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Summary

The billion years subsequent to the Big Bang pose the next challenging frontier for

precision cosmology. The concordant cosmological model, ⇤CDM, propounds that during

this period, the dark matter gravitationally shepherds the baryonic matter to form the

primordial large-scale structures. This era is termed the Dark Ages (DA). The following

era, the Epoch of Reionization (EoR), leads to the formation of the first stars and galaxies

that reionize the permeating neutral hydrogen. The linear polarization of the cosmic

background radiation and the Gunn-Peterson troughs in quasar absorption spectra provide

indirect evidence for the EoR. Currently, there is no observational evidence for the DA.

While state-of-the-art radio telescope arrays, Low Frequency Array (LOFAR) and Square

Kilometre Array (SKA), propose various strategies to observe the early phases of

the Universe, the advanced simulations employing high-performance computing (HPC)

methodologies continue to play significant role in constraining various models based upon

limited observational data. Despite a wide range of research, there is no end-to-end

simulation solution available to quantifiably address the observational challenges due

to statistical and systematic errors including foregrounds, ionosphere, polarization, RFI,

instrument stability, and directional dependent gains.

This research consolidates the cutting-edge simulation solutions, Cube-P3M, C2-Ray,

and MeqTrees, to build an HPC prototype pipeline entitled, Simulating Interferometry

Measurements (SIM). To establish and validate the e�cacy of the SIM pipeline, the

research builds a theoretical framework of two science drivers, viz., the presence of Lyman-

limit absorbers and measuring non-Gaussianity from the 21-cm data. Thereafter, using

the LOFAR and SKA telescope configurations, the SIM generates data visibility cubes

with direction dependent and independent propagation e↵ects. Finally, SIM extracts the

original signal through standard techniques exploring the parametric phase-space. Results

are presented herein.
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Preface

For thousands of years, the human species, in disparate emerging civilizations, has

wondered about the very existence of the self and beyond. The species has posited

profound and compelling questions, often addressing them with the power of imagination.

The human spirit has soared on the wings of imagination to discover the very nature of

the physical. The hovering vast dark globe of the night, punctuated with the seemingly

distant glimmering lights has continued to kindle that imagination. My ancestors in India

posited such questions many thousands of years ago. They disseminated their thoughts

through chants delivered on rhythmic metre; a tradition practiced even today all across

India. The writing of the thoughts came much later. Below, I share the verse from one

such collection of thoughts, called Rig Veda, for its imaginary leap into the unknown;

for its liberated thought; for its brilliance of wonderment that on occasion carries us not

far from the truth; the illusive truth, which we continue to seek through the rigors and

disciplines of science.
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The verse from ancient Rig Veda contemplates the creation of the Universe and

unabashedly enquires aloud the meaning and purpose of it all. There are many translations

of the texts. Following is one such translation that was done in the late 1890s by an Indian

philosopher named Vivekanand.
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Then there was no existence, nor non-existence,

There was no world, nor the sky beyond.

What covered the mist? Of whom was that?

What was in the depths of darkness thick? [1]

Death was not then, nor immortality,

The night was neither separate from day,

But motionless did That vibrate

Alone, with Its own glory one -

Beyond That nothing did exist. [2]

At first in darkness hidden darkness lay,

Undistinguished as one mass of fluid,

Then That which lay in void thus covered

A glory did put forth by Tapah [heat]! [3]

First desire rose, the primal seed of mind,

(The sages have seen all this in their hearts

Sifting existence from non - existence.)

Its rays above, below and sideways spread. [4]

Creative then became the glory,

With self-sustaining principle below.

And Creative Energy above. [5]

Who knew the way? Who there declared

Whence this arose? Projection whence?

For after this projection came the gods.

Who therefore knew indeed, came out this whence? [6]

This projection whence arose,

Whether held or whether not,

He the ruler in the supreme sky, of this

He, O Sharman! knows, or knows not

He perchance! [7]

The Hymn of Creation

(A translation of the Nâsadiya-Sukta, Rig-Veda, X. 129.)

The Complete Works of Vivekananda (Volume 6), published, 1907
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Chapter 1

Introduction

At the fundamental level, all the physical processes are the manifestation of the intricate

interplay of matter and energy, the two interchangeable universal tangibles. To understand

the interplay occurring in the farthest reaches of the Universe, we strain to collect the

weak electro-magnetic radiation (light) arriving from afar. We detect this radiation in

forms of continuous fields or discrete bundles. In the latter half of the nineteenth century,

the phenomenon of light was shown by James Clerk Maxwell to be due to the undulating

electric and magnetic fields carrying energy through space-time. Later the same continuous

electromagnetic fields were detected as discrete energy bundles called photons by extending

the works of Max Planck and Albert Einstein. Through the twentieth century, various

mathematical frameworks have been developed to model the phenomenon of light in its

dual forms. Many, yet futile, attempts have been made to reconcile this dual behavior.

The manifestation of the phenomenon of light in either form lays the foundation of all the

observational cosmology research. From the chemical footprints of the photons fossilized

in the images taken from the 100 meter telescope on Mount Wilson, CA, in 1922-23 by

Edwin Hubble et al., to the weak radio waves permeating the Universe detected by the

Planck satellite in 2013 located far away at the Earth-Sun L2 point, it is the light that

elucidates and defines our understanding of the Universe.

The very first photons that we observe are from the time when the Universe was about

380,000 years old after the Big Bang. Before this period, the Universe was an expanding

and tightly coupled hot and dense plasma of electrons, protons, photons, and many other

particles. In this state, the free moving electrons coupled with photons through Thomson
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scattering and resulted in an opaque (short mean free path for photons) Universe. As the

expansion adiabatically cooled the Universe, the electric forces between the electrons and

protons became relevant and allowed the formation of neutral hydrogen. This triggered

the transition phase, often called the recombination era of the Universe when the matter

decoupled from radiation releasing the first photons in the transparent Universe. These

photons have a blackbody spectrum and have cooled from 3000 K (infrared), since

their release, to 2.7 K (microwave) in the present day and they form a background

radiation called the cosmic microwave background (CMB) radiation. In the 1940-50s,

many scientists predicted and reported the existence of near-isotropic background. It

was not until 1964-65 that the team of Arno Penzias and Robert Wilson conclusively

measured the CMB. The detailed study of these photons, since, has revolutionized the

field of cosmology and established the concordant cosmology in the form of the ⇤-CDM

model, where ⇤ represents the dark energy component and CDM stands for the cold-dark

matter. In essence, the first light has narrated an in-depth tale of the early Universe.

Between the release of the first photons and the formation of the large-scale structures, the

history of the Universe is not well known. While not much has been directly observed, there

are various hints in the CMB observations and other deep observational data that indicate

yet another phase transition in the Universe. The CMB data, for example, indicates that

after the decoupling of the CMB, photons and the neutral hydrogen evolved independently

only for another 700,000 years. Thereafter, the CMB photons again coupled with the

electrons through Thomson scattering around one billion year after the Big Bang. The

relevant question to ask is that where did the electrons come from? Especially in the

expanding and therefore cooling Universe, conducive to the formation of neutral hydrogen.

Based upon the observed large-scale structures, one could reasonably extrapolate that after

the decoupling, the neutral hydrogen assembled in the intricate network of gravitational

potentials due to the primordial (of quantum mechanical origins) density perturbations in

the smooth dark matter and matter density fields. The gravitational collapse eventually

led to the formation of the bodies capable of producing the ionizing photons giving rise

to the ionized medium rich with free electrons. It takes 13.6 eV to ionize a hydrogen

atom. This energy is equivalent to that of an ultraviolet photon. It is unclear what

objects were responsible for the ionization of the intervening neutral hydrogen. However,
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in various scenarios studied, the objects capable of releasing such energy could be early

massive stars or black holes. The period in the history of the Universe from the decoupling

until the formation of the first ionizing sources is called the Dark Ages. Thereafter,

the Epoch of Reionization commences and ends around redshift z = 6, when all the

permeating hydrogen is fully ionized. This permeating hydrogen, depending when it is

referred to, is the pre-galactic (prior to the formation of galaxies) or the inter-galactic

medium. To directly observe the Dark Ages (DA) and the Epoch of Reionization (EoR)

makes a compelling case for the next generation of experiments.

The Second Light

But without the stars how do we observe in the dark? Our biases continue to precede our

best of objective intentions. As humans, in general, we are optical light chauvinists because

most of us ‘see’ in the narrow optical part of the otherwise extremely wide electromagnetic

radiation spectrum. If we had evolved to ‘see’ in radio, perhaps we would have ‘seen’ the

afterglow of the Big Bang all around us much early in the civilizational history.

The electromagnetic spectrum spreads far beyond either side of the visible light

frequencies/wavelengths. Therefore, what is dark in the visible may not be so in other

parts of the spectrum. As early as the 1930s, in the days of infancy of radio astronomy,

it was known and later observed, in 1951 by Harold I. Ewen and Edwin M. Purcell, that

the neutral hydrogen was ‘visible’ at rest frequency of 1420.4 MHz (21.1 cm) in the radio

part of the electromagnetic spectrum.

The electron and the proton spin in the hydrogen atom split the 1s ground state in what is

known as hyperfine structure. The energy between the states is very small, 5.901 ⇥ 10�6

eV. Compare this with the ground state energy of 13.6 eV. The higher energy state of the

hyperfine structure is when the spins of the electron and the proton are parallel and lower

when anti-parallel. This transition is spontaneous with the probability given by Einstein

coe�cient, A10 = 2.85 ⇥ 10�15 s�1. The half-life of this radiation is roughly 1.1 ⇥ 107

years. However, a large amount of hydrogen in the universe compensates for the low

probability and makes 21-cm photons very good tracer of neutral hydrogen. In addition,

the small energy needed to flip the spins of the electron and proton was readily facilitated
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by the CMB photons and the collisions between the hydrogen atoms. As a result, during

the Dark Ages the neutral hydrogen glows in the 21-cm. The Dark Ages are not dark

after all. After the CMB, a second ensemble of photons with wavelength of 21-cm were

released in the Universe during the Dark Ages. The direct observation of these photons

traces the underlying hydrogen. With the formation of the first ionizing sources, as the

underlying neutral hydrogen is ionized, this radiation will fluctuate and subside across a

redshift range constraining the ionization sources. Thus, for a large part of the duration

of the Dark Ages and the Epoch of Reionization ranging from redshifts z = 1000 - 6, the

21-cm is observable in redshifted radio wavelengths of 210 - 1.5 m (1.41 - 200 MHz). See

section §3.1 for the details on when the 21-cm is observable in absorption, emission, or

not at all.

The next generation of radio telescopes are developed to further study the Universe

through the narration of the second light of the neutral hydrogen. The CMB depicts

only one epoch when the matter and radiation decoupled. The 21-cm radiation spans

700,000 years of evolutionary history of the early Universe. This will allow to map the

three dimensional evolution of the ionization history of the Universe thus revealing the

underlying physics. The stronger ionizing sources will burn out the intervening hydrogen

much faster than the weaker ones. The fluctuation in the 21-cm photons will also trace the

growth of the primordial anisotropies that took root to grow into the large-scale structures.

Finally, the very first detection of the second light has the potential of revealing the

processes and phenomena utterly unknown. For in depth pedagogical review of the 21-cm

cosmology refer to Furlanetto et al. [2006] and Pritchard and Loeb [2012].

1.1 Frontiers of Precision Cosmology

At the writing of this thesis, the ⇤CDM cosmological concordant model, based upon the

Planck observational data [Planck Collaboration et al., 2013], states that the observable

Universe today is 13.81± 0.05 Gyr old, geometrically flat, and expanding at a rate of 67.3

km s�1 Mpc�1, and made up of three primary constituents - dark energy (68.3%), dark

matter (26.8%), baryonic matter (4.9%), and neutrinos (⌧ 1%).
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While many experiments have indirectly measured the amount of dark matter and dark

energy in the Universe without the direct knowledge of their nature and composition,

one of the essential pillars of the concordant model that remains largely unconfirmed

observationally is the phase transition of the Universe at Planck scales (length ⇠ 10�31 m,

time ⇠ 10�44 s), termed as inflation. Briefly, inflation explains away the lingering problems

of the smoothness, flatness, and deficiency of exotic particles in the hot Big Bang model

by introducing superluminal expansion of the Universe when its size and age were at the

Planck scale. At these scales the quantum gravitational e↵ects become relevant therefore

motivating in depth inquiry. Scientists, Erast Gliner and Andrei Sakharov, suggested the

precursor concepts of the exponential expansion of the Universe; however, Alan Guth, who

also coined the term inflation in 1980, independently developed the idea.

Inflation solves the flatness and smoothness problems in the Big Bang model by stretching

the geometry towards a flat curvature (⌦k = 1) and driving the causally related regions

to non-causal locations (CMB di↵erential� T/T ⇠ 10�5). Soon after the introduction of

inflation, it became evident that besides explaining the original puzzles, the paradigm also

forms the basis for explaining the origins of the cosmological principle of a homogeneous

and isotropic Universe. More importantly, however, inflation predicts the formation of

the observed large-scale structures as the consequence of the growth of the primordial

quantum mechanical perturbations. These perturbations are Gaussian and adiabatic, i.e.,

the fractional over and under densities in matter and energy are the same. The spatial

power spectrum, also known as the Harrison-Zel’dovich spectrum, of these fluctuations

is scale-invariant and is described by a power law. The inflationary paradigm predicts

that the spectral index, ns, of this power spectrum is not exactly one, as expected for

the scale-invariant (flat spectrum) case. For example, in the inflationary model with slow

roll potential, the spectrum is expected to vary very slowly and that |ns � 1| ⌧ 1 [Lyth

and Riotto, 1999]. The recent Planck measurement combined with the independent weak

lensing results yield ns = 0.9603 ± 0.0073 [Planck Collaboration et al., 2013].

The high precision observations of the thermal anisotropy sizes in the CMB, the flat

curvature (⌦k = 1), and spectral index are strong indicators of the inflation paradigm.

However, a class of competing models explains the inflationary phase requiring tests that
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are more rigorous. The potential of the scalar field that drives the inflation classify the

competing models into three categories, namely, weak field, strong field, and hybrid. One

mechanism of di↵erentiating between the models is to test for primordial non-Gaussianity

in CMB. The primordial non-Gaussianity is related to the higher-order statistics of

the CMB, namely the bispectrum. The bispectrum is defined by two parameters that

are, the dimensionless non-linearity parameter fNL that measures the amplitude, and

the associated function that measures the shape of the bispectrum. The 1-� Planck

measurements of the local f loc
NL = 2.7 ± 5.8. This result along with related analyses in

Planck Collaboration et al. [2013] support the originally proposed single-field slow-roll

inflation model. However, the results are not conclusive and motivate further studies. In

this research, we examine the non-Gaussianity by measuring the bispectrum of the 21-cm

radiation from the Dark Ages and the Epoch of Reionization.

Another mechanism to categorically test for inflation is to measure the E- and B-modes of

the polarization of CMB. The E- and B-mode encode the information of the gravitational

wave generated during the inflationary epoch. The experiment titled BICEP-2 has

announced in BICEP2 Collaboration et al. [2014] the detection of excess signal in B-mode

at a specific angular scale. This is a significant result and direct detection of inflation.

However, the results have been challenged since, with Planck results indicating that the

excess may be attributed to the Galactic dust, [Planck Collaboration et al., 2014]. In

addition, a joint study of BICEP-2 and Planck team has studied the same region of the

sky and found string evidence of dust and not of B-modes, [Ade et al., 2015].

The in depth research of CMB has strengthened and established the concordant

model. The future studies in the CMB polarization promise further insights into the

primordial physics and initial conditions at quantum scales unexplored in particle-physics

experiments. The detection of 21-cm signal from the Dark Ages and EoR will further

revolutionize the field of cosmology. The 21-cm research provides complementary results

to the established cosmological concordant model. In comparison to the CMB that is

projected on the sky, the redshifted 21-cm data will cover multi epochs (using 21-cm

tomography) revealing the evolution and growth of the structure. The emerging radio

telescope arrays are poised to detect the 21-cm signal and promise a great new era for
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cosmology.

1.2 Current and Future Telescopes and the Challenges

Current radio interferometers, e.g., Giant Metre-wave Radio Telescope (GMRT) [Paciga

et al., 2011], Low Frequency Array (LOFAR) [Harker et al., 2010], Murchison Widefield

Array (MWA) [Lonsdale et al., 2009], PAPER [Parsons et al., 2010], etc, are poised to

detect neutral hydrogen as fluctuations in the brightness temperature during the EoR.

These observations are statistical in nature and yield matter power-spectra as a function of

redshift. The signal is expected to be weak (five orders of magnitude below the foreground

noise) and buried under poorly understood e↵ects including the foregrounds, ionosphere,

polarization, instrumental stability, and radio frequency interference (RFI). In order to

make a successful detection it is imperative to assess the level of influence these e↵ects

will have on the signal for the current as well as future instruments, e.g., Square Kilometre

Array (SKA) and Hydrogen Epoch of Reionization Array (HERA). These arrays may have

sensitivities to directly image the H II regions.

The LOFAR array dedicated to the EoR research is currently at the most advanced stages

of the data acquisition and processing. Following is a brief review of the telescope and

the associated challenges to gain the insight into the 21-cm experiments. This design is a

prototypical layout for the upcoming telescope. While LOFAR is not an o�cial precursor

or pathfinder to SKA or HERA, the collective knowledge-base developed will form the

foundation of the future DA and EoR experiments.

The LOFAR telescope array [van Haarlem et al., 2013] is a hybrid multi-configuration

telescope with a densely populated core and sparsely distributed antennas to provide

longer baselines for higher resolution. The antennas are not typical parabolic dishes that

are traditionally electro-mechanically steerable. The antennas of LOFAR are termed as

stations that are massive ensemble of fixed dipole antennas with wide field-of-view. Each

station has set of dipole antennas sensitive to two broadband for frequencies entitled, low-

band antennas (10-90 MHz) and high-band antennas (110-250 MHz). This corresponds

to the range of redshifted neutral hydrogen ranging from of z ⇠ 5 � 150. From the epoch

when the Universe was roughly 9 million years old to about a billion year old covering
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Figure 1.1: The aerial view of the central LOFAR core. The stations are the dark grey
tiles. The image shows 16 stations. [van Haarlem et al., 2013]

almost 8.5% of the early age of the Universe. There are 48 LOFAR stations spread across

the norther Europe. The core with 40 stations are distributed in 180 km area in centered

in the Dutch town of Exloo. The Figure 1.1 shows the central part of the core. The typical

station near the core have 48 dual-polarized or 96 single-polarized dipole antennas. Signal

from the dipoles is correlated to synthesize the interferometric aperture. The tracking

and pointing of the LOFAR array is achieved by beam-forming. The beam-forming is a

signal processing technique where the phases of the signals from di↵erent antennas are

weighted (temporally shifted) in order to increase the sensitivity in a specific direction.

The analog signal received at the dipoles is filtered, amplified, converted to intermediate

frequency, and digitized. The signal is then divided in sub-bands using polyphase filter

banks (better alternative to Fast Fourier Transform for channel sub-division) and prepared

for correlation. The sub-bands for LOFAR are 156 or 195 kHz wide leading to 244 channels

foe 48 MHz bandwidth per polarization. The computational loads vary but LOFAR science

dat products are of the order of 5 PB per year.

The SKA Low-1 configuration is also a dipole antenna based array. However, it will

be built with the receiver technologies from 5 years in the future that provide much higher
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sensitivity (almost 100 times more than the current state-of-the-art). The Figure 1.2 shows

the artists impression of the SKA Low 1 array designed for the low frequency research

geared towards DA and EoR observations. This figure also shows the dipole antennas that

will be spread out to yield roughly 5 square kilometer collecting area.

Figure 1.2: Artist’s impression of the low frequency portion of the Square Kilometre Array
(SKA-Low) to be constructed in western Australia in the latter part of 2017. The array
will have 250,000 of the dipole antennas. [Image Courtesy: SKA website and as listed -
Swinburne Astronomy Productions/ICRAR/U. Cambridge/ASTRON.]

The challenges to the signal detection are manifold and are categorized as the propagation

e↵ects that are cosmological/astrophysical, atmospheric, terrestrial and instrumental.

Another set of challenges stem from the unprecedented computational loads. The data

rates from LOFAR are in the Petascale (1015) range while for SKA they will scale by three

orders of magnitude to Exascale (1018). For the successful detection of the redshifted 21-cm

signal, in depth understanding of the propagation e↵ects and their removal is critical. Also

critical is the concerted e↵ort by the radio astronomy community to develop standardized

and scalable software solutions that could process the data rates of the future.

The extragalactic and Galactic foregrounds define the cosmological and astrophysical

e↵ects. These foreground (> 103�104 K) peak above the 21-cm redshifted signal (10 - 100

mK) in the frequency ranges of interest in the range of 100-200 MHz. The extragalactic

foreground is primarily generated by the bright active active galactic nuclei (AGN), or in

the sub-mJy range, by the supernova remnants in the star forming galaxies. The Galactic

foreground, as the name suggests, originates from the Milky Way and is di↵use in nature.

Various physical processes contribute to the foreground. The largest contribution is due

the Galactic synchrotron radiation Shaver et al. [1999]. The AGNs also emit synchrotron

radiation. The remainder of the foreground comes from the free-free (Bremsstrahlung)
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emission. Many techniques are developed for the subtraction of the foregrounds with

varying levels of accuracy, see, for example, Chapman et al. [2012], Morales et al. [2006].

The e↵ects due to the ionosphere originate at the upper layers of the Earths atmosphere,

which is ionized by the Sun. These e↵ects manifest as the phase and amplitude fluctuations

[Hewish, 1951, 1952] in the incoming electro-magnetic wavefront and are proportional to

the frequency as / ⌫�2, therefore are significant for low-frequency radio astronomy. In

addition, the large fields-of-view (5�10�) of the LOFAR and SKA-class telescopes [Cohen

and Röttgering, 2009] make the measurements more susceptible to the larger volumes of

the ionosphere. The ionosphere e↵ects attenuate the 21-cm signal through refraction and

rotational polarization. The ionosphere e↵ect results in a spatially varying point-spread

response (beam) across the field of view [Koopmans, 2010]. The ionosphere e↵ects are

removed form the signal by ionosphere calibration. The 3D structure of the ionosphere is

modeled and the calibration solution is applied to the measurements. Techniques such as

A-Projection [Tasse et al., 2013] are implemented to mitigate the ionosphere and similar

direction dependent e↵ects.

The radio frequency interference (RFI) is another source of noise in low-frequency radio

astronomy that limits the performance of the instrument. The primary sources of this noise

are human applications (telecommunications, microwave, power grids) in the available and

adjoining radio spectrum of interest. The RFI appear as correlated spurious data and

therefore hard to remove. A wide variety of techniques, including fast data integration

at nano- to milli-second scales [Baan et al., 2004, Bhat et al., 2005, Winkel et al., 2007],

statistical variance [Fridman, 2008], fringe-stop pattern recognition [Athreya, 2009], and

highly e�cient post-correlation auto-flagging methods [O↵ringa et al., 2010a,b], have been

implemented and used for the excision of the RFI. The recent results from LOFAR RFI

pipeline indicate that the techniques developed by O↵ringa et al. [2010a] successfully excise

the RFI from 95% of the data.

The signal is corrupted by the instrument itself. The source of this noise are thermal noise

introduced by the receiver, pointing errors that manifest as gain errors, confusion noise

due to multiple sources within synthesized beam, side-lobe noise from extended sources,
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moving bright object, and deconvolution noise. All these errors either are additive or

multiplicative in nature in the uv-plane. Most of these errors are week understood and are

minimized through standard techniques such as calibration, increased integration time,

and post processing.

As it is evident, the detection of 21-cm is a daunting task fraught with sources of errors.

Therefore, in the absence of observational data, it is crucial to conduct studies employing

realistic simulations. The output of the realistic simulations are expected datasets that

include all known physical as well as instrumental e↵ects. Thereafter, various data

extraction techniques may be tested against the datasets by comparing the input model

parameters with the recovered model parameters to further fine-tune for optimization.

The simulation of realistic datasets requires developing real case parametric pipeline that

will generate EoR simulations, together with foreground simulations, RFI, ionosphere

and instrumental e↵ects (i.e. polarization, directionally-dependent gain variations). The

pipeline will help assess the optimal array configuration (i.e. uv-coverage), field-of-view

(FoV), frequency range, etc. and quality of the recovered the parameters of interest. In

addition, the pipeline will be able to explore systematics for variety of configurations of

radio interferometers and search for global optimum for science cases within the large

parametric phase-space. The following chapters focus on the development of such a

simulation methodology and testing its e�cacy by closely examining the propagation

e↵ects and techniques of extracting the redshifted 21-cm signal.

The final challenge is data rates. In brief, the larger telescopes are generating massive

amounts of data that is breaking the traditional computational approaches. The biggest

challenge is of keeping up with the rapidly changing computing industry. The next

generation of compute architectures is introducing massive parallelism via manycores and

accelerator based (graphics processing units (GPUs)) compute modules accessible only

through newer programming models such as OpenMP, CUDA, OpenCL, and for multi-

nodes, Message Passing Interface (MPI). The adoption of massively parallel computing

is rife with challenges of its own. Note that the commercial market forces, video games,

animation, etc., drive the computing industry, upon which the entire scientific computing

depends. As a result scientific community is left to the constantly align with the changing
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paradigm. If not designed judiciously, scientific computing projects run the risk of vendor-

locking and short lifespan. For example, the advent of GPU computing in 2005-2006,

AMD was the leader and introduced a relatively simple language named Brook and

Brook+. Applications developed in Brook demonstrated never seen before speed-ups

thereby changing the nature of the research. However, for reasons better known to AMD,

they faded the language by 2007 leaving the applications to be rewritten in the next

flavor of programming model. The scientific community pays a heavy price while playing

catch-up and therefore it is imperative to architect standardized and modular software

eco-systems that can sustain the market pressures and sudden upheavals. Form 2010

through 2014, I have conceived and led a National Science Foundation a first of its kind

project entitled Infrastructure for Astrophysics Applications Computing (ISAAC), see

Shukla [2010-2014], that explores the phase-space of high-performance computing (HPC)

with these emerging architectures and programming models as applied to Astrophysics.

1.3 Numerical Simulations as the Third Pillar of Science

The simulacrum is never what hides the truth - it is truth that hides
the fact that there is none. The simulacrum is true.

- Ecclesiastes
in Simulacra and Simulation by Jean Baurdillard

The advancement in high-performance computing (HPC) has pushed the boundaries of

simulations in science and engineering. From the simulations of the interactions of quarks

and gluons using quantum chromodynamics (QCD) to the large-scale structures in the

Universe, the simulations have enabled the scientific process and knowledge. Combined

with experimental and observational data, simulations have helped in exploring reality in

ways beyond the capacity of experiments.

With the advent of massively parallel computational architectures, the HPC has grown

from terascale (1012) to petascale (1015) in just 15 years. The architectures of the

processors have become massively parallel. The next logical milestone is the exascale

(1018). These milestones have enhanced the capabilities of scientific discovery by

manifolds. However, the milestones also usher technological disruptions. Harnessing latest
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technology leads to expensive and time-consuming rewrite of the established codebases.

The introduction of accelerator based computing, while highly e↵ective for massive

parallelism, requires significant changes to the existing solutions. However, the new

architectures also provide opportunities to implement novel solutions. For example,

the new hierarchical memory and massive compute bandwidths of accelerators allow the

development of otherwise prohibitive numerical techniques leading to a complete overhaul

of applications. It is quite evident that there are serious pros and cons to be weighed when

considering the adoption of the new technologies. While the cons seem to be the hurdle

of rewrite and the steep learning curves for the new programming models, the benefits of

the massively parallel systems are many. The commonly used algorithm such as the FFT

when run on GPUs yields a performance gain of upto 10⇥ for CUDA FFT (cuFFT) on

NVIDA Tesla and Kepler class of GPUs. Similarly, cuBLAS performs 5⇥ to 17⇥ faster

than the state-of-the-art. The growing support for scientific libraries and ease of use of

the programming language is making CUDA a viable solution for parallel programming.

The combination of changing paradigm of the HPC has nudged the simulations into

shouldering the scientific process as the third pillar after the observation and modeling.

The sheer compute power allows accurate simulations to test models that best fit the

observations. More importantly, however, the simulations are best used for making

predictions. One of the most important aspect simulations is the freedom to reverse

the direction of time. In cosmology, this is of significant value as it provide exploration

of various initial conditions in the past that could lead to the present observational data.

In scientific domains, where there is no past data or experimental recourse, for example

climate science, various models provide insights into the complex physical processes as

they evolve over time and lead to present day scenarios. Highly accurate simulations

allow for rigorous testing before production. This procedure is extremely useful in case the

production costs are steep. Simulations are used to optimizations, complex visualization,

Monte Carlo instances, studying phenomenon beyond the scope of experiments, and

the list goes on. The simulations have become far more advanced with the growth of

computational power.

The next big change in the computational growth is the impending exascale milestone.
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SKA-class telescopes are poised to generate data in the Exabyte range. The current tools

for data acquisition, process, and archiving will require in depth reviews and overhaul.

Scaling to exascale computing is a non-trivial task specially because the computation

industry upon which the scientific communities depend is not fully prepared to meet

the challenge. There are various roadmaps but none reach the goal without disruption.

The primary challenge in the road to exascale is the power consumption of the compute

devices. At the writing of this thesis, the state-of-the-art, ranked number 1 greenest

supercomputer was the Tsuambe system at the Tokyo Institute of Technology, running

at 4.38 GFLOPS/W. This is a homogeneous system running Intel Xeon and NVIDIA

K20x processors. If we were to scale this system to reach exascale, it will require 2 ⇥ 108

Watts to run. That is equivalent to a small nuclear plant. This is cost prohibitive

and impractical and therefore will require a new approach from the industry. The high-

e�ciency and low power architectures will emerge in the market place as needed. Even if

the industry responds and develops architectures to meet the requirements, the underlying

programming models will dictate a redesign of the software ecosystem. Until then we

make the best use of the technologies available. The simulation codes used in this research

are hybrid and employ OpenMP, MPI, and multi-threaded approach and run on large

supercomputing clusters.

The supercomputing facilities used for this research are, University of Portsmouth

(Sciama), University of Sussex, Texas Advanced Computing Center, and National Energy

Research Supercomputing Center.

1.4 Thesis Overview

The goal of this research is to develop realistic simulations of the EoR models for a

wide range of redshifts and study the simulated observational output using realistic

radio telescope models including propagations e↵ects. While we focus on the SKA-class

telescope the LOFAR configuration is used for validation. This work develops the end-

to-end pipeline to simulate the cosmological signal and models visibilities as observed

with di↵erent radio telescope configurations. The propagation e↵ects due to intervening

cosmological & astrophysical phenomenon, ionosphere, and instrumentation are added to

the path in the simulation. The end-to-end pipeline entitled, Simulation the Interferometry
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Measurements (SIM), incorporates three primary codes, namely, CubeP3M, C2-Ray, and

MeqTrees, stitching them together with additional middleware for seamless data flow. The

details of SIM are discussed in the Part II of the thesis. Various studies are conducted with

the telescope layout and results are discussed in Part III of the thesis. In addition, the

e↵ect of Lyman-Limit Systems to the EoR signal, and feasibility of extracting primordial

non-Gaussianity with the 21-cm observations is also discussed in Part III. The research

has completed the following,

(i) Build the end-to-end pipeline entitled SIM by consolidating CubeP3M, C2-Ray, and

MeqTrees with a middleware.

(ii) To test the e�cacy of the SIM and the visibility processing, defined three

applications addressing instrumentation issues of SKA-class telescopes, examine the

e↵ects of Lyman-limit systems on the reionization epoch, and build a prototype

methodology for extracting primordial non-Gaussianity parameter fNL from the 21-

cm observations.

(iii) The instrumentation e↵ects explore the e↵ects of the size of the array, quality of

foreground sky-models for calibration, thermal noise limits with integration time,

weighting schemes.

(iv) Developed a new image metric for measuring the performance geared for EoR

research called Spherical Averaged Spatial Spectrum (SASS).

((v)) Simulated three separate models of 114h�1 Mpc volume datasets to explore the

morphology of the H II regions and the e↵ects on the observable in the presence

of the Lyman-limit systems.

(vi) Developed a prototype of extracting primordial non-Gaussianity with higher order

statistics of bispectrum.



Chapter 2

Cosmology

In the past decade, cosmology has been referred to as “precision cosmology” because of

its transition from the data starved to the data driven science. The abundance of the

observational data has allowed for the constraining of parameters of the cosmological

model, called the lambda cold dark matter model (⇤CDM) to a high level of accuracy.

The ⇤CDM model builds upon the inflationary cold dark matter Big Bang framework by

incorporating the dark energy. The observational data from the satellite, high-altitude,

and ground-based experiments, covering cosmic microwave background to the large-scale

structures, have helped expand the understanding of the fundamental principles defining

the early Universe and its evolution, while increasing the accuracy of the estimation of

the model parameters. The ⇤CDM model is defined by eight parameters, namely, age of

the Universe, Hubble’s constant, baryon density, dark matter density, dark energy density,

scalar spectral index, density fluctuation at 8 h�1 Mpc , and the reionization optical depth.

The most recent results for these parameters from the Planck satellite are shown in the

Table 2.1.

This chapter gives an overview of cosmology relevant to this research. The chapter provides

a review of the ⇤CDM cosmology with basic formalism. Thereafter, the chapter explores

the inflationary stage followed by the dark ages and the epoch of reionization.

2.1 The Cosmic Prelude

The introduction of general relativity in 1916 by Albert Einstein established a solid

foundation upon which the future cosmology would be built. The theory redefined
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Parameter Symbol Planck (2013)
1-�

Age t0 [years] 13.813 ⇥ 109 ± 0.058
Hubble’s constant H0 [km s�1/Mpc] 67.4 ± 1.4
Physical baryon density⌦ bh2 0.02207 ± 0.00033
Physical dark matter density⌦ ch2 0.1196 ± 0.0031
Dark energy density⌦ ⇤ 0.686 ± 0.020
Density fluctuations at 8 �8[h�1 Mpc ] 0.834 ± 0.027
Scalar spectral index ns 0.9616 ± 0.0094
Reionization optical depth ⌧es 0.097 ± 0.038

Table 2.1: Cosmological parameters from the Planck results, [Planck Collaboration et al.,
2013].

gravity as a manifestation of the curving of space-time due to matter and/or energy.

In 1927, a Belgian priest, Georges Lemâıtre, extended the rigorous mathematical

framework of general relativity to the Universe and deduced that the Universe must be

expanding, [Lemâıtre, 1927]. Later in 1931, Lemâıtre called this as the “primeval atom”

or the “cosmic egg” from which the Universe bagan, [Lemâıtre, 1931]. The observational

evidence for the expanding Universe was independently established in 1929 by Edwin P.

Hubble, see [Hubble, 1929]. Using the redshifts of the galaxies, Hubble estimated the

linear relationship of the receding velocities of the galaxies and their distances with the

proportionality constant known after him as the Hubble’s constant. This initial e↵ort lay

the foundation of the Big Bang model of the Universe.

In 1948, George Gamow estimated that the current temperature from such a Big Bang

relic would be 50 K, which over the decade he readjusted to 6 K. The argument made

was that the expansion of the Universe would lead to the cooling of the initial radiation

to few Kelvins. Similar estimations were made by Gamow’s student Ralph Alpher and

Robert Herman. In 1965, Arno A. Penzias, and Robert W. Wilson measured an excess

antenna temperature of 3 K attributed to the Big Bang relic, and termed as the cosmic

background radiation (CMB), [Penzias and Wilson, 1965]. The radiation was thermal with

a black body spectrum. This was the first proof for the fiery beginnings of the Universe.

However, the homogeneity and the smooth nature of the CMB did not add up to the

current inhomogeneity (planets, stars, galaxies) seen in the Universe. Rashid Sunyaev,
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in 1978, estimated that the CMB must have anisotropies, due to quantum fluctuations

in the primordial plasma, of the order of 10�4 - 10�5 to lead to the formation of the

structure of the Universe, [Sunyaev, 1978]. These anisotropies were confirmed by COBE

experiment in 1990 and over the last two decades have been mapped with very high

resolution. Three primary unexplained problems in the Big Bang model continued to

challenge it. The problems were termed as the horizon problem, the flatness problem,

and the monopole problem. In the next section, these problems are discussed in detail.

In essence, however, all these problems arose from the disconnect between the initial and

the present state of the Universe. For the Universe to be at the current state, the initial

conditions had to be extremely fine-tuned. In 1980, Alan Guth [Guth, 1981], proposed

a radical theory that resolved all these problems. He proposed that the Universe went

through an exponential growth, faster than the speed of light (space-time can expand faster

than the speed of light without violating the postulates of the Special Relativity) when it

was 10�36 s old to about when it was 10�32 s. He called this period as the cosmological

inflation. The inflation smoothes out the anisotropies and flattens the space-time. The

very first evidence for inflation was reported by the BICEP-2 experiment measuring the

predicted polarization imprint in the CMB due to gravitational waves generated during the

inflationary phase, [BICEP2 Collaboration et al., 2014]. These results have been challenged

since and attributed to the Galactic dust, [Ade et al., 2015, Planck Collaboration et al.,

2014]. However, this almost century long roadmap of relentless exploration and sporadic

discoveries continues to define and hone the ⇤CDM cosmological model.

In this well understood picture, the Universe goes through an exponential growth period

and then continues to expand. At the age of 380,000 years, the Universe cools enough for

the formation of atomic hydrogen and consequential release of the otherwise coupled CMB

photons. This period is called the Recombination. The period between the Recombination

and the formation of the first stars is unknown. It is assumed that during this period the

sca↵oldings of the baryonic large-scale structures were formed by the dark matter halos.

The period up to 380 million years since the Big Bang is termed as the Dark Ages (DA)

when no stars were formed. This period was dominated by the photons emitted from the

CMB and the 21-cm neutral hydrogen hyperfine spectral line. The discovery of the most

distant galaxy (at the writing of this thesis), UDFj-39546284, at 380 million years since
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Big Bang puts the upper limit to the DA, [Bouwens et al., 2011]. Following the formation

of the first sources, the neutral hydrogen in the inter pre-galactic medium started to ionize.

This period continued for a billion years and is known as the Epoch of Reionization (EoR).

The evidence of this reionization is seen in the Thomson scattering of the CMB photons

with the free electrons in the inter-galactic medium and also in the Gunn-Peterson troughs

visible in the quasar spectra.

2.2 Friedmann Lemâıtre Robertson Walker metric

There are various advanced resources that cover the derivations, proofs, and detailed

explanations of general relativity and its applications to cosmology, see [Chow, 2008,

Liddle, 2003, Misner et al., 1973, Schutz, 2009]. This section outlines the basic ideas

relevant to this research without providing the proofs. The reader is referred to the cited

literature for detailed review.

In the formalism of general relativity, the metric is the most fundamental property and it

defines the distance between two points in a space-time of a certain geometry. In the case

of Cartesian coordinates, for example, the nearby distance between two points located at

(x1, y1) and (x2, y2) is given as,

�s2 = (x2 � x1)
2 + (y2 � y1)

2

For a uniformly expanding coordinate system the above equation could be decoupled from

the time factor of expansion and represented in what is known as comoving coordinates

given by,

�s2 = a2(t) [(x2 � x1)
2 + (y2 � y1)

2]

where, a(t) is called the scale factor that measures the expansion rate of the coordinate

system and has the units of length.

The above description is extended to describe a 4-dimensional (3 spatial and 1 time

coordinate) metric for space-time with curved geometry that allows for expansion or

contraction of space with time. In addition, the metric is homogenous and isotropic.

One such metric is the the Friedmann Lemâıtre Robertson Walker (FLRW) 4-dimensional
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metric described in time and spherical coordinate (t, r, ✓,� ) as following,

ds2 = �c2 dt2 + a2(t)


dr2

1 � kr2
+ r2(d✓2 + sin2✓ d �2)

�
(2.1)

where, a(t) is the scale factor of the Universe, k is the curvature and takes the value,

0,�1, or 1, for flat, closed, or open geometry of space-time respectively.

2.3 Einstein’s equation

Einstein’s equation describes how matter curves the space-time and is defined as,

Rµ
⌫ �

1

2
gµ⌫ R + gµ⌫ ⇤ =

8⇡G

c4
Tµ
⌫ (2.2)

The Ricci tensor Rµ
⌫ and Ricci scalar R give the curvature of space-time. The metric is

defined by gµ⌫ . The Ricci tensor, scalar, and the metric define the space-time structure.

The energy-momentum tensor Tµ
⌫ defines the matter content. The cosmological constant

⇤ is akin to the intrinsic energy density of the vacuum; positive value of which drives the

acceleration of the Universe commonly known as the Dark Energy. The constants, G and

c are Newton’s gravitational constant and the speed of light respectively.

The energy-momentum tensor (also known as the stress-tensor) Tµ
⌫ , in a simplified form,

is defined as an ideal fluid without viscosity or heat conductivity,

Tµ
⌫ = �p�µ⌫ + (p + ⇢)uµu⌫ (2.3)

where, p and ⇢ are the pressure and energy-density of the fluid respectively, and uµ is the

covariant 4-velocity of the fluid that satisfies uµuµ = 1.

Combining the FLRW metric in equation 2.1 with Einstein’s equation and the energy-

momentum tensor, yields the evolution of the scale factor and its relation with the

curvature of the space-time. Einstein’s equation 2.2 has rank-2 tensors leading to total of

10 partial di↵erential equations. There are two independent Einstein’s equations for the
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FLRW. For the time-time case it is,

✓
ȧ

a

◆2

+
kc2

a2
�

⇤

3
=

8⇡G

3
⇢ (2.4)

and for the space-space case it is,

ä

a
= �

4⇡G

3

✓
⇢ +

3p

c2

◆
+

⇤

3
(2.5)

The equations 2.4 and 2.5 are known as the Friedmann’s dynamical equations. It should

be noted here that the scale factor a(t) is related to the Hubble’s constant H(t) as,

H(t) = ȧ(t)/a(t). Assuming ⇤ = 0, the equation 2.4 in terms of H(t) can be reorganized

as,

k

a2
=

8⇡G

3c2

✓
⇢�H(t)2

3

8⇡G

◆
(2.6)

This implies that the curvature k = 0 (flat Universe) if the energy density ⇢ takes a

critical value of ⇢c = H(t)2/8⇡G. Or k > 0 (closed Universe) for ⇢ > ⇢c, and k < 0 (open

Universe) for ⇢ < ⇢c. Furthermore, the equation 2.4 is rearranged in separate density

components as,

1 = ⌦m + ⌦k + ⌦⇤ (2.7)

where,⌦ m = ⇢/⇢c is the matter density,⌦ k = �k/a2H2 is the spatial curvature density,

and⌦ ⇤ = ⇤/3H2 is the Dark Energy density.

For the measured value of the Hubble’s constant for the present time, H0 ⇠ 70 km/s/Mpc

the critical density ⇢c ⇠ 10�26 kg/m3. This is very low density and amounts to five

hydrogen atoms per cubic meter.

2.4 Problems With The Big Bang Model

In the previous section it was shown that the general relativity framework provided great

insights into the interdependence of the energy-matter and space-time. It was shown that

the fate of the Universe - whether it will continue to expand (flat, open), or eventually

collapse (closed) - is closely related to the energy-matter density. However, a close look

reveals that the very equations highlight some of the challenges in the model as discussed

below.
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2.4.1 The Flatness Problem

As shown above, the geometry of the Universe takes di↵erent forms for the di↵erent values

of the density⌦ m(t) = ⇢/⇢c parameter. The Universe starts out with a certain total density

(matter and radiation) which deviates considerable from its original value as the Universe

expands. The matter density (due to non-relativistic and pressure less matter) reduces by

a factor of 1/a3, while the density of the radiation diminishes as 1/a4.

Rearranging the equation 2.7 yields,

⌦m + ⌦⇤ � 1 = |⌦Tot(t) � 1| =
|k|

a2 H2
(2.8)

For a flat Universe, k = 0, the density parameter⌦ Tot has to be 1 or |⌦Tot(t) - 1| =

0. Various observations, including recent Planck’s observations measure |⌦Tot- 1| = 0.02

for the present epoch. In other words the Universe has a very flat (Eucledian) geometry.

Herein lies the problem. If⌦ Tot is almost one today and we know that the density rapidly

evolves as the Universe expands then⌦ Tot must have started out extremely close to the

present value to have maintained the current value despite the expansion. It may be

estimated as to how close⌦ Tot has to be to equal the value of one at the early stages of

the Universe to reach the value of 0.02 in the present day. Following are the values of⌦ Tot

to reach the present day (t0 ⇠ 4 ⇥ 1017 sec) value of 0.02 for di↵erent timelines [Liddle,

2003],

Decoupling (t ⇠ 1013 sec): |⌦Tot(t) - 1|  10�5

Matter-radiation equality (t ⇠ 1012 sec): |⌦Tot(t) - 1|  10�6

Nucleosynthesis (t ⇠ 101 sec): |⌦Tot(t) - 1|  10�18

Electro-weak symmetry breaking (t ⇠ 10�12 sec): |⌦Tot(t) - 1|  10�30

These values indicate extremely high level of precision and fine-tuning required for the

initial density value; quite antithetical to the natural phenomenon. This problem is termed

as the flatness problem
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2.4.2 The Horizon Problem

Closely related to the flatness problem is the horizon problem. First pointed out by W.

Rindler in 1956, the problem is associated with the isotropy of the cosmic background

radiation. The initial observations of the CMB show that the deviation from the isotropy

is 1 part in 10,000 indicating that during the time of decoupling, the release of CMB,

the background radiation was significantly uniform. Such uniformity implies thermal

equilibrium which is indicative of causal contact. In other words, for the observed CMB

isotropy to be possible, all the regions of the Universe should have been in thermal

equilibrium (causal contact) during the time of the release of CMB radiation. For this

to happen, the physical distance, DCMB, between the two opposite regions should have

been at least equal to the horizon distance DH. The horizon distance is the distance the

information travels between the opposite regions without violating the speed of light. In

other words, during the time of the CMB emission, te, the ratio DCMB(te)/DH(te) should

be  1.

The ratio of the separation distance and the horizon distance is written as, [Brawer, 1995],

DCMB(te)

DH(te)
=

2
R t

e

t0
c dt
a(t)R t

e

0
c dt
a(t)

= 2

 ✓
to
te

◆1/3

� 1

!
(2.9)

In terms of redshift the above is written as,

DCMB(te)

DH(te)
= 2(

p
(1 + z) � 1) (2.10)

For the redshift when the CMB was released, z = 1500 the ratio is ⇠ 75. The physical

size was much larger for the signal to have travelled to create the visible uniformity. This

is known as the horizon problem.

2.4.3 The Magnetic Monopole Problem

While the hot Big Bang model is highly e�cient in explaining the nucleosynthesis and

abundances of the light elements, it fails to explain the various products that appear

within the same framework at the stage of phase transition during spontaneous symmetry

breaking [Albrecht and Steinhardt, 1982]. The theory predicts the creation of magnetic

monopoles, domain wall, cosmic strings, textures etc. In fact, the superheavy monopoles,
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should they exist, would constitute a major part of the energy density. However, none of

these objects or topological defects have been observed. This is termed as the magnetic

monopole problem.

2.5 Inflation

In 1981, in his attempt to solve the problem of the missing superheavy magnetic

monopoles, Alan Guth was led to the theory of cosmological inflation. The inflationary

hypothesis proposes that at the very early stages, from 10�36 s to 10�32 s, the Universe

goes through exponential expansion. This expansion is superluminal (faster than the speed

of light) and does not violate the light speed law as it is the space-time that expands.

The rapid and massive expansion explains the big bang problems e↵ectively. The initial

curvature is flattened out due to expansion therefore negating the need for any fine-tuning

for⌦ Tot. The sudden expansion also explains that the regions in causal contact were

stretched farther apart creating the observed isotropy. The rapid expansion also dilutes

the magnetic monopoles and thereby explains the absence of any observations. In addition,

inflation also generates small density perturbations that over time lead to clumping of

matter into large-scale structures of galaxies. The initial theory of inflation by Alan Guth

(Guth [1981]) was further developed by Andre Linde (Linde [1982]). One of the predictions

from Linde was that the inflation would generate gravitational waves that would impinge

a signal in the polarization of the CMB.

Following is the brief development of the inflationary theory as taught by Leonard Susskind

in the Stanford University Cosmology lecture series available online and Cosmology notes

by A. Lewis [2012] of the University of Sussex.

The stress-energy tensor, see Equation 2.3, for a scalar field � and potential V (�), in

its complete from, is written as,

Tµ
⌫ = gµ⇢@⇢�@⌫�� �µ⌫

✓
1

2
@⇢�@

⇢�� V

◆
(2.11)
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For an isotropic and homogeneous Universe, the density, ⇢, and pressure, P , are estimated

from the stress-energy equations as,

T 0
0 = ⇢ (2.12)

T i
j = �P�ij , where, i, j = 1, ...3. (2.13)

The stress-energy tensor encapsulates the matter in the Universe including radiation. The

tensor in its matrix form is written as,

T µ
⌫ =

0

BBBBBBB@

⇢ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

1

CCCCCCCA

(2.14)

We start out with the assumption that an FRW Universe, filled with a uniform scalar field

�, has the energy density per unit volume ⇢ defined as,

⇢ =
�̇2

2
+ V (�) (2.15)

where V (�) is the field potential energy and �̇2/2 is the field kinetic energy. The kinetic

energy is the component associated with time. To estimate the equations of motion for

the field of given energy density we apply the Euler-Lagrangian equation. The Lagrangian

is defined as,

L =
�̇2

2
� V (�) (2.16)

and the energy density and pressure from the stress-tensor equation 2.11 are determined

as,

⇢� =
1

2
�̇2 + V (�) (2.17)

P� =
1

2
�̇2

� V (�) (2.18)
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For the time-invariant scalar field, the above relation is similar to the equations of dynamics

for an ideal fluid with negative pressure,

⇢ = �P (2.19)

There are many potentials that could be used to define the scalar field. A simplest approach

is used by defining a damped harmonic oscillator potential. This, in the literature, is widely

referred to as a ball slowly rolling down the hill with friction. Inflation occurs when the

field rolls extremely slowly. This potential is called the slow-roll inflation potential. The

Figure 2.1 shows the schematic of the slow-roll inflationary model. During the time of the

slow-roll for the field, the inflation occurs. The axes are exaggerated and are not to scale.

Note that at 10�34 s the radius of the Universe is ⇠ 30 cm.

Figure 2.1: The schematic of the slow-roll inflation potential.

Recall that the Euler-Lagrangian equation is defined as,

@L

@✓
=

d

dt

@L

@✓̇

This implies that the Lagrangian for the field � after di↵erentiation is given as,

�̈ = �

@V (�)

@�
= F (�) (2.20)

where F (�) is the force.

Now the total energy in the volume is E times the volume. For an expanding volume,

like in the case of the Universe, the volume is defined by the scale factor a(t)3. Thus, the
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energy and the Lagrangian are defined as,

⇢ =

 
�̇2

2
+ V (�)

!
a(t)3 (2.21)

L =

 
�̇2

2
� V (�)

!
a(t)3 (2.22)

The equations (2.21) and (2.22) define the mechanics of the scalar field �. In terms of the

scalar field the Lagrangian can be written as,

d

dt
a(t)3�̇ = �a(t)3

@V (�)

@�

=) a(t)3 �̈ + 3a(t)2 ˙a(t) �̇ = �a(t)3
@V (�)

@�

=) �̈ + 3�̇
ȧ(t)

a(t)
= �

@V (�)

@�

(2.23)

where, ȧ(t)/a(t) is H, the Hubble’s constant. Using the equation (2.20) the above equation

is then written as,

�̈ + 3�̇ H(t) = F (�) (2.24)

This equation is similar to the viscosity equation where the term 3�̇ H(t) is equivalent

to the viscous force and is independent of the velocity. We may recall that the viscosity

forces are zero on stationary objects and increase with the velocity. As we can see from

the above relation, as the viscosity term 3�̇ H(t) increases and becomes equal to the force

F (�), the acceleration term �̈ becomes zero. In other words, there is no more acceleration.

This implies that the terminal velocity is defined as,

�̇ =
F (�)

3H(t)
(2.25)

This implies that the Hubble’s constant term acts as a viscous force in the dynamics of

the expanding Universe.

Now, let us recall the Friedmann’s equation,

H2 =

✓
ȧ

a

◆2

=
8⇡G

3
⇢ (2.26)
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where, G is Newton’s gravitational constant and ⇢ is the energy density. Using the

equation (2.21) we can rewrite the Friedmann’s equation as,

✓
ȧ

a

◆2

=
8⇡G

3

 
�̇2

2
+ V (�)

!
(2.27)

Assuming a slowly decreasing potential with a very high potential energy, see figure 2.1,

this is an assumption based on the premise that the viscous drag on the field is designed

to keep the value of the field constant - the �̇ term becomes very small (an analogous

scenario is an object falling through an extremely dense liquid) - the Friedmann’s equation

is written as, ✓
ȧ

a

◆2

=
8⇡G

3
V (�) (2.28)

Since V (�) is very slowly evolving, H becomes relatively constant. In other words,

ȧ

a
= H

da

dt
= Ha

a = eHt

(2.29)

That is, t = H�1 is the time it takes for the Universe to expand e-folds. For the slow-roll

potential it is estimated that the total number of e-folds are at least of the order of 60.

For in depth estimation see, Peacock [1999].

It is important to note that while inflation explains the flatness, horizon, and magnetic

monopole problems, it raises issues that threaten to render it ine↵ective. For example, the

unique initial conditions that the inflation requires make it a far more unlikely scenario

to occur. For detailed expert discussions see, Penrose [1989], Steinhardt et al. [2008],

and Gibbons and Turok [2008]. In addition, there are alternatives to inflationary theory

proposed such as by Linde [2003], Pop lawski [2010], and references therein.

2.6 Primordial Non-Gaussianity

As seen in the previous section, inflation adds to the hot Big Bang model by explaining the

aforementioned problems. Especially, the large-scale structure formation that originated

from the growth of the quantum fluctuations. The inflationary theory predicts that the
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density perturbations are primordial, scale invariant, and Gaussian. The Gaussian nature

of the perturbations is attributed to the single-field slow-roll inflation, as derived in the

previous section. The Gaussian statistics is studied using the power spectrum of the

CMB anisotropies, the primary source of data to study the physical processes in the early

Universe. A wide range of inflationary models explain the same processes. The presence

of any primordial non-Gaussianity will eliminate a large number of inflationary models.

As the current observations indicate, the initial fluctuations were very close to Gaussian.

Any non-Gaussianity will appear in the higher order statistics of the bispectrum and

trispectrum that represent the skewness and kurtosis of the primordial perturbations.

The three statistical measures are defined as the Fourier transforms of the correlation

functions. The Fourier transform of the two-point correlation function yields the power

spectra, while the transform of the three- and four-point correlators provide the bi-and

trispectra respectively.

For any field, for example a field of density fluctuations, �(x) = �⇢(x)/⇢̄, the Fourier

transform as a function of the wave-number k is given as,

�(k) =

Z
�(x) e�ik·x d3x (2.30)

The power spectrum, P (k), is the square of the Fourier transform,

h�(k1)�(k2)i = (2⇡)3�D(k1 � k2)P (k) (2.31)

where, �D is the Dirac delta function. The power spectrum is also related to the two-point

correlation function as,

⇠(x) = h�(x1)�(x2)i =

Z
d3k

(2⇡)3
eik·xP (k) (2.32)
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where, x = x2 � x1. Extending the definition of the power spectrum in 2.31 for the bi-

and trispectrum we get the following relations,

Power Spectrum h��(k1)��(k2)i = (2⇡)3�D(k1 + k2)P��(k)

Bispectrum h�(k1)�(k2)�(k3)i = (2⇡)3�D(k1 + k2 + k3)B�(k1, k2, k3)

Trispectrum h�(k1)�(k2)�(k3)�(k4)i = (2⇡)3�D(k1 + k2 + k3 + k4)T�(k1,k2,k3,k4)

(2.33)

Qualitatively, the power spectrum is the measure of the fluctuations (variance) of the

field at di↵erent scales (spatial frequencies) per dln(k). The power spectrum provides

the amplitudes at di↵erent Fourier components (spatial frequencies). However, there is

no information of the phase which appears due to nonlinear processes. Higher order

statistical methods such as the bispectrum easily capture that. The bispectrum measures

the underlying nonlinearity in the form of the statistical dependence (coherent phase)

between the three wave-numbers, [MacDonald, 1989].

In the homogeneous and isotropic model of the Universe, the wave-vectors representing the

non-Gaussian component of the nonlinearity must satisfy the condition of the sum to be

zero [Komatsu et al., 2009, Lewis, 2011]. This is evident in the definition of the bispectrum

in the Equation 2.33. The delta-function ensures non-zero values for the bispectrum only

when the sum of the wave-vectors is zero. This results in the vectors closing the loop and

in flat space forming a triangular relationship. A pedagogical description of the triangles

and their physical interpretation is give in Lewis [2011]. We describe the basic concept in

the following paragraphs.

The three wave-vectors combine in three configurations, namely, equilateral (k1 = k2 =

k3), flattened (k1 = k2 = k3/2), and squeezed (k2, k3 � k1), see the Figure 2.2. Note

that in all the three configurations for non-Gaussianity, the vector sum total is equal

to zero. The sign of the bispectrum are indicative of the small regions of overdensity,

if positive (b > 0), and underdensity, if negative (b < 0). In the physical world, the

nonlinear density field of the large-scale structure will have a large component of the
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Figure 2.2: The wave-vectors for di↵erent shapes, (a) Equilateral, (b) Flattened, and (c)
Squeezed.

equilateral configuration in its bispectrum. In addition, the nonlinear processes that cause

the equilateral components imply that all the three components, being almost equal, must

have left the horizon during same time. Similarly, a positive squeezed bispectrum implies

that for the overdense large-scale structure there exists more corresponding small-scale

structures and for underdense large-scale structure less small-scale structure. In 3D space,

the three wave-vectors represent planes and define the bispectrum.

For the slow-roll inflation, the gravitational potential in real-space is Taylor expanded

as [Komatsu et al., 2009],

�(x) = �G(x) + fNL(�2
G(x) � h�G(x)i2) + ... (2.34)

where, the parameter fNL is the measure of the non-Gaussianity in the bispectrum and

h�G(x)i =

Z
d3k

(2⇡)3
P�(k)

and,

�NG(x) = �2
G(x) � h�G(x)i2

The Equation 2.34 written in Fourier space is given as,

�(k) = �G(k) + fNL �NG(k) + ... (2.35)

where,

�NG(k) =

Z
d3p

(2⇡)3
�G(k + p) �?

G(p) � (2⇡)3�(k)h�G(x)i2 (2.36)
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Now, the primordial bispectrum is estimated as,

h�G(k1)�G(k2)�NG(k3)i =

Z
d3k

(2⇡)3
h�G(k1)�G(k2)ih�G(k3 + p)�?

G(p)i (2.37)

+

Z
d3k

(2⇡)3
h�G(k1)�

?
G(p)ih�G(k2)�G(k3 + p)i

+

Z
d3k

(2⇡)3
h�G(k1)�G(k3 + p)ih�G(k2)�

?
G(p)i

� (2⇡)3�(k3)h�G(k1)�G(k2)ih�
2
G(x)i

The above equation is rearranged as the local bispectrum and yields,

B�(k1, k2, k3) = 2fNL(P�(k1)P�(k2) + P�(k1)P�(k3) + P�(k2)P�(k3)) (2.38)

where, a more general definition if fNL is given as,

fNL =
B�(k, k, k)

6P�(k)2
(2.39)

Estimating fNL in turn is the amplitude of the bispectrum.

2.6.1 Estimating the bispectrum

As mentioned above, the bispectrum is the three-point correlator of the underlying field

and measures the higher order statistics of skewness. There are various estimators that

may be used to estimate the bispectrum. In this section, we describe the method developed

by Regan [2011] to estimate the bispectrum. This method is used in this thesis and

described below.

The bispectrum, B�, of a given field � (this field could ionization field or the brightness

temperature), is given as following,

h�(k1)�(k2)�(k3)i = (2⇡)3�D(k1 + k2 + k3)B�(k1, k2, k3) (2.40)

where, �D is the Dirac delta function and k1,k2, and k3 are the Fourier modes (wave-

vectors) and k1, k2, k3 are their amplitudes. The hi indicate the averaging over many

realizations but for this case we only have one simulation as is the case with the real world

measurements. This manifests as cosmic variance.
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The bispectrum is represented as a sum of a basis given as,

w(k1, k2, k3)B(k1, k2, k3) =
X

n

↵nQn(k1, k2, k3) (2.41)

where, w(k1, k2, k3) is the weight, Qn are the basis spectra and ↵n are the associated

coe�cients. Etimating the values of the coe�cients then yields the shape and the

amplitude of the bispectrum. We define, the bisepctrum, B̂, as the original bispectrum of

the Universe, while, B is the theoretical value, averaged over many instantiations. In the

following study, we only have one simulation set and therefore are variance limited. The

approach is to find the overlap of the estimated bispectrum with the one we have injected

in the simulation (fNL = 50).

We define a measure of the overlap of two arbitrary functions f and g, similar to the

Fisher matrix measure for CMB defined by Regan et al. [2013], as following, (note that

the variance of the bispectrum is given by P (k1)P (k2)P (k3), so the following may be

considered an inverse variance measure)

hf |gi ⌘

Z
d3k1 d3k2 d3k3

(2⇡)9
(2⇡)3 �

⇣X
ki

⌘ f(k1,k2,k3) g(k1,k2,k3)

P (k1) P (k2) P (k3)
(2.42)

=

Z
d3k1 d3k2 d3k3

(2⇡)9
d3x ei

P
j

k

j

·x f(k1,k2,k3) g(k1,k2,k3)

P (k1) P (k2) P (k3)

Now suppose, f , and g do not have angular dependence, that is, f = f(k1, k2, k3), then

this implies,

hf |gi =

Z
(xk1k2k3)2 d3k1 d3k2 d3k3

(2⇡)9

Z ⇣
dx̂ dk̂1 dk̂2 dk̂3 ei

P
j

k

j

·x
⌘

⇥

f(k1, k2, k3) g(k1, k2, k3)

P (k1) P (k2) P (k3)
(2.43)

Recall, that the plane wave is written as the sum of spherical waves expressed in Legendre

polynomials as,

eik·x =
X

l

il(2l + 1)jl(kx)Pl(k̂ · x̂) (2.44)
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or, in spherical coordinates the above equation is written as,

eik·x = 4⇡
X

lm

iljl(kx)Ylm(k̂)Y ?
lm(x̂) (2.45)

where, Ylm are the spherical harmonics in the multipole space li and jl are the Bessel

functions.

=) ei
P

j

k

j

·x = (4⇡)3
Y

j

X

l
j

m
j

ilj jl
j

(kjx)Ylm(k̂)Y ?
lm(x̂) (2.46)

Thus, the middle term in the Equation 2.43 is rewritten as,

Z ⇣
dx̂ dk̂1 dk̂2 dk̂3 ei

P
j

k

j

·x
⌘

= (4⇡)3i
P

j

l
j jl1(k1x) jl2(k2x) jl3(k3x)

Z
dk̂1 dk̂2 dk̂3 Yl1m1(k̂1) Yl2m2(k̂2) Yl3m3(k̂3)

Z
dx̂ Y ?

l1m1
(x̂) Y ?

l2m2
(x̂) Y ?

l3m3
(x̂) (2.47)

Now substituting, Z
dk̂1 Yl1m1(k̂1) =

p

4⇡�l10�m10

and, Z
dx̂ Y ?

00(x̂) Y ?
00(x̂) Y ?

00(x̂) =
4⇡

(4⇡)3

=)

Z ⇣
dx̂ dk̂1 dk̂2 dk̂3 ei

P
j

k

j

·x
⌘

= (4⇡)4j0(k1x) j0(k2x) j0(k3x) (2.48)

Furthermore, Z
x2 j0(k1x) j0(k2x) j0(k3x) dx =

⇡

4k1k2k3
(2.49)

=) hf |gi =
(4⇡)4⇡

4(2⇡)9

Z
dk1 dk2 dk3

k1k2k3
P (k1)P (k2)P (k3)

f(k1, k2, k3)g(k1, k2, k3) (2.50)

=
1

⇡(2⇡)3

Z
dk1 dk2 dk3 [wf ](k1, k2, k3)[wg](k1, k2, k3)

where, the weight,

w =

s
k1k2k3

P (k1)P (k2)P (k3)
,
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and the bispectrum is expanded in a basis, see Equation 2.41, as wB =
P

n ↵nQn.

=) hf |gi =
X

nm

↵n↵m

DQn

w
,
Qm

w

E
(2.51)

where,

DQn

w
,
Qm

w

E
=

1

⇡(2⇡)3

Z
dk1 dk2 dk3 Qn(k1, k2, k3)Qm(k1, k2, k3)

⌘ �nm

=) hf |gi =
X

nm

↵n↵m�nm (2.52)

Now let us substitute bispectrum for the functions f and g as,

f = B̂ =
�
k1�k2�k3

V
,

g = B =

P
n ↵nQn

w

=) hB̂|Bi =

Z
d3x

d3k1 d3k2 d3k3

(2⇡)9
ei

P
j

k

j

·x

P (k1)P (k2)P (k3)

⇥

�
k1�k2�k3

V

P
n ↵nQn(k1, k2, k3)

w(k1, k2, k3)
(2.53)

Substituting,

P (k1)P (k2)P (k3) w =
p
k1P (k1)k2P (k2)k3P (k3)

in the Equation 2.53 above gives,

hB̂|Bi =

Z
d3x

d3k1 d3k2 d3k3

(2⇡)9
ei

P
j

k

j

·x
p
k1P (k1)k2P (k2)k3P (k3)

�
k1�k2�k3

V

X

n

↵nQn (2.54)

where, V is the simulation volume and the quantity Qn = qn(j1)qn(j2)qn(j3), thus,

hB̂|Bi =

P
n ↵n

V

Z
d3xNn1(x)Nn2(x)Nn3(x) (2.55)

where,

Nn1(x) =

Z
d3k1

(2⇡)3
�
k1qn1(k1)p
k1P (k1)

eik1·x
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or further simplified,

hB̂|Bi =
X

n

↵n�n (2.56)

where,

�n =
1

V

Z
d3xNn1(x)Nn2(x)Nn3(x)

Note that for B̂ ⌘ B, and from equation 2.52, we get,

�n =
X

m

↵m�nm (2.57)

=) ↵n =
X

m

��1
nm �m (2.58)

Recall from Equation 2.41, ↵n are the coe�cients for the polynomials that construct the

bispectrum.

Now, for the amplitude of the bispectrum we will define the measure for the Fisher matrix

as, recall Equation 2.39,

F =
hB|Bi

6
(2.59)

Assuming that the bispectrum is linear in fNL, the error on the bispectrum amplitude fNL

is given as,

�fNL =
1

p

F
(2.60)

The signal for the bispectrum is detectable in the limit that F � 1.

To recap, ↵n gives us the bispectrum and� fNL gives us the error in the estimated

amplitude.

In this approach, we are exploring the basic premise that over time the primordial non-

Gaussianity is dissipated and subsumed by additional nonlinear processes. Therefore,

in searching for the primordial non-Gaussianity the CMB is the earliest epoch that will

preserve any underlying nonlinearities. The next best epoch for searching non-Gaussianity

would be the 21-cm era, especially more during the Dark Ages than the EoR. More

importantly, the evolution of the nonlinearities will be more evident in 21-cm data, due

to tomography, as compared to the CMB data. We examine the concept of extracting the
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bispectrum information from the 21-cm data using the upcoming radio telescopes.



Chapter 3

The EoR and the Dark Ages

In this chapter we will briefly review the physics of the redshifted 21-cm hyperfine hydrogen

line and its detectability. We will review the observational evidence for the reionization.

We will also discuss the presence of the high-density absorbers, specifically, the Lyman-

limit Systems (LLS). In Part III of the thesis, we examine in detail the e↵ects of these

absorbers on the process of reionization.

3.1 The 21-cm Physics

The redshifted 21-cm hyperfine hydrogen line has been successfully used to probe the

gas dynamics as captured by the neutral hydrogen in the Milky Way and other galaxies.

The hydrogen line is observed both in emission and absorption. For high-redshift and

cosmological studies the redshifted 21-cm is observed against the bright sources (quasars)

in absorption, highlighting the neutral hydrogen densities along the line of sight.

The 21-cm transition is the change of hyperfine energy states at the ground level, denoted

by the quantum number n = 1. The total spin angular momentum of the hydrogen atom

is the sum of the spins of the electron and the proton, F = S + I. Since the values of S

and I are ±1/2, in the units of ~, the value of F is 0 or 1. This manifests as the splitting

of the ground level. In the presence of a magnetic field, the F = 1 state is further split

into three levels and is called the triplet state, while F = 0 is termed the singlet state.

The energy gap between the triplet and singlet is 5.874 µeV. This corresponds to the h⌫10

transition of a 21.106 cm (1420.405 MHz) photon.
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The observability of the redshifted 21-cm is defined as the di↵erential brightness

temperature with respect to the background source with brightness temperature TB and

defined as, [Field, 1959],

�Tb = TS(1 � e�⌧
⌫ ) + TB e�⌧

⌫

� TB (3.1)

�Tb is the di↵erential brightness temperature as sensed by the antenna, the first term on

the right hand side of the equation is the self-absorbed cloud radiation, the second term is

the diminished radiation from the background source, and the last term is the true source

brightness. The optical depth along the line of sight is ⌧(⌫) =
R

ds ↵⌫(s), where ↵⌫ is

the absorption coe�cient. TS is the spin temperature and is defined as the ratio of the

populations of the triplet and singlet states of an ensemble of neutral hydrogen atoms.

Assuming thermodynamical equilibrium, according to Boltzmann’s distribution, the spin

temperature is defined as,

g0n1

g1n0
= exp

✓
�h⌫10
kTS

◆
⌘ exp

✓
�T?

TS

◆
(3.2)

where, the statistical degeneracy factors g1/g0 = 3, and for 21-cm, T? ⌘ hc/k�21-cm =

0.068 K.

The spin temperature of the neutral hydrogen is determined by the absorption and

emission of the 21-cm photons with the temperature TCMB. In the early Universe these

photons are from the CMB continuum. The spin temperature also depends on the

collisions of hydrogen atoms and other electrons leading to the kinetic temperature TK. In

addition, the temperature due to the scattering of Ly↵ photons, TL, also a↵ects the spin

temperature, [Field, 1959, Pritchard and Loeb, 2012]. All these e↵ects collectively define

the spin temperature as the weighted mean,

TS =
TCMB + yCTK + yLTL

1 + yC + yL
(3.3)

where, yC and yL are the normalized probabilities of the collisions and Ly↵ scattering

respectively.



CHAPTER 3. THE EOR AND THE DARK AGES 41

Now we can rewrite the Equation 3.1 as the di↵erential brightness temperature of the

redshifted 21-cm with respect to the CMB and the spin temperature TS of the neutral

hydrogen with density ⇢HI as,

�Tb =
TS � TCMB

1 + z
(1 � e�⌧ )

⇡

TS � TCMB

1 + z

3�3
0A10T?nHI(z)

32⇡TSH(z)

= 28.5

✓
1 + z

10

◆1/2

(1 + �)

✓
⌦b

0.042

h

0.73

◆✓
0.24

⌦m

◆1/2

[mK] (3.4)

where, the quantity 1 + � is the mean number density of the neutral hydrogen. During

reionization, the temperature of the hydrogen is same as the collisional temperature and

TS ⇡ TK � TCMB. As a result the ratio (TS � TCMB)/TS is cancelled and the di↵erential

brightness is only the function of the density and the redshift, as shown. In addition, this

formalism could be interpreted to be true in real space. For redshift space a multiplicative

factor of, 1 � [(1 + z)/H(z)][@vk] is applied, where, @vk is the velocity gradient along the

line of sight.

Figure 3.1: The exaggerated schematic of the relation of the spin temperature (TS) to the
CMB (TCMB) and collisional (TK) temperatures. [Loeb, 2006]

From the second line in the Equation 3.4, it is evident that the brightness temperature

depends on the spin temeprature. In the case, TS � TCMB, the brightness temperature

saturates above the CMB. While for the scenario, TS ⌧ TCMB, the temperature becomes

negative. As we saw above, there are three competing processes defining the spin

temperature. These processes evolve in time and consequently a↵ect the spin temperature.

A simple schematic in the Figure 3.1 shows the e↵ects of the CMB and collisional
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(kinematic) temperatures on the spin temperature as a function of redshift. This is an

approximation only to illustrate the trends. The CMB temperature is / (1 + z). The

collisional temperature of the gas tracks the CMB temperature upto z ⇠ 200, after which

the collisional temperature cools as TK / (1 + z)2. With the formation of the first X-ray

sources around z ⇠ 20 � 30 the collisional temperature start to rise well above the CMB.

These two processes drive the spin temperature shown in red in the figure. In the early

times the spin temperature traces the neutral hydrogen temperature through radiative

coupling. The radiative coupling is diminished but picks up again at low redshifts with

the increase in star formation. The coupling is facilitated by the newly generated Ly↵

photons. This process a↵ects the spin temperature and is called the Wouthuysen-Field

e↵ect and is discussed in the next section [Field, 1958, Wouthuysen, 1952].

3.1.1 Wouthuysen-Field E↵ect

With the formation of new Ly↵ photons sources, the neutral hydrogen absorbs and emits

the 10.2 eV Ly↵ photon and returns to either of the hyperfine spin states. This shu✏ing

results in the coupling of the neutral hydrogen with the Ly↵ radiation and the process is

named after Wouthuysen [1952] and Field [1958], the scientists who proposed it.

(As an aside, as per my Dutch friends, Wouthuysen is pronounced as - Vowt · hi · son.)

The Figure 3.2 illustrates the Wouthuysen-Field e↵ect. The principal quantum states

n = 1, and 2 and their respective orbitals, S and P, are shown. Also shown are the

hyperfine splits of the orbitals. The notation used to denote the energy levels in nFLJ ,

where L, J , and F are orbital or the azimuthal quantum number, angular momentum

of the electron, and total angular momentum of the atom. Now assuming that a neutral

hydrogen atom with all these levels absorbs a Ly↵ (or a Lyn) photon. This will result in

the atom to excite to any of the allowed 2P hyperfine states. As per the electric dipole

selection rules,� F = 0, 1 and F��$ 0. Consequently, the spontaneous emission of the

Ly↵ photon will return the atom to either of the hyperfine ground states. The spin-flip

occurs if the atom returns to the hyperfine triplet state. In other words, scattering a Ly↵

photon generates spin-flip in the population of the hydrogen atom thus coupling the two.

The scattering rate depends on a variety of parameters and therefore a↵ects the coupling

[Furlanetto et al., 2006, Pritchard and Loeb, 2012] resulting in 21-cm signal variation at

⇠ 10% level.
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Figure 3.2: The schematic depicting the Wouthuysen-Field e↵ect. The figure shows the
hyperfine splittings of the 1S and 2P levels of the hydrogen atom. The black solid line
transitions are permitted and allow spin flips resulting in the 21-cm radiation. The black
dashed transitions are permitted but do not contribute to spin flips. The red transitions
are not permitted.

The e↵ects of the competing processes driving the evolution of the spin temperature and

consequently the brightness temperature (the observable) are depicted in the Figure 3.3

from Pritchard and Loeb [2012]. For a detailed and pedagogical review of the thermal

history refer to Furlanetto et al. [2006], Loeb [2006], Pritchard and Loeb [2012]. In

summary, the combination of the Figures 3.1 and 3.3 highlights the epochs in the evolution

of the 21-cm brightness temperature. Immediately after the recombination, the residual

free electron population facilitates the thermal coupling of the neutral hydrogen with

the CMB via Compton scattering. This sets the TS = TCMB. Consequently, ¯�Tb = 0,

therefore, no detectable 21-cm signal. However, as the adiabatic cooling of the gas begins

around z ⇠ 200, the collisional temperature starts to fall as TK / (1 + z)2. This leads to

TS < TCMB. This condition results in ¯�Tb < 0. That is, the first 21-cm absorption signal

emerges. This process continues until around z = 40 when the gas density decreases. Once

again the TS = TCMB and the 21-cm brightness temperature is no longer visible. It is only

when the first stars are formed that the Ly↵ and X-ray photons are injected into the gas,

that the spin temperature TS starts to climb. As the ionization of the neutral hydrogen
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Figure 3.3: “Cartoon of the di↵erent phases of the 21 cm signal. The signal transitions
from an early phase of collisional coupling to a later phase of Ly↵ coupling through a short
period where there is little signal. Fluctuations after this phase are dominated successively
by spatial variation in the Ly↵ , X-ray, and ionizing UV radiation backgrounds. After
reionization is complete there is a residual signal from neutral hydrogen in galaxies.”
Figure and caption from Pritchard and Loeb [2012]

initiates, TS ⇠ TK � TCMB, the brightness temperature fluctuations are manifested as a

combination of the fluctuation in the ionization, gas density, and temperature. Eventually,

the continued heating of the gas renders the temperature fluctuations irrelevant and the

dependence on the spin temperature is ignored. This is when the 21-cm signal is dominated

by the ionization fluctuations. At the end of the reionization the left over neutral hydrogen

is observed in 21-cm in isolated gravity potentials such as galaxies.

3.2 Observational Evidence for the Epoch of Reionization

The observational evidence for the epoch of reionization appears in variety of di↵erent

studies. However, none the observations provide strong constraints on the evolution of the

epoch of reionization. Below we highlight the observations that lend to the evidence of

reionization.

3.2.1 Gunn-Peterson Troughs

Gunn and Peterson [1965] predicted that the intervening neutral hydrogen between a

quasar and an observer should suppress the emission lines at higher frequencies than that

of the Ly-↵ line (in the rest frame) of the quasar. In the expanding Universe model,

the UV photons are absorbed by the neutral hydrogen resonance line at 1215.67Å. This

suppression traces the intervening neutral hydrogen and appears as a trough in the quasar

spectrum. In 2001 the first evidence of the trough was observed in the spectrum of a

quasar at z = 6.28 [Becker et al., 2001]. This put an upper limit on the neutral hydrogen
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ionization fraction at > 0.001. This discovery when combined with the absence of Gunn-

Peterson trough in the spectra of quasars at z < 6 thus weakly constraints the ending of

the reionization.

3.2.2 Thomson Scattering of CMB

Thomson scattering of the CMB is another tracer of the reionization and is discussed in

detail in, for example, [Bond and Efstathiou, 1984, Peebles and Yu, 1970, Sunyaev and

Zeldovich, 1972]. The brief review as discussed here is that the CMB photons provide

information relevant to the history of reionization. The CMB photons are scattered by

the intervening reionized hydrogen (free electrons) resulting in the suppression of the

temperature fluctuations proportional to 1�e�⌧ , [Zaldarriaga, 1997], where ⌧ is the optical

depth. This scattering signature is imprinted as secondary anisotropies in the CMB power

spectrum. The observed value of ⌧ in the Planck data [Planck Collaboration et al., 2013]

is ⌧es = 0.089 ± 0.032 (68%; Planck + lensing). This value of the optical depth favors the

evolutionary reionization over the spontaneous reionization model.

Another probe using the CMB is the polarization spectrum of the CMB. The primordial

fluctuations set the largest quadrupole anisotropies to an angular size of 1�, [Sugiyama,

1995]. Any anisotropies introduced later in the cosmological evolution, say due to Thomson

scattering during reionization, are observed as larger than the primordial anisotropy.

3.2.3 Other Observational Evidence an Probes

The other observational probes that may provide evidence for reionization and put

constraints include, directly studying the high redshift IGM. These observations include,

the thermal evolution of the IGM, see [Bolton et al., 2010] and references therein, the

estimation of the ionizing photons per baryon, see [Bolton and Haehnelt, 2007]. In

addition, the kinetic Sunyaev-Zeldovich e↵ect, see [Park et al., 2013], on the CMB due

to reionization is also a probe to study the history of reionization. Other probes include

Lyman-↵ emitters, high redshift QSOs/GRBs, and metal abundance at high redshift as

discussed in Zaroubi [2013].
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3.3 The Lyman-Limit Systems

The brightness temperature of the neutral hydrogen is a↵ected by other features. This

section explores the observational evidence of the H I absorbers called the Lyman-limit

systems (LLS) and their e↵ect on the ionization and thereby the brightness temperature.

The observational models are used to develop numerical simulations and study the e↵ects

on the observables.

3.3.1 Introduction

After the decoupling of the CMB radiation from the ordinary matter at the surface of last

scattering (at redshift z ⇠ 1100), the pre-galactic medium (PGM), primarily composed of

atomic hydrogen, remained largely neutral until the first stars formed, likely at z > 30.

This is the period when the small density fluctuations reflected in the CMB anisotropies

grew gravitationally and gave rise to the foundations of the large-scale structures. The

di↵use photon population was dominated by the CMB and the 21.10 cm (1420.40 MHz)

emission from the hyperfine line of the neutral hydrogen. Recall that the period between

the release of the CMB and the formation of the first stars is termed as the “Dark

Ages” [Sargent, 1986]. The reionization of the neutral hydrogen in the PGM began soon

after the first luminous sources producing the ionizing UV radiation were formed. This era

is commonly referred to as the “Epoch of Reionization” (EoR). By redshift z ⇠ 6 (roughly

a billion years after the big bang), save for some dense regions, the neutral hydrogen in

the PGM was fully ionized.

There are many compelling reasons for studying these epochs of the Universe. The

process of reionization completely transformed the Universe and had significant e↵ects

on subsequent galaxy and star formation. However, at present there is not much direct

observational data available from these epochs. The study of the redshifted 21-cm from

neutral hydrogen has the potential to provide the understanding of a wide range of

cosmological and astrophysical phenomena. For example,

(i) The ionization history provides indirect insight into the early ionizing sources such

as the first galaxies. Very little is known about such galaxies, of which the farthest

observed is at redshift range of z ⇠ 8-10 with V magnitude of about 29 [Bouwens
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et al., 2011, Lorenzoni, 2011]. The reionization history provides constraints on

sources that can cause a global transition of the Universe from a cold neutral to

a warm almost fully ionized state. Furthermore, the star formation history, escape

fraction of ionization photons, masses, H II region morphologies etc. put constraints

on early type galaxies.

(ii) The concordant cosmological model is largely derived from the CMB data at

z ⇠ 1100 and the large-scale structure data at lower redshifts. The observations

of the redshifted 21-cm complements these by providing much richer volumetric

(tomography) data spanning several redshifts, thereby, directly accessing the

evolutionary history of the Universe. In addition, the three-dimensional power

spectrum and its first moment may allow constraining the non-Gaussianity in the

primordial scalar field.

An exhaustive list of science drivers for studying the Dark Ages and EoR is provided

in [Mellema et al., 2013] and references therein.

The observational evidence and constraints for the reionization is made available from two

primary sources, one, from the linear polarization of the CMB due to Thomson scattering

of CMB photons by free electrons, and two, from the ? troughs in the quasar spectrum.

The recent Planck results [Planck Collaboration et al., 2013] place a 1-� lower limit on the

scattering optical depth ⌧es = 0.089± 0.032 (Planck + lensing). This value is higher than

the value for instantaneous reionization at z = 6, thus supporting an extended reionization

scenario.

Reionization is a complex process further complicated by feedback and recombinations.

While the emerging sources inject the ionizing photons into the intergalactic medium

(IGM) creating growing H II regions, the dense neutral hydrogen regions with H I column

densities of 1017cm�2 < NH I < 1020cm�2 and continuum optical depths of order the

1, called Lyman-limit systems (LLSs), absorb the ionizing photons thereby slowing the

ionization front and extending the ionization process [Ciardi, 2006, Finlator et al., 2012,

Kaurov and Gnedin, 2013, McQuinn et al., 2007, Miralda-Escudé, 2003, Sobacchi and

Mesinger, 2014]. The LLSs, assumed to be located at the outer regions of the halos, are
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among the most prolific Lyman-↵ absorbers [Furlanetto et al., 2006].

As the current and future experiments - Giant Metre-wave Radio Telescope (GMRT)

[Paciga et al., 2011], Low Frequency Array (LOFAR) [Harker et al., 2010], Murchison

Widefield Array (MWA) [Lonsdale et al., 2009], PAPER [Parsons et al., 2010], Square

Kilometre Array (SKA) [Schilizzi, 2004] etc. - designed to study the EoR and Dark

Ages, define their optimal observational strategies, the parametric simulations continue to

constraint the observable phase space. The first generation of radio telescopes will measure

statistical properties of the 21-cm ionization fields in the form of power spectra which is

tightly coupled with the evolution of the sizes of the H II regions. This study focuses on

the e↵ects of the Lyman continuum absorbers, especially the LLSs, on the ionization field

and the consequent observables. Similar studies with photon sinks such as minhalos [Iliev

et al., 2005, 2007] and clumping factors due to simulation resolution limits, have been

done [Mellema et al., 2006b]. While in the real world scenarios all the factors contribute

to the complex ionization process, it is imperative to closely study the e↵ects in isolation.

3.3.2 Definition of Lyman-limit Systems

The H I column densities, estimated by the absorption lines of the intervening hydrogen

observed in quasar spectra, are used to categorize the hydrogen absorption systems into

three overlapping states, viz., Lyman-↵ forest (for H I column densities NHI < 1017cm�2),

Lyman-limit systems (LLSs, 1017cm�2 < NHI < 1020cm�2), and damped Ly-↵ systems

(DLAs, NHI > 1020cm�2). The Ly-↵ forest consists of low density and highly ionized

structures, in contrast to DLAs that are high density and partly neutral, thus exhibiting a

strong damping wing of the Ly-↵ line. The studies of these systems have enabled precise

measurements of the NHI values leading to high precision constraining of observables

ranging from primordial power spectrum to the tracing of neutral hydrogen that forms

the first stars and prototype galaxies. The Lyman-↵ forest and DLAs do not a↵ect the

reionization process significantly due to their low optical depth (forest) and relative rarity

(DLAs). In contrast, LLSs have both a relatively high optical depth and abundance, and

thus the potential to considerably influence the later stages of the reionization, [Alvarez

and Abel, 2012].
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First observed as quasar absorption lines in surveys [Tytler, 1982], the Lyman-limit

systems appear as abrupt discontinuities in the quasar absorption line spectra at the

rest-frame Lyman limit at wavelength � ⇠ 912 Å. Prochaska et al. [2010] define LLS as

regions with Lyman continuum optical depth of ⌧LLS � 2, i.e., NHI � 1017.5 cm�2. The

LLSs are assumed to be located in and around galactic halos. These systems are relatively

easily identifiable even with low resolution and poor signal-to-noise. However, unlike the

Ly↵ forest and DLAs, the LLSs are poorly understood as they are hard to constrain

largely because NHI estimations require complete spectral coverage of the Ly↵ line and

the Lyman break. At lower redshifts (z < 2.6) the Lyman limit is shifted into the UV

spectrum and thus is unobservable from the ground. High redshift surveys [Prochaska

et al., 2010, Songaila and Cowie, 2010] present measurements and models of the number

density function of the LLS. Another recent survey [Ribaudo et al., 2011] with Hubble

Space Telescope archival data identifies 206 LLSs for z < 2.6.

All these surveys identify the LLSs in the absorption line spectra and estimate the

number of LLSs per unit redshift per H I column (NHI) density function - f(NHI, z) /

@2
N/@z@NHI. The best fit power-law index, �, to this function constraints the column

densities of the LLSs. In addition, the earlier simulation studies [Kohler and Gnedin,

2007, McQuinn et al., 2011, Sobacchi and Mesinger, 2014] of the LLS abundances and the

mean free path (mfp) of the ionizing photons agree reasonably well with the observations.

Using the parametric values of the distribution function from the observations [Songaila

and Cowie, 2010] and simulation model [McQuinn et al., 2011] we define two simulation

models, LLS1 and LLS2 respectively (see § 5.1.3 and Table 5.3 for details).

The general e↵ect of the LLSs is to constrain the mfp and consequently impede the

evolution and merging of the H II regions. In early times, the neutral patches dominate

the optical depth thus regulating the ionizing front. Whereas, towards the end of the

reionization, the H II regions grow really large leading to increased mfp. In between these

two ionized stages the mfp of the photons increases enough to allow them to reach distances

where the LLSs contributions start to matter. This is the stage where the LLSs begin to

regulate the ionization history. At late times, there are many groups of local ionizing

sources that add to the ionization fronts further complicating the morphological evolution
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of the ionized regions. The simulations discussed herein attempt to quantify the e↵ects

of the LLSs on the reionization history, with the caveat that the lack of high redshift

observational data leads to an ad hoc implementation of the LLS models at early times.

The extrapolation of mfp from observed low redshifts to early times as far as z = 20 clearly

yields unrealistic values, see Figure 5.1. However, as discussed below, LLSs start to a↵ect

the simulations much later at z = 15.96 (LLS1) and z = 13.30 (LLS2) with mfp value of

0.1 Mpc in proper units. More accurate e↵ects of LLS at higher redshifts could only be

modeled based upon the actual distribution of the high redshift LLSs. However, the very

first numerical simulations of a large volume and higher dynamic range presented here,

elucidates various useful insights beneficial for future research in the field. This study is

similar to other ionization photon sinks a↵ecting EoR that have been examined in prior

studies, such as, self-shielding, mini haloes, and clumping factor.



Chapter 4

Radio Interferometry

This chapter is a basic introduction to the fundamentals of radio interferometry. For an

in-depth mathematical treatise there are many references elucidating the subject, viz.,

Taylor et al. [1999], Thompson et al. [2001], Wilson et al. [2013]. This chapter, however,

circumvents most of the pedagogical approach and explores the radio interferometry

from an intuitive perspective. Thereafter, the chapter refreshes upon the basic

mathematical formalism, and finally reviews the relatively new framework entitled the

radio interferometry measurement equation introduced in Hamaker [2000], Hamaker and

Bregman [1996], Hamaker et al. [1996], Sault et al. [1996], Smirnov [2011a,b,c,d].

4.1 An Intuitive Perspective

There are many physical phenomena that generate the radiation in the radio part of the

electromagnetic spectrum raging roughly in the wavelengths � = 0.3mm - 30m. These

arbitrary demarcations are largely driven by the techniques used for the detection of the

radiation. The radiation generation processes are classified into two broad categories,

namely, thermal and non-thermal. The cumulative power of the photons generated by

thermal processes is proportional to the fourth power of the temperature of the body.

This is the Stephan’s-Boltzmann’s law, P = A✏�T 4, where P is total power radiated by

the body, A is the surface area of the radiating body, ✏ is the emissivity e�ciency, � is the

Stefan-Boltzmann’s constant, and T is the temperature. The thermal radiation is further

categorized into the three subtypes, blackbody, free-free (Bremsstrahlung), and spectral

line thermal radiation. The non-thermal radiation does not follow the / T 4 relationship.

Instead, the non-thermal radiation is proportional to the increasing wavelength. The



CHAPTER 4. RADIO INTERFEROMETRY 52

subtypes of the non-thermal radiation are, synchrotron and maser.

The radiation in the radio domain is detected as waves. The radio telescopes are designed

as curved surfaces to focus the incident waves to a receiver. The focused waves, mostly the

time varying electric field, E(t), generate a voltage at the receiver, the square of which is

directly proportional to the power of the radiating body. The incident signal is a statistical

ensemble of many radiating atoms/molecules, in some cases at di↵erent frequencies, of the

radiating body.

In the optical domain the properties of the glass and/or mirror allow for the formation

of the image. This is mathematically equivalent to the Fourier transform of the optical

phase di↵erence at the exit pupil of an optical system, see Born and Wolf [1999], Goodman

[2005], Hecht [2001]. Same principles apply in the radio domain. The only challenge is

that the significantly lower spatial resolution (⇠ �/D) of radio telescopes makes it harder

to get similar imaging as the optical counterparts. The option of increasing the diameter

of the radio telescope hits the engineering limits at about 300 feet. The large dishes are

not only di�cult to maneuver but also tend to deform due to gravity. A workaround is to

build a very large dish supported by a crater/valley and observe the universe as the Earth

rotates. Arecibo radio telescope in Puerto Rico is one such telescope.

Another rather clever technique of increasing the spatial resolution and the sensitivity

(proportional to the collecting area) of a telescope is to build an array of many smaller

or average sized dishes, collectively representing an extremely large dish. This is akin

to segmented mirrors in optical astronomy where small separate hexagonal mirrors

collectively form a larger mirror. The signal from all the smaller dishes is “collected” to

form the image. This technique is known as radio interferometry sometimes also referred

to as aperture synthesis imaging since the smaller antennas are collectively synthesizing an

aperture of a much larger antenna. It is useful to note that the larger number of smaller

antennas the more complete (filled) the synthesized aperture. The concept of “collecting”

the signal from all the antennas is the key to radio interferometry. The “collection” process

is intricate and does not amount to simply accumulating signals from each antenna and

stacking them. Instead, the “collection” process involves correlating the data from all
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the possible pairs of antennas. This is where the physical phenomenon of interferometry

comes to bear in the synthesis imaging. The correlation of signals from pairs of antennas

is very similar to the Young’s double-slit experiment where each antenna forms a slit.

The assumption is that the objects of interest are in the far-field and the waves incident

on the slits are planar and coherent. Recall that in the Young’s double-slit experiment,

the plane waves generate Huygens’ spherical wavelets at the slits, which in turn interfere

with each other and produce an interference pattern. To generate similar interference

pattern with radio dishes requires electronics and mathematical modeling. Since this

is the intuitive section, we will further explore interference by electronics methodology

without the equations.

To generate an interference pattern from a pair of radio telescopes, the signal is correlated

(voltages are multiplied pairwise and added) over certain time window, termed as the

integration time. The degree of the interference achieved is defined by the level of the

coherence of the incoming wave. Many radiators generating waves far away lead to a

collective planar wave at infinity. This property is mathematically derived as the van

Cittert-Zernike theorem, see Born and Wolf [1999], Thompson et al. [2001]. The best

explanation of which is demonstrated by Rouen ducks in a video on YouTube (search for

Thirteen Rouen Ducks Create Coherent Waves). In case, this thesis survived the travails

of time and is read way in the future then a lot has changed and you need not worry about

YouTube. The thirteen ducks jump in the perfectly still pond at di↵erent times generating

their own di↵erent waves that collectively form a coherent wave at a distance. With these

conditions satisfied, each pair of antennas - there are N(N � 1)/2 pairs for N antennas -

generates fringes and a collective interference pattern is obtained. The Fourier transform

of this pattern yields the map of the sky. This is a relationship mathematically derived

as Wiener-Khinchin theorem, see Goodman [1985]. The map has the spatial resolution

equivalent to the largest distance of antenna pairs termed baseline. The field of view of

such an array is equivalent to the spatial resolution of the signal dish, assuming all the

dishes have same diameter. In case of a heterogeneous array, the smallest dish defines the

field of view.

The cross-correlation of the voltages from two antennas yields the interference pattern
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also known as the visibility function. The e↵ect of the correlation could be perceived

as following, the moment the wavefront from the sky incident on the two antennas is

correlated, the sky turns into its own Fourier transform. The antenna pair, based upon

their location coordinates relative to the position on the sky, then samples a specific

portion of this Fourier transform plane. Many baselines, in turn sample di↵erent location

thereby covering more of the Fourier transformed sky. Furthermore, the rotation of the

earth is used to track loci of all the baselines on the Fourier sky to obtain maximum

coverage. These tracks are called uv-coverage or the visibility sampling function. The

sampled Fourier sky is the visibility map. The Fourier transform of the visibility map

yields the map of the sky with the spatial resolution of the longest baseline. This is the

basic essence of radio interferometry. The entire process is an attempt to synthesize the

image of the sky using a connected array and interleaving electronics. In other words, what

a lens performs through internal reflections and refractions as the photons pass through

the material is mimicked by radio antennas arrays. However, like everything else, the

details are gritty and lead to further challenges.

For example, the above description assumes no frequency dependence of the incoming

signal. The incident signal, however, has a certain bandwidth made of a continuum of

frequencies. In the Fourier sky explanation mentioned above this amounts to Fourier

transforms of the sky for each of those frequencies. Since the baseline projection on the

Fourier sky is also a function of the observed frequency, the same baseline observes a

slightly di↵erent part of the Fourier sky for the di↵erent frequencies in the bandwidth.

This leads to the smearing of the region of the Fourier sky sampled by the same baseline.

This is called bandwidth smearing. In addition, the samples of the Fourier sky are averaged

over a time interval - in practice in the range of 10-30 seconds - termed as exposure or

integration time. During the integration period the earth rotates and the baseline position

shifts generating yet another smearing due to the length of the integration time. To avoid

the two e↵ects shorter integration time and smaller bandwidths are preferred. However,

due to various real world tradeo↵s such e↵ects remain and a↵ect the overall quality of the

data. A point to note here is that even though the techniques of synthesis imaging are

trying to mimc the natural process of the lens, the artificial techniques cannot circumvent

the natural laws. Bandwidth smearing is nothing but chromatic aberration as seen by the
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optical devices. This is a profound reminder that simulating the natural process invokes

underlying laws and e↵ects.

4.2 Mathematical Formalism

In this section we will review and build upon the fundamental mathematical foundations

of radio interferometry.

4.2.1 van Cittert-Zernike Theorem

The foundation of radio interferometry is defined by the van Cittert-Zernike theorem. The

theorem states that, at large distances the combined wavefront of incoherent sources will

appear coherent and is the Fourier equivalent of the intensity of the source. In addition,

this mutual coherency is equivalent to the correlation function or the complex visibility

measured by a pair of antennas. Thus, it is because of this equivalence of the mutual

coherence function to the measured complex visibilities that the Fourier transform of the

measured visibilities is equivalent to the intensity map of the sky. This relationship is

represented as following,

�12(u, v,⌧ = 0) =

Z Z

source
I(l,m) e�j2⇡(ul+vm)dl dm = V(u, v) (4.1)

where,� 12(u, v, 0) is the mutual coherence function, measured at two point 1 and 2, in

the u, v coordinates expressed in the units of wavelength, and time o↵set ⌧ is zero, I(l,m)

is the averaged time intensity of the source, in the direction cosines coordinates l,m, and

V(u, v) is the complex visibility as measured by the two antennas. Note that the Equation

4.1 is true only if two conditions are met. One, that the observations are on the uv plane

and the w coordinate, see Figure 4.1, is equal to 0. This leads to the measurement of the

modified visibility given as I(l,m)/
p

1 � l2 �m2. Two, the sky sampled is in a small area.

This leads to the third direction cosine n =
p

1 � l2 �m2
⇠ 1.

4.2.2 Coordinate Systems

The coordinate transformation of the antenna array onto the sky defines the visibility

sampling function. There are three coordinate systems that specify this transformation

process. See the Figure 4.1. The antennas on earth are located on a right-handed Cartesian

coordinate system XY Z. The axes X and Y are parallel to the plane of the equator of earth
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Figure 4.1: The schematic of the Earth, Fourier plane, and sky coordinate systems as used
in radio interferometry.
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and Z is perpendicular. The X coordinate is measured in the meridian plane (great circle

passing through the north and the south poles), the Y coordinate is measured towards

the east, and the Z coordinate is measured towards the north pole. The projection of the

baselines (vector between a pair of antennas) on the u, v, w plane is given by the relation,

2
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where, H is the hour angle and � is the declination of the source, X�, Y�, Z� are measured

in wavelength units �. The intensity I(l,m, n) of the source is measured in direction

cosines l,m estimated with respect to the u, v, w coordinates.

4.2.3 Flux Density and Brightness Temperature

The measurements of the electromagnetic radiation in the di↵erent parts of the spectrum

employ di↵erent techniques. For example, in the case of extremely high-energy radiation

such as in gamma rays (> 1019 Hz), the radiation ionizes the detector material

proportionally and consequently is directly/indirectly measured. However, in the low-

energy regime of the radio window (3⇥103 to 3⇥1011 Hz) of the electromagnetic spectrum,

the wave nature of the radiation is measured. The large collecting metal surfaces focus

the incident radiation on the receivers generating proportional voltages.

The radiation from the radio sources are measured in the units of Jansky (Jy), where

1 Jy = 10�26 W/m2/Hz. In other words, for a 1 Jy source the energy per unit frequency

(Hz) passing perpendicular through an area of unit square (m2) is measured at 10�26

Watts. The radio sources are usually very weak and therefore a factor of 10�26 is utilized

for convenience.

While the source intensity may have wide bandwidth, often measured in W/m2, the radio

receivers only detect a fraction of the bandwidth. Therefore, the true measure of the

source intensity is per unit frequency, termed as flux density, measured in W/m2/Hz.

The flux density is a measure of unresolved sources, i.e., the sources with angular sizes

smaller than the half-power beamwidth (HPBW) of the radio beam. For the extended
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sources the direction and therefore the solid angle subtended by the source (steradian) of

the radiation becomes important. The measure of the extended source is called surface

brightness, measured in W/m2/Hz/sr or flux density per solid angle.

The Planck’s black body spectrum relation is given as,

B⌫(T ) =
2h⌫3

c2
1

eh⌫/kT � 1
W/m2/Hz/sr (4.3)

For radio frequencies (very long wavelengths) the exponential term h⌫/kT is very small

and therefore is Taylor expanded as,

eh⌫/kT ⇡ 1 + h⌫/kT + ... (4.4)

This is know as Rayleigh-Jeans approximation. This approximation relates the black body

temperature with the brightness as,

B⌫(T ) '
2⌫2

c2
kT =

2kT

�2
(4.5)

The interpretation of the equation is that for a given source the brightness, B⌫(T ), is

proportional to the temperature, T , of a black body at that temperature. However, if the

radiation emission mechanism is not black body (thermal) then the temperature will not

be the same as the temperature of the source.

4.3 Radio Interferometer Measurement Equation

This section covers the essentials of the mathematical framework called the radio

interferometer measurement equation (RIME). The framework was originally proposed

by Hamaker et al. [1996] and later expanded by Smirnov [2011a]. The framework employs

the 2⇥ 2 Jones’ matrices [Hurwitz and Jones, 1941, Jones, 1941a,b] to define the complex

visibilities from the correlator multiplied by the propagation e↵ects, each represented by

their own 2⇥2 matrix. This elegant and simple framework a↵ords various new insights into

radio interferometry, especially in calibration of the direction dependent e↵ects (DDE).

Following is a brief outline explaining the fundamentals of the framework.
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In Jones’ framework, the polarized light is described by a column vector and the optical

elements that transform the light are denoted by 2 ⇥ 2 matrices.

Following the said framework, an electromagnetic wave e, traveling along the z axis of

the Cartesian xyz coordinate system can be represented as a column vector in its complex

parts as,

e =

0

B@
ex

ey

1

CA

The transformation of the wave due to various propagation e↵ects represented by Jones’

matrices, Jn,Jn�1, ...,J1, is then represented as,

e0 = Jn,Jn�1, ...,J1

0

B@
ex

ey

1

CA = Je (4.6)

Two antennas, p and q, of an interferometer detect the incident wave as voltages vp and

vq, each with two receivers a and b. The voltages are correlated and output is a visibility

matrix (also referred as coherency matrix) defined as,

Vpq = 2

0

B@
hvpav⇤qai hvpav⇤qbi

hvpbv⇤qai hvpbv⇤qbi

1

CA (4.7)

where, the ⇤ denotes the complex conjugate and the hi represents the time average of the

signal, also known as the integration time. For the detailed explanation of the factor 2 see

section 7.2 of Smirnov [2011a]. The above equation can be rearranged as following,

Vpq = 2

*0

B@
vpa

vpb

1

CA
✓
v⇤qa v⇤qb

◆+
= 2hvpv

H
q i (4.8)

where, the superscript H is the Hermitian transpose operation.

Now assuming the linearity between the incident wave and the induced voltage, such

that, V = Je, the equation 4.8 can be rewritten as,

Vpq = 2hJpe (Jqe)
H
i = 2hJp(e eH)JH

q i (4.9)
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Further assuming that the Jones terms Jp and Jq are time and frequency invariant, the

above equation is expanded as,

Vpq = 2Jph(e eH)iJH
q = 2Jp

0

B@
hexe⇤xi hexe⇤yi

heye⇤xi heye⇤yi

1

CAJH
q (4.10)

The matrix term above is equivalent to the Stokes parameters, Hamaker et al. [1996], as

shown below,

2
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0
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U � iV I �Q

1

CA = B (4.11)

where, I,Q, U, V are Stokes parameters and B is the brightness of the incident wavefront.

More explicitly written, the above relationship equates the complex visibility components

to the incident brightness are transformed by the propagation e↵ects represented by the

Jones’ matrices,

0
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CA

H

(4.12)

Or,

Vpq = Jp B JH
q (4.13)

A few important consequences of the above relationship are obvious. First, the equation

separates the antenna based e↵ects into di↵erent Jones’ terms, viz., Jp and Jq. This allows

for exploring antenna based (direction independent e↵ects - DIE) and direction dependent

e↵ects (DDE). This provides a more accurate calibration of the instruments especially for

heterogeneous arrays. This is a big step from previous methodologies where the single

antenna calibration solutions were applied to the entire array thus only correcting for the

direction independent e↵ects. Second, even though the coordinates used in the above

derivation were Cartesian xyz, the relationship is independent of the coordinate system.

Any transformations arising due to di↵erent coordinate systems can be represented as

another set of Jones’ matrices.

The discussion of RIME formalism will not be complete without mentioning the limitations
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and corresponding solutions when considering phased array feeds (PAFs), aperture arrays

(AAs), and wide-field polarimetry. These limitations arise from variety of implicit

assumptions in the RIME formalism, see Smirnov [2011d]. A tensor based generalized

formalism is introduced that captures e↵ects beyond the 2 ⇥ 2 Jones’ matrices. In the

tensor product form the visibility is then written as,

Vq
p = Jp↵ B↵

� J̄�q (4.14)

where, ↵ and � are free indices. The tensor version of the RIME provides a rigorous

method to test and extend Jones’ matrices, however, for wide range of interferometric

applications the 2 ⇥ 2 RIME su�ce.

Finally, this elegant framework forms the foundation for new tools badly needed in radio

astronomy for simulations and DDE calibration. To address this a directed acyclic graph

based tool entitled MeqTrees is developed, Noordam and Smirnov [2010, 2012]. This tool

is used for large number of simulations for this research.



Part II

Simulations



Chapter 5

Simulating EoR and Dark Ages

5.1 Simulations

The basic methodologies for the numerical simulations used for this study are discussed

in Iliev et al. [2006], Mellema et al. [2006b] and Iliev et al. [2007]. To include the e↵ects

due to the LLS, the radiative transfer code is modified as discussed below. In this section,

a brief summary of the numerical simulation methodology and the implementation of the

LLS models is presented.

5.1.1 CubeP3M - N-body simulations

The evolving matter density fields in a given comoving volume for the desired redshift

ranges are generated with the N-body code entitled CubeP3M [Harnois-Déraps et al.,

2013]. The evolution of the density fields is based upon the initial conditions specified by

the standard Zel’dovich approximation and primordial power spectrum transfer function

derived by CAMB1 [Lewis et al., 2000], originally based on CMBFAST [Seljak and

Zaldarriaga, 1996]. The cosmological parameters used are for the flat ⇤CDM model of the

Universe based on WMAP 5-year data combined with constraints from baryonic acoustic

oscillations and high-redshift supernovae, given as, (⌦M = 0.27,⌦⇤ = 0.73, h = 0.7,⌦b =

0.044, �8 = 0.8, ns = 0.96). To ensure against numerical artifacts [Crocce et al., 2006] the

initial conditions are generated at su�ciently high redshift (here zi = 300).

The CubeP3M code is public domain N-body code designed for simulating large-scale

cosmological systems. The code is accurate, e�cient, scalable, and parallel across

1
http://camb.info
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box size Npart mesh spatial particle min(Mhalo)
resolution mass

h�1 Mpc h�1kpc 106M� 108M�

114 30723 61443 1.86 5.47 1.09

Table 5.1: The N-body simulation parameters for the two volumes.

distributed (MPI) and shared (OpenMP) memory systems. The underlying N-body

algorithm estimates short-range (sub-grid distances) gravitational forces using the particle-

particle (P-P) method. While for the long-range forces, a 2-level particle-mesh (PM)

method is applied. Computationally, in comparison to the P-P method which is of

the order O(N2), the P3M method has significantly lower overhead and is of the order

O(N logN), where N is the number of particles.

For the current study, two sets of comoving volumes of sizes, 37 h�1 Mpc and 114

h�1 Mpc , are simulated. The same N-body simulations were presented in detail in [Iliev

et al., 2012]. Here the smaller volume, 37 h�1 Mpc , is primarily used for testing and

validation purposes only. The simulations for 114 h�1 Mpc use 30723 ⇡ 28.9 billion dark

matter particles distributed in 61443 mesh cells. While for the 37 h�1 Mpc volume, 10243

particles are used within 20483 mesh. Each particle has mass of 5⇥ 106M�. Through the

simulation steps as the structures start to form, the halos are identified using a spherical

overdensity halo finder with overdensity parameter of � = 178 with respect to the mean

density. The halos with more than 20 particles (M > 108M�) are considered resolved. The

number density of the halos increases for lower redshifts and the mass function approaches

the Sheth-Tormen mass function. Iliev et al. [2006] and Watson et al. [2013] provide

detailed fits to the high-redshift halo mass function.

5.1.2 C2-Ray - Radiative Transfer

The second stage of the simulation performs radiative transfer using the C2-Ray

(Conservative, Causal Ray-Tracing) code [Mellema et al., 2006a]. The conservative part

of the code ensures spatial and temporal photon conservation, while the causal ray-tracing

is implemented using the short-characteristic method.
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The C2-Ray implements a discrete spatial and temporal version of the ionization rate

equation [Osterbrock, 1989],

�(r) =
1

4⇡r2

Z

⌫

L(⌫)�(⌫)e�⌧(⌫,r)

h⌫
d⌫ (5.1)

where,�( r) is the ionization rate at distance r from the hydrogen ionizing source, L⌫ is the

spectral energy distribution of the ionizing source at frequency ⌫, �⌫ is the cross-section

for the ionizing photons, and ⌧⌫ is the frequency dependent optical depth of the hydrogen

gas.

Due to the spatial discretization of the computational domain, we do not know ⌧⌫ as

a continuous function of position. As was shown in Abel et al. [1999], the photo-ionization

rate of one cell whose center has a distance r from the source can be calculated as,

� =
Ṅ(r � �r

2 ) � Ṅ(r + �r
2 )

nH IVshell
(5.2)

where, Vshell is the volume of the spherical shell with radius r and width� r, the shell is

filled with neutral hydrogen of number density nHI, Ṅ(r � �r/2) is the rate of ionizing

photons arriving and Ṅ(r + �r/2) the number of photons leaving this shell.

Since,

Ṅ(r) =
1

4⇡r2

Z

⌫

L(⌫)e�⌧(⌫,r)

h⌫
d⌫, (5.3)

the Equation 5.2 implies that the local photo-ionization rate � depends on the di↵erence

between ⌧in ⌘ ⌧(r �

�r
2 ) and ⌧out ⌘ ⌧(r + �r

2 ). In Section 5.1.4 we explain how these

optical depths are modified to include the e↵ect of LLS.

In our reionization model, the ionizing luminosity of the collapsed halos is proportional to

their mass M . Each halo produces a number of photons,

N� =
f�M⌦b

⌦0mp
(5.4)
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for every n-body output of� t = 11.46 Myr. The e�ciency factor f� is the product

fescf?N?, where, fesc is the ionizing photon escape fraction, f? is the star formation

e�ciency, and N? is the number of ionizing photon per stellar atoms, and mp is the

proton mass. The parameter N? depends on the initial mass function (IMF) of the stellar

population producing the ionizing radiation. Its value for a Pop II population (Salpeter

IMF) is ⇠4000 and for a Pop III population (top-heavy IMF) it can reach ⇠100,000. Due

to the uncertainties in fesc and f?, the value of f� is not well constrained. In this study we

use 10 for high mass halos (HMACH: High Mass Atomicaly-Cooling Halos) and 150 for

low mass halos (LMACH: Low Mass Atomicaly-Cooling Halos), see Table 5.2. The higher

value for the LMACHs is motivated either by a larger contribution of metal-free/poor

stars or by a larger escape fraction. The LMACHs are also assumed to be susceptible to

negative radiative feedback. When the cell in which an LMACH is present is ionized at the

start of a new 11.46 Myr time step, the LMACH will not produce any ionizing photons.

From previous work we know that the e�ciency factors chosen result in reasonable

reionization history in accord with the WMAP optical depth value.

box size f� f� RT grid
h�1 Mpc HMACH LMACH

114 10 150 2563

Table 5.2: Simulation parameters for the 114 h�1 Mpc box with LLS. f� is the star
formation e�ciency for high and low mass, and RT grid is the coarser grid for radiative
transfer ray-tracing. The underlying cosmology uses the WMAP 5-year results.

5.1.3 Simulating the E↵ects of Lyman Limit Systems

It is thought that the LLSs correspond to the denser, ionized halos of the collapsed

objects which, although ionized, have a high enough column density of H I to result in

an optical depth > 1. Therefore, the e↵ect of the LLS, is physically better described by

a recombination process than that of an absorber. Recombinations by dense structures

below the resolution limit of the code are described with clumping factors. This has for

example been the approach of Sobacchi and Mesinger [2014].

Introducing a clumping factor, however, does not directly yield the value of the mean
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free path (mfp) and in general it is not clear how to exactly assign the clumping factor

for di↵erent redshifts and di↵erent environments. Therefore, for this study we decided to

work directly with the mfp. This is similar to prior work by Alvarez and Abel [2012] with

the di↵erence that in the prior studies the mfp was implemented as a hard boundary which

photons could not cross. Instead, in our implementation, the mfp is employed to define

a global ionizing photon absorbing component which after one mean free path reaches an

optical depth of 1.

The advantages of working with the mfp directly is that it is easier to connect the e↵ect on

the sizes of H II regions to the imposed mean free path. It also allows the use of published

mfp expressions. The disadvantage, on the other hand, is that the mfp in the ionized

medium is not a measured quantity beyond z = 6. Therefore, we extrapolate from the

lower redshift results. To the extent that the ionized regions during reionization can be

viewed as being locally post-reionization, there is some justification in performing this

extrapolation. The additional absorption our LLS component adds in the fully neutral

regions is marginal, and therefore only a↵ects the already ionized regions. Also when

introducing a clumping factor similar uncertainties about the behavior into the Epoch of

Reionization play a role.

To perform the extrapolation of the mfp beyond z = 6, we use the parametrization given

by Songaila and Cowie [2010]. Based upon the observational data, the number density of

the LLSs per unit redshift path dz is parametrized as,

f(NHI, z) = f(NHI, z = 3.5)

✓
1 + z

4.5

◆�

(5.5)

where, f(NHI, z = 3.5) is the number density at z = 3.5. Estimating the log-likelihood

function for the entire redshift range of 0 < z < 6 in Songaila and Cowie [2010] yields

the values for the parameters to be, f(NHI, z = 3.5) = 2.8 ± 0.33 and � = 2.04+0.29
�0.37.

Furthermore, in the approximation that the column density function f(NHI, z)dNHI /

N��
HI dNHI [Petitjean et al., 1993], the mean free path is related to the number density
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as, [Miralda-Escudé, 2003],

`(⌫0, z)f(NHI, z) /

R1
a ⌧��d⌧R1

0 ⌧��(1 � e��)d⌧

or, `(⌫0, z) =
a1��

�(2 � �)

c

H(z)(1 + z)f(NHI, z)
(5.6)

where, f(NHI, z) is measured above the column density NHI corresponding to a value

a for the optical depth (here, a ⇡ 1), ⌧ is the optical depth at the Lyman limit, and

⌫0 is ionization edge frequency. Here, � is the gamma function and not the ionization

rate [Songaila and Cowie, 2010].

In order to test the impact of di↵erent evolutions of the mean free path we use two di↵erent

extrapolations, one using the parameters given by Songaila and Cowie [2010] and the other

using parameters derived from fitting the curve in the inset of Figure 1 in McQuinn et al.

[2011]. The simulations for these two choices are labeled as LLS1 and LLS2, respectively

and the parameters used are listed in Table 5.3. The evolution of the mean free path for

these two sets of parameters is shown in Figure 5.1. LLS2 has substantially smaller values

of the mfp through the reionization epoch. The figure also shows the values of the mean

free path at di↵erent redshifts below 6 as estimated by Songaila and Cowie [2010] (using

� = 1.28 and � = 1.94 in their Equation 7).

From Figure 5.1 it is evident that both extrapolations result in very small mfps at very

high redshifts. Below our cell size it does not make sense to implement the LLS model

as we already use an assumed escape fraction for absorptions within the source cell. As

we want to concentrate on how the LLSs impact the later stages of reionization when the

ionized regions have reached sizes of 10-20 cMpc, we chose to only switch on our LLS

absorption if the mean free path is larger than 5 grid cells (3 cMpc). This occurs around

z ⇠ 15. We found that this choice did not impact the evolution around this transition

redshift.

5.1.4 LLS implementation in C2-Ray

To include the e↵ects of LLS in the radiative transfer calculation, an additional optical

depth term, ⌧LLS, is added. The implementation of the additional optical depth is based
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Figure 5.1: The mean free path (in log10 scale) of the ionizing photons for the two LLS
models, LLS1 (Songaila, red), and LLS2 (McQuinn, black) in proper Mpc, see Equation
5.6. The blue squares are the data points computed from Equation (7) of Songaila and
Cowie [2010] using the maximum likelihood estimate of nLLS in the redshift bins. The
parameters are listed in the Table 5.3.

Simulation Model � f(NHI, zx) zx �

LLS1 Songaila et al. 2.04 2.84 3.5 1.28
LLS2 McQuinn et al. 2.85 2.34 3.5 1.30
L1 No LLS - - - -

Table 5.3: Simulation parameters for the two LLS models LLS1 and LLS2. In the model
L1, the case without LLS, the simulation is not a↵ected by LLS.

upon the notion that after one mean free path, ⌧LLS acquires the typical value of the

optical depth of a Lyman-limit system at the Lyman limit. For the purpose of this paper

we assume that each cell contributes equally to ⌧LLS with a value� ⌧LLS. One could

envisage algorithms that vary this quantity depending on the density field but for this

paper we selected the simplest assumption of a uniform ‘mist’ of the LLSs.

As explained in Section 5.1.2, C2-Ray uses two optical depth values for each cell, ⌧in, the

optical depth between the source and the entry point of the ray into the cell, and� ⌧ , the

optical depth of the ray section that is contained within the cell. The di↵erence between

these two values is used to calculate the ionization rate � in the cell, using Equation 5.2.

In principle one could add� ⌧LLS to� ⌧ but this would then impact � which would give
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incorrect results. The fundamental purpose to implement the subgrid LLS model is to

remove (absorb) photons due to LLS without impacting any other parts of the radiative

transfer calculation.

For two cells, n and n + 1, with the same ray crossing their centers, ⌧n+1
in is equal to

⌧nout ⌘ ⌧nin + �⌧n. To include the LLS optical depth this equality is changed to

⌧n+1
in = ⌧nout + �⌧LLS . (5.7)

This e↵ectively adds the additional optical depth in between the two cells which means

that it is not used in the calculation of � for a cell. A simple schematic of this process is

shown in the Figure 5.2.

Figure 5.2: The schematic of the C2-Ray optical depth estimation.

As the ray traverses through the cell n, the ionization rate � in the cell is estimated as the

di↵erence of the incoming optical depth ⌧nin and the optical depth in the cell� ⌧n. The

outgoing optical depth of the cell n is then the incoming optical depth of the next cell

n + 1. However, in the case of LLS, the new incoming depth of the cell n + 1 is further

added with the optical depth due to the LLS. As a result, as shown in the figure, the

incoming optical depth for the cell n + 1 is ⌧nout + �⌧LLS.

The column density per cell is estimated as,

f(NHI, z) =
⌧LLS
�H

nLLS (5.8)

where, �H = 6.30 ⇥ 10�18cm2 is the photon cross section of a hydrogen atom at energies

above the Lyman limit, ⌧LLS = 2, and nLLS is the inverse of the distance between LLSs.
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The mean free path is then estimated as,

`(z) =
Vcell(z)

nLLS

1

Mpc
(5.9)

For the cells whose centers do not lie on the same ray, the short characteristic ray tracing

algorithm constructs ⌧in through interpolation of the relevant ⌧out. The above modification

works equally well if one replaces each ⌧out by ⌧nout + �⌧LLS.

To calculate the value of� ⌧LLS we use the value of `(⌫0, z) from Equation 5.9. If the

proper cell size is given by� x then the contribution of every cell is estimated as,

�⌧LLS = ⌧LLS
�x

`(⌫0, z)
. (5.10)

We use the value of ⌧LLS = 2.

As explained in Section 5.1.3, this additional optical depth is only applied when `(⌫0, z) >

3 cMpc. For smaller values we set� ⌧LLS to zero.

5.1.5 Ray-Tracing in C2-Ray

This is brief overview of the implementation of the ray-tracing in C2-Ray. For details see

Mellema et al. [2006a]. The method of ray-tracing is used to simulate the transportation

of the ionizing radiation across the simulation volume. The simulations are temporally

iterative and require the iteration step� t to be small enough so that variables of interest

such as the time-averaged optical depth� ⌧(⌫) through the cell remain invariant. In the

simulations for the volume 162.8 Mpc the� t = 11.6 Myr. This is based on the criteria

described in Mellema et al. [2006a] such that the ionization rate is defined as,

dyHI

dt
= �h�i yHI (5.11)

where, yHI is the neutral fraction of hydrogen and h�i is the time-averaged photoionization

rate. The relationship indicates that ionization rate is only dependent on the

photoionization rate and therefore could be assumed as constant in the time step.
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Now, let us consider a given volume (for example 162.8 Mpc) of neutral hydrogen density

field in which for simplicity after some time (each iteration of 11.6 Myr) only two sources

form at diagonally opposite corners of the cube. The number of photons emitted by these

sources per time iteration depends on their masses and ages. The light rays are traced

from these sources traversing radially outwards. The tracing of the rays defines the long-

and short-characteristic ray-tracing. In the long-characteristic ray-tracing the rays are

cast from the source to each cell in the simulation volume. As an aside, each ray is

independent and therefore a good candidate for parallelism. However, since each cell must

be reached by at least one ray, the cells closer to the source are crossed by rays far many

times than the cells father out. This can be easily visualized in 2D as the density of the

spokes of a wheel closer to the center. This results in oversampling of the cells closer to

the source and thereby computationally redundant. Abel and Wandelt [2002] introduced

adaptive ray-tracing to mitigate redundant calculations. Mellema et al. [2006a], however,

impelmented the short-characteristic method of ray-tracing to solve the same issue. In

the short-characteric ray-tracing the a single ray is cast to the center of the cell, but

importantly, in the next time step only the ray in the previous cell is used to estimate the

optical depth as discussed in 5.1.4. The rays represent traveling photons. Depending on

the set boundary conditions (periodic or not), the photons could travel out of the box or

reenter from the other side. As the stream of photons encounter the very first cell, the

optical depth of the cell defines how many are going to exit the cell which in turn gives

the ionization rate of the cell. The key part to this calculation is the geometry. The ⌧(⌫)

of the cell is weighted by the path length the ray takes as it traverses across the cell. The

extreme case being the diagonal of the cube, in which case the weight is one. The number

of photons entering a cell is related to the column density to the cell. For the details of

calculating the column density see Appendix A of Mellema et al. [2006a]. A 2D version is

shown in the Figure 5.3.

The ray from the source are cast to the centers of the cells m and n. For the cells m

and n, the geometry of the entering ray in orientation with the cell dictates the weight of

the path length ds. While for cell m it is almost diagonal, it is parallel for the cell n. In

addition, the di↵erent optical depth of each cell combined defines the ionization of the cell

as the rays traverse across the cube.
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Figure 5.3: The 2D schematic of the short-characterictic ray tracing.

For illustrative purposes, the program data flow for the LLS implementation is shown

below,

1 Define LLS model (Songaila , McQuinn , Prochaska , ...)

2 Define LLS distribution

3 Initialize LLS

4

5 Loop over redshifts

6 Evolve cosmology per redshift

7 Estimate column density and mfp per cell due to LLS

For a given model, the LLS are distributed in the simulation volume. In our case we

used uniform distribution as the extreme case. Once the threshold mfp is crossed the

column density and mfp per cell is estimated. For the next generation of simulations the

distribution model specially based upon the new observational data (if available) will be

implemented and di↵erentiated.



Chapter 6

Simulating Interferometry

Measurements (SIM)

In the previous Chapter 5, we have used N-body and radiative transfer methods to

build the evolution of the cosmological density fluctuations and the ionization field.

Now we want to examine how the fluctuations appear in the form of the signal to the

radio interferometers. This cosmological signal, as it traverses across the Universe, is

corrupted by wide variety of mitigating e↵ects including astrophysical (free-free and di↵use

Galactic foregrounds, extra-galactic foregrounds), non-astrophysical (Faraday rotation,

ionosphere), and instrumental (thermal noise, gains, direction dependent and independent

e↵ects). These e↵ects are 5-6 orders of magnitudes brighter than the cosmological signal,

thus making the task of designing the radio telescope arrays and defining the observational

strategies, challenging. Realistic simulations of these e↵ects, therefore, are critical in

testing the e�cacy of various techniques proposed to achieve the science goals for various

experiments. There are many methodologies employed to model the propagation e↵ects.

However, more realistic solutions tend to fall in the numerical simulations category and

consequently lead up to computational challenges.

This chapter discusses the development of the end-to-end simulation tool entitled,

Simulating Interferometry Measurements (SIM). SIM is a software framework that

consolidates CubeP3M, C2-Ray, and MeqTrees with various layers of middleware developed

for this research. The term framework here is not used in the strictest sense as applied in
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computer science (CS). Rather, it represents a codebase that in the future will be converted

into a real framework. From the strictest CS definition, a framework is a codebase that

extends API (applications programming interface) to enrich the functionality of the code

without exposing the main(). The good examples of frameworks in scientific computing

are GAMER framework for adaptive mesh refinement [Shukla et al., 2011] and Cactus

framework [Lö✏er et al., 2012] used for numerical relativity.

To test and establish the e↵ectiveness of SIM framework, the results are validated against

existing expectation values from LOFAR telescope before extending it to SKA-class

telescopes. In the Part III of this thesis SIM is used to derive science parameters as

basic examples. It is evident that such tools are becoming essential in the upcoming array

development process. The tools are at early stages and will require advanced software

engineering and high-performance computing compliance to scale.

6.1 Significance of SIM

The current and upcoming radio interferometer telescopes around the world are at the

technological frontier. The scientific objectives of the telescopes are driving the costs of

data processing to unprecedented petascale and exascale regimes. During the exascale

panel discussion at the Supercomputing Conference 2010 in New Orleans LA, the two

applications that were recognized by the panel of experts as baseline exascale candidates

were human brain simulation and Square Kilometer Array (SKA) [SKA] telescope. The

roadmap leading to SKA and exascale computational challenge is punctuated with near-

term telescopes with petascale requirements, namely, Atacama Large Millimeter/Sub-

millimeter Array (ALMA) [ALM], extended Very Large Array (eVLA) [eVL], Low

Frequency Array (LOFAR) [LOF], Australian SKA Pathfinder (ASKAP) [ASK], to name

a few.

With massive data throughput, the traditional techniques for data transport, processing

and analysis will no longer su�ce. The in-depth studies of scalable algorithms, processing

paradigms, complete pipelines and underlying computational architectures etc. are

imperative. The telescope design and data processing are tightly coupled. The end-

to-end large-scale modular simulations provide a constructive test-bed for research and
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development of novel e↵ective and optimal algorithms and solutions.

There is an obtrusive dearth of clearly defined and standardized infrastructure to address

these issues. The end-to-end SIM consists of entire dataflow from the science data

simulation to analysis. While stage-based studies may be performed, a combined

framework a↵ords understanding of interaction and interdependence of various parameters

in the entire dataflow. Moreover, the pipeline simulation allows for systematic exploration

of array configurations and their impact on the success of present and upcoming telescopes.

Such a framework is computationally challenging, however, output of the simulations

generate quantifiable boundary conditions for the experimental phase-space enabling

discovery. The interplay of the parameters is complex and therefore is best suited for

a simulation studies. The simulations have enabled in making the first generation of

statistically meaningful predictions.

The SIM is extremely timely, given that LOFAR is currently online and collecting data,

while the SKA-class telescopes are gearing up in their di↵erent phases of construction.

The SIM simulations are based upon well-tested methods. The recent significant new

developments, both scientific and numerical, which go far beyond anything attempted to

date, are incorporated in SIM namely,

(i) Handling very large volumes with tens of millions of sources with radiative transfer.

This is a crucial development for modeling realistic signals. Especially, since it is

for the first time that the full EoR survey volumes are simulated with precision.

Previous e↵orts had to resort to much smaller volumes, or to less precise semi-

analytical studies.

(ii) Extremely large dynamic range including all active sources, down to mini-haloes,

which are typically neglected, in a dynamically self-regulated and self-consistent

large-scale simulation.

(iii) Simulating the early fluctuating X-ray background in proper EoR context. Each of

these advances by itself re-defines the state-of-the-art in reionization simulations and

has the potential to transform our understanding of this epoch.
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(iv) Complete instrumental response simulation using the state-of-the-art RIME

framework.

(v) Including complete foregrounds and instrumental e↵ects to test calibration limits to

recovering the EoR signal.

The SIM framework provides a flexible mechanism to conduct studies to test the e�cacy

of the instruments and various analyses methodologies, thus allowing the fine-tuning of

the science and technology requirements of the experiments. However, like most of the

models, there are limitations due to assumptions. The key, however, is to minimize the

errors due to assumptions within the desired error budgets and conduct the studies. The

Part III of this thesis demonstrates a few basic studies possible with SIM. More intricate

studies with SIM are proposed in end as future work outside the scope of this research.

The following section provides and overview of SIM.

6.2 SIM Overview

The SIM software framework has four primary software component layers, as shown in

the Figure 6.1, Cosmological Data Layer, SIM middleware, Meqtrees, and Analysis. Some

of these layers are high-performance computing compliant. In other words, the codes are

capable of running on supercomputers. The Cosmological Data layer, for example, uses

OpenMP and MPI to distribute the load across the cluster. In addition, MeqTrees and

parts of the Analysis layer are also HPC compliant. MeqTrees runs on multicores and at

the writing of this thesis has been tested on a cluster. Most of these codes are both compute

and memory intensive. For example, for 114 h�1 Mpc sized volume C2-Ray takes about 60

system hours with 512 MPI tasks on heterogeneous cluster like Stampede (TACC) which

has 6400 nodes each with two Xeon E5-2680 processors and one Intel Xeon Phi SE10P

Coprocessor (on a PCIe card). In the host-device layout, the host is configured with 32GB

of memory with an additional 8GB of memory on the device. The code progressively slows

as the number of the ionizing sources increase at late times. The total data volumes for

the 114 h�1 Mpc are of the order of 60 GB with the output only ranging from 20 GB.

Expectedly, for larger volumes, for example 425 h�1 Mpc , the total data sizes are of

the oder of 800 GB with results only at 200 GB. It should be noted that this is after

significant reduction in the resolution for ray tracing; a step that decreases the dynamic
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range of the simulation and also mitigates the capability to explore small scale physics.

Emerging compute architectures, such as accelerators (Graphics Processing Units (GPUs)

and Xeon Phi), are e↵ective in compute e�cient for ray-tracing type algorithms. There

is an attempt underway to map the ray-tracing algorithms on accelerator programming

models within the codes.

Figure 6.1: The schematic layout of the SIM framework.

6.2.1 Cosmological Data Layer

The bottom most layer of Figure 6.1 is the cosmology data layer that comprises of

CubeP3m and C2-Ray codes. This layer generates the cosmological data. Based upon

the defined cosmology the layer generates coeval boxes for a given redshift range. In the

case of most ionization studies the redshift ranges are 6 < z < 25 � 30. The N-body code

is run separately and the catalog of the halos are generated. Theses halos are the sources

of ionizing photons for the simulation. The density fields are then convolved with a larger

kernel to lower resolution. Thereafter, based upon the source (halo) masses the ionization

photons are propagated in 3D comoving volumes and the ionization history is estimated

for defined time steps. As mentioned above, the data volumes are relatively large. The

C2-Ray code also has checkpointing mechanism built in. Checkpointing is a fault-tolerance

methodology used in HPC where the state of the run are saved to a point so that it is

possible to recover from any unprecedented fault(s). This method also a↵ords flexibility

to the code whereby entire simulation run may be executed semi-contiguously. The coeval

reionization boxes once ready are piped into analysis or prepared for observational run

and piped through the SIM middleware.
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6.2.2 SIM Middleware

The SIM middleware is a collection of codes written in C/C++, FORTRAN, Python,

Matlab, and IDL to facilitate intermediate steps required for the end-to-end simulations.

The middleware is a large part of SIM and solely developed for this research. The multi-

language choice was largely necessitated by the data output formats and in some cases

available solutions. The next version of SIM shall have license-free middleware with focus

on mitigating the platform dependence. Based upon the functionality, the middleware

is divided into the following broad categories - Cosmological Parameter Estimation,

Signal Preparation, Antenna Configuration, Coordinates Conversions, Measurement Sets,

Analyses and Visualization. In the following sections we will elaborate on the disparate

layers of the SIM middleware.

Sky Projection

The co-moving volumes from the Cosmological Data Layer roughly range from redshifts

6 < z < 25� 30 for every 11.5 Myr time interval. Based upon the observational frequency

of study/interest a cube that closely corresponds is selected. This cube has a physical

comoving size of 114 or 425 h�1 Mpc . The cube subtends a solid angle on the sky at

a given redshift. The depth of the cube is represented as the bandwidth in terms of

redshifted 21-cm. The angular size of the cube in the sky is then,

�✓box =
L [Mpc]

DA (1 + z)
[radians] (6.1)

where, L is the proper length of the box on the side in Mpc, and DA is the angular diameter

distance. The bandwidth along the axis of redshift is given as,

�⌫box =
⌫0 H(z) L

c (1 + z)2
[MHz] (6.2)

where, ⌫0 is the rest frame frequency, 1420.4 MHz, and H(z) = H0 (1 + z)3/2
p

⌦m.

The number of pixels on the side of the simulation volume decide the resolution in the

angular and frequency units. For example, for the comoving volume of 425 h�1 Mpc

at z = 8.515(⌫obs ⇠ 150 MHz) the angular size is� ✓ = 3.74� and the bandwidth is

�⌫box = 34.38 MHz. For 504 pixels on the side, the angular resolution per pixel is 26.7300

and the frequency channel resolution per pixel is 68.21 kHz.
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Signal Preparation

The coeval volumes are ionized fractions of the neutral hydrogen and must be converted to

brightness temperature before it could be used for observation. The conversion mechanism

requires the underlying density. The SIM middleware converts the ionized fractions

into temperature (K) and brightness (Jy). The data is zero-mean corrected before it is

converted to physical units. The conversion relation is defined as the di↵erential brightness

temperature with respect to CMB (TCMB) given as,

�Tb =
TS � TCMB

1 + z
(1 � e�⌧ )

⇡

TS � TCMB

1 + z

3�3
0A10T?nHI(z)

32⇡TSH(z)
[mK]

(6.3)

where, TS is spin temperature [Field, 1959], ⌧ is the corresponding 21-cm optical depth

at redshift z, �0 is rest-frame wavelength of the hydrogen line, A10 is the Einstein’s A

coe�cient, T? is the energy di↵erence between the two hyperfine levels ⇠ 0.068 K, and

nHI = (1 + �)hnHi is the mean number density of the neutral hydrogen. The brightness

temperature is converted to Jy by the simple relation 2kBT✓2/�2.

Figure 6.2: The 1 MHz bandwidth signal including the EoR, extragalactic, and Galactic
foregrounds at z = 8.515. The side of image is� ✓ = 3.74� and 425 h�1 Mpc . The image
is 504⇥ 504 pixels.
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The comoving volume is integrated to generate 1 MHz equivalent bandwidth. Unless

explicitly specified all the studies in this research use the 1 MHz channel to study the

e↵ects. This is primarily due to data sizes and computation overload. When testing for

channel dependent e↵ects multi-channel approach is more suitable. The extragalactic and

Galactic foregrounds are re-gridded to match the pixel sizes and numbers of the ionized

fraction data. The foregrounds are originally in mK units and therefore are converted

to Jy. The 1 MHz channels are integrated from the foregrounds as well. At this stage

there are three 1 MHz datasets in Jy, namely, EoR signal, extragalactic foregrounds, and

Galactic foregrounds, that map one-to-one. Simple integration of the channels gives the

sky signal, see Figure 6.2. The figure shows the 1 MHz bandwidth signal including the

EoR, extragalactic, and Galactic foregrounds at z = 8.515. The side of image is� ✓ = 3.74�

and 425 h�1 Mpc . The image is 504⇥ 504 pixels.

Extragalactic and Galactic Foregrounds

The very first propagation e↵ects that distort the redshifted 21-cm signal are the

extragalactic foreground followed by the Galactic foreground. The foreground models

used in the SIM simulations are from Jelić et al. [2010]. The foregrounds from Jelić

et al. [2010] are 5� ⇥ 5�, 0.5 MHz wide, 200 channel cuboids. The cuboids represent the

extragalactic foreground, the galactic synchrotron, and galactic free-free emissions. There

are two separate models for the Galactic foregrounds. The foreground data is in the

units of Kelcin. The SIM middleware remaps the foregrounds to the angular size of the

science (EoR, Dark Ages) data for one-to-one mapping. The data is also converted to Jy

for observations with SIM. For 1 MHz channel, two slices of the cuboids are used from

the frequency corresponding to the observational frequency. As discussed in the previous

section, the 6.2 is the complete sky signal including the extragalactic, galactic, and the

21-cm signal. The di↵use emission lingers below the extragalactic foreground which is

an order of magnitude brighter at 10�6 Jy. The foreground removal is a non-trivial task

and a wide range of e↵orts have been made in the area. While discrete point sources are

calibrated out, the di↵use emission removal require multichannel approach, see [Chapman

et al., 2012, 2013, 2014].
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Antenna Configuration / Coordinates Conversion / Measurement Sets

The three components of the SIM middleware - Antenna Configuration, Coordinates

Conversion, Measurement Sets - work in tandem. The coordinates of the antenna

layout are usually in ENU (East, North, Up) system. When mapped on the Earth

coordinates, the ENU coordinates have no physical meaning and therefore are converted

to the World Geodetic System (WGS84) standard. The WGS84 is an implementation of

the International Terrestrial Reference Framework (ITRF). The fundamental idea of the

coordinate conversion is to place the original ENU layout of an array configuration at a

desired location on the Earth. The location on Earth allows for transformation to the sky

position coordinate system, for example the Right Ascension and Declination. Therefore,

depending on the position of the source and time for observation the UV coverage on the

sky is defined.

The Measurement Set (MS) is a data container for observations. It is defined based

upon the observational parameters. For example, the Table 6.1 shows the observational

details for single 1 MHZ channel observation for total of 10 hours for the field shown in

the Figure 6.2. An empty MS then is used for collecting observational or simulation data.

Each row of the MS contains single visibility and related data.

Observation Frequency 149.3 MHz
Channel Bandwidth 1.0 MHz
Date and Time June 1, 2013, 11:11:11
Integration Time 30 sec

Table 6.1: The observational setup for SKA LOW-1.

In SIM, before any observations are simulated, the signal in the Figure 6.2 must be

projected to the sky centered around the phase center of the MS. Once this is achieved

we have a sky image and are ready simulate observations. The Figure 6.3 shows the sky

signal projected on the sky. This is achieved by adding the appropriate FITS header to

the data payload.

Telescopes

The telescopes simulated in this study are based upon the real-world array configuration

data currently used in the case of LOFAR and o�cially proposed baseline designs for
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Figure 6.3: The 1 MHz bandwidth signal including the EoR, extragalactic, and Galactic
foregrounds at z = 8.515 projected on the sky at RA = 90.5� and DEC = -27.71�. The
side of image is� ✓ = 3.74� and 425 h�1 Mpc . The image is 504⇥ 504 pixels.

the SKA telescope. The underlying science goals ultimately drive the system design of

any telescope array. However, large telescopes are never built for singular science goal.

Therefore, optimally satisfying various scientific goals with a single system design requires

tradeo↵s. In the following sections, the existing and proposed designs are explored for the

uv coverage and baseline distribution that ultimately define the performance metrics for

the science goals..

LOFAR The LOFAR MS was directly obtained from the LOFAR EoR team.

The specific MS used is entitled L80897 SAP000 SB000 uv.MS.dppp.1ch10snew.dppp.

Antenna details from this MS were extracted and used to examine the baseline distribution

and the synthesized beam. The MS for 10 hours and di↵erent observational frequency were

also created using the Antenna coordinates from the original MS. The antenna diameter

(stations) in the MS is 25 m and there are total of 61 stations. The baseline distribution

and PSF, bit naturally and uniformly weighted are shown in the Figure 6.4. Note that an

order of magnitude baselines roughly less tham a km is indicative of a dense core. For the

EoR observation the general strategy is to observe with the dense core to gain sensitivity

and use the longer baselines to build sky models for calibration.
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Figure 6.4: (Left) The baseline distribution for LOFAR. (Right) The synthesized beam of
the entire array, with uniform weighting (red), and natural weighting (blue). The pixel
size in the figure is 1.7500.

The uv-coverage for 10 hours for the LOFAR configuration at 136 MHz observing frequency

is shown in 6.5 (Left). It is noticeable that certain regions of the uv-plane have higher

density. Over density allows to sample the uv-plane completely, however, it also allows for

building redundancy in case of faulty/corrupted stations.

Figure 6.5: (Left) The LOFAR uv-coverage for 136 MHz observing frequency for 10 hours.
(Right) The SKA-LOW for the 150 MHz for 10 hours. The red tracks are the UV tracks
and blue represent the symmetric complex conjugate.
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SKA LOW-1 and Variations We use the proposed SKA Low-1 baseline design (BD)

as the fiducial configuration and make modifications as discussed below. The e↵ective

diameter of a station used in the BD is 45 m giving at field of view of 3.8 deg2 at 160

MHz observational frequency. The diameter of the core is 5.29 km, and that of the arm is

66.51 km. The fiducial configuration, however, use 35 m diameter antenna stations with

866 in the core and 44 in the arm. While studying the baseline distribution of BD SKA

Low-1 we discovered that many antennas in the core overlapped. In the discussions below

we have imposed constraints to correct for this flaw in the original BD configuration.

Array Configuration The BD SKA Low-1 array configuration is a hybrid of open and

closed configurations with a uniformly filled core critical for sensitivity for the observation

of di↵used radiation and long arms to synthesize narrow beams for compact source critical

for calibrating extragalactic foregrounds.

This study uses 30 s visibility integrations to build the measurement sets, therefore, for

large number of antennas the processing is computationally prohibitive. For example,

in case of 500 antennas with 10 hours of observations with 30 s integration time, the

visibility data (single visibility of 8 bytes complex number) 1.19 GB. This is for one

channel and hugely underestimated because MS contains far more data than the 8 byte

visibilites. We address the computational load by reducing the number of antennas in the

core. The reduction of antennas results in incomplete UV coverage leading to side-lobes.

However, by employing tapering the extended sources are easily detectable. Using the BD

SKA Low-1 configuration, we define a new array by incorporating only 10% of randomly

selected antennas from the core (87) and use all the antennas in the arm (44). The

random selection applies the constraint such that no overlapping antennas are selected.

The new configuration SKA Low-1-10 in the ITRF coordinates is shown in Figure 6.6.

We also define arrays that are 2 times and 0.5 times the size of the BD SKA Low-1. The

abbreviated names of the configurations, see Table 6.2, are used in the paper.

UV coverage and Synthesized Beam We define a measurement set (MS) of 10 hours

with 30 s integrations for 1 MHz bandwidth centered at 149.3 MHz pointing at the phase

center with RA = 174:00:00 and Dec = -26.70:00:00, and single polarization. The UV

coverage for the MS is shown in Figure 6.5 (Right). For all of the imaging studies in the
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Figure 6.6: Left: SKA Low-1-10 is the 10% of the SKA LOW1. Right: Core of randomly
selected antennas. The axes are in ITRF coordinates centered at the location with latitude
= �26.7 � and longitude = 116.7 �. The antenna diameter (not shown to scale) is 35 m.
There are total of 131 antennas with 87 in the core and 44 in the arms.

Antenna No. of Antennas Max. baseline
Configuration Core + Arm = Total Core (km)

BD SKA Low-1 866 + 44 = 910 5.29
SL10 87 + 44 = 131 4.22
SL10-2x 3464 + 176 = 3644 8.44
SL10-0.5x 217 + 11 = 228 2.11

Table 6.2: The parameters of the derived configurations used in the studies.

paper we use the single channel of 1 MHz. It is only for the 21-cm tomography more

channels are added. The science and foreground data are integrated on the redshift bins

corresponding to the 1MHz bandwidth at the 150 MHz observational frequency.

The baseline distribution of the entire SL10 configuration is shown in Figure 6.7. The

total number of baselines for the configuration SL10 are 8515, 62% of which are less than

1.5 km. The planarity of the array (and therefore the baselines) is assumed for both the

core and the arm resulting in minimal errors in the synthesized beam. The UV coverage of

the SL10 configuration with the phase center at RA = 174:00:00 and Dec = -26.70:00:00,

at 150 MHz is shown in Figure 6.5 (right). It is evident from the figure that the smaller

baselines form a dense and overlapping (large redundancy) sampling pattern with relative

thinning of the longer baselines.

The Figure 6.8 (left) shows the cross-section of the synthesized beam formed by natural
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Figure 6.7: The distribution of baselines for the SL10 configuration. The ordinate axis is
in log scale.

and uniform weighting for the core of SL10 configuration, and natural weighting for cores

of SL10-2x and SL10-0.5x. The synthesized beam images are sized 2048⇥2048 (300⇥300).

The first sidelobes, Figure 6.8 (right), in the uniform weighting for the SL10 core are

of the order of 5-10% of the peak. This is primarily due to the incomplete sampling

of the UV-plane. The sidelobes are accentuated due 90% missing antenna in the SL10

configuration. The synthesized beam quality study done by Braun [2014] shows that

tapering the synthesized beam results in best response (low noise) at the first width half

maximum (FWHM) of 30000(50).

The FWHM of the synthesized beams are tabulated in the Table 6.3.

Antenna FWHM
Configuration (0)

SL10 Core (natural wt.) 2.37
SL10 Core (uniform wt.) 0.96
SL10-2x Core (natural wt.) 1.18
SL10-0.5x Core (natural wt.) 4.74

Table 6.3: The first width half maximum of the synthesized beams at 150 MHz.



CHAPTER 6. SIMULATING INTERFEROMETRY MEASUREMENTS (SIM) 88

Figure 6.8: Left: The beam cross-section for the cores of SL10, SL10-2x and SL10-0.5x
showing natural and uniform weighting. Right: The closeup of the sidelobes.

Analyses and Visualization

The final layer of the SIM middleware is Analyses and Visualization. The analyses is

performed at two stages of data flow. One, directly at the comoving volumes, such

as, power spectrum, morphological analyses, cross-correlations etc. Two, after the data

is processed observational simulation. At this stage the power spectrum is still valid

and provides a strong comparative before and after study. This technique is far more

robust and insightful and next step to the commonly used Fisher analyses for single k

or image plane PSF convolution studies. For the single channel images, radio astronomy

metric such as the Image Fidelity and Dynamic Range were explored. However, these

techniques were not able to capture the performance at di↵erent scales. In this thesis

a new technique is developed entitled Spherically Averaged Spatial Spectrum (SASS) to

examine the performance of the noise and convolution due to synthesized beam for the

single channel data. This technique is described in detail in the next section.

Spherically Average Spatial Spectrum (SASS) The image quality in synthesis

imaging is measured in terms of the dynamic range or the image fidelity [Cornwell et al.,

1993]. The dynamic range is the peak brightness to the RMS noise of the image. Image

fidelity on the other hand is the ratio of observed image to the di↵erence of the observed

and true sky model. Both these techniques have their merits and demerits. While the

dynamic range is localized, the image fidelity assumes the knowledge of the true model
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and returns a single number left for interpretation.

One of the primary science goals for the SKA class telescopes would be to image the

H II regions. Hence it is imperative that the response of the configuration is known as

a function of the observed spatial sizes. This is best captured by the radially averaged

spatial spectrum of the image. This is same as the power spectrum, however, to avoid

confusion with the power spectrum as used in the EoR studies, we term this metric as

the spherically averaged spatial spectrum. This metric captures the entire image and is

Figure 6.9: The spherically averaged spatial spectrum of the pristine sky model with SL10
full (blue) and core (red) configuration.

useful in examining variations across the large field-of-views. In addition, the technique

is sensitive to the power at various scales. For a 3D data cube or a 2D averaged channel

data, 3D or 2D Fourier transform is estimated respectively. Thereafter, the power in

the concentric k values is averaged to genrate a 1D spectrum. The Figure 6.9 is the

1D spatial spectrum comparing the pristine signal with the SL10 configuration using the

full and the core configuration. The spatial spectrum is plotted as the unit-less quantity

�2(k) = P(k) k3/2⇡2, where P(k) is the spatial spectrum of the image measured in image

units, Jy/Beam or Jy. Note that this method radially averages the power when used

on single channel images. The quantity� 2(k) is related to the variance of the signal as

⇡ d�2/d lnk. The spatial spectrum represents the variance in the d lnk bins. From the
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Figure 6.9 it is evident that the core is sensitive to scales smaller than k < 2.5 Mpc�1 while

the full configuration with longer baseline with higher resolution is sensitive to k < 3.5

Mpc�1. It is also evident that the core is more sensitive to larger scale structures by an

order of magnitude. The sensitivity of the core drops below the full configuration at scale

k ⇠ 0.65 Mpc�1. These results are based upon synthesized beam without tapering.

6.3 MeqTrees

The code MeqTrees forms the observational layer of the SIM framework. The details of

MeqTrees are explained in the seminal paper by Noordam and Smirnov [2010]. The code

implements the RIME [Smirnov, 2011a,b,c,d] and serves the purpose for simulations and

third generation calibrations of the real world data. In their paper, Noordam and Smirnov

[2010] demonstrate calibration of WSRT field around the bright source 3C147 and achieve

the dynamic range of 1.6 ⇥ 106.

MeqTrees uses directed acyclic graphs (DAGs) to build computational sequences for

visibility predictions per frequency per integration. A single monochromatic visibility

representing 10 s of integration is M (2⇥ 2 matrix) MH computations, where M is Jones’

chain. For N(N-1)/2 baselines, bandwidth, and exposure time these computations steeply

scale. The DAGs lend to the e�ciency of the computation.

A DAG (tree) is a hierarchical relational construct (parent, child, friend, etc.) of nodes

that represent the state of the data. The nodes are functionals and operate upon the

data. This a↵ords the code to be highly modular and flexible. In other words, additional

functionality in the form of nodes is introduced later without disrupting the code. The

implementation of the RIME equation of the form,

Vpq = Gp

 
NX

k=1

JpBJH
q

!
GH

q , (6.4)

is implemented in MeqTrees as a relational tree of nodes such as MeqAdd,

MeqConjTranspose, MeqMatrixMultiply and so on. The Figure 6.10 shows this relational

subtree schematic of the implementation of the RIME equation 6.4. There are various such

subtrees for di↵erent time, frequency, antennas, and so on. In its totality the complete
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state representation is called a forest. Note in the figure, the 2⇥ 2 matrices for gains(G),

Jones’ (J), and coherency matrix (B) are operated upon by functional nodes, such as,

MeqConjTranspose, MeqAdd etc. In terms of propagation e↵ects, the G and J represent

the direction independent and direction dependent e↵ects respectively.

Figure 6.10: The subtree of a RIME implementation.

In MeqTrees the visibilities of the local sky model (LSM) are predicted in di↵erent ways.

For the discreet point sources, the intensity, I(l,m), is converted to coherency matrix,

B(u, v), using discrete Fourier transform to predict the visibilities. For the sky images

with di↵use or extended sources, an FFT with degridding generates B(u, v). In MeqTrees

this is implemented as a node called UVBricks [Abdalla, 2009, Nijober, 2005] by using

nodes MeqFFTBrick and MeqUVInterpol.

Meqtrees is a client-server architecture. The client builds the tree which is solved by

the server. The interactive client for the MeqTrees is called MeqBrowser. Since MeqTrees

is based on Python, the client side could be written as scripts and run non-interactively.

There is inbuilt parallelism in MeqTrees. However, the application is not HPC ready yet.

There are many ongoing e↵orts to make it more advanced.



Part III

Applications and Results



Summary

So far we have explored the scientific background, motivation, and developed the

techniques/tools needed to conduct this research. We have developed new sets of

simulation data that include di↵erent models of observed Lyman-limit systems and

techniques of radiative transfer to study their e↵ects on the reionization. We have

consolidated state-of-the art tools into a framework named SIM to explore the wide range

of propagation e↵ects on the original 21-cm signal. We have also explored employing high-

order statistics such as bispectrum to examine the underlying primordial non-Gaussianity

as captured by the ionization epoch.

In this part of the thesis we will go over the analyses of each of the three applications,

namely, LLS, propagation e↵ects, and primordial non-Gaussianity, in detail, and discuss

the results.

The motivation of this e↵ort is to highlight the scope and significance of the

techniques/tools in exploring the wide phase space of theory and observational planning.



Chapter 7

Lyman-Limit Systems Analyses

7.1 Results

We summarize the results of the analyses of the LLS simulations in the following section.

7.1.1 Globally Averaged Quantities

The Figure 7.1 shows the evolution of the globally averaged mass-weighted hxmi and

volume-weighted hxvi ionized fractions of the three models as the function of redshift.

In both the top and the bottom panels of the figure we note that the divergence of the

models start at z = 14 and becomes pronounced at z ⇠ 10 � 11. While the ionization

starts closer to denser regions, the shorter mean free paths for the LLSs delay the overall

process of the expansion and merging of the H II regions. The volume without LLS reaches

the ionization global average hxvi = 0.98 at z = 8.34, while for LLS1 and LLS2 the same

ionization levels are reached at z = 7.61, and z = 7.71, respectively.

The top panel of the Figure 7.1 shows the ratio xm/xv, while the bottom panel shows

only the averaged xm. The ionized factions are global averages and the angled-brackets

have been simply dropped for brevity. From the top panel it is quite evident that the

mass-weighted ionized fraction is significantly higher than the volume-weighted fraction.

The higher value of xm is consistently maintained throughout the course of the simulation

for all the three models. This means that the reionization is inside-out, that is, the dense

regions surrounding the sources are preferentially ionized first yielding higher xm averages.

The ionization fronts expand outwards eventually reaching the less dense regions and voids.

The ratio xm/xv is the mean over-density of the ionized regions [Iliev et al., 2006] as shown
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below,

Figure 7.1: (Top) The ratios of mass- and volume-weighted, xv, vs. redshift z; and
(Bottom) Evolution of the ionized fractions: log of mass-weighted, xm, for the three
simulations L1, LLS1, and LLS2.
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where, ⇢̄ is the mean density of the Universe. The Figure 7.1 indicates that the ratio

remains mass dominated (> 1) for all the models, while LLS cases reach the ratio of 1

much later. This is because less dense regions such as voids do not have ionizing sources

and therefore require photons from afar to get ionized. The simulations LLS1 and LLS2

reach the numerical ratio value of 1.003 at redshifts z = 7.76 and z = 7.617 respectively,

while for the L1 model the value is reached much earlier at redshift z = 8.397, thereby,

delaying the ionization by� z = 0.78 � 0.64.

The ratio of the two ionized fractions, xm/xv, is in fact equal to the average gas density in

the ionized regions in the units of the mean density of the Universe. This is a manifestation

of the predominantly inside-out character of reionization. The high-density regions and

local density peaks surrounding the sources are ionized first. The ionization fronts then

expand further into both high- and low-density nearby regions, with the material in the

large voids getting ionized last. The highest-density cells are almost instantly ionized and
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remain ionized throughout the simulation, while the lower-density cells take progressively

longer to become ionized. Higher-density cells are on average always more ionized than

lower-density ones. Naturally, closer to overlap the average density of the ionized regions

approaches the global mean density, and both high- and low-density cells become mostly

ionized.

7.1.2 Photon Statistics

The reionization period is defined by the complex interaction and evolution of the ionizing

photon sources and sinks. In the simulations the sources of the ionizing photons are the

halos. The very first of the insuppressible halo forms around z ⇠ 21. For a more in-depth

study of the mass and the number density distribution of the halos see Iliev et al. [2012].

The clustering of halos defines the photon emanating regions and sets the initial conditions

for the formation and evolution of H II regions. The mean free path is dominated by the

size of the ionized regions in the IGM. While the LLSs continue to absorb the ionizing

photons, it is only towards later times (z ⇠ 14�10) that the absorption contributions due

to the LLSs become dominant.

Figure 7.2: The Thomson electron scattering optical depth, ⌧es(z) integrated for simulation
redshifts for the cases, L1, LLS1, and LLS2. Horizontal lines indicate the mean and 1-�
limits derived from the WMAP-9 year.

The photon and baryon populations in the simulations are recorded to extract statistical

properties of interest. The Figure 7.2 shows the integrated Thomson electron-scattering



CHAPTER 7. LYMAN-LIMIT SYSTEMS ANALYSES 97

optical depth, ⌧es, for the three ionization cases as the function of redshift. Also plotted

are the WMAP-9 mean optical depth estimates with 1-� spread. All the three optical

depths fall within the 1-� range of the observed values. The values of the optical depth,

⌧es, in the simulations at z = 25.33 for L1, LLS1, and LLS2 are 0.0819, 0.0796, and 0.0788,

respectively. The optical depth in the presence of LLS is diminished by about ⇠ 0.002.

This is expected as there are overall less ionized electrons available for scattering the CMB

photons. The three ionization histories are the result of available ionizing photons from

Figure 7.3: The cumulative number of ionizing photons per total gas atoms in the
simulation volume for the three ionization case, L1 (blue), LLS1 (red), and LLS2 (black).
The arrows label the respective Nphot/Natoms values and the corresponding redshifts of
the overlap.

the sources. The Figure 7.3 shows the cumulative number of photons per baryons as the

function of redshift. At the end of the ionization for the three cases, the photons per

atoms are twice as many for the LLS case. The LLSs, therefore, absorb an approximately

1 extra photons before reionization is completed with not much di↵erence between the

two LLS cases. Their e↵ect dominates over the recombinations included in the simulation

which only have consumed 0.5 photon per baryon by the end of reionization.

7.1.3 Morphology of the H II Regions

The morphology of ionized regions is complex. We use several methods to quantitatively

study the H II region sizes, distribution, and evolution in the presence of the two LLS

models. These methods, as discussed below, provide complementary information.
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One of the expected outcome of di↵erent mean free paths, `(z), of the ionizing photons

of di↵erent LLS models, is that the varying evolution of the size distribution of the H II

regions and the consequent ionization fraction history. Once the H II regions grow larger

than the mfp in certain directions, not all sources inside the region can contribute to their

growth and therefore they will not grow as fast as in the case without LLS. The H II regions

can still grow larger than the mfp because they are driven by many sources some of which

lie closer than the mfp to the edge of the region.

Evolution of the H II Regions

The Figure 7.4 shows examples of the morphologies and growth of the ionized patches in

the presence of the varying model-dependent mean free paths, `(z). The top panels show

the ionization history of the fiducial model L1 (case without LLS) spanning redshifts,

z = 16.9-8.5, approximately 370 million years. The panels from left to right show the slow

ionization process, which reaches mass weighted ionized fraction of 1% only at z = 16.9,

even though the first halos in the simulation (with M > 108 M�) form at z = 21.

The halos are strongly clustered about the high density peaks. This is common throughout

the duration of the simulation, but even more so at the higher redshifts. The complexity of

the non-symmetrical morphologies grow as the ionization progresses and the smaller H II

regions merge. To gauge the resolution of the simulation and the evolving physical sizes

of the H II regions, the volume of a given H II region is estimated using the time derivative

of the Equation 5.4, [Friedrich et al., 2011]. The minimum volume, Vmin, of the emerging

H II region is,

Vmin =
dN�

dt

�ti
nH

(7.2)

where, N� is the total number iof ionizing photons from a halo of mass M , �ti is the

radiative transfer simulation time step and nH = ⌦b(⇢crit/µmp) is the number density

of hydrogen. The recombinations are ignored in this estimate and therefore it provides

an overestimate. For the time-step value of� ti = 5.75 ⇥ 106 yr, the smallest volume

is Vmin = 0.1361 Mpc3. In comparison the cell volume of the simulation box of size 114

h�1 Mpc is ⇠ 0.25 Mpc3, which is 1.8 times larger than Vmin. This is the reason the H II

regions remain unresolved in the early stages of the simulation and appear on the maps
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as partially ionized cells. However, by 10% ionization at z ⇠ 13, the H II regions are large

enough to be visible. The rapidly growing sizes and the mergers of the ionized regions are

shown in the right panels on the top. The total volume of the simulation box is 4.32⇥ 106

Mpc3 with the resolution of 2563 cells, leading to the volumetric dynamic range of the

simulation of the order ⇠ 107.

The bottom three panels of Figure 7.4 emphasize the morphological and topological

di↵erence between the three simulation models. The three spatial ionization slices compare

the global ionization of hxmi = 50% for models, L1, LLS1, and LLS2. The most immediate

features visible are the di↵erent sizes of the larger H II regions, especially between the non-

LLS and the LLS models. This is indicative of the e↵ect of LLS that slows down the

merger process. In the case of models LLS1 and LLS2 the di↵erences in shapes and sizes

of the ionized regions are not severe, however, in detailed statistical analysis discussed

below, some di↵erences emerge. As expected, the slow growth of ionized regions delays

the complete ionization for LLS simulations.

Figure 7.4: (Top) Spatial slices of the ionized hydrogen for the 114 h�1 Mpc box for the
L1 case with no LLSs at di↵erent ionization fractions and redshifts. From left to right
- hxmi = 0.1, 10.0, 75, and 95% at z = 16.9, 13.2, 8.892, and 8.515. (Bottom) Spatial
slices for three models at hxmi = 50%. From left to right, models L1, LLS1, and LLS2 at
redshifts z = 9.4, 9.3, and 9.1.
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7.1.4 Size Distribution of H II Regions

In this section we quantify the results seen in the Figure 7.4 by using three di↵erent

methods to study the size evolution of the H II regions in the numerical simulations of the

reionization with two di↵erent LLS models, LLS1 and LLS2, and compare them against L1,

the case without LLS. The statistical property measured in this analysis is the probability

function of the volumes (radii) of the H II regions. The three approaches employed to

estimate these size distributions are the friends-of-friends (FoF) [Iliev et al., 2006], the

spherical average (SPA) [Zahn et al., 2007] and 3D power spectra methods. All of these

algorithms di↵er in their approach of defining the size of the H II regions as discussed

below. However, the di↵erent techniques complement each other and together provide

greater insight into the morphologies and the evolution of the H II regions.

Friends-of-Friends

The friends-of-friends (FoF) algorithm operates on the ionized fractions and generates

a catalog of ionized H II regions. For the desired ionization threshold, xth, the algorithm

connects all the ionized neighboring cells and classifies them in a friendship based topology

using the ‘equivalence class’ or ‘sameness’ method of the Numerical Recipes [Press et al.,

1992]. The H II regions catalogs based upon the ionization threshold and volume size are

thus generated. These catalogs provide detailed insight in the evolution of the number

densities and size distributions of the topologically-connected ionized regions. This method

was first introduced in Iliev et al. [2006].

The FoF H II region catalog is strongly dependent on the free parameter, the ionization

threshold value xth. In Figure 7.5 we illustrate the e↵ect of this parameter in estimating

the sizes of the H II regions. Shown is the probability distribution function at di↵erent

friends-of-friends threshold values xth = 0.1, 0.5, and 0.9, versus the volume size of the

H II regions for the no LLS model at the global ionization of hxmi = 0.5 that occurs at

z = 9.457.

For a quick visual inspection of the regions, the slice from the data cube corresponding

to the same redshift, is shown in the bottom left panel of the Figure 7.4. At the global

ionization fraction of the order 50%, the dichotomy of many small and one very large,
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Figure 7.5: The e↵ects of three di↵erent thresholds, xth = 0.1, 0.5, and 0.9, in the FoF
method for the ionization simulation for the L1 (no LLS) case at z = 9.4 with global
ionization fraction of hxmi = 0.5. The two arrowheads on the abscissa, from left to right,
mark the volume of a single cell (0.25 Mpc3) and the volume of the box (4.3⇥ 106 Mpc3)
respectively.

connected region is evident for all the thresholds. As is evident in Figure 7.5, for the

threshold of 0.1, the FoF algorithm over-links the H II regions, resulting in almost all

being merged into the one large, connected region through partially-ionized ‘bridges’. In

contrast, for the threshold values of xth = 0.5, and 0.9 the resulting distributions are

relatively similar. The higher threshold value of 0.9 results in the large, connected region

taking a significant fraction of the volume to break up into several smaller regions. For

consistency the threshold value of xth = 0.5 is used throughout the analyses.

The topological evolution of the H II regions for the L1 and LLS2 models is shown in

Figure 7.6 for the threshold value xth = 0.5. The di↵erence between the two LLS models

was not discernible in the FoF analysis, therefore only one model comparison is shown

in the Figure 7.6. The color represents the probability distribution dp/dV . It is evident

from Figure 7.6 that the H II regions grow as the ionization fraction increases up to a

point where the volumes of the regions separate into two populations comprising of very

large and relatively smaller sized regions. The emergence of the dichotomy is primarily

due to the merging of smaller regions into a larger volumes as the ionization fronts travel

outwards from the higher density areas. As expected, the larger H II regions of the order
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Figure 7.6: Size distributions of the ionized H II regions using the FoF method for the
models L1 (left) and LLS2 (right) as a function of the redshift. The threshold used is
xth = 0.5. The colors correspond to the log10 scale of the V dp/dV . The two arrowheads
on the ordinate (right), from bottom to top, mark the volume of a single cell (0.25 Mpc3)
and the volume of the box (4.3 ⇥ 106 Mpc3) respectively.

of ⇠ 106 Mpc3 appear slightly earlier in the L1 (z = 13.48) case as compared to the LLS2

(z = 12.31) model. Another di↵erence between the the two models is that the largest of

the “small” H II regions disappear faster in the L1 case than in the LLS models. This is

indicative of fewer mergers in the LLS cases as these regions only disappear when they

merge with the larger regions. Towards the end of the ionization, the contribution to the

global average of the ionization rate is largely due to largest regions. For the no LLS case

L1, at z = 8.34 (hxmi = 0.99), the second largest H II regions are 50% smaller compared

with the similar population in the LLS2 simulation. This emphasizes the trends we have

noticed earlier where the ionizing photons of the shorter mean free paths are absorbed

and fail to contribute in the formation of H II regions that grow and merge. In both the

no LLS and LLS scenarios we notice that when the ionization reaches 10%, there are two

distinct populations of H II regions that emerge and begin to diverge; more steeply for the

no LLS mode. Largest volumes are of the order of volume of the entire box. The single-

cell populations of H II regions also contribute throughout the ionization history but are

limited to the cells. From the observational perspective, the large H II regions could be

directly imaged with SKA-class interferometers. The volume distribution of such regions

may help put limits on the mean free path and therefore on the LLS models.
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Spherical Averaging

The second algorithm to evaluate the size distribution statistics was developed in Zahn

et al. [2007]. The numerical scheme in the spherical averaging technique constructs spheres

of varying radii around each cell in the ionization simulation and estimates the enclosed

ionization fraction. The largest spheres with ionization fraction greater than the defined

threshold xth define the spherically averaged H II regions. In contrast to the FoF method,

the SPA technique yields a smoother and spherical distribution function, biased towards

the shorter axis of a triaxial structure.

The SPA analyses highlight similar behavior in the evolution of the ionized regions as seen

earlier with FoF method. The shorter mean free path for the LLS simulation a↵ects the

growth as measured in the radii of the spherical regions. In Figure 7.7, the solid, dashed,

and dotted lines correspond to the 50%, 70%, and 90% global ionization rates respectively.

The color motif remains the same throughout the paper with L1 (blue), LLS1 (red), and

LLS2 (black). The corresponding redshifts for which the distributions are estimated for

the two models are LLS1: z = 9.236, 8.636, 8.172 and LLS2: z = 9.164, 8.515, 8.812. The

vertical lines are the mean free path for the two LLS models as shown in the Figure 5.1.

These lines are plotted for radii at 50 and 90% ionization.

It is evident in the Figure 7.7 that the smaller radii (< 0.2 � 0.3 Mpc) for all the three

models are relatively of the same size at di↵erent stages of the ionization history. However,

for the larger radii (> 0.3 Mpc) the di↵erences in the probability distributions between L1

and both the LLS models emerge; especially as the ionization progresses. For example,

at the 50% and 70% ionization stages, the radii in L1 simulations compared to the LLS

models are larger by factor of ⇠ 2 � 3. This trend is also evident in longer mfp LLS1

model. At 90% ionization most of the H II regions have merged and therefore the spherical

volumes appear the same. In addition, at radii values reaching ⇠ 80 � 90 Mpc the H II

regions are as big as the simulation box (R114 = 81.42 Mpc). The spherical averaging

algorithm reaches its limits at this stage.

The maximum radii di↵erence between LI and LLS2 for 50, 70, and 90% ionization varies
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from roughly 18, 33, to 18%. Another characteristic that is apparent from the SPA

analyses is that for early times the smaller spheres for the LLS2 ionization model make

the most contribution to the probability distribution, R dp/dR. However, this behavior

is not so obvious at later times. This is attributed to slow growth of the H II regions in

the LLS simulations and hence the larger population of smaller bubbles. In contrast, the

bubbles of larger radii merge early for no LLS model. When the ionization reaches 50%,

the maximum radii of the H II regions are comparable to the mfp, more for the LLS2 model

than for LLS1. However, as the ionization progresses, the radii of the H II regions grow

beyond the mfp due to mergers.

These results are consistent with ones from FoF method. The unimpeded ionizing photons

in the L1 model noticeably di↵erentiate the ionizing history from that of the LLS models.

There is not much di↵erence between the LLS ionizing histories themselves, with radii less

than 10% di↵erent at di↵erent stages of the ionization rendering them hard to distinguish.

Figure 7.7: Probability distribution function R dp/dR per radial bins of spherical H II

regions as measured by the spherical averaging algorithm for the no LLS (L1, blue), and
LLS models (LLS1, red) and (LLS2, black.) The three sets are for the mass-weighted
global ionization fraction hxmi = 50% (solid), 70% (dashed), and 90% (dotted). The
threshold used is xth = 0.9. The vertical lines correspond to the mean free path for the
two LLS models as listed in Figure 5.1 for the 50% and 90% ionization fraction.
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Ionized fraction Power Spectrum

The third method for the volumetric analyses is the power spectrum of the ionized

fraction field. The power spectrum is a measure of the contribution from di↵erent spatial

frequencies and therefore is sensitive to the underlying structures. In the case of the

ionization filed, the di↵erent sizes of the H II regions are captured in the spatial frequencies.

The Figure 7.8 shows the dimensionless power spectrum per comoving wavenumber, k

[Mpc�1h], of the ionized fraction field at ionization stages of 70% and 90% for all the

three models, and is calculated as the dimensionless quantity,� 2
x(k) = k3P (k)/2⇡. The

power spectrum is the radially averaged 3D Fourier transform of the ionization fraction

volume. At the 70% ionization stage, see left panel of Figure 7.8, the steep slope at the

large scales highlights the mergers of the H II regions. The size of the H II regions for all

the three models peak at k ⇠ 0.9 and quickly merge to larger scale. As the reionization

progresses and reaches to 90%, see right panel, the slope on the small scales also steepens

indicating the decline of smaller regions as the ionization reaches towards completion. The

peak in this case shifts towards smaller value of k ⇠ 0.2. It is evident in the figure that at

large scale features (k < 0.3 Mpc�1h) the power due to the H II regions is larger by a factor

of 2-3 for the L1 (non LLS) case in both stages of ionization. However, as the ionization

progresses, reaching 90%, the contribution from the small scale features (k > 0.5 Mpc�1h)

diminishes, indicating relatively larger H II region for L1 compared to LLS cases.

7.2 Observing Redshifted 21-cm

The first generation of radio telescopes will focus on statistical quantities, such as the

power spectrum, of the neutral regions. The comprehensive studies of the 21-cm power

spectra evolution help identify preferred wave-numbers that in turn help define the next

generation array layouts. The discussion below explores the 21-cm signal with brightness

temperature fluctuations and 21-cm power spectra. In addition, we discuss some of the

observable signatures of cosmic reionization based on the redshifted 21-cm emission from

neutral hydrogen expected to be detectable quantities for the current and upcoming 21-cm

experiments.
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Figure 7.8: The log-log plot of the dimensionless 3D power spectra of the ionized fraction,
at hxmi = 70%(left) and hxmi = 90% (right) for the three models.

7.2.1 RMS of the 21-cm background

The di↵erential brightness temperature of the redshifted 21-cm emission with respect to

the CMB is given by the spin temperature, TS, of the neutral hydrogen and its density,

⇢H I , and at the limit such that TS � TCMB is given by [Field, 1959],

�Tb =
TS � TCMB

1 + z
(1 � e�⌧ ) (7.3)

where, z is the redshift, TCMB is the temperature of the CMB radiation at z, and ⌧ is the

corresponding 21-cm optical depth.

As seen in the previous analyses, the overall e↵ect of the LLS is to slow the ionization

process and impede the growth of the H II regions. This should manifest as two

observable properties. One, the peak of the brightness temperature fluctuations for the

LLS simulations should be delayed and therefore should be visible at relatively higher

frequencies; and two, the amplitudes of the peaks should be diminished due to the relatively

smaller size of the H II regions in the LLS simulations.

The Figure 7.9 shows the evolution of the RMS fluctuations of the mean di↵erential

brightness temperature for the three simulation models as convolved with LOFAR-like

boxcar beam of size 30 at bandwidth of 0.2 MHz. As depicted in the figure, at lower
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frequencies (early times) the fluctuations for all the three models are similar and closely

track each other. The temperature fluctuations peak at 141 MHz for the L1 model and 147

MHz for the LLS1 and LLS2 models. The peak value of the brightness temperature RMS

for the L1 model is 6.06 mK with the brightness temperature of 16.66 mK. The RMS is

lower about 9% and 8.7% for LLS1 and LLS2 models respectively. The temperature

fluctuations RMS vs. the mass-weighted ionization global average are shown on the

right side of the Figure 7.9. The brightness temperature fluctuations are again seen

following each other very closely at early times. However, as the ionization reaches 20%

the temperature fluctuations for di↵erent models start to diverge and peak at about 65-

70% of the ionization stage. Whereafter, the temperature fluctuations subside and are

indistinguishable as the ionization completes.

Figure 7.9: The evolution of the RMS fluctuations of the 21-cm background, for beamsize
30 and bandwidth 0.2 MHz and boxcar filter vs. frequency (left) and vs. average ionization
(right). The simulations shown are L1 (blue, solid), LLS1 (red, dashed), and LLS2 (black,
dotted).

As mentioned earlier, these di↵erences in brightness temperatures are manifested by the

varying distribution and growth of H II regions in the di↵erent models as seen in the

statistical analyses of previous sections. These fluctuations have been averaged over by

LOFAR-like beam and bandwidth. This is a simple first order estimation. Detailed and

more accurate estimates require defining a noise budget including system temperatures,

gains and phase errors, along with propagation e↵ects (foregrounds, ionosphere etc.) and

telescope based visibility sampling functions. Expectedly, increasing bandwidth reduces
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the RMS as the fluctuations for a wider bandwidth are smoothed out. The increasing of the

resolution of the beam increases and broadens the RMS. This is also expected as a smaller

beam is sensitive to small scale fluctuations that are smoothed out by larger beams. Similar

to the analyses in the previous sections, the di↵erences are more pronounced between non-

LLS and LLS models. However, based solely upon brightness temperature fluctuations it

will be non-trivial to distinguish between the LLS models, see Figure 5.1.

Figure 7.10: From the top are the three images from simulations LLS2, LLS1, and L1 for
the box size 114 h�1 Mpc . The images depict the position-redshift/frequency ionization
brightness temperatures. The abscissae of the images correspond to redshift range from
z = 8.3-11.1 and equivalent observational frequencies (⌫obs [MHz]). The ordinates of
the images are the comoving spatial dimension of 114 h�1 Mpc and 4 times that in the
abscissa. The images show the di↵erential brightness temperature in log scale (log10 �T
[mK]) at the full grid resolution. The images are corrected for redshift-space distortions
due to the peculiar velocities.

7.2.2 Evolution of the patchiness

The Figure 7.10 shows slices through the simulation cubes along the redshift (frequency)

axis. The ionized fraction of the simulation cubes is converted to the 21-cm emission
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di↵erential brightness temperature, shown in log scale in mK, for the three models, shown

from the top, L1, LLS1, and LLS2. For the desired range of redshifts, the data from the

cubes is interpolated along the redshift/frequency axis. The interpolation is performed

along the plane with an oblique angle of 10� across the cubes in order to observe di↵erent

structures along random line of sight. The simulation evolves the same volume over time

and therefore has same H II regions spatially distributed. To interpolate across them along

the same coordinates will generate evolution image of the region with repetitive features

unlike what the telescope arrays will observe. A slice at an angle captures di↵erent features

and mimics a relatively realistic image along the ling of sight. The neutral regions are

shown in red and the H II regions cover the dynamic range through blue as shown by the

color bar of the Figure 7.10. No corrections for the redshift space distortions are applied.

In Figure 7.10 it is evident that at high redshifts the H II regions are small and distributed

sparsely. These regions closely trace the ionizing halos. The e↵ect of the di↵erent mfps

of the the three models on the ionization becomes visually evident at redshift z ⇠ 9.8

increasing with lower redshifts. The H II regions for the three models grow and merge at

di↵erent pace. For this reason by redshift z ⇠ 8.3 the L1 model is fully ionized while the

models with LLS the mass weighted global average ionization for LLS1 is hxmi ⇠ 83% and

LLS2, hxmi ⇠ 78%. The spatial axis at redshift z = 9.457 subtends an angle of ⇠ 0.97�

in the sky with each pixel of 13.7600. Without any astrophysical and instrumentational

propagation e↵ects the H II regions at lower redshifts are large enough to be directly

observed by arrays with ⇠ 10 angular resolution capabilities. The e↵ect of the observation

due to synthesized beam smoothes the fine structure but the statistical measurement of

the temperature is still achievable.

7.2.3 Power Spectrum of 21-cm

The di↵erential brightness temperature distribution, �Tb, is defined as,

h

g�T ?
b (k)f�Tb(k

0)i = (2⇡3)P21(k)�(3)D (k� k0) (7.4)

where, f�Tb is the Fourier transform of the di↵erential brightness temperature, g�T ?
b is

the complex conjugate, P21 is the spherically averaged power spectrum, and �(3)D is the

three-dimensional Dirac delta function representing the sampling function of the Fourier
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transformed quantity. The power spectrum is in the units of mK2 and is also used in the

dimensionless form as following,

�2
21-cm(k) =

k3

2⇡2
P21(k) [mK2] (7.5)

There are various schemes for estimating the power spectrum. In this paper, the results

from the mesh-to-mesh real-to-redshift-space mapping (MM-RRM) methodology [Mao

et al., 2012] are used. Also see Appendix B. The MM-RRM uses the ionization fraction,

density, and velocity files as input to estimate the power spectrum. This methodology

takes into account the e↵ects of redshift space distortions and predicts accurate estimates

of the 21-cm background with the caveat that at k256N /4 < 1.75�1 Mpc�1h the errors in

the estimated PS are large.

Figure 7.11: The 3-D spherically averaged 21-cm di↵erential brightness temperature
fluctuation power spectra for models L1 (blue), LLS1 (red), and LLS2 (black) at mass
weighted global ionization of 25% (solid lines), 50% (dashed lines), and 75% (dotted lines).

The measurement of the power spectrum lends itself naturally to the radio interferometric

observations since the visibilities of the interferometric measurement are sampling the

Fourier transform of the sky and the power spectrum is the Fourier transform of the two-

point correlation function.

Figure 7.11 shows the 21-cm dimensionless di↵erential brightness fluctuation power spectra
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of the three models at three representative stages, global ionization average of 25%, 50%,

and 75%, of the reionization. The most distinct characteristic visible in the figure is that

the fluctuations in the brightness temperature at large scales ( k < 2 Mpc�1h) grow by

two orders of magnitude for the fiducial L1 case and less than an order of magnitude of

the LLS cases. This is a signature of the larger H II regions causing larger temperature

fluctuations. The smaller fluctuations, on the other hand, flatten out as the ionization

progresses. Another noteworthy feature is the divergence of the fiducial L1 model with

the LLS models at the largest scales of the simulations.

Figure 7.12 shows the evolution of the power spectra with redshift for the three models

for two k values, 0.05 and 0.9 Mpc�1h representing large and small scale fluctuations

respectively.

The features in the 21-cm power spectra are consistent with the prior analyses. The

recurring theme in the analysis of size and distribution of the H II regions is that for

the LLS models the growth of ionized regions is obstructed and ionization is delayed.

This is well captured in the 21-cm power spectra, defining implications for the upcoming

experiments. For both the scales (k = 0.05 and 0.9 Mpc�1h) the observational frequency

range from 140-150 MHz is where signals peak and the models are most di↵erentiable.

For large-scales (k = 0.05 Mpc�1h) the signal also goes to minimum in 123-127 MHz

range with the lowest signal occurring for LLS2 followed by LLS1 and L1 models. While

the depression in the signal is only 15% the significant di↵erence occurs at peak with L1

rising by 27% and 31% excess for LLS1 and LLS2 models. As can be noted, the di↵erence

between the two models is 0.63 mK2. For small-scales (k = 0.9 Mpc�1h) the spectra

peaks very early on at z = 17.85 corresponding to redshifted 21-cm at 75 MHz. This is

region of the power spectrum where the models are virtual identical. The next peak for

the small-scale features tracks the large-scale but occurs slightly earlier at 133 MHz range

with the corresponding dip occurring at 117 MHz.

It is discernible in the evolution of the power spectrum, both at small (k = 0.9 Mpc�1h)

and large-scales (k = 0.05 Mpc�1h), that the peak in the power are delayed for the LLS

cases. This lag in the ionization process is due to the longer mfp of the ionizing photons
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in the dense LLSs. The delay in the overall ionization is also evident in the figure with

the peaks for non LLS case rising at earlier times followed by models LLS1 and LLS2 in

that order.

Figure 7.12: The time evolution of the two k-modes, k = 0.05 and 0.9 Mpc�1h of
the spherically averaged 3-D power spectra of the di↵erential brightness temperature
fluctuations for the three models.

The power spectrum contains a wealth of information on the clustering and the nature

of the ionization sources. The Figure 7.13 shows the complete evolution of the power

spectrum for the no LLS case (top, L1) and the di↵erences with the LLS models (bottom

two; LLS1 - L1 and LLS2 - L2). The image in the top row shows that the maximum

power in the power spectrum shifts from lower to higher wave numbers as the ionization

progresses, peaking around 50% (z ⇡ 9.5). The bottom two rows depict the di↵erence of

the power spectra evolution at ionization rates of the L1 model given as LLS1 - L1 and

LLS2 - L1 respectively. It is evident that the di↵erences between the no LLS and the two

LLS models appear later in the ionization history. As can be seen from the Figure 7.12,

the power spectra remain the same at di↵erent k-modes and any di↵erences emerge around

redshift z ⇠ 15. The negative features in the bottom two figures of the Figure 7.13, shown

in blue, are indicative of the lower values of the LLS power spectrum at lower k values in

the later times. Higher power spectrum values at lower k means contribution from smaller

H II regions. This means that for the LLS models that show delayed ionization many small

H II regions have not formed yet. This result is consistent with the visual inspection of the
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H II regions in the bottom row of the of the Figure 7.4. This di↵erence is relatively reversed

at higher k values. In fact, the di↵erence is significantly positive suggesting higher power

spectrum values for the LLS models. This again is consistent with the delayed ionization

scenario. The power spectrum peaks for the two models is delayed to later times and

thereby shown in the higher k and later times in Figure 7.13.

Figure 7.13: Evolution and di↵erences between the power spectra for the di↵erent models.
From top (a) The power evolution for the L1 model (no LLS). The ordinate is the k-mode,
the abscissa is the ionization rate, and the color represent the power spectrum amplitude.
(b) Di↵erence of the LLS1 - L1 evolution, and (c) the di↵erence of LLS2 - L1.
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7.3 Conclusions

We have presented the results of the first large-scale (114 h�1 Mpc ) numerical simulation,

with volumetric dynamic range of the order 107, of the epoch of reionization in the presence

of the LLSs. The LLS models are implemented in C2-Ray using the various low-redshift

observational data, namely, Songaila and Cowie [2010] and McQuinn et al. [2011]. We have

analyzed the data with di↵erent techniques to explore the underlying physics defining the

size distributions, morphologies, and growth rate of the ionization process in the presence

of LLSs and to establish the e�cacy of the observable parameters such as the brightness

temperature fluctuations and 21-cm power spectra.

(i) We note that by introducing the dampening e↵ects of the LLSs on the ionizing

photons, the ionization process is delayed by� z ⇠ 0.8 (for 99% ionization) for both

the LLS models as compared with the fiducial non-LLS model.

(ii) The integrated optical depth, ⌧es, due to Thomson electron scattering is diminished

by ⇠ 0.002 for both the LLS models in agreement with the fact that in the case of

LLS there are lesser number of electrons available for scattering the CMB photons.

The calculated values are within the 1-� deviation of the WMAP-9 observations.

(iii) The photon statistics analyses show that by the time the ionization is complete, there

are twice as many photons per baryons for the LLS case. The di↵erence between

the LLS models is small.

(iv) The topological di↵erences between the large H II regions in the three models are

observable at hxmi = 0.5 indicating slow merger due to LLS. The morphology

further quantified by using the statistical measures of the size with friends-of-friends,

spherical averaging, and power spectrum. The friend-of-friend analyses show that

in all the simulations at hxmi = 0.1 two distinct populations of H II regions emerge.

However, this dichotomy diverges faster for the fiducial L1 case. The spherical

averaging also show that by the ionization rate of 50-70%, the radii of the H II

regions for the no LLS case are larger by a factor of 2-3.

(v) The 21-cm brightness temperature power spectra highlights an order of magnitude

di↵erence in fluctuations at large scales (k < 0.1 Mpc�1h). The evolution of the
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power spectra also highlights the 140-150 MHz observing window for higher signal-

to-noise and possibility, if any, for distinguishing the LLS models.

(vi) The peak value of the RMS of the brightness temperature fluctuations for the L1

model (no LLS) is 6.06 mK. This is decreased by about 9% due to the presence of

LLS.

(vii) We also note that while the sizes and mergers of the H II regions are impeded by the

presence of LLSs, the “freeze out” of the size as reported in [Sobacchi and Mesinger,

2014] is not observed. In the FoF and Spherical averging methods we have shown

that the largest H II regions reach the entire simulation box sizes at the end for both

LLS models.

The two LLS models discussed are based upon observational data and parametrized to

yield di↵erent mean free paths and column densities. We have seen throughout our

analyses that even though the model without the LLS is distinguishable from the ones with

LLS, it is non-trivial to di↵erentiate between the LLS models themselves. As noted in the

beginning, this study is limited by the observational data and thereby the computational

modeling. Improvements in either can only enhance the overall studies and help fine-

tune the future experiments. In addition, a more in depth study on the prospects of

imaging H II regions with SKA-class telescopes in the presence of instrumentation e↵ects

is in preparation [Shukla et al., 2014] and will complement the presented study.



Chapter 8

SIM Response

This section employs SIM to explore the instrument response to the input data. As we have

demonstrated in the previous sections, the input data consists of the propagation e↵ects

due to extragalactic and galactic foregrounds. The additional e↵ects due to ionosphere

and the instrument, such as gains, pointing errors etc., are incorporated in the visibility

prediction process. We pursue a systematic approach to study the propagation e↵ects

by introducing the e↵ects piecemeal to the input data and estimate the loss of the true

underlying signal. The overall e↵ect due to most of the propagation errors is eventually

estimated. The input data is used as slices and frequency integrated cuboid. The single

slice from the data cubes integrated for 1 MHz are computationally manageable and

su�cient for various studies, while the cuboids with 1 MHz bandwidth channels help

explore the realistic multichannel simulations. The two telescope configurations used for

the studies are the LOFAR and SKA1-LOW 10%. The LOFAR configuration was used

only for testing and validation of the SIM and does not represent the part of the studies.

Details of the techniques and results are expanded upon in this chapter.

8.1 Results

We demonstrate the e�cacy of the SIM framework by applying it to the various topical

studies. We start with the uncorrupted image of the RMS sky model as observed by various

configurations and subsequently apply propagation e↵ects to estimate degradation of the

original signal. We use the robust image metric developed in this research, the spherically

averaged spatial spectrum (SASS, to analyze image quality. The two primary studies we

conduct are the e↵ects of varying the core size and the calibration with the extragalactic
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foregrounds.

8.1.1 Sky Model

The CubeP3M and C2-Ray output are coeval cubes of size 425 h�1 Mpc covering the

redshift ranges from 6.5 < z < 30. Details of the simulation are listed in Table 5.1. The

data in the coeval boxes after the radiative transfer are in the form of normalized ionization

fraction ranging from 0-1 (not ionized - to fully ionized). For the EoR studies the volume

at redshift z = 8.515 which corresponds to the redshifted 21-cm at ⇠ 150 MHz is used.

The angular size, the bandwidth of the box, and other relevant observational parameters

are given in Table 8.1.

Lbox 425 h�1 Mpc
Pixels 504 ⇥ 504 ⇥ 504
z 8.515
�✓box 3.74�

�✓pixel 26.7300

�⌫box 34.38 MHz
⌫obs 149.3 MHz
hxmi 0.21

Table 8.1: Observational parameters for the science data for the EoR studies.

For the imaging studies with SIM, a zero mean 1 MHz slice is constructed from the box

and converted to brightness temperature given in Kelvin (K) and Jansky (Jy) shown in

Figure 8.1. The global average ionization rate by mass, hxmi ⇠ 21%. A large H II region

of size 22 pixels (9.50, 18.55 h�1 Mpc ) is visible south of the center of the image.

8.1.2 Units

Before we examine the results, it is important to define the units in the images. All the

images are dirty images unless explicitly specified. The images are corrected for beam

area to convert the image units from Jy/Beam to Jy. This is explained briefly in the next

section. This conversion is relevant when the output from di↵erent synthesized beams is

measured. For example, in the case of comparison of the di↵erent core sizes. In some

cases, for the same beam, the results are left as Jy/Beam. For validation purposes in the

section 8.1.4 we recover the image and convert it to Jy and K to demonstrate the validity

of the output. Note that the Jy recovered are not exactly the same as the RMS image.

That is because the sampling function is not complete.
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Figure 8.1: 3.74� ⇥ 3.74� (504 ⇥ 504 pixels), ionization image integrated for 1 MHz from
left (a) in K, and (b) in Jy.

8.1.3 Uncorrupted Dirty Image

At the outset, we build, what could be considered as, the di↵raction limited image of the

RMS science model. The images are the convolution of the EoR signal sky model with

the synthesized beams.

The Figure 8.2 shows the uncorrupted dirty image of the sky signal as observed with the

SL10 configuration using the full array and only the core. The units of the images are

in Jy/Beam. The synthesized beams for the full and the core configuration of SL10 are

estimated to be BMAJ: 102.3700, BMIN: 81.275900, BPA: 104.973�, and BMAJ: 176.01800,

BMAJ: 142.9700, BPA: 91.3783� respectively. The higher flux in the image with only the

core is due to the larger convolution kernel (beam area). The images are at the same

resolution as the sky model shown in Figure 8.1 with 3.74� ⇥ 3.74� (504 ⇥ 504) pixels.

The synthesis images are corrupted due to various propagation e↵ects. In the following

sections, we add/multiply various additive/multiplicative errors, due to the propagation

e↵ects, to the visibilities and study the degradation of the resulting images. These e↵ects

are UV-plane e↵ects and therefore are applied to the visibilities.
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Figure 8.2: The dirty image with the SL10 configuration for the full (left) and the core
(right) configuration.

8.1.4 Recovered Image

The flux of the input image in the SIM framework is in the units of Jy. The flux of

the output image is in the units of Jy/Beam, where Beam corresponds to the area of

the synthesized beam. In order to compare the output image with the input image to

attain the factor of the recovered flux, the output image is converted to the units of Jy.

This process is performed in two stages. Firstly, the output image is deconvolved using

CSCLEAN algorithm. Secondly, the full width half maximum (FWHM) of the synthesized

is measured and the beam area is estimated using the area of the beam as reported by the

CSCLEAN algorithm. Figure 8.3 shows the recovered image for SL10 CORE in the units

of Jy after corrected for the synthesized beam (BMAJ: 176.01800, BMAJ: 142.9700, BPA:

91.3783�). The recovered flux is of the order of the 10�7 Jy, same as that of the input

image. See, Figure 8.1(b). While the deconvolution is fundamental in obtaining high

fidelity images, the inherent assumptions in the deconvolution algorithms add artifacts

in the final image [Yatawatta, 2010]. To avoid any spurious e↵ects, all the comparisons,

unless explicitly specified, are performed on dirty images without any deconvolution.
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Figure 8.3: The recovered image with SL10 Core in the units of Jy after deconvolution
and correction for beam area.

8.1.5 Sensitivity with varying Core sizes

The sensitivity, that is the detectability of the weakest signal, of the interferometric arrays

is dependent on the antenna performance metric measured as the system flux density

SEFD in the units of Jy. The SEFD is directly proportional to the system temperature

Tsys and inversely proportional to the collecting area of the telescope. The thermal noise,

�ij , per visibility with two antennas i and j is given as [Thompson et al., 2001],

�ij =

p

2kB

⌘
p

�⌫ ⌧

Tsys

Ae↵
[Jy] (8.1)

where, kB is the Boltzmann’s constant, ⌘ is the e�ciency of the telescope,� ⌫ is the

complex correlator bandwidth, ⌧ is the integration time, Tsys is the system temperature,

and Ae↵ is the e↵ective area of the telescope. The system temperature for SKA Low-1

is given as, Tsys = 60�2.55 + 40. In our noise calculations we use 400 K for 150 MHz

observational frequency.

For higher signal to noise, the integration times are increased and we study the case

for 100 and 1000 hours of observations. In addition, we also account for the missing 779
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antennas from the core. The thermal noise estimates for the cores are given in Table 8.2.

These noise estimates are for 1 MHz correlator bandwidth, and 30 s integration times.

The e�ciency of the system is optimal and is 1 for antennas (stations) of diameter 35 m.

Configuration � [Jy]
Core 10 hrs 100 hrs 1000 hrs

SL10 1.48⇥10�2 4.68⇥10�3 1.48⇥10�3

SL10-2x 3.70⇥10�3 1.17⇥10�3 3.70⇥10�4

SL10-0.5x 5.92⇥10�2 1.87⇥10�2 5.92⇥10�3

Table 8.2: The RMS (thermal) noise for the cores of the three configurations for three
di↵erent integration times.

Figure 8.4: The dirty image of science data with thermal noise for the SL10-Core
configuration for (left) 10 hours, and (right) 1000 hours integration time. The images
are scaled for total of 866 antennas.

Upon adding the noise to the visibilities we can generate the dirty images for 10 and 1000

hours integration time as shown in Figure 8.4. The visual inspection itself di↵erentiates the

two images with the thermal noise degrading the signal significantly (left). By increasing

the integration time the signal reaches almost the original signal as shown in Figure 8.2

(right).

The spatial spectrum of the images from Figure 8.2 as compared with that of the RMS
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signal is shown in the Figure 8.5. Also shown in the figure is the size of the H II region

at k ⇠ 0.23 [Mpc�1]. For 1000 hours of integration the core traces the RMS structures

exactly up to k ⇠ 0.35 [Mpc�1], whereafter, the smaller structures are lost in the thermal

noise. Coincidentally, the H II region lies below the threshold and is observable at the

RMS level. For the 10 hour integration as expected the noise dominates the signal along

all the scales.

Figure 8.5: The spherically averaged spatial spectrum of the RMS sky model compared
with thermal noise for 10 and 1000 hrs as observed by the SL10 Core. The line in the
middle depicts the size of the H II region in the original science data. See Figure 8.1.

The general observational strategy is to observe the field(s) of interest with the core and use

the arms (longer baselines) for calibrating the extragalactic foregrounds. The sensitivity

of the core is increased by increasing the density or the filling factor. It will take 22k

35 m stations to reach the 100% density for the core area of the Baseline Design SKA

Low-1. In the current design the core has 866 antennas. Using this as the fiducial model

we explore the performance of 2⇥ and 0.5⇥ the core diameter. Theses models are defined

in the Table 6.2 and named SL10-2x and SK10-0.5x respectively. Note that the collecting

area scales as 4⇥ and 0.25⇥ respectively.

Based upon the thermal noise per visibility as listed in the Table 8.2, it is evident that the

performance of the SL10-2x is far superior to the other models even at 10 hours integration

time. However, assuming that the cost of a station scales linearly, that performance comes
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Figure 8.6: The performance of the the Core models for 1000 hrs of observing for all the
three Core configurations. Also added is the 6000 hrs observation with the SL10-0.5x Core.
Note that the S/N is in the Fourier domain and is the measure of spatial frequencies.

at 4 times the cost.

The Figure 8.6 shows the comparative performance of di↵erent core models as the ratio of

the di↵raction limited image and the image with thermal noise. Note, that this signal-to-

noise (S/N) is in the Fourier domain and not to be confused by the image plane S/N which

is traditionally used in literature. The noise response in the Fourier domain is distributed

by the uv-sampling function across the k-scales. The amplitude of the noise varies based

upon the initial value added per visibility. A detailed response of noise based upon the

weighting of the uv-sampling is discussed in the next section 8.1.6.

The Figure 8.6 shows the performance for 1000 hours of observation for all the three cores.

In addition, 6000 hours of observation is also shown for the SL10-0.5x Core. The results

are beam corrected, converted from Jy/Beam to Jy, for both the signal and the signal with

noise. The SL10-2x core is significantly sensitive to smaller scales compared to the other

two models; roughly 2.6 times more wave-numbers as compared with the SL10 Core 1000

hours. SL10-0.5x in comparison with 1000 hrs of observation time has poor performance

and can recover signal above 90% only for large scales with k > 0.13 Mpc�1. The 6000
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hours observation with the SL10-0.5x is plotted in dashed line. This is an interesting result

because the performance of SL1-0.5x core with 6000 hrs is comparable with that of the

SL10 core. But more importantly the value performs at much smaller scales. The value of

k = 1.73 is roughly 3 pixels. The increased integration time results in significant increase

in performance for the smaller core both in recovering the signal and resolution for the

relevant scales. Naively, at quarter the cost of SKA Low-1 a 750 day (assuming 8 hours a

day cadence) observational campaign could recover the EoR signal. However, the longer

timeline introduces additional competing complications (primarily temporal changes in

calibration, ionosphere modeling etc.). In the phase-space of integration time, core size,

and costs there maybe a single or multiple minimum. This study, however, provides a first

order estimate by bookending the phase-space with extreme boundary values. Depending

upon the science drivers decision of expanding the core size will allow for sensitivity to

smaller structures in the neutral hydrogen ionized field. However, for scales k < 0.35

Mpc�1 the baselines design reaches the threshold in 1000 hours of integration time. The

decreased size gives the better performance with six times the increased integration time.

The 21-cm power spectrum for the used data shows increasing power at larger k-scales. See

the first panel on the left of the figure 15 of Iliev et al. [2014]. The probably distribution

of H II regions for the used data peaks at radius of 0.63 Mpc. At z = 8.515 (150 MHz),

the angular size of the H II region is about 0.500. None of the cores will resolve these size

H II regions. However, the log10 R dp/dR distribution also illustrates 25% H II regions of

size 20 and about 10% regions of size 60 corresponding to k ⇠ 0.7 [Mpc�1]. This is the

a region in the Figure 8.6 where the performance of both SL10 and SL-0.5x cores is not

optimal. It should be noted that this is a single observational frequency study. At lower

frequencies the H II regions will be smaller and the beam sizes with increase. As a future

study, beyond the scope of this thesis, we will explore H II region size and beam relation

to gauge the core size metric.

8.1.6 Beam Shapes (Tapering)

The performance of a telescope is measured by the sensitivity and the shape of the

synthesized beam. A preliminary study by Braun [2014] for SKA 1 mK RMS for 1000

hours on 1 degree angular scales at 50-150 MHz range. This sensitivity will allow the

detection of the individual fluctuations.
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In this section we use the SL10 Core layout to explore similar metrics. We generate

variance-limited noise maps for four di↵erent density weighting and tapering and compare

the results. The noise are estimated for 1000 hours for the single channel at 150 MHz.

The Figure 8.7 shows the comparison of noise maps as compared to the RMS signal for the

uniform and natural weighting. The 30000 Gaussian taper as mentioned in Braun [2014] is

also included.

The figure shows the results of di↵erent sizes of the FWHM for uniform weighting as

with the noise for 1000 hrs. From the figure it is evident that the FWHM of the Gaussian

taper ranging from 1000 to 100000 recovers the signal di↵erently. The dichotomy of the

sensitivity to the structure size is again visible for all the beam tapering. However, 30000

FWHM recovers the signal at all the scales which is seen in the left panel as well.

Figure 8.7: Tapered variance-limited noise as observed with SL10 core with di↵erent
Gaussian tapering for 150 MHz. The RMS signal with uniform weighting is also plotted
(dotted line) for comparison.

8.1.7 Calibrating Gain and Phase Errors

The other source of corruption in the visibility plane is due to the gain and phase errors.

These errors are due to the variations in the response of the receivers due to temporal
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changes in the instrument (electronics, for example) and the atmosphere. In the RIME

formalism these errors are defined by the G Jones matrix which is a diagonal matrix of

complex gain terms per receiver. The gains and phase errors are added to the signal and

are defined in the Table 8.3. The signal in this case is the EoR signal plus the zero-mean

extragalactic foregrounds along with the thermal noise for 1000 hrs of observation.

Periodic Gains
Min Gain 0.5
Max Gain 1.5
Min variation / hr 1.0
Max variation / hr 5.00

Phase Errors
Max Error 120�

Max variation / hr 0.01�

Min variation / hr 0.02�

Table 8.3: Gains and Phase errors as added to the signal.

Before we apply the errors to the data and solve for the calibration solution, see Equation

8.2, it may be useful to review some of the methodologies applied. Recall that in the

RIME formalism, the propagation e↵ects are represented as the components of the Jones’

chains closely following the physical processes. Smirnov [2011b] has concluded that

that such a chain could be reduced for the number of solvable terms by introducing

the phenomenological RIME that consists of macros of Jones’ matrices representing

multiple e↵ects. For example, the phase errors due to the atmosphere (T -Jones) and

the antenna/receiver gains could be collectively represented by the 2⇥ 2 G-Jones matrix.

It must be noted that only the terms that commute form the phenomenological RIME

terms. In addition, the terms obtained analytically may also be included in the collective

form.

The process of calibration involves building a Sky model and fitting it to the observed

data. The fitting is a form of non-liner least squares. What is fitted (solved for) are a set

of parameters p ⌘ (p1, ..., pk) such that the di↵erence between the model M(⌫, t;p) and
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the data D(⌫, t) is minimized in the Chi-squared sense,

�2(p) =
X

ij

w2
ij (Dij �Mij(p))2 (8.2)

where, wij are weights. There are a wide range of solvers for the above equation. In

MeqTrees, the gradient descent Levenberg-Marquardt algorithm is used to minimize the

equation. In practice, the Sky model for extragalactic foregrounds is build by using the full

telescope, especially with the longer baselines. The general methodology is to observe the

di↵use regions with the core and build the point sources models with the longer baselines.

In the following calibration exercise we adopt this prescription.

The calibration solutions are obtained using two models for the extragalactic foregrounds.

The first model (M1) assumes that the model of the extragalactic foreground is same as

the truth. This is the extreme best case against which we will measure the second (M2)

and the third (M3 )calibration model (M3). The models M2 and M3 are observed with

the full SL10 and baselines > 2 km for SL10 configuration. The models are made from

the extragalactic foregrounds alone, therefore do not have di↵use emission. The Table 8.4

shows the sensitivity of the three models.

Model Max [Jy] Min [Jy]

M2 1.026 ⇥ 10�4
�4.785 ⇥ 10�5

M3 8.948 ⇥ 10�5
�9.953 ⇥ 10�6

Table 8.4: Sensitivity of the calibration models.

The integrated 1 MHz data for the sky is prepared by combining the extragalactic

foregrounds and the EoR signal. This data is observed with the SL10 Core. Thereafter,

using the models M1, M2, and M3 the data is calibrated. The calibration falls under

the 2G scheme. We are not solving for DDEs. The calibration solutions are estimated

using the non-linear least squares minimization as mentioned above and the solutions are

subtracted from the data visibilities in the uv-plane.

The spatial spectrum of the residual image is shown in the Figure 8.8. What is evident

from the figure is that the model M3 performs relatively better at scales with k > 0.2. The

most obvious di↵erence between the two models is that the dynamic range of the model M3
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Figure 8.8: The spatial spectra of the calibration residuals with models M1 (blue), M2
(red), and M3 (red).

is 4 times that of the model M2. This brief and simple exercise demonstrates the prospects

of defining the boundary limits for the sky models used for foreground subtraction. In this

setup, the real sky models may be used to estimate their expected performances. Note

that adding wide range of propagation e↵ects, especially the DDEs, along with the di↵use

foreground will require 3G calibration techniques.

8.1.8 Complete Data Model

In this section we build a single 1 MHz channel with the propagation e↵ects as described

by the respective Jones’ matrices and thermal noise. These e↵ects are simulated under two

categories, image-plane e↵ects, and uv-plane e↵ects. The image-plane e↵ects are direction

dependent and require advanced calibration methods for removal. The uv-plane e↵ects

are direction independent and are antenna dependent.

In MeqTrees, the extended or di↵used sources are considered as multiple discrete sources.

The RIME for such a system is defined as pixelated sky of N sources. The path of the

signal from each source to the antennas p and q are di↵erent. However, each path from

the source (pixel on the sky), s, can be described as a standalone Jones’ chain Jsp and Jsq.

The chain represents the matrices in the physical order of e↵ects along the line of the signal
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propagation and is represented as, Jsp = Jspn...Jsp1. The convention of the chain follows

that the outer matrix element (Jspn) is at the antenna and the internal element (Jsp1)

occurs at the source. The visibility matrix in the Equation 4.13 can then be rewritten as,

Vpq = Gp

 
X

s

EspKspBsK
H
sqE

H
sq

!
GH

q + Noise (8.3)

where, the Jones’ chain is defined as Jsp = GpEspKsp for the direction (source)

independent matrix term Gp, the direction dependent term Esp, and the phase term

Ksp. In this formalism the uv-plane terms are encapsulated in Gp, and the image-plane

terms are represented by Esp. The single channel data we simulate contains the following

Jones’ matrices in the order and the additive term due to the thermal noise,

Image-plane components

Ncorr The N-correction is an alternative to the w-correction. For wide-fields,

the distortions introduced by the w-e↵ects become indistinguishable with other

distortions. Correction for N Jones applies a term, N = (1/
p

n)e2⇡iwp

(n�1) to

add/correct for the w-projection.

Z Jones’ matrix represents the ionosphere. It models the traveling ionospheric

disturbances (TIDs) as a direction dependent matrix. There are various models that

can be used. The ones used in this simulation has the total electron content (TEC)

o↵set of 1 and is based on dual waves with wavelengths of 250 km and speeds of 300

km/h. The angle of the propagation of the waves is 15� counter-clockwise traveling

East.

L Jones’ matrix represents the time-variable parallactic angle (⌘) or the dipole

rotation. The rotation module was used with the assumption of the equatorial

mounts.

E Jones’ matrix captures the pointing and beam errors. The beam model used

was the default analytical model, the Westerbork (WSRT) cos3 model. The pointing

errors applied are time-varying and are applied in the l,m coordinates in the sky.

The maximum pointing error in both coordinates was 1000 with variations between

1 and 2 hours.
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It should be noted that the image plane components collectively are represented in

the term E of the RIME Equation 8.3. In all of the simulations, the default values

of the image components are used save for the exception of the Ncorr component

which is not used.

UV-plane components

G Jones’ matrix captures the gains and phase errors. The models used are time-

varying. The gains used vary from 0.5-1.0 in 1-2 hours period. The phase errors

reach upto 60� and also vary in 1-2 hours.

Figure 8.9: The spherically averaged spatial spectrum of the RMS EoR signal compared
with the complete data model along with the thermal noise for 1000 hrs as observed by
the SL10 Core.

The additive term of the thermal noise per visibility is also added for the equivalent of

1000 hours. With all the propagation e↵ects added the simulation is performed with the

SL10 Core. The result is shown in the Figure 8.9. As expected the detected signal is

roughly four orders of magnitude higher than the signal of interest. What is interesting is

that the features along the scales are uniquely reproduced. This dataset could be used for

single channel analysis for testing various calibration and signal extraction methodologies.

The purpose of this exercise is to demonstrate the capability of the SIM framework with

simple and quantifiable exercises. As the next step, using the developed tools, more
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in-depth studies are currently being performed simulating realistic scenarios and data

inversion mechanisms and the results will be shared in subsequent publications.

8.1.9 Dark Ages

The 21-cm radiation from earlier epoch will shed light on the foundations of the large-scale

structure formation prior to the advent of the ionizing sources. This period of the evolution

of the Universe is important from cosmological perspective. There is no observational data

available for this period of the Universe. That in itself will be a big first step. Secondly,

the primordial non-Gaussianity is less dissipated by other nonlinear dynamics during this

period, therefore making it a fertile ground for such studies. In addition, this epoch is

the precursor to the formation of the large-scale structures and ionizing sources making it

extremely important to study. The 21-cm radiation from this region is highly redshifted

leading to observational challenges plaguing the the low-frequency radio astronomy. The

synthesized beam at low-frequency are larges and therefore will tend to convolve out small

scale-structures of interest. The system temperatures are higher and therefore add higher

noise. The propagation e↵ects due to cosmological, extragalactic, and ionosphere are

functions of frequency and further worsen the observations of the underlying signal.

This section examines a coeval box at redshift z = 14.294 with ionization rate of 1%. The

box is taken from the same set of simulation used thus far, see Table 5.1. The observational

frequency at the selected redshift is 92.87 MHz. The details of the other observational

parameter is the given the Table 8.5.

z 14.294
�✓box 3.34�

�✓pixel 23.8800

�⌫box 27.11 MHz
⌫obs 92.87 MHz
hxmi 0.01

Table 8.5: Observational parameters for the science data for the Dark Ages studies.
The size of the comoving simulation volume is 425 h�1 Mpc and the resolution is
504 ⇥ 504 ⇥ 504.

As the first observational test, the integrated 1 MHz channel is observed with the SL10

CORE scale for 866 antennas and 1000 hours. The SEFD at 92 MHz is 2384.2 Jy and the

thermal noise per visibility for 1000 hours is 3.073 ⇥ 10�3 Jy.
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Figure 8.10: (Left) The 1 MHz channel RMS science data (neutral hydrogen) at z = 14.294
observed at 92 MHz with thermal noise for the SL10-Core configuration for (Right) scaled
for total of 866 antennas.

The Figure 8.10 shows the integrated 1 MHz channel of the RMS sky on the left. A

lot of filamentary structure in the neutral hydrogen is visible. The average ionization is

barely 1%. On the right is the observed image with the thermal noise for 1000 hours. The

assumption, of course, is that the foreground removal techniques are perfect and reach

the thermal RMS. Upon visual inspection, the blurring is as expected due to the large

beam. However, the filamentary nature of the structures is still visible. This is acutely

captured by the spatial spectra in the Figure 8.11. The structures trace each other up

to 10% di↵erence for k < 0.16 Mpc�1. Depending on the science drivers the trade-o↵

between structure sizes and sensitivity could be estimated by adding longer baselines and

additional channels. As compared to the Figure 8.5 the performance of the original BD

SKA Low-1 is e↵ective in conducting Dark Ages studies.

8.2 Current/Future Work

The SIM e↵ort demonstrates that realistic simulation enabled by the emerging HPC

technologies form the definite third pillar in the scientific process. As the tools, numerical

techniques, programming models, and the underlying architectures advance, realistic

simulations by exploring the wide phase-space of the multitude of parameters will hone in
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Figure 8.11: The spherically averaged spatial spectrum of the RMS sky model at
z = 14.294 and average mass-weighted ionization of 1% compared agains t the data with
the thermal noise for 1000 hrs as observed by the SL10 Core.

on optimal solutions satisfying the required constraints for future experiments. As of the

writing of this document there are a few immediate ongoing e↵orts listed below,

Define the RMS of the foregrounds for best foreground subtraction.

Conduct 3G calibration studies on the single channel with the complete data model,

specially the DDEs. Expand this to multichannel work.

Build multichannel data volumes with complete data model for blind testing of

variety of emerging data processing pipelines.

I hope to continue to help the growth of the SIM components especially in compliance

with HPC and adoption of massively parallel architectures. While our studies are done

with the 10% of SKA-Low, increasing the number of antenna will help conduct studies

where PSF accuracies are critical, such as 21-cm weak lensing. Such scaling will also help

test large data solutions as they get introduced to the radio astronomy computing.
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8.3 Conclusion

The next generation of large radio telescopes arrays, such as the Square Kilometre Array,

will generate unprecedented amounts of data, thus severely disrupting the traditional

modes of data acquisition, processing, and storage. The tools such as SIM help pave the

way for testing e↵ective methodologies of in-situ visibility processing, advanced calibration

techniques, and managing resulting data volumes. The first version of SIM developed for

this thesis addresses the first order of observational questions as applicable to the study

of the EoR and DA. Such tools can be easily redefined to other studies.

It is noteworthy that the radio interferometry measurement equation (RIME) has exposed

the opportunities for the observational simulations. The advances in HPC and scientific

computing have seen sudden rise in advanced simulations of the realistic signals. SIM

consolidates theses advancements and demonstrably applies them to a specific research

topic.

One of the important demonstrations of the SIM tool is the study of the array

configurations as applicable to the expected signal. While signal-to-noise studies provide

an overview of the performance of the telescope, simulating imaging of the expected signal

with proposed array configurations reveals array response in greater detail. This approach

is further made realistic by incorporating more accurate models of the used propagation

e↵ects. It is conceivable to use observational data to replace models and generate less

model dependent results. The modularity of these tools a↵ords the flexibility of model

exploration and constraining the models.

For the EoR observational study the approach used in the thesis was to add the

contaminations to the signal piecemeal and measure the e↵ects. While the first order

studies are simplified, they clearly demonstrate the challenges in observational techniques,

for example, the calibration of gain errors. A more realistic multi-channel simulation is

computation limited, however, the Figure 8.9 is indicative of the single channel signal

distortion when real world contaminants are added to the signal chain. The piecemeal

approach allows for developing techniques for removing specific corruptions. Adding all the



CHAPTER 8. SIM RESPONSE 135

propagation e↵ects provides a fertile ground for testing out and honing those techniques.

The end-to-end simulations become far more critical when the price tags of the publicly

funded experiments reach tens of billions in leading currencies. Such projects usually

are multi-national, multi-year commitments thus requiring time-critical project timelines.

The simulations quantify the metric needed to define these timelines. More e↵orts beyond

the PhD thesis should be put into the development of such simulation tools by employing

state-of-the-art computational techniques. Tools like SIM can generate datasets equivalent

to the first light , very early in the project, thus precipitating the co-design and co-

development of the hardware and associated software for the entire data flow. To put

things in perspective, the GPU programming language CUDA is only 7 years old and

is already widely adopted in the scientific HPC community. SIM provides a sandbox

for testing these rapidly emerging technologies for quantifiably justifying their adoption

and/or staying current with the advancements in the relevant fields.

These are extremely exciting times for the radio astronomy community. As we gear up to

explore the farthest, never seen before, reaches of the Universe, we are poised to generating

multitude of new techniques and technologies useful in the wide range of scientific domains.

Coming years will be pivotal for the growth of radio astronomy and related HPC. It will

be critical to allocate resources in this cross-domain area largely overlooked in the past.

This e↵ort hopes to demonstrate the value and the need for development in the area of

realistic simulations.



Chapter 9

Constraining fNL

9.1 Overview

As discussed earlier in Chapter 2 Section 2.6, the presence of primordial non-gaussianity

will allow to break the degeneracy in the inflation models. So far, various methods

have been deployed to estimate the dimensionless nonlinearity parameter, fNL. The

parameter is the amplitude of the primordial non-Gaussianity. The CMB data puts the

most stringent constraints on this parameter with the latest 1-� Planck results [Planck

Collaboration et al., 2013] as, f local
NL = 2.7± 5.8, f equal

NL = �42± 75, and fortho
NL = �25± 39.

Therefore, exploring orthogonal methods to constraint fNL is the next logical step. Using

the redshifted 21-cm to study the primordial non-Gaussianity is examined in depth with

various techniques, [Chen, 2010, Chongchitnan, 2013, Crociani et al., 2009, D’Aloisio et al.,

2013, Joudaki et al., 2011, Lewis, 2011, Lidz et al., 2013, Mao et al., 2013].

The presence of the primordial non-Gaussianity will manifest in the clustering of the

galactic halos that eventually spawn ionizing stars. Thus, leading to the patchiness of

the 21-cm signal that will di↵er with the one generated with a Gaussian inflationary

potential. The volumetric data from the tomographic observations of the redshifted 21-

cm signal will then contain the imprints of the primordial non-gaussianity. As the 21-cm

experiments come online, testing the methodologies to determine the primordial non-

Gaussianity presents itself as a very powerful application for SIM.

This work compares reionization histories of the simulated non-Gaussian and Gaussian
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models and explores the significance of the observational signatures. The work uses

two simulations generated with the same seed but di↵erent fNL values, namely, fNL =

0 and 50. The comoving volume of the simulations is 114 h�1 Mpc and ranges from

30.556 < z < 8.456. The data was created earlier for di↵erent set of studies by Ilian Iliev

in 2009.

We compare the two datasets using three methodologies, (i) comparing the power spectra,

(ii) conducting the bias study, and finally (iii) estimating the bispectrum with observational

e↵ects. In the following sections, we discuss the results for the three di↵erent studies.

Figure 9.1: Power spectra (�2
21-cm) for fNL = 0 (top), fNL = 50 (middle), and the di↵erence

f50
NL � f0

NL (bottom).

9.2 Power Spectra

The very first approach builds the 21-cm power spectra for the two separate datasets

and gauges any di↵erences. We use the MMRRM methodology of Mao et al. [2012] to

generate the linear 21-cm power spectra. As discussed in the Appendix B, the MMRRM
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code also performs the µ-decomposition of the power spectrum. This allows to compare

the di↵erent moments of the power spectra representing disparate physical phenomenon

across the entire ionization history.

Figure 9.2: The di↵erence f50
NL�f0

NL of the µ-decomposed components of the power spectra,
µ0 (top), µ2 (middle), and µ4 (bottom).

We di↵erence the two sets of complete spectral history, fNL = 0, 50, of the Gaussian and

non-Gaussian cases in order to examine if the power spectrum captures any residual non-

Gaussianity. If non-Gauussianity a↵ects the clustering and thus the 21-cm signal, the

residuals of the power spectrum should appear in the di↵erences. The Figure 9.1 shows

the power spectra from the Gaussian (top) and non-Gaussian (middle) case along with

their di↵erence (bottom). The first thing evident from the power spectra evolution of

the Gaussian and non-Gaussian case is that they are very similar in cursory comparison.

There’s a lot of power in the small scale as the ionization starts, which fades away as

the ionization reaches completion. As the ionization progresses, the power in the larger

scales increases due to the merging of bubbles into larger volumes. By hxmi = 40% the

individual power spectrum start to develop a ‘knee’ at small k values. This knee starts

to peak and takes over the power from larger k-values as the ionization reaches towards
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completion. The power in the small-scale bubbles plateaus and slowly goes down as the

small bubble populations are subsumed into larger ionized regions. The di↵erence-plot

is mostly noisy with two hotspots. The elongated region from z < 15 in k < 0.1 is

an interesting feature. Primarily because any non-Gaussian residual should appear in the

large-scales of the simulation volume. The fact that this is at the edge may also mean that

the box size used for this study may not be su�cient. To test if the feature is spurious we

conducted two additional studies. In the first study we used another set of 114 h�1 Mpc

simulation generated with a di↵erent seed with no non-Gaussianity. The di↵erence in the

spectra did not show any features at the lower k values. In the second study, as shown in

the Figure 9.2, we di↵erenced the µ-decomposed spectra. What is interesting to note is

the feature of interest appears very strongly for µ0 component but gradually fades for µ2

and completely vanishes for µ4. While these results are not conclusive they motivate the

next two studies.

9.3 Bias Study

The second study is the bias study in collaboration with Anson D’ Aloiso. The ionized

density biases for four di↵erent redshifts, z = 13.331, 9.611, 9.026, and 8.636 were estimated

by HS from the simulated data and shared with Anson for calculating the fNL using his

power spectrum technique. Anson also wrote a brief note explaining the results which is

transcribed below.

9.3.1 Definitions

The impact of primordial non-Gaussianity on the statistics of reionization has been

explored by a number of authors [Chongchitnan, 2013, D’Aloisio et al., 2013, Joudaki

et al., 2011, Lidz et al., 2013, Mao et al., 2013]. Unfortunately, each set of authors chose to

quantify the scale-dependent e↵ects on the ionization field with a di↵erent bias parameter.

These bias parameters are all related, but care must be taken to avoid confusion and

false comparisons. The ionized density bias calculated herein follows the definition from

D’Aloisio et al. [2013].
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9.3.2 Ionized Density Bias

Let ⇢HII(r, z) denote the mass density of ionized hydrogen (what we will call the ionized

density), and let us define the ionized density contrast as,

�⇢HII(r, z) =
⇢HII(r, z)

⇢̄HII(z)
� 1 (9.1)

where, ⇢̄HII(z) is the mean ionized density at redshift z. The ionized density bias is defined

as,

b⇢HII(k, z) ⌘
e�⇢HII(k, z)
e�(k, z)

(9.2)

where, e�⇢HII and e�(k, z) are the Fourier transforms of the matter and ionized density

contrasts respectively.

The results are expressed in ionized density bias for two primary reasons, (i) It is the most

natural quantity to calculate within the linear perturbation theory of reionization (LPTR

- see [D’Aloisio et al., 2013, Zhang et al., 2007]) and (ii) The calculation of the ionized

density bias within the analytical excursion-set model of reionization (ESMR) yields an

expression which has almost exactly the same form as the well-known non-Gaussian halo

bias. It thus seemed to be the most natural quantity in our formalism.

In D’Aloisio et al. [2013], the ESMR is used to show that the non-Gaussian ionized density

bias is,

bNG
⇢HII = bG⇢HII + �b(i)⇢HII + �b(d)⇢HII (9.3)

where, bG⇢HII is the Gaussian bias (i.e., in a model with the same source e�ciency

parameters), and� b(i)⇢HII and� b(d)⇢HII are the scale-independent and -dependent corrections

due non-Gaussianity respectively (see §2.3.2 of D’Aloisio et al. [2013]). The scale-

dependent correction is of particular interest here, and has the form,

�b(d)⇢HII = 2�c (bG⇢HII � 1)
F

(3)
min(k)

Mmin(k)
(9.4)

where, the the ratio F

(3)
min(k)/Mmin(k) is the form factor that encapsulates the scale-

dependence, please see equation (17), (33), and (34) of D’Aloisio et al. [2013]. In the
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small k limit of the so-called “local model” of non-Gaussianity, the Equation 9.4 reduces

to� b(d)⇢HII / (bG⇢HII � 1)/k2, i.e., the ionized density bias scales as k�2, like the well-known

halo bias result. Note that the Equation 9.3 was tested against the LPTR for a number of

di↵erent reionization models. It was found that it provides a reasonably accurate mapping

between bG⇢HII and bNG
⇢HII. (see §4.4 of D’Aloisio et al. [2013]).

The Ionized Fraction Bias

Another way to quantify the impact of primordial non-Gaussianity on the large- scale

structure of reionization is the ionized fraction bias. Let xi(r, z) denote the ionized fraction,

and let �x(r, z) denote the ionized fraction contrast,

�x(r, z) =
xi(r, z)

x̄i(z)
� 1 (9.5)

where, x̄i(z) is the spatially averaged ionized fraction at redshift z. The ionized fraction

bias is defined as,

bx(k, z) =
e�x(k, z)
e�(k, z)

(9.6)

The bias bx is related to b⇢HII on large scales by, (see §2.1 D’Aloisio et al. [2013])

bx(k, z) = b⇢HII(k, z) � 1 (9.7)

Thus the scale-dependent non-Gaussian correction to the ionized fraction bias is,

�b(d)x (k) = 2�c b
G
x

F

(3)
min(k)

Mmin(k)
(9.8)

This is the equation that will be tested in the following exercise, especially as the ionized

fraction bias is easier to calculate from the simulation data compared to the density bias.

The ionized fraction bias was estimated [by HS] as,

bx(k) =
P�

x

�(k)

P��(k)
(9.9)

where, P�
x

�(k) is the cross-spectrum of �x and � (where � is the matter density contrast),

and P��(k) is the standard matter power spectrum.
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9.3.3 Comparison Methodology

In what follows, will consider the di↵erence between the non-Gaussian and Gaussian

ionized fraction biases,

bNG
x � bGx = �b(i)x + �b(d)x (k) (9.10)

where, the simulations have fixed source e�ciency parameters (i.e. the only thing di↵erent

between the reionization models is the non-Gaussianity). We will compare bNG
x � bGx

observed in the C2-Ray simulations to the “predicted” bNG
x �bGx from the analytical results.

To obtain the latter, the Gaussian ionized fraction bias from the simulation [provided by

HS] are plugged in the Equation 9.8 to produce the predicted� b(d)x (k). The analytical

results from ESMR are used to generate the� b(i)x .

9.3.4 Caveats

There are several issues to bear in mind when viewing the results of the comparison below:

1. E↵ects of self-regulation: The C2-Ray simulations model the e↵ects of “self-

regulation” on reionization, i.e., sources below a halo mass threshold of 109 M�

are suppressed if they reside within an H II region. The analytical model considered

here does not account for such feedback e↵ects, so the validity of the Equation 9.8

in this context is not clear. Thus the comparison is not “apples to apples”, so to

speak. As discussed below, the comparison might help shed light on the impact of

self-regulation, but it would be nice to first establish (or not) the analytical results

by comparing against a simulation with a more similar reionization model.

2. The simulation box size I : The simulation box size is L = 114 h�1 Mpc on a side,

which allows to probe down to k values of (2⇡)/(114/0.7) h�1 Mpc = 0.08 Mpc�1.

The scale-dependent e↵ect of primordial non-Gaussianity on bx is truly a large-scale

e↵ect (k < 0.01 Mpc�1). The e↵ect is really quite small for k > 0.01 Mpc�1 (see

Fig. 6 of D’Aloisio et al. [2013]), so the simulation box size is not ideal for this

comparison.

3. The simulation box size II : The local model of non-Gaussianity couples large- and

small-scale modes in the initial density fluctuations. With a box size as small as L

= 114 h�1 Mpc , I worry if we could be missing important large-scale modes (with
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wavelengths longer than the box) that would otherwise be coupled to the smaller-

scale modes in our box. If so, I wonder what this does to the accuracy of the halo

bias.

4. Box size and regime of validity of the analytical calculations: The analytical results

in D’Aloisio et al. [2013] were derived in the large-scale limit (k ⌧ 1), a regime in

which the Gaussian halo bias is scale-independent. Additionally, our results apply to

scales much larger than the mean free path of UV photons through the IGM. These

conditions may not be met over the k-range in the simulations, especially near the

end of reionization.

9.3.5 Results

Comment on the mean ionized fractions in the simulations

Before presenting the comparison, I would like to comment on something curious about

the mean ionized fractions in the C2-Ray simulations. Table 1 compares the mass- and

volume-weighted mean ionized fractions in the Gaussian and non-Gaussian (fNL = 50)

C2-Ray simulations (these numbers were provided by HS). In D’Aloisio et al. [2013], we

showed that fNL = 50 (or more generally positive fNL) makes reionization end slightly

earlier than the corresponding Gaussian case, and that the non-Gaussian reionization

history deviates most from the Gaussian case at the earliest times (see Fig. 2 of that

paper; note that Crociani et al. [2009] reached a similar conclusion). This has a simple

explanation. Reionization sources (halos above M⇠ 108 M�) become more and more rare

with increasing redshift. Since the e↵ects of non-Gaussianity are most evident in the

abundance and bias of the rarest objects, it follows that the e↵ects of non-Gaussianity on

the reionization history is most evident at high redshifts. I am therefore surprised to see

such little di↵erence in the ionized fractions at z = 13.221, relative to the lower redshifts

in Table 1. In fact, the % di↵erence in xi appears to grow with decreasing redshift, except

near the end of reionization (hxii ⇠ 0.9). It is also important to note that the mean

ionized fractions at z = 13.221 for fNL = 50 are lower than their Gaussian counterparts

at the same redshift. This defies my expectation, since the reionization sources are more

abundant in models with fNL = 50 compared to the Gaussian case.

Putting the peculiarity of the z = 13.221 numbers aside, perhaps the trend of increasing |%
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di↵erence| from z = 9.611 to z = 9.026 is a result of self-regulation? Suppose reionization

starts with halos above 108 M�, but self-regulation shuts down many of those halos, so

halos with mass > 109 M� dominate more and more as reionization proceeds. Halos with

mass > 109 M� are rarer than halos with mass ⇠ 108 M�, so the statistics of the former

are more impacted by non-Gaussianity compared to the latter. I could imagine that this

interplay between the ⇠ 108 M� and the ⇠ 109 M� halos could explain the discrepancy

with my expectations (for which I am relying on a simpler model of reionization).

Mass-weighted Mean ionized Fraction
Redshift Gaussian fNL = 50 % Di↵erence

13.221 0.1063 0.1055 -0.8
9.611 0.4832 0.5013 3.7
9.026 0.6922 0.7265 5.0
8.636 0.9186 0.9517 3.6

Volume-weighted Mean ionized Fraction
13.221 0.0759 0.0746 -1.8
9.611 0.4109 0.4275 4.0
9.026 0.6262 0.6654 6.3
8.636 0.8945 0.9372 4.8

Table 9.1: Comparison of global ionized fractions in the Gaussian and non-Gaussian C2-
Ray simulations.

Figure 9.3: Comparison of the predicted ionized fraction bias (from a simple analytical
model of reionization) to that observed in the C2-Ray simulation. See text for more details.
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The Ionized Fraction Bias

The Figure 9.3 compares bNG
x � bGx from the C2-Ray simulations to the theoretical

predictions, as described in the methodology section above. I show results from redshifts

z = 13.221 and z = 9.611 because, at these redshifts, bGx (k) plateaus to a roughly constant

value as k gets smaller. At z = 9.026 and 8.636, bGx (k) never plateaus before reaching the

smallest k, i.e., bGx (k) is scale-dependent on the largest scales probed by our simulation

box. This is a regime in which we should not apply our analytical results. Note that I also

show the bias up to a maximum k of 0.3 Mpc�1, since our analytical results only apply in

the limit of small k (see §9.3.4 above).

9.4 Measuring the Bispectrum

In the third and the final study, we estimate the bispectrum of the datasets using the

estimation methodology of Regan [2011]. This ongoing study is conducted in close

collaboration with Donough Regan under the guidance of Andrew Liddle and Ilian Iliev.

The motivation of this study is to estimate the shape of the bispectrum and the error in the

amplitude,� fNL, from the Gaussian and non-Gaussian datasets. Thereafter, the datasets

are convolved with the telescope beams corresponding to their observational frequencies

and determine the same parameters. We use SIM to extract beams for observational

frequencies corresponding to z = 13.221, 9.661, 9.026, and 8.636 for the SL10 configuration.

The frequencies are, ⌫obs ⇠ 100, 135, 140, and 150 MHz. One obvious drawback with lower

frequencies is that the beams are large and therefore tend to average out the underlying

features. Thus warranting that deconvolution is able to extract features relevant for the

estimation of the non-Gaussian bispectrum. The data cubes for the four redshifts are

converted to Jy and convolved with the extracted beams.

The Figure 9.4 shows the power spectra of the four data cubes for the pristine ioniaed

fraction and post convolution data. It is evident from the power spectrum, that the

formation of the structure increases the power at large scales. However, convolution

with the synthesized beam redistributes the power and makes some of the signals

indistinguishable. For example, the large-scale structures at redshifts z = 9.611 and 9.026

have almost an order of magnitude di↵erence in power. This di↵erence is diminished post

observation.
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Figure 9.4: The power spectra for the ionized fraction in Jy (left) and simulated data
observed with SL10 configuration, Jy/Beam (right).

Next, we generate the bispectrum for both the data cubes and plot them in the tetrapyd

form [Fergusson et al., 2010]. Recall, that the dirac delta term in the bispectrum equation

2.33 impose triangle constraints on the wave-vectors k
1

,k
2

, and k
3

. The tetrahedral

volume over a triangular pyramid provides a domain for the the wave-vectors in the Fourier

domain. This domain is called the tetrapyd and shown in the Figure 9.5. See [Fergusson

et al., 2010, Schmittfull et al., 2013].

Figure 9.5: Space of triangles with sides k1, k2, k3, i.e., each point inside the tetrapyd
volume corresponds to a triangle configuration. Squeezed, folded and equilateral
configurations are highlighted. The figure and caption are from, Schmittfull et al. [2013].

The distribution of the spectrum on this domain allows for separation of nonlinear
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processes responsible for the bispectrum. For example, primordial non-Gaussianity

appears separately from the nonlinear processes due to gravitational collapse or ionization.

The bispectrum will contain all these processes in the form of di↵erent triangles

(equilateral, squeezed, and folded). The underlying physical processes have di↵erent

dependence on the wave numbers, k1, k2, and k3, thus resulting in di↵erent shapes of

the bispectra, see Figure 2.2. As shown in the Figure 9.5, the squeezed triangle, where

one wave number is much smaller than the other two, represents multiple field inflationary

models. This shape is also known as local shape. The volume of the tetrapyd is k3max/2.

Figure 9.6: The bispectrum for the ionized fraction. The input data of the ionized fraction
is in Jy, however, the bispectrum is in arbitrary units relative units. The color bar
represents the relative strength of the modes.
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The Figure 9.6 shows the tetrpyds of the ionization data from four redshift ranges, namely,

z = 30.0, 13.221, 9.611, and 8.636. The triangles are represented on the axes resolution of

50k/kmax. 50 polynomials are used to define the bispectrum shapes.

With no ionizing sources to initiate the ionization process, at z = 30.0, (top, left) of

Figure 9.6, the bispectrum captures the nonlinearity of the gravitational collapse along

with the primordial non-Gaussianity. The local shape of the bispectrum is very distinct

in the figure. The power in the squeezed triangle limit is concentrated at small scales.

As the ionization begins, < xm >= 7% at z = 13.221, the power in the bispecrum is

dispersed across the tetrapyd. The local shape is no longer discernible. It is worth noting

that as the ionization reach 93% at z = 8.636, the original bispectrum starts to reappear.

One explanation of this is that the primordial non-Gaussianity gets buried under the more

dominant nonlinearities due to the patchy ionization and towards the completion of the

ionization, the non-Gaussianity is visible again. Note that this exercise is performed on

the pristine data.

Figure 9.7: The bispectrum spectrum of the observed ionized fraction. The input data of
the ionized fraction is in Jy/Beam, however, the bispectrum is in arbitrary units relative
units. The color bar represents the relative strength of the modes.

The Figure 9.7 shows two extreme ends of the dataset of the ionization history. It

is immediately evident that the beam convolution wipes out any semblance of the

bispectrum, and redistributes the power across the domain. This is just the beam

convolution. We have not yet considered the entire series of propagation e↵ects that
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will corrupt the ionization data. This opens up a testbed for exploring techniques that

will be well suited to best extract the non-Gaussianity that readily appears in the pristine

data. These results motivate the next round of studies where we will clean the observed

data and qualify errors on the signal.

Caveats

The generation of the bispectrum also yields the� fNL. We list the values in Table 9.2.

The values are not reliable. While the shape of the bispectrum is captured by the code,

the amplitude is suspect and requires additional investigation. This is primarily due to the

normalization factor in the bispectrum. The di↵erence of the values between the pristine

and the observed is also due to the di↵erence of units, Jy and Jy/Beam respectively. For

this reason, the color bar numbers are also not reliable. As the next steps we plan to resolve

the normalization factor and repeat the exercise. We also plan to use 3-point correlation

codes to directly estimate the bispectrum and compare are the results. Thereafter, we will

explore the technique(s) that will optimally extract the primordial non-Gaussian shape

from the observed dataset and explore real world challenges.

z �fNL

ionized frac observed

13.221 1.528 ⇥ 102 1.535
9.611 4.303 ⇥ 101 3.107 ⇥ 10�2

9.026 2.179 ⇥ 101 1.467 ⇥ 10�1

8.636 2.954 1.986 ⇥ 10�3

Table 9.2:� fNL estimated for ionized fraction and observed with SKA-class telescope.



Part IV

Epilogue



This work sought to consolidate wide range of the state-of-the-art tools to build a

framework for conducting in depth observational studies for the upcoming EoR and Dark

Ages experiments with the redshifted 21-cm. Using the Lyman-limit system models based

on observational data, we explored the e↵ects of the LLS absorbers on the ionization

history. We examined the morphological evolution of the H II regions and determined that

the presence of LLS delays the end of ionization (hxmi 99%) by� z ⇠ 0.8. We build the

SIM framework incorporating CubeP3M, C2Ray, and MeqTrees connected with the SIM

Middleware. This allowed for conducting preliminary trade-o↵ studies with SKA core size

variations and extragalactic foreground calibration and removal. We also explored the

possibility of constraining the amplitude parameter for the primordial non-Gaussianity by

using the tomographic redshifted 21-cm data.

By developing solutions, the research has established the need for tools and simulations

that can explore and provide solutions for a wide range of observational challenges.

There is a clear need for standardization in the software development within the wide

astronomy/physics communities. To successfully address the massive data problem will

require harnessing the emerging parallel compute architectures and programming models.

This in turn will require the adoption of advanced software engineering practices. Throw

away codes in non-HPC compliant languages developed at student level will have to be

replaced by professional, tested, public domain, advanced solutions.

Many radio telescope arrays today do not have a software equivalent of SIM. Most of

the trade-o↵ studies are left for specialized domain experts or third party scientists. In

the literature, there are many Fisher Matrix, image plane, and limited sampling function

studies that attempt to address variety of observational issues. The tools like SIM provide

the exploration of the parametric phase-space critical for discovering optimal roadmap

for strategic mission planning. SIM also defines the figure of merit as a standard for
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comparison of disparate experiments.

With SIM, we now plan to conduct more in-depth studies for the observational and science

goals a↵orded by the redshifted 21-cm. We also wish to provide datasets to the wider

community to conduct its own tests in extracting the underlying signal, thus opening the

phase-space to the wider community of experts. This research was deeply rewarding and

illuminating. I hope it adds to the foundation of more advanced e↵orts to come in the

future.
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A. S. Cohen and H. J. A. Röttgering. Probing Fine-Scale Ionospheric Structure with

the Very Large Array Radio Telescope. AJ, 138:439–447, August 2009. doi: 10.1088/

0004-6256/138/2/439. 11

T. J. Cornwell, M. A. Holdaway, and J. M. Uson. Radio-interferometric imaging of very

large objects: implications for array design. AAP, 271:697, April 1993. 88

M. Crocce, S. Pueblas, and R. Scoccimarro. Transients from initial conditions in



BIBLIOGRAPHY 157

cosmological simulations. Mon.Not.Roy.Astron.Soc., 373:369–381, 2006. URL http:

//arxiv.org/abs/astro-ph/0606505. 63

D. Crociani, L. Moscardini, M. Viel, and S. Matarrese. The e↵ects of primordial non-

Gaussianity on the cosmological reionization. MNRAS, 394:133–141, March 2009. doi:

10.1111/j.1365-2966.2008.14325.x. 136, 143

A. D’Aloisio, J. Zhang, P. R. Shapiro, and Y. Mao. The scale-dependent signature of

primordial non-Gaussianity in the large-scale structure of cosmic reionization. MNRAS,

433:2900–2919, August 2013. doi: 10.1093/mnras/stt926. 136, 139, 140, 141, 142, 143

J. R. Fergusson, M. Liguori, and E. P. S. Shellard. General cmb and primordial bispectrum

estimation: Mode expansion, map making, and measures of Fnl. Phys. Rev. D, 82:

023502, Jul 2010. doi: 10.1103/PhysRevD.82.023502. URL http://link.aps.org/

doi/10.1103/PhysRevD.82.023502. 146

G. B. Field. Excitation of the Hydrogen 21-CM Line. Proceedings of the IRE, 46:240–250,

January 1958. doi: 10.1109/JRPROC.1958.286741. 42

G. B. Field. The Spin Temperature of Intergalactic Neutral Hydrogen. ApJ, 129:536, May

1959. doi: 10.1086/146653. 40, 80, 106
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G. Lemâıtre. The Beginning of the World from the Point of View of Quantum Theory.

Nature, 127:706, May 1931. doi: 10.1038/127706b0. 18

A. Lewis. The real shape of non-Gaussianities. Journal of Cosmology and Astroparticle

Physics, 10:026, October 2011. doi: 10.1088/1475-7516/2011/10/026. 31, 136

Antony Lewis, Anthony Challinor, and Anthony Lasenby. E�cient computation of CMB

anisotropies in closed FRW models. Astrophys. J., 538:473–476, 2000. 63

A. Liddle. An Introduction to Modern Cosmology, Second Edition. Wiley, May 2003. 20,

23

A. Lidz, E. J. Baxter, P. Adshead, and S. Dodelson. Primordial non-Gaussianity and

reionization. Physical Review D, 88(2):023534, July 2013. doi: 10.1103/PhysRevD.88.

023534. 136, 139

A. Linde. Inflationary theory versus the ekpyrotic/cyclic scenario., pages 801–838.

November 2003. 29

A. D. Linde. A new inflationary universe scenario: A possible solution of the horizon,

flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B,

108:389–393, February 1982. doi: 10.1016/0370-2693(82)91219-9. 25

A. Loeb. First Light. ArXiv Astrophysics e-prints, March 2006. 41, 43
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H. Röttgering, B. W. Stappers, R. A. M. J. Wijers, S. Zaroubi, M. van den Akker,

A. Alexov, J. Anderson, K. Anderson, A. van Ardenne, M. Arts, A. Asgekar, I. M.

Avruch, F. Batejat, L. Bähren, M. E. Bell, M. R. Bell, I. van Bemmel, P. Bennema,

M. J. Bentum, G. Bernardi, P. Best, L. B̂ırzan, A. Bonafede, A.-J. Boonstra, R. Braun,

J. Bregman, F. Breitling, R. H. van de Brink, J. Broderick, P. C. Broekema, W. N.
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G. Mellema, L. Koopmans, H. Shukla, K. K. Datta, A. Mesinger, S. Majumdar,

and on behalf of the CD/EoR Science Working Group. Accepted for publication in

the SKA Science Book Advancing Astrophysics with the Square Kilometre Array,

to appear in 2015. PoS (AASKA14) 010, 2015. [Mellema et al., 2015]

Submitted to MNRAS (under review)

2. The E↵ects of Lyman-Limit Systems on the Evolution and Observability of the

Epoch of Reionization. Hemant Shukla, Garrlet Mellema, Ilian T, Iliev, and Paul

R. Shapiro. [In preparation, 2014]

In Preparation

3. Observing the Epoch of Reionization & Dark Ages with redshifted 21-cm, I. With

the next-generation SKA-class interferometry arrays. Hemant Shukla, Leon V. E.

Koopmans, Oleg M. Smirnov, and Ilian T. Iliev. [In preparation, 2014]
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Searching for Primordial non-Gaussianity. Hemant Shukla, Donough Regan, Andrew

Liddle, Anson D’Aloisio, and Ilian T. Iliev. [In preparation, 2014]



APPENDIX A. PUBLICATIONS 172

5. Observing the Epoch of Reionization & Dark Ages with redshifted 21-cm. III. In

the presences of the Lyman-limit Systems. Hemant Shukla, Garrelt Mellema, and

Ilian T. Iliev. [In preparation, 2014]



Appendix B

The MM-RRM Power Spectrum

and Definitions

The first order statistical property from the observational 21-cm tomography data is the

spherically averaged power spectrum, P21, of the di↵erential brightness temperature, �Tb,

defined as following,

h

g�T ?
b (k)f�Tb(k

0)i = (2⇡3)P21(k)�3D(k� k0) (B.1)

where, f�Tb is the Fourier transform of the di↵erential brightness temperature, g�T ?
b is the

complex conjugate, and �3D is the three-dimensional Dirac delta function representing the

sampling function of the Fourier transformed quantity. The power spectrum is customarily

represented as a dimensionless quantity given as following,

�2
21-cm(k) =

k3

2⇡2
P21(k) (B.2)

The power spectrum of a volume represented in real space is isotropic. However, in the

redshift space (observed data), the power spectrum is a function of the wave-vector k.

Now the power spectrum is decomposed into polynomial components in the cosine of the

angle of the wave vector k and the the line of sight denoted as µ = kk/|k|. Barkana and

Loeb [2005] and Mao et al. [2012] separately showed that the moments of the polynomial

represent power spectra of di↵erent physical processes. The decomposed power spectrum
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is written as,

P21(k, µ) = Pµ0(k) + Pµ2(k)µ2 + Pµ4(k)µ4 (B.3)

and, the moments are given as,

Pµ0 = c�Tb
2
P�

⇢HI
,�

⇢HI
(k) (B.4)

Pµ2 = 2c�Tb
2
P�

⇢HI
,�

⇢H
(k)

Pµ4 = c�Tb
2
P�

⇢H
,�

⇢H
(k)

where, Pa,a is the autocorrelation of the field a(x), and Pa,b is the cross-correlation of the

fields a(x) and b(x).

There are various schemes for estimating the power spectrum, in this letter we

demonstrate the results from the mesh-to-mesh real-to-redshift-space mapping (MM-RRM)

methodology from Mao et al. [2012]. The MM-RRM ties the ionization fraction and density

and velocity files as input to estimate the power spectrum. The output files, monopole

and mudecomp have the following columns,

Columns in monopole files

k (unit less): k modes unit less

Nmode: N modes

k (h/Mpc): k mode in comoving coordinates

�2
21-cm(NL): nonlinear power spectrum in redshift-space.

�2
21-cm(FL): linear power spectrum as in Barkana-Loeb formula [Barkana and Loeb, 2005]

�2
21-cm(QL): quasi-linear power spectrum

�2
HI(FL): this is another version of quasi-linear power spectrum

�2
HI(NL): this is second-order nonlinear correction to the quasi-linear power spectrum

�2
µ0

: 0th-moment power spectrum in the quasi-linear formula
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�2
µ2

: same, but the 2nd-moment

�2
µ4

: same, but the 4th-moment

The µ � decomp columns in monpole files are the predictions in the quasi-linear µ-

decomposition scheme. The Figure B.1, shows the each of the monopole columns for

the simulation of volume size 114h�1Mpc at mass weighted ionization fraction of 50% at

z = 9.457.

Figure B.1: The grey vertical line at k256N /4 = 1.75h/Mpc marks the limit beyond which
the errors in the estimation of PS in MM-RRM scheme are large.

Columns in mudecomp files

k (unit less): k modes unit less

Nmode: N modes

k (h/Mpc): k mode in comoving coordinates

�2
µ0

: 0th-moment power spectrum in the quasi-linear formula

�2
µ2

: same, but the 2nd-moment
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�2
µ4

: same, but the 4th-moment

�(�2
µ0

): error in best-fit of 0th-moment

�(�2
µ2

): same, but for 2nd-moment

�(�2
µ4

): same, but for 4-th moment

�2
µ4

(L): linear 4th-moment

The µ-decomp mudecomp files are the best-fit value of moments from the decomposition

of three-dimensional power spectrum. The power spectra output misses some small k

modes, because (i) the minimum mode that can do decomposition is k = 2 (three di↵erent

angle µ for decomposition into three moments are needed), and (ii) the decomposition is

practically binned logarithmically, so smallest k modes are grouped together into one bin.

The errors of the best-fit moments are estimated in the process of �2 fitting the 3D power

spectrum within a spherical k-shell into the assumed µ4 decomposition, and the error in

the 3D power spectrum is essentially the sampling variance for the number of available

modes. For details see Shapiro et al. [2013]. The Figure B.2 shows the three estimated

moments with the errors.

Figure B.2: The best-fit estimates of moments from 3D power spectrum.


	DPhil Coversheet
	Shukla, Hemant
	I Scientific Goals and Theoretical Background
	1 Introduction
	1.1 Frontiers of Precision Cosmology 
	1.2 Current and Future Telescopes and the Challenges
	1.3 Numerical Simulations as the Third Pillar of Science
	1.4 Thesis Overview

	2 Cosmology
	2.1 The Cosmic Prelude
	2.2 Friedmann Lemaître Robertson Walker metric 
	2.3 Einstein's equation
	2.4 Problems With The Big Bang Model
	2.4.1 The Flatness Problem
	2.4.2 The Horizon Problem
	2.4.3 The Magnetic Monopole Problem

	2.5 Inflation
	2.6 Primordial Non-Gaussianity
	2.6.1 Estimating the bispectrum


	3 The EoR and the Dark Ages
	3.1 The 21-cm Physics
	3.1.1 Wouthuysen-Field Effect

	3.2 Observational Evidence for the Epoch of Reionization
	3.2.1 Gunn-Peterson Troughs
	3.2.2 Thomson Scattering of CMB
	3.2.3 Other Observational Evidence an Probes

	3.3 The Lyman-Limit Systems
	3.3.1 Introduction
	3.3.2 Definition of Lyman-limit Systems


	4 Radio Interferometry
	4.1 An Intuitive Perspective
	4.2 Mathematical Formalism
	4.2.1 van Cittert-Zernike Theorem
	4.2.2 Coordinate Systems
	4.2.3 Flux Density and Brightness Temperature

	4.3 Radio Interferometer Measurement Equation


	II Simulations
	5 Simulating EoR and Dark Ages
	5.1 Simulations
	5.1.1 CubeP3M - N-body simulations
	5.1.2 C2-Ray - Radiative Transfer
	5.1.3 Simulating the Effects of Lyman Limit Systems
	5.1.4 LLS implementation in C2-Ray
	5.1.5 Ray-Tracing in C2-Ray


	6 Simulating Interferometry Measurements (SIM)
	6.1 Significance of SIM
	6.2 SIM Overview
	6.2.1 Cosmological Data Layer
	6.2.2 SIM Middleware
	Sky Projection
	Signal Preparation
	Extragalactic and Galactic Foregrounds
	Antenna Configuration / Coordinates Conversion / Measurement Sets
	Telescopes
	Analyses and Visualization


	6.3 MeqTrees


	III Applications and Results
	7 Lyman-Limit Systems Analyses
	7.1 Results
	7.1.1 Globally Averaged Quantities
	7.1.2 Photon Statistics
	7.1.3 Morphology of the HII Regions
	Evolution of the HII Regions

	7.1.4 Size Distribution of HII Regions 
	Friends-of-Friends
	Spherical Averaging
	Ionized fraction Power Spectrum


	7.2 Observing Redshifted 21-cm
	7.2.1 RMS of the 21-cm background
	7.2.2 Evolution of the patchiness
	7.2.3 Power Spectrum of 21-cm

	7.3 Conclusions

	8 SIM Response
	8.1 Results
	8.1.1 Sky Model
	8.1.2 Units
	8.1.3 Uncorrupted Dirty Image
	8.1.4 Recovered Image
	8.1.5 Sensitivity with varying Core sizes
	8.1.6 Beam Shapes (Tapering)
	8.1.7 Calibrating Gain and Phase Errors
	8.1.8 Complete Data Model
	8.1.9 Dark Ages

	8.2 Current/Future Work
	8.3 Conclusion

	9 Constraining fNL
	9.1 Overview
	9.2 Power Spectra
	9.3 Bias Study
	9.3.1 Definitions
	9.3.2 Ionized Density Bias
	The Ionized Fraction Bias

	9.3.3 Comparison Methodology
	9.3.4 Caveats
	9.3.5 Results
	Comment on the mean ionized fractions in the simulations
	The Ionized Fraction Bias


	9.4 Measuring the Bispectrum


	IV Epilogue
	Appendices
	A Publications
	B The MM-RRM Power Spectrum and Definitions





