University of Sussex

A University of Sussex DPhil thesis
Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Constructing
Runtime Models
with Bigraphs to
Address
Ubiquitous
Computing Service
Composition
Volatility

Submitted for the Degree of Doctor of Philosophy, University of
Sussex, November 2014

Dedicated to the memory of my father late Professor M.M. Krishna

TABLE OF CONTENTS

(D] Tod Fo T =1 (1o] ISR PUPP PR 3
ACKNOWIEAGEIMENLS ...ttt ettt sab e e sab e e s bn e e anneas 8
0153 = Uod SRR 9
(TS Ao {10 U =R EPS 10
LISt OF tADIES ... 17
1 INETOAUCTION ...t e e s e e e 18
1.1 The context of our Study: @ SCENAIIOccceicvviieiiie e 18
1.2. The researCh qQUESTIONcooiiiiiiii e e 19
1.3. Applications of Bigraphs and model at runtimeccccceeviiieee e 19
1.4. Overview of the main CONIDULIONSoouiiiiiiiiie e 20
1.5 TRESIS STIUCTUIE......eiiiiiiiiiiii ettt et ne e e sanees 20

P = - o] (o] {011 g T TR OPRR 22
P20 R 101 1o o (U1 1 o] o R TP PRROPPR 22
2.2 Bigraphs: @ NEW IaNQUATEceiiiiiiiieieiiiie ettt 22
2.2.1 Explanatory background for Bigraphs..........ccccceiieiiiiiiiiiie e 23
2.2.2 What is being modelled with Bigraphsccccccooviiiiiieiiie e, 44
2.2.3 0Open researCh qUESTIONScoiieiiiiiiiicee e e e 54
2.2.4 OUr take-0Off POINT......cooiiiiiii e 54
2.2.5 SECHON SUMIMAIY.....ceiiieiiiiiiiiiiiiee e e e e e e s eeirtrrr e e e e e s s st resaaeaeessasntrreeeeaaeeeeanns 55

2.3 Models at runtime: a NeW arChiteCturecccooiveeiiiee i 55
2.3.1 Explanatory background for models at runtimecccceeviveeeiiieeeeenee 56

2.3.2 Using architectural models at runtime to support dynamic adaptation and

SOFtWAIE EVOIULION ...ttt 59
2.3.3 Open research questions for models at runtime...........cccccceeeciveeeicieneeennee, 64
2.3.4 OUr taKe-Off POINT......cciiiiiiie e 65
2.3.5 SECHON SUMMANY.......ooiiiiiiiiie ettt e e e e et e e e e s atae e e e e enbaeaeeennnes 65

2.4 Volatility: the example Propertyccceeeeeie i 66

2.5 Ubiquitous computing system service composition faults: the example system

[S10] o] (T3 TP PR RPN 67
2.6 CONCIUSIONS.......eiiiiiie ittt e e e e enn e e e e e e 71
3 The research question and its design Implicationsccccoeeriiiie e, 72
KIS/ R 111 o To L8 o] 1o o ISP OPPR 72
3.2 Defining the research qUESTIONcocuiiiiiiiiii e 72
3.2.1 Caveats on the scope of the research quUEStIONccceeeeiiiieciciiiieeen, 74
3.2.2 Evaluation criteria to test if our research question has been answered......74
3.2.3 The take-0off POINt........uuiiiiiiii i 75
3.2.4 Applications of Bigraphs and models at runtimecccccceeeeiiiciiivneenn.n. 76
3.2.5 SECHON SUMMIAIY....cciiiiiieeiiiiiiieeeiieee e e s steee e e assbeeae s sbaeeeessssaeeeesssnseaesensseeeeaans 77
3.3 Requirements fOr eSIgN.......cccoiiiiie e e e e e s snraeeeeans 78
3.3.1 Volatile systems: an operational point Of VIEWccccovveriniieiniieeniieeee 78
3.3.2 Reconfiguration cycle that needs to be supported by the architecture 79
3.3.3 SECHON SUMMIAIY......eiiitiieiiiieeieeeeiee e et e et e e s e iee e ansr e e sne e e sneeesnnee e e 79
3.4 The design space for tackling volatile service compositionccccceevveennne 79
3.4.1 Our choice of models at runtime based architecture..............cccccocveenieennne 80
3.4.2 Our choice of Bigraphs to construct a models at runtime based architecture
80

3.5 CONCIUSIONS......ceiiiieee ettt e e snn e e e b e e 82
4 Constructing the architecture for a two-layered model at runtime..............ccccceeeee. 84
0 R 111 £ Yo [o3 1] ST PPRTUTRPROTI 84
4.2 \Volatile Service COMPOSIIONcoeiuriariiieiiiieaieieesiee et e e e sneeeseee e 84
4.3 Using model at runtime as @ Cacheoocvviiiiiiiiii e 88
4.3.1 Reference architecture for self-management............cccccceeviiiieniiiieeniieens 89
4.3.2 Model driven adaptation at runtime..........ccoeoviiiie e 90
4.3.3 Data flow in our model at rUNtIMEccoooiiiiiiiiiee e 91
4.3.4 SECHON SUMMAIY......cccciiieieeeeeeesesitie e e e e e e e e ssiaerreeeeeaesssssannsbreeeeaaeeessannnenens 92
4.4 Programming the structure of WORLD and SCA layerS........cccccovvvvvvieeeeeeenennn, 93
4.4.1 Constructing a state of WORLD layer...........cccoceeiiiiiieiiiiiiiiie e 93

4.4.2 Constructing a state of SCAlayer...... ..o 102
4.4.3 A Bigraphical array to support service composition................c.ccevinenn. 113
4.4.4 SECHON SUMMIAIY. .. .ttt ee ettt e ettt e et er et e a e eenenens 114
4.5 CONCIUSIONS.ottt ettt sttt nne e en e 115
5 Using the BPL tool to Implement a two-layered model at runtime........................ 116
5.1 INIFOAUCTION ..ottt 116
5.2 Implementation approachcccccovviiiiiiiiii e 116
5.2.1 SYSEM DOUNCAIY......c.uviiieiiiiiee ittt e e sbe e e s nseeeeens 117
5.2.2 Unused features of Bigraphs..........coooiiiiiiiiiiii e 118
5.2.3 Events and commands in the SYSTeMccocviiiiiir e 118
5.2.4 SECHON SUMIMAIY......eiiiiiiiiieieiiiieaiee e rieeeesteeessiseessseeesae e e s sabeeessneeessseeennneas 120
5.3 Functions to modify/access the WORLD/SCA ayersccocoeevieeiiieeininnens 120
5.3.1 Functions that modify the modelccoooeiiiiiiiii e, 123
5.3.2 Functions that access information from the model.............ccccooeeiiieennnen. 135
5.3.3 SECHON SUMMAIY......ciiiiiieiiiieiiieesiee e riiee s sitee st eesbe e sbe e e sbe e e ssbeeessseesnnneas 160
5.4 Functions to encapsulate adaptation logic and simulate test runs 160
5.4.1 Implementation of the fUNCLIONSooiciiiiiiiiei e 161
5.4.2 SECHON SUMMIAIY.....ciiuiiieeiiiiiieeeaiteeeeesasteeeessseeeessssseeesansseeeessssseeessnssseeesans 174
5.5 CONCIUSIONS......ceiieiiiieete et 174
6 A qualitative and quantitative evaluation of the Bigraphical model at runtime........ 175
6.1 INEFOTUCTION ..ottt e e e e e e e nn e e e nee e 175
6.2 A qualitative discussion: placing our implementation in context...................... 175

6.3 A quantitative performance evaluation of the response times of our Bigraphical

MOAE] AL FUNTIMIE vttt e e e e s e et r e e e e e e e e e aarrbereeeeeas 180
6.3.1 Design Of the tESE Mg ..veveeiiiiiee e 181
6.3.2 Design of the eXPeriments..........cceeiiiiiiie e 182

6.3.3 Running of the experiments and analysing the datacccccvvveeee.... 190

6.3.4 Cause of the exponential increase in response times: a naive handling of

the decomposition of the prime product children of a node by the matching

algorithm of BPL tool (ITU, 2011),(Birkedal et al., 2007)cccceerveernierriieeneee. 204
6.3.5 Measuring the effect of the workload events on the available time 212
6.3.6 Summary and discussion of the experimental resultscccceeeeiiieenne 226

6.4 CONCIUSIONS.oiiitiiiiieitie ettt et sne e e nnee s 228

7 Conclusions, contributions and future WOrkcccceeiiiiiiiiienieeeee e 230
7.1 INETOAUCTION .t e e b e 230
7.2 Answering the research qUESHIONccceevveeiiiiciiiieiecc e 230

7.2.1 Using the first dimension of our evaluation criteria to testif our research
question has DEEN ANSWEIEM............uiii i eeee e 231

7.2.2 Using the second dimension of our evaluation criteria to test if our research

question has been anNSWETE.............oociiiiiiiiiii e 234
7.3 Contributions t0 KNOWIEAQGEcccviiiiiiiiiiiiecee e 235
T4 FULUIE WOTK ...ttt ettt et ennee s 238
7.5 Concluding reMArKSccuiiiiieiie e a e e e e 240

271 0] T To | =1 o] 0 12U 242

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my supervisor Dr. lan Wakeman for

his invaluable guidance, help and support during the course of my work.

Thanks are also due to Dr. Dan Chalmers for his comments and suggestions during the course of

my work.

A big thank you to Dr. Des Watson, Dr. Bernhard Reus, Dr. Martin Berger, Dr. lan Mackie, and
Dr. George Parisis for providing invaluable suggestions and encouragement whenever they

were needed.
Thanks are also due to the late Robin Milner for the enthusiasm he showed for my work.

I would like to express my appreciation to both the present and past members of Foundations of
Software Systems Group namely: Dr. Jon Robinson, Dr. Jian Li, Dr. Roya Feizy, Dr. Lachhman
Dhomeja, Dr. Yasir Malkani, Dr. Anirban Basu, Dr. Stephen Naicken, Dr. James Stanier, Dr.
Simon Fleming, Dr. Aesha Alsiyami, Dr. Danny Matthews, Dr. Ben Horsfall, Thomas Harvey,
Ciaran Fisher and Rakan Abdullah Alsowail for being a lively company both in the lab and

outside.

Many thanks to Christopher Tucker and Alex Castellanos for the fantastic time | had working
for the University of Sussex Residential Services and living in East Slope during the course of
my work.

Thanks also to all my friends for being the lovely and supportive people they are.

Lastly but most importantly, a big thank you to my family: to my mother Dr. Rama Nigam who
has solidly believed in me and to my sister Dr. Delfi Krishna who has been an inspiration.

I would like to dedicate this thesis to the memory of my father late Professor M.M. Krishna who
I am sure would have been proud of my work.

ABSTRACT

In this thesis, we explore the appropriateness of the language abstractions provided by Bigraphs
to construct a model at runtime to tackle the problem of volatility in a service composition
running on a mobile device.

Our contributions to knowledge are as follows:

1) We have shown that Bigraphs (Milner, 2009) are suitable for expressing models at
runtime.

2) We hawe offered Bigraph language abstractions as an appropriate solution to some of
the research problems posed by the models at runtime community (ABmann et al.,
2012).

3) We have discussed the general lessons learnt from using Bigraphs for a practical
application such as a model at runtime.

4) We have discussed the general lessons learnt from our experiences of designing models
at runtime.

5) We have implemented the model at runtime using the BPL Tool (ITU, 2011) and have
experimentally studied the response times of our Bigraphical model. We have suggested

appropriate enhancements for the tool based on our experiences.

We present techniques to parameterize the reaction rules so that the matching algorithm of the
BPL Tool returns a single match giving us the ability to dynamically program the model at

runtime. We also show how to query the Bigraph structure.

10

LIST OF FIGURES

Figure 2-1: A hypergraph (Milner, 2008a).........cccceiiiiiiiieiiiie e 24
Figure 2-2: The upper diagram presents both the forest and the hypergraph;it
depicts the forest by nesting. the lower two diagrams represent the two

structues seperately, in a conventional manner. the hypergraph of G is the one

illustrated in Figure 2-1(Milner, 2008a).cccceeeiiriiieiiiieee e 25
Figure 2-3: A bare Bigraph F (Milner, 2008a).cccceceveveveveverereeeeeeeeeee e, 26
Figure 2-4: Defining interfaces for the place graph and the link graph of the
bare Bigraph F (MIner, 2008a).ccoeveveveueeereeeieeeeeeeeeeeetees s sess s en s 27
Figure 2-5: The Bigraph F (Milner, 2008a).ccccviiiiiiiiiiiiiiie e 28
Figure 2-6: Bigraph G (Milner, 2008a).......ccccueiiuiiiniieeiiieeieee e 29
Figure 2-7: Bigraph G with controls (Milner, 2008a).........ccccvcueeirieiniieeiiiieesieenns 30
Figure 2-8:Bigraph F with controls (Milner, 2008a)...........cccccvveeiiiiieeeciiieee e, 30
Figure 2-9: The Bigraph H (Milner, 2008a)..........ccccuiiiiiieeiiiiiiiec e 31
Figure 2-10: Constituent graphs of the Bigraph H (Milner, 2008a). 31
Figure 2-11: The abstract Bigraph H (Milner, 20088).........ccceceerrierriieriiiiienieenne 32
Figure 2-12: Bigraph E representing agents, buildings, computers and rooms
(LTS a4 0 [0 1< - 1 SRR 34
Figure 2-13: Reaction rule B1(Milner, 2008a)........cccceeiurreeiiiieneeiiiieeeesiieee e 35
Figure 2-14: Reaction rule B2 (Milner, 2008a)........ccccociieiiiiiiiieeiiee e 35
Figure 2-15: Reaction rule B3 (Milner, 2008a).........ccccceiirieriiieeiiiiee i 35
Figure 2-16: The Bigraph E’ after the application of reactionrules B1,B2,B3 to
Bigraph E (Milner, 20088)........cciuiiiiiiiiiiiiieeiiiiiee ettt et esiee et e e e e snneeees 36
Figure 2-17:Architecture of the four layers of BPL tool(ITU, 2007a). 38
Figure 2-18: The rewrite engine of the BPL tool (ITU, 2007@).......cccccceevveerrnnnnne 39
Figure 2-19: A place graph with arootand asite.ccccceeviiee e, 40
Figure 2-20: Composition operation of Bigraphs........cccccceviiiiiiiieec e, 41
Figure 2-21: Parallel product operation of Bigraphs.ccccooieiiiiiiiiiiieenieene 41
Figure 2-22: Prime product operation of Bigraphs.ccocceeiiiiniiiiieciiiccneee 42
Figure 2-23: Device ‘uncached’ rule. ... 43
Figure 2-24: The Platographic model. ... 44
Figure 2-25: Bigraph | (Walton and Worboys, 2009).ccccccceeeiiiineniiiieee e 46
Figure 2-26: The teacher/pupil relationship (Henson et al., 2012).........ccccccuec... 48

Figure 2-27:Block diagram depicting the control loop between agents and the
physical structure (Pereira et al., 2012).....cccccccoiiiiiiiiiiieee e 50
Figure 2-28:Bigraph model of a WLAN (Calder and Sevegnani, 2012).............. 53

11

Figure 2-29: Relationship between views, models and
implementation.(Waddington and Lardieri, 2006).........ccccociiiriiemniiieiniiee e 56
Figure 2-30: Design models versus runtime models (Bencomo, 2009).............. 57
Figure 2-31: Two basic approaches for runtime self-representation through

reflection. (a) A model causally connectedto the program;(b) Model and the

program are one and the same entity(Gjerlufsen et al., 2009).cccccecvernnnenne 58
Figure 2-32:Three layered conceptual model (Sykes et al., 2008).ccccuve.. 61
Figure 2-33: Morin et al.’s runtime model (Morin et al., 2008).........ccccceevrervnnnns 63
Figure 2-34: Taxonomy of faults combined with observed effects (Chan et al.,
2007 D). ettt bt bbb a e be e et beeanneeree s 70
Figure 3-1: Reconfiguration cycle(Fredj et al., 2006).cccoceerriirniiiniiiieenieenne 79
Figure 3-2: Orthogonal modelling SPACEe.ccocueiiiiii i 82
Figure 4-1:Reference architecture for self-management adapted from Kramer et al.
(Kramer and Magee, 2007).oocuueeeeeiiieeeeaiiieee e e eiieeeesstaeeeesssaeee e s ssseeeeesssaeeeeansneeeessnsees 89
Figure 4-2: Model driven adaptation at runtime.cceeiieeiiiie e 91
Figure 4-3: Data flow didagram............cooiuiiiiiiiiiiie e 92
Figure 4-4:Node representing a location with id i2 and a site.ccccceeeeeiiiciiieeenen.n. 94
Figure 4-5: The structure constructed by function 10c”........ccccceevvieeeeiiiieees e, 95
Figure 4-6: Simplified representation of location with id i2......cccccceiiiiiiiiinnenn. 96
Figure 4-7: Structure of the device BIgraph.cccooviiiiiiiiiie e 97
Figure 4-8: Defining devidNode, device, serviceldNode.ccccceeiviiiieeeiiieeeeesennenn. 97
Figure 4-9: FUNCLION CONSTrUCTDEVI CO. .ouiviiiiiiiiiie ettt 98
Figure 4-10: Simplified representation of device With id 15.8ccccerriieriiieiiieeeiinens 99
Figure 4-11: State of the WORLD expressed as a Bigraph..........ccccoccevvirinnenns 99
Figure 4-12: Construction of WORLD layer.......ccccovveiiiiiiieiciieieee e 100
Figure 4-13: Device ‘uncached’ rule of the WORLD.cccccccoiiviiiiiiieiiee e, 101
Figure 4-14: Device ‘cached’ rule of WORLD.ccoiiiiiiiiiiiine e 101
Figure 4-15: A SEIrvICE NOUE.cccueiiiiiiiiiiie ittt 103
Figure 4-16: The structure constructed by function constructService................. 104
Figure 4-17: Simplified representation of service with id i7....cccccccceoeviiiiiinnnnnnn. 105
Figure 4-18: State Of SCA [QYEI ... 105
Figure 4-19: Construction of a state of SCA [ayer.ccccooiiiiiiiiiiiieeceeee, 106
Figure 4-20: Component interfaces (Sommerville, 2011).cccovvirriiieinier e, 106
Figure 4-21: Sequential component composition (Sommerville, 2011). 107
Figure 4-22:Hierarchical component composition (Sommerville, 2011). 107
Figure 4-23: Additive component composition (Sommerville, 2011)c.ccccvvevenneee. 108

Figure 4-24: Bigraph model of sequential service Composition.ccccevverenieennnnen. 108

12

Figure 4-25: Bigraph model of hierarchical service compaosition.ccccceeevveeeennee. 108
Figure 4-26: Bigraph model of additive service COmpoSsItion.cccoceeriieriiieennnen. 109
Figure 4-27: State change of a service from working to unresponsive. 110
Figure 4-28: State change of a service from working to incorrect results.................... 111
Figure 4-29: State change of a service from working to incoherent results................. 111
Figure 4-30: State change of a service from working to slow service...............ccccc...... 111
Figure 4-31: State change of a service from working to outdated results. 111
Figure4-32: State of the Bigraphical array.c..ccccoecviieeiie e 114
Figure 4-33: Construction of a state of Bigraphical array............ccccocceeeeeeeiiiciiiivnnen.n. 114
Figure 5-1: Device un-Caching rule.c.ooeiiiiiiii i 121
Figure 5-2: Initial state of the WORLD Bigraph.cccceiiiiiiiiieiiiec e 122
Figure 5-3: Context returned by matching algorithm...........ccccoooveiiiiie e, 122
Figure 5-4: Parameter returned by matching algorithm.ccccoveiieiiiiciiiieenn. 122
Figure 5-5: Rewritten state of the WORLD..........cccooiiiiiii e 123
Figure 5-6: FUNCLION ChangeSySTem.ccuuiiiieiiiiieiiiieaiiee et siee e sitee e e e e 124
Figure 5-7: FUNCLION CONSTrUCTDiSAPPRAT. wuvvrreiiireeeeiirieeeeaitrereaessseeeeesssaeeeeassseeeesannnns 126
Figure 5-8: FUNCLION cONStruCtDiSAPPEAT. uuvrueieeeeeiiiiiiirreeeeeeeeeeessissinreeeeeesessssansreneeeeeas 127
Figure 5-9: FUNCLION deVvi CeDTSaPPEAIS. wuviurrieeeiiieeeeiitrieeeasisteeeessnseeeessnnsneeesasneeesessnnes 127
Figure 5-10: Device cached reaction rule.occveiiiieiiiie i 128
Figure 5-11: FUNCLION CONSTrUCTAPPEAN. c.iivviieeeiiiieeeeiiieeeesisteeeesstaeeesennsaeeeeenaeeeeeeennes 129
Figure 5-12: FUNCLION deviceAPPEArS. ..i.cicviieeiiiiieeeeiiiee e e e esiee e e e steee e e e niaee e e e enaee e e e e e 129
Figure 5-13: FUNCLION changeAMbBT@Nt. ..uiiiiiiiiie ittt 130
Figure 5-14: constructStateChange function encapsulating the reaction rule that

Changes State Of @ SEIVICE.oiiiiiiiiiie e 130
Figure 5-15: Function constructStateChange.ccccecvureeeeiiuieeeeciiieeeeesiee e e e e e e 131
Figure 5-16: Device joiNS COMPOSILION FUIE.......cciieiiiiiiiiiieee et 131
Figure 5-17: Function constructDeviceloinsCompositionRUTE......cccvriueerrieienirennnnnn. 132
Figure 5-18: Function deviceJoinsCompositiON. ..ouureeieieireerienreesee e eree s 133
Figure 5-19: Device leaves COMPOSILION FUIEccueiiiieiiiiiiiiee e 133
Figure 5-20: Function constructDevicel eavesCompositionRUTE ...ccvvveereeeeeriiuvrveenennnn. 134
Figure 5-21: Function deviceLeavesCompoSTtioNn. ...uuuiiieiireerieeniieesineee e e sinee e 134
Figure 5-22: Initial state of WORLD Bigraph.ccccooiiiiiiiiiiiie e 136
Figure 5-23: Reaction rule with the same redex and reactum.ccccceeververcreennne. 136
Figure 5-24: Context returned by the matching algorithm.ccccoooieeiiiiiee e, 137
Figure 5-25: Parameter returned by the matching algorithm.cccceeeiiinennee 137
Figure 5-26: FUNCHION T0CATEDEVICE. wuurrieiiiiiieeiiiiieeeeitiieeeeesiieeeeesnree e e s sneeeeeesnnneeeeeennees 138

Figure 5-27: Initial state of world Bigraph. ..o 139

13

Figure 5-28: Reaction rule with the same redex and reactum.cccccceveeriveeeeennee. 140
Figure 5-29: First of the two contexts returned by matching algorithm- only i6.4 absent.
... 140
Figure 5-30: First of the two parameters returned by the matching algorithm only 4

P ES BN ..t e e e e e e e a e e e e e e e a e e e e s 141
Figure 5-31: Second of the two contexts returned by matching algorithm- only 6.2

=L 01T o | S SPRRRSPPSR 141
Figure 5-32: Second of the two parameters returned by the matching algorithm- only 2
L0515 T 141
Figure 5-33: Function enumerateDevicesInShoppingMall......cccccouriireeriiiieeessiineeeeeennns 144
Figure 5-34: Initial state of WORLD Bigraph.cccceoiuiriiiiiiiee e 144
Figure 5-35: Reaction rule with the same redex and reactum.ccccceevveeiiieennnen. 145
Figure 5-36: Context returned by matching algorithm.ccoccciieei e, 145
Figure 5-37: Parameter returned by matching algorithm.ccccco e, 146
Figure 5-38: FUNCHION FiNAPArent.uoiiuiieiee e eieie sttt 147
Figure 5-39: Initial state of WORLD Bigraph.ccccouiieeiiiiniiie e 148
Figure 5-40: Reaction rule with the same redex and reactum.cccccccoevivvveenennnn. 148
Figure 5-41: Context returned by the matching algorithm.............cccccoeviiiiiiiiiiee e, 149
Figure 5-42: Parameter returned by matching algorithm.cccocoeiiiiiiiinieee, 149
Figure 5-43: FUNCHON FINAChTTd. ..coiiiiiiiieiiie ettt 151
Figure 5-44: State of the Bigraphical arraycccoceeiieeiiiieiiiiee e 152
Figure 5-45: Reaction rule with the same redex and reactumccccceeevriveeeeennne 153
Figure 5-46: Context returned by the matching algorithmcccccooiiiiiiiniene. 153
Figure 5-47: Parameters returned by the matching algorithmccccooiiinn. 153
Figure 5-48: Function newFindParticipatingDevice.cccccouirreeiiiieeeiiiiieieeeeeiree e 156
Figure 5-49: The state of the SCA [QYEr. ... 157
Figure 5-50: Reaction rule with the same redex and reactum.cccccceevviveeeeennee 157
Figure 5-51: One of the four contexts returned by the matching algorithm. 157
Figure 5-52: One set of two parameters returned by the matching algorithm out of four
5] <] £ PP PTOPRR PP 158
Figure 5-53: FUNCHION conStructServiCeTI@e. . iuuiiiiiiiirieeiiee ettt 159
Figure 5-54: FUNCHON SCAFQUTESCIT Pt .euriaiieeeiiieeniiieenieeestiee et e snee e e e s 163
Figure 5-55: FUNCHON SCANEWS TATE. .eiiiuvriiiiiieiiiiieeieie st e e sieeesibeeesiee e sieeessneee s sneeeesnneas 164
Figure 5-56: Function repairCompositionPoTiCy. .cciiiiieeiiiiiieeeiiiiee e e eeiee e e e 166
Figure 5-57: FUNCHION getDeVICELTST. wuriiiiiiiireiiiiieeesiiiieesestieeeessreeeeesnneeeeeesnneeeeeennees 167
Figure 5-58: FUNCLION changeAmbientSCript. ... i e eeeirieeeriieeeiie e sree e 169

Figure 5-59: Function changeAmbientOutputCommand.cccueeeruererreerrneeesieeeeseeeenenens 171

14

Figure 5-60: FUNCLION NewCreateServiCeLiSt. i i aieeaireeerieeessieeesneeesieeeesieee e 172
FIgure 5-61: FUNCHON FiTTer. oottt 173
Figure 5-62: Function testIfServiceNotSupported. ...cccccciireeiiiureeeiirnreeeeninreeeesnnes 173
Figure 5-63: FUNCLON PreFeteh. ..ottt e e 173

Figure 6-1: Two classes of ambients-in one class, the shopper pauses at the mid-point
between [0s-2s] whereas in the other class, the shopper pauses for a time
characterized by the random sampling of a weibull cumulative distribution function
(shape=1.002, scale=3.059e+02). 184

Figure 6-2: The total time spent in the way-point TocL.cccveriiriiiieniiee e 185
Figure 6-3: The total time spent in the Shop Toc2......ccccvieiieeiiiicce e, 185
Figure 6-4: The initial state of the world bigraph for the first experiment...................... 188
Figure 6-5: An example regreSSIiON CUMNVE........cocuiiiiiiiaiiie et 190
Figure 6-6: The initial state of the world bigraph for the first experiment..................... 190

Figure 6-7: An abstracted out tree structure of the location model for experiment 1. .191
Figure 6-8: An abstracted out tree structure of the location model for experiment 2. .192
Figure 6-9: An abstracted out tree structure of the location model for experiment 3. .192
Figure 6-10: An abstracted out tree structure of the location model for experiment 4.192
Figure 6-11: An abstracted out tree structure of the location model for experiment 5.193
Figure 6-12: An abstracted out tree structure of the location model for experiment 6.193
Figure 6-13: An abstracted out tree structure of the location model for experiment 7.193
Figure 6-14: The response times in milliseconds for experiment number 3................ 195
Figure 6-15: Regression curve of the seven mean response times for seven
experiments with a 95% confidence interval for calls to function ‘n’.c.cccevvene. 195
Figure 6-16:Regression curve of the seven mean response times for seven
experiments with a 95% confidence interval for calls to function ‘s’. 196
Figure 6-17: An abstracted out tree structure of the location model for experiment 8.197
Figure 6-18: An abstracted out tree structure of the location model for experiment 9.197
Figure 6-19: An abstracted out tree structure of the location model for experiment 10
where our SYIemM KEEIS Off.o.eeiiiii e 198
Figure 6-20: The response times and in milliseconds for experiment number 3.......... 199
Figure 6-21: Regression curve of the nine mean response times for nine experiments
with a 95% confidence interval for calls to function ‘n’.cccooceeiii e, 199
Figure 6-22: Regression curve of the nine mean response times for nine experiments
with a 95% confidence interval for calls to function ‘s’.c.ccccoiiiiiiie 200
Figure 6-23: 3 services in the COMPOSIION.c.oeeveiiiiiii e 201
Figure 6-24: 4 services in the COMPOSILION.ceeiieiiiiiciiiiiei e 201

15

Figure 6-25: 5 services in the COMPOSILION.cvviieiiiiiie e 201
Figure 6-26: 6 services in the COMPOSILION.eiiiiiiiiiie e 202
Figure 6-27: The response times in milliseconds for experiment number 2. 203

Figure 6-28: Regression curve of the three mean response times for three experiments
with a 95% confidence interval for calls to function ‘n’.cccovi i, 203

Figure 6-29: Regression curve of the three mean response times for three experiments

with a 95% confidence interval for calls to function 's’.cccciiiiiiiiie 204
Figure 6-30: An eXxample tOPOIOgYccooiiiiieiiee e 205
Figure 6-31: 7 of 24 possible permutations.ccccciiieeiie e 205
Figure 6-32: Only one possible decomposition for the composition operation. 206
Figure 6-33: The Starting tOPOI0gYccoueiiiiiiiiiie e 206

Figure 6-34: Children of 1oc1 and 1oc3 constructed using prime product operation on
the left and constructed using composition operation on the right.............ccccceeeeeenns 207
Figure 6-35: Children of Toc1 and Toc3 constructed using prime product operation on
the left and constructed using composition operation on the right............c.cccccceeiiee 207
Figure 6-36: Children of 1oc1 and 1oc3 constructed using prime product operation on
the left and constructed using composition operation on the right.............ccccceeeeeenns 207
Figure 6-37: Children of Toc1 and Toc3 constructed using prime product operation on
the left and constructed using composition operation on the right............ccccccceeiiee 208
Figure 6-38: Children of Toc1 and 1oc3 constructed using prime product operation on
the left and constructed using composition operation on the right............ccccocceeeinene 208
Figure 6-39: Children of Toc1 and 1oc3 constructed using prime product operation on
the left and constructed using composition operation on the right.............ccccccceeiiee 209
Figure 6-40: Response times of ‘n’ event function for the experiments with the usual
topology and the experiments conducted with the depth first topology.c......... 211
Figure 6-41: Response times of ‘s’ event function for the experiments with the usual
topology and the experiments conducted with the depth first topology.cc.ccueeeee.. 211
Figure 6-42: A favorable scenario-the functions get the maximum possible time to
(=25 0 o] Vo SRR 213
Figure 6-43: The response times and available times for each event in milliseconds for
EXPErMENt NUIMDET 3. ... aree e e 214
Figure 6-44: The difference between the response times and the available time
between two successive events in milliseconds for experiment number 3.................. 214
Figure 6-45: Mean of the response times and available times for ‘n’ events shown
seperately for each of the seven experiments..........cccovceee e 215
Figure 6-46: Regression curve of the seven mean time gaps for seven experiments

with a 95% confidence interval for calls to function ‘M.coeeeieeeeeee e 216

16

Figure 6-47: Mean of the response times and available times for ‘s’ events shown
seperately for each of the seven exXperiments. ... 216
Figure 6-48: Regression curve of the seven mean time gaps for seven experiments
with a 95% confidence interval for calls to function ‘s’.ccccviiiii i 217
Figure 6-49: The response times and available times for each event in milliseconds for
EXPEriMENT NUIMDET 3. ... ittt e e st e e e s e e sab e e e nnbe e e enneeenes 218
Figure 6-50: The difference between the response times and the available time
between two successive events in milliseconds for experiment number 3. 218
Figure 6-51: Mean of the response times and available times for ‘n’ events shown
seperately for each of the nine experiMents.ccccceviiiee e 219
Figure 6-52: Regression curve of the nine mean time gaps for nine experiments with a
95% confidence interval for calls to function ‘N'.........cccoociii i 220
Figure 6-53: Mean of the response times and available times for ‘s’ events shown
seperately for each of the nine experiMents. ... 220
Figure 6-54: Regression curve of the nine mean time gaps for nine experiments with a
95% confidence interval for calls to function ‘s’. ... 221
Figure 6-55: The response times and available times for each event in milliseconds for
EeXPEriMENt NUIMDET 3. ... e e e e e e nreeeeeaas 222
Figure 6-56: The difference between the response times and the available time
between two successive events in milliseconds for experiment number 3.................. 222
Figure 6-57: Mean of the response times and available times for ‘n’ events shown
seperately for each of the three experiments.cccoveii e 223
Figure 6-58: Regression curve of the three mean time gaps for three experiments with
a 95% confidence interval for calls to function N’cccove i 224
Figure 6-59: Mean of the response times and available times for ‘s’ events shown
seperately for each of the three exXperiments.ccccccecvi e, 224
Figure 6-60: Regression curve of the three mean time gaps for three experiments with
a 95% confidence interval for calls to function ‘S’..........cocoviiii i 225
Figure 6-61: One of the many WOrst Case SCENANIOS..........cccverueriiieeirieee e siee e 226
Figure 7-1: Verification and validation model where a system in operational mode j

undergoes a sequence Of adaptatioNceeviiiiieriiiiiee e 239

17

LIST OF TABLES

Table 4-1: Mapping between observed effects and volatility.c..cccevvveiiiiiinnenns 87
Table 4-2: Mapping between reaction rules and volatilty.cccccccooiiiiiiiiennn, 112
Table 5-1: Mapping input events to output commandsccceevveeeriiieeeeesnnnen. 119

Table 6-1: Modelling dimensions for self-adaptive software systems(Andersson et al.,
72200 1) TR PSPPSR 179

18

1 INTRODUCTION

1.1 THE CONTEXT OF OUR STUDY: A SCENARIO

Ubiquitous computing systems (Weiser, 1999) are often characterized as being volatile
(Coulouris, 2012). This includes all of the following properties: 1) Device and communication
link failures, 2) Variation in the properties of communication such as bandwidth, and 3)
Creation and destruction of associations which are logical communication relationships between
software components resident on the devices.

Imagine a scenario in which a user, Alice, is strolling around in a shopping mall with a mobile
device running a composition of services being offered by devices that are embedded all over
the mall. She might want to buy a pair of jeans but wants to compare prices, find the location of
nearby shops and check customer ratings of the shops. The (volatile) composite service running
on her mobile device will be comprised of a price comparison service, a location service and a
service offering customer ratings of the shops in the mall. We assume that Alice’s device has
various forms of wireless connectivity (Bluetooth, Wi-Fi, 3G etc.). As Alice moves around in
the shopping mall, the mobile device running the composition will suffer disconnections to
some of the services due to radio occlusions, multi-hop wireless routing, or the user moving ‘out
of range’ (Coulouris, 2012). These same factors could also lead to a highly varying latency and
bandwidth of the connection between a service and a mobile device. Moreover, the user’s
device might run out of battery. If one of the services disappears (malfunctions) because of this
volatility, we want our system to replace it with an equivalent service(s) without any user

intervention.

The volatility in service composition arises from changes in context i.e. changes in the external
environment. However, the effect of volatility is on the internal working of the service
composition. Volatility may result in a higher level of complexity as services participating in the
service composition may appear and disappear at a high rate and break their interconnection
with the service composition. There might also be a large number of ‘equivalent’ services to

choose from.

Leveraging software models to inform runtime adaptation mechanisms has become an important
technique to manage the complexity of evolving software as it executes (ARmann et al., 2012,
Blair et al., 2009, France and Rumpe, 2007). This is because models at runtime provide
“abstractions of runtime phenomenon ” (France and Rumpe, 2007) rather than abstractions of

19

design time artifacts. We wish to model at runtime a service composition running on a mobile

device.

Software models at runtime can be expressed with Bigraphs (Milner, 2009). Bigraphs are
graphical structures with nodes and edges. These nodes can be placed inside each other and be
linked with edges. Bigraphs have been rigorously formalized with category theory (Barr and
Wells, 1990). They have been shown to capture the theory of Petri nets (Milner, 2004a), pi-
calculus (Milner, 1999), CCS (Milner, 2006a), mobile ambient (Jensen, 2006) and lambda
calculus (Milner, 2004b). Because of their graphical structure, Bigraphs can be intuitively used
to visualize and model physical and virtual structures having location, communication and
behavior (Greenhalgh, 2009b). This thesis, to the best of our knowledge, is the first work to
explore the appropriateness of the language abstractions provided by Bigraphs to construct a
model at runtime to tackle the problem of volatility in a service composition running on a
mobile device.

1.2. THE RESEARCH QUESTION

Our thesis answers the following research question:

Are the language abstractions provided by Bigraphs sufficient and appropriate to construct a
model at runtime to tackle the problem of volatility in a service composition running on a

mobile device?
This question combines two major issues that have not been addressed in the literature:

i. Howdo we use Bigraphs to construct a model at runtime?
ii. Do Bigraphs offer the appropriate language abstractions to address the open research

questions being explored by the models at runtime community?

The two caveats on the scope of the above question are that firstly, we will not replicate all
programming language abstractions with our Bigraphical model at runtime. Instead, we will
abstract upon only some selected elements of the service composition. Secondly, we would be
accessing the control constructs of SML through MiniML (a subset of Standard ML-see Chapter
2) since Bigraphs lack control structures.

1.3. APPLICATIONS OF BIGRAPHS AND MODEL AT RUNTIME

We now discuss the reasons as to why it is worthwhile to answer the question discussed in the
previous section.

20

Firstly, Bigraphs have been envisaged as a step towards tackling the complexity of ubiquitous
systems (Milner, 2009) . If found useful, Bigraphs models could be used as foundational models
in a ‘tower of models’(Milner, 2008b). In such a tower, the higher-level models will express
concepts such as trust and the lower level models will implement concepts such as trust by for

example having an agent accept data only from a ‘trustworthy’ agent.

Secondly, the models-at-runtime research community envisages using Model-Driven-
Engineering techniques to develop models that are abstractions of runtime phenomenon (B lair
et al., 2009). If found useful, such models could be used to support reasoning, dynamic state

monitoring and control of systems at runtime.

1.4. OVERVIEW OF THE MAIN CONTRIBUTIONS

We now give a brief overview of the main contributions of this thesis.

1) This thesis responds to a call by Robin Milner (Milner, 2009) to explore the appropriateness
of using Bigraphs in practical applications. We have successfully constructed a model at
runtime with Bigraphs.

2) This thesis also responds to some of the research questions posed by the models at runtime
community at the Dagstuhl seminar (ARmann et al., 2012) by offering Bigraphical language

abstractions as an appropriate solution.

3) We discuss the general lessons learnt from using Bigraphs for a practical application such as

a model at runtime.
4) We discuss the general lessons learnt from our experiences of designing models at runtime.
5) We have implemented the model at runtime using the BPL Tool (ITU, 2011) and suggest

appropriate enhancements for the tool.

1.5 THESIS STRUCTURE

We have organized the structure of this thesis along the following lines:

We start off in Chapter 2 where we give the background of our thesis. We discuss the literature
related to our implementation’s language- Bigraphs; our implementation’s architecture- models
at runtime; the example property- volatility; and finally the example system: - a ubiquitous

computing service composition.

21

Having set the stage thus, in Chapter 3 we first describe our research question. Then we go on to
discuss the requirements for our design and the design space for tackling the problem of volatile

service composition.

Next, in Chapter 4, we discuss the architecture that we have used for our system and show how
we have used the Bigraphical structure and reaction rule abstractions to program our system
using the MiniML language (a subset of Standard ML) supported by the BPL Tool (ITU, 2011).

Then, in Chapter 5, we discuss our implementation approach, the functions that modify/access
the two layers of our model and finally the functions that encapsulate adaptation logic and

simulate test runs.

In Chapter 6, we present both a qualitative and quantitative evaluation of our implementation.
The quantitative evaluation is done by loading our system that runs on a laptop with workload
events. These workload events are generated on an Android machine running simulations based
on the Shopping Mall Mability model (Galati et al., 2013) and are sent to the laptop via a TCP
connection. This quantitative evaluation focuses on testing if our Bigraphical model at runtime

can be in-sync with the real world.

We conclude our thesis with Chapter 7. In that chapter, we discuss how this thesis answers the
research question posed in Chapter 3; and describe our contributions to knowledge and future

work.

22

2 BACKGROUND

2.1 INTRODUCTION

This chapter presents a thorough review of the background material relevant to our thesis. As
discussed in the previous chapter, our thesis explores the appropriateness of Bigraph’s
abstractions to construct a model at runtime to tackle the problem of volatile service
composition running on a mobile device. Therefore, we discuss the literature representing work
being done by the research communities in Bigraphs, models at runtime, as well as the
description of the property of volatility and faults occurring in a service composition running on

ubiquitous computing systems. We have organized this chapter as follows:

In section 2.2, we start with a brief introduction to Bigraphs (Milner, 2009). We also discuss
Plato-Graphical models (Birkedal et al., 2006) which is a minor extension of Bigraphs and has
been used by us to inform our design of a two-layered model. Next, we present a brief
introduction to the BPL Tool (ITU, 2011) that we have used to implement our system. Then, we
discuss the literature presenting practical implementation of Bigraphs and the open research
questions that stem from it. Finally, we discuss those ideas on the use of Bigraphs from the

literature that constitute the take-off point for our thesis.

In section 2.3, we discuss the research work being done by the models at runtime community.
Firstly, we give an explanatory background of models at runtime. Then, we discuss the literature
presenting the use of architectural models at runtime and the open research questions that stem
from it. Finally, we discuss those ideas on the use of architectural models at runtime from the

literature that constitute the take-off point for our thesis.

Since volatility is the example property that our system deals with, in section 2.4, we discuss the

relevant literature that characterizes volatility in ubigquitous systems.

Lastly, as our example system issue is faults occurring in a service composition running on a

mobile device, in section 2.5, we discuss the taxonomy of faults that can occur in such systems.

2.2 BIGRAPHS: A NEW LANGUAGE

Bigraphs unify various process algebra and represent a Ubiquitous Abstract Machine that
“much like Von-Neumann’s register machines could be utilized to build a tower of models for
the complex concepts involved in ubiquitous computing” (Milner, 2006b), (Birkedal et al.,
2006). The notions of locality, mobility, connectivity and stochastics are captured in the theory

of Bigraphs. A Bigraph model “can be presented graphically for less technical clients and

23

mathematically for analysts” (Milner, 2008a). The model also “underlies a design methodology

for engineers and provides an executable subset that is a programming language” (Milner,
2008a).

In the following sub-sections, we firstly give an explanatory background for Bigraphs.
Secondly, we describe what is being modelled with Bigraphs. Thirdly, we discuss the open
research questions on the practical implementation of Bigraphs and finally we discuss the take-

off point of our thesis with respect to Bigraphs.

2.2.1 EXPLANATORY BACKGROUND FOR BIGRAPHS

We now start with an informal discussion of the mathematics of Bigraph theory. This discussion
is meant for someone who is interested in the practical usage of Bigraphs. Next, we also discuss
the Bigraph Programming Language (BPL) Tool. We then discuss some of the syntax of the
SUGAR module of the BPL Tool that we have used in this thesis. Finally, we give a brief
overview of using the SUGAR module to express the Plato-graphic model that we have used in
this thesis.

2.2.1.1 MATHEMATICAL BACKGROUND FOR BIGRAPHS

We now present a brief overview of the mathematical concepts used to define Bigraphs (Milner,
2008a, Milner, 2009). We do not present the full mathematical theory that defines the properties
of Bigraphs. For a through treatment, the reader is referred to Milner’s book (Milner, 2009).
What follows is based on that book’s first chapter and Milner’s paper (Milner, 2008a) which is
meant for practitioners who are interested in using Bigraphs for implementing real-world

applications.

A general definition of Category (Milner, 2009): A Category C has a set of objects and a set
of arrows. Milner denotes objects by I, J, K and arrows by f, g, h and we will follow his
convention in this discussion. Each arrow f has a domain and codomain , which are both
objects; if these are | and J then the notation used is f :1 — J, where | = dom(f) and J = cod(f).

The set of arrows f :1 — J is called the homset of | and J , and is written as C(I — J) or simply

(I-1J).
Notations and Conventions (Milner, 2009):

Disjoint Sets: Let the set A and 4~ be two disjoint sets. Then the union of these two sets will be
denoted by:

AuAd’

24

Finite Ordinal: A non-negative integer k will be considered a finite ordinal:
k=1{0,L,.... k-1}

A category whose objects and arrows are finite ordinals and the maps between them will be
represented by ORD.

Graph: A graph consists of nodes V and edges E. Anedge joins a pair of nodes.
Hypergraph: is a generalization of a graph in which the edge may join any number of nodes.

Consider a hypergraph where each node v € V has an arity ar(v) which is a finite ordinal. Let

the hyper graph have ports defined as:

Py & ey P,.
Then a hypergraph is defined as a quadruple:

(V, ar, E, link)

where ar : V — ORD defines the arities, and link: Py — E each port to an edge.

FIGURE 2-1: AHYPERGRAPH(MILNER, 2008A).

A hypergraph with nodes {vy......,vs} and edges E = { ey, €1, €,} is shown in Figure 2-1. The
figure represents nodes as circles, ports as black blobs, and edges as linkages between the ports.

In the Bigraph theory, these hypergraphs are enhanced into Bigraphs in four steps (Milner,
2008a).

25

a) The hypergraph is considered linking the nodes. The nodes are furnished with additional
structure called placing. Because we have two structures in the graph, the prefix ‘bi’ is used
with the word graph.

b) To make parts of the Bigraph externally accessible, interfaces are introduced.
c) To classify the nodes, signatures are then introduced.

d) Finally, operations to construct larger Bigraphs from smaller ones are defined.

2.2.1.1.1 BIGRAPHS IN PICTURES

Following Milner’s paper (Milner, 2008a), we discuss each of the above four steps:

Placing and Linking: “A Bigraph with nodes V and edges E has a hypergraph with nodes V
and edges E, and a forest with nodes V"’ (Milner, 2008a).

Nesting is allowed for the nodes. This spatial structure is called placing and is completely
independent of the linking structure represented by the hypergraph. Thus, placing consists of a
set of trees i.e. a forest of the nodes. The Bigraphs described so far are called bare Bigraphs.
Milner uses the notation F, G, ... to represent these bare Bigraphs (Milner, 2008a). Figure 2-2
shows a bare Bigraph G that has nodes V = {V,......vs} and edges E = { e,, e, e,}, with its forest

and hypergraph.

€9
bare bigraph G
A ¢
1 A
Vs
_/ V3.\L‘
< . e
forest of G € 2
Vo y Vo
4 =
Vi / ANZEIN Ve hypergraph of G 1 Vs
L]
® Vi -. %
o Vs
\) e,
L]
e, Vs

FIGURE 2-2: THE UPPER DIAGRAM PRESENTS BOTH THE FOREST AND THE
HYPERGRAPH;IT DEPICTS THE FOREST BY NESTING. THE LOWER TWO DIAGRAMS
REPRESENT THE TWO STRUCTUES SEPERATELY, IN ACONVENTIONAL MANNER. THE

HYPERGRAPH OF G IS THE ONE ILLUSTRATED IN FIGURE 2-1(MILNER, 2008A).

26

Interfaces: “A Bigraph has interfaces, which define its use as a construction block ” (Milner,
2008a).

Consider Figure 2-3 where F represents informally a ‘portion’ of G having only some of its

nodes. Also one of the hyperlinks is broken.

bare bigraph I f
Vi /

FIGURE 2-3: A BARE BIGRAPH F (Milner, 2008a).

To make F formally part of G, interfaces are added to bare Bigraphs. This extends F and G to
Bigraphs F and G. Thus, the occurrence of F as a substructure of G can be represented by an
equation

G=HoF.

In this equation, H is a ‘host’ or contextual Bigraph. This extension is done independently for
forests and hypergraphs. “A forest with interfaces will be called a place graph. Similarly, a

hypergraph with interfaces will be called a link graph ”” (Milner, 2008a).

The interface of a place graph is a finite ordinal n = {0, 1,..., n-1}. The members of a place
graph’s outer interface are its roots. Similarly, the members of a place graph’s inner interface
are its sites.

The outer and inner faces are also called faces.

For a link graph, both the outer and inner faces are name-sets. The outer face is called the outer
name and the inner face is called the inner name. These names are assumed to be drawn from a

countably infinite vocabulary y.

27

place graph link graph
FP:0 -3 FL: g;,{xy}
0 1 2 roots.... outer names....

“ .
//<

Vs

FIGURE 2-4: DEFINING INTERFACES FOR THE PLACE GRAPH AND THE LINK GRAPH OF
THE BARE BIGRAPH F (MILNER, 2008A).

Consider Figure 2-4 which shows how we can define faces for bare bigraph F. Let us choose to
have the outer face 3 = {0,1,2} for the forest F. This outer face provides the nodes vy, v; and v,

with distinct roots as parents. We choose to have no sites and so the inner face is 0.The resulting

place graph is written as:
FP:0- 3

This is shown on the left hand side of Figure 2-4. By convention Milner uses {xy...} to mean a
set {X,y,...} of names (Milner, 2008a). We can choose the outer face {xy} to name the parts of
the broken hyperlink and inner face @ for the hypergraph of . Then, the resulting link graph is

written as:
L0 - {xy}
Using the above definitions, a Bigraph is defined as a pair of a place graph and a link graph:
B = (BP,BL)

Together, the place graph and link graph are the Bigraph’s constituents. The outer face of the
Bigarph B is a pair (n, Y). The first member of this pair n is the outer face of B” and the second

member of the pair Y is the outer face of B-. The inner face (m, X) is defined likewise.

Consider the Bigraph F = (FP,FL) using the place graph F? and the link graph F- discussed

earlier. The outer face is (3,{xy}). Similarly, the inner face is (0,@). Now, the trivial interface

28

€ ¥ (0,0)
is defined as the origin. Thus, we can write the Bigraph F as:

F:e > (3,{xy})

The Bigraph F is depicted in Figure 2-5.

bigraph F:e—>(3,{0})

FIGURE 2-5: THE BIGRAPH F (MILNER, 2008A).

The dashed rectangles in Figure 2-5 represent roots. The rectangles are often referred to as
regions in Bigraph literature. In the figure the four links belong to the link graph F-. Out of
these four links, two links the edges e; and e, are called closed links. The remaining two links
are named x andy .The links x and y are called open links.

We can also extend the bare Bigraph of Figure 2-2 G to a Bigraph G by adding interfaces. All
the links in G are edges because there are no open links. As a result, the name-set in its outer
face will be empty. If we give the two nodes v, and v, two roots as parents, then we can place G
in a larger context because these nodes could be having distinct parents. Bigraph G is shown in
Figure 2-6. Because the forest and hypergraph structures are independent, in the upper diagram
of that figure, it of no consequence as to where a link crosses the boundary of a node or a

region.

29

bigraph
G:e—(2,0)

/ /
place graph N————————— —— - N -
P 2
¢no~ link graph Vo

0 1 roots G- -1 .
Vol | . Va
Vy € >
Vi / \Vz N Vg o Vv,
Vi-e
\ (] V5
9 e
\ V3 e ° 2
1 V3

FIGURE 2-6: BIGRAPH G (MILNER, 2008A).

Classification: “The nodes of a Bigraph may be of different kinds: this reflects that they may
contribute differently to dynamics” (Milner, 2008a).

“Each application of Bigraphs requires a signature ” (Milner, 2008a): A basic signature takes
the form (x, ar). It has a setk whose elements are kinds of nodes called controls, and a map

ar: k — N assigning an arity, a natural number to each control. The signature is denoted by k
when the arity is understood. A Bigraph over k assigns to each node a control whose arity

indexes the ports of a node where links may be connected.
An application will have different controls which will be specified in a signature. Along w ith

the controls, their arities are also specified. A signature is specified in the following manner:
K ={K:2, L.OM:1}

A node’s arity is the arity of its control in any Bigraph over K.Often a node’s identifier v is

omitted in a diagram and its control is shown instead.

The Bigraph G:e— <2, @) shown in Figure 2-6 can therefore be depicted as shown in Figure
2-7.

30

bigraph
G:e—(2,D)
S R IR I D TS . S - Y g0 TR - .S . S .. . - . ™
N\
[0 T \
| I | :
: MK : : :
L
: | M |
[s LA o [
| ./ L[Ko
|)]
Nl T— AN /

FIGURE 2-7: BIGRAPH G WITH CONTROLS (MILNER, 2008A).

bigraph F:e— <3, {xy}>

FIGURE 2-8:BIGRAPH F WITH CONTROLS (MILNER, 2008A).

If the node and edge identifiers are present, the Bigraph is called concrete otherwise abstract.
The discussion that follows will deal with abstract Bigraphs unless otherwise specified.

Construction: “We make larger Bigraphs from smaller ones via their interfaces; this
construction is defined in terms of the constituent place and link graphs ” (Milner, 2008a).To
construct a Bigraph H such that G = H o F, the inner face of H must be (3, {xy}) which is the

same as the outer face of F. This means, H must have three sites 0, 1 and 2. It must also have

31

two inner names x and y. In Figure 2-9 we show H and in Figure 2-10 its constituent parts. Its
sites are shown as shaded rectangles in Figure 2-9. These two figures illustrate informally the
concepts of categorical construction (Milner, 2008a).

bigraph
H:(3{0})~(2.92)

FIGURE 2-9: THE BIGRAPH H (MILNER, 2008A).

roots.. 0 1 o
0
Ly,

/ \ V2
v.
sites... { 1 2 2

0 inner names... y

place graph link graph
H3 2 He) — =

FIGURE 2-10: CONSTITUENT GRAPHS OF THE BIGRAPH H (MILNER, 2008A).

From the place graph drawn in Figure 2-10, we see that each site and node has a parent. This
parent is either a node or a root. In Figure 2-9, just as it is of no consequence as to where a link
crosses the boundary of a node or a region; it is of no consequence as to where a link crosses a

root boundary.

Similarly, from the link graph drawn in Figure 2-10, we see that each inner name and port
belongs to a link. This link is either closed or open. A name can be simultaneously inner and

outer irrespective of whether they are in the same link.

In Figure 2-11, we show as an abstract Bigraph:

32

abstract bigraph
H: <3, {r)}> - <2‘ ®>

FIGURE 2-11: THE ABSTRACT BIGRAPH H (MILNER, 2008A).

We now present the following informal categorical construction of Bigraphs that follows
Milner’s description (Milner, 2008a):

LetF:1—JandH:J— K betwo Bigraphs with disjoint nodes and edges where

I =(,X),
J=(m,Y),
and K = (n, 2).

Then the composite H o F: | — K is just the pair of composites
(HPoFP,H'oF')
whose constituents are constructed informally like so:

e To form the place graph (HPoFP : 1 — n), for each i € m join the i root of F* with
the it site of HP;
e To form the link graph (HLoFL: X — Z), for eachy € Y join the link of F-having the
outer name y with the link of H"- having the inner namey.
Therefore H and F are joined at every place or link in their common face J, which ceases to

exist.

33

2.2.1.1.2 ALGEBRA OF BIGRAPHS

“Diagrams are valuable for rapid appreciation of a system’s structure. On the other hand
algebra is essential, to express and manipulate the ways in which a system may be resolved into
components” (Milner, 2008a). We now discuss the algebra that is needed to express the
structure of Bigraphs. We will discuss the dynamics of Bigraphs through reaction rules in the
next section.

Interfaces: As discussed earlier, an interface is defined as:

I =(n,X)
If X =0, we abbreviate the interface to | = n; if n =0 we abbreviate it to I =X ,or I =x if X =
{x}.
On the other hand, if n =1 the interface is called prime. Anempty interface of the form
e = (0,0)

is called the origin.
The category of Bigraphs (Milner, 2008a): The abstract Bigraphs over a given signature form
a category of interfaces I, J,.. as objects and bigraphs F : I —] as arrows. If | =ethen F is
called ground. On the other hand, if J is prime then F is said to be prime.
As discussed earlier given F : 1 - Jand G : J —» K , the composite G o F is formed by placing
the roots of F in the sites of G and eliding each open link y of F with every link of G that
contains the inner name y.
This category has well behaved operation for juxtaposing two disjoint Bigraphs Fy : I = J
and F :1; - J;. Therefore the category is strict symmetric monoidal (ssm) (Milner, 2008a).
This operation is called the tensor product and is written as:
FR®OFK :Ip®L = Jo®)
IfI; = (m;,X;) where (i=0,1) and X, , X; are disjoint then
[L®L & (my+ my,Xo¥ Xy)
Similarly, we candefine J, ® J;.
Thus, the product Fy, @ F; of F, and F, is formed by laying them side by side. All algebraic
expressions in Bigraphs are defined in terms of product and composition, which enjoy pleasant
properties.
Operations: Three operations are derived from the composition and tensor operations discussed
above. These are the parallel product, the prime product and nesting.
Parallel and prime products are first defined on arbitrary interface J; = (n;,¥;) (i =0, 1) as
follows:
Joll J1 & ({ng+ ny,YoU Yq)

Jolh & (1,Y,U Yy)

Subsequently, the products of Bigraphs F;: I; —» J; (i =0,1) are defined as follows:

34

Parallel product: Fy Il F; : [0 ® L = ol)4

Prime product: Fy| F; : [, ® I, = Jol h
These are defined exactly like tensor product except that the links of the shared outer names in
Y, N Y are coalesced. Also, the prime product has prime outer face.
The third operation is called nesting and is derived from composition. Let F: 1 — (m,X) G:m —
(n,Y). The nesting of F within G is defined by:

G.F < (idyIIG)oF:1->(nXuUyY)
In the equation above, id, is defined as follows (Milner, 2009): For each object I, there is an
identity arrow :

idpl -1
We just write id when | is understood.
Dynamics (Milner, 2008a): ‘Bigraphs can reconfigure themselves according to reaction rules
which can be defined arbitrarily’ (Milner, 2008a).
We will first of all discuss a model of built environment where there are agents, buildings,
computers and rooms (Milner, 2008a).The four controls namely agents, buildings, computers
and rooms are declared in the signature:
{A2, B, C:2, R0}

Figure 2-12 shows a Bigraph E with this signature. The node-shapes indicate informally the
purpose of each port. The Figure 2-12 shows a particular state that may change due to the
movement of agents and other movements. The three agents shown are conducting a conference
call represented by the open link x. The short links are used to depict that the agents in a room

could be logged in. Also, the computers in a building are linked to form a local area network.

Bigraph E

FIGURE 2-12: BIGRAPH E REPRESENTING AGENTS, BUILDINGS, COMPUTERS AND
ROOMS(MILNER, 2008A).

35

Now, to define reconfiguration in the model shown in Figure 2-12, we can specify reaction rules
each consisting of a redex (the pattern to be changed) and a reactum (the changed pattern).
Since both these patterns are Bigraphs, they can include both placing and linking. Omitting the
precise details of matching, a rule may induce a reaction in a Bigraph G if its redex matches a

part of G. Figures 2-13 to 2-15 show three possible reaction rules.

FIGURE 2-13: REACTION RULE B1(MILNER, 2008A).

FIGURE 2-14: REACTION RULE B2(MILNER, 2008A).

,_________‘
——————— e

FIGURE 2-15: REACTION RULE B3(MILNER, 2008A).

Figure 2-13 shows reaction rule Blwhere an agent can leave a conference call. In the left hand
side is the redex . This redex can match any agent. The links that point out mean that she may

36

be linked through her ports to zero or more other ports. These ports can be in the same place or
anywhere else. If the link x represents a conference call with other agents in other buildings,
reaction rule B1 will unlink her. Notice however that the link y to the computer is retained.

Figure 2-14 shows rule B2 where the reaction rule’s application results in an agent connecting
to the computer in the same place. The redex of the reaction rule ensures that a matching will
occur only if the agent is not connected to any computer and the computer is not connected to

any agent.
Both the reaction rules B1 and B2 just change the linking and not the placing.

Finally, Figure 2-15 depicts reaction rule B3 where the placing has been changed because an
agent enters a room. The redex of the reaction rule ensures that a matching will occur only if the
agent and the room are co-located- for example in a building. The dashed rectangle depicts a
site, which represents a parameter of the rule. This allows the redex to match to any room
Bigraph that contains other Bigraphs representing say computers. The occupants are allowed to
be linked anywhere whether to each other or to nodes that are out side the room by the matching
discipline. Moreover, the redex allows the agent’s ports to be connected to other nodes. The
reactum of the rule retains such connections. The redex also allows the agent to have no link and
the context in which the rule is applied may close it off. Consider Bigraph E of Figure 2-12.
Reaction rule B3 can be applied to Bigraph E thereby allowing an agent in the left-hand
building to enter a room.

If the reaction rules B1, B2, B3 are applied once to Bigraph E of Figure 2-12, we will get the
Bigaph £’ shown in Figure 2-16.

Bigraph E’

e e e e,

FIGURE 2-16: THE BIGRAPH E’ AFTER THE APPLICATION OF REACTION RULES B1,B2,B3
TO BIGRAPH E (MILNER, 2008A).

37

2.2.1.2 THE BIGRAPH PROGRAMMING LANGUAGE (BPL) TOOL

We have used MiniML syntax-a subset of SML constructs- supported by Bigraph Programming
Language (BPL) Tool (ITU, 2011), to implement our system. We now give a brief overview of
the BPL Tool Architecture focusing on those parts that we have used in our implementation.

The BPL Tool architecture consists of the following components (ITU, 2007a):

1) Bigraph Programming Language (BPL): This is a “high level bigraph, signature, and
bigraph reaction rule definition language for binding Bigraphs” (ITU, 2007a). A binding
Bigraph is defined as a Bigraph that “adds lexical scopes on links which locates some names at
nodes” (Elsborg, 2009).Calculi like 7 - calculus and A - calculus can be encoded using binding
Bigraphs. Note that because we do not use links in our models, we have not needed to utilize the

added structure provided by the BPL Tool’s implementation of binding.

2) Bigraph Term Language (BGTerm): This “is a low level term language for Bigraphs closely
based on elementary Bigraphs and combinators” (1TU, 2007a). Because the terms do not need
to be well-formed, BGTerm is an un-checked term language. An abstract data type for BGTerm
is implemented by the BGTerm module of the BPL Tool including ML constructors.

3) Bigraph Term Language Values (BGVal): These are BGTerms that have been “checked for
well-formedness with interface data” (ITU, 2007a). An abstract data type for BGVal is
implemented by the BGVal module of the BPL Tool including ML constructors. This facilitates
the domain specific usage of BPL Tool for example in Plato-Graphic models. The module also
provides a total constructor function and special BGVal pattern matching functions for partial
deconstruction. We use BPL Tool’s SUGAR module (discussed later) for creating BGVals in
SML. This is a subset of SML and is called MiniML.

4) Binding Discrete Normal Form (BDNF): These are “binding Bigraph terms expressed in one
of the four forms defined by Damgaard and Birkedal ” (Damgaard and Birkedal, 2006), (ITU,
2007a). An abstract data type for BDNF is implemented by the BgBDNF module of the BPL
Tool including ML constructors and de-constructors.

In Figure 2-17, we show the four layers of the BPL Tool that we have just discussed (ITU,
2007a). It shows how an input of a text file is translated as the data flows between the four
layers. This data is then input to the rewrite engine. One step of the rewrite engine results in a
BGVal output. This needs to be renormalized and then rewriting can continue. The portion of
the figure on the left hand side gives details of the Plato-graphic Location Model which is a
domain-specific usage of the BPL Tool code.

The Figure 2-18 (ITU, 2007a), s

example of the re-writing process, a user-driven scheduler accepts an agent in the BDNF form
as an input, a signature on BDNF-level form, and a set of rules which are also in BDNF-level
form. In step 1, the user can choose a rule through a user interface provided by the BPL-Tool
(user interface not used by us in this thesis though) to find all possible reactions for a specific
rule. Another possibility is finding just some reaction. Alternatively, in step 2, the user can
choose to find all reactions for all rules. Once an action is chosen, the “Matcher” is invoked.

This invocation can be with either a single rule or all the set of rules. A set of matches is

returned. The user can invoke the

a single match. The rewrite is performed by the “Rewriter” by substituting the reactum for the

redex and also instantiating the parameters. The agent needs to be re-normalized in general after

a rewrite step.

38

hows the details of the rewrite engine of Figure 2-17. In this

rewriter to perform a specific reaction provided there is at lest

BPL Tool Architecture

Overview

Domain specific usage:

- ex. location model -

W\aorld madel

MinitL rules
MinivIL sig

MiniML prog
MiniML parser, typechecker,

MiniML prog : MinivL
MiniML to BGVal translatar

"Main mode" usage

Bigraph (1) : BPL Signature (1) : BPL-level

| BPL to BGTerm translator

Bigraph (1): BGTerm Signature (1) : BGTerm-level

| BGTerm to BGVal trans|ator/checker

Bigraph (1) - BGVal Signature (1) : BGVaklevel

BGval to BONF normalizer (sig) | (rules)

Signature (1) : BONF-level Rules (*) : BDNF-level

Rewrite engine (see separate sketch)

Signature
Bigraph
Reaction rules

BPL Parser

Rules (*) : BRL-level

(swg)l (rules)

Rules (*): BGTerm-level

{sig) | {rules)

Rules (*) : BGVal-level

Bigraph (1) : BDNF

Bigraph (1) : BGVal

FIGURE 2-17:ARCHITECTU

RE OF THE FOUR LAYERS OF BPL TOOL(ITU, 2007A).

39

BPL Tool Architecture

Rewrite engine sketch

Bigraph (1) : BDNF Signature (1) - BONF-level Rules (%) - BONF-level

User driven scheduler

) (mode) :.v'f/ a: BDNF /.‘_.-": s Sig / Ris): Rule(s) /

Matchies) (1/%): 7

Find possible reactions (mode)
-rule no. x (step 1)
- all rules (step 2)

AN L

Perform rewrite no. y

/ Match: 7 // 2 BONF / s Sig / R Rule /

Rewriter

a': BGval

Rewrite engine

FIGURE 2-18: THE REWRITE ENGINE OF THE BPL TOOL (ITU, 2007A).

As discussed earlier, the SUGAR module is used to enter the Bigraph values directly into SML
syntax. The module defines syntactic sugar for creating BGVals in SML (ITU, 2007b). This
subset of SML is called MiniML. We use MiniML to program our implementation.
Implementing with MiniML enables us to use SML’s control constructs, which are lacking in
Bigraphs. This access to SML’s control constructs is one of the reasons why MiniML was
developed (Elsborg, 2009). We will give detailed explanation of how to program with MiniML
in Chapters 3 and 4.

2.2.1.3 USING THE SUGAR MODULE OF THE BPL TOOL

We present a short survey of the features of Bigraphs that we have used for expressing a model
at runtime with the BPL Tool (ITU, 2011). We use the MiniML syntax which is a subset of the
Standard ML (SML) constructs, provided by the BPL Tool, to represent Bigraph expressions. In
particular, we will use BPL Tool’s SUGAR auxiliary module which defines the syntactic sugar

for entering Bigraph expressions directly in SML.

a) Placing and Linking: A Bigraph consists of two independent structures- a place graph and a
link graph. These two graphs share nodes. The place graph is restricted to be a tree (See Figure
2-19 where a device node is nested inside a shopping mall node). A link graph can be a hyper-
graph i.e. a link can connect more than two objects (ITU, 2008). We have not used link graphs
in our implementation using the BPL Tool (ITU, 2011). This is because the matching algorithm

of the BPL Tool is not designed to efficiently handle a huge explosion of links that occurs as the

40

size of the Bigraph grows (Elsborg, 2009). Leaving the links out is the result of the in-efficient
implementation of the BPL Tool rather than any inherent limitation of Bigraph Theory (See
Chapter 5). In what follows therefore, we will only talk about place graphs.

ShoppingMall

device site

FIGURE 2-19: APLACE GRAPH WITH AROOT AND A SITE.

b) Interfaces: As discussed earlier, these make parts of a Bigraph externally accessible and
define its use as a construction block (ITU, 2008),(Milner, 2008a). In the Figure 2-19, a place
graph is shown with the nodes of the tree nested inside each other. There are two controls for
the two nodes: a control called ShoppingMal1 and another called devi ce. The outermost dashed
rectangle represents the root and the innermost dashed rectangle represents a site. A place
graph’s outer interface is its root and inner interface its site. In our figures, we omit the drawing

of the root node when there is no ambiguity.

c¢) Classification of nodes: As discussed earlier, in the place graph, each node has a control
which is the name of the type of node. Each control has a status which could be atomic, active

or passive.

Atomic status of a node: Atomic nodes are those nodes that cannot have child nodes or sites
(holes within which other nodes can fit in) and no reaction rules (See point (f) Dynamics on the

following pages) are allowed inside,

Active status of a node: Active nodes are those nodes that can have child nodes or sites and

reaction rules are allowed inside,

Passive status of a node: Passive nodes are those nodes that can contain child nodes but reaction
rules are allowed only at the node and not in their child nodes.

We construct atomic, active and passive nodes in Chapter 4.

41

The parent and child nodes can be of different kinds (i.e. different controls) - for example, a

device node could be inside a location node (Figure 2-19).

d) As discussed earlier, the signature of a Bigraph declares its types of controls, their status, and

their arity.

e) Operations to construct larger Bigraphs from smaller ones: The three operations in MiniML
syntax (‘S’ is the SUGAR module of BPL Tool) that we use are:

» Composition: - S.0 (G, F). This means put Bigraph F inside Bigraph G provided G is not an
atomic node and the number of sites in G are equal to number of roots in F. If F denotes a
device of control device with a root and G denotes a shopping mall with a site then we get a
Bigraph shown in Figure 2-20 by putting device inside ShoppingMall Bigraph’s site. Notice

that we have omitted ShoppingMall Bigraph’s root to avoid clutter:

ShoppingMall

device

FIGURE 2-20: COMPOSITION OPERATION OF BIGRAPHS.

* Parallel Product: - S.||(G,F). This means place Bigraphs G and F side-by-side. If G denotes say
a Bigraph of a control called WORLD and F denotes a Bigraph of a control called SCA (Service
Component Architecture), then we get the Bigraph shown in Figure 2-21. Assume for now that
WORLD and SCA are just arbitrary names that we give to these Bigraphs. We will discuss what
WORLD and SCA stand for in Chapter 4.

FIGURE 2-21: PARALLEL PRODUCT OPERATION OF BIGRAPHS.

42

* Prime Product (also called Merge Product): - S.’|'(G,F). This means, place Bigraphs G and F
side-by-side under a common parent node. If G denotes say a Bigraph of a control called
WORLD and F denotes say a Bigraph of a control called SCA and we wish to place both side-
(WORLD, SCA). This is depicted in Figure 2-22.
Notice that the two Bigraphs WORLD and SCA are under a common root after the prime

by-side, then in MiniML syntax, we write S.

product operation. This common root is formed by coalescing the two individual roots of the
two Bigraphs WORLD and SCA.

______________ 1
| |
| WORLD SCA |
| site site |
i | i |

| L L |
: |

|
- _ J

FIGURE 2-22: PRIME PRODUCT OPERATION OF BIGRAPHS.

f) Dynamics: The reconfigurations of the structure of Bigraphs can be specified by defining
reaction rules. A reaction rule consists of a redex which is a pattern to be changed and a reactum
which is the changed pattern. Reaction rules can be parametric if both the redex and reactum
have sites. These sites are the parameters of the reaction rules and can be considered ‘don’t
care’ when the reaction rule is applied. Each site in the reactum must be mapped to a site in the
redex. In Figure 2-23, we depict the reaction rule ‘Device un-cached’ where the Bigraph with
control device is the node representing a device and the Bigraph with control Tocation is the
node representing the location. The site is a ‘don’t care’ as it is a parameter for the reaction rule

and could contain any Bigraph.

43

location location

device

[]

site site
3 3

FIGURE 2-23: DEVICE ‘UNCACHED’ RULE.

A matching algorithm is used by the BPL Tool to figure out where in a large Bigraph the redex
of the reaction rule should be applied (see Section 5.3 for an example). Matching is NP-
Complete (Hgjsgaard, 2011). Modelling through reaction rules enables us to handle run-time
complexity. This is because a few rules can intensionally construct the set of infinitely many
possible re-configurations of the system. An intensional construction of a set defines the basis,
inductive rules and a closure property to generate a set. In contrast an extensional construction
enumerates all the elements of a set.

Thus, a Bigraph’s syntax can be used to define processes and its reaction rules can be used to
define how those processes interact. The syntax and the reaction rules are together called
Bigraphical Reactive Systems (BRS) (Milner, 2009), (Birkedal et al., 2006).

2.2.1.4 USING THE SUGAR MODULE TO DESCRIBE PLATO-GRAPHIC
MODELS

Because Bigraphs lack control structures, reaction rules that model physical action cannot be
used to compute directly with a model of that action. For example to implement recursive
queries, we will need to encode in Bigraphs a runtime stack with additional controls (Elsborg,
2009).This problem is addressed by Birkedal et al. (Birkedal et al., 2006) by representing three
separate concerns in three Bigraphical Reactive Systems (BRS). These three BRSs constitute
the Plato-Graphic model (PGM) as defined by Birkedal et al (Birkedal et al., 2006). We now
discuss some definitions that are used to describe the Plato-graphical model. We have taken
these definitions from Elsborg’s thesis and for a thorough introduction, we refer the readers to
that thesis (Elsborg, 2009).

Notation 1 (Elsborg, 2009): “We write B = (k,R) and B’ = (x',R") to indicate that B is a
Bigraphical Reactive System with controls k and rules R, and write f € B to mean that f is a
Bigraph of B.”

44

Definition (Independence) (Elsborg, 2009): “Let B = (k,R) and B’ = (x’,R") be bigraphical

reactive systems. Say that B and B’ are independent and write B L B’ iff k and k' are disjoint.”

Definition (Composite Bigraphical System) (Elsborg, 2009): “Let B = (x,R) and B’ =
(x',R") be Bigraphical reactive systems. Define the union B U B’ point-wise, ie., BU B’ =

(k U k', R UR'), when k and k' agree on the arities of thecontrolsin k N k’.”

Definition (Plato-graphical model) (Elsborg, 2009): “A4 Plato-graphical model is a triple
(C,P,A) of Bigraphical reactive systems, such that M = € UP UA is itself a Bigraphical

reactive system and C L A. A state of the model is a Bigraph of M on the form /x. (C || P || A)

where CeC,P eP,and A €A, and X is some vector of names.”

Of the three, the first BRS ‘World” (W) models the environment. The second ‘Proxy’ (P)
models the information about the World (W). The third ‘Agent’ (A) models an application that
queries the Proxy (P) about the World (W). See Figure 2-24.

A
(Agent)

P
(Proxy)

w
(World)

FIGURE 2-24: THE PLATOGRAPHIC MODEL.

Reaction rules are used to represent the 1) Dynamics of the real world in the World BRS and to
2) Model queries in the Proxy BRS.

The constraint on PGMs is that there are no common controls (types of Bigraphs) between the
‘World” BRS and ‘Agent’ BRS. A reaction rule can involve Bigraphs in more than one layer
simultaneously. However, reaction rules spanning the ‘Agent” BRS and the “World” BRS are

also not allowed.

2.2.2 WHAT IS BEING MODELLED WITH BIGRAPHS

We now discuss the practical application of Bigraphs. Since Bigraphs capture “discrete space
involving adjacency and containment” (Milner, 2009) through representation of locality and

connectivity, it is perhaps apt that to date most of the applications have used Bigraphs to

45

represent architecture of software systems in the following not necessarily mutually exclusive

categories:

1) Architectures of volatile systems.

2) Architectures where services are the main communicating entities.

3) Architectures for software systems in domains other than volatile systems.

We analyze the papers in each category now.

2.2.2.1 EXPRESSING ARCHITECTURES OF VOLATILE SYSTEMS

Volatile systems encompass mobile and hand-held computing systems, ubiquitous computing
systems, wearable computing systems, context-aware computing systems, tangible computing
systems and augmented reality systems (Coulouris, 2012). Bigraphs have been used as a
language to express the architecture and reconfiguration of a volatile system. We have already
discussed Birkedal et al.’s idea (Birkedal et al., 2006) of a Plato-graphic model for context
aware systems in section 2.2.1.4. In chapter 4, we discuss how we have used their ideas in the
design of our own model at runtime. The following papers have expressed the architecture of a
volatile systemusing Bigraphs:

1) Chris Greenhalgh and co-workers have proposed the Bigraphspace library (Greenhalgh,
2009a, Greenhalgh et al., 2009, Greenhalgh, 2009b) as a “shared distributed data structure that
can be used for communication and coordination between components in a ubiquitous software
system”. This is similar to the idea of a tuple-space (Gelernter, 1985). Bigraphspace represents
Bigraphs as a Document Object Model (DOM) tree. The XML element hierarchy models the
Bigraph’s place graphs. Cross-references between XML elements model the Bigraph’s link
graphs. A client of Bigraphspace can query it using a Bigraph pattern (redex) that is then
matched with the Bigraphspace’s Bigraphical structure. This Bigraphical structure can be
updated by using reaction rules to reflect changes in the real world. Bigraphspace is intended as
a foundational layer on top of which a suite of supporting mode ling/authoring/software
development tools is proposed to be developed. Also, Bigraphspace is intended to support a

runtime system by maintaining an up-to date model reflecting changes in the environment.

The idea of representing tuple-space like structure with Bigraphs is an innovative contribution
towards exploring practical application of Bigraphs.

2) The paper by Walton and Worboys (Walton and Worboys, 2009) uses Bigraphs to model
topological and physical image schemas of built environments. Built environments are volatile

in that the structures within them are changing constantly. They define image schemas as

46

“abstractions of spatio-temporal perceptual patterns”. Image schemas do not have widely
accepted formalisms to represent them. Two image schemas are modelled: the container image
schema represented by one Bigraph contained inside another and the link image schema where
two Bigraphs are connected by a link. Two schemas are composed to construct a larger Bigraph.
Consider Figure 2-25 showing Bigraph I. The rectangle marked 1 represents an open space
where an agent A is shown linked to the key K. K’s open link x; represents the fact that the
key’s lock is unknown. The rectangle marked 2 represents another open space where a lock
represented by the rectangle L guards another open space represented by rectangle 3. Lock L’s
key is unknown and this is represented by the open link X..

FIGURE 2-25: BIGRAPH | (WALTON AND WORBOYS, 2009).

Reaction rules model the moving in and out of a Bigraph that represents a container as well as
the establishment and breakage of links between Bigraphs. More complex image schemas are
modelled by firing a series of reaction rules one after another.

There is a rich theory of image schemas (Johnson, 1987) that the authors have tapped in to pick
out those schemas that they model with Bigraphs. This theory enables them to capture all the
necessary elements of physical and virtual spaces in their Bigraph models. Their proposed

model is meant to be used to aid navigational tasks of agents in physical and virtual spaces.

3) The paper by Xu et al. (Xu et al., 2011) models context aware mobile systems with Bigraphs
and illustrates their ideas by applying them to a smart phone example. They model context
using the structure of Bigraphs and changes in context by using the reaction rules of Bigraphs.

Although their application of Bigraphs is interesting, they have not gone much beyond previous
work by Birkedal et al.(Birkedal et al., 2006), Milner (Milner, 2009),(Milner, 2008a), Debois
and Damgaard (Debois and Damgaard, 2005) and Greenhalgh (Greenhalgh, 2009a).

4) Wang et al.’s (Wang et al., 2011) paper has two authors in common with Xu et al.’s (Xu et
al., 2011) paper above. Similar to Xu et al., Wang et al. factor out common elements of a

context aware system from various definitions of context awareness. These common factors are

47

then modelled using abstractions of Bigraphs. They present an example of a context aware

hospital and an example of a university project being managed in a context aware space.

As with Xu et al.’s paper above, this paper has used Bigraphs in interesting domains which is
conceptually similar to the ideas presented in Birkedal et al.(Birkedal et al., 2006), Milner
(Milner, 2009),(Milner, 2008a), Debois and Damgaard (Debois and Damgaard, 2005) and
Greenhalgh (Greenhalgh, 2009a).

5) Zhai et al.’s paper (Zhai et al., 2011b) uses Bigraphs to model passengers getting a ticket,
entering a metro station and leaving it-each of which is a Bigraphical reaction rule. The nodes in
the Bigraph model a person, a gate, a ticket and the rest of the metro system. In future work,
Zhai et al. plan to use a more complete Bigraphical model of the metro system for running a
simulation to predict passenger volume, train dispatch, income distribution etc.

The ideas presented in the paper are interesting in that in that they consider passengers as part of
their model of the metro system and its embedded devices.

6) Another paper (Zhai etal., 2011a) by the same lead authors as above and in the same domain
of an urban metro rail system uses a different set of reaction rules to model slightly different
activities- namely those of getting onto a train, transferring en-route to a different line owned
by another operator, and getting off a train. The problem that they seek to address is how to
share passenger fares between different operators of different lines in the barrier free transfer
mode of an urban metro rail system. They present an algorithm that calculates time cost of all
possible paths between two stations. Each path’s time cost is the sum of the time costs of all the
transfer reaction rules that need to be triggered. The path that takes the shortest time is predicted
to be the path that the passengers will take. They confirm this fact by analyzing the choice of the
actual path taken by 500 passengers. They propose that the cost of the ticket can be shared
between different operators based on the way this optimal path that the passengers take (and

predicted by their algorithm) is divided between the lines owned by different operators.

This paper demonstrates a novel usage of Bigraphs. However, much work needs to be done to
consider more complex scenarios of passenger movement when designing their cost prediction
algorithm.

7) High Confidence Petroleum extraction Software Systems (HCPESS) are used in petroleum
well sites to process information from sensors and actuators embedded within petroleum
production equipment. These sensors and actuators are failing in the harsh environment, and
thus creating volatility. The paper by Zhai et al. (Zhai et al., 2011c) partially models HCPESS
software framework with Bigraphs. The architecture of the HCPESS framework is modelled by

48

the place and link graph of Bigraphs. The dynamic reconfigurations of the framework are

modelled by Bigraphical reaction rules.

Even though HCPESS is an interesting domain for mode lling with Bigraphs, more work needs

to be done to represent a realistically complex HCPESS framework with Bigraphs.

8) The paper by Henson et al. (Henson et al., 2012) discusses the appropriateness of
Bigraphical abstractions for applications in intelligent environments. They hope to use these
abstractions to document, design, and analyze such applications. Bigraph nodes model physical
spaces, users, devices and Bigraph links model the connections between these entities. The
reaction rules model a user entering a physical space, users accessing a physical space using a
real or virtual key, a user getting a key, a user using the same key for multiple uses, a key that is
shared among users being used multiple times and finally, an establishment of a connection
between a device and a physical space’s intranet. Their example scenario involves modeling of
teachers who can give commands to pupil’s devices (Figure 2-26). In Figure 2-26, ‘m’ nodes
represent people and can be assigned the role of teachers or pupils. For instance, the node ‘m’
situated inside the left-hand side oval space (representing a classroom) and connected to the
‘cmd’ node (command) represents a teacher. The ‘cmd’ node is further connected to another
‘m’ node representing a pupil and situated inside the right-hand side oval space that represents
another classroom. The ‘cmd’ node represents a command from the teacher to disconnect the

pupil from their device.

o
3
DB

FIGURE 2-26: THE TEACHER/PUPIL RELATIONSHIP (HENSON ET AL., 2012).

They consider Bigraphs as an appropriate abstraction for the following four reasons:

“a) They are intuitive and lie close to the topic of investigation; b) They are relatively simple to
understand and deploy (in contrast to the systems they may analyze); c) They offer a means to

49

tame complexity through multiple descriptions at different levels of abstraction; d) The system

itself can be usefully used without having to engage with its mathematical foundations ™.

This paper constitutes an important step towards evaluating the appropriateness of Bigraphical
abstractions to model intelligent environments. The authors point out that a reaction rule can
match a given Bigraph in several ways. However they do not present a way to deal with cases
where only a specific match corresponding to a specific node in the place graph needs to be

returned.

9) Another paper by Walton and Worboys (Walton and Worboys, 2012) uses a Bigraph based
model to aid agents in navigating indoor spaces for accomplishing a goal. The work presented
in this paper complements the work in the paper discussed above. The structure of the Bigraphs
is used to model the following:

a) Location of agents and objects.
b) Topological configurations such as building hierarchies.
c¢) Path based navigation graphs and other non-spatial relations (someone’s office).

Reaction rules of Bigraphs model changes in context or effect of an agent’s actions. They show

how Bigraphs can be used to model indoor spaces usefully evenin light of missing information.

Walton and Worboys’ paper uses Bigraphs as an aid in goal-directed navigation. The paper
presents an excellent discussion on those aspects of indoor spaces that should be expressed in a

model.

10) Pereira et al. (Pereira et al., 2012) have proposed a two layered model, similar to our work,
to simulate a volatile system. One of the layers models the physical (execution machines and
their environments) with Bigraphs and the other models the virtual (software agents) with
algebraic structure (See Figure 2-27). The agents are hosted at the nodes of Bigraphs and can
interact with them by observing them, migrating to them and controlling them. Agents
themselves are sequential computations operating concurrently over the same physical structure
and can be represented as finite or infinite state machines. In common with other hybrid systems
like Alur and Dill’s timed automata (Alur and Dill, 1994) or Henzinger’s hybrid automata,
Pereira et al.’s model has a hybrid notion of time remembering that a “hybrid system is a
discrete system that interacts with a continuously evolving one namely its environment” (Aceto
et al., 2007). They hope to reuse pi-calculus (Milner, 1999) or SHIFT (Deshpande et al., 1998)
to express their agents.

50

A={ay,a;..ccccurennin, a,} //—“\\\
n) -
1 A Agents ! <
| i ! i
T T | T
IHost | ! !
| : IMigrate!
Observe | ! i gra e: Control
| | ! %
I I i |
B | | Y l
i v \ i
— v i Physical Structure ! S
v

-

FIGURE 2-27:BLOCK DIAGRAMDEPICTING THE CONTROL LOOP BETWEEN AGENTS AND
THE PHYSICAL STRUCTURE (PEREIRAET AL., 2012).

Pereira et al.’s work is an important contribution to modeling of the separation of concerns by
having two layers for two concerns. However, they do not use Bigraphs for expressing both the
layers of their model. Expressing both the layers in such a manner would have made their
models more expressive as Bigraphs can be looked upon as a meta-language (Birkedal et al.,
2006) encompassing Petri nets (Milner, 2004a), pi-calculus (Jensen, 2006), (Jensen and Milner,
2003), (Jensen and Milner, 2004), mobile ambient (Jensen, 2006) and lambda calculus (Milner,
2004b). Also, Pereira et al.’s model is suitable for simulation of physical and virtual movement.

2.2.2.2 EXPRESSING ARCHITECTURESWHERE SERVICES ARE THE MAIN
COMMUNICATING ENTITIES

Services are programming abstractions with well defined interfaces and constitute the
communicating entities in many distributed system architectures (Coulouris, 2012). Such

architectures have been modelled using Bigraphs in the following papers:

1) Zhang et al.’s paper (Zhang et al., 2008) is a first attempt towards providing a uniform
framework based on Bigraphs to represent service compositions in BPEL -like languages. They
use Bigraphs to express BPEL-like language and use this Bigraphical representation to prove
properties about the language. They have specified communication, scope-based compensation
and error handling of a BPEL-like language with Bigraphs.

This paper represents an interesting application of the specification capabilities of Bigraphs.
However, they have not utilized the reaction rules of Bigraphs in their framework.

51

2) Xue et al. (Xue et al., 2009) use CCS encoded in Bigraphs (Milner, 2009) to model service
interaction patterns (Barros et al., 2005). Reconfiguration of these interaction patterns are
modelled with Bigraph reaction rules. The service interactions modelled in this manner can be
used to simulate business collaborations and process choreographies. Moreover, these

interactions can be expressed in terms of Bigraphical compositions.

The modeling of service interactions is important to capture all possible interaction patterns of

business processes.

3) The paper by Huai-Guang et al. (Huai-Guang et al., 2010) seeks to explore ways in which
service compositions could be reconfigured dynamically and be guaranteed to run correctly. The
structure of a composition is modelled using the place graph and link graph of Bigraphs. Six
Bigraphical reaction rules mode| the service interaction patterns in the composition. An example
case study modeling a user requesting for airline and hotel reservation through their mobile

devices is also discussed.

The difference between this paper and the paper by Xue et al.(Xue et al., 2009) discussed above
is that in the former Bigraphs are used directly to model service interactions whereas in the
latter, CCS expressed in Bigraphs is used to model service interaction patterns.

This paper’s idea of modelling service interaction with reaction rules is innovative. However,
the example case study describes composition of web services rather than the composition of
simpler services running on ubiquitous computing devices.

2.2.2.3 EXPRESSING ARCHITECTURES FOR SOFTWARE SYSTEMS IN
OTHER DOMAINS

We now discuss the papers that have used Bigraphs to express architectures for software

systems other than volatile systems.

1) Debois and Damgaard’s technical report (Debois and Damgaard, 2005) uses Bigraphs to
model an internal switch, finite automata, the game of “life” (Gardner, 1970), combinatorial
logic, term unification and an event driven system. These systems’ structure is modelled by
Bigraph place and link graphs. The dynamics of these systems are described by appropriate

reaction rules.

This technical report gives a good introduction to mode lling with Bigraphs for someone new to

such modelling.

2) The paper by Chang et al. (Chang et al., 2007) uses Bigraphs to express two architectural

patterns: the client-server pattern for distributed systems and the pipe-filter pattern for a generic

52

software systems. Reaction rules of Bigraphs are used to capture the reconfigurations that are
allowed within an architectural pattern. They prove that if the initial Bigraph and reaction rules
preserve the constraints defined by X-sorted Bigraphs then the final Bigraph also does so. Their
conformation algorithm essentially checks whether an initial Bigraph and reaction rules can

generate a given Bigraphical instance.

The paper is an innovative application of Bigraphs and their reaction rules to express constrains
on an architectural pattern. It demonstrates the utility of being able to write one’s own reaction

rules in Bigraphs to express dynamic reconfigurations in a system.

3) Another paper (Chang et al., 2008a) by the same authors as above expands the above two
papers by combining an environment model (where environment is a set whose each element is
a vector), and a reconfigurable architecture model (expressed in Bigraphs) into a self-adaptive
software model. They propose an algorithm that tests if policies maintain the correctness of the
self-evolving software and illustrate their ideas by applying them to a grid application case
study. This work combines Bigraphs with automata in an interesting way.

4) The paper (Chang et al., 2008b) by the same research group as above adds to their work by
innovatively using the structure of Bigraphs to append context to reaction rules.

5) Wang et al.’s paper (Wang et al., 2010) expresses an Aspect oriented Dynamic Software
Architecture (AODSA) with Bigraphs. They have proposed a minor extension of Bigraphs and
model components, connectors, aspects, component information managers, connector
information managers, and aspect information managers with Bigraphical place graphs.
Reaction rules model the dynamic evolution of AODSA. A series of operations such as add
aspect, delete aspect, modify aspect and weave aspect are modelled as a single reaction rule
expressing the overall dynamic evolution. They have illustrated these ideas by applying them to

an aspect oriented client server system.

The inclusion of aspects as part of a Bigraph model is an important original contribution of this

paper.

6) The paper by Blackwell (Blackwell, 2011) uses Bigraphs to model system security issues
instead of using them to only model mechanisms such as cryptographic protocols. The static
structure of the Bigraph models the supervisory control and data acquisition network (SCADA).
SCADA is used to manage power plants, sub stations and transmission lines. The system-wide
issues modelled by reaction rules include remote logical attacks, transitive attacks, physical
attacks, insider attacks, multilevel attacks, consequential impact of attacks, Malware attacks and
control attacks.

53

This application shows the versatility of Bigraph’s abstractions- in particular the ease with
which discrete physical and logical entities as well as their dynamics can be expressed.

7) The paper by Xue et al. (Xue et al., 2011) models an abstraction slider with CCS encoded
with Bigraphs. Abstraction slider (Polyvyanyy et al., 2008) is a mechanism to specify the level
of abstraction to express a process model. Xue et al. classify each element of a business process
into a slide depending upon its location in the Bigraphical place graph. Different slides can be

composed together depending upon the level of abstraction chosen on the abstraction slider.

Although an interesting application of Bigraphs, Xue et al. have not explained the advantages to

be had by such an approach.

8) The Calder and Sevegnani paper (Calder and Sevegnani, 2012) investigates runtime
verification for event-driven systems. Their example system is the Homework Network
Management System (Sventek et al., 2011) which is used to support non-expert users in
installing and managing wire less home networking. The Homework system is enhanced by the
authors with runtime verification capabilities. The results of the verification are fed back to the
users using graphical representation of Bigraphs and if required also to the network. Network
topologies are modelled with the structure of Bigraphs. Event, access control policy
enforcements and revocations are modelled with Bigraphical reaction rules. Properties of the
system are verified using predicates encoded as instances of Bigraph matching. They have used
an enhanced version of Bigraphs (Sevegnani and Calder, 2010) that can represent location
overlap. Consider Figure 2-28, which shows a Bigraph Model of a wireless local area network
(WLAN). M represents a machine linked to the router R. M is also linked to its wireless signal
represented by Sy. Similarly, R is linked to its wireless signal Sg. The two wireless signals can

overlap and this is captured in the Bigraph.

r T]
B = O\
I M

. |
| T |
| s,
L }

FIGURE 2-28:BIGRAPH MODEL OF A WLAN (CALDER AND SEVEGNANI, 2012).

Apart from our work, this is the only work to the best of our knowledge that deals with runtime

issues (though not with models at runtime issues) when modeling with Bigraphs. Other projects

54

that use Bigraphs as the modeling language do so at the system design stage rather than at the

system execution stage.

2.2.3 OPEN RESEARCH QUESTIONS

None of the papers discussed above have used Bigraphs to construct a model at runtime to deal
with volatility in service compositions running on a mobile device. Thus, from the papers

discussed, the question that emerges is:
How do we use Bigraphs to construct a model at run time?
More specifically, none of the surveyed papers have dealt with the following issues:

a) Instead of using Bigraphs to model systems for simulation, how do we use Bigraphs to
express a model that is causally connected to a running system?

b) What are the best practices to use Bigraphical abstractions mapped to a programming
language to model at runtime a real-world system?

c) Can Bigraphical abstractions be used to implement standard system techniques like
caching, delayed-write, pre-fetching? These techniques will be needed to deal with a
bottleneck of requests arising out a high rate of reconfigurations in an implemented
system.

These are open questions that represent the ‘gaps in knowledge’ in the surveyed literature.

2.24 OUR TAKE-OFF POINT

We have discussed above the papers that use Bigraphs in practical applications. We wish to
point out the following approaches from some of these papers that we will also explore in this
thesis to see if they are appropriate for our research question:

1) We will use Lars Birkedal et al.’s (Birkedal et al., 2006) approach of the Plato-graphic Model
to design our two- layered model. We discuss which of the ideas of Plato-graphic models we use
in Chapter 4.

2) We concur with Henson et al. (Henson etal., 2012) that Bigraphs could help us abstract away
all the underlying mathematical complexities in a process algebra while still enabling us to
utilize the rigor that comes with such approaches when we model real-world scenarios. This of
course does not mean that the complexities in themse lves can be wished away. Rather Bigraphs
present an interface that can be used by programmers without going into the implementation of

55

those complexities. Our implementation using MiniML will be a test of this simplicity of

Bigraphs.

3) The idea of expressing image schemas with Bigraphs (Walton and Worboys, 2009)
represents a systematic approach to modeling an external environment. In this thesis, we explore
the runtime phenomenon in the external environment that could be modelled with Bigraphs.

4) Including different views of the same system in one model as discussed by Pereira et al.
(Pereira et al., 2012) has become important (ABmann et al., 2012). Each model represents a
specific view of the system. At runtime we might need to manipulate the different views
represented by different models of the same system to keep it running properly. We present our
techniques to include two views in the same model with Bigraphs in this thesis using the ideas
of the Plato-Graphical model (Birkedal et al., 2006).

5) We will examine the appropriateness of using Bigraphs to support a system at runtime as has
been done by Calder and Sevegnani (Calder and Sevegnani, 2012) .

2.25 SECTION SUMMARY

In this section we have given the relevant background for Bigraphs, their minor extension the
Plato-Graphic model, and the BPL Tool. We have then surveyed the literature and shown that
Bigraphs have not been used to construct a model at runtime. Finally, we have discussed the

take-off point for our thesis- in particular the idea of the Plato-Graphic model.

2.3 MODELS AT RUNTIME: A NEW ARCHITECTURE

A model at runtime is defined as “a causally connected self-representation of the associated
system that emphasises the structure, behaviour or goals of a system from a problem space

perspective” (Blair et al., 2009).

“Abstractions of the problem space express designs in terms of concepts in application domains

such as telecom, aerospace, healthcare, insurance and biology” (Schmidt, 2006).

Abstractions of solution space express designs in terms of computing technologies themselves —
in terms of registers and pointers for example in assembly languages and the C programming

language.

We firstly explain the concept of models at runtime which is the architecture that we follow in
this thesis. Secondly, we discuss the papers that use architectural models at runtime to support
dynamic adaptation and software evolution. Thirdly, we discuss the open research questions that

56

the mode Is-at-runtime community is exploring. Finally, we discuss the take-off point of our

thesis with respect to models-at-runtime.

2.3.1 EXPLANATORY BACKGROUND FOR MODELS AT RUNTIME

The concept of a model has often been discussed in software engineering literature. As
explained by Waddington and Lardieri (Waddington and Lardieri, 2006), “rather than
replicating abstractions that programming languages provide, models abstract upon “selected”

elements of the implemented complex system”. See Figure 2-29.

Abstract VIEW VIEW VIEW VIEW
Views
Translation
Abstraction MODEL MODEL

5 TR l

Complex
Systems

FIGURE 2-29: RELATIONSHIP BETWEEN VIEWS, MODELS AND
IMPLEMENTATION.(WADDINGTON AND LARDIERI, 2006).

“Abstraction is a special case of separation of concerns wherein we separate the concern of
important aspects from the concern of the less important details” (Ghezzi et al., 2002). Models

can play two keys roles by applying abstraction (Brambilla et al., 2012):

a) Reduction feature: models capture only selected elements of the implemented complex

system.

b) Mapping feature: models can sometimes be based on a system which is considered a
prototype of a class of systems. Then the model is said to have generalized the prototype system
to a class of many systems.

57

This concept of a model has been used in developing Model-Driven Engineering (MDE)
technologies. MDE technologies have been described by Schmidt (Schmidt, 2006) as “offering
a promising approach to address the inability of third-generation languages to alleviate the
complexity of platforms and express domain concepts effectively .

MDE techniques manage complexity by having different levels of abstraction and transforming
one level of abstraction to another (Morin et al., 2008). These techniques as applied to models at

runtime include (Morin et al., 2008):
1) Automatic generation of reconfiguration commands and scripts,
2) Managing the adaptation of a complex system at a more abstract level.

However, models-at-runtime research differs from MDE research in one crucial aspect. Models
at runtime research focuses on runtime models in contrast to MDE research that has focussed on
design-time models (Bencomo, 2009). These models are abstracted representations of the
running system and are causally connected to it (See Figure 2-30).

Traditionally
Model
Compilation, Runtime model
transformations
Causal
Connection
System Running System
Design Time Runtime

FIGURE 2-30: DESIGN MODELS VERSUS RUNTIME MODELS (BENCOMO, 2009).

This causal connection is essential because models should be able to provide up-to date
information to aid in deciding an appropriate adaptation strategy. Moreover, because of the

causal connection, adaptations can be effected at the model level. This is similar to models used

58

by the reflections research community. Borrowing from the research done on reflection in
programming languages, the runtime model and the running system could either be one and the
same or be different entities (Gjerlufsen etal., 2009) (See Figure 2-31).

interface:
program

run()

@

realises

interface:
program

<

update when changed

[N

program

model

realises

update when changed

interface:
reflection

read()
write()

realises

program

realises

interface:
reflection

run()

read()
write()

(b)

FIGURE 2-31: TWO BASIC APPROACHES FOR RUNTIME SELF-REPRESENTATION
THROUGH REFLECTION. (a) A MODEL CAUSALLY CONNECTED TO THE PROGRAM;(b)
MODEL AND THE PROGRAM ARE ONE AND THE SAME ENTITY(GJERLUFSEN ET AL.,
2009).

However, in contrast to the reflection community’s models, models at runtime are based on
abstractions of the problem space rather than solution space and hence are at a higher level of
abstraction.

As we have seen, models at runtime are essentially abstractions of runtime phenomenon and the
various dimensions of models at runtime include (Blair etal., 2009):

1) Structure versus Behaviour: Models could focus on the structure of the system emphasizing
how the software is currently constructed: in terms of objects, inheritance relationships and
invocation pathways; components and their connections; or aspects and their pattern of
weaving. Behaviour models seek to capture how the system executes in terms of flows of events
or traces through the system, or the arrival of events and their pathway to execution — arriving,
en-queuing, selection, dispatching and so on.

2) Procedural versus Declarative: A procedural model captures the actual structures or
behaviours in the system- basically the models capture how some aspect of the system works.
On the other hand, declarative models seek to capture the system goals- basically the models
capture what a system does.

59

3) Functional versus non-functional: Models designed for runtime tend to capture functional
properties of a system. Functional properties describe specific functions of the system such as
the result of a computation (Cheng et al., 2014). Non-functional properties such as performance
and security also need to be captured. Non-functional properties describe the operational
qualities of the system such as availability, efficiency, performance, reliability, security etc.
(Cheng et al., 2014).

4) Formal versus informal: Models could be based on mathematics of computation or from
consideration of programming models or domain abstractions. Formal models support

automated reasoning about system’s state.

2.3.2 USING ARCHITECTURAL MODELS AT RUNTIME TO SUPPORT
DYNAMIC ADAPTATION AND SOFTWARE EVOLUTION

We wish to use architectural approaches to design our model at runtime. Therefore, we now
discuss the papers that use architectural models during runtime to support dynamic adaptation

and software evolution.

1) Oreizy et al.(Oreizy et al., 1999) present a comprehensive view of an architectural based
approach for software adaptation and evolution. In particular, they argue that to support
adaptive changes at the architectural level it should be possible to change both their components
as well as their interconnections. Moreover, dependencies on environment also need to be
explicitly stated with architectural formalisms. They emphasize that the developers of such a

system should keep in mind the following issues:

i. Whatare the conditions under which the system adapts?

ii. Should an open-adaptive or a closed adaptive system be designed? They define a
system as being open adaptive “if new application behaviors and adaptation plans can
be introduced during runtime”. A system is closed adaptive “if it is self contained and
not able to support the addition of new behaviors”.

iii. How much autonomy must a system have?

iv. A cost-benefit analysis of the adaptive mechanisms should be undertaken.

v. Whatshould be the frequency of adaptation?

vi. How current should the information based on which the adaption decision is taken be?
Bencomo (Bencomo, 2009) has pointed out that if a system is open-adaptive, it is easier to add

on a reflective mechanism to it.

2) Dowling and Cahill’s paper (Dowling and Cahill, 2001) proposes an architectural meta-
model that reifies a system’s architecture as a “fyped, directed configuration graph with

60

interfaces as vertices, labeled with component instances, and edges as connectors”. The
transformation of the configuration graph models a reconfiguration of the system architecture.
Their approach enables the replacement of components in a CORBA-based system.

3) Garlan and Schmerl (Garlan and Schmerl, 2004) advocate guaranteeing consistency between
an architecture model and its implementation at runtime. This can be done by “monitoring the
running system and translating observed events to events that construct and update an
architectural model that reflects the actual running system”. This updated architecture is then
compared to the correct architectural model. If inconsistencies are discovered, corrective
adaptation is triggered. Thus a constantly updated architectural view that depends on the
system’s property of interest is maintained. They also argue that mechanisms to effect
adaptation must be separate from the system itself. They describe their Rainbow framework
(Garlan et al., 2004) which supports the use of an architectural model at runtime. We discuss the

Rainbow framework next.

4) Garlan et al.(Garlan et al., 2004) have proposed the Rainbow framework which describes the
usage of architectural models for system monitoring and reflection at runtime. They use an
external model to monitor and if required modify a system dynamically. The system’s
monitored events are translated into constructing and updating the architectural model to reflect
the actual running system. If an inconsistency is found in a running system, appropriate
adaptation commands are issued. They adapt the notion of an architectural style which includes
four set of entities: component and connector types, constraints on permitted composition of
elements, properties of the component and connector types, and analysis on systems constructed
with different architectural styles. They describe two case studies: A web-based client-server

systemand a video conferencing system.

5) Cazzola et al. (Cazzola et al., 2004) propose a reflective architecture for dynamically
evolving an object-oriented system’s structural and behavioral aspects. They discuss their event-
condition-action rules and a decision engine to control the evolution of the system. A case study
of an urban traffic control system is described to show the applicability of their ideas in a real

world system.

6) Floch et al. (Floch et al., 2006) describe the project MADAM (Mobility and Adaptation
enabling middleware) which uses architectural models at runtime for developing adaptive
systems for mobile applications. Generic middleware components are used to reason about and
control adaptation decisions. They compare the actual running system with new variants of
architectural models that have been derived from utility functions. The utility functions

encapsulate their goal policies for runtime adaptation.

61

7) Caporuscio et al.’s paper (Caporuscio et al., 2007) uses software architecture as the
abstraction of the system that they are modeling in a framework for performance management.
Their approach is based on monitoring and model based performance evaluation. Runtime
monitoring information is used to instantiate architectural models to inform a reconfiguration
decision. The new target configuration is generated through a combination of reconfiguration

steps that are pre-determined.

8) The paper by Bencomo et al.(Bencomo et al., 2008) describes the Genie Toolkit that can be
used to support a reconfigurable component based system’s modeling, generation and operation.
Two kinds of models are generated by Genie: architectural models and transition state models.
The artifacts generated from the models by Genie can be used by reflective middleware to
support adaptation at runtime. The artifacts are XML configuration files that can be dynamically
inserted into the running system.

9) Sykes et al. (Sykes et al., 2008) organize their architecture into three layers to support
adaptation (See Figure 2-32). The actions that require an immediate feedback are performed by
components at the lowest level whereas those that require long reflection are performed by
mechanisms at the uppermost level. At the lowest level, domain specific software components
reside. At the middle layer, mechanisms for plan execution, assembly of components, and
replacing components reside. At the uppermost layer mechanisms for converting goals,

expressed in temporal logic, into reactive plans reside.

GOAL MANAGEMENT LAYER

REQUEST CHANGE
PLAN PLANS
i |
S
? —
CHANGE MANAGEMENT LAYER T ‘
UPDATE CHANGE
STATUS CONFIGURATION

01+—(%cz+—(#c3

FIGURE 2-32:THREE LAYERED CONCEPTUAL MODEL (SYKES ET AL., 2008).

COMPONENT LAYER

62

10) Morin et al. (Morin et al., 2008) have used aspect oriented and model driven techniques to
deal with the complexities arising out of the construction and running of adaptive systems. They
use aspect oriented techniques to reduce the number of possible system configurations. Model
driven techniques are used to generate configuration scripts and to manage the adaptation at a

higher level of abstraction than traditional techniques.

We focus on how they have used models at runtime since that part of their work is the

inspiration for our architecture.

Morin et al.’s runtime model is causally connected to the running system. The running system
can be managed by controlling the model. The model’s causal connection is shown in Figure 2-
33. The reference model shown in the Figure 2-33 is generated by reflection over the running
system. The running system is observed by listeners that update the reference model. The
reference model is transformed to the modified model by a reasoning framework responding to
changes in context that trigger adaptation requirements. The modified model is then compared
to the reference model to produce diff and match models. The diff and match models specify
respectively the differences and similarity between models. An analysis of the model results in
an instantiation of reconfiguration commands. These commands are used to add or remove
bindings and/or components. The commands are ordered by priority and executed by the
platform to effect adaptation. To verify that all adaptation commands have been executed
successfully, the new reference model (automatically derived through reflection) is checked
against the target configuration model.

63

Core
Meta-model
Components, bindings etc
M2 Level T
Model Transformation languages: Kermeta, Kompose, SmartAdapters, etc
Transformed TthB"¢ 77777777777777777777777777777777777777 fre Conforms to
Modified Reference

model l L model j&—————————

|
|
|
|
Model Comparison Tools: EMFCompare etc :
|
|
|
|
|

Diff and match model

M1 Level Generated by introsper{tion
: Updated with listemers
Aout(cj)mgtlc Command 9 !
rdering / Dynamic ;
Runnin |
(comparator) adaptation Systen? ______
MO Level Runtime

FIGURE 2-33: MORIN ET AL.’S RUNTIME MODEL (MORIN ET AL., 2008).

11) The paper by Georgas et al. (Georgas et al., 2009), represents an adapting system’s
architectural configurations at runtime with configuration graphs. The goal of this system is to
allow human input into the adaptation control loop. This is aided by the configuration graph’s

monitoring and recording of the necessary information about adaptation.

12) Ramirez and Cheng (Ramirez and Cheng, 2009) propose an approach called Plato-MDE
where they use evolutionary computation-based techniques to generate the target system’s
configuration model at runtime to deal with changes in requirements and environment. Thus,
developers need to only specify the relative importance of functional and non-functional
concerns. Since Plato-MDE evolves target system models at runtime, the solution space is
eventually dominated by better solutions. They demonstrate an application of Plato-MDE to
dynamic reconfiguration of an overlay network for diffusing data to a collection of remote data

mirrors.

13) Ferry et al. (Ferry et al., 2009) present the use of weaving of aspects of assembly to effect a
reactive model transformation at runtime. They define Aspects of Assembly “as pieces of
information describing how an assembly of components will be structurally modified, thus
keeping black-box property of components”. Their example system is a service composition
running on a Ubicomp device. They decompose adaptation into three transformations between

different models of their approach. They show a way to use meta-models to enforce conformity

64

of their transformation rules. They have used the Service Lightweight Component Architecture
(Hourdin et al., 2008) to dynamically orchestrate and compose services for devices. However,
they do not use a formal language to express their model at runtime.

14) The paper by Elkhodary et al. (Elkhodary et al., 2009) proposes a software adaptation
framework called Feature-Oriented-Self-Adaptation (FUSION). A system’s requirecments are
broken down into meaningful units of functionality which they call features. A feature is
mapped at design time to a part of the underlying software architecture that realises it. They
point out the following two ideas that emerge out of their work: : “(1) feamres allow
representation of the engineer’s knowledge about some facets of the system that can be used to
enhance the adaptation logic, and (2) features can serve as an abstraction to deal with the
heterogeneity of the underlying architectural models, analytical algorithms, and implementation

platforms”.

15) Morin et al. (Morin et al., 2009) use architectural models at runtime to support dynamic
software product lines (DSPL). Their goal is to reduce the number of artefacts to support the
evolution of adaptive systems by leveraging aspect-oriented and model-driven techniques. They
design four aspects of a dynamically adaptive system: its variability, the system’s environment
and context, adaptation logic and the system architecture. Aspect-Oriented techniques are used
by them to automatically construct architectures by composing aspects that model features.

Model- Driven techniques are used by them to produce adaptation commands.

2.3.3 OPEN RESEARCH QUESTIONS FOR MODELS AT RUNTIME

The models at runtime research community organized the Models@run.time seminar at

Dagstuhl in November, 2011 to discuss the open research questions for future work (ABmann et
al., 2012). From those questions, this thesis addresses the following by using Bigraphs as a
language for constructing a model at runtime:

a) How can a runtime model provide a means to store and retrieve information about the
environment and the system?

b) To facilitate adaptation, how can a model at runtime provide a representation of the
current state and reconfiguration rules?

¢) How cana runtime model enable us to reason about operating environment and runtime
behaviour to determine an appropriate form of adaptation?

d) How can a runtime model provide meta-information along the following two
dimensions: a) efficient use of time, b) location dependency?

mailto:Models@run.time

65

e) How to combine two models of runtime into one? This necessity of combining multiple
models “arises because of the need to manage multiple concerns, for example,
performance, reliability, and functional concerns. Each concern typically requires
specific models that are able to capture the individual concem and to provide a basis
for reasoning about it” (Bennaceur et al., 2014).

f) How to select one appropriate adaptation command out of many such commands at

runtime?

2.3.4 OUR TAKE-OFF POINT

The papers discussed above in section 2.3.2 have supported dynamic adaptation and software
evolution by using architectural models at runtime. Some of the design ideas that we will

explore in this thesis to construct our system are:

1) A layered approach to designing a runtime model is required to tame the complexity of
runtime phenomenon (Sykes et al., 2008).

2) Running systems should be open-adaptive (Oreizy et al., 1999) to make it easier for reflective
systems to be added.

3) A runtime model that expresses the architecture of the running system should be causally
connectedto it (Blair etal., 2009, Morin etal., 2008, Morin et al., 2009).

4) System events need to be monitored. These monitored events need to be translated into
events that construct and update a model that reflects the actual running system (Garlan and
Schmerl, 2004, Garlan et al., 2004, Morin et al., 2008).

5) The model needs to be transformed into a target model because the system that the original
model represents has changed. The changed system needs to be represented by the target model.
The differences between the target model and the currently running system should be translated

into adaptation commands (Morin et al., 2008, Morin et al., 2009).

2.3.5 SECTION SUMMARY

In this section, we have explained the ideas behind models-at-runtime. We have surveyed the
literature that supports dynamic adaptation and software evolution with architectural models at
runtime because we want to use such models at runtime to organize the design of our system.
We hawe discussed the relevant research questions that came out of discussions held in the

Dagstuhl seminar by the models at runtime research community(ABmann et al., 2012). Finally,

66

we have discussed the take-off point for our work in particular the ideas in the paper by Morin
etal.(Morin etal., 2008).

2.4 VOLATILITY: THE EXAMPLE PROPERTY

Volatility is the example property that our system needs to tackle. From a distributed systems
perspective, volatile systems include mobile and hand-held computing systems, ubiquitous
computing systems, wearable computing systems, context-aware computing systems, tangible
computing systems and augmented reality systems (Coulouris, 2012).Volatility is manifested in

a system in the following ways:
1) Device and communication link failures,
2) Variation in the properties of communication such as bandwidth,

3) Creation and destruction of associations which are logical communication relationships

between software components resident on the devices.

As Coulouris emphasises (Coulouris, 2012), volatility is not the defining property of the
systems mentioned above since other systems such as a file-sharing peer-to-peer system also
show forms of volatility. However, in contrast to other systems, volatile systems show all of the
above mentioned forms of volatility at once. Moreover, the rate of change in a volatile system is

much higher than in a distributed system.

Bardram and Friday (Bardram and Friday, 2010) have pointed out that besides the above,
volatility in Ubicomp systems is also caused by changes in topology, routing and host naming.
Caceres and Friday (Caceres and Friday, 2012) describe volatility as resulting from a changing
“set of users, devices and software components in an environment-far more frequently in

>

ubicomp systems than in conventional distributed systems” .

Thus one of the key things about volatile systems is the high rate of change that is occurring.
However, to the best of our knowledge, the literature on volatility does not specify how high
this rate of change is. At best, it is described as being “at least one such change occurring at any

one time” as in the following (Coulouris, 2012):

“An important difference that may arise between volatile systems is the rate of change.
Algorithms that have to cope with a handful of appearing or disappearing of components a day
(e.g., in a smart home) may be very differently designed from those for which there is at least
one such change occurring at any one time (e.g., a system implemented using Bluetooth
communication between mobile phones in a crowded city).”

67

2.5 UBIQUITOUS COMPUTING SYSTEM SERVICE COMPOSITION
FAULTS: THE EXAMPLE SYSTEM PROBLEM

Our example system is a service composition running on a mobile device. We now discuss the
faults that such a service composition could suffer from. Our Bigrapical model at runtime will
attempt to provide a way to recover from the service composition faults in a composition
running on a mobile device. Thus ubigquitous computing system service composition faults is the
example system problem we wish to tackle with our proposal for a Bigraphical model at

runtime.

Service is defined as ““ a platform independent, loosely coupled, self contained, programmable
application that can be described, published, discovered, coordinated and configured for the
purpose of developing distributed interoperable applications” (Papazoglou et al., 2007). A
similar definition is given by Sumi Helal (Helal, 2010): “Services are software components with
well-defined interfaces and they are independent of the programming language and the
computing platforms on which they run”. Thus, Service-Oriented-Computing (SOC) is
independent of specific technologies such as Web Services or Event-Driven systems (Poslad,
2009) and services are components with well defined interfaces (Helal, 2010),(Alonso et al.,
2010). Service composition refers “to the development of customized services by discovering,

integrating and executing existing services ”’(Chakraborty et al., 2005).

Bronsted et al.(Bronsted et al., 2010) have identified managing contingencies as one of the main
goals of service composition for ubiquitous computing. In a ubiquitous computing environment
often called smart spaces (Coulouris, 2012), devices and services running on them might suffer
from faults because of device or battery failure resulting in their unpredictable availability.

Moreover, the faults might sometimes be induced because of device mobility.

K.S. May Chan and co-workers have proposed a fault taxonomy for web service composition
(Chan et al., 2007b). Although our example system is a service composition running on a
mobile device, Chan et al.’s taxonomy is relevant to us. This is because the same faults as those
of web service composition will also be manifested in a service composition running on a

mobile device albeit ata higher rate (Coulouris, 2012).

Chan et al.’s taxonomy for web services adapts Avizienis’s broader taxonomy of faults for any
computing system (Avizienis et al, 2004). Faults cause failure in a system and can be

categorised into:

68

1) Physical Faults.

2) Development Faults.

3) Interaction Faults.

We now discuss each of these categories:

1) Physical Faults: These are caused by a network or server side failure. Communication

infrastructure exceptions and incorrect operation of the hosting server’s middleware are also

categorized as physical faults. An unavailability fault occurs when one of the services of the

composition becomes unavailable.

2) Development Faults: These can occur because of human developers, development tools or

production facilities. The faults under this category include:

Interface change fault: This fault occurs if one of the services in the composition
updates its interface without warning.

Workflow inconsistency fault: This fault occurs when the workflow description and
interface of a service do not match.

Parameter incompatibility fault: This fault occurs if a service is provided with either
incorrect arguments or incorrect parameter types as input.

Non-deterministic action fault: This occurs when a service has a non-deterministic

outcome or return value.

3) Interaction faults: These can occur and propagate between services during the execution of

the composite service. This category is further sub-divided into the following sub-categories:

a)

b)

Content Faults: These occur when the content that is delivered by a service is different
from the service description. Content faults are of the following types:

Incorrect service fault: This occurs when a service provider delivers a service which has
not been requested.

Misunderstood behavior fault: A service requestor misunderstands a service description
and requests for a service that is not being provided by the service provider.

Response error fault: This occurs when a service is provided with a correct input but
responds with incorrect results.

Service-Level-Agreement (SLA) fault: This occurs when a service provided by a
service provider does not comply with the SLA.

QoS fault: This fault occurs when a service provided by a service provider is not of

good quality in terms of speed and information.

b)

c)

69

Timing Faults: These are the second type of interaction faults and occur when a
service’s time of arrival or timing of delivery results in the composition not complying
with the originally specified functional requirement. Timing faults are of the following
types:

Incorrect order fault: This is caused by a slow network and can result in message
packets arriving in an order different to the order in which they were sent.

Timeout fault: This is again caused by a slow network when a service waiting for a
message packet ‘times out’.

Misbehaving workflow fault: This is caused if the workflow of a composite service is
not correct or an individual service used by a composite service is incorrect or one of
the services forming part of the composition does not work well with other participating

services.

Chan et al. combine the above faults and their observed effects into a fault taxonomy as shown

in the Figure 2-34. The three categories of physical, development and interaction faults are

shown along the top of the taxonomy and divided into the sub-categories that we discussed

above. The bottom of the taxonomy shows the observed effects. An observed effect can be

triggered in more than one way as shown in the taxonomy.

Chan et al. also utilize Avizienis’s sixteen elementary fault classes and identify the following

six that are relevant for web services:

1) Phase of occurrence viewpoint:

Development faults occurring during system development or maintenance.

Operational faults occurring during service delivery.

2) System boundary viewpoint:

Internal faults that originate inside the system boundary
External faults originating outside the system boundary. These faults are then
propagated into the system because of interaction or interference.

3) Fundamental systems viewpoint:

Hardware faults: These originate in the hardware or effect the hardware.

Software faults that affect programs or data.

The six faults mentioned above are plotted along the vertical axis on the left of the taxonomy as

shown in the Figure 2-34.

70

PHYSICAL DEVELOPMENT INTERACTION
(_);\ A A
4 N
u = N w E
. [= - '
£ g = £ E ﬁ o f: S E
:E -E E 'S -.E E = * _E E w
= o £ s 2% 3 - - - > =5 o
= a 22 28 €. 2 - g 2 2= £
= & 5 # EE =& E 2 E = EE =
= £ 55 f8gcd 5 E § £ 22 £ < o
5 ¥} s i 3
o & PBEELEFYE E E E F FE gz 7 o©
Development
Operational
Internal
External *—o
Hardware
Software

Observed ﬁurcsponai\'e Incorrect More than Incoherent Slow Outdated
Effects Yieb Service resulis one unique results Service results
—l/ output
from
service

FIGURE 2-34: TAXONOMY OF FAULTS COMBINED WITH OBSERVED EFFECTS (CHAN ET
AL., 2007B).

Chan et al.’s goal is to analyze the observed effects so as to narrow down the possible faults that

could have caused a failure in a web service composition.

In conclusion in this section, we have discussed how faults occurring in a service composition
are categorized and how the observed effects can be mapped to the possible faults as discussed
by Chan et.al. To the best of our knowledge, this fault taxonomy is the most appropriate
classification for the service faults occurring in a service composition running on a mobile

device.

71

2.6 CONCLUSIONS

In this chapter, we have discussed the literature relevant to our research goal of exploring the
appropriateness of Bigraph’s abstractions to construct a model at runtime to tackle the problem
of volatile service composition running on a mobile device.

We have described Bigraph’s abstractions including placing, linking, interfaces, node
classifications and signatures. Additionally, we have shown how larger Bigraphs could be
constructed from smaller ones using the three operations of MiniML which is a subset of SML.
These operations are composition, parallel product and prime product. We have also discussed
how to represent a dynamic reconfiguration of Bigraphical structure with reaction rules. Next,
we have discussed the Plato-graphical Model, which is a minor extension of Bigraph. We have
then explained the architecture of BPL Tool, which we have used to implement our system. We
have organized the literature that discusses using Bigraphs to represent architecture of software
systems into not necessarily mutually exclusive categories.

From this literature, we have identified the gaps in knowledge that we propose to address in this
thesis.

Furthermore, we have discussed those ideas from the literature that are the take-off point for our
thesis.

We have then described models at runtime as “a causally connected self-representation of the
associated system that emphasises the structure, behaviour or goals of a systemfrom a problem

space perspective” (Blair et al., 2009).

We have described the papers that use architectural models to support dynamic adaptation and
software evolution. From these papers, we identified those open research gquestions for models
at runtime which are relevant to this thesis.

Moreover from the papers surveyed, we have picked out the ideas that are the take-off point for
our thesis.

We have also described volatility as a property of a ubiquitous computing system and have

pointed out that the effects of volatility occur ata higher rate in ubiquitous computing system.

Finally, we have described how faults occurring in a service composition are categorized into
physical, development and interaction faults and how the observed effects can be mapped to
possible faults.

72

3 THE RESEARCH QUESTION AND ITS DESIGN
IMPLICATIONS

3.1 INTRODUCTION

In Chapter 2, we critically analyzed the literature and identified those open questions that
constitute our take off point for this thesis.

From those take off points, we now present the research question that has emerged and that we
will tackle in this thesis. We also discuss the generic requirements for the design of our system

and the associated design space.

This chapter is organized as follows: In Section 3.2, we define our research question, discuss
the research work done by others that we have used as our starting point, and show why it is
worthwhile to answer our research question. Next in Section 3.3, we describe the requirements
for our design, which must support strategies to deal with volatile service composition running
on a mobile device. Finally, in Section 3.4, we outline the design space for our system by

describing the set of decisions that we have taken.

3.2 DEFINING THE RESEARCH QUESTION

We now discuss our research question, how we have leveraged other research work for our

design, and show why it is worthwhile to answer our research question.
Our thesis answers the following question:

Are the language abstractions provided by Bigraphs sufficient and appropriate to construct a
model at runtime to tackle the problem of volatility in a service composition running on a

mobile device?

This research question is a synthesis of the following two issues that have emerged out of our

literature review discussed in Chapter 2:
1) How do we use Bigraphs to construct a model at runtime?

As discussed in Chapter 2, section 2.2.3, this entails exploring the following questions which we
repeat for completeness:

a) Instead of using Bigraphs to model systems for simulation, how do we use Bigraphs to
express a model that is causally connected to a running system?

b)

c)

73

What are the best practices to use Bigraphical abstractions mapped to a programming
language to model at runtime a real-world system?

Can Bigraphical abstractions be used to implement standard system techniques like
caching, delayed-write, pre-fetching? These techniques will be needed to deal with a
bottleneck of requests arising out a high rate of reconfigurations in an implemented
system.

2) Do Bigraphs offer the appropriate language abstractions to address the open research

questions being explored by the models at runtime community?

As discussed in Chapter 2, section 2.3.3, this entails exploring the following questions which we

repeat for completeness:

a) How can a runtime model provide a means to store and retrieve information about the
environment and the system?

b) To facilitate adaptation, how can a model at runtime provide a representation of the
current state and reconfiguration rules?

¢) How cana runtime model enable us to reason about operating environment and runtime
behaviour to determine an appropriate form of adaptation?

d) How can a runtime model provide meta-information along the following two
dimensions: i) efficient use of time, ii) location dependency?

e) How to combine two models of runtime into one?

f) How to select one appropriate adaptation command out of many such commands at

runtime?

We hawe discussed in Chapter 2 that a model at runtime is defined as “a causally connected

self-representation of the associated system that emphasises the structure, behaviour or goals of

a systemfrom a problem space perspective” (Blair et al., 2009). Recall also from Chapter 2 that

ubiquitous systems are often characterized as being volatile (Coulouris, 2012), (Bardram and

Friday, 2010),(Caceres and Friday, 2012). This includes all of the following properties:

1) Device and communication link failures,

2) Variation in the properties of communication such as bandwidth,

3) Creation and destruction of associations which are logical communication relationships

between software components resident on the devices.

On one hand, the need for experimental application of Bigraphs has been pointed out by Robin
Milner and Lars Birkedal (Milner, 2009),(Birkedal et al., 2006) among others. On the other
hand, the model at runtime community has been exploring appropriate abstractions to deal with

complexity arising out of runtime phenomenon (Blair et al., 2009).

74

As discussed in the previous chapter, the volatile system that will be supported in its adaptation

by our proposed Bigraphical model at runtime is a service composition running on a maobile

device.

Our thesis is, to the best of our knowledge, the first to identify ways to exploit Bigraph

abstractions for expressing a model at runtime.

3.2.1 CAVEATS ON THE SCOPE OF THE RESEARCH QUESTION

We wish to point out two caveats on the scope our research question:

Recall from Chapter 2 that as explained by Waddington and Lardieri (Waddington and
Lardieri, 2006), “rather than replicating abstractions that programming languages
provide, models abstract upon “selected” elements of the implemented complex
system”. Thus, we do not need to capture all programming language abstractions to
implement our Bigraph model to succeed in answering our research question. Rather,
we need to make a choice of some elements of the service composition that we would
like to model at runtime.

Elsborg has already pointed out that Bigraphs lack control structures (Elsborg, 2009).
His work proposes MiniML, which is syntactic sugar for creating BGVals in SML. One
of the reasons given by Elsborg for designing MiniML in this fashion was to gain
access to SML’s control constructs. Thus, in constructing our Bigraphical model at
runtime with MiniML to answer our research question, we acknowledge that we will be
accessing the control structures of SML. This will also include SML abstractions that
support the control flow such as recursion, function and module. Indeed, the BPL Tool
that we will use is itself organised around SML’s modules and functions. Also, reaction
rules will not be used to program the model but to represent transitions in the internal

structure of the system and the external environment.

3.2.2 EVALUATION CRITERIA TO TEST IF OUR RESEARCH QUESTION

HAS BEEN ANSWERED

To define the scope of our thesis, our evaluation criteria for testing if our research question has

been answered are along the following two dimensions subject to the caveats discussed above:

Have we been able to construct a model at run time that is expressed using Bigraphical
abstractions? Such a system will then serve as a proof-of-concept that it is indeed

75

possible to undertake such a construction. This of course will be a constructive proof of
existence.

ii. Can such a Bigraphical model at runtime be in-sync with the real world in terms of the
time it takes to respond to the events that are being generated in the real world? Or if
they are not in-syc, why not? One of the ways we could do this is by building a test-rig,
which will load our Bigraphical model at run time with appropriate events and measure

its response times.

3.2.3 THE TAKE-OFF POINT

Our work builds upon work by Lars Birkedal et al (Birkedal et al., 2006) and Morin et al (Morin
et al., 2008). We now discuss each in turn pointing out in particular the enhancements that we

will implement in our system to answer our research question.

3.2.3.1 ENHANCEMENTS PROPOSED BY US TO THE WORK BY LARS
BIRKEDAL ET AL.(BIRKEDAL ET AL., 2006)

We propose to built on Plato-Graphic model (PGM) proposed by Lars Birkedal et al (Birkedal
etal., 2006).

The PGM is used by Elsborg to simulate (Elsborg, 2009) the Lancaster University’s tour guide
‘GUIDE’ (Cheverst et al., 2000). In contrast, we propose to use PGM-like Bigraphical Reactive
systems to construct a model at runtime that supports the running of a volatile service

composition on a mobile device without user’s intervention.

Furthermore, Elsborg (Elsborg, 2009) uses Bigraphical reaction rules to implement queries
whereas we propose to use reaction rules to model events that change the structure of Bigraph or
to extract information out of it.

Finally as defined by Birkedal et al., PGMs have three layers representing ‘World’, a ‘Proxy’
that observes it and an ‘Agent’ that models the application whereas our proposed model has two

layers only. So strictly speaking, our model cannot be called a PGM.

As discussed in Chapter 2, in our proposed approach, similar to Henson etal.’s (Henson et al.,
2012) we abstract away all the underlying complexity of Bigraphs. Moreover, we propose to
follow Walton and Worboy’s systematic approach (Walton and Worboys, 2009) when we
model runtime phenomenon. Also, like Pereira etal. (Pereira et al., 2012) we propose to include
two views of the system in the same model. Above all, as in the work of Calder and Sevegnani

(Calder and Sevegnani, 2012), we propose to use Bigraphs to support a system at runtime.

76

3.2.3.2 ENHANCEMENTS PROPOSEDBY US TO THE WORK BY MORIN ET
AL.(MORIN ET AL., 2008)

The architecture that we propose to use is inspired by Morin et al.’s work (Morin et al., 2008)
which encompasses ideas in the work done by Garlan and co-workers (Garlan and Schmerl,
2004, Garlan et al., 2004). They specify all the possible variants of a system at design time.
These variants are the possible states a system could be in. In contrast, we propose to use
reaction rules of Bigraphs to generate variants of a service composition at runtime. This affords

us greater flexibility in expressing a model at runtime for an infinite number of variants.

Moreover, Morin et al use models at runtime to deal with changes in context whereas we

propose to deal with faults occurring in a service composition running on a mobile device.

As discussed in Chapter 2, Sykes et al.’s (Sykes et al., 2008) idea of a layered approach is
proposed to be adopted by us to design our runtime model. We assume that the service

composition that we have modelled is open-adaptive (Oreizy etal., 1999).

We will give detailed description of the features of our implementation in the following

chapters.

3.2.4 APPLICATIONS OF BIGRAPHS AND MODELS AT RUNTIME

We now discus why it is worthwhile to answer our research question in terms of the future role
of Bigraphs and models at runtime. Firstly, we explore how Bigraphs are envisaged as a step
towards tackling the complexity of ubiquitous systems. Then, we discuss how models at runtime
are envisaged as a set of technigues to tackle complexity of runtime systems.

3.2.4.1 FUTURE ROLE OF BIGRAPHS AS ENVISAGED BY MILNER
(MILNER, 2006B)

Ubiquitous computing systems consist of a large number of autonomous agents (Milner, 2006b)
which could be software based or devices such as microcontrollers with sensors and/or
actuators. These agents interact with each other in unpredictable ways using higher level
concepts such as trust and move around both physically and logically (for example, a software
component binding itself to a new device) in a smart space (Coulouris, 2012). The agents might
have knowledge about their environments and be able to negotiate with each other. The agents
might also have the ability to be adaptive to the environment.

To be able to tame this conceptual complexity, Milner has proposed a ‘tower of models’

(Milner, 2006b). The higher level models in this tower express concepts such as trust between

77

agents. The lower level models implement concepts such as trust by for example having an

agent accept data only from a ‘trustworthy’ agent.

Milner has envisaged Bigraphs as the lowest level foundational model in this tower of models
and calls it the Ubiquitous Abstract Machine (UAM) (Milner, 2008b). Bigraphs model the
concepts of structure, motion, connectivity and stochastics at this level.

3.2.4.2 FUTURE ROLE OF MODELS AT RUNTIME AS ENVISAGED BY THE
MODELS AT RUNTIME RESEARCH COMMUNITY

The models-at-runtime research community envisages using Model-Driven-Engineering
techniques to develop models that are abstractions of runtime phenomenon (Blair et al., 2009).
Such models could be used to support reasoning, dynamic state monitoring and control of
systems at runtime. A user of a system could use models at runtime to understand the behaviour
of system at runtime. Moreover, a large variety of software elements could be integrated
semantically with the support of a model at runtime. It could also assist in the automated
generation of implementation entities which could then be inserted into the system by a user or
by the system itself.

In the long term, models at runtime could be used to rectify errors during design. New design
decisions could also be implemented as the system is running. Finally, runtime models could be
used to aid adaptation decisions and provide meta-information to assist in autonomic decision
making.

Through implementing a model at runtime expressed in Bigraphs, we examine if it is
appropriate to consider Bigraphs as Ubiquitous Abstract Machines — a foundational model for
ubiquitous computing systems.

3.25 SECTION SUMMARY

In this section, we have defined our research question as investigating the appropriateness of
Bigraphs to construct a model at runtime to deal with a volatile service composition running on
a mobile device. We have pointed out the evaluation criteria that we will use to test if we have
tackled the research question appropriately. Our starting point is the Plato-graphic model (PGM)
which is a minor extension of Bigraphs proposed by Lars Birkedal et al. (Birkedal et al., 2006).
We use PGM-like Bigraphs to express a model at runtime. The architecture to support our
model at runtime has been inspired by Morin et al.’s work (Morin et al., 2008). We will use this
architecture to facilitate the usage of Bigraph’s reaction rules to generate variants of service
composition structure resulting out of faults triggered by volatility. Finally, we have discussed
why it is worthwhile to answer our research question both for the Bigraphs and the models at

78

runtime research communities. We have shown how Bigraphs can be used as a foundational
model in a tower of models to tackle the complexity of ubiquitous systems. We have also shown
how a model at runtime can be used as an abstraction of runtime phenomenon to tackle the

complexity of runtime systems.

3.3 REQUIREMENTS FOR DESIGN

In this section, we discuss how volatility imposes certain requirements on the design of a model
at runtime. We discuss how a high rate of events is a volatile system property that affects the
running of a ubiquitous system -in particular a service composition running on a mobile device.
As a result of volatility, we need to explore the reconfiguration cycle that such an architecture

must support.

As discussed in the scenario in Chapter 1, as the user Alice strolls in a shopping mall looking to
buy a pair of jeans, a (volatile) service composition might be running on her mobile device to

help her in her shopping.

The volatile system property introduces complexity that any design of a runtime system needs
to address. Some of the complexity that needs to be dealt with includes: services malfunctioning
ata higher rate due to volatility and a large number of equivalent services being available.

Managing complexity, due to such volatility, through the use of models at runtime has now
become an important technique (ABmann etal., 2012), (Blair et al., 2009), (France and Rumpe,
2007) .

3.3.1 VOLATILE SYSTEMS: AN OPERATIONAL POINT OF VIEW

From an operational point of view (Coulouris, 2012), a volatile system (A system that displays
volatility properties- see Section 2.4) exists in a smart space. The smart space is populated with
devices that offer services but have limited computing resources and energy supply. These
devices suffer from frequent disconnections owing to their limited operating distance or radio
occlusions. The devices host software components which frequently change their logical
relationships with other components. This frequent change is largely physically driven in
volatile systems and results in a high rate of volatile events such as faults.

79

3.3.2 RECONFIGURATION CYCLE THAT NEEDS TO BE SUPPORTED BY
THE ARCHITECTURE

The Bigraph model at runtime of the service composition should support Manel Fredj and co-
workers’ reconfiguration cycle for composite services that run in a ubiquitous computing
environment (Fredj et al., 2006). Our architecture of the model at runtime needs to support this
cycle as follows: In Figure 3-1, each rectangular box corresponds to a particular phase in the
cycle. Four phases constitute the cycle. In the first phase, the composite service is running
properly on the mobile device. We assume that a module outside our system boundary is
monitoring the service execution. Next in phase two, a fault is detected in a service forming part
of the composition resulting in a need to replace the malfunctioning service. Then in phase
three, we choose an appropriate replacement service. Finally, in phase four, we issue the

appropriate adaptation commands.

PHASE 1

GETTING BACK TO
THE EXECUTON
4' RUNNING SERVICE COMPOSITION |_

ooooooooo

PHASE 4 PHASE 2

STARTING

| ISSUE APPROPRIATE ADAPTATION COMMAND | RECONFIGURATION

PHASE 3

CHOICE OF A TECHNIQUE OF RECONFIGURATION
APPLYING
CONFIGURATION

FIGURE 3-1: RECONFIGURATION CYCLE(FREDJ ET AL., 2006).

3.3.3 SECTION SUMMARY

We hawe discussed in this section that from an operational point of view, volatile systems exist
in smart spaces populated by resource-constrained devices that suffer from frequent physically
driven disconnection. We have also discussed the four-phase reconfiguration cycle that our

architecture will need to support.

3.4 THE DESIGN SPACE FOR TACKLING VOLATILE SERVICE
COMPOSITION

Lemos et al. (Lemos et al., 2012) define the design space of a system as “the set of decisions,
together with the possible choices the developer must make”. \We now discuss both our choice

80

of models at runtime based architecture as well as Bigraphs as a language to construct it that

arise from our requirement of designing a model at runtime for a volatile service composition.

3.4.1 OUR CHOICE OF MODELS AT RUNTIME BASED ARCHITECTURE

Replacing a malfunctioning service from a service composition is a form of compositional
adaptation. According to Philip McKinley et al (McKinley et al., 2004), “compositional
adaptation enables software to modify its structure and behaviour dynamically in response to
changes in its execution environment”. In contrast, parameter adaptation “modifies program
variables that determine behaviour”(McKinley et al., 2004).

To support compositional adaptation for service compositions at runtime, we need techniques to
deal with complexity arising out of a high rate and ill-structured order of occurrence of faults
that a service can suffer from and the infinite number of possible reconfigurations of the

composition.

As discussed earlier, to deal with this runtime complexity, adaptation mechanisms that leverage
software models are being explored by the models at runtime research community (Blair et al.,
2009). We have shown in Chapter 2 that models abstract only certain relevant elements of a
running system instead of using programming abstractions (Waddington and Lardieri, 2006).

In the process of answering our research question (section 3.2), we seek to also address some of
the research goals of the models at runtime community (ARmann et al., 2012) as discussed in
Section 2.3.3.

3.4.2 OUR CHOICE OF BIGRAPHS TO CONSTRUCT A MODELS AT
RUNTIME BASED ARCHITECTURE

The modeIs-at-runtime community draws on and extends the lessons learned by the broader
Model-driven engineering (MDE) community. We now give a brief overview of those concepts
from MDE that we have used in this thesis. Next we situate Bigraphs with this framework of
MDE.

3.4.2.1 OVERVIEW OF THE MODEL-DRIVEN ENGINEERING FRAMEW ORK

One particular type of design space is the modelling space. According to Gasevic et al.
(Gasevic, 2006), “4 modelling space defines a conceptual framework to provide an easier
understanding of approaches to modelling such as ontologies and the Object Management
Group’s (OMG) Meta-Object-Facility defined modelling languages such as UML and ODM
(Ontology Definition Meta-model) ”.

81

Modelling spaces are of two types (Gasevic, 2006) : A conceptual modelling space and a

concrete modelling space.

According to Gasevic et al. (Gasevic, 2006):“Conceptual modelling spaces are focussed on
conceptual (abstract or semantic) things such as models, ontologies and mathematical logics”.

These spaces correspond to for example the semantics of programming languages.

On the other hand, Gasevic et. al. (Gasevic, 2006) describe concrete modelling spaces as
“materializing (or serializing) concepts of the concepmal modelling space”. These spaces
correspond to for example the syntax of programming languages.

Both the conceptual and concrete modelling spaces can each be represented as a stack of the
modelling layers of MDE. Each layer is at a different level of abstraction with the lowest layer
being at the lowest level of abstraction. In MDE, the lowest layer MO represents the system that
is being modelled. Above MO is layer M1 that represents the model of the system. The next
layer M2 represents the meta-model and layer M3 represents the meta-meta model. According
to OMG’s definition (OMG, 2011) , “A meta-model is a model that defines the language for

expressing a model”.

In an orthogonal arrangement of mode lling spaces, “one modelling space models concepts from

another modelling space, taking them as real world things” (Gasevic, 2006).

We now use these terms to situate Bigraphs within the context of the model driven engineering
framework.

3.4.2.2 SITUATING BIGRAPHS WITHIN THE CONTEXT OF MODEL-DRIVEN
ENGINEERING FRAMEWORK

As discussed in Chapter 2, we have implemented our system using the BPL Tool (ITU, 2011)
which provides a set of SML-constructs called MiniML (ITU, 2007a) which is a subset of
Standard ML and can be translated into terms representing Bigraphs (called BGVals). MiniML
gives us access to SML’s control constructs, which are lacking in Bigraphs. Indeed, one of the
stated goals of developing MiniML was to provide such an access to control constructs
(Elsborg, 2009) . In Figure 3-2, we show that Bigraphs belong to the conceptual modelling
space (Gasevi¢ et al., 2009) and represent semantics of the model. The concrete modelling space
of Extended Backus-Naur form (EBNF) (which is used to define Standard ML grammar of
which MiniML is a subset) is used to implement the conceptual modelling space and represents

the syntax in which the model is expressed.

Layers M0, M1, M2, and M3 represent respectively the system being modelled, the model, the
meta-model and the meta-meta model as defined in the Model Driven Architecture (MDA).

82

For Conceptual Modelling spaces, we will be modelling the service composition’s architecture
(SCA layer) and its environment (WORLD layer). We define both the SCA and WORLD
layers in the next chapter.

For the concrete modelling space, the system being expressed in the MO layer is BgVal which is
a low level term language for Bigraphs checked for well-formedness with interface data closely
based on elementary Bigraphs and combinators (ITU, 2007a).

Notice the arrangement between the two modelling spaces is orthogonal because BGVal at MO
layer of the concrete modelling space is defined by using Bigraph theory in the conceptual

modelling layer.

Conceptual Modelling Space Concrete Modelling Space

M3 CATEGORY THEORY EBNF M3

M2 BIGRAPH THEORY SML GRAMMAR M2

M1 BGVal — MiniML M1

| Represents | represents

MO WORLD /SCA L BGval Mo

FIGURE 3-2: ORTHOGONAL MODELLING SPACE.

In summary, in this section, we have discussed our choice of using software models as a
runtime adaptation mechanism (models at runtime). Also, we have explored the complexity
arising out of a high rate and ill-structured order of occurrence of faults that the model at
runtime needs to address. We have chosen Bigraphs as a modelling language in the conceptual
modelling space. Notice that our thesis explores whether these choices are appropriate to deal

with volatility.

3.5 CONCLUSIONS

Our research question seeks to explore the Bigraph expressivity issues that are involved in using
Bigraphs to construct a model at runtime, in constructing the mechanisms to support such a
model and in the representations of the world and the system that the model must capture. The
system that we seek to support in the face of volatility through our proposed Bigraphical model
at runtime is a service composition running on a mobile device. To evaluate if we have
succeeded in answering the research question we have proposed to construct a proof-of-concept
Bigraphical model at runtime and to test if its response times allow it to be in-sync with the real
world. To succeed our model’s architecture must support the reconfiguration cycle proposed by

Manel Fredj (Fredj et al., 2006). In the next chapter, we discuss how to use Bigraphs as a new

83

language to construct a new architecture- models at runtime- to deal with the problem of

volatility in a service composition running on a mobile device.

84

4 CONSTRUCTING THE ARCHITECTURE FOR A TWO-
LAYERED MODEL AT RUNTIME

4.1 INTRODUCTION

In the previous chapter, we discussed our research question and the requirements that our
system must fulfill to address that question. To address the research question, in this chapter, we
explore a new architecture based on models at runtime (Blair et al., 2009) which we construct
using a new language Bigraphs (Milner, 2009) to tackle the problem of volatility (Coulouris,

2012) in a service composition running on a mobile device.

As discussed in Chapter 2, Bigraphs have not been used to construct a model at runtime for such
service compositions. We highlight the challenges of writing a model at runtime to support a
system running in volatile conditions. We also discuss the advantages to be had by using

Bigraphs in such a fashion.

This chapter is organized as follows: In Section 4.2, we discuss a mapping of the observed
effects of Chan et al. (Chan et al., 2007a) to the volatility properties of Coulouris et al.
(Coulouris, 2012). Next in Section 4.3, we discuss the architecture of our proposed Bigraphical
model at runtime. Finally in Section 4.4 we discuss how we program the structure of the
WORLD and SCA layers of our Bigraphical model at runtime. We also show how to use the
mapping discussed in Section 4.2 to design the reaction rules of our Bigraphical model at
runtime. Additionally in Section 4.4, we show how to program a Bigraphical array.

4.2 VOLATILE SERVICE COMPOSITION

In a volatile service composition running on a mobile device, services that are participating
might appear and disappear at a high rate. We need a taxonomy that describes the possible fault
types that can occur in a service participating in the composition at runtime and the effects that
are observed as a result of those faults. These observed effects are at the application level and
so can be dealt with using a model at runtime that is causally connected to the application.

We hawe used a fault taxonomy for web service composition proposed by K.S. May Chan et
al.(Chan et al., 2007a) as discussed by us in Chapter 2. From the taxonomy, we have identified
those ‘Observed Effects’ of faults that will affect services participating in a service composition
running on a mobile device that are triggered by volatility inherent in a ubiquitous computing
system (see Table 4-1). Thus, this table extends the taxonomy of Chan et al. by mapping the

85

faults identified by them to the properties of volatility discussed by Coulouris et al. (Coulouris,
2012).

We use the following definitions from Chan et al (Chan et al., 2007a) for possible classes of
fault types because we want to extract out only those observed effects that are caused by faults
due to volatility. We want our model at runtime to support adaptation to faults that are triggered
by volatility only. For example, we do not consider development faults because such faults can

be triggered even in the absence of volatility.

a) Physical Faults: These are caused by failures in the network medium or failures on the
server side. Communication infrastructure exceptions and failures in correct operation
of hosting server’s middleware are also included.

b) Interaction faults: Services forming part of the composition interact with each other. An
interaction fault occurs if a service fails frequently or unacceptably severely.

c) Interaction-content fault: This is a type of interaction fault that includes incorrect

service, misunderstood behavior, response error, QoS and SLA faults.

In Table 4-1, we first map the ‘Observed Effects’ to those of the above classes of fault types that
can cause them as discussed in Chan et al.’s taxonomy(Chan et al., 2007a). Next, we map this
fault type itself to the type of volatility (Coulouris, 2012) that can trigger it. Notice that besides
volatility, other causes may also trigger the faults. Nevertheless, in this thesis we wish to focus

only on volatility in order to answer our research question.
We now explain this mapping:

i. According to Chan et al.’s taxonomy, an ‘Unresponsive Service’ observed effect is
caused by one of the following faults as shown in the Table 4-1: Unavailability fault,
Timeout fault, Quality of Service (QoS) fault. Next, we map these faults to the volatility
properties discussed by Coulouris et al. We identify that the Unavailability and Timeout
faults could be caused by volatility resulting from device and communication failures,
variation in properties of communication, or destruction of logical communication
relationships between software components resident on the devices. A QoS fault could
be caused by a slow network because of variation in properties of communication such
as bandwidth.

ii. In Chan et al.’s taxonomy, ‘Incorrect Results’ observed effect is caused by one of the
following faults as shown in the Table 4-1: Timeout fault, Quality of Service (QoS)
fault. Next, we map these faults to the volatility properties discussed by Coulouris et al.
We identify that the Timeout fault could be caused by volatility resulting from device
and communication failures, variation in properties of communication, or destruction of

86

logical communication relationships between software components resident on the
devices. A QoS fault could be caused by a slow network because of variation in
properties of communication such as bandwidth.

An ‘Incoherent Results’ observed effect in Chan et al.’s taxonomy is caused by Quality
of Service (QoS) fault. Next, we map this fault to the volatility properties discussed by
Coulouris et al. We identify that the QoS fault could be caused by volatility resulting
from a slow network because of variation in properties of communication such as
bandwidth.

According to Chan et al.’s taxonomy, a ‘Slow Service’ observed effect is caused by one
of the following faults as shown in the Table 4-1: Unavailability fault, Incorrect Order
fault, Timeout fault, Quality of Service (QoS) fault. Next, we map this fault to the
volatility properties discussed by Coulouris et al. We identify that the Unavailability
and Timeout faults could be caused by volatility resulting from device and
communication failures, variation in properties of communication, or destruction of
logical communication relationships between software components resident on the
devices. Incorrect Order and QoS fault could be caused by a slow network because of
variation in properties of communication such as bandwidth.

An ‘Outdated Results’ observed effect in Chan et al.’s taxonomy is caused by Quality
of Service (QoS) fault. Next, we map this fault to the volatility properties discussed by
Coulouris et al. We identify that the QoS fault could be caused by volatility resulting
from a slow network because of variation in properties of communication such as
bandwidth.

87

TABLE 4-1: MAPPING BETWEEN OBSERVED EFFECTS AND VOLATILITY.

OBSERVED EFFECT (Chan et .,
2007a)

POSSIBLE CLASSES OF FAULT
TYPES THAT CAN OCCURAT
RUNTIMEAND CAUSE THE
OBSERVED EFFECT (Chan et al.,
2007a)

TYPES OF VOLATILITY THAT
CANTRIGGER THE FAULT
(Coulouris, 2012)

1.Unresponsive Service

Unavailability Fault (Physical Fault),
Timeout (Interaction Fault), QoS
(Interaction-Content fault)

Device and communication link
failure, Variation in properties of
communication such as bandwidth,
Destruction of logical
communication relationships
between software components
resident on devices

2. Incorrect Results

Timeout (Interaction Fault),
QoS(Interaction-Content fault)

Device and communication link
failure, Variation in properties of
communication such as bandwidth,
Destruction of logical
communication relationships
between software components
resident on devices

3.Incoherent Results

QoS(Interaction-Content fault)

Slow network: Variation in
properties of communication such as
bandwidth

4.Slow Service

Unavailability Fault (Physical Fault),
Incorrect Order(Interaction fault),
Timeout (Interaction Fault), QoS
(Interaction-Content fault)

Device and communication link
failure, Variation in properties of
communication such as bandwidth,
Destruction of logical
communication relationships
between software components
resident on devices

5.0utdated Results

QoS (Interaction-Content fault)

Slow network: Variation in
properties of communication such as
bandwidth

We assume that a Service Component Architecture (SCA) (Marino and Rowley, 2010) like
description of all the services and the service composition is being maintained by a system
outside our system boundary. SCA is an architectural specification of a structural composition
model for Service —Oriented- Architecture (SOA)(Curbera, 2007). Structural Composition is a
mode| of service composition in SOA which identifies components of a composition that offer
services and how those components are connected together (Curbera, 2007), (Marino and
Rowley, 2010).

Now that we have mapped ‘Observed Effects’ of Chan et al. to the types of volatility of
Coulouris et al. that can trigger a fault, we identify how volatility also effects the frequency,
order, and number of these ‘Observed effects’ on a system over and above what we might see in

a non-volatile system.

i. The ‘Observed Effects’ on a service due to volatility occur at a high rate at runtime.

88

ii. In general, we cannot determine in advance the order in which services will suffer from
an ‘Observed Effect’ at runtime- essentially they suffer from an ‘Observed Effect’ in an
ill-structured fashion.

iii. There are an infinite number of possible reconfigurations of a service composition at
runtime. These are triggered by a possibly infinite number of applications of the

‘Observed Effect’ to a composition.

In the next few sections we will describe how we have utilized the above mappings of Table 4-1

in order to design our model at runtime.

4.3 USING MODEL AT RUNTIME AS A CACHE

As discussed earlier, we envisage a service composition running on a mobile device that a
shopper is using as she strolls around a shopping mall. This service composition is causally
connected to separate entity, which is a Bigraphical model at runtime. This model is also
running on the same mobile device on which the composition is running. Also, this service

composition is volatile as the participating services appear and disappear at a high rate.

The purpose of our model at runtime is to deal with volatility. We need a way to respond
quickly to the high rate of appearances and disappearances of services. As soon as a service
malfunctions, we want to substitute it with a new service. Our strategy for a quick response is to
cache the pre-fetched location and id of devices which are offering backup of those services that
are participating in the composition. This information is cached as a model at runtime. To the
best of our knowledge, this thesis is the first to use model at runtime as a cache. Also, when the
user moves from one ambient (location) to another, we pre-fetch the location and id of devices
from ‘nearby’ ambients which are offering backup of those services that are participating in the
composition. We define ‘nearby’ as being in the same ambient or in a parent ambient or in a
child ambient in the location tree (place graph). With this approach, we can use the model to
reason at runtime about which of the backup services are closest to the current location of the
user. This is the external environment/context that we wish to model. We call this model the
WORLD model. We assume that the devices which are offering substitute services are
themselves ‘appearing’ and ‘disappearing’ because of volatile wireless connectivity as the user

moves around the shopping mall.

We model each of the ‘Observed Effect’ discussed in the previous section as the state of a
service that has developed a fault (See section 4.2 for details). We also model a working service
as being in a state called “working”. We want to monitor the state of the services comprising the
service composition and be able to replace a service whose state has changed from “working” to

say “incorrect results”. This is an internal view of the system that we want to model. We call it

89

the Service Component Architecture (SCA) model. Together, WORLD and SCA constitute our
model (See Figure 4-1).

As discussed in Chapter 2, the Plato-Graphic Model (PGM) is defined by Birkedal et al.
(Birkedal et al., 2006) as combining three Bigraphical Reactive Systems (BRS) with specific
roles into one model. The three layers that the three BRS represent are: World, Proxy and
Agent. Our implementation of WORLD and SCA layers, using PGM-like ideas, combines two
BRS (WORLD, SCA) into one (Figure 4-1). Like PGMs, where the “World” and ‘Agent’ layer
do not share controls (types of nodes of Bigraphs), our WORLD and SCA layers also don’t
share their controls.

As discussed earlier, run-time phenomenon are ill-structured as there is no pre-determined order
of runtime events, so reaction rules are an appropriate abstraction to model such events.
Reaction rules are used to represent the 1) caching of pre-fetched information and user’s
device’s location in the WORLD layer; 2) At the SCA layer; we model the changes in the state
of each service participating in the service composition. Notice that the choice of Bigraph as our
language offers us an ability to utilise abstractions of the problem space (devices, shops,
locations etc) in our models. Utilizing such abstractions of problem space rather than those of
solution space has been one of the primary goals of the Model-Driven Engineering community
(Schmidt, 2006).

4.3.1 REFERENCE ARCHITECTURE FOR SELF-MANAGEMENT

EQUIVALENCE CHECKER

GOAL MANAGEMENT | T
T
RETURN CHECK
RESULT EQUIVALENCE

SCA LAYER

WORLD LAYER

CHANGE MANAGEMENT

[
! |

COMMANDS EVENTS

RUNNING SERVICE COMPOSITION
IN THE MIDDLEWARE

FIGURE 4-1:REFERENCE ARCHITECTURE FOR SELF-MANAGEMENT ADAPTED FROM
KRAMER ET AL. (KRAMER AND MAGEE, 2007).

COMPONENT CONTROL

We assume that our Bigraphical model at runtime at the Change Management layer in Figure 4-
1 sits on top of a Component Control layer which monitors and feeds events (service

malfunctions, movement of user’s device) to our model and executes adaptation commands

90

issued by our model (Figure 4-1). We emphasize that our model at runtime and the service

composition are different entities.

We have used the three-tier reference architecture proposed by Kramer and Magee (Kramer and
Magee, 2007) (Figure 4-1). That is as indicated above, outside our system boundaries, at the
lowest Component Control layer, a service composition and it’s Service Component

Architecture (SCA) (Marino and Rowley, 2010) like description exists.

We assume that at the Component Control layer, there are modules monitoring the composition
and report any ‘Observed Effects’ as events to the Change Management layer above it. Also, we
assume that there are modules at the Component Control layer that can support addition,
deletion and searching of services. Furthermore, we assume that at this layer, there are event
scheduling mechanisms and a supporting module to coordinate between our adaptation strategy

and the underlying service composition’s exception-handling mechanisms.

Next, within the Change Management layer, we have our system with the two-layered model
and associated modules. Our system reacts to the ‘Observed Effects’ sent as events from the
lower layer by sending out the appropriate adaptation commands. These include commands to
unbind a faulty service, the command to bind a new service to the composition, and a command
to pre-fetch the identity of a device that offers a particular service in a particular ambient. We

assume that our systemat this layer is causally connected to the service composition.

Finally, at the top-level layer called the ‘Goal Management Layer’, we assume that an
equivalence checker exists outside our system boundary. This checker is used to find if a service
is equivalent to a service participating in the composition.

By modelling the environment and system views in separate layers and having reaction rules to
represent dynamics in those layers completely captures volatility. We discuss the two views in

section 4.4.

4.3.2 MODEL DRIVEN ADAPTATION AT RUNTIME

Model at runtime is a set of techniques that specify an architecture to support self management
discussed in the previous section. We deploy architecture similar to Bencomo’s and Morin’s
(Bencomo, 2009, Morin et al., 2008) in order to address the problem of volatility. In Figure 4-2,
we assume that the running system forms part of the middleware for service composition. The
running system is at layer MO of MDA. The Plato-graphic model (PGM) like model is depicted
as a reference model in Figure 4-2. The reference model (which is a PGM-like model)
represents a “damaged” service composition after the application of the reaction rule associated
with the event generated by the running system in the middleware. It resides at layer M1 of
MDA. The specification model (another PGM-like model) resides at the meta-model layer of

91

MDA: M2. Notice that the reference model represents a state which does not conform to the
specification model. The specification model represents a high level specification of the service
composition. The modified model (a PGM-like model) that results from transformation of the
reference model using reaction rules conforms to the specification model. The reaction rules
used are discussed in Section 4.4. As discussed earlier, we assume that an equivalence checker
exists outside our system boundary and it can check if the modified model is equivalent to the
specification model. In our implementation using the BPL Tool, we have not used the

specification model because we have replaced ‘like’ service with ‘like’.

DOES NOT
CONFORMS TO CONFORM TO

R RAREEEEEEEEEEEEEEE >/ SPECIFICATION MODEL {¢----============z=====--

M2 LEVEL |
:

\l/ TRANSFORMED USING REACTION RULES

SR LATER SCA LAYER

MODIFIED MODEL REFERENCE MODEL

WORLD LAYER WORLD LAYER

M1LEVEL

RUNNING SYSTEM

IN THE MIDDLEWARE
COMMAND EVENT

MO LEVEL

FIGURE 4-2: MODEL DRIVEN ADAPTATION AT RUNTIME.

The commands to effect adaptation are issued by our system after interrogating the model
representing the external environment and reflecting on the state of the internal structure of the
composition. We discuss the generation of these commands using Bigraphical reaction rules in
the next chapter.

4.3.3 DATA FLOW IN OUR MODEL AT RUNTIME

We end this section by giving an operational specification of our model at runtime — its Data
Flow Diagram- to describe its desired behaviour. In Figure 4-3, data paths are represented by
arrows, ovals represent the processing that the data undergoes and rectangles represent sources
and sinks of data. As already discussed, we assume that an event scheduling mechanism exists.
Notice that the events are being handled sequentially in our simulations in Chapter 6 rather than

concurrently. Each event corresponds to a reaction rule at the appropriate layer and triggers the

92

firing of a reaction rule at that layer. As discussed above, events at the WORLD layer
correspond to the caching of relevant information about the external environment of the service
composition (caching and un-caching of device location and movement of user’s device).
Events at the SCA layer correspond to faults in the internal execution of the service
composition. The resulting changes are stored in the data structures representing the WORLD
layer or the SCA layer as the case may be. This is represented in Figure 4-3 by the rectangle
marked “Changed Service Composition”. This information in the data structure is then used by
the event processor which is essentially the module where policies that deal with events and
system goals are encapsulated to fire a correcting reaction rule resulting in a repaired service

composition.

CHANGED SERVICE
COMPOSITION

1

FIRE REACTION
RULE

FIRE REACTION EVENT PROCESSOR

REPAIRED SERVICE
COMPOSITION

FIGURE 4-3: DATA FLOW DIAGRAM.

Notice that the data flow in our design corresponds to the reconfiguration cycle that we
discussed in the previous chapter (Section 3.3.2). The “Fire reaction rule” step in our
architecture’s data flow diagram in Figure 4-3 corresponds to the Phase 2 of Figure 3-1. The
“Event Processor” step in Figure 4-3 corresponds to the Phase 3 of Figure 3-1. And finally, the

“Repaired Service Composition” step in Figure 4-3 corresponds to the Phase 4 of Figure 3-1.

4.3.4 SECTION SUMMARY

In this section, we hawe described the architecture that our Bigraphical model at runtime
follows. We first discussed where our two layered model fits within the component control,
change management and goal management layers of the reference architecture proposed by
Kramer and Magee (Kramer and Magee, 2007). We then described the architecture of our model
in terms of Model-Driven-Architecture terminology. Finally, we showed the data flow in our

system.

93

Next, we show how we have constructed our Bigraphical model at runtime keeping the

architecture that we have just discussed in mind.

4.4 PROGRAMMING THE STRUCTURE OF WORLD AND SCA
LAYERS

The structure of the WORLD and SCA layers represents the static information that our model at
runtime captures. The dynamic information is captured by the reaction rules in those layers.
These two layers represent two different views of the same system. We now discuss the state of
the WORLD and SCA layers, the kinds of nodes each layer contains and how we use MiniML
to construct those nodes. Also, recall from Chapters 2 and 3 that MiniML gives us access to
SML’s control constructs, which are lacking in Bigraphs. One of the goals of developing
Bigraphs was to provide such an access to the control constructs (Elsborg, 2009).

From a programming perspective, we view the PGM-like model with the WORLD layer and
SCA layer as a data structure that caches and retrieves run-time information. For the WORLD
layer, this run-time information includes the location and id of devices whose services comprise
the service composition. We also pre-fetch and cache location and id of ‘nearby’ (same ambient
or in a parent ambient or in a child ambient in the location tree) devices that provide backup to
those services. For the SCA layer, we cache the structure of the composition and the state of
each service participating in that composition. We construct the two layers using the operations
described in Chapter 2.

44.1 CONSTRUCTING A STATE OF WORLD LAYER

The environment for our system (service composition running on a mobile device) is a smart
space. Coulouris et al (Coulouris, 2012) define smart space as “any physical place with
embedded services”. They then describe four types of movements in smart space: Physical
mobility, logical mobility, user adds or deletes a device, devices fail.

We have modelled the smart space at the WORLD layer with device ids and their locations. The
effects of the four types of movement are modelled through the use of reaction rules at both the
WORLD layer and at the SCA layer.

The state of the WORLD layer represents caching of the most up-to date information about
elements in the environment pertaining to volatility. This information includes a tree

representation of the locations and the devices which may be situated inside the location nodes.

We now discuss the kinds of nodes in the WORLD layer and then the state of a WORLD layer.

94

4.4.1.1 KINDS OF NODES IN THE WORLD LAYER

There are two main kinds of nodes (called two kinds of controls in Bigraph theory terminology)
atthe WORLD layer: one representing location and the other devices. We discuss each in turn.

a) Location Nodes: In this thesis, we use the words ‘ambient’ and ‘location’ synonymously. In
our figures, a location id label (as opposed to a Bigraphical control) will be in italics and
represented with a string with the letter ‘i’ followed by a natural number (0, 1, 2, 3 ...). For
example, for a location with id ‘2, the id will be represented in figures as i2. The location
nodes are constructed by a function called Toc’’ provided in Elsborg’s code (Elsborg, 2009).
The location nodes contain inside them an id node with a string value encapsulated as an atomic
Bigraphical node and representing the id of the location. They also contain a site which is a hole
in which other Bigraphs could be fitted in. For example, a node representing location i2 would
look as shown in the Figure 4-4.

loc

id site
i2 oo

FIGURE 4-4:NODE REPRESENTING A LOCATION WITH ID 12 AND A SITE.

The function 1oc’’ that constructs a location, takes in the string representation of id as a
parameter and constructs the BGVal representation of the location node with a site:

fun Toc'' n = S.o (loc, S. |° (S.o (id, i(n)), site))

We show the structure constructed by function Toc’’ in Figure 4-5.

95

loc

FIGURE 4-5: THE STRUCTURE CONSTRUCTED BY FUNCTION loc’.

We now explain the terms Toc, id, i (n) and site in the above function and write down the
corresponding MiniML code. As discussed in Chapter 2, ‘S’ is the Sugar module of the BPL
Tool:

e TJoc is an active control of zero arity (Elsborg, 2009). In Bigraph theory, an active node
can contain child nodes and sites and reaction rules can take place inside them (Milner,
2009). Thus, location nodes can contain nested within them another location node or a
device node. The function active0 of the BPL Tool converts a string into a BGVal

representation such that it is an active control of zero arity.

val loc = S.active0 "loc"

e id isa passive control of zero arity (Elsborg, 2009). In Bigraph theory, a passive node
can contain child nodes and sites but reaction rules cannot take place inside child nodes
(Milner, 2009). The function passive0 of the BPL Tool converts a string into a BGVal
representation such that it is a passive control of zero arity.

val id = S.passive0 "id"

e i(n) is a function that takes in the string representation of id as a parameter and
constructs an atomic node of zero arity (Elsborg, 2009). In Bigraph theory, an atomic
node cannot contain child nodes and sites (Milner, 2009). The function atomic0 of the
BPL Tool converts a string into a BGVal representation such that it is a atomic node of
zero arity.

fun i n = S.atomicO ("" A n)

e As discussed in Chapter 2, site is a place graph’s inner interface. We use the
following code from Elsborg’s thesis (Elsborg, 2009) to construct a site with BPL
Tool’s modules and functions. In the following code, the curried function Per of

BGval module of the BPL Tool constructs a BGVal representing a Bigraphical site.

96

val id_1 = B.Per info (P.id_n 1)

val site id_1

4.4.1.1.1 SIMPLIFIED NOTATION FOR LOCATION NODES

We simplify the notation for location by declaring a value say for location with id i2 like so:
val loc2 = Toc'"' "2"

Therefore location with id i2 of Figure 4-4 is depicted as shown in Figure 4-6 in a simplified
form. Note that loc2 in italics highlights the fact that it is a label rather than a Bigraphial

control. The Bigraphical control in Figure 4-6 labeled Toc2 is Toc.

FIGURE 4-6: SIMPLIFIED REPRESENTATION OF LOCATION WITH id i2.

b) Device nodes: For simplicity, we assume that a given device offers a single service only. This
one-to-one mapping between devices and services does not reflect any inherent limitation of
Bigraphs. However, it does reduce the complexity of the model that we want to use as a starting

point for our experiments.

In our Bigraphical model, each device has an id that is a number. The devices are numbered
according to the following scheme: Each device id is a decimal number. The number on the left
hand side of the decimal point represents the service number that the device offers. The number
on the right hand side of the decimal point represents the ordinal number of the device in our
mode| offering this particular service. For example a device with the id “3.4” represents the
fourth device in our model that offers service number three. In our model, the device id “0.0”

always represents the user’s mobile device.

We have designed the device nodes so that their ids can be extracted by using the matching
algorithm of the BPL Tool rather than by using the string processing functions of SML.
Consider Figure 4-7 were we depict a device with the id i5.8. Each device node called device
(see the Figure 4-7 and Figure 4-8, line 2) is an active node (Milner, 2009) meaning that it can
contain child nodes and sites. Moreover, reaction rules can take place inside such active nodes.
A device node contains another node called serviceIdNode (See the Figure 4-7 and Figure 4-

8, line 3) which is also an active node. Within the serviceIdNode we have anatomic node that

97

represents the service number being offered by the device. In the Figure 4-7 the device is
offering service 5. Recall that an atomic node cannot contain child nodes and sites (Milner,
2009). Also, within the serviceIdNode we have an active node called deviceIdNode (see the
Figure 4-7 and Figure 4-8, line 1). And finally, within this deviceIdNode we have an atomic
node that represents the ordinal number of the device. In the Figure 4-7, this ordinal number is

eight.

device

serviceldNode

deviceldNode

FIGURE 4-7: STRUCTURE OF THE DEVICE BIGRAPH.

1 val devIdNode = S.active0 "devIdNode"
val device = S.active0 "device"

3 val serviceIdNode = S.activeO "serviceIdNode"

FIGURE 4-8: DEFINING devIdNode, device, serviceIdNode.

The device nodes are constructed by a function called constructDevice that has been written
by us. The input parameter of this function is a string called deviceId. This deviceId must be
in the correct decimal number format as discussed above. The function returns a Bigraph

representing the devicelId.

We now discuss this function’s code (Figure 4-9) in detail. In line 2, we check, if “0” has been
passed as a parameter to our function. We pass “0” to construct the device with id 0.0. This
device represents the user’s device in our model. If the value of the parameter passed to our
function is not “0”, then the lines 6 to 9 will execute. We extract two strings one in line 8 called
serviceld representing the service that is being offered by this device and one in line 9 called
deviceId representing the ordinal number of this device. Finally, these strings are used in lines
11 and 12 to construct a Bigraph representing the device.

98

1 fun constructDevice (deviceld)=

2 if (deviceId = "0") then S.o(device,S.o(serviceIdNode,
3 S.7|@G(C"0"),S.o(devIdNode,i("0")))))

4 else

5 let

6 val f = String.tokens (fn x => not((Char.isDigit x)))
7 val identitylList = f(deviceId)

8 val serviceld = hd(identityList)

9 val deviceId = hd(tl(identityList))

10 in

11 S.o(device,S.o(serviceIdNode,

12 S. | "(i(serviceld),S.o(devIdNode, i(deviceId)))))

13 end

FIGURE 4-9: FUNCTION constructdevice.

To summarize, the function constructDevice is used to construct a Bigraph from a string. This
Bigraphical device’s id can now be extracted using the matching algorithm of the BPL Tool

instead of using the string processing functions of SML.

4.4.1.1.2 SIMPLIFIED NOTATION FOR DEVICE NODES

[13¢3}

To avoid clutter in our diagrams and discussions, we suffix the letter “i” with the device number
of the scheme discussed above for labels of a device. Moreover, to distinguish this label from
Bigraphical controls, the label will be in italics. For example i5.8 in our diagrams and
discussion is the eight-device offering service number five. Here, “i” signifies that the number
following it is not a ‘usual’ decimal number but is one that follows our numbering scheme

discussed above.

Consider Figure 4-10 where a device with id i5.8 is shown in a simplified diagram. We will
follow the convention of representing device Bigraphs in our diagrams in such a simplified

manner in this thesis.

99

dev
i5.8

FIGURE 4-10: SIMPLIFIED REPRESENTATION OF DEVICE WITH ID 15.8

4.4.1.2 MODELLING THE ENVIRONMENT VIEW OF EFFECTS OF
VOLATILITY WITH THE WORLD LAYER

loc id
ShoppingMall
loc id dev loc _id

dev dev dev dev

loc id dev dev loc id

FIGURE 4-11: STATE OF THE WORLD EXPRESSED AS A BIGRAPH.

As shown in Figure 4-11, a state of the WORLD could consist of the location with id i1 (west
wing) and location with id i3 (east wing) nested inside the mall. The nested ambient (location
with id i2) within the west wing represents a large clothing store. Similarly, the nested ambient
(location with id i4) within the east wing represents another competing clothing store. In Figure
4-11, the device with id 0 is the user’s device running the service composition and is in the
west wing. This device with id 10 models the mobile device that the user moves around with in
the Shopping Mall. Recall from the scenario in Chapter 1 that the service composition is

running on this device. The user is in the west wing so the device with the id 10 is shown in the

100

location representing the west wing of the mall. We assume that three services service 3, service
4, and service 5 comprise the service composition. These three services are being offered
respectively by devices with id 3.1, and i4.7 on the west wing and device with id i5.8 in
location with id i2. We cache the location of the devices whose services are currently
participating in the composition. We also cache the location of nearby devices (device 3.4 for
service 3, device i4.1 for service 4, and device i5.3 for service 5) that offer backup to each of
these services. We define ‘nearby’ to mean any device in either the current or parent or child
ambient. Note that such devices offering backup services might not always exist for us to cache
them.

As discussed in Chapter 2, even though the BPL Tool can be used to represent Bigraphs linked
together through hyper-graphs, we have not used this capability because the BPL Tool’s
matching algorithm is not designed to efficiently handle a huge explosion of links that occurs as
the size of Bigraph grows (Elsborg, 2009). Thus in the Figure 4-11, the devices with ids 3.1,
i4.7, and i5.8 whose services are participating in the composition have not been linked
together with a hyper-graph although that is permissible in Bigraph theory. Instead, to capture
the information that these devices are offering services that are part of the service composition,
we will store their ids in a Bigraphical array in our implementation of the model using the BPL
Tool.

Because of space constraints, control names id and dev appear outside their respective node

boxes in our figures. On the other hand, control name Toc appears inside its node box.

The state of WORLD layer of Figure 4-11 expressed in MiniML code is shown in Figure 4-12.

val C = S.o(locShoppingMall,S. | "(S.o(locl,S. | (constructDevice(“0.0”),S. |
(constructDevice(“3.1”),S. | (constructDevice(“4.7”),S. |
(constructDevice(“3.4”),S. | (constructDevice(“4.1”),S.0(loc2,S. " |"
(constructDevice(“5.3”), constructDevice(“5.87))))))))),S.o(loc3,1oc4)))

FIGURE 4-12: CONSTRUCTION OF WORLD LAYER.

The dynamics of un-caching and caching and movement of user’s device of the WORLD layer
are modelled with the reaction rules for that layer. These rules are fired by our functions that
encapsulate the adaptation strategy of our system. The first rule models a device being un-
cached by our system. In Figure 4-13, we show the reaction rule modelling the un-caching of
device i2.6 from location 3. Notice that we will need a separate rule to un-cache each device
from each location. In the next chapter, we will show how to tackle this problem by using

abstraction by parameterisation techniques.

101

The second rule models a service being cached. In Figure 4-14, we show the reaction rule
modelling the caching of device 6.7 in location i4. Again, notice that we will need a separate
rule to cache each new device in each location. We have used abstraction by parameterisation
techniques discussed in the next chapter to tackle this problem as well.

Finally, the dynamics of a device moving from one ambient to another can be modelled by
application of ‘device un-cached’ rule in the initial ambient and ‘device cached’ rule in the final

ambient.

FIGURE 4-13: DEVICE ‘UNCACHED’ RULE OF THE WORLD.

loc id loc id dev
site site
C3 C3

FIGURE 4-14: DEVICE ‘CACHED’ RULE OF WORLD.

We now discuss each of the movements in smart space and show how these are captured by our

two-layered model.

i) Physical mobility: Modelled by the reaction rule at WORLD layer where a device moves

from one ambient to another.

i) Logical mobility: A service might move out of the smart space triggering one of the
‘Observed Effects’ of K. S. May Chan (Chan et al., 2007a). Each of these ‘Observed Effects’ is

102

modelled by a reaction rule at the SCA layer (See next sub-section). Also, device un-cached rule
is triggered at the WORLD layer.

iif) User adds or deletes a device: Not part of our scenario. However, the device cached rule can

model this type of event.

iv) Devices fail: As above, this triggers one of the ‘Observed Effects’ which is modelled by a
reaction rule at the SCA layer (See next sub-section) and a device un-cached rule at the
WORLD layer.

Altogether, each type of movement in a smart space can therefore be captured by our two-
layered model. Notice that the rate of change of each type is much higher in volatile systems as
compared to fixed distributed systems. This means that to keep our model at run time in-sync
with the real world, the response times of the functions of our system should be low enough to
cope with this higher rate of changes.

4.4.2 CONSTRUCTING A STATE OF SCA LAYER

The second layer of our model at runtime which we call the ‘Service Component Architecture’
(SCA) layer models the structure of the composition and the state of each service participating

in the composition.

Each service is a node containing another node with a string representing the service id and a
node with a string representing the state of the service. Also, a service could contain other

services within it.

Each one of the Table 4.1’s five events associated with the five possible ‘observed effects’ in a
service at the SCA layer is mapped to a reaction rule in our system. A reaction rule changes the
state of a service from ‘working’ which models a properly functioning service to a state named
after the fault associated with the reaction rule. The states named after the faults are: 1)

Unresponsive, 2) Incorrect result, 3) Incoherent results, 4) Slow service 5) Outdated results.
We now discuss the kinds of nodes in the SCA layer and then the state of an SCA layer.

4.4.2.1 KINDS OF NODES IN THE SCA LAYER

There is only one main kind of node at the SCA layer- the service node. Within the service
node, we have a node representing the service id and another node representing the state of the

service (See Figure 4-15).

103

In our figures, a service id label (as opposed to a Bigraphical control) will be in italics and
represented with a string with the letter ‘i’ followed by a natural number (0, 1, 2, 3 ...). For

example, for a service with id *7’, the id will be represented in figures as 7.

A service node is constructed by a function called constructService that has been written by
us. The service node contains inside it an id node with a string representing the name of the
service, a state node with a string representing the name of the state the service is in, and a site
that is a hole in which other Bigraphs could be fitted in. This is shown in Figure 4-15 for a
service of id i7 which is in a working state. Note that except for Figures 4-15 and 4-16, we will

always omit the control name “state” in our diagrams to avoid clutter.

service

state

working

id site
[
iz |1

L

FIGURE 4-15: ASERVICE NODE.

The function constructService takes in the string representation of id and string
representation of state as parameters and constructs the BGVal representation of a service node

with a site:

fun constructService(n, someState)=S.o (service,S. |* (S.o (id,i(n)),S. |°

(constructServiceState(someState),site)))

We show the structure constructed by function constructService in the Figure 4-16.

104

service
state
someState
id site
[|

i(n)| | |

=

FIGURE 4-16: THE STRUCTURE CONSTRUCTED BY FUNCTION constructService.

We have already explained the terms id , i(n), and site in section 4.4.1.1. We now explain

the terms service, and constructServiceState in the above function

e service is anactive control of zero arity. Thus, it can contain other service nodes:

val service = S.active0 "service"
e constructServiceState is a function that takes in the string representation of state as

a parameter and constructs an atomic control of arity zero:

fun constructServiceState(someState)=S.atomicO (someState)

4.4.2.1.1 SIMPLIFIED NOTATION FOR SERVICE NODES

As with location and device nodes, we can simplify our representation of a service node by
declaring a value for a particular service:

val service7 = constructService(“7”, ”working”)

Therefore, a service with id 7 of Figure 4-15 is depicted in Figure 4-17 in a simplified form.
Note that service7 in italics highlights the fact that it is a label rather than a Bigraphical
control. The Bigraph control in the Figure 4-17 labeled service7 is service.

105

service?

FIGURE 4-17: SIMPLIFIED REPRESENTATION OF SERVICE WITH id i7.

4.4.2.2 MODELLING THE SYSTEM VIEW OF EFFECTS OF VOLATILITY
WITH THE SERVICE COMPONENT ARCHITECTURE (SCA) LAYER

service

unresponsive
service

incoherent results

service service

‘working ‘ ‘Working ‘

FIGURE 4-18: STATE OF SCA LAYER.

The states at the SCA layer are modelled as nodes in our bigraph model (Figure 4-18). These
states are based on faults discussed by Chan et al.(Chan et al., 2007a). In addition, we have a
state called not working which models any other fault that we have not captured. In Figure 4-
18, service i7 is a bigraph modelling a composite service. The state of service i7 is
unresponsive. It consists of three services: service i3 which is in the state Incoherent
results and services i4 and i5 which are in the working state. Notice that we assume that the

monitoring system- which is outside our system boundary- ‘knows’ that service 14 and service

106

i5 on their own are working fine and that the problem is with service i3 on which service i7

depends. We have captured this ‘knowledge’ in our model.
Note that the control name service appears outside its node box.

To conclude, the state of SCA layer shown in Figure 4-18 as expressed in MiniML code is
shown in Figure 4-19. Notice that the sites of services i4 and i5 have been filled-up with barren
roots. In Bigraphs, barren roots are those that do not have any children. This root is constructed
using the following code from Elsborg (Elsborg, 2009) where <-> is a BGVal denoting a
Bigraphical root and is defined in the Sugar module of the BPL Tool:

val barren = S. <->

val L = S.o(constructService(“7”, “unresponsive”),S.o(constructService(“3”,
“incoherent results”),S. | "(S.o(constructService (“4”,
“working”),barren),S.o(constructService(“5”, “working”) ,barren))))

FIGURE 4-19: CONSTRUCTION OF A STATE OF SCA LAYER.

4.4.2.3 EXPRESSIVENESS OF OUR SCA MODEL

Our model at the SCA layer can express all possible types of service compositions. We now
discuss how we have used the types of component compositions to derive our types of service

composition.

As discussed earlier, we have assumed that an SCA like description of the actual service
composition exists in the layer below the layer where our system exists. Both SCA and
Architecture Description Languages (ADLs) like Darwin (Magee et al., 1995) represent
component composition using a service (‘provides’) interface and a ‘requires’ interface as

shown in the Figure 4-20.

<?Sewice (Provides)

Component

J\ Requires

FIGURE 4-20: COMPONENT INTERFACES (SOMMERVILLE, 2011).

107

There are three kinds of component compositions (Sommerville, 2011):

1) Sequential composition: In such a composition, firstly service, say S1 offered by component
say C1 is called by the system. Then, the result is used in a call to another service say S2 offered
by a component say C2. This is shown in Figure 4-21.

C1

é) S1 (Provides)

—

?52 (Provides)

Cc2

FIGURE 4-21:SEQUENTIAL COMPONENT COMPOSITION (SOMMERVILLE, 2011).

2) Hierarchical composition: Here, service S1 offered by component C1 is called by the system.

S1in turn calls service S2 offered by component C2. See Figure 4-22.

<PSl (Provides)

C1

J Requires

?52 (Provides)

c2

FIGURE 4-22:HIERARCHICAL COMPONENT COMPOSITION (SOMMERVILLE, 2011).

3) Additive composition: In this case, an external interface encapsulates two independent
services S1 and S2 respectively offered by components C1 and C2. This common interface is

used by the system to call the two services S1 and S2. S1 and S2 do not call each other. See
Figure 4-23.

108

Requires - C3 - Requires
|
T Requires T Requires
C1 Cc2
<£Sl (Provides) (g S2 (Provides)
— —
é ~— S3 (Provides) NJ}

FIGURE 4-23: ADDITIVE COMPONENT COMPOSITION (SOMMERVILLE, 2011)

As discussed earlier, the BPL Tool does not support the use of links. So, we abstract out in our
model only the ‘provides’ interface of a component that specifies what service is provided. Our
corresponding service composition models of the above component compositions are discussed

now:

1) Sequential composition: This corresponds to a call made to service i1 by our system (user’s
mobile device) and using the results in another call to service i2. The Bigraph model of such a
composition is shown in Figure 4-24. Note that we encode order within our SML code through
our numbering system- the lowered numbered service comes first.

service service

FIGURE 4-24: BIGRAPH MODEL OF SEQUENTIAL SERVICE COMPOSITION.

2) Hierarchical composition: The system (user’s mobile device) calls service i2 which in turn

calls service i1. This composition is depicted in our Bigraph model as shown in the Figure 4-25.

service
working
service

FIGURE 4-25: BIGRAPH MODEL OF HIERARCHICAL SERVICE COMPOSITION.

109

3) Additive composition: The external interface service i3 is called by the system (user’s
mobile device). The device that offers service i3 then calls a device offering service i1 and
another device offering service i2. This type of composition is depicted in our Bigraph model as
shown in the Figure 4-26.

eeeeee

eeeeeeeeeeee

FIGURE 4-26: BIGRAPH MODEL OF ADDITIVE SERVICE COMPOSITION.

Thus, we see that our model at the SCA layer can express all types of service compositions
identified by Sommerville (Sommerville, 2011).

4.4.2.4 BRIDGING THE GAP BETWEEN ARCHITECTURE AND
REQUIREMENTS

Enhancing the architecture of a system by adding states of each of its components as an extra
element is important to bridge the gap between architecture and requirements of a system
(Hirsch et al., 2006).

As discussed earlier, our requirement is that our system responds quickly to a service
malfunction by substituting it with an equivalent service. We deal with this requirement by
caching the location and id of devices at WORLD layer and caching the structure of

composition along with the state of each service at the SCA layer.

We cache the following ‘Observed Effects” (Chan et al., 2007a) as states in our model at the
SCA: 1) Unresponsive service, 2) Incorrect result, 3) Incoherent results, 4) Slow service 5)
Outdated results. We have chosen these effects as they result from faults at runtime rather than
those at development time. Caching the observed effect as states in the architectural model
enables us to express the difference between a working and a malfunctioning composition even
though it might have an un-altered structure. Within our system, the requirement of responding
quickly is met by identifying a malfunctioning service through its state and replacing it with an
equivalent service. Notice that a system outside our system boundary needs to send us the event
corresponding to the change in the state of the service. Thus, this external system might still
delay the overall response of the system. Since this issue of the external system being slow is
beyond the scope of our thesis, we assume that given that such an external system is quick, how

low are the response times of our system.

110

4.4.2.5 CAPTURING ALL POSSIBLE OBSERVED EFFECTS ON SERVICES
THROUGH REACTION RULES

Our goal has been to develop the smallest number of reaction rules that capture all the effects of
volatility on a service composition running on a mobile device. However, for the purpose of
building our system we consider only those cases where the number of services and the
structure of composition remains the same and only one service in the composition develops a
fault at one time. As a result, we do not have reaction rules to deal with the change in the

number of services or the structure of the composition.

As discussed in section 4.2, we have used a fault taxonomy for web service composition
proposed by K.S. May Chan et al.(Chan et al., 2007a). From the taxonomy, we have identified
those ‘Observed Effects’ of faults that will affect services participating in a service composition
running on a mobile device that are triggered by volatility inherent in a ubiquitous computing
system (see Table 4-2 on the following pages). We model each of these observed effects as an
event sent to our system by another system outside our system boundary. Each of these events
has a corresponding state of service named after it. However we can create additional states
because the function that encapsulates the reaction rule to change the state is parameterized (See
next chapter). Notice therefore that a fault for the service composition is an event for our
system. We have written reaction rules that change the state of a service from ‘Working’ to one
of the aforementioned states. We now extend Table 4-1 presented in section 4.2 with an

additional column of our reaction rules in Table 4-2 and discuss these reaction rules:

i. Service state at the SCA layer changes from ‘Working’ to ‘Unresponsive Service’: For a
service of id i5 the reaction rule will be as show in the Figure 4-27:

service service
id id
=
site site
[3

=

FIGURE 4-27: STATE CHANGE OF A SERVICE FROM WORKING TO UNRESPONSIVE.

ii. Service state at the SCA layer changes from ‘Working” to ‘Incorrect Results’: For a service

of id i5 the reaction rule will be as show in the Figure 4-28:

111

service
id
5

=)

service

id

incorrect result
site
s

FIGURE 4-28: STATE CHANGE OF A SERVICE FROM WORKING TO INCORRECT RESULTS.

iii. Service state at the SCA layer changes from ‘Working’ to ‘Incoherent Results’: For a service

of id i5 the reaction rule will be as show in the Figure 4-29:

service service

id id
=

site site
[o

FIGURE 4-29: STATE CHANGE OF A SERVICE FROM WORKING TO INCOHERENT
RESULTS.

iv. Service state at the SCA layer changes from ‘Working’ to ‘Slow Service’: For a service of id

i5 the reaction rule will be as show in the Figure 4-30:

service
id

site
[

=

service
id
slow service

site
[

FIGURE 4-30: STATE CHANGE OF A SERVICE FROM WORKING TO SLOW SERVICE.

V. Service state at the SCA layer changes from ‘Working’ to ‘Outdated Results’: For a service
of id i5 the reaction rule will be as show in the Figure 4-31:

service

id

site

=

service

id
outdated results

site
[

FIGURE 4-31: STATE CHANGE OF A SERVICE FROM WORKING TO OUTDATED RESULTS.

112

We add an additional column titled ‘Reaction rule at the SCA layer’ to Table 4-1 to produce
Table 4-2:

TABLE 4-2: MAPPING BETWEEN REACTION RULES AND VOLATILTY.

REACTION RULE AT

OBSERVED EFFECT

POSSIBLE FAULT

TYPES OF

THESCA LAYER (Chan et al., 2007a) TYPES THAT CAN VOLATILITY THAT
OCCURAT RUNTIME CAN TRIGGER THE
AND CAUSE THE FAULT (Coulouris,
OBSERVED 2012)
EFFECT (Chan et al.,
2007a)

1. Service stateat the Unresponsive Service Unavailability Fault Device and

SCA layer changes from
‘Working’ to
‘Unresponsive Service’

(Physical Fault), Timeout
(Interaction Fault), QoS
(Interaction-Content
fault)

communication link
failure, Variation in
properties of
communication such as
bandwidth, Destruction
of logical communication
relationships between
software components
resident on devices

2.Service stateat the
SCA layer changes from
‘Working’ to ‘Incorrect
Results’

Incorrect Results

Timeout (Interaction
Fault), QoS(Interaction-
Content fault)

Device and
communication link
failure, Variation in
properties of
communication such as
bandwidth, Destruction
of logical communication
relationships between
software components
resident on devices

3. Service stateat the
SCA layer changes from
‘Working’ to ‘Incoherent

Incoherent Results

QoS(Interaction-Content
fault)

Slow network: Variation
in properties of
communication such as

Results’ bandwidth
4. Service stateat the Slow Service Unavailability Fault Device and
SCA layer changes from (Physical Fault), communication link
‘Working’ to ‘Slow Incorrect failure, Variation in
Service’ Order(Interaction fault), properties of
Timeout (Interaction communication such as
Fault), QoS (Interaction- bandwidth, Destruction
Content fault) of logical communication
relationships between
software components
resident on devices
5. Service stateat the Outdated Results QoS (Interaction-Content | Slow network: Variation

SCA layer changes from
‘Working’ to ‘Outdated
Results’

fault)

in properties of
communication such as
bandwidth

We can also generate a reaction rule that changes any malfunctioning state of a service back into
the “Working” state. This reaction rule corresponds to an adaptation command given out by our

system that binds a replacement service to the composition.

113

We have now seen that our reaction rules capture faults extracted from Chan’s taxonomy (Chan
et al., 2007a) that can occur in a service composition running on a mobile device because of
volatility.

4.4.3 A BIGRAPHICAL ARRAY TO SUPPORT SERVICE COMPOSITION

We wish to store those devices whose services are participating in the composition in a
Bigraphical array. This is needed to inform the adaptation that will be required if one of the

devices that are participating develops a fault and needs to be replaced by another device.

4.4.3.1 KINDS OF NODES IN THE BIGRAPHICAL ARRAY

There are two main kinds of nodes (called two kinds of controls in Bigraph theory terminology)
in the Bigaphical array: one representing the array itself and the other representing those devices
which are contained within the Bigraphical array. We have already discussed the device node in

previous sections. We now discuss our Bigraphical array which we call compositionDevices.

compositionDevices is an active control of zero arity (Elsborg, 2009). As discussed earlier, in
Bigraph theory, an active node can contain child nodes and sites and reaction rules can take
place inside them (Milner, 2009). Thus, a composi tionDevices node can contain nested within
it a device node. The function active0 of the BPL Tool converts a string into a BGVal

representation such that it is an active control of zero arity.

val compositionDevices = S.activeO "compositionDevices"
We use this compositionDevices node to construct a barren Bigraph:
val A = S.o (compositionDevices, barren)

In Bigraph theory, a node or root is barren if it has no children (Milner, 2009) . Finally, we use
BPL Tool’s makePTato function to construct a parallel product of the WORLD layer, SCA layer
and the Bigraphical array:

val system0 = makePlato(C,L,A)

In the code above, C is the Bigraph representing the WORLD layer, L is a Bigraph representing
the SCA layer, and A is the Bigraph representing the Bigraphical array called
compositionDevices.

To add devices to the Bigraphical array, we have written a function called
deviceJoinsComposition (Ssee next chapter). Similarly, to remove a device from the
Bigraphical array, we have written a function called devicelLeavesComposition (See next

114

chapter). We have also written a function called newFindParticipatingDevice to find the id

of a device whose service is part of the composition (See next chapter).

4.4.3.2 STATE OF THE BIGRAPHICAL ARRAY

compositionDevices

dev dev dev

FIGURE4-32: STATE OF THE BIGRAPHICAL ARRAY.

As shown in the Figure 4-32, a state of the Bigraphical array compositionDevices could
consist of three devices whose services are participating in the composition. In the figure we
assume that service 1, service 2 and service 3 are participating in the composition. The devices
which are currently being used for this composition are devices with id i1.13, 2.9 and i3.10
as seen in the figure. Notice that we are using a simplified diagram for each device to avoid
clutter. To conclude, the state of Bigraph of Figure 4-32 as expressed in MiniML code is shown
in Figure 4-33.

val A =

S.o(compositionDevices,S. | (S.o(device,S.o(serviceIdNode,S. | (3,S.o(devIdNod
e,10)))),S. | (S.o(device,S.o(serviceldNode,S. | (1,S.o(devIidNode,13)))),
S.o(device,S.o(serviceIdNode,S. | (2,S.o(devIdNode,9)))))))

FIGURE 4-33: CONSTRUCTION OF A STATE OF BIGRAPHICAL ARRAY.

444 SECTION SUMMARY

In this section, we have shown how to capture the relevant information at runtime from two
points of view- the external environment (locations in the WORLD layer) and the internal
structure of the service composition (services in the SCA layer). By using the same Bigraph
constructed out of a parallel product of the Bigraph (See chapter 2) representing the WORLD
layer and another Bigraph representing the SCA layer, we have shown a way to combine two

models of runtime into one.

We first described how our WORLD layer captures the environment view of the effects of
volatility by caching device ids and locations and having reaction rules that model the caching

115

and un-caching of devices. We also discussed how we could simulate the movement of the
user’s device by triggering first the un-caching and then the caching of device rules. Next, we
discussed how our SCA layer can capture sequential, hierarchical, and additive service
compositions. We showed that our use of state whilst describing the service composition helps
to bridge the gap between requirements of volatility and the architecture. We also showed that
our reaction rules at the SCA layer completely capture all the ‘Observed Effects’ of faults in a
service composition due to volatility. Finally, we discussed the construction of a Bigraphical
array to store the identity of those devices whose services are participating in the service
composition.

4.5 CONCLUSIONS

We hawe shown in this chapter, how to use a new language -Bigraphs- to construct a new
architecture - models at runtime - to deal with the problem of volatility in a service composition.
We use our two-layered model at runtime to cache pre-fetched information about the
environment (WORLD layer) and the system (SCA layer). This information is stored before a
fault occurs — in particular the id of alternative back-up devices and their locations are stored in
the WORLD layer of the model and in this sense the information is pre-fetched. This
information can be used to quickly replace a malfunctioning service with an equivalent service
nearby. The SCA layer captures all the observed effects of faults on a service composition
through its reaction rules. It also captures all possible types of service composition and
considers state of a service as part of architecture thereby bridging the gap between the
requirements and architecture of a system. Moreover, reaction rules at both the WORLD and
SCA layer capture all kinds of appearances and disappearances of services in a smart space. We
have therefore shown a way to capture two views of a system in one runtime model. In
conclusion, we have demonstrated how to leverage abstractions provided by Bigraphs to use a
model at runtime as a cache to deal with volatile service composition running on a mobile

device.

116

5 USING THE BPL TOOL TO IMPLEMENT A TWO-
LAYERED MODEL AT RUNTIME

5.1 INTRODUCTION

As discussed in Chapter 2, to the best of our knowledge, our work is the first to have
implemented a Bigraphical model at runtime using the BPL Tool. This chapter serves as a
proof-of-concept that Bigraphs can be used as a language in the conceptual modelling space
(See Chapter 3) to express a two-layered model at runtime for managing ubiquitous computing
volatility. As discussed in Chapter 3, we implement the conceptual model expressed in Bigraphs
with a concrete model expressed in MiniML. Terms representing Bigraphs can be written as
MiniML constructs by using the BPL Tool (ITU, 2007a, Elsborg, 2009). We have built our code
on top of Ebbe Elsborg’s code (Elsborg, 2009).

In this chapter, we discuss ways in which we have organized our MiniML code such that it
could be independently re-implemented if the reader so wished. A Plato-Graphic model (PGM)
(Birkedal et al., 2006) like idea has been used by us to model the structure of the WORLD and
SCA layer. Thus, we present a way to combine two views (environment and system) into the
same model. We also show how to parameterize the reaction rules so that the matching
algorithm (Birkedal et al., 2007) of the tool returns a single match giving us the ability to
dynamically query and modify the model at runtime. The same parameterization techniques are

also used by us to generate infinitely many reaction rules intensionally.

We have organized the chapter as follows: In section 5.2, we discuss the approach that we have
taken to implement our system. Then in section 5.3, we discuss the functions that we have
written to access and modify the WORLD and SCA layers. Finally in section 5.4, we discuss
functions that we have written to encapsulate adaptation logic as well as scripting functions that
we have used to run our implementation. In the next section, we give an informal commentary

on our implementation.

5.2 IMPLEMENTATION APPROACH

Our system’s implementation successfully utilises Bigraphs as a language to construct a model
at runtime. We now discuss some of the simplifying assumptions that we have made about our

system’s boundaries, those features of Bigraphs that we have not used, and how our system

117

responds to external events by issuing commands to components outside the system boundary

and by making internal changes.

5.2.1 SYSTEM BOUNDARY

We have kept the implementation simple enough for us to focus on exploring the most
appropriate way to construct a model at runtime with Bigraphs. Our system gets a stream of
events and responds by outputting the appropriate commands. Everything else is outside our
system boundary. This means we assume that there is a software layer underneath our system at
the Component Control layer (See section 4.3.1) which monitors the service composition and

reports all the relevant events to our system.

As discussed in Chapter 4, we assume that a Service Component Architecture (SCA) (Marino
and Rowley, 2010) like description of all the services and the service composition is being
maintained by a system outside our system boundary in the Component Control layer. Note
therefore that our model at runtime and the service composition are different entities and that
both are causally connected. We also assume that if the rate of incoming events exceeds the
response rate of our system, then there is an event scheduling mechanism outside our system
boundary in the Component Control layer that deals with it appropriately. We are handling the
events sequentially rather than concurrently. Again, we assume that there is a mechanism
outside our system boundary in the Component Control layer which applies our adaptation
commands to the service composition. Note that we un-cache a device from our model at
runtime (See Chapter 4) not just when volatility causes a service malfunction on that device but
also in case of malfunction caused due to any other reason. We assume that there is a supporting
module in the Component Control layer that exists to coordinate between our adaptation
strategy (which is essentially to rebind to any other ‘equivalent’ service that is being offered by
one of the ‘nearby’ devices whose location has been pre-fetched by us) and the underlying
service composition’s exception-handling mechanisms. Our volatility handling mechanisms are
at a higher level of abstraction (modelling level at the Change Management layer) than those
exception handling mechanisms (service composition language at the Component Control
layer). Note too that even if the code running the service composition is verifiably correct, the
composition will still malfunction because of volatility. Furthermore, we assume that there is an
equivalence checker outside the system boundary at the Goal Management layer (See section
4.3.1) that decides if two services are equivalent.

118

5.2.2 UNUSED FEATURES OF BIGRAPHS

As discussed in Chapter 2, because of the limitations of the matching algorithm of BPL Tool,
we do not use Bigraph theory’s hyper-graphs in our model. Thus, instead of connecting all the
devices (that are participating through their services in the service composition) with hyper-
graphs in the WORLD layer, we use a Bigraphical array which we discussed in Chapter 4 to
store the device lds of such devices. This Bigraphcal array helps us write code that can
distinguish between participating devices and those that are only offering back-up services but

have nevertheless been cached as part of our pre-fetching strategy.

5.2.3 EVENTS AND COMMANDS IN THE SYSTEM

In our system, most events (modelled by a reaction rule- see Table 5.1) that need to be
processed are associated with corresponding commands. Bigraphs give us a perfect abstraction
to model events in the world and associate policies and actions (commands) with those events.
Note that although we know how to respond to each event, we do not know the order in which
they will occur as runtime phenomenon are ill-structured in that there is no pre-determined order
for their occurrence. As reaction rules can be fired in any order they are an appropriate
abstraction. As discussed in Chapter 4, we always represent the user’s device as ‘devi0’ in a
diagram. This is the device that we assume is running the service composition. Both commands
and events are also associated with internal actions taken by our system. We categorise events
as follows:

1. Five events associated with the five possible faults in a service at the SCA layer. As
described in Chapter 4, we model the following events (observed effects) (Chan et al.,
2007a) resulting from faults in a running service composition: 1) Unresponsive service,
2) Incorrect result, 3) Incoherent results, 4) Slow service 5) Outdated results. We have
chosen these effects as they result from faults at runtime rather than those at
development time. Internally, our system updates the SCA layer to reflect the observed
effects.

2. The event where ‘devi0’ moves from one ambient to another. Internally, we update the
WORLD layer to reflect this movement.

3. The event where we receive back results from the software layers underneath about the
location and identity of a device offering a particular service. Internally, we cache this
information in our model.

We categorise commands that our system outputs to a system outside our system boundary (an

Android machine- see next chapter) as follows:

119

1. The command to unbind a faulty service from the service composition. Internally, we

also un-cache the service’s device in the WORLD layer and change the state of the

service as appropriate to one of the five fault states in the SCA layer.

2. The command to bind a new service to the composition. Internally, this service’s device

and its location have already been pre-fetched in the cache. Also, we change the state of

service back to ‘working’ (See Chapter 4).

3. The command to pre-fetch the identity of a device that offers a particular service in a

particular ambient.

We show the mapping of each event to the set of commands in Table 5-1.

TABLE 5-1: MAPPING INPUT EVENTS TO OUTPUT COMMANDS.

EVENT

OUTPUT COMMAND AND INTERNAL ACTIONS

(i) A service suffers one of the five faults: 1)
Unresponsive service, 2) Incorrect result, 3) Incoherent
results, 4) Slow service 5) Outdated results. Internally,

we update the SCA layer.

1. Unbind the faulty service from the service
composition. Internally, our system also un-caches the
service’s device in the WORLD layer and changes the
state of the service as appropriate to one of the five fault
states in the SCA layer.

2. Send out a command to bind a new service to the
composition. Internally, this service’s device and its
location have already been pre-fetched in the cache by
our system. Also, our system changes the state of service
back to ‘working’ (See Chapter 3).

3. Send out a command to pre-fetch the identity of a
device that offers an alternative backup service in the

new ambient.

(ii) ‘devi0’ moves from one ambient to another.

Internally, we update the WORLD layer.

Send out a command to pre-fetch the identity of all
devices that offer those services which are participating
in the service composition but have not been cached in
the WORLD layer for the new ambient.

(iii) We receive back results from the software layers
underneath about the location and identity of a device
offering a particular service. Internally, we cache this
information in our model. There is no need to output any
command.

In the implementation, we replace one service with another equivalent service. As discussed

earlier, we assume that there is an equivalence checker outside our system boundary- note that

developing such a checker is not a trivial problem. However, developing such a checker is

outside the scope of the thesis.

120

The reaction rule associated with an event is run through a matching algorithm (Birkedal et al.,
2007). This algorithm determines for a given Bigraph and reaction rule whether and how the
reaction rule can be applied to rewrite the Bigraph. The algorithm outputs a set of possible
Bigraphs that result from the application of the reaction rule. This algorithm has been
implemented in MiniML by the BPL Tool (ITU, 2011) and we build our code on top of this

algorithm.

This systematic mapping between Events and Commands discussed above makes our task of

programming our model at runtime less complex.

5.2.4 SECTION SUMMARY

Our implementation is a system that responds to external events by issuing commands and
changing its internal state. In the next few sections, we give a defailed account of the

implementation.

5.3 FUNCTIONS TO MODIFY/ACCESS THE WORLD/SCA LAYERS

As discussed in Chapter 2, one of the goals of designing a model at runtime is to develop a
mechanism to use the information stored in the model to take decisions at runtime. Secondly,
because the models are causally connected to the running system and the world, we need to be
able to use the causal connection to modify the model to reflect any changes in the running
system and the world. For meeting both these goals, we have written functions to modify/access
the WORLD/SCA layers. We view the functions that we have written as algorithms to access or
modify the WORLD/SCA data structures. Matching algorithm (Birkedal et al., 2007) of BPL

Tool is the core around which these functions are organized.

Consider a reaction rule R->R” where R is the redex Bigraph and R’ is the reactum Bigraph. Let
Bigraph A be a bigraph:

A=Co(R®id;)od
Bigraph A, on application of the reaction rule can be re-written as:
A=Co(R ®id;) od.

The operator @ is called a tensor product. It constructs a larger Bigraph by placing two smaller
Bigraphs that do not share names (See Chapter 2) side-by-side. The operator ‘o’ denotes
composition of Bigraphs (Birkedal et al., 2007), ‘C’ is the context, ‘R’ is the reactum, ‘R is the

redex,” d’ is a parameter and ‘Z’ is the set of names of ‘d’. The parameter ‘d’ is a Bigraph that

121

fits into the sites (don’t cares) of reaction rules. id; is the identity function for composition that
‘allows a name ‘Z’ to be “passed through” the redex and be attached to something in the
context ‘C’’ (Birkedal et al., 2007).The sites of a reaction rule are don’t cares in the sense that
it does not matter, which, Bigraph is in the same place as the site, for a reaction rule to be
applied. We pass the larger Bigraph A and redex R to the matching algorithm which must find
C, d and Z such that

A=Co(R®idy)od

holds. Since, in our implementation, we do not use links; the matching algorithm only returns C
and d.

As an example of how the matching algorithm works, consider the reaction rule shown in
Figure 5-1:

loc id dev loc id

site site

FIGURE 5-1: DEVICE UN-CACHING REACTION RULE.

This reaction rule models the un-caching of device 4.3 from location i1. Any Bigraph
returned by the matching algorithm as the parameter ‘d’ is fitted in the sites of the reaction rule.
We apply this reaction rule to the Bigraph in Figure 5-2 which shows a state of the WORLD
layer.

122

loc id
ShoppingMall
loc id loc id

dev dev dev dev

loc id dev loc id

i5.8

FIGURE 5-2: INITIAL STATE OF THE WORLD BIGRAPH.

The redex (left hand side) of this reaction rule is passed to the matching algorithm along with
the Bigraph of Figure 5-2. The context C and parameter d that the matching algorithm returns

are shown respectively in Figure 5-3 and Figure 5-4:

loc id

ShoppingMall
| site loc_id
:
|
|
|
|
I
|
! loc id
| ;
|

FIGURE 5-3: CONTEXT RETURNED BY MATCHING ALGORITHM.

dev dev dev
loc id dev
i5.8

FIGURE 5-4: PARAMETER RETURNED BY MATCHING ALGORITHM.

123

The context ‘C’ is a Bigraph with a site into which the reactum of the Bigraph can fit in. Also,
the parameter returned consists of a Bigraph that goes into the site of the redex of the reaction
rule shown in Figure 5-1.

After the application of the reaction rule, the Bigraph of Figure 5-2 is re-written into Bigraph
shown in Figure 5-5 with the device 4.3 having been un-cached.

loc id
loc id loc id
dev dev dev
loc id dev loc id
5.8

FIGURE 5-5: REWRITTEN STATE OF THE WORLD.

Next, in sections 5.3.1 and 5.3.2, we discuss two classes of functions that have used the
matching algorithm:

e Functions that modify the model.

e Functions that access information from the model.

5.3.1 FUNCTIONS THAT MODIFY THE MODEL

These functions encapsulate the reaction rules of the model. Note that for concrete
implementation, we use the function abstraction of MiniML. For conceptual modelling of
domain knowledge, reaction rules are appropriate to express the semantics. The functions
include atthe WORLD layer:

i) Device cached,
i) Device un-cached,

ii1) Device moves from one ambient to another (This can be modelled by application of ‘device

un-cached’ rule in the initial ambient and ‘device cached’ rule in the final ambient.),

And at the Service Component Architecture Layer (SCA),

124

iv) State of a service changes.

Finally, to modify the Bigraphical array compositionDevices we have written the following

two functions to encapsulate the appropriate reaction rules:
V) A function that encapsulates the rule that a device joins compositionDevices .

vi) A function that encapsulates the rule that a device needs to be removed from

compositionDevices .

The reaction rule encapsulated by a function along with the Bigraph which needs to be
rewritten, are passed on to the matching algorithm which returns with an appropriate match. The
matching algorithm is encapsulated in the function changeSystem which takes in a Bigraph

system and a reaction rule ruleName as parameters and returns the modified system.
We now discuss the function changeSystem in detail (Figure 5-6).

In line 3, we first convert the Bigraph that has been passed to changeSystem from a BGVal to
BDnf using Elsborg’s code (Elsborg, 2009). Next, in line 4 and 5, we compute a lazy list of the
matches of redex with the Bigraph that needs to be rewritten using Elsborg’s code (Elsborg,
2009). We then access the first element of the lazy list using Elsborg’s code (Elsborg, 2009) in
line 6. Notice that we expect only one match because all device ids, location ids, and service ids
that our functions use to construct the reaction rules are unique. Finally, in line 8, we perform a
single reaction step induced by a match (Elsborg, 2009) returning the resulting re-written
Bigraph. The full function has been written by us by collecting together lines from Elsborg’s
code (Elsborg, 2009) . See Figure 5-6.

fun changeSystem(systemName,ruleName) =
Tet
val BRsystemName = makeBR systemName
val mtsd = M.matches { agent = BRsystemName ,
rule = ruleName }
val matchNew = LazylList.lznth mtsd 0
in

Re.react matchNew

O 00 N O U1 A W N B

end

FIGURE 5-6: FUNCTION changeSystem.

125

5.3.1.1 ABSTRACTION BY PARAMETERIZATION

Abstraction by parameterization ‘through the introduction of parameters, allows us to represent
a potentially infinite set of different computations with a single program text that is an
abstraction of all of them’(Liskov and Guttag, 2000). We look upon our functions as generic
templates from which reaction rules can be automatically instantiated. Our functions that
encapsulate reaction rules parameterize the identities of locations, devices and services for a
given reaction rule as the case may be. Note that the reaction rules as defined in Bigraph theory
are themselves parametric because they have sites that can be ‘filled up’ (See Chapter 2). The
parameters that our functions provide to the reaction rules are in addition to the parameters that
“fillup’ the sites of those reaction rules. We now discus the following six functions that modify
the structure of the WORLD layer: i) device un-cached, ii) device cached, iii) device moves
from one ambient to another, a fourth function that modifies the state of the SCA layer: iv) state
of a service changes, v) a function that encapsulates the rule that a device joins
compositionDevices , and finally, vi) a function that encapsulates the rule that a device needs

to be removed from compositionDevices .
Each of these functions can automatically instantiate infinitely many reaction rules.

i) Device un-cached rule: We use the ‘device disappears’ rule to un-cache a device from the
WORLD layer. Consider, again, the application of the reaction rule to un-cache a device (see
Figure 5-1) to the state of the WORLD shown in Figure 5-2. This reaction rule models the un-
caching of device 4.3 from location i1. The signature of the function which encapsulates this
rule is constructDisappear (deviceId, Tocation) and the structure of the resulting reaction
rule is as shown in Figure 5-7. The parameters deviceId and Tocation are the parameters
passed by the function to the parametric reaction rule. The function returns a constructed
reaction rule. When we pass deviceld = i4.3 and location = i1, to the reaction rule of
Figure 5-7, we get the reaction rule of Figure 5-1. Compared to Figure 5-1, the function
constructDisappear(deviceld,location) that encapsulates the reaction rule of Figure 5-7
can therefore instantiate an infinite number of reaction rules for an infinite number of
deviceIds and Tocations. As discussed earlier in this section, the site in the redex and reactum
of the reaction rule is a don’t care. It is the reaction rule’s parameter in which a Bigraph could
be fitted.

126

loc loc
id dev id
[location] | deviceld|
site site

- i
i L__]
Lo

FIGURE 5-7: FUNCTION constructDisappear.

We now discuss constructDisappear (deviceld,location) function’s implementation in
MiniML. The input parameters for the function are the identity of the device (deviceId) and the
location of the device (Tocation). The function returns the reaction rule constructed for those
parameters. This function can generate infinitely many reaction rules -depending on the input
parameters- with the site of the reaction rule playing the role of ‘don’t care’ -in the sense that it
does not matter which Bigraph is substituted in place of the site for a reaction rule to be

applied.

We now discuss the function in detail (See Figure 5-8). Firstly, in lines 3 to 5, we declare the
structure of the redex and reactum. Notice that we use functions loc’’ (discussed in section
4.4.1.1) to construct location with the id Tlocation. Similarly, we use the function
constructDevice (discussed in section 4.4.1.1.1) to construct the device with the id deviceId.
Next, in lines 6 and 7, we specify that the number of the sites in redex and reactum is one each.
In lines 8 to 10, we map the site of the reactum to the site of the redex. Finally, in lines 12 to 16,
we use the ‘make’ function to construct the reaction rule. Here, structure R = BG.Rule , where
‘Rule’ is the abstract data type provided by BPL Tool for constructing rules. Notice that the
parameters deviceId and Tocation are unique in our model. Thus, the redex that gets passed
to the matching algorithm always has a unique device id and location id and we get a single

match for the redex in the large Bigraph where a match is being searched for.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

We have written another function deviceDisappears that uses the reaction rule returned by
the function
deviceDisappears takes the id of device (deviceld), the location of device (Tocation), and

the current state of the system (system) to return the new state of the system. This function is

127

fun constructDisappear(deviceld, Tocation)=

let

val redexDisappear = S.o

(loc''(location),S. | "(constructDevice (deviceId),site))

val reactDisappear = S.o (loc''(location),site)

val redex_innerface_Disappear = Iface.m 1

val react_innerface_Disappear = Iface.m 1

val instDisappear = Inst.make { I = redex_innerface_Disappear,

J = react_innerface_Disappear,

maps = [((0,[1D, (0,[1))] 1}
in

R.make { name = "Disappear",
redex = makeBR redexDisappear,
react = reactDisappear,

inst = instDisappear,

info = info }

end

FIGURE 5-8: FUNCTION constructDisappear.

constructDisappear to change the state of the system. Function

shown in Figure 5-9.

1

2
3
4
5
6

ii) Device Cached rule: This rule shown in Figure 5-10 is encapsulated by a function

fun deviceDisappears(deviceId,location,system)=

let

val Disappear = constructDisappear (deviceld,location)

in

changeSystem(system,Disappear)

end

FIGURE 5-9: FUNCTION deviceDisappears.

constructAppear(deviceld,location).

128

loc ' loc .

id id dev
location location| | deviceld
site site

FIGURE 5-10: DEVICE CACHED REACTION RULE.

The input parameters are: the id of the device (deviceId) and the id of the location (Tocation).
The function returns the reaction rule constructed for those parameters. This function can
generate infinitely many reaction rules -depending on the input parameters- with the site of the
reaction rule playing the role of ‘don’t care’ -in the sense that it does not matter which Bigraph

is in the same place as the site, for a reaction rule to be applied.

We now discuss the function in detail (See Figure 5-11). Firstly, in lines 3 to 5 we declare the
structure of the redex and reactum. Notice that we use functions loc’’(discussed in section
4.4.1.1) to construct location with the id Tlocation. Similarly, we use the function
constructDevice (discussed in section 4.4.1.1.1) to construct the device with the id deviceId.
Next, in lines 6 and 7 we specify that the number of the sites in redex and reactum is one each.
In lines 8 to 10, we map the site of the reactum to the site of the redex. Finally, in lines 12 to 16,
we use the ‘make’ function to construct the reaction rule. Here, structure R = BG.Rule , where
‘Rule’ is the abstract data type provided by BPL Tool for constructing rules. Notice that the
parameters deviceId and Tocation are unique in our model. Thus, the redex that gets passed
to the matching algorithm always has a unique device id and location id and we get a single

match for the redex in the Bigraph where a match is being searched for.

129

fun constructAppear (deviceld,location)=
let

val redexAppear S.o (loc''(location),site)
S.o

(loc''(location),S. | "(constructDevice (deviceId),site))

val reactAppear

val redex_innerface_Appear = Iface.m 1
val react_innerface_Appear = Iface.m 1

val instAppear = Inst.make { I = redex_innerface_Appear,

O© 00 N O Ui h W N R

J = react_innerface_Appear,
10 maps = [(C0,[]), (O,[I)] }
11 in

12 R.make { name = "Appear",
13 redex = makeBR redexAppear,
14 react = reactAppear,

15 inst = instAppear,

16 info = info }

17 end

FIGURE 5-11: FUNCTION constructAppear.

We have written another function deviceAppears that uses the reaction rule returned by the
function constructAppear to change the state of the system. Function deviceAppears takes
the id of device (devicelId), the location of device (Tocation), and the current state of the two
layer system (system) to return the new state of the system. This function is shown in Figure 5-
12.

fun deviceAppears(deviceld, location, system)=
Tet
val Appear = constructAppear(deviceld, location)
in

changeSystem(system,Appear)

S vl AW N R

end

FIGURE 5-12: FUNCTION deviceAppears.

iii) ‘Device moves from one ambient to another’ rule: We use this rule to model in the WORLD
layer, the movement of the user’s device. As already discussed, we designate the user’s device
as devi0o. This movement can be modelled by application of ‘device un-cached’ rule
(encapsulated within deviceDisappears function) in the initial ambient and ‘device cached’
rule (encapsulated within deviceAppears function) in the final ambient. The input parameters
for the function are the id of the device (deviceld), initial location of the device
(initialLocation), final location of device (finalLocation) and the current state of the

130

Bigraph (system). The function returns a modified Bigraph with the device in the final location

as shown in Figure 5-13.

fun changeAmbient(deviceld,initialLocation,finallLocation, system)=
Tet
val systema =
devi ceDisappears(deviceld,initialLocation, system)
in

devi ceAppears(deviceld,finallLocation,systema)

~N o uu A W N R

end

FIGURE 5-13: FUNCTION changeAmbient.

iv) As discussed earlier (Sections 4.4.2.5), each reaction rule of the SCA layer models a change
in state. The possible states are: 1) Unresponsive, 2) Incorrect result, 3) Incoherent results, 4)
Slow service 5) Outdated results. 6) Working, 7) Not working (models any other fault that we

have not captured). These states are represented as nodes in our model.

We now discuss the function constructStateChange that encapsulates a reaction rule that
changes state of a service at the SCA layer. The input parameters are the id of the service
(serviceld), initial state of the service (initialState) and the final state of the service
(finalState). The function returns the reaction rule constructed for those parameters. Again,
we can use this function to generate infinitely many reaction rules. The reaction rule is shown in
Figure 5-14.

service service
id id
=

site site

FIGURE 5-14: constructStateChange FUNCTION ENCAPSULATING THE REACTION
RULE THAT CHANGES STATE OF A SERVICE.

We now discuss the code for this function (See Figure 5-15). Firstly, in lines 3 and 4, we declare
the structure of the redex and reactum. We use the function constructService (discussed in
section 4.4.2.1) to construct the redex and reactum of the reaction rule. Redex represents a

service in the initial state and reactum represents a service in the final state. Next, in lines 5 and

6, we specify that the number of the sites in redex and reactum is one each. In lines 7 and 8, we
map the site of the reactum to the site of the redex. Finally, in lines 10 to 14, we use the ‘make’
function to construct the reaction rule. Here, structure R = BG.Rule , where ‘Rule’ is the
abstract data type provided by BPL Tool for constructing rules. Notice that the parameter
serviceId is unique in our model. Thus, the redex that gets passed to the matching algorithm

always has a unique service id and we get a single match for the redex in the large Bigraph

where a match is being searched for.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

v) Device joins Bigraphical array rule: This rule is shown in Figure 5-16. When a device’s
service joins the service composition, that device needs to be added to the Bigraphical array
compositionDevices. We have written a function

fun constructStateChange(serviceld,initialState,finalState) =

Tet
val
val
val
val
val
] =

in

R.ma

redexState =
reactState =

redex_innerface_State = Iface.m 1

react_innerface_State = Iface.m 1

constructService(serviceld,initialState)

131

constructService(serviceld,finalState)

instState = Inst.make { I

react_innerface_State, maps=[((0,[]),

ke { name = "stateChange",

redex = makeBR redexState,

react = reactState,

inst
info

end

instState,
info }

redex_innerface_State,

0,011 3

FIGURE 5-15: FUNCTION constructStateChange.

constructDeviceloinsCompositionRule

encapsulating the reaction rule that adds a device to compositionDevices.

compositionDevices

dev site

‘h***T
deviceld | }
| DR

FIGURE 5-16: DEVICE JOINS COMPOSITION RULE

132

The input parameter is the id of the device (deviceId). The function returns the reaction rule
constructed for this parameter. Once again, notice that like other functions encapsulating
reaction rules, this function too can generate infinitely many reaction rules -depending on the
input parameters. Also, the site of the reaction rule plays the role of ‘don’t care’. That is to say
that it does not matter which Bigraph is in the same place as the site, for a reaction rule to be
applied.

We now discuss the function in detail (See Figure 5-17). Firstly, in lines 3 to 5 we declare the
structure of the redex and reactum. Notice that we use the function constructDevice
(discussed in section 4.4.1.1.1) to construct the device with the id deviceId. Next, in lines 6
and 7 we specify that the number of the sites in redex and reactum is one each. In lines 8 to 10,
we map the site of the reactum to the site of the redex. Finally, in lines 12 to 16, we use the
‘make’ function to construct the reaction rule. Here, structure R = BG.Rule , where ‘Rule’ is the

abstract data type provided by BPL Tool for constructing rules.

1 fun constructDeviceJoinsCompositionRule (deviceld) =

2 Tet

3 val redexAppear = S.o (compositionDevices, site)

4 val reactAppear = S.o

5 (compositionDevices,S. | (constructDevice(deviceld),site))
6 val redex_innerface_Appear = Iface.m 1

7 val react_innerface_Appear = Iface.m 1

8 val instAppear = Inst.make { I = redex_innerface_Appear,
9 J = react_innerface_Appear,

10 maps = [((O0,[D), (O,[1)] }

11 in

12 R.make { name = "deviceAdded",

13 redex = makeBR redexAppear,

14 react = reactAppear,
15 inst = instAppear,
16 info = info }

17 end

FIGURE 5-17: FUNCTION constructDeviceJoinsCompositionRule

We have written another function devi ceJoinsComposition that uses the reaction rule returned
by the function constructDeviceloinsCompositionRule to change the state of the system.
Function deviceJoinsComposition takes the id of device (deviceId) and the current state of
the two layer system (system) to return the new state of the system. This function is shown in
Figure 5-18.

133

fun deviceloinsComposition(deviceld, system) =

Tet

val deviceAdded = constructDeviceloinsCompositionRule(deviceld)
in

changeSystem(system,deviceAdded)

S v A W N R

end

FIGURE 5-18: FUNCTION deviceJoinsComposition.

vi) Device is removed from the Bigraph array rule: This rule is shown in Figure 5-19. When a
device’s service develops a fault, that device needs to be removed from the Bigraphical array

compositionDevices. We have written a function
constructDevicelLeavesCompositionRule

encapsulating the reaction rule that removes a device from compositionDevices.

compositionDevices

dev site
o
| }
|
compositionDevices :>

FIGURE 5-19: DEVICE LEAVES COMPOSITION RULE

The input parameter is the id of the device (deviceId). The function returns the reaction rule
constructed for this parameter. Once again, notice that like other functions encapsulating
reaction rules, this function too can generate infinitely many reaction rules -depending on the
input parameters. Also, the site of the reaction rule plays the role of ‘don’t care’. That is to say
that it does not matter which Bigraph is in the same place as the site, for a reaction rule to be
applied.

We now discuss the function in detail (See Figure 5-20). Firstly, in lines 3 to 5 we declare the
structure of the redex and reactum. Notice that we use the function constructDevice
(discussed in section 4.4.1.1.1) to construct the device with the id deviceId. Next, in lines 6
and 7 we specify that the number of the sites in redex and reactum is one each. In lines 8 to 10,
we map the site of the reactum to the site of the redex. Finally, in lines 12 to 16, we use the

‘make’ function to construct the reaction rule. Here, structure R = BG.Rule , where ‘Rule’ is the

134

abstract data type provided by BPL Tool for constructing rules. Notice that the parameters

deviceId is unique in our model. Thus, the redex that gets passed to the matching algorithm

always has a unique device id and we get a single match for the redex in the Bigraph where a

match is being searched for.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

fun constructDeviceleavesCompositionRule (deviceId) =
Tet
val redexDisappear = S.o
(composi tionDevices,S. | (constructDevice(deviceId),site))
val reactDisappear = S.o (compositionDevices,site)
val redex_innerface_Disappear = Iface.m 1
val react_innerface_Disappear = Iface.m 1
val instDisappear= Inst.make { I = redex_innerface_Disappear,
J = react_innerface_Disappear,
maps = [((0,[1), (0,[1))] }
in
R.make { name = "deviceDeleted",
redex = makeBR redexDisappear,

react = reactDisappear,

inst = instDisappear,
info = info }
end

FIGURE 5-20: FUNCTION constructDevicelLeavesCompositionRule

We hawve written another function deviceleavesComposition that uses the reaction rule

returned by the function constructDeviceleavesCompositionRule to change the state of the

system. Function deviceleavesComposition takes the id of device (deviceId) and the current

state of the two layer system (system) to return the new state of the system. This function is

shown in Figure 5-21.

1
2
3
4
5
6

fun deviceleavesComposition(deviceld, system) =
Tet
val deviceDeleted = constructDeviceleavesCompositionRule(deviceld)
in
changeSystem(system, deviceDeleted)

end

FIGURE 5-21: FUNCTION devicelLeavesComposition.

135

Altogether, we see that the implementation of functions that modify PGM-like models depend
on the matching algorithm and parameterization concepts are needed to write functions that

generate infinitely many reaction rules.

5.3.2 FUNCTIONS THAT ACCESS INFORMATION FROM THE MODEL

We want to ‘interrogate’ the WORLD/SCA model to access information that is needed to take
an adaptation decision at runtime. The BPL Tool provides no functions to access the structure of
a Bigraph. One of the ways this can be overcome is by writing reaction rules with the same
redex and reactum and passing the redex to the matching algorithm. The redex is written in such
a fashion that the parameters returned by the matching algorithm can be used to extract useful
information using BPL Tool functions. Notice, because reactum is the same as redex, it does not
make sense to replace redex by reactum in the Bigraph where matching occurs. Rather, we are
interested in the parameters returned by the matching algorithm. Hence we do not apply the
matches returned by the matching algorithm to the Bigraph on which the reaction rule was
originally applied. We have written the following functions using this strategy, and we now

discuss this strategy in more detail for each of these function:
i) TocateDevice: Finds where a device is located

i) enumerateDevicesInShoppingMall: Lists all devices in a particular ambient (location)
offering a particular service.

iii) findParent: Finds a location’s parent location.
iv) findChild: Finds one of the child locations of a location.

V) newFindParticipatingDevice: Finds the id of the device participating in the composition
and offering a particular service.

Vi) constructSeviceTree: Returns a list of all the services participating in the composition by
using the BPL Tool’s matching algorithm to traverse the tree representing the structure of the
service composition at the SCA layer.

We now discuss each of these functions in turn:

i) TocateDevice: We use this function to find where a device is located by accessing the
information stored in the WORLD Bigraph through the matching algorithm. Consider the state
of the WORLD layer in Figure 5-2 which we reproduce in Figure 5-22. Suppose that we wish to
find the location of device 4. 3.

136

loc id

loc id loc id

dev dev dev dev

loc id dev loc id

5.8

FIGURE 5-22: INITIAL STATE OF WORLD BIGRAPH.

We use the reaction rule shown in Figure 5-23. Notice from the figure that both the redex and
reactum are the same Bigraphs. We pass the redex with deviceId = 4.3 together with the
WORLD layer Bigraph of Figure 5-22 to the matching algorithm. Notice that we do not specify
the location Id of the device in the reaction rule because it is an unknown and we want the
matching algorithm to return the parameter containing that information.

id id

7 dev - dev
t - t 5
> | [deviceld :> ?_? deviceld

L1

FIGURE 5-23: REACTION RULE WITH THE SAME REDEX AND REACTUM.

The context and the parameter that the matching algorithm returns are shown in Figures 5-24
and 5-25 respectively. Notice that the ‘don’t care’ (site) of the reaction rule in Figure 5-23 is
‘filled up’ by the parameter in the Figure 5-25. Thus, the BPL Tool’s matching algorithm

returns a parameter that is the atomic Bigraphical node representing the id of the location: 1.

137

loc id
loc site_ loc id
Ll
dev dev dev
loc id dev loc id
5.8

FIGURE 5-24: CONTEXT RETURNED BY THE MATCHING ALGORITHM.

FIGURE 5-25: PARAMETER RETURNED BY THE MATCHING ALGORITHM.

We now discuss the code for function locateDevice shown in Figure 5-26. The input
parameters for the function are the id of the device (deviceId) and the current state of the two
layer model (currentSystem). The function returns the string representation of the id of

location.

Firstly, we declare the structure of the redex in line 3 and reactum in line 4. Notice that both of
them represent the same Bigraph. Notice too that there is no identity node for location node. We
want the matching algorithm to return the string representation of identity node as part of the
parameter that it will return. Next, in lines 5 and 6 respectively, we specify that the number of
the sites in redex and reactum is one each. We map the site of the reactum to the site of the
redex in lines 7 to 9. We use the make function to construct the reaction rule in lines 10 to 14.
Here, structure R = BG.Rule , where ‘Rule’ is the abstract data type provided by BPL Tool for
constructing rules. In line 15, we then convert the Bigraph that has been passed to
locateDevice function from a BGVal to BDnf using Elsborg’s code (Elsborg, 2009). Next, we
compute a lazy list of the matches of redex with the Bigraph that needs to be rewritten using
Elsborg’s code (Elsborg, 2009) in lines 16 to 17. Notice that we expect only one match because

the parameter deviceId passedto TocateDevice IS unique.

138

In line 18, we check whether the lazy list containing the matches is empty. When the lazy list is
not empty, the lines 19 to 32 execute. In lines 21 to 25, we use BPL Tool’s functions to extract
out the Bigraph representing the parameter returned by the matching algorithm. Next, in line 26,
we define the function pee1 adapted from Elsborg’s code (Elsborg, 2009) to convert the BGVal
representation of a Bigraph to a string representation. Finally, we return this sting

representation of the id of the location in line 34.

1 fun locateDevice(deviceld,currentSystem) =

2 Tet

3 val redexLocate = S. | (S.o(id,site),constructDevice(deviceId))
4 val reactLocate = S. | (S.o(id,site),constructDevice(deviceld))
5 val redex_innerface_Locate = Iface.m 1

6 val react_innerface_Locate = Iface.m 1

7 val instlLocate = Inst.make { I = redex_innerface_Locate,] =

8 react_innerface_Locate,

9 maps = [((0,[1), (0,[1))] }

10 val findDevice = R.make { name = "findDevice",

11 redex = makeBR redexLocate,

12 react = reactlocate,

13 inst = instlLocate,

14 info = info }

15 val BRsystemLocate = makeBR currentSystem

16 val mtsd = M.matches { agent = BRsystemLocate , rule = findDevice
17 }

18 val testNew = if ((lzLength mtsd) = "0") then ""

19 else

20 Tet

21 val testalteragent' = M.unmk (LazylList.lzhd mtsd)
22 val testalteragent'_par =

23 #parameter(testalteragent')

24 val testalteragent'_ctx =

25 #context(testalteragent')

26 fun peel x = (B.toString o B.simplify o

27 Bdnf .unmk) x

28 val test3 = peel testalteragent'_par

29 val test4 = peel testalteragent'_ctx

30 in

31 test3

32 end

33 1n

34 testNew

35 end

FIGURE 5-26: FUNCTION locateDevice.

139

To sum up, the function TocateDevice USes a reaction rule that does not change the state of the
WORLD layer to access information. This is achieved by having the same redex and reactum
for the reaction rule. This reaction rule is then passed on to the matching algorithm and it

returns parameters from which the location can be extracted.

ii) enumerateDevicesInShoppingMall: This function lists all devices in a particular ambient
(location) offering a particular service by accessing the Bigraph through the use of the matching
algorithm. The function is used when a device needs to be replaced and as a result, we want to
find out which other device is offering that same service in a particular ambient. Once we know
an alternative device offering the same service, we can send out a command to bind our service

composition to the new service.

Consider the state of the WORLD layer in Figure 5-27. Suppose that we want to find all the
devices in location 1 that offer service 6. There are two such devices: devices with id i6.2 and
i6.4.

loc id
ShoppingMall
loc id loc id

dev dev dev dev

loc id dev loc id

i5.8

FIGURE 5-27: INITIAL STATE OF WORLD BIGRAPH.

We use the reaction rule shown in Figure 5-28. Notice that both redex and reactum are the same
Bigraphs. We pass redex with Tocation = 1 and serviceId = 6 as well as the Bigraph with

the state of the WORLD layer shown in Figure 5-27 to the matching algorithm.

140

device
d serviceldNode
deviceldNode
serviceld Sr't?]
device ::>
id serviceldNode
deviceldNode
serviceld Slit%

FIGURE 5-28: REACTION RULE WITH THE SAME REDEX AND REACTUM.

Notice that for the reaction rule shown in Figure 5-28, the matching algorithm returns two sets
of contexts and parameters. This is because there are two matches corresponding to two values

of ordinal numbers for deviceIdNodes: 4 and 2 for the single value of serviceld = 6.

The first set of context and the parameters that the matching algorithm returns are shown in
Figures 5-29 and 5-30 respectively. Notice that the ‘Don’t care’ (site) of the reaction rule in
Figure 5-28 is filled up by the parameter in Figure 5-30.

Similarly, the second set of context and the parameters that the matching algorithm returns are
shown in Figures 5-31 and 5-32 respectively. Once again, notice that the ‘Don’t care’ (site) of
the reaction rule in Figure 5-28 is filled up by the parameter in Figure 5-32.

loc id
loc site_ loc id
L
dev dev | | dev
L
loc id dev loc id
5.8

FIGURE 5-29: FIRST OF THE TWO CONTEXTs RETURNED BY MATCHING ALGORITHM-
ONLY i16.4 ABSENT.

141

FIGURE 5-30: FIRST OF THE TWO PARAMETERs RETURNED BY THE MATCHING
ALGORITHM ONLY 4 PRESENT.

loc id
loc site_ loc id
L
dev dev | | dev
Ll
loc id dev loc id
i5.8

FIGURE 5-31: SECOND OF THE TWO CONTEXTS RETURNED BY MATCHING ALGORITHM-
ONLY i16.2 ABSENT.

FIGURE 5-32: SECOND OF THE TWO PARAMETERS RETURNED BY THE MATCHING
ALGORITHM- ONLY 2 PRESENT.

We now discuss the code of the function in detail. The code is shown in Figure 5-33.
The input parameters for the function are the string representation of the id of the

142

service (seviceld), the string representation of id of location (Tocation), and the
BGVal representation of the current state of WORLD and SCA layers
(currentSystem). The function returns a list of all devices in a particular ambient
offering a particular service.

Firstly, we declare the structure of the redex in line 3 and reactum in line 7. Notice
that both of them represent the same Bigraph. We pass the identity of location
(Tocation) and the service Id (serviceId) to the redex and reactum. Next, in lines 11
and 12 respectively, we specify that the number of the sites in redex and reactum is
one each. Then, we map the site of the reactum to the site of the redex in lines 14 to
17. We next use the make function to construct the reaction rule in lines 19 to 24.
Here, structure R = Bg.Rule where ‘Rule’ is the abstract data type provided by BPL
tool for constructing rules. In line 26, we convert the Bigraph that has been passed to
enumerateDevicesInShoppingMall function from a BGVal to BDnf using Elsborg’s
code (Elsborg, 2009) so that we can pass it on to the matching algorithm. Next, we
compute a lazy list of the matches of redex with the Bigraph that needs to be rewritten
using Elsborg’s code for the matching algorithm in lines 27 and 28. Notice that we
expect more than one match because the parameter serviceld passed to
enumerateDevicesInShoppingMall could be associated with more than one device in
a given location. We then use Elsborg’s code to define a curried function
locationIdentityStringList in lines 30 to 38. It takes in a BDnf representation of a
bigraph and a Match type (of BPL Tool), as input parameters. This function
locationIdentityStringlList then extracts the parameter in the BDnf form from the
match in line 33, and converts it in line 35 into a string using the peel function of the
BPL Tool. In line 34, we define the function peel adapted from Elsborg’s code to
convert the BGVal representation of a Bigraph to a string representation. On line 40,
we pass the function locationIdentityStringList with its BDnf parameter
BRsystemLocateInShoppingMall and the mtsd lazy list to the curried function
LazylList.1zmap provided by the BPL Tool. The function LazylList.lzmap applies our
function locationIdentityStringList to each element of the lazy list mtsd and
returns a lazy list consisting of the string representations of the BDnf representation of the
ordinal numbers of the devices. Then in line 43, we convert the lazy list TocIdStringList into
a list. In line 44, we define the function prefixServiceId that prefixes a string representation
of the serviceId to the string representation of an ordinal number. Next, in line 45, we define a
function zeroServi celd that converts its parameter into the string “0”. Finally, we use both of
these functions from lines 47 to 52 to return a string list of correctly constructed device Ids
(with service Ids and ordinal numbers).

143

fun enumerateDevicesInShoppingMall(serviceld,location,currentSystem)=

let

val redexLocateInShoppingMall = S. | (S.o (id, i(location)),
S.o(device,S.o(serviceIdNode,S. |
(i(serviceld),S.o(devIdNode,site)))))

val reactlLocateInShoppingMall = S. |~ (S.o (id, i(location)),
S.o(device,S.o(serviceIdNode,S. |°

(i(serviceld),S.o(devIdNode,site)))))

Iface.m 1

val redex_innerface_LocateInShoppingMall

val react_innerface_LocateInShoppingMall Iface.m 1

val instlLocateInShoppingMall = Inst.make { I =
redex_innerface_LocateInShoppingMall,
J = react_innerface_LocateInShoppingMall,

maps = [((0, [1), (0,[100] }

val findDeviceInShoppingMall = R.make { name =
"findDeviceInShoppingMall",

redex = makeBR redexLocateInShoppingMall,

react = reactLocateInShoppingMall,
inst = instLocateInShoppingMall,

info = info }

val BRsystemLocateInShoppingMall = makeBR currentSystem
val mtsd = M.matches { agent = BRsystemLocateInShoppingMall ,
rule = findDeviceInShoppingMall }

fun locationIdentityStringlList agent m =
Tet
val agent' = M.unmk (m)
val agent'_par = #parameter(agent')
fun peel x = (B.toString o B.simplify o Bdnf.unmk) x
val testl = peel agent'_par
in
testl

end

val locIdStringlList = LazyList.lzmap (locationIdentityStringlList

BRsystemLocateInShoppingMall) mtsd

val alList = LazylList.lztolist locIdStringList
fun prefixServicelId aserviceld x = aserviceld A "." A X

45
46
47
48
49
50
51
52
53

144

fun zeroServiceld y = "0"
val correctServiceldlList = if(serviceld = "0")then
map (zeroServiceld)

else map(prefixServiceId serviceId)

in
correctServiceldList alList

end

FIGURE 5-33: FUNCTION enumerateDevicesInShoppingMall.

In conclusion, in the function enumerateDevicesInShoppingMall, we pass a reaction rule

with the same redex and reactum to the matching algorithm so that we can access the device Ids

offering a backup of a particular service in a particular location. Notice that the state of the

WORLD does not change on application of the reaction rule. This is as it should be, because,

we only want to access information from the WORLD Bigraph, and, not modify it.

iii) findParent: We use this function to find a location’s parent location. Consider again the

state of the WORLD in Figure 5-27 which we reproduce in Figure 5-34. Suppose, we wish to
find the parent of location 2.

loc id
loc id loc id

dev dev dev dev

loc id dev loc id

5.8

FIGURE 5-34: INITIAL STATE OF WORLD BIGRAPH.

We use the reaction rule shown in Figure 5-35. Notice from the Figure that both the redex and
reactum are the same Bigraphs. We pass the redex with Tocation

WORLD layer Bigraph of Figure 5-34 to the matching algorithm.

“2” together with the

145

loc

id id site

site) R
i location | :
loc —

site _
[location | |

FIGURE 5-35: REACTION RULE WITH THE SAME REDEX AND REACTUM.

The context and the parameter that the matching algorithm returns are shown in Figures 5-36
and 5-37 respectively. Notice that the ‘don’t care’ (site) of the reaction rule in Figure 5-35 is
‘filled up’ by the parameter in the Figure 5-37. Two Bigraphical parameters corresponding to
the two sites in the redex of the reaction rule are returned. In Figure 5-37, the two Bigraphical
parameters that have been returned are shown within dashed boxes. These dashed boxes
represent the root outer interfaces of the Bigraphs as discussed in chapter 2. We can now extract

out the first Bigraph from these two parameters.

loc id
ShoppingMall
loc loc_id
site
i 1} dev dev dev dev
i[io] [.3][ie4] [i6.2
|
Lo
: i loc id
| .
L

FIGURE 5-36: CONTEXT RETURNED BY MATCHING ALGORITHM.

146

FIGURE 5-37: PARAMETER RETURNED BY MATCHING ALGORITHM.

We now discuss the code of this function shown in Figure 5-38.

The input parameters for the function are the id of the location whose parent we wish to find
(Tocation) and the current state of the two layer model (cur rentSystem). The function returns
the string representation of the id of the parent location.

Firstly, on line 2 we check if the value of 1ocation is ShoppingMall. If that is the case, we
return an empty string as ShoppingMall location has no parent. Next, from lines 3 to 34, we
define the else statement. We declare the structure of the redex in line 5 and reactum in line 6.
Next, in lines 7 and 8 respectively, we specify that the number of the sites in redex and reactum
is two each (See Figure 5-35). We map the sites of the reactum to the sites of the redex in lines
9 to 12. We use the make function to construct the reaction rule in lines 13 to 17. Here, structure
R = BG.Rule , where ‘Rule’ is the abstract data type provided by BPL Tool for constructing
rules. In line 18, we then convert the Bigraph that has been passed to findParent function
from a BGVal to BDnf using Elsborg’s code (Elsborg, 2009). Next, we compute a lazy list of
the matches of redex with the Bigraph that needs to be rewritten using Elsborg’s code (Elsborg,
2009) in line 19. Notice that we expect only one match because the parameter Tocation passed
to findParent is unique. From lines 20 to 31, we use an if-else expression to construct the
parent location’s identity string. In line 20, we write a guard condition and return an empty
string if the length of the list containing the matches is zero. Line 21 starts the else branch of the
expression. Since there is only one match, we extract that match in line 23 as the head of the
lazy list. Next, in line 24, we extract only the parameters from the match (since a match contains
both the context and the parameters and we are interested only in the parameter). Then, in line
25, we deconstruct the parameter (which is of BDnf type) into its constituent link and place
Bigraphs. Since we do not use links in our modeling, the constituent link returned will be empty
and we will only have a list of place Bigraphs. In line 26, we extract the list of place graphs
from the deconstructed parameter. Finally, in line 27 we access the first Bigraph in the list as it

147

will be the parent location’s id. We then convert this Bigraph into its string form in line 28 and

return this string in line 33.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

fun fin
if(loc
else
Tet
val
val
val
val
val
] =
maps
(q,
val
rede
reac
inst
info
val
val

val

in
XxNew

end

dParent (location,currentSystem) =

ation = "ShoppingMall") then ""

S. | (S.o(id,site),loc' '(location))
reactParent = S. | "(S.o(id,site), loc''(location))

redexParent

redex_innerface_Parent = Iface.m 2
react_innerface_Parent = Iface.m 2

instParent = Inst.make { I = redex_innerface_Parent,
react_innerface_Parent,

= [CC0,[D>, (0,[1D),

(O, @,01)0711

findParent = R.make { name "findParent",

x = makeBR redexParent,
t = reactParent,

= instParent,

= info }

BRsystemParent = makeBR currentSystem

mtsd = M.matches { agent = BRsystemParent , rule =findParent }
xNew = if ((lzLength mtsd) = "0") then ""
else
Tet

val testalteragent' = M.unmk (LazylList.lzhd mtsd)

val testalteragent'_par = #parameter(testa