:

〈λ0〉 = 0.246279± 0.0038% (3.43)

〈λ1〉 = −1.07758± 0.0081% (3.44)

〈λ2〉 = 0.008438± 0.45% (3.45)

〈λ3〉 = −0.4811± 0.22% (3.46)

〈λ4〉 = −0.3764± 0.15% (3.47)

〈λ5〉 = −0.2245± 0.77% (3.48)

〈λ6〉 = 0.00598± 7.9%. (3.49)

The first two can be easily translated into averages for the dimensionless Newton’s coupling

and the dimensionless cosmological constant

〈g〉 = 0.928005± 0.0081% (3.50)

〈λ〉 = 0.10605± 0.020%. (3.51)

And for the relevant eigenvalues we obtain:

〈−Re θ0〉 = −2.528± 0.53% (3.52)

〈−Im θ0〉 = −2.195± 0.73% (3.53)

〈−θ2〉 = −1.657± 0.63% (3.54)

. We can also construct scale-invariant quantities out of the couplings which do not depend

on rescaling of the metric. The most important one is g λ, as it has the interpretation of

a measure for the strength of the gravitational coupling [115]

〈g λ〉 = 0.106047± 0.020%. (3.55)

We also observe

〈g λ〉 = 〈g〉 · 〈λ〉 (3.56)

to a precision of 10−7% This is a remarkable agreement, well within the error bars of

(3.55),(3.50) and (3.51). It provides strong evidence that the dependence on the periodicity

pattern is indeed nearly removed through the cycle averages.

This observation motivates a different approach to the subsequent computation of the

fixed point, compared to the boundary condition in (3.28). We present and examine this

approach in the following Section 3.7.
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3.7 High range

In this section we provide a different method for the analysis of the fixed point properties to

very high orders in the Ricci scalar, which benefits from the previous findings, in particular

the cycle averages computed in Section 3.6.

Previously the fixed point was determined via algebraic expressions of the couplings λn.

It proved to be very demanding regarding the computational power needed (cf. Section

3.3.3). Here we invert the strategy and numerically compute all higher couplings λn by

choosing suitable initial conditions for λ0 and λ1. We use the cycle averages 〈λ0〉 (3.43)

and 〈λ1〉 (3.44) as the fixed point location. Previously, the boundary condition (3.28) was

used to determine the fixed point coordinates λ0 and λ1. Using this approach we can go

to substantially higher orders as solving the recursion relation (3.26) algebraically is no

longer a limiting factor. The computational effort lies now mainly in the computation of

the stability matrix (3.33). Exemplarily we go to Nmax = 1000.

The challenge of this method is the choice of the initial conditions. The fixed point needs

to lead to an f(ρ) with a finite radius of convergence and to a meaningful eigenvalue

spectrum.

The analysis in the previous Section 3.6 provides a good starting point because the cycle

averages aim to remove the dependence on the boundary condition of our polynomial

analysis and can be viewed as a best estimate for the fixed point.

3.7.1 Implementation

The code for solving the recursion relation (3.26) and computing the eigenvalue spectrum

is written in Mathematica. The time-intense operation is the computation of the stability

matrix as it grows quadratically with the approximation order N . Since all the entries of

the stability matrix, or more precisely the entries matrices A and B that are used to obtain

the stability matrix via (3.33), can be calculated independently, it can be parallelised using

bulit-in Mathematica funcitons. The code is executed on the University of Sussex high

performance cluster apollo using 40 nodes. The overall runtime for one set of initial

conditions is ∼ 25 hours using a CPU time of roughly ∼ 393 hours which leads to a

parallelisation factor of ∼ 16.
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3.7.2 Results

The resulting coupling spectrum for the best fixed point estimate is presented in Figure

3.9. It is conceivable that the couplings follow the asymptotic behaviour

λn ≈ a sin(b n+ c) ρ−nc (3.57)

with parameters a, b, c and the radius of convergence ρc. The ansatz in (3.57) mimics

the periodicity pattern with the phase b and the initial phase shift c. The amplitude a

controls the overall magnitude of the couplings. We can use (3.57) as a starting point for

a coupling analysis in our data. In order to stabilise a fit to this equation, we take the

logarithm of the absolute value of this equation:

log(λn) ≈ log(a) + log(sin(b n+ c))− n log(ρc). (3.58)

This is a linear function in the fit parameter n apart from the log(sin(b n+c)) term. It has

the potential to spoil the linear fit, if there are many values were the sine is close to 0, and

therefore the logarithm grows large. Assuming a purely linear behaviour log(λn) ≈ αn+β,

we actually observe the fit to describe the growth rate of log(λ) very well. We find a radius

of convergence of

ρc = 0.7804± 0.0001. (3.59)

This is below than the one obtained in Section 3.4 equation (3.41) for the boundary

condition, λN = λN+1 = 0, which was 0.878.

We observe three relevant eigenvalues

−θ0,1 = −2.5597± 2.1808 i (3.60)

−θ2 = −1.6522 (3.61)

and a whole spectrum of irrelevant eigenvalues presented in Figure 3.10 The irrelevant

eigenvalues are tested for their near Gaussianity and fitted to the linear function an− b.

We obtain

a = 1.99992± 0.00003, (3.62)

b = 1.67± 0.02. (3.63)

The slope a is extremely close to its Gaussian value of 2, whereas the constant b signific-

antly deviates from the Gaussian value of 4. This provides strong evidence for the linear

growth of the irrelevant eigenvalues and suggests that we are in the region of a physically
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Figure 3.9: The spectrum of the logarithm of the absolute value of λn is presented at

N = 1001. The black line represents the best estimate whereas the orange (red) lines

show the results for a on the level of 10−4 (10−3) differing initial condition. The split

of the orange lines is not visible and they lead effectively to the same behaviour. For

each study the resulting radius of convergence of f(ρ) is given as well. The best estimate

exhibits the largest radius of convergence.
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Figure 3.10: The spectrum of the real part of all eigenvalues at N = 1001 for the best

estimate. It shows a linear growth of the irrelevant eigenvalues confirming the picture

from the N = 71 study.
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Figure 3.11: The more detailed spectrum of the real part of the first 30 eigenvalues at

N = 1001 for the best estimate (black) and the two studies with 10−3 deviation (red). It

is noteworthy that deviations here are small compared to the difference in the couplings

in Figure 3.9.
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meaningful fixed point candidate.

We also test this best estimate result for its stability against variations of the initial

condition. We introduce variations of the initial condition of the form

λ0|initial = 〈λ0〉
(
1∓ 10−m

)
(3.64)

λ1|initial = 〈λ1〉
(
1± 10−m

)
. (3.65)

Note the opposite signs in the variation between λ0|initial and λ1|initial. It ensures that in

the different fixed point basis with the cosmological constant λ and Newton’s coupling g,

the cosmological constant is not left unchanged, as it depends on the ratio λ0/λ1.

The effects of different deviations m on the coupling spectrum are presented in Figure 3.9.

For m = −5 the resulting spectrum would be so close to the best estimate that it cannot

be distinguished in the plot and was therefore omitted from Figure 3.9. Variations of 10−4

already show a visible deviation from the best estimate and exhibit a smaller radius of

convergence 0.76. Both variations of 10−4 generate a coupling spectrum that nearly lies

on top of each other and therefore they cannot be distinguished in Figure 3.9. For the

10−3 variations the splitting becomes visible. Both exhibit a significantly smaller radius

of convergence than the best estimate.

We also cross-checked the numerical precision by which the generated f(ρ) =
∑

λn ρ
n

satisfies the fixed point equation (3.23). All studies solve the fixed point condition numer-

ically within their radius of convergence ρ < ρc. The precision depends on the distance

from the origin ρ = 0 at which the solution is exact by construction.

Despite these differences in the coupling spectrum, the eigenvalue spectrum is remarkably

stable such that differences are only visible in a zoom-in plot 3.11 where one one compares

the best estimate eigenvalues to the 10−3 variations. The occurrence of three relevant

directions is not altered, and the eigenvalues only exhibit small numerical differences.

Thereby variations of the initial condition mainly influence the coupling spectrum and

thereby the radius of convergence of our polynomial approximation. Variations of 10−4,

which correspond to the conservative error bars on our fixed points coordinates (cf. Figure

3.6), still lead to a radius of convergence that is comparable to the best estimate.
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3.8 Summary

We have analysed a new RG flow of a template theory of quantum gravity which we wrote

as a polynomial f(R) in the Ricci scalar. The new flow removed explicit poles in the

dimensionless Ricci scalar ρ present in previous approximations (cf. Section 2.6). Inter-

estingly, we found that the poles at ρ = 3 and ρ = 4 make only a small quantitative impact

on the results and we are consistent with previous findings.

A new code was developed that made it possible to examine approximation orders up

to N = 71, which is more than double the order previously accessible. The existence of

three relevant directions at the UV fixed point could be confirmed. The claim of linear

growth of the irrelevant eigenvalues with subsequent extension of the approximation order

is substantiated.

The stability and precision of our results motivated an extrapolation approach where we

analysed the flow equation in the vicinity of our explicitly found fixed point solution at

N = 71 up to N = 1001. We found consistency with the coupling and eigenvalue spectrum

of our explicit results within their error bars.

All results are consistent with the bootstrap approach. A new operator with a higher mass

dimension generates a new eigendirection at the fixed point that has a larger irrelevant

scaling exponent than all other operators previously accounted for. This constitutes evid-

ence that a stable and physically meaningful fixed point has been identified.

It would now be interesting to extend the polynomial solution to larger field values in ρ

beyond the radius of convergence. In principle this can be done up to ρ = 2 following the

method presented in [66] and maybe even extended further due to the absence of poles at

ρ = 3, 4 in the improved flow.

Going beyond the previously studied order 35 in f(R) gravity has provided us with further

insights into the structure of a polynomial fixed point solution. However this does not im-

ply that the system is fully understood and one can stop here. Although we have strong

evidence to believe that even higher operators than the ones considered here will further

validate the established picture, we cannot be absolutely sure due to the non-perturbative

nature of the flow equation where there is apriori no ordering principle for the relevance

of gravitational operators. From this it becomes clear that the numerical analysis is the

first important step on the way to understanding polynomial f(R) gravity and needs to

supplemented by more analytical analysis in future work. The goal is to understand the



52

significance of any power of the Ricci scalar without an individual explicit numerical com-

putation.

This concludes the considerations of flow equations featuring pure f(R) gravity. In the

next Chapter 4, we consider the interplay of f(R) quantum gravity with minimally coupled

matter fields.
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Chapter 4

Minimal matter in the f (R)

approximation

In this chapter we want to extend our findings from pure f(R) quantum gravity (cf.

Chapter 3) further by introducing matter fields. The matter is treated as non-selfinteracting

and having no scale dependence. It will influence the renormalisation group of the grav-

itational couplings due to its presence (cf. Section 4.2). We address the question of how

different matter types, namely scalars, fermions and vectors, influence the existence and

properties of a gravitational UV fixed point (cf. Sections 4.3 and 4.4). We put particular

emphasis on the examination of effects on higher scalar curvature invariants beyond the

Einstein-Hilbert approximation (cf. Section 4.4). Already in pure f(R) gravity, the intro-

duction of the R2 operator leads to a third relevant direction at the UV fixed point (cf.

Table 3.1).

4.1 Introduction

It is a well-known fact that the renormalisation group of Yang-Mills theory with a SU(Nc)

symmetry group exhibits a non-interacting UV fixed point [116, 117]. This behaviour is

called asymptotic freedom.

However matter fields can drastically influence the RG behaviour of Yang-Mills theory.

On the level of the one-loop beta function, it enters as

β(g) = −
(

11

3
Nc−

2

3
NF

)
g3

16π2
+O

(
g5
)
, (4.1)

where Nc is the number of colours and NF is the number of fermions in the theory. In order

to have asymptotic freedom, the dominant contribution to the beta function needs to be
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negative. However as the fermions contribute with the opposite sign, there is maximally

allowed number of fields that is compatible with asymptotic freedom NF,critical = 11
2 Nc.

So the overall physical behaviour is strongly influenced by the presence of matter fields.

The generalisation of a non-interacting UV fixed point in asymptotic freedom is an inter-

acting UV fixed point in the asymptotic safety scenario [7].

As generally discussed in Section 2.5, one of the main features of the asymptotic safety

scenario for gravity [14, 15, 16, 17, 18, 19, 20, 12, 21] is the existence of a non-trivial fixed

point for the dimensionless Newton’s coupling g. The corresponding beta function has the

structure

βg = (2 + η) g, (4.2)

where η is the anomalous dimension. For a non-gaussian fixed point η∗ = −2 is required.

In a one loop expansion of η, minimally coupled scalar, fermionic and vector matter fields

couple as [52]

η = − (22− nscalar − 2nfermion + 4nvector)
g

6π
+O(g2), (4.3)

where nscalar, nfermion, nvector refer to the number of scalar, fermion and vector fields re-

spectively. The magnitude of the constant term −22 depends on the gauge parameters

and the specific regulators used. The key observation is that the scalar fields (together

with the fermions) contribute with the opposite sign at one loop level. This immediately

leads to the question whether the fixed point might be spoiled through the presence of

matter fields. Here we would like to address this question and focus on minimally coupled

scalar, fermion and vector matter, going beyond the perturbative treatment.

Recently a conceptually very interesting discovery was made for non-abelian gauge theories

coupled to scalar and fermionic matter [118, 119]. Asymptotic safety occurred only in the

presence of matter fields. This leads to the question, whether matter fields coupled to

gravity can generate new interacting fixed points that are not present at pure gravity.

4.2 Matter fields

We are again interested in the renormalisation group evolution of the gravitational coup-

lings λn in polynomial f(R) gravity (cf. Section 2.4). Here the renormalisation group is

driven by the metric field, and scalar, fermionic and vector fields.

The pure gravity part uses polynomial f(R) gravity for which we already developed pro-

cedure of functional renormalisation in Chapter 2. Each power of the Ricci scalar Rn
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comes with its own dimensionless coupling λn. An approximation of order N includes all

monomials up to RN−1.

The matter part contains no self interactions of the fields φi, ψi, Ai,µ. The new parameters

that have been introduced are the number of scalar fields nS , the number of fermions nD

and the number of the Maxwell vectors nM .

The combined effective average action has the form:

Γk = Γk|pure gravity +

nS∑
i=1

ΓSi +

nD∑
i=1

ΓDi +

nM∑
i=1

ΓMi (4.4)

Γk|pure gravity =

∫
d4x
√
g

1

16π
f(R) =

N−1∑
n=0

λn k
−2n+4 1

16π

∫
dx4√g Rn (4.5)

ΓSi =

∫
d4x
√
g

1

2
∇µ φi∇µ φi (4.6)

ΓDi =

∫
d4x
√
g ψ̄i /Dψi (4.7)

ΓMi =

∫
d4x
√
g

(
1

4
Fµνi Fi,µν +

1

2
(∇µAi,µ)2 − c̄Ai � cAi

)
. (4.8)

The Maxwell vectors are considered in Lorenz gauge and cAi , c̄Ai are the corresponding

ghosts.

The evolution of Γk (4.4) is again described via the flow equation of the functional renor-

malisation group (2.13). The matter parts of the action contribute on the right hand side

of the flow equation only since we do not take them to be dynamical. The right hand side

of the flow equation decouples into a contribution from pure gravity Sgravity (2.67) and

contributions from the matter fields Smatter:

∂tΓk = Sgravity + Smatter. (4.9)

In the absence of matter fields, Smatter = 0, the flow (4.9) falls back to the pure gravity

flow discussed extensively in Chapter 3. The matter contribution consist of four traces,

corresponding to the scalars, fermions, vectors and the vector ghosts:

Smatter = nS
1

2
Tr

 ∂tRφφk
Γ

(2)
φφ +Rφφk

− nD Tr

 ∂tRψψk
Γ

(2)
ψψ +Rψψk


+ nM

1

2
Tr

[
∂tRAAk

Γ
(2)
AA +RAAk

]
− nM Tr

[
∂tRc̄AcAk

Γ
(2)
c̄AcA +Rc̄AcAk

]
. (4.10)

The matter traces in (4.10) contribute with different signs. The positive sign in front of

the scalar and vector fields reflects their bosonic nature, whereas the negative sign in front

of the fermions and vector ghosts is a reflection of their fermionic nature.

The scalars and Maxwell ghosts employ a type I cutoff and the fermions and Maxwell
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fields a type II cutoff (for cutoff types see Section 3.1). Recall that ρ = R/k2 is the

dimensionless Ricci scalar

The scalar fields (treatment in [41, 42, 44])

∆φφ = −∇2 (4.11)

Γ
(2)
φφ = ∆φφ (4.12)

1

2
Tr

 ∂tRφφk
Γ

(2)
φφ +Rφφk

 =
29 ρ2 + 360 ρ+ 1080

34560π2
. (4.13)

The cutoff treatment of fermions is discussed in detail in [120], and we employ a type II

cutoff to correctly implement the renormalisation of the Dirac operator:

Γ
(2)
ψψ = − /D (4.14)

/D +Rψψk = /D + (k − /D) θ(k2 − /D
2
) (4.15)

∆ψψ = /D
2

= −∇2 +
ρ

4
(4.16)

Tr

 ∂tRψψk
Γ

(2)
ψψ +Rψψk

 = −1

2
∂t Tr

[
log
(
/D +Rψψk

)2
]

= −1

2
Tr

[
∂tRk( /D

2
)

/D
2

+Rk( /D
2
)

]
(4.17)

=
11 ρ2 − 720 ρ+ 4320

34560π2
. (4.18)

The Maxwell fields [121] (review in [44] )

∆AA = −∇2 +
ρ

4
(4.19)

Γ
(2)
AA = ∆AA (4.20)

1

2
Tr

[
∂tRAAk

Γ
(2)
AA +RAAk

]
=
−ρ2 − 180 ρ+ 1080

8640π2
. (4.21)

The Maxwell ghosts

∆c̄AcA = −∇2 (4.22)

Γ
(2)
c̄AcA = −∆c̄AcA (4.23)

Tr

[
∂tRc̄AcAk

Γ
(2)
c̄AcA +Rc̄AcAk

]
=
−29 ρ2 − 360 ρ− 1080

17280π2
. (4.24)

The matter terms appearing on the right hand side of the flow (4.9) have the structure of

a polynomial in the Ricci scalar of order 2, which is the same as the terms PS0 (3.12) and

P V0 (3.13) in I0[f ] (3.7) in the pure gravity flow equation (3.5). Thereby the matter flow
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equation retains its structure known from pure gravity (3.5)

ḟ − 2 ρ f ′ + 4 f = c I[f ] = c
(
I0[f ] + I1[f ] ḟ ′ + I2[f ] ḟ ′′

)
(4.25)

c =
1

24π

and the matter fields simply introduce a new term PM0 into I0[f ]:

I0[f ] = PS0 + P V0 + PM0 +
PS1

0 f ′ + PS2
0 f ′′ + PS3

0 f ′′′

DS
+
P T1

0 f ′ + P T2
0 ρ f ′′

DT
(4.26)

PM0 = 24 (nS − 4nD + 2nM ) + 8 (nS + 2nD − 4nM ) ρ+
1

45
(29nS − 11nD − 62nM ) ρ2

(4.27)

All other terms retain their values (3.8) to (3.21) known from the pure gravity flow in

chapter 3. Therefore on the level of the flow equation the introduction of matter fields

compared to pure gravity simply leads to the replacement

I0[f ]→ I0[f ] + PM0 . (4.28)

We can already observe at this point that the minimal matter fields under consideration

only couple into the equation up to ρ2. However, we would like to stress that the system

will still be subject to corrections beyond the ρ2 approximation to f(ρ).

4.3 Einstein-Hilbert gravity with matter

In the Einstein-Hilbert approximation to the effective average action, the beta functions

including non-selfinteracting and minimally coupled matter can be given analytically. The

beta functions can be found via the flow equations (4.25) and its first derivative with

respect to ρ at ρ = 0, neglecting the influence of higher couplings and their corresponding

beta functions. We present them here in the coupling basis of the cosmological constant

λ and Newton’s coupling g:

βλ = (−2 + η)λ+ (a1 − η a2) g (4.29)

βg = (2 + η) g (4.30)

η =
g b1

1 + g b2
. (4.31)
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The fluctuation integrals a1, a2, b1 and b2 only depend on λ:

a1(λ) =
1

4π

[
nS − 4nD + 2nM − 4 +

5

1− 2λ
+

1

1− 4
3 λ

]
(4.32)

a2(λ) =
1

24π

[
5

1− 2λ
+

1

1− 4
3 λ

]
(4.33)

b1(λ) =
1

6π

[
nS + 2nD − 4nM − 9− 10

(1− 2λ)2
− 5

1− 2λ
+

1

1− 4
3 λ

]
(4.34)

b2(λ) =
1

12π

[
− 10

3 (1− 2λ)2
− 5

2 (1− 2λ)
+

1

2 (1− 4
3 λ)

]
. (4.35)

At the non-trivial fixed point, the beta functions have to vanish, hence η∗ = −2 for βg = 0

and βλ = 0. The fixed point for g is at

g∗ =
−2

b1(λ∗) + 2 b2(λ∗)
, (4.36)

and depends on the fixed point location of λ∗. The fixed point value λ∗ is given implicitly

via a solution to the equation

−4λ∗ − 2
a1(λ∗) + 2 a2(λ∗)

b1(λ∗) + 2 b2(λ∗)
g = 0 . (4.37)

For a stable gravitational interaction we require g∗ > 0, hence at the fixed point we require

b1(λ∗) + 2 b2(λ∗) < 0 . (4.38)

Since the flow exhibits a singularity line at λ = 1
2 (cf. (4.32) to (4.35)) and a physically

realised RG-trajectory should pass by the Gaussian fixed point, we require λ∗ < 1
2 . This

implies b2 < 0 and a2 > 0.

Once we have a fixed point candidate, we can calculate the stability matrix M at this

point. M is a 2× 2 matrix:

Mij =
∂βi
∂gj

∣∣∣∣
∗

(4.39)

gi = {λ, g} . (4.40)

The eigenvalue spectrum of M yields the critical behaviour at the fixed point (cf Section

2.5).

4.3.1 Perturbation theory

An expansion of βλ (4.29) and βg (4.30) is made in the small coupling limit to leading

order. This approximation does not account for any threshold effects, in particular poles
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in the threshold functions. The resulting beta functions exhibit an interacting UV fixed

point which can be given analytically

g∗|perturbative =
12π

23− nS − 2nD + 4nM
, (4.41)

λ∗|perturbative = −12 (30− nS + 4nD − 2nM )

23− nS − 2nD + 4nM
. (4.42)

The fixed point value of g (4.41) is positive for pure gravity. Through the introduction

of matter fields, it has the potential to go into a pole and change its sign. This is due to

the negative sign of the scalars and fermions. The vectors stay clear of this behaviour and

exhibit a meaningful behaviour for any positive value of nM .

At the fixed point, the stability matrix can be calculated analytically in this perturbative

approximation. The eigenvalues can be read of the matrix directly as M21 vanishes:

−θλ = −4 (4.43)

−θg = −2 (4.44)

The eigenvalues do not depend on the matter content and represent the canonical scaling

behaviour.

4.3.2 Non-perturbative analysis

The solution to the full Einstein-Hilbert beta functions in (4.29) and (4.30), boils down to

solving an equation for λ (4.37). Assuming that we stay clear of the poles in the fluctu-

ation integrals (cf. (4.32) to (4.35)), this is equivalent to solving a third order polynomial

in λ. It can have one, two or three distinct real solutions.

In order to determine regimes and constraints of a physically meaningful fixed point solu-

tion, we follow a more pragmatic strategy. We define two functions A(λ) and B(λ):

A(λ) = −1

2
(a1 + 2 a2) , (4.45)

B(λ) = λ (b1 + 2 b2) . (4.46)

These two functions can be used to reformulate the fixed point condition (4.37), as

A(λ∗)
!

= B(λ∗) . (4.47)

The fixed point value of λ can then be used to obtain g∗ (4.36):

g∗ = −2
λ∗

B(λ∗)
. (4.48)
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Since we require a positive Newton’s coupling (4.48), the sign of B (and thereby A) at the

crossing (4.47) has to be the opposite to that of λ∗. If the crossing occurs with the same

sign, g∗ would turn out negative.

We introduce now some further properties of A and B, which will prove useful in our

forthcoming analysis. In the vicinity of λ = 1
2 , the poles of the threshold functions

determine the asymptotic behaviour as

A(λ) ∼ − 1

(1− 2λ)2
→ −∞ (4.49)

B(λ) ∼ − 1

1− 2λ
→ −∞ . (4.50)

In order to have a physically meaningful fixed point, A and B have to cross at least once

in the interval from −∞ to 1/2 in λ (cf. (4.47)). We define

A0 ≡ A(λ = 0) = −4 + nS − 4nD + 2nM
8π

, (4.51)

B′0 ≡
∂B

∂λ

∣∣∣∣
λ=0

=
−85

3 + nS + 2nD − 4nM

6π
. (4.52)

The asymptotic behaviour (4.49) and (4.50), together with A0 (4.51) and B′0 (4.52) provide

information about the shape of the functions A and B. In contrast to the asymptotic

behaviour, the shape around λ = 0 depends on the matter content. The existence of a

fixed point is linked to these quantities allowing for an intersection of A and B, which

leads to physically meaningful scenario.

In addition to having a mere crossing of A and B, we also require a continuous deformation

of the fixed point position with respect to the number of matter fields. Thereby we promote

the number of matter fields nS , nD, nM to continuous parameters. As a starting point we

use the well-established pure gravity fixed point (cf. Table 3.1) and require its recovery in

the limit

nS → 0, nD → 0, nM → 0 . (4.53)

This can lead to constellations where there is a fixed point candidate in the required range

of λ. But it is not continuously connected to the pure gravity fixed point. The interpret-

ation of such an occurrence depends on further details of the situation and is discussed in

Section 4.4.

4.3.3 Pure gravity

The pure gravity fixed point was already studied in Chapter 3 and explicitly given in

Table 3.1. Here we recall its properties and apply our terminology of A and B (cf. Section
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4.3.2).

The fixed point candidate in the absence of matter fields exists at

λ∗ = 0.119 (4.54)

g∗ = 0.943 . (4.55)

The fixed point condition (4.47) is plotted in Figure 4.1. The pure gravity case is charac-

terised by

A0 < 0 (4.56)

B′0 < 0 . (4.57)

Note that A0 starting out below B0 = 0 is the crucial condition for the existence of an

intersection and therefore the fixed point. The function B has a negative slope B′0 at

the origin and approaches the singularity at λ = 1/2 faster than A (cf. equations (4.49)

and (4.50)), so the initial ordering of A and B at λ = 0 guarantees a crossing due to the

negative slope of B at the origin and the singularity. In conclusion we have two effects

that work in favour of a crossing. We will later see that only one of them is necessary to

ensure a crossing.

The stability matrix M can be evaluated numerically at this fixed point in order to cal-

culate the eigenvalues −θ:

−θ0,1 = −2.411± 1.947 i . (4.58)

The eigenvalues have a negative real part which means that they correspond to relevant

directions. The eigenvalues constitute a complex conjugate pair. This can be a signifier for

degeneracies in the theory at this level of approximation. These degeneracies might be lif-

ted through the introduction of further pure gravity operators or through the introduction

of matter fields, as we will see later.

4.3.4 Scalars

Real scalar matter enters the beta functions in the fluctuation integrals a1 and b1. It alters

the starting points of A and B, as shown exemplary in Figure 4.1:

A0 is moved towards more negative values (cf. equation (4.51)). The slope B′0 turns

around from being negative to being increasingly positive (cf. equation (4.52)). However

the ordering between A and B at λ = 0 stays the same compared to the pure gravity

case. This means that the behaviour in the vicinity of the singularity at λ = 1/2 ensures



62

A B

-0.4 -0.2 0.0 0.2 0.4
-10

-8

-6

-4

-2

0

2

Λ

Figure 4.1: The functions A(λ) (red) and B(λ) (black) are plotted against λ. The solid lines

represent the pure gravity case, the dashed lines represent the large nS limit and the dotted lines

represent the large nM limit. The intersection of a black and red line of the same type denotes a

fixed point candidate for the corresponding case.

a crossing and therefore a fixed point candidate.

The identified fixed point coordinates λ and g are plotted in Figure 4.9 and 4.10 . The

eigenvalue spectrum is given in Figure 4.2.

The limit of

nS →∞ (4.59)

neglects the graviton fluctuations and the RG evolution is driven through the scalar matter

fields. It is characterised by

A0 < 0 (4.60)

B′0 > 0 . (4.61)

In this limit of the fixed point can be found analytically:

λ∗ =
1

2

(
1− 4√

3nS

)
+O

(
1

nS

)
(4.62)

g∗ =
8π

nS
− 24

√
3π√
n3
S

+O
(

1

n2
S

)
. (4.63)
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Figure 4.2: The critical exponents θi are plotted against the number of scalar fields nS for

the Einstein-Hilbert approximation. The complex conjugate pair bifurcates into two real critical

exponents. One grows unboundedly with nS .

The fixed point moves towards the singularity line at λ = 1/2. Strictly speaking the

pole of the beta function is never reached and the flow stays finite. However, the pole is

introduced into the beta functions due to gravitational fluctuations, as it is still present

in the absence of matter fields(cf. (4.32) to (4.35)). This implies that, although we are in

a limit of many matter fields, we still retain gravitational contributions in the flow. The

situation is different in the many vector limit (cf. Section 4.3.6).

Newton’s coupling g∗ becomes parametically weak ∝ 1/nS due to the presence of many

matter fields. This is not unexpected and in fact a well-known behaviour from large

N limits in QFT (review in [122]). For this reason one might expect classical scaling

exponents.

In order to calculate the eigenvalues, we need the stability matrix in the limit (4.59) at

the fixed point:

M11 =
∂βλ
∂λ

∣∣∣∣
∗

= −20

7

√
3nS +

5953

98
+O

(
1
√
nS

)
(4.64)

M12 =
∂βλ
∂g

∣∣∣∣
∗

=
1

28π
nS +

349
√
nS

98
√

3π
+O (1) (4.65)

M21 =
∂βg
∂λ

∣∣∣∣
∗

= −320π

7

√
3

nS
+

52440π

49nS
+O

(
1

n
3/2
S

)
(4.66)

M22 =
∂βg
∂g

∣∣∣∣
∗

= −24

7
+

1038
√

3

49
√
nS

+O
(

1

nS

)
. (4.67)
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Please note that although M21 goes to 0 in this limit, it is still crucial for the eigenvalues.

When it enters the determinant of M , it is multiplied with M12 which yields a term growing

with
√
nS . The eigenvalues −θ are found to be:

−θ0 = −20

7

√
3nS +

6009

98
+O

(
1
√
nS

)
(4.68)

−θ1 = −4 +
7√
3nS

+O
(

1

nS

)
. (4.69)

Both eigenvalues correspond to relevant directions. They are both real, meaning that the

degeneracy of the pure gravity fixed point has been lifted. One of the eigenvalues, θ1, is

ultimately constant and approaches −4. It receives its main contribution ∼ −3.4 from

g (4.67). The other eigenvalue, θ0, grows in magnitude unboundedly with
√
nS . This

is driven by λ (cf. (4.64)). We observe huge quantum corrections in this direction. We

consider this to be an indicator towards the limit of validity of our approximation method.

Essentially the fixed point in this limit is controlled by the singularity at λ = 1/2, and the

large eigenvalue might be a remnant of this. We think that further studies are needed to

clarify the nature of this singularity line and its impact on the large nS fixed point.

4.3.5 Fermions

The introduction of fermions can change the hierarchy of A and B at λ = 0 as they enter

into A(λ = 0)(4.51) with the opposite sign than the scalar and vector fields. Depending

on the slope of B, this can lead to the absence of crossing of A and B and therefore the

vanishing of a fixed point candidate.

There are two scenarios in the purely fermionic case that still allow for a fixed point

candidate, namely A0 < 0 and A0 > 0. They are both exemplarily shown in Figure 4.3

together with the critical case that represents the boundary between the two scenarios.

The first scenario

A0 < 0 (4.70)

still preserves the ordering of A and B at λ = 0 that we know from the pure gravity case. A

representative of this case is the plot of A and B for nD = 0.5 in Figure 4.3. For increasing

nD, the fixed point value λ∗ approaches 0. λ changes sign at A(λ = 0) = B(λ = 0) = 0,

which occurs at nD = 1. This special value for nD is also plotted in Figure 4.3.

The second scenario

A0 > 0 (4.71)
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Figure 4.3: The functions A(λ) (red) and B(λ) (black) are plotted against λ in the purely fermionic

case for different numbers of fermion fields nD. The solid lines represent nD = 0.5 , the dashed

lines nD = 1 and the dotted lines nD = 2. The intersection of a black and red line of the same type

denotes a fixed point candidate for the corresponding case. With increasing nD the fixed point

moves to negative λ.

exhibits an inverted ordering between A and B at λ = 0 compared to the pure gravity

case (cf. Section 4.3.3). However, there is still the possibility of a crossing at negative λ

if the slope of B in the limit of λ → −∞ remains negative as A approaches a constant

in this limit. A representative of this case is shown in Figure 4.3 at nD = 2. There is an

upper bound on nD for which this scenario is still possible, as the slope of B in this limit

increases with nD:

nD|crit =
9

2
. (4.72)

Beyond this, there is no continuously connected fixed point candidate. Thus Dirac fermions

can spoil the existence of the fixed point close to pure gravity.

For the allowed range, the fixed point coordinates λ and g are plotted in Figure 4.14 and

4.15 . The eigenvalue spectrum is given in Figure 4.4.

4.3.6 Vectors

The introduction of Maxwell fields (vectors) alters the starting points of A and B, as

shown exemplary in Figure 4.1:

A0 is moved towards more negative values (cf. equation (4.51)). The slope B′0 stays
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Figure 4.4: The critical exponents θi are plotted against the number of fermion fields nD for the

Einstein-Hilbert approximation. The complex conjugate pair splits up into two real branches. The

line stops at finite nD = 4.5.

negative and increases in magnitude (cf. equation (4.52)). The ordering between A and B

at λ = 0 remains unchanged compared to the pure gravity case. This means that negative

slope of B at the origin ensures a crossing and therefore a fixed point candidate. Please

note the difference from the large nS limit (cf. Section 4.3.4) where the singularity ensured

the crossing.

A plot of the fixed point coordinates λ and g can be found in Figure 4.17 and 4.18. The

critical exponents are presented in Figure 4.5.

The flow in the limit

nM →∞ (4.73)

can be characterised by

A0 < 0 (4.74)

B′0 < 0 . (4.75)

It is dominated by the Maxwell fields and their ghosts, and gravitational contributions

vanish in this limit. The fixed point candidate is found at

λ∗ =
3

8
+O

(
1

nM

)
(4.76)

g∗ =
3π

nM
+O

(
1

n2
M

)
. (4.77)
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Figure 4.5: The critical exponents θi are plotted against the number of vector fields nM for the

Einstein-Hilbert approximation. The complex conjugate pair splits up at finite nM . The critical

exponents remain finite in the large nM limit.

The cosmological constant approaches a constant that is generated through the presence

of the vector matter fields only. It is noteworthy that it does not correspond to pole of

threshold function (cf. large scalar limit in Section 4.3.4). Newton’s coupling becomes

small in this limit and decreases as ∝ 1/nM .

In order to calculate the eigenvalues, we need the stability matrix in this limit at the fixed

point:

M11 =
∂βλ
∂λ

∣∣∣∣
∗

= −4 +O
(

1

nM

)
(4.78)

M12 =
∂βλ
∂g

∣∣∣∣
∗

=
nM
4π

+O (1) (4.79)

M21 =
∂βg
∂λ

∣∣∣∣
∗

= −5468π

n2
M

+O
(

1

n3
M

)
(4.80)

M22 =
∂βg
∂g

∣∣∣∣
∗

= −2 +O
(

1

nM

)
. (4.81)

As the off-diagonal contribution to the determinant of M decreases ∝ 1/nM , the eigen-

values can be read of directly and are

−θ0 = −4 +O
(

1

nM

)
(4.82)

−θ1 = −2 +O
(

1

nM

)
. (4.83)
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They both correspond to relevant directions and are finite, in contrast to the unbounded

growth of an eigenvalue in the large scalar limit. Furthermore they correspond to the

canonical scaling exponents of the couplings. The eigenvalue −θ0 is completely controlled

by λ (cf. M11 (4.78)) and −θ1 is completely controlled by g (cf. M22 (4.81)).

As this large vector limit is not influenced by potentially unphysical singularities in the

flow, the results should have a higher confidence level than the large scalar limit in Section

4.3.4.

4.3.7 Interplay of different matter types

So far we have analysed scalars, fermions and vectors separately. We have found essentially

three different limit cases:

• the large scalar limit (cf. Section 4.3.4)

• the fermion limit at λ→ −∞ (cf. Section 4.3.5)

• the large vector limit (cf. Section 4.3.6)

We have to acknowledge that in a more physically realistic setup, we will encounter po-

tentially all considered matter types at the same time, eg. in the SM. However, we will be

able to translate our single matter type limits into limits that account for the interplay of

the different matter fields.

Fermion bounds

The interplay of scalar and vector fields can lead to an alteration of the fermion bounds.

This bound is no longer exclusively controlled by the limit λ → −∞, but there are two

additional limits that can be characterised by a small finite λ and a finite λ approaching

1/2.

There is a conservative bound on nD that holds true for any number of scalars and vectors.

It is characterised by A = B = 0 and yields

nD|conservative
crit =

1

4
(nS + 2nM + 4) . (4.84)

As a first result, the presence of scalar and/or vector matter do increase the number of

maximally allowed fermions in the system (cf. Figure 4.6).

The actual bound nD|crit is always larger or equal than the conservative bound nD|conservative
crit .
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Figure 4.6: The conservative bound on nD is given as function of nS + 2nM . The shaded region

marks the compatible number of fermion fields for a given scalar and vector matter background.

Both scalar and vector matter make room for more fermions in the system.

The difference between the two bounds is parametrised by ∆nD :

nD|crit = nD|conservative
crit + ∆nD (4.85)

∆nD ≥ 0 . (4.86)

There are three distinct regimes where nD|crit is controlled by different behaviours of A

and B:

• The first limit is controlled by A > 0 at negative λ and the slope of B being negative

at λ → −∞. The purely fermionic case already discussed falls into this limit (cf.

Section 4.3.6).

• The second limit is controlled by ∂λA and ∂λB being equal at the bound nD|crit.

• The third limit is controlled by an increasingly positive slope of B at nD|conservative
crit

such that the second limit would yield an unphysical value of g∗.

A representative of each case is presented in Figure 4.7. The three cases can be discrimin-

ated via the slope B′0 at the conservative bound on nD for a given field configuration of scal-

ars nS and vectors nM . We define x to be proportional to this slope: x = 9nS−18nM−142

and observe that ∆nD solely depends on x It is plotted in Figure 4.8, where the different
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Figure 4.7: The functions A(λ) (red) and B(λ) (black) are plotted against λ in the fermionic case

with matter interplay. We present a representative for each characteristic case at nD|crit: The

solid line corresponds to the first (λ → −∞), the dashed to the second (∂λA = ∂λB) and the

dotted to the third case (g →∞).

origins are colour-coded. The first (second, third) limit is highlighted in blue (black, red).

All limits are continuously connected, however not necessarily smoothly.

This concludes the discussion of the Einstein-Hilbert beta functions with matter. We will

now examine effects of higher scalar curvature invariants.

4.4 Matter in the f(R) approximation

The inclusion of further operators beyond the Einstein-Hilbert approximation may alter

the behaviour of the flow. The first question is how stable our results from the Einstein-

Hilbert action are against the inclusion of higher order curvature invariants.

In pure gravity (cf. Chapter 3), the marginal R2 coupling generates an additional relevant

direction of the flow (cf. Table 3.1 and Section 2.6). Going up to higher monomials in

the Ricci scalar, a perturbative hierarchy was found in [39, 40, 66, 67] and chapter 3 (fig-

ures 3.3 and 3.4), meaning that the non-perturbative flow equation yields the result that

the monomials Rn become less relevant with increasing mass dimension of the associated

coupling. The scaling in the vicinity of the fixed point approaches classical scaling and



71

DnD

-200 -100 0 100 200
0

1

2

3

4

x

Figure 4.8: The deviation ∆nD
of the bound on nD and the conservative bound for a given matter

configuration (cf. Figure 4.6) is given as function of the parameter x = 9nS − 18nM − 142. The

first case is given in blue, the second in black and the third in red. The black dot marks the point

of no scalar or vector fields.

quantum corrections are small.

The second question that automatically arises now is, if this holds true under the inclusion

of minimally coupled matter.

We will analyse the different matter type, namely scalar (Section 4.4.2), fermionic (Sec-

tion 4.4.3) and vector (Section 4.4.4) matter separately in the vicinity of the established

pure gravity fixed point. In these sections we will also present tentative results regarding

potential many matter limits that are not connected back to the pure gravity fixed point.

We also comment on the several matter configurations (SM, MSSM, ...) and their com-

patibility with a gravitational UV fixed point in our treatment of f(R) quantum gravity

in Section 4.4.5.

4.4.1 Code

In this section we present the algorithms and code needed for examination of matter in

f(R) quantum gravity.

Since the flow equation (4.25) of f(R) gravity with minimally coupled matter fields has

the same structure as the flow equation (3.5) for pure f(R) gravity, we continue to use the

algorithm presented in Section 3.2. Recall that the gravitational couplings at the fixed

point satisfy a recursion relation (3.26) which can be solved iteratively to yield a solution
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(3.27) that depends on the two fixed point coordinates λ0 and λ1. Here, the matter fields

introduce an additional parametric dependence on the matter field content to the recursion

relation

λn+2 = X̃n+2(λ0, λ1, . . . , λn+1;nS , nD, nM ) (4.87)

and its solution

λn+2 = Xn+2(λ0, λ1;nS , nD, nM ) . (4.88)

For any fixed matter background, meaning that nS , nD and nM attain explicit values,

the couplings λn+2 (4.88) are again determined via the boundary condition (3.28) for

approximation order N

λN = 0 = λN+1 . (4.89)

The critical behaviour at the fixed point again can be derived through the stability matrix

as presented in (3.33) with the underlying flow (4.25).

There are two main scenarios in which we want to analyse the fixed point behaviour with

matter:

First in studies where the matter content of interest is chosen initially and we want to go

to high approximation orders N . In this case the the recursion relation (4.87) looses its

parametric dependence on the matter fields as they are fixed. Thereby the recursion falls

back onto the same structure as in the pure gravity case (3.26). For this reason, the high

performance code developed in Section 3.3 can be used with adjusted coefficients in (3.35)

to account for the matter content.

Second in studies where the approximation order N is chosen initially and we want to

scan over matter parameters. For each matter configuration we are interested in the

whole range of potential fixed point solutions, so we can track different fixed point lines

between neighbouring configurations.

For moderate approximation orders N , we can use Mathematica to solve the parametric

recursion relation (4.87) and obtain the couplings λn+2 at the fixed point, retaining their

full parametric dependence (4.88). With these we can perform a scan through the desired

matter configurations and look for all real solutions to the boundary condition (4.89).
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Since the computations of the range of fixed point candidates at a given matter configura-

tion during a scan are all independent from each other, this step allows for parallelisation.

We developed a parallel Mathematica code that can be executed on the University of Sus-

sex high performance cluster apollo. It computes λN and λN+1 for a given approximation

order N , retaining its parametric dependence on the matter fields (4.88) (not parallelised),

and then scans through a range of matter configurations to compute the full set of fixed

point candidates for each (parallelised).

The runtime and performance of this code highly depends on the approximation order N

and the number of matter configurations analysed. A fast scenario is N = 3 with 1000

matter configurations which, if executed on 40 nodes, will have a runtime of a couple of

minutes and a parallelisation factor of merely ∼ 3. However, the same study in N = 6

will take several days up to a week and exhibit a parallelisation factor of ∼ 30.

4.4.2 Scalars

On top of the Einstein-Hilbert approximation, scalar matter is analysed for the R2, R3,

R4 and R5 approximation. This tests the stability of the results under inclusion of further

scalar curvature operators.

In Figures 4.9 and 4.10, the dependence of the fixed point value of the cosmological

constant λ and Newton’s coupling g is given as a function of the number of scalar fields nS

for all analysed approximations. They show that the qualitative coupling behaviour of the

Einstein-Hilbert approximation is conserved for the considered f(R) approximations (cf.

Section 4.3.4). The cosmological constant approaches a constant 1/2, which corresponds

to a pole in the flow and Newton’s coupling becomes small ∼ 1/nS . It is also noteworthy

that quantitatively the highest approximation orders, namely R4 and R5, exhibit only

minor differences. This is consistent with observation of a convergence pattern in the

couplings over the approximation orders for pure f(R) gravity (cf. Chapter 3). Studies

beyond approximation order R5 will be able to provide further insight into a possible

convergence pattern.

The eigenvalues (critical exponents) undergo a qualitative change with the inclusion of

the R2 operator: They get an additional relevant direction that is first introduced with

the inclusion of the R2 operator and persists for all considered higher approximation

orders. This phenomenon is already known from pure gravity studies (cf. Chapter 3). An
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Figure 4.9: The fixed point value of the cosmological constant λ is plotted against the number of

real scalar fields nS for several approximation orders in f(R), namely for approximation order R

(black, solid), R2 (blue, solid), R3 (red, solid), R4 (black, dashed) and R5 (blue, dashed). They

all approach λ = 1/2 in the large nS limit.
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Figure 4.10: The fixed point value of Newton’s coupling g is plotted against the number of real

scalar fields nS for several approximation orders in f(R), namely for approximation order R (black,

solid), R2 (blue, solid), R3 (red, solid), R4 (black, dashed) and R5 (blue, dashed). They all decrease

eventually like 1/nS .
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R5: Re Θi
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Figure 4.11: The critical exponents θi are plotted against the number of scalar fields nS for the

R5 approximation. Relevant critical exponents are positive. One of the two diverging relevant

exponents is clearly visible.

exemplary plot of the critical exponents θi is given for the R5 approximation in Figure 4.11.

The bifurcation of the originally complex conjugate pair of relevant critical exponents is

visible at around nS ≈ 37. Two of the relevant exponents are diverging with increasing nS .

Again we consider this huge quantum correction to be a signifier for the limit of validity

of our approximation. One relevant exponent seems to be approaching 4, the same as in

the Einstein-Hilbert approximation (cf. Section 4.3.4).

We observed huge quantum corrections already on the level of the Einstein-Hilbert ap-

proximation. Our findings show that this picture persists in higher f(R) studies. This

can be interpreted as a strong hint that our approximation scheme may be insufficient to

capture all the effects of many minimally coupled scalar fields to gravity in the many field

limit. Improvements might be achieved either through the inclusion of further operator

classes in the effective action Γk or through a further sophistication of the RG techniques.

We would like to stress again that ultimately the large nS behaviour is controlled by a

singularity line in the flow at λ = 1/2. This has already been studied in detail for the

Einstein-Hilbert approximation (cf. Section 4.3.4). It is not clear why this singularity line

should be physical and therefore there might be a type of regulator to avoid it altogether.

Future studies along these lines will provide further insights into the nature of this singu-

larity and its implications on the large scalar limit.
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Additionally, we observe a different many scalar limit, which is not controlled by the

singularity at λ = 1/2 and always features two relevant eigendirections with canonical ei-

genvalues at −4 and −2, a marginal eigenvalue close to 0 (from R2 onwards) and linearly

increasing irrelevant directions (from R3 onwards). In approximation orders beyond R2

there can be several contesting branches which all share a fixed point location of λ→ −3/4

and a potentially unphysical g ∼ −12π/nS . These limits cannot be connected back to the

pure gravity fixed point and stop at finite nS . Due to the remarkable stability of this limit

and the lack of any connection to a singularity in the flow, the question arises whether

this limit persists in further sophistications of the RG flow, eg. running matter couplings

and if g could attain positive values, possibly even downto the pure gravity fixed point.

Despite the troubles in the many scalar limit, we ascribe physical meaning to the few field

limit as it arises as continuous deformation from the stable pure gravity fixed point, which

has been established up to R70 in the polynomial f(R) approximation.

The conjecture of stability of the few scalar scenario has been investigated in detail for

nS = 4 which corresponds to the real scalar degrees of freedom of a SM Higgs field.

The a priori assumption that higher operators in the polynomial f(R) approximation

become less and less relevant can be tested when looking at the convergence pattern of

the associated couplings. We assume that the fixed point value for all couplings at the

highest approximation order N is closest to the real fixed point value. This implies that

n+ 1 +

(
λn(N)

λn(Nmax)
− 1

)
(4.90)

should approach a constant n+ 1 for large N if the assumption is valid.

The investigation of a setup of four real scalars has lead to a coupling convergence pattern

that is presented in Figure 4.12. As visible in Figure 4.12, the low order couplings converge

very quickly and become very stable. The convergence of a coupling can be destabilised

by two effects. First, if the limiting value is close to 0, the relative error will be large, even

for small absolute deviations. Second, after the first occurence of coupling λn in order

N = n + 1, the coupling needs a couple of orders to stabilise. The fact that we use a

boundary condition that forces λn+1 = λn+2 = 0 adds to this, as these boundary values

are potentially far away from the fixed point values of these couplings.

The first effect can be observed for couplings λ7 and λ11 . The second effect is visible for

all higher order couplings in Figure 4.12.
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Figure 4.12: Study of four real scalar fields coupled to f(R) gravity. Convergence pattern of

the couplings λN at the fixed point at each order compared to the highest truncation order

λn(N)/λn(Nmax) − 1. Top to bottom: decreasing n. All plotted lines contain an offset n + 1

for better visibility. The lower couplings exhibit a clear convergence pattern. The higher couplings

still need further approximation orders to make their convergence clearly visible.
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Figure 4.13: Study of four real scalar fields coupled to f(R) gravity. Real part of the attractive

eigenvalues against the approximation order N . The red line corresponds to a purely real eigenvalue

whereas the black line corresponds to a complex conjugate pair of eigenvalues. Both lines stabilise

with increasing approximation order.

We consistently observe three attractive eigendirections in this setup. Two constitute a

complex conjugate pair and one is purely real. The convergence pattern of the eigenvalues

−θ is shown in Figure 4.13. The eigenvalues stabilise around values of order 1.

In comparison with our studies of pure f(R) gravity (cf. Section 4.3.4), we observe qual-

itatively the same picture with three attractive eigendirections and a stable convergence

pattern over the orders. This provides further evidence for a physically meaningful few-

scalar-limit.

4.4.3 Fermions

On top of the Einstein-Hilbert approximation, fermionic matter is analysed for the R2, R3,

R4 and R5 approximation. The introduction of the R2 coupling introduces a new relevant

direction for the UV fixed point, which persists in all higher approximations considered.

A maximally allowed number of fermion fields nD|crit continues to exist (cf. Table 4.1)

close to pure gravity. This is linked to the understanding of any fixed point including

matter fields as a continuous deformation of the pure gravity fixed point. If the line of

fixed points ends at some nD, either on the level of the couplings or the level of the

eigenvalues, we can define a critical matter configuration. This is shown up to the R5
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approx. order R R2 R3 R4 R5

nD|crit 4.50 3.14 1.65 1.66 1.68

Table 4.1: The maximally allowed number of fermion fields nD|crit for various approxim-

ation orders.
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Figure 4.14: The cosmological constant λ is plotted against the number of fermion fields nD for

several approximation orders in f(R), namely for approximation order R (black, solid), R2 (blue,

solid), R3 (red, solid), R4 (black, dashed) and R5 (blue, dashed). From R3 onwards the behaviour

is very similar.

approximation on the level of λ (cf. Figure 4.14), g (cf. Figure 4.15) and the critical

exponents θi, exemplarily for R5 (cf. Figure 4.16).

It is noteworthy that the value of nD|crit in Table 4.1 seems to stabilise with increasing

approximation order. This is consistent with the hierarchy of operators observed in pure

gravity and may be viewed as a first hint towards a similar hierarchy present at nD|crit

fermion fields.

Despite the finite bound on the number of fermion fields in the few fermion limit, there

is the possibility of many fermion limit. In order to distinguish it from a mere artefact of

the approximation order, there needs to be consistent occurrence over the orders, leading

to similar fixed point locations, limiting behaviour and eigenvalue spectrum. We find the

onset of such a regime from approximation order N = 2 (Einstein-Hilbert) onwards. It
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Figure 4.15: Newton’s coupling g is plotted against the number of fermion fields nD for several

approximation orders in f(R), namely for approximation order R (black, solid), R2 (blue, solid),

R3 (red, solid), R4 (black, dashed) and R5 (blue, dashed). From R3 onwards the behaviour is very

similar.
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Figure 4.16: The critical exponents θi are plotted against the number of fermion fields nD for the

R5 approximation. All critical exponents turned real before the bound in nD is reached.
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approx. order R R2 R3 R4 R5

nM |crit ∞ 448 191 191 164

Table 4.2: The maximally allowed number of vector fields nM |crit for various approxima-

tion orders.

exhibits two relevant directions of order O(1) which go to the canonical eigenvalues −4 and

−2. From order N = 4 onwards, there is also a marginal direction which exhibits a critical

exponent close to 0. With increasing approximation order there can be several candidate

branches featuring both signs for the marginal direction. These branches all share a fixed

point candidate with a finite λ → 3/2 and a potentially unphysical g ∼ −6π/nD. The

question arises whether the negative sign of g persists in more sophisticated treatments of

fermion fields, including the running of fermion couplings. It is striking to observe such

a stable canonical pattern that does not seem to be connected to any singularity in the

flow, and thereby fails any obvious classification as mere truncation artefact.

4.4.4 Vectors

On top of the Einstein-Hilbert approximation, Maxwell fields are analysed for the R2, R3,

R4 and R5 approximation.

The R2 operator introduces again a third relevant direction to the fixed point which

persists in all higher approximations considered. The R2 approximation is also the lowest

approximation order in which an upper limit on the number of vector fields consistent with

a fixed point, continuously connected to the pure gravity fixed point, can be observed. This

means that the introduction of higher scalar curvature invariants beyond Einstein-Hilbert

has a significant impact on the qualitative behaviour of the system that goes beyond the

mere introduction of a new relevant direction at the UV fixed point.

The upper limits of allowed Maxwell fields nM |crit for the range of analysed approximation

orders is given in Table 4.2. The upper limit is also visible in the level of the couplings λ

(cf. Figure 4.17) and g (cf. Figure 4.18). The cosmological constant stays clear of any pole

in the flow for all examined approximation orders and follows the qualitative behaviour

of the Einstein-Hilbert approximation, before stopping at nM |crit. Newton’s coupling g

becomes small ∝ 1/nM , which is again consistent with the qualitative behaviour of the

Einstein-Hilbert approximation.
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Figure 4.17: The fixed point value of the cosmological constant λ is plotted against the number

of vector fields nM for several approximation orders in f(R), namely for approximation order R

(black, solid), R2 (blue, solid), R3 (red, solid), R4 (black, dashed) and R5 (blue, dashed). λ never

exceeds 3/8.
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Figure 4.18: The fixed point value of Newton’s coupling g is plotted against the number of vector

fields nM for several approximation orders in f(R), namely for approximation order R (black,

solid), R2 (blue, solid), R3 (red, solid), R4 (black, dashed) and R5 (blue, dashed). g decreases

with nM .
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Figure 4.19: The critical exponents θi are plotted against the number of vector fields nM for

the R5 approximation. An initially irrelevant critical exponent turns relevant with the presence of

vector fields.

A new qualitative effect is the turning relevant of former irrelevant directions at the UV

fixed point for pure gravity with increasing numbers of Maxwell fields nM . This first occurs

in the R3 approximation, and an example is given in Figure 4.19 for the R5 approximation

where a complex conjugate pair of formerly irrelevant eigenvalues turns relevant at nM ≈

26. This leads to 5 out of 6 eigenvalues being attractive in the R5 approximation for

nM ≥ 26.

Despite the introduction of an upper limit on the number of vector fields, there is still the

possibility of a many vector limit consistent with the one observed at Einstein-Hilbert. We

find two consistent limits that have the same fixed point location λ→ 3/8 and g → 3π/nM

and canonical eigenvalues as the Einstein-Hilbert approximation. These two lines can only

be distinguished by their number of relevant directions, where one exhibits 2 and the other

3. They have the same magnitude for this third relevant direction O(10−2) and differ

only by the sign. Due to the small magnitude, this direction can be viewed as marginal

compared to others. It seems to reflect the nature of the R2 coupling, which is marginal

coupling according to canonical power counting.

This pattern has been examined until R5. The many vector limit thereby provides a first

hint that a physically meaningful many matter limit could exist, although it cannot be

traced back to the pure gravity fixed point.
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4.4.5 SM and beyond

The Standard Model of particle physics is the most successful description of particles and

their interactions at quantum level to date. At a fundamental level its matter degrees of

freedom are nS = 4, nD = 22.5 and nM = 12 (in agreement with [52]). Here the three

neutrinos are assumed to be Majorana particles and each carries 3/2 times the degrees of

freedom of a Dirac fermion. This is the minimal assumption in terms of Dirac fermion

degrees of freedom because otherwise the three fermions and their antiparticles will gen-

erate a larger nD.

As we have already observed, the fermions can spoil the existence of a fixed point candid-

ate (cf. Sections 4.3.5, 4.3.7 and 4.4.3). On the level of the Einstein-Hilbert approximation

the scalars and vectors of the SM lead to a nD|crit = 26.5 (cf. Section 4.3.7). Although

thereby the SM seems compatible with the asymptotic safety conjecture in this setup, this

bound will be tightened when going to higher approximation order. It fails already at R2.

A deeper analysis up to R20 shows that there is no consistent fixed point pattern present

over the approximation orders. Thereby this setup requires to go beyond the standard

model matter content as we have shown that both scalar and vector matter can make

room for further fermions in the system.

The MSSM is the minimal supersymmetric extension of the SM and features nS = 49,

nD = 30.5 and nM = 12 (in agreement with [52]). Again on the level of the Einstein-

Hilbert approximation the maximum number of Dirac fermion compatible with this setup

can be derived to be nD|crit = 20.1 (cf. Section 4.3.7). This means that the huge number

of scalars in the theory does not account for the increased number of fermions and the

MSSM is incompatible for this particular setup of f(R) quantum gravity.

Moving towards GUT theories, we exemplarily consider two models (same matter config-

uration as [52]):

• SU(5) GUT: nS = 124, nD = 24, nM = 24

• SO(10) GUT: nS = 97, nD = 24, nM = 45 .

Here it turns out that both models are compatible with this setup of asymptotic safety.

The fixed point could be confirmed up to R20 and exhibits a stable convergence pattern.

One has to be very careful when interpreting compatibility of certain matter setups. The
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exclusion of the SM is right on the verge of the fermion bound. The numerical value might

be subject to quantitative changes in further approximation including different types of

operators and could shift from incompatibility to compatibility.

All other models considered feature a large number of scalars. As it has been shown

(cf. Section 4.3.4 and 4.4.2), this leads to a potential breakdown of the approximation.

Therefore further studies are needed to clarify the behaviour.

4.5 Summary

We have studied the influence of minimally coupled scalar, fermion and vector matter on

the non-Gaussian fixed point of the asymptotic safety scenario.

The analysis went beyond the previously considered Einstein-Hilbert approximation for

gravity in combination with matter fields [41, 42, 43, 45, 47, 48, 50, 51, 52] and also ac-

counted for effects due to higher scalar curvature invariants.

We examined the vicinity of the well-established pure f(R) gravity fixed point and de-

termined bounds on the number of matter fields to be compatible with this understanding.

Scalar matter allows for UV- fixed point of gravity, regardless of the number of scalar mat-

ter fields. This was tested for studies including gravitational operators up to R5. Close

to pure gravity at four scalar fields, a convergence pattern in couplings and eigenvalues

could be established and was tested up to R20.

The many scalar limit shows the fixed point coordinate λ approaching the finite value

1/2. This value corresponds to a pole in the beta functions, originating from gravitational

contributions in the flow. Thereby parts of the gravity fluctuations are still important in

the many scalar limit. It is also accompanied by a growing ∝ √nS relevant eigenvalue,

implying huge quantum corrections in the critical behaviour. These observations of a pole

and a growing relevant direction in the many scalar limit are consistent with findings in

[52] although they employed a different RG treatment of Einstein-Hilbert gravity [94] and

accounted for matter anomalous dimensions.

It poses the question of the physical significance of this limit. An unbounded growth of

quantum corrections should be treated with caution beacuse it can signify the breakdown

of one or several approximation assumptions. A promising first ansatz, aiming to remove

the pole structure in the gravitational beta functions via a spectrally adjusted cutoff, was

presented in [123].
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The fermion fields are compatible with the existence of UV- fixed point for gravity close

to the pure gravity fixed point. Their influence on the gravitational couplings is strong

in the sense that there is an O(1) bound on the number of compatible fermion fields in

the absence of other matter. The bound is tightened through the introduction of higher

scalar curvature operators R2 and beyond.

Scalar and vector matter can relax the bound and make room for more fermion fields.

The vector fields allow for a gravitational UV- fixed point connected to the pure f(R)

gravity fixed point. The introduction of higher scalar curvature operators beyond the

Einstein-Hilbert approximation is accompanied by a bound O(100) on the number of

compatible vector fields. In addition we observe the introduction of further relevant dir-

ections with increasing number of vector fields. The amount of newly introduced relevant

directions depends on the approximation order N and grows with it. It can be viewed as a

hint towards a challenge of predictivity of the setup since the gravitational non-interacting

fixed point may only exhibit a finite amount of relevant directions. A challenge to pre-

dictivity in the vector sector was also found in [52] although already in the Einstein-Hilbert

approximation and using a different indicator.

Motivated by the recent findings of [118], we also made tentative studies exploring the

possibility of many matter limits that are not necessarily connected back to a pure gravity

fixed point. The physical relevance of these limits is a scenario where asymptotic safety

for gravity is only realised through the presence of matter.

Although consistent many matter limits are found for scalars and fermions in approx-

imation orders up to R5, the question of their physical relevance still requires further

examination.

A promising many matter limit is found in the vector sector for all approximation orders

up to R5. It features a cosmological constant approaching a finite value and a paramet-

rically small Newton’s coupling. Its critical behaviour exhibits two relevant eigenvalues,

which attain canonical values −4 and −2 and a marginal direction. It can be viewed as a

tentative hint towards physically meaningful many matter limit.



87

Chapter 5

Gravitational eikonal scattering

and asymptotic safety

5.1 Introduction

In this chapter, we are going to examine phenomenological implications of the asymptotic

safety scenario. We are interested in graviton-mediated scattering processes.

Dimensional analysis of classical gravity suggests that the relevant scale for quantum

gravity is the Planck scale

MP ≈ 1018 GeV. (5.1)

Unfortunately this scale (5.1) is by far out of reach for current particle accelerator tech-

nology, which can create collision energies of around 104 GeV. There might be cosmolo-

gical/astrophysical processes that can realise energies of the order of MP .

But what if the fundamental scale of gravity MD was actually much lower than (5.1) and

we had

MD �MP . (5.2)

This can be realised in models with extra dimensions [57, 124], where the fundamental

scale can be as low as

MD ∼ O(1− 10) TeV. (5.3)

Quantum gravity effects become important at the scale MD, and therefore they are within

reach of existing particle accelerators, such as the LHC.

In this work, we focus on the ADD model [57] where n compact and flat extra dimensions
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are introduced. The volume of the extra dimensions relates the two gravity scales (see

[125] for conventions)

M2
P ∼ LnMn+2

D . (5.4)

Each extra dimension has the same compactification length L. In this scenario the stand-

ard model is confined to a four-dimensional hypersurface, or brane, in a 4+n -dimensional

spacetime. Only gravity propagates in the full 4 + n dimensional spacetime. The require-

ment of a TeV-sized Planck mass already constraints the number of extra dimensions that

are compatible with the experimental evidence. The crucial quantity is the size of the

extra dimensions which need to be small enough in order to avoid contradictions with

observations in gravity and large enough to suppress the Planck mass. Therefore n = 1

can be safely ruled out as effects would be visible on length scales of the solar system.

n ≥ 2 is no longer in contradiction to measurements in classical gravity.

Because momentum conservation of gravitons transverse to the brane is spontaneously

broken [126], one must sum over the possible Kaluza-Klein masses of internal graviton

lines in Feynman diagrams. For this reason, already the tree-level graviton exchange in

n > 2 is UV-divergent and hence sensitive to the UV-completion of gravity [58, 127].

In contrast there exists a kinematic regime of multi-graviton scattering, called the eikonal

approximation, which has been argued to be insensitive to the UV completion of gravity

[59, 2, 56]. It is a semiclassical approximation to elastic scattering at small angles in the

sense that it has been calculated by [55] in four dimensions using a test particle in the

background metric generated by another particle [128]. The amplitude remains predictive

although perturbative Einstein-Hilbert gravity is non-renormalizable, underlining a sense

of insensitivity to the UV-completion. The connection between the semiclassical calcula-

tion of [55] and the eikonal approximation was shown by [56].

The fact that LHC energies could even substantially exceed the gravitational scale MD

has motivated recent considerations of the eikonal approximation in this context [58, 59,

60, 61].

Our main new addition is to implement the asymptotic safety scenario [7] (see Chapter 1

and 2 for overview) for eikonal scattering. Asymptotic safety has inspired a range of work

considering scattering phenomenology [129, 130, 131, 132, 62, 133, 134, 135, 136, 137, 138,

63] and black holes [139, 140, 141, 142, 143, 144, 145].

The key ingredient from asymptotic safety, for our purpose, is a wave function renormal-

isation factor for the graviton propagator [130, 62]. As the eikonal approximation relies on
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t-channel exchange, the graviton propagators occurring have euclidean signature. Since

asymptotic safety has been mainly examined in euclidean space-times, a euclidean propag-

ator matches the studied space-time structure.

Contrary to previous claims, we will identify signatures of the employed UV-completion

on the level of the eikonal phase (cf. Section 5.5) and the eikonal amplitude (cf. Section

5.6).

We start by briefly reviewing the theory of the eikonal approximation in Section 5.2, and

summarise the key results obtained within the framework of large extra dimensions. Sec-

tion 5.3 reviews the framework of asymptotic safety and presents our RG-improvement to

the graviton propagator. Section 5.4 reviews first implications of our RG-improvement to

the tree-level graviton exchange.

5.2 Gravitational scattering

The eikonal approximation is a semiclassical approximation to gravity-mediated elastic

scattering amplitudes at small angles.

In order to understand its position within the phase space of gravitational scattering, we

need to introduce two parameters, namely the dimensionless center of mass energy

ECM
MD

(5.5)

and the dimensionless impact parameter

bMD . (5.6)

The impact parameter b is a length scale that can be interpreted as the shortest distance

between the two interacting particles. Both quantities are measured against the funda-

mental scale of gravity MD.

The kinematics of a two particle scattering process can be characterised by the Mandel-

stam variables s and t. If the incoming particles have momenta p1, p2 and the outgoing

particles have momenta p3, p4, we have

s = (p1 + p2)2 = E2
CM (5.7)

t = (p1 − p3)2 = −2p2
CM (1− cos θCM ) (5.8)

where ECM , pCM , θCM are respectively the total energy, the momentum of either particle,

and the scattering angle in the centre-of-mass frame. Note that t becomes small for small

scattering angles θCM .
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We now have the terminology to discuss the phase space of gravitational scattering:

Since we have compact extra dimensions, the basic gravitational scattering amplitude

consists of a single sum over Kaluza-Klein gravitons. A representative of this tree-level

process in the kinematic t-channel is given in Figure 5.1. The corresponding amplitude

is called the Born amplitude. The KK tower probes the UV behaviour of gravity and for

Figure 5.1: A t-channel one graviton exchange This diagram represents the Born amp-

litude.

this reason the Born amplitude is sensitive to the UV completion of gravity (cf. Section

5.2.1 and 5.4).

The Born amplitude will receive corrections from higher order diagrams when going to

higher centre of mass energies
√
s (5.7) or to smaller impact parameters b. Generic-

ally implications from details of the UV behaviour of gravity are expected to become

more important for the scattering amplitude. However, there can be still regimes where

semiclassical approaches remain a valid approximation. An example would be the regime

where the impact parameter becomes less than the Schwarzschild radius of the two particle

system and black holes are expected to form. A semiclassical treatment is expected to

describe the black holes with masses much larger than the Planck scale [146, 147]. Details

of quantum treatment become important when the black hole has a mass comparable to

the Planck scale.

We are particularly interested in the regime of eikonal scattering, for which it has been

argued in the past [59, 2, 56] that a semiclassical approximation is valid. Kinematically

the regime is characterised by

− t
s
� 1, (5.9)

which implies small angle scattering (5.8).

The diagrams retained in this approximation contain multiple KK graviton towers. They

exhibit a ”ladder” and ”cross-ladder” type structure. A typical diagram is displayed in

Figure 5.2.
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Figure 5.2: A typical ladder diagram that contributes to the eikonal amplitude. The

straight lines denote the participating scattering particles. The wiggly lines represent

virtual gravitons.

The eikonal amplitude is obtained via the summation over all diagrams of the type presen-

ted in Figure 5.2.

A visualisation of the discussed scattering regimes has been created by [2] and is repro-

duced in Figure 5.3. The diagram is made from the viewpoint of effective field theory (cf.

Section 5.2.1) and ”NR” denotes the non-perturbative regime which is not accessible util-

ising perturbative methods. The Born approximation and the eikonal approximation are

separated by a critical impact parameter (blue line, cf. equation (5.17)). The dashed blue

line marks the onset of model-dependent corrections to the eikonal approximation before

the onset of black hole production. Black hole production occurs below the Schwarzschild

radius (red line). The red dashed line ”quantum limit” comes from the uncertainty prin-

ciple E b ≈ 1. Note that the sharp distinction between the region ”NR” and the others is

not perfectly clear, as our Born amplitude (cf. Section 5.4), as well as our eikonal amp-

litude, will turn out to have a sensitivity to the UV completion (cf. Section 5.6).

This concludes our brief review of gravitational scattering. We will now focus on an

explicit implementation of the eikonal regime in effective field theory (cf. Section 5.2.1).

We use the effective field theory considerations as a reference point to identify fingerprints

of asymptotic safety in our treatment and argue that sensitivity to the UV-completion of

gravity is retained in this case.

5.2.1 Effective field theory

In this section we give a brief review of the effective field theory results of the eikonal

regime. For further details on benefits and shortcomings of the effective field theory treat-

ment in this context see [63].
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Figure 5.3: A phase diagram of different regimes of the gravitational scattering amplitude

in the energy E - impact parameter b plane from the viewpoint of effective field theory,

reproduced from [2]: The uncertainty principle dictates that at a given energy E only

length scales above the red dashed line can be probed. NR refers to the non-perturbative

regime of gravity. With decreasing impact parameter b one moves from the regime of

single-graviton exchange (Born) to multi-graviton exchanges (Eikonal) and eventually to

black hole formation.
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In order to derive the Feynman rules of effective field theory, the Einstein-Hilbert action

minimally coupled to matter is analysed for perturbations around a Minkowski background

[58, 59].

Because of the universal nature of the gravitational coupling to matter, the details of the

following procedure are expected to be largely independent of the spin of the matter field,

and it is conventional to consider Klein-Gordan scalar fields for simplicity, ignoring any

non-gravitational interactions of the matter.

The eikonal approximation requires the summation of an infinite set of ”ladder” and

”crossed ladder” Feynman diagrams (cf. Figure 5.2). This summation is carried out un-

der the assumption that throughout the exchange of gravitons, the matter particles remain

approximately on-shell; we are effectively in the domain of relativistic quantum mechanics.

For further details see [56, 148, 149, 150].

In terms of the Mandelstam variables, the eikonal approximation is expected to be accurate

up to terms of order O(−t/s) (5.9). This follows from the fact that a spacelike perturbative

propagator carrying the full 4-momentum transferred between the two particles suppresses

the diagram by a factor ∼ 1/t, while a propagator carrying timelike momentum suppresses

it by a factor ∼ 1/s. The terms omitted from the sum of diagrams can be regarded as

negligible if we restrict ourselves to scattering at small angles (cf. equation (5.8)). It is

these neglected terms in which the divergences expected in quantum gravity appear. The

reasoning by which such infinite terms can be regarded as ”negligibly small” is that some

ultimate theory of quantum gravity must smooth the divergences out. Once this has been

achieved whatever finite contribution remains will be suppressed by a power of −t/s. This

picture has been tested and confirmed in explicit theories of quantum gravity, namely

supergravity [151] and extensively in string theory [152, 153, 154, 155, 156].

The starting point for evaluating the eikonal sum of diagrams is the Born amplitude

AB(s, t) of the theory (cf. Figure 5.1). Under the kinematic assumption that −t/s � 1

(5.9), the Born amplitude of our linearised theory is dominated by t-channel exchange.

From the Feynman rules for the ADD model given in [58, 127], the leading order contri-

bution in the limit of negligible external particle mass is found to take the form

AB(s, t) =
s2

Mn+2
D

∫
dnm

t−m2
(5.10)

In this equation the integral represents a sum over the possible KK masses of the exchanged

graviton. The splitting of the energy levels in the KK tower is taken to be negligible, owing

to the large compactification scales associated with the extra dimensions. In two or more
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extra dimensions this integral is found to be UV divergent, and therefore requires some

kind of regularisation. For 0 < n < 2 the integral is finite, and it is found that

AB(s, t) =
s2

Mn+2
D

Sn

∫
dm

mn−1

t−m2

= −cn
s2

M4
D

(
−t
M2
D

)n/2−1

, (5.11)

where

Sn =
2πn/2

Γ(n/2)
(5.12)

and cn = πn/2Γ(1− n/2) . (5.13)

The Born amplitude has poles for even integers n ≥ 2 but is otherwise well-behaved. It

can be regarded as a dimensional regularization of the divergent KK sum, and we will

subsequently refer to the Born amplitude (5.11) as ADR(s, t). Note that for n ≥ 2 this is

an increasing function of momentum transfer

q =
√
−t , (5.14)

wheras for 0 < n < 2 where the integral converges it is a decreasing function, as would be

required for forward scattering to dominate.

Once the Born term has been determined, the eikonal phase χ is defined by [59]

χ(b, s) =
1

2s

∫
dq

2π
q J0(b q)AB(s,−q2) , (5.15)

where J0 is a Bessel function. The definition of the eikonal phase χ (5.15) formally intro-

duces the impact parameter b (5.6), as being the conjugate length scale to the exchanged

momentum q.

In this dimensional regularization ansatz (5.11), the eikonal phase (5.15) evaluates to be

χDR = −
(
bc
b

)n
, (5.16)

with the critical impact parameter

bc =

(
(4π)n/2−1 Γ(n/2) s

4M2
D

)1/n
1

MD
. (5.17)

The critical impact parameter (5.17) is the scale at which χDR (5.16) becomes of order

one. It is also the impact parameter below which the eikonal resummation is expected to

be necessary to describe elastic scattering rather than the Born approximation (cf. Figure
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5.3 (blue line)).

We remark that this result for the eikonal phase (5.16) is finite for any value of n, even

though it is obtained as a the result of successive integrations, each of which is only con-

vergent for small values of n.

Another observation is that χDR (5.16) diverges as b → 0. This is a reflection of the

bad short distance behaviour of perturbative gravity. The eikonal phase even remains

divergent in this limit when the finite width of the brane is accounted for and generates

an exponential suppression of the KK excitations [60]. However the divergence is logar-

ithmical ∝ log(b) rather than a powerlaw as before (5.16).

The full eikonal amplitude is expressed in terms of the eikonal phase χ (5.15) as [59]

AEik(q, s) = −4π i s

∫
db b J0(q b) (eiχ(b,s) − 1) . (5.18)

From the discussion above, it should be clear that the usual rationale for the eikonal ap-

proximation being independent of the UV completion of gravity no longer applies. For the

case where both matter and gravity propagate freely, it is argued [2] that UV contribu-

tions are kinematically suppressed in small-angle scattering and only appear in Feynman

diagrams that are suppressed by a power of −t/s. Here, even our starting point in the

Born amplitude (5.10) is sensitive to the regulation of ultraviolet divergences.

Nevertheless the eikonal amplitude in dimensional regularisation remains finite despite

the divergences in the Born amplitude (5.11) and the eikonal phase (5.16) and can be

analytically expressed (initially in[157], corrected in [63]). Using the eikonal phase (5.16)

we write

ADREik = −4π i s

∫
db b J0(qb) (e−i (

bc
b )

n

− 1) (5.19)

≡ 4π s b2c Fn(q bc) , (5.20)

It has been argued in [59] that the eikonal amplitude (5.20) retains its insensitivity to the

UV completion of gravity despite the divergencies in the Born amplitude (5.10). This is

because the bad short distance behaviour of gravity enters into the full eikonal amplitude

(5.18) only via very rapid oscillations of the phase χ so that the small-b region makes a

vanishingly small contribution to the integral (5.18). We will perform explicit calculations

within the context of asymptotic safety, in which these divergences are not present, and

show that the results can indeed differ significantly from the semiclassical prediction (cf.

Section 5.6).



96

5.2.2 Born limit of the eikonal amplitude

In this section we examine the requirements of the falling back of the eikonal approximation

to the Born approximation.

In the limit of a small modulus of the eikonal phase |χ| over the whole impact parameter

range b range

|χ(b)| < 1 , (5.21)

the integral for the eikonal (5.18) amplitude can be expanded as

AEik(q) = −4π i s

∞∫
0

db b J0(q b)

∞∑
k=1

(i χ(b))k

k!
. (5.22)

This expansion (5.22) is only meaningful if every integral of the sum is convergent on its

own, as in our RG-improved setup (cf. Section 5.4). The semiclassical approximation

violates this condition (cf. χDR in (5.16)).

The sum converges rapidly. An approximation to the eikonal amplitude is obtained by

truncating the sum at finite k = f :

AEik(q) ≈ AfEik = −4π i s

∞∫
0

db b J0(q b)

f∑
k=1

(i χ(b))k

k!
. (5.23)

For f = 1 the sum collapses to one term and the approximation just gives back the Born

amplitude:

AEik(q) ≈ −4π i s

∞∫
0

db b J0(q b) i χ(b) = ABorn . (5.24)

This identity can be shown using the definition of χ as 2 dimensional Fourier transform

of the Born amplitude (cf. [2]). The integral in the definition of AEik [2] then effectively

acts as an inverse Fourier transform and gives back the original Born amplitude.

5.3 Asymptotic safety and the renormalization group

In this section, we specify the regularisation of the Born amplitude (5.10) due to asymp-

totic safety. We follow the implementation of asymptotic safety as a graviton propagator

regularisation put forward in [130, 62]. The key observation within the asymptotic safety

scenario for this application is the running of gravitational couplings (cf. Chapter 2).

Here we are particularly interested in the d-dimensional Newton’s coupling GD. Newton’s
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coupling becomes a running coupling G, due to the functional renormalisation group (cf.

Chapter 2):

G(µ) = GD Z
−1(µ) , (5.25)

where µ is a renormalisation group scale and Z−1(µ) is a field strength renormalisation

factor for the graviton. The field strength renormalisation encodes the information of

the UV behaviour of the theory. We recall that within asymptotic safety the dimension-

less couplings approach an interacting fixed point (cf. Chapter 1). The existence of a

UV-fixed point in d > 4 dimensions, using the Einstein-Hilbert approximation, has been

established in [32, 53, 54]. We remark here that in the limit of shortest distances the

behaviour of compactified and infinite extra dimensions cannot be distinguished. These

effects are only visible at distances at the order of the compactification length. There-

fore we will be able to use the results presented in [32, 53, 54] for the UV limit in our setup:

Z−1(µ) =
G(µ)

GD
=


µ→ 0 : 1

µ→∞ : µ2−d
. (5.26)

The low scale behaviour in (5.26) recovers the classical limit whereas in the large scale

limit we enter fixed point scaling. In d > 2 the fixed point scaling acts as a powerlaw

suppression and this property will regularise the Born amplitude (cf. equation (5.10)).

This existence of two limits introduces a transition scale

ΛT (5.27)

that marks the transition from the classical regime to the fixed point regime. This trans-

ition scale is a characteristic parameter of this theory in analogy to ΛQCD in quantum

chromodynamics.

As the classical and quantum limit of Z−1(µ) (5.26) have been identified, we can con-

struct an explicit function to interpolate between the two regimes. The form of Z−1 is

subject to the details of the renormalisation treatment but the physical regime (classical

and quantum) have to be independent of these details. We employ a smooth interpolation

between the two regimes (originally proposed in [62]):

Z−1(µ/ΛT ) =

[
1 +

(
µ

ΛT

)n+2
]−1

, (5.28)

with

d = 4 + n . (5.29)



98

Z-1

IR UV

n=2

n=3

n=4

n=5

n=6

0.1 0.2 0.5 1.0 2.0 5.0 10.0
0.0

0.2

0.4

0.6

0.8

1.0

Μ

LT

Figure 5.4: The inverse renormalisation group constant Z−1 is plotted against the RG scale

µ for different numbers of extra dimensions: n = 2 (black), n = 3 (blue), n = 4 (red),

n = 5 (orange), n = 6 (green). For small µ the behaviour is nearly classical. Around the

transition scale ΛT it moves into fixed point scaling.

The field strength renormalisation (5.28) is plotted for several explicit numbers of extra

dimensions n in Figure 5.4.

Implementing an RG improvement necessitates making a connection between the RG

scale µ and some momentum scale in our physical problem. We will take µ to be the

d-dimensional graviton momentum so that

µ2 = −t+m2 = q2 +m2 , (5.30)

where we made use of q =
√
−t (5.14). There are also other scale identifications conceiv-

able that render the KK summation finite. However, unitarity considerations suggest that

the graviton momentum yields the best unitarity behaviour among the choices investig-

ated [133, 135].

We are now in the position to study the effects of our propagator modification (5.28),

motivated by the asymptotic safety scenario. We start by looking at the Born amplitude

(cf. Section 5.4) and present our new findings for the eikonal phase (cf. Section 5.5) and
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the eikonal amplitude (cf. Section 5.6).

5.4 Born amplitude

In this section we recall the key features of the Born amplitude with the regularisation

presented in section 5.3.

Much of the work on renormalisation group improvement of the Born amplitude was

already carried out for the s-channel in [62], which considered the gravitational contri-

bution to Drell-Yan production. The full tree-level gravitational contribution to elastic

scattering summed over all channels was considered in [135].

The Born amplitude (5.10) obtains a propagator renormalisation factor Z−1 (5.26):

ARG(s, t) = − s2

Mn+2
D

Sn

∫
dm

mn−1

−t+m2
Z−1(

√
−t+m2/ΛT ) . (5.31)

Recall that for small arguments Z−1(µ/ΛT ) ∼ 1, whilst for large arguments Z−1(µ/ΛT ) ∼

µ2−d/Λ2−d
T , where here d is taken to be 4 + n, as gravity propagates in the full spacetime.

The RG-running of Newton’s coupling renders the KK integration finite. The amplitude

(5.31) attains its maximum value at t = 0, where the KK integration becomes

ARG(s, t = 0) ∝ Λn−2
T . (5.32)

The absolute value of the amplitude decreases monotonically with momentum transfer.

For large exchanged momentum q =
√
−t � ΛT the entirety of the KK tower lies within

the fixed point regime, and we find that

ARG(s, t� Λ2
T ) ∝ Λn−2

T

(
ΛT
q

)4

. (5.33)

We therefore expect that the scattering will indeed be sharply peaked about the forward

direction in our scheme. This can be observed in the plot of the Born amplitude in

Figure 5.5, using the explicit shape of Z−1 (5.28). So far we have only exploited the

limiting properties of our renormalisation group constant (5.26). Thus the statements are

independent of the specific shape of the transition.

We will now move on to examine the eikonal phase within this setup (cf. Section 5.5).
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Figure 5.5: The normalised Born amplitude in the linear approximation is plotted against

the exchanged momentum q for various numbers of extra dimensions n, namely n = 3

(blue), n = 4 (red) and n = 5 (green). All decrease eventually as ∼ q−4 (black, dashed).

5.5 Eikonal phase

In this section we consider the effects of the RG improvement (5.26) on the eikonal phase

(5.15), which from the RG-modified Born amplitude (5.31) takes the form

χ(b, s) = − s

Mn+2
D

Sn
4π

∫
dq qJ0(q b)

∫
dm

mn−1

−t+m2
Z−1(

√
−t+m2/ΛT ) . (5.34)

Because the Born amplitude (5.31) is absolutely convergent, we can legitimately exchange

the orders of integration in (5.34). It is convenient to switch to polar coordinates in

momentum space via the prescription q → µ sin θ, m → µ cos θ. The integral in (5.34)

becomes

χ(b, s) = −Sn
4π

s

Mn+2
D

b−n
∫ ∞

0

dµ

µ
(µ b)n/2 Jn/2(b µ)Z−1(µ/ΛT ) . (5.35)

At small arguments Jn/2(x) behaves as ∼ xn/2 in (5.35). Because of the propagator

renormalisation Z−1 (5.28), the eikonal phase (5.35) tends to a finite constant χ0 at

vanishing impact parameter b = 0. The dimensionally regularised phase (5.16) exhibited

an unbounded ∼ b−n growth. The precise value of the constant χ0 depends on the explicit

shape of the propagator renormalisation (5.28). But the argument only requires the general

property of all explicit approximations for Z−1(µ̂) that it decreases for large scales µ/ΛT �
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1 with µ−2−n (cf. equation (5.26)). The relationship of χ0 to the dimensionful parameters

of the model is of the form

χ0 ≡ χ(b = 0, s) = −Cn
s

M2
D

ΛnT
Mn
D

, (5.36)

where in this approximation (5.28)

Cn =
π csc

(
nπ
n+2

)
2n−2 Γ2

(
n
2

)
n (n+ 2)

. (5.37)

The eikonal phase at vanishing impact parameter b = 0 is rendered finite in this imple-

mentation of asymptotic safety. Furthermore it exhibits a direct proportionality to the

transition scale ΛT . Thus it is sensitive to the key parameter in asymptotic safety and

thereby to the UV-completion of the theory.

The eikonal phase (5.35) connects back to the previously discussed case of dimensional

regularisation (5.16) via the removal of the fixed point regime which means ΛT →∞.

We also recover the semi-classical limit (5.16) in (5.35) for large impact parameters

b� Λ−1
T :

χ(b� Λ−1
T , s)→ χDR = −

(
bc
b

)n
. (5.38)

So we have two regimes in the eikonal phase χ (5.35): a fixed point regime at b � Λ−1
T

and a semi-classical regime at b� Λ−1
T . This introduces a new impact parameter

bT (5.39)

which marks the transition between the fixed point and semiclassical regime in the eikonal

phase (5.35).

The new impact parameter bT can be estimated by equating (5.36) and (5.38), leading to

χ0 ≡ −
(
bc
bT

)n
. (5.40)

With this definition (5.40), the impact parameter bT signifies the point where the semi-

classical approximation χDR (5.16) crosses the fixed point limit χ0 (5.36) and thereby it

marks the onset of the dominance of fixed point physics over semiclassical physics. This

idea is illustrated in Figure 5.6, where χ is plotted for n = 2.

The impact parameter bT can be explicitly calculated from (5.40). As it involves χ0 (5.36),

its numerical n-dependent prefactor ξn depends on the explicit shape of Z−1:

bT = ξn Λ−1
T , (5.41)
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where we use (5.28) to obtain

ξn =
n

√
C−1
n =

2n−2 Γ2
(
n
2

)
n (n+ 2)

π csc
(
nπ
n+2

)
 1

n

. (5.42)

For numbers of extra dimensions n up to 15, ξn (5.42) can be considered O(1).

The ratio

z =
bc
bT

= n
√
−χ0 (5.43)

is linked to certain limits of the eikonal approximation. Recall that in the limit of |χ| < 1,

the eikonal amplitude is well approximated by the Born amplitude (for details see Section

5.2.2). In our case the eikonal phase χ (5.35) is bounded by χ0 (5.36), so the general

condition boils down to |χ0| < 1. Via the definition of bT in (5.40) this further simplifies

to

z < 1. (5.44)

So there is a ”quasi Born” regime for bc < bT , where the eikonal resummation is well-

approximated by the Born amplitude.

If we require s > M2
D to be transplanckian, then also ΛT �MD has to be satisfied to be

in the ”quasi Born” regime.

We also have a ”strong eikonal” regime for

z > 1, (5.45)

or bc > bT , where the accuracy of the eikonal resummation significantly surpasses the

accuracy of the Born approximation. If we require s > M2
D to be transplanckian, then

also ΛT ≥MD has to be satisfied to be in the ”strong eikonal” regime.

As generically

ΛT = O(MD), (5.46)

transplanckian scattering takes place in the strong eikonal regime.

As mentioned before, it has been argued that the ultraviolet behaviour of gravity has

little quantitative effect on the eikonal amplitude [59, 2, 56]. However, here we see that

the fixed point scaling serves to tame the growth of χ (5.35), such that the sensitivity of

the integral to the short distance region is increased. The fixed point leaves its imprint on

χ0 (5.36) via the transition scale ΛT .
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Figure 5.6: The normalized eikonal phase χ/χ0 for the linear approximation is plotted

against the b/bc (black) in n = 2. The fixed point limit χ0 (red, dotted) and the semi-

classical limit (blue, dashed) intersect and thereby define bT . It separates the fixed point

from the semi-classical regime. The semi-classical scale bc is different from bT and larger

if the eikonal corrections are to dominate over the Born approximation.
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5.6 Eikonal amplitude

Here we analyse the implications of the eikonal phase (5.35) (cf. Section 5.5) on the eikonal

amplitude (5.18).

First we observe that the eikonal amplitude (5.35) can be reexpressed

χ(x, z) = −Sn
4π

ξn/2n

∫ ∞
0

dµ̂

µ̂
(x z µ̂)n/2 Jn/2(x z µ̂ ξn)Z−1(µ̂), (5.47)

with ξn (5.42) and µ̂ = µ/ΛT , using the dimensionless impact parameter

x =
b

bc
(5.48)

and the parameter z (5.43)

z =
bc
bT

. (5.49)

Using the dimensionless exchanged momentum

y = q bc , (5.50)

and the eikonal phase (5.47), the eikonal amplitude (5.18) can be written in terms of a

dimensionless function Fn(y, z) which depends on two arguments now (compared to just

one in the case of dimensional regularisation (5.20)):

AEik = 4π s b2c Fn(y, z) (5.51)

Fn(y, z) =

∫
dxxJ0(x y) (ei χ(x,z) − 1) . (5.52)

A comparison of the dimensionless eikonal ampitude Fn (5.52) for various numbers of extra

dimensions n is presented in Figure 5.7. For low transferred momenta y, the absolute value

of Fn decreases with increasing number of extra dimensions n. This is due to the sharper

falloff of the corresponding eikonal phase χn ∝ b−n (5.38) at large impact parameter b. In

the large momentum limit a y−4 powerlaw is observed for this particular value of the ratio

z = 1. This is the same powerlaw as in the Born amplitude (5.31). It can be explained as

z = 1 is still close to the quasi Born regime. Therefore it is not a general feature of the

dimensionless eikonal amplitude but depends on the value of z.

We study now the behaviour of Fn for fixed z. Exemplarily this is presented in Figure

5.8 for F4. The value of z influences the starting value at low momenta y, as well as

the shape of the decrease for large y. There are two interesting limits. The quasi Born
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Figure 5.7: The absolute value of the dimensionless eikonal amplitude Fn in the linear

approximation is given as a function of the dimensionless momentum transfer y for fixed

z = 1. The plot compares different numbers of extra dimensions: n = 2 (black), n = 3

(blue), n = 4 (green), n = 5 (orange) and n = 6 (red). The large momentum limit y−4 is

given for comparison (black, dashed).
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Figure 5.8: The absolute value of the dimensionless eikonal amplitude F4 is given as a

function of the dimensionless momentum transfer y for various z. For comparison the

semiclassical limit of dimensional regularisation (DR, black) is given. The amplitude

approaches the semiclassical limit as z →∞.

regime z < 1 features a powerlaw like decrease of Fn with ∼ y−4. The very strong eikonal

regime (z →∞) approaches the semiclassical limit (5.20) already known from dimensional

regularisation. The semiclassical limit seems to be a good approximation already at z = 10

(cf. Figure 5.8 ).

The study of Fn for fixed exchanged momentun y shows a new striking feature of this par-

ticular setup of quantum gravity. The eikonal amplitude appears to be either suppressed

or enhanced compared to the semiclassical limit when scanning through the ratio z, which

encodes the transition scale ΛT (cf equations (5.43) and (5.41)). An example for this is

shown for F3 in Figure 5.9. This behaviour is strongest for low momenta y. We thereby

provide strong evidence that the eikonal amplitude can be sensitive to the UV completion

of gravity, contrary to previous claims [59, 2, 56].

The suppression and enhancement of the eikonal amplitude in this implementation of

asymptotic safety as a UV completion of gravity could potentially be visible in scattering

amplitudes at the LHC. Further work is needed to study theoretical predictions in proton -

proton collisions, which means that parton distribution function and spin effects will have
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Figure 5.9: The absolute value of the dimensionless eikonal amplitude F3 in the linear ap-

proximation is given as a function of the theory parameter z for several fixed dimensionless

momentum transfer y, namely y = 0 (blue), y = 1 (red) and y = 5 (green). Depending

on z, there can be a suppression or an enhancement of the semi-classical prediction. The

semi-classical limit is recovered for large z.
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to be considered. This could lead to experimentally testable predictions. First signatures

of asymptotic safety at the LHC have been considered in [63].

5.7 Summary

We have examined an implementation of asymptotic safety at the level of the eikonal

resummation technique for graviton scattering. Our key observation is that the UV com-

pletion of the theory is reflected in the eikonal phase χ. The limiting value χ0 is linked

to the key parameter of asymptotic safety, namely the transition scale ΛT . Furthermore

we found a transition parameter bT that separates the eikonal phase into a fixed point

and a semi-classical regime. We compared the asymptotic safety parameter bT to the

semi-classical parameter bc and discussed the implications for eikonal resummation. We

identified a ”quasi-Born” and a ”strong eikonal” regime.

The footprint of asymptotic safety is also visible in the eikonal amplitude, where depend-

ent on the transferred momentum, we have an enhancement or a suppression. It is an

interesting question for further research how this will translate to actual phenomenolo-

gical observables for parton-parton scattering at the LHC.
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Chapter 6

Conclusions

In this thesis we studied aspects of quantum gravity coupled to matter. A conservat-

ive approach was taken where we examined gravity as a quantum field theory, utilising

the functional renormalisation group to gain insights into non-perturbative effects. We

provided further evidence for the asymptotic safety scenario to be a strong contender for

a quantum theory of gravity by considering a gravitational template action. This action

consists of the essential gravitational couplings, the cosmological constant and Newton’s

coupling, as well as higher order terms in the Ricci curvature scalar. It can be written

as a generic function f(R). We reviewed the functional renormalisation group and its

application to gravity in Chapter 2.

In Chapter 3, we managed to remove spurious poles in the renormalisation group flow of

quantum gravity and were able to extend polynomial studies to very high orders. The

results remain stable, which supports the view that the fixed point is a stable property

of the theory. The resulting picture is that gravity displays a UV interacting fixed point

with three relevant directions. Higher order invariants do not add new free parameters.

Yet they are important quantitatively as they stabilise the renormalisation group flow. It

will be interesting to identify global fixed point solutions for this new flow in the future,

following the ideas of [110].

In Chapter 4, we confirmed that the minimal coupling of matter to gravity leaves the grav-

itational fixed point intact. Here, the effect of higher order couplings is more pronounced,

leading to more substantial constraints.

Interestingly, we also found signs for new gravity-matter fixed points that are not con-

tinuously connected back to the purely gravitational fixed point. A similar pattern has
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recently been observed in four dimensional Yukawa theories where an interacting UV fixed

point in the gauge sector exists in perturbation theory if scalar matter is present [118, 119].

This is intriguing in its own right and deserves more studies in the future.

As a phenomenological application, in chapter 5, we studied the impact of quantum grav-

ity effects in graviton-mediated scattering at high energies. If gravity weakens in the

manner as predicted by the asymptotic safety scenario, we found that the eikonal phase

at vanishing impact parameter becomes finite. This is quite intriguing and distinct from

all semiclassical studies which predict at least a logarithmic or stronger divergence. How-

ever, this result is in agreement with findings from string quantum gravity [152]. In our

study no inelastic contribution due to an imaginary part of the eikonal phase has arisen.

It will be interesting to extend our examination to include further quantum gravity ef-

fects. This could give access to the regime where black hole formation is expected to set in.

From a broader vantage point, the research field of asymptotic safety has established

a huge body of evidence for it to be realised in euclidean quantum field theory. How-

ever, there are still open challenges. The ongoing systematic study and classification of

curvature operators will provide further insights into the relation of operators and fixed

point existence/properties. The inclusion of more sophisticated matter setups will further

clarify the role of matter to the RG running of the gravitational sector and vice versa.

The goal of these studies is to understand the prerequisites for the scenario to emerge.

In the long term the euclidean results need to be carefully tested whether and how they

can be translated to spacetimes with Minkowski signature. If the qualitative findings of

a UV fixed with a finite amount of relevant directions hold true, the asymptotic safety

scenario of gravity could become the contender of choice for a quantum theory of gravity.
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Appendix A

Traces for the improved flow

equation

Here we provide the explicit values for the traces necessary to obtain the right hand side

(2.67) of the improved flow equation (3.5). The improved flow is introduced in Chapter

3 to remove the explicit poles ρ = 3 and ρ = 4 in the flow (2.85). It achieves this by

exploiting the freedom to choose a suitable regulator for certain traces: the gravitational

vector mode ξ (A.4) and the scalar modes σ (A.7) and (A.8), η (A.17) and (A.18), λ

(A.27) and (A.28), ω (A.34) and (A.35).

The gravitational contributions are:

∆hT hT = −∇2 (A.1)

Γ
(2)

hT hT
= −f

2
−
(

∆hT hT

2
− ρ
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)
(A.2)

1

2
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T hT

k
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+RhT hTk

]
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)
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2
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311 ρ3 − 252 ρ2 − 68040 ρ+ 181440

)
f ′

580608π2 (3 f − (ρ− 3) f ′)
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∆σσ,1 = −∇2 (A.7)
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The ghosts contribute with:
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The auxiliary fields enter as:
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This provides all the required information to explicitly compute the right hand side of the

flow (2.67).
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I’m finished.

-Daniel Plainview in the film There Will Be Blood [158]
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