

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Constructing
Runtime Models
with Bigraphs to
Address
Ubiquitous
Computing Service
Composition
Volatility
Submitted for the Degree of Doctor of Philosophy, University of
Sussex, November 2014

Renan Krishna

2

Dedicated to the memory of my father late Professor M.M. Krishna

4

TABLE OF CONTENTS

Declaration .. 3

Acknowledgements ... 8

Abstract ... 9

List of figures ... 10

List of tables .. 17

1 Introduction .. 18

1.1 The context of our study: a scenario .. 18

1.2. The research question ... 19

1.3. Applications of Bigraphs and model at runtime ... 19

1.4. Overview of the main contributions .. 20

1.5 Thesis structure... 20

2 Background.. 22

2.1 Introduction ... 22

2.2 Bigraphs: a new language .. 22

2.2.1 Explanatory background for Bigraphs .. 23

2.2.2 What is being modelled with Bigraphs ... 44

2.2.3 Open research questions ... 54

2.2.4 Our take-off point .. 54

2.2.5 Section summary .. 55

2.3 Models at runtime: a new architecture ... 55

2.3.1 Explanatory background for models at runtime ... 56

2.3.2 Using architectural models at runtime to support dynamic adaptation and

software evolution .. 59

2.3.3 Open research questions for models at runtime.. 64

2.3.4 Our take-off point .. 65

2.3.5 Section summary .. 65

2.4 Volatility: the example property .. 66

5

2.5 Ubiquitous computing system service composition faults: the example system

problem .. 67

2.6 Conclusions... 71

3 The research question and its design implications ... 72

3.1 Introduction ... 72

3.2 Defining the research question ... 72

3.2.1 Caveats on the scope of the research question .. 74

3.2.2 Evaluation criteria to test if our research question has been answered...... 74

3.2.3 The take-off point.. 75

3.2.4 Applications of Bigraphs and models at runtime ... 76

3.2.5 Section summary .. 77

3.3 Requirements for design... 78

3.3.1 Volatile systems: an operational point of view ... 78

3.3.2 Reconfiguration cycle that needs to be supported by the architecture 79

3.3.3 Section summary .. 79

3.4 The design space for tackling volatile service composition 79

3.4.1 Our choice of models at runtime based architecture 80

3.4.2 Our choice of Bigraphs to construct a models at runtime based architecture

 80

3.5 Conclusions... 82

4 Constructing the architecture for a two-layered model at runtime............................ 84

4.1 Introduction ... 84

4.2 Volatile service composition ... 84

4.3 Using model at runtime as a cache .. 88

4.3.1 Reference architecture for self-management .. 89

4.3.2 Model driven adaptation at runtime.. 90

4.3.3 Data flow in our model at runtime .. 91

4.3.4 Section summary .. 92

4.4 Programming the structure of WORLD and SCA layers 93

4.4.1 Constructing a state of WORLD layer .. 93

6

 4.4.2 Constructing a state of SCA layer……………………………………………..102

 4.4.3 A Bigraphical array to support service composition………………………….113

 4.4.4 Section summary……………………………………………………………….114

4.5 Conclusions... 115

5 Using the BPL tool to Implement a two-layered model at runtime 116

5.1 Introduction ... 116

5.2 Implementation approach ... 116

5.2.1 System boundary.. 117

5.2.2 Unused features of Bigraphs.. 118

5.2.3 Events and commands in the system .. 118

5.2.4 Section summary .. 120

5.3 Functions to modify/access the WORLD/SCA layers 120

5.3.1 Functions that modify the model .. 123

5.3.2 Functions that access information from the model 135

5.3.3 Section summary .. 160

5.4 Functions to encapsulate adaptation logic and simulate test runs 160

5.4.1 Implementation of the functions ... 161

5.4.2 Section summary .. 174

5.5 Conclusions... 174

6 A qualitative and quantitative evaluation of the Bigraphical model at runtime 175

6.1 Introduction ... 175

6.2 A qualitative discussion: placing our implementation in context 175

6.3 A quantitative performance evaluation of the response times of our Bigraphical

model at runtime .. 180

6.3.1 Design of the test rig .. 181

6.3.2 Design of the experiments.. 182

6.3.3 Running of the experiments and analysing the data 190

7

6.3.4 Cause of the exponential increase in response times: a naïve handling of

the decomposition of the prime product children of a node by the matching

algorithm of BPL tool (ITU, 2011),(Birkedal et al., 2007) 204

6.3.5 Measuring the effect of the workload events on the available time 212

6.3.6 Summary and discussion of the experimental results 226

6.4 Conclusions... 228

7 Conclusions, contributions and future work .. 230

7.1 Introduction ... 230

7.2 Answering the research question ... 230

7.2.1 Using the first dimension of our evaluation criteria to test if our research

question has been answered... 231

7.2.2 Using the second dimension of our evaluation criteria to test if our research

question has been answered... 234

7.3 Contributions to knowledge .. 235

7.4 Future work ... 238

7.5 Concluding remarks .. 240

Bibliography... 242

8

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my supervisor Dr. Ian Wakeman for

his invaluable guidance, help and support during the course of my work.

Thanks are also due to Dr. Dan Chalmers for his comments and suggestions during the course of

my work.

A big thank you to Dr. Des Watson, Dr. Bernhard Reus, Dr. Martin Berger, Dr. Ian Mackie, and

Dr. George Parisis for providing invaluable suggestions and encouragement whenever they

were needed.

Thanks are also due to the late Robin Milner for the enthusiasm he showed for my work.

I would like to express my appreciation to both the present and past members of Foundations of

Software Systems Group namely: Dr. Jon Robinson, Dr. Jian Li, Dr. Roya Feizy, Dr. Lachhman

Dhomeja, Dr. Yasir Malkani, Dr. Anirban Basu, Dr. Stephen Naicken, Dr. James Stanier, Dr.

Simon Fleming, Dr. Aesha Alsiyami, Dr. Danny Matthews, Dr. Ben Horsfall, Thomas Harvey,

Ciaran Fisher and Rakan Abdullah Alsowail for being a lively company both in the lab and

outside.

Many thanks to Christopher Tucker and Alex Castellanos for the fantastic time I had working

for the University of Sussex Residential Services and living in East Slope during the course of

my work.

Thanks also to all my friends for being the lovely and supportive people they are.

Lastly but most importantly, a big thank you to my family: to my mother Dr. Rama Nigam who

has solidly believed in me and to my sister Dr. Delfi Krishna who has been an inspiration.

I would like to dedicate this thesis to the memory of my father late Professor M.M. Krishna who

I am sure would have been proud of my work.

9

ABSTRACT

In this thesis, we explore the appropriateness of the language abstractions provided by Bigraphs

to construct a model at runtime to tackle the problem of volatility in a service composition

running on a mobile device.

Our contributions to knowledge are as follows:

1) We have shown that Bigraphs (Milner, 2009) are suitable for expressing models at

runtime.

2) We have offered Bigraph language abstractions as an appropriate solution to some of

the research problems posed by the models at runtime community (Aßmann et al.,

2012).

3) We have discussed the general lessons learnt from using Bigraphs for a practical

application such as a model at runtime.

4) We have discussed the general lessons learnt from our experiences of designing models

at runtime.

5) We have implemented the model at runtime using the BPL Tool (ITU, 2011) and have

experimentally studied the response times of our Bigraphical model. We have suggested

appropriate enhancements for the tool based on our experiences.

We present techniques to parameterize the reaction rules so that the matching algorithm of the

BPL Tool returns a single match giving us the ability to dynamically program the model at

runtime. We also show how to query the Bigraph structure.

10

LIST OF FIGURES

Figure 2-1: A hypergraph (Milner, 2008a).. 24

Figure 2-2: The upper diagram presents both the forest and the hypergraph;it

depicts the forest by nesting. the lower two diagrams represent the two

structues seperately, in a conventional manner. the hypergraph of Ğ is the one

illustrated in Figure 2-1(Milner, 2008a). ... 25

Figure 2-3: A bare Bigraph F̌ (Milner, 2008a). ... 26

Figure 2-4: Defining interfaces for the place graph and the link graph of the

bare Bigraph F̆ (Milner, 2008a). .. 27

Figure 2-5: The Bigraph F (Milner, 2008a). ... 28

Figure 2-6: Bigraph G (Milner, 2008a).. 29

Figure 2-7: Bigraph G with controls (Milner, 2008a). ... 30

Figure 2-8:Bigraph F with controls (Milner, 2008a).. 30

Figure 2-9: The Bigraph H (Milner, 2008a). ... 31

Figure 2-10: Constituent graphs of the Bigraph H (Milner, 2008a). 31

Figure 2-11: The abstract Bigraph H (Milner, 2008a). ... 32

Figure 2-12: Bigraph E representing agents, buildings, computers and rooms

(Milner, 2008a).. 34

Figure 2-13: Reaction rule B1(Milner, 2008a). .. 35

Figure 2-14: Reaction rule B2 (Milner, 2008a).. 35

Figure 2-15: Reaction rule B3 (Milner, 2008a).. 35

Figure 2-16: The Bigraph E’ after the application of reaction rules B1,B2,B3 to

Bigraph E (Milner, 2008a)... 36

Figure 2-17:Architecture of the four layers of BPL tool(ITU, 2007a). 38

Figure 2-18: The rewrite engine of the BPL tool (ITU, 2007a). 39

Figure 2-19: A place graph with a root and a site. ... 40

Figure 2-20: Composition operation of Bigraphs. ... 41

Figure 2-21: Parallel product operation of B igraphs. ... 41

Figure 2-22: Prime product operation of Bigraphs. .. 42

Figure 2-23: Device ‘uncached’ rule. .. 43

Figure 2-24: The Platographic model. .. 44

Figure 2-25: Bigraph I (Walton and Worboys, 2009). .. 46

Figure 2-26: The teacher/pupil relationship (Henson et al., 2012)...................... 48

Figure 2-27:Block diagram depicting the control loop between agents and the

physical structure (Pereira et al., 2012). .. 50

Figure 2-28:Bigraph model of a WLAN (Calder and Sevegnani, 2012). 53

11

Figure 2-29: Relationship between views, models and

implementation.(Waddington and Lardieri, 2006)... 56

Figure 2-30: Design models versus runtime models (Bencomo, 2009). 57

Figure 2-31: Two basic approaches for runtime self -representation through

reflection. (a) A model causally connected to the program;(b) Model and the

program are one and the same entity(Gjerlufsen et al., 2009). 58

Figure 2-32:Three layered conceptual model (Sykes et al., 2008). 61

Figure 2-33: Morin et al.’s runtime model (Morin et al., 2008)............................. 63

Figure 2-34: Taxonomy of faults combined with observed effects (Chan et al.,

2007b). ... 70

Figure 3-1: Reconfiguration cycle(Fredj et al., 2006). ... 79

Figure 3-2: Orthogonal modelling space. ... 82

Figure 4-1:Reference architecture for self-management adapted from Kramer et al.

(Kramer and Magee, 2007). .. 89

Figure 4-2: Model driven adaptation at runtime.. 91

Figure 4-3: Data flow diagram... 92

Figure 4-4:Node representing a location with id i2 and a site. 94

Figure 4-5: The structure constructed by function loc ’’.. 95

Figure 4-6: Simplified representation of location with id i2. 96

Figure 4-7: Structure of the device Bigraph... 97

Figure 4-8: Defining devidNode, device, serviceIdNode. .. 97

Figure 4-9: Function constructDevice. .. 98

Figure 4-10: Simplified representation of device with id i5.8 .. 99

Figure 4-11: State of the WORLD expressed as a Bigraph. 99

Figure 4-12: Construction of WORLD layer. .. 100

Figure 4-13: Device ‘uncached’ rule of the WORLD. ... 101

Figure 4-14: Device ‘cached’ rule of WORLD. ... 101

Figure 4-15: A service node. .. 103

Figure 4-16: The structure constructed by function construc tService................. 104

Figure 4-17: Simplified representation of service with id i7. 105

Figure 4-18: State of SCA layer... 105

Figure 4-19: Construction of a state of SCA layer. .. 106

Figure 4-20: Component interfaces (Sommerville, 2011). ... 106

Figure 4-21: Sequential component composition (Sommerville, 2011). 107

Figure 4-22:Hierarchical component composition (Sommerville, 2011). 107

Figure 4-23: Additive component composition (Sommerville, 2011) 108

Figure 4-24: Bigraph model of sequential service composition. 108

12

Figure 4-25: Bigraph model of hierarchical service composition. 108

Figure 4-26: Bigraph model of additive service composition. 109

Figure 4-27: State change of a service from working to unresponsive........................ 110

Figure 4-28: State change of a service from working to incorrect results.................... 111

Figure 4-29: State change of a service from working to incoherent results................. 111

Figure 4-30: State change of a service from working to slow service.......................... 111

Figure 4-31: State change of a service from working to outdated results. 111

Figure4-32: State of the Bigraphical array. ... 114

Figure 4-33: Construction of a state of Bigraphical array... 114

Figure 5-1: Device un-caching rule. .. 121

Figure 5-2: Initial state of the WORLD Bigraph. ... 122

Figure 5-3: Context returned by matching algorithm. ... 122

Figure 5-4: Parameter returned by matching algorithm. .. 122

Figure 5-5: Rewritten state of the WORLD. .. 123

Figure 5-6: Function changeSystem. .. 124

Figure 5-7: Function constructDisappear. ... 126

Figure 5-8: Function constructDisappear. ... 127

Figure 5-9: Function deviceDisappears. ... 127

Figure 5-10: Device cached reaction rule. .. 128

Figure 5-11: Function constructAppear. ... 129

Figure 5-12: Function deviceAppears. ... 129

Figure 5-13: Function changeAmbient. .. 130

Figure 5-14: constructStateChange function encapsulating the reaction rule that

changes state of a service. ... 130

Figure 5-15: Function constructStateChange. .. 131

Figure 5-16: Device joins composition rule... 131

Figure 5-17: Function constructDeviceJoinsCompositionRule................................... 132

Figure 5-18: Function deviceJoinsComposition. .. 133

Figure 5-19: Device leaves composition rule .. 133

Figure 5-20: Function constructDeviceLeavesCompositionRule 134

Figure 5-21: Function deviceLeavesComposition. ... 134

Figure 5-22: Initial state of WORLD Bigraph. ... 136

Figure 5-23: Reaction rule with the same redex and reactum. 136

Figure 5-24: Context returned by the matching algorithm... 137

Figure 5-25: Parameter returned by the matching algorithm. 137

Figure 5-26: Function locateDevice. .. 138

Figure 5-27: Initial state of world Bigraph. .. 139

13

Figure 5-28: Reaction rule with the same redex and reactum. 140

Figure 5-29: First of the two contexts returned by matching algorithm- only i6.4 absent.

 ... 140

Figure 5-30: First of the two parameters returned by the matching algorithm only 4

present... 141

Figure 5-31: Second of the two contexts returned by matching algorithm- only i6.2

absent. ... 141

Figure 5-32: Second of the two parameters returned by the matching algorithm- only 2

present... 141

Figure 5-33: Function enumerateDevicesInShoppingMall... 144

Figure 5-34: Initial state of WORLD Bigraph. ... 144

Figure 5-35: Reaction rule with the same redex and reactum. 145

Figure 5-36: Context returned by matching algorithm. ... 145

Figure 5-37: Parameter returned by matching algorithm. .. 146

Figure 5-38: Function findParent. .. 147

Figure 5-39: Initial state of WORLD Bigraph. ... 148

Figure 5-40: Reaction rule with the same redex and reactum. 148

Figure 5-41: Context returned by the matching algorithm.. 149

Figure 5-42: Parameter returned by matching algorithm. .. 149

Figure 5-43: Function findChild... 151

Figure 5-44: State of the Bigraphical array ... 152

Figure 5-45: Reaction rule with the same redex and reactum 153

Figure 5-46: Context returned by the matching algorithm.. 153

Figure 5-47: Parameters returned by the matching algorithm 153

Figure 5-48: Function newFindParticipatingDevice. ... 156

Figure 5-49: The state of the SCA layer. .. 157

Figure 5-50: Reaction rule with the same redex and reactum. 157

Figure 5-51: One of the four contexts returned by the matching algorithm. 157

Figure 5-52: One set of two parameters returned by the matching algorithm out of four

sets. ... 158

Figure 5-53: Function constructServiceTree. .. 159

Figure 5-54: Function SCAFaultScript... 163

Figure 5-55: Function SCANewState. .. 164

Figure 5-56: Function repairCompositionPolicy. .. 166

Figure 5-57: Function getDeviceList. .. 167

Figure 5-58: Function changeAmbientScript... 169

Figure 5-59: Function changeAmbientOutputCommand. ... 171

14

Figure 5-60: Function newCreateServiceList. .. 172

Figure 5-61: Function filter. ... 173

Figure 5-62: Function testIfServiceNotSupported... 173

Figure 5-63: Function preFetch. .. 173

Figure 6-1: Two classes of ambients-in one class, the shopper pauses at the mid-point

between [0s-2s] whereas in the other class, the shopper pauses for a time

characterized by the random sampling of a weibull cumulative distribution function

(shape=1.002, scale=3.059e+02). 184

Figure 6-2: The total time spent in the way-point loc1. .. 185

Figure 6-3: The total time spent in the shop loc2... 185

Figure 6-4: The initial state of the world bigraph for the first experiment. 188

Figure 6-5: An example regression curve... 190

Figure 6-6: The initial state of the world bigraph for the first experiment. 190

Figure 6-7: An abstracted out tree structure of the location model for experiment 1. . 191

Figure 6-8: An abstracted out tree structure of the location model for experiment 2. . 192

Figure 6-9: An abstracted out tree structure of the location model for experiment 3. . 192

Figure 6-10: An abstracted out tree structure of the location model for experiment 4.192

Figure 6-11: An abstracted out tree structure of the location model for experiment 5.193

Figure 6-12: An abstracted out tree structure of the location model for experiment 6.193

Figure 6-13: An abstracted out tree structure of the location model for experiment 7.193

Figure 6-14: The response times in milliseconds for experiment number 3. 195

Figure 6-15: Regression curve of the seven mean response times for seven

experiments with a 95% confidence interval for calls to function ‘n’. 195

Figure 6-16:Regression curve of the seven mean response times for seven

experiments with a 95% confidence interval for calls to function ‘s’. 196

Figure 6-17: An abstracted out tree structure of the location model for experiment 8.197

Figure 6-18: An abstracted out tree structure of the location model for experiment 9.197

Figure 6-19: An abstracted out tree structure of the location model for experiment 10

where our sytem keels off. .. 198

Figure 6-20: The response times and in milliseconds for experiment number 3. 199

Figure 6-21: Regression curve of the nine mean response times for nine experiments

with a 95% confidence interval for calls to function ‘n’. .. 199

Figure 6-22: Regression curve of the nine mean response times for nine experiments

with a 95% confidence interval for calls to function ‘s’. .. 200

Figure 6-23: 3 services in the composition. .. 201

Figure 6-24: 4 services in the composition. .. 201

15

Figure 6-25: 5 services in the composition. .. 201

Figure 6-26: 6 services in the composition. .. 202

Figure 6-27: The response times in milliseconds for experiment number 2. 203

Figure 6-28: Regression curve of the three mean response times for three experiments

with a 95% confidence interval for calls to function ‘n’. .. 203

Figure 6-29: Regression curve of the three mean response times for three experiments

with a 95% confidence interval for calls to function ‘s’. .. 204

Figure 6-30: An example topology .. 205

Figure 6-31: 7 of 24 possible permutations. ... 205

Figure 6-32: Only one possible decomposition for the composition operation. 206

Figure 6-33: The starting topology .. 206

Figure 6-34: Children of loc1 and loc3 constructed using prime product operation on

the left and constructed using composition operation on the right. 207

Figure 6-35: Children of loc1 and loc3 constructed using prime product operation on

the left and constructed using composition operation on the right. 207

Figure 6-36: Children of loc1 and loc3 constructed using prime product operation on

the left and constructed using composition operation on the right. 207

Figure 6-37: Children of loc1 and loc3 constructed using prime product operation on

the left and constructed using composition operation on the right. 208

Figure 6-38: Children of loc1 and loc3 constructed using prime product operation on

the left and constructed using composition operation on the right. 208

Figure 6-39: Children of loc1 and loc3 constructed using prime product operation on

the left and constructed using composition operation on the right. 209

Figure 6-40: Response times of ‘n’ event function for the experiments with the usual

topology and the experiments conducted with the depth first topology. 211

Figure 6-41: Response times of ‘s’ event function for the experiments with the usual

topology and the experiments conducted with the depth first topology. 211

Figure 6-42: A favorable scenario-the functions get the maximum possible time to

respond.. 213

Figure 6-43: The response times and available times for each event in milliseconds for

experiment number 3. ... 214

Figure 6-44: The difference between the response times and the available time

between two successive events in milliseconds for experiment number 3. 214

Figure 6-45: Mean of the response times and available times for ‘n’ events shown

seperately for each of the seven experiments.. 215

Figure 6-46: Regression curve of the seven mean time gaps for seven experiments

with a 95% confidence interval for calls to function ‘n’. .. 216

16

Figure 6-47: Mean of the response times and available times for ‘s’ events shown

seperately for each of the seven experiments.. 216

Figure 6-48: Regression curve of the seven mean time gaps for seven experiments

with a 95% confidence interval for calls to function ‘s’. .. 217

Figure 6-49: The response times and available times for each event in milliseconds for

experiment number 3. ... 218

Figure 6-50: The difference between the response times and the available time

between two successive events in milliseconds for experiment number 3. 218

Figure 6-51: Mean of the response times and available times for ‘n’ events shown

seperately for each of the nine experiments... 219

Figure 6-52: Regression curve of the nine mean time gaps for nine experiments with a

95% confidence interval for calls to function ‘n’. ... 220

Figure 6-53: Mean of the response times and available times for ‘s’ events shown

seperately for each of the nine experiments... 220

Figure 6-54: Regression curve of the nine mean time gaps for nine experiments with a

95% confidence interval for calls to function ‘s’. ... 221

Figure 6-55: The response times and available times for each event in milliseconds for

experiment number 3. ... 222

Figure 6-56: The difference between the response times and the available time

between two successive events in milliseconds for experiment number 3. 222

Figure 6-57: Mean of the response times and available times for ‘n’ events shown

seperately for each of the three experiments. .. 223

Figure 6-58: Regression curve of the three mean time gaps for three experiments with

a 95% confidence interval for calls to function ‘n’... 224

Figure 6-59: Mean of the response times and available times for ‘s’ events shown

seperately for each of the three experiments. .. 224

Figure 6-60: Regression curve of the three mean time gaps for three experiments with

a 95% confidence interval for calls to function ‘s’. .. 225

Figure 6-61: One of the many worst case scenarios.. 226

Figure 7-1: Verification and validation model where a system in operational mode j

undergoes a sequence of adaptation ... 239

17

LIST OF TABLES

Table 4-1: Mapping between observed effects and volatility. .. 87

Table 4-2: Mapping between reaction rules and volatilty. .. 112

Table 5-1: Mapping input events to output commands .. 119

Table 6-1: Modelling dimensions for self-adaptive software systems(Andersson et al.,

2009). .. 179

18

1 INTRODUCTION

1.1 THE CONTEXT OF OUR STUDY: A SCENARIO

Ubiquitous computing systems (Weiser, 1999) are often characterized as being volatile

(Coulouris, 2012). This includes all of the following properties: 1) Device and communication

link failures, 2) Variation in the properties of communication such as bandwidth, and 3)

Creation and destruction of associations which are logical communication relationships between

software components resident on the devices.

 Imagine a scenario in which a user, Alice, is strolling around in a shopping mall with a mobile

device running a composition of services being offered by devices that are embedded all over

the mall. She might want to buy a pair of jeans but wants to compare prices, find the location of

nearby shops and check customer ratings of the shops. The (volatile) composite service running

on her mobile device will be comprised of a price comparison service, a location service and a

service offering customer ratings of the shops in the mall. We assume that Alice’s device has

various forms of wireless connectivity (Bluetooth, Wi-Fi, 3G etc.). As Alice moves around in

the shopping mall, the mobile device running the composition will suffer disconnections to

some of the services due to radio occlusions, multi-hop wireless routing, or the user moving ‘out

of range’ (Coulouris, 2012). These same factors could also lead to a highly varying latency and

bandwidth of the connection between a service and a mobile device. Moreover, the user’s

device might run out of battery. If one of the services disappears (malfunctions) because of this

volatility, we want our system to replace it with an equivalent service(s) without any user

intervention.

The volatility in service composition arises from changes in context i.e. changes in the external

environment. However, the effect of volatility is on the internal working of the service

composition. Volatility may result in a higher level of complexity as services participating in the

service composition may appear and disappear at a high rate and break their interconnection

with the service composition. There might also be a large number of ‘equivalent’ services to

choose from.

Leveraging software models to inform runtime adaptation mechanisms has become an important

technique to manage the complexity of evolving software as it executes (Aßmann et al., 2012,

Blair et al., 2009, France and Rumpe, 2007). This is because models at runtime provide

“abstractions of runtime phenomenon” (France and Rumpe, 2007) rather than abstractions of

19

design time artifacts. We wish to model at runtime a service composition running on a mobile

device.

Software models at runtime can be expressed with Bigraphs (Milner, 2009). Bigraphs are

graphical structures with nodes and edges. These nodes can be placed inside each other and be

linked with edges. Bigraphs have been rigorously formalized with category theory (Barr and

Wells, 1990). They have been shown to capture the theory of Petri nets (Milner, 2004a), pi-

calculus (Milner, 1999), CCS (Milner, 2006a), mobile ambient (Jensen, 2006) and lambda

calculus (Milner, 2004b). Because of their graphical structure, Bigraphs can be intuitively used

to visualize and model physical and virtual structures having location, communication and

behavior (Greenhalgh, 2009b). This thesis, to the best of our knowledge, is the first work to

explore the appropriateness of the language abstractions provided by Bigraphs to construct a

model at runtime to tackle the problem of volatility in a service composition running on a

mobile device.

1.2. THE RESEARCH QUESTION

Our thesis answers the following research question:

Are the language abstractions provided by Bigraphs sufficient and appropriate to construct a

model at runtime to tackle the problem of volatility in a service composition running on a

mobile device?

This question combines two major issues that have not been addressed in the literature:

i. How do we use Bigraphs to construct a model at runtime?

ii. Do Bigraphs offer the appropriate language abstractions to address the open research

questions being explored by the models at runtime community?

The two caveats on the scope of the above question are that firstly, we will not replicate all

programming language abstractions with our Bigraphical model at runtime. Instead, we will

abstract upon only some selected elements of the service composition. Secondly, we would be

accessing the control constructs of SML through MiniML (a subset of Standard ML-see Chapter

2) since Bigraphs lack control structures.

1.3. APPLICATIONS OF BIGRAPHS AND MODEL AT RUNTIME

We now discuss the reasons as to why it is worthwhile to answer the question discussed in the

previous section.

20

Firstly, Bigraphs have been envisaged as a step towards tackling the complexity of ubiquitous

systems (Milner, 2009) . If found useful, Bigraphs models could be used as foundational models

in a ‘tower of models’(Milner, 2008b). In such a tower, the higher-level models will express

concepts such as trust and the lower level models will implement concepts such as trust by for

example having an agent accept data only from a ‘trustworthy’ agent.

Secondly, the models-at-runtime research community envisages using Model-Driven-

Engineering techniques to develop models that are abstractions of runtime phenomenon (Blair

et al., 2009). If found useful, such models could be used to support reasoning, dynamic state

monitoring and control of systems at runtime.

1.4. OVERVIEW OF THE MAIN CONTRIBUTIONS

We now give a brief overview of the main contributions of this thesis.

1) This thesis responds to a call by Robin Milner (Milner, 2009) to explore the appropriateness

of using Bigraphs in practical applications. We have successfully constructed a model at

runtime with Bigraphs.

2) This thesis also responds to some of the research questions posed by the models at runtime

community at the Dagstuhl seminar (Aßmann et al., 2012) by offering Bigraphical language

abstractions as an appropriate solution.

3) We discuss the general lessons learnt from using Bigraphs for a practical application such as

a model at runtime.

4) We discuss the general lessons learnt from our experiences of designing models at runtime.

5) We have implemented the model at runtime using the BPL Tool (ITU, 2011) and suggest

appropriate enhancements for the tool.

1.5 THESIS STRUCTURE

We have organized the structure of this thesis along the following lines:

We start off in Chapter 2 where we give the background of our thesis. We discuss the literature

related to our implementation’s language- Bigraphs; our implementation’s architecture- models

at runtime; the example property- volatility; and finally the example system: - a ubiquitous

computing service composition.

21

Having set the stage thus, in Chapter 3 we first describe our research question. Then we go on to

discuss the requirements for our design and the design space for tackling the problem of volatile

service composition.

Next, in Chapter 4, we discuss the architecture that we have used for our system and show how

we have used the Bigraphical structure and reaction rule abstractions to program our system

using the MiniML language (a subset of Standard ML) supported by the BPL Tool (ITU, 2011).

Then, in Chapter 5, we discuss our implementation approach, the functions that modify/access

the two layers of our model and finally the functions that encapsulate adaptation logic and

simulate test runs.

In Chapter 6, we present both a qualitative and quantitative evaluation of our implementation.

The quantitative evaluation is done by loading our system that runs on a laptop with workload

events. These workload events are generated on an Android machine running simulations based

on the Shopping Mall Mobility model (Galati et al., 2013) and are sent to the laptop via a TCP

connection. This quantitative evaluation focuses on testing if our Bigraphical model at runtime

can be in-sync with the real world.

We conclude our thesis with Chapter 7. In that chapter, we discuss how this thesis answers the

research question posed in Chapter 3; and describe our contributions to knowledge and future

work.

22

2 BACKGROUND

2.1 INTRODUCTION

This chapter presents a thorough review of the background material relevant to our thesis. As

discussed in the previous chapter, our thesis explores the appropriateness of Bigraph’s

abstractions to construct a model at runtime to tackle the problem of volatile service

composition running on a mobile device. Therefore, we discuss the literature representing work

being done by the research communities in Bigraphs, models at runtime, as well as the

description of the property of volatility and faults occurring in a service composition running on

ubiquitous computing systems. We have organized this chapter as follows:

In section 2.2, we start with a brief introduction to Bigraphs (Milner, 2009). We also discuss

Plato-Graphical models (Birkedal et al., 2006) which is a minor extension of Bigraphs and has

been used by us to inform our design of a two-layered model. Next, we present a brief

introduction to the BPL Tool (ITU, 2011) that we have used to implement our system. Then, we

discuss the literature presenting practical implementation of Bigraphs and the open research

questions that stem from it. Finally, we discuss those ideas on the use of Bigraphs from the

literature that constitute the take-off point for our thesis.

In section 2.3, we discuss the research work being done by the models at runtime community.

Firstly, we give an explanatory background of models at runtime. Then, we discuss the literature

presenting the use of architectural models at runtime and the open research questions that stem

from it. Finally, we discuss those ideas on the use of architectural models at runtime from the

literature that constitute the take-off point for our thesis.

Since volatility is the example property that our system deals with, in section 2.4, we discuss the

relevant literature that characterizes volatility in ubiquitous systems.

Lastly, as our example system issue is faults occurring in a service composition running on a

mobile device, in section 2.5, we discuss the taxonomy of faults that can occur in such systems.

2.2 BIGRAPHS: A NEW LANGUAGE

Bigraphs unify various process algebra and represent a Ubiquitous Abstract Machine that

“much like Von-Neumann’s register machines could be utilized to build a tower of models for

the complex concepts involved in ubiquitous computing” (Milner, 2006b), (Birkedal et al.,

2006). The notions of locality, mobility, connectivity and stochastics are captured in the theory

of Bigraphs. A Bigraph model “can be presented graphically for less technical clients and

23

mathematically for analysts” (Milner, 2008a). The model also “underlies a design methodology

for engineers and provides an executable subset that is a programming language” (Milner,

2008a).

In the following sub-sections, we firstly give an explanatory background for Bigraphs.

Secondly, we describe what is being modelled with Bigraphs. Thirdly, we discuss the open

research questions on the practical implementation of Bigraphs and finally we discuss the take-

off point of our thesis with respect to Bigraphs.

2.2.1 EXPLANATORY BACKGROUND FOR BIGRAPHS

We now start with an informal discussion of the mathematics of Bigraph theory. This discussion

is meant for someone who is interested in the practical usage of Bigraphs. Next, we also discuss

the Bigraph Programming Language (BPL) Tool. We then discuss some of the syntax of the

SUGAR module of the BPL Tool that we have used in this thesis. Finally, we give a brief

overview of using the SUGAR module to express the Plato-graphic model that we have used in

this thesis.

2.2.1.1 MATHEMATICAL BACKGROUND FOR BIGRAPHS

We now present a brief overview of the mathematical concepts used to define Bigraphs (Milner,

2008a, Milner, 2009). We do not present the full mathematical theory that defines the properties

of Bigraphs. For a through treatment, the reader is referred to Milner’s book (Milner, 2009).

What follows is based on that book’s first chapter and Milner’s paper (Milner, 2008a) which is

meant for practitioners who are interested in using Bigraphs for implementing real-world

applications.

A general definition of Category (Milner, 2009): A Category C has a set of objects and a set

of arrows. Milner denotes objects by I, J, K and arrows by f, g, h and we will follow his

convention in this discussion. Each arrow f has a domain and codomain , which are both

objects; if these are I and J then the notation used is f : 𝐼 → J , where I = dom(f) and J = cod(f).

The set of arrows f : 𝐼 → J is called the homset of I and J , and is written as C(𝐼 → J) or simply

(𝐼 → J) .

Notations and Conventions (Milner, 2009):

Disjoint Sets: Let the set A and A’ be two disjoint sets. Then the union of these two sets will be

denoted by:

A ⊎ 𝐴′

24

Finite Ordinal: A non-negative integer k will be considered a finite ordinal:

k = {0,1,…. k-1}

A category whose objects and arrows are finite ordinals and the maps between them will be

represented by ORD.

Graph: A graph consists of nodes V and edges E. An edge joins a pair of nodes.

Hypergraph: is a generalization of a graph in which the edge may join any number of nodes.

Consider a hypergraph where each node v ∈ V has an arity ar(v) which is a finite ordinal. Let

the hyper graph have ports defined as:

PV ≝ ⨄v∈V Pv.

Then a hypergraph is defined as a quadruple:

(V, ar, E, link)

where ar : V → ORD defines the arities, and link: PV → E each port to an edge.

FIGURE 2-1: A HYPERGRAPH (M ILNER, 2008A).

A hypergraph with nodes {v0,…..,v5} and edges E = { e0, e1, e2} is shown in Figure 2-1. The

figure represents nodes as circles, ports as black blobs, and edges as linkages between the ports.

In the Bigraph theory, these hypergraphs are enhanced into Bigraphs in four steps (Milner,

2008a).

v0

v1

v2

v3

v4

v5

e0

e1

e2

25

a) The hypergraph is considered linking the nodes. The nodes are furnished with additional

structure called placing. Because we have two structures in the graph, the prefix ‘bi’ is used

with the word graph.

b) To make parts of the Bigraph externally accessible, interfaces are introduced.

c) To classify the nodes, signatures are then introduced.

d) Finally, operations to construct larger Bigraphs from smaller ones are defined.

2.2.1.1.1 BIGRAPHS IN PICTURES

Following Milner’s paper (Milner, 2008a), we discuss each of the above four steps:

Placing and Linking: “A Bigraph with nodes V and edges E has a hypergraph with nodes V

and edges E, and a forest with nodes V” (Milner, 2008a).

Nesting is allowed for the nodes. This spatial structure is called placing and is completely

independent of the linking structure represented by the hypergraph. Thus, placing consists of a

set of trees i.e. a forest of the nodes. The Bigraphs described so far are called bare Bigraphs.

Milner uses the notation F̆, Ğ, … to represent these bare Bigraphs (Milner, 2008a). Figure 2-2

shows a bare Bigraph Ğ that has nodes V = {v0,…..,v5} and edges E = { e0, e1, e2}, with its forest

and hypergraph.

FIGURE 2-2: THE UPPER DIAGRAM PRESENTS BOTH THE FOREST AND THE

HYPERGRAPH;IT DEPICTS THE FOREST BY NESTING. THE LOWER TWO D IAGRAMS

REPRESENT THE TWO STRUCTUES SEPERATELY, IN A CONVENTIONAL MANNER. THE

HYPERGRAPH OF Ğ IS THE ONE ILLUSTRATED IN FIGURE 2-1(MILNER, 2008A).

v0
v1 v2

v3 v4

v5

e0

e1
e2

v0

v1

v2

v3

v4

v5

e0

e1

e2

v0

v2

v3

v1

v4

v5

bare bigraph Ğ

forest of Ğ

hypergraph of Ğ

26

Interfaces : “A Bigraph has interfaces, which define its use as a construction block” (Milner,

2008a).

Consider Figure 2-3 where 𝐹̌ represents informally a ‘portion’ of 𝐺̆ having only some of its

nodes. Also one of the hyperlinks is broken.

FIGURE 2-3: A BARE BIGRAPH 𝐹̌ (Milner, 2008a).

To make 𝐹̌ formally part of 𝐺̆, interfaces are added to bare Bigraphs. This extends 𝐹̌ and Ğ to

Bigraphs F and G. Thus, the occurrence of F as a substructure of G can be represented by an

equation

G = H o F.

In this equation, H is a ‘host’ or contextual Bigraph. This extension is done independently for

forests and hypergraphs. “A forest with interfaces will be called a place graph. Similarly, a

hypergraph with interfaces will be called a link graph” (Milner, 2008a).

The interface of a place graph is a finite ordinal n = {0, 1,…, n-1}. The members of a place

graph’s outer interface are its roots. Similarly, the members of a place graph’s inner interface

are its sites.

The outer and inner faces are also called faces.

For a link graph, both the outer and inner faces are name-sets. The outer face is called the outer

name and the inner face is called the inner name. These names are assumed to be drawn from a

countably infinite vocabulary 𝜒.

v1

v3 v4

v5

e1
e2

 bare bigraph F

27

FIGURE 2-4: DEFINING INTERFACES FOR THE PLACE GRAPH AND THE LINK GRAPH OF

THE BARE BIGRAPH 𝐹̌ (M ILNER, 2008A).

Consider Figure 2-4 which shows how we can define faces for bare bigraph 𝐹̌. Let us choose to

have the outer face 3 = {0,1,2} for the forest 𝐹̌. This outer face provides the nodes v1, v3 and v4

with distinct roots as parents. We choose to have no sites and so the inner face is 0.The resulting

place graph is written as:

FP: 0 → 3

This is shown on the left hand side of Figure 2-4. By convention Milner uses {xy…} to mean a

set {x,y,…} of names (Milner, 2008a). We can choose the outer face {xy} to name the parts of

the broken hyperlink and inner face ∅ for the hypergraph of 𝐹̌. Then, the resulting link graph is

written as:

FL: ∅ → {xy}

Using the above definitions, a Bigraph is defined as a pair of a place graph and a link graph:

B = 〈 𝐵𝑃, 𝐵𝐿〉

Together, the place graph and link graph are the Bigraph’s constituents. The outer face of the

Bigarph B is a pair 〈 𝑛, 𝑌〉. The first member of this pair n is the outer face of BP and the second

member of the pair Y is the outer face of BL. The inner face 〈 𝑚, 𝑋〉 is defined likewise.

Consider the Bigraph F = 〈 𝐹𝑃 , 𝐹𝐿〉 using the place graph FP and the link graph FL discussed

earlier. The outer face is 〈 3, {𝑥𝑦}〉. Similarly, the inner face is 〈 0,∅〉. Now, the trivial interface

v1

v3

v4

v5

x

e1

e2

v4

place graph

v1

0

v3

1

v5

2

y

FP: 0 →3

link graph

roots….

FL: ∅ →{xy}

outer names….

28

𝜖 ≝ 〈 0, ∅〉

is defined as the origin. Thus, we can write the Bigraph F as:

F∶ 𝜖 → 〈 3, {𝑥𝑦}〉

The Bigraph F is depicted in Figure 2-5.

FIGURE 2-5: THE BIGRAPH F (MILNER, 2008A).

The dashed rectangles in Figure 2-5 represent roots. The rectangles are often referred to as

regions in Bigraph literature. In the figure the four links belong to the link graph FL. Out of

these four links, two links the edges e1 and e2 are called closed links. The remaining two links

are named x and y .The links x and y are called open links.

We can also extend the bare Bigraph of Figure 2-2 𝐺̌ to a Bigraph G by adding interfaces. All

the links in 𝐺̌ are edges because there are no open links. As a result, the name-set in its outer

face will be empty. If we give the two nodes vo and v4 two roots as parents, then we can place G

in a larger context because these nodes could be having distinct parents. Bigraph G is shown in

Figure 2-6. Because the forest and hypergraph structures are independent, in the upper diagram

of that figure, it of no consequence as to where a link crosses the boundary of a node or a

region.

 bigraph

v1

v3 v4

v5

e1 e2

0 1 2

F :e ® 3,{xy}

x

y

29

FIGURE 2-6: BIGRAPH G (MILNER, 2008A).

Classification: “The nodes of a Bigraph may be of different kinds: this reflects that they may

contribute differently to dynamics” (Milner, 2008a).

 “Each application of Bigraphs requires a signature” (Milner, 2008a): A basic signature takes

the form (𝜅, 𝑎𝑟). It has a set 𝜅 whose elements are kinds of nodes called controls, and a map

𝑎𝑟: 𝜅 → ℕ assigning an arity, a natural number to each control. The signature is denoted by 𝜅

when the arity is understood. A Bigraph over 𝜅 assigns to each node a control whose arity

indexes the ports of a node where links may be connected.

An application will have different controls which will be specified in a signature. Along w ith

the controls, their arities are also specified. A signature is specified in the following manner:

𝜅 = {K:2, L:0,M:1}

A node’s arity is the arity of its control in any Bigraph over 𝜅.Often a node’s identifier v is

omitted in a diagram and its control is shown instead.

The Bigraph shown in Figure 2-6 can therefore be depicted as shown in Figure

2-7.

v0
v1 v2

v3 v4

v5

e0

e1
e2

0
1 G :e ® 2,Æ

 bigraph

v0

v1

v2

v3

v4

v5

e0

e1

e2

v2

v3

v1

v4

0 1
roots….

GP: 0 →2

GL: ∅ → ∅

 place graph

 link graph

v0

v5

G :e ® 2,Æ

30

FIGURE 2-7: BIGRAPH G WITH CON TROLS (MILNER, 2008A).

FIGURE 2-8:BIGRAPH F WITH CONTROLS (MILNER, 2008A).

If the node and edge identifiers are present, the Bigraph is called concrete otherwise abstract.

The discussion that follows will deal with abstract Bigraphs unless otherwise specified.

Construction: “We make larger Bigraphs from smaller ones via their interfaces; this

construction is defined in terms of the constituent place and link graphs” (Milner, 2008a).To

construct a Bigraph H such that G = H o F, the inner face of H must be 〈 3, {𝑥𝑦}〉 which is the

same as the outer face of F. This means, H must have three sites 0, 1 and 2. It must also have

M
K L

K K

M

0
1

G :e ® 2,Æ

 bigraph

 bigraph

K

K K

M

0 1 2

F :e ® 3,{xy}

x

y

31

two inner names x and y. In Figure 2-9 we show H and in Figure 2-10 its constituent parts. Its

sites are shown as shaded rectangles in Figure 2-9. These two figures illustrate informally the

concepts of categorical construction (Milner, 2008a).

FIGURE 2-9: THE BIGRAPH H (MILNER, 2008A).

FIGURE 2-10: CONSTITUENT GRAPHS OF THE BIGRAPH H (MILNER, 2008A).

From the place graph drawn in Figure 2-10, we see that each site and node has a parent. This

parent is either a node or a root. In Figure 2-9, just as it is of no consequence as to where a link

crosses the boundary of a node or a region; it is of no consequence as to where a link crosses a

root boundary.

Similarly, from the link graph drawn in Figure 2-10, we see that each inner name and port

belongs to a link. This link is either closed or open. A name can be simultaneously inner and

outer irrespective of whether they are in the same link.

In Figure 2-11, we show as an abstract Bigraph:

v2

0

1

 bigraph

v0

0

1

2

x y

H : 3,{xy} ® 2,Æ

v2

1

0

v0

0

1

2

v0

v2

e0

x y

roots….

sites…

 place graph

HP: 3 →2

 link graph

HL: {xy} → ∅

inner names…

32

FIGURE 2-11: THE ABSTRACT BIGRAPH H (MILNER, 2008A).

We now present the following informal categorical construction of Bigraphs that follows

Milner’s description (Milner, 2008a):

Let F : I → 𝐽 and H : J → 𝐾 be two Bigraphs with disjoint nodes and edges where

I = 〈𝑙 ,𝑋〉,

J = 〈𝑚, 𝑌〉,

and K = 〈𝑛,𝑍〉.

Then the composite H o F : I → 𝐾 is just the pair of composites

〈𝐻𝑝𝑜𝐹𝑝 ,𝐻𝑙𝑜𝐹𝑙 〉

whose constituents are constructed informally like so:

 To form the place graph 〈𝐻𝑃𝑜𝐹𝑃 ∶ 𝑙 → 𝑛〉, for each i ∈ m join the ith root of FP with

the ith site of HP;

 To form the link graph 〈𝐻𝐿𝑜𝐹𝐿 ∶ 𝑋 → 𝑍〉, for each y ∈ Y join the link of FL having the

outer name y with the link of HL having the inner name y.

Therefore H and F are joined at every place or link in their common face J, which ceases to

exist.

L

0

1

 abstract bigraph

M

0

1

2

x y

H : 3,{xy} ® 2,Æ

33

2.2.1.1.2 ALGEBRA OF BIGRAPHS

“Diagrams are valuable for rapid appreciation of a system’s structure. On the other hand

algebra is essential, to express and manipulate the ways in which a system may be resolved into

components” (Milner, 2008a). We now discuss the algebra that is needed to express the

structure of Bigraphs. We will discuss the dynamics of Bigraphs through reaction rules in the

next section.

Interfaces : As discussed earlier, an interface is defined as:

I =〈𝑛,𝑋〉

If X = ∅ , we abbreviate the interface to I = n; if n = 0 we abbreviate it to I = X , or I = x if X =

{x}.

On the other hand, if n = 1 the interface is called prime. An empty interface of the form

𝜖 = 〈0,∅〉

is called the origin.

The category of Bigraphs (Milner, 2008a): The abstract Bigraphs over a given signature form

a category of interfaces I, J,.. as objects and bigraphs F : 𝐼 → 𝐽 as arrows. If I = 𝜖 then F is

called ground. On the other hand, if J is prime then F is said to be prime.

As discussed earlier given F : I → 𝐽 and G : J → 𝐾 , the composite G o F is formed by placing

the roots of F in the sites of G and eliding each open link y of F with every link of G that

contains the inner name y.

This category has well behaved operation for juxtaposing two disjoint Bigraphs 𝐹0 : 𝐼0 → 𝐽0

and 𝐹1 : 𝐼1 → 𝐽1. Therefore the category is strict symmetric monoidal (ssm) (Milner, 2008a).

This operation is called the tensor product and is written as:

𝐹0 ⨂ 𝐹1 ∶ 𝐼0 ⨂ 𝐼1 → 𝐽0 ⨂ 𝐽1

If 𝐼𝑖 = 〈𝑚𝑖 ,𝑋𝑖〉 where (i = 0,1) and X0 , X1 are disjoint then

𝐼0⨂ 𝐼1 ≝ 〈𝑚0 + 𝑚1, 𝑋0 ⊎ 𝑋1〉

Similarly, we can define 𝐽0 ⨂ 𝐽1.

Thus, the product 𝐹0 ⨂ 𝐹1 of 𝐹0 and 𝐹1 is formed by laying them side by side. All algebraic

expressions in Bigraphs are defined in terms of product and composition, which enjoy pleasant

properties.

Operations : Three operations are derived from the composition and tensor operations discussed

above. These are the parallel product, the prime product and nesting.

Parallel and prime products are first defined on arbitrary interface 𝐽𝑖 = 〈𝑛𝑖 , 𝑌𝑖〉 (i = 0, 1) as

follows:

𝐽0 ∥ 𝐽1 ≝ 〈𝑛0 + 𝑛1, 𝑌0 ∪ 𝑌1〉

𝐽0| 𝐽1 ≝ 〈1 ,𝑌0 ∪ 𝑌1〉

Subsequently, the products of Bigraphs 𝐹𝑖: 𝐼𝑖 → 𝐽𝑖 (i = 0,1) are defined as follows:

34

Parallel product: 𝐹0 ∥ 𝐹1 ∶ 𝐼0 ⨂ 𝐼1 → 𝐽0 ∥ 𝐽1

Prime product: 𝐹0| 𝐹1 ∶ 𝐼0 ⨂ 𝐼1 → 𝐽0| 𝐽1

These are defined exactly like tensor product except that the links of the shared outer names in

Y0 ∩ Y1 are coalesced. Also, the prime product has prime outer face.

The third operation is called nesting and is derived from composition. Let 𝐹: 𝐼 → 〈𝑚,𝑋〉 𝐺: 𝑚 →

〈𝑛,𝑌〉. The nesting of F within G is defined by:

𝐺. 𝐹 ≝ (𝑖𝑑𝑥 ∥ 𝐺) 𝑜 𝐹 ∶ 𝐼 → 〈𝑛, 𝑋 ∪ 𝑌〉

In the equation above, 𝑖𝑑𝑥 is defined as follows (Milner, 2009): For each object I , there is an

identity arrow :

𝑖𝑑𝐼: 𝐼 → 𝐼

We just write id when I is understood.

Dynamics (Milner, 2008a): ‘Bigraphs can reconfigure themselves according to reaction rules

which can be defined arbitrarily’ (Milner, 2008a).

We will first of all discuss a model of built environment where there are agents, buildings,

computers and rooms (Milner, 2008a).The four controls namely agents, buildings, computers

and rooms are declared in the signature:

{A:2, B:1, C:2, R:0}

Figure 2-12 shows a Bigraph E with this signature. The node-shapes indicate informally the

purpose of each port. The Figure 2-12 shows a particular state that may change due to the

movement of agents and other movements. The three agents shown are conducting a conference

call represented by the open link x. The short links are used to depict that the agents in a room

could be logged in. Also, the computers in a building are linked to form a local area network.

FIGURE 2-12: BIGRAPH E REPRESEN TING AGENTS, BUILDIN GS, COMPUTERS AND

ROOMS(MILNER, 2008A).

C

 Bigraph E

A

x w

A
A

C
C R

R

R

B

35

Now, to define reconfiguration in the model shown in Figure 2-12, we can specify reaction rules

each consisting of a redex (the pattern to be changed) and a reactum (the changed pattern).

Since both these patterns are Bigraphs, they can include both placing and linking. Omitting the

precise details of matching, a rule may induce a reaction in a Bigraph G if its redex matches a

part of G. Figures 2-13 to 2-15 show three possible reaction rules.

FIGURE 2-13: REACTION RULE B1 (M ILNER, 2008A).

FIGURE 2-14: REACTION RULE B2 (MILNER, 2008A).

FIGURE 2-15: REACTION RULE B3 (MILNER, 2008A).

Figure 2-13 shows reaction rule B1where an agent can leave a conference call. In the left hand

side is the redex . This redex can match any agent. The links that point out mean that she may

 x

A
A

 y x
 y

 x z

A A

 x z

C C

A
A

 x
 x

 y
 y

R
R

36

be linked through her ports to zero or more other ports. These ports can be in the same place or

anywhere else. If the link x represents a conference call with other agents in other buildings,

reaction rule B1 will unlink her. Notice however that the link y to the computer is retained.

Figure 2-14 shows rule B2 where the reaction rule’s application results in an agent connecting

to the computer in the same place. The redex of the reaction rule ensures that a matching will

occur only if the agent is not connected to any computer and the computer is not connected to

any agent.

Both the reaction rules B1 and B2 just change the linking and not the placing.

Finally, Figure 2-15 depicts reaction rule B3 where the placing has been changed because an

agent enters a room. The redex of the reaction rule ensures that a matching will occur only if the

agent and the room are co-located- for example in a building. The dashed rectangle depicts a

site, which represents a parameter of the rule. This allows the redex to match to any room

Bigraph that contains other Bigraphs representing say computers. The occupants are allowed to

be linked anywhere whether to each other or to nodes that are out side the room by the matching

discipline. Moreover, the redex allows the agent’s ports to be connected to other nodes. The

reactum of the rule retains such connections. The redex also allows the agent to have no link and

the context in which the rule is applied may close it off. Consider Bigraph E of Figure 2-12.

Reaction rule B3 can be applied to Bigraph E thereby allowing an agent in the left-hand

building to enter a room.

If the reaction rules B1, B2, B3 are applied once to Bigraph E of Figure 2-12, we will get the

Bigaph E’ shown in Figure 2-16.

FIGURE 2-16: THE BIGRAPH E’ AFTER THE APPLICATION OF REACTION RULES B1,B2,B3

TO BIGRAPH E (MILNER, 2008A).

C

 Bigraph E’

A

x w

A
A

C
C R

R

R

B

37

2.2.1.2 THE BIGRAPH PROGRAMMING LANGUAGE (BPL) TOOL

We have used MiniML syntax-a subset of SML constructs- supported by Bigraph Programming

Language (BPL) Tool (ITU, 2011), to implement our system. We now give a brief overview of

the BPL Tool Architecture focusing on those parts that we have used in our implementation.

The BPL Tool architecture consists of the following components (ITU, 2007a):

1) Bigraph Programming Language (BPL): This is a “high level bigraph, signature, and

bigraph reaction rule definition language for binding Bigraphs” (ITU, 2007a). A binding

Bigraph is defined as a Bigraph that “adds lexical scopes on links which locates some names at

nodes” (Elsborg, 2009).Calculi like 𝜋 - calculus and 𝜆 - calculus can be encoded using binding

Bigraphs. Note that because we do not use links in our models, we have not needed to utilize the

added structure provided by the BPL Tool’s implementation of binding.

2) Bigraph Term Language (BGTerm): This “is a low level term language for Bigraphs closely

based on elementary Bigraphs and combinators” (ITU, 2007a). Because the terms do not need

to be well-formed, BGTerm is an un-checked term language. An abstract data type for BGTerm

is implemented by the BGTerm module of the BPL Tool including ML constructors.

3) Bigraph Term Language Values (BGVal): These are BGTerms that have been “checked for

well-formedness with interface data” (ITU, 2007a). An abstract data type for BGVal is

implemented by the BGVal module of the BPL Tool including ML constructors. This facilitates

the domain specific usage of BPL Tool for example in Plato-Graphic models. The module also

provides a total constructor function and special BGVal pattern matching functions for partial

deconstruction. We use BPL Tool’s SUGAR module (discussed later) for creating BGVals in

SML. This is a subset of SML and is called MiniML.

4) Binding Discrete Normal Form (BDNF): These are “binding Bigraph terms expressed in one

of the four forms defined by Damgaard and Birkedal” (Damgaard and Birkedal, 2006), (ITU,

2007a). An abstract data type for BDNF is implemented by the BgBDNF module of the BPL

Tool including ML constructors and de-constructors.

In Figure 2-17, we show the four layers of the BPL Tool that we have just discussed (ITU,

2007a). It shows how an input of a text file is translated as the data flows between the four

layers. This data is then input to the rewrite engine. One step of the rewrite engine results in a

BGVal output. This needs to be renormalized and then rewriting can continue. The portion of

the figure on the left hand side gives details of the Plato-graphic Location Model which is a

domain-specific usage of the BPL Tool code.

38

The Figure 2-18 (ITU, 2007a), shows the details of the rewrite engine of Figure 2-17. In this

example of the re-writing process, a user-driven scheduler accepts an agent in the BDNF form

as an input, a signature on BDNF-level form, and a set of rules which are also in BDNF-level

form. In step 1, the user can choose a rule through a user interface provided by the BPL-Tool

(user interface not used by us in this thesis though) to find all possible reactions for a specific

rule. Another possibility is finding just some reaction. Alternatively, in step 2, the user can

choose to find all reactions for all rules. Once an action is chosen, the “Matcher” is invoked.

This invocation can be with either a single rule or all the set of rules. A set of matches is

returned. The user can invoke the rewriter to perform a specific reaction provided there is at lest

a single match. The rewrite is performed by the “Rewriter” by substituting the reactum for the

redex and also instantiating the parameters. The agent needs to be re-normalized in general after

a rewrite step.

FIGURE 2-17:ARCHITECTURE OF THE FOUR LAYERS OF BPL TOOL(ITU, 2007A).

39

FIGURE 2-18: THE REWRITE ENGINE OF THE BPL TOOL (ITU, 2007A).

As discussed earlier, the SUGAR module is used to enter the Bigraph values directly into SML

syntax. The module defines syntactic sugar for creating BGVals in SML (ITU, 2007b). This

subset of SML is called MiniML. We use MiniML to program our implementation.

Implementing with MiniML enables us to use SML’s control constructs, which are lacking in

Bigraphs. This access to SML’s control constructs is one of the reasons why MiniML was

developed (Elsborg, 2009). We will give detailed explanation of how to program with MiniML

in Chapters 3 and 4.

2.2.1.3 USING THE SUGAR MODULE OF THE BPL TOOL

We present a short survey of the features of Bigraphs that we have used for expressing a model

at runtime with the BPL Tool (ITU, 2011). We use the MiniML syntax which is a subset of the

Standard ML (SML) constructs, provided by the BPL Tool, to represent Bigraph expressions. In

particular, we will use BPL Tool’s SUGAR auxiliary module which defines the syntactic sugar

for entering Bigraph expressions directly in SML.

a) Placing and Linking: A Bigraph consists of two independent structures- a place graph and a

link graph. These two graphs share nodes. The place graph is restricted to be a tree (See Figure

2-19 where a device node is nested inside a shopping mall node). A link graph can be a hyper-

graph i.e. a link can connect more than two objects (ITU, 2008). We have not used link graphs

in our implementation using the BPL Tool (ITU, 2011). This is because the matching algorithm

of the BPL Tool is not designed to efficiently handle a huge explosion of links that occurs as the

40

size of the Bigraph grows (Elsborg, 2009). Leaving the links out is the result of the in-efficient

implementation of the BPL Tool rather than any inherent limitation of Bigraph Theory (See

Chapter 5). In what follows therefore, we will only talk about place graphs.

 FIGURE 2-19: A PLACE GRAPH WITH A R OOT AND A SITE.

b) Interfaces: As discussed earlier, these make parts of a Bigraph externally accessible and

define its use as a construction block (ITU, 2008),(Milner, 2008a). In the Figure 2-19, a place

graph is shown with the nodes of the tree nested inside each other. There are two controls for

the two nodes: a control called ShoppingMall and another called device. The outermost dashed

rectangle represents the root and the innermost dashed rectangle represents a site. A place

graph’s outer interface is its root and inner interface its site. In our figures, we omit the drawing

of the root node when there is no ambiguity.

c) Classification of nodes: As discussed earlier, in the place graph, each node has a control

which is the name of the type of node. Each control has a status which could be atomic, active

or passive.

Atomic status of a node: Atomic nodes are those nodes that cannot have child nodes or sites

(holes within which other nodes can fit in) and no reaction rules (See point (f) Dynamics on the

following pages) are allowed inside,

Active status of a node: Active nodes are those nodes that can have child nodes or sites and

reaction rules are allowed inside,

Passive status of a node: Passive nodes are those nodes that can contain child nodes but reaction

rules are allowed only at the node and not in their child nodes.

We construct atomic, active and passive nodes in Chapter 4.

ShoppingMall

device site

41

The parent and child nodes can be of different kinds (i.e. different controls) - for example, a

device node could be inside a location node (Figure 2-19).

d) As discussed earlier, the signature of a Bigraph declares its types of controls, their status, and

their arity.

e) Operations to construct larger Bigraphs from smaller ones: The three operations in MiniML

syntax (‘S’ is the SUGAR module of BPL Tool) that we use are:

• Composition: - S.o (G, F). This means put Bigraph F inside Bigraph G provided G is not an

atomic node and the number of sites in G are equal to number of roots in F. If F denotes a

device of control device with a root and G denotes a shopping mall with a site then we get a

Bigraph shown in Figure 2-20 by putting device inside ShoppingMall Bigraph’s site. Notice

that we have omitted ShoppingMall Bigraph’s root to avoid clutter:

FIGURE 2-20: COMPOSITION OPERATION OF BIGRAPHS.

• Parallel Product: - S.||(G,F). This means place Bigraphs G and F side-by-side. If G denotes say

a Bigraph of a control called WORLD and F denotes a Bigraph of a control called SCA (Service

Component Architecture), then we get the Bigraph shown in Figure 2-21. Assume for now that

WORLD and SCA are just arbitrary names that we give to these Bigraphs. We will discuss what

WORLD and SCA stand for in Chapter 4.

FIGURE 2-21: PARALLEL PRODUCT OPERATION OF BIGRAPHS.

ShoppingMall

device

WORLD SCA

sitesite

42

• Prime Product (also called Merge Product): - S. |̀ (̀G,F). This means, place Bigraphs G and F

side-by-side under a common parent node. If G denotes say a Bigraph of a control called

WORLD and F denotes say a Bigraph of a control called SCA and we wish to place both side-

by-side, then in MiniML syntax, we write S. |̀ (̀WORLD, SCA). This is depicted in Figure 2-22.

Notice that the two Bigraphs WORLD and SCA are under a common root after the prime

product operation. This common root is formed by coalescing the two individual roots of the

two Bigraphs WORLD and SCA.

FIGURE 2-22: PRIME PRODUCT OPER ATION OF BIGRAPHS.

f) Dynamics: The reconfigurations of the structure of Bigraphs can be specified by defining

reaction rules. A reaction rule consists of a redex which is a pattern to be changed and a reactum

which is the changed pattern. Reaction rules can be parametric if both the redex and reactum

have sites. These sites are the parameters of the reaction rules and can be considered ‘don’t

care’ when the reaction rule is applied. Each site in the reactum must be mapped to a site in the

redex. In Figure 2-23, we depict the reaction rule ‘Device un-cached’ where the Bigraph with

control device is the node representing a device and the Bigraph with control location is the

node representing the location. The site is a ‘don’t care’ as it is a parameter for the reaction rule

and could contain any Bigraph.

WORLD SCA

sitesite

43

FIGURE 2-23: DEVICE ‘UNCACHED’ RU LE.

A matching algorithm is used by the BPL Tool to figure out where in a large Bigraph the redex

of the reaction rule should be applied (see Section 5.3 for an example). Matching is NP-

Complete (Højsgaard, 2011). Modelling through reaction rules enables us to handle run-time

complexity. This is because a few rules can intensionally construct the set of infinitely many

possible re-configurations of the system. An intensional construction of a set defines the basis,

inductive rules and a closure property to generate a set. In contrast an extensional construction

enumerates all the elements of a set.

Thus, a Bigraph’s syntax can be used to define processes and its reaction rules can be used to

define how those processes interact. The syntax and the reaction rules are together called

Bigraphical Reactive Systems (BRS) (Milner, 2009), (Birkedal et al., 2006).

2.2.1.4 USING THE SUGAR MODULE TO DESCRIBE PLATO-GRAPHIC

MODELS

Because Bigraphs lack control structures, reaction rules that model physical action cannot be

used to compute directly with a model of that action. For example to implement recursive

queries, we will need to encode in Bigraphs a runtime stack with additional controls (Elsborg,

2009).This problem is addressed by Birkedal et al. (Birkedal et al., 2006) by representing three

separate concerns in three Bigraphical Reactive Systems (BRS). These three BRSs constitute

the Plato-Graphic model (PGM) as defined by Birkedal et al (Birkedal et al., 2006). We now

discuss some definitions that are used to describe the Plato-graphical model. We have taken

these definitions from Elsborg’s thesis and for a thorough introduction, we refer the readers to

that thesis (Elsborg, 2009).

Notation 1 (Elsborg, 2009): “We write B = (𝜅,ℛ) and B’ = (𝜅′ ,ℛ′) to indicate that B is a

Bigraphical Reactive System with controls 𝜅 and rules ℛ, and write 𝑓 ∈ 𝐵 to mean that f is a

Bigraph of B.”

device

site

location

site

location

44

Definition (Independence) (Elsborg, 2009): “Let B = (𝜅,ℛ) and B’ = (𝜅′ ,ℛ′) be bigraphical

reactive systems. Say that B and B’ are independent and write B ⊥ B’ iff 𝜅 and 𝜅′ are disjoint.”

Definition (Composite Bigraphical System) (Elsborg, 2009): “Let B = (𝜅, ℛ) and B’ =

(𝜅′ ,ℛ′) be Bigraphical reactive systems. Define the union B ∪ B’ point-wise, i.e., B ∪ B’ =

(𝜅 ∪ 𝜅′ ,ℛ ∪ ℛ′), when 𝜅 and 𝜅′ agree on the arities of the controls in 𝜅 ∩ 𝜅′.”

Definition (Plato-graphical model) (Elsborg, 2009): “A Plato-graphical model is a triple

(C,P,A) of Bigraphical reactive systems, such that M = 𝑪 ∪ 𝑷 ∪ 𝑨 is itself a Bigraphical

reactive system and C ⊥ A. A state of the model is a Bigraph of M on the form /𝑥.⃗⃗⃗ (𝐶 ∥ 𝑃 ∥ 𝐴)

where C ∈ C, P ∈ P, and A ∈ A, and 𝑥 is some vector of names.”

Of the three, the first BRS ‘World’ (W) models the environment. The second ‘Proxy’ (P)

models the information about the World (W). The third ‘Agent’ (A) models an application that

queries the Proxy (P) about the World (W). See Figure 2-24.

FIGURE 2-24: THE PLATOGRAPHIC MODEL.

Reaction rules are used to represent the 1) Dynamics of the real world in the World BRS and to

2) Model queries in the Proxy BRS.

The constraint on PGMs is that there are no common controls (types of Bigraphs) between the

‘World’ BRS and ‘Agent’ BRS. A reaction rule can involve Bigraphs in more than one layer

simultaneously. However, reaction rules spanning the ‘Agent’ BRS and the ‘World’ BRS are

also not allowed.

2.2.2 WHAT IS BEING MODELLED WITH BIGRAPHS

We now discuss the practical application of Bigraphs. Since Bigraphs capture “discrete space

involving adjacency and containment” (Milner, 2009) through representation of locality and

connectivity, it is perhaps apt that to date most of the applications have used Bigraphs to

W

(World)

P

(Proxy)

A

(Agent)

45

represent architecture of software systems in the following not necessarily mutually exclusive

categories:

1) Architectures of volatile systems.

2) Architectures where services are the main communicating entities.

3) Architectures for software systems in domains other than volatile systems.

We analyze the papers in each category now.

2.2.2.1 EXPRESSING ARCHITECTURES OF VOLATILE SYSTEMS

Volatile systems encompass mobile and hand-held computing systems, ubiquitous computing

systems, wearable computing systems, context-aware computing systems, tangible computing

systems and augmented reality systems (Coulouris, 2012). Bigraphs have been used as a

language to express the architecture and reconfiguration of a volatile system. We have already

discussed Birkedal et al.’s idea (Birkedal et al., 2006) of a Plato-graphic model for context

aware systems in section 2.2.1.4. In chapter 4, we discuss how we have used their ideas in the

design of our own model at runtime. The following papers have expressed the architecture of a

volatile system using Bigraphs:

1) Chris Greenhalgh and co-workers have proposed the Bigraphspace library (Greenhalgh,

2009a, Greenhalgh et al., 2009, Greenhalgh, 2009b) as a “shared distributed data structure that

can be used for communication and coordination between components in a ubiquitous software

system”. This is similar to the idea of a tuple-space (Gelernter, 1985). Bigraphspace represents

Bigraphs as a Document Object Model (DOM) tree. The XML element hierarchy models the

Bigraph’s place graphs. Cross-references between XML elements model the Bigraph’s link

graphs. A client of Bigraphspace can query it using a Bigraph pattern (redex) that is then

matched with the Bigraphspace’s Bigraphical structure. This Bigraphical structure can be

updated by using reaction rules to reflect changes in the real world. Bigraphspace is intended as

a foundational layer on top of which a suite of supporting modeling/authoring/software

development tools is proposed to be developed. Also, Bigraphspace is intended to support a

runtime system by maintaining an up-to date model reflecting changes in the environment.

The idea of representing tuple-space like structure with Bigraphs is an innovative contribution

towards exploring practical application of Bigraphs.

2) The paper by Walton and Worboys (Walton and Worboys, 2009) uses Bigraphs to model

topological and physical image schemas of built environments. Built environments are volatile

in that the structures within them are changing constantly. They define image schemas as

46

“abstractions of spatio-temporal perceptual patterns”. Image schemas do not have widely

accepted formalisms to represent them. Two image schemas are modelled: the container image

schema represented by one Bigraph contained inside another and the link image schema where

two Bigraphs are connected by a link. Two schemas are composed to construct a larger Bigraph.

Consider Figure 2-25 showing Bigraph I. The rectangle marked 1 represents an open space

where an agent A is shown linked to the key K. K’s open link x1 represents the fact that the

key’s lock is unknown. The rectangle marked 2 represents another open space where a lock

represented by the rectangle L guards another open space represented by rectangle 3. Lock L’s

key is unknown and this is represented by the open link x2.

FIGURE 2-25: BIGRAPH I (WALTON AND WORBOYS, 2009).

 Reaction rules model the moving in and out of a Bigraph that represents a container as well as

the establishment and breakage of links between Bigraphs. More complex image schemas are

modelled by firing a series of reaction rules one after another.

There is a rich theory of image schemas (Johnson, 1987) that the authors have tapped in to pick

out those schemas that they model with Bigraphs. This theory enables them to capture all the

necessary elements of physical and virtual spaces in their Bigraph models. Their proposed

model is meant to be used to aid navigational tasks of agents in physical and virtual spaces.

3) The paper by Xu et al. (Xu et al., 2011) models context aware mobile systems with Bigraphs

and illustrates their ideas by applying them to a smart phone example. They model context

using the structure of Bigraphs and changes in context by using the reaction rules of Bigraphs.

Although their application of Bigraphs is interesting, they have not gone much beyond previous

work by Birkedal et al.(Birkedal et al., 2006), Milner (Milner, 2009),(Milner, 2008a), Debois

and Damgaard (Debois and Damgaard, 2005) and Greenhalgh (Greenhalgh, 2009a).

4) Wang et al.’s (Wang et al., 2011) paper has two authors in common with Xu et al.’s (Xu et

al., 2011) paper above. Similar to Xu et al., Wang et al. factor out common elements of a

context aware system from various definitions of context awareness. These common factors are

I

1

A

K

x1
x2

2

L

3

47

then modelled using abstractions of Bigraphs. They present an example of a context aware

hospital and an example of a university project being managed in a context aware space.

 As with Xu et al.’s paper above, this paper has used Bigraphs in interesting domains which is

conceptually similar to the ideas presented in Birkedal et al.(Birkedal et al., 2006), Milner

(Milner, 2009),(Milner, 2008a), Debois and Damgaard (Debois and Damgaard, 2005) and

Greenhalgh (Greenhalgh, 2009a).

5) Zhai et al.’s paper (Zhai et al., 2011b) uses Bigraphs to model passengers getting a ticket,

entering a metro station and leaving it-each of which is a Bigraphical reaction rule. The nodes in

the Bigraph model a person, a gate, a ticket and the rest of the metro system. In future work,

Zhai et al. plan to use a more complete Bigraphical model of the metro system for running a

simulation to predict passenger volume, train dispatch, income distribution etc.

The ideas presented in the paper are interesting in that in that they consider passengers as part of

their model of the metro system and its embedded devices.

6) Another paper (Zhai et al., 2011a) by the same lead authors as above and in the same domain

of an urban metro rail system uses a different set of reaction rules to model slightly different

activities- namely those of getting onto a train, transferring en-route to a different line owned

by another operator, and getting off a train. The problem that they seek to address is how to

share passenger fares between different operators of different lines in the barrier free transfer

mode of an urban metro rail system. They present an algorithm that calculates time cost of all

possible paths between two stations. Each path’s time cost is the sum of the time costs of all the

transfer reaction rules that need to be triggered. The path that takes the shortest time is predicted

to be the path that the passengers will take. They confirm this fact by analyzing the choice of the

actual path taken by 500 passengers. They propose that the cost of the ticket can be shared

between different operators based on the way this optimal path that the passengers take (and

predicted by their algorithm) is divided between the lines owned by different operators.

This paper demonstrates a novel usage of Bigraphs. However, much work needs to be done to

consider more complex scenarios of passenger movement when designing their cost prediction

algorithm.

7) High Confidence Petroleum extraction Software Systems (HCPESS) are used in petroleum

well sites to process information from sensors and actuators embedded within petroleum

production equipment. These sensors and actuators are failing in the harsh environment, and

thus creating volatility. The paper by Zhai et al. (Zhai et al., 2011c) partially models HCPESS

software framework with Bigraphs. The architecture of the HCPESS framework is modelled by

48

the place and link graph of Bigraphs. The dynamic reconfigurations of the framework are

modelled by Bigraphical reaction rules.

Even though HCPESS is an interesting domain for modelling with Bigraphs, more work needs

to be done to represent a realistically complex HCPESS framework with Bigraphs.

8) The paper by Henson et al. (Henson et al., 2012) discusses the appropriateness of

Bigraphical abstractions for applications in intelligent environments. They hope to use these

abstractions to document, design, and analyze such applications. Bigraph nodes model physical

spaces, users, devices and Bigraph links model the connections between these entities. The

reaction rules model a user entering a physical space, users accessing a physical space using a

real or virtual key, a user getting a key, a user using the same key for multiple uses, a key that is

shared among users being used multiple times and finally, an establishment of a connection

between a device and a physical space’s intranet. Their example scenario involves modeling of

teachers who can give commands to pupil’s devices (Figure 2-26). In Figure 2-26, ‘m’ nodes

represent people and can be assigned the role of teachers or pupils. For instance, the node ‘m’

situated inside the left-hand side oval space (representing a classroom) and connected to the

‘cmd’ node (command) represents a teacher. The ‘cmd’ node is further connected to another

‘m’ node representing a pupil and situated inside the right-hand side oval space that represents

another classroom. The ‘cmd’ node represents a command from the teacher to disconnect the

pupil from their device.

FIGURE 2-26: THE TEACHER/PUPIL RELATIONSHIP (HENSON ET AL., 2012).

They consider Bigraphs as an appropriate abstraction for the following four reasons:

“a) They are intuitive and lie close to the topic of investigation ; b) They are relatively simple to

understand and deploy (in contrast to the systems they may analyze); c) They offer a means to

m

D

cmd

m

m

D
D

m

49

tame complexity through multiple descriptions at different levels of abstraction ; d) The system

itself can be usefully used without having to engage with its mathematical foundations”.

This paper constitutes an important step towards evaluating the appropriateness of Bigraphical

abstractions to model intelligent environments. The authors point out that a reaction rule can

match a given Bigraph in several ways. However they do not present a way to deal with cases

where only a specific match corresponding to a specific node in the place graph needs to be

returned.

9) Another paper by Walton and Worboys (Walton and Worboys, 2012) uses a Bigraph based

model to aid agents in navigating indoor spaces for accomplishing a goal. The work presented

in this paper complements the work in the paper discussed above. The structure of the Bigraphs

is used to model the following:

a) Location of agents and objects.

b) Topological configurations such as building hierarchies.

c) Path based navigation graphs and other non-spatial relations (someone’s office).

Reaction rules of Bigraphs model changes in context or effect of an agent’s actions. They show

how Bigraphs can be used to model indoor spaces usefully even in light of missing information.

Walton and Worboys’ paper uses Bigraphs as an aid in goal-directed navigation. The paper

presents an excellent discussion on those aspects of indoor spaces that should be expressed in a

model.

10) Pereira et al. (Pereira et al., 2012) have proposed a two layered model, similar to our work,

to simulate a volatile system. One of the layers models the physical (execution machines and

their environments) with Bigraphs and the other models the virtual (software agents) with

algebraic structure (See Figure 2-27). The agents are hosted at the nodes of Bigraphs and can

interact with them by observing them, migrating to them and controlling them. Agents

themselves are sequential computations operating concurrently over the same physical structure

and can be represented as finite or infinite state machines. In common with other hybrid systems

like Alur and Dill’s timed automata (Alur and Dill, 1994) or Henzinger’s hybrid automata,

Pereira et al.’s model has a hybrid notion of time remembering that a “hybrid system is a

discrete system that interacts with a continuously evolving one namely its environment” (Aceto

et al., 2007). They hope to reuse pi-calculus (Milner, 1999) or SHIFT (Deshpande et al., 1998)

to express their agents.

50

FIGURE 2-27:BLOCK DIAGRAM DEPIC TING THE CONTROL LOOP BETWEEN AGENTS AND

THE PHYSICAL STRUCTU RE (PEREIRA ET AL., 2012).

Pereira et al.’s work is an important contribution to modeling of the separation of concerns by

having two layers for two concerns. However, they do not use Bigraphs for expressing both the

layers of their model. Expressing both the layers in such a manner would have made their

models more expressive as Bigraphs can be looked upon as a meta-language (Birkedal et al.,

2006) encompassing Petri nets (Milner, 2004a), pi-calculus (Jensen, 2006), (Jensen and Milner,

2003), (Jensen and Milner, 2004), mobile ambient (Jensen, 2006) and lambda calculus (Milner,

2004b). Also, Pereira et al.’s model is suitable for simulation of physical and virtual movement.

2.2.2.2 EXPRESSING ARCHITECTURES WHERE SERVICES ARE THE MAIN

COMMUNICATING ENTITIES

Services are programming abstractions with well defined interfaces and constitute the

communicating entities in many distributed system architectures (Coulouris, 2012). Such

architectures have been modelled using Bigraphs in the following papers:

1) Zhang et al.’s paper (Zhang et al., 2008) is a first attempt towards providing a uniform

framework based on Bigraphs to represent service compositions in BPEL-like languages. They

use Bigraphs to express BPEL-like language and use this Bigraphical representation to prove

properties about the language. They have specified communication, scope-based compensation

and error handling of a BPEL-like language with Bigraphs.

This paper represents an interesting application of the specification capabilities of Bigraphs.

However, they have not utilized the reaction rules of Bigraphs in their framework.

Physical Structure

Agents

Observe Control

A = {a0 ,a1, an}

B

Migrate

Host

51

2) Xue et al. (Xue et al., 2009) use CCS encoded in Bigraphs (Milner, 2009) to model service

interaction patterns (Barros et al., 2005). Reconfiguration of these interaction patterns are

modelled with Bigraph reaction rules. The service interactions modelled in this manner can be

used to simulate business collaborations and process choreographies. Moreover, these

interactions can be expressed in terms of Bigraphical compositions.

The modeling of service interactions is important to capture all possible interaction patterns of

business processes.

3) The paper by Huai-Guang et al. (Huai-Guang et al., 2010) seeks to explore ways in which

service compositions could be reconfigured dynamically and be guaranteed to run correctly. The

structure of a composition is modelled using the place graph and link graph of Bigraphs. Six

Bigraphical reaction rules model the service interaction patterns in the composition. An example

case study modeling a user requesting for airline and hotel reservation through their mobile

devices is also discussed.

The difference between this paper and the paper by Xue et al.(Xue et al., 2009) discussed above

is that in the former Bigraphs are used directly to model service interactions whereas in the

latter, CCS expressed in Bigraphs is used to model service interaction patterns.

This paper’s idea of modelling service interaction with reaction rules is innovative. However,

the example case study describes composition of web services rather than the composition of

simpler services running on ubiquitous computing devices.

2.2.2.3 EXPRESSING ARCHITECTURES FOR SOFTWARE SYSTEMS IN

OTHER DOMAINS

We now discuss the papers that have used Bigraphs to express architectures for software

systems other than volatile systems.

1) Debois and Damgaard’s technical report (Debois and Damgaard, 2005) uses Bigraphs to

model an internal switch, finite automata, the game of “life” (Gardner, 1970), combinatorial

logic, term unification and an event driven system. These systems’ structure is modelled by

Bigraph place and link graphs. The dynamics of these systems are described by appropriate

reaction rules.

This technical report gives a good introduction to modelling with Bigraphs for someone new to

such modelling.

2) The paper by Chang et al. (Chang et al., 2007) uses Bigraphs to express two architectural

patterns: the client-server pattern for distributed systems and the pipe-filter pattern for a generic

52

software systems. Reaction rules of Bigraphs are used to capture the reconfigurations that are

allowed within an architectural pattern. They prove that if the initial Bigraph and reaction rules

preserve the constraints defined by Ʃ-sorted Bigraphs then the final Bigraph also does so. Their

conformation algorithm essentially checks whether an initial Bigraph and reaction rules can

generate a given Bigraphical instance.

The paper is an innovative application of Bigraphs and their reaction rules to express constrains

on an architectural pattern. It demonstrates the utility of being able to write one’s own reaction

rules in Bigraphs to express dynamic reconfigurations in a system.

3) Another paper (Chang et al., 2008a) by the same authors as above expands the above two

papers by combining an environment model (where environment is a set whose each element is

a vector), and a reconfigurable architecture model (expressed in Bigraphs) into a self-adaptive

software model. They propose an algorithm that tests if policies maintain the correctness of the

self-evolving software and illustrate their ideas by applying them to a grid application case

study. This work combines Bigraphs with automata in an interesting way.

4) The paper (Chang et al., 2008b) by the same research group as above adds to their work by

innovatively using the structure of Bigraphs to append context to reaction rules.

5) Wang et al.’s paper (Wang et al., 2010) expresses an Aspect oriented Dynamic Software

Architecture (AODSA) with Bigraphs. They have proposed a minor extension of Bigraphs and

model components, connectors, aspects, component information managers, connector

information managers, and aspect information managers with Bigraphical place graphs.

Reaction rules model the dynamic evolution of AODSA. A series of operations such as add

aspect, delete aspect, modify aspect and weave aspect are modelled as a single reaction rule

expressing the overall dynamic evolution. They have illustrated these ideas by applying them to

an aspect oriented client server system.

The inclusion of aspects as part of a Bigraph model is an important original contribution of this

paper.

6) The paper by Blackwell (Blackwell, 2011) uses Bigraphs to model system security issues

instead of using them to only model mechanisms such as cryptographic protocols. The static

structure of the Bigraph models the supervisory control and data acquisition network (SCADA).

SCADA is used to manage power plants, sub stations and transmission lines. The system-wide

issues modelled by reaction rules include remote logical attacks, transitive attacks, physical

attacks, insider attacks, multilevel attacks, consequential impact of attacks, Malware attacks and

control attacks.

53

This application shows the versatility of Bigraph’s abstractions- in particular the ease with

which discrete physical and logical entities as well as their dynamics can be expressed.

7) The paper by Xue et al. (Xue et al. , 2011) models an abstraction slider with CCS encoded

with Bigraphs. Abstraction slider (Polyvyanyy et al., 2008) is a mechanism to specify the level

of abstraction to express a process model. Xue et al. classify each element of a business process

into a slide depending upon its location in the Bigraphical place graph. Different slides can be

composed together depending upon the level of abstraction chosen on the abstraction slider.

Although an interesting application of Bigraphs, Xue et al. have not explained the advantages to

be had by such an approach.

8) The Calder and Sevegnani paper (Calder and Sevegnani, 2012) investigates runtime

verification for event-driven systems. Their example system is the Homework Network

Management System (Sventek et al., 2011) which is used to support non-expert users in

installing and managing wireless home networking. The Homework system is enhanced by the

authors with runtime verification capabilities. The results of the verification are fed back to the

users using graphical representation of Bigraphs and if required also to the network. Network

topologies are modelled with the structure of Bigraphs. Event, access control policy

enforcements and revocations are modelled with Bigraphical reaction rules. Properties of the

system are verified using predicates encoded as instances of Bigraph matching. They have used

an enhanced version of Bigraphs (Sevegnani and Calder, 2010) that can represent location

overlap. Consider Figure 2-28, which shows a Bigraph Model of a wireless local area network

(WLAN). M represents a machine linked to the router R. M is also linked to its wireless signal

represented by SM. Similarly, R is linked to its wireless signal SR. The two wireless signals can

overlap and this is captured in the Bigraph.

FIGURE 2-28:BIGRAPH MODEL OF A WLAN (CALDER AND SEVEGNANI, 2012).

Apart from our work, this is the only work to the best of our knowledge that deals with runtime

issues (though not with models at runtime issues) when modeling with Bigraphs. Other projects

SR

M

R

SM

54

that use Bigraphs as the modeling language do so at the system design stage rather than at the

system execution stage.

2.2.3 OPEN RESEARCH QUESTIONS

None of the papers discussed above have used Bigraphs to construct a model at runtime to deal

with volatility in service compositions running on a mobile device. Thus, from the papers

discussed, the question that emerges is:

How do we use Bigraphs to construct a model at run time?

More specifically, none of the surveyed papers have dealt with the following issues:

a) Instead of using Bigraphs to model systems for simulation, how do we use Bigraphs to

express a model that is causally connected to a running system?

b) What are the best practices to use Bigraphical abstractions mapped to a programming

language to model at runtime a real-world system?

c) Can Bigraphical abstractions be used to implement standard system techniques like

caching, delayed-write, pre-fetching? These techniques will be needed to deal with a

bottleneck of requests arising out a high rate of reconfigurations in an implemented

system.

These are open questions that represent the ‘gaps in knowledge’ in the surveyed literature.

2.2.4 OUR TAKE-OFF POINT

We have discussed above the papers that use Bigraphs in practical applications. We wish to

point out the following approaches from some of these papers that we will also explore in this

thesis to see if they are appropriate for our research question:

1) We will use Lars Birkedal et al.’s (Birkedal et al., 2006) approach of the Plato-graphic Model

to design our two-layered model. We discuss which of the ideas of Plato-graphic models we use

in Chapter 4.

2) We concur with Henson et al. (Henson et al., 2012) that Bigraphs could help us abstract away

all the underlying mathematical complexities in a process algebra while still enabling us to

utilize the rigor that comes with such approaches when we model real-world scenarios. This of

course does not mean that the complexities in themselves can be wished away. Rather Bigraphs

present an interface that can be used by programmers without going into the implementation of

55

those complexities. Our implementation using MiniML will be a test of this simplicity of

Bigraphs.

3) The idea of expressing image schemas with Bigraphs (Walton and Worboys, 2009)

represents a systematic approach to modeling an external environment. In this thesis, we explore

the runtime phenomenon in the external environment that could be modelled with Bigraphs.

4) Including different views of the same system in one model as discussed by Pereira et al.

(Pereira et al., 2012) has become important (Aßmann et al., 2012). Each model represents a

specific view of the system. At runtime we might need to manipulate the different views

represented by different models of the same system to keep it running properly. We present our

techniques to include two views in the same model with Bigraphs in this thesis using the ideas

of the Plato-Graphical model (Birkedal et al., 2006).

5) We will examine the appropriateness of using Bigraphs to support a system at runtime as has

been done by Calder and Sevegnani (Calder and Sevegnani, 2012) .

2.2.5 SECTION SUMMARY

In this section we have given the relevant background for Bigraphs, their minor extension the

Plato-Graphic model, and the BPL Tool. We have then surveyed the literature and shown that

Bigraphs have not been used to construct a model at runtime. Finally, we have discussed the

take-off point for our thesis- in particular the idea of the Plato-Graphic model.

2.3 MODELS AT RUNTIME: A NEW ARCHITECTURE

A model at runtime is defined as “a causally connected self-representation of the associated

system that emphasises the structure, behaviour or goals of a system from a problem space

perspective” (Blair et al., 2009).

“Abstractions of the problem space express designs in terms of concepts in application domains

such as telecom, aerospace, healthcare, insurance and biology” (Schmidt, 2006).

Abstractions of solution space express designs in terms of computing technologies themselves –

in terms of registers and pointers for example in assembly languages and the C programming

language.

We firstly explain the concept of models at runtime which is the architecture that we follow in

this thesis. Secondly, we discuss the papers that use architectural models at runtime to support

dynamic adaptation and software evolution. Thirdly, we discuss the open research questions that

56

the models-at-runtime community is exploring. Finally, we discuss the take-off point of our

thesis with respect to models-at-runtime.

2.3.1 EXPLANATORY BACKGROUND FOR MODELS AT RUNTIME

 The concept of a model has often been discussed in software engineering literature. As

explained by Waddington and Lardieri (Waddington and Lardieri, 2006), “rather than

replicating abstractions that programming languages provide, models abstract upon “selected”

elements of the implemented complex system”. See Figure 2-29.

FIGURE 2-29: RELATIONSHIP BETWEEN VIEWS, MODELS AND

IMPLEMENTATION.(WADDINGTON AND LARDIERI, 2006).

“Abstraction is a special case of separation of concerns wherein we separate the concern of

important aspects from the concern of the less important details” (Ghezzi et al., 2002). Models

can play two keys roles by applying abstraction (Brambilla et al., 2012):

a) Reduction feature: models capture only selected elements of the implemented complex

system.

b) Mapping feature: models can sometimes be based on a system which is considered a

prototype of a class of systems. Then the model is said to have generalized the prototype system

to a class of many systems.

MODEL

VIEW VIEW

MODEL

VIEW VIEW

Translation

Abstract

Views

Abstraction

Complex

Systems

57

This concept of a model has been used in developing Model-Driven Engineering (MDE)

technologies. MDE technologies have been described by Schmidt (Schmidt, 2006) as “offering

a promising approach to address the inability of third-generation languages to alleviate the

complexity of platforms and express domain concepts effectively”.

MDE techniques manage complexity by having different levels of abstraction and transforming

one level of abstraction to another (Morin et al., 2008). These techniques as applied to models at

runtime include (Morin et al., 2008):

1) Automatic generation of reconfiguration commands and scripts,

2) Managing the adaptation of a complex system at a more abstract level.

However, models-at-runtime research differs from MDE research in one crucial aspect. Models

at runtime research focuses on runtime models in contrast to MDE research that has focussed on

design-time models (Bencomo, 2009). These models are abstracted representations of the

running system and are causally connected to it (See Figure 2-30).

FIGURE 2-30: DESIGN MODELS VERSUS RUNTIME MODELS (BENCOMO, 2009).

 This causal connection is essential because models should be able to provide up-to date

information to aid in deciding an appropriate adaptation strategy. Moreover, because of the

causal connection, adaptations can be effected at the model level. This is similar to models used

Model

System

Runtime model

Running System

Design Time

Causal

Connection

Runtime

Compilation,

transformations

Traditionally

58

by the reflections research community. Borrowing from the research done on reflection in

programming languages, the runtime model and the running system could either be one and the

same or be different entities (Gjerlufsen et al., 2009) (See Figure 2-31).

FIGURE 2-31: TWO BASIC APPROACH ES FOR RUNTIME SELF-REPRESENTATION

THROUGH REFLECTION. (a) A MODEL CAUSALLY C ONNECTED TO THE PROGRAM;(b)

MODEL AND THE PROGRAM ARE ONE AND THE SAME ENTITY(GJERLUFSEN ET AL.,

2009).

 However, in contrast to the reflection community’s models, models at runtime are based on

abstractions of the problem space rather than solution space and hence are at a higher level of

abstraction.

As we have seen, models at runtime are essentially abstractions of runtime phenomenon and the

various dimensions of models at runtime include (Blair et al., 2009):

1) Structure versus Behaviour: Models could focus on the structure of the system emphasizing

how the software is currently constructed: in terms of objects, inheritance relationships and

invocation pathways; components and their connections; or aspects and their pattern of

weaving. Behaviour models seek to capture how the system executes in terms of flows of events

or traces through the system, or the arrival of events and their pathway to execution – arriving,

en-queuing, selection, dispatching and so on.

2) Procedural versus Declarative: A procedural model captures the actual structures or

behaviours in the system- basically the models capture how some aspect of the system works.

On the other hand, declarative models seek to capture the system goals- basically the models

capture what a system does.

program model

realises

interface:

program

run()

interface:

reflection

read()

write()

realises

update when changed

update when changed

interface:

program

run()

interface:

reflection

read()

write()

program

realises realises

(a)

(b)

59

3) Functional versus non-functional: Models designed for runtime tend to capture functional

properties of a system. Functional properties describe specific functions of the system such as

the result of a computation (Cheng et al., 2014). Non-functional properties such as performance

and security also need to be captured. Non-functional properties describe the operational

qualities of the system such as availability, efficiency, performance, reliability, security etc.

(Cheng et al., 2014).

4) Formal versus informal: Models could be based on mathematics of computation or from

consideration of programming models or domain abstractions. Formal models support

automated reasoning about system’s state.

2.3.2 USING ARCHITECTURAL MODELS AT RUNTIME TO SUPPORT

DYNAMIC ADAPTATION AND SOFTWARE EVOLUTION

We wish to use architectural approaches to design our model at runtime. Therefore, we now

discuss the papers that use architectural models during runtime to support dynamic adaptation

and software evolution.

1) Oreizy et al.(Oreizy et al., 1999) present a comprehensive view of an architectural based

approach for software adaptation and evolution. In particular, they argue that to support

adaptive changes at the architectural level it should be possible to change both their components

as well as their interconnections. Moreover, dependencies on environment also need to be

explicitly stated with architectural formalisms. They emphasize that the developers of such a

system should keep in mind the following issues:

i. What are the conditions under which the system adapts?

ii. Should an open-adaptive or a closed adaptive system be designed? They define a

system as being open adaptive “if new application behaviors and adaptation plans can

be introduced during runtime”. A system is closed adaptive “if it is self contained and

not able to support the addition of new behaviors”.

iii. How much autonomy must a system have?

iv. A cost-benefit analysis of the adaptive mechanisms should be undertaken.

v. What should be the frequency of adaptation?

vi. How current should the information based on which the adaption decision is taken be?

Bencomo (Bencomo, 2009) has pointed out that if a system is open-adaptive, it is easier to add

on a reflective mechanism to it.

2) Dowling and Cahill’s paper (Dowling and Cahill, 2001) proposes an architectural meta-

model that reifies a system’s architecture as a “typed, directed configuration graph with

60

interfaces as vertices, labeled with component instances, and edges as connectors”. The

transformation of the configuration graph models a reconfiguration of the system architecture.

Their approach enables the replacement of components in a CORBA-based system.

3) Garlan and Schmerl (Garlan and Schmerl, 2004) advocate guaranteeing consistency between

an architecture model and its implementation at runtime. This can be done by “monitoring the

running system and translating observed events to events that construct and update an

architectural model that reflects the actual running system”. This updated architecture is then

compared to the correct architectural model. If inconsistencies are discovered, corrective

adaptation is triggered. Thus a constantly updated architectural view that depends on the

system’s property of interest is maintained. They also argue that mechanisms to effect

adaptation must be separate from the system itself. They describe their Rainbow framework

(Garlan et al., 2004) which supports the use of an architectural model at runtime. We discuss the

Rainbow framework next.

4) Garlan et al.(Garlan et al., 2004) have proposed the Rainbow framework which describes the

usage of architectural models for system monitoring and reflection at runtime. They use an

external model to monitor and if required modify a system dynamically. The system’s

monitored events are translated into constructing and updating the architectural model to reflect

the actual running system. If an inconsistency is found in a running system, appropriate

adaptation commands are issued. They adapt the notion of an architectural style which includes

four set of entities: component and connector types, constraints on permitted composition of

elements, properties of the component and connector types, and analysis on systems constructed

with different architectural styles. They describe two case studies: A web-based client-server

system and a video conferencing system.

5) Cazzola et al. (Cazzola et al., 2004) propose a reflective architecture for dynamically

evolving an object-oriented system’s structural and behavioral aspects. They discuss their event-

condition-action rules and a decision engine to control the evolution of the system. A case study

of an urban traffic control system is described to show the applicability of their ideas in a real

world system.

6) Floch et al. (Floch et al., 2006) describe the project MADAM (Mobility and Adaptation

enabling middleware) which uses architectural models at runtime for developing adaptive

systems for mobile applications. Generic middleware components are used to reason about and

control adaptation decisions. They compare the actual running system with new variants of

architectural models that have been derived from utility functions. The utility functions

encapsulate their goal policies for runtime adaptation.

61

7) Caporuscio et al.’s paper (Caporuscio et al., 2007) uses software architecture as the

abstraction of the system that they are modeling in a framework for performance management.

Their approach is based on monitoring and model based performance evaluation. Runtime

monitoring information is used to instantiate architectural models to inform a reconfiguration

decision. The new target configuration is generated through a combination of reconfiguration

steps that are pre-determined.

8) The paper by Bencomo et al.(Bencomo et al., 2008) describes the Genie Toolkit that can be

used to support a reconfigurable component based system’s modeling, generation and operation.

Two kinds of models are generated by Genie: architectural models and transition state models.

The artifacts generated from the models by Genie can be used by reflective middleware to

support adaptation at runtime. The artifacts are XML configuration files that can be dynamically

inserted into the running system.

9) Sykes et al. (Sykes et al., 2008) organize their architecture into three layers to support

adaptation (See Figure 2-32). The actions that require an immediate feedback are performed by

components at the lowest level whereas those that require long reflection are performed by

mechanisms at the uppermost level. At the lowest level, domain specific software components

reside. At the middle layer, mechanisms for plan execution, assembly of components, and

replacing components reside. At the uppermost layer mechanisms for converting goals,

expressed in temporal logic, into reactive plans reside.

FIGURE 2-32:THREE LAYERED CONCEPTU AL MODEL (SYKES ET AL., 2008).

GOAL MANAGEMENT LAYER

C1

CHANGE MANAGEMENT LAYER

COMPONENT LAYER

G1

UPDATE

STATUS

CHANGE

CONFIGURATION

REQUEST

PLAN

CHANGE

PLANS

G3G2

C2 C3

62

10) Morin et al. (Morin et al., 2008) have used aspect oriented and model driven techniques to

deal with the complexities arising out of the construction and running of adaptive systems. They

use aspect oriented techniques to reduce the number of possible system configurations. Model

driven techniques are used to generate configuration scripts and to manage the adaptation at a

higher level of abstraction than traditional techniques.

We focus on how they have used models at runtime since that part of their work is the

inspiration for our architecture.

Morin et al.’s runtime model is causally connected to the running system. The running system

can be managed by controlling the model. The model’s causal connection is shown in Figure 2-

33. The reference model shown in the Figure 2-33 is generated by reflection over the running

system. The running system is observed by listeners that update the reference model. The

reference model is transformed to the modified model by a reasoning framework responding to

changes in context that trigger adaptation requirements. The modified model is then compared

to the reference model to produce diff and match models. The diff and match models specify

respectively the differences and similarity between models. An analysis of the model results in

an instantiation of reconfiguration commands. These commands are used to add or remove

bindings and/or components. The commands are ordered by priority and executed by the

platform to effect adaptation. To verify that all adaptation commands have been executed

successfully, the new reference model (automatically derived through reflection) is checked

against the target configuration model.

63

FIGURE 2-33: MORIN ET AL.’S RUN TIME MODEL (MORIN ET AL., 2008).

11) The paper by Georgas et al. (Georgas et al., 2009), represents an adapting system’s

architectural configurations at runtime with configuration graphs. The goal of this system is to

allow human input into the adaptation control loop. This is aided by the configuration graph’s

monitoring and recording of the necessary information about adaptation.

12) Ramirez and Cheng (Ramirez and Cheng, 2009) propose an approach called Plato-MDE

where they use evolutionary computation-based techniques to generate the target system’s

configuration model at runtime to deal with changes in requirements and environment. Thus,

developers need to only specify the relative importance of functional and non-functional

concerns. Since Plato-MDE evolves target system models at runtime, the solution space is

eventually dominated by better solutions. They demonstrate an application of Plato-MDE to

dynamic reconfiguration of an overlay network for diffusing data to a collection of remote data

mirrors.

13) Ferry et al. (Ferry et al., 2009) present the use of weaving of aspects of assembly to effect a

reactive model transformation at runtime. They define Aspects of Assembly “as pieces of

information describing how an assembly of components will be structurally modified, thus

keeping black-box property of components”. Their example system is a service composition

running on a Ubicomp device. They decompose adaptation into three transformations between

different models of their approach. They show a way to use meta-models to enforce conformity

Core

Meta-model

Components, bindings etc

Model Transformation languages: Kermeta, Kompose, SmartAdapters, etc

Model Comparison Tools: EMFCompare etc

Modified

model

Reference

model

Diff and match model

Running

System

Command

M2 Level

Conforms to

M0 Level

Automatic

Ordering

(comparator)
Dynamic

adaptation

Runtime

Generated by introspection

Updated with listeners

M1 Level

Transformed into

64

of their transformation rules. They have used the Service Lightweight Component Architecture

(Hourdin et al., 2008) to dynamically orchestrate and compose services for devices. However,

they do not use a formal language to express their model at runtime.

14) The paper by Elkhodary et al. (Elkhodary et al., 2009) proposes a software adaptation

framework called Feature-Oriented-Self-Adaptation (FUSION). A system’s requirements are

broken down into meaningful units of functionality which they call features. A feature is

mapped at design time to a part of the underlying software architecture that realises it. They

point out the following two ideas that emerge out of their work: : “(1) features allow

representation of the engineer’s knowledge about some facets of the system that can be used to

enhance the adaptation logic, and (2) features can serve as an abstraction to deal with the

heterogeneity of the underlying architectural models, analytical algorithms, and implementation

platforms”.

15) Morin et al. (Morin et al., 2009) use architectural models at runtime to support dynamic

software product lines (DSPL). Their goal is to reduce the number of artefacts to support the

evolution of adaptive systems by leveraging aspect-oriented and model-driven techniques. They

design four aspects of a dynamically adaptive system: its variability, the system’s environment

and context, adaptation logic and the system architecture. Aspect-Oriented techniques are used

by them to automatically construct architectures by composing aspects that model features.

Model- Driven techniques are used by them to produce adaptation commands.

2.3.3 OPEN RESEARCH QUESTIONS FOR MODELS AT RUNTIME

The models at runtime research community organized the Models@run.time seminar at

Dagstuhl in November, 2011 to discuss the open research questions for future work (Aßmann et

al., 2012). From those questions, this thesis addresses the following by using Bigraphs as a

language for constructing a model at runtime:

a) How can a runtime model provide a means to store and retrieve information about the

environment and the system?

b) To facilitate adaptation, how can a model at runtime provide a representation of the

current state and reconfiguration rules?

c) How can a runtime model enable us to reason about operating environment and runtime

behaviour to determine an appropriate form of adaptation?

d) How can a runtime model provide meta-information along the following two

dimensions: a) efficient use of time, b) location dependency?

mailto:Models@run.time

65

e) How to combine two models of runtime into one? This necessity of combining multiple

models “arises because of the need to manage multiple concerns, for example,

performance, reliability, and functional concerns. Each concern typically requires

specific models that are able to capture the individual concern and to provide a basis

for reasoning about it” (Bennaceur et al., 2014).

f) How to select one appropriate adaptation command out of many such commands at

runtime?

2.3.4 OUR TAKE-OFF POINT

The papers discussed above in section 2.3.2 have supported dynamic adaptation and software

evolution by using architectural models at runtime. Some of the design ideas that we will

explore in this thesis to construct our system are:

1) A layered approach to designing a runtime model is required to tame the complexity of

runtime phenomenon (Sykes et al., 2008).

2) Running systems should be open-adaptive (Oreizy et al., 1999) to make it easier for reflective

systems to be added.

3) A runtime model that expresses the architecture of the running system should be causally

connected to it (Blair et al., 2009, Morin et al., 2008, Morin et al., 2009).

4) System events need to be monitored. These monitored events need to be translated into

events that construct and update a model that reflects the actual running system (Garlan and

Schmerl, 2004, Garlan et al., 2004, Morin et al., 2008).

5) The model needs to be transformed into a target model because the system that the original

model represents has changed. The changed system needs to be represented by the target model.

The differences between the target model and the currently running system should be translated

into adaptation commands (Morin et al., 2008, Morin et al., 2009).

2.3.5 SECTION SUMMARY

In this section, we have explained the ideas behind models-at-runtime. We have surveyed the

literature that supports dynamic adaptation and software evolution with architectural models at

runtime because we want to use such models at runtime to organize the design of our system.

We have discussed the relevant research questions that came out of discussions held in the

Dagstuhl seminar by the models at runtime research community(Aßmann et al., 2012). Finally,

66

we have discussed the take-off point for our work in particular the ideas in the paper by Morin

et al.(Morin et al., 2008).

2.4 VOLATILITY: THE EXAMPLE PROPERTY

Volatility is the example property that our system needs to tackle. From a distributed systems

perspective, volatile systems include mobile and hand-held computing systems, ubiquitous

computing systems, wearable computing systems, context-aware computing systems, tangible

computing systems and augmented reality systems (Coulouris, 2012).Volatility is manifested in

a system in the following ways:

1) Device and communication link failures,

2) Variation in the properties of communication such as bandwidth,

3) Creation and destruction of associations which are logical communication relationships

between software components resident on the devices.

As Coulouris emphasises (Coulouris, 2012), volatility is not the defining property of the

systems mentioned above since other systems such as a file-sharing peer-to-peer system also

show forms of volatility. However, in contrast to other systems, volatile systems show all of the

above mentioned forms of volatility at once. Moreover, the rate of change in a volatile system is

much higher than in a distributed system.

Bardram and Friday (Bardram and Friday, 2010) have pointed out that besides the above,

volatility in Ubicomp systems is also caused by changes in topology, routing and host naming.

Caceres and Friday (Caceres and Friday, 2012) describe volatility as resulting from a changing

“set of users, devices and software components in an environment-far more frequently in

ubicomp systems than in conventional distributed systems”.

Thus one of the key things about volatile systems is the high rate of change that is occurring.

However, to the best of our knowledge, the literature on volatility does not specify how high

this rate of change is. At best, it is described as being “at least one such change occurring at any

one time” as in the following (Coulouris, 2012):

“An important difference that may arise between volatile systems is the rate of change.

Algorithms that have to cope with a handful of appearing or disappearing of components a day

(e.g., in a smart home) may be very differently designed from those for which there is at least

one such change occurring at any one time (e.g., a system implemented using Bluetooth

communication between mobile phones in a crowded city).”

67

2.5 UBIQUITOUS COMPUTING SYSTEM SERVICE COMPOSITION

FAULTS: THE EXAMPLE SYSTEM PROBLEM

Our example system is a service composition running on a mobile device. We now discuss the

faults that such a service composition could suffer from. Our Bigrapical model at runtime will

attempt to provide a way to recover from the service composition faults in a composition

running on a mobile device. Thus ubiquitous computing system service composition faults is the

example system problem we wish to tackle with our proposal for a Bigraphical model at

runtime.

Service is defined as “ a platform independent, loosely coupled, self contained, programmable

application that can be described, published, discovered, coordinated and configured for the

purpose of developing distributed interoperable applications” (Papazoglou et al., 2007). A

similar definition is given by Sumi Helal (Helal, 2010): “Services are software components with

well-defined interfaces and they are independent of the programming language and the

computing platforms on which they run”. Thus, Service-Oriented-Computing (SOC) is

independent of specific technologies such as Web Services or Event-Driven systems (Poslad,

2009) and services are components with well defined interfaces (Helal, 2010),(Alonso et al.,

2010). Service composition refers “to the development of customized services by discovering,

integrating and executing existing services”(Chakraborty et al., 2005).

Bronsted et al.(Bronsted et al., 2010) have identified managing contingencies as one of the main

goals of service composition for ubiquitous computing. In a ubiquitous computing environment

often called smart spaces (Coulouris, 2012), devices and services running on them might suffer

from faults because of device or battery failure resulting in their unpredictable availability.

Moreover, the faults might sometimes be induced because of device mobility.

K.S. May Chan and co-workers have proposed a fault taxonomy for web service composition

(Chan et al., 2007b). Although our example system is a service composition running on a

mobile device, Chan et al.’s taxonomy is relevant to us. This is because the same faults as those

of web service composition will also be manifested in a service composit ion running on a

mobile device albeit at a higher rate (Coulouris, 2012).

Chan et al.’s taxonomy for web services adapts Avizienis’s broader taxonomy of faults for any

computing system (Avizienis et al., 2004). Faults cause failure in a system and can be

categorised into:

68

1) Physical Faults.

2) Development Faults.

3) Interaction Faults.

We now discuss each of these categories:

1) Physical Faults: These are caused by a network or server side failure. Communication

infrastructure exceptions and incorrect operation of the hosting server’s middleware are also

categorized as physical faults. An unavailability fault occurs when one of the services of the

composition becomes unavailable.

2) Development Faults: These can occur because of human developers, development tools or

production facilities. The faults under this category include:

i. Interface change fault: This fault occurs if one of the services in the composition

updates its interface without warning.

ii. Workflow inconsistency fault: This fault occurs when the workflow description and

interface of a service do not match.

iii. Parameter incompatibility fault: This fault occurs if a service is provided with either

incorrect arguments or incorrect parameter types as input.

iv. Non-deterministic action fault: This occurs when a service has a non-deterministic

outcome or return value.

3) Interaction faults: These can occur and propagate between services during the execution of

the composite service. This category is further sub-divided into the following sub-categories:

i. Content Faults: These occur when the content that is delivered by a service is different

from the service description. Content faults are of the following types:

a) Incorrect service fault: This occurs when a service provider delivers a service which has

not been requested.

b) Misunderstood behavior fault: A service requestor misunderstands a service description

and requests for a service that is not being provided by the service provider.

c) Response error fault: This occurs when a service is provided with a correct input but

responds with incorrect results.

d) Service-Level-Agreement (SLA) fault: This occurs when a service provided by a

service provider does not comply with the SLA.

e) QoS fault: This fault occurs when a service provided by a service provider is not of

good quality in terms of speed and information.

69

ii. Timing Faults: These are the second type of interaction faults and occur when a

service’s time of arrival or timing of delivery results in the composition not complying

with the originally specified functional requirement. Timing faults are of the following

types:

a) Incorrect order fault: This is caused by a slow network and can result in message

packets arriving in an order different to the order in which they were sent.

b) Timeout fault: This is again caused by a slow network when a service waiting for a

message packet ‘times out’.

c) Misbehaving workflow fault: This is caused if the workflow of a composite service is

not correct or an individual service used by a composite service is incorrect or one of

the services forming part of the composition does not work well with other participating

services.

Chan et al. combine the above faults and their observed effects into a fault taxonomy as shown

in the Figure 2-34. The three categories of physical, development and interaction faults are

shown along the top of the taxonomy and divided into the sub-categories that we discussed

above. The bottom of the taxonomy shows the observed effects. An observed effect can be

triggered in more than one way as shown in the taxonomy.

Chan et al. also utilize Avizienis’s sixteen elementary fault classes and identify the following

six that are relevant for web services:

1) Phase of occurrence viewpoint:

i. Development faults occurring during system development or maintenance.

ii. Operational faults occurring during service delivery.

2) System boundary viewpoint:

i. Internal faults that originate inside the system boundary

ii. External faults originating outside the system boundary. These faults are then

propagated into the system because of interaction or interference.

3) Fundamental systems viewpoint:

i. Hardware faults: These originate in the hardware or effect the hardware.

ii. Software faults that affect programs or data.

The six faults mentioned above are plotted along the vertical axis on the left of the taxonomy as

shown in the Figure 2-34.

70

FIGURE 2-34: TAXONOMY OF FAULTS COMBINED WITH OBSERVED EFFECTS (CHAN ET

AL., 2007B).

Chan et al.’s goal is to analyze the observed effects so as to narrow down the possible faults that

could have caused a failure in a web service composition.

In conclusion in this section, we have discussed how faults occurring in a service composition

are categorized and how the observed effects can be mapped to the possible faults as discussed

by Chan et.al. To the best of our knowledge, this fault taxonomy is the most appropriate

classification for the service faults occurring in a service composition running on a mobile

device.

71

2.6 CONCLUSIONS

In this chapter, we have discussed the literature relevant to our research goal of exploring the

appropriateness of Bigraph’s abstractions to construct a model at runtime to tackle the problem

of volatile service composition running on a mobile device.

We have described Bigraph’s abstractions including placing, linking, interfaces, node

classifications and signatures. Additionally, we have shown how larger Bigraphs could be

constructed from smaller ones using the three operations of MiniML which is a subset of SML.

These operations are composition, parallel product and prime product. We have also discussed

how to represent a dynamic reconfiguration of Bigraphical structure with reaction rules. Next,

we have discussed the Plato-graphical Model, which is a minor extension of Bigraph. We have

then explained the architecture of BPL Tool, which we have used to implement our system. We

have organized the literature that discusses using Bigraphs to represent architecture of software

systems into not necessarily mutually exclusive categories.

From this literature, we have identified the gaps in knowledge that we propose to address in this

thesis.

Furthermore, we have discussed those ideas from the literature that are the take-off point for our

thesis.

We have then described models at runtime as “a causally connected self-representation of the

associated system that emphasises the structure, behaviour or goals of a system from a problem

space perspective” (Blair et al., 2009).

 We have described the papers that use architectural models to support dynamic adaptation and

software evolution. From these papers, we identified those open research questions for models

at runtime which are relevant to this thesis.

Moreover from the papers surveyed, we have picked out the ideas that are the take-off point for

our thesis.

We have also described volatility as a property of a ubiquitous computing system and have

pointed out that the effects of volatility occur at a higher rate in ubiquitous computing system.

Finally, we have described how faults occurring in a service composition are categorized into

physical, development and interaction faults and how the observed effects can be mapped to

possible faults.

72

3 THE RESEARCH QUESTION AND ITS DESIGN

IMPLICATIONS

3.1 INTRODUCTION

In Chapter 2, we critically analyzed the literature and identified those open questions that

constitute our take off point for this thesis.

From those take off points, we now present the research question that has emerged and that we

will tackle in this thesis. We also discuss the generic requirements for the design of our system

and the associated design space.

This chapter is organized as follows: In Section 3.2, we define our research question, discuss

the research work done by others that we have used as our starting point, and show why it is

worthwhile to answer our research question. Next in Section 3.3, we describe the requirements

for our design, which must support strategies to deal with volatile service composition running

on a mobile device. Finally, in Section 3.4, we outline the design space for our system by

describing the set of decisions that we have taken.

3.2 DEFINING THE RESEARCH QUESTION

We now discuss our research question, how we have leveraged other research work for our

design, and show why it is worthwhile to answer our research question.

Our thesis answers the following question:

Are the language abstractions provided by Bigraphs sufficient and appropriate to construct a

model at runtime to tackle the problem of volatility in a service composition running on a

mobile device?

This research question is a synthesis of the following two issues that have emerged out of our

literature review discussed in Chapter 2:

1) How do we use Bigraphs to construct a model at runtime?

As discussed in Chapter 2, section 2.2.3, this entails exploring the following questions which we

repeat for completeness:

a) Instead of using Bigraphs to model systems for simulation, how do we use Bigraphs to

express a model that is causally connected to a running system?

73

b) What are the best practices to use Bigraphical abstractions mapped to a programming

language to model at runtime a real-world system?

c) Can Bigraphical abstractions be used to implement standard system techniques like

caching, delayed-write, pre-fetching? These techniques will be needed to deal with a

bottleneck of requests arising out a high rate of reconfigurations in an implemented

system.

2) Do Bigraphs offer the appropriate language abstractions to address the open research

questions being explored by the models at runtime community?

As discussed in Chapter 2, section 2.3.3, this entails exploring the following questions which we

repeat for completeness:

a) How can a runtime model provide a means to store and retrieve information about the

environment and the system?

b) To facilitate adaptation, how can a model at runtime provide a representation of the

current state and reconfiguration rules?

c) How can a runtime model enable us to reason about operating environment and runtime

behaviour to determine an appropriate form of adaptation?

d) How can a runtime model provide meta-information along the following two

dimensions: i) efficient use of time, ii) location dependency?

e) How to combine two models of runtime into one?

f) How to select one appropriate adaptation command out of many such commands at

runtime?

We have discussed in Chapter 2 that a model at runtime is defined as “a causally connected

self-representation of the associated system that emphasises the structure, behaviour or goals of

a system from a problem space perspective” (Blair et al., 2009). Recall also from Chapter 2 that

ubiquitous systems are often characterized as being volatile (Coulouris, 2012), (Bardram and

Friday, 2010),(Caceres and Friday, 2012). This includes all of the following properties:

1) Device and communication link failures,

2) Variation in the properties of communication such as bandwidth,

3) Creation and destruction of associations which are logical communication relationships

between software components resident on the devices.

On one hand, the need for experimental application of Bigraphs has been pointed out by Robin

Milner and Lars Birkedal (Milner, 2009),(Birkedal et al. , 2006) among others. On the other

hand, the model at runtime community has been exploring appropriate abstractions to deal with

complexity arising out of runtime phenomenon (Blair et al., 2009).

74

As discussed in the previous chapter, the volatile system that will be supported in its adaptation

by our proposed Bigraphical model at runtime is a service composition running on a mobile

device.

Our thesis is, to the best of our knowledge, the first to identify ways to exploit Bigraph

abstractions for expressing a model at runtime.

3.2.1 CAVEATS ON THE SCOPE OF THE RESEARCH QUESTION

We wish to point out two caveats on the scope our research question:

i. Recall from Chapter 2 that as explained by Waddington and Lardieri (Waddington and

Lardieri, 2006), “rather than replicating abstractions that programming languages

provide, models abstract upon “selected” elements of the implemented complex

system”. Thus, we do not need to capture all programming language abstractions to

implement our Bigraph model to succeed in answering our research question. Rather,

we need to make a choice of some elements of the service composition that we would

like to model at runtime.

ii. Elsborg has already pointed out that Bigraphs lack control structures (Elsborg, 2009).

His work proposes MiniML, which is syntactic sugar for creating BGVals in SML. One

of the reasons given by Elsborg for designing MiniML in this fashion was to gain

access to SML’s control constructs. Thus, in constructing our Bigraphical model at

runtime with MiniML to answer our research question, we acknowledge that we will be

accessing the control structures of SML. This will also include SML abstractions that

support the control flow such as recursion, function and module. Indeed, the BPL Tool

that we will use is itself organised around SML’s modules and functions. Also, reaction

rules will not be used to program the model but to represent transitions in the internal

structure of the system and the external environment.

3.2.2 EVALUATION CRITERIA TO TEST IF OUR RESEARCH QUESTION

HAS BEEN ANSWERED

To define the scope of our thesis, our evaluation criteria for testing if our research question has

been answered are along the following two dimensions subject to the caveats discussed above:

i. Have we been able to construct a model at run time that is expressed using Bigraphical

abstractions? Such a system will then serve as a proof-of-concept that it is indeed

75

possible to undertake such a construction. This of course will be a constructive proof of

existence.

ii. Can such a Bigraphical model at runtime be in-sync with the real world in terms of the

time it takes to respond to the events that are being generated in the real world? Or if

they are not in-syc, why not? One of the ways we could do this is by building a test-rig,

which will load our Bigraphical model at run time with appropriate events and measure

its response times.

3.2.3 THE TAKE-OFF POINT

Our work builds upon work by Lars Birkedal et al (Birkedal et al., 2006) and Morin et al (Morin

et al., 2008). We now discuss each in turn pointing out in particular the enhancements that we

will implement in our system to answer our research question.

3.2.3.1 ENHANCEMENTS PROPOSED BY US TO THE WORK BY LARS

BIRKEDAL ET AL.(BIRKEDAL ET AL., 2006)

We propose to built on Plato-Graphic model (PGM) proposed by Lars Birkedal et al (Birkedal

et al., 2006).

The PGM is used by Elsborg to simulate (Elsborg, 2009) the Lancaster University’s tour guide

‘GUIDE’ (Cheverst et al., 2000). In contrast, we propose to use PGM-like Bigraphical Reactive

systems to construct a model at runtime that supports the running of a volatile service

composition on a mobile device without user’s intervention.

Furthermore, Elsborg (Elsborg, 2009) uses Bigraphical reaction rules to implement queries

whereas we propose to use reaction rules to model events that change the structure of Bigraph or

to extract information out of it.

Finally as defined by Birkedal et al., PGMs have three layers representing ‘World’, a ‘Proxy’

that observes it and an ‘Agent’ that models the application whereas our proposed model has two

layers only. So strictly speaking, our model cannot be called a PGM.

As discussed in Chapter 2, in our proposed approach, similar to Henson et al.’s (Henson et al.,

2012) we abstract away all the underlying complexity of Bigraphs. Moreover, we propose to

follow Walton and Worboy’s systematic approach (Walton and Worboys, 2009) when we

model runtime phenomenon. Also, like Pereira et al. (Pereira et al., 2012) we propose to include

two views of the system in the same model. Above all, as in the work of Calder and Sevegnani

(Calder and Sevegnani, 2012), we propose to use Bigraphs to support a system at runtime.

76

3.2.3.2 ENHANCEMENTS PROPOSED BY US TO THE WORK BY MORIN ET

AL.(MORIN ET AL., 2008)

The architecture that we propose to use is inspired by Morin et al.’s work (Morin et al., 2008)

which encompasses ideas in the work done by Garlan and co-workers (Garlan and Schmerl,

2004, Garlan et al., 2004). They specify all the possible variants of a system at design time.

These variants are the possible states a system could be in. In contrast, we propose to use

reaction rules of Bigraphs to generate variants of a service composition at runtime. This affords

us greater flexibility in expressing a model at runtime for an infinite number of variants.

Moreover, Morin et al use models at runtime to deal with changes in context whereas we

propose to deal with faults occurring in a service composition running on a mobile device.

As discussed in Chapter 2, Sykes et al.’s (Sykes et al., 2008) idea of a layered approach is

proposed to be adopted by us to design our runtime model. We assume that the service

composition that we have modelled is open-adaptive (Oreizy et al., 1999).

We will give detailed description of the features of our implementation in the following

chapters.

3.2.4 APPLICATIONS OF BIGRAPHS AND MODELS AT RUNTIME

We now discus why it is worthwhile to answer our research question in terms of the future role

of Bigraphs and models at runtime. Firstly, we explore how Bigraphs are envisaged as a step

towards tackling the complexity of ubiquitous systems. Then, we discuss how models at runtime

are envisaged as a set of techniques to tackle complexity of runtime systems.

3.2.4.1 FUTURE ROLE OF BIGRAPHS AS ENVISAGED BY MILNER

(MILNER, 2006B)

Ubiquitous computing systems consist of a large number of autonomous agents (Milner, 2006b)

which could be software based or devices such as microcontrollers with sensors and/or

actuators. These agents interact with each other in unpredictable ways using higher level

concepts such as trust and move around both physically and logically (for example, a software

component binding itself to a new device) in a smart space (Coulouris, 2012). The agents might

have knowledge about their environments and be able to negotiate with each other. The agents

might also have the ability to be adaptive to the environment.

To be able to tame this conceptual complexity, Milner has proposed a ‘tower of models’

(Milner, 2006b). The higher level models in this tower express concepts such as trust between

77

agents. The lower level models implement concepts such as trust by for example having an

agent accept data only from a ‘trustworthy’ agent.

Milner has envisaged Bigraphs as the lowest level foundational model in this tower of models

and calls it the Ubiquitous Abstract Machine (UAM) (Milner, 2008b). Bigraphs model the

concepts of structure, motion, connectivity and stochastics at this level.

3.2.4.2 FUTURE ROLE OF MODELS AT RUNTIME AS ENVISAGED BY THE

MODELS AT RUNTIME RESEARCH COMMUNITY

The models-at-runtime research community envisages using Model-Driven-Engineering

techniques to develop models that are abstractions of runtime phenomenon (Blair et al., 2009).

Such models could be used to support reasoning, dynamic state monitoring and control of

systems at runtime. A user of a system could use models at runtime to understand the behaviour

of system at runtime. Moreover, a large variety of software elements could be integrated

semantically with the support of a model at runtime. It could also assist in the automated

generation of implementation entities which could then be inserted into the system by a user or

by the system itself.

In the long term, models at runtime could be used to rectify errors during design. New design

decisions could also be implemented as the system is running. Finally, runt ime models could be

used to aid adaptation decisions and provide meta-information to assist in autonomic decision

making.

Through implementing a model at runtime expressed in Bigraphs, we examine if it is

appropriate to consider Bigraphs as Ubiquitous Abstract Machines – a foundational model for

ubiquitous computing systems.

3.2.5 SECTION SUMMARY

In this section, we have defined our research question as investigating the appropriateness of

Bigraphs to construct a model at runtime to deal with a volatile service composition running on

a mobile device. We have pointed out the evaluation criteria that we will use to test if we have

tackled the research question appropriately. Our starting point is the Plato-graphic model (PGM)

which is a minor extension of Bigraphs proposed by Lars Birkedal et al. (Birkedal et al., 2006).

We use PGM-like Bigraphs to express a model at runtime. The architecture to support our

model at runtime has been inspired by Morin et al.’s work (Morin et al., 2008). We will use this

architecture to facilitate the usage of Bigraph’s reaction rules to generate variants of service

composition structure resulting out of faults triggered by volatility. Finally, we have discussed

why it is worthwhile to answer our research question both for the Bigraphs and the models at

78

runtime research communities. We have shown how Bigraphs can be used as a foundational

model in a tower of models to tackle the complexity of ubiquitous systems. We have also shown

how a model at runtime can be used as an abstraction of runtime phenomenon to tackle the

complexity of runtime systems.

3.3 REQUIREMENTS FOR DESIGN

In this section, we discuss how volatility imposes certain requirements on the design of a model

at runtime. We discuss how a high rate of events is a volatile system property that affects the

running of a ubiquitous system -in particular a service composition running on a mobile device.

As a result of volatility, we need to explore the reconfiguration cycle that such an architecture

must support.

As discussed in the scenario in Chapter 1, as the user Alice strolls in a shopping mall looking to

buy a pair of jeans, a (volatile) service composition might be running on her mobile device to

help her in her shopping.

The volatile system property introduces complexity that any design of a runtime system needs

to address. Some of the complexity that needs to be dealt with includes: services malfunctioning

at a higher rate due to volatility and a large number of equivalent services being available.

Managing complexity, due to such volatility, through the use of models at runtime has now

become an important technique (Aßmann et al., 2012), (Blair et al., 2009), (France and Rumpe,

2007) .

3.3.1 VOLATILE SYSTEMS: AN OPERATIONAL POINT OF VIEW

From an operational point of view (Coulouris, 2012), a volatile system (A system that displays

volatility properties- see Section 2.4) exists in a smart space. The smart space is populated with

devices that offer services but have limited computing resources and energy supply. These

devices suffer from frequent disconnections owing to their limited operating distance or radio

occlusions. The devices host software components which frequently change their logical

relationships with other components. This frequent change is largely physically driven in

volatile systems and results in a high rate of volatile events such as faults.

79

3.3.2 RECONFIGURATION CYCLE THAT NEEDS TO BE SUPPORTED BY

THE ARCHITECTURE

The Bigraph model at runtime of the service composition should support Manel Fredj and co-

workers’ reconfiguration cycle for composite services that run in a ubiquitous computing

environment (Fredj et al., 2006). Our architecture of the model at runtime needs to support this

cycle as follows: In Figure 3-1, each rectangular box corresponds to a particular phase in the

cycle. Four phases constitute the cycle. In the first phase, the composite service is running

properly on the mobile device. We assume that a module outside our system boundary is

monitoring the service execution. Next in phase two, a fault is detected in a service forming part

of the composition resulting in a need to replace the malfunctioning service. Then in phase

three, we choose an appropriate replacement service. Finally, in phase four, we issue the

appropriate adaptation commands.

FIGURE 3-1: RECONFIGURATION CYCLE(FREDJ ET AL., 2006).

3.3.3 SECTION SUMMARY

We have discussed in this section that from an operational point of view, volatile systems exist

in smart spaces populated by resource-constrained devices that suffer from frequent physically

driven disconnection. We have also discussed the four-phase reconfiguration cycle that our

architecture will need to support.

3.4 THE DESIGN SPACE FOR TACKLING VOLATILE SERVICE

COMPOSITION

Lemos et al. (Lemos et al., 2012) define the design space of a system as “the set of decisions,

together with the possible choices the developer must make”. We now discuss both our choice

RUNNING SERVICE COMPOSITION

STARTING

RECONFIGURATION

CHOICE OF A TECHNIQUE OF RECONFIGURATION

ISSUE APPROPRIATE ADAPTATION COMMAND

FAULT IN A

SERVICE OF

THE SEVICE

COMPOSITION

RECONFIGURATION

DECISION

APPLYING

RECONFIGURATION

GETTING BACK TO

THE EXECUTON PHASE 1

PHASE 2

PHASE 3

PHASE 4

80

of models at runtime based architecture as well as Bigraphs as a language to construct it that

arise from our requirement of designing a model at runtime for a volatile service composition.

3.4.1 OUR CHOICE OF MODELS AT RUNTIME BASED ARCHITECTURE

Replacing a malfunctioning service from a service composition is a form of compositional

adaptation. According to Philip McKinley et al (McKinley et al., 2004), “compositional

adaptation enables software to modify its structure and behaviour dynamically in response to

changes in its execution environment”. In contrast, parameter adaptation “modifies program

variables that determine behaviour”(McKinley et al., 2004).

To support compositional adaptation for service compositions at runt ime, we need techniques to

deal with complexity arising out of a high rate and ill-structured order of occurrence of faults

that a service can suffer from and the infinite number of possible reconfigurations of the

composition.

As discussed earlier, to deal with this runtime complexity, adaptation mechanisms that leverage

software models are being explored by the models at runtime research community (Blair et al.,

2009). We have shown in Chapter 2 that models abstract only certain relevant elements of a

running system instead of using programming abstractions (Waddington and Lardieri, 2006).

In the process of answering our research question (section 3.2), we seek to also address some of

the research goals of the models at runtime community (Aßmann et al., 2012) as discussed in

Section 2.3.3.

3.4.2 OUR CHOICE OF BIGRAPHS TO CONSTRUCT A MODELS AT

RUNTIME BASED ARCHITECTURE

The models-at-runtime community draws on and extends the lessons learned by the broader

Model-driven engineering (MDE) community. We now give a brief overview of those concepts

from MDE that we have used in this thesis. Next we situate Bigraphs with this framework of

MDE.

3.4.2.1 OVERVIEW OF THE MODEL-DRIVEN ENGINEERING FRAMEWORK

One particular type of design space is the modelling space. According to Gasevic et al.

(Gasevic, 2006), “A modelling space defines a conceptual framework to provide an easier

understanding of approaches to modelling such as ontologies and the Object Management

Group’s (OMG) Meta-Object-Facility defined modelling languages such as UML and ODM

(Ontology Definition Meta-model)”.

81

Modelling spaces are of two types (Gasevic, 2006) : A conceptual modelling space and a

concrete modelling space.

According to Gasevic et al. (Gasevic, 2006):“Conceptual modelling spaces are focussed on

conceptual (abstract or semantic) things such as models, ontologies and mathematical logics”.

These spaces correspond to for example the semantics of programming languages.

On the other hand, Gasevic et. al. (Gasevic, 2006) describe concrete modelling spaces as

“materializing (or serializing) concepts of the conceptual modelling space”. These spaces

correspond to for example the syntax of programming languages.

Both the conceptual and concrete modelling spaces can each be represented as a stack of the

modelling layers of MDE. Each layer is at a different level of abstraction with the lowest layer

being at the lowest level of abstraction. In MDE, the lowest layer M0 represents the system that

is being modelled. Above M0 is layer M1 that represents the model of the system. The next

layer M2 represents the meta-model and layer M3 represents the meta-meta model. According

to OMG’s definition (OMG, 2011) , “A meta-model is a model that defines the language for

expressing a model”.

In an orthogonal arrangement of modelling spaces, “one modelling space models concepts from

another modelling space, taking them as real world things” (Gasevic, 2006).

We now use these terms to situate Bigraphs within the context of the model driven engineering

framework.

3.4.2.2 SITUATING BIGRAPHS W ITHIN THE CONTEXT OF MODEL-DRIVEN

ENGINEERING FRAMEWORK

As discussed in Chapter 2, we have implemented our system using the BPL Tool (ITU, 2011)

which provides a set of SML-constructs called MiniML (ITU, 2007a) which is a subset of

Standard ML and can be translated into terms representing Bigraphs (called BGVals). MiniML

gives us access to SML’s control constructs, which are lacking in Bigraphs. Indeed, one of the

stated goals of developing MiniML was to provide such an access to control constructs

(Elsborg, 2009) . In Figure 3-2, we show that Bigraphs belong to the conceptual modelling

space (Gašević et al., 2009) and represent semantics of the model. The concrete modelling space

of Extended Backus-Naur form (EBNF) (which is used to define Standard ML grammar of

which MiniML is a subset) is used to implement the conceptual modelling space and represents

the syntax in which the model is expressed.

Layers M0, M1, M2, and M3 represent respectively the system being modelled, the model, the

meta-model and the meta-meta model as defined in the Model Driven Architecture (MDA).

82

For Conceptual Modelling spaces, we will be modelling the service composition’s architecture

(SCA layer) and its environment (WORLD layer). We define both the SCA and WORLD

layers in the next chapter.

For the concrete modelling space, the system being expressed in the M0 layer is BgVal which is

a low level term language for Bigraphs checked for well-formedness with interface data closely

based on elementary Bigraphs and combinators (ITU, 2007a).

Notice the arrangement between the two modelling spaces is orthogonal because BGVal at M0

layer of the concrete modelling space is defined by using Bigraph theory in the conceptual

modelling layer.

FIGURE 3-2: ORTHOGONAL MODELLING SPACE.

In summary, in this section, we have discussed our choice of using software models as a

runtime adaptation mechanism (models at runtime). Also, we have explored the complexity

arising out of a high rate and ill-structured order of occurrence of faults that the model at

runtime needs to address. We have chosen Bigraphs as a modelling language in the conceptual

modelling space. Notice that our thesis explores whether these choices are appropriate to deal

with volatility.

3.5 CONCLUSIONS

Our research question seeks to explore the Bigraph expressivity issues that are involved in using

Bigraphs to construct a model at runtime, in constructing the mechanisms to support such a

model and in the representations of the world and the system that the model must capture. The

system that we seek to support in the face of volatility through our proposed Bigraphical model

at runtime is a service composition running on a mobile device. To evaluate if we have

succeeded in answering the research question we have proposed to construct a proof-of-concept

Bigraphical model at runtime and to test if its response times allow it to be in-sync with the real

world. To succeed our model’s architecture must support the reconfiguration cycle proposed by

Manel Fredj (Fredj et al., 2006). In the next chapter, we discuss how to use Bigraphs as a new

CATEGORY THEORY

BIGRAPH THEORY

BGVal MiniML

SML GRAMMAR

EBNF

WORLD /SCA

Represents

BGVal

Represents

Conceptual Modelling Space Concrete Modelling Space

M3

M2

M1

M0

M3

M2

M1

M0

83

language to construct a new architecture- models at runtime- to deal with the problem of

volatility in a service composition running on a mobile device.

84

4 CONSTRUCTING THE ARCHITECTURE FOR A TWO-

LAYERED MODEL AT RUNTIME

4.1 INTRODUCTION

In the previous chapter, we discussed our research question and the requirements that our

system must fulfill to address that question. To address the research question, in this chapter, we

explore a new architecture based on models at runtime (Blair et al., 2009) which we construct

using a new language Bigraphs (Milner, 2009) to tackle the problem of volatility (Coulouris,

2012) in a service composition running on a mobile device.

As discussed in Chapter 2, Bigraphs have not been used to construct a model at runtime for such

service compositions. We highlight the challenges of writing a model at runtime to support a

system running in volatile conditions. We also discuss the advantages to be had by using

Bigraphs in such a fashion.

This chapter is organized as follows: In Section 4.2, we discuss a mapping of the observed

effects of Chan et al. (Chan et al., 2007a) to the volatility properties of Coulouris et al.

(Coulouris, 2012). Next in Section 4.3, we discuss the architecture of our proposed Bigraphical

model at runtime. Finally in Section 4.4 we discuss how we program the structure of the

WORLD and SCA layers of our Bigraphical model at runtime. We also show how to use the

mapping discussed in Section 4.2 to design the reaction rules of our Bigraphical model at

runtime. Additionally in Section 4.4, we show how to program a Bigraphical array.

4.2 VOLATILE SERVICE COMPOSITION

In a volatile service composition running on a mobile device, services that are participating

might appear and disappear at a high rate. We need a taxonomy that describes the possible fault

types that can occur in a service participating in the composition at runtime and the effects that

are observed as a result of those faults. These observed effects are at the application level and

so can be dealt with using a model at runtime that is causally connected to the application.

We have used a fault taxonomy for web service composition proposed by K.S. May Chan et

al.(Chan et al., 2007a) as discussed by us in Chapter 2. From the taxonomy, we have identified

those ‘Observed Effects’ of faults that will affect services participating in a service composition

running on a mobile device that are triggered by volatility inherent in a ubiquitous computing

system (see Table 4-1). Thus, this table extends the taxonomy of Chan et al. by mapping the

85

faults identified by them to the properties of volatility discussed by Coulouris et al.(Coulouris,

2012).

We use the following definitions from Chan et al (Chan et al., 2007a) for possible classes of

fault types because we want to extract out only those observed effects that are caused by faults

due to volatility. We want our model at runtime to support adaptation to faults that are triggered

by volatility only. For example, we do not consider development faults because such faults can

be triggered even in the absence of volatility.

a) Physical Faults: These are caused by failures in the network medium or failures on the

server side. Communication infrastructure exceptions and failures in correct operation

of hosting server’s middleware are also included.

b) Interaction faults: Services forming part of the composition interact with each other. An

interaction fault occurs if a service fails frequently or unacceptably severely.

c) Interaction-content fault: This is a type of interaction fault that includes incorrect

service, misunderstood behavior, response error, QoS and SLA faults.

In Table 4-1, we first map the ‘Observed Effects’ to those of the above classes of fault types that

can cause them as discussed in Chan et al.’s taxonomy(Chan et al., 2007a). Next, we map this

fault type itself to the type of volatility (Coulouris, 2012) that can trigger it. Notice that besides

volatility, other causes may also trigger the faults. Nevertheless, in this thesis we wish to focus

only on volatility in order to answer our research question.

 We now explain this mapping:

i. According to Chan et al.’s taxonomy, an ‘Unresponsive Service’ observed effect is

caused by one of the following faults as shown in the Table 4-1: Unavailability fault,

Timeout fault, Quality of Service (QoS) fault. Next, we map these faults to the volatility

properties discussed by Coulouris et al. We identify that the Unavailability and Timeout

faults could be caused by volatility resulting from device and communication failures,

variation in properties of communication, or destruction of logical communication

relationships between software components resident on the devices. A QoS fault could

be caused by a slow network because of variation in properties of communication such

as bandwidth.

ii. In Chan et al.’s taxonomy, ‘Incorrect Results’ observed effect is caused by one of the

following faults as shown in the Table 4-1: Timeout fault, Quality of Service (QoS)

fault. Next, we map these faults to the volatility properties discussed by Coulouris et a l.

We identify that the Timeout fault could be caused by volatility resulting from device

and communication failures, variation in properties of communication, or destruction of

86

logical communication relationships between software components resident on the

devices. A QoS fault could be caused by a slow network because of variation in

properties of communication such as bandwidth.

iii. An ‘Incoherent Results’ observed effect in Chan et al.’s taxonomy is caused by Quality

of Service (QoS) fault. Next, we map this fault to the volatility properties discussed by

Coulouris et al. We identify that the QoS fault could be caused by volatility resulting

from a slow network because of variation in properties of communication such as

bandwidth.

iv. According to Chan et al.’s taxonomy, a ‘Slow Service’ observed effect is caused by one

of the following faults as shown in the Table 4-1: Unavailability fault, Incorrect Order

fault, Timeout fault, Quality of Service (QoS) fault. Next, we map this fault to the

volatility properties discussed by Coulouris et al. We identify that the Unavailability

and Timeout faults could be caused by volatility resulting from device and

communication failures, variation in properties of communication, or destruction of

logical communication relationships between software components resident on the

devices. Incorrect Order and QoS fault could be caused by a slow network because of

variation in properties of communication such as bandwidth.

v. An ‘Outdated Results’ observed effect in Chan et al.’s taxonomy is caused by Quality

of Service (QoS) fault. Next, we map this fault to the volatility properties discussed by

Coulouris et al. We identify that the QoS fault could be caused by volatility resulting

from a slow network because of variation in properties of communication such as

bandwidth.

87

TABLE 4-1: MAPPING BETWEEN OBSERVED EFFECTS AND VOLATILITY.

OBSERVED EFFECT (Chan et al.,

2007a)

POSSIBLE CLASSES OF FAULT

TYPES THAT CAN OCCUR AT

RUNTIME AND CAUSE THE

OBSERVED EFFECT(Chan et al.,
2007a)

TYPES OF VOLATILITY THAT

CAN TRIGGER THE FAULT

(Coulouris, 2012)

1.Unresponsive Service Unavailability Fault (Physical Fault),

Timeout (Interaction Fault), QoS
(Interaction-Content fault)

Device and communication link

failure, Variation in properties of
communication such as bandwidth,

Destruction of logical

communication relationships

between software components

resident on devices

2. Incorrect Results Timeout (Interaction Fault),

QoS(Interaction-Content fault)

Device and communication link

failure, Variation in properties of

communication such as bandwidth,

Destruction of logical
communication relationships

between software components

resident on devices

3.Incoherent Results QoS(Interaction-Content fault) Slow network: Variation in

properties of communication such as
bandwidth

4.Slow Service Unavailability Fault (Physical Fault),

Incorrect Order(Interaction fault),
Timeout (Interaction Fault), QoS

(Interaction-Content fault)

Device and communication link

failure, Variation in properties of
communication such as bandwidth,

Destruction of logical

communication relationships

between software components

resident on devices

5.Outdated Results QoS (Interaction-Content fault) Slow network: Variation in

properties of communication such as

bandwidth

We assume that a Service Component Architecture (SCA) (Marino and Rowley, 2010) like

description of all the services and the service composition is being maintained by a system

outside our system boundary. SCA is an architectural specification of a structural composition

model for Service –Oriented- Architecture (SOA)(Curbera, 2007). Structural Composition is a

model of service composition in SOA which identifies components of a composition that offer

services and how those components are connected together (Curbera, 2007), (Marino and

Rowley, 2010).

Now that we have mapped ‘Observed Effects’ of Chan et al. to the types of volatility of

Coulouris et al. that can trigger a fault, we identify how volatility also effects the frequency,

order, and number of these ‘Observed effects’ on a system over and above what we might see in

a non-volatile system.

i. The ‘Observed Effects’ on a service due to volatility occur at a high rate at runtime.

88

ii. In general, we cannot determine in advance the order in which services will suffer from

an ‘Observed Effect’ at runtime- essentially they suffer from an ‘Observed Effect’ in an

ill-structured fashion.

iii. There are an infinite number of possible reconfigurations of a service composition at

runtime. These are triggered by a possibly infinite number of applications of the

‘Observed Effect’ to a composition.

In the next few sections we will describe how we have utilized the above mappings of Table 4-1

in order to design our model at runtime.

4.3 USING MODEL AT RUNTIME AS A CACHE

As discussed earlier, we envisage a service composition running on a mobile device that a

shopper is using as she strolls around a shopping mall. This service composition is causally

connected to separate entity, which is a Bigraphical model at runtime. This model is also

running on the same mobile device on which the composition is running. Also, this service

composition is volatile as the participating services appear and disappear at a high rate.

The purpose of our model at runtime is to deal with volatility. We need a way to respond

quickly to the high rate of appearances and disappearances of services. As soon as a service

malfunctions, we want to substitute it with a new service. Our strategy for a quick response is to

cache the pre-fetched location and id of devices which are offering backup of those services that

are participating in the composition. This information is cached as a model at runtime. To the

best of our knowledge, this thesis is the first to use model at runtime as a cache. Also, when the

user moves from one ambient (location) to another, we pre-fetch the location and id of devices

from ‘nearby’ ambients which are offering backup of those services that are participating in the

composition. We define ‘nearby’ as being in the same ambient or in a parent ambient or in a

child ambient in the location tree (place graph). With this approach, we can use the model to

reason at runtime about which of the backup services are closest to the current location of the

user. This is the external environment/context that we wish to model. We call this model the

WORLD model. We assume that the devices which are offering substitute services are

themselves ‘appearing’ and ‘disappearing’ because of volatile wireless connectivity as the user

moves around the shopping mall.

We model each of the ‘Observed Effect’ discussed in the previous section as the state of a

service that has developed a fault (See section 4.2 for details). We also model a working service

as being in a state called “working”. We want to monitor the state of the services comprising the

service composition and be able to replace a service whose state has changed from “working” to

say “incorrect results”. This is an internal view of the system that we want to model. We call it

89

the Service Component Architecture (SCA) model. Together, WORLD and SCA constitute our

model (See Figure 4-1).

As discussed in Chapter 2, the Plato-Graphic Model (PGM) is defined by Birkedal et al.

(Birkedal et al., 2006) as combining three Bigraphical Reactive Systems (BRS) with specific

roles into one model. The three layers that the three BRS represent are: World, Proxy and

Agent. Our implementation of WORLD and SCA layers, using PGM-like ideas, combines two

BRS (WORLD, SCA) into one (Figure 4-1). Like PGMs, where the ‘World’ and ‘Agent’ layer

do not share controls (types of nodes of Bigraphs), our WORLD and SCA layers also don’t

share their controls.

As discussed earlier, run-time phenomenon are ill-structured as there is no pre-determined order

of runtime events, so reaction rules are an appropriate abstraction to model such events.

Reaction rules are used to represent the 1) caching of pre-fetched information and user’s

device’s location in the WORLD layer; 2) At the SCA layer; we model the changes in the state

of each service participating in the service composition. Notice that the choice of Bigraph as our

language offers us an ability to utilise abstractions of the problem space (devices, shops,

locations etc) in our models. Utilizing such abstractions of problem space rather than those of

solution space has been one of the primary goals of the Model-Driven Engineering community

(Schmidt, 2006).

4.3.1 REFERENCE ARCHITECTURE FOR SELF-MANAGEMENT

GOAL MANAGEMENT

RUNNING SERVICE COMPOSITION

IN THE MIDDLEWARE

SCA LAYER

WORLD LAYER

CHANGE MANAGEMENT

COMPONENT CONTROL

EQUIVALENCE CHECKER

COMMANDS EVENTS

RETURN

RESULT

CHECK

EQUIVALENCE

FIGURE 4-1:REFERENCE ARCHITECTURE FOR SELF-MANAGEMENT ADAPTED FROM

KRAMER ET AL. (KRAMER AND MAGEE, 20 07).

We assume that our Bigraphical model at runtime at the Change Management layer in Figure 4-

1 sits on top of a Component Control layer which monitors and feeds events (service

malfunctions, movement of user’s device) to our model and executes adaptation commands

90

issued by our model (Figure 4-1). We emphasize that our model at runtime and the service

composition are different entities.

We have used the three-tier reference architecture proposed by Kramer and Magee (Kramer and

Magee, 2007) (Figure 4-1). That is as indicated above, outside our system boundaries, at the

lowest Component Control layer, a service composition and it’s Service Component

Architecture (SCA) (Marino and Rowley, 2010) like description exists.

We assume that at the Component Control layer, there are modules monitoring the composition

and report any ‘Observed Effects’ as events to the Change Management layer above it. Also, we

assume that there are modules at the Component Control layer that can support addition,

deletion and searching of services. Furthermore, we assume that at this layer, there are event

scheduling mechanisms and a supporting module to coordinate between our adaptation strategy

and the underlying service composition’s exception-handling mechanisms.

Next, within the Change Management layer, we have our system with the two-layered model

and associated modules. Our system reacts to the ‘Observed Effects’ sent as events from the

lower layer by sending out the appropriate adaptation commands. These include commands to

unbind a faulty service, the command to bind a new service to the composition, and a command

to pre-fetch the identity of a device that offers a particular service in a particular ambient. We

assume that our system at this layer is causally connected to the service composition.

Finally, at the top-level layer called the ‘Goal Management Layer’, we assume that an

equivalence checker exists outside our system boundary. This checker is used to find if a service

is equivalent to a service participating in the composition.

By modelling the environment and system views in separate layers and having reaction rules to

represent dynamics in those layers completely captures volatility. We discuss the two views in

section 4.4.

4.3.2 MODEL DRIVEN ADAPTATION AT RUNTIME

Model at runtime is a set of techniques that specify an architecture to support self management

discussed in the previous section. We deploy architecture similar to Bencomo’s and Morin’s

(Bencomo, 2009, Morin et al. , 2008) in order to address the problem of volatility. In Figure 4-2,

we assume that the running system forms part of the middleware for service composition. The

running system is at layer M0 of MDA. The Plato-graphic model (PGM) like model is depicted

as a reference model in Figure 4-2. The reference model (which is a PGM-like model)

represents a “damaged” service composition after the application of the reaction rule associated

with the event generated by the running system in the middleware. It resides at layer M1 of

MDA. The specification model (another PGM-like model) resides at the meta-model layer of

91

MDA: M2. Notice that the reference model represents a state which does not conform to the

specification model. The specification model represents a high level specification of the service

composition. The modified model (a PGM-like model) that results from transformation of the

reference model using reaction rules conforms to the specification model. The reaction rules

used are discussed in Section 4.4. As discussed earlier, we assume that an equivalence checker

exists outside our system boundary and it can check if the modified model is equivalent to the

specification model. In our implementation using the BPL Tool, we have not used the

specification model because we have replaced ‘like’ service with ‘like’.

M0 LEVEL

M1 LEVEL

M2 LEVEL

EVENT

TRANSFORMED USING REACTION RULES

SPECIFICATION MODEL

CONFORMS TO
DOES NOT

CONFORM TO

RUNNING SYSTEM

IN THE MIDDLEWARE
COMMAND

MODIFIED MODEL REFERENCE MODEL

SCA LAYER
SCA LAYER

WORLD LAYER
WORLD LAYER

FIGURE 4-2: MODEL DRIVEN ADAPTATION AT RUNTIME.

The commands to effect adaptation are issued by our system after interrogating the model

representing the external environment and reflecting on the state of the internal structure of the

composition. We discuss the generation of these commands using Bigraphical reaction rules in

the next chapter.

4.3.3 DATA FLOW IN OUR MODEL AT RUNTIME

We end this section by giving an operational specification of our model at runtime – its Data

Flow Diagram- to describe its desired behaviour. In Figure 4-3, data paths are represented by

arrows, ovals represent the processing that the data undergoes and rectangles represent sources

and sinks of data. As already discussed, we assume that an event scheduling mechanism exists.

Notice that the events are being handled sequentially in our simulations in Chapter 6 rather than

concurrently. Each event corresponds to a reaction rule at the appropriate layer and triggers the

92

firing of a reaction rule at that layer. As discussed above, events at the WORLD layer

correspond to the caching of relevant information about the external environment of the service

composition (caching and un-caching of device location and movement of user’s device).

Events at the SCA layer correspond to faults in the internal execution of the service

composition. The resulting changes are stored in the data structures representing the WORLD

layer or the SCA layer as the case may be. This is represented in Figure 4-3 by the rectangle

marked “Changed Service Composition”. This information in the data structure is then used by

the event processor which is essentially the module where policies that deal with events and

system goals are encapsulated to fire a correcting reaction rule resulting in a repaired service

composition.

COMMAND EVENT

FIRE REACTION

RULE

CHANGED SERVICE

COMPOSITION

REPAIRED SERVICE

COMPOSITION

FIRE REACTION

RULE

EVENT PROCESSOR

FIGURE 4-3: DATA FLOW DIAGRAM.

Notice that the data flow in our design corresponds to the reconfiguration cycle that we

discussed in the previous chapter (Section 3.3.2). The “Fire reaction rule” step in our

architecture’s data flow diagram in Figure 4-3 corresponds to the Phase 2 of Figure 3-1. The

“Event Processor” step in Figure 4-3 corresponds to the Phase 3 of Figure 3-1. And finally, the

“Repaired Service Composition” step in Figure 4-3 corresponds to the Phase 4 of Figure 3-1.

4.3.4 SECTION SUMMARY

In this section, we have described the architecture that our Bigraphical model at runtime

follows. We first discussed where our two layered model fits within the component control,

change management and goal management layers of the reference architecture proposed by

Kramer and Magee (Kramer and Magee, 2007). We then described the architecture of our model

in terms of Model-Driven-Architecture terminology. Finally, we showed the data flow in our

system.

93

Next, we show how we have constructed our Bigraphical model at runtime keeping the

architecture that we have just discussed in mind.

4.4 PROGRAMMING THE STRUCTURE OF WORLD AND SCA

LAYERS

The structure of the WORLD and SCA layers represents the static information that our model at

runtime captures. The dynamic information is captured by the reaction rules in those layers.

These two layers represent two different views of the same system. We now discuss the state of

the WORLD and SCA layers, the kinds of nodes each layer contains and how we use MiniML

to construct those nodes. Also, recall from Chapters 2 and 3 that MiniML gives us access to

SML’s control constructs, which are lacking in Bigraphs. One of the goals of developing

Bigraphs was to provide such an access to the control constructs (Elsborg, 2009).

From a programming perspective, we view the PGM-like model with the WORLD layer and

SCA layer as a data structure that caches and retrieves run-time information. For the WORLD

layer, this run-time information includes the location and id of devices whose services comprise

the service composition. We also pre-fetch and cache location and id of ‘nearby’ (same ambient

or in a parent ambient or in a child ambient in the location tree) devices that provide backup to

those services. For the SCA layer, we cache the structure of the composition and the state of

each service participating in that composition. We construct the two layers using the operations

described in Chapter 2.

4.4.1 CONSTRUCTING A STATE OF WORLD LAYER

The environment for our system (service composition running on a mobile device) is a smart

space. Coulouris et al (Coulouris, 2012) define smart space as “any physical place with

embedded services”. They then describe four types of movements in smart space: Physical

mobility, logical mobility, user adds or deletes a device, devices fail.

We have modelled the smart space at the WORLD layer with device ids and their locations. The

effects of the four types of movement are modelled through the use of reaction rules at both the

WORLD layer and at the SCA layer.

The state of the WORLD layer represents caching of the most up-to date information about

elements in the environment pertaining to volatility. This information includes a tree

representation of the locations and the devices which may be situated inside the location nodes.

We now discuss the kinds of nodes in the WORLD layer and then the state of a WORLD layer.

94

4.4.1.1 KINDS OF NODES IN THE WORLD LAYER

There are two main kinds of nodes (called two kinds of controls in Bigraph theory terminology)

at the WORLD layer: one representing location and the other devices. We discuss each in turn.

a) Location Nodes: In this thesis, we use the words ‘ambient’ and ‘location’ synonymously. In

our figures, a location id label (as opposed to a Bigraphical control) will be in italics and

represented with a string with the letter ‘i’ followed by a natural number (0, 1, 2, 3 ...). For

example, for a location with id ‘2’, the id will be represented in figures as i2. The location

nodes are constructed by a function called loc’’ provided in Elsborg’s code (Elsborg, 2009).

The location nodes contain inside them an id node with a string value encapsulated as an atomic

Bigraphical node and representing the id of the location. They also contain a site which is a hole

in which other Bigraphs could be fitted in. For example, a node representing location i2 would

look as shown in the Figure 4-4.

FIGURE 4-4:NODE REPRESENTING A LOCATION WITH ID I2 AND A SITE.

The function loc’’ that constructs a location, takes in the string representation of id as a

parameter and constructs the BGVal representation of the location node with a site:

fun loc'' n = S.o (loc, S.`|` (S.o (id, i(n)), site))

We show the structure constructed by function loc’’ in Figure 4-5.

loc

i2

id site

95

FIGURE 4-5: THE STRUCTURE CONSTRUCTED BY FUNCTION loc’ ’ .

We now explain the terms loc, id, i (n) and site in the above function and write down the

corresponding MiniML code. As discussed in Chapter 2, ‘S’ is the Sugar module of the BPL

Tool:

 loc is an active control of zero arity (Elsborg, 2009). In Bigraph theory, an active node

can contain child nodes and sites and reaction rules can take place inside them (Milner,

2009). Thus, location nodes can contain nested within them another location node or a

device node. The function active0 of the BPL Tool converts a string into a BGVal

representation such that it is an active control of zero arity.

 val loc = S.active0 "loc"

 id is a passive control of zero arity (Elsborg, 2009). In Bigraph theory, a passive node

can contain child nodes and sites but reaction rules cannot take place inside child nodes

(Milner, 2009). The function passive0 of the BPL Tool converts a string into a BGVal

representation such that it is a passive control of zero arity.

 val id = S.passive0 "id"

 i(n) is a function that takes in the string representation of id as a parameter and

constructs an atomic node of zero arity (Elsborg, 2009). In Bigraph theory, an atomic

node cannot contain child nodes and sites (Milner, 2009). The function atomic0 of the

BPL Tool converts a string into a BGVal representation such that it is a atomic node of

zero arity.

 fun i n = S.atomic0 ("" ^ n)

 As discussed in Chapter 2, site is a place graph’s inner interface. We use the

following code from Elsborg’s thesis (Elsborg, 2009) to construct a site with BPL

Tool’s modules and functions. In the following code, the curried function Per of

BGval module of the BPL Tool constructs a BGVal representing a Bigraphical site.

loc

i (n)

id site

96

 val id_1 = B.Per info (P.id_n 1)

 val site = id_1

4.4.1.1.1 SIMPLIFIED NOTATION FOR LOCATION NODES

We simplify the notation for location by declaring a value say for location with id i2 like so:

val loc2 = loc'' "2"

Therefore location with id i2 of Figure 4-4 is depicted as shown in Figure 4-6 in a simplified

form. Note that loc2 in italics highlights the fact that it is a label rather than a Bigraphial

control. The Bigraphical control in Figure 4-6 labeled loc2 is loc.

FIGURE 4-6: SIMPLIFIED REPRESENTATION OF LOCATION WITH id i2 .

b) Device nodes: For simplicity, we assume that a given device offers a single service only. This

one-to-one mapping between devices and services does not reflect any inherent limitation of

Bigraphs. However, it does reduce the complexity of the model that we want to use as a starting

point for our experiments.

 In our Bigraphical model, each device has an id that is a number. The devices are numbered

according to the following scheme: Each device id is a decimal number. The number on the left

hand side of the decimal point represents the service number that the device offers. The number

on the right hand side of the decimal point represents the ordinal number of the device in our

model offering this particular service. For example a device with the id “3.4” represents the

fourth device in our model that offers service number three. In our model, the device id “0.0”

always represents the user’s mobile device.

We have designed the device nodes so that their ids can be extracted by using the matching

algorithm of the BPL Tool rather than by using the string processing functions of SML.

Consider Figure 4-7 were we depict a device with the id i5.8. Each device node called device

(see the Figure 4-7 and Figure 4-8, line 2) is an active node (Milner, 2009) meaning that it can

contain child nodes and sites. Moreover, reaction rules can take place inside such active nodes.

A device node contains another node called serviceIdNode (see the Figure 4-7 and Figure 4-

8, line 3) which is also an active node. Within the serviceIdNode we have an atomic node that

loc2

site

97

represents the service number being offered by the device. In the Figure 4-7 the device is

offering service 5. Recall that an atomic node cannot contain child nodes and sites (Milner,

2009). Also, within the serviceIdNode we have an active node called deviceIdNode (see the

Figure 4-7 and Figure 4-8, line 1). And finally, within this deviceIdNode we have an atomic

node that represents the ordinal number of the device. In the Figure 4-7, this ordinal number is

eight.

FIGURE 4-7: STRUCTURE OF THE D EVICE BIGRAPH.

1 val devIdNode = S.active0 "devIdNode"

2 val device = S.active0 "device"

3 val serviceIdNode = S.active0 "serviceIdNode"

FIGURE 4-8: DEFINING devIdNode, device, serviceIdNode.

The device nodes are constructed by a function called constructDevice that has been written

by us. The input parameter of this function is a string called deviceId. This deviceId must be

in the correct decimal number format as discussed above. The function returns a Bigraph

representing the deviceId.

We now discuss this function’s code (Figure 4-9) in detail. In line 2, we check, if “0” has been

passed as a parameter to our function. We pass “0” to construct the device with id 0.0. This

device represents the user’s device in our model. If the value of the parameter passed to our

function is not “0”, then the lines 6 to 9 will execute. We extract two strings one in line 8 called

serviceId representing the service that is being offered by this device and one in line 9 called

deviceId representing the ordinal number of this device. Finally, these strings are used in lines

11 and 12 to construct a Bigraph representing the device.

device

serviceIdNode

deviceIdNode

8 5

98

1 fun constructDevice (deviceId)=

2 if (deviceId = "0") then S.o(device,S.o(serviceIdNode,

3 S.`|`(i("0"),S.o(devIdNode,i("0")))))

4 else

5 let

6 val f = String.tokens (fn x => not((Char.isDigit x)))

7 val identityList = f(deviceId)

8 val serviceId = hd(identityList)

9 val deviceId = hd(tl(identityList))

10 in

11 S.o(device,S.o(serviceIdNode,

12 S.`|`(i(serviceId),S.o(devIdNode,i(deviceId)))))

13 end

FIGURE 4-9: FUNCTION constructdevice.

To summarize, the function constructDevice is used to construct a Bigraph from a string. This

Bigraphical device’s id can now be extracted using the matching algorithm of the BPL Tool

instead of using the string processing functions of SML.

4.4.1.1.2 SIMPLIFIED NOTATION FOR DEVICE NODES

To avoid clutter in our diagrams and discussions, we suffix the letter “i” with the device number

of the scheme discussed above for labels of a device. Moreover, to distinguish this label from

Bigraphical controls, the label will be in italics. For example i5.8 in our diagrams and

discussion is the eight-device offering service number five. Here, “i” signifies that the number

following it is not a ‘usual’ decimal number but is one that follows our numbering scheme

discussed above.

Consider Figure 4-10 where a device with id i5.8 is shown in a simplified diagram. We will

follow the convention of representing device Bigraphs in our diagrams in such a simplified

manner in this thesis.

99

FIGURE 4-10: SIMPLIFIED REPRESENTATION OF DEVICE WITH ID I5 .8

4.4.1.2 MODELLING THE ENVIRONMENT VIEW OF EFFECTS OF

VOLATILITY WITH THE WORLD LAYER

FIGURE 4-11: STATE OF THE WORLD EXPRESSED AS A BIGRAPH.

As shown in Figure 4-11, a state of the WORLD could consist of the location with id i1 (west

wing) and location with id i3 (east wing) nested inside the mall. The nested ambient (location

with id i2) within the west wing represents a large clothing store. Similarly, the nested ambient

(location with id i4) within the east wing represents another competing clothing store. In Figure

4-11, the device with id i0 is the user’s device running the service composition and is in the

west wing. This device with id i0 models the mobile device that the user moves around with in

the Shopping Mall. Recall from the scenario in Chapter 1 that the service composition is

running on this device. The user is in the west wing so the device with the id i0 is shown in the

dev

i5.8

i0

dev dev dev

loc dev

i2

id

loc

i1

id

i3.1 i4.7

dev

i3.4

i5.8

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

dev

i4.1

i5.3

dev

100

location representing the west wing of the mall. We assume that three services service 3, service

4, and service 5 comprise the service composition. These three services are being offered

respectively by devices with id i3.1, and i4.7 on the west wing and device with id i5.8 in

location with id i2. We cache the location of the devices whose services are currently

participating in the composition. We also cache the location of nearby devices (device i3.4 for

service 3, device i4.1 for service 4, and device i5.3 for service 5) that offer backup to each of

these services. We define ‘nearby’ to mean any device in either the current or parent or child

ambient. Note that such devices offering backup services might not always exist for us to cache

them.

As discussed in Chapter 2, even though the BPL Tool can be used to represent Bigraphs linked

together through hyper-graphs, we have not used this capability because the BPL Tool’s

matching algorithm is not designed to efficiently handle a huge explosion of links that occurs as

the size of Bigraph grows (Elsborg, 2009). Thus in the Figure 4-11, the devices with ids i3.1,

i4.7, and i5.8 whose services are participating in the composition have not been linked

together with a hyper-graph although that is permissible in Bigraph theory. Instead, to capture

the information that these devices are offering services that are part of the service composition,

we will store their ids in a Bigraphical array in our implementation of the model using the BPL

Tool.

Because of space constraints, control names id and dev appear outside their respective node

boxes in our figures. On the other hand, control name loc appears inside its node box.

The state of WORLD layer of Figure 4-11 expressed in MiniML code is shown in Figure 4-12.

val C = S.o(locShoppingMall,S.`|`(S.o(loc1,S.`|`(constructDevice(“0.0”),S.`|`

(constructDevice(“3.1”),S.`|`(constructDevice(“4.7”),S.`|`

(constructDevice(“3.4”),S.`|`(constructDevice(“4.1”),S.o(loc2,S.`|`

(constructDevice(“5.3”), constructDevice(“5.8”))))))))),S.o(loc3,loc4)))

FIGURE 4-12: CONSTRUCTION OF WORLD LAYER.

The dynamics of un-caching and caching and movement of user’s device of the WORLD layer

are modelled with the reaction rules for that layer. These rules are fired by our functions that

encapsulate the adaptation strategy of our system. The first rule models a device being un-

cached by our system. In Figure 4-13, we show the reaction rule modelling the un-caching of

device i2.6 from location i3. Notice that we will need a separate rule to un-cache each device

from each location. In the next chapter, we will show how to tackle this problem by using

abstraction by parameterisation techniques.

101

The second rule models a service being cached. In Figure 4-14, we show the reaction rule

modelling the caching of device i6.7 in location i4. Again, notice that we will need a separate

rule to cache each new device in each location. We have used abstraction by parameterisation

techniques discussed in the next chapter to tackle this problem as well.

Finally, the dynamics of a device moving from one ambient to another can be modelled by

application of ‘device un-cached’ rule in the initial ambient and ‘device cached’ rule in the final

ambient.

FIGURE 4-13: DEVICE ‘UNCACHED’ RU LE OF THE WORLD.

FIGURE 4-14: DEVICE ‘CACHED’ RULE OF WORLD.

We now discuss each of the movements in smart space and show how these are captured by our

two-layered model.

i) Physical mobility: Modelled by the reaction rule at WORLD layer where a device moves

from one ambient to another.

ii) Logical mobility: A service might move out of the smart space triggering one of the

‘Observed Effects’ of K. S. May Chan (Chan et al., 2007a). Each of these ‘Observed Effects’ is

dev

site

i2.6 i3

id loc

site

i3

id loc

dev

site

i6.7 i4

id loc

site

i4

id loc

102

modelled by a reaction rule at the SCA layer (See next sub-section). Also, device un-cached rule

is triggered at the WORLD layer.

iii) User adds or deletes a device: Not part of our scenario. However, the device cached rule can

model this type of event.

iv) Devices fail: As above, this triggers one of the ‘Observed Effects’ which is modelled by a

reaction rule at the SCA layer (See next sub-section) and a device un-cached rule at the

WORLD layer.

Altogether, each type of movement in a smart space can therefore be captured by our two-

layered model. Notice that the rate of change of each type is much higher in volatile systems as

compared to fixed distributed systems. This means that to keep our model at run time in-sync

with the real world, the response times of the functions of our system should be low enough to

cope with this higher rate of changes.

4.4.2 CONSTRUCTING A STATE OF SCA LAYER

The second layer of our model at runtime which we call the ‘Service Component Architecture’

(SCA) layer models the structure of the composition and the state of each service participating

in the composition.

Each service is a node containing another node with a string representing the service id and a

node with a string representing the state of the service. Also, a service could contain other

services within it.

Each one of the Table 4.1’s five events associated with the five possible ‘observed effects’ in a

service at the SCA layer is mapped to a reaction rule in our system. A reaction rule changes the

state of a service from ‘working’ which models a properly functioning service to a state named

after the fault associated with the reaction rule. The states named after the faults are: 1)

Unresponsive, 2) Incorrect result, 3) Incoherent results, 4) Slow service 5) Outdated results.

We now discuss the kinds of nodes in the SCA layer and then the state of an SCA layer.

4.4.2.1 KINDS OF NODES IN THE SCA LAYER

There is only one main kind of node at the SCA layer- the service node. Within the service

node, we have a node representing the service id and another node representing the state of the

service (See Figure 4-15).

103

In our figures, a service id label (as opposed to a Bigraphical control) will be in italics and

represented with a string with the letter ‘i’ followed by a natural number (0, 1, 2, 3 ...). For

example, for a service with id ‘7’, the id will be represented in figures as i7.

A service node is constructed by a function called constructService that has been written by

us. The service node contains inside it an id node with a string representing the name of the

service, a state node with a string representing the name of the state the service is in, and a site

that is a hole in which other Bigraphs could be fitted in. This is shown in Figure 4-15 for a

service of id i7 which is in a working state. Note that except for Figures 4-15 and 4-16, we will

always omit the control name “state” in our diagrams to avoid clutter.

FIGURE 4-15: A SERVICE NODE.

 The function constructService takes in the string representation of id and string

representation of state as parameters and constructs the BGVal representation of a service node

with a site:

fun constructService(n,someState)=S.o (service,S.`|` (S.o (id,i(n)),S.`|`

(constructServiceState(someState),site)))

We show the structure constructed by function constructService in the Figure 4-16.

service

i 7

id site

working

state

104

FIGURE 4-16: THE STRUCTURE CONSTRUCTED BY FUNCTION constructService.

We have already explained the terms id , i(n), and site in section 4.4.1.1. We now explain

the terms service, and constructServiceState in the above function:

 service is an active control of zero arity. Thus, it can contain other service nodes:

val service = S.active0 "service"

 constructServiceState is a function that takes in the string representation of state as

a parameter and constructs an atomic control of arity zero:

fun constructServiceState(someState)=S.atomic0 (someState)

4.4.2.1.1 SIMPLIFIED NOTATION FOR SERVICE NODES

As with location and device nodes, we can simplify our representation of a service node by

declaring a value for a particular service:

val service7 = constructService(“7”,”working”)

Therefore, a service with id 7 of Figure 4-15 is depicted in Figure 4-17 in a simplified form.

Note that service7 in italics highlights the fact that it is a label rather than a Bigraphical

control. The Bigraph control in the Figure 4-17 labeled service7 is service.

service

i (n)

id site

someState

state

105

FIGURE 4-17: SIMPLIFIED REPRESENTATION OF SERVICE WITH id i7 .

4.4.2.2 MODELLING THE SYSTEM VIEW OF EFFECTS OF VOLATILITY

WITH THE SERVICE COMPONENT ARCHITECTURE (SCA) LAYER

FIGURE 4-18: STATE OF SCA LAYER .

The states at the SCA layer are modelled as nodes in our bigraph model (Figure 4-18). These

states are based on faults discussed by Chan et al.(Chan et al., 2007a). In addition, we have a

state called not working which models any other fault that we have not captured. In Figure 4-

18, service i7 is a bigraph modelling a composite service. The state of service i7 is

unresponsive. It consists of three services: service i3 which is in the state Incoherent

results and services i4 and i5 which are in the working state. Notice that we assume that the

monitoring system- which is outside our system boundary- ‘knows’ that service i4 and service

service7

site

working

service

service

working

service service

i3

i4

i7

i5

unresponsive

incoherent results

working

106

i5 on their own are working fine and that the problem is with service i3 on which service i7

depends. We have captured this ‘knowledge’ in our model.

Note that the control name service appears outside its node box.

To conclude, the state of SCA layer shown in Figure 4-18 as expressed in MiniML code is

shown in Figure 4-19. Notice that the sites of services i4 and i5 have been filled-up with barren

roots. In Bigraphs, barren roots are those that do not have any children. This root is constructed

using the following code from Elsborg (Elsborg, 2009) where <-> is a BGVal denoting a

Bigraphical root and is defined in the Sugar module of the BPL Tool:

val barren = S. <->

val L = S.o(constructService(“7”, “unresponsive”),S.o(constructService(“3”,

 “incoherent results”),S.`|`(S.o(constructService(“4”,

 “working”),barren),S.o(constructService(“5”, “working”),barren))))

FIGURE 4-19: CONSTRUCTION OF A STATE OF SCA LAYER.

4.4.2.3 EXPRESSIVENESS OF OUR SCA MODEL

Our model at the SCA layer can express all possible types of service compositions. We now

discuss how we have used the types of component compositions to derive our types of service

composition.

As discussed earlier, we have assumed that an SCA like description of the actual service

composition exists in the layer below the layer where our system exists. Both SCA and

Architecture Description Languages (ADLs) like Darwin (Magee et al., 1995) represent

component composition using a service (‘provides’) interface and a ‘requires’ interface as

shown in the Figure 4-20.

Component

Requires

Service (Provides)

FIGURE 4-20: COMPONENT INTERFAC ES (SOMMERVILLE, 2011).

107

There are three kinds of component compositions (Sommerville, 2011):

1) Sequential composition: In such a composition, firstly service, say S1 offered by component

say C1 is called by the system. Then, the result is used in a call to another service say S2 offered

by a component say C2. This is shown in Figure 4-21.

C1

C2

S1 (Provides)

S2 (Provides)

FIGURE 4-21:SEQUENTIAL COMPONEN T COMPOSITION (SOMMERVILLE, 2011).

2) Hierarchical composition: Here, service S1 offered by component C1 is called by the system.

S1 in turn calls service S2 offered by component C2. See Figure 4-22.

C1

C2

S2 (Provides)

Requires

S1 (Provides)

FIGURE 4-22:HIERARCHICAL COMPON ENT COMPOSITION (SOMMERVILLE, 2011).

3) Additive composition: In this case, an external interface encapsulates two independent

services S1 and S2 respectively offered by components C1 and C2. This common interface is

used by the system to call the two services S1 and S2. S1 and S2 do not call each other. See

Figure 4-23.

108

C1 C2

C3

S1 (Provides) S2 (Provides)

S3 (Provides)

Requires Requires

RequiresRequires

FIGURE 4-23: ADDITIVE COMPONENT C OMPOSITION (SOMMERVILLE, 2011)

As discussed earlier, the BPL Tool does not support the use of links. So, we abstract out in our

model only the ‘provides’ interface of a component that specifies what service is provided. Our

corresponding service composition models of the above component compositions are discussed

now:

1) Sequential composition: This corresponds to a call made to service i1 by our system (user’s

mobile device) and using the results in another call to service i2. The Bigraph model of such a

composition is shown in Figure 4-24. Note that we encode order within our SML code through

our numbering system- the lowered numbered service comes first.

FIGURE 4-24: BIGRAPH MODEL OF SEQUENTIAL SERVICE COMPOSITION.

2) Hierarchical composition: The system (user’s mobile device) calls service i2 which in turn

calls service i1. This composition is depicted in our Bigraph model as shown in the Figure 4-25.

FIGURE 4-25: BIGRAPH MODEL OF HIERARCHICAL SERVICE COMPOSITION.

i1 working

service

i2 working

service

service

i2 working

i1 working

service

109

3) Additive composition: The external interface service i3 is called by the system (user’s

mobile device). The device that offers service i3 then calls a device offering service i1 and

another device offering service i2. This type of composition is depicted in our Bigraph model as

shown in the Figure 4-26.

FIGURE 4-26: BIGRAPH MODEL OF ADD ITIVE SERVICE COMPOSITION.

Thus, we see that our model at the SCA layer can express all types of service compositions

identified by Sommerville (Sommerville, 2011).

4.4.2.4 BRIDGING THE GAP BETWEEN ARCHITECTURE AND

REQUIREMENTS

Enhancing the architecture of a system by adding states of each of its components as an extra

element is important to bridge the gap between architecture and requirements of a system

(Hirsch et al., 2006).

As discussed earlier, our requirement is that our system responds quickly to a service

malfunction by substituting it with an equivalent service. We deal with this requirement by

caching the location and id of devices at WORLD layer and caching the structure of

composition along with the state of each service at the SCA layer.

We cache the following ‘Observed Effects’ (Chan et al., 2007a) as states in our model at the

SCA: 1) Unresponsive service, 2) Incorrect result, 3) Incoherent results, 4) Slow service 5)

Outdated results. We have chosen these effects as they result from faults at runtime rather than

those at development time. Caching the observed effect as states in the architectural model

enables us to express the difference between a working and a malfunctioning composition even

though it might have an un-altered structure. Within our system, the requirement of responding

quickly is met by identifying a malfunctioning service through its state and replacing it with an

equivalent service. Notice that a system outside our system boundary needs to send us the event

corresponding to the change in the state of the service. Thus, this external system might still

delay the overall response of the system. Since this issue of the external system being slow is

beyond the scope of our thesis, we assume that given that such an external system is quick, how

low are the response times of our system.

service

service

i4

i3 working

i1 working i2 working

service

110

4.4.2.5 CAPTURING ALL POSSIBLE OBSERVED EFFECTS ON SERVICES

THROUGH REACTION RULES

Our goal has been to develop the smallest number of reaction rules that capture all the effects of

volatility on a service composition running on a mobile device. However, for the purpose of

building our system we consider only those cases where the number of services and the

structure of composition remains the same and only one service in the composition develops a

fault at one time. As a result, we do not have reaction rules to deal with the change in the

number of services or the structure of the composition.

As discussed in section 4.2, we have used a fault taxonomy for web service composition

proposed by K.S. May Chan et al.(Chan et al., 2007a). From the taxonomy, we have identified

those ‘Observed Effects’ of faults that will affect services participating in a service composition

running on a mobile device that are triggered by volatility inherent in a ubiquitous computing

system (see Table 4-2 on the following pages). We model each of these observed effects as an

event sent to our system by another system outside our system boundary. Each of these events

has a corresponding state of service named after it. However we can create additional states

because the function that encapsulates the reaction rule to change the state is parameterized (See

next chapter). Notice therefore that a fault for the service composition is an event for our

system. We have written reaction rules that change the state of a service from ‘Working’ to one

of the aforementioned states. We now extend Table 4-1 presented in section 4.2 with an

additional column of our reaction rules in Table 4-2 and discuss these reaction rules:

i. Service state at the SCA layer changes from ‘Working’ to ‘Unresponsive Service’: For a

service of id i5 the reaction rule will be as show in the Figure 4-27:

FIGURE 4-27: STATE CHANGE OF A SERVICE FROM WORKING TO UNRESPONSIVE.

ii. Service state at the SCA layer changes from ‘Working’ to ‘Incorrect Results’: For a service

of id i5 the reaction rule will be as show in the Figure 4-28:

site

working

i5

id

service

site

unresponsive

i5

id

service

111

FIGURE 4-28: STATE CHANGE OF A SERVICE FROM WORKING TO INCORRECT RESULTS.

iii. Service state at the SCA layer changes from ‘Working’ to ‘Incoherent Results’: For a service

of id i5 the reaction rule will be as show in the Figure 4-29:

FIGURE 4-29: STATE CHANGE OF A SERVICE FROM WORKIN G TO INCOHERENT

RESULTS.

iv. Service state at the SCA layer changes from ‘Working’ to ‘Slow Service’: For a service of id

i5 the reaction rule will be as show in the Figure 4-30:

FIGURE 4-30: STATE CHANGE OF A SERVICE FROM WORKING TO SLOW SERVIC E.

v. Service state at the SCA layer changes from ‘Working’ to ‘Outdated Results’: For a service

of id i5 the reaction rule will be as show in the Figure 4-31:

FIGURE 4-31: STATE CHANGE OF A SERVICE FROM WORKING TO OUTDATED RESULTS.

site

working

i5

id

service

site

incorrect result

i5

id

service

site

working

i5

id

service

site

incoherent results

i5

id

service

site

working

i5

id

service

site

slow service

i5

id

service

site

working

i5

id

service

site

outdated results

i5

id

service

112

We add an additional column titled ‘Reaction rule at the SCA layer’ to Table 4-1 to produce

Table 4-2:

TABLE 4-2: MAPPING BETWEEN REACTION RULES AND VOLATILTY.

REACTION RULE AT

THE SCA LAYER

OBSERVED EFFECT

(Chan et al., 2007a)

POSSIBLE FAULT

TYPES THAT CAN

OCCUR AT RUNTIME

AND CAUSE THE
OBSERVED

EFFECT(Chan et al.,

2007a)

TYPES OF

VOLATILITY THAT

CAN TRIGGER THE

FAULT (Coulouris,
2012)

1. Service state at the

SCA layer changes from

‘Working’ to

‘Unresponsive Service’

Unresponsive Service Unavailability Fault

(Physical Fault), Timeout

(Interaction Fault), QoS

(Interaction-Content

fault)

Device and

communication link

failure, Variation in

properties of

communication such as
bandwidth, Destruction

of logical communication

relationships between

software components

resident on devices

2.Service state at the

SCA layer changes from

‘Working’ to ‘Incorrect
Results’

Incorrect Results Timeout (Interaction

Fault), QoS(Interaction-

Content fault)

Device and

communication link

failure, Variation in
properties of

communication such as

bandwidth, Destruction

of logical communication

relationships between
software components

resident on devices

3. Service state at the

SCA layer changes from

‘Working’ to ‘Incoherent

Results’

Incoherent Results QoS(Interaction-Content

fault)

Slow network: Variation

in properties of

communication such as

bandwidth

4. Service state at the

SCA layer changes from

‘Working’ to ‘Slow

Service’

Slow Service Unavailability Fault

(Physical Fault),

Incorrect

Order(Interaction fault),
Timeout (Interaction

Fault), QoS (Interaction-

Content fault)

Device and

communication link

failure, Variation in

properties of
communication such as

bandwidth, Destruction

of logical communication

relationships between

software components
resident on devices

5. Service state at the

SCA layer changes from
‘Working’ to ‘Outdated

Results’

Outdated Results QoS (Interaction-Content

fault)

Slow network: Variation

in properties of
communication such as

bandwidth

We can also generate a reaction rule that changes any malfunctioning state of a service back into

the ‘Working’ state. This reaction rule corresponds to an adaptation command given out by our

system that binds a replacement service to the composition.

113

We have now seen that our reaction rules capture faults extracted from Chan’s taxonomy (Chan

et al., 2007a) that can occur in a service composition running on a mobile device because of

volatility.

4.4.3 A BIGRAPHICAL ARRAY TO SUPPORT SERVICE COMPOSITION

We wish to store those devices whose services are participating in the composition in a

Bigraphical array. This is needed to inform the adaptation that will be required if one of the

devices that are participating develops a fault and needs to be replaced by another device.

4.4.3.1 KINDS OF NODES IN THE BIGRAPHICAL ARRAY

There are two main kinds of nodes (called two kinds of controls in Bigraph theory terminology)

in the Bigaphical array: one representing the array itself and the other representing those devices

which are contained within the Bigraphical array. We have already discussed the device node in

previous sections. We now discuss our Bigraphical array which we call compositionDevices.

compositionDevices is an active control of zero arity (Elsborg, 2009). As discussed earlier, in

Bigraph theory, an active node can contain child nodes and sites and reaction rules can take

place inside them (Milner, 2009). Thus, a compositionDevices node can contain nested within

it a device node. The function active0 of the BPL Tool converts a string into a BGVal

representation such that it is an active control of zero arity.

 val compositionDevices = S.active0 "compositionDevices"

We use this compositionDevices node to construct a barren Bigraph:

 val A = S.o (compositionDevices, barren)

In Bigraph theory, a node or root is barren if it has no children (Milner, 2009) . Finally, we use

BPL Tool’s makePlato function to construct a parallel product of the WORLD layer, SCA layer

and the Bigraphical array:

 val system0 = makePlato(C,L,A)

In the code above, C is the Bigraph representing the WORLD layer, L is a Bigraph representing

the SCA layer, and A is the Bigraph representing the Bigraphical array called

compositionDevices.

To add devices to the Bigraphical array, we have written a function called

deviceJoinsComposition (see next chapter). Similarly, to remove a device from the

Bigraphical array, we have written a function called deviceLeavesComposition (see next

114

chapter). We have also written a function called newFindParticipatingDevice to find the id

of a device whose service is part of the composition (see next chapter).

4.4.3.2 STATE OF THE BIGRAPHICAL ARRAY

FIGURE4-32: STATE OF THE BIGRAPHICAL ARRAY.

As shown in the Figure 4-32, a state of the Bigraphical array compositionDevices could

consist of three devices whose services are participating in the composition. In the figure we

assume that service 1, service 2 and service 3 are participating in the composition. The devices

which are currently being used for this composition are devices with id i1.13, i2.9 and i3.10

as seen in the figure. Notice that we are using a simplified diagram for each device to avoid

clutter. To conclude, the state of Bigraph of Figure 4-32 as expressed in MiniML code is shown

in Figure 4-33.

val A =

S.o(compositionDevices,S.`|`(S.o(device,S.o(serviceIdNode,S.`|`(3,S.o(devIdNod

e,10)))),S.`|`(S.o(device,S.o(serviceIdNode,S.`|`(1,S.o(devIdNode,13)))),

S.o(device,S.o(serviceIdNode,S.`|`(2,S.o(devIdNode,9)))))))

FIGURE 4-33: CONSTRUCTION OF A STATE OF BIGRAPHICAL ARRAY.

4.4.4 SECTION SUMMARY

In this section, we have shown how to capture the relevant information at runtime from two

points of view- the external environment (locations in the WORLD layer) and the internal

structure of the service composition (services in the SCA layer). By using the same Bigraph

constructed out of a parallel product of the Bigraph (See chapter 2) representing the WORLD

layer and another Bigraph representing the SCA layer, we have shown a way to combine two

models of runtime into one.

We first described how our WORLD layer captures the environment view of the effects of

volatility by caching device ids and locations and having reaction rules that model the caching

compositionDevices

i2.9

dev

i3.10

dev

i1.13

dev

115

and un-caching of devices. We also discussed how we could simulate the movement of the

user’s device by triggering first the un-caching and then the caching of device rules. Next, we

discussed how our SCA layer can capture sequential, hierarchical, and additive service

compositions. We showed that our use of state whilst describing the service composition helps

to bridge the gap between requirements of volatility and the architecture. We also showed that

our reaction rules at the SCA layer completely capture all the ‘Observed Effects’ of faults in a

service composition due to volatility. Finally, we discussed the construction of a Bigraphical

array to store the identity of those devices whose services are participating in the service

composition.

4.5 CONCLUSIONS

We have shown in this chapter, how to use a new language -Bigraphs- to construct a new

architecture - models at runtime - to deal with the problem of volatility in a service composition.

We use our two-layered model at runtime to cache pre-fetched information about the

environment (WORLD layer) and the system (SCA layer). This information is stored before a

fault occurs – in particular the id of alternative back-up devices and their locations are stored in

the WORLD layer of the model and in this sense the information is pre-fetched. This

information can be used to quickly replace a malfunctioning service with an equivalent service

nearby. The SCA layer captures all the observed effects of faults on a service composition

through its reaction rules. It also captures all possible types of service composition and

considers state of a service as part of architecture thereby bridging the gap between the

requirements and architecture of a system. Moreover, reaction rules at both the WORLD and

SCA layer capture all kinds of appearances and disappearances of services in a smart space. We

have therefore shown a way to capture two views of a system in one runtime model. In

conclusion, we have demonstrated how to leverage abstractions provided by Bigraphs to use a

model at runtime as a cache to deal with volatile service composition running on a mobile

device.

116

5 USING THE BPL TOOL TO IMPLEMENT A TWO-

LAYERED MODEL AT RUNTIME

5.1 INTRODUCTION

As discussed in Chapter 2, to the best of our knowledge, our work is the first to have

implemented a Bigraphical model at runtime using the BPL Tool. This chapter serves as a

proof-of-concept that Bigraphs can be used as a language in the conceptual modelling space

(See Chapter 3) to express a two-layered model at runtime for managing ubiquitous computing

volatility. As discussed in Chapter 3, we implement the conceptual model expressed in Bigraphs

with a concrete model expressed in MiniML. Terms representing Bigraphs can be written as

MiniML constructs by using the BPL Tool (ITU, 2007a, Elsborg, 2009). We have built our code

on top of Ebbe Elsborg’s code (Elsborg, 2009).

In this chapter, we discuss ways in which we have organized our MiniML code such that it

could be independently re-implemented if the reader so wished. A Plato-Graphic model (PGM)

(Birkedal et al., 2006) like idea has been used by us to model the structure of the WORLD and

SCA layer. Thus, we present a way to combine two views (environment and system) into the

same model. We also show how to parameterize the reaction rules so that the matching

algorithm (Birkedal et al., 2007) of the tool returns a single match giving us the ability to

dynamically query and modify the model at runtime. The same parameterization techniques are

also used by us to generate infinitely many reaction rules intensionally.

We have organized the chapter as follows: In section 5.2, we discuss the approach that we have

taken to implement our system. Then in section 5.3, we discuss the functions that we have

written to access and modify the WORLD and SCA layers. Finally in section 5.4, we discuss

functions that we have written to encapsulate adaptation logic as well as scripting functions that

we have used to run our implementation. In the next section, we give an informal commentary

on our implementation.

5.2 IMPLEMENTATION APPROACH

Our system’s implementation successfully utilises Bigraphs as a language to construct a model

at runtime. We now discuss some of the simplifying assumptions that we have made about our

system’s boundaries, those features of Bigraphs that we have not used, and how our system

117

responds to external events by issuing commands to components outside the system boundary

and by making internal changes.

5.2.1 SYSTEM BOUNDARY

We have kept the implementation simple enough for us to focus on exploring the most

appropriate way to construct a model at runtime with Bigraphs. Our system gets a stream of

events and responds by outputting the appropriate commands. Everything else is outside our

system boundary. This means we assume that there is a software layer underneath our system at

the Component Control layer (See section 4.3.1) which monitors the service composition and

reports all the relevant events to our system.

As discussed in Chapter 4, we assume that a Service Component Architecture (SCA) (Marino

and Rowley, 2010) like description of all the services and the service composition is being

maintained by a system outside our system boundary in the Component Control layer. Note

therefore that our model at runtime and the service composition are different entities and that

both are causally connected. We also assume that if the rate of incoming events exceeds the

response rate of our system, then there is an event scheduling mechanism outside our system

boundary in the Component Control layer that deals with it appropriately. We are handling the

events sequentially rather than concurrently. Again, we assume that there is a mechanism

outside our system boundary in the Component Control layer which applies our adaptation

commands to the service composition. Note that we un-cache a device from our model at

runtime (See Chapter 4) not just when volatility causes a service malfunction on that device but

also in case of malfunction caused due to any other reason. We assume that there is a supporting

module in the Component Control layer that exists to coordinate between our adaptation

strategy (which is essentially to rebind to any other ‘equivalent’ service that is being offered by

one of the ‘nearby’ devices whose location has been pre-fetched by us) and the underlying

service composition’s exception-handling mechanisms. Our volatility handling mechanisms are

at a higher level of abstraction (modelling level at the Change Management layer) than those

exception handling mechanisms (service composition language at the Component Control

layer). Note too that even if the code running the service composition is verifiably correct, the

composition will still malfunction because of volatility. Furthermore, we assume that there is an

equivalence checker outside the system boundary at the Goal Management layer (See section

4.3.1) that decides if two services are equivalent.

118

5.2.2 UNUSED FEATURES OF BIGRAPHS

As discussed in Chapter 2, because of the limitations of the matching algorithm of BPL Tool,

we do not use Bigraph theory’s hyper-graphs in our model. Thus, instead of connecting all the

devices (that are participating through their services in the service composition) with hyper-

graphs in the WORLD layer, we use a Bigraphical array which we discussed in Chapter 4 to

store the device Ids of such devices. This Bigraphcal array helps us write code that can

distinguish between participating devices and those that are only offering back-up services but

have nevertheless been cached as part of our pre-fetching strategy.

5.2.3 EVENTS AND COMMANDS IN THE SYSTEM

In our system, most events (modelled by a reaction rule- see Table 5.1) that need to be

processed are associated with corresponding commands. Bigraphs give us a perfect abstraction

to model events in the world and associate policies and actions (commands) with those events.

Note that although we know how to respond to each event, we do not know the order in which

they will occur as runtime phenomenon are ill-structured in that there is no pre-determined order

for their occurrence. As reaction rules can be fired in any order they are an appropriate

abstraction. As discussed in Chapter 4, we always represent the user’s device as ‘devi0’ in a

diagram. This is the device that we assume is running the service composition. Both commands

and events are also associated with internal actions taken by our system. We categorise events

as follows:

1. Five events associated with the five possible faults in a service at the SCA layer. As

described in Chapter 4, we model the following events (observed effects) (Chan et al.,

2007a) resulting from faults in a running service composition: 1) Unresponsive service,

2) Incorrect result, 3) Incoherent results, 4) Slow service 5) Outdated results. We have

chosen these effects as they result from faults at runtime rather than those at

development time. Internally, our system updates the SCA layer to reflect the observed

effects.

2. The event where ‘devi0’ moves from one ambient to another. Internally, we update the

WORLD layer to reflect this movement.

3. The event where we receive back results from the software layers underneath about the

location and identity of a device offering a particular service. Internally, we cache this

information in our model.

We categorise commands that our system outputs to a system outside our system boundary (an

Android machine- see next chapter) as follows:

119

1. The command to unbind a faulty service from the service composition. Internally, we

also un-cache the service’s device in the WORLD layer and change the state of the

service as appropriate to one of the five fault states in the SCA layer.

2. The command to bind a new service to the composition. Internally, this service’s device

and its location have already been pre-fetched in the cache. Also, we change the state of

service back to ‘working’ (See Chapter 4).

3. The command to pre-fetch the identity of a device that offers a particular service in a

particular ambient.

We show the mapping of each event to the set of commands in Table 5-1.

TABLE 5-1: MAPPING INPUT EVEN TS TO OUTPUT COMMANDS.

EVENT OUTPUT COMMAND AND INTERNAL ACTIONS

(i) A service suffers one of the five faults: 1)

Unresponsive service, 2) Incorrect result, 3) Incoherent

results, 4) Slow service 5) Outdated results. Internally,

we update the SCA layer.

1. Unbind the faulty service from the service

composition. Internally, our system also un-caches the

service’s device in the WORLD layer and changes the

state of the service as appropriate to one of the five fault

states in the SCA layer.

2. Send out a command to bind a new service to the

composition. Internally, this service’s device and its

location have already been pre-fetched in the cache by

our system. Also, our system changes the state of service

back to ‘working’ (See Chapter 3).

3. Send out a command to pre-fetch the identity of a

device that offers an alternative backup service in the

new ambient.

 (ii) ‘devi0’ moves from one ambient to another.

Internally, we update the WORLD layer.

Send out a command to pre-fetch the identity of all

devices that offer those services which are participating

in the service composition but have not been cached in

the WORLD layer for the new ambient.

(iii) We receive back results from the software layers

underneath about the location and identity of a device

offering a particular service. Internally, we cache this

information in our model. There is no need to output any

command.

In the implementation, we replace one service with another equivalent service. As discussed

earlier, we assume that there is an equivalence checker outside our system boundary- note that

developing such a checker is not a trivial problem. However, developing such a checker is

outside the scope of the thesis.

120

The reaction rule associated with an event is run through a matching algorithm (Birkedal et al.,

2007). This algorithm determines for a given Bigraph and reaction rule whether and how the

reaction rule can be applied to rewrite the Bigraph. The algorithm outputs a set of possible

Bigraphs that result from the application of the reaction rule. This algorithm has been

implemented in MiniML by the BPL Tool (ITU, 2011) and we build our code on top of this

algorithm.

This systematic mapping between Events and Commands discussed above makes our task of

programming our model at runtime less complex.

5.2.4 SECTION SUMMARY

 Our implementation is a system that responds to external events by issuing commands and

changing its internal state. In the next few sections, we give a detailed account of the

implementation.

5.3 FUNCTIONS TO MODIFY/ACCESS THE WORLD/SCA LAYERS

As discussed in Chapter 2, one of the goals of designing a model at runtime is to develop a

mechanism to use the information stored in the model to take decisions at runtime. Secondly,

because the models are causally connected to the running system and the world, we need to be

able to use the causal connection to modify the model to reflect any changes in the running

system and the world. For meeting both these goals, we have written functions to modify/access

the WORLD/SCA layers. We view the functions that we have written as algorithms to access or

modify the WORLD/SCA data structures. Matching algorithm (Birkedal et al., 2007) of BPL

Tool is the core around which these functions are organized.

Consider a reaction rule R->R’ where R is the redex Bigraph and R’ is the reactum Bigraph. Let

Bigraph A be a bigraph:

A = C o (R ⊗ idZ) o d

Bigraph A, on application of the reaction rule can be re-written as:

A = C o (R ̀⊗ idZ) o d.

The operator ⊗ is called a tensor product. It constructs a larger Bigraph by placing two smaller

Bigraphs that do not share names (See Chapter 2) side-by-side. The operator ‘o’ denotes

composition of Bigraphs (Birkedal et al., 2007), ‘C’ is the context, ‘R’ is the reactum, ‘R ’̀ is the

redex,‘ d’ is a parameter and ‘Z’ is the set of names of ‘d’. The parameter ‘d’ is a Bigraph that

121

fits into the sites (don’t cares) of reaction rules. idZ is the identity function for composition that

‘allows a name ‘Z’ to be “passed through” the redex and be attached to something in the

context ‘C’ ’ (Birkedal et al., 2007).The sites of a reaction rule are don’t cares in the sense that

it does not matter, which, Bigraph is in the same place as the site, for a reaction rule to be

applied. We pass the larger Bigraph A and redex R to the matching algorithm which must find

C, d and Z such that

A = C o (R ⊗ idZ) o d

holds. Since, in our implementation, we do not use links; the matching algorithm only returns C

and d.

As an example of how the matching algorithm works, consider the reaction rule shown in

Figure 5-1:

FIGURE 5-1: DEVICE UN-CACHING REACTION RULE.

This reaction rule models the un-caching of device i4.3 from location i1. Any Bigraph

returned by the matching algorithm as the parameter ‘d’ is fitted in the sites of the reaction rule.

We apply this reaction rule to the Bigraph in Figure 5-2 which shows a state of the WORLD

layer.

dev

site

i4.3 i1

id loc

site

i1

id loc

122

FIGURE 5-2: INITIAL STATE OF THE WORLD BIGRAPH.

The redex (left hand side) of this reaction rule is passed to the matching algorithm along with

the Bigraph of Figure 5-2. The context C and parameter d that the matching algorithm returns

are shown respectively in Figure 5-3 and Figure 5-4:

FIGURE 5-3: CONTEXT RETURNED BY MATCHING ALGORITHM.

FIGURE 5-4: PARAMETER RETURNED BY MATCHING ALGORITHM.

i0

dev dev dev dev

loc dev

i2

id

loc

i1

id

i3.1 i4.3 i6.2

i5.8

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

site

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

i0

dev dev dev

loc dev

i2

id

i3.1 i6.2

i5.8

123

The context ‘C’ is a Bigraph with a site into which the reactum of the Bigraph can fit in. Also,

the parameter returned consists of a Bigraph that goes into the site of the redex of the reaction

rule shown in Figure 5-1.

 After the application of the reaction rule, the Bigraph of Figure 5-2 is re-written into Bigraph

shown in Figure 5-5 with the device i4.3 having been un-cached.

FIGURE 5-5: REWRITTEN STATE OF THE WORLD.

Next, in sections 5.3.1 and 5.3.2, we discuss two classes of functions that have used the

matching algorithm:

 Functions that modify the model.

 Functions that access information from the model.

5.3.1 FUNCTIONS THAT MODIFY THE MODEL

These functions encapsulate the reaction rules of the model. Note that for concrete

implementation, we use the function abstraction of MiniML. For conceptual modelling of

domain knowledge, reaction rules are appropriate to express the semantics. The functions

include at the WORLD layer:

 i) Device cached,

ii) Device un-cached,

 iii) Device moves from one ambient to another (This can be modelled by application of ‘device

un-cached’ rule in the initial ambient and ‘device cached’ rule in the final ambient.),

And at the Service Component Architecture Layer (SCA),

i0

dev dev dev

loc dev

i2

id

loc

i1

id

i3.1 i6.2

i5.8

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

124

 iv) State of a service changes.

Finally, to modify the Bigraphical array compositionDevices we have written the following

two functions to encapsulate the appropriate reaction rules:

v) A function that encapsulates the rule that a device joins compositionDevices .

vi) A function that encapsulates the rule that a device needs to be removed from

compositionDevices .

The reaction rule encapsulated by a function along with the Bigraph which needs to be

rewritten, are passed on to the matching algorithm which returns with an appropriate match. The

matching algorithm is encapsulated in the function changeSystem which takes in a Bigraph

system and a reaction rule ruleName as parameters and returns the modified system.

We now discuss the function changeSystem in detail (Figure 5-6).

In line 3, we first convert the Bigraph that has been passed to changeSystem from a BGVal to

BDnf using Elsborg’s code (Elsborg, 2009). Next, in line 4 and 5, we compute a lazy list of the

matches of redex with the Bigraph that needs to be rewritten using Elsborg’s code (Elsborg,

2009). We then access the first element of the lazy list using Elsborg’s code (Elsborg, 2009) in

line 6. Notice that we expect only one match because all device ids, location ids, and service ids

that our functions use to construct the reaction rules are unique. Finally, in line 8, we perform a

single reaction step induced by a match (Elsborg, 2009) returning the resulting re-written

Bigraph. The full function has been written by us by collecting together lines from Elsborg’s

code (Elsborg, 2009) . See Figure 5-6.

1 fun changeSystem(systemName,ruleName) =

2 let

3 val BRsystemName = makeBR systemName

4 val mtsd = M.matches { agent = BRsystemName ,

5 rule = ruleName }

6 val matchNew = LazyList.lznth mtsd 0

7 in

8 Re.react matchNew

9 end

FIGURE 5-6: FUNCTION changeSystem.

125

5.3.1.1 ABSTRACTION BY PARAMETERIZATION

Abstraction by parameterization ‘through the introduction of parameters, allows us to represent

a potentially infinite set of different computations with a single program text that is an

abstraction of all of them’(Liskov and Guttag, 2000). We look upon our functions as generic

templates from which reaction rules can be automatically instantiated. Our functions that

encapsulate reaction rules parameterize the identities of locations, devices and services for a

given reaction rule as the case may be. Note that the reaction rules as defined in Bigraph theory

are themselves parametric because they have sites that can be ‘filled up’ (See Chapter 2). The

parameters that our functions provide to the reaction rules are in addition to the parameters that

‘fill up’ the sites of those reaction rules. We now discus the following six functions that modify

the structure of the WORLD layer: i) device un-cached, ii) device cached, iii) device moves

from one ambient to another, a fourth function that modifies the state of the SCA layer: iv) state

of a service changes, v) a function that encapsulates the rule that a device joins

compositionDevices , and finally, vi) a function that encapsulates the rule that a device needs

to be removed from compositionDevices .

Each of these functions can automatically instantiate infinitely many reaction rules.

i) Device un-cached rule: We use the ‘device disappears’ rule to un-cache a device from the

WORLD layer. Consider, again, the application of the reaction rule to un-cache a device (see

Figure 5-1) to the state of the WORLD shown in Figure 5-2. This reaction rule models the un-

caching of device i4.3 from location i1. The signature of the function which encapsulates this

rule is constructDisappear (deviceId, location) and the structure of the resulting reaction

rule is as shown in Figure 5-7. The parameters deviceId and location are the parameters

passed by the function to the parametric reaction rule. The function returns a constructed

reaction rule. When we pass deviceId = i4.3 and location = i1, to the reaction rule of

Figure 5-7, we get the reaction rule of Figure 5-1. Compared to Figure 5-1, the function

constructDisappear(deviceId,location) that encapsulates the reaction rule of Figure 5-7

can therefore instantiate an infinite number of reaction rules for an infinite number of

deviceIds and locations. As discussed earlier in this section, the site in the redex and reactum

of the reaction rule is a don’t care. It is the reaction rule’s parameter in which a Bigraph could

be fitted.

126

FIGURE 5-7: FUNCTION constructDisappear.

We now discuss constructDisappear(deviceId,location) function’s implementation in

MiniML. The input parameters for the function are the identity of the device (deviceId) and the

location of the device (location). The function returns the reaction rule constructed for those

parameters. This function can generate infinitely many reaction rules -depending on the input

parameters- with the site of the reaction rule playing the role of ‘don’t care’ -in the sense that it

does not matter which Bigraph is substituted in place of the site for a reaction rule to be

applied.

We now discuss the function in detail (See Figure 5-8). Firstly, in lines 3 to 5, we declare the

structure of the redex and reactum. Notice that we use functions loc’’ (discussed in section

4.4.1.1) to construct location with the id location. Similarly, we use the function

constructDevice (discussed in section 4.4.1.1.1) to construct the device with the id deviceId.

Next, in lines 6 and 7, we specify that the number of the sites in redex and reactum is one each.

In lines 8 to 10, we map the site of the reactum to the site of the redex. Finally, in lines 12 to 16,

we use the ‘make’ function to construct the reaction rule. Here, structure R = BG.Rule , where

‘Rule’ is the abstract data type provided by BPL Tool for constructing rules. Notice that the

parameters deviceId and location are unique in our model. Thus, the redex that gets passed

to the matching algorithm always has a unique device id and location id and we get a single

match for the redex in the large Bigraph where a match is being searched for.

dev

site

deviceIdlocation

id
loc

site

id
loc

location

127

1 fun constructDisappear(deviceId,location)=

2 let

3 val redexDisappear = S.o

4 (loc''(location),S.`|`(constructDevice(deviceId),site))

5 val reactDisappear = S.o (loc''(location),site)

6 val redex_innerface_Disappear = Iface.m 1

7 val react_innerface_Disappear = Iface.m 1

8 val instDisappear = Inst.make { I = redex_innerface_Disappear,

9 J = react_innerface_Disappear,

10 maps = [((0,[]), (0,[]))] }

11 in

12 R.make { name = "Disappear",

13 redex = makeBR redexDisappear,

14 react = reactDisappear,

15 inst = instDisappear,

16 info = info }

17 end

FIGURE 5-8: FUNCTION constructDisappear.

We have written another function deviceDisappears that uses the reaction rule returned by

the function constructDisappear to change the state of the system. Function

deviceDisappears takes the id of device (deviceId), the location of device (location), and

the current state of the system (system) to return the new state of the system. This function is

shown in Figure 5-9.

1 fun deviceDisappears(deviceId,location,system)=

2 let

3 val Disappear = constructDisappear(deviceId,location)

4 in

5 changeSystem(system,Disappear)

6 end

FIGURE 5-9: FUNCTION deviceDisappears.

ii) Device Cached rule: This rule shown in Figure 5-10 is encapsulated by a function

constructAppear(deviceId,location).

128

FIGURE 5-10: DEVICE CACHED REACTION RULE.

The input parameters are: the id of the device (deviceId) and the id of the location (location).

The function returns the reaction rule constructed for those parameters. This function can

generate infinitely many reaction rules -depending on the input parameters- with the site of the

reaction rule playing the role of ‘don’t care’ -in the sense that it does not matter which Bigraph

is in the same place as the site, for a reaction rule to be applied.

We now discuss the function in detail (See Figure 5-11). Firstly, in lines 3 to 5 we declare the

structure of the redex and reactum. Notice that we use functions loc’’(discussed in section

4.4.1.1) to construct location with the id location. Similarly, we use the function

constructDevice (discussed in section 4.4.1.1.1) to construct the device with the id deviceId.

Next, in lines 6 and 7 we specify that the number of the sites in redex and reactum is one each.

In lines 8 to 10, we map the site of the reactum to the site of the redex. Finally, in lines 12 to 16,

we use the ‘make’ function to construct the reaction rule. Here, structure R = BG.Rule , where

‘Rule’ is the abstract data type provided by BPL Tool for constructing rules. Notice that the

parameters deviceId and location are unique in our model. Thus, the redex that gets passed

to the matching algorithm always has a unique device id and location id and we get a single

match for the redex in the Bigraph where a match is being searched for.

dev

site

deviceIdlocation

id
loc

site

id
loc

location

129

1 fun constructAppear(deviceId,location)=

2 let

3 val redexAppear = S.o (loc''(location),site)

4 val reactAppear = S.o

5 (loc''(location),S.`|`(constructDevice(deviceId),site))

6 val redex_innerface_Appear = Iface.m 1

7 val react_innerface_Appear = Iface.m 1

8 val instAppear = Inst.make { I = redex_innerface_Appear,

9 J = react_innerface_Appear,

10 maps = [((0,[]), (0,[]))] }

11 in

12 R.make { name = "Appear",

13 redex = makeBR redexAppear,

14 react = reactAppear,

15 inst = instAppear,

16 info = info }

17 end

FIGURE 5-11: FUNCTION constructAppear.

We have written another function deviceAppears that uses the reaction rule returned by the

function constructAppear to change the state of the system. Function deviceAppears takes

the id of device (deviceId), the location of device (location), and the current state of the two

layer system (system) to return the new state of the system. This function is shown in Figure 5-

12.

1 fun deviceAppears(deviceId,location,system)=

2 let

3 val Appear = constructAppear(deviceId,location)

4 in

5 changeSystem(system,Appear)

6 end

FIGURE 5-12: FUNCTION deviceAppears.

iii) ‘Device moves from one ambient to another’ rule: We use this rule to model in the WORLD

layer, the movement of the user’s device. As already discussed, we designate the user’s device

as devi0. This movement can be modelled by application of ‘device un-cached’ rule

(encapsulated within deviceDisappears function) in the initial ambient and ‘device cached’

rule (encapsulated within deviceAppears function) in the final ambient. The input parameters

for the function are the id of the device (deviceId), initial location of the device

(initialLocation), final location of device (finalLocation) and the current state of the

130

Bigraph (system). The function returns a modified Bigraph with the device in the final location

as shown in Figure 5-13.

1 fun changeAmbient(deviceId,initialLocation,finalLocation,system)=

2 let

3 val systema =

4 deviceDisappears(deviceId,initialLocation,system)

5 in

6 deviceAppears(deviceId,finalLocation,systema)

7 end

FIGURE 5-13: FUNCTION changeAmbient.

iv) As discussed earlier (Sections 4.4.2.5), each reaction rule of the SCA layer models a change

in state. The possible states are: 1) Unresponsive, 2) Incorrect result, 3) Incoherent results, 4)

Slow service 5) Outdated results. 6) Working, 7) Not working (models any other fault that we

have not captured). These states are represented as nodes in our model.

We now discuss the function constructStateChange that encapsulates a reaction rule that

changes state of a service at the SCA layer. The input parameters are the id of the service

(serviceId), initial state of the service (initialState) and the final state of the service

(finalState). The function returns the reaction rule constructed for those parameters. Again,

we can use this function to generate infinitely many reaction rules. The reaction rule is shown in

Figure 5-14.

FIGURE 5-14: constructStateChange FUNCTION ENCAPSULATING THE REACTION

RULE THAT CHANGES STATE OF A SERVICE.

We now discuss the code for this function (See Figure 5-15). Firstly, in lines 3 and 4, we declare

the structure of the redex and reactum. We use the function constructService (discussed in

section 4.4.2.1) to construct the redex and reactum of the reaction rule. Redex represents a

service in the initial state and reactum represents a service in the final state. Next, in lines 5 and

site

initialState

i(serviceId)

id

service

site

finalState

i(serviceId)

id

service

131

6, we specify that the number of the sites in redex and reactum is one each. In lines 7 and 8, we

map the site of the reactum to the site of the redex. Finally, in lines 10 to 14, we use the ‘make’

function to construct the reaction rule. Here, structure R = BG.Rule , where ‘Rule’ is the

abstract data type provided by BPL Tool for constructing rules. Notice that the parameter

serviceId is unique in our model. Thus, the redex that gets passed to the matching algorithm

always has a unique service id and we get a single match for the redex in the large Bigraph

where a match is being searched for.

1 fun constructStateChange(serviceId,initialState,finalState) =

2 let

3 val redexState = constructService(serviceId,initialState)

4 val reactState = constructService(serviceId,finalState)

5 val redex_innerface_State = Iface.m 1

6 val react_innerface_State = Iface.m 1

7 val instState = Inst.make { I = redex_innerface_State,

8 J = react_innerface_State, maps=[((0,[]), (0,[]))] }

9 in

10 R.make { name = "stateChange",

11 redex = makeBR redexState,

12 react = reactState,

13 inst = instState,

14 info = info }

15 end

FIGURE 5-15: FUNCTION constructStateChange.

v) Device joins Bigraphical array rule: This rule is shown in Figure 5-16. When a device’s

service joins the service composition, that device needs to be added to the Bigraphical array

compositionDevices. We have written a function

 constructDeviceJoinsCompositionRule

encapsulating the reaction rule that adds a device to compositionDevices.

FIGURE 5-16: DEVICE JOINS COMPOSITION RULE

compositionDevices

deviceId

dev site

compositionDevices

site

132

The input parameter is the id of the device (deviceId). The function returns the reaction rule

constructed for this parameter. Once again, notice that like other functions encapsulating

reaction rules, this function too can generate infinitely many reaction rules -depending on the

input parameters. Also, the site of the reaction rule plays the role of ‘don’t care’. That is to say

that it does not matter which Bigraph is in the same place as the site, for a reaction rule to be

applied.

We now discuss the function in detail (See Figure 5-17). Firstly, in lines 3 to 5 we declare the

structure of the redex and reactum. Notice that we use the function constructDevice

(discussed in section 4.4.1.1.1) to construct the device with the id deviceId. Next, in lines 6

and 7 we specify that the number of the sites in redex and reactum is one each. In lines 8 to 10,

we map the site of the reactum to the site of the redex. Finally, in lines 12 to 16, we use the

‘make’ function to construct the reaction rule. Here, structure R = BG.Rule , where ‘Rule’ is the

abstract data type provided by BPL Tool for constructing rules.

1 fun constructDeviceJoinsCompositionRule (deviceId) =

2 let

3 val redexAppear = S.o (compositionDevices,site)

4 val reactAppear = S.o

5 (compositionDevices,S.`|`(constructDevice(deviceId),site))

6 val redex_innerface_Appear = Iface.m 1

7 val react_innerface_Appear = Iface.m 1

8 val instAppear = Inst.make { I = redex_innerface_Appear,

9 J = react_innerface_Appear,

10 maps = [((0,[]), (0,[]))] }

11 in

12 R.make { name = "deviceAdded",

13 redex = makeBR redexAppear,

14 react = reactAppear,

15 inst = instAppear,

16 info = info }

17 end

FIGURE 5-17: FUNCTION constructDeviceJoinsCompositionRule

We have written another function deviceJoinsComposition that uses the reaction rule returned

by the function constructDeviceJoinsCompositionRule to change the state of the system.

Function deviceJoinsComposition takes the id of device (deviceId) and the current state of

the two layer system (system) to return the new state of the system. This function is shown in

Figure 5-18.

133

1 fun deviceJoinsComposition(deviceId, system) =

2 let

3 val deviceAdded = constructDeviceJoinsCompositionRule(deviceId)

4 in

5 changeSystem(system,deviceAdded)

6 end

FIGURE 5-18: FUNCTION deviceJoinsComposition.

vi) Device is removed from the Bigraph array rule: This rule is shown in Figure 5-19. When a

device’s service develops a fault, that device needs to be removed from the Bigraphical array

compositionDevices. We have written a function

 constructDeviceLeavesCompositionRule

encapsulating the reaction rule that removes a device from compositionDevices.

FIGURE 5-19: DEVICE LEAVES COMPOSITION RULE

The input parameter is the id of the device (deviceId). The function returns the reaction rule

constructed for this parameter. Once again, notice that like other functions encapsulating

reaction rules, this function too can generate infinitely many reaction rules -depending on the

input parameters. Also, the site of the reaction rule plays the role of ‘don’t care’. That is to say

that it does not matter which Bigraph is in the same place as the site, for a reaction rule to be

applied.

We now discuss the function in detail (See Figure 5-20). Firstly, in lines 3 to 5 we declare the

structure of the redex and reactum. Notice that we use the function constructDevice

(discussed in section 4.4.1.1.1) to construct the device with the id deviceId. Next, in lines 6

and 7 we specify that the number of the sites in redex and reactum is one each. In lines 8 to 10,

we map the site of the reactum to the site of the redex. Finally, in lines 12 to 16, we use the

‘make’ function to construct the reaction rule. Here, structure R = BG.Rule , where ‘Rule’ is the

compositionDevices

deviceId

dev site

compositionDevices

site

134

abstract data type provided by BPL Tool for constructing rules. Notice that the parameters

deviceId is unique in our model. Thus, the redex that gets passed to the matching algorithm

always has a unique device id and we get a single match for the redex in the Bigraph where a

match is being searched for.

1 fun constructDeviceLeavesCompositionRule (deviceId) =

2 let

3 val redexDisappear = S.o

4 (compositionDevices,S.`|`(constructDevice(deviceId),site))

5 val reactDisappear = S.o (compositionDevices,site)

6 val redex_innerface_Disappear = Iface.m 1

7 val react_innerface_Disappear = Iface.m 1

8 val instDisappear= Inst.make { I = redex_innerface_Disappear,

9 J = react_innerface_Disappear,

10 maps = [((0,[]), (0,[]))] }

11 in

12 R.make { name = "deviceDeleted",

13 redex = makeBR redexDisappear,

14 react = reactDisappear,

15 inst = instDisappear,

16 info = info }

17 end

FIGURE 5-20: FUNCTION constructDeviceLeavesCompositionRule

We have written another function deviceLeavesComposition that uses the reaction rule

returned by the function constructDeviceLeavesCompositionRule to change the state of the

system. Function deviceLeavesComposition takes the id of device (deviceId) and the current

state of the two layer system (system) to return the new state of the system. This function is

shown in Figure 5-21.

1 fun deviceLeavesComposition(deviceId, system) =

2 let

3 val deviceDeleted = constructDeviceLeavesCompositionRule(deviceId)

4 in

5 changeSystem(system, deviceDeleted)

6 end

FIGURE 5-21: FUNCTION deviceLeavesComposition.

135

Altogether, we see that the implementation of functions that modify PGM-like models depend

on the matching algorithm and parameterization concepts are needed to write functions that

generate infinitely many reaction rules.

5.3.2 FUNCTIONS THAT ACCESS INFORMATION FROM THE MODEL

We want to ‘interrogate’ the WORLD/SCA model to access information that is needed to take

an adaptation decision at runtime. The BPL Tool provides no functions to access the structure of

a Bigraph. One of the ways this can be overcome is by writing reaction rules with the same

redex and reactum and passing the redex to the matching algorithm. The redex is written in such

a fashion that the parameters returned by the matching a lgorithm can be used to extract useful

information using BPL Tool functions. Notice, because reactum is the same as redex, it does not

make sense to replace redex by reactum in the Bigraph where matching occurs. Rather, we are

interested in the parameters returned by the matching algorithm. Hence we do not apply the

matches returned by the matching algorithm to the Bigraph on which the reaction rule was

originally applied. We have written the following functions using this strategy, and we now

discuss this strategy in more detail for each of these function:

i) locateDevice: Finds where a device is located

ii) enumerateDevicesInShoppingMall: Lists all devices in a particular ambient (location)

offering a particular service.

iii) findParent: Finds a location’s parent location.

iv) findChild: Finds one of the child locations of a location.

v) newFindParticipatingDevice: Finds the id of the device participating in the composition

and offering a particular service.

vi) constructSeviceTree: Returns a list of all the services participating in the composition by

using the BPL Tool’s matching algorithm to traverse the tree representing the structure of the

service composition at the SCA layer.

We now discuss each of these functions in turn:

i) locateDevice: We use this function to find where a device is located by accessing the

information stored in the WORLD Bigraph through the matching algorithm. Consider the state

of the WORLD layer in Figure 5-2 which we reproduce in Figure 5-22. Suppose that we wish to

find the location of device i4.3.

136

FIGURE 5-22: INITIAL STATE OF WORLD BIGRAPH.

We use the reaction rule shown in Figure 5-23. Notice from the figure that both the redex and

reactum are the same Bigraphs. We pass the redex with deviceId = 4.3 together with the

WORLD layer Bigraph of Figure 5-22 to the matching algorithm. Notice that we do not specify

the location Id of the device in the reaction rule because it is an unknown and we want the

matching algorithm to return the parameter containing that information.

FIGURE 5-23: REACTION RULE WITH THE SAME REDEX AND REACTUM.

The context and the parameter that the matching algorithm returns are shown in Figures 5-24

and 5-25 respectively. Notice that the ‘don’t care’ (site) of the reaction rule in Figure 5-23 is

‘filled up’ by the parameter in the Figure 5-25. Thus, the BPL Tool’s matching algorithm

returns a parameter that is the atomic Bigraphical node representing the id of the location: i1.

i0

dev dev dev dev

loc dev

i2

id

loc

i1

id

i3.1 i4.3 i6.2

i5.8

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

site

id

dev

deviceId
site

id

dev

deviceId

137

FIGURE 5-24: CONTEXT RETURNED BY THE MATCHING ALGORITHM.

FIGURE 5-25: PARAMETER RETURNED BY THE MATCHING ALGORITHM.

We now discuss the code for function locateDevice shown in Figure 5-26. The input

parameters for the function are the id of the device (deviceId) and the current state of the two

layer model (currentSystem). The function returns the string representation of the id of

location.

Firstly, we declare the structure of the redex in line 3 and reactum in line 4. Notice that both of

them represent the same Bigraph. Notice too that there is no identity node for location node. We

want the matching algorithm to return the string representation of identity node as part of the

parameter that it will return. Next, in lines 5 and 6 respectively, we specify that the number of

the sites in redex and reactum is one each. We map the site of the reactum to the site of the

redex in lines 7 to 9. We use the make function to construct the reaction rule in lines 10 to 14.

Here, structure R = BG.Rule , where ‘Rule’ is the abstract data type provided by BPL Tool for

constructing rules. In line 15, we then convert the Bigraph that has been passed to

locateDevice function from a BGVal to BDnf using Elsborg’s code (Elsborg, 2009). Next, we

compute a lazy list of the matches of redex with the Bigraph that needs to be rewritten using

Elsborg’s code (Elsborg, 2009) in lines 16 to 17. Notice that we expect only one match because

the parameter deviceId passed to locateDevice is unique.

i0

dev dev dev

loc dev

i2

id

loc

i3.1 i6.2

i5.8

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

site

id

i1

138

In line 18, we check whether the lazy list containing the matches is empty. When the lazy list is

not empty, the lines 19 to 32 execute. In lines 21 to 25, we use BPL Tool’s functions to extract

out the Bigraph representing the parameter returned by the matching algorithm. Next, in line 26,

we define the function peel adapted from Elsborg’s code (Elsborg, 2009) to convert the BGVal

representation of a Bigraph to a string representation. Finally, we return this sting

representation of the id of the location in line 34.

1 fun locateDevice(deviceId,currentSystem) =

2 let

3 val redexLocate = S.`|`(S.o(id,site),constructDevice(deviceId))

4 val reactLocate = S.`|`(S.o(id,site),constructDevice(deviceId))

5 val redex_innerface_Locate = Iface.m 1

6 val react_innerface_Locate = Iface.m 1

7 val instLocate = Inst.make { I = redex_innerface_Locate,J =

8 react_innerface_Locate,

9 maps = [((0,[]), (0,[]))] }

10 val findDevice = R.make { name = "findDevice",

11 redex = makeBR redexLocate,

12 react = reactLocate,

13 inst = instLocate,

14 info = info }

15 val BRsystemLocate = makeBR currentSystem

16 val mtsd = M.matches { agent = BRsystemLocate , rule = findDevice

17 }

18 val testNew = if ((lzLength mtsd) = "0") then ""

19 else

20 let

21 val testalteragent' = M.unmk (LazyList.lzhd mtsd)

22 val testalteragent'_par =

23 #parameter(testalteragent')

24 val testalteragent'_ctx =

25 #context(testalteragent')

26 fun peel x = (B.toString o B.simplify o

27 Bdnf.unmk) x

28 val test3 = peel testalteragent'_par

29 val test4 = peel testalteragent'_ctx

30 in

31 test3

32 end

33 in

34 testNew

35 end

FIGURE 5-26: FUNCTION locateDevice.

139

To sum up, the function locateDevice uses a reaction rule that does not change the state of the

WORLD layer to access information. This is achieved by having the same redex and reactum

for the reaction rule. This reaction rule is then passed on to the matching algorithm and it

returns parameters from which the location can be extracted.

ii) enumerateDevicesInShoppingMall: This function lists all devices in a particular ambient

(location) offering a particular service by accessing the Bigraph through the use of the matching

algorithm. The function is used when a device needs to be replaced and as a result, we want to

find out which other device is offering that same service in a particular ambient. Once we know

an alternative device offering the same service, we can send out a command to bind our service

composition to the new service.

Consider the state of the WORLD layer in Figure 5-27. Suppose that we want to find all the

devices in location 1 that offer service 6. There are two such devices: devices with id i6.2 and

i6.4.

FIGURE 5-27: INITIAL STATE OF WORLD BIGRAPH.

We use the reaction rule shown in Figure 5-28. Notice that both redex and reactum are the same

Bigraphs. We pass redex with location = 1 and serviceId = 6 as well as the Bigraph with

the state of the WORLD layer shown in Figure 5-27 to the matching algorithm.

i0

dev dev dev dev

loc dev

i2

id

loc

i1

id

i3.3 i6.4 i6.2

i5.8

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

140

FIGURE 5-28: REACTION RULE WITH THE SAME REDEX AND REACTUM.

Notice that for the reaction rule shown in Figure 5-28, the matching algorithm returns two sets

of contexts and parameters. This is because there are two matches corresponding to two values

of ordinal numbers for deviceIdNodes: 4 and 2 for the single value of serviceId = 6.

The first set of context and the parameters that the matching algorithm returns are shown in

Figures 5-29 and 5-30 respectively. Notice that the ‘Don’t care’ (site) of the reaction rule in

Figure 5-28 is filled up by the parameter in Figure 5-30.

Similarly, the second set of context and the parameters that the matching algorithm returns are

shown in Figures 5-31 and 5-32 respectively. Once again, notice that the ‘Don’t care’ (site) of

the reaction rule in Figure 5-28 is filled up by the parameter in Figure 5-32.

FIGURE 5-29: FIRST OF THE TWO CONTEXTs RETURNED BY MATCHING ALGORITHM-

ONLY i6.4 ABSENT.

device

serviceIdNode

deviceIdNode

site
serviceId

id

location

device

serviceIdNode

deviceIdNode

site serviceId

id

location

i0

dev dev dev

loc dev

i2

id

loc

i3.3 i6.2

i5.8

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

site

141

FIGURE 5-30: FIRST OF THE TWO PARAMETERs RETURNED BY THE MATCHING

ALGORITHM ONLY 4 PRESENT.

FIGURE 5-31: SECOND OF THE TWO CONTEXTS RETURNED BY MATCHING ALGORITHM-

ONLY i6.2 ABSENT.

FIGURE 5-32: SECOND OF THE TWO PARAMETER S RETURNED BY THE MATCHING

ALGORITHM- ONLY 2 PRESENT.

We now discuss the code of the function in detail. The code is shown in Figure 5-33.

The input parameters for the function are the string representation of the id of the

4

i0

dev dev dev

loc dev

i2

id

loc

i3.3 i6.4

i5.8

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

site

2

142

service (seviceId), the string representation of id of location (location), and the

BGVal representation of the current state of WORLD and SCA layers

(currentSystem). The function returns a list of all devices in a particular ambient

offering a particular service.

Firstly, we declare the structure of the redex in line 3 and reactum in line 7. Notice

that both of them represent the same Bigraph. We pass the identity of location

(location) and the service Id (serviceId) to the redex and reactum. Next, in lines 11

and 12 respectively, we specify that the number of the sites in redex and reactum is

one each. Then, we map the site of the reactum to the site of the redex in lines 14 to

17. We next use the make function to construct the reaction rule in lines 19 to 24.

Here, structure R = Bg.Rule where ‘Rule’ is the abstract data type provided by BPL

tool for constructing rules. In line 26, we convert the Bigraph that has been passed to

enumerateDevicesInShoppingMall function from a BGVal to BDnf using Elsborg’s

code (Elsborg, 2009) so that we can pass it on to the matching algorithm. Next, we

compute a lazy list of the matches of redex with the Bigraph that needs to be rewritten

using Elsborg’s code for the matching algorithm in lines 27 and 28. Notice that we

expect more than one match because the parameter serviceId passed to

enumerateDevicesInShoppingMall could be associated with more than one device in

a given location. We then use Elsborg’s code to define a curried function

locationIdentityStringList in lines 30 to 38. It takes in a BDnf representation of a

bigraph and a Match type (of BPL Tool) , as input parameters. This function

locationIdentityStringList then extracts the parameter in the BDnf form from the

match in line 33, and converts it in line 35 into a string using the peel function of the

BPL Tool. In line 34, we define the function peel adapted from Elsborg’s code to

convert the BGVal representation of a Bigraph to a string representation. On line 40,

we pass the function locationIdentityStringList with its BDnf parameter

BRsystemLocateInShoppingMall and the mtsd lazy list to the curried function

LazyList.lzmap provided by the BPL Tool. The function LazyList.lzmap applies our

function locationIdentityStringList to each element of the lazy list mtsd and

returns a lazy list consisting of the string representations of the BDnf representation of the

ordinal numbers of the devices. Then in line 43, we convert the lazy list locIdStringList into

a list. In line 44, we define the function prefixServiceId that prefixes a string representation

of the serviceId to the string representation of an ordinal number. Next, in line 45, we define a

function zeroServiceId that converts its parameter into the string “0”. Finally, we use both of

these functions from lines 47 to 52 to return a string list of correctly constructed device Ids

(with service Ids and ordinal numbers).

143

1 fun enumerateDevicesInShoppingMall(serviceId,location,currentSystem)=

2 let

3 val redexLocateInShoppingMall = S.`|` (S.o (id, i(location)),

4 S.o(device,S.o(serviceIdNode,S.`|`

5 (i(serviceId),S.o(devIdNode,site)))))

6

7 val reactLocateInShoppingMall = S.`|` (S.o (id, i(location)),

8 S.o(device,S.o(serviceIdNode,S.`|`

9 (i(serviceId),S.o(devIdNode,site)))))

10

11 val redex_innerface_LocateInShoppingMall = Iface.m 1

12 val react_innerface_LocateInShoppingMall = Iface.m 1

13

14 val instLocateInShoppingMall = Inst.make { I =

15 redex_innerface_LocateInShoppingMall,

16 J = react_innerface_LocateInShoppingMall,

17 maps = [((0,[]), (0,[]))] }

18

19 val findDeviceInShoppingMall = R.make { name =

20 "findDeviceInShoppingMall",

21 redex = makeBR redexLocateInShoppingMall,

22 react = reactLocateInShoppingMall,

23 inst = instLocateInShoppingMall,

24 info = info }

25

26 val BRsystemLocateInShoppingMall = makeBR currentSystem

27 val mtsd = M.matches { agent = BRsystemLocateInShoppingMall ,

28 rule = findDeviceInShoppingMall }

29

30 fun locationIdentityStringList agent m =

31 let

32 val agent' = M.unmk (m)

33 val agent'_par = #parameter(agent')

34 fun peel x = (B.toString o B.simplify o Bdnf.unmk) x

35 val test1 = peel agent'_par

36 in

37 test1

38 end

39

40 val locIdStringList = LazyList.lzmap (locationIdentityStringList

41 BRsystemLocateInShoppingMall) mtsd

42

43 val aList = LazyList.lztolist locIdStringList

44 fun prefixServiceId aserviceId x = aserviceId ^ "." ^ x

144

45 fun zeroServiceId y = "0"

46

47 val correctServiceIdList = if(serviceId = "0")then

48 map(zeroServiceId)

49 else map(prefixServiceId serviceId)

50

51 in

52 correctServiceIdList aList

53 end

FIGURE 5-33: FUNCTION enumerateDevicesInShoppingMall.

In conclusion, in the function enumerateDevicesInShoppingMall, we pass a reaction rule

with the same redex and reactum to the matching algorithm so that we can access the device Ids

offering a backup of a particular service in a particular location. Notice that the state of the

WORLD does not change on application of the reaction rule. This is as it should be, because,

we only want to access information from the WORLD Bigraph, and, not modify it.

iii) findParent: We use this function to find a location’s parent location. Consider again the

state of the WORLD in Figure 5-27 which we reproduce in Figure 5-34. Suppose, we wish to

find the parent of location 2.

FIGURE 5-34: INITIAL STATE OF WORLD BIGRAPH.

We use the reaction rule shown in Figure 5-35. Notice from the Figure that both the redex and

reactum are the same Bigraphs. We pass the redex with location = “2” together with the

WORLD layer Bigraph of Figure 5-34 to the matching algorithm.

i0

dev dev dev dev

loc dev

i2

id

loc

i1

id

i3.3 i6.4 i6.2

i5.8

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

145

FIGURE 5-35: REACTION RULE WITH THE SAME REDEX AND REACTUM.

The context and the parameter that the matching algorithm returns are shown in Figures 5-36

and 5-37 respectively. Notice that the ‘don’t care’ (site) of the reaction rule in Figure 5-35 is

‘filled up’ by the parameter in the Figure 5-37. Two Bigraphical parameters corresponding to

the two sites in the redex of the reaction rule are returned. In Figure 5-37, the two Bigraphical

parameters that have been returned are shown within dashed boxes. These dashed boxes

represent the root outer interfaces of the Bigraphs as discussed in chapter 2. We can now extract

out the first Bigraph from these two parameters.

FIGURE 5-36: CONTEXT RETURNED BY MATCHING ALGORITHM.

loc

id

location

id

site
site

id

location

id

site
site

loc

i0

dev

loc

dev

i3.3

dev

i6.4

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

site

dev

i6.2

146

FIGURE 5-37: PARAMETER RETURNED BY MATCHING ALGORITHM.

We now discuss the code of this function shown in Figure 5-38.

The input parameters for the function are the id of the location whose parent we wish to find

(location) and the current state of the two layer model (currentSystem). The function returns

the string representation of the id of the parent location.

Firstly, on line 2 we check if the value of location is ShoppingMall. If that is the case, we

return an empty string as ShoppingMall location has no parent. Next, from lines 3 to 34, we

define the else statement. We declare the structure of the redex in line 5 and reactum in line 6.

Next, in lines 7 and 8 respectively, we specify that the number of the sites in redex and reactum

is two each (See Figure 5-35). We map the sites of the reactum to the sites of the redex in lines

9 to 12. We use the make function to construct the reaction rule in lines 13 to 17. Here, structure

R = BG.Rule , where ‘Rule’ is the abstract data type provided by BPL Tool for constructing

rules. In line 18, we then convert the Bigraph that has been passed to findParent function

from a BGVal to BDnf using Elsborg’s code (Elsborg, 2009). Next, we compute a lazy list of

the matches of redex with the Bigraph that needs to be rewritten using Elsborg’s code (Elsborg,

2009) in line 19. Notice that we expect only one match because the parameter location passed

to findParent is unique. From lines 20 to 31, we use an if-else expression to construct the

parent location’s identity string. In line 20, we write a guard condition and return an empty

string if the length of the list containing the matches is zero. Line 21 starts the else branch of the

expression. Since there is only one match, we extract that match in line 23 as the head of the

lazy list. Next, in line 24, we extract only the parameters from the match (since a match contains

both the context and the parameters and we are interested only in the parameter). Then, in line

25, we deconstruct the parameter (which is of BDnf type) into its constituent link and place

Bigraphs. Since we do not use links in our modeling, the constituent link returned will be empty

and we will only have a list of place Bigraphs. In line 26, we extract the list of place graphs

from the deconstructed parameter. Finally, in line 27 we access the first Bigraph in the list as it

1

dev

i5.8

147

will be the parent location’s id. We then convert this Bigraph into its string form in line 28 and

return this string in line 33.

1 fun findParent(location,currentSystem) =

2 if(location = "ShoppingMall") then ""

3 else

4 let

5 val redexParent = S.`|`(S.o(id,site),loc''(location))

6 val reactParent = S.`|`(S.o(id,site),loc''(location))

7 val redex_innerface_Parent = Iface.m 2

8 val react_innerface_Parent = Iface.m 2

9 val instParent = Inst.make { I = redex_innerface_Parent,

10 J = react_innerface_Parent,

11 maps = [((0,[]), (0,[])),

12 ((1,[]), (1,[]))] }

13 val findParent = R.make { name = "findParent",

14 redex = makeBR redexParent,

15 react = reactParent,

16 inst = instParent,

17 info = info }

18 val BRsystemParent = makeBR currentSystem

19 val mtsd = M.matches { agent = BRsystemParent , rule =findParent }

20 val xNew = if ((lzLength mtsd) = "0") then ""

21 else

22 let

23 val testalteragent' = M.unmk (LazyList.lzhd mtsd)

24 val testalteragent'_par = #parameter(testalteragent')

25 val x1 = Bdnf.unmkDR testalteragent'_par

26 val x2 = #Ps(x1)

27 val x3 = hd x2

28 val x4 = (B.toString o B.simplify o Bdnf.unmk) x3

29 in

30 x4

31 end

32 in

33 xNew

34 end

FIGURE 5-38: FUNCTION findParent.

To summarize, the function findParent uses a reaction rule that does not change the state of

the WORLD layer to access information. This is achieved by having the same redex and

148

reactum for the reaction rule. This reaction rule is then passed on to the matching algorithm and

it returns parameters from which the location can be extracted.

iv) findChild: This function finds one of the child locations of a location. We have made the

simplifying assumption that because all locations in our model cache backup devices, we only

need to find the first child rather than all children in order to find a supporting device for a

specific service. Once again, we consider the state of the WORLD in Figure 5-34 which we

reproduce in Figure 5-39. Suppose, we wish to find the child of location 1.

FIGURE 5-39: INITIAL STATE OF WORLD BIGRAPH.

We use the reaction rule shown in Figure 5-40. Notice from the figure that both the redex and

reactum are the same Bigraphs. We pass the redex with location = “1” together with the

WORLD layer Bigraph of Figure 5-39 to the matching algorithm.

FIGURE 5-40: REACTION RULE WITH THE SAME REDEX AND REACTUM.

The context and the parameter that the matching algorithm returns are shown in Figures 5-41

and 5-42 respectively. Notice that the ‘don’t care’ (site) of the reaction rule in Figure 5-40 is

i0

dev dev dev dev

loc dev

i2

id

loc

i1

id

i3.3 i6.4 i6.2

i5.8

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

loc

id site
site

id

location

id site
site

id

location

loc

149

‘filled up’ by the parameter in the Figure 5-42. Two Bigraphical parameters corresponding to

the two sites in the redex of the reaction rule are returned. In Figure 5-42, the two Bigraphical

parameters that have been returned are shown within dashed boxes. These dashed boxes

represent the root outer interfaces of the Bigraphs as discussed in chapter 2. We can now extract

out the first Bigraph from these two parameters.

FIGURE 5-41: CONTEXT RETURNED BY THE MATCHING ALGORITHM.

FIGURE 5-42: PARAMETER RETURNED BY MATCHING ALGORITHM.

We now discuss the code of this function shown in Figure 5-43.

The input parameters for the function are the id of the location whose child we wish to find

(location) and the current state of the two layer model (currentSystem). The function returns

the string representation of the id of the first of the child locations it finds.

i0

dev

loc

dev

i3.3

dev

i6.4

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

site

dev

i6.2

2

dev

i5.8

150

We first declare the structure of the redex in line 3 and reactum in line 5. Next, in lines 7 and 8

respectively, we specify that the number of the sites in redex and reactum is two each (See

Figure 5-40). We map the sites of the reactum to the sites of the redex in lines 9 to 11. We use

the make function to construct the reaction rule in lines 12 to 16. Here, the structure R =

BG.Rule , where ‘Rule’ is the abstract data type provided by BPL Tool for constructing rules. In

line 17, we then convert the Bigraph that has been passed to findChild function from a BGVal

to BDnf using Elsborg’s code (Elsborg, 2009). Next, we compute a lazy list of the matches of

redex with the Bigraph that needs to be rewritten using Elsborg’s code (Elsborg, 2009) in line

18 to 19. Notice that we expect only one match because the parameter location passed to

findChild is unique. In line 20, we calculate the length of the list containing the matches. Next,

from lines 21 to 32, we use Elsborg’s code (Elsborg, 2009) to define a curried function

locationIdentityStringList that takes in a BDnf representation of a Bigraph and a lazy list

of matches as input parameters and outputs the string representing the id of the child location.

Within the function, in line 23 we extract the expected single match as the head of the lazy list.

Next, in line 24, we extract only the parameters from the match (since a match contains both t he

context and the parameters). Then, in line 25, we define a function peel that uses BPL Tool’s

functions to convert a Bigraph that is in the BDnf form into a string. Next, in line 26, we

deconstruct the parameter (which is of BDnf type) into its constituent link and place Bigraphs.

Since we do not use links in our modeling, the constituent link returned will be empty and we

will only have a list of place Bigraphs. In line 27, we extract the list of place graphs from the

deconstructed parameter. Then, in line 28, we access the first Bigraph in the list as it will

represent the child location’s id. We use the peel function to convert this Bigraph into a string

and then return this string in line 31. From lines 33 to 40, we use an if-else expression to

construct the child location’s identity string. In line 33, we write a guard condition and return an

empty string if the length of the list containing the matches is zero. Line 34 starts the else

branch of the expression. In line 36, we use the function that we defined namely

locationIdentityStringList to return the string representing the child location’s id to the

variable locIdStringList. We then return this variable locIdStringList in line 42.

1 fun findChild(location,currentSystem) =

2 let

3 val redexLocateChild =

4 S.`|`(S.o(id,i(location)),S.o(loc,S.`|`(S.o(id,site),site)))

151

5 val reactLocateChild =

6 S.`|`(S.o(id,i(location)),S.o(loc,S.`|`(S.o(id,site),site)))

7 val redex_innerface_LocateChild = Iface.m 2

8 val react_innerface_LocateChild = Iface.m 2

9 val instLocateChild = Inst.make { I = redex_innerface_LocateChild,

10 J = react_innerface_LocateChild,maps = [((0,[]),(0,[])),((1,[]),

11 (1,[]))]}

12 val locateChild = R.make { name = "locateChild",

13 redex = makeBR redexLocateChild,

14 react = reactLocateChild,

15 inst = instLocateChild,

16 info = info }

17 val BRsystemLocateChild = makeBR currentSystem

18 val mtsd = M.matches { agent = BRsystemLocateChild , rule =

19 locateChild }

20 val len = lzLength mtsd

21 fun locationIdentityStringList agent m =

22 let

23 val agent' = M.unmk (LazyList.lzhd m)

24 val agent'_par = #parameter(agent')

25 fun peel x = (B.toString o B.simplify o Bdnf.unmk) x

26 val x1 = Bdnf.unmkDR agent'_par

27 val x2 = #Ps(x1)

28 val x3 = hd x2

29 val x4 = peel x3

30 in

31 x4

32 end

33 val locIdStringList = if (len="0")then ""

34 else

35 let

36 val avariable = locationIdentityStringList

37 BRsystemLocateChild mtsd

38 in

39 avariable

40 end

41 in

42 locIdStringList

43 end

FIGURE 5-43: FUNCTION findChild.

In conclusion, the function findChild uses a reaction rule that does not change the state of the

WORLD layer to access information. This is achieved by having the same redex and reactum

152

for the reaction rule. This reaction rule is then passed on to the matching algorithm and it

returns parameters from which the location can be extracted.

v) newFindParticipatingDevice: We use this function to find the id of a device whose service

is one of the services participating in the composition. This device will be stored in the

Bigraphical array compositionDevices. We pass the serviceId of the service being offered by

this device to the function newFindParticipatingDevice. The function returns the deviceId

of the appropriate device. Consider the state of the Bigraphical array shown in the Figure 5-44.

Suppose that we wish to find which device is offering service 2.

FIGURE 5-44: STATE OF THE BIGRAPHICAL ARRAY

We use the reaction rule shown in Figure 5-45. Notice from that figure that both the redex and

reactum are the same Bigraphs. We pass the redex with serviceId = 2 together with the

Bigraph containing the Bigraphical array compositionDevices of Figure 5-44 to the matching

algorithm. Notice that we do not specify the device Id of the device in the reaction rule because

it is an unknown and we want the matching algorithm to return the parameter containing that

information.

compositionDevices

i2.9

dev

i3.10

dev

i1.13

dev

153

FIGURE 5-45: REACTION RULE WITH THE SAME REDEX AND R EACTUM

FIGURE 5-46: CONTEXT RETURNED BY THE MATCHING ALGOR ITHM

FIGURE 5-47: PARAMETERS RETURNED BY THE MATCHING AL GORITHM

device

serviceIdNode

deviceIdNode

site
serviceId

compositionDevices

site

device

serviceIdNode

deviceIdNode

site
serviceId

compositionDevices

site

site

9 i1.13

dev

i3.10

dev

154

The context returned by the matching algorithm is the site shown in Figure 5-46. The

parameters returned by the matching algorithm are shown in Figure 5-47. There are two

parameters in the Figure 5-47 corresponding to two sites in the reaction rule. The first parameter

is an atomic node of zero arity encapsulating the ordinal number part of a device’s id. The

second parameter is a root node. Nested within this root node are the two other devices present

in the compositionDevices Bigraphical array in the Figure 5-44. In the Figure 5-47, the two

Bigraphical parameters that have been returned are shown within dashed boxes. These dashed

boxes represent the root outer interfaces of the Bigraphs as discussed in chapter 2. We can now

extract the atomic node from the parameters, and return it as a string.

We now discuss the code for function newFindParticipatingDevice shown in Figure 5-48.

The input parameters for the function are the id of the service (serviceId) and the current state

of the two layer model (currentSystem). The function returns the string representation of the id

of the device.

Firstly, we declare the structure of the redex in line 3 to 5 and reactum in line 6 to 8. Notice that

both of them represent the same Bigraph. Notice too that there is a site for the ordinal number

inside the devIdNode. We want the matching algorithm to return the Bigraphical representation

of the ordinal number as part of the parameter that it will return. Next, in lines 9 and 10

respectively, we specify that the number of the sites in redex and reactum is two each. We map

the sites of the reactum to the sites of the redex in lines 11 to 14. We then use the make function

to construct the reaction rule in lines 15 to 19. Here, structure R = BG.Rule , where ‘Rule’ is the

abstract data type provided by BPL Tool for constructing rules. In line 20, we convert the

Bigraph that has been passed to newFindParticipatingDevice function from a BGVal to

BDnf using Elsborg’s code (Elsborg, 2009). Next, we compute a lazy list of the matches of

redex with the Bigraph that needs to be rewritten using Elsborg’s code (Elsborg, 2009) in lines

21 and 22. Notice that we expect only one match because the parameter serviceId passed to

newFindParticipatingDevice is unique. From lines 23 to 33 we define a function

getNodeLabel. This function takes the type ‘match’ of the BPL Tool as its input, extracts out

the Bigraphical parameter and returns it as string. In lines 25 to 29, we use BPL Tool’s

functions to extract out the Bigraph representing the parameter returned by the matching

algorithm. In line 30, we convert the BGVal representation of a Bigraph to a string

representation. Finally, we return this sting representation of the Bigraphical parameter in line

32.

On line 34, we pass the function getNodeLabel and the mtsd lazy list to the curried function

LazyList.lzmap provided by the BPL Tool. The function LazyList.lzmap applies our

function getNodeLabel to each element of the lazy list mtsd and returns a lazy list

155

consisting of the string representations of the BDnf representation of the ordinal numbers of the

devices. Then in line 35, we convert the lazy list aLazyList into a list. On line 36, we define a

curried function prefixServiceId which takes as inputs the string representation of the

serviceId and the ordinal number of the device and constructs a string representing the

deviceId. In line 37, we write a guard condition and return an empty string if the length of the

list containing the matches is zero. Line 38 starts the else branch of the expression. In line 40,

we extract the head of the string list since it contains the string representation of the ordinal

number of the device. Then in line 42, we call our previously defined function

prefixServiceId to construct the full device id and return it to a variable testreturn. Finally,

in line 45, we return testreturn.

1 fun newFindParticipatingDevice(serviceId, currentSystem) =

2 let

3 val redexLocateDevice =

4 S.o(compositionDevices,S.`|`(S.o(device,S.o(serviceIdNode,S.`|`

5 (i(serviceId),S.o(devIdNode,site)))),site))

6 val reactLocateDevice =

7 S.o(compositionDevices,S.`|`(S.o(device,S.o(serviceIdNode,S.`|`

8 (i(serviceId),S.o(devIdNode,site)))),site))

9 val redex_innerface_LocateDevice = Iface.m 2

10 val react_innerface_LocateDevice = Iface.m 2

11 val instLocateDevice = Inst.make { I

12 =redex_innerface_LocateDevice,

13 J = react_innerface_LocateDevice, maps = [((0,[]), (0,[])),

14 ((1,[]), (1,[]))] }

15 val locateDeviceInArray = R.make { name = "locateDeviceInArray",

16 redex = makeBR redexLocateDevice,

17 react = reactLocateDevice,

18 inst = instLocateDevice,

19 info = info }

20 val BRsystemLocateDevice = makeBR currentSystem

21 val mtsd = M.matches { agent = BRsystemLocateDevice , rule =

22 locateDeviceInArray }

23 fun getNodeLabel(aNode) =

24 let

25 val testalteragent' = M.unmk (aNode)

26 val testalteragent'_par = #parameter(testalteragent')

27 val x1 = Bdnf.unmkDR testalteragent'_par

28 val x2 = #Ps(x1)

29 val x3 = hd x2

30 val x4 = (B.toString o B.simplify o Bdnf.unmk) x3

31 in

32 x4

156

33 end

34 val aLazyList = LazyList.lzmap getNodeLabel mtsd

35 val aList = LazyList.lztolist aLazyList

36 fun prefixServiceId aserviceId x = aserviceId ^ "." ^ x

37 val testreturn = if ((lzLength mtsd) = "0") then ""

38 else

39 let

40 val locIdString = hd(aList)

41 in

42 prefixServiceId serviceId locIdString

43 end

44 in

45 testreturn

46 end

FIGURE 5-48: FUNCTION newFindParticipatingDevice.

Summing up, in newFindParticipatingDevice function we define a reaction rule such that

the BPL Tool’s matching algorithm returns the ordinal number of the device that supports a

specific service and is contained in the Bigraphical array compositionDevices. We extract that

Bigraphical representation of the ordinal number, convert it into a string, construct the correct id

of the device and return the resulting string.

vi) constructSeviceTree: In this function, we return a list of all the services participating in

the composition. The BPL Tool’s matching algorithm is used to traverse the tree representing

the structure of the service composition at the SCA layer.

Consider the state of the SCA layer in Figure 5-1 which we reproduce in the Figure 5-49. We

wish to find all the services participating in the composition. We use the reaction rule shown in

Figure 5-50. Notice that as is the case with other functions of this section, both the redex and

reactum are the same Bigraphs. Moreover, we do not specify the service id in the reaction rule.

As a result, for the SCA layer shown in Figure 5-49, there will be four matches corresponding to

four service ids. Each match consists of a context and a parameter. The context and parameter

for one of the four matches is shown in Figures 5-51 and 5-52.

157

FIGURE 5-49: THE STATE OF THE SCA LAYER.

FIGURE 5-50: REACTION RULE WITH THE SAME REDEX AND R EACTUM.

FIGURE 5-51: ONE OF THE FOUR CONTEXTS RETURN ED BY THE MATCHING

ALGORITHM.

service

service

working

service service

i3

i4

i7

i5

unresponsive

incoherent results

working

service

i7 unresponsive

site

service

id site
site

service

id site
site

158

FIGURE 5-52: ONE SET OF TWO PAR AMETERS RETURNED BY THE MATCHING

ALGORITHM OUT OF FOU R SETS.

There are two parameters in the Figure 5-52 corresponding to two sites in the reaction rule. The

first parameter is an atomic node of zero arity encapsulating a service’s id. The second

parameter is a root node. Nested within this root node are the two other services present within

service 3. Also nested is a third Bigraph representing the state of service 3. In the Figure 5-52,

the two Bigraphical parameters that have been returned are shown within dashed boxes. These

dashed boxes represent the root outer interfaces of the Bigraphs as discussed in chapter 2. We

can now extract the atomic node from the parameters, and return it as a string.

We now discuss the code of the function constructSeviceTree shown in Figure 5-53. Firstly,

we declare the structure of the redex in line 3 and reactum in line 4. Notice that as has been the

case in this section, both of them represent the same Bigraph. Next, in lines 5 and 6

respectively, we specify that the number of the sites in redex and reactum is two each. We map

the site of the reactum to the site of the redex in lines 7 to 9. We then use the make function to

construct the reaction rule in lines 10 to 14. Here, structure R = BG.Rule , where ‘Rule’ is the

abstract data type provided by BPL Tool for constructing rules.

 In line 15, we convert the Bigraph that has been passed to constructServiceTree function

from a BGVal to BDnf using Elsborg’s code (Elsborg, 2009). Next, we compute a lazy list of

the matches of redex with the Bigraph that needs to be rewritten using Elsborg’s code (Elsborg,

2009) in lines 16 and 17. Notice that we expect as many matches as the number of service ids.

From lines 18 to 28 we define a function getNodeLabel. This function takes the type ‘match’ of

the BPL Tool as its input, extracts out the Bigraphical parameter and returns it as string. In lines

21 to 24, we use BPL Tool’s functions to extract out the Bigraph representing the parameter

returned by the matching algorithm. In line 25, we convert the BGVal representation of a

Bigraph to a string representation. Finally, we return this sting representation of the Bigraphical

parameter in line 27. On line 29, we pass the function getNodeLabel and the mtsd lazy list

working

service service

i4 i5

incoherent results

working

3

159

to the curried function LazyList.lzmap provided by the BPL Tool. The function

LazyList.lzmap applies our function getNodeLabel to each element of the lazy list mtsd

and returns a lazy list consisting of the string representations of the BDnf representation of the

ordinal numbers of the devices. Then in line 30, we convert the lazy list aLazyList into a list.

We return this list in line 32.

1 fun constructServiceTree(system) =

2 let

3 val redexTraverse = S.o (service,S.`|`(S.o(id,site),site))

4 val reactTraverse = S.o (service,S.`|`(S.o(id,site),site))

5 val redex_innerface_traverse = Iface.m 2

6 val react_innerface_traverse = Iface.m 2

7 val instTraverse = Inst.make { I = redex_innerface_traverse,

8 J = react_innerface_traverse,maps = [((0,[]), (0,[])),((1,[]),

9 (1,[]))] }

10 val serviceTreeTraversal = R.make { name = "serviceTreeTraversal",

11 redex = makeBR redexTraverse,

12 react = reactTraverse,

13 inst = instTraverse,

14 info = info }

15 val BRserviceTree = makeBR system

16 val mtsd = M.matches { agent = BRserviceTree , rule =

17 serviceTreeTraversal }

18 fun getNodeLabel(aNode) =

19 let

20 val testalteragent' = M.unmk (aNode)

21 val testalteragent'_par = #parameter(testalteragent')

22 val x1 = Bdnf.unmkDR testalteragent'_par

23 val x2 = #Ps(x1)

24 val x3 = hd x2

25 val x4 = (B.toString o B.simplify o Bdnf.unmk) x3

26 in

27 x4

28 end

29 val aLazyList = LazyList.lzmap getNodeLabel mtsd

30 val aList = LazyList.lztolist aLazyList

31 in

32 aList

33 end

FIGURE 5-53: FUNCTION constructServiceTree.

Summing up, the function constructServiceTree traverses through the structure of the

service composition and returns a string list of all the participating services.

160

Thus, we have seen that one of the ways that we have explored to write functions that access

information from the PGM-like model, is to design reaction rules with the same redex and

reactum to be able to utilize the matching algorithm.

5.3.3 SECTION SUMMARY

In this section, we have discussed our implementation of two classes of functions that have used

the matching algorithm- functions that modify the model and functions that access information

from the model. We have shown a way to have the matching algorithm return a single match by

utilizing concepts of abstraction by parameterization to write our functions that encapsulate the

reaction rules. This has also given us the capability to intensionally generate infinitely many

reaction rules.

Thus, our implementation of runtime model can deal with ill-structured run-time phenomenon

with no pre-determined order of runtime events. Moreover, we can express infinitely many

reconfigurations at runtime using our reaction rules since there are an infinite number of the

values for the parameters of the functions that encapsulate the reaction rules.

5.4 FUNCTIONS TO ENCAPSULATE ADAPTATION LOGIC AND

SIMULATE TEST RUNS

Our two-layered model captures those effects of volatility that result in the generation of service

faults identified by Chan (Chan et al., 2007a). As discussed in Chapter 4, we assume that a

Service Component Architecture (SCA) (Marino and Rowley, 2010) like description of all the

services and the service composition is being maintained by a system outside our system

boundary.

As discussed in Chapter 2, according to Waddington and Lardieri (Waddington and Lardieri,

2006), “Models should abstract selected elements of the implemented complex system” rather

than “replicate abstractions that programming languages provide”.

In our implementation of model at runtime, ‘the implemented complex system’ is the SCA

specification of a service composition running on a mobile device and the ‘selected elements’

that our model abstracts are the services and their fault states that an SCA specification of a

service participating in the composition can suffer from. Notice as discussed in Chapter 4, the

implemented system and our model are different entities.

As discussed in Chapter 4, the SCA layer is one of two layers in our model. The other layer is

the WORLD layer. The SCA layer models the SCA specification of a service composition

161

running on a mobile device which is the volatile system. Thus, the SCA layer represents the

internal view of the system. On the other hand, WORLD layer models the cached location and

identity of devices offering service and also the location of the user’s device. Thus, the WORLD

layer represents the external view, that is, the environment in which the system is located.

At the SCA layer, each ‘observed effect’ of a fault in the service participating in the

composition is modelled as a reaction rule. At the WORLD layer, there is a reaction rule for

caching and another one for un-caching of the identity of a device offering a service. A third

reaction rule at the WORLD layer models any device (we will use this reaction rule for the

user’s device dev0) moving from one ambient to another.

Our two-layered model captures volatility inherent in our scenario by modelling both the system

and the environment view of the effects of volatility. We discuss the implementation of our

functions in sub-section 5.4.1.

5.4.1 IMPLEMENTATION OF THE FUNCTIONS

Each of the reaction rules at the SCA layer can be independent of the reaction rule at the

WORLD layer that models the user’s device moving from one ambient to another- the reaction

rules at the SCA layer might or might not be triggered simultaneously with the latter. For

example, a service forming part of the service composition might develop a fault corresponding

to a reaction rule of the SCA layer without the user’s device having moved anywhere. On the

other hand, a service forming part of the service composition might develop a fault

corresponding to a reaction rule of the SCA layer because of the user’s device having moved to

another ambient. Another possibility is where a user’s device could have moved to another

ambient without triggering any fault in the service forming part of the service composition

corresponding to a reaction rule of the SCA layer.

We have, therefore, written two separate functions that encapsulate adaptation logic and

simulate our test runs: SCAFaultScript which models the case where a reaction rule at the SCA

layer (System’s view of effects of volatility) has been triggered and another function

changeAmbientScript which models the case where the reaction rule for the user’s device

having changed its ambient has been triggered (Environment’s view of effects of volatility). To

model the case where service develops a fault and user moves from one ambient to another, we

call these two functions one after another in our test runs. We now discuss each of these

functions and their supporting functions.

162

5.4.1.1 FUNCTION DEALING WITH SYSTEM’S VIEW OF EFFECTS OF

VOLATILTY

The function SCAFaultScript encapsulates adaptation logic and simulates test runs for the

case where an ‘observed effect’ of Table 4-2, column 2, has occurred, triggering a

corresponding reaction rule at the SCA layer. The function uses information stored in the PGM-

like model to implement the adaptation logic by sending out appropriate adaptation commands.

It, then, updates the information stored in the model.

The adaptation logic as shown in Table 5-1 is as follows: We unbind the faulty service from the

service composition. Internally, we also un-cache the service’s device in the WORLD layer and

change the state of the service as appropriate to one of the five fault states in the SCA layer.

Next, we send out a command to bind a new service to the composition. Internally, this

service’s device and its location have already been pre-fetched in the cache. Also, we change

the state of service back to ‘working’ (See Chapter 4). Finally, we send out a command to pre-

fetch the identity of a device that offers an alternative backup service in the new ambient. Note

that we have made the simplifying assumption that there are backup devices available in every

ambient and thus we can always find a suitable service to replace a malfunctioning one.

The supporting functions for this function that we discuss are SCANewState,

repairCompositionPolicy, and getDeviceList.The input parameters for SCAFaultScript

function are: newDeviceId (the Id of an alternative device that is offering a service similar to

the one that has suffered a fault), newDeviceAmbient (either the current location or the parent

or child location where the alternative device has been found) serviceId (the Id of the faulty

service), initialState (the initial state of the service), finalState (the final faulty state of the

service), system (the BGVal representation of our two-layered model), and stringPtr2 which

is an SML reference type that will point to the following string value once the call to

SCAFaultScript returns: currentAmbient (this represents the current ambient where the user’s

device and hence the user is located), serviceId (this represents the id of the service whose

device developed the defect), newDeviceId (this is the new device’s id), deviceId (this is the

defective device’s id), and defectiveDeviceLocation (this is the defective device’s location).

These string values will form the command that will be sent by our Bigraphical model at

runtime to an external Android device that generated this fault (See next chapter for more

details). Notice that passing the parameters newDeviceId and newDeviceAmbient to the

function SCAFaultScript simulates the fact that there is an external system that sends us this

information, which we then use to exercise our adaptation logic.

We now discuss the function’s code (Figure 5-54) in detail. In line 6, we change the state of

service from ‘working’ to a state that represents one of the ‘observed effects’ of Table 4-2. We

163

assume that the event that generates this function includes the information about the new state

of the service. Next, in lines 7 to 8, we call the function repairCompositionPolicy (described

later). This function implements the policy on how to respond when a reaction rule modelling

one of the ‘observed effects’ of Table 4-2 is triggered (See a detailed discussion of this function

below). Notice that we pass the reference stringPtr2 to repairCompositionPolicy which

changes the string that is being referenced by stringPtr2 to: “newDeviceId, deviceId,

defectiveDevicelocation”. In line 9, we call locateDevice function on our PGM-like model

to retrieve where the device with the device Id i0 (user’s device running the service

composition) is located. Next, in line 10, we construct the command to pre-fetch another

device’s Id that is offering an equivalent service in a ‘nearby’ ambient. We define ‘nearby’ to

mean any device in either the current or parent or child ambient. For reducing complexity in our

implementation, we have defined ‘nearby’ in such a fashion. In line 13, we point the reference

stringPtr2 to the command string that we constructed on line 10. Finally, in line 14, we

simulate the caching of a new device. This new device’s Id and its location are generated by the

event of a system (An Android device, see next chapter for details) outside our system boundary

sending us the new device Id and its location. We assume that a system outside our system

boundary searches for an ‘equivalent’ service, finds a device offering it in a ‘nearby’ ambient

(either current or the parent or child ambient) and sends our system the device’s Id and location.

Because, this search is a pre-fetch, our system does not have to wait for a replacement of a

faulty service since a faulty service is always replaced by an equivalent service that has already

been cached in our model.

1 fun

2 SCAFaultScript(newDeviceId,newDeviceAmbient,serviceId,initialState,

3 finalState,system ,stringPtr2) =

4 let

5 val system1 =

6 SCANewState(serviceId,initialState,finalState,system)

7 val system2 =

8 repairCompositionPolicy(serviceId,finalState,system1,stringPtr2)

9 val currentAmbient = locateDevice("0",system2)

10 val testString1 = currentAmbient^ ","^ serviceId ^","^

11 (!stringPtr2)

12 in

13 stringPtr2 := testString1;

14 deviceAppears(newDeviceId,newDeviceAmbient,system2)

15 end

FIGURE 5-54: FUNCTION SCAFaultScript.

164

Summing up, the function SCAFaultScript is used by us to respond to the event where one of

the five ‘observed effects’ of Chan et al. (Chan et al., 2007a) has occurred. It also includes

adaptation logic to decide which commands to send out and what modifications to make in our

PGM-like model.

We wish to point out some limitations of the adaptation logic that we have just discussed. We

assume that a system outside our system boundary can always find a suitable device, that there

is no delay in the system outside our system boundary returning this information to us, and that

the device that is returned to us is always a device unknown to us. Notwithstanding these

limitations, we would want to test in the next chapter if the Bigraphical model at runtime can

still be in-sync with the running system and the world.

Two supporting functions appear in SCAFaultScript function: SCANewState and

repairCompositionPolicy. We now describe implementation of each of these functions.

SCANewState: This function changes the state of a service. The input parameters for this

function are: serviceId (the Id of the service), initialState (the initial state of the service),

finalState (the final state of the service), and system (the BGVal representation of our two-

layered model). We discuss the function’s code in detail (See Figure 5-55). In lines 3 to 4, we

construct the reaction rule to change the state of a service with the appropriate Id of the service,

its initial state and its final state. Then in line 6 we apply the reaction rule to the system passed

as an input parameter to the function.

1 fun SCANewState(serviceId,initialState,finalState,system) =

2 let

3 val changedState =

4 constructStateChange(serviceId,initialState,finalState)

5 in

6 changeSystem(system,changedState)

7 end

FIGURE 5-55: FUNCTION SCANewState.

In conclusion, the function SCANewState is used by us to change the state of a service.

repairCompositionPolicy: This function implements the policy on how to respond when a

reaction rule modelling one of the ‘observed effects’ of Table 4-2 is triggered. Essentially, this

policy is to replace the faulty service by an equivalent service being offered by a device in a

‘nearby’ ambient. As discussed earlier, we define ‘nearby’ to mean any device in the current or

parent or child ambient. Notice that, the alternative device’s Id has already been pre-fetched and

165

cached in our PGM-like model. Because of this caching, we do not need to search for such a

device at the precise time that we discover that we need to use it.

The input parameters for this function are: serviceId (the Id of the faulty service),

serviceState (the faulty state of the service), and system (the BGVal representation of our

two-layered model) and stringPtr2 which is an SML reference type that will point to the

following string value once the call to repairCompositionPolicy returns: newDeviceId (this

is the new device’s id), deviceId (this is the defective device’s id), defectiveDeviceLocation

(this is the defective device’s location). These string values will form the command that will be

sent by our Bigraphical model at runtime to an external Android device that generated this fault

(See next chapter for more details).

The function repairCompositionPolicy returns the modified system.

Now, we discuss the implementation of the function in detail (Figure 5-56). As discussed

earlier, we have used a Bigraphical array compositionDevices to store the device id of those

devices whose services are participating in the composition. In line 4, we use the function

newFindParticipatingDevice function to find the id of the device whose service has

developed a defect. Next, in line 5, we find the location of the defective device. In line 6, we

start the construction of a string that we will send as a command to a system outside our system

boundary (An Android device-see next chapter). This string on line 6 at this stage includes the

defective device’s id and its location. Later more information will be prefixed to this string. In

lines 7 and 8, we un-cache the defective device. Then, in line 9, we save the device Id of the

defective device in a new variable oldDeviceId. In line 10, we ‘interrogate’ our model to find

the current location of the device running the service composition. As discussed earlier, the id of

this device is ‘0’. In line 11, we use the function getDeviceList written by us to add to the

composition an equivalent service being offered by another device. If no such device is found in

the current ambient, the function tries the parent ambient and then the child ambient. We

assume that we have already pre-fetched and cached those device Ids and their locations that

offer equivalent service. The function getDeviceList returns a list containing devices offering

an equivalent service. In lines12 and 13, we extract the first device that is in the list. In lines 14

to 16, we update the Bigraphical array binding the service to the new device, and construct

testString2 which adds the string representation of newDeviceId to testString1. This new

variable testString2 will form part of the command sent to a system outside our system

boundary. In line 18, we point the reference stringPtr2 to the command string that we

constructed on line 16. Finally, in line 19, we trigger an SCA rule to change the state of the

defective service back to ‘working’ and return the resulting system.

166

1 fun repairCompositionPolicy(serviceId,serviceState,system,stringPtr2)

2 =

3 let

4 val deviceId = newFindParticipatingDevice(serviceId,system)

5 val defectiveDeviceLocation = locateDevice(deviceId,system)

6 val testString1 = deviceId ^ "," ^ defectiveDeviceLocation

7 val newSystem =

8 deviceDisappears(deviceId,defectiveDeviceLocation,system)

9 val oldDeviceId = deviceId

10 val currentAmbient = locateDevice("0",newSystem)

11 val deviceList = getDeviceList(serviceId,currentAmbient,newSystem)

12 val newDeviceId = if(not(deviceList = nil)) then hd(deviceList)

13 else ""

14 val newSystem3 = deviceLeavesComposition(oldDeviceId,newSystem)

15 val newSystem2 = deviceJoinsComposition(newDeviceId,newSystem3)

16 val testString2 = newDeviceId ^ "," ^ testString1

17 in

18 stringPtr2 := testString2;

19 SCANewState(serviceId,serviceState,"working",newSystem2)

20 end

FIGURE 5-56: FUNCTION repairCompositionPolicy.

Summing up, the function repairCompositionPolicy replaces a faulty service with a service

being offered by an alternative device in either the current or parent or the child ambient.

We now discuss the implementation of the function getDeviceList appearing above in Figure

5-56 in line 11.

getDeviceList: This function is used to add to the composition an equivalent service being

offered by another device. If no such device is found in the current ambient, the function tries to

find the device in the parent ambient and then the child ambient. We assume that we have

already pre-fetched and cached those device Ids and their locations that offer equivalent service.

The function returns a list containing devices offering an equivalent service.

Consider Figure 5-57. In lines 3 and 4, we use the identifier deviceList0 to represent the list of

all devices in current ambient offering the service with Id serviceId returned by the function

enumerateDevicesInShoppingMall. Next, in line 5, we find the parent and in line 6, we find

the child of the current ambient. In line 8, if the list deviceList0 is not empty, we return it.

Thereafter, in lines 11 and 12, since the list deviceList0 is empty, we test if parent of the

current ambient exists. If it does exist, we again call the function

enumerateDevicesInShoppingMall passing to it the location Id of the parent ambient. The

167

resulting list is represented by the identifier deviceList1. If we find that there is no parent

ambient, the list deviceList is nil in line 14. Then, in line 16, if the list deviceList1 is not

nil, we return it. Next, in line 18 and 19, since the deviceList1 is empty, we test if a child

ambient of the current ambient exists. If it does exist, we again call the function

enumerateDevicesInShoppingMall passing to it the location Id of the child ambient. The

resulting list is returned directly. Finally, in line 21, if there is no child ambient, we return an

empty list.

1 fun getDeviceList(serviceId,currentAmbient,newSystem)=

2 let

3 val deviceList0 =

4 enumerateDevicesInShoppingMall(serviceId,currentAmbient,newSystem)

5 val parentAmbient = findParent(currentAmbient,system0)

6 val childAmbient = findChild(currentAmbient,system0)

7 in

8 if(not(deviceList0=nil)) then deviceList0

9 else

10 let

11 val deviceList1 = if(not(parentAmbient="")) then

12 enumerateDevicesInShoppingMall(serviceId,parentAmbient,newSystem)

13 else

14 nil

15 in

16 if(not(deviceList1=nil)) then deviceList1

17 else

18 if(not(childAmbient="")) then

19 enumerateDevicesInShoppingMall(serviceId,childAmbient,newSystem)

20 else

21 nil

22 end

23 end

FIGURE 5-57: FUNCTION getDeviceList.

To summarize, the function getDeviceList finds devices offering equivalent service in current

ambient, failing which, it tries first the parent and then the child ambient.

Thus, we see that the function SCAFaultScript encapsulates our scenario where a service

participating in the service composition running on a mobile device develops a fault.

168

5.4.1.2 FUNCTION DEALING WITH ENVIRONMENT’S VIEW OF EFFECTS OF

VOLATILTY

The function newChangeAmbientScript encapsulates adaptation logic and simulates test runs

for the case where the reaction rule for the user’s device having changed its ambient has been

triggered. The adaptation logic is as follows: It simulates an output command by sending out to

a device outside our system boundary (An Android device – see next chapter) the following

information in a string: a) The identity of the new ambient, b) A list of those services whose

devices have not been cached in the WORLD layer of model in the new ambient c) Either the

identity of the parent ambient or the child ambient of the new ambient where those services’

devices have not been cached. It also updates the location of user’s device in the model to the

new ambient. This follows the logic discussed in Table 5-1.

We also discuss the following supporting functions for this function :

newChangeAmbientOutputCommand,

newCreateServiceList,

filter,

testIfServiceNotSupported,

and preFetch.

The input parameters for newChangeAmbientScript function are: initialLocation (the initial

location of the user’s device), finalLocation (the final location of the user’s device), and

system (the BGVal representation of our two-layered model) and stringPtr which is an SML

reference type that will point to the following concatenated string values once the call to

newChangeAmbientScript returns: the final location of the user’s device, a list of services, and

either the identity of the parent or the child ambient. These string values will form the command

that will be sent by our Bigraphical model at runtime to an external Android device that

generated this fault (See next chapter for more details).

The function returns the modified model. We now discuss the implementation of the funct ion

(see Figure 5-58). In line 6, the function newChangeAmbientOutputCommand (described later)

points the SML reference to a string that will be sent out as command the details of which have

already been discussed above. Finally, in line 9, the function returns the model with updated

location of the user’s device.

169

1 fun

2 newChangeAmbientScript(initialLocation,finalLocation,system,

3 stringPtr)=

4 let

5 val _ =

6 newChangeAmbientOutputCommand(initialLocation,

7 finalLocation,system, stringPtr)

8 in

9 changeAmbient("0",initialLocation,finalLocation,system)

10 end

FIGURE 5-58: FUNCTION changeAmbientScript.

To conclude, the function newChangeAmbientScript is used by us to simulate the event where

user’s device has moved from one ambient to another. It also includes adaptation logic to decide

which commands to send out and what modifications to make in our PGM-like model.

newChangeAmbientOutputCommand function: We now describe the implementation of the

function newChangeAmbientOutputCommand which appears in line 5, in Figure 5-58. This

function sends out the list of those services in a ‘nearby’ ambient whose devices have not been

cached in the model to a system outside our system boundary. It also sends the identity of the

new ambient. As discussed earlier, we define ‘nearby’ to mean only device in the current or

parent or child ambient (location) to simplify our implementation. Notice that if the user’s

device has moved down a node in the location tree, we need to list services from the new

location’s child ambient only. This is because the new location’s parent ambient was our

previous current ambient and so we already have a list of devices from that ambient. Similarly,

if the user’s device has moved up a node in the location tree, we need to list services from the

new location’s parent ambient only. This is because the new location’s child ambient was our

previous current ambient and so we already have a list of devices from that ambient in our

model.

The input parameters for changeAmbientOutputCommand function are: initialLocation (the

initial location of the user’s device), finalLocation (the final location of the user’s device),

and system (the BGVal representation of our two-layered model) and stringPtr which is an

SML reference type that will point to the following string value once the call to

newChangeAmbientScript returns: the final location of the user’s device, a list of services, and

either the identity of the parent or the child ambient. These string values will form the command

that will be sent by our Bigraphical model at runtime to an external Android device that

generated this fault (See next chapter for more details).

170

We now discuss newChangeAmbientOutputCommand function in detail (See Figure 5-59). In

lines 6 and 7, we define the function concatString that given a list of strings concatenates

them together into one string with commas separating each individual string of the original list.

In lines 8 and 9, we find the parent and one of the child locations of the final location. The

identifier system0 is our original model- this works just as well here because locations remain

immutable in our model. In lines 11 and 12, we check if we have moved down the location tree

and whether a child location of the final location exists. In line 14, we use the function

newCreateServiceList (explained below) to return a list of services whose devices have not

been cached in this child location. In lines 15 and 16, we construct the string command that will

be sent out to a system outside our system boundary. In line 18, we point the reference

stringPtr to the string command that we have constructed. Then on line 19,we also printout

the command to pre-fetch a new device’s Id and cache its location in the current ambient. In the

else branch from the lines 21 to 27, we construct an empty string because there is no child

ambient.

In lines 28 to 30, we have not moved down, so we check if we have moved up the location tree

and whether a parent location of the final location exists. In line 32, we use the function

newCreateServiceList (explained below) to return a list of services whose devices have not

been cached in this parent location. In lines 33 to 35, we construct the string command that will

be sent out to a system outside our system boundary. In line 37, we point the reference

stringPtr to the string command that we have constructed. Then on line 38, we also printout

the command to pre-fetch a new device’s Id and cache its location in the current ambient. In the

else branch from the lines 40 to 45, we construct an empty string because there is no parent

ambient.

From lines 46 to 52, we place a guard else statement that sends an empty string if our initial

location is neither a parent nor a child.

1 fun

2 newChangeAmbientOutputCommand(initialLocation,finalLocation,

3 system, stringPtr)

4 =

5 let

6 fun concatString(nil) = ""

7 |concatString(x::xs) = x ^ ","^(concatString(xs))

8 val parentAmbient = findParent(finalLocation,system0)

9 val childAmbient = findChild(finalLocation,system0)

10 in

11 if(parentAmbient = initialLocation) then

12 if(not(childAmbient = "")) then

171

13 let

14 val listOfServices = newCreateServiceList(childAmbient, system)

15 val testString1 = concatString(listOfServices)

16 val testString2 = childAmbient^","^finalLocation^","^testString1

17 in

18 stringPtr := testString2;

19 preFetch(childAmbient)

20 end

21 else

22 let

23 val testString2 = ""

24 in

25 stringPtr := testString2;

26 print("\n")

27 end

28 else

29 if(childAmbient = initialLocation) then

30 if(not(parentAmbient = "")) then

31 let

32 val listOfServices = newCreateServiceList(parentAmbient,system)

33 val testString1 = concatString(listOfServices)

34 val testString2 = parentAmbient^","^finalLocation^",

35 "^testString1

36 in

37 stringPtr := testString2;

38 preFetch(parentAmbient)

39 end

40 else

41 let

42 val testString2 = ""

43 in

44 stringPtr := testString2;

45 end

46 else

47 let

48 val testString2 = ""

49 in

50 stringPtr := testString2;

51 print("\n")

52 end

53 end

FIGURE 5-59: FUNCTION changeAmbientOutputCommand.

172

To sum up, the function newChangeAmbientOutputCommand sends out a list of services whose

devices have not been cached in any of the current, parent or child ambient.

We now discuss newCreateServiceList function appearing in lines 14 and 32 in the Figure 5-

59.

newCreateServiceList : This function returns a list of services whose devices have not been

cached in a given location in the model. The input parameters for this function are: ambient (the

given location), and system (the BGVal representation of our two-layered model). We now

discuss the function in detail (see Figure 5-60). In line 3, we use the function

constructServiceTree to get a list of service ids as strings. Then, in line 5, we use the curried

function filter and pass to it another curried function called testIfServiceNotSupported,

and the parameters ambient, system and the list of services serviceList. From this list of

services, we filter out a list of services that are not supported in the ambient and return the

filtered list.

1 fun newCreateServiceList(ambient, system) =

2 let

3 val serviceList = constructServiceTree(system)

4 in

5 filter((testIfServiceNotSupported (ambient,system)),(serviceList))

6 end

FIGURE 5-60: FUNCTION newCreateServiceList.

To sum up, the function newCreateServiceList returns a list of services whose devices have

not been cached in the given ambient.

We now discuss the function filter, which appears, on line 5 in the Figure 5-60. This has been

taken from Ullman’s textbook (Ullman, 1998). It takes as input a Boolean function and a list. It

returns only those elements in the list that satisfy the Boolean function.

We now discuss the code of filter function shown in Figure 5-61 in detail. This function is

recursive and line 1 defines the base case returning a nil if the pattern matches the Boolean

function and nil. Lines 2 and 3 define the recursive case where the Boolean function is applied

to the first element of the list and a recursive call to filter is applied to the rest of the list.

173

1 fun filter(P,nil) = nil

2 | filter(P,x::xs) =

3 if P(x) then x::filter(P,xs)

4 else filter(P,xs)

FIGURE 5-61: FUNCTION filter.

 The function testIfServiceNotSupported that appears on line 5 in Figure 5-60 is discussed

next. This is a curried predicate (Boolean function) to test if an ambient has no supporting

device for a specific service. Consider Figure 5-62: In line 3, we use the function

enumerateDevicesInShoppingMall to find if the specified service is being offered by any

device in the ambient variable that has been passed into testIfServiceNotSupported. In line

6, we return true if the list returned in line 3 is nil. Other wise, in line 7, we return false.

1 fun testIfServiceNotSupported (ambient, system) serviceId =

2 let

3 val deviceList =

4 enumerateDevicesInShoppingMall(serviceId,ambient,system)

5 in

6 if (deviceList = nil) then true

7 else false

8 end

FIGURE 5-62: FUNCTION testIfServiceNotSupported.

Finally we discuss the function preFetch that appeared in lines 19 and 38 in Figure 5-59. This

function prints out the ambient for which devices need to be pre-cached.

1 fun preFetch(currentAmbient) =

2 print("Pre-fetch a new device's Id TO SUPPORT EACH OF THE ABOVE

3 SERVICES and cache EACH DEVICE'S location in the ambient: " ^

4 currentAmbient ^ "\n"^"\n")

FIGURE 5-63: FUNCTION preFetch.

Summarizing, we see that the function newChangeAmbientScript encapsulates our scenario

where the user moves from one ambient to another in a Shopping Mall.

174

5.4.2 SECTION SUMMARY

In this section, we have discussed implementation of functions that encapsulate adaptation logic

and simulate test runs. We have written these functions to deal with two points of view-from an

internal systems point of view and an external environmental point of view of effects of

volatility. These functions have been used by us to simulate our test runs.

5.5 CONCLUSIONS

In this chapter, we pointed out the boundaries of our system implementation, the unused

features of Bigraphs owing to the limitation of the BPL Tool, and the way we organized the

input events and output commands of our system. We then showed how we have used

abstraction by parameterization concepts to implement functions that modify the model or

access information from them and to generate infinitely many rules intensionally. Finally, we

showed how our reaction rules capture some of the effects of volatility on a service composition

running on a mobile device and discussed our implementation of functions that encapsulate

adaptation logic and simulate test runs.

In summary, our implementation serves as a proof of concept that Bigraphs can be used to

express appropriate abstractions for a two-layered model at runtime for managing ubiquitous

computing volatility. We have been able to combine two views- environment and the system

into one model. Moreover, from a programming perspective, we have shown a way to

implement PGM-like models as data structures by storing information in them and SML

functions that access or modify the information that is stored in PGM-like models as algorithms.

We have used well-established software engineering principles of abstraction and modularity to

implement our system. Above all, we have discussed our code in enough detail in this chapter

such that it could be independently re-implemented if the reader so wished. We also

acknowledge that we un-cache devices only when there is an observed failure. Thus if a system

outside our boundary fails to report a failure, our model will become out of sync with the

running system. In the next chapter, we test if even with these restrictions, the system remains in

sync with a running system and the movement of the user in a shopping mall.

175

6 A QUALITATIVE AND QUANTITATIVE EVALUATION OF

THE BIGRAPHICAL MODEL AT RUNTIME

6.1 INTRODUCTION

So far in this thesis, we have analyzed the state of the art relevant to us in Chapter 2. Next in

Chapter 3, we discussed the research question and its design implications. Then, we showed in

Chapter 4 a way to tackle the volatility problem of ubiquitous computing systems using

Bigraphs and models at runtime. Finally, in Chapter 5, we showed a way to use the BPL Tool to

implement a two-layered model at runtime.

Now, in this chapter, we analyze our Bigraphical model both qualitatively and quantitatively.

We show that because of the inefficiency of the matching algorithm of the BPL Tool, it is not

practical to use a Bigraphical model at runtime that is built on top of the BPL Tool for realistic

scenarios. This chapter thus presents an evaluation of the system that we built to answer the

research question posed in Chapter 3.

We have organized this chapter as follows: In section 6.2, we qualitatively analyze our system

by placing it in the context of the modeling dimensions of self-adaptive software systems. In

section 6.3, we conduct a quantitative performance evaluation of the response times of our

Bigraphical model at runtime. Finally, in section 6.4 we provide a summary of the chapter.

6.2 A QUALITATIVE DISCUSSION: PLACING OUR

IMPLEMENTATION IN CONTEXT

Andersson et al. (Andersson et al., 2009) have presented a taxonomy of modeling dimensions of

self adaptive software systems to “ provide engineers with a common set of vocabulary for

specifying the self-adaptive properties under consideration and select suitable solutions”. We

qualitatively analyze our implementation of a model at runtime expressed with Bigraphs in the

context of these modelling dimensions (shown in Table 6-1). Our goal is to identify any

shortcomings in our design and to place it in the context of the work being done by the software

engineering community.

In the taxonomy, each aspect of a system that is relevant for self-adaptation is described by a

dimension (Cheng et al., 2009) . These dimensions are organized into four categories: Goals,

Changes, Mechanisms and Effects. Our Bigraphical model at runtime and the service

composition to which it is causally connected are our system for the purposes of the discussion

in this section. We now describe our system’s dimensions in each of these categories:

176

1) Goals: Goals are objectives the system under consideration should achieve (Andersson et al.,

2009). Our system’s goal is that the service composition should be running at all times despite

volatility. We define each dimension of this category and the degree of each dimension that our

system exhibits:

a) Evolution: This dimension captures whether goals can change within the lifetime of a

system (Andersson et al., 2009). The goal of our system is static since it does not

change within the lifetime of the service composition.

b) Flexibility: This dimension identifies if the goals are flexible in the way they are

expressed (Andersson et al., 2009). Our system’s goal is rigid- the service composition

must continue working.

c) Duration: This dimension refers to the validity of a goal through the system’s lifetime

(Andersson et al., 2009) . The goal of our system is persistent since we want to keep the

service composition running throughout its lifetime.

d) Multiplicity: This dimension is concerned with the number of goals a system may have

(Andersson et al., 2009). Our system has a single goal namely to keep the service

composition running in the face of a high rate of malfunctioning of services due to

volatility.

e) Dependency: This dimension captures how goals are related to each other if a system

has more than one goal (Andersson et al., 2009). Since our system has only a single

goal, this dimension is not relevant to us.

2) Change: Change is the cause of adaptation (Andersson et al., 2009). The reason for change in

our system is volatility which is an environment dependent variation. The definition of each

dimension in this category and the degree of each of those dimensions that our system exhibits

are:

a) Source: This dimension describes the source of change (Andersson et al., 2009). In our

system, the source of change is volatility caused by the external environment.

b) Type: This dimension refers to the nature of change (Andersson et al., 2009).The type

of change is categorized as functional(for example if the purpose of the system changes

then the services delivered by it should reflect this change), non-functional(for example,

the performance and reliability of the system), and technological (for example, the

software and hardware aspects). In our system, changes due to volatility can lead to

degradation in the quality of service of the service composition. Hence, the nature of

change is non-functional.

c) Frequency: This dimension captures how often a particular change occurs (Andersson et

al., 2009). The changes due to volatility occur frequently with respect to other

distributed systems (Coulouris, 2012).

177

d) Anticipation: This dimension expresses whether a change can be predicted (Andersson

et al., 2009). In our system, device and communication link failures, variation in the

properties of communication such as bandwidth, and the creation and destruction of

associations between software components resident on the devices can be foreseeable

and hence planned for.

3) Mechanisms: This category of dimensions encapsulate the reaction of the system towards

change (Andersson et al., 2009). In this category, each dimension’s definition and the degree of

each of those dimensions that our system exhibits are as follows:

a) Type: This dimension expresses if adaptation is related to the parameters of the system

components or to the structure of the system (Andersson et al., 2009). The adaptations

in our system are related to its structure- i.e. replacing a malfunctioning service in the

composition with another equivalent service. However, our system is not designed to

handle the situation where there is no equivalent service available. The question as to

how to use an equivalence checker to decide if a service that is (say) 60 percent

equivalent should be used as a replacement service is part of our future work.

b) Autonomy: This dimension is concerned with the degree of outside intervention during

adaptation (Andersson et al., 2009). Adaptations are autonomous in our system since

there is no outside intervention to effect adaptation.

c) Organization: This dimension identifies if the adaptation is done by a single component

or distributed amongst several components (Andersson et al., 2009). In the case of our

system, the adaptation is done by a single component.

d) Scope: This dimension captures whether adaptation is localized or involves the entire

system (Andersson et al., 2009). The adaptation of our system is localized to replacing a

single service when it malfunctions.

e) Duration: This dimension describes how long the adaptation lasts (Andersson et al.,

2009). In our system, a malfunctioning service should be replaced in a short duration so

that the system can continue to function without a long queue of faults to be serviced

building up.

f) Timeliness: This dimension is concerned with whether the time period for performing

self-adaptation can be guaranteed (Andersson et al., 2009). Our system makes a best

effort to replace a malfunctioning service. In future work, we need to investigate if it is

possible to guarantee that adaptation will take place before another change needs to be

dealt with.

g) Triggering: This dimension captures whether the change that triggers an adaptation is

associated with an event or a time slot (Andersson et al., 2009). In our system,

adaptation is triggered by events that represent faults of the service composition.

178

4) Effects: The dimensions of adaptation in this category identify the impact of adaptation on

the system (Andersson et al., 2009). We now explain the definition of each dimension and the

degree of each of those dimensions that our system exhibits.

a) Criticality: This dimension captures the impact upon the system in case the self-

adaptation fails (Andersson et al., 2009). The self-adaptation in our system is mission

critical- if a malfunctioning service is not replaced, the service composition will fail.

b) Predictability: This dimension describes whether the consequences of adaptation can be

predictable (Andersson et al., 2009). In our system’s case, the adaptation is

deterministic because we assume that only an equivalent service replaces a

malfunctioning one and so the consequences of adaptation can be predicted. It is in this

sense that the adaptation is deterministic.

c) Overhead: This dimension refers to the impact of system adaptation upon the quality of

services of the system (Andersson et al., 2009). We postulate that our strategy of pre-

caching equivalent service ensures that the overhead is low. Performance evaluation of

models at runtime is part of our future work.

d) Resilience: This dimension is concerned with the persistence of service delivery that

can justifiably be trusted when facing changes (Andersson et al., 2009). Again, we

postulate that feedback control techniques are needed to guarantee resilience of the

model at runtime- this is part of our future work.

We have analyzed our system with respect to the taxonomy of modeling dimensions of self-

adaptive systems. The issues that have emerged are: i) How to deal with the situation where a

replacement service is not entirely equivalent to a malfunctioning service? ii) How to guarantee

timeliness of adaptation? iii) Performance evaluation of models at runtime, iv) Using feedback

control techniques with a model at runtime to guarantee the resilience of response. In the next

section, we tackle the performance evaluation of models at runtime. We leave the remaining

issues as future work.

179

TABLE 6-1: Model l ing d imensions for se lf-adaptive s oftware s ystems(Andersson et a l ., 2009).

Dimensions Degree Definition

Goals- goals are objectives the system under consideration should achieve

Evolution Static to dynamic Whether the goals can change within
the lifetime of the system

Flexibility Rigid, constrained, unconstrained Whether the goals are flexible in the

way they are expressed

Duration Temporary to persistent Validity of a goal through the system

lifetime

Multiplicity Single to multiple How many goals are there?

Dependency Independent to dependent

(complimentary to conflicting)

How the goals are related to each

other?

Change-change is the cause of adaptation

Source External (environmental), internal
(application, middleware,

infrastructure)

Where is the source of change?

Type Functional, non-functional,

technological

What is the nature of change?

Frequency Rare to frequent How often a particular change

occurs?

Anticipation Foreseen, foreseeable, unforeseen Whether change can be predicted?

Mechanisms- what is the reaction of the system towards change

Type Parametric to structural Whether adaptation is related to the

parameters of the system

components or to the structure of the

system

Autonomy Autonomous to assisted (system or

human)

What is the degree of outside

intervention during adaptation?

Organization Centralized to decentralized Whether the adaptation is done by a

single component or distributed

amongst several components

Scope Local to global Whether adaptation is localized or

involves the entire system

Duration Short, medium, long term How long the adaptation lasts

Timeliness Best effort to guaranteed Whether the time-period for

performing self-adaptation can be

guaranteed

Triggering Event-trigger to time trigger Whether the change that triggers

adaptation is associated with an

event or a time slot

Effects- what is the impact of adaptation upon the system

Criticality Harmless, mission-critical, safety-

critical

Impact upon the system in case the

self-adaptation fails

Predictability Non-deterministic to deterministic Whether the consequences of

adaptation can be predictable

Overhead Insignificant to failure The impact of system adaptation

upon the quality of services of the

system

Resilience Resilient to vulnerable The persistence of service delivery

that can justifiably be trusted, when

facing changes

180

6.3 A QUANTITATIVE PERFORMANCE EVALUATION OF THE

RESPONSE TIMES OF OUR BIGRAPHICAL MODEL AT

RUNTIME

As discussed in the previous section, one of the issues that has emerged out of the analysis of

our system with respect to the taxonomy of modeling dimensions of self-adaptive systems is the

need for a performance evaluation of our Bigraphical model at runtime. Our Bigraphical model

is built on top of the BPL Tool’s matching algorithm. However, this matching algorithm is

known to be designed for correctness not efficiency (Elsborg, 2009). Moreover, the matching

problem itself is NP-Complete (Birkedal et al., 2007). We wish to now quantify the effect of

these on our system with realistic workloads.

To quantify the effects, we define response time as follows. If our model at runtime is looked

upon as a black box where service composition faults are the inputs in the form of events and

appropriate adaptation commands are the outputs, then we could define response time of our

system as the time interval between inputting of events and outputting of adaptation commands.

The response time to process a particular event must be less than the time difference between

this event and the next event. If this is not the case, then a well known queuing theory result

tells us that a queue of requests to process events will build up with the average queuing delay

growing without bound (Saltzer and Kaashoek, 2009).

To characterize the effect of the inefficiency of the matching algorithm of the BPL Tool and the

intrinsic NP-Complete nature of the matching problem on our system, we have measured the

response times of our system running on a laptop for realistic workloads. These workload events

are generated by an app running on an Android device and are sent to the laptop through a TCP

connection over an SSH tunnel.

We now discuss our experiments in detail. We first discuss the design of the test rig that we

have used for all our experiments in section 6.3.1. Next, in section 6.3.2 we discuss the design

of the experiments that we ran on the test rig. Then, in section 6.3.3 we describe the running of

each set of our experiments and analyze the resulting data. In section 6.3.4 we discuss the

experiments to find the cause of the exponential response times that we found in the previous

section. Following this, in section 6.3.5,we discuss experiments that measure the effect of the

workload events on the available time. Finally, in section 6.3.6, we summarize and discuss our

experimental results.

181

6.3.1 DESIGN OF THE TEST RIG

We have designed a test rig to conduct our experiments to evaluate the Bigraphical model at

runtime. The architecture of the test rig consists of an Android phone running our simulation

script in Java and a laptop running our SML code of the Bigraphical model at runtime.

On the Android phone, we simulate the generation of the following events as discussed in the

previous chapters: (a) One of the services participating in the composition develops a fault, (b)

The user moves from one ambient to another. The Android phone sends these events to the

laptop through a TCP connection over an SSH tunnel. We run the simulation script on an

Android device because in our scenario, events that are triggered by a system outside our

system boundary are being generated on the mobile device for our model at runtime to respond

to- and we simulate this through the Shopping Mall mobility model (discussed later) running on

the Android device.

Our SML implementation of the Bigraphical model running on the laptop then responds to an

event by sending back an appropriate command to the Android phone through the TCP

connection over an SSH tunnel.

We instrument the code at both the SML end and the Android end to measure response times,

time difference between events etc.

The hardware and software specifications of our test rig are as follows:

(i) To run the Android app that generates the workload of events, we have used a Samsung

Galaxy S 5.0 YPG70 device. This device runs the CyanogenMod open-source operating system

version 10.1 based on the Android mobile platform. Its Kernel version is

3.0.75Mercurious_reborn_rc1. This device has an ARM v7 processor rev2 (v71) and has 512

MiB of memory.

(ii) The BPL Tool code is targeted for compilation at the SML/NJ compiler (Standard ML of

New Jersey, version 110.69). The laptop that runs our code using this BPL Tool is a Dell

machine with 512 MiB of memory and a 1.6 GHz Celeron processor. This laptop’s operating

system is Ubuntu 10.04 Lucid Lynx with kernel version 2.6.32-52 generic. We have used a

laptop rather than an Android machine because to the best of our knowledge, the SML/NJ

version 110.69 has not been ported to run on the Android Software Stack.

(iii) The Android app that generates the workload of events implements the Shopping Mall

Mobility model (Galati et al., 2013). For this implementation, we have downloaded and used the

following Java code and libraries:

182

a. Recipe 6.7 Creating a Socket Server, and Recipe 10.5 Saving files to external storage

both downloaded from Lee’s website (Lee, 2013).

b. Code for the Room class from the text book of Barnes and Kolling (Barnes and Kolling,

2013).

c. The JGraphT library version 0.9.0 downloaded from the website of JGraphT

(JGraphT,2014).

d. The Commons Mathematics Library version 3.2 from Apache (Apache, 2014).

We now discuss how our architecture is informed by the organization of an actual deployment.

In such a deployment an actual user would be moving around in a shopping mall with a service

composition running on her mobile phone. Our Bigraphical model at runtime would be running

on this same device making sure that the services that develop a fault are appropriately replaced.

Also, the user’s location in the mall is constantly updated in the model at runtime as the user

moves around.

Although, we envisage that our Bigraphical model at runtime runs on a mobile device, for our

experiments we are interested in the shape of the curve for average response times as a function

of the number of nodes in a Bigraph. This shape in the form of a mathematical equation will be

independent of the machine on which the Bigraph model is running. Therefore, running the

Bigraphical model at runtime on a laptop instead of a mobile device (because the SML/NJ

compiler has not been ported to a mobile device as discussed earlier) will make no difference to

the conclusions about the shape of the curve that we will draw from our experiments.

Similarly, notwithstanding a TCP connection over an SSH tunnel between our Bigraphical

model at runtime running on a laptop and the event generator on the Android device, because

we measure our response times on the laptop, our results are not affected by the network delays

inherent in TCP connections.

6.3.2 DESIGN OF THE EXPERIMENTS

We now discuss the design of our experiments. Firstly, we explain the Shopping Mall mobility

model that we used to write an Android app to generate the realistic workloads on our

Bigraphical model at run time. Then, we discuss the semantics that we followed to simulate the

generation of events by our Android app. and define the available time within which our

functions written in SML and running on the laptop must respond. Following this, we describe

the three sets of experiments that we conducted. Finally, we discuss the statistical techniques

that we used to analyse our data.

183

6.3.2.1 THE SHOPPING MALL MOBILITY MODEL

For simulating the event generation on the Android phone, we have implemented the Shopping

Mall Mobility Model as discussed in Galati, Djemame and Greenhalgh’s paper (Galati et al.,

2013) . Following are the salient points of the implemented model:

a) The overall time spent by a user in a Shopping Mall is characterized by the random sampling

of a Weibull cumulative distribution function (shape=0.935, scale=2.579e+03).

b) The time spent by a user in a particular shop is characterized by the random sampling of

another Weibull cumulative distribution function (shape=1.002, scale=3.059e+02).

c) The topology of the shopping mall is a graph. Each node is a Mall intersection (i.e. either the

common area where the user needs to change direction, or the shops). The user randomly selects

a target shop to go to from the shop in which they are currently located. This selection of the

target shop depends on its attraction level. However, in the Galati et al. paper (Galati et al.,

2013) all shops are set to the same attraction level of 1 and we follow the same strategy. The

route from the current shop to the destination shop is found by using Dijkstra’s shortest path

algorithm.

d) The user moves though each intermediate node en-route to the target shop by following these

rules:

 (i) The speed of the user between the midpoints of two consecutive nodes is randomly selected

from the interval [1.15m/s – 1.65m/s]. The distance between the midpoints of the nodes is

assumed to be 5 meters. This distance approximately models the distances between shops in the

Churchill Square Shopping Mall, Brighton.

(ii) At the mid-point of each intermediate node, the user pauses for a time randomly selected

from the interval [0s-2s] perhaps to change direction or speed.

e) Once the user reaches the target shop, she spends time in the shop as described in (b).

f) Steps (c) to (e) are repeated until the user exhausts the time allocated to them in step (a).

We have used six random number generators with six different seeds in our Shopping mall

mobility model simulation. To maintain consistency across experiments, these same seeds have

been used again and again for all experiments.

We now describe how the time spent by the user as per the Shopping Mall Mobility model maps

onto the topology of the shopping mall of our scenario.

184

Across all our experiments, the three ambients ShoppingMall, loc1 and loc3 always play the

following roles:

 ShoppingMall represents a foyer connecting the east and the west wings.

 loc1 represents a corridor in the west wing along which the shops are located.

 loc3 represents a corridor in the east wing along which the shops are located.

Thus, the above three ambients are the way-points in our model whereas all the other ambients

represent shops (See Figure 6-1).

Now there are two kinds of pauses of a shopper in the Shopping Mall mobility model that we

have discussed above.

The first pause is for a time randomly selected from the interval [0s-2s] which we assume

occurs at the midpoint of the three ambients the ShoppingMall, loc1 and loc3 (See Figure 6-

2). The user pauses only for this time at these way-points perhaps to change direction or speed

(Galati et al., 2013).

The other pause occurs only in a shop (See Figure 6-3) and is characterized by the random

sampling of a Weibull cumulative distribution function (shape=1.002, scale=3.059e+02).

FIGURE 6-1: TWO CLASSES OF AMBIENTS-IN ONE CLASS, THE SH OPPER PAUSES AT

THE MID-POINT BETWEEN [0S-2S] WHEREAS IN THE OTHER CLASS, THE SHOPPER

PAUSES FOR A TIME CHARACTERIZED BY THE RANDOM SAMPLING OF A WEIBULL

CUMULATIVE DISTRIBUTION FUNCTION (SHAPE=1.002 , SCALE=3.059E+02).

Notice that the entire time spent in any one of the three way-points ShoppingMall, loc1 and

loc3 is not between [0s-2s]. Consider for example loc1 in the Figure 6-2. The total time spent

in loc1 will be the sum of the first walking time from the left-hand boundary of loc1 up-to the

midpoint, the pause between [0s-2s] at the midpoint and finally the second walking time from

the midpoint of loc1 to the right-hand boundary of loc1. We distinguish between the first and

Shopping Mall

loc1 loc3

loc2 loc6 loc5 loc4

Pause only for [0s-2s] in the middle,
no ‘Weibull Shop pause’

Walking Time
Walking Time

Walking Time Walking Time

Walking Time Walking Time

 Only ‘Weibull Shop pause’,
no [0s-2s] pause

185

the second walking times as the two could have different values. This is because the speed

between the midpoints of any two ambients is randomly selected from the interval [1.15m/s-

1.65m/s] as discussed earlier. Moreover, the distance between the midpoints of any two

consecutive ambients is assumed to be 5m. Hence the time spent walking between the midpoint

of an ambient preceding loc1 and the midpoint of loc1 itself could be different from the time

spent walking between the midpoint of loc1 and the midpoint of the subsequent ambient.

Similar arguments hold for the entire time spent in the ambients ShoppingMall or loc3.

FIGURE 6-2: THE TOTAL TIME SPENT IN THE WAY-POINT loc1.

On the other hand, the total time spent in a particular shop can be calculated as follows:

Consider loc2 in Figure 6-3. The entire time spent in loc2 will be the sum of the walking time

from the left-hand boundary of loc2 up-to the midpoint, the pause at the midpoint characterized

by the random sampling of a Weibull cumulative distribution function (shape=1.002,

scale=3.059e+02) (this pause models the fact that the user looks around the shop but we assume

that she returns to the midpoint to go out of the shop), and finally the walking time from the

midpoint of loc2 to the left-hand boundary of loc2.

FIGURE 6-3: THE TOTAL TIME SPENT IN THE SHOP loc2.

loc1

Pause at mid-point between [0s-2s]

First Walking Time

Direction of the shopper’s movement is from left to right

Second Walking Time

loc2

Pause for a time randomly sampled from a Weibull cumulative
distribution function (shape=1.002, scale=3.059e+02)

First Walking Time

Direction of the shopper’s movement is initially from left to right

Second Walking Time

186

6.3.2.2 A DESCRIPTION OF THE THREE SETS OF EXPERIMENTS

Using the template discussed in the previous section, we have conducted the following 3 sets of

experiments. Each set is different from the other set in terms of some parameter. Our goal in

varying some parameter is to see if the response times of our SML functions for different

variations in experiments can be characterized using regression analysis.

(a) The set of experiments where for each experiment, we increase the number of location nodes

in our SML Bigraphical model of the previous experiment by one. Then, for the resulting

Bigraphical model on the laptop, we run the simulation by generating events on the Android

machine and sending them to the model. As discussed earlier, these events are based on the

Shopping Mall Mobility model. We repeat these experiments each time increasing the number

of location nodes by one till the SML system on the laptop keels over (i.e. stops responding to

the event sent to it). At this point, the CPU utilization for the process representing our system is

observed to be 100% and the system is observed to be thrashing.

(b) The set of experiments where one of the three services participating in the service

composition never disappears and is available across the shopping mall. For each experiment,

we increase the number of location nodes in our SML Bigraphical model of the previous

experiment by one. Then, for the resulting Bigraphical model on the laptop, we run the

simulation by generating events on the Android machine and sending them to the model. As

discussed earlier, these events are based on the Shopping Mall Mobility model. We repeat these

experiments each time increasing the number of location nodes by one till the SML system on

the laptop keels over (i.e. stops responding to the event sent to it). At this point, the CPU

utilization for the process representing our system is observed to be 100% and the system is

observed to be thrashing.

(c) The set of experiments where for each experiment, we increase the number of services

participating in the composition in the previous experiment by one keeping the number of

locations constant. Then, for the resulting SML Bigraphical model on the laptop, we run the

simulation by generating events on the Android machine and sending them to the model. As

discussed earlier, these events are based on the Shopping Mall Mobility model. We repeat these

experiments each time increasing the number of services participating in the composition by one

till the SML system on the laptop keels over (i.e. stops responding to the event sent to it). At

this point, the CPU utilization for the process representing our system is observed to be 100%

and the system is observed to be thrashing.

187

6.3.2.3 THE SEMANTICS OF THE GENERATION OF WORKLOAD EVENTS

As discussed earlier in the thesis, we have written two functions to encapsulate the adaptation

logic and simulate test runs: newChangeAmbientScript function and the SCAFaultScript

function. A user moving from one ambient to another is an event occurring at the WORLD layer

in our scenario and is mapped to the function newChangeAmbientScript. Similarly, events at

the SCA layer trigger the function SCAFaultScript. In the following discussion, we will use

the abbreviation ‘n’ for a call to the function newChangeAmbientScript and ‘s’ for a call to

SCAFaultScript.

We define the workload for our Bigraphical model at runtime as the sequence of events that

occurs as the user moves around in the shopping mall.

The available time for a given function to respond is the time difference between the occurrence

of the event that triggered the function and the next event.

Now, the distribution of the times of the occurrences of the events ‘n’ and ‘s’ are not based on

any realistic model in our simulation. Instead we will consider two scenarios- a favorable and an

unfavorable scenario in the discussion in section 6.3.5.

Note too that we are measuring the response time by timing the running of a function

(newChangeAmbientScript or SCAFaultScript) on the laptop. This is because our research

proposal envisages that both the events and their corresponding commands are generated on the

same mobile phone that is running our model at runtime.

Thus, we do not calculate the response time as the time between an event being sent from the

Android machine and the command being received back from the laptop. This architecture

where events are generated on the Android machine and then sent to the laptop through a TCP

connection over an SSH tunnel and the laptop responds with an appropriate command back to

the Android machine is meant only for conducting tests.

Following are some additional semantics of our simulation code running on the Android

machine to generate the events that are required to trigger the two functions

newChangeAmbientScript and SCAFaultScript:

 We assume that when a device malfunctions at a given location, the replacement

device appears in this same location. This information is provided by a system

outside our system boundary. The Android device then sends the id of the new

device and its location as part of the generation of the event corresponding to this

malfunction to the laptop for its response.

188

 We assume that a system outside our system boundary has already initialized our

model and so all the backup devices are cached in all the locations before our

simulation starts. As discussed in the previous chapter, the backup devices are

numbered according to the following scheme: Each device id is a decimal number.

The number on the left hand side of the decimal point represents the service number

that the device offers. The number on the right hand side of the decimal point

represents the ordinal number of the device in our model offering this particular

service. For example a device with the id “2.5” represents the fifth device in our

model that offers service number two. Initially, our model looks as shown in Figure

6-4. In our model, the device id “0.0” always represents the user’s mobile device.

The implication of the above two points is that when a replacement device appears (is cached)

in our model, its ordinal number is one more than the highest ordinal number of a device that is

offering the same service. For example, in Figure 6-4, let us suppose that the device with id

“1.3” disappears from loc2 (i.e. location with the id i2 in Figure 6-4). Then the replacement

device that will appear in loc2 will have the id “1.6” since the highest ordinal number of a

device offering service 1 anywhere in the model as shown in Figure 6-4 is “1.5”.

FIGURE 6-4:THE INITIAL STATE OF THE WORLD BIGRAPH FOR THE FIRST EXPERIMENT.

6.3.2.4 THE STATISTICAL ANALYSIS USED FOR THE EXPERIMENTS

For each individual experiment in the three sets of experiments discussed above, we calculate

the mean response time with a 95% confidence interval for the function

newChangeAmbientScript. Thus, for a given set of experiments, we get a set of mean response

times each with a 95% confidence interval. We then run a regression analysis on this set of

mean response times to generate a best fitting curve that characterizes the increase in the mean

response time as the number of nodes in the Bigraph model increase.

We then repeat this process for the same set of experiments but this time for the function

SCAFaultScript and get another best fitting curve from the regression analysis. This curve

loc

i2

id

loc

i1

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

i2.5

dev

i2.4

dev

i3.4

dev

i3.5

dev

i1.5

dev

i1.2

dev

i1.3

dev

i2.3

dev

i0.0

dev

i1.1

dev

i2.1

dev

i2.2

dev

i3.2

dev

i1.4

dev

i3.1

dev

i3.3

dev

189

characterizes the mean response time’s increase for the function SCAFaultScript as the size of

the Bigraph increases for this particular set of experiments.

We have used MATLAB scripts to conduct the statistical analysis of our data.

For calculating the 95% confidence intervals of the mean response time in our MATLAB

scripts, we have used the following mathematical expressions:

(μ – (1.96 * s / √(n-1)) , (μ + (1.96 * s / √(n-1))

where n is the sample size, μ is the mean and s is the standard deviation. These expressions are

valid both for normal and non-normal populations with unknown variance and a large sample

size (n >= 30) (Crawshaw and Chambers, 2001).

We now give an example MATLAB script (Gilat, 2009) to show how we have conducted our

regression analysis with MATLAB:

 Create vector t and w with coordinates of the data points:

t = 0 : 0.5 : 5;

w = [6 4.83 3.7 3.15 2.41 1.83 1.49 1.21 0.96 0.73 0.64]

 Use the polyfit function of MATLAB with t and log(w) and pass 1 for a polynomial of

degree 1. Curve fitting with polynomials is done in MATLAB with the polyfit function,

which uses the least squares method. MATLAB’s log function calculates the natural

logarithm of its argument.

p = polyfit (t, log(w), 1) ;

m = p (1)

 Determine the coefficient b.

b = exp (p(2))

 Create a vector tm to be used for plotting the polynomial.

tm = 0 : 0.1 : 5;

 Calculate the function value at each element of tm. Here, the exp function of MATLAB

calculates ex for any argument x.

wm = b * exp (m * tm);

 Plot the data points and the function using the MATLAB plot function.

plot(t, w, ’o’ ,tm, wm)

When the above script is executed, MATLAB’s Command Window displays the values of the

constants m and w (Gilat, 2009).

190

m =

 -0.4580

b =

 5.9889

The following plot (Figure 6-5) is generated with the MATLAB script discussed above:

FIGURE 6-5 : AN EXAMPLE REGRESSION CURVE.

6.3.3 RUNNING OF THE EXPERIMENTS AND ANALYSING THE DATA

We now discuss the running of each of the three sets of experiments in detail and analyze the

data that has been generated.

FIGURE 6-6: THE INITIAL STATE OF THE WORLD BIGRAPH FOR THE FIRST EXPERIMENT.

loc

i2

id

loc

i1

loc

ShoppingMall

id

loc

i4

loc

i3

id

id

i2.5

dev

i2.4

dev

i3.4

dev

i3.5

dev

i1.5

dev

i1.2

dev

i1.3

dev

i2.3

dev

i0.0

dev

i1.1

dev

i2.1

dev

i2.2

dev

i3.2

dev

i1.4

dev

i3.1

dev

i3.3

dev

191

FIGURE 6-7:AN ABSTRACTED OUT TREE STRUCTURE OF THE LOCATION MODEL FOR

EXPERIMENT 1.

(a) Experiment where we successively increase the number of location nodes by one and run the

simulation based on the Shopping mall Mobility model for each of the resulting topology of the

shopping mall: We start with the basic topology of two shops represented by loc2 and loc4 in

the two wings of the Shopping mall as shown in Figure 6-6. In Figure 6-7 we abstract out the

tree structure of the locations. For this topology, we run our simulation using the template

discussed in the previous section. In the next experiment, we add loc5 to this basic topology.

Notice that the new location loc5 also has been initialized like other locations with three

devices that are the backup devices for the three services participating in the composition. As

discussed in the previous chapter, each device is itself a Bigraph node that is composed of five

smaller Bigraph nodes. Thus, the addition of three devices means an addition of fifteen more

Bigraph nodes. Moreover, the location node itself is composed of three smaller Bigraph nodes.

As a result, adding a single location in effect adds eighteen more nodes. We again run our

simulation for this larger Bigraphical model.

 Continuing in this manner, we keep on increasing the number of location nodes by one and

then running the simulation for that particular topology of the shopping mall. The system keels

over (i.e. stops responding) when we add loc11. Thus, our data corresponds to a total of seven

experiments. The first experiment corresponds to a simulation that runs on a shopping mall

model with locations up to loc4 whereas the last experiment corresponds to a simulation that

runs on a shopping mall model with locations up to loc10.

Figures from Figure 6-8 to Figure 6-13 show the abstracted out tree structure of the location

model used for the six experiments following the first one:

Shopping Mall

loc1 loc3

loc2 loc4

192

FIGURE 6-8: AN ABSTRACTED OUT TR EE STRUCTURE OF THE LOCATION MODEL FOR

EXPERIMENT 2.

FIGURE 6-9: AN ABSTRACTED OUT TR EE STRUCTURE OF THE LOCATION MODEL FOR

EXPERIMENT 3.

FIGURE 6-10: AN ABSTRACTED OUT TR EE STRUCTURE OF THE LOCATION MODEL FOR

EXPERIMENT 4.

ShoppingMall

loc1 loc3

loc2 loc4 loc5

ShoppingMall

loc1 loc3

loc2 loc6 loc5 loc4

ShoppingMall

loc1 loc3

loc2 loc6 loc7 loc4 loc5

193

FIGURE 6-11: AN ABSTRACTED OUT TR EE STRUCTURE OF THE LOCATION MODEL FOR

EXPERIMENT 5.

FIGURE 6-12: AN ABSTRACTED OUT TR EE STRUCTURE OF THE LOCATION MODEL FOR

EXPERIMENT 6.

FIGURE 6-13: AN ABSTRACTED OUT TR EE STRUCTURE OF THE LOCATION MODEL FOR

EXPERIMENT 7.

We summarize the data of this set of experiments with the three figures from Figure 6-14 to

Figure 6-16.

ShoppingMall

loc1 loc3

loc2 loc6 loc7 loc4 loc5 loc8

ShoppingMall

loc1 loc3

loc2 loc6 loc7 loc4 loc5 loc8 loc9

ShoppingMall

loc1 loc3

loc2 loc6 loc7 loc4 loc5 loc8 loc9 loc10

194

Figure 6-14 is a representative figure that shows the data corresponding to experiment number

three with the shopping mall having locations up to loc6. Each bar in the graph represents the

response time as the user moves around the shopping mall as per the Shopping Mall Mobility

Model.

The second figure, Figure 6-15 shows seven mean response times with a 95% confidence

interval for calls to the newChangeAmbientScript function (abbreviated as ‘n’ in the figure) for

each of the seven experiments discussed above.

This second figure also shows an exponential best fitting curve for the seven mean response

times. This curve has been generated through a regression analysis done using a MATLAB

script. The exponential function is given by the expression

y = bemx

The values of the constants b and m calculated by the MATLAB script are:

b = 2.853e+03

m = 0.3044

Similar to the second figure, we have a third figure, Figure 6-16 that shows seven mean

response times with a 95% confidence interval for calls to the SCAFaultScript function

(abbreviated as ‘s’ in the figure) for each of the seven experiments discussed above. This third

figure also shows an exponential best fitting curve for the seven mean time gaps. This curve too

has been generated through a regression analysis done using a MATLAB script. The

exponential function is given by the expression

y = bemx

The values of the constants b and m calculated by the MATLAB script are:

b = 6.9485e+03, m = 0.3320

195

FIGURE 6-14: THE RESPONSE TIMES IN MILLISECONDS FOR EXPER IMENT NUMBER 3.

FIGURE 6-15: REGRESSION CURVE OF THE SEVEN MEAN RESPONSE TIMES FOR SEVEN

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNC TION ‘n ’ .

196

FIGURE 6-16:REGRESSION CURVE OF THE SEVEN MEAN RESPONSE TIMES FOR SEVEN

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNC TION ‘s ’ .

Thus, in this experiment, the response times increase exponentially for both ‘n’ and ‘s’ events as

the number of nodes is increased.

(b) Experiment where one of the three services participating in the service composition never

disappears and is available across the shopping mall : In this experiment, we do not cache

backup devices for service1 in any location except the node called ShoppingMall which

represents the common area of the mall. We assume that service 1 is a ‘strong’ service available

across the shopping mall at all locations. Thus, it is only for services 2 and 3 that we have

cached those devices that offer these services at all locations in our model. Once again, for the

first experiment we start with the basic topology of two shops represented by loc2 and loc4 in

the two wings of the Shopping mall as shown in Figure 6-6 and Figure 6-7. For this topology,

we run our simulation using the template discussed in the previous section. In the next

experiment, we add loc5 to this basic topology. Notice that this time, the new location loc5

also has been initialized like other locations with only two devices that are the backup devices

for the two out of three services participating in the composition. As discussed in the previous

chapter, each device is itself a Bigraph node that is composed of five smaller Bigraph nodes.

Thus, the addition of two devices means an addition of ten more Bigraph nodes. Moreover, the

location node itself is composed of three smaller Bigraph nodes. As a result, adding a single

location in effect adds thirteen more nodes. We again run our simulation for this larger

Bigraphical model.

Continuing in this manner, we keep on increasing the number of location nodes by one and then

running the simulation for that particular topology of the shopping mall. The system keels over

(i.e. stops responding) when we add loc13. Thus, this time our data corresponds to a total of

197

nine experiments. The first experiment corresponds to a simulation that runs on a shopping mall

model with locations up to loc4 whereas the last experiment corresponds to a simulation that

runs on a shopping mall model with locations up to loc12.

Figures from Figure 6-8 to Figure 6-13 show the abstracted out tree structure of the location

model used for the six experiments following the first one. Also Figure 6-17, Figure 6-18, and

Figure 6-19 show the tree structure for the location model when we add loc11, loc12 and

loc13 respectively:

FIGURE 6-17: AN ABSTRACTED OUT TR EE STRUCTURE OF THE LOCATION MODEL FOR

EXPERIMENT 8.

FIGURE 6-18: AN ABSTRACTED OUT TR EE STRUCTURE OF THE LOCATION MODEL FOR

EXPERIMENT 9.

loc2

ShoppingMall

loc1 loc3

loc6 loc9 loc4 loc7 loc8 loc11 loc10 loc5

ShoppingMall

loc1 loc3

loc2 loc6 loc9 loc4 loc7 loc8 loc11 loc10 loc5 loc12

198

FIGURE 6-19: AN ABSTRACTED OUT TR EE STRUCTURE OF THE LOCATION MODEL FOR

EXPERIMENT 10 WHERE OUR SYTEM KEELS OFF.

We summarize the data of this set of experiments with the three figures from Figure 6-20 to

Figure 6-22.

Similar to the previous set of experiments, the first figure, Figure 6-20 is a representative figure

that shows the data corresponding to experiment number three with the shopping mall having

locations up to loc6. Each bar in the graph represents the available time as the user moves

around the shopping mall as per the Shopping Mall Mobility Model.

The second figure, Figure 6-21 shows nine mean response times with a 95% confidence interval

for calls to the newChangeAmbientScript function (abbreviated as ‘n’ in the figure) for each of

the nine experiments discussed above.

This second figure also shows an exponential best fitting curve for the nine mean response

times. This curve has been generated through a regression analysis done using a MATLAB

script. The exponential function is given by the expression

y = bemx

The values of the constants b and m calculated by the MATLAB script are:

b = 1.8578e+03

m = 0.2674

Similar to the second figure, we have a third figure, Figure 6-22 that shows nine mean response

times with a 95% confidence interval for calls to the SCAFaultScript function (abbreviated as

‘s’ in the figure) for each of the nine experiments discussed above. This third figure also shows

ShoppingMall

loc1 loc3

loc2 loc6 loc9 loc4 loc7 loc8 loc11 loc10 loc5 loc12 loc13

199

an exponential best fitting curve for the nine mean response times. The exponential function is

given by the expression

y = bemx

The values of the constants b and m calculated by the MATLAB script are:

b = 4.4814e+03

m = 0.2899

FIGURE 6-20:THE RESPONSE TIMES AND IN MILLISECONDS FOR EXPERIMENT NUMBER

3.

FIGURE 6-21:REGRESSION CURVE OF THE NINE MEAN RESPON SE TIMES FOR NINE

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNC TION ‘n ’ .

200

FIGURE 6-22:REGRESSION CURVE OF THE NINE MEAN RESPONSE TIMES FOR N INE

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNC TION ‘s ’ .

Thus, in this experiment too, the response times increase exponentially for both ‘n’ and ‘s’

events as the number of nodes is increased.

(c) Experiment where we successively increase the number of services participating in the

composition keeping the number of locations constant: For the first experiment, we start with

the basic topology of two shops represented by loc2 and loc4 in the two wings of the Shopping

mall as shown in Figure 6-6 and Figure 6-7 and with three services participating in the

composition. For this topology, we run our simulation using the template discussed in the

previous section. In the next experiment, we add a fourth service to the composition. Because

we cache backup devices for a service in all locations, we initialize the WORLD Bigraph such

that there are five additional devices offering this fourth service in each of the locations namely

ShoppingMall, loc1, loc2, loc3, and loc4. Since each device is itself a Bigraph that is

composed of five smaller Bigraph nodes, adding five additional cached devices results in adding

twenty-five bigraph nodes to the new topology. Moreover, the service node itself is composed

of four smaller Bigraph nodes. Thus when we increase the number of services participating in

the composition by one, a total of twenty-nine additional nodes are added to the new topology.

We again run our simulation for this larger Bigraphical model.

Continuing in this manner, we keep on increasing the number of services participating in the

composition by one and also caching backup devices that offer this service in all the five

locations. The system keels over (i.e. stops responding) when we add a sixth service and its

backup devices. Thus, for this set of experiments our data corresponds to three experiments. The

first experiment corresponds to a simulation that runs on a shopping mall model with three

services participating in the composition whereas the last experiment corresponds to a

simulation that runs on a shopping mall model with five services participating in the

composition. Note that for this set of experiments, the number of location nodes remains the

same.

201

Figures from Figure 6-23 to Figure 6-26 show the structure of the service composition starting

with three services and increasing the number of services by one.

FIGURE 6-23: 3 SERVICES IN THE COMPOSITION.

FIGURE 6-24: 4 SERVICES IN THE COMPOSITION.

FIGURE 6-25: 5 SERVICES IN THE COMPOSITION.

service

service

working

service

i2

i3

i1 working

working

service

service

working

service service

i2

i3

i1

i4

working

working

working

service

service

service

i2

i1 working

working

i4 working i3 working

service

i5 working

service

202

FIGURE 6-26: 6 SERVICES IN THE COMPOSITION.

We summarize the data of this set of experiments with the three figures from Figure 6-27

through to Figure 6-29.

The first figure, Figure 6-27 is a representative figure that shows the data corresponding to

experiment number three with five services participating in the composition. As before, each bar

in the graph represents the response time as the user moves around the shopping mall as per the

Shopping Mall Mobility Model.

The second figure, Figure 6-28 shows three mean response times with a 95% confidence

interval for calls to the newChangeAmbientScript function (abbreviated as ‘n’ in the figure) for

each of the three experiments discussed above.

This second figure also shows an exponential best fitting curve for the three mean response

times. This curve has been generated through a regression analysis done using a MATLAB

script. The exponential function is given by the expression

y = bemx

The values of the constants b and m calculated by the MATLAB script are:

b = 1.3913e+03, m = 1.1695

Similar to the second figure, we have a third figure, Figure 6-29 that shows three mean response

times with a 95% confidence interval for calls to the SCAFaultScript function (abbreviated as

‘s’ in the figure) for each of the three experiments discussed above. This third figure also shows

an exponential best fitting curve for the three mean response times. The exponential function is

given by the expression

y = bemx

service

service

service

i2

i1 working

working

i4 working i3 working

service

i5 working

service

i6 working

service

203

The values of the constants b and m calculated by the MATLAB script are:

b = 3.6622e+03

m = 1.0691

FIGURE 6-27: THE RESPONSE TIMES IN MILLISECONDS FOR EXPERIMENT NUMBER 2.

FIGURE 6-28:REGRESSION CURVE OF THE THREE MEAN RESPONSE TIMES FOR THREE

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNC TION ‘n ’ .

204

FIGURE 6-29:REGRESSION CURVE OF THE THREE MEAN RESPONSE TIMES FOR THREE

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNCTION ‘ s ’ .

Similar to the previous two experiments, in this experiment too the response times increase

exponentially for both ‘n’ and ‘s’ events as the number of nodes is increased.

6.3.4 CAUSE OF THE EXPONENTIAL INCREASE IN RESPONSE TIMES: A

NAÏVE HANDLING OF THE DECOMPOSITION OF THE PRIME

PRODUCT CHILDREN OF A NODE BY THE MATCHING ALGORITHM

OF BPL TOOL (ITU, 2011),(BIRKEDAL ET AL., 2007)

The developers of the BPL Tool acknowledge that their implementation of matching is not very

fast (ITU, 2011). This is because the matching depends on the normal form lemmas of Bigraphs

(Birkedal et al., 2007). These lemmas express how larger Bigraphs can be decomposed into

smaller ones. The matching proceeds by induction on these decomposed Bigraphs. In particular

the normal forms cannot distinguish between prime products (the operation of placing Bigraphs

side-by-side under a common parent node-See Chapter 2) for example 𝐹0| 𝐹1 and 𝐹1 | 𝐹0. As a

result when matching children of a node, if the children are combined in a prime product, the

BPL Tool generates all the possible permutations of that prime product. Each of this

permutation represents a separate decomposition. The matching implementation of the BPL

Tool then explores all of these decompositions.

Consider for example Figure 6-13 which we repeat in Figure 6-30. The children of loc1 are all

constructed by using the prime product to place them side-by-side within loc1. To match the

children of loc1, we need to first decompose it into its constituent children. Seven possible

decompositions are shown in Figure 6-31. Since there are a total of 4 children of loc1, we have

a total of 4! = 24 possible decompositions. Similar arguments hold for children of loc3. Thus,

205

for the configuration of Figure 6-30 there are a total of 24x2 = 48 decompositions that the

matching algorithm of the BPL Tool explores.

FIGURE 6-30: AN EXAMPLE TOPOLOGY

FIGURE 6-31: 7 OF 24 POSSIBLE PERMUTATIONS.

However, in contrast to the prime product, the composition operation between children of a

node is interpreted simply as one node being inside another in that order. Consider for example

Figure 6-32 where loc5 is placed inside loc2 (rather than side-by-side), loc7 is placed inside

loc5 and loc9 inside loc7. This hierarchy imposes an order on the nodes represented by the

sequence <loc2,loc5,loc7,loc9> and the Bigraph is decomposed in that order. Thus, there is

only one possible decomposition in this case. The matching algorithm of the BPL Tool needs to

explore only this single decomposition.

Shopping Mall

loc1 loc3

loc2 loc6 loc7 loc4 loc5 loc8 loc9 loc10

loc2 loc7 loc5 loc9

loc5 loc7 loc2 loc9

loc7 loc2 loc5 loc9

loc9 loc7 loc5 loc2

loc2 loc5 loc7 loc9

loc2 loc7 loc9 loc5

loc2 loc9 loc5 loc7

1st permutation

2nd permutation

3rd permutation

4th permutation

5th permutation

6th permutation

7th permutation

206

FIGURE 6-32: ONLY ONE POSSIBLE DECOMPOSITION FOR TH E COMPOSITION

OPERATION.

To show that the response times only grow exponentially for those Bigraphical nodes whose

children are all constructed using the prime product, we have devised the following two

experiments: We start with the configuration shown in Figure 6-33. Then we successively add

children of loc1 and loc3 in two different ways. In one experiment, we add children by using

the prime product and placing them side-by-side within loc1 or loc3 as shown in the left-hand

side of Figure 6-33 to Figure 6-39. In the second experiment, we successively add children

using the composition operation and placing them one inside another within loc1 or loc3 as

shown in the right-hand side of Figure 6-33 to Figure 6-39. For each experiment the user only

moves between loc2 and loc4 and no new device appears in any other location. Thus, between

successive experiments, the only thing that changes is the addition of a new location – in the

first experiment using prime product operation and in the second experiment using the

composition operation.

FIGURE 6-33: THE STARTING TOPOL OGY

Decomposed into

loc2 loc5 loc7 loc9

loc2

loc7

loc5

loc9

ShoppingMall

loc1 loc3

loc2 loc4

ShoppingMall

loc1 loc3

loc2 loc4

207

FIGURE 6-34:CHILDREN OF loc1 AND loc3 CONSTRUCTED USING PR IME PRODUCT

OPERATION ON THE LEFT AND CONSTRUCTED USING COMPOSITION OPER ATION ON

THE RIGHT.

FIGURE 6-35:CHILDREN OF loc1 AND loc3 CONSTRUCTED USING PR IME PRODUCT

OPERATION ON THE LEFT AND CONSTRUCTED USING COMPOSITION OPER ATION ON

THE RIGHT.

FIGURE 6-36:CHILDREN OF loc1 AND loc3 CONSTRUCTED USING PR IME PRODUCT

OPERATION ON THE LEFT AND CONSTRUCTED USING COMPOSITION OPER ATION ON

THE RIGHT.

ShoppingMall

loc1 loc3

loc2 loc4 loc5

ShoppingMall

loc1 loc3

loc2 loc4

loc5

ShoppingMall

loc1 loc3

loc2 loc6 loc4 loc5

ShoppingMall

loc1 loc3

loc2

loc6

loc4

loc5

ShoppingMall

loc1 loc3

loc2 loc6 loc7 loc4 loc5

ShoppingMall

loc1 loc3

loc2

loc6

loc7

loc4

loc5

208

FIGURE 6-37:CHILDREN OF loc1 AND loc3 CONSTRUCTED USING PR IME PRODUCT

OPERATION ON THE LEFT AND CONSTRUCTED USING COMPOSITION OPERATION ON

THE RIGHT.

FIGURE 6-38:CHILDREN OF loc1 AND loc3 CONSTRUCTED USING PR IME PRODUCT

OPERATION ON THE LEFT AND CONSTRUCTED USING COMPOSITION OPER ATION ON

THE RIGHT.

ShoppingMall

loc1 loc3

loc2 loc6 loc7 loc4 loc5 loc8

ShoppingMall

loc1 loc3

loc2

loc6

loc7

loc4

loc5

loc8

ShoppingMall

loc1 loc3

loc2 loc6 loc7 loc4 loc5 loc8 loc9

ShoppingMall

loc1 loc3

loc2

loc6

loc7

loc4

loc5

loc8

loc9

209

FIGURE 6-39:CHILDREN OF loc1 AND loc3 CONSTRUCTED USING PR IME PRODUCT

OPERATION ON THE LEFT AND CONSTRUCTED USING COMPOSITION OPER ATION ON

THE RIGHT.

Calculations for the number of decompositions of loc1 and loc2 into their respective children

constructed using the prime product operation - all of these decompositions will have to be

explored by the matching algorithm:

1) For the left hand side of Figure 6-33, we have 1! possible decompositions of loc1 into its

children and 1! possible decompositions of loc3 into its children. Thus, we have a total of 2

decompositions that the matching implementation of the BPL Tool needs to explore.

2) For the left hand side of Figure 6-34, we have 2! possible decompositions of loc1 into its

children and 1! possible decompositions of loc3 into its children. Thus, we have a total of

2+1= 3

decompositions that the matching implementation of the BPL Tool needs to explore.

3) For the left hand side of Figure 6-35, we have 2! possible decompositions of loc1 into its

children and 2! possible decompositions of loc3 into its children. Thus, we have a total of

2+2 = 4

decompositions that the matching implementation of the BPL Tool needs to explore.

4) For the left hand side of Figure 6-36, we have 3! possible decompositions of loc1 into its

children and 2! possible decompositions of loc3 into its children. Thus, we have a total of

6+2 = 8

decompositions that the matching implementation of the BPL Tool needs to explore.

ShoppingMall

loc1 loc3

loc2 loc6 loc7 loc4 loc5 loc8 loc9 loc10

ShoppingMall

loc1 loc3

loc2

loc6

loc7

loc4

loc5

loc8

loc9 loc10

210

5) For the left hand side of Figure 6-37, we have 3! possible decompositions of loc1 into its

children and 3! possible decompositions of loc3 into its children. Thus, we have a total of

6+6 = 12

decompositions that the matching implementation of the BPL Tool needs to explore.

6) For the left hand side of Figure 6-38, we have 4! possible decompositions of loc1 into its

children and 3! possible decompositions of loc3 into its children. Thus, we have a total of

24+6 = 30

decompositions that the matching implementation of the BPL Tool needs to explore.

7) For the left hand side of Figure 6-39, we have 4! possible decompositions of loc1 into its

children and 4! possible decompositions of loc3 into its children. Thus, we have a total of

24+24 = 48

decompositions that the matching implementation of the BPL Tool needs to explore.

Thus, in general for this topology, if there are n children representing shops in loc1 and m

children representing shops in loc3 then the number of possible decompositions which the

matching implementation of BPL Tool needs to explore is of the order of

O (n! + m!)

Clearly, the lower bound function for the increase in the number of decompositions that the

matching implementation of BPL Tool needs to explore as the number of children is increased

is exponential.

Calculations for the number of decompositions of loc1 and loc2 into their respective children

constructed using the composition operation- all of these decompositions will have to be

explored by the matching algorithm:

 For the right hand side of all the figures from Figure 6-33 to Figure 6-39, we have 1 possible

decompositions of loc1 into its children and 1 possible decompositions of loc3 into its

children. Thus, we have a total of 2 decompositions that the matching implementation of the

BPL Tool needs to explore.

Figure 6-40 and Figure 6-41 show respectively the response times for ‘n’ events and ‘s’ events

along with the error bars showing 95% confidence intervals. In these two figures, experiment

number 1 corresponds to the situation shown in Figure 6-34 and experiment number 6

211

corresponds to the situation shown in Figure 6-39. Also, in both the figures, the red bars

represent our ‘usual’ topology where we increase the number of children of loc1 and loc3 one-

by-one using the prime product operation. This corresponds to the topology shown on the left

hand side from Figure 6-34 to Figure 6-39. Similarly, in both the figures Figure 6-40 and Figure

6-41, the yellow bars represent our ‘depth first’ topology where we increase the number of

children of loc1 and loc3 one-by-one using the composition operation. This corresponds to the

topology shown on the right hand side from Figure 6-34 to Figure 6-39.

These figures show that keeping everything else the same, when we increase the number of

nodes, the response times for both ‘n’ and ‘s’ events increase exponentially for our ‘usual’

topology. On the other hand, the response times for both ‘n’ and ‘s’ events remain steady for the

‘depth first’ topology.

FIGURE 6-40: RESPONSE TIMES OF ‘n ’ EVENT FUNCTION FOR THE EXPERIMENTS WITH

THE USUAL TOPOLOGY AND THE EXPERIMENTS C ONDUCTED WITH THE DEPTH FIRST

TOPOLOGY.

FIGURE 6-41: RESPONSE TIMES OF ‘ s ’ EVENT FUNCTION FOR THE EXPERIMENTS WITH

THE USUAL TOPOLOGY AND THE EXPERIMENTS C ONDUCTED WITH THE DEPTH FIRST

TOPOLOGY.

212

On the basis of these results, we conclude that the cause of the exponential increase in the

response times in our experiments of section 6.3.3, is the way the BPL Tool’s matching

algorithm’s implementation decomposes the children of a node that have been constructed using

the prime product operation. This decomposition produces all the possible permutations of the

children of a node. As a result, the matching implementation of the BPL Tool has to explore all

these decompositions. Because the number of these decompositions increases at least

exponentially, the response times of ‘n’ and ‘s’ events that use the matching implementation of

the BPL Tool also increases at least exponentially.

6.3.5 MEASURING THE EFFECT OF THE WORKLOAD EVENTS ON THE

AVAILABLE TIME

We now discuss experimental results that show that even for a favorable scenario, our

functions’ (newChangeAmbientScript and SCAFaultScript) response times are more than the

available times. Moreover, our results show that the average response times increase

exponentially as we increase the number of nodes whereas the average available times remain

approximately the same. As discussed earlier, available time is defined as the time interval

between the occurrences of consecutive events.

A favorable scenario is depicted in the Figure 6-42. This scenario is favorable because for a

workload corresponding to successive string of calls ‘nsnsns..’ where the events alternate

between ‘n’ and ‘s’, the functions corresponding to these events get as much time as possible to

respond. As seen from the Figure 6-42, the available time for a call to ‘s’ is the sum of the time

the user pauses between [0s-2s] and half of the walking time till a call to ‘n’ is made when we

reach the right hand side boundary of an ambient in the figure. The available time for ‘n’ is half

of the walking time till a call to ‘s’ is made when we reach the midpoint of an ambient in the

figure.

213

FIGURE 6-42: A FAVORABLE SCENAR IO-THE FUNCTIONS GET TH E MAXIMUM POSSIBLE

TIME TO RESPOND.

We now present an analysis of our experimental data for this favorable scenario using the data

generated for each of the three experiments.

(a) Experiment where we successively increase the number of location nodes by one and run the

simulation based on the Shopping mall Mobility model for each of the resulting topology of the

shopping mall:

Figures 6-43 and 6-44 are representative figures that show the data corresponding to experiment

number three with the shopping mall having locations up to loc6.

In Figure 6-43, we show the response times and available times side-by-side for a given event.

Next, in Figure 6-44, each bar in the graph represents the calculated difference between the

response time and available time for experiment number three as the user moves around the

shopping mall as per the Shopping Mall Mobility Model. The red bars show the events where

response times are more than the available time. On the other hand, the blue bars show that

when the user pauses in a shop, the response times of our model at runtime are lesser than the

available times and that there are seven such pauses.

Thus, the blue bars show that only when the user pauses in a shop do we get large available

times and the response times of our functions are lesser than the available time. This then

means, that the BPL Tool’s matching algorithm’s inefficiency as represented by the red bars

needs to be fixed to make our system viable for realistic scenarios.

214

FIGURE 6-43:THE RESPONSE TIMES AND AVAILABLE TIMES FOR EACH EVENT IN

MILLISECONDS FOR EXPERIMENT NUMBER 3.

FIGURE 6-44: THE DIFFERENCE BETWEEN THE RESPONSE TIMES AND THE AVAILABL E

TIME BETWEEN TWO SUC CESSIVE EVENTS IN MILLISECONDS FOR EXPER IMENT

NUMBER 3.

We now summarize the data of this set of experiments for calls to the

newChangeAmbientScript function (abbreviated as ‘n’ in the figure) with two f igures: Figure

6-45 and Figure 6-46.

The Figure 6-45 shows the mean response times and the mean available times with a 95%

confidence interval for each of the two types of means. This figure shows that whereas the mean

available time remains approximately constant as we increase the number of nodes, the mean

response times increase steadily. This is as it should be since as discussed earlier, the mean

available times are generated with the same seeds and same distributions across experiments

215

whereas the mean response time increases as the implementation of the matching algorithm is

inefficient (ITU, 2011), (Birkedal et al., 2007).

FIGURE 6-45:MEAN OF THE RESPONSE TIMES AND AVAILABL E TIMES FOR ‘n ’ EVENTS

SHOWN SEPERATELY FOR EACH OF THE SEVEN EXPERIMENTS.

The Figure 6-46 shows seven mean time gaps with a 95% confidence interval for calls to the

newChangeAmbientScript function (abbreviated as ‘n’ in the figure) for each of the seven

experiments discussed above. The mean time gap is calculated by taking the mean of the

differences between the response times and the available time between two successive events.

For calculating the mean we do not include the event when the user pauses in a particular shop.

This is because our system gets enough time to respond when the user is pausing in a shop. The

response times of our system are problematic (too high) only when the user is moving between

two target shops (nodes) through intermediate nodes.

This figure also shows an exponential best fitting curve for the seven mean time gaps. This

curve has been generated through a regression analysis done using a MATLAB script. The

exponential function is given by the expression

y = bemx

The values of the constants b and m calculated by the MATLAB script are:

b = 1.5608e+03

m = 0.3836

216

FIGURE 6-46: REGRESSION CURVE OF THE SEVEN MEAN TIME GAPS FOR SEVEN

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNC TION ‘n ’ .

Next, we summarize the data of this set of experiments for calls to the SCAFaultScript

function (abbreviated as ‘s’ in the figure) for each of the seven experiments discussed above.

Similar to the ‘n’ events above, Figure 6-47 shows that whereas the mean available time

remains approximately constant as we increase the number of nodes, the mean response times

increase steadily for calls to ‘s’.

FIGURE 6-47: MEAN OF THE RESPONSE TIMES AND AVAILABLE TIMES FOR ‘ s ’ EVENTS

SHOWN SEPERATELY FOR EACH OF THE SEVEN EXPERIMENTS.

Figure 6-48 shows the seven mean time gaps with a 95% confidence interval for calls to the

SCAFaultScript function (abbreviated as ‘s’ in the figure) for each of the seven experiments

discussed above. Once again, for calculating the mean we do not include the event when the

user pauses in a particular shop. This figure also shows an exponential best fitting curve for the

217

seven mean time gaps. This curve too has been generated through a regression analysis done

using a MATLAB script. The exponential function is given by the expression

y = bemx

The values of the constants b and m calculated by the MATLAB script are:

b = 5.3271e+03, m = 0.3858

FIGURE 6-48: REGRESSION CURVE OF THE SEVEN MEAN TIME GAPS FOR SEVEN

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNC TION ‘s ’ .

(b) Experiment where one of the three services participating in the service composition never

disappears and is available across the shopping mall : As with the first experiment, Figures 6-

49 and 6-50 are representative figures that show the data corresponding to experiment number

three with the shopping mall having locations up to loc6.

In Figure 6-49, we show the response times and available times side-by-side for a given event.

Next, in Figure 6-50, each bar in the graph represents the calculated difference between the

response time and available time for experiment number three as the user moves around the

shopping mall as per the Shopping Mall Mobility Model. The red bars show the events where

response times are more than the available time. On the other hand, the blue bars show that

when the user pauses in a shop, the response times of our model at runtime are lesser than the

available times and that there are seven such pauses.

Thus, the blue bars show that only when the user pauses in a shop do we get large available

times and the response times of our functions are lesser than the available time. This then

218

means, that the BPL Tool’s matching algorithm’s inefficiency as represented by the red bars

needs to be fixed to make our system viable for realistic scenarios.

FIGURE 6-49: THE RESPONSE TIMES AND AVAILABLE TIMES FOR EACH EVENT IN

MILLISECONDS FOR EXPERIMENT NUMBER 3.

FIGURE 6-50: THE DIFFERENCE BETWEEN THE RESPONSE TIMES AND THE AVAILABL E

TIME BETWEEN TWO SUC CESSIVE EVENTS IN MILLISECONDS FOR EXPER IMENT

NUMBER 3.

We now summarize the data of this set of experiments for calls to the

newChangeAmbientScript function (abbreviated as ‘n’ in the figure) with two f igures: Figure

6-51 and Figure 6-52.

The Figure 6-51 shows the mean response times and the mean available times with a 95%

confidence interval for each of the two types of means. This figure shows that whereas the mean

available time remains approximately constant as we increase the number of nodes, the mean

response times increase steadily. This is as it should be since as discussed earlier, the mean

219

available times are generated with the same seeds and same distributions across experiments

whereas the mean response time increases as the implementation of the matching algorithm is

inefficient (ITU, 2011),(Birkedal et al., 2007).

FIGURE 6-51: MEAN OF THE RESPONSE TIMES AND AVAILABLE TIMES FOR ‘n ’ EVENTS

SHOWN SEPERATELY FOR EACH OF THE NINE EXPERIMENTS.

The Figure 6-52 shows nine mean time gaps with a 95% confidence interval for calls to the

newChangeAmbientScript function (abbreviated as ‘n’ in the figure) for each of the nine

experiments discussed above. The mean time gap is calculated by taking the mean of the

differences between the response times and the available time between two successive events.

For calculating the mean we do not include the event when the user pauses in a particular shop.

This is because our system gets enough time to respond when the user is pausing in a shop. The

response times of our system are problematic (too high) only when the user is moving between

two target shops (nodes) through intermediate nodes.

This figure also shows an exponential best fitting curve for the nine mean time gaps. This curve

has been generated through a regression analysis done using a MATLAB script. The

exponential function is given by the expression

y = bemx

The values of the constants b and m calculated by the MATLAB script are:

b = 1.8578e+03,

m = 0.2674

220

FIGURE 6-52: REGRESSION CURVE OF THE NINE MEAN TIME GAPS FOR NINE

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNC TION ‘n ’ .

Next, we summarize the data of this set of experiments for calls to the SCAFaultScript

function (abbreviated as ‘s’ in the figures 6-53 and 6-54) for each of the nine experiments

discussed above. Similar to the ‘n’ events above, Figure 6-53 shows that whereas the mean

available time remains approximately constant as we increase the number of nodes, the mean

response times increase steadily for calls to ‘s’.

FIGURE 6-53: MEAN OF THE RESPONSE TIMES AND AVAILABLE TIMES FOR ‘ s ’ EVENTS

SHOWN SEPERATELY FOR EACH OF THE NINE EXPERIMENTS.

221

Figure 6-54 shows the nine mean time gaps with a 95% confidence interval for calls to the

SCAFaultScript function (abbreviated as ‘s’ in the figure) for each of the nine experiments

discussed above. Once again, for calculating the mean we do not include the event when the

user pauses in a particular shop. This figure also shows an exponential best fitting curve for the

nine mean time gaps. This curve too has been generated through a regression analysis done

using a MATLAB script. The exponential function is given by the expression

y = bemx

The values of the constants b and m calculated by the MATLAB script are:

b = 4.4814e+03, m = 0.2899

FIGURE 6-54: REGRESSION CURVE OF THE NINE MEAN TIME GAPS FOR NINE

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNC TION ‘s ’ .

(c) Experiment where we successively increase the number of services participating in the

composition keeping the number of locations constant: The first two figures Figure 6-55 and 6-

56 are representative figures that shows the data corresponding to experiment number three with

five services participating in the composition.

In Figure 6-55, we show the response times and available times side-by-side for a given event.

Next, in Figure 6-56, each bar in the graph represents the calculated difference between the

response time and available time for experiment number three as the user moves around the

shopping mall as per the Shopping Mall Mobility Model. The red bars show the events where

response times are more than the available time. On the other hand, the blue bars show that

222

when the user pauses in a shop, the response times of our model at runtime are lesser than the

available times and that there are six such pauses.

Thus, the blue bars show that only when the user pauses in a shop do we get large available

times and the response times of our functions are lesser than the available time. This then

means, that the BPL Tool’s matching algorithm’s inefficiency as represented by the red bars

needs to be fixed to make our system viable for realistic scenarios.

FIGURE 6-55: THE RESPONSE TIMES AND AVAILABLE TIMES FOR EACH EVENT IN

MILLISECONDS FOR EXPERIMENT NUMBER 3.

FIGURE 6-56: THE DIFFERENCE BETWEEN THE RESPONSE TIMES AND THE AVAILABLE

TIME BETWEEN TWO SUC CESSIVE EVENTS IN MILLISECONDS FOR EXPER IMENT

NUMBER 3.

We now summarize the data of this set of experiments for calls to the

newChangeAmbientScript function (abbreviated as ‘n’ in the figure) with two figures: Figure

6-57 and Figure 6-58.

223

The Figure 6-57 shows the mean response times and the mean available times with a 95%

confidence interval for each of the two types of means. This figure shows that whereas the mean

available time remains approximately constant as we increase the number of nodes, the mean

response times increase steadily. This is as it should be since as discussed earlier, the mean

available times are generated with the same seeds and same distributions across experiments

whereas the mean response time increases as the implementation of the matching algorithm is

inefficient (ITU, 2011),(Birkedal et al., 2007).

FIGURE 6-57: MEAN OF THE RESPONSE TIMES AND AVAILABLE TIMES FOR ‘n ’ EVENTS

SHOWN SEPERATELY FOR EACH OF THE THREE EXPERIMENTS.

The Figure 6-58 shows three mean time gaps with a 95% confidence interval for calls to the

newChangeAmbientScript function (abbreviated as ‘n’ in the figure) for each of the three

experiments discussed above. The mean time gap is calculated by taking the mean of the

differences between the response times and the available time between two successive events.

For calculating the mean we do not include the event when the user pauses in a particular shop.

This is because our system gets enough time to respond when the user is pausing in a shop. The

response times of our system are problematic (too high) only when the user is moving between

two target shops (nodes) through intermediate nodes.

This figure also shows an exponential best fitting curve for the three mean time gaps. This curve

has been generated through a regression analysis done using a MATLAB script. The

exponential function is given by the expression

y = bemx

The values of the constants b and m calculated by the MATLAB script are:

224

b = 674.7071,

m = 1.4079

FIGURE 6-58: REGRESSION CURVE OF THE THREE MEAN TIME GAPS FOR THREE

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNC TION ‘n ’ .

Next, we summarize the data of this set of experiments for calls to the SCAFaultScript

function (abbreviated as ‘s’ in the Figures 6-59 and 6-60) for each of the three experiments

discussed above. Similar to the ‘n’ events above, Figure 6-59 shows that whereas the mean

available time remains approximately constant as we increase the number of nodes, the mean

response times increase steadily for calls to ‘s’.

FIGURE 6-59: MEAN OF THE RESPON SE TIMES AND AVAILABLE TIMES FOR ‘ s ’ EVENTS

SHOWN SEPERATELY FOR EACH OF THE THREE EXPER IMENTS.

225

Figure 6-60 shows the three mean time gaps with a 95% confidence interval for calls to the

SCAFaultScript function (abbreviated as ‘s’ in the figure) for each of the three experiments

discussed above. Once again, for calculating the mean we do not include the event when the

user pauses in a particular shop. This figure also shows an exponential best fitting curve for the

three mean time gaps. This curve too has been generated through a regression analysis done

using a MATLAB script. The exponential function is given by the expression

y = bemx

The values of the constants b and m calculated by the MATLAB script are:

b =2.5424e+03, m = 1.2125

FIGURE 6-60: REGRESSION CURVE OF THE THREE MEAN TIME GAPS FOR THREE

EXPERIMENTS WITH A 9 5% CONFIDENCE INTERVAL FOR CALLS TO FUNC TION ‘s ’ .

An unfavorable scenario is depicted in the Figure 6-61. In this case, both the functions ‘n’ and

‘s’ are called one after another and there is zero available time to respond. This is therefore a

worst-case scenario. Note too that ‘n’ and ‘s’ can be called consecutively anywhere in the mall

and not necessarily at the mid-point of an ambient as shown in the Figure 6-61. The Figure

therefore shows one of the many worst-case scenarios.

226

FIGURE 6-61: ONE OF THE MANY WORST CASE SCENARIOS

6.3.6 SUMMARY AND DISCUSSION OF THE EXPERIMENTAL RESULTS

The goal of the three set of experiments discussed in section 6.3.3 was to quantify the effect of

the inefficiency of the matching algorithm of the BPL tool on our system. Recall that the

matching algorithm has been designed for correctness not efficiency (Elsborg, 2009). The

functions offered by this Tool were used by our system to implement the Bigraphical model at

runtime. The runtime model’s response times have been measured in realistic tests by using the

Shopping Mall mobility model as the basis of our simulation.

For each individual experiment in the three sets of experiments discussed in section 6.3.3, we

calculated the mean response times with a 95% confidence interval for the function

newChangeAmbientScript. Thus, for a given set of experiments, we got a set of mean response

times each with a 95% confidence interval. We then ran a regression analysis on this set of

mean response times to generate a best fitting curve that characterizes their increase as the

number of nodes in the Bigraph model increase.

All the three sets of experiments show that as the size of Bigraph is increased, the mean

response times increase exponentially.

We then repeated this process for the same set of experiments but this time for the function

SCAFaultScript and got another best fitting curve from the regression analysis. This curve

characterizes the mean response time’s increase for the function SCAFaultScript as the size of

the Bigraph increases for this particular set of experiments.

Once again, all the three sets of experiments show that as the size of Bigraph is increased, the

mean response time increases exponentially.

227

The goal of the two experiments described in section 6.3.4 was to show that the response times

of both our functions newChangeAmbientScript and SCAFaultScript increases exponentially

because of the way the BPL Tool’s matching algorithm decomposes the children of a node that

have been constructed using the prime product operation. In the first experiment of section

6.3.4, we successively added a child location to a location using only the prime product

operation. We called this the experiment with the ‘usual’ topology. In the second experiment of

section 6.3.4, we successively added a child location to a location using only the composition

operation. We called this the experiment with ‘Depth First’ topology. We demonstrated that

when we use the prime product to add children to a node, the number of possible

decompositions by the BPL Tool’s matching algorithm increases with an exponential lower

bound and the response times of the two functions newChangeAmbientScript and

SCAFaultScript also increase with an exponential lower bound.

Thus, the experiments of section 6.3.3-all of which use the prime product to construct the

children representing shops- have established that the naïve implementation of the BPL Tool’s

matching algorithm is sufficient to cause the response times of our functions to increase

exponentially despite varying other parameters. On the other hand, the experiments of section

6.3.4 establish that if we remove the usage of the prime product to construct the children of a

node, and use the composition product instead, the response times of our functions do not

increase with an exponential lower bound. As a result we can say that the naïve implementation

of the matching algorithm for prime product construction is necessary to cause an exponential

increase in the response times of our two functions newChangeAmbientScript and

SCAFaultScript. In other words, we have established experimentally that the naïve

implementation of the matching algorithm is the necessary and sufficient cause for the response

times of our two functions to increase exponentially.

In section 6.3.5, we examined one of the many favorable scenarios where our two functions

newChangeAmbientScript and SCAFaultScript get as much time as possible while being

called alternately. The results show that the average response times of our functions increase

exponentially whereas the average available times remain steady across experiments. As a

result, the mean time gap between the response time and available time increases exponentially.

Thus, the BPL Tool’s matching algorithm’s inefficiency needs to be fixed to make our system

viable for realistic scenarios.

There are however some limitations of the experiments that we have conducted. Firstly, we did

not use any model that was based on real-life data for the distribution of the timings of

appearance/disappearance of the services. Only the mobility model of how a shopper moves

around in a shopping mall was realistic. Secondly, the laptop that we used to run the SML based

228

Bigraphical model at runtime was an old and slow machine. As a result, the system keeled off

too easily.

Nevertheless, even with these limitations, the goal of the experiments was not to prove that as

the size of Bigraph is increased, the mean response time increases exponentially for both our

functions. The developers of the matching algorithm of the BPL Tool have already

acknowledged that their development of the tool was focused on correctness rather than

efficiency (Elsborg, 2009) . Instead, what we wanted to show through the experiments was the

effect of the inefficiency of the matching algorithm of the BPL Tool on our proposal for a

practical Bigraphical model at runtime in terms of the shape of a best fitting curve rather than

absolute values on a particular machine.

Besides the factors that effect the response times discussed above, there are other external

factors that might affect the performance of a service composition running on a mobile device.

Some of these factors include: delays in discovery of services, the radio communication used,

the pattern of mobility, the radio communication used, and the physical characteristics of the

settings. These factors were not considered for the experiments described above because in this

thesis we wanted to focus only on delays resulting from our implementation of the Bigraphical

model at runtime using the BPL Tool.

To the best of our knowledge, our work is the first to evaluate the performance of a system built

on top of the BPL Tool using realistic tests. As discussed above, the BPL Tool cannot be used

in the current form for a practical implementation of a model at runtime chiefly because the

model will not be in-sync with the world in realistic scenarios.

6.4 CONCLUSIONS

In this chapter, we first analyzed our implementation of a Bigraphical model at runtime

qualitatively by placing it in the context of the modeling dimensions of self-adaptive software

systems. Next, from this qualitative analysis, one of the issues that emerged was the need for a

performance evaluation of our Bigraphical model at runtime. For this performance evaluation,

we wanted to quantify the effect of the inefficiency of the BPL Tool’s matching algorithm on

the mean response times of the SML functions of our system.

To quantify this effect of the inefficiency of the BPL Tool with realistic workloads, we designed

a test rig. This test rig consisted of an Android machine that ran simulations based on the

Shopping Mall Mobility model presented in the paper by Galati et al. (Galati et al., 2013) to

generate events that were sent over a TCP connection to a laptop that ran our Bigraphical model

229

at runtime. These events triggered the execution of appropriate functions in our SML code for

the Bigraphical model at runtime.

We established experimentally that the naïve implementation of the matching algorithm is the

necessary and sufficient cause for the response times of our two functions

newChangeAmbientScript and SCAFaultScript to increase exponentially.

We acknowledge that there are some limitations to the realism of the experiments that we

conducted. We did not use any model based on real life data for the distribution of the timings

of the appearance/disappearance of services. Moreover, because of the hardware limitations of

the laptop that we used to run our SML implementation of the Bigraphical model at runtime, our

system would stop responding too easily.

Nevertheless, we did not want to prove that the matching algorithm is inefficient- this has

already been acknowledged by the developers of the BPL Tool (Elsborg, 2009) . Instead, we

wanted to study the effect of this inefficiency on our system in terms of the shape of a best

fitting curve rather than absolute values on a particular machine.

Therefore, within the limitations mentioned above, our experiments show that the BPL Tool

cannot be used in the current form for a practical implementation of a Bigraphical model at

runtime. This is because the Bigraphical model at runtime will not be in-sync with the world in

realistic scenarios if a node has children that are placed side-by-side in the topology being

modelled.

In the next chapter, we discuss the implications of the findings of this chapter on our research

question.

230

7 CONCLUSIONS, CONTRIBUTIONS AND FUTURE

WORK

7.1 INTRODUCTION

In the past six chapters, we have surveyed the state of art relevant to identify our research

question (Chapter 2), defined our research question and established its design implications

(Chapter 3), explored the use of Bigraphs and model at runtime as a way to tackle the volatility

problem of ubiquitous computing systems (Chapter 4), used the BPL tool to implement a two

layered Bigraphical model at runtime (Chapter5), and finally evaluated our implementation both

qualitatively and quantitatively.

We now conclude this thesis as follows: In section 7.2, we discuss how our work has answered

the research problem posed in Chapter 3, section 3.2. Next in section 7.3, we present a summary

of our contributions to new knowledge. Then, in section 7.4, we discuss future work. Finally, in

section 7.5, we offer our concluding remarks.

7.2 ANSWERING THE RESEARCH QUESTION

In this section, we discuss how the thesis answers the research question posed in Chapter 3,

section 3.2. In particular, we explain why this thesis has shown a way to use Bigraphs at

runtime. Furthermore, we explain why this thesis has shown that Bigraphs offer the appropriate

language abstractions to address the open research questions being explored by the models at

runtime community

In Chapter 3, section 3.2, we described our research question thus:

Are the language abstractions provided by Bigraphs sufficient and appropriate to construct a

model at runtime to tackle the problem of volatility in a service composition running on a

mobile device?

The two caveats on the scope of the above question were that firstly, we would not replicate all

programming language abstraction with our Bigraphical model at runtime-we will abstract upon

only some selected elements of the service composition. Secondly, we would be accessing the

control constructs of SML through MiniML since Bigraphs lack control structures.

We discuss the answer to the research question using the two evaluation criteria discussed in

Chapter 3 and keeping the two caveats discussed above in mind:

231

Our first evaluation criteria was: Have we been able to construct a model at run time that is

expressed using Bigraphical abstractions?

We have established in this thesis, that indeed, the language abstractions provided by Bigraphs

are sufficient and appropriate to construct a model at runtime as a proof-of-concept to tackle the

problem of volatility in a service composition running on a mobile device. Notice that unlike the

usual practice of using process algebras for simulation, we have used Bigraphs to fire reaction

rules in response to external events (rather than permitting them to run when they want).

The thesis establishes this claim of constructing a model along the following two dimensions:

1) We have shown how to use Bigraphs to construct a model at runtime,

2) We have also shown that Bigraphs offer the appropriate language abstractions to address the

open research questions being explored by the models at runtime community.

We discuss each in turn in Sections 7.2.1.1 and 7.2.1.2.

Our second evaluation criteria was: Can such a Bigraphical model at runtime be in-sync with

the real world in terms of the time it takes to respond to the events that are being generated in

the real world? Or if they are not in-syc, why not?

In the previous Chapter we have established that for the topology of the shopping mall that we

modelled, our Bigraphical model at runtime was not in-sync with the world. The reason for this

was that the response time of our model grew exponentially as the size of the model was

increased. We showed that this was because of the naïve handling of the prime product children

of a node by the BPL Tool’s matching algorithm.

We discuss this in greater detail in Section 7.2.2.

7.2.1 USING THE FIRST DIMENSION OF OUR EVALUATION CRITERIA TO

TEST IF OUR RESEARCH QUESTION HAS BEEN ANSWERED

The first dimension of our evaluation criteria as discussed in Chapter 3 was:

Have we been able to construct a model at run time that is expressed using Bigraphical

abstractions? Such a system will then serve as a proof -of-concept that it is indeed possible to

undertake such a construction. This of course will be a constructive proof of existence.

We now discuss the various aspects of the Bigraphical model at runtime that we have

constructed. This construction serves as a proof-of-concept that such a system can be designed,

implemented and run.

232

7.2.1.1 USING BIGRAPHS TO CONSTRUCT A MODEL AT RUNTIME

1) Instead of using Bigraphs to model systems for simulation, we have used Bigraphs to express

a model that is causally connected to a running system. This causal connection is established by

associating Bigraphical reaction rules with system events corresponding to ‘Observed effects’ of

Chan et al.(Chan et al., 2007b) in Section 4.4.2.5. Moreover, we have also associated input

events with adaptation commands to be sent back to the system (Section 5.2.3).

2) We have discussed the techniques to use Bigraphical abstractions mapped to a programming

language to model at runtime a real-world system. Our contribution has been to show a way to

take adaptation decisions at runtime based on the current configuration of the two layers

expressed in Bigraphical abstractions mapped to MiniML (Section 5.4). Moreover, modeling

reconfigurations through reaction rules has enabled us to handle run-time complexity by having

a few rules intensionally construct the set of infinitely many possible re-configurations of the

system (Sections 4.4.1 and 4.4.2).

3) We have shown a way Bigraphical abstractions can be used to implement standard system

techniques like caching, delayed-write, pre-fetching. Our insight is that a model at runtime

expressed with Bigraphs can be used as a software cache to store pre-fetched location and id of

devices, which are offering backup of those services that are participating in the composition

(Section 4.4). The Bigraphical model also caches the current state of the service composition.

Using a model at run time in such a way forms the core of our strategy to deal with volatility.

Furthermore, we show how to use reaction rules to deal with the arbitrary order of runtime

events. This is possible because reaction rules can be fired in any arbitrary order in our system

(Section 5.4).

7.2.1.2 THE APPROPRIATE BIGRAPH ABSTRACTIONS TO TACKLE

MODELS AT RUNTIME’S RESEARCH QUESTIONS

1) We have shown how a runtime model can provide a means to store and retrieve information

about the environment and the system. We achieve this by representing two views of the system

in two layers of our Bigraphical model. The WORLD layer caches the location of devices

(Section 4.4.1). The Service Composition Architecture (SCA) layer models the structure of the

composition and the state of each service participating in it (Section 4.4.2).

2) To facilitate adaptation, we have demonstrated how a Bigraphical model at runtime can

provide a representation of the current state and reconfiguration rules. The state of our two-

layered Bigraphical model represents the current state of the system. Reaction rules at the SCA

233

layer model the internal state changes in the composition (Section 4.4.2). Reaction rules at the

WORLD layer model the changes in the state of the external environment due to volatility

(Section 4.4.1).

3) We have described how a runtime model can enable us to reason about operating

environment and runtime behaviour to determine an appropriate form of adaptation. This is

achieved by querying the WORLD layer of our Bigraphical model at runtime for information

about the operating environment (Section 5.3.2). Similarly, we can query the SCA layer of our

Bigraphical model about the runtime behaviour by retrieving the state of any service of the

composition (Section 5.3.2). This information about the WORLD and SCA layer can then be

used by our system to choose what to do next (Section 5.4). Notice however as we show in the

last chapter, it is not possible for the information to be up-to-date given the current

implementation of the BPL Tool’s matching algorithm.

4) We have shown how a runtime model can provide meta-information along the following two

dimensions: a) efficient use of time, b) location dependency. For providing meta-information so

as to make efficient use of time, we use a pre-fetching strategy to cache locations of services’

devices in our Bigraphical runtime model before they stop working (Section 4.3 and Section

4.4). These cached locations of devices constitute the necessary meta-information. For

providing meta-information to deal with location dependency of services, we store the location

of services in the WORLD layer of our Bigraphical model that can capture the containment

topology of the shopping mall (Section 4.4.1). These cached locations of services constitute the

necessary meta-information.

5) We have shown a way to combine two models of runtime into one. When an event occurs at

the SCA layer through the triggering of a Bigraphical reaction rule of that layer, a corresponding

Bigraphical reaction rule is triggered at the WORLD layer (Section 4.4). The two models are

required because for the same system, we need to manage two separate concerns- the internal

structure of the service composition and the external environment in which the composition is

running. Each of the two concerns is modelled separately by the two models of runtime.

6) We have shown a way to select one appropriate adaptation command out of many such

commands at runtime. We use Bigraphical reaction rules to transform a malfunctioning service

composition back into a working one. Each of the reaction rules that changes any

malfunctioning state of a service back into the ‘Working’ state corresponds to an adaptation

command sent back to the running system (Section 5.2, Section 5.4).

We have now shown why this thesis has successfully answered the research question posed in

Chapter 3, section 3.2 using the first evaluation criteria.

234

7.2.2 USING THE SECOND DIMENSION OF OUR EVALUATION CRITERIA

TO TEST IF OUR RESEARCH QUESTION HAS BEEN ANSWERED

The second dimension of our evaluation criteria as discussed in Chapter 3 was:

Can such a Bigraphical model at runtime be in-sync with the real world in terms of the time it

takes to respond to the events that are being generated in the real world? Or if they are not in-

syc, why not? One of the ways we could do this is by building a test-rig, which will load our

Bigraphical model at run time with appropriate events and measure its response times.

As discussed in Chapter 6, we designed a test rig where an Android machine running

simulations based on Galati et. al.’s Shopping Mall Mobility model (Galati et al., 2013)

generated workload events. These events were sent over a TCP connection to our Bigraphical

model at runtime executing on a laptop. The Bigaphical model at runtime responded by sending

appropriate commands back to the Android machine.

This test rig ran our simulation experiments that have established the following within

experimental limits:

i. Response times of our Bigraphical model at runtime increase exponentially as we

increase the number of Bigraphical nodes of the model.

ii. The necessary and sufficient cause for such an exponentially increasing running time in

our model is the naïve handling of the decomposition of the Bigraphical prime product

children of a node by the BPL Tool’s matching algorithm.

The experimental limits were as follows:

i. In our simulations, the distribution of the timings of appearance and disappearance of

services was not based on any real-life data.

ii. The laptop that we used to run our Bigraphical model at runtime was old and slow and

so our system stopped responding too easily.

Notwithstanding these limitations, given the current implementation of the BPL tool, we

concluded in Chapter 6 that the Bigraphical model at runtime would not be in-sync with the real

world for realistic scenarios if Bigraphical nodes have children that are placed side-by-side.

Some other external factors effecting a service composition running on a mobile device were

not considered. This was because the scope of the thesis was limited only to delays resulting

from our implementation of the Bigraphical model at runtime using the BPL Tool. Some of

these unconsidered factors include: delays in discovery of services, the radio communication

235

used, the pattern of mobility, the radio communication used, and the physical characteristics of

the settings etc.

7.3 CONTRIBUTIONS TO KNOWLEDGE

Our contributions to knowledge stem from answering our research question as discussed in the

previous section. In particular the ideas embodied in our implementation of the model at

runtime with Bigraphs constitute our contribution. Also, our implementation has led to a

qualitatively increased understanding of how to use Bigraphs in a practical application and how

to design a model at runtime for a volatile system.

We now discuss the contributions in detail:

1) This thesis responds to a call by Robin Milner (Milner, 2009) to explore the appropriateness

of using Bigraphs in practical applications. We have constructed a model at runtime with

Bigraphs. In particular our contributions are:

a) We have shown that Bigraphs can express models at runtime that are causally

connected to a running system. In other work, Bigraphs have been used for simulation.

b) We have shown that Bigraph’s reaction rules can be used to model runtime complexity

by having a few rules intensionally construct the set of infinitely many possible re-

configurations of the system. Dealing with infinitely many possible re-configurations

of the system in this manner helps us in avoiding the inherent state-space explosion

problem associated with Morin’s (Morin et al., 2008) work where infinite variants of a

model are needed to represent infinitely large possible model states.

c) We have shown a way Bigraphical abstractions can be used to implement standard

system techniques like caching and pre-fetching. Such usage of Bigraphs is a novel

contribution to the debate in the research community about Bigraphs’ practicability.

2) This thesis also responds to the research questions posed by the models at runtime

community at the Dagstuhl seminar (Aßmann et al., 2012) by offering Bigraphical language

abstractions as an appropriate solution. In particular, to the best of our knowledge, we have

demonstrated for the first time the following:

a) The use of Bigraphs to express a runtime model that provides a means to store and

retrieve information about the environment and the system.

b) The use of Bigraphs to express a runtime model to facilitate adaptation by providing a

representation of the current state and reconfiguration rules.

236

c) How a runtime model expressed with Bigraphs can enable us to reason about the

operating environment and runtime behaviour to determine an appropriate form of

adaptation.

d) The use of a runtime model expressed with Bigraphs that can provide meta-information

along the following two dimensions: i) efficient use of time, ii) location dependency.

e) The use of Bigraphs to combine two models of runtime into one.

f) The use of Bigraphical reaction rules to select one appropriate adaptation command out

of many such commands at runtime.

3) The general lessons learnt from using Bigraphs for a practical application such as a model at

runtime are (because these are generalisations, by definition they are speculative and need

further research):

a) We have used the reaction rules of Bigraphs to model transformation of one

architectural configuration to another. This is one of the many ways in which rules are

used in a rule-based programming language (Wagner et al., 2004). More generally

therefore, Bigraphs can perhaps be used as a basis for designing rule-based

programming language for example in reasoning and machine learning systems. This is

unlike the way reaction rules are used traditionally in process algebras as specifications

for their semantics and needs further investigation.

b) We have modelled the environment view in the WORLD layer and the system view in

the SCA layer of our Bigraphical model at runtime. Therefore, in general, Bigraphs can

perhaps be investigated for knowledge representation of the environment and the

system. That is to say, a structured representation (Russell and Norvig, 2010) of the

state of the environment and system might be possible with Bigraphs where a state

includes objects with attributes linked to other objects.

c) We have demonstrated that it is possible to implement a system expressed in Bigraphs

without appealing to the underlying mathematical theory by using the BPL Tool’s API

as an interface to Bigraphs. As a programmer, we didn’t need to worry about the

mathematically correct implementations of those BPL interfaces. Therefore, the use of

Bigraphs can perhaps gain acceptance in the larger programming community. As Parnas

points out, mathematical nature of formal theory is often perceived by software

developers as useless (Parnas, 2010):

“..most software developers perceive formal methods as useless theory that has no

connection with what they do. There is no quicker way to lose the attention of a room

full of programmers than to show them a mathematical formula. Developers see the

need for improvement and will try almost any new method-provided it does not look like

mathematics”

237

4) The general lessons learnt from our experiences of designing models at runtime are (because

these are generalisations, by definition they are speculative and need further research):

a) The faults of service composition that our Bigraphical model at runtime needs to

respond to can occur in an order that might or might not follow a specific probability

distribution. In general, runtime phenomena are ill-structured in that there is no pre-

determined order of runtime events (Because reaction rules can be fired in any order,

they are an appropriate abstraction).

b) The configuration of a service composition can change infinitely many times at

runtime. Therefore, we have used reaction rules to intensionally generate these

reconfigurations. Thus, intensional techniques are a possible approach to express

infinite reconfigurations at runtime.

c) In our implementation, we have shown a way to meta-program the reaction rules

through abstraction by parameterisation so that matching algorithm of the tool returns a

single match giving us the ability to dynamically program the model at runtime. The

same meta-programming techniques have also been used by us to show a way to

generate infinitely many reaction rules at runtime from a single function. Moreover, we

show a way to query the Bigraph structure. In general therefore, languages used could

possibly support meta-programming to parametrize ,code, components etc. Also,

compositional query mechanisms similar to SQL could also be provided.

d) We have used our Bigraphical model at runtime to cache pre-fetched information. In

general, abstractions used to express models at runtime should be able to support

classic systems techniques to deal with high latency, low throughput and bottlenecks

(e.g. caching pre-fetched information).

e) Our implementation assumes that that there is an exception handling mechanism

associated with the service composition in a layer underneath our system. Within our

system boundary, we have modelled the effects of volatility on the service composition

that trigger those exception-handling mechanisms. Hence generally, volatility

management in runtime models could be factored out from the traditional exception

handling mechanisms and be dealt with at a higher level of abstraction.

f) In our system, each event (modeled by a reaction rule) that comes in is associated with

corresponding adaptation command that is produced by our system as output. Thus in

general, Bigraphs provide us with the useful abstraction of reaction rules that like our

implementation can be used to deal with complex runtime events and to associate

commands and policies with those events.

5) We have implemented the model at runtime using the BPL Tool (ITU, 2011). We suggest the

following enhancements for BPL Tool:

238

a) The BPL Tool’s matching algorithm has been written for correctness rather than

efficiency. This has meant an exponential increase in the response times of our system.

This increase is caused by a naïve handling of the decomposition of the prime product

children of a node by the matching algorithm of the BPL Tool. We suggest that this

problem with the prime product children be resolved.

b) It would be very useful if in-built functions in BGVal module are provided to modify,

traverse (e.g. findChild, findParent functions that we had to develop in our

implementation) and update Bigraphs that can then be used by programmers not

necessarily interested in the mathematical properties of the structure of the Bigraph.

c) We did not use links of Bigraphs as they are not supported by the tool’s matching

algorithm. The matching algorithm should support Bigraphs with links.

d) We have modelled runtime events in our implementation with Bigraphical reaction

rules. We have assumed that these events are inputted to our system serially. However,

runtime events can occur concurrently and the tool does not support concurrent firing of

the reaction rules. Therefore, concurrent access to Bigraph structures and support for

concurrent firing of reaction rules is needed for a runtime system.

Thus, we have now demonstrated that this thesis has made a significant contribution to

knowledge.

7.4 FUTURE WORK

Now that we have successfully demonstrated the appropriateness of using Bigraphs to express a

model at runtime to tackle the problem of volatility in a service composition running on a

mobile device, we discuss the future directions in which this thesis’s work can be taken.

1) Our architecture which supports a model at runtime and our choice of language-Bigraphs-

which is a meta-process algebra (Birkedal et al., 2006) shows a way in which we could

leverage the verification and validation framework for system assurance of self-adaptive

systems by Cheng et al. and Lemos et al. (Cheng et al., 2009, Lemos et al., 2012). Consider

Figure 7-1 which shows Cheng et. al.’s framework for adaptive system assurance. A system

transitions through a series of operational modes represented by index j. A system in an

operational mode j can undergo a sequence of adaptations. Each item in the sequence is

represented by a context-system state configuration. For example, (C + S)ji denotes the ith

combination of s context-system state. This state is part of a sequence where the sequence itself

depends of the requirements of system mode j. The transition tj0 represents context or system

changes. The model that corresponds to the configuration (C + S)ji is shown as Mji in the Figure

7-1. In the same figure, mji represents the evolution of a model from one configuration to

239

another. Each of this mji could possibly be represented by a reaction rule and a configuration of

the model could be represented by a Bigraphical structure.

FIGURE 7- 1 : VERIFICATION AND VALIDATION MODEL WHER E A SYSTEM IN

OPERATIONAL MODE j UNDERGOES A SEQUENCE OF ADAPTATIONS.

2) Our architecture paves the way to link an equivalence checker and a model checker (Perrone

et al., 2012) at the goal management layer (Kramer and Magee, 2007) to a runtime model at the

change management layer (Kramer and Magee, 2007). For example, we could pre-fetch only

those services, which have been checked to be ‘equivalent’ to the malfunctioning services using

equivalence checker. In this, we assume that when the service composition is formed outside

our system boundary and that it follows a specification that describes the participating services

formally. Also, we could verify before a fault occurs that the resulting service composition will

satisfy some desired property using the model checker and store this information as part of our

strategy of caching pre-fetched information. An issue that needs to be tackled is that of no

equivalent replacement services being available to replace a malfunctioning service. The

appropriate mechanisms and strategies to use equivalence checkers and model checkers in such

a situation needs to be investigated keeping in mind the inherent un-decidable nature of the

problem.

3) We need a way to compare performance of our implementation of a model at runtime with

others. To the best of our knowledge, no work has explored the issues that need to be addressed

for such a comparison. If our model at runtime is looked upon as black box where service

composition faults are input as events and appropriate adaptation commands are the output, then

we could define response time of our system as the time interval between inputting of events

and outputting of adaptation commands. When our model at runtime is operating at its capacity,

a queue of events will build up. An event’s waiting time could be estimated using queuing

theory (Saltzer and Kaashoek, 2009, Jain, 1991). In queuing theory, the time it takes to process

a request is called service time and the rate of arrival of requests for service is known as offered

Mj0 Mj1

mj0 mjk-1

(C+S)j0

Mjk

(C+S)j1 (C+S)jk

tj0 tjk-1

Pt
j0 Pt

jk-1

j-1 j+1

240

load. For a runtime model, we hypothesize that the event arrival distribution will be ‘bursty’

(Barabási, 2010). How the service time varies for different implementations of models at

runtime is a question for future work. A related issue is that of guaranteeing the timeliness of

the adaptation mechanisms to deal with a high rate of malfunctioning of services in a volatile

environment.

4) Similar to other systems like computer networks, we want our model at runtime to be

responsive (i.e. low response time) and stable (our model’s response should not go into

uncontrollable oscillations due to some inputs) (Keshav, 2012). Thus, in the terminology of

feedback control systems (Hellerstein et al., 2004), our model at runtime is the target system.

Feedback control theory defines control input to a target system as “a parameter that affects the

behavior of the target system and can be adjusted dynamically” (Hellerstein et al., 2004). A

disturbance input to a target system is defined as “any change that affects the way in which the

control input influences the measured output” (Hellerstein et al., 2004). Furthermore, a

measured output of the target system is defined as “a measurable characteristic of the target

system” (Hellerstein et al., 2004). Finally a noise input to a target system is defined as “any

effect that changes the measured output produced by the target system” (Hellerstein et al.,

2004).

We could define our control input as the number of cached services that we are maintaining in

the model at runtime for each service. We could vary the number of services that we pre-fetch

and cache. Also, our disturbance input could be the high rate of events (each event corresponds

to a fault in the service composition) our model at runtime should respond to. This is because

the control input i.e. the number of cached service would need to be increased for example if the

rate of events increased. Furthermore, our measured output could be our model’s response time.

Finally, the noise input to our model could be for example due to the varying number of other

applications besides the service composition that the user could be running on her mobile

device.

We could then use feedback control techniques to vary the number of services we are caching in

our model for each service depending on the number of events being inputted to our system.

How this usage of feedback control techniques results in maintaining our models at runtime’s

steady response rate is a question worth exploring for future work.

7.5 CONCLUDING REMARKS

In this thesis, we have demonstrated the appropriateness of the language abstractions of

Bigraphs to construct a model at runtime to tackle the problem of volatility in a service

241

composition running on a mobile device. We have shown how to express a model at runtime

with Bigraphs. Moreover, Bigraphical abstractions have been used by us to address the open

research questions being explored by the models at runtime community. Since we have shown a

way to use Bigraphs without appealing to the underlying mathematical concepts, it becomes

easier for the usage of Bigraphs to be accepted by a wider audience. Moreover, our work paves

the way for a further exploration of Bigraphical abstractions by the researchers working on

issues related to models at runtime. Finally, our work is a first step to show that Bigraphs can

survive serious experimental application as required by Milner (Milner, 2008b):

The Bigraphical model “is only a proposal; it can only become foundational model for

ubiquitous computing if it survives serious experimental application”.

242

BIBLIOGRAPHY

The following is the list of references used:

ACETO, L., INGÓLFSDÓTTIR, A., LARSEN, K. G. & SRBA, J. 2007. Reactive
systems: modelling, specification and verification, Cambridge University Press.

ALONSO, G., CASATI, F., KUNO, H. & MACHIRAJU, V. 2010. Web Services:
Concepts, Architectures and Applications, Springer Publishing Company,
Incorporated.

ALUR, R. & DILL, D. L. 1994. A theory of timed automata. Theor. Comput. Sci., 126,

183-235.
ANDERSSON, J., DE LEMOS, R., MALEK, S. & WEYNS, D. 2009. Modeling

dimensions of self-adaptive software systems. Software Engineering for Self-
Adaptive Systems, 27-47.

APACHE. 2014. Commons Math: The Apache Commons Mathematics Library [Online].
Available: http://commons.apache.org/proper/commons-math/ [Accessed July
2014].

ASSMAN, U., BENCOMO, N., CHENG, B. H. C. & FRANCE, R. B. 2012.
Models@run.time (Dagstuhl Seminar 11481) [Online]. Dagstuhl, Germany:
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik. Available:
http://drops.dagstuhl.de/opus/volltexte/2012/3379/ [Accessed 15 November
2012].

AVIZIENIS, A., LAPRIE, J. C., RANDELL, B. & LANDWEHR, C. 2004. Basic concepts
and taxonomy of dependable and secure computing. Dependable and Secure
Computing, IEEE Transactions on, 1, 11-33.

BARABÁSI, A. L. 2010. Bursts: The hidden pattern behind everything we do, EP
Dutton.

BARDRAM, J. & FRIDAY, A. 2010. Ubiquitous Computing Systems. In: KRUMM, J.

(ed.) Ubiquitous Computing Fundamentals

. 1 ed.: CRC Press.
BARNES, D. J. & KOLLING, M. 2013. Objects first with Java: A practical introduction

using Bluej, Pearson Prentice Hall London.
BARR, M. & WELLS, C. 1990. Category theory for computing science. Prentice-Hall,

212, 222.

BARROS, A., DUMAS, M. & TER HOFSTEDE, A. 2005. Service interaction patterns.
Business Process Management, 302-318.

BENCOMO, N. 2009. On the use of software models during software execution.
Proceedings of the 2009 ICSE Workshop on Modeling in Software Engineering.
IEEE Computer Society.

BENCOMO, N., GRACE, P., FLORES, C., HUGHES, D. & BLAIR, G. 2008. Genie.
Software Engineering, 2008. ICSE'08. ACM/IEEE 30th International Conference
on, 2008. IEEE, 811-814.

BENNACEUR, A., FRANCE, R., TAMBURRELLI, G., VOGEL, T., CAZZOLA, W.,
COSTA, F. M., PIERANTONIO, A., TICHY, M., AKSIT, M. &
EMMANUELSON10, P. 2014. Mechanisms for Leveraging Models at Runtime.

BIRKEDAL, L., DAMGAARD, T. C., GLENSTRUP, A. J. & MILNER, R. 2007. Matching
of Bigraphs. Electron. Notes Theor. Comput. Sci., 175, 3-19.

BIRKEDAL, L., DEBOIS, S., ELSBORG, E., HILDEBRANDT, T. & NISS, H. 2006.
Bigraphical models of context-aware systems. Foundations of Software Science
and Computation Structures, Proceedings, 3921, 187-201.

BLACKWELL, C. 2011. Formally modeling the electricity grid with bigraphs.
Proceedings of the Seventh Annual Workshop on Cyber Security and
Information Intelligence Research, 2011. ACM, 23.

http://commons.apache.org/proper/commons-math/
http://drops.dagstuhl.de/opus/volltexte/2012/3379/

243

BLAIR, G., BENCOMO, N. & FRANCE, R. B. 2009. Models@ run.time. Computer, 42,
22-27.

BRAMBILLA, M., CABOT, J. & WIMMER, M. 2012. Model-driven software engineering
in practice. Synthesis Lectures on Software Engineering, 1, 1-182.

BRONSTED, J., HANSEN, K. M. & INGSTRUP, M. 2010. Service composition issues
in pervasive computing. Pervasive Computing, IEEE, 9, 62-70.

CACERES, R. & FRIDAY, A. 2012. Ubicomp Systems at 20: Progress, Opportunities,
and Challenges. IEEE Pervasive Computing, 11, 14-21.

CALDER, M. & SEVEGNANI, M. 2012. Process algebra for event-driven runtime
verification: a case study of wireless network management. Integrated Formal
Methods, 2012. Springer, 21-23.

CAPORUSCIO, M., DI MARCO, A. & INVERARDI, P. 2007. Model-based system
reconfiguration for dynamic performance management. Journal of Systems and
Software, 80, 455-473.

CAZZOLA, W., GHONEIM, A. & SAAKE, G. 2004. Software Evolution through Dynamic
Adaptation of Its OO Design. Objects, Agents, and Features, 31-48.

CHAKRABORTY, D., JOSHI, A., FININ, T. & YESHA, Y. 2005. Service composition for
mobile environments. Mob. Netw. Appl., 10, 435-451.

CHAN, K. S., BISHOP, J., STEYN, J., BARESI, L. & GUINEA, S. 2007a. A Fault
Taxonomy for Web Service Composition. In: ELISABETTA, N. & MATEI, R.
(eds.) Service-Oriented Computing - ICSOC 2007 Workshops. Springer-Verlag.

CHAN, K. S. M., BISHOP, J., STEYN, J., BARESI, L. & GUINEA, S. 2007b. A Fault
Taxonomy for Web Service Composition. In: NITTO, E. & RIPEANU, M. (eds.)
Service-Oriented Computing - ICSOC 2007 Workshops. Springer Berlin
Heidelberg.

CHANG, Z., MAO, X. & QI, Z. 2007. An Approach based on Bigraphical Reactive
Systems to Check Architectural Instance Conforming to its Style. Theoretical
Aspects of Software Engineering, 2007. TASE'07. First Joint IEEE/IFIP
Symposium on, 2007. IEEE, 57-66.

CHANG, Z., MAO, X. & QI, Z. 2008a. Formal analysis of architectural policies of self-
adaptive software by bigraph. Young Computer Scientists, 2008. ICYCS 2008.
The 9th International Conference for, 2008a. IEEE, 118-123.

CHANG, Z., MAO, X. & QI, Z. 2008b. Towards a Formal Model for Reconfigurable
Software Architectures by Bigraphs. Proceedings of the Seventh Working
IEEE/IFIP Conference on Software Architecture (WICSA 2008). IEEE Computer
Society.

CHENG, B. H., EDER, K. I., GOGOLLA, M., GRUNSKE, L., LITOIU, M., MÜLLER, H.
A., PELLICCIONE, P., PERINI, A., QURESHI, N. A. & RUMPE, B. 2014. Using
Models at Runtime to Address Assurance for Self-Adaptive Systems. Models@
run. time. Springer.

CHENG, B. H., ROG, LEMOS, R., GIESE, H., INVERARDI, P., MAGEE, J.,
ANDERSSON, J., BECKER, B., BENCOMO, N., BRUN, Y., CUKIC, B.,
SERUGENDO, G. M., DUSTDAR, S., FINKELSTEIN, A., GACEK, C., GEIHS,
K., GRASSI, V., KARSAI, G., KIENLE, H. M., KRAMER, J., LITOIU, M.,
MALEK, S., MIRANDOLA, R., M, H. A., #252, LLER, PARK, S., SHAW, M.,
TICHY, M., TIVOLI, M., WEYNS, D. & WHITTLE, J. 2009. Software
Engineering for Self-Adaptive Systems: A Research Roadmap. In: BETTY, H.
C., ROG, RIO, L., HOLGER, G., PAOLA, I. & JEFF, M. (eds.) Software
Engineering for Self-Adaptive Systems. Springer-Verlag.

CHEVERST, K., DAVIES, N., MITCHELL, K. & FRIDAY, A. 2000. Experiences of
developing and deploying a context-aware tourist guide: the GUIDE project.
Proceedings of the 6th annual international conference on Mobile computing
and networking. Boston, Massachusetts, United States: ACM.

COULOURIS, G. F. 2012. Distributed systems : concepts and design, Boston, Mass. ;
London, Addison-Wesley.

244

CRAWSHAW, J. & CHAMBERS, J. 2001. A concise course in advanced level
statistics: with worked examples, Nelson Thornes.

CURBERA, F. 2007. Component Contracts in Service-Oriented Architectures.
Computer, 40, 74-80.

DAMGAARD, T. C. & BIRKEDAL, L. 2006. Axiomatizing binding bigraphs. Nordic J. of
Computing, 13, 58-77.

DEBOIS, S. & DAMGAARD, T. C. 2005. Bigraphs by example. Technical Report TR-
2005-61. IT University of Copenhagen.

DESHPANDE, A., GOLLU, A. & SEMENZATO, L. 1998. The SHIFT programming
language for dynamic networks of hybrid automata. Automatic Control, IEEE
Transactions on, 43, 584-587.

DOWLING, J. & CAHILL, V. 2001. The k-component architecture meta-model for self-
adaptive software. Metalevel Architectures and Separation of Crosscutting
Concerns, 81-88.

ELKHODARY, A., MALEK, S. & ESFAHANI, N. 2009. On the Role of Features in
Analyzing the Architecture of Self-Adaptive Software Systems. 4th Workshop
on Models@ run. time, MODELS, 2009.

ELSBORG, E. 2009. Bigraphs:Modelling, Simulation, andType Systems : On Bigraphs
for Ubiquitous Computing and on Bigraphical Type Systems. Doctor of

Philosophy, IT University of Copenhagen.

FERRY, N., HOURDIN, V., LAVIROTTE, S., REY, G., TIGLI, J. Y. & RIVEILL, M. 2009.
Models at Runtime: Service for Device Composition and Adaptation.

FLOCH, J., HALLSTEINSEN, S., STAV, E., ELIASSEN, F., LUND, K. & GJORVEN, E.
2006. Using architecture models for runtime adaptability. Software, IEEE, 23,

62-70.
FRANCE, R. & RUMPE, B. 2007. Model-driven Development of Complex Software: A

Research Roadmap. 2007 Future of Software Engineering. IEEE Computer
Society.

FREDJ, M., GEORGANTAS, N. & ISSARNY, V. 2006. Adaptation to Connectivity Loss
in Pervasive Computing Environments. Proceedings of the 4th MiNEMA
Workshop,2006.

GALATI, A., DJEMAME, K. & GREENHALGH, C. 2013. A mobility model for shopping
mall environments founded on real traces. Networking Science, 2, 1-11.

GARDNER, M. 1970. Mathematical games: The fantastic combinations of John
Conway’s new solitaire game “life”. Scientific American, 223, 120-123.

GARLAN, D., CHENG, S. W., HUANG, A. C., SCHMERL, B. & STEENKISTE, P. 2004.
Rainbow: Architecture-based self-adaptation with reusable infrastructure.
Computer, 37, 46-54.

GARLAN, D. & SCHMERL, B. 2004. Using architectural models at runtime: Research
challenges. Software Architecture, 200-205.

GASEVIC, D. 2006. Model driven architecture and ontology development, New York,
Springer.

GAŠEVIĆ, D., DJURIĆ, D., DEVEDZIC, V. & GAŠEVIĆ, D. 2009. Model driven
engineering and ontology development, Dordrecht ; New York, Springer.

GELERNTER, D. 1985. Generative communication in Linda. ACM Trans. Program.
Lang. Syst., 7, 80-112.

GEORGAS, J. C., VAN DER HOEK, A. & TAYLOR, R. N. 2009. Using architectural
models to manage and visualize runtime adaptation. Computer, 42, 52-60.

GHEZZI, C., JAZAYERI, M. & MANDRIOLI, D. 2002. Fundamentals of software
engineering, Prentice Hall PTR.

GILAT, A. 2009. MATLAB: An introduction with Applications, John Wiley & Sons.
GJERLUFSEN, T., INGSTRUP, M. & OLSEN, J. W. 2009. Mirrors of meaning:

Supporting inspectable runtime models. Computer, 42, 61-68.

245

GREENHALGH, C. 2009a. Bigraph Cookbook: modelling with bigraphs [Online].
Available:
http://bigraphspace.svn.sourceforge.net/viewvc/bigraphspace/bigraphspace/doc
s/Bigraph_Cookbook.html [Accessed 15 August 2012].

GREENHALGH, C. 2009b. Bigraphspace Tutorial [Online]. Available:
http://bigraphspace.svn.sourceforge.net/viewvc/bigraphspace/bigraphspace/doc
s/Tutorial.html [Accessed 15 August 2012].

GREENHALGH, C., LOGAN, B. & MADDEN, N. 2009. Bigraphspace: authoring
ubiquitous experiences with bigraphs. Workshop on Formal Approaches to
Ubiquitous Systems (FAUSt 2009). London.

HELAL, S. 2010. The Landscape of Pervasive Computing Standards, Morgan and
Claypool Publishers.

HELLERSTEIN, J., PAREKH, S., DIAO, Y. & TILBURY, D. M. 2004. Feedback control
of computing systems, Wiley-IEEE Press.

HENSON, M., DOOLEY, J., AL GHAMDI, A. A. M. & WHITTINGTON, L. 2012.Towards
Simple and Effective Formal Methods for Intelligent Environments. Intelligent
Environments (IE), 2012 8th International Conference on, 2012. IEEE, 251-258.

HIRSCH, D., KRAMER, J., MAGEE, J. & UCHITEL, S. 2006. Modes for software
architectures. Software Architecture, 4344, 113-126.

HØJSGAARD, E. 2011. Bigraphical Languages and their Simulation. Doctor of

Philosophy, IT University of Copenhagen.

HOURDIN, V., TIGLI, J. Y., LAVIROTTE, S., REY, G. & RIVEILL, M. 2008. SLCA,
composite services for ubiquitous computing. Proceedings of the International
Conference on Mobile Technology, Applications, and Systems, 2008. ACM, 11.

HUAI-GUANG, W., GUO-QING, W. & LI, W. 2010. Bigraphical model of service
composition in ubiquitous computing environments. Environmental Science
and Information Application Technology (ESIAT), 2010 International
Conference on, 2010. IEEE, 658-662.

ITU. 2007a. BPL Tool Architecture [Online]. Available:
http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool_Architecture [Accessed
9th August 2012].

ITU. 2007b. ML implementation of BPL

 [Online]. Available: http://www.itu.dk/research/theory/bpl/doc/ml/doc/kernel/ [Accessed

9th August

 2012].
ITU. 2008. A Brief Introduction To Bigraphs [Online]. Available:

http://www.itu.dk/research/pls/wiki/index.php/A_Brief_Introduction_To_Bigraphs
[Accessed 15 September 2012].

ITU. 2011. BPL Tool for Developers [Online]. Available:

http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool_For_developers

 [Accessed 9th August 2012].
JAIN, R. 1991. The art of computer systems performance analysis, John Wiley & Sons

New York.
JENSEN, O. H. 2006. Mobile processes in bigraphs. Unpublished monograph.

http://www. cl. cam. ac. uk/rm135/Jensen-monograph. pdf (October 2006).
JENSEN, O. H. & MILNER, R. 2003. Bigraphs and transitions. Acm Sigplan Notices,

38, 38-49.

JENSEN, O. H. & MILNER, R. 2004. Bigraphs and Mobile Processes. Technical Report
UCAM-CL-TR-580

. Cambridge: University of Cambridge – Computer Laboratory.
JGRAPHT. 2014. JGraphT [Online]. Available: http://jgrapht.org/ [Accessed July 2014].

http://bigraphspace.svn.sourceforge.net/viewvc/bigraphspace/bigraphspace/docs/Bigraph_Cookbook.html
http://bigraphspace.svn.sourceforge.net/viewvc/bigraphspace/bigraphspace/docs/Bigraph_Cookbook.html
http://bigraphspace.svn.sourceforge.net/viewvc/bigraphspace/bigraphspace/docs/Tutorial.html
http://bigraphspace.svn.sourceforge.net/viewvc/bigraphspace/bigraphspace/docs/Tutorial.html
http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool_Architecture
http://www.itu.dk/research/theory/bpl/doc/ml/doc/kernel/
http://www.itu.dk/research/pls/wiki/index.php/A_Brief_Introduction_To_Bigraphs
http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool_For_developers
http://www/
http://jgrapht.org/

246

JOHNSON, M. 1987. The body in the mind: The bodily basis of meaning, imagination,
and reason, University of Chicago Press.

KESHAV, S. 2012. Mathematical Foundations of Computer Networking, Addison-
Wesley Professional.

KRAMER, J. & MAGEE, J. 2007. Self-Managed Systems: an Architectural Challenge.
2007 Future of Software Engineering. IEEE Computer Society.

LEE, W.-M. 2013. Android Application Development Cookbook [Online]. John Wiley &
Sons, Inc. Available: http://www.wrox.com/WileyCDA/WroxTitle/Android-
Application-Development-Cookbook-93-Recipes-for-Building-Winning-
Apps.productCd-1118177673,descCd-DOWNLOAD.html [Accessed 15 January
2014].

LEMOS, R. D., GIESE, H., MÜLLER, H. A., SHAW, M., ANDERSSON, J., BARESI, L.,
BECKER, B., BENCOMO, N., BRUN, Y., CUKIC, B., DESMARAIS, R.,
DUSTDAR, S., ENGELS, G., GEIHS, K., GOESCHKA, K. M., GORLA, A.,
GRASSI, V., INVERARDI, P., KARSAI, G., KRAMER, J., LITOIU, M., LOPES,
A., MAGEE, J., MALEK, S., MANKOVSKII, S., MIRANDOLA, R.,
MYLOPOULOS, J., NIERSTRASZ, O., PEZZÈ, M., PREHOFER, C.,
SCHÄFER, W., SCHLICHTING, R., SCHMERL, B., SMITH, D. B., SOUSA, J.
P., TAMURA, G., TAHVILDARI, L., VILLEGAS, N. M., VOGEL, T., WEYNS, D.,
WONG, K. & WUTTKE, J. 2012. Software engineering for self-adaptive
systems: A second research roadmap. In: LEMOS, R. D., GIESE, H., MÜLLER,
H. A. & SHAW, M. (eds.) Software Engineering for Self-Adaptive Systems II.
Springer-Verlag.

LISKOV, B. & GUTTAG, J. 2000. Program development in JAVA: abstraction,
specification, and object-oriented design, Pearson Education.

MAGEE, J., DULAY, N., EISENBACH, S. & KRAMER, J. 1995. Specifying Distributed
Software Architectures. Proceedings of the 5th European Software Engineering
Conference. Springer-Verlag.

MARINO, J. & ROWLEY, M. 2010. Understanding SCA (Service Component
Architecture), Upper Saddle River, NJ, Addison-Wesley.

MCKINLEY, P. K., SADJADI, S. M., KASTEN, E. P. & CHENG, B. H. C. 2004.
Composing Adaptive Software. Computer, 37, 56-64.

MILNER, R. 1999. Communicating and mobile systems: the pi calculus, Cambridge
university press.

MILNER, R. 2004a. Bigraphs for Petri nets. Lectures on Concurrency and Petri Nets,

161-191.
MILNER, R. 2004b. Bigraphs whose names have multiple locality. Technical report,

University of Cambridge Computer Laboratory.
MILNER, R. 2006a. Pure bigraphs: Structure and dynamics. Information and

computation, 204, 60-122.
MILNER, R. 2006b. Ubiquitous Computing: Shall we Understand It? Comput. J., 49,

383-389.
MILNER, R. 2008a. Bigraphs and Their Algebra. Electron. Notes Theor. Comput. Sci.,

209, 5-19.

MILNER, R. 2008b. Lecture notes on Bigraphs: a Model for Mobile Agents [Online].
Available: http://www.cl.cam.ac.uk/archive/rm135/Bigraphs-Notes.pdf
[Accessed 15th November 2012].

MILNER, R. 2009. The space and motion of communicating agents, Cambridge New
York, Cambridge University Press.

MORIN, B., BARAIS, O., JÉZÉQUEL, J. M., FLEUREY, F. & SOLBERG, A. 2009.
Models@ run. time to support dynamic adaptation. Computer, 42, 44-51.

MORIN, B., FLEUREY, F., BENCOMO, N., JEZEQUEL, J. M., SOLBERG, A.,
DEHLEN, V. & BLAIR, G. 2008. An Aspect-Oriented and Model-Driven
Approach for Managing Dynamic Variability. Model Driven Engineering
Languages and Systems, Proceedings, 5301, 782-796.

http://www.wrox.com/WileyCDA/WroxTitle/Android-Application-Development-Cookbook-93-Recipes-for-Building-Winning-Apps.productCd-1118177673,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Android-Application-Development-Cookbook-93-Recipes-for-Building-Winning-Apps.productCd-1118177673,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Android-Application-Development-Cookbook-93-Recipes-for-Building-Winning-Apps.productCd-1118177673,descCd-DOWNLOAD.html
http://www.cl.cam.ac.uk/archive/rm135/Bigraphs-Notes.pdf

247

OMG. 2011. Meta Object Facility Core Specification OMG [Online]. Available:
http://www.uml3.ru/library/uml_spec/mof.pdf [Accessed November 2014.

OREIZY, P., GORLICK, M. M., TAYLOR, R. N., HEIMHIGNER, D., JOHNSON, G.,
MEDVIDOVIC, N., QUILICI, A., ROSENBLUM, D. S. & WOLF, A. L. 1999. An
architecture-based approach to self-adaptive software. Intelligent Systems and
Their Applications, IEEE, 14, 54-62.

PAPAZOGLOU, M. P., TRAVERSO, P., DUSTDAR, S. & LEYMANN, F. 2007. Service-
Oriented Computing: State of the Art and Research Challenges. Computer, 40,
38-45.

PARNAS, D. L. 2010. Really rethinking'formal methods'. Computer, 43, 28-34.

PEREIRA, E., KIRSCH, C. & SENGUPTA, R. 2012. BiAgents-A Bigraphical Agent
Model for Structure-Aware Computation [Online]. Available:
http://cpcc.berkeley.edu/papers/paperBiagents12.pdf [Accessed 1 October
2012].

PERRONE, G., DEBOIS, S. & HILDEBRANDT, T. T. 2012. A model checker for
Bigraphs. Proceedings of the 27th Annual ACM Symposium on Applied
Computing, 2012. ACM, 1320-1325.

POLYVYANYY, A., SMIRNOV, S. & WESKE, M. 2008. Process Model Abstraction: A
Slider Approach. Proceedings of the 2008 12th International IEEE Enterprise
Distributed Object Computing Conference. IEEE Computer Society.

POSLAD, S. 2009. Ubiquitous Computing: Smart Devices, Environments and
Interactions, Wiley Publishing.

RAMIREZ, A. J. & CHENG, B. H. C. 2009. Evolving models at run time to address
functional and non-functional adaptation requirements. 4 th Workshop on
Models@ run. time at MODELS 09, 2009.

RUSSELL, S. J. & NORVIG, P. 2010. Artificial intelligence: a modern approach,
Prentice hall Upper Saddle River, NJ.

SALTZER, J. H. & KAASHOEK, M. F. 2009. Principles of Computer System Design: An
Introduction, Morgan Kaufmann Publishers Inc.

SCHMIDT, D. C. 2006. Guest Editor's Introduction: Model-Driven Engineering.
Computer, 39, 25-31.

SEVEGNANI, M. & CALDER, M. 2010. Bigraphs with sharing. University of Glasgow,
Tech. Rep.

SOMMERVILLE, I. 2011. Software engineering, Boston ; London, Pearson.
SVENTEK, J., KOLIOUSIS, A., SHARMA, O., DULAY, N., PEDIADITAKIS, D.,

SLOMAN, M., RODDEN, T., LODGE, T., BEDWELL, B. & GLOVER, K. 2011.
An information plane architecture supporting home network management.
Integrated Network Management (IM), 2011 IFIP/IEEE International Symposium
on, 2011. IEEE, 1-8.

SYKES, D., HEAVEN, W., MAGEE, J. & KRAMER, J. 2008. From goals to
components: a combined approach to self-management. Proceedings of the
2008 international workshop on Software engineering for adaptive and self-
managing systems, 2008. ACM, 1-8.

ULLMAN, J. D. 1998. Elements of ML Programming: ML97 Edition, Prentice Hall.
WADDINGTON, D. & LARDIERI, P. 2006. Model-centric software development. IEEE

Computer, 39, 28-29.

WAGNER, G., ANTONIOU, G., TABET, S. & BOLEY, H. 2004. The abstract syntax of
RuleML-towards a general web rule language framework.

WALTON, L. & WORBOYS, M. 2009. An algebraic approach to image schemas for
geographic space. Spatial Information Theory, 357-370.

WALTON, L. & WORBOYS, M. 2012. A Qualitative Bigraph Model for Indoor Space.
Geographic Information Science, 226-240.

WANG, J. S., XU, D. & LEI, Z. 2011. Formalizing the Structure and Behaviour of
Context-Aware Systems in Bigraphs. Software and Network Engineering
(SSNE), 2011 First ACIS International Symposium on, 2011. IEEE, 89-94.

http://www.uml3.ru/library/uml_spec/mof.pdf
http://cpcc.berkeley.edu/papers/paperBiagents12.pdf

248

WANG, L., ZHANG, G., ZHU, J. & WU, J. 2010. A method for modeling aspect-oriented
dynamic software architecture. Computer Science and Education (ICCSE),
2010 5th International Conference on, 2010. IEEE, 85-90.

WEISER, M. 1999. The computer for the 21st century. SIGMOBILE Mob. Comput.
Commun. Rev., 3, 3-11.

XU, D. Z., XU, D. & LEI, Z. 2011. Bigraphical Model of Context-Aware in Ubiquitous
Computing Environments. Services Computing Conference (APSCC), 2011
IEEE Asia-Pacific, 2011. IEEE, 389-394.

XUE, G., KONG, H., LIU, X. & YAO, S. 2009. Modeling Service Interactions in Term of
Bigraphs. New Trends in Information and Service Science, 2009. NISS'09.
International Conference on, 2009. IEEE, 117-122.

XUE, G., ZHANG, K., YANG, J. & YAO, S. 2011. Plain abstraction of business process
model. Computer Sciences and Convergence Information Technology (ICCIT),
2011 6th International Conference on, 2011. IEEE, 338-341.

ZHAI, H., ZHANG, W., CUI, L., LIU, H. & ABRAHAM, A. 2011a. A Bigraph Model for
Multi-route Choice in Urban Rail Transit. Communication Systems and Network
Technologies (CSNT), 2011 International Conference on, 2011a. IEEE, 699-
703.

ZHAI, H., ZHANG, W., CUI, L., SHI, J. & LI, H. 2011b. Toward formal description to
metro services mechanism based on bigraph models. Soft Computing and
Pattern Recognition (SoCPaR), 2011 International Conference of, 2011b. IEEE,
285-289.

ZHAI, H., ZHANG, W., CUI, L., XIE, X. & ZHANG, X. 2011c. High-confidence
petroleum industrial critical systems research based on bigraphical models.
Soft Computing and Pattern Recognition (SoCPaR), 2011 International
Conference of, 2011c. IEEE, 290-295.

ZHANG, M., SHI, L., ZHU, L., WANG, Y., FENG, L. & PU, G. 2008. A Bigraphical
Model of WSBPEL. Proceedings of the 2008 2nd IFIP/IEEE International
Symposium on Theoretical Aspects of Software Engineering. IEEE Computer

Society.

	DPhil Coversheet
	Krishna, Renan

