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The effect of in situ spatial heterogeneity of lead in soil on plant uptake 

Abstract 

 

The understanding of the spatial distribution of lead (Pb) in soil is important in the 

assessment of potential risks and development of remediation strategies for Pb 

contaminated land. 

In situ heterogeneity of Pb was measured at two heavily contaminated sites in the United 

Kingdom using the Portable X-ray Fluorescence Spectrometer (P-XRF) over a range of 

spatial scales (0.02 to 50 m). The pattern of the distribution of Pb was very variable, and 

when expressed as heterogeneity factor (HF), it ranged from 1.2 to 3.2 (highly 

heterogeneous). 

The effect of such Pb heterogeneity on plant uptake was investigated in greenhouse pot 

trials. Two earlier pot trials, which assessed the effect of Pb in a fixed concentration 

(1000 mg/kg) and in a range of concentration (100 to 10000 mg/kg) found a significant 

effect of the Pb added treatments, when compared to a control treatment (0 mg/kg Pb 

added). Biomass and uptake varied by 20 to 100% within and between 16 

species/varieties. Results enhanced the selection of two species (Brassica napus and 

Brassica juncea) for further pot trials. 

A third pot experiment with Brassica napus and Brassica juncea in simplistic binary 

model of heterogeneity found 20 to 60% lower uptake in the binary treatment, than 

homogeneous the treatment.  Biomass was higher by 10 to 50% in Brassica juncea and 

20 to 40% lower for B. napus in the bianary treatment, when compared to the 

homogeneous and control treatments.  

The effect of a more realistic in situ heterogeneity on plant uptake was investigated in a 

further pot trial, which simulated low (LH), medium) (MH) and high (HH) heterogeneity 

treatments, compared to a homogeneous (HO) treatment. It detected a significant (P < 

0.05) impact of heterogeneity on biomass and uptake between treatments and species. 

Four to five fold lower biomass were recorded in HH treatment, when compared to the 

HO treatment. Shoot and root uptake in (mg/kg) concentration increased with increasing 

heterogeneity with peak uptake (twice as high as HO treatment) in LH for B. napus and 

in HH and MH treatments for B. juncea respectively. Shoot and root Pb masses in (µg) 
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were maximum in HO and MH treatments respectively with 50 to 70% lower Pb mass in 

the HH treatment. Results showed that response to heterogeneity is species specific. 

A sub-experiment explored the behaviour of plant roots in HH treatment and found 20 to 

80% variation in root biomass between concentric patches with same nominal soil Pb 

concentrations. This provided insights into varied responses of these species to realistic 

Pb heterogeneity. 

The research demonstrated that the presence and extent of in situ heterogeneity of Pb 

in soil plays an important role in Pb uptake by plants. It also showed that the 

homogeneous and simplistic binary model of heterogeneity do not give reliable estimates 

of plant growth and Pb uptake in realistic field conditions.   

This work has implications for improving the efficiency of phytoremediation of Pb 

contaminated land, phytomining, reliability of risk assessment and models of human 

exposure to Pb. 
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CHAPTER 1: INTRODUCTION 
 

1.0 BACKGROUND OF STUDY. 

Soil is a medium of interaction between the atmosphere, biosphere and the lithosphere. 

The presence of toxic elements in soils can be harmful to plants, animals and humans 

via this interaction (Kelerpteris et al., 2006). Soil plays a very complex and important 

roles as filter, buffer, storage and transformation systems, thus helping to protect the 

global ecosystem against the effects of pollution. However, the efficiency of these 

functions depends on the preservation of soil properties (Sharma and Dubey, 2005; 

Kabata-Pendias, 2010).  

According to Jeana (2000), since the dawn of industrial revolution, mankind has been 

introducing numerous hazardous compounds into the environment at an exponential 

rate. These hazardous pollutants consist of variety of organic compounds and heavy 

metals, which can pose serious risks to human (Fahr et al., 2013). One of the most 

serious and long term outcomes of environmental pollution is heavy metal contamination 

of soils (Kabata-Pendias, 2010). Kitagishi and Yamane, (1981); Greener and Kochen, 

(1983); Strubelt et al., (1996); Huang et al., (1997); Johnson, (1998); Jeana, (2000); 

Bhuyian et al., (2010); Udeigwe et al., (2011) reported that heavy metals in the 

environment are sources of concern because of their potential reactivity, toxicity, mobility 

and non-biodegradable nature in the soil. 

The term heavy metals has been widely used to refer to a group of metals and semi-

metals that have been associated with contamination and potential toxicity (Duffus, 

2002). High concentrations of heavy metals in some soils have been widely reported. 

Heavy metals such as lead (Pb), zinc (Zn), cadmium (Cd), nickel (Ni) and chromium (Cr) 

are released into the environment by many processes (Christina et al., 2000). For 

example, United States Environmental Protection Agency {USEPA} (1997) and USGS 

(2013), reported the presence of Cd, Ni, Pb, Zn, copper (Cu), chromium (Cr) and mercury 

(Hg) in soils at some hazardous waste sites previously used for mining and smelting 

activities in the United States. There is an estimate of over half a million heavy metal 

contaminated sites throughout the world (USEPA, 1997; USEPA, 2007).  

The main threats to human health from heavy metals are associated with exposure to 

Pb, Cd, Hg and Arsenic (As) (Lars, 2003; ATSDR, 2007; Fahr et al., 2013). Lead (Pb) is 

one of the most widely distributed heavy metals. It is a bluish–grey metal, also known as 

plumbum or pigment metal, which occurs naturally within the earth crust (Environment 

Writer, 2000). Lead pollution of soil especially in mining areas is a widespread and 
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significant problem globally. Lead has been ranked second of all hazardous substances 

next to arsenic because of its toxicity (ATSDR, 2007). It exhibits extreme persistence 

and accumulation in soils, sediments and water (Traunfeld and Clement, 2001; Lee, 

2013).  

Lead has been made ubiquitous in the environment by anthropogenic activity (Griffith, 

2002). It has been used by man for at least 5000 years and its early applications include 

its use as building materials, pigments, paints, ceramics and pipes for transporting water 

(Lars, 2003). Variety of industrial processes involve the use of Pb such as mining, 

smelting, manufacture of pesticides, dumping of municipal waste and burning of leaded 

fuels containing lead additives (Jeana, 2000; Seul-Ji et al., 2013). Other anthropogenic 

sources of Pb include the use of industrial emissions, landfill and sewage sludge (Jeana, 

2000). An estimated 5.2 million tonnes of Pb are released into the environment annually 

from lead mining sites (USGS, 2013). Crustal abundance of Pb is much lower than the 

Pb produced by anthropogenic influences. Krauskopf, 1979; Jefferson, 2007; IST, 2007 

estimate of Pb crustal abundance is between 10 and 14 mg/kg.  

Lead contamination of soil can cause variety of environmental problems, including loss 

of vegetation, ground water contamination and toxicity to plants, animals and humans 

(Buchauer, 1993; Body et al., 1991; Huang and Cunningham, 1996; Yusuf et al., 2011).  

It has no known biological function in living organisms and is toxic at low concentrations 

(USEPA, 1997; Kabata-Pendias, 2010). Lead is toxic to humans and may be implicated 

in systemic poisons, building up in the body over an extended period of time and 

exposure (Bakerly, 1978; Hill et al., 1999). Purefoy (2010) reported that 30,000 people 

have been poisoned by Pb and estimated that 400 children have died due to Pb 

poisoning as a result of Pb contamination of residential soils in Zamfara, Northern 

Nigeria.  

Due to anthropogenic use of Pb, most soils are likely to be enriched in Pb, especially 

within the top horizon (Kabata-Pendias, 2010).The steadily increasing amounts of Pb in 

surface soils in both arable and cultivated lands have been reported for various terrestrial 

ecosystems and anthropogenic Pb deposition extending back at least to Greek and 

Roman times has been traced in peat cores of European countries (Kabata-Pendias, 

2010). Peat soils are regarded as a sink of Pb deposited by the atmosphere and might 

be a significant source of the metal to the fluvial system due to peat erosion processes 

(Rothwell et al., 2008). In Europe, areas around metal smelting complexes have been 

found to be heavily contaminated by Pb, Cd, Cu and Zn (Alloway, 1990; Fent, 2004; 

Panagos et al., 2013). 
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Soil Pb concentration values are different for every region.  A similar value (100 mg/kg) 

was established in China for tea garden soils (Jin et al., 1987). However, there are no 

established values of Pb for soils in most developing nations. American Blacksmith 

Institute recorded 11000 mg/kg Pb in residential soils of Pb contaminated villages in 

Zamfara, Northern Nigeria (BI, 2011).This high Pb concentration resulted in a 

widespread Pb poisoning triggered by illegal artisan gold mining activities. Lead can be 

released into the environment through gold mining activities as a result of the  association 

of the primary Pb mineral (galena or PbS) with the gold ore nagyágite {Pb5Au(Te, Sb)4S5-

8} (Effenberger et al., 1999).  Galena may become associated with other secondary Pb 

minerals through weathering processes, oxidation and anthropogenic deposition 

(Richard et al., 2007). Lead contamination of soils and plants in gold mining areas of 

China and Nigeria are higher than in unmined areas (Zabowski et al., 2001; Salami et 

al., 2003).  Lead concentrations of household dust of children sleeping areas in Zamfara 

was 2.5 times higher than the USEPA residential soil limit of 400 mg/kg (Taylor et al., 

2013). The number of reported cases of Pb pollution in developing nations is an 

indication that Pb pollution is still an environmental issue to reckon with in developing 

parts of the world. 

Davies (1977), stated that the upper limit for Pb content of an unpolluted soil in the United 

Kingdom should be established as 70 mg/kg. However, a recent survey (Ander et al., 

2013) reported 180 mg/kg as the normal background concentrations (NBC) of Pb in 

English soils. That study (Ander et al., 2013) also reported Pb concentrations of 2400 

and 820 mg/kg for non-ferrous metalliferous mineralised areas associated with mining 

activities and urbanised areas respectively. Previous studies by Argyraki (1997); Baker 

et al. (1994); Mcgrath and Loveland, (1992) in the United Kingdom have shown 

significant Pb contamination of some sites. One survey of soils in England and Wales 

reported Pb concentrations ranging from 30-1638 mg/kg with a median value of 40 mg/kg 

(McGrath and Loveland, 1992). Data supplied by the Geochemical Baseline Survey of 

the environment (G-Base) project run by the British Geological Survey, reported a top 

soil (0-150 mm depth) Pb concentrations in Derbyshire Dales of 996 mg/kg and the 

subsoil (300-450 mm/depth) Pb concentrations of 470 mg/kg (DEFRA, 2007).The 

highest recorded concentrations for some top and sub soils in Derbyshire were 35930 

mg/kg and 24700 mg/kg respectively (DEFRA, 2007). 

The high concentration of heavy metals in some soils is reflected in the higher 

concentrations in some plants and which can be biomagnified through the food chain 

ending up with animals and humans (Buszewski, 2000; Vamerali et al., 2010). The Pb 

levels of soils that are toxic to plants are not easy to evaluate, as it is not easy to predict 



4 
 

how much of soil Pb is bioavailable to plants (Davies, 1977). Although Pb is not an 

essential element, a small number of plants species proliferate in Pb contaminated areas 

and can potentially accumulate it in different parts of the plants depending on the 

species.  

This ability of some plants to absorb heavy metals make them useful indicators of 

environmental pollution (Farago, 1994). Lead, like any other heavy metal, enters into 

plants cells and tissues through various uptake mechanisms. The roots are usually the 

first plant organ of contact with contaminated soil. One of the potential exposure routes 

of Pb into the human food chain is via the consumption of plants grown on contaminated 

soils (Argyraki, 2014). However, ingestion of Pb contaminated soil is a primary route of 

human exposure to Pb. The generic assessment criteria used to estimate the risk of 

contaminant to human from consumption of contaminated food crops as a concentration 

factor is based on the soil and plant contaminant concentrations.  

The interaction of plants with heavy metals such as Pb in soil, and their heterogeneous 

distribution in soil can influence plant uptake of contaminant in soil. Reviews of AMC, 

(2009); Ramsey, (2010) show that new analytical techniques have become available 

(e.g. Portable X-ray Fluorescence Spectrometer) that enable the concentration of heavy 

metals in soil to be measured at a fine spatial scale whilst they are still in their original 

location (i.e. in situ). This new technology enables the quantification of this in situ 

heterogeneity of contaminants in soil at the scale that potentially affect plants, mainly via 

their roots. The Understanding of Pb spatial distribution within the soil is very important 

in the assessment of potential risks and the development of remediation strategies for 

contaminated sites (Thomas, 2010). This study has potential implications for risk 

assessment and phytoremediation of Pb contaminated land discussed in Chapter 7. 

Increasing public concerns over the presence of certain chemical pollutants in the 

environment have led to a search for suitable technologies for clean-up of contaminated 

environments (Chaudhry et al., 2005; Lee et al., 2013). In recent decades, 

phytoremediation has emerged  as a low cost, low–maintenance, environmentally 

friendly and renewable technology for in situ  clean up, stabilisation and removal of 

organic and inorganic contaminants from the environment, which is considered more 

cost effective than ex situ decontamination methods (Chaudhry et al., 2005; Varemali et 

al., 2010; Thanh et al., 2013). Plant uptake of Pb poses a potential health risk to both 

animals and humans and at the same time may provide possible solutions for 

remediation of contaminated land.  
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Spatial heterogeneity of contaminants in soil refers to the pattern in which contaminants 

are distributed in the soil. A major factor that have been shown to impact significantly on 

plant uptake is the spatial heterogeneity of contaminants and scale of heterogeneity in 

relation to target receptors (Millis et al., 2004; Thomas, 2010). Sampling provides a 

useful estimate of contaminant concentration and spatial heterogeneity necessary to 

achieve reliable risk assessment and sustainable remediation strategies. Various 

sampling methodologies have been developed and used which are aimed at producing 

reliable measurements of contaminants (DoE, 1994; USEPA, 1996; Lyn et al., 2007a; 

Thomas et al., 2008). The development of in situ analytical techniques has enhanced 

the sampling of contaminated lands without disturbing the in situ structural heterogeneity. 

Taylor et al., (2005); Thomas et al., (2008) used the Portable X-ray Fluorescence (PXRF) 

to quantify in situ heterogeneity at scales across five orders of magnitude and over a 

range of scales respectively. 

The understanding of spatial scales is relevant in the ecological studies of plants. 

Robinson, (1994); Hutchings and John, (2004) found that the impact of spatial 

heterogeneity of nutrient distributions relative to individual plant roots have significant 

effect on the performance of some plant species. Some studies (Millis et al., 2004; 

Manciulea and Ramsey, 2006; Menon et al., 2007; Moradi et al., 2009; Thomas, 2010) 

have shown that the pattern and scale of heavy metal heterogeneity can have a 

significant effect on plant performance and uptake.  

Much of previous studies aimed at estimating plant uptake were based on pot 

experiments in hydroponics or homogeneously distributed trace metal medium (Huang 

and Cunningham, 1996; Ebbs et al., 1997; Huang et al., 1997; Quartacci et al., 2006; 

Turan and Bringu, 2007) or a field site where the soil-plant system is peculiar to that site 

(Clemente et al., 2005; Wang et al., 2012).  A major drawback of previous works on plant 

uptake is that spatial heterogeneity in contaminants distribution is overlooked. Studies 

using Zn and Cd (Millis et al., 2004; Manciulea and Ramsey, 2006; Thomas, 2010) have 

shown significant differences between the simplistic models used and homogeneous 

media, but these models are not characteristic of the original spatial patterns of 

contaminant heterogeneity experienced by plants in realistic field conditions. Thomas, 

(2010) showed that Zn heterogeneity seen in the field can be simulated in pot trials to 

assess its effect on plant uptake. That study (Thomas, 2010) reported an extreme 

contrast between models used to map spatial distribution of trace metals in contaminated 

land investigations and the distribution of trace elements used in controlled studies to 

estimate plant uptake.  
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Research to date on heterogeneity of contaminants has tended to focus on Zn and Cd. 

Existing accounts only provided insights into the heterogeneities of these elements in 

soil. The study on Cd heterogeneity did not take into account realistic in situ 

heterogeneity. To the best of my knowledge, no controlled study assessing the effect of 

in situ heterogeneity of Pb in soil on plant uptake of Pb in pot experiments has been 

reported and no other research has attempted to simulate in situ heterogeneity of Pb 

based on field investigation and recreate the simulated heterogeneity in pot trial, 

although a similar but significantly different approach has been taken to understanding 

the effects of Zn heterogeneity (Thomas, 2010). 

Work in this thesis assesses the impact of in situ heterogeneity of Pb in soil on plant 

uptake by quantifying in situ heterogeneity of Pb and simulating it in pot experiments to 

assess its effects on plant behaviour, shoot, root biomass and Pb uptake. It also 

evaluated a range of plant species in varied Pb concentrations which was important to 

select plants species that can thrive but respond to high levels of soil Pb. This study 

makes a unique contribution to important areas such as contaminated land investigation 

and remediation, environmental risk assessment of Pb and plant uptake research. 

This thesis also describes the quantification of the in situ heterogeneity of Pb in soil over 

a wide range of scales (0.02- 50 m) at two field sites that were expected to be highly 

heterogeneous (Chapter 3). A series of pot trials then investigate (1) how a range of 13 

plant species/varieties interact with a single homogeneous but quite high concentration 

of Pb in soil (1000 mg/kg of soil). The second pot trial examines how a narrower selection 

of 6 plant species interact with a range of homogeneous Pb concentrations varying from 

100 to 10000 mg/kg. The third pot trial selects just two plant species to investigate how 

the two extremes of Pb heterogeneity (homogeneous and simplistic binary) affect their 

biomass, and uptake of Pb. The final pot trial uses the field measurements of Pb 

heterogeneity made in this study, combined with those from more homogeneous sites, 

to assess these same effects on the same plant species over a range of four realistic 

levels of Pb heterogeneities. The objectives of these experiments are to address the 

thesis aims (Section 1.1) and to test the hypotheses stated in the individual chapters. 
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1.1 RESEARCH OBJECTIVES 
 

The major aim of this study is to quantify in situ spatial heterogeneity of Pb in selected 

Pb contaminated sites in the United Kingdom and simulate this in situ heterogeneity in 

pot trials to assess its effects on selected plant species, to work towards the following 

objectives: 

1. Review existing knowledge on Pb contamination and effects on plants and 

human, plant uptake of Pb, potential Pb accumulators, plant behaviour in Pb 

contaminated growth medium or soil, heterogeneity and methods of quantifying 

in situ heterogeneity of Pb. 

2. Determine in situ heterogeneity and concentration of Pb in soils at selected 

contaminated sites at a range of scales (e.g 0.02-50 m) using suitable 

measurement techniques (e.g Portable X-ray Fluorescence Spectrometer {P-

XRF}).  

3. Quantify the effect of Pb contamination on biomass and Pb uptake of a range of 

selected plant species in pot trials with a fixed Pb concentration of 1000 mg/kg 

and a range of Pb concentrations (100 to 10000 mg/kg). 

4. Examine the response of selected plant species in greenhouse pot trials to forms 

of in situ heterogeneity of Pb in growth media that are (a) simple (i.e. in simplistic 

binary design) and (b) a simulation of a more realistic heterogeneity, based on 

the field observations, at three levels (low, medium and high)  

5. Assess the significance and relevance of research findings and make 

recommendations for further work. 
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1.2 THESIS OUTLINE 
 

This thesis is formed of eight Chapters. This first Chapter presents a general overview, 

justification and background to the research work, research objectives and thesis outline. 

Chapter 2 presents a review of literature on Pb contamination and effects on plants and 

human, potential Pb accumulator plants, plants behaviour in Pb contaminated soil and 

growth media, potential field sites, Pb speciation and bioavailability, heterogeneity and 

methods of quantifying heterogeneity. 

Chapter 3 presents the results of the field work. In situ heterogeneity and concentration 

of Pb in two heavily Pb contaminated sites were investigated. A specific sampling design, 

in conjunction with appropriate in situ measurement techniques, were used to quantify 

Pb heterogeneity over a range of scales (0.02 m to 50 m). The design was easily adapted 

to different scales based on its systematic approach using the full balanced and the 

simplified balanced designs (Thomas et al., 2008). The measurement of in situ 

heterogeneity is expressed in the new form as a heterogeneity factor (HF) (already 

published in Ramsey et al., 2013). 

Chapter 4 presents the results of the seed germination experiment, the first and second 

pot trials. The seed germination experiment compared the suitability, viability and 

germination rates of 16 species/varieties to determine selection of plant species for the 

first pot trial. The first pot experiments compared within and between 13 species and 

varieties at a fixed added Pb concentration in the growth medium of 1000 mg/kg and 

control (0 mg/kg Pb added), which enhanced comparison of Pb uptake rates and further 

selection for the second pot trial. The second pot trial compared 4 selected species made 

up of 6 varieties in a range of Pb concentrations (100, 300, 3000, 10000 mg/kg). It was 

used to determine the most suitable plant species for further pot trials simulating in situ 

heterogeneity and a binary simplistic model. 

Chapter 5 presents the results of the pot experiment which examined the effect of 

simplistic binary heterogeneity of Pb in the growth medium on the biomass and metal 

uptake of two plant species (Brassica juncea and Brassica napus). Previous research 

using simplistic heterogeneity models found significant differences in plant growth and 

uptake of Zn and Cd (Manciulea and Ramsey, 2006; Thomas, 2010), but not for Pb. The 

main aim of this experiment was to assess whether the simplistic binary model would 

provide an insight into the effect of a simple Pb heterogeneity model on the selected 

plant species. 



9 
 

Chapter 6 presents the results of the pot trial simulating more realistic style of in situ 

heterogeneity, based upon the field measurements. It measures the effect on dry 

biomass of both root and shoot, the Pb concentrations of shoot and root, expressed in 

(mg/kg), (µg) and concentration factor (CF), for two plant species, grown in  

homogeneous, low, medium and high heterogeneity treatments. It also examined root 

response to different patch contrast (cells of varied Pb concentration) in the high 

heterogeneity treatment. Studies of some metallopytes have shown foraging of roots to 

different patch contrast in a contaminated growth medium e.g Thlaspi caerulencens 

showed root foraging toward high Zinc concentration (Schwartz, et al., 1999a; Whiting et 

al., 2000; Haines, 2002). This part of the experiment is to assess the impact of root 

placement with regards to Pb heterogeneity.  

Chapter 7 discusses the key findings of this study and also assessed the wider 

significance and implications of these results, and whether a more realistic heterogeneity 

will be an important factor influencing the uptake of Pb and should therefore be taken 

into account in phytoremediation of Pb contaminated lands, and in the exposure 

assessment of humans to Pb.  

Chapter 8 summarizes main findings from the thesis in relation to stated aims and 

objectives, strengths and limitations of this research, conclusions of thesis and makes 

suggestions for further research work that may be required. 
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CHAPTER 2: Review of sources and effects of lead, its forms and speciation, lead 

contaminated sites, plant uptake, accumulator plants and heterogeneity. 

 

This chapter focuses on the review of literature on sources, effects, forms, and speciation 

of Pb and how it affects plant uptake of Pb from the soil, potential Pb contaminated sites, 

phytoremediation, Pb accumulator plants, heterogeneity and methods of quantifying in 

situ heterogeneity. The chapter also provides background information on the key themes 

of works discussed in the other chapters of this thesis.  

2.0 SOIL LEAD CONTAMINATION. 
 

2.1 Sources 
 

This section examines soil Pb contamination with respect to possible anthropogenic 

sources of Pb and links to human exposure.   

Soil, air and water are prone to contamination by Pb with the vast use of Pb in many 

human activities and materials. Metalliferous mining and dumping of wastes often 

produce Pb pollution (Wong, 2003; Freitas et al., 2004; Del Rio et al., 2006; Clemente et 

al., 2007). Mine tailings are known to have the most severe environmental effects due to 

high concentration of heavy metal implicated in many cases of soil Pb contamination 

(Safae et al., 2008). As stated in Chapter 1, an estimated 5.2 million tonnes of Pb is 

produced annually from mining sites (USGS, 2013). 

Lead used in paints, petrol, explosives and disposal of municipal sewage sludge 

enriched in Pb also contribute to soil Pb contamination (Jackson and Watson, 1977; 

Levine et al., 1989). Before the withdrawal of Pb additives from petrol in the United 

Kingdom in 1988, an annual maximum Pb emission of 7500 tonnes from vehicles was 

reported by Thornton and Howarth, (1986) of which about 10% are deposited on and 

within 100 m of roads.  

Many commercial products and materials contain lead including ceramic glazes, 

television glass, ammunition, batteries, medical and laboratory equipment such as X-ray 

shields, foetal monitors and electrical equipment (Environment Writer, 2000).   
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2.1.1 Health effects of lead. 
 

This sub-section discusses the health effects of Pb to human and plants in relation to the 

implication of this study for estimation of human exposure to Pb in risk assessment and 

the assessment of the effects of Pb on plants in pot trials. 

 

 Effects of Pb on human health 

This section describes the human health effects of exposure to Pb. One primary source 

of human exposure to Pb is by ingestion of Pb contaminated soil (pica) and inhalation of 

Pb solid phases in dust which have severe effect on children (ATSDR, 2012). However, 

recent studies (Pruvot et al., 2006; Duoay et al., 2008; Zhuang et al., 2009; Duoay et al., 

2013; Argyraki, 2014) reported implications of human exposure via the consumption of 

Pb contaminated vegetables.  

Several comprehensive reviews have examined the quantitative relationship between 

exposure of Pb contaminated soil and blood lead levels (BPb) in children (Dungan, 1980; 

Duggan and Inskip, 1985; ATSDR, 1992; Laidlaw and Taylor, 2011; Zahran et al., 2013). 

A dose-response relationship is often observed which reflects a change in BPb levels 

with a change in soil lead concentration (ATSDR, 1988; Reagan and Silverbird, 1989; 

Laidlaw et al., 2011; Zahran et al., 2013). Laidlaw et al. (2005) reported a relationship 

between blood lead levels of children living in urban areas of Syracuse and temporal 

variation of atmospheric Pb deposit. 

Varied health effects are associated with Pb exposure. Studies on the effects of lead on 

children have demonstrated a relationship between exposure to Pb and a variety of 

adverse effects (ATSDR, 1988; Tristan-Montero, 2000; Laidlaw et al., 2011; Zahran et 

al., 2013). These effects include impaired mental and physical development, decreased 

haemo biosynthesis, and elevated hearing threshold, decreased serum levels (ATSDR, 

1988; 1992), substance addiction and risk of infection with sexually transmitted disease 

among adults (Hu et al., 2014). 

Low level exposure to Pb has been associated with deficits in early developmental years 

(Canfield et al., 2003). Canfield et al. (2003) studied the effect of lead poisoning on the 

cognitive functioning in children and infants and observed a decline in intelligence 

quotient (IQ) by 7.4 points between 1 µg/dL and 10µg/dL blood Pb and then a decline 

4.6 points for every 10µg/dL increase after that. Needleman, (2004) reported that long 

term exposure to Pb interfered with bones and teeth metabolism and altered the 

permeability of blood vessels and collagen synthesis. Elliott et al. (1999) reported clinical 
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lead poisoning of children in England at blood Pb level >25 µg/dL. The symptoms of 

acute lead poisoning include headache, irritability, abdominal pain, nervous disorder, 

lead encephalopathy characterized by sleeplessness and restlessness (WHO, 1995). 

Lead has also been listed as a potential carcinogen in EPA Toxic Release Inventory 

(TRI) (Environment Writer, 2000; CDC, 2005a; IARC, 2006). 

The actual number of children exposed to lead in dust and soil at concentrations 

adequate to elevate blood Pb levels cannot be estimated with the data now available, 

but the number of children potentially exposed to Pb in dust and soil can be estimated 

as a range of potential exposures to primary sources of Pb in dust and soil (ATSDR, 

1988).  An estimate of 5.9 to 11.7 million children are at risk worldwide (ATSDR, 1988; 

ATSDR, 1990; CDC, 1991; USEPA, 1998) reported in Charles, (1992).  

Human and animal health threats posed by heavy metals is aggravated by their long–

term persistence in the body and environment (Yoon et al., 2006). Barbosa et al. (2005), 

recorded a re-introduction of Pb into the bloodstream from bones of children and 

pregnant women undergoing remodelling. Clearance of Pb from the bloodstream is slow, 

partly due to the release of Pb from the bone (Hu et al., 2007). In a prospective analysis 

of the Normative Aging Study, higher patellar Pb levels, but not blood Pb, were 

associated with higher systolic blood pressure and abnormalities in electrocardiographic 

conduction (Cheng et al. 1998, 2001). Due to Pb persistence in the bone, studies by Gerr 

et al. (2002); CDC, (2005b); CDC, (2007) suggested bone Pb a metric of cumulative or 

long-term exposure to Pb as a better predictor of Pb-induced elevations in blood than 

blood Pb. 

2.1.2 Effects of Pb on plant health 

Elevated concentrations of trace metals in the soil can be potentially toxic to plants 

(Kopittke et al. 2009). When concentrations of Pb in plant cells accumulate above some 

threshold or maximum levels, it can cause direct toxicity by damaging cell structure (due 

to oxidative stress caused by reactive oxygen) and inhibit some cytoplasmic enzymes 

(Assche and Clijsters, 1990; Chhotu and Fulekar, 2009). However, threshold Pb 

concentration will vary considerably with different plant species (Brooks, 1994). Brooks, 

(1994) suggested a threshold Pb concentration of 1000 mg/kg for most plant species 

and classified plants, which accumulated > 1000 mg/kg Pb as hyperaccumulators. Some 

plant species have been reported to have accumulated > 1000 mg/kg without any 

symptom of Pb toxicity, while some have shown signs of Pb stress or toxicity at 

concentration less than this threshold (Baker, 1981; Brooks, 1989).Threshold 

concentration may also be dependent on the Pb concentration of the underlying 
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substrate (Brooks, 1994). There are currently no established threshold Pb concentration 

for most plant species. However, threshold CF has been established as as CF=1, CF<1, 

CF >10 for Pb accumulators, excluders and hyperaccumulators respectively. 

 Ashagre et al. (2013) defined phytotoxicity as the degree of toxic effect caused by a 

compound on plant growth and such damage that may be caused by a wide variety of 

compounds, including trace metals, pesticides, salinity, phytotoxins or allelopathy.  

Peterson (1971); Foy et al., (1978); Bowen, (1979); Prasad and Strzalka, (1999) in 

Kabata-Pendias (2010) have reviewed basic reactions related to toxic effects of excess 

Pb as follows: 

 Reactions of thiol groups with cations (i.e. Pb2+). 

 Damage to photosynthetic apparatus involved in several metabolic alterations is 

most significant. 

 Occupation of sites for essential groups such as phosphate and nitrate. 

 Affinity for reacting with phosphate groups of Adenosine diphosphate (ADP) or 

Adenosine triphosphate (ATP). 

 Changes in permeability of cell. 

Taiz and Ziegler (2002) also reported an indirect toxic effect of Pb caused by 

replacement of essential nutrients at cation exchange sites in plants. Choutu and Fulekar 

(2009), citing Boonyapookana et al. (2005), reported that Pb caused some phototoxic 

effects including chlorosis, necrosis, stunt growth of root/shoot and less biomass 

production in Helianthus annus, Nicotiana tobacum and Vetiveria zizanioides. Huang 

and Cunningham (1996) observed an inhibition of root growth due to Pb toxicity. Opeolu 

et al., 2010 and Deo and Nayak, 2011 reported decreased plant growth and chlorosis in 

plants as symptoms of Pb toxicity.  
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2.2 CHEMICAL FORMS AND SPECIATION OF LEAD. 
 

This discussion gives background to the choice of Pb mineral used in pot trials reported 

in Chapters 4, 5 and 6. Lead can occur in soil in many different chemical forms, that 

affect its behaviour in general, and its uptake by plants in particular. Biochemical and 

toxicological evidence suggests that the chemical form and oxidation state (together 

expressing speciation) in which a metal is present in the environment can be a critical 

factor affecting the uptake of that metal (Kot and Namiesnik, 2000, Morgan, 2013, Roy 

and Macdonald, 2013). 

In natural environments, lead sulphide (galena) is the primary Pb mineral. It is stable 

over a wide pH range. Gee et al., (1995) reported that Pb is widespread in some 

contaminated sites, often as a relict blocky galena surrounded by Pb oxide/cerussite or 

hydrocerussite which has been interpreted as a weathering reaction of the Pb phases. 

Important lead bearing minerals identified in soils of mining and smelting sites include 

Pb hydroxide, cerrusite, hydrocerrusite (Pb3 (CO3)2 (OH) 2, anglesite PbSO4, galena PbS, 

lead oxide PbO which exist at different pH (Gee et al., 1995; Gee et al., 1997; Zyan and 

Ryan, 1999; USEPA, 2007). Richard et al. (2007) also reported chloropyromorphite (Pb5 

(PO4)3Cl) as a Pb bearing mineral phase in phosphate-bearing systems, and in 

plumbojarosite Pb-contaminated soils. 

Lead is often accumulated near the soil surface as a result of its sorption by soil organic 

matter (SOM). Studies conducted by Sipos et al. (2005) suggest that SOM plays an 

important role in the adsorption of Pb, but fixation by clay minerals is stronger. Pb 

distribution within the soil profile, whatever its source, is not uniform and it is usually 

associated with hydroxides and oxides of Fe and Mn in high concentration up to 20,000 

mg/Kg (Kabata-Pendias and Pendias, 1999).  Lead (Pb2+) can be concentrated in 

calcium carbonate or phosphate particles at higher pH > 6 (Chardon et al., 2008).  During 

weathering feldspar crystal loosened from rock below slowly changes into a clay mineral 

as it reacts with acidic water, and Pb cations in solution then adhere to the negatively 

charged clay mineral surface (Inez et al. 1998; Pires, 2004;). Some clay minerals e.g. 

kaolin have high specific surface area favouring adsorption by heavy metals such as 

Pb2+, Cd2+, Zn2+ and Cu2+(Ma et al., 1995). Elliott et al. (1986) postulated that under acid 

conditions, the adsorption phenomenon dictates Pb bioavailability, while solubility, 

precipitation and complexation control bioavailability under neutral or alkaline conditions. 

In relation to clay mineralogy, Pires (2004); Pires et al. (2007), observed a strong 

relationship (r = 0.80) between kaolinite content of cambisol, lactosol, and organosol 

soils and Pb adsorption capacity.  
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In natural systems Pb is present in the (II) oxidation state over relevant conditions of pH 

and reduction-oxidation potential (Eh). The mineral plattnerite (PbO2) occurs in some 

natural systems and is associated with other oxidation products such as cerussite and 

pyromorphite (USEPA, 2007). In general, the geochemical transport processes of Pb are 

not directly tied to redox conditions (Zyan and Ryan, 1999). However, Pb may form stable 

precipitates with redox-sensitive elements such as sulphur or iron (Richard et al., 2007). 

In sulphate-reducing systems, Pb is expected to form insoluble PbS precipitates and in 

moderately reducing systems, reductive dissolution of hydrous ferric oxides that contain 

adsorbed Pb could result in Pb mobilization (USEPA, 2007). Some important Pb bearing   

minerals in soil are summarised in Table 2.2.1. 

 

Table 2.2.1: Some important Pb bearing minerals in soil. 

Lead bearing minerals Chemical formula 

Anglesite PbSO4 

Cerrusite PbCO3 

Galena PbS 

Hydrocerrusite Pb3(CO3)2(OH) 2 

Pyromorphite Pb5 (PO4)3Cl 

Plattnerite PbO2 

Plumbojarosite Pb3Fe2 (OH)6(SO4)2 

Lead II oxide PbO 
 

 

 

Ionic lead (Pb2+), lead oxides and hydroxides, lead-metal oxy-anion complexes are the 

general forms of lead that are released into the soil, ground and surface waters (Jeana, 

2000). Lead oxide particles can either be covered rapidly by a weathering crust of 

secondary minerals or can remain virtually unchanged over 18 months depending on the 

soil type (Birkefeld et al., 2007). Ionic Pb is the most common and reactive form of lead 

at pH 6, forming mononuclear and polynuclear oxides and hydroxides in the soil 

(GWRTAC, 1997; Birkefeld et al., 2007). The geogenic Pb content of residual soil is 

largely inherited from parent rocks. Hence the estimation that the geogenic concentration 

of Pb in soils that are derived from sandstones would typically be at their average 

concentration of ~ 10 mg/kg (Krausopf, 1979). 

In most lead phytotoxicity studies, Pb (NO3)2 has been used as the Pb species in both 

soil and hydroponic cultures. Opeolu et al. (2010); Huang and Cunningham (1996); Lame 

et al. (2005); Kopittike et al. (2009) used Pb (NO3)2 in ex situ determination of lead 

concentrations of plants in growth media. Its widespread use is as a result of it readily 

dissolving in water to give clear colourless solution and Pb2+ as a product of dissociation 

(Mahjoubet et al., 2001). 
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However, Pb (NO3)2 can migrate between media and out of the pot (USDA, 1993). This 

Pb migration may affect the original heterogeneity within a growth medium, especially if 

it contains sand as a major component (Burkark and Kolpin, 1993; USDA, 1993). 

 

2.2.1 Behaviour of Pb in Soil. 

 

Lead is known to readily form a precipitate within the soil matrix, and has low aqueous 

solubility, in some cases it is not readily bioavailable to plants. Vega et al. (2007) reported 

that Pb sorption is lower than that of Zn and Cu, being the least mobile among other 

trace metals in the soil. Hyperaccumulation of Pb is rare in plants, due to the low solubility 

of most Pb compounds and ready precipitation of Pb by sulphate and phosphate in the 

root system (Baker et al., 2000). 

About 0.005 to 0.13% of Pb in soil solution is available to plants (Davies, 1995, Wilson 

and Cline, 1996). Lead’s behaviour in the soil is influenced by several factors. These 

include pH, soil organic matter (SOM), cation exchange capacity (CEC), redox potential 

(Eh) and granulometric composition (i.e. the measurement of grain sizes in sand, rock 

and other deposits). Granulometric composition is the content of granules of varying size 

in soil, expressed as a percentage of the bulk or of the quantity of granules of the 

examined sample (Grossgeim, 1979). These factors also affect the bioavailability and 

uptake of Pb by plants. 
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2.3 CONTAMINATED SITES IN THE UNITED KINGDOM. 
 

This section gives an overview of Pb contamination of soil in England with the aim of 

helping to select suitable field sites for investigation of Pb heterogeneity in this research. 

Various estimates have been made of the extent of the problem of Pb contamination in 

the United Kingdom. In the report of contaminated soils published in 1993, the 

Parliamentary Office of Science and Technology referred to an expert estimate of 

between 50,000 and 100,000 overall contaminated sites across the United Kingdom with 

an estimated value of 100,000 to 200,000 hectares (DEFRA, 2005). In more recent 

times, the United Kingdom Environment Agency (EA) has estimated about 300,000 

hectares of contaminated lands in the United Kingdom due to both natural contamination 

and anthropogenic influence (DEFRA, 2007). DEFRA (2007) has identified 30,000 to 

40,000 sites affected by heavy metal contamination with a total area of about 55,000 to 

80,000 hectares.The advanced geochemical map of England and Wales (Figure 2.3.1) 

based upon earlier work (McGrath and Loveland, 1992) show the extent of Pb 

contamination in England. 

 

           

Figure 2.3.1: Advanced Soil Geochemical map of England and Wales showing Pb contaminated areas 
in the UK and extent of contamination. Lead concentrations in the scale above are mg/kg of soil. 
Arrow points to Derbyshire the Peak District where field sites are located (British Geological Survey, 
2012 with permission from the British Geological Survey @NERC) 

 

Peak District 
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2.3.1 Potential Lead contaminated sites in Derbyshire 
 

Derbyshire (Grid reference SK 372320) is in the East Midlands of England, the Northern 

part of the county overlays a portion of the Pennines, the famous chain of hills and 

mountains in England (DEFRA and EA, 2002a). The 254,615 hectares of land contains 

a large amount of thinly populated agricultural upland with 75% of population living in 

25% of the area (DEFRA and EA, 2002b). The county had both rural and mining 

economy on both ends of the land and was very rich in natural resources like iron, 

limestone and lead and so is known for its historical mining activities especially of Pb 

(DEFRA and EA, 2002c). 

Maskall and Thornton (1993), reported that the heavy metal contamination of Wirksworth 

Moor in Derbyshire is mainly due to its use for Pb smelting in medieval times (1300-1550 

AD). McGrath and Loveland (1992) reported Pb concentrations ranging from 3 to 16338 

mg/kg in Derbyshire Dales. The highest recorded concentrations for topsoil and sub soil 

were 35,930 mg/kg and 24,700 mg/kg respectively (DEFRA and EA, 2002a).  In 

Derbyshire, Pb concentrations in soils are frequently elevated well above the national 

average primarily due to the natural underlying geology, with Pb mineral veins being 

enclosed within the carboniferous limestone that underlies it (DEFRA, 2005). 

Anthropogenic contributions are also a major cause of elevated Pb concentration arising 

from historical Pb mining and smelting within the district (DEFRA and EA, 2002b). Lead 

mine stopped in the late 1800s, but most mines are now capped and covered with 

vegetation (DEFRA, 2007). Gee et al., (1997) studied the mineralogy and weathering 

processes in historical smelting slags and effects on metal mobilization, reported some 

lead contaminated sites in Derbyshire. The South Pennine ore field, the smelting places 

North–West Chesterfield, and smelting settlement East of Bolsover all in Derbyshire 

(Gee et al., 1997).  

2.3.2 Phytoremediation of lead contaminated sites. 

 

Interestingly, the same plant uptake mechanisms that pose potential risks to human from 

toxic heavy metals may also provide a possible solution to remediation of contaminated 

lands by phytoremediation. Phytoremediation is the name given to a set of technologies 

that use green plants for in situ, or in place, removal, degradation, or containment of 

contaminants in soils, sludge, sediments, surface and ground water (USEPA, 2000; Seul-

Ji et al., 2013).  
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Various remediation technologies such as soil washing, soil flushing, electro kinetic 

process, stabilization and solidification have been used to reduce the effects of heavy 

metal contaminated lands (Babel and Kurniawan, 2003; Aziz et al., 2011; Sorvari et al., 

2006). Faced with high rates of environmental pollution, especially by heavy metals, and 

the search for more environmentally friendly techniques to decontaminate highly polluted 

ecosystems, phytoremediation becomes very pertinent. Generally, the remediation of 

contaminated soils, ground and surface water requires the removal or containment of 

toxic metals from such contaminated areas. Phytoremediation methods in use, include 

phytomining, phytoextraction, rhizofiltration, phytostabilization and phytovolatilization 

(GWRTAC, 1997; Robinson et al., 2006; Antiochia et al., 2007; Machie et al., 2014; 

Cheng et al., 2015).  

Phytoextraction is the uptake of contaminants by plant root and translocation within the 

plants and the contaminants generally removed by harvesting the plants (USEPA, 2000; 

Antiochia et al., 2007). This technology leaves a small mass to be disposed of than 

excavation of the soil or other media (Banuelos, 1997). It is the most often applied to 

metal-contaminated soil. Reeves and Brooks (1983); Robinson et al., (2006); Varameli 

et al., (2010) reported some disadvantages associated with phytoextraction as follows; 

 Metal hyperaccumulators are generally slow-growing with a small biomass and 

shallow root system. 

 Plant biomass must be harvested and removed, followed by metal reclamation or 

proper disposal of the biomass. Hyperaccumulators plants may accumulate 

significant metal concentrations above 1000 mg/kg. 

 Metals may have a phytotoxic effect. 

Phytostabilization is defined as the immobilization of a contaminant in soil through 

absorption and accumulation by roots, adsorption onto roots, or precipitation within the 

root zone of plants (Adler, 1996). Airst (1996) in USEPA (2000) defined phytostabilization 

as the use of plants and plant roots to prevent contaminant migration via wind and water 

erosion, leaching and soil dispersion. 

Rhizofiltration is the adsorption or precipitation onto plant roots, or absorption of 

contaminants in solution into the roots due to abiotic or biotic processes (USEPA, 1997; 

Kabata-Pendias, 2010). It results in the containment of the contaminant, in which 

contaminants are immobilized or accumulated on or within the plant (USEPA, 2000). 
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Contaminants are then removed by physical removal of plants. Groundwater, surface 

water and waste water can also be treated using this technology (USEPA, 1992). 

Phytovolatilization is defined by Thompson et al. (1998), as the uptake and transpiration 

of a contaminant by a plant, with the release of the contaminant or a modified form of it 

to the atmosphere. This technology is mainly applied to ground water and not applicable 

to soil. 

Phytoming describes the exploitation of sub-economic ore bodies using plants. Metal 

hyperaccumulating plant species are grown, biomass harvested and burned up to 

produce bio-ores (Brooks et al., 1998; 1999). Phytomining trials have been carried out 

with elements such as nickel, gold and thalium. For example, the nickel (Ni) 

hyperaccumulator Streptanthus polygaloides (milk wort jewelflower) was found to yield 

100 kg/ha of Sulphur-free Ni when used on some ore sites in United States (Brooks et 

al., 1998). Brassica juncea is also known to accumulate gold to concentrations of over 

100 mg/kg gold per plant biomass on a dry matter basis (Robinson et al., 1997; 2003). 

An unusual hyperaccumulation (>500 mg/kg dry mass) of thallium has been determined 

in Iberis intermedia (candy tuft) and Biscutella laevigata ( Buckler mustard) from southern 

France (Brooks et al., 1999; Anderson et al., 1999; Robinson et al., 1997; 2003). This is 

new and of great potential and can be applied to other elements such as Pb and Zn. 

The concept of using plants to remediate heavy metal contaminated soils has been 

receiving increasing attention (Chaney, 1983; Baker et al., 1994; Raskin et al., 1994; 

Huang and Cunningham, 1996; Varameli et al., 2010; Romeh, 2010). However, the 

success of phytoremediation depends on several factors. Plants must produce sufficient 

biomass while accumulating high concentrations of metals (Blaylock and Huang, 2000), 

and should also be able to accumulate environmentally important toxic metals (e.g Cd, 

Pb, etc.). Some plants have the potential to absorb a wide variety of metals from soils 

(Chen and Cutright, 2001). However, only a small group of plants have the capacity to 

take up and sequester one or more of the following metals in their shoots: > 10,000 

mg/kg for Zn and Mn, > 1,000 mg/kg for Ni, Co, Cu and Pb, and > 100 mg/kg of Cd (Mei 

et al., 2002; Pollard et al., 2002); these plants are referred to as ‘hyperaccumulators’. 

Brooks et al., (1998) reported about 400 hyperaccumulators, but a few Cd or Pb 

hyperaccumulators have been discovered (See discussion in Section 2.5.3). 

Jeana, (2000) and USEPA, (2000) reported some limitations of phytoremediation as 

follows: (i) it is restricted to the rooting depth of remediative plants, (ii) remediation with 

plants is a lengthy process, and thus it may take several years to remediate a 
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contaminated soil, and  it may still not be fully remediated. Several concerns have been 

raised about phytoremediation, such as the use of invasive and exotic species which can 

affect biodiversity and consumption of contaminated plants by wildlife (Jeana, 2000; 

USEPA, 2007). According to USEPA (2000; 2007), harvested plant biomass produced 

from the process of phytoextraction may be classified as hazardous waste, therefore 

subject to proper handling and disposal, and unfavourable climatic conditions may limit 

plant growth and phytomass production, thus decreasing efficiency of phytoremediative 

process. 

Several methods have been described for disposal of heavy metal contaminated 

biomass. The commonly used methods are biomass desiccation, pre-treatment by 

compaction, composting, pyrolysis and final disposal by incineration or direct disposal 

(McGrath, 1998; Blaylock and Huang, 2000; Sas-Nowosielska, 2004; Gosh and Singh, 

2005). United States Environmental Protection Agency {USEPA} (1997), reported some 

economic problems associated with phytoremediation. As an emerging technology, 

standard cost (an estimated and predetermined cost of phytoremediation under normal 

conditions) such as the estimate of $1 to $2 million or more depending on the size of 

land is not readily available. Subsequently, the ability to develop cost comparisons and 

to estimate project costs will require determination on a site-specific basis, and this is 

often influenced by the potential application and the cost comparisons to other methods 

(USEPA, 1997).   

New studies (Lievens et al., 2008; 2009; Michal et al., 2012) showed that heavy metal 

contaminated biomass can be converted to biofuel and other useful products. These 

studies reported the conversion by fast pyrolysis at high temperature (623-873 K) of 

heavy metal contaminated willow resulting from phytoremediation with high 

concentrations of Pb, Cd, Cu and Zn to heavy metal free biofuels and wide range of 

useful products which include aliphatic and aromatic hydrocarbons, esters, ethers, acids, 

aldehydes/ketones, N-compounds and S-compounds. However, the charcoal/ash 

fraction contained heavy metals at low concentrations ranging from 60-400 mg/kg 

(Michal et al., 2012). Leviens et al., 2009 suggested the future use of this method to 

reduce pollution and production of other valuable products. 
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2.4 TRANSPORT AND UPTAKE OF LEAD BY PLANTS. 

 

A root-shoot interaction is important in determining the overall response of plants to 

uptake and acquisition of nutrient and contaminant from the soil (Bassisirad, 2000). 

Under moderately acidic conditions (pH < 5.5), Pb cations are more mobile, while the 

anions tend to sorb to mineral surfaces (GWARTC, 1997). The reverse is the case under 

basic conditions (pH > 7) within the soil matrix. Pb uptake varies significantly over its 

concentration range and is dependent upon the forms and species of Pb that occur in 

soils (Kabata-Pendias, 2010). 

Plants have evolved highly specific mechanisms to take up, translocate and store 

nutrients and this has implication for how plants deal with toxins such as Pb (Lasat et al., 

1998). Metal movement across biological membranes is mediated by proteins with 

transport functions (Lasat et al., 1996). The uptake of Pb involves specific membrane 

transporters binding with specific ions which may be monovalent or divalent cations 

(Lasat et al., 1996; 1998). However, Pb may mimic certain divalent cations such as 

calcium (Ca) which is of important metabolic significance (Millstone, 1997). This could 

enhance Pb transport in plant tissues by binding to specific Ca transporters (Lasat et al., 

1998). Kalavrouziotis et al., (2009) have reported antagonistic, synergistic and biphasic 

interactions between some essential macro elements and Pb in Brassica oleracea 

(Brussel sprout) grown on soil irrigated with treated municipal waste water. Lead 

translocation from roots to shoot is however greatly limited (Zimdahl, 1975). 

A number of genes responsible for metal transport in plants have been identified to play 

crucial role in tolerance and uptake of heavy metals (Lasat et al., 1998; Kumar et al., 

2012). For example the ZIP1-4, ZNT1, IRT1, 2COPT1-5, AtNramp1/3/4, LCT1 and 

CNGC metal transporters present in the plasma membrane cytosol interface in plants 

(Hall and Williams, 2003). Some of these transporters are also present in the Golgi 

apparatus and Endoplasmic recticulum (ER), which are plant transport systems involved 

in the acquisition, distribution and homeostasis of toxic metals (Kumar et al., 2012).  

These gene families corresponding to these transporter are large and diverse, thus 

helping plants to cope with various types of heavy metal stress and movement of metal 

ions at both cellular and sub-cellular levels (Kumar et al., 2012). These gene families 

also provide high affinity for metal ions and their transport in plants (Kumar et al., 2012). 

Malone et al. (1974) identified Pb deposits in cell walls outside the plasma lemma or 

plasma membrane (cortical cytoplasmic region) as it precipitates and crystals. However, 
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Meyers et al. (2008) reported that root tissue uptake of Pb is mainly intracellular and it is 

aggregated in cell vacuoles. This deposition of Pb is important for its subsequent 

accumulation in root tissue. The mechanism of metal uptake by hyperaccumulator plants 

and the basis of their metal specificity are poorly understood; the phytochemistry 

involved varies considerably depending on the plant species (Brooks, 1998). Several 

studies have suggested that metals are detoxified in hyperaccumulators by binding with 

low molecular weight ligands such as histidine (Kramer et al. 1996). A study of two 

species of Thlaspi, (T. caerulescens and T. rotundifolium) showed that Pb is more 

concentrated in roots than shoots, thus indicating low mobility of Pb from the roots to the 

shoots and immobilization of the heavy metal in the roots (Safae et al., 2008). Uptake of 

Pb occurs passively with mass flow of water through the root by active transport across 

plasma membrane of root epidermal cells (Yoon et al., 2006). Schwartz et al., (1999); 

Pierret et al., (2005), reported that the uptake of contaminant from the soil by plants may 

depend on root structure and functional architecture. The diagram of a typical root 

showing the xylem, phloem and other sieve structures involve in transport and 

translocation of water and mineral elements is shown in Figure 2.4.1 

 

Figure 2.4.1: Longitudinal section (L.S) of a typical root. (Source: Pandey, 2005 with permission 
from the S. Chand Publishing, April, 2015). 
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All plants take up metals in varying degrees from the substrates in which they are rooted 

(Rotkittikhun et al., 2006). Diehl et al. (1983) observed that Pb–tetra alkyls from petrol 

additives in soils are quickly converted to water-soluble Pb compounds that are easily 

available to plants. As a result of this, vegetation grown in soils polluted with tetra alkyls 

show relatively large Pb enrichment in both vegetative and generative organs. 

Baker (1981), proposed two basic strategies by which higher plants can tolerate large 

amounts of metals in their environment: (i) bioaccumulation in the upper plant parts at 

both high and low soil concentration, (ii) Exclusion related to restricted metal transport, 

thus allowing accumulation in roots over a wide range of soil concentration. Mishra et al., 

2006 reported that exclusion is the first defence strategy of plants to metal contamination. 

However, more recent studies suggest that plants have developed a wide range of 

tolerance mechanisms that are activated in response to Pb exposure. Fahr et al., (2013) 

reported that Pb affects plants primarily through their root systems and plant roots rapidly 

respond either (i) by the synthesis and deposition of the plant polysaccharide callose, 

creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb 

and its sequestration in the vacuole accompanied by changes in root growth and 

branching pattern or (iii) by its translocation to the aboveground parts of plant in the case 

of hyperaccumulator plants. The synthesis of mechanical barriers such as callose as a 

defence against Pb stress in plants has been reported (Bacic et al., 2009; Krzeslowska, 

2009; 2011; Samardakiewicz et al., 2012).  

2.4.1 Factors affecting plant uptake of lead. 

The chemistry of metal, anions, minerals, soil organic matter (SOM) and colloids 

interaction within the soil matrix is central to the phytoremediation concept (Lasat, 1998). 

Several factors affect the bioavailability and uptake of lead by plants. These include the 

following: 

pH 

Soil pH is a significant parameter controlling the uptake of metal contaminants. It is one 

of the major soil factors controlling metal bioavailability. A soil pH > 7 may precipitate Pb 

as hydroxides, phosphates, carbonates as well as promote formation of Pb-organic 

complexes that are rather insoluble (Kabata-Pendias, 2010). Decreasing pH will often 

increase Pb solubility and mobility. At lower pH (i.e < 6), lead in the soil has greater 

potential to translocate from roots to shoots. Chardon et al. (2008), observed Pb take up 

by clay mineral surface at higher pH (>7) forming a discreet phase of hydrocerussite. It 

is well known that acidity affects plant growth and uptake of nutrients directly and 



25 
 

indirectly, but normal plant growth can be achieved at a pH range of 5-7 (Shu et al., 

2001). 

Soil Organic Matter (SOM) 

 

Soil organic matter (SOM) is a component of the soil,which is made up of plant and 

animal residues at the their different stages of decomposition (Brady and Weil, 1999; 

Kabata-Pendias, 2010). It  influences the physical and chemical  properties of the soil. It 

is involved in the improvement of soil structure and aggregation, water retention, 

absorption and retention of contaminants in soil, provision of buffering capacity, cycling 

and storage of plant nutrient (Brady and Weil, 1999;Troeh and Louis, 2005). SOM 

increases soil fertility and can enhance uptake of nutrient and contaminants by providing 

cation exchange sites for macronutrients, micronutrients and heavy metals (Troeh and 

Louis, 2005).  It also act as  plant nutrient reserve and trace elements released via the 

process of SOM mineralisation (Troeh and Louis, 2005; Kabata-Pendias, 2010).     

SOM is a major sink of  soil carbon (Jain et al., 1997). It is  composed of humic and non–

humic substances. Soil organic matter has a great sorption capacity, which is beneficial  

in reducing  the activities of  of an excess trace metals (Kabata-Pendias, 2010). The 

adsorption of some metals such as Ni, Cu, Pb and Cd  is significantly enhanced by humic 

substances in the soil (Laxen, 1985).  Humic substances are easily adsorbed by clay 

and oxides in soil. Kabata-Pendias, 2010 reported that SOM  plays an important role in 

the adsorption/ co-precipitation  of most trace elements in soil.  SOM is also known to 

incease the cation exchange capacity of the soil (Sholkovitz and Copland, 1981). Juma, 

(1999); Brady and Weil, (1999); Troeh and Louis, (2005); Kabata-Pendias classified 

humic substances  into three viz:(i) fulvic acid (fulvate), which have low polymerization 

capacity, high acidity and mobility, (ii) humic acids ( humates) with medium acidity and 

mobility, spherocolloidal  polymerization ability and soluble in alkali and (iii) humins (a 

generic name  for materials  with highest molecular weight that are darkest in colour, 

insoluble in acids or alkali and most resistant to microbial attack).  Humins  are aging 

products of   humates and fluvates with high degree of polymerization and low acidity 

(Kabata-Pendias, 2010). Metal-fulvic acid complexes with lower stability constants 

usually are more readily soluble and bioavailable to plants (Kabata-Pendias, 2010). 

Kabata-Pendias, (2010) reported that the Interactions between humic substances and 

metals  such as Pb  have been described as ion exchange, surface sorption, chelation, 

coagulation and peptization. 

Basta et al. (2005), reported that the atomic properties of Pb has strong affinity for SOM 

and formation of inner-sphere metal surface complexes. Soil organic matter is one of the 
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most important factor increasing Pb bioavailability (Jin et al., 2005). Stevenson (1983) 

reported that organic substances play important role in biochemical weathering and 

geochemical cycling of nutrients. It has been observed by Cheng (1977) that organic 

matter (OM) content of soil has a complex influence on the behaviour of trace elements.  

Cation Exchange Capacity (CEC) 

 

Cation exchange capacity is the number of exchangeable cations per dry weight that a 

soil is capable of holding at a given pH value and available for exchange at the soil-water 

solution (Robertson et al., 1999).  It is a measure of soil fertility, nutrient retention capacity 

and buffering capacity (Mengel, 2011). Organic matter (OM) increases soil CEC by 

increasing the number available negative charges. Cation exchange capacity increases 

with increasing pH and this influences metal bioavailability, speciation and uptake 

(Mengel, 2011).    

Metal speciation in general is influenced by their cation exchange capacity. The rate of 

trace elements downward migration is affected by CEC (Kabata-Pendias, 2010). The 

affinity of trace elements for soil constituents is strongly influenced by their 

electrochemical properties and closely related to the specific surface area and CEC of 

minerals (Kabata-Pendias, 2010). Similarly, it was observed by Tan (1998), that variable 

charge of both clays and organic particles enhances the formation of different organo-

mineral complexes which greatly influence mobility in the soil. 

Soil Microorganisms. 

 

Root growth affects properties of the rhizospheric soil and stimulates the growth of 

microbial consortium (Lasat, 1998). According to Crowley et al. (1991), some 

microorganisms excrete organic compounds which increase bioavailability and facilitate 

root absorption of metals. Microorganisms are very important in the production, 

consumption and transportation processes in the ecosystem. Jaisi et al. (2008) reviewed 

that microbe-clay interactions are responsible for biological reduction of Fe3+ to Fe2+ 

which has great affinity for the surface–complexation sites of Pb thus increasing mobility 

in natural environment. A low rate of decomposition of vegetation having a high 

concentration of Pb and Zn is apparently due to reduction by microbial activities (Williams 

et al., 1977). A strain of Pseudomonas maltophilia was shown to reduce the mobility of 

toxic Cr6+ to non-toxic Cr3+ and also minimize environmental mobility of other toxic ions 

such as Hg, Pb, and Cd (Blake et al., 1993; Park et al., 1999). 
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Fahr et al., (2013) reported that Pb uptake is greatly affected by rhizospheric processes. 

Lin et al., (2004) explained that the ability of Oryza sativa L.(rice) to absorb high levels 

of Pb from the soil by a decrease in soil pH was due to root exudates, solubilisation of 

Pb by rhizosphere microorganisms and complexation of Pb with organic matter at the 

soil–root interface. Larger amounts of NH4OAc extractable Pb are found in the 

rhizosphere than in bulk soil, pointing to the involvement of root activities in changing Pb 

availability (Lin et al., 2004). 

Mycorrhiza is the non-pathogenic, mutualistic symbiotic association of obligate soil-

borne fungi with the roots of higher plants. Pawlowska and Charvat, (2004); Ratti and 

Upadhyay, (2013) reported some functions of mycorrhizae in heavy metal uptake from 

the soil. This includes their help in increasing plant tolerance to heavy metal and the 

provision of an attractive system to advance plant-based environmental clean-up. The 

hyphal network of mycorrhizae functionally extends the root system of their plant hosts, 

thus, increasing the potential to take up heavy metal from an enlarged soil volume by 

enhancing root absorption area of plants (Ratti and Upadhyay, 2013). Mycorrhizae 

facilitate the establishment and survival of vegetation under heavy metal stress 

conditions and heavy metal chelation using compounds produced by the extra-radical 

mycelium (Ratti and Upadhyay, 2013). Metal contaminant in soil can be bound to 

mycorrhizae using free amino, hydroxyl, carboxyl and other groups present in its fungal 

cell wall which suggest that microbial biomass may affect the mobility of metals in the 

soil system (Pawlowska and Charvat, 2004; Ratti and Upadhyay, 2013).   

 

Root Exudates. 

Root exudates play an important role in the uptake of several essential elements and 

contaminants by plants (Lasat, 1998). Some grass species have been reported to exude 

from their roots a class of organic acids called siderophores (mugenic and avenic acids), 

which caused significant enhancement of bioavailability of soil-bound iron and zinc 

(Kanazawa et al., 1994; Cakmak, 1996a; 1996b). Studies by Pellet et al. (1995) and 

Larsen et al. (1998) demonstrated that some plant exudates are involved in plants 

tolerance through exudation of citric and malic acids in tolerance to aluminum in the soil. 

Rotkittikhun et al., (2006) suggested an influence of exudates on speciation of Pb in Pb-

accumulating species like Ageratum conyzoides (goatweed), Sonchus arvensis (corn 

sow thistle) and Euphorbia hirta (asthma plant). The uptake of Pb is based mainly on the 

plant species (e.g Oryza sativa {rice}) interaction between roots structures, synthesized 

exudates and the rhizosphere biochemical properties (Brown, 1995; Shadid et al., 2012; 

Fahr et al., 2013). 
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Root/foliar uptake. 

The root zone is the primary area affecting the mobilization of Pb (USEPA, 2000). 

Remediation of Pb with plants requires contaminants contact with the root zone of the 

plants. The rate of trace element uptake will positively correlate with its available pool at 

the root surface (Kabata-Pendias, 2010). Foliar uptake is governed by surface properties 

of leaves and aerial deposition though concentrations found in shoots may be partly 

translocated from the root (Kabata-Pendias, 2010). 

Dalenberg and Van Driel (1990), have calculated 73-95% of total Pb content in leaves of 

some field crops arose from aerial deposition of trace metals on the leaf surfaces.  A 

fraction of the trace elements absorbed by the leaves may be leached from plant foliage 

by rain water. For example, Pb can be partly washed off from the leaves suggesting 

some superficial deposition on leaf surface (Kabata- Pendias, 2010). Kabata-Pendias 

(1969) and Little and Martin (1972) in Kabata-Pendias, (2010), observed a greater leaf 

penetration for Cu ,Zn and Cd than for Pb. Translocation of metals can be metabolic and 

non-metabolic, usually primarily controlled by root pressure and leaf transpiration (Lasat, 

1998). Lin et al., (2004) reported the ability of roots to modify the mobility and the 

bioavailability of Pb by changing rhizospheric conditions which can significantly enhance 

the success of phytoremediation programme. 

2.4.2 Quantification of plant uptake. 

A plant’s capacity to accumulate metals from the soils can be expressed by a 

concentration factor (CF) (Safae et al., 2008). It is defined as the concentration of a 

particular chemical in a biological tissue per concentration of that chemical in the tissue 

surroundings (Abdul and Bivin, 2009). Several terms has been used in different studies. 

In certain studies, concentration factor is also known as phytoextraction or 

bioaccumulation factor (Baker, 1981; Safae et al., 2008; Akinci et al., 2010). It is 

estimated for Pb as the ratio of Pb concentration in the aerial + below-ground part of 

plants and soil Pb concentration (both expressed on a dry weight (DW) basis), and 

expressed mathematically as (Rotkittkhun et al., 2006). 

CFtotal =   
Concentration of Pb in shoots and rootsmg

kg
 DW

Concentration of Pb in soil mg
kg

 DW
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CFtotal = 
Cshoot and root

Csoil
 (2.4.1) 

Where 

Cshoot and roots = concentration of Pb in shoots and roots (mg/kg) (DW) 

Csoil = concentration of Pb in soil (mg/kg) (DW). 

CFshoot = 

Concentration of Pb in shoots
mg

kg
 DW

Concentration of Pb in soil 
mg

kg
 DW

                                                            (2.4.2) 

CFroot =
Concentration of Pb in the roots

mg 

kg
 DW 

Concentration of Pb in the soil
mg

kg
  DW

                                                                   (2.4.3) 

Lead translocation in plants from root to shoot can be measured using translocation 

factor (TF) which is given below: 

TF = Cs Cr⁄  (2.4.4) 

Where, Cs and Cr are metal concentrations (mg/kg) in the shoot and root, respectively.  

According to Rotkittkhun et al. (2006), the standard definition for CF and TF of 

accumulators and hyper accumulators have not been identified. However, CF have been 

categorized further as hyper-accumulators, accumulator and excluder to those samples 

with CF >10, >1 and <1, respectively (Reeves and Baker, 2000). At present, four criteria 

are used: (i) Concentrations of heavy metals in plants shoots (lead > 1000 mg/kg; Baker 

et al., 1994), (ii) If the concentration of heavy metal in above ground part is 50-500 times 

more than in usual plants ( i.e Pb >5 mg/kg; Shen and Liu, 1998), (iii) The metal 

concentration in shoots are invariably greater than that in roots, or shoots/root quotient 

>1 (Baker and Whiting, 2002), (iv). Phytoextraction coefficient >1(Chen et al., 2004). 

Phytoextration coefficient is the logarithmic function (Y=loge Cshoot+root/Csoil) of the CF 

equation {Equation 2.4.1 above} (Safae et al., 2008; Abdul and Bivin, 2009). Where Y= 

Phytoextraction coefficient.  Wherein, TF > 1 indicates that the plant translocate metals 

effectively from root to the shoot and are considered a hyperaccumulator (Baker and 

Brooks, 1989). 

Ulrich (2003) further identified metal precipitators, indicators and tolerant species. 

Excluders can regulate the flow of toxic metals to some parts of the plants using certain 
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physiological and biochemical mechanism of the plants (Lasat, 1996 and Baker, 1981). 

Indicators are tolerant to elevated concentrations until a threshold is reached or 

exceeded resulting in chlorosis in some plants while tolerant species are able to take up 

metal above threshold with mild to no observable effect of the contaminant (Ulrich, 2003; 

Kareen et al., 2013). 

2.4.3 Lead Accumulating Plants. 

 

Plants which accumulate heavy metals are known as metallophytes. Metallophytes can 

differ largely in their heavy metal contents (Bothe et al., 2010). Several plants show 

potential for Pb accumulation from the soil (Baker and Brooks, 1989). All plants have the 

ability to accumulate “essential” metals (e.g. Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Se, V 

and Zn) from the soil, although different concentrations are required for growth and 

development (Chhotu and Fulekar, 2009). This ability also allows them to accumulate 

some other “non-essential” metals (Al, As, Au, Cd, Hg, Pb, Pt, Sb, Te, Ti and U), which 

have no known biological function (Djingova and Kullef, 2000). Some have evolved 

tolerance to large amounts of metals in their environment through exclusion, inclusion 

and bioaccumulation (Baker, 1981). 

Safae et al. (2008) reported that Pb is accumulated in roots of two ecotypes of Thlaspi 

caerulescens in West Morocco. Potential hyperaccumulator species such as Armeria 

maritime (sea pink), Arabidopsis halleri (rockcress), Ambrosia artemisiifolia (ragweed), 

Brassica napus (oil seed rape), Brassica juncea (Indian mustard), Brassica oleracea 

(including common cultivars such as cauliflower, broccoli, cabbage, kale, Brussel 

sprout), Festuca ovina (sheep fescue), Helianthus annus (sunflower), Thlaspi 

rotundifolium (round leaved pennycress), Triticum aestivum (bread wheat) and Zea mays 

(maize or corn) have been reported (Baker et al., 1994; Deram and Pettit, 1997; Reeves 

and Brooks, 1983; Bert et al., 2000). The most frequently cited Pb hyperaccumulator is 

the cultivar Thlaspi rotundifolium (L). Gaud–Beaup (round leaved penny-cress) which 

can accumulate a shoot Pb concentration of 8500mg/kg (Reeves and Brooks, 1983). 

However, Thlaspi rotundifolium has a small biomass and slow growth rate. Brassica 

juncea (L) Czern also demonstrated an ability to accumulate Pb to a higher degree when 

grown in a nutrient solution that had high concentration of soluble Pb as Pb (NO3)2 as 

much as 1.5% (m/v) of Pb (Kumar et al., 1995). It showed little ability to translocate Pb 

to its shoots when grown on soils where Pb2+ bioavailability was limited. 

Baker and Walker (1989), reported a Pb accumulation of 130-8200 mg/kg shoot dry 

weight of Thlaspi rotundifolium. Barry and Clark (1978), recorded shoot lead values of 
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13 to 11,750 mg/kg in Festuca ovina.  Shinwell and Laurie (1972) also recorded a value 

of 2740 mg/Kg in the roots of Thlaspi caerulescens colonizing a lead mine district in the 

Pennines, England. Tanhan et al. (2007) reported Pb concentration of over 1000 mg/kg 

in the shoot and 30453 mg/kg in the roots in Siam weed (Chromolaena odorata (L.) (Siam 

weed) growing in an ore dressing plant in Bo Ngam, Thailand. Thanh et al., 2013 reported 

898  to 2,850 mg/kg in shoots compared to 65 to 90 mg/kg in the roots of Biden pilosa 

{L} (Spanish needle) and Ludwigia adscendens {L} (water primrose) respectively growing 

on contaminated soils in Vietnam. Tables 2.4.1 and 2 .4.2 show some Pb accumulator 

plants, concentration of Pb in roots and shoots, concentration factor, translocation factor 

and land use. 

Table 2.4.1: Lead concentrations (mg/kg DW) in shoots and roots of selected plant species grown 
in nutrient solution (hydroponics) 20µm/l Pb and soil contaminated with 2500 mg/kg lead in the 
form of lead nitrate. (Huang and Cunningham, 1996). 

Plant species Shoots 

Solution (mg/l)

  

Roots 

Experiment 

CFtotal  Shoots 

Soil 

experiment 

(mg/kg) 

Roots CFtotal 

Zea mays cv. 

Fiesta 

375 2,280 0.16  225 1250 0.59 

Brassica 

juncea 531268 

Brassica 

juncea Czern 

Brassica 

juncea 184290 

241 

 

65 

32 

19500 

 

9580 

5260 

0.02 

 

0.01 

0.01 

 

 

 

 

 

 

97 

 

45 

30 

3460 

 

3580 

2310 

1.42 

 

1.45 

0.9 

Thlaspi 

rotundifolium 

Thlaspi 

caerulescens 

226 

 

64 

28700 

 

26200 

0.01 

 

0.002 

 

 

 

79 

 

58 

6350 

 

5010 

2.57 

 

2.03 

Ambrosia 

artemisifolia 

95 4670 0.02  75 2050 0.85 

Key: CFtotal varied between species and growth media type (Pb contaminated soil medium and hydroponic 

solution) with generally higher CFtotal observed in the Pb contaminated soil medium than the Pb hydroponic 

solution.  
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Table 2.4.2: Average lead concentrations in soil, shoot and root (mg/kg dry weight) from sites 1-4 in 
Thailand. 1-open pit area, 2-Stockpile area, 3-Ore dressing plant, 4---Tailing pond.  (Adapted from 
Rotkttikhum et al., 2006) 

Family Scientific name Land 
use 

Type Pb in soil Pb in shoot Pb in root CFtotal & TF 

Asteraaceae Ageratum 
conyzoides 

Chromolaena 
odoratum 

Crassopcephalum 
crepidiodes 

4 

 

1,2,3 

 

2,4 

Herb 

 

Shrub 

 

Herb 

38776 

 

118967 

 

40622 

3183 

 

3520 

 

1906 

4446 

 

9870 

 

7903 

0.2            
0.7 

0.2            
0.3 

 

0.2            
0.2 

Cyperaceae Cyperus difformis 2 Herb 95500 1310 6000 0.08          
0.1 

Equisetaceae Equisetum debile 1,2 Herb 78890 1505 21025 0.64          
0.1 

Euphorbiaceae Euphorbia 
heterophylla 

2 Herb 31830 6700 15130 0.30          
0.4 

Poaceae Imperata 
cylindrical 

Microstegnum 
cilliatum 

Pennisetum 
polystachyon 

Phragmites 
vallatoria 

1,2,3 

 

3 

2,3,4 

 

1 

Grass 

 

Grass 

Grass 

 

Grass 

106640 

 

175170 

104860 

 

111670 

1430 

 

12200 

6205 

 

403 

10923 

 

128830 

24705 

 

17170 

0.12          
0.1 

0.81           
0.1 

0.15        

 0.3 

0.14        
0.02 

Fabaceae Vigna umbellata 1,2 Herb 64750 2857 10330 0.20       

 0.3 

Malvaceae Sida rhombifolia 3 Undershrub 175500 9070 99670 0.62        

 0.1 

Polygalaceae Polygala 
umbonata 

3 Climber 175500 21670 14580 0.21         
1.5 

Rubiaceae Spermacoce 
mauritiana 

3 Herb 172500 28370 78830 0.62         
0.4 

Key: CFtotal and TF varied between plant species/families and land use. Land use shows high soil Pb 

concentration with generally higher  soil Pb in  predominantly used  areas such as (1) –open pit area, 

(2) stockpile area and (3) ore dressing. The plant shoot and root Pb concentrations is also dependent 

on the soil Pb concentrations of these areas. 
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2.5 REVIEW OF POTENTIAL LEAD ACCUMULATING PLANT 

SPECIES. 

This section reviews potential Pb accumulating plants, as part of the literature review 

(continuing from section 2.4.3) but also with the more specific aim of enabling the 

selection of suitable plant species for the first pot experiment (Chapter 4). Plants 

discussed in this review have shown potential to accumulate Pb in their tissues at varying 

concentrations. The amount of Pb taken up by plant species is partially dependent on 

the concentration of Pb in the polluted soil (Bothe et al., 2010). In most Pb accumulating 

plants, Pb is predominantly accumulated in the roots. However, in some species, the 

concentration of Pb in shoots can be particularly high and the partitioning of Pb between 

shoots and roots differs from one metallophyte to another (Kramer, 2010). Increased 

interest has been shown in plants with unusual potential for accumulation of more than 

10,000 mg/kg Zn and Mn, 1000 mg/kg Al, As, Se, Ni, Co, Cu, Cr, Cu and Pb and 

100mg/kg Cd in their above ground biomass known as hyperaccumulators (Reeves and 

Brooks, 1983). As mentioned in Section 2.4.3, there are some species that have been 

reported to hyperaccumulate Pb, such as Thlaspi rotundifolium ssp.cepaeifolium which 

can accumulate 8500 mg/kg Pb in its shoots (Reeves and Brooks, 1983) and Thlaspi 

caerulescens which was investigated in this study as a representative of this genus. 

Thlaspi rotundifolium is typically found growing in Zn and Pb mining regions (Likar and 

Pongrac, 2010). This species (Thlaspi rotundifolium) will not be discussed further here 

due to its very small biomass (<1g/plant), which makes experiments on the effects of 

heterogeneity technically impractical, and to a lesser extent due to the very poor 

availability of its seeds. 

Enhancement of biomass production in hyperaccumulator plant species such as the 

genus Thlaspi is currently a subject of current debate and potential area of future 

research. For example Lasat et al., (1998); Kumar et al., (2012) have suggested the 

potential enhancement of biomass in Thlaspi caerulenscens (Noccaea caerulescens) 

and T. rotundifolium through genetic manipulation. Kumar et al., (2012); Ahmed et al., 

(2012) reported that the genes responsible for rapid growth, well developed root system 

and luxuriant aboveground biomass in Brassica species (e.g Brassica juncea, Brassica 

rapa and  Brassica napus) could be genetically modified to enhance biomass production 

in  potential heavy metal hyperaccumulator species with low biomass. Such genetic 

manipulation has been achieved for improving heavy metal tolerance in some plant 

species (Anjum et al., 2012) Reisinger et al., (2008) have reported the transfer of  the  

gamma-glutamylcysteine {y-ECS} and gluththione synthase {GS} (a heavy  metal  

tolerant genes) from a  transgenic bacteria (Escherichia coli) to Brassica juncea. This y-
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ECS and GS gene produce Y-Glu-Cys synthase responsible for improving tolerance 

against Pb, As, Cd and Zn in B. juncea.  However, the potential limitation of the genetic 

manipulation of plants to improve heavy metal tolerance and biomass for efficient 

phytoremediation is the unknown specificity of such genes {e.g potential pathogenicity 

of bacteria genes apart from enhancement of heavy metal tolerance and biomass 

production} (Reisinger et al., 2008; Kumar et al., 2012).   

 The selection of plant species for this review were based on the following criteria: 

1. Ability to accumulate Pb in their shoots and roots with specific reference to their 

concentration factor (CF) expressed as the ratio of Pb concentration of the shoot 

and roots to that in the soil, and translocation factor (TF) as the ratio of Pb in the 

shoot to that in the roots (see definitions in Section 2.4.2). 

2. Root mass, lateral size, depth and morphology in comparison with scales of 

heterogeneity to be investigated. 

3. Whether species is native to field areas where heterogeneity can be quantified. 

However, some non-native plant species may be useful in pot trials. 

4. Practicability of obtaining seed and growing these species or varieties in pot 

trials. The key characteristics of each of plant species are compared (Table 

2.5.1) and the two species selected for the third and fourth pot trials are 

discussed in Chapter 5: Sections 5.5.1 to 5.5.2. 
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Table 2.5.1: Lead accumulator species reviewed with those selected for the first pot trial in red

Plant species Growth 

period/height 

Pb 

concentration 

mg/kg DW 

CFtotal/TF Root mass Root depth Growth 

conditions 

Growth 

medium 

Seed 

availability 

References 

Brassica 

juncea (Indian 

mustard) 

40-60 days/1-

2m 5 

9,580 mg/kg-

roots, 3,580 

mg/kg-shoots 4 

1.7/0.4 4 Denseroot 

mass1, 5 

90-120 cm 1 Biennial, pH4-8, 

moderately 

tolerant to soil 

acidity, 500-

4200 mm 

rainfall, 

temperature 6-

27OC 4 

Soil 4 Available 61 1-Woods et al., 1991; 2-Huang 

& Cunningham 1996; 3-

Hemmingway, 1995; 4-Meyers 

et al., 2008; 5-Duke, 1982 

Brassica 

napus (Oil 

seed rape or 

rapeseed) 

40-60 days/ 1-

1.5m 9, 6 

984 mg/kg-

roots, 354 

mg/kg –shoots 
11 

0.8/0.4 11 Branched tap 

root may be 

present 

depending on 

how it is grown, 

root diameter is 

15-17 mm 8, 9 

60-90 cm 10, Requires full to 

partial shade, 

pH 5-7, grown 

in sandy loam 

to clay loam soil 
7 

Soil 11 Available 61 6-Potts et al., 1999; 7-Chardin 

et al., 2001; 8- Chimbira and 

Moyo, 2009; 9-Crook and 

Ennos, 1993; 10- Ennos et al., 

2001, 11-Carlson and Bassaz, 

1997 

Thlaspi 

caerulescens 

(Alpine 

pennycress) 

Winter or 

summer annual 

plant/ 10-20cm 
12 

5,010 mg/kg-

root, 58 mg/kg 

– shoots 17 

2.0/0.01 17 Tap root 

present with 

normal trivalent 

branching 

structures in the 

soil. Root 

morphology 

differs with 

different growth 

materials used 

depending on 

contamination 

gradient 15, 16 

5-15 cm 13 Grow on 

contaminated 

soils and 

disturbed 

areas14, 16 

Hydroponic 17 Available 61 12-Brown et al., 1995a, 13- 

Haines, 2002;14- Schwartz et 

al., 1999a;  15-Chaney et al., 

1997; 16-Cleal, 1994;  17-

Huang and Cunningham., 1996 

Rumex 

acetosa 

(sorrel) 

Annual 

herbaceous 

plant native to 

the British 

isles/20-55 cm 
21 

345 mg/kg—

root, 

115 mg/kg—

shoot  20 

0.1/0.3 20 Large yellow, 

forking and long 

tap root, forms 

basal rosette at 

the shoot 19 

40-60 cm19 Small 

requirement for 

growth, found in 

forests, 

meadows, 

parks and 

wastelands 18 

Soil 20 Available 61 18-Atila and Mathe-Gaspus, 

2005; 19- Davidson, 2006; 20- 

Gaweda, 2009; 21-Allen and 

Hafield, 2004,  
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Helianthus 

annus (sun 

flower) 

Warm season 

annual plant 

native to North 

America/1.5-

2m25, 22 

844 mg/kg—

roots, 358 

mg/kg—shoots 24 

0.1/0.4 24 Tap root 23 25 cm 23 Survive periods 

of drought and 

perish after frost. 

Does not tolerate 

partial shade. 

Prefers neutral to 

slightly alkaline 

soil. 25, 22 

Hydroponically 
24 

Available 61 22-Jean, 1994; 

23-Shella et al. , 

1974; 24-

Dushenkov et al. , 

1995;1997; 25-

Motloch, 2000 

Zea mays 

(maize or corn) 

Annual. 60-

90days/2-3m 26 

398 mg/kg-root, 

176 mg/kg—

shoot 27 

1/0.4 27 Fibrous roots, 

substantial root 

biomass with 

lateral root and 

root hairs. 27 

10-12 cm 30 Facultative long 

night pant, 

greater than 10 
oC of 

temperature, 

plant matures 

usually during 

the summer 

months, shoot 

biomass 

3710kg/ha28, 27 

Soil 27 Zea mays 

japonica (sweet 

corn) available 

in the UK 61 

26-Wilkes, 2004; 

27-Kalogerakis et 

al., 2005; 28-

Brennan and 

Shelley, 2005; 29-

Erwin et al., 2005; 

30-Janice et al., 

2010 

Bidens alba 

(Shepherd 

needles, 

beggarticks, 

Spanish or 

butterfly 

needle) 

Annual, biennial 

and perennial 

shrub or tree/15-

20cm 31 

214 mg/kg-root, 

569 mg/kg-shoot 

35 

1.1/0.4 35 Tap root 

sometimes 

fibrous    33 

60 cm    33 Grow on 

agricultural 

areas, coastland 

and disturbed 

areas   32 

Soil 34, 35 Available 61 31-Crowe and 

Parker, 1981; 32-

USDA, 2008; 33-

Weedon, 1973; 

34-Wang et al., 

2007; 35-Yoon et 

al., 2006 

Gentiana 

penneliana 

(wiregrass or 

gentian) 

 

 

 

 

 

 

Annual, biennial 

and perennial 

shrub or tree, 

distributed in 

North-west 

Africa, Asia, East 

Australia and 

Europe/8cm 36 

2200 mg/kg-

roots, 4100 

mg/kg-shoots 37 

1/1.9 37 Fibrous primary 

roots with 

secondary 

rootlets, tout 

fleshy or woody 

taproot with 

several linear 

cylindrical roots 

forming a collar. 
36 

80-120 cm 36 Grow on 

contaminated 

soils.  36 

Soil 37 Available and it 

takes about 4 

weeks to 

germinate. 61 

36-Ting-nung et 

al., 1988; 37- 

Yoon et al., 2006;  
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Oryza sativa (rice) 

 

Tropical, subtropical 

and warm climate 

annual grass/1-2m 
38, 39, 40 

 

6284 mg/kg-

shoot, 6373 

mg/kg—root 
43 

 

1/0.9 43 

 

Root system 

possesses 

aerenchyma 

tissues, consist of 

seminal 

adventitious and 

lateral roots, and 

possess 

trichoblasts 

extending to form 

roots hairs. 38, 40, 

45, 44 

 

30-

60 

cm 45 

 

Grows best at 

summer 

temperatures of 

24-25 OC, mostly 

cultivated in humid 

coastal lowlands 

and deltas. 

Arrested at growth 

temperatures < 10 
OC, 42-49dm 

rainfall, pH 4-8 41, 

42 

 

Soil 43 

 

Available but 

imported from 

China and India 

and expensive. 
61 

 

38-Duke, 1978; 39-

Duke, 1982; 40-

Cherepanov, 1995; 41-

Duke and Ayensu, 

1985; 42-Zhukovsky, 

1971; 43-Rotkittikhun et 

al., 2006; 44-Chao-wen 

et al., 2006; 45-Duke, 

1981: 61-Seeds online, 

2012 

Vetiveria 

zizaniodes (vetiver) 

Perennial grass 

native to India/1.5m, 

growth period 12-24 

months 46, 47 

359 mg/kg-

shoot, 4940 

mg/kg 52 

1.5/0.1 52 Root system 

spread 

horizontally; 

possess vertical, 

growing tufts on 

the roots. 

Presence of 

secondary and 

tertiary fibrous 

roots. 48, 49 

3-4 

m 49 

Prefers fertile soils 

with a pH 4-7, 

temperature range 

of 15-20 OC, roots 

ready for harvest 

at 12-24 months, 

requires hot humid 

climate and highly 

drought tolerant. 50, 

48 

Soil 52 Available and 

imported from 

India between 

October and 

November. 61 

46-Andras et al., 

2006;2011; 47-Andras 

et al., 2010a; 2010b; 

48-Jackson, 2001; 49-

Andras et al., 2009;50- 

Lavania, 2003; 51-

Lavania et al., 1998; 

52-Huang and 

Cunningham, 1996 

Chromolaena 

odorata (Siam 

weed) 

Widely distributed 

Neotropical shrub 

native to tropical 

America/2.5m, 10m 

when climbing 

vegetation and 0.8m 

at 40 day. Growth 

period of 12 months. 
53, 54, 59 

3,520 

mg/kg-

shoot, 

9870 mg/kg-

root  57 

1.9/0.4 57 Dense extensive 

root mass, fibrous 

shoot system is 

slightly toothed.  
55, 58 

30 

cm   
60 

Invasive weed. 

Growth pattern 

varies in different 

ecosystem. 58 

Soil 57 Not available in 

the UK. 61 

53-Schmidt and 

Schilling, 2000; 54-

Ezeibekwe et al., 2010; 

55-Cruttwell and 

Skarrat, 1996; 56-

Kushwaha et al., 1981; 

57-Rotikittikhun et al., 

2006; 58-

Chandrasekaran and 

Swamy, 2010, 59- 

Weed management 

guide, 2012; 60-Rouw, 

1991:  
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2.5.1 Summary of comparison of plant species reviewed. 
 

Thlaspi caerulescens had the highest CFtotal value (Table 2.5.1; Figure 2.5.1), followed 

by Chromolaena odorata, Brassica juncea, Vetiveria zizaniodes, Bidens alba, Gentiana 

penneliana, Zea mays, Oryza sativa, Brassica napus, Rumex acetosa and Helianthus 

annus in order of decreasing CF (Figures 2.5.2). All plant species showed low TF (<0.5) 

except G. penneliana and O. sativa.  Chromolaena odorata and T. caerulescens had the 

highest CFtotal of all species (Figure 2.5.1 and Table 2.5.1). In terms of CFtotal nearly all 

plant species except Rumex acetosa and Helianthus annus might be fit for selection for 

the first pot trial in this research. 

 

 

 

 

 

 

 

Figure 2.5.1: Comparison of total Concentration Factor (CFtotal), Translocation Factor (TF) of Pb 
accumulating plant species in this review.  

However, some of the species were not fit for selection considering growth conditions 

that can be achievable in the available facilities and time. They all possess substantial 

root masses and depths to enhance metal uptake, but V. zizaniodes and C. odorata have 

long (500 to 800 days) growth periods (Figure 2.5.2 and Table 2.5.1). The long period of 

growth rendered V. zizaniodes unfit for selection. Chromolaena odorata could be 

harvested at 40 days with a height of approximately 0.8 m, but the seeds were not readily 

available in the United Kingdom and seed viability was not certain. This precluded the 

selection of this species for the first pot trial, despite its high CFtotal.   



39 
 

 

Figure 2.5.2: Comparison of Concentration root depth, height and growth periods of potential Pb 
accumulating plant species.  

 

Two varieties of Oryza sativa seeds bred for metal uptake (Short duration variety- Pusa 

Jaldi Dhan-1 and medium duration variety- Pusa Basmati-1) were usually available, 

imported from China and India and sold at a high cost of €99 per pack of 20 seeds. 

Viability of the seeds in pot trial was not known.  Rumex acetosa and Helianthus annus 

were not suitable for selection based on their CFtotal 0.1 and TF values of 0.3 and 0.4 

respectively.  All plant species except Thlaspi caerulescens and G. penneliana have 

heights which suggest substantial biomass (Table 2.5.1). Brassica napus is a Pb 

accumulator plant considered fit for selection in the first pot trial because its similar root 

depth and growth period to that of Brassica juncea also fit for selection for the first pot 

trial. Six of these species viz Brassica juncea, Brassica napus, Gentianna penneliana, 

Thlaspi caerulescens, Zea mays and Biden alba were selected for the first pot trial. 
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2.6 HETEROGENEITY  

This section gives a background literature on heterogeneity and how it has been 

previously expressed and quantified which is relevant to thesis aim to assess the effect 

of in situ heterogeneity of Pb on plant uptake. 

Materials in the terrestrial environment are rarely homogenously distributed, either 

spatially or temporally and one consequence of this in situ heterogeneity is usually 

uncertainty in measurements made on that material (Taylor et al. 2005). Horwitz (1990) 

defined heterogeneity as a degree to which a property or constituent is uniformly 

distributed throughout a quantity of materials. Thompson (1999) stated that almost 

everything that is worth analysing is actually or potentially heterogeneous, and that any 

sample is likely to have a composition that is different from the mean composition of the 

target and therefore no two samples will have the same composition. 

Ecologically, soil heterogeneity is described as the patchiness (the degree to which one 

patch differs from another) of soil components in relation to the size of the patch or scale 

(Hutchings and John, 2004).  Myers (1997), described heterogeneity in relation to soils 

from a pile of soil. The pile may appear homogenous from a distance, but an inspection 

at a higher resolution reveals a range of colours, sizes, shapes, opacities and 

composition. This analogy relates to the ex situ study of soils, it is also applicable to the 

study of soils in an undisturbed in situ conditions. Spatial heterogeneity is ubiquitous in 

nature (Albert, 2000). Measurements of heterogeneous land surface processes are 

greatly influenced by measurement techniques and also by scales of sample, size, 

density and a real coverage of the domain (Albert, 2000).  

 In situ heterogeneity arises because each analyte is usually distributed heterogeneously 

in space within the sampling target. This has been subdivided into that between different 

types of mineral holding the analyte, which has been called ‘constitutional’ heterogeneity, 

and that caused by non-random spatial distribution of each mineral phase, called 

‘distributional’ heterogeneity (Gy 1992). In situ heterogeneity, of either type, is often 

different at each spatial scale (e.g., ranging from µm to km). Gy (1992) described further 

these two types of heterogeneity: constitution heterogeneity and distribution 

heterogeneity.  

i. Constitution heterogeneity:  This is defined as the intrinsic property of 

materials that consist of different types of particles and can be estimated 

theoretically from the material properties if they are known (Gy, 1992). 

ii. Distribution heterogeneity: It refers to the concentration of the determinand 

within a lot varying systematically along time or distance i.e. an expectance value 
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of determinand is a function of time and/or the location where the sample was 

taken (Gy, 1992). This type of heterogeneity and the sampling variance it 

generates can be estimated experimentally (Gy, 1992). 

Ex situ heterogeneity usually arises from chemical preparation of test samples. The 

analytical uncertainty (Uanal) is usefully defined to include any chemical preparation of the 

test sample, and therefore includes the contribution from the ex situ heterogeneity of 

laboratory samples. 

 

2.6.1 Consequences of heterogeneity. 
 

Large uncertainties generated in most contaminated land investigation is one of the 

consequences of soil heterogeneity. Uncertainty has been defined as an estimate 

attached to a test result which characterizes the range of values within which the true 

value is asserted to lie (ISO, 1993). Although sampling and analytical errors may cause 

variability in measurements, Ramsey and Argyraki (1997) observed heterogeneity as the 

most often and main contributor to uncertainty in measurement of contaminants. 

Measurement uncertainty estimated using standard deviation includes both field 

sampling and chemical analysis. Measurement uncertainty also refers to all the variance 

that arises from both random and systematic errors from both sampling and analytical 

methods in geochemical soil surveys excluding geochemical variance (Ramsey, 2010). 

This can be estimated using the equation 2.6.5 below. 

U=smeas=√ (s2
samp + s2 anal)                                              (2.6.5) 

The variance arising from sampling (s2
samp) which is primarily caused by heterogeneity is 

often the dominant factor in the estimation of measurement uncertainty (Argyraki et al., 

1997, Taylor et al., 2005). The difference between individual sample means (𝑥̅) for a 

particular site investigation can be estimated using the variance (s2) (Taylor et al., 2005).  

By taking duplicate samples from sampling locations, the variance of sampling in s2
samp 

equation 2.6.5 can be estimated thus isolating the variance that arises from 

heterogeneity. This is represented in equation 2.6.6 

U=ssamp =√ (s2
meas - s2 anal)                                              (2.6.6) 
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2.6.2 Spatial Heterogeneity of Lead. 

 

Lead is heterogeneously distributed in soils at most contaminated sites. Thomas et al., 

(2008) observed a spatial heterogeneity of Pb at two contaminated sites in Coseley and 

Nottingham (ranging from 2.3 to 57 % RSD). Argyraki, (1997) studied contaminated sites 

in Hounslow Heath, discovered high but varying concentration of Pb in the soil giving rise 

to high levels of uncertainty of 83.6% at the 95% confidence interval. These elevated 

values of measurement uncertainty are mainly attributed to the high degree of spatial 

heterogeneity of the soil at that site (Ramsey and Argyraki, 1997).  

 

2.6.3 Methods of Quantifying Spatial Heterogeneity. 

 

Spatial statistics include any of the formal techniques which study entities using their 

topological, geometric and geographic properties (Barnerjee et al., 2004). Complex 

issues arise in spatial analysis, many of which are often not clearly defined or resolved 

(Miller, 2004). Several statistical tools have been employed in quantifying heterogeneity 

and are discussed thus: 

Variograms are widely used for geochemical mapping. The variogram is a graphical plot 

of variance as a function of distance. Spatial variability of target analytes over a 

geographical area can be characterised using variogram. It is based on the assumption 

that close spatially and temporally related samples exhibit similar values in 

concentrations (Myers, 1997). A theoretical variogram Zy (x,y) is a function describing 

the degree of spatial dependence of a spatial random field or stochastic process Z (x), 

defined as the variance of the difference between field values at two locations across 

realizations of the field (Cressie, 1993). 

2y (h) =
1

𝑛
 ∑ (g[𝑥𝑖] − g [𝑥𝑖 +ℎ ])

𝑛

𝑖
                                                                (2.6.7) 
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Figure 2.6.1: Illustration of an idealised variogram showing the range, sill and nugget effect 
(Adapted from Myers, 1997). 

Bolviken et al., (1992) defined h as the distance between sample pairs, n is the number 

of possible samples pairs g (𝑥𝑖) is the concentration of the element at point xi and g (xi + 

h)  is the element concentration at distance h from point xi. Variogram usually rises from 

the axis origin, the rate of increase reduces until it levels off (Figure 2.6.1). The range is 

the distance at which the graph flattens (Figure 2.6.1). The ‘sill’ represents the variance 

of the population and it is the height at which the plateau is reached (Figure 2.6.1). An 

intercept of the variogram on the y-axis is called the nugget effect (Figure 2.6.1). In most 

geological surveys, lag distances of 10 m to 1000 km are often used to construct 

Variograms. However, restricted by the typical sampling interval, variograms often fail to 

assess heterogeneity over the full range of scales e.g. 0.0001m-1000 m for a limited 

number of measurements (n=100) (Thomas et al., 2008). Gooverts, (1999) noted that 

local variability in data values is often misrepresented by the variogram. Myers, (1997) 

stated that factor such as nugget effect can increase the uncertainty attached to any 

estimated value.  

The construction of kriged map contours requires variograms at four cardinal directions 

calculated from a minimum of 100 samples (Myers, 1997). Kriging refers to the 

construction of contour maps of estimated element concentrations across a study site. 

All kriging methods produce estimates of concentrations and uncertainty attached to 

those values for unsampled locations. With any interpolation method such as kriging, it 

may be difficult to quantify the uncertainty in the estimated values, for example, even if 

a variogram is adequate for a kriging analysis, it may not be adequate for assessing 

uncertainty of kriged estimates because uncertainty increases with increasing mean 

ϒ (h) 

Range 

Sill 

Distance (h) 

CO 

Nugget 

a 
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values (Isaaks and Scrivastava, 1989). Woodbury (2003) reported that kriging models 

may overestimate or underestimate uncertainty to some degree and does not provide 

direct evidence for non–sampled sites. Kriging is usually time consuming. 

A nested nine point sampling design has been used to characterize heterogeneity over 

the full range of scales (Taylor et al., 2005).The duplicate methods originally devised for 

the estimation of precision and uncertainty based on duplicate samples for some 

proportion of samples, has also been used to quantify heterogeneity (Ramsey, 1998). 

Miesch (1976) and Garret (1969) in Ramsey (1998) had originally suggested this 

experimental design for the estimation of sampling and analytical precision. Argyraki 

(1997), utilized a simple regular grid design, with and without composite samples for 

sampling contaminated sites.  

According to Thomas et al., (2008), the specific method consisted of using the duplicate 

method at various scales 0.001m-100 m, followed by interpretation using robust ANOVA 

to subtract the analytical variance from the sum of the sampling and analytical variance 

(AMC, 1995, Ramsey et al., 1994). It is perhaps the simplest method that can be used 

to estimate heterogeneity, initially expressed as a sampling variance (Thomas et al., 

2008). Field duplicate and sampling precision (s, the square root of the variance s2) can 

be expressed as the relative standard deviation (RSD) for duplicates (CEN, 2005). 

RSD =    100s/𝑥̅   

Qualitative estimation of spatial heterogeneity has been made using the duplicate 

method with in situ analytical technique such as the P-XRF and X-ray microprobe for Zn 

and Pb at two contrasting sites (Taylor et al., 2005). Similarly, P-XRF was used to 

determine in situ measurement (i.e. sampling and analytical variance (Thomas et al., 

2008).  

 2.6.4 Typical Values of Heterogeneity. 

 

Typical values of heterogeneity are scale dependant characteristics. As a result of direct 

relationship between scale and heterogeneity, sampling results are only valid for the 

scale of sampling (CEN, 2005). Generally, the degree of heterogeneity will be higher for 

a smaller scale of sampling and lower for a larger scale (CEN, 2005; ISO, 2005; Thomas 

et al., 2008). The degree of heterogeneity can be expressed numerically in terms of 

relative standard deviations (% RSD), potentially as a function of scale. Typical values 

of heterogeneity expressed as %RSDsamp ranges from 4-55% across different sites for a 

range of elements (Taylor et al., 2005; Thomas et al., 2008; Ramsey et al., 2013). 
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However, %RSD assume normal distribution which is often found to break down at 

higher levels of heterogeneity. A new and alternative approach for reliably expressing 

heterogeneity as heterogeneity factor (HF) is discussed in Chapter 3.  

2.6.5 Effects of Spatial Heterogeneity on plant uptake.   

 

For all natural processes, heterogeneity exists at a variety of scales; the net effect of 

smaller-scale heterogeneity can have a significant effect on larger-scale predictions 

(Albert, 2000). The most important early studies on plant responses to spatial 

heterogeneity are those on nutrient heterogeneity (Drew, 1975; Hutchings and John, 

2004). Studies by Jackson and Caldwell, 1989 ; Leichowicz and Bell (1991); Robinson, 

1994; Gross et al. (1995) ; Jackson and Caldwell, 1996; found that spatially homogenous 

growing conditions are problematic because available resources in the natural 

environments are patchy at scales similar or smaller in size than individual plants. There 

is evidence that plants are strongly affected by heterogeneous conditions of available 

nutrient resources (Wijesinghe and Handel, 1994; Wijesinghe et al., 2001; Hutchings and 

John, 2004). 

Plants in heterogeneous conditions could invest heavily in roots located where soil-based 

nutrient resources are most abundant (Hutchings and John, 2004). In many studies such 

as those of Drew and Saker (1975); Birch and Hutchings (1994); Stuefer et al. (1994; 

1996); Alpert and Stuefer (1997); Wijesinghe and Hutchings (1997) reported that plants 

maximize resources acquisition from abundant locations in heterogeneous conditions. 

Wijesinghe and Hutchings (1999), studied the effect of nutrient heterogeneity on root 

growth and root/shoot ratio of Glechoma hederacea and discovered that total root mass 

increased with larger treatment patch and increase in root/shoot ratio as well. According 

to Birch and Hutchings (1994), plants may grow faster in heterogeneous condition of 

micronutrients.  

Nutrient heterogeneity has similar application to contaminant heterogeneity as nutrient 

and contaminants are often both present in soil. Uptake of nutrient may result in the 

eventual uptake of contaminants from the soil by plants. Earlier studies (Haines, 2002; 

Millis et al., 2004; Manciulea and Ramsey, 2006; Thomas, 2010) have shown that 

contaminant heterogeneity can also influence plant uptake of contaminants from the soil. 

Significant impact (76 % changes in plant biomass and uptake) of Cd heterogeneity in 

soil on plant uptake has been reported in earlier studies by Manciulea and Ramsey 

(2006) at a scale of 0.03 m using a simplistic chequer board model. Thomas, (2010) also 

reported impact of Zn heterogeneity  on plant uptake at a scale of 0.02 m. Spatially 
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heterogeneous distribution of contaminants in the soil might affect the amount of uptake, 

root development, root and shoot biomass, growth rate and period of growth (USEPA, 

2000). 

2.7 Summary of Review. 
 

This chapter reviewed the forms, sources of Pb and showed from literature how they 

may influence uptake of Pb by plants and the effects of Pb on target receptors (e.g plants 

and human). It also reviewed spatial heterogeneity, its impact on plant uptake of 

contaminants from the soil and their potential application in phytoremediation of 

contaminated lands, Pb accumulator plant species, potential Pb contaminated sites with 

the view of selecting suitable field sites and plant species for the first pot trial.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

CHAPTER 3: Measurement of in situ heterogeneity of Pb in soil at two 

contrasting field sites.  
 

3.0 INTRODUCTION 
 

This chapter discusses the experimental design, choice of field sites, sampling methods 

and results of the field investigation which covers the in situ measurement of Pb 

concentration and quantification of in situ heterogeneity in two sites (Gang Mine and 

BlackRock) in Derbyshire. Much of the content of this chapter has been published in 

Ramsey et al., 2013.  

3.1 Background to Experiment. 
 

Contaminants are generally heterogeneously distributed in soil. As discussed Chapter 2, 

Section 2.6, heterogeneity in contaminant concentrations varies with scale (Argyraki and 

Ramsey, 1997; Thomas et al., 2008; Ramsey et al., 2013). An examination of a field at 

a fine scale reveals a complex distribution of particles which vary in size, colour, shape, 

pore spaces and biotic constituents (Thomas, 2010). Spatial heterogeneity in 

contaminant distribution in soil can generate uncertainty in measurements of 

contaminant concentration during site investigations (Taylor et al., 2005). A highly 

heterogeneous distribution of contaminant in soil may result in greater risk of site 

misclassification against a threshold value (either as uncontaminated or contaminated). 

The consequences of such misclassification include the potential risk to human health, 

unrealistic human risk assessment models and creation of unnecessary remediation 

expenses. 

Many sampling designs are aimed at reducing the impact of in situ heterogeneity by 

taking large composite samples for off-site homogenization (Gy, 1992; Reddy et al., 

2001; Thomas et al., 2008; Jean-Phillipe et al., 2012). However, one limitation of these 

methods is that small scale heterogeneity that can have significant impacts on sampling 

strategies and exposure assessment are not often taken into account. Secondly, 

composite sampling and homogenization may not also produce results that can be used 

to realistically estimate the exposure to target receptors e.g plants or humans as the area 

of exposure of the target receptor can differ in scale from the scale often used in sampling 

designs (Thomas, 2010).  

Heterogeneity can be viewed from a positive perspective. Ramsey et al., (2013) reported 

these three possible approaches to in situ heterogeneity, namely (i) reducing 

heterogeneity to an acceptable level by taking bigger composite samples, (ii) reporting 
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the effects as part of  the full uncertainty of each  measurement, (iii) evaluating the size 

of the in situ heterogeneity using analytical geochemistry and reporting the values to  

users of measurement. Once in situ heterogeneity has been quantified, it can be 

accepted as a source of additional information to improve the reliability, quantification 

and modelling of human risk and exposure (Ramsey et al., 2013). Such information is 

also useful in improving the accuracy of geochemical models. 

Another consequence of spatial heterogeneity of contaminants in soil is a change in the 

extent of uptake of contaminants by plants. Contaminant uptake into food crops can be 

measured by the total concentration factor (discussed in Section 2.4.1). This is very 

useful in risk assessment to estimate exposure of humans to the contaminant via crops. 

Such data are usually based on pot trials in which the contaminants are homogeneously 

distributed. Earlier studies using the chequerboard style of distribution and simplistic 

binary model by Haines, (2002); Millis et al., (2004); Podar et al., (2004); Manciulea and 

Ramsey, (2006) showed that  spatial heterogeneity of contaminants in soil has an 

enormous impact on metal uptake by plants. Work by Thomas, (2010) suggest that the 

degree and scale of heterogeneity with respect to root ball size can also be a key factor 

for some plant species.  

A better insight and interpretation of in situ heterogeneity during site investigations can 

be made if methods which characterise in situ heterogeneity over a range of scales are 

employed. Some methods which can be used to quantify heterogeneity has been 

discussed in Chapter 2, section 2.6.3.  The specific sampling design proposed by 

Thomas et al., (2008), used in this study is based on the duplicate method (Ramsey et 

al., 1992; AMC, 1995). It can be used to estimate the in situ heterogeneity, initially as a 

sampling variance. This can be achieved by taking duplicate field samples, each with 

two analytical duplicates. This enables the estimation of the two key components of the 

overall measurement variance (analytical and sampling variance). Analytical variance is 

generated from random error that occurs during chemical analysis, and can be 

subtracted from the measurement variance to give the sampling variance, and hence the 

heterogeneity. Sampling variance is the difference between two samples taken from the 

same nominal sampling location as a result of small scale heterogeneity (Ramsey and 

Argyraki, 1997).  
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3.1.1 Objectives 
 

i. Determine in situ concentration and hence in situ heterogeneity of Pb in 

contaminated sites at scale of 0.02 -50 m using measurement techniques such 

as the P-XRF. 

ii. Quantify spatial heterogeneity of Pb in the selected contaminated sites and 

express it effectively as a function of concentration (using a suitable statistical 

method). 

Hypothesis 
 In situ heterogeneity can be quantified and modelled over a range of scale to 

describe the spatial distribution of Pb in selected field sites. 
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3.2  CHOICE OF FIELD SITES 
 

A review of Pb contamination in the UK has been discussed in Chapter 2: Section 2.3.1. 

Reports by DEFRA (2007) indicate a high level of Pb contamination at some sites in 

Derbyshire. However, site selections were made based on the following criteria: 

1. Recorded history of Pb contamination (Pb > 450 mg/kg). 

2. Size or area of land in hectares (≥ 1 ha). 

3. Extent of spatial heterogeneity and whether this value would be complementary 

to other sites in providing a range of values overall. 

4. Presence of Pb accumulating plant species on the contaminated sites. This was 

a requirement because the effect of in situ heterogeneity on plant uptake was to 

be assessed in pot trials as part of this research. 

5. Accessibility with respect to distance from Sussex, site ownership and permission 

to sample. 

Based on these criteria, two Pb contaminated sites (Gang Mine and BlackRocks) in 

Derbyshire located in the Peak District were selected (Figure 3.2.3a & b). 
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(a)  Scale: 1:100000 
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(Source: magic.defra.gov.uk/Magic map)  

 

(b) 

 

 

 

 

 

 

 

 Scale: 1:10,000 
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    (Source: magic.defra.gov.uk/Magic map) 

 

     (c) 

Figure 3.2.1: (a) United Kingdom map showing location of Gang mine and Black Rocks (black 
arrow pointing to Derbyshire where both sites are located) Scale: 540 mm x 720 mm (Source: 
http://gwydir.demon.co.uk/jo/maps/ukindex.htm) (b) Map showing investigated field sites, (red 
arrow pointing Gang Mine location and (c) purple arrow pointing to Blackrock {Source: 
magic.defra.gov.uk/Magic map} (Ordnance Survey map  with the permission of the Controller of 
Her Majesty’s Staionery Office, Crown Copyright NC/ March/ 2015). 

 

 

 Scale: 1:50,000 
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3.2.1 Site Description 

 

3.2.2 Gang Mine 

Gang Mine is designated a Special Area of Conservation (SAC) located on carboniferous 

limestone in Derbyshire North-West of Wirksworth (JNCC, 2011). Its National Grid 

Reference is SK 286557 (an approximate central point of the SAC. The sampling area 

was a 45 by 45 m. Grid references of the four corners were SK 28597 55649, SK 28638 

55651, SK 28598 55694 and SK 28638 55696 at locations A1, J1, A10 and J10 of the 

sampling grid (Figure 3.2. 2.1) respectively. It lies on latitude 53o 05 52’ N and longitude 

01o 34 21’ W and has an area of 8.26 hectares. It was an ancient mine in 1652, lying 

around the Southern point of the Eyam limestone series bordering the millstone grits to 

the east (JNCC, 2011). This limestone is still being mined by Dene quarry.  

It is characterised by several spoil heaps. In situ measurements made during the field 

investigation showed that the spoil heaps contained high levels of Pb and Zn and support 

some unique plant species. Only a few plant species are able to tolerate the high mineral 

content of the spoil heap (Figure 3.2.2.1b) located in some part of the sampling area 

while areas outside the spoil support a wider range of plant species. 

Gang Mine now belongs to the Derbyshire Wildlife Trust and is being developed as a 

nature reserve with funding under the English Nature’s Reserves Enhancement Scheme. 

About one-fifth of the site is not grazed and the remaining area is well-grazed. There 

were wide variations in slope and soil contamination. The spoil heaps are unusual in the 

diversity of spoil materials of varying metal concentrations, from very fine spoil to large 

rock fragments or bare areas without vegetation. Some metallophytes species were 

present. The open spoil areas support large populations of Thlaspi caerulescens (alpine 

pennycress), Rumex acetosa (Sorrel), Minuartia verna (Spring sandwort), Viola lutea 

(mountain pansy), and some lichen species such as Peltigera and Cladonia thrive in 

some of the bare areas. Certain fungi, mosses and fern also grow in the highly metal 

contaminated spoil heap. They include Dryopteris filix-mas (male fern) and 

Gymnoscarpium robertianum (limestone fern).  
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Scale bar of 1 mm represents 20 m in real life (scale can be calculated as 
𝑷𝒊𝒄𝒕𝒖𝒓𝒆 𝒔𝒊𝒛𝒆 𝒐𝒓 𝒉𝒆𝒊𝒈𝒉𝒕

𝑨𝒄𝒕𝒖𝒂𝒍  𝒔𝒊𝒛𝒆 𝒐𝒓 𝒉𝒆𝒊𝒈𝒉𝒕
   while 

scale bar = Picture size or height x (The length the scale bar represents/ Actual size or height of 

photo.  

 

                 5 m 

      

Figure 3.2.2.1: Gang Mine showing (a) field site with several spoil heaps and some vegetated parts 
amidst spoil heaps (b) Sampling location on spoil heap (high Pb 15800 mg/kg). A1, A10, J1 and J10 
represent the orientation of grid of the four corners of the site. 

 

 

A10 

Spoil heap 

(b) 

 

A1 

J1 J10 

20 m 

(a) 
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3.2.3 Black Rocks 
 

Black Rocks is about 0.8 km east of Middleton top, at National grid reference SK 293558 

and on latitude 53º 05 55´ N and longitude 1º 33 50´ W. The site has an approximate 

area of 2 hectares (Natural England, 2014). The grid references of the four corners of 45 

x 45 m grid were SK 292244 55728, SK 29286 557248, SK 29241 55686, SK 29284 

55688 for locations A1, A10, J1 and J10 of the sampling grid respectively (Figure 

3.2.2.2). It is close to the location of a former Pb mine which covers an area 

approximately 300 m2 (Natural England, 2014). The scree slope around the rock 

supports some lead-tolerant plants. The scree slope has been washed off by erosion 

leaving the greater part of the slope bare without vegetation (Figure 3.2.2.2a).  

This site has also been modified by trampling of human and animal feet over the foot 

paths running across the site. A small area of about 15 m2 was fenced to protect against 

erosion. It supports plant species including  Rumex acetosa (sorrel), Agrostis stolonifera 

(bent grass), Gymncarpium robertianum (limestone fern), Thlaspi caerulescens, (alpine 

pennycress), large strands of conifers such as Pinus sylvestris (scots pine), Pinus pinus 

(pines) and Larix decidua (European larch). The conserved area also contained low 

growing shrubs such as Vaccinium myrtillus (Bilbery). It is currently a popular place for 

recreation.   

 

 

 

                                          



57 
 

                               

        

                                                   

            

            (b)    

Figure 3.2.2.2: Black Rocks showing (a) bare areas (no vegetation) and (b) protected area (growth 
of some plant species). A1, A10, J1 and J10 represent the orientation of grid of the four corners of 
the sites area. 
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3.3 DESCRIPTION OF FIELD METHODS  

 

Measurements: In situ sampling scales 0.02 m to 50 m. 

The specific sampling method was laid out at both sites using a spaced regular grid of 

overall dimensions 45 m x 45 m (Figure 3.3.1). However, some grid dimensions were 

modified to adapt to the dimensions of the test sites. Sampling locations and duplicate 

sampling points were located using a 30 m tape, a compass and a hand held GPS. 

Bamboo canes of about 1m were placed at each sampling location. Surface vegetation 

and turf were removed using a spade. Mylar® film disc was placed over the sampling 

locations to protect the analyser window of the portable X-ray Fluorescence 

Spectrometer (P-XRF), and labelled containers placed alongside for core extraction after 

measurement with the P-XRF. Soil moisture measurements were taken in situ for top 1 

mm using a TDR 100 soil moisture meter. In situ measurement of heavy metals in the 

topsoil was taken using P-XRF model Niton XL3t 900SHE with a battery powered X-ray 

tube as an excitation source (for operating techniques and specification, see Appendix 

I.1). Sample identities were entered into the P-XRF prior to use.  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
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    J1                                                                                                      J10 

   

Figure 3.3.1: Specific sampling design (method proposed by Thomas et al., 2008) used at both sites 
for the quantification of contaminant heterogeneity over a range of scales for a site of 45 m x 45 m. 
X represents each sampling point at 5m spacing and arrows show locations chosen at random for 
duplicate sampling points at each sampling scale. 

Key: Sampling points, locations and number of duplicates are original to the sites investigated in 
this chapter. 0, 10, 20………..represent sampling locations. 

 

The P-XRF allowed a large number of in situ sample measurements to be made within 

a short period of time without disturbing the spatial heterogeneity of the soil.  Soils were 

analysed to a depth of ~1 mm without any sample preparation except the removal of 

surface vegetation to a depth of ~1 mm using a spade. Before and after the whole 

session of taking measurements at the sampling locations, the P-XRF was used to take 

measurements of certified reference materials (CRMS) for the estimation of analytical 

bias (results in Appendix I.3). A 60 seconds count time was used at each measurement 

location to quantify target element concentration. This duration was selected to be long 

enough to ensure that the detection limit (0.02 mg/kg) was acceptable, whilst it was short 

enough to ensure that all measurements were completed within the two-day period.   

After measurement with the P-XRF, extraction of a core with approximately 65 mm 

diameter and 50 mm depth was taken at each duplicate sampling location using a bulb 

1 2 3 4 5 6 7 8 9 10

A 0 X X X X X X X X X X

B 10 X X X X X X X X X X

C 20 X X X X X X X X X X

D 30 X X X X X X X X X X

E 40 X X X X X X X X X X

F 50 X X X X X X X X X X

G 60 X X X X X X X X X X

H 70 X X X X X X X X X X

I 80 X X X X X X X X X X

J 90 X X X X X X X X X X

0.20m

0.50m

2.0m

0.02m

0.05m

A1 A10 

Sampling scales 
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planting device. It was transferred into a 500 ml polypropylene straight–sided pot labelled 

with the sample identity.  The X-ray microprobe was used to make X-ray map of Pb 

heterogeneity of some core soil samples from the field sites. 

3.3.1 Full balanced and Simplified Design. 
 

A full balanced design (Figure 3.3.2a) was used at the 0.2 m scale and a simplified 

balanced design (Figure 3.3.2b) was used at all other sampling scales. The balanced 

sampling design was used in the application of the duplicate method in an in situ 

investigation. Duplicate field samples can be taken at 10%, or a minimum of 8, sampling 

locations (Lyn et al., 2007b). The use of the balanced sampling design allowed the 

estimation of the two main components of the random error from sampling (ssamp), which 

is a measure of heterogeneity, and analysis (sanal).  The estimate of sanal from the 

duplicate readings taken at the 0.2 m scale was assumed to be typical of measurements 

at all scales, and was therefore used to estimate ssamp for all other sampling scales,  by 

rearranging equation 3.1.   

Smeas= √𝑠2𝑠𝑎𝑚𝑝 + 𝑠2𝑎𝑛𝑎𝑙   …………………………………………....Equation 3.1 

Ssamp = √𝑠2𝑚𝑒𝑎𝑠 − 𝑠2𝑎𝑛𝑎𝑙        ……………………………………………Equation 3.2 

 

 

 

 

 

 

Figure 3.3.2:(a) Full balanced design used at sampling scale 0.2 m and (b) simplified balanced 
design used at the other sampling scales (Ramsey et al., 2013). 

 

 

3.3.2 Data Analysis 
 

Data was analysed using the robust analysis of variance (RANOVA). Robust ANOVA 

was preferred to the classical ANOVA because it can accommodate outlying values 

(≤10%) by down weighting the effects of these outliers. In situ heterogeneity was 

expressed as heterogeneity factor (HF). Heterogeneity factor is defined as (10GSDsamp) 

(a) 
Sampling location 

Sample1 Sample 2 

Analysis 1 Analysis 1 

Sampling location 

Sample 1 

Analysis 1 Analysis 2 

Sample 2 

Analysis 1 Analysis 2   
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i.e. 10 to the power of the geometric standard deviation of sample {GSDSamp}. If the 

GSDsamp is defined for loge (natural logarithm), then the HF is equals to eGSDsamp, but the 

calculated values of HF are identical to that calculated by 10GSDsamp. The geometric 

standard deviation of sample (GSDsamp) refers to the measure of scatter of a set of 

logarithmically transformed data whose preferred mean is the geometric mean, while the 

standard deviation of sample (Ssamp) is the classic or arithmetic standard deviation of a 

set of data which is normally distributed. A log-transformed data results in a normal 

distribution and the measure of dispersion is the geometric standard deviation (Garret 

and Goss 1979; Kirkwood, 1979). 

 

 3.3.3 Data Quality. 

 

Detection limit. 

 A number of methods are used in the calculation of the detection limit of a P-XRF. Clark 

et al., (1999) reported that 3 times the standard deviation of sample readings can be 

used to estimate P-XRF instrumental detection limit. Kalnicky and Singhi (2001) 

suggested the use of 3 times the standard deviation of 12 non-consecutive 

measurements of certified reference materials (CRM) such as National Institute of 

Science and Technology (NIST) 2709, 2711 and 2710 for low, mid and high 

concentrations respectively. The use of 3 times the standard deviation of measured 

concentrations of soil samples with low/background concentrations measured 5 times in 

succession was suggested by Vanhoof et al., (2004). 

Standard deviation of the counts per second for each 60 second sample reading is 

recorded by the P-XRF. Thomas et al., (2008) used the median of 3 times the standard 

deviation of samples extrapolated to zero concentration. The median value of 3 times 

the standard deviation value for counts per second of each CRM readings extrapolated 

to zero concentrations was used to estimate the detection limit in this study (Appendix 

I.2). The estimated detection limit was 0.02 mg/kg which was low enough to not affect 

sample measurements in the range of 193 to 71000 mg/kg at both sites. 

 

 3.3.4 Analytical precision and bias. 
 

Instrumental precision was estimated by two consecutive readings of the same sampling 

points to form analytical duplicates required as part of the balanced sampling design 
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using the duplicate method (Figure 3.3.2).  Robust ANOVA was used to estimate the 

analytical precision expressed as standard deviation at the 0.2 m scale. This was 

expressed relative to the mean at 95% confidence. 

In situ bias was estimated from repeated P-XRF analysis of six certified reference 

materials, National Institute of Standards and Technology (NIST) soil reference materials 

(2710a and 2711a), House reference material (HRM 31), and Canadian Certified Soil 

Reference Materials Project (CCRMP-TIL-4), North Carolina State soil reference 

material (NCS 73308), Resource Conservation and Recovery Act soil reference material 

(RCRA) and GBW 07411 were used estimate bias.  

The estimated analytical precision for each site was 14.2% for Gang Mine, and 7.0% for 

Black Rocks at 95% confidence (Table 3.3.1). The monitoring certification scheme of the 

UK Environment agency (EA, 2006) in its published guidelines requires an analytical 

precision of less than 15% at 95% confidence for ex situ laboratory analytical methods. 

These values still compare reasonably to these published ex situ guideline, even though 

these measurements are made in situ. 

Table 3.3.1: Summary estimates of data quality (Instrumental precision and bias at 95% confidence 
for P-XRF Pb measurements at Gang Mine and Black Rock. 

 Instrumental 

precision % 

 Instrumental 

bias % 

Element Gang mine Black Rocks Gang mine & 

Black Rocks 

Pb ±14.2 ±7.0 -0.09 

 

A statistically significant, but small bias of -0.09 % was found from the regression analysis 

of P-XRF Pb measurements against certified values (Appendix I.3). Soil moisture, 

surface roughness and pore spaces are potential sources of additional bias to in situ 

measurements. Earlier work (Argyraki et al., 1997) implicated surface roughness, soil 

moisture and pore spaces as potential sources of bias in field-based P-XRF 

measurements. 
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3.4  RESULTS OF IN SITU MEASUREMENTS. 
 

An X-ray microprobe (EDAX Eagle II XMP, PV 8660/00) was used to produce a map of 

the relative Pb concentration within one of the in situ soil sample cores from Gang Mine 

(Figure 3.4.1). This is helpful in visualizing and explaining the concept of in situ 

heterogeneity. Quantification of the absolute concentration of Pb was however, not of 

sufficient quality to enable heterogeneity estimation at this finer scale. There were no 

equivalent soil cores or maps for Black Rocks because of the rocky nature of the 

sampling area, which prevented the taking of in situ cores. 

 

 

 

 

 

 

 

Figure 3.4.1:X-ray Microprobe (XMP) map of Pb heterogeneity in a soil core (E7) from Gang Mine 

field site (area 26 mm diameter by 9 mm depth taken from the core measured using the P-XRF with 

XMP spot size of 0.03 µm).  More intense green shows areas of higher Pb concentration while areas 

in purple show soil particles or component (Source: Ex situ (XMP) analysis of selected in situ core 

soil samples.  

Histograms of the in situ Pb concentration measured at both sites are shown in Figures 

3.4.2a & 3.4.3a. The Robust ANOVA assumed that at least 90% of the measurement 

values either in their raw or log-transformed units are approximately normally distributed 

with < 10% of outliers. 
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Figure 3.4.2: Frequency distribution of in situ Pb measurements in Gang Mine. (a) Positively 
skewed on a linear scale and (b) Near normal distribution on a log transformed scale. 
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Figure 3.4.3: Frequency distribution of in situ Pb measurements in Black Rocks. (a) Positively 
skewed on a linear scale and (b) more nearly normal distribution on a log transformed scale. 

The histogram of the frequency distribution (Figures 3.4.2a and 3.4.3a) showed that the 

assumption for robust ANOVA of an approximately normal distribution was not met. 

Logarithmic transformation of the concentration values produced a distribution an 

approximately normal distribution which fits the requirement of the robust ANOVA 

(Figures 3.4.2b and 3.4.3b: Appendix I.7). The central tendency of log transformed data 

can be estimated as the geometric mean (GMean) and the scatter expressed as 

geometric standard deviation (GSD) (Garrett and Goss, 1979).The mean is then 

expressed as the geometric mean (GM) and the scatter as the geometric standard 

deviation (GSD or GSDsamp). The confidence limits of the log-transformed data are no 

longer symmetrical to the linear limits of concentration. An example is the geometric 

mean value (3.512) and the geometric standard deviation (GSD) value (0.511) in the 

(a) 

(b) 
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units of log10 of the mg/kg concentration of overall geochemical distribution of Gang Mine. 

The log10 transformed geometric mean (3.512) is equivalent to a geometric mean of 

3252 mg/kg in linear concentrations. The GSD is a measure of heterogeneity and can 

be termed a heterogeneity index. However, the GSD cannot be converted to meaningful 

concentration units (Ramsey et al., 2013). The upper confidence limit (UCL) can be 

calculated as 10555 mg/kg (104.023), and a lower confidence limit (LCL) of 1002 mg/kg 

(103.001) at the 68.3% confidence level (1 standard deviation). The effect of this is that 

heterogeneity can no longer be  expressed as a fixed % RSD,  so the best option is to 

express the heterogeneity as a heterogeneity factor HF which is calculated as 10GSDsamp 

(see detail in Ramsey et al., 2013). Heterogeneity in this study was expressed as 

heterogeneity factor (HF). 

The summary statistics of P-XRF Pb measurement are shown in Table 3.4.1 below. 

Gang mine had higher estimate (~20 to 45%) of Pb heterogeneity (HF=1.24 to 3.22) with 

RSD equivalent (13 to 107%) compared to Black Rock (HF 1.17 to 2.22) equivalent to 

an RSD of 15 to 33%. Results also showed that heterogeneity factor (HF) varied 

substantially between each sampling scale at both sites.  Heterogeneity factor ranging 

from 1.17 to 1.4 (HF ≤ 1.4) can be classified as low heterogeneity, whilst high 

heterogeneity can be associated with heterogeneity factor greater than 1.4 (HF > 1.4). 

This is because the assumption of normal distribution by robust analysis of variance 

breaks down with increasing heterogeneity. When the result of this study was compared 

with previous studies using the HF approach, it was observed that when heterogeneity 

is greater than 30% equivalent to HF of approximately 1.4 (Published in Ramsey et al., 

2013: Appendix I.8), it is more accurately expressed as heterogeneity factor HF. 

 In this order, 0.02 m and 0.05 m scales at Gang Mine had low Pb heterogeneity (HF = 

1.24 and 1.44) respectively. High Pb heterogeneity (HF > 1.4) was recorded at scales 

0.2 m, 0.5 m, 2 m, 5m and 20 m (Table 3.4.1). In contrast, at the Black Rock site, high 

Pb heterogeneities (HF > 1.4) were recorded at three scales (2, 5 and 20 m scales) 

whilst, 0.02, 0.05, 0.2, and 0.5 m scales had low Pb heterogeneity (HF < 1.4). 

Heterogeneity factor was significantly different (p < 0.05) between scales. It is an 

indication that heterogeneity varied at different scales. A comparison of heterogeneity of 

these sites to previously studied sites in the United Kingdom (Ramsey et al., 2013) 

showed that HF varied between scales across the different sites. However, HF increased 

as a function of increasing scale at current (Gang Mine and Black Rocks) and previously 

studied sites (Table 3.4.2). This is in line with earlier studies (Taylor et al., 2005; Thomas 

et al., 2008). 
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Table 3.4.1:Estimated robust and geometric mean (GMean) of Pb concentration and in situ 
heterogeneity expressed as RSDsamp and Heterogeneity factor (HF) for Gang Mine and Black Rocks. 
Gang mine generally has a higher level of Pb-heterogeneity, but a lower concentration of Pb. 

Site 1.Gang 

Mine 

    2.Black 

Rocks 

    

Scale 

(m) 

Mean 

(mg/kg) 

RSDsamp 

(%) 

GMean 

(mg/kg) 

GSDsamp HF Mean 

(mg/kg) 

RSDsamp 

(%) 

GSDsamp  GMean 

(mg/kg) 

HF 

0.02 7991 13.5 6773 0.092 1.24 35107 15 0.07 32506 1.17 

0.05 5362 36.8 4547 0.158 1.44 32781 22 0.09 28136 1.23 

0.2 6401 60.9 3115 0.290 1.95 26631 12 0.116 19752 1.31 

0.5 5907 50.1 3667 0.275 1.88 33100 22 0.084 27024 1.21 

2 6720 107.4 3752 0.367 2.33 24627 33 0.295 18337 1.97 

5 5443 70.6 3348 0.372 2.36 29829 40 0.258 23299 1.81 

20 5617 85.9 3371 0.508 3.22 30013 59 0.346 23679 2.22 

 
The robust mean Pb concentration of Black Rocks was ~ 5 times higher than that of 

Gang Mine. There was no significant relationship (R2 =0.208 and 0.314) between Pb 

concentration and heterogeneity at both sites (Appendix I.6).  

 However, the site specific differences in Pb concentration could also be associated with 

the sources of contamination and land use. As mentioned earlier on in this chapter 

(section 3.2.2), Gang Mine is characterized by spoil heaps which are highly contaminated 

with Pb, and is currently used as a rural green space. Conversely, the scree slope in 

Black Rocks is covered by a thick layer of limestone spoil, presumably taken out of lead 

mine and dumped on the hillside. The lack of vegetation at some part of the site might 

have been caused partially by the more elevated Pb concentration. Some stones from 

limestone fragments in spoil heaps at both sites measured with the P-XRF had 2903 

mg/kg and 194000 mg/kg Pb at Gang Mine and Black Rock respectively. High 

heterogeneity of these sites is a reflection of the mode of deposition and contamination 

source. Heterogeneity factor as a source of an additional about the mode of deposition 

of contaminant and contamination source can be seen in the heterogeneity of previously 

studied sites (Table 3.4.2) compared with the two sites investigated in this study. The 

heterogeneity of some previously studied sites initially expressed as RSDsamp and now 

expressed as heterogeneity factor (HF) is shown in the Table 3.4.2 below.  
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Table 3.4.2: In situ heterogeneity of Pb in soil (expressed as Heterogeneity factor (HF) values) 
increasing across sites (Source: Ramsey et al., 2013). 

Sites Location Scale ( m) Mean (mg/kg) GSDsamp Heterogeneity 

(HF) 

Sewage drying 

pans 

Nottingham, Stoke 

Bardolphc 

2 679 0.013 1.03 

Playing field 

flood plain 

Nottingham,  

River Trentd 

0.5b 113 0.030 1.07 

Landfill now camp 

site 

Littlehamptonh 2b 128 0.083 1.21 

Field near Pb 

smelter 

Avonmouthf 0.5 30448 0.097 1.25 

Pb smelting site Wirksworthg 2 4953 0.097 1.25 

Garden & 

Allotment 

South East 

Londona 

0.2b 942 0.121 1.32 

Carnal dredgings 

site 

Coseley, Westd 0.5b 818 0.147 

 

1.40 

Landfill Hounslow Heath, 

Eastg 

2b 297 0.206 1.61 

Canal dredgings 

site 

Coseley, Eastc 2 467 0.257 1.81 

Ex-firing range Hounslow Heath, 

Westf 

2 756 0.379 2.39 

Mean values are robust estimates and reported on a dry weight basis, except for a which is fresh weight,b values made using ex 

situ measurements (c Thomas, 2010, d Lee, 2002, a Boon, 2006, f Taylor and Taylor, 2003, g Argyraki, 1997, h Lyn, 2003).   

Key:  Heterogeneity values were originally expressed as RSDsamp in these previous works, and were 

converted to HF to enable comparison with the sites investigated (Gang Mine and Blackrock). 

As stated earlier on, a new approach was used to estimate heterogeneity in this study. 

The use of heterogeneity factor (HF) was very useful in estimating and modelling the 

heterogeneity across different scales. A regression of HF against scale at both sites 

showed the variation of heterogeneity factor with scale. The linear regression model of 

HF against scale at Gang Mine showed a good fit with 93% of variance accounted for 

(Figure 3.4.4a).  
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Figure 3.4.4: Regression model of heterogeneity factor (HF) against scale in (a) Gang Mine and (b) 
Black Rock. 

Similarly 82% of variance was accounted for by the linear regression model of Black 

Rock (Figure 3.4.4b). However, only about 22-70% of variance is accounted for by the 

regression model of heterogeneity against scale when the heterogeneity was expressed 

as %RSDsamp. It is an indication that HF more effectively models the in situ heterogeneity 

than %RSD in these cases. Heterogeneity factor (HF) may not only be more accurate in 

the description of high levels of heterogeneity, but also applicable to low levels (Ramsey 

et al., 2013).  The HF approach has some advantages over the % RSDsamp (Discussed 

in Chapter 7). One of such advantages is in the ability to fit wide range of observed 

concentrations (e.g occasional value up to almost 40000 mg/kg in Gang Mine and over 

this range up to 71000 mg/kg in Black Rocks). It is also useful to express high 

heterogeneity values (e.g. over 50% at the 95% confidence level) as the lower 

confidence limit (LCL) never goes below zero, which is a problem that arises when 

%RSDsamp is used (Ramsey et al., 2013) and when heterogeneity is greater than 30%, it 

is more accurately expressed as HF than as %RSD. 
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3.4.1 Implications.  

Evaluation of in situ heterogeneity using the specific sampling design based upon 

duplicated samples and heterogeneity factor (HF) was useful in setting up physical 

simulations of the effect of real-world heterogeneity on plant uptake in pot trial. It also 

has several uses for analytical geochemists discussed in Chapter 7. 

Plant uptake models, evaluation and predictions of chemical processes that take place 

in contaminated environments can be more accurately made using heterogeneity values. 

Previous works on Zn and Cd showed that uptake of metals from the soil is greatly 

influenced by in situ heterogeneity. Studies by Millis et al., (2004) showed that the uptake 

of Cd by lettuce in the binary heterogeneity treatment was increased by 40% compared 

to the homogeneous Cd treatment with an estimated RSD of 200%. Thomas et al., 

(2008) observed 100% decrease in Zn uptake in the binary treatment compared to the 

homogeneous. 

There is usually an assumption that ex situ laboratory measurements are more correct 

than in situ measurements, but in situ measurements are more realistic of contaminant 

concentration in the field and a closer representation of the true exposure experienced 

by living organisms (Ramsey, 2010). Estimation of in situ heterogeneity also enhances 

the reconstruction of such in situ heterogeneity at specified levels in pot trials to examine 

its effect on plant uptake in greenhouse experiments discussed in Chapter 6. Thomas, 

(2010) recreated in situ heterogeneity of Zn in pot trials in a slightly different approach. 

Plant uptake models will be useful in evaluating field heterogeneity. This general 

approach will help plant uptake in the field to be more accurately predicted.  

3.4.2 Conclusions and further work. 

 

Results showed that the specific sampling design, used in conjunction with the duplicate 

method, can be used to quantify spatial heterogeneity across a range of scales for Pb 

(or any other constituent of soil) at contrasting sites. The initial hypothesis that in situ 

heterogeneity can be quantified and modelled over a range of scale to describe the 

spatial distribution of Pb in selected field sites (Section 3.1 and summarised in Table 

3.4.3 below) was accepted. The degree of heterogeneity can be expressed numerically 

as heterogeneity factor (HF) for each scale (i.e. sampling distance). This finding supports 

previous research into this area which links in situ spatial heterogeneity of Zn and scale 

(Taylor et al., 2005; Thomas et al., 2008)). Heterogeneity varied between sites, but did 

not increase as a function of scale. Results also showed that HF provides a better 
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estimate of heterogeneity (where heterogeneity > 30%) in contaminated site 

investigation when compared to the use of %RSDsamp. 

Table 3.4.3: Summary of hypothesis tested.  

Hypothesis (alternative) Species 

 
1. (a) Heterogeneity 

quantified  

 
Accepted 

      (b) Variation over a range 
of scale  
             

Accepted 

  

Probability P=0.05 of whether hypothesis is rejected or accepted. 

Results suggest that the quantification of in situ heterogeneity expressed as HF can find 

useful application in the improvement of sampling strategies, reliability of risk and 

estimation of human exposure to Pb. However, for the purpose of this research, the 

results of the quantified spatial heterogeneity of Pb are fit for the purpose of designing 

greenhouse experiments to assess the impact of in situ heterogeneity of Pb on plant 

uptake discussed in Chapter 6. 
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CHAPTER 4: Pot trials to assess the effect of lead added treatments on selected 

species in one lead concentration, and over a range of concentrations.  

 

4.0 INTRODUCTION 
 

This chapter describes the design of the first and second pot trials which assessed the 

effect of Pb on selected plant species in  Pb concentration of 1000 mg/kg and over a 

range of concentration (100 to 10000 mg/kg Pb added), compared to the control (0 mg/kg  

Pb added) treatment. These pot trials also compared within and between plant species 

to enable their selection for more focused hypothesis testing. It discusses the 

background to the experiment and justifies the subsequent selection of plant species 

from the first and second pot trials for further experiments. The discussion also 

addresses the choice of contaminant, Pb concentration levels and details of the 

experimental methods, seed germination, pot and growth media preparation, data 

analysis and interpretation. 

4.1 Background to Experiments. 
 

In the previous chapters (Chapters 2 and 3), reviews were made of the effect of spatial 

heterogeneity of Pb on plant uptake, factors affecting the uptake of Pb from the soil, Pb 

speciation, potential Pb accumulating plant species, justification for the selection of plant 

species for the first pot trial, and the finding from investigations of two field sites. 

Several plants have been shown to accumulate Pb to varying extent. As discussed in 

earlier chapter (Chapter 2: Section 2.4.3), potential hyperaccumulator species such as 

Armeria maritime (sea pink), Arabidopsis halleri (rockcress), Ambrosia artemisiifolia 

(ragweed), Brassica napus (oil seed rape), Brassica juncea (Indian mustard), Brassica 

oleracea (including common cultivars such as cauliflower, broccoli, cabbage, kale, 

Brussel sprout), Festuca ovina (sheep fescue), Helianthus annus (sunflower), Thlaspi 

rotundifolium (round leaved pennycress), Triticum aestivum (bread wheat) and Zea mays 

(maize or corn) and Aquilaria malaccensis (Agarwood, Aloewood or Eaglewood) 

(Reeves and Brooks, 1983; Baker and Brooks, 1989; Baker et al. 1994; Deram et al. 

1997; Bert et al., 2000; Kareem et al., 2013). 

Plant species used in these pot trials were selected after a review of potential Pb 

accumulators in Chapter 2, Section 2.5. They were selected based upon their ability to 

accumulate Pb in their shoots and roots, root mass in comparison to scales of 

heterogeneity in the growth medium, status as either native or non-native species, and 
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practicability of obtaining and growing seeds in pot trials. Using these criteria, as 

explained in Chapter; Section 2.5, the study species used in these experiments include: 

Brassica juncea, Brassica napus, Thlaspi caerulescens, Gentianna Penneliana, Zea 

mays and Bidens alba. 

4.2 Contaminant for use in pot experiment. 
 

The choice of suitable speciation of Pb (contaminant) used in the growth medium for the 

pot trials was based upon the following two criteria: 

1. The form and concentrations of Pb expected at the field site from literature survey. 

2. The solubility and bioavailability of the particular form of Pb for plant uptake. 

Two forms and speciation of Pb considered here are lead (II) oxide (PbO) and lead (II) 

nitrate (Pb (NO3)), the use of which has previously been reviewed in the literature 

Chapter 2, Section 2.2. Lead oxide (PbO) was considered best for use in this experiment 

for these reasons: (i) to reduce the leaching and migration associated with Pb (NO3)2 (ii) 

being the most stable Pb species reported around investigated field sites (accounting for 

about 88-92% of Pb speciation), based on previous report (Gee et al., 1997), (iii) to avoid 

introducing nitrate with its nutrient proportion into the growth medium. Lead oxide is 

expected to be less bioavailable to the plants than Pb (NO3)2., but this was not considered 

a major limitation to this research as PbO was viewed as more realistic of field conditions 

for both the first and subsequent pot trials that simulated in situ heterogeneity of Pb. The 

bioavailability of PbO was quantified experimentally (Section 5.5). 
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4.3 FIRST POT TRIAL. 

 

The first pot trial was in done in two stages: (I) seed germination experiment and (ii) the 

first pot experiment. The seed germination experiment had 6 plant species made up of 

16 varieties while the first pot trial had 4 species made up of 13 varieties selected after 

the seed germination experiment. As a result of these large number of species and 

varieties in the first pot trial, the number of replicates of each variety was limited to three. 

More replicates were maintained in subsequent pot trials after the final selection of the 

most suitable variety/species. 

4.3.1 Objectives of the first pot trial. 
 

 The objectives of the first pot trial is to: 

I. To quantify and compare Pb concentration in plant shoots, and hence potential 

for Pb uptake. 

II. To assess the effects of Pb on plant growth and morphology in relation to uptake 

of Pb in pot trial. 

III. Assess the viability of the seeds of these plant species for germination. 

IV. Assess issues of seed availability in terms of obtaining seeds from suppliers. 

V. Select most suitable species/varieties that can tolerate high Pb in soil for 

subsequent pot trials on the effect of heterogeneity of Pb in soil on uptake by 

plants by comparing different varieties within one species for between- treatment 

effects 

 

Hypotheses 

1. The 1000 mg/kg Pb in growth media has an effect on plant performance.  

2. These species/varieties differ in their tolerance to Pb in the growth media at this 

concentration.  
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4.3.2 Seed Germination Experiment. 
 

Methods 
 

Prior to seed germination experiment, 18 seed trays (3 each for 6 plant species) were  

washed and sterilized with household bleach (one part to nine parts of water), thoroughly 

rinsed with tap water and finally with reverse osmosis water and air dried to ensure they 

are sterile for seed sowing. Trays were labelled with names of plants to be sown and 

date sown on them. Seed trays had drain holes to prevent water-logged conditions after 

seeds had been sown. 

 A light density fine grade, Sinclair® vermiculite of (grain size 2.0-5.0 mm) with neutral 

pH 7 (which is lighter and easier for seeds to breakthrough it) was used for sowing seeds. 

It was watered with tap water until evenly moist before sowing seeds and then placed in 

seed trays about 1cm below the rim. Small seeds were sprinkled thinly on the vermiculite, 

while large seeds were sown to a depth of about 1cm or according to supplier’s 

instruction if present and covered thinly with vermiculite. After sowing, large trays with 

drain holes were used to cover trays to let in light and air, prevent medium from drying 

out and becoming damp as well. They were left to germinate in a glasshouse under a 

photoperiod of 16 hours natural light and maintained at a temperature of 20 C ± 5°C. 

Trays were removed once germination occurred. Watering was done carefully when the 

top of the seed trays appeared dry using a fine spray watering can, and water sprinkled 

gently to avoid resetting or disturbing the seeds.  The surface was kept evenly moist and 

never dried out. The record of seeds sown is shown in Table 4.3.1. 
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4.3.3 Result of the seed germination experiment (prior to 1st pot trial). 
 

The result of the seed germination experiment is shown in Table 4.3.1. Sixteen varieties 

made of six species were sown. Four different varieties of Brassica juncea, two of 

Brassica napus, one of Gentianna pennelianna and Biden alba, four of Zea mays and 

four of Thlaspi caerulescens.   

The following varieties had the highest germination rates, Brassica juncea (BJ 18) 88% 

among the Brassica juncea varieties, ZM OH43 95% among the Zea mays, BN SW 97% 

among Brassica napus, TC HS 95% among the Thlaspi caerulenscens (Table 4.3.1). 

 Gentianna pennelianna and Biden alba had low germination rates of 2% and 1% 

respectively. As a result of this poor germination rate and non-availability of an alternative 

source of seed of these species, they were dropped from the initial experiment.  

Thlaspi caerulescens (003045) supplied by KEW was also dropped due to its poor 

germination rate (5%). 

 Four species (Brassica juncea, Brassica napus, Thlaspi caerulescens and Zea mays) 

and 13 different varieties were considered for initial transplanting into unspiked growth 

medium after 7 days of germination to ensure proper growth and establishment before 

the actual transplant into the Pb spiked growth medium. Some of the varieties/species 

germinated before the initial transplant into unspiked growth medium are shown in Figure 

4. 3.1.
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Table 4.3.1: Result of the seed germination experiment.  Note: Thlaspi caerulescens recently renamed Noccaea caerulescens  

Seed type 

(Species) Accession No/Abbreviation Origin 

Plant name/ 

common nane Date sown Estimated quantity sown Supplier No germinated 

% 

Germination 

Brassica 

juncea(BJ) P1 426308/ BJ 42 Pakistan 

K-100/ Indian  

mustard 1/8/2012 2.3 g ( 60 seeds) USDA 40 67 

  PI 173874/ BJ 17 India, Delhi  NA/Indian mustard    1/8/2012 2.3 g ( 60 seeds) USDA 45 75 

  PI 182921/ BJ 18 India, Gujarat  NA/Indian mustard   1/8/2012 2.1 g (60 seeds) USDA 53 88 

  PI 211000/ BJ 21 

Afganistan, 

Badakhshan  NA/Indian mustard  1/8/2012 2.4 g (60 seeds) USDA 25 42 

Brassica napus 

(BN PI 601261/ BN SW Sweden, Malmohus 

Crystal/ oil seed 

rape 1/8/2012 2.7 g (60 seeds) USDA 58 97 

  3045/ BN K Algeria  NA/oil seed rape   2.3 g ( 60 seeds) KEW 52 87 

Zea mays (ZM) 

subs mays Ames 19288/  ZM OH 43 USA, Ohio OH43/ corn 1/8/2012 15.6 g (40 seeds) USDA 38 95 

  PI 550467/ ZM B 37 USA, Iowa B 37/corn  1/8/2012 14.6 (40 seeds) USDA 35 88 

  PI 550473/ ZM B 73 USA, Iowa B 73/corn  1/8/2012 15 g (40 seeds) USDA 36 90 

  PI 644101/ ZM 64 USA, Iowa LH1/corn   1/8/2012 15.4 g (40 seeds) USDA 33 83 

Gentianna 

pennelianna (GP) Not applicable/GP          1/8/2012 3.5 g (200 seeds) Herbiseed 3 2 

Biden alba (BA) Not applicable/BA         1/8/2012 6.3 g (200 seeds) Herbiseed 2 1 

Thlaspi 

caerulescens 

(TC)   Not applicable/ TC HS Not applicable 

 NA/Alpine  

pennycress  1/8/ 2012 9.2 g (80 seeds) Herbiseed 76 95 

   Not applicable/ TC BR Black rocks 

 NA/Alpine 

pennycress    1/8/2012 3.8 g (60 seeds)  Claudia Harflett 54 90 

   Not applicable/ TC GM Gang  Mine 

 NA/Alpine 

pennycress     1/8/2012 2.5 g (60 seeds)  Claudia Harflett 42 70 

  8035/ TC  KEW Cameroun        1/8/2012 2.3 g ( 60 seeds) KEW 3 5 

                USDA-United States Department of Agriculture.  KEW—Royal Botanic Garden at KEW.   Abbreviations representing species/varieties used in the first pot trial and subsequent pot trials in red.      

N/A—Not applicable 
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  B. napus (BN SW)   B. napus  (BN K)   B. juncea (BJ 18)   B. juncea ( BJ 42)     B. juncea (BJ 17)   B. juncea  (BJ 

21) 

                      Scale bar- 4 mm represents 5 mm  

               
      

Zea mays (ZM B 73)       Zea mays (ZM 64)    Zea mays (ZM B 37)         Zea mays (ZM OH43)        

                           Scale bar: 3.6 mm represents 5 mm 

      
 Thlaspi (TC GM)         Thlaspi (TC HS)          Thlaspi (TC BR) 

 

                                  Scale bar--- 6 mm represents 5 mm 

Figure 4.3.1: Some of the varieties of Brassica napus, Brassica juncea, Zea mays and Thlaspi 
caerulescens germinated (Species/varieties abbreviations are given in Table 4.3.1 above). 

 

4.3.4 Growth Medium for Pot Trials (1st & 2nd). 

 

The growth medium was a mixture of silver sand of grain size 0.063 - 0.2 mm and 

compost in the proportion (by volume) of 7 parts sand to 3 parts compost, which was 

spiked with total Pb concentrations of 1000 mg/kg (pot trial 1) and 100 to 10,000 mg/kg 

dry weight of Pb in the form of PbO for the second pot trial. Sand was used to allow for 

proper aeration. The ratio of sand to compost was as described in previous work 

(Thomas, 2010). Potting growth medium was chosen to best meet the needs of plant 

5 mm 

5 mm 

 5 mm 
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roots of all species for air, water, nutrients and plant support. The nutrient rich compost 

combined with sand made an excellent growth medium for these plant species. 

4.3.5 Moisture Determination 

 

 John Innes Compost No. 2 was used. Determination of moisture content of growth 

medium was done using 100 ml of both compost and sand from several lots placed into 

clear plastic bags. Fresh weights of compost and sand were recorded and then dried at 

600 C in a fan oven overnight.  These were useful in determination of the moisture content 

and estimation of the amount of sand and compost required for growth media in each 

experimental pot. The mean percentage moisture for sand and compost were 0.12% and 

31% respectively (Appendix II.1: Tables B II.1 and CII.1). 

4.3.6 Preparation of Growth Media for 1st pot trial. 

 

 A mass of 38.4 kg of silver grade sand was transferred into a concrete mixer to prepare 

a batch of growth medium (1000 mg/kg Pb). A volume  of 13.5 L of John Innes Compost 

2 was weighed and added to the concrete mixer (containing the silver grade sand) 

(Appendix II.1: Table DII.1).The content was thoroughly mixed using the concrete mixer 

to obtain a sufficiently homogeneous growth medium. Thirty-nine pots (3 replicates for 

13 species/varieties) of 1000 mg/kg Pb added treatment were maintained in the first pot 

trial. 

Five lots each of about 10 g of the mixed spiked growth media was sampled to check 

the Pb concentration of growth media. These portions were taken from randomly 

selected pots, dried in the oven at 110oC and milled using the tema mill. A mass of 0.25 

g of the milled sample was used to determine Pb concentration and (homogeneity) of 

the contaminant at each Pb concentration level using the Atomic Absorption 

Spectrometer (AAS) after acid digestion by nitric and perchloric acids. Certified reference 

materials (CRMS), duplicates and reagent blanks were used for quality control. Growth 

media actual Pb concentration for the first pot trial is shown in Table 4.3.2. 
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Table 4.3.2: Growth media Pb concentration check for pot trial 1. 

Nos of 

replicates 

Measured Pb 

concentration 

mg/kg 

Nominal Pb 

concentration 

mg/kg 

1 907 1000 

           2 943   

3 927   

4 940   

5 836   

     6 914   

Mean 911   

STDEV 39.27   

SEM 16.03   

 

 

4.3.7 Transplanting of seedlings for the first pot trial. 

 

After germination and the development of  the first true leaves, plants of  approximately 

equal size were selected and transplanted into the centre of separate circular 1- litre pots 

(15 cm deep and 12 cm wide) pots for each species containing unspiked growth medium 

(washed silver sand, John Innes compost II, 7 parts sand to 3 part compost). Forty 

seedlings per plant species were transplanted into pots (making a total of 240 seedlings) 

of unspiked growth medium first for two weeks and watered daily using a fine rose 

watering can. This was maintained under 16 hours of natural light at 20 ± 5 o C in the 

glasshouse. At two weeks after the first transplanting, three seedlings of each species 

were transplanted into the 39 pots containing growth medium spiked with Pb contaminant 

at concentration of 1000 mg/kg Pb added and another 39 in the 0 mg/kg Pb added.  

A total of 78 pots were maintained (1000 mg/kg and 0 mg/kg added treatment and control 

of 4 species and 13 varieties) for 3 weeks under a photoperiod of 16 hours natural 

sunlight at 20 ± 5°C in the glasshouse. These were maintained in 3.5-litre square pots 

(dimensions 17 cm x 24 cm) in a simple randomized block design both in 1000 mg/kg 

Pb and 0 mg/kg added Pb as control (Figure 4.3.2 and Appendix II.1: Table AII.1). Pots 

were rotated clockwise by 90o weekly to reduce the effect of uneven environmental 

conditions within the glass house.  
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Randomized blocks were between species/varieties, because of the number of varieties 

and the available space/m2 of greenhouse benches.  

 

Figure 4.3.2: Randomized Block design for the first pot trial. Scale bar: 17 mm represents 50 mm 

 

4.3.8 Data collection and analysis. 
 

Growth data such as plant height, number of true leaves, number of dead leaves and the 

longest leaf length were taken at initial transplant (week 1) and at harvest (week 3). Stem 

height, leaf length and stem width of the different varieties were measured to the nearest 

± 0.1 mm using a tape rule and caliper. 

For the purpose of this experiment, growth rate was expressed in terms of Growth index 

(GI) (Keever, 1994 and Melannie et al., 2006), who estimated growth index in terms of 

measured plant height and width. However, GI was not a key variable in this experiment 

but merely an additional means of assessing growth rate during the growing period. 

Growth index was mathematically expressed as GI= height (mm) +width at widest point 

+ width 900 to first width/3 (Keever, 1994).Growth index values are stated with 1 standard 

error on the mean.   

Data were analyzed using IBM SPSS version 19 and Minitab 16 for windows. The 

Student t-test was used to test for between treatment effects for measured variables. 

Analysis of variance (ANOVA) and the Tukey HSD Post-hoc test were used to compare 

biomass and Pb concentration of shoots, roots and total plant Pb between 

species/varieties. This was used to study plants uptake and behaviour to Pb contaminant 

at the concentration applied. Results were applied in selecting plant species and Pb 

concentrations in further experiments. 

50 mm 
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At harvest, other observable effects such as leaf chlorosis were recorded when it 

occurred, which indicated a severe effect of the Pb added treatment on the 

species/varieties affected. Plants were harvested after three weeks of growth in the 1000 

mg/kg Pb spiked growth medium. Dried and milled plant samples were analysed for 

shoot and root Pb concentration using the AAS (PerkinElmer AA Analyst 400) after acid 

digestion by nitric and perchloric acids. 

4.3.9 Harvesting. 

Plant stems were cut 0.01 mm above the soil surface for shoot harvest and soil removed 

from the roots using a sieve. Soil was removed from harvested plant materials by 

repeated washing using tap water and dried at 60oC for 48 hours (Subramanian, 

2011).This was milled (using a herbage mill) for acid digestion using nitric and perchloric 

acids (Thompson and Walsh, 1983; Subramanian, 2010) and analysed for Pb using the 

AAS (Acid digest method and quality control in Appendix II.14 ).     
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4.4 RESULTS OF THE FIRST POT TRIAL. 
 

Visible significant differences within and between varieties and species were detected 

during the growth period. Adequate aboveground plant biomass (i.e. > 1 g FW) had been 

produced from 21 day growth in the spiked growth medium by most varieties when they 

were harvested. Survival rate was 100% for most species, except Thlaspi caerulescens 

(TC GM and TC BR). At harvest, a reduced root size was observed for all the Brassica 

juncea varieties in the 1000 mg/kg. Plants conditions at harvest in control and Pb added 

treatments are shown in Figures 4.4.1 to 4.4.4.  

                      

(a) BJ 42   ----------------               (b) BJ 21---------------------              (c) BJ 17--------------------------   

     

(d) BJ 18------------------------ 

Figure 4.4.1: Brassica juncea BJ 42, 21,17 and 18 (from left to right) in the control (Left) and Pb 
added (right) treatments at harvest respectively.  BJ 42, BJ 21 and BJ 18 showed chlorosis, 
reduced height and wilting of leavest. Arrow represents scale bar. See scale bar information on key 
below. 
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(a)  ZM 64------------------------------------   (b) ZM B73---------------------------------   (c) ZM OH43---------------------------                          

       

(d) ZM B37---------------------------- 

Figure 4.4.2: Zea mays ZM 64, B37, OH43 and B73 varieties (from left to right) in the control and Pb 
added treatments at harvest respectively. Arrows represents scale bars. See scale bar information 
on key below. 

                
(a)  BN K -------------------------------------------------     (b) BN SW---------------------------------------- 

Figure 4.4.3: Brassica napus varieties, BN K and BN SW (from left to right) in the control and Pb added 

treatments at harvest respectively. Arrows represents scale bars.See scale bar information on key 
below. 
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(a) TC HS ----------------------------------------------      (b) TC BR----------------------------------------------------------------------                                                        

              

(c) TC GM---------------------------------------------------------------------------------------------- 

Figure 4.4.4: Thlaspi caerulescens (TC) varieties TCHS, TCBR, TCGM (from left to right) in the 
control and Pb added treatments at harvest respectively. Arrows represent scale bars. See scale 
bar information in key below. 

Key: Scale bar information for Figures 4.4.1 to 4.4.4. 

    Scale bar information   

Variety 
abbreviation Species name Control 1000 mg/kg Pb added 

BJ 42 Brassica juncea 4 mm represents 20 mm 4 mm represents 20 mm 

BJ 21 Brassica juncea 3 mm represents 20 mm 5  mm represents 20 mm 

BJ 17 Brassica juncea 4  mm represent 20 mm 3  mm represents 20 mm 

BJ 18 Brassica juncea 2  mm represents 20 mm 2 mm represents 20 mm 

ZM 64 Zea mays 5  mm represents 20 mm 9 mm represents 20 mm 

ZM B73 Zea mays 5 mm represents 20 mm 5 mm represents 20 mm 

ZM OH43 Zea mays 3  mm represents 20 mm 3 mm represents 20 mm 

ZM B37 Zea mays 4  mm represents 20 mm 5 mm represents 20 mm 

BN K Brassica napus 12 mm represents 20 mm 15 mm represents 20 mm 

BN SW Brassica napus 8  mm represents 20 mm 13 mm represents 20 mm 

TC HS Thlaspi caerulescens    15 mm represents 10 mm 50 mm represents 10 mm 

TC BR Thlaspi caerulescens 50  mm represents 5 mm 6 mm represents 5 mm 

TC GM Thlaspi caerulescens 50 mm represents 5 mm 19 mm represents 5 mm 
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4.4.1 Shoot, root and total dry biomass. 

 

Comparison of the shoot, root and total dry biomass showed significant differences 

between treatments in these parameters for some species/varieties (Figures 4.4.5-

4.4.7). Only those differences with statistical significance (P < 0.05) are discussed in 

detail. 

The shoot dry biomass of Zea mays varieties ZM B73 and ZM 64 were significantly 

different (P = 0.007 and 0.036 < 0.05) between treatments respectively (Appendix II.3: 

Tables CII.3 and DII.3). Similar trend of significant differences in shoot biomass between 

treatment were observed where P =0.012 and 0.006 < 0.05) respectively in BJ 18 and 

BJ 42 (Appendix II.3: Tables AII.3 & BII.3) among the Brassica juncea varieties and 

P=0.012 and 0.002 for BN K and BN SW respectively among the Brassica napus 

varieties (Appendix II.3: Tables EII.3 & FII.3). It implied that these differences were not 

random occurrences, but as result of the Pb treatment. The variety BJ 17 did not show 

chlorosis, while chlorosis and wilting of leaves were observed in BJ 42 (Figure 4.4.1.).  

 

 

Figure 4.4.5: Mean shoot biomass DW between treatments for each species and variety in the 1st 
pot trial. Error bars represent 1 standard error on the mean where n=3. *--------Significant at P<0.05. 

 

Root dry biomass was also significantly different P=0.001, 0.004, 0.002 and 0.03 < 0.05) 

between treatments for BJ 18, ZM B73, ZM OH43, BN SW and TC HS respectively 

(Figure 4.4.6; Appendix II.4 : Tables A to DII.4).  

 

0

0.5

1

1.5

2

2.5

3

3.5

BJ 18 BJ 42 BJ 17 BJ 21 ZM
B73

ZM
B37

ZM
OH43

ZM 64 BN SW BN K TC BR TC GM TC HS

M
e

an
 s

h
o

o
t 

d
ry

 w
e

ig
h

t 
(g

)

Species/variety

 Shoot (g) DW (0 mg/kg)  Shoot (g) DW (1000 mg/kg)

* * * * 

* * 



87 
 

 

Figure 4.4.6: Root biomass DW between treatments for each species and variety in the 1st pot trial. 
Error bars represent 1 standard error on the mean where n=3. *--------Significant at P<0.05. 

 

Similarly, the total dry biomass differed significantly between treatments for BJ 18, BJ 

42, ZM B73, ZM 64, BN SW and BNK ( Figure 4.4.7; Appendix II.4: Tables E to I-II.4). 

The difference between the two treatments is an indication of the significant effect of Pb 

in the soil on biomass and plant performance. However, significant effect was not 

detected on the total dry biomass of some of the varieties and species, which suggest 

that not all species/varieties were negatively impacted by Pb or the experiment did not 

have sufficient power to detect such an impact.  
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Figure 4.4.7: Mean total dry biomass DW between treatments for each species and variety in the 1st 
pot trial. Error bars represent 1 standard error on the mean where n=3. *--------Significant. 

 

4.4.2. Comparison of shoot, root, total plant Pb (mg/kg) within species in the Pb 

added treatment (1st pot trial).  

 In line with stated hypotheses that some of the tested species/varieties are more tolerant 

to the Pb added treatment than the other, shoot, root and total plant Pb concentrations 

were compared within and between species/varieties. This comparison enabled 

selection of species/varieties which can tolerate high Pb in their shoots and roots without 

severe observable effect (e.g severe wilting of leaves and plant death) in the Pb added 

treatment.  

The difference in the shoot, root and total plant Pb (mg/kg) dry weight was generally 

significant (P=0.000 < 0.05) within the Brassica juncea, Zea mays and Thlaspi 

caerulescens varieties (Figures 4.4.8 to 4.4.11; Appendix II.7: Tables A to L-II.7).  

Mean shoot Pb concentration ranged from 83 to 144 mg/kg for BJ 17, 18 and 42. This 

difference was significant (Appendix II.6: Table BII.6). However the variety BJ 21 had 30 

to 90% higher shoot Pb than the lowest and highest concentration within this range 

(Figure 4.4.8). A similar trend of increased total plant Pb (mg/kg) DW was recorded for 

this variety. The root Pb concentrations varied significantly within varieties and was 

highest (643 mg/kg) for BJ 18 and lowest (38 mg/kg) for BJ 21 (Figure 4.4.9).  
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Figure 4.4.8: Mean shoot, root (mg/kg) and total Pb concentration (mg/kg DW) within varieties of 
Brassica juncea grown in the Pb added treatment in the first pot trial. Error bars represent 1 standard 
error on the mean where n=3. 

The Zea may varieties ZM 64, ZM B 73,  ZM OH43 and ZM B37 were significantly 

different (P = 0.000 < 0.05)  in their shoot, root and total plant Pb concentrations 

(Appendix II.7:Tables F to HII.7). Lead concentrations for these varieties ranged from 45 

- 126 mg/kg, 244 - 578 mg/kg and 79 – 203 mg/kg DW for shoot, root and total plant Pb 

respectively (Figures 4.4.9). The highest shoot Pb (578 mg/kg) was recorded for B73 

and the lowest (244 mg/kg) for OH43 (Figure 4.4.9). 

 

Figure 4.4.9: Mean shoot, root (mg/kg) and total Pb concentration (mg/kg DW) within varieties for 
Zea mays in the 1st pot trial. Error bars represent 1 standard error on the mean where n=3. 
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concentrations were 66 and 48 mg/kg respectively. There were no significant difference 

(P=0.417, 0.310) in their root (385 and 305 mg/kg) and total plant Pb (mg/kg) DW (77 

and 69 mg/kg) respectively (Figure 4.4.10). 

 

Figure 4.4.10: Mean Shoot, root (mg/kg) and total Pb concentration (mg/kg) within Brassica napus 
varieties in the 1st pot trial. Error bars represent 1 standard error on the mean where n=3.    

Thlaspi caerulescens variety TC BR had the highest root Pb concentration (631 mg/kg) 

when compared to TC GM and TC HS (114 and 358 mg/kg) (Figure 4.4.11). This was 

53 and 76% more than those of TC GM and TC HS respectively. The difference within 

these varieties was significant P=0.000 (Appendix II.7: Tables I II.7 to KII.7).  TC HS had 

higher shoot Pb (264 mg/kg) when compared to TC GM and TC BR (Figure 4.4.11). 
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Figure 4.4.11: Mean shoot, root and total Pb concentration (mg/kg) within each Thlaspi 
caerulescens variety. Error bars represent 1 standard error on the mean where n=3. 

 

4.4.3. Comparison of the shoot, root and total plant Pb between species/varieties 

of plants grown in the Pb added treatment (1st pot trial). 

 

Comparison of the shoot, root and total plant Pb (mg/kg) DW between species/varieties 

are shown in Figures 4.4.12 to 4.4.14 below.  Shoot, root, and total plant Pb 

concentrations (mg/kg) dry weight showed that the Pb added treatment had a significant 

effect (P = 0.000) on most of the plant species. However, the shoot, root and total plant 

Pb concentrations of some of the species were not significantly different (Figures 4.4.12 

to 4.4.14; Appendix II.6: Tables A to I II.6).  

Brassica juncea variety BJ 21 differ significantly (P < 0.05) from the others in its shoot, 

root and total plant Pb concentration with the highest mean  shoot of 905 mg/kg and the 

lowest root Pb concentration of 38 mg/kg.   
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Figure 4.4.12: Shoot Pb concentration (mg/kg) across species and varieties in the 1000 mg/kg Pb 
added treatment. Tukey post-hoc test, sharing letters means not significantly different. Error bar 
represent 1 standard error on the mean where n=3). 

Generally, more Pb was accumulated in the roots than shoots (by a factor of 2.5). Root 

Pb concentrations ranged from 114 to 642 mg/kg with the exception of the variety BJ 21 

which had about 17 times lower root Pb than the highest root Pb concentration in this 

range (Figure 4.4.13). More Pb was accumulated in the shoot of same variety (BJ 21) 

(by a factor of 23.8) when compared to its root Pb concentration (Figure 4.4.12). Seed 

supplier’s note on this plant suggest that BJ 21 seeds were collected from heavily Pb 

contaminated sites in Afghanistan. The exceptional Pb accumulating trait of this variety 

could be linked to its adaptation to Pb resulting in enhanced metal uptake and 

translocation to the shoot. 

 

 

Figure 4.4.13: Root Pb concentration (mg/kg) across species and varieties in the Pb added 
treatment. Tukey post-hoc test, sharing letters means not significantly different. Error bars 
represent 1 standard error on the mean where n=3. 
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Figure 4.4.14: Total plant Pb concentration (mg/kg) dry weight across species and varieties in the 
Pb added treatment. Tukey post-hoc test, sharing letters means not significantly different. Error 
bars represent 1 standard error on the mean where n=3. 

In contrast low shoot Pb concentrations were recorded for most species. Shoot Pb 

ranged from 42 to 263 mg/kg for most species/varieties. However, BJ 21 had shoot Pb 

concentration of 905 mg/kg, three times higher than the highest concentration and 21.5 

fold higher compared to the lowest concentration in this range. Some of the varieties and 

species were not significantly different (P > 0.05) in their shoot, root and total plant Pb 

as judged by the Tukey HSD test (Figures 4.4.12 to 4.4.14). Varieties/species such as 

BJ 21, BJ 42, ZM B37, ZM 64, BN SW, BN K showed observable effects of Pb in the 

form of mild to severe leaf chlorosis and wilting of leaves (Figures 4.4.1 to 4.4.4).    

4.4.4 Comparison of Concentration Factor between species and varieties. 
 

As discussed in Chapter 2: Section 2.4.2, plant capacity to accumulate metals from the 

soils can be estimated by a Concentration factor (CF) (Safae et al., 2008) expressed as 

the ratio of the concentration of metal in shoots and roots mg/kg DW and the soil Pb 

concentration mg/kg DW. The shoot concentration factor was within the range of 0.05 to 

0.99 (Figure 4.4.15) while the root concentration factor (CFroot) ranged from 0.04 to 0.70 

(Figure 4.4.16). All species/varieties had CFshoot less than 1, although it was very variable 

with 80% differences between the highest and lowest. Those of Thlaspi caerulescens 

TC HS and BJ 21 were significantly higher than most species/varieties (Figure 4.4.15; 

Appendix II.5:  AII.5 and BII.5). The differences between some of the species were not 

significant. Shoot concentration factors for most species/ varieties were generally lower 

than the accumulator threshold of 1. It is an indication that most of these species/varieties 
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do not easily translocate Pb to the aboveground part of the plant from the root as a 

tolerance mechanism.  

 

Figure 4.4.15:  Mean Shoot Concentration factor (CFshoot) between species and varieties in the Pb 
added treatment. Error bars represent 1 standard error on the mean where n=3. Means sharing letters 
are not significantly different as judged by the Tukey post-hoc test. 

The CFroot of most species were generally higher than the CFshoot, which was 73 to 75% 

higher (Figure 4.4.16) when compared to the CFshoot for most species. There was an 

exceptional decrease (25 fold decrease) in CFroot of BJ 21. These values of CFshoot and 

CFroot are similar to those of Pb accumulating species/varieties previously reviewed in 

literature. 

 

Figure 4.4.16: Root Concentration factor (CFroot) across species and varieties in the Pb added 
treatment. Error bars represent 1 standard error on the mean where n=3. Mean sharing letters means 
are not significantly different as judged by the Tukey post-hoc test. 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

BJ 18 BJ 17 BJ 21 BJ 42 BNK BN
SW

ZM
64

B37 B73 OH43TC HS TC
GM

TC BR

Sh
o

o
t 

C
o

n
ce

n
tr

at
io

n
 F

ac
to

r 
(C

Fs
h

o
o

t)

Species/varieties

c cd cdcd
cde cdede ee e e

a

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

BJ 18 BJ 17 BJ 21 BJ 42 BNK BN
SW

ZM
64

B37 B73 OH43 TC HS TC
GM

TC BR

R
o

o
t 

C
o

ce
n

tr
at

io
n

 F
ac

to
r 

(C
Fr

o
o

t)

Species/varieties

bc bcd
cde

de
ef fg

g

b
bc

a
a

bc

a 

b 



95 
 

4.4.5 Translocation factor of species/varieties in the first pot trial. 
 

 A general trend of low translocation factor (TF) was observed across species/varieties 

with an exception of the Brassica juncea variety BJ 21 (Figures 4.4.17a, 4.4.17b and 

4.4.18). The TF of most species/variety ranged from 0.1 to 0.7, which were well below 1. 

This supports the evidence of poor translocation of Pb from root to the shoot suggested 

by the CFshoot (Figure 4.4.15). The histogram of TF (Figure 4.4.17b) and  the Log10 

transformation of TF (Figure 4.4.18) divides these species into two main group, which 

could be seen as hyperaccumulator and accumulators.The variety (BJ 21) was clearly 

distinct from the other varieties/species as a Pb hyperaccumulator with TF  varying by + 

40 to 217 % from the other species/variety.  

 

(a) 

 

Figure 4.4.17:  (a) Translocaton factor (TF) across species and varieties in the Pb added treatment. 
(Shoot Pb DW mg/kg/ root Pb concentration mg/kg) (b) Histogram of translocation factor. 
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Figure 4.4.18 :  Log10 transformation of the translocation factor (TF) across species and varieties 
in the Pb added treatment. 

 

4.4.6 Growth parameters in the first pot trial. 
 

Other growth parameters such growth index (GI), height, number of true and dead leaves 

and longest leaf length were used to study the behaviour of plant species/varieties to the 

Pb added treatment during growth period. The results are as shown in Figures 4.4.19 to 

4.4.22 and their statistical significance are summarised in Appendix II.2: Table II.1.    

Plants height were higher (5 to 40%)  in the control than the Pb added treatment for most 

species with the exception of the Brassica juncea variety BJ 17 and Thlaspi caerulescens 

varieties (TC BR and TC GM), which had higher height in the Pb added treatment than 

the control (Figure 4.4.19). However, the differences in plant height between the control 

and the Pb added treatment were only statistically significant for BJ 21, ZM B 37 and ZM 

64. Brassica napus variety (BN K) had identical height in both treatments. 
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Figure 4.4.19: Height (mm) between treatments for each species/varieties. Error bar represent 1 
standard error on the mean.  *--- Significant. 

Higher number of true leaves (3 to 40 %) were recorded in the control treatment for most 

species/varieties (Figure 4.4.20). However, some of the species/varieties e.g the 

Brassica juncea varieties (BJ 18, BJ 17), the Zea mays varieties (ZM B 73, ZM B 37) and 

the Thlaspi caerulescens varieties (TC BR, TC GM) had more number of true leaves (2 

to 5%) in the Pb added treatment than the control. The differences in the number of true 

leaves between the Pb added treatment and the control of these exceptional 

species/varieties listed above were not statistically significantly (Appendix II.2: Table 

II.1). The Brassica napus varieties BN K and BN SW had same number true leaves in 

both treatments. 

 

Figure 4.4.20: Mean number of true leaves (MNTL) between treatments across species and varieties 
in both treatments. Error bar represent 1 standard error on the mean. *---------Significant. 
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A trend of lower mean longest leaf length was observed across species/varieties in the 

Pb added treatment, when compared to the control (Figure 4.4.21). However, the B. 

napus variety BN K which had identical longest leaf length in both control and the Pb 

added treatment (Figure 4.4.21).  

 

Figure 4.4.21: Mean longest leaf length (MLL) between treatments for each species and varieties in 
both treatments.  Error bar represent 1 standard error on the mean.   *-------- Significant. 

 

 

Figure 4.4.22 : Growth Index (GI) between treatments for each species/varieties in both treatments.  
Error bars represent 1 standard error on the mean. *------Significant 
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ZM OH43 (283 ± 4.68 mm) among Zea mays varieties and TC BR (40.4 ± 15.2) among 

Thlaspi caerulescens varieties in the Pb added treatment (Figure 4.4.22). A general trend 
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BR which  had better growth in the Pb added treatment  when compared  to  the  0 mg/kg  

Pb added treatment. 

The key variables compared in this experiment are summarised in Table 4.4.1 below 

with plant species selected for the second pot trial highlighted in red. 



100 
 

 

Table 4.4.1: Mean values of variables for each species/varieties compared in the first pot trial.  

 

 

 

 

 

 

 

 

 

Key:  Shoot, root and total biomass DW in blue, Shoot and root Pb (mg/kg) in purple, Shoot and root Concentration factors in green and 

species/varieties selected for the second pot trial highlighted in red.                 

Variables BJ 17 BJ 18 BJ 21 BJ 42 

ZM 

64 

ZM 

B37 

ZM 

B73 

ZM  

OH43 BN K BN SW TC BR 

TC 

HS TC GM 

Shoot biomass DW 

(g) 1.48 0.58 0.29 0.57 0.94 1.88 1.94 1.88 0.98 0.46 0.002 0.15 0.0017 

Root biomass DW (g) 0.06 0.02 0.01 0.05 0.31 0.57 0.62 0.39 0.03 0.04 0.001 0.001 0.0010 

Total plant biomass 

DW  (g) 1.53 0.61 0.30 0.61 1.25 2.45 2.55 2.27 1.02 0.50 0.003 0.15 0.0027 

Shoot  Pb (mg/kg) 118 83 905 144 126 52 83 45 66 48 120 264 43 

Root Pb (mg/kg) 197 643 38 451 418 375 578 244 385 305 631 358 114 

Total plant Pb (mg/kg) 

DW 121 105 839 167 197 128 203 79 77 69 358 264 70 

Shoot Pb (µg) 174 48 270 81 117 97 161 84 66 22 0.20 41 0.07 

Root Pb (µg) 11 15 0.46 21 127 213 355 95 13 13 0.85 0.36 0.11 

CFshoot 0.13 0.09 0.99 0.16 0.14 0.06 0.09 0.05 0.07 0.05 0.13 0.29 0.05 

CFroot 0.22 0.71 0.042 0.50 0.46 0.41 0.18 0.27 0.42 0.33 0.69 0.39 0.13 
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4.5 DISCUSSION 

 

Shoots, roots and total plant Pb (mg/kg) DW concentrations provided quantification of 

the effects of the Pb added treatment on these plants. The Pb added treatment at the 

concentration applied had a significant effect on growth and biomass of the most 

species/varieties with observed decrease in biomass in Pb added treatment, compared 

to the control. However, a few did not show significant change in biomass in the Pb 

added treatment with substantial Pb accumulation in shoots and roots. It is an indication 

that the presence of Pb in the soil may not necessarily cause poor plant growth. This is 

supported by earlier work on Cd (Millis et al., 2004) and on a range of toxic metals in 

soils (Anyanwu et al., 2008). 

 For most of the plant species, more Pb was accumulated in the root than in the shoot. 

This is in line with findings of Baker et al., (1994); Reeves and Brooks, (1989); Nabulo et 

al., (2008). Two of these plant species (BJ 21 and TC HS) were exceptions to this trend 

with more Pb accumulated in the shoot than in the root.  Brassica juncea variety BJ 21 

had a mean CFshoot and TF of 0.99 and 28 respectively and this suggests a potential Pb 

hyperaccumulation by this variety. This ability to accumulate more Pb in the shoot is an 

advantage in terms of phytoremediation.  

Moradi et al., (2010) stated that hyperaccumulators have potential roles in the mining 

industry where they may be found useful in phytoremediation/phytomanagement and 

phytomining. A few plant species such as Parthenium hysterophorus {L} (Whitetop weed 

or Santa Maria feverfew) and Amaranthus viridis {L} (Green or slender amaranth) have 

been shown to translocate high amount of Pb from their roots to shoots (Malik et al., 

2010). Some of the plants studied showed potentials for Pb accumulation to varying 

extent. Low CFshoot values between 0.05 and 0.29 were recorded for most varieties. 

Comparisons within and between species/varieties suggest that the effect of the added 

Pb and uptake of Pb from the soil varied both within and between varieties/species of 

plants, though similarities in Pb concentrations were observed. However, observable 

effects of Pb on plant growth ranged from mild to severe chlorosis or none across 

species/varieties.   Baker, 1981 and Baker et al., 1994 reported that plant species could 

respond to the presence of contaminant in the soil either by excluding or accumulating 

the contaminant.  

Some of the species with Pb Concentration factor (CF) < 1 might be excluders, indicators 

or tolerant species whilst CF ≥ 1 might be classified as accumulators supported by 

literature. Earlier Chapter (Chapter 2) discussed criteria for classifying plant species as 



102 
 

excluders, accumulators or hyperaccummulators. However, there are no clear 

boundaries between these groups.  

Current findings showed that significant amount of Pb was accumulated in roots of most 

plant species studied. This is an indication that classification of plants as excluders, 

accumulators or hyperaccumulators exclusively based on translocation and 

concentration factors might not be conclusive. Further experiments are required to 

investigate plants based on both in situ and pot trials as uptake of Pb may be influenced 

by bioavailable Pb in soil to plants.   However, uptake and bioavailability of Pb in soil-

plant system remains poorly understood (Robinson, 1998).  

There was no significant effect of the Pb-added treatment on any of the biomass data of 

BJ 17 and no observable effect of the added Pb on that plant. This variety seemed to be 

unaffected by the Pb added treatment.  

There was a significant effect of the added Pb on shoot dry biomass, total dry biomass 

and longest leaf length of BJ 18. However, BJ 18 showed tolerance to high Pb in the soil. 

The Brassica juncea varieties BJ 18 and BJ 17 were therefore selected because of their 

abilities to survive and thrive in high Pb in the soil without obvious stress compared to 

BJ 21 and BJ 42. Although, the total plant Pb of BJ 21 and BJ 42 were 70 to 80% and 

14 to16 % higher, when compared to BJ 18 and BJ 17 respectively. Severe chlorosis, 

wilting of leaves and nearly plant death were observed in both BJ 21 and BJ 42 at the 

Pb concentration applied, which is an indication plant death might be recorded with 

higher Pb concentration (Figures 4.4.1 to 4.4.4). 

Identification of a suitable plant species for further experiments also considered plants 

which can concentrate metal contaminant without completely inhibiting growth. Gregorio 

(2011) noted that prolific growth produces the necessary biomass to extract large 

amounts of metals per hectare that are commonly encountered in most contaminated 

sites. This first pot experiment shows that the amount of biomass these species/varieties 

produced affected the shoot and root Pb mass (µg) (Table 4.4.1), which was generally 

low (ranged from 0.11 to 95 µg), with the exception of BJ 17, BJ 21, ZM B37, ZM B73 

and ZM 64.  The duration of growth have partially contributed to the generally lower 

biomass of most species/varieties in the control and Pb added treatments, when 

compared to subsequent experiments. This is supported by findings in later pot trials 

(Chapter 4: Sections 4.7.1 to 4.7.2; Chapter 5: Section 5.4) , where some selected 

species with low biomass in this first experiment produced 30 to 60% bigger biomass in 

both control and Pb added treatments. However, TC BR consistently produced low 
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biomass in the second pot experiment irrespective of the longer growth period (Section 

4.7).  

Selection of plant varieties for further investigation was based initially on their ability to 

survive or tolerate high Pb in the soil.  Biomass and growth data such as height, shoot, 

root, and total dry biomass, number of true and dead leaves and growth index were used 

to evaluate their performance and their ability to thrive in soil with high Pb.  

The danger of losing replicates of those plants species (adversely affected by the added 

Pb in the initial pot trial) due to adverse effect of increased Pb concentration in further 

pot trials were also considered and so plant varieties that did not thrive well in high soil 

Pb or showed severe effect to added Pb were dropped from the first pot trial. This is an 

important consideration, as greater number of replicates will allow more reliable detection 

of statistically significant differences in the further experiments that simulate in situ 

heterogeneity. However, two replicates of Thlaspi caerulescens varieties TC GM and TC 

BR in the control treatment were lost in the first pot trial. 

Similarly, ZM OH43 and ZM B 37 were also selected for the next stage. Though, the 

added Pb had a significant effect on the root dry biomass, shoot, root and the total dry 

biomass of ZM B73, it showed tolerance to high Pb in the soil. Their survival and growth 

in the Pb added treatment was not affected.  

The varieties ZM B73 and ZM 64 had 56% and 50% higher total plant Pb (mg/kg) dry 

weight than the lowest concentration within the range respectively. These varieties ZM 

B37 and ZM 64 were dropped as result of the observable effects of added Pb such as 

chlorosis in ZM 64 and severe wilting of leaves in ZM B37. The Pb treatment also had 

an effect on their growth index, height and total dry biomass. This suggested that severer 

effect on these varieties might be seen at higher Pb concentrations in further 

experiments. 

Brassica napus, BN K seemed less affected by the high Pb in the soil than BN SW, but 

BN K was not selected due to non-availability of its seeds for further experiments. 

However, both showed chlorosis and wilting of leaves, but to a greater extent in BN SW.  

Results showed no statistically significant differences (P > 0.05) in some of the growth 

data and Pb concentrations in roots and total plant between these varieties. 

Thlaspi caerulescens TC BR seemed unaffected by the added Pb treatment. Thlaspi 

caerulescens variety TC BR had 50% and 35% higher total plant Pb (mg/kg) DW, when 

compared to TC GM and TC HS. Severe chlorosis and wilting of leaves was observed in 

TC HS as result of the added Pb. There was no significant effect of Pb on all the biomass 
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data of TC BR in the Pb added treatments. It grew well on the Pb added treatment when 

compared to the control.  

The variety TC GM showed similar tolerance to high Pb in the soil, but TC GM was not 

selected due to non-availability of seedlings for the next experiment as most seedlings 

grown on unspiked growth medium, prior to transplanting into the spiked growth medium, 

died before they were transplanted. The few which survived grew better in the Pb added 

treatment than in the control.  

 

4.5.1 Interpretation of results in relation to stated hypothesis. 

 

The results were considered against stated hypotheses: 

1. The 1000 mg/kg Pb in growth media has an effect on plant performance.  

2.  Some of the species/varieties differ in their tolerance to Pb in the growth medium 

at this concentration. 

When a statistically significant difference (P < 0.05) is found in measured plant variables 

such as shoot, root and total dry biomass of the plant species between treatments, then 

hypothesis 1 is accepted, that the 1000 mg/kg Pb added treatment had a significant 

effect on such plant species.  

Similarly, hypothesis 2 is accepted when a statistically significant difference (P < 0.05) 

in metal uptake is found within and between species/varieties. Summary of hypothesis 

testing for each species and varieties is shown in Table 4.5.1. 

From the results of this first pot trial and in line with stated objectives i.e to select plant 

species/varieties for a further second pot trial with a range of Pb-concentration of 100, 

300, 3000 and 10,000 mg/kg, 4 species made up of 6 varieties were selected for the next 

experiment.  

The Four species made up of six varieties selected were BJ 18, BJ 17 (Brassica juncea), 

ZM OH43, ZM B73 (Zea mays), BN SW (Brassca napus) and TC BR (Thlaspi 

caerulescens). 

These species/varieties were selected based on their ability to survive and tolerate high 

Pb in the soil and substantiated by the results of the biomass, growth rate and actual Pb 

concentrations in the above, below ground parts and whole plant.  This is in line with 

studies by  Gregorio (2011) who reported that the success of phytoextraction effort 

depends to a large degree on the identification of suitable plants that not only concentrate 
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metals to levels that would inhibit growth of most species, but demonstrate prolific growth 

in response to an established agronomic or horticultural practice.  

The overall result of the first pot experiment informed the selection of the 

species/varieties for the second pot trial. The second pot trial further selected the most 

suitable plant species for pot trials simulating simplistic binary heterogeneity model and 

in situ heterogeneity. 
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Table 4.5.1:Summary of hypotheses tested in 1st pot trial for each species/varieties based upon independent sample t-test for (i) and Tukey H.S.D  for (ii) 
comparison of means where p<0.05. Varieties selected for 2nd pot trial are highlighted in red. 

 

Hypothesis BJ 18 BJ 42 BJ 17 BJ 21 ZM B73 ZM B37 ZM 

OH43 

ZM 64 BN SW BNK TC BR TC GM TC HS 

             

(ia)Biomass Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept 

(ib)Pb 

uptake 

(ii)Variation 

Accept 

 

Accept 

 

Accept 

 

Accept 

Accept 

 

Accept 

Accept 

 

Accept 

Accept 

 

Accept 

Accept 

 

Accept 

Accept 

 

Accept 

Accept 

 

Accept 

Accept 

 

Reject 

Accept 

 

Reject 

Accept 

 

Accept 

Accept 

 

Accept 

Accept 

 

Accept 
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4.6 SECOND POT TRIAL. 
 

4.6.1   Introduction 
 

The second pot trial compared varieties and species as a function of Pb concentration. 

Six varieties of four species were selected after the first pot trial for transplanting into 

growth media containing a range of Pb concentration 100, 300, 3000 and 10000 mg/kg 

with 0 mg/kg added as control. The species and varieties selected are two Brassica 

juncea (BJ18 and BJ 17), two Zea mays (ZM B73 and ZM OH43), Brassica napus (BN 

SW) and Thlaspi caerulescens (TC BR).  

4.6.2 Objectives 

 

I. Assess the effect of the range of Pb concentrations on the selected plant 

species/varieties in the current experiment. 

II. Determine suitable value for the Pb concentration in the growth medium that can 

be used in further experiments. 

III. To select the most suitable species/varieties for subsequent pot trials simulating 

a simple design for the in situ heterogeneity of Pb in the growth medium. 

 

4.6.3 Hypotheses  
 

1.  Changing Pb concentration in the growth medium has an effect on the biomass of 

selected plant species. 

2. The amount of Pb accumulated by the different plant species is related to the Pb 

concentration of the growth medium across the range investigated. 

3. There is a trend on the effect of the Pb concentration range on plant’s biomass and 

uptake. 

4.6.4. Methods. 
 

Method of seed germination, transplanting, establishment in the unspiked growth media, 

were as described for the first pot trial. Concentration of contaminant, mass of sand and 

compost are shown in Appendix II.1: Tables BII.1 to EII.1. 
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4.6.5 Preparation of Growth Media for the 2nd pot trial. 

 

A mass of 38.4 kg of silver grade sand was transferred into a concrete mixer to prepare 

each batch of growth medium (one for each treatment). A volume  of 13.5 L of John Innes 

Compost 2 was weighed and added to the concrete mixer (containing the silver grade 

sand) (Appendix 4II.1: Table DII.1).The content was thoroughly mixed using the concrete 

mixer to obtain a sufficiently homogeneous growth medium. 

These were repeated to make batches of growth medium spiked with PbO to make Pb 

concentration of 100 mg/kg, 300 mg/kg, 1000 mg/kg, 3000 mg/kg, and 10,000 mg/kg. 

Spiking the growth media with Pb contaminant was done using carrier sand of 6 kg (DW) 

mass, which was dried and thoroughly mixed in a dry bucket  with  pre-dried PbO dried 

to constant weight (checked at 0, 12, 18 and 24 hour duration (Appendix 4II.1: Figure 

AII.1). Dry carrier sand was used to ensure proper mixing of the PbO and the sand.  

Masses of 5.4 g, 16.3 g, 54.3 g, 162.9 g and 542.9 g (Appendix II.1: Table DII.1) of PbO 

in dry carrier sands were mixed with sand and compost in the cement mixer to make 

batches of 100, 300, 1000, 3000 and 10,000 mg/kg (FW) Pb for all 6 species of plants 

(108 pots) and mixed until a homogenized mixture was obtained.  

Similarly as in the first pot trial, five lots each of about 10 g of the mixed spiked growth 

media was sampled to check the Pb concentration of growth media. These portions were 

taken from randomly selected pots, dried in the oven at 110oC and milled using the Tema 

mill of maximum grain size of < 8 mm. A mass of 0.25 g of the milled sample was used 

to determine Pb concentration and (homogeneity) of the contaminant at each Pb 

concentration level using the Atomic Absorption Spectrometer (AAS) after acid digestion 

by nitric and perchloric acids. Certified reference materials (CRMS), duplicates and 

reagent blanks were used for quality control. Growth media measured concentration for 

the first pot trial is shown in Table 4.6.1 below. Quality control for the first and second 

pot trials are reported in Appendix 4II.14: Tables AII.14 to KII.14. 
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Table 4.6.1 : Check for Growth media Pb concentration (Second Pot Trial). 

S/N 

Nominal  Pb 

concentration 

mg/kg 

 Mean measured 

Pb concentration 

mg/kg  

1 100 115±3.97  

2 300 322±18.73  

3 3000 3378±177.29  

4 10000 10071±258.52  

 

Plants were maintained at 20 ± 5OC, at 16 hours photoperiod under natural sunlight in 

the glasshouse for six weeks as opposed to three weeks in the first experiment. Pots 

were arranged in randomized block design, randomizing between treatments and 

species/varieties (Figure 4.6.1 and Appendix 4II.8).  

 

 

 

 

 

 

 

 

 

 

Figure 4.6.1: Plant species arranged in Randomized block design before harvest (2nd pot trial). 
Arrows represent scale bar.  Scale bar length: 16 mm represents 200 mm.  

Growth and biomass data such as height, number of true leaves, largest width, width 90 

degrees to the largest width, longest leaf length, shoot dry biomass, root dry biomass, 

total dry biomass and growth index (height + largest width +width 90 degrees to the 

largest width/3) were recorded at transplanting (week 1), week 3 and week 6.  

Plants were harvested in the sixth week (56 days of growth) as described for the first pot 

trial, as were measurement of these parameters. 

These growth and biomass data were indices of plant growth and development. They 

were also used in evaluating the tolerance and ability of the plant species to survive the 
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different Pb concentrations. However, only the shoot, root, total dry biomass, shoot, root 

and total plant Pb (mg/kg) dry weight are presented in this chapter in line with stated 

hypothesis and are also used in the selection of plant species/varieties for further 

experiments. 

 

4.6.6 Data Analysis. 
 

Data collected from this experiment were subjected to One-Way analysis of variance 

(ANOVA) and the Tukey HSD Post-Hoc test to compare the effects of Pb on the plant at 

the different concentrations applied. Statistical package IBM SPSS version 20 and 

Minitab version 16 for windows were used to carry out data analysis. The Tukey HSD 

Post –Hoc test was used, since equal variances were assumed. There were no surviving 

seedlings in the 0 mg/kg added, and one survivor in the 100 mg/kg for TC BR. As a result 

of this unequal observation, the Post-Hoc test for TC BR compared the 300 mg/kg added 

with 3000 and 10000 mg/kg Pb added. Post-hoc test could not  also be used to compare 

shoot, root and total plant Pb concentration of TC BR as some of the samples were not 

analysed for Pb due to insufficient mass for analysis (mass was less than 0.01g).This 

was the minimum mass that could be used to prevent high level of uncertainty resulting 

from low sample mass. Concentrations sharing letters means they are not significantly 

different. 

Letters were assigned based on the table for homogeneity of subsets (Appendices 4-II.9 

and 4-II.10). Charts with error bars, which represent 1 standard error on the mean, were 

used to show biomass and uptake data at different concentrations. 
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4.7 RESULTS OF THE SECOND POT TRIAL. 
 

Plants were harvested after 56 days, when sufficient biomass had been produced. 

Survival rate was 100% for most species except for Thlaspi caerulescens variety TC BR. 

Condition of plant species at harvest is shown in Figure 4.7.1. 

         

 

                                                                                                                             

 

       

 

    

 

Figure 4.7.1: Condition of plants species at harvest (Second pot trial). Arrows represent scale bar 
for each figure. 

 

 

 

 

(a) BJ 18 at harvest. 

Concentrations 0, 100, 300, 3000 

and 10000 mg/kg Pb added (from 

left to right). Arrow represents 

scale bar. Scale bar: 18 mm 

represents 500 mm. 

  (b) BJ 17 at harvest. 

Concentration 0,100, 300, 

3000 and 10000 mg/kg Pb 

added (From left to right).  

Scale bar: 24 mm represents 

800 mm. 

(C) BN SW at harvest. 

Concentration 0,100, 300, 3000 

and 10000 mg/kg Pb added (From 

left to right). Scale bar: 5 mm 

represents 20 mm. 

 

(d) TC BR at harvest. Concentrations 

(0,100, 300, 3000 and 10000 mg/kg Pb 

added (From left to right). 4 mm 

represents 2 mm. 

 

(e) ZM OH43 at harvest. 

Concentrations (0,100, 300, 3000 

and 10000 mg/kg Pb added 

(From left to right). Scale bar: 17 

mm represents 200 mm. 

 

(f) ZM B73 at harvest. 

Concentrations (0,100, 300, 

3000 and 10000 mg/kg Pb 

added (From left to right). 

Scale bar; 12 mm 

represents 100 mm. 
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The result of the analysis of variance of the growth and biomass data is summarized in 

Table 4.7.1. 

Table 4.7.1: Statistical significance of biomass and growth data between-concentrations for each 
variety/species with ANOVA F-ratio and P values in bracket. 

Biomass 

data 

BJ 18 BJ 17 ZM B73 ZM OH43 BN SW TC BR 

Height 
(mm) 

S (F=11.76; 
p=0.001) 

S (59.47; 
p=0.000) 

S (F=14.95; 
p=0.000) 

S (F=10.53; 
p=0.001) 

S (F=11.70; 
p=0.001) 

S (F=10.33; 
p=0.011) 

 

Number of 
true leaves 

S (F=15.08; 

p=0.000) 

S (F=10.74; 

p=0.001) 

NS(F=2.35; 

p=0.125) 

S (F=2.50; 

p=0.022) 

S (F=7.063; 

p=0.006) 

S (F=23.55; 

p=0.001) 

 

Longest 
leaf length 
(mm) 

S(F=5.12; 
p=0.017) 

S (F=28.72; 
p=0.000) 

NS(F=1.45; 
p=0.287) 

NS (F=1.55; 
p=0.262) 

S (F=3.77; 
p=0.040) 

S(F=137.63; 
p=0.000) 

Shoot dry 
biomass 
(g) 

S(F=14.33; 
p=0.000) 

S (F=5.62; 
p=0.012) 

S (F=6.32; 
p=0.008) 

S (F=14.12; 
p=0.000) 

S (F=19.66; 
p=0.000) 

S(F=107.97; 
p=0.000) 

Root dry 
biomass 
(g) 

S(F=79.95; 
p=0.000) 

S(F=27.45 
p=0.000) 

S (F=12.11 
p=0.001) 

NS(F=0.538 
p=0.711) 

S (F=28.59 
p=0.000) 

S (F=12.80 
p=0.007) 

Total dry 
biomass 
(g) 

S (F=21.87; 
p=0.000) 

S (F=6.97; 
p=0.006) 

S (F=7.46; 
p=0.005) 

S (F=14.94; 
p=0.000) 

S(F=21.49; 
p=0.000) 

S(F=121.83; 
p=0.000) 

Growth 
Index(mm) 

S(F=10.14; 
p=0.002) 

S (F=50.59; 
p=0.000) 

S (F=24.61; 
p=0.000) 

S (F=10.05; 
p=0.001) 

S (F=12.21; 
p=0.001) 

S (F=6.10; 
p=0.036) 

 

Key: S—Significant at P < 0.05; NS—Not significant at P > 0.05; BJ 18---Brassica juncea 

182921; BJ 17-- Brassica juncea 173874; ZM B73---Zea mays B73; ZM OH43---Zea mays 

OH43; BN SW---Brassica napus Sweden; TC BR---Thlaspi caerulescens BlackRock. 

 

Significant differences were observed in the shoot, root and total dry biomass of some 

of the varieties/species at P = 0.000, 0.012, 0.005, 0.008, 0.006 (P < 0.05). 

It is an indication that the effect of the added Pb on the shoot dry biomass differed at the 

different concentrations applied.  
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4.7.1 Results of Shoot, root and total dry biomass as a function of Pb   

concentration between species and varieties. 

 

Figures 4.7.2—4.7.4 show the effect of Pb on shoot, root and total dry biomass between 

concentrations. The ANOVA result showed that shoot, root  and total biomass of BJ 18, 

BJ 17, ZM B73, BN SW and TC BR were significantly different P =0.000, 0.001, 0.000 

and 0.006 within and between varieties as a function of concentration respectively.  

 

 

Figure 4.7.2: Shoot biomass DW over a range of concentration across species and varieties. Means 
sharing the same letter (for each plant species or variety) are not significantly different. Error bars 
represent 1 standard error on the mean (n=3). 

 

The shoot and root biomass of BJ 18 increased with increasing soil Pb concentration 

with 5 to 8% lower biomass in the 3000 mg/kg concentration, when compared to the 0 

mg/kg treatment (Figures 4.7.2-4.7.3). About 35% higher shoot biomass was recorded 

in 10000 mg/kg treatment when compared to the control (Appendix II.9: Tables AII.9 to 

BII.9). There were no significant differences in shoot biomass between some 

concentrations (e.g 0 mg/kg and 3000 and 100 and 10000 mg/kg). The root biomass of 

this variety decreased at higher Pb concentrations (3000 and 10000 mg/kg) when 
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compared to the lower concentrations (0, 100 and 300 mg/kg) (Figure 4.7.3).  This is an 

indication that this Brassica juncea variety (BJ18) grew better in the Pb lower 

concentrations but was tolerant to higher Pb concentration. 

There were no significant differences (as judged by Tukey HSD test) in the shoot and 

root biomass between the 0 mg/kg added and the 100, 300 and 10000 concentrations of 

BJ 17 (Figures 4.7.2-4.7.3). Root biomass of BJ 17 was lower by 37% in the 3000 mg/kg 

concentration and 10% in the 10000 mg/kg concentration, when compared to the 0 

mg/kg concentration (Figure 4.7.3). It is an indication of the more severe effect of the 

added Pb on the root of this variety at higher concentrations. However, it showed no 

observable symptoms of Pb toxicity during the growing period. This suggest that BJ 17 

was tolerant to Pb at the concentration applied.  

 

Figure 4.7.3: Mean root biomass DW over a range of concentration across species and varieties. 
Means sharing the same letter (for each plant species or variety) are not significantly different. Error 
bars represent 1 standard error on the mean (n=3). 

 

Similarly, shoot, root and total biomass of ZM B73 decreased with increasing soil Pb 

concentration. Higher (18-44%) root and total biomass were recorded in the control 

treatment when compared to the other concentrations (Figures 4.7.3 and 4.7.4). Some 

concentrations were not significantly different in their shoot, root and total biomass. This 

is an indication of the effect of the varied Pb concentration. It also suggest that ZM B73 

was tolerant to this Pb concentration range. 

There were significant differences in shoot biomass between concentrations for the ZM 

OH43 variety (Figure 4.7.2). However, the root biomass of ZM OH43 were not 
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significantly different between concentrations (Figure 4.7.3). This suggests that the effect 

of the added Pb on this variety based on the root dry biomass might not have been 

detected within the scope of this experiment. The total dry biomass of ZM OH43 in the 

10000 mg/kg treatment was lower by 18 % and 27%,  when compared to the 0 and 3000 

mg/kg concentrations respectively (Figure 4.7.4; Appendix II.9-Tables OII.9 to PII.9), 

which implied an effect of the Pb at the highest Pb concentration. 

 

Figure 4.7.4: Mean total biomass DW over a range of concentration across species and varieties. 
Means sharing the same letter (for each plant species or variety) are not significantly different. 
Error bars represent 1 standard error on the mean (n=3). 

 

Significant difference in shoot, root and total dry biomass between the 0, 100 and 300 

mg/kg Pb added was observed in Brassica napus (Figures 4.7.2 - 4.7.4). The shoot and 

total dry biomass were 24 and 32% higher in the 100 and 300 mg/kg Pb added 

treatments (Appendix 4II.9: Tables EII.9 and FII.9).  Similarly, the root biomass of B. 
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napus was higher by 29 and 34% in the 100 and 300 mg/kg concentrations, when 

compared to the 0 mg/kg concentration respectively (Appendix II.9: Table KII.9).  It is an 

indication that this variety would grow better at lower Pb concentrations. A more severe 

effect of the added Pb was observed at higher concentrations. 

Thlaspi caerulescens TC BR significantly differed in the shoot and root dry biomass at 

the different concentrations (Figures 4.7.2 and 4.7.3).  Significant differences P = 0.000, 

0.000 and 0.000 were observed in the total dry biomass of TC BR between 300, 3000 

and 10000 mg/kg added (Figure 4.7.4).  

 

4.7.2 Results of Shoot, root and total plant Pb (mg/kg) as a function of Pb 

concentration across species and varieties. 

 

The Pb concentration of shoot, root and total plant Pb (mg/kg) dry weight provided further 

insight into Pb accumulating potentials and effect of the added Pb on the plant biomass 

of these plants species. The Tukey HSD comparison of varieties/species between 

concentrations is shown in Figures 4.7.5-4.7.7. Thlaspi caerulescens (TC BR) could not 

be compared using the Post-hoc test due to none or unequal number of replicates for 

some concentrations. There was a general trend of increasing shoot, root and total Pb 

concentration with increasing soil Pb concentration. 

 

Figure 4.7.5: Mean shoot Pb concentration over a range of concentration across species and 
varieties. Means sharing the same letter are not significantly different, as judged by the Tukey HSD 
post-hoc test. Error bars represent one standard error on the mean (n=3). Post-hoc test not used for 
TC BR shoot Pb concentration to unequal observation (see Section 4.6.6). 
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Shoot Pb concentrations also varied between and within species. These differences 

were significant (P = 0.000 < 0.05). For BJ 18 and BJ 17, shoot Pb concentration ranged 

from 11 to 78 mg/kg and 21 to 94 mg/kg Pb. Shoot Pb in the 10000 mg/kg Pb added 

treatment of BJ 18 was 2 to 7 times higher when compared to the 100, 300 and 3000 

mg/kg concentrations while BJ 17 had 2-4 times higher shoot Pb in 10000 mg/kg when 

compared to 100, 300 and 3000 mg/kg concentrations (Figure 4.7.5). 

The Zea mays varieties ZM OH43 and ZM B73 shoot Pb was in the range of 20 - 368   

mg/kg for all concentrations. Higher shoot Pb concentrations (40 to 80%) were recorded 

in the 10000 mg/kg added when compared to the other concentrations (Figure 4.7.5) for 

both varieties.  

Similarly, BN SW variety had 30 to 80% higher shoot Pb in the 10000 mg/kg 

concentration, when compared to the 100, 300 and 3000 mg/kg concentrations. The 

difference between the 100 and 300 mg/kg concentrations was not significant {P > 0.05} 

(Figure 4.7.5). 

This trend of increasing shoot Pb concentration with higher soil Pb concentration was 

also recorded for TC BR with a mean shoot Pb concentration of 848 mg/kg compared to 

128 and 309 mg/kg in 100 and 300 mg/kg concentrations respectively. 

 

 

Figure 4.7.6: Mean root Pb concentration over a range of concentration across species and varieties. 
Means sharing the same letter are not significantly different, as judged by the Tukey HSD post-hoc 
test. Error bars represent one standard error on the mean (n=3). Post-hoc test not used for TC BR 
root Pb concentration to unequal observation (see Section 4.6.6). 
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There were significant differences (P = 0.000 < 0.05) in the root Pb concentration of all 

species and varieties.  Similarities between lower concentrations (100 and 300 mg/kg) 

was observed for some species/varieties (Figure 4.7.6). The shoot and root Pb 

concentrations in the 10000 mg/kg treatment differed significantly from the other 

concentrations.  

The total plant Pb concentration (mg/kg) dry weight varied with soil Pb concentrations 

between and within species. This difference was significant P = 0.000<0.05 (Appendix 

II.11: Tables AII.11 to CII.11). Tukey HSD test showed similarities between some of the 

species/varieties.  

Total plant Pb concentration of BJ 18 and BJ 17 ranged from 15 mg/kg to 124 mg/kg  

DW.The Brassica juncea varieties BJ 18 and BJ 17 had higher total plant Pb (by a factor 

of 3 to 4) in the 10000 mg/kg concentration, when compared to the 100 mg/kg 

concentration.  However, there was no significant difference between the 100 and 300 

mg/kg treatments (Figure 4.7.7).  

 

Figure 4.7.7: Mean total plant Pb concentration over a range of concentration across species and 
varieties. Means sharing the same letter are not significantly different, as judged by the Tukey HSD 
post-hoc test. Error bars represents one standard error on the mean (n=3). Post-hoc test not used 
for TC BR root Pb concentration to unequal observation (see Section 4.6.6). 
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Similarly, BN SW had the highest total plant Pb (107 mg/kg DW) in the 10000 mg/kg, 

which was 35 to 60% higher, when compared to 100, 300 and 3000 mg/kg treatments 

(Figure 4.7.7). The difference between concentrations was significant (Appendix II.11: 

Table 10). 

Thlaspi caerulescens TC BR h also had high total plant Pb (mg/kg) dry weight (1170 

mg/kg DW) in the 10000 mg/kg treatment (Figure 4.7.7). 

 

4.7.3 Shoot and root concentration factor. 
 

The shoot and root concentration factors (CFshoot and CFroot), which is a measure of the 

Pb uptake showed decrease in CF with increasing soil Pb concentration for most 

varieties (Figure 4.7.8 and 4.7.9). The Thlaspi caerulescens variety (TC BR) had only 

one representative CFroot due to insufficient root mass of other two replicates for analysis 

as stated earlier in this chapter. The highest CFshoot was recorded for TC BR and the 

lowest for BJ 18 and BN SW, while those of BJ 17, ZM B73 and ZM OH43 were 

intermediate between the two extremes. 

 

Figure 4.7.8: Shoot Concentration factor {CFshoot} (Shoot Pb DW mg/kg/soil Pb concentration 
mg/kg) as a function concentration across species and varieties. 

The root concentration factor (CFroot) also showed a similar trend of decreased CF with 

increasing soil Pb concentration (Figure 4.7.9). The variety TC BR had the highest CFroot 

in the 10000 mg/kg concentration and had no CFroot value for the other concentrations 

due to reason stated earlier in this section. Brassica napus (BN SW) had the lowest CFroot 

at nearly all concentration when compared to other varieties/species.  However, BJ 17 

had the lowest CFroot at the 3000 mg/kg concentration. The varieties BJ 18, ZM B73 and 
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ZM OH43 had intermediate CFroot between these two extremes with the highest CFroot in 

the 300 mg/kg. 

Shoot and root concentration factors showed that most of the plant species excluded the 

Pb at higher soil Pb concentrations resulting in decreased CF with higher CF at lower 

soil Pb concentrations. 

 

 

 

Figure 4.7.9:  Root Concentration factor {CFroot} (Root Pb DW mg/kg/soil Pb concentration mg/kg) 
as a function concentration across species and varieties. 

Scatter plots of both CFshoots and CFroots (Figure 4.7.10) implied a negative correlation or 

relationship between soil Pb concentration and concentration factors of shoot and roots 

for 99.9% of species/varieties with the exception of TC BR (1%). Increased soil Pb 

concentration resulted in decreased shoot and root CF. However, the increased CFshoot 

and CFroot of TC BR at higher soil Pb concentration could be associated to the adaption 

of this variety to Pb contaminated soils. None of the seedlings of TC BR survived in the 

control with only one survival in the lowest soil Pb concentration (100 mg/kg) .The seeds 

of this variety TC BR used in pot trials were collected from Black Rocks (where they grew 

naturally), one of the heavily contaminated sites discussed in Chapter 3 of this thesis. 
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Figure 4.7.10: Scatter plot of CFshoot and CFroot against nominal soil Pb concentration. 

 

4.7.4 Translocation factor (TF) of species/varieties in the second pot trial. 
 

The mean translocation factor (TF) of these species/varieties ranged from 0.1 to 0.7 

(Figure 4.7.11). This is an indication of poor translocation of Pb from the roots to the 

shoots of most of the species/varieties studied. The rate of Pb translocation to the shoot 

of Brassica juncea variety (BJ 18) and the Zea mays variety (ZM B73) were lowered (by 

factors of 2 and 4) in high soil Pb concentrations of 3000 and 10000 mg/kg respectively. 

They both showed a trend of decreasing TF with increasing soil Pb concentration.  An 

exceptionally higher (50 to 70%) TF was observed in the 300 mg/kg concentration of the 

Zea mays variety ZM OH43 and the Brassica napus variety BN SW, whilst their 100, 

3000 and 10000 mg/kg were not significantly different. Translocation factor was higher 

(~42 to 92%) in the 100 mg/kg concentration of Brassica Juncea variety (BJ 17).  The 

Thlaspi caerulescens variety had the highest TF in the 10000 mg/kg concentration. This 

is an indication of the tolerance and adaptation of TC BR to high Pb in the soil. 
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(a) 

 

 

(b) 

Figure 4.7.11:  (a) Translocation factor {TF} (shoot Pb DW mg/kg/ root Pb concentration mg/kg), (b) 
Box plot of translocation factor as a function concentration across species and varieties. Error bar 
represents 1 standard error on the mean. TC BR had only one concentration (10000 mg/kg). 

The box plot of translocation factor (Figure 4.7.11b) shows the overall effect of the range 

of Pb concentration on the TF of all the plant species/varieties in the second pot trial.  
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TF below this range. Translocation factor decreased with increasing soil Pb 

concentration.  In the 3000 mg/kg concentration, ~60% of the plant species had TF > 

0.2, whilst the remaining 40% had TF below 0.2.  About 99% of plant species (e.g BJ 18, 

BJ 17, ZM B 73, ZM OH43 and BN SW) in the 10000 mg/kg concentration had TF below 

0.3 with 1% (e.g Thlaspi caerulescens variety TC BR) having TF >0.3, which suggest a 

potential hyperaccumulation of the species. There was an overall ~30 to 90% variation 

in TF between species in the same soil Pb concentration and between the range of soil 

Pb concentrations. This is an indication that the amount translocated to the shoot from 

the root is species-specific and could be influenced by the soil Pb concentration.  

However, the amount taken up from the soil by the roots of these species/varieties is 

also influenced by the soil Pb concentration and the bioavailable fraction to the plants.  

 

4.7.5 Growth parameters of species/varieties in the second pot trial. 
 

Similarly as in the first pot trial, other growth parameters such growth index (GI), height, 

number of true and dead leaves and longest leaf length were used to study the behaviour 

of plant species/varieties to the Pb added treatment during growth period. The results 

are shown in Figures 4.7.12 to 4.7.15 

Analysis of variance of the GI of all varieties/species showed significant differences 

P=0.002, 0.000, 0.000, 0.001, 0.001 and 0.010 was observed in the growth indexes of 

all varieties/ species ( BJ 18, BJ17, ZM B73, ZM OH43, BN SW and TC BR) respectively. 

This is an indication that the different growth indexes were affected by the differences in 

the Pb concentrations.  

The growth index (GI) across species/varieties over a range of concentration is shown 

in Figure 4.7.12 below. Comparison of GI between concentrations showed that the effect 

of the added Pb on the GI was not significantly different for most concentrations of BJ 

18. It indicated that this variety had tolerance to high Pb concentration, but a slight 

decrease (1%) in GI was observed at the 10000 mg/kg added Pb compared to the 0 

mg/kg added concentration.   

Significant differences P=0.000 was observed between the 0 mg/kg added Pb and all 

other concentrations of BJ 17, which suggest different effects on the GI at the different 

concentrations applied. The growth index of this variety tends to increase with increasing 

Pb concentration. This is an indication of the tolerance of this variety to high Pb within 

this concentration range.   
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The lower concentrations of ZM B73 were significantly different from the 3000 and 10000 

mg/kg Pb added (Figure 4.7.11).The effect of the added Pb on the GI differs at the 

different concentration range. It implies that, this variety had tolerance to high Pb as the 

GI tend to rise again at 3000 and 10000 mg/kg Pb added.    

The 0 and the 10000 mg/kg Pb added of ZM OH43 variety were not significantly different 

(Figure 4.7.12). This is an indication of the significant effect of the added Pb on the 

growth of this variety and its ability to tolerate high Pb within this concentration range.     

The Brassica napus variety BN SW grew well at Pb concentrations of 100 and 300 mg/kg 

with 19% lower GI at 3000 mg/kg and a further 26% lower in 10000 mg/kg Pb added 

treatment. It suggests that the added Pb had an effect on the GI at these concentrations, 

and that this variety will thrive well within the concentration range of 100 to 3000 mg/kg.    

 A definite pattern or trend in GI was not observed in TC BR. It grew well at 300, and 

then a 33% decrease at 3000 mg/kg and 16% increase at 10000 mg/kg. It showed an 

adaptation to high Pb, but the sudden decrease at 3000 mg/kg might be due to some 

other factors.  

 

 Figure 4.7.12: Growth index (GI) over a range of concentration across species and varieties in the 
second pot trial. Error bars represent one standard error on the mean n=3. 

Significant differences P=0.000, 0.001, 0.022, 0.006 and 0.002 were observed in the 

number of true leaves of BJ 18, BJ 17, ZM B73, ZM OH43, BN SW and TC BR at the 

different concentrations applied (Figure  4.7.13). 
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Figure 4.7.13 : Number of true leaves (NTL) over a range of concentration across species and 
varieties. 

There were significant differences P=0.001, 0.000, 0.000,0.001,0.001 and 0.004 

(P<0.05) in the height of all varieties (BJ 18, BJ 17, ZM B73, ZM OH43,  BNSW and TC 

BR  respectively (Figure 4.7.14). It is an indication that the differences in height of these 

varieties was as result of the varying Pb concentrations. Height of these species did not 

follow a particular trend.  However, some of the varieties were not significantly different 

in their height at some concentrations (e.g the 300, 3000 and 10000 mg/kg concentration 

of the Brassica napus variety BN SW). 

 

Figure 4.7.14 : Mean height over a range of concentration across species and varieties in the 

second pot trial. 

The species/varieties (BJ 18, BJ, 17, BN SW and TC BR) differed significantly (P= 0.017, 
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be inferred that the differing Pb concentrations were responsible for the different lengths 

observed. 

There was no detected significant effect of the Pb added treatments at the different 

concentrations on the longest length of the leaves of both Zea mays varieties ZM B73 

and ZM OH43 (Figures 4.7.15). 

 

 

                      

 

 

 

 

Figure 4.7.15: Mean longest leaf length over a range of concentration across species and varieties 
in the second pot trial. 
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4.8 DISCUSSION. 
 

Some of the varieties and species showed signs of stress at some points (e.g. decrease 

in biomass and chlorosis) to high Pb concentrations especially at 10000 mg/kg treatment.  

A significant effect of the added Pb was detected in some varieties when compared to 

the control treatment (0 mg/kg Pb added concentration).The Brassica napus variety BN 

SW was stressed as a result of the increasing Pb concentrations (above 300 mg/kg). 

Severe wilting of leaves and chlorosis was observed in this variety at high Pb 

concentration. Brassica juncea variety BJ 17 did not show any observable effect of 

toxicity or stress to increasing Pb concentration.  

Shoot Pb concentration for species/varieties in the 100 mg/kg concentration were in the 

order ZM B73 > BJ 17 > ZM OH43 >BJ 18 >BN SW. The 300 mg/kg shoot concentration 

were in this order TC BR >ZM OH43 > ZM B73 > BJ 17 > BJ 18 >BN SW whilst the 3000 

mg/kg Pb concentration were in this order TC BR > ZM OH43 > ZM B73 >BN SW > BJ 

17 > BJ 18).  The shoot Pb concentration of the 10000 mg/kg treatment were in the order 

TC BR > ZM OH43 > ZM B73 > BJ 17 >BN SW > BJ 18. This is an indication that uptake 

of Pb by these plant is species specific, which is line with literature on potential Pb 

accumulator (Baker et al., 1981; Rotkttikhum et al., 2006). However, some varieties of 

the same species were similar while some differ significantly.  

The shoot, root and total Pb concentrations (mg/kg) DW increased with increasing soil 

Pb concentrations for all species/varieties. This suggest that the amount of Pb uptake 

from the soil is dependent on soil Pb concentration.  This is supported by works of 

(Morrey et al., 1988; Baker and Brooks 1989; Baker et al., 1994; Brown et al., 1995a; 

Brown et al., 1995b; Zhisvistoky et al., 2011). Significant effect of the added Pb on the 

shoot, root and total dry biomass at high Pb concentrations was also observed. This is 

an indication that the effect of the Pb treatment differed with varied Pb concentrations for 

most varieties.  

Root Pb concentrations were in similar order for species and varieties as the shoot with 

TF ranging from 0.1 to 0.7 across species/varieties over a range of concentration.  This 

TF range of values suggest poor translocation of Pb to the shoot, which could be 

considered as an adaptive mechanism of tolerance to Pb stress in these plant species. 

The roots of most varieties had 4 to 5 fold higher Pb concentrations than the shoots. This 

higher root Pb concentration is supported by literature. Results in the second pot trial 

show that over 95% of plant species can accumulate higher (3-5 times) Pb in their roots 



128 
 

than in shoots. This was also observed in the results of the first pot trial and in line with 

previous findings (Nabulo et al., 2008; Bothe et al., 2010).  

The shoot and root concentration factors provided an insight into how Pb was taken over 

concentration gradient. The shoot concentration factor (CFshoot) ranged from 0.02 to 0.43 

with highest CFshoot for TC BR in the 300 mg/kg concentration. A general trend of low 

CFshoot was observed for most species. These CFshoots also supported low shoot 

accumulation of Pb or poor translocation (TF ranged from 0.1 to 0.7) of Pb from the root 

to the shoot. This is very close to values reported in previous works from literature review 

(Chapter 2: Section 2.5). Low concentration factors is associated with plants having 

effective mechanism in place to exclude harmful contaminants (Daniela et al., 2010). All 

species/varieties had higher CFshoot (5-28 times) and CFroot (3-13 times) in the lower Pb 

added concentrations and a general trend of decreased CF in shoots and roots with 

increasing treatment concentrations. This suggest that Pb uptake decreased with higher 

concentrations of Pb. This could explain why some of the plants in the higher Pb 

concentration seem to grow well as much as those in the lower Pb concentration, thus 

leading to a similarity in biomass between higher and lower concentration in some of the 

plant species. It also implied that most plant species excluded much of the Pb in the 

higher Pb concentrations (e.g 3000 and 10000 mg/kg). 

Brassica species varieties BJ 18 and BN SW had similar (0.04-0.06%) shoot Pb 

concentration in the 100, 300 and 10000 mg/kg treatments. However BN SW had 25% 

higher shoot Pb in the 3000 mg/kg when compared to BJ 18. This similarity in shoot Pb 

concentration was also true for the Zea mays varieties ZM B73 and ZM OH43. All 

species/varieties seemed to tolerate the added Pb in the soil, but to differing extent. 

Thlaspi caerulescens TC BR had higher Pb concentration in the 10000 mg/kg 

concentration than any of the other varieties/species. 

The change in biomass with respect to Pb concentration range did not follow a particular 

trend in most of the species/varieties. However, the biomass of TC BR increased with 

increasing Pb concentration. A regression model of the total biomass against 

concentration gradient for all plant species (Appendix II.16) shows that, there was no 

significant relationship between biomass change and concentration gradient. This 

suggest that the Pb concentration range could not be used to predict changes in 

biomass. This is in line with similar observation reported by Foroughi et al., (2014) with 

Noccaea caerulencens in hydroponic trial over a range of Zn concentration.   In addition 

to inferred exclusion of Pb at higher Pb concentration suggested by decreased CF with 

increasing Pb concentration, there is also a possibility that the change in biomass might 
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have occurred randomly in some cases irrespective of concentration gradient. In such 

cases, it could be inferred that other factors might have influenced the total dry biomass.  

Work by Zhu et al. (2008) suggests that the efficiency of the captured solar energy and 

the actual conversion of the captured energy into vegetative tissues that constitute the 

bulk of plant may influence plant biomass.  

In cases where the total dry biomass was decreased significantly due to increasing Pb 

concentration (e.g shoot Pb of BJ 18, ZM B73, ZM OH43, BN SW, TC BR and root Pb 

of BJ 17, ZM B73, TC BR in 10000 mg/kg), it could be inferred that the added Pb had 

influenced any of the metabolic activity chiefly accounting for biomass production, such 

as meristematic activities, cell elongation and the efficiency of photosynthesis. Studies 

by Baker, (1981); Baker et al., (1994); Lasat (1996) suggest that the presence of high 

Pb and Zn in the soil may influence some of these metabolic activities in plants. Internal 

and external factors that influence plant growth might also have been responsible. 

Work by Wayne and Ames, (2012) suggests that internal factors such as differentiation 

processes involved in the establishment of localized differences in biochemical, 

metabolic activity and structural organization in plants could be responsible for 

differences in plant structure in response to nutrient and contaminants in the soil. Some 

studies (Sharp, 1990, Deng et al., 1990) suggest that external environmental factors may 

affect specific shoot activity such as low water potential that could influence uptake of 

nutrient and contaminants at different concentrations. However, Waynes and Ames 

(2012) reported that certain environmental factors may influence developmental times 

and block particular stages resulting in differential response of individual plants to 

presence of contaminants in the soil. This may seem to explain the differential plant 

response to concentration gradient observed in this second pot trial.  

Efforts were made to reduce the effects of uneven environmental conditions by rotating 

pots at 90 degrees weekly as described in earlier work with Zn (Thomas, 2010). This 

might not have completely eliminated this effect and thus, might have partially influenced 

the biomass data trend in this experiment. However, Pb concentration of shoots, roots 

and dry weight total plants compared to the 0 mg/kg concentration showed a significant 

effect of the Pb treatment on some of the plant species/varieties. 

One other reason that might have affected the biomass trend in this experiment is the 

transition from vegetative to reproductive stage in some of the species/varieties. Study 

by Taku and Zheng-Hua, (2010) suggest that the transition from the vegetative growth 

to the reproductive growth phase of the plant can lead to decrease in shoot and root 

biomass. 
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Both Brassica juncea varieties were flowering and producing seeds from the fourth week 

after transplanting and notable changes such as reduced leaf area and thinning of stem 

were observed in some concentrations. This might have accounted for changes in 

biomass in higher Pb added concentrations and similarities in shoot dry biomass of lower 

and higher concentrations.  The over expression of flowering time gene in some varieties 

or species have been shown to affect shoot dry biomass (Salehi et al. 2005). Hormonal 

regulation of root and shoot has also been reported (Sakamoto and Matsuoka, 2004) to 

play important roles in plant growth and development, including the regulation of 

meristematic activities, cell elongation, both of which are crucial for biomass yield. 

This non-regular trend in biomass with Pb concentration gradient might also have been 

influenced by other factors. For example leaf eating caterpillars were found on the leaves 

of Brassica juncea varieties in the 3000 mg/kg treatment near harvest (Appendix II.12: 

Figure AII.12). They were immediately handpicked and destroyed before any damage 

was caused especially to plant biomass. This might have marginally impacted the 

biomass of this plant species in that concentration. The reason for the caterpillar attack 

is not known. Robinson et al., (1998) reported the defence against herbivores and 

pathogens as one reason to explain the advantages conferred on plants by heavy metal 

accumulation. However, Delorme et al., (2001) reported that despite the obvious appeal 

of the herbivore defence theory, some studies have shown that, in many cases, heavy 

metal accumulation does not protect the plant from herbivore attack which supports the 

observation of caterpillar attack in this study. The attraction of the caterpillar to a specific 

plant and concentration could be recommended for future research. However, the cause 

of variation in plant response to Pb concentration gradient was not investigated further 

in this pot trial. 

Root biomass with respect to scale of heterogeneity is very crucial to selecting suitable 

plant species for further pot trials. When the total dry biomass of different 

species/varieties were considered, Zea mays varieties ZM B73 and ZM OH43 had higher 

root biomass (with highest mean root dry biomass of 1.95 g and 1.80 g respectively) than 

any of the other varieties/species, so not comparable to any other species for any single 

scale (e.g. 2 cm scale) of heterogeneity.  

The Brassica juncea varieties differ slightly in their morphology, biomass and Pb 

concentrations. Brassica juncea BJ 18 was a tall creeping plant with highest mean root 

dry biomass of 0.62 g and total plant Pb of 114 mg/kg DW whilst BJ 17 was a tall erect 

plant and had higher root dry biomass and total plant Pb (0.96 g and 124 mg/kg). Root 

Pb concentration of BJ 18 was 2 times higher when compared to those of BJ 17. 
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Brassica napus BN SW was a short, thick sturdy plant with slightly higher root biomass 

(highest mean root dry biomass of 0.72 g) than the Brassica juncea variety BJ 18 and 

similar total plant Pb of 107 mg/kg DW.  

Thlaspi caerulescens had the lowest root dry biomass (0.017 g) of all the varieties and 

highest mean total plant Pb of 1169 mg/kg DW. These contrasts in root biomass would 

affect the selection criteria. This is because different plant biomass (e.g root biomass) 

would recognize different scales of heterogeneity. The root balls of these varieties were 

also different. However, the total dimension (size) of the root ball was not taken into 

account in these earlier experiments. It was considered necessary to take into account 

the dimension (size) of the plant’s root ball in further experiments. This was used to 

examine the relationship between the size of the root ball and the scale of heterogeneity 

on uptake of Pb from the growth medium by the selected plant species discussed in 

Chapter 5.  

 Zea mays varieties had the biggest biomass of all the other varieties/species (i.e. 10g 

DW). Brassica napus BN SW had similar biomass to the BJ varieties (i.e. 4 and 5 g), but 

severe observable effects of the added Pb at 3000 and 10000 mg/kg were recorded for 

BN SW, even though it was generally tolerant. The total biomass of BJ 18 was 28% 

higher in the 10000 mg/kg Pb added concentration when compared to the control (0 

mg/kg). This is an indication of the tolerance of this variety to high Pb concentration. 

Based on this pot trial, a concentration range of 100 and 10000 mg/kg Pb was used in 

subsequent trials. This is because most of the varieties in the second pot trial showed 

varied tolerance, though with significant detrimental effects of added Pb observed at 

highest concentrations of 10000 mg/kg Pb. Most of the varieties/species tolerated with 

light apparent effects, Pb added concentrations in the range of 100 to 300 mg/kg Pb. 

The total dry biomass of BN SW was 24 and 32% higher in the 100 and 300 mg/kg Pb 

added respectively, when compared to the 3000 and 10000 mg/kg concentration. It 

suggests that this variety grew better in the control and at lower Pb concentrations, 

though tolerant to high Pb (3000 and 10000 mg/kg).  

The number of varieties/species for further research on the effects of heterogeneity was 

restricted to two contrasting species, to allow for more number of replicates to be 

employed in those experiments. Low number of replicates was one of the limitations to 

statistical power in the first and second trials. It was difficult to have more replicates, 

because of the large number of species and varieties involved. As a result of this factor, 

some interesting but subtle effects might not have been detected. 
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4.8.1 Discussion in relation to stated hypothesis. 

 

The stated hypotheses sought to understand the impact of varied Pb concentration on 

plant biomass and uptake of Pb between species/varieties. Hypothesis were accepted 

when there was a significant difference between the measured values of the variables. 

Result showed that significant effect of the added Pb on most species/varieties occurred 

in the higher Pb treatments. There was a trend in uptake with respect to Pb concentration 

gradient. However no regular trend was observed in the biomass with respect 

concentration gradient. A summary of the hypotheses test framed as alternative 

hypotheses (listed in section 4.6.3) is shown in Table 4.8.2. 

Table 4.8.2: Summary of results of hypotheses tested for each species between-treatments, based 
upon Tukey H.S.D. comparison of means statistical tests where P < 0.05. 

HYPOTHESES BJ 18 BJ 17 ZM OH43 ZM B73 BN SW TC BR 

(1)Shoot 
biomass DW 

Accept Reject Reject Accept Accept Accept 

(2)Root 
biomass DW 

Accept Accept Reject Reject Accept Accept 

(3) Total dry 
biomass DW 

Accept Accept Accept Accept Accept Accept 

(4)Total plant  

Pb 

(5) Trend in 
uptake versus 
concentration 
range  

(6) Trend in 
biomass  
versus 
concentration 
range 

Accept 

 

Accept  

 

 

 

Reject                                          

Accept 

 

Accept 

 

 

 

Reject 

Accept 

 

Accept 

 

 

 

Reject 

Accept 

 

Accept 

 

 

 

Reject 

Accept 

 

Accept  

 

 

 

Reject                   

Accept 

 

Accept 

 

 

 

Reject 

 

Key: Plant species selected for the third and fourth pot trials are highlighted in red 

In line with one of the stated objectives i.e to select the most suitable species for further 

pot trials, Brassica juncea variety BJ 18 and Brassica napus BN SW were selected for 

use in further trials. These two species had the most similar biomass when compared to 

Zea mays and Thlaspi caerulescens, and also responded similarly to same range of Pb 

concentrations. Although, BN SW had slightly higher biomass (by a factor of 1.4) than 

BJ 18. It is worth comparing these two species in response to same scale of Pb 

heterogeneity in further pot trials. 
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CHAPTER FIVE: An investigation of a simplistic binary model of heterogeneity 

of Pb on biomass and plant uptake by two selected plant species (Brassica napus 

and Brassica juncea). 

 

5.0 INTRODUCTION AND BACKGROUND TO EXPERIMENT. 

 

Two pot trials had been carried out and were discussed in earlier chapter (Chapter 4). 

These earlier pot trials tested and compared the behaviour of some Pb accumulating 

species, out of which Brassica juncea and Brassica napus were selected for further 

investigation on the effects of heterogeneity.  

This chapter discusses the third pot trial that investigated the impact of a simplistic binary 

model of heterogeneity on biomass and Pb uptake of the selected plant species 

compared against homogeneous and control (0 mg/kg Pb added) treatments. It builds 

on our understanding of plant root responses to nutrient patches in previous works by 

Jackson and Caldwell, (1989); Hutchings et al., (2000); Wijensinghe et al., (2001); 

Haines,  (2002). Root proliferation of T. caerulescens to Zn patches has been reported 

(Schwartz et al., 1999b, Whiting et al., 2000; Haines, 2002). The chapter also discusses 

the bioavailability experiment which determined the extractable Pb in the growth medium 

of pot trials and the in situ soil from Gang Mine. 

Soil properties and constituents that affect plant growth are often heterogeneously 

distributed. According to Jackwell and Caldwell (1993); Wang and Cheng (2013), 

heterogeneity is regularly considered important for competitive interaction among plants. 

Significant variation was found in nutrient resources at different scales around a single 

plant (Jackwell and Caldwell, 1993; Wang et al., 2013). Previous works by Stuefer et al., 

1994; 1996; Wijesinghe and Hutchings, 1997; 1999; Fransen et al., 2001; Wijesinghe et 

al., 2001; Wang et al., 2006;2013; Mou et al., 2013; Hu et al., 2014 reported a strong 

effect of nutrient heterogeneity on plant biomass and acquisition of nutrient resources. 

The study of heterogeneity in the distribution of trace metals (e.g. Cd and Zn) in the soil 

has received some attention in recent years. Earlier studies by Millis et al., (2004), Haines 

(2002) and Thomas, (2010) using the simplistic binary (‘hit and miss’) heterogeneity in 

pot experiments showed significant differences in Cd and Zn concentrations of shoots 

and roots compared to those grown in homogenized growth media. Schwartz et al., 

(1999b); Whiting et al., (2000) and Haines (2002), observed a positive root proliferation 

in Thlaspi caerulescens, a Zn accumulator in response to substrate patches with high Zn 

concentration. Gray et al., (2005) and Bondada et al., (2007) reported a non-foraging but 



134 
 

positive response of Pterris vittata the arsenic hyperaccumulator plant, to spatial 

distribution of arsenic in soil. According to Banuelos et al., (1998), effects of 

heterogeneity may explain significant differences in plant uptake of contaminants 

between pot experiments in controlled (usually nominally homogeneous) environments, 

and in situ studies. 

Differential root growth that might affect metal uptake has been shown in a number of 

plant species. Foraging traits, such as the localized root proliferation in patches of 

substrate with high metal concentrations may be important in enhancing heavy metal 

accumulation in hyperaccumulator species (Haines, 2002). Some plants are able to 

forage for patchily distributed resources by positioning or proliferating leaves, roots or 

ramets when patches of higher quality or greater resource is available (Hutchings and 

De Kroon, 1994; Birch and Hutchings, 1994; Wijesinghe and Handel, 1994). Previous 

studies (e.g Jackson and Caldwell, 1989; Wijensinghe et al., 2001; Hutchings and John, 

2004) showed that foraging responses such as root proliferation in response to local 

nutrient enrichment had been observed in many plant species, and for some species, 

greater growth has been achieved in patchy habitats than in homogenous habitat. 

According to Robinson (1994) and Hutchings et al., (2000), patchy distribution of 

nutrients can influence plant performance as a result of altered resource acquisition, 

allocation patterns and changes in total biomass. 

5.1 Objectives of third pot trial. 
 

1. To examine and compare the response (positive and/or negative responses) of 

two selected plant species to a simple form of heterogeneity (a simplistic binary 

design) compared against a homogeneous treatment, before the fourth pot 

experiment more closely simulating the in situ heterogeneity seen in the field. 

  

2. Examine root responses of the selected plant species to Pb in the homogeneous 

and the binary heterogeneous treatments of the growth medium.  

 

5.1.1 Hypothesis  
1. Simplistic binary design of Pb heterogeneity has a significant impact on (a) 

biomass and (b) Pb uptake, when compared against a homogeneous design and 

against a control treatment containing no added Pb. 

 

2. Roots of plants will preferentially proliferate in patches with no added Pb in the 

heterogeneous design, to avoid the toxicity of the added Pb. 
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5.2 Study species for the third pot experiment and further pot trial. 
 

5.2.1 Brassica juncea (L) Czern (Indian mustard). 
 

Brassica juncea (L.) Czern (Indian mustard or brown mustard) belongs to the family 

Brassicaceae or family Cruciferae commonly known as the mustard family (Woods et al., 

1991). Brassica juncea has pale green foliage, with few hairs on the first leaves and leaf 

blades that terminate well up the petiole with the lower leaves deeply lobed and the upper 

leaves narrow  and entire (Raskov and Woods, 1987; Woods et al., 1991). It grows to a 

height of 1 to 2 m (Hemmingway, 1995). Brassica juncea has an annual growth habit 

(Raskov and Woods, 1987). It is one of the known accumulators of Pb and Zn (Bennett 

et al., 2003; Anjum et al., 2012). It is has been reported as accumulating 9580 mg/kg of 

Pb in roots and 3580 mg/kg in shoots (Meyers et al., 2008) (Section 2.5: Table 2.5.1). 

This suggest that Brassica juncea is a hyperaccumulator of Pb. Huang and Cunningham 

(1996) observed an uptake and localization of lead in the root system of B. Juncea when 

treated hydroponically. It is also a known hyperaccumulator of zinc (Baker and Brooks, 

1989; Thomas, 2010).     

It tolerates an annual precipitation of 500 to 4200 mm, annual temperature between 6 to 

27oC and pH of 4.3 to 8.3 ((Meyers et al., 2008). It is a hardy cool-season vegetable 

growing well at an average monthly temperatures of 15 to 18oC and moderately tolerant 

to soil acidity preferring a pH of 5.5-6.8 and thrives well in areas of hot days and cool 

nights with fair resistance to drought (Duke, 1981).  Its growing period is from 40 to 60 

days depending on the variety and weather conditions (Duke, 1982). Brassica juncea 

may also be grown as a biennial plant with long erect branches, dense root mass and a 

rooting depth of 90 to 120 cm (Hemmingway, 1995). Figure 5.2.1 show B. juncea in the 

wild. 
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Figure 5.2.1: Brassica juncea L. Czern in the wild (490 mm x 640 mm).  Source: 

(www.discoverlife.org). 

 

5.2.2 Brassica napus (L) (Rapeseed, rape or oilseed rape)  
 

Brassica napus (L.), (commonly called rapeseed, rape, oilseed rape), is a member of the 

family Brassicaceae (mustard or cabbage family) (Potts et al., 1999). Rape seed is grown 

for the production of animal feed, vegetable oil for human consumption and biodiesel 

(Suh et al., 1988). It grows in sandy loam to clay loam soils to a root depth of 36 cm 

(Chardin et al., 2001).  

Brassica napus is one of the most common green leafy vegetable that is consumed in 

some households (Chimbira and Moyo, 2009). It has a branched tap root ball system 

with root diameter ranging from 150-170 mm and the entire plant is anchored by a single 

rigid tap root (Crook and Ennos, 1997; Chimbira and Moyo, 2009). However, Thomas, 

(2010) did not observe a tap root development in pot trials with B. napus (Variety ES 

Astrid, grade CS). The development of tap root in this plant may depend on the variety 

or the type of growth medium used. Its upright stems and shoot height ranged from 1.3-

1.5 m, and the largest single root in this plant is the tapering tap root which grows to 

depth of 60-90 cm (Crook and Ennos, 1993). The mechanical role of the tap root is for 

effective anchorage below some critical depth, to give physical stability where plants can 

take up water, nutrients and incidentally heavy metals from the soil (Ennos and Filter, 

1992; Ennos et al., 2001). 

http://www.google.co.uk/imgres?imgurl=http://alabamaplants.com/Yellowalt/Brassica_napus_plant.jpg&imgrefurl=http://alabamaplants.com/Yellowalt/Brassica_napus_page.html&h=640&w=490&sz=92&tbnid=Ne8R5crR1C479M:&tbnh=90&tbnw=69&prev=/search?q=brassica+napus&tbm=isch&tbo=u&zoom=1&q=brassica+napus&docid=j2gcFpQmJgMgWM&hl=en&sa=X&ei=-C_0TtfGL4bs8QPo6q21AQ&ved=0CEEQ9QEwAw&dur=2418


137 
 

Chimbira and Moyo (2009) studied the uptake of Pb and Cd by B. napus in clayey soils 

and observed that an interaction between Cd and Pb in the soil reduced Pb uptake by B. 

napus. However, Carlson and Bassaz (1997) reported an uptake 984 and 354 mg/kg Pb 

in root and shoot by B. napus plants with increasing concentration of Cd in the soil. Figure 

5.2.2 show B. napus in the wild. 

          

 Figure 5.2.2: Brassica napus .L. in the wild (375 mm x 500 mm). (Floridata. Com, 2003). 
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5.3 Experimental Design for the Simplistic binary heterogeneity 

experiment. 
 

The experimental design was based upon the method described by Haines (2002) with 

modifications to identity (i.e Pb in place of Zn) and concentrations of the contaminant. 

Only a fraction of the Pb in the PbO used to spike the growth media is bioavailable to 

plants, therefore the concentrations of Pb chosen for this experiment allowed for the 

estimated bioavailability of Pb. However, an extraction experiment (Section 5.5) was 

carried out to determine the bioavailable Pb to plants using MgCl2 extraction (Tessier et 

al., 1979; Chao et al., 2007; Zimmerman and Weidorf, 2010). This is reported in Section 

5.5.4. Further estimates of bioavailability were made from the results of the herbage 

analysis from the second pot trial. The choice of Pb concentrations in this experiment 

was based on plant tolerance from the first and second pot trials.  

Brassica juncea Accession PI 182921 {BJ 18} and Brassica napus Accession PI 601261 

{BN SW}) were subjected to control conditions without additional Pb and to treatments 

in which Pb was added homogeneously or in a binary design. Simple randomized block 

design was used, with randomization between treatments as shown in Figure 5.3.1 and 

Appendix III.1: Table AIII.1. 

          

 

 

Figure 5.3.1: Randomized block design showing (a) B. juncea - left (Scale bar:  9 mm represents 20 
mm) and (b) B. napus --right (Scale bar: 7 mm represents 20 mm). Arrows represent scale bars. 

 

5.3.1 Method. 

 

Germination of seeds, preparation of growth media, spiking of growth media with the 

PbO contaminant, transplanting of seedlings and harvesting, processing and analysis of 

herbage samples for Pb, were done as described in the first pot trial (Chapter 4: Section 

4.3) except for changes in contaminant concentration, the amount of sand and compost 
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used and the use of a 4-way 40 mm by 80 mm and 170 mm deep binary pot divider 

(Figure 5.3.2). 

 

Figure 5.3.2: Binary pot divider used in the simplistic binary experiment (4-way 40 mm x 80 mm x 
170 mm). 

Six kg of dry carrier sand was spiked with PbO to make nominal concentrations of 1000 

and 2000 mg/kg DW of Pb in the final growth media. Spiked carrier sand was thoroughly 

mixed with sand and compost in the cement mixer. The amount of PbO needed to make 

concentrations of 1000 and 2000 mg/kg Pb, and the estimated amount of sand and 

compost required (70% and 30% volume/volume of sand and compost respectively) has 

been calculated as shown in Appendix III.1: Table BIII.1. Selection of species/varieties 

for this experiment was based on their total dry biomass with respect to scale of 

heterogeneity (4 cm at a depth of 17 cm) and Pb concentrations of herbage samples 

discussed in Chapter 4. 

The selected plant species are Brassica juncea (variety BJ 18) and Brassica napus 

(variety BN SW). Full names, accession numbers, origin and suppliers are shown in 

Chapter 4: Table 4.3.1. The study species’ morphology, characteristics and growth 

requirements have been described in Section 5.2. 

In the two treatments with added Pb, the pots were divided into quadrants. In the 

homogeneous treatment, all quadrants contained a nominal concentration of 1000 mg/kg 

(DW) Pb (Figure 5.3.3b) while for the binary treatment, a nominal concentration of 2000 

mg/kg (DW) Pb was introduced into two opposite quadrants of the pot (Figure 5.3.3c). 

Plants were grown for six weeks under natural light (photoperiod of 16 hours) in a 

greenhouse at a temperature of 20±5º C. Power analysis used values for the variances 

of shoot Pb concentration (mg/kg) of both species taken from the second pot trial. 

Average shoot pooled standard deviation of 93 mg/kg and population mean difference 

of 4 mg/kg were used. The estimated minimum number of replicates at 95 % confidence 
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level and at 90 % probability of detecting a difference in population mean was 7.2. Using 

these data, a maximum number of 10 replicates (allowing for 20% failure rate or chances 

of detecting subtle differences than the number from the power analysis) per treatment, 

(3 treatments-Control, homogeneous and binary) for each species was used, making a 

total of 60 pots maintained in randomized block design (Figure 5.1.1; Appendix III.1: 

Table AIII.1). A diagrammatic representation of the experimental design is shown in 

Figure 5.3.3.  

Dried and milled herbage samples were analysed for Pb. The growth medium was also 

analysed for its actual Pb concentration and reported in Table 5.3.1 below. Certified 

reference materials (NIST standard reference materials and house reference materials), 

duplicate samples and reagent blanks were used for quality control (Appendix III.4) 

Table 5.3.1: Actual Pb concentration of growth media in pot trial 3. 

Nominal Pb 
concentration 
mg/kg 

Actual Pb 
concentration 
mg/kg STDEV SEM 

0 24 6.1 2.5 

1000 1012 190 72 

2000 2418 693 309 

Key: STDEV-Standard deviation.  SEM—Standard error on the mean. 

Plant growth information, such as growth index (GI) (discussed in chapter 4), height, 

number of true leaves, number of dead leaves, was recorded at initial transplant, in the 

third, fourth, fifth week, and also at harvest in the sixth week to assess physical variation 

between the treatments. Biomass data e.g. root and shoot dry biomass ratio were 

recorded at harvest. The approximate root ball diameter in all binary quadrants of the pot 

was also recorded. 

Plant measurements such as height and root ball diameter were taken to the nearest 1 

mm using ruler, measurement tape and Vernier calliper. Data were analysed using IBM® 

SPSS version 20 and Minitab 16 for Windows. Statistical tools such as the analysis of 

variance, independent-sample t-test and mixed model ANOVA (with treatment as fixed 

factor and block as random factor) were used. The Kolmogorov-Smirnov test was used 

test for normal distribution of data (Appendix III.2: Table LIII.2). The Tukey Post-hoc test 

was also employed for the comparisons between treatments. Graphs with error bars 

(representing 1 standard error on the mean) were prepared, in which a shared letter of 

the alphabet indicates that the mean values are not significantly different. 
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   5.3.3a: Control                     5.3.3b: Homogeneous                 5.3.3c: Binary 

Figure 5.3.3: Diagrammatic representation of the experimental design, values in mg/kg (mean 
nominally 1000 mg/kg for both treatments). 
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5.4 RESULTS. 
There were visually observed differences between the treatments which gave an 

indication of the variation. During the growing period, clear visible differences such as 

decreased height, presence or absence of chlorosis were also detected between 

treatments for both plant species (Figures 5.4.1a to 5.4.1b and 5.4.2a to 5.4.2b). This 

qualitative observation was then confirmed quantitatively using ANOVA, which showed 

that the differential Pb treatments had a significant effect on most of the variables (shoot, 

root and total biomass, Pb uptake and root ball diameter).  

          

(a) 5.4.1a                                                                                                                          (b) 5.4.1b 

Figure 5.4.1: Brassica juncea {5.4.1a} 36 days after planting seedlings showing increased height 
simplistic binary (right- Scale bar: 13 mm represents 50 mm) compared against both the 
homogeneous (central-  scale bar: 14 mm  represents 50 mm) and to the control (left-  Scale bar: 13 
mm represents 50 mm), {5.4.1b}: B. juncea ( Scale bar: 32 mm  represents 1000 mm) in the binary 
treatment at harvest (56 days) showing healthy growth and no chlorosis (in contrast to B. napus in 
same treatment in Fig 5.4.2b.  Arrows represent scale bars for each figure and information highlighted in 

blue. 

        

(a) 5.4.2a                                                                                                            (b) 5.4.2b 

 Figure 5.4.2: Brassica napus {5.4.1a} 36 days after planting seedlings showing decreased height in 

simplistic binary (right pot- Scale bar: 9 mm represents 20 mm) compared against both the 
homogeneous (central pot- Scale bar: 13 mm represents 20 mm) and to the control (Left pot: Scale 
bar: 9 mm represents 10 mm), {5.4.2b}: B. napus in the binary treatment at harvest (56 days) showing 
chlorosis and wilting of leaves (Scale bar: 9 mm represents 20 mm).  
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Biomass data in line with experimental hypothesis such as the shoot, root and total dry 

biomass and root ball diameter in binary quarters are discussed in detail. Summary of all 

variables including growth data such as the number of true and dead leaves, longest leaf 

length, height and growth index which are not part of the key hypothesis tested are 

presented in Table 5.4.1. A general trend was observed in some of these variables.   

The raw measurement of each variable is presented in Appendix III.3.The summary of 

analysis of variance (ANOVA) result for all growth and biomass data showed significant 

differences between treatments for most of the variables except the longest leaf length 

and the root-shoot biomass ratio of B. napus (Table 5.4.1).  It is an indication that the 

treatments had an effect on these plant species.  
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 Table 5.4.1: Growth and biomass data from third pot trial (Simplistic binary heterogeneity experiment) showing Analysis of variance (ANOVA) result for 
growth and biomass data with mean (for control in blue, homogeneous in red and binary in purple) and P values in brackets. 

Plant 

Species 

Height(mm) Growth 

index (GI) 

Longest 

leaf length 

(LLL) 

Number 

of true 

leaves 

(NTL) 

Number 

of dead 

leaves 

(NDL) 

Shoot 

dry 

biomass 

(g) 

Root dry 

biomass 

(g) 

Total 

dry 

biomass 

(g) 

Root-

shoot 

ratio (g) 

Root ball 

diameter 

(mm) 

Brassica 
juncea 

S (0.002) 

1326:1121:1310 

 

S (0.002) 

451:381:445 

NS(0.678) 

222:219:228 

S(0.000) 

46:35:40                 

S(0.000) 

0:3:4                      

S(0.001) 

14:10:14  

S (0.000) 

2.6:1.3:2.0 

S(0.002) 

17:11:15 

 

S(0.000) 

0.2:0.1:0.2 

 

S (0.000) 

12:33,10 

Brassica 
napus 

S (0.000) 

45;27:20                      

S (0.000) 

26:15:12 

NS (0.690) 

311:313:305 

S(0.000) 

14:11:13 

S(0.000) 

0:2.9:3.2 

S(0.000) 

13:12:9   

S (0.000) 

2.6:2:1.6 

 

S(0.000) 

16:14:11 

 

NS(0.11) 

0.2:0.2:0.2 

S (0.000) 

27:69:17 

 

                                NS-- Not significant between treatments.  S--- Significant at P<0.05 between treatments. P values in brackets.
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5.4.1 Biomass results for Brassica juncea. 
 

Plants were harvested after 56 days of growth when sufficient aboveground biomass had 

been produced, at which point there was a 100% survival rate. Mean shoot, root and 

total dry biomass for B. juncea increased by 31% in the binary treatment compared 

against the homogeneous. This difference was statistically significant {F3, 26 =23.97; 

64.11; 32.38, P<0.05} (Appendix III.2: Table AIII.2). Further comparison with the Tukey 

HSD post-hoc test confirmed this significance (Figure 5.4.3). This same trend was 

observed for the individual shoot and root dry biomass values, as shown in Figure 5.4.6 

below. However, the apparent differences in the shoot, root and total dry biomass 

between the binary and control treatments were not significant. This implies that there is 

no significant effect on the biomass caused when the Pb is distributed in this 

heterogeneous way. At harvest plants in the binary treatment were healthy and 

generated substantial biomass, whilst those in the homogeneous treatment showed 

signs of chlorosis and reduced height. At 40 days, plants in the binary treatment had also 

begun flowering while those in the homogeneous treatment only began to flower after a 

further 7 days. 

 

Figure 5.4.3: Mean shoot, root and total biomass (DW) between treatments of B. juncea.  Means 
that share the same letters for each variable are not significantly different, as judged by the Tukey 
post-hoc test). Error bars represent 1 standard error on the mean for ten replicates (n=10). 

 

5.4.2 Biomass results for Brassica napus. 

 

Early visible response to treatments was observed for B. napus after 28 days growth 

(Figure 5.4.2a). Plants in the binary treatment were stunted with severe chlorosis (Figure 
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5.4.2b) at harvest after 56 days of growth. However, substantial biomass was generated 

and 100% survival rate was recorded. Brassica napus biomass did not show the same 

pattern of response to the treatments as B. juncea. There were clearly visible differences 

in the shoot, root and total dry biomass between treatments. These differences were 

statistically significant {F3, 26 =48.97; 27.71; 64.78, P < 0.05} (Appendix III.2). Further 

comparison with Tukey HSD post-hoc test also confirmed significant differences in the 

above and below ground biomass between treatments (Figure 5.4.4). A trend of 

decreased total biomass in response to Pb treatment was observed with an 

approximately 70 % lower in the binary treatment compared to the control. A similar result 

was observed in the mean shoot and root dry biomass. 

 

Figure 5.4.4: Mean shoot, root and total biomass DW between treatments of B. napus. Means that do 
not share letters for each variable are significantly different, as judged by the Tukey post-hoc test). 
Error bars represent 1 standard error on the mean (SEM), for ten replicates (n=10).  

 

5.4.3 Root-Shoot biomass ratio of B. juncea and B. napus 
 

The root-shoot biomass ratio of both plant species in control, homogeneous and binary 

is shown in Figure 5.4.5. The control treatment of both species had the highest root-

shoot biomass ratio. This was decreased by 17% in homogeneous and binary treatments 

of B. napus and decreased by 38 and 20% in the homogeneous and binary treatments 

of B. juncea respectively. There was no significant difference {P=0.011>0.05} (Appendix 

III.2: Table DIII.2) in root-shoot biomass of B. napus between treatments, whilst the 

differences was statistically significant {P=000<0.05} (Appendix III.2: Table EIII.2) for B. 

juncea.  
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Figure 5.4.5: Mean root-shoot biomass DW between treatments of B. napus and B. juncea. Means 
that do not share letters for each species are significantly different, as judged by the Tukey post-hoc 
test). Error bars represent 1 standard error on the mean (SEM), for ten replicates (n=10). 

 

5.4.4 Root response result for Brassica juncea and Brassica napus. 

 

The diameter of each root ball was recorded to assess responses of plant species to 

patches of Pb in the binary treatment. The root ball diameter (Raw measurement in 

Appendix III.3) in the binary quarters showed that more roots were preferentially 

proliferated in the patches of no added Pb (0 mg/kg added) {70 mm and 33 mm} than in 

2000 mg/kg Pb added {17 mm and 9.5 mm} in B. napus and juncea respectively (see 

Figure 5.4.6). Significant differences {F2, 17 =17.72; 31.72, P<0.05} were recorded 

between species and binary patches respectively. The roots of both plant species, 

therefore avoided the Pb by a decreased root mass in the 2000 mg/kg Pb added patch.  

The homogeneous patches had nearly equal distribution of roots in all quadrants 

compared to the binary treatment as shown in Figure 5.4.7.This suggests that in 

homogeneous growth media, roots are equally allocated to contaminants as was the 

case in this study.  

The difference between root diameter in the homogeneous and binary treatments was 

also significant (P<0.05). Result showed both varieties have different root morphology 

(Figures 5.4.8a and 5.4.8b). A tap root was observed in B. napus (Figure 5.4.8b), whilst 

B. juncea lacked tap root (Figure 5.4.8a), but had a network of fibrous roots which was 

also observed in the fourth pot experiment discussed in Chapter 6. 
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Figure 5.4.6: Root ball diameter between binary patches of B. napus and B. juncea. Error bars 
represent 1 standard error on the mean where n=10. 

 

Figure 5.4.7: Comparison of the root ball diameter in homogeneous quadrants of B. napus and B. 
juncea. Error bars represent 1 standard error on the mean where n=10. 

                                                

Figure 5.4.8: Roots of (a) B. juncea with no tap root (left- 2.9 mm  represents 200 mm) and that of  
(b) B. napus showing a central tap root (right- 2 mm  represents 100 mm). 
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5.4.5 Lead uptake results for Brassica juncea. 
 

The difference in the total plant Pb concentration mg/kg (DW) between the binary and 

homogeneous treatments was significant (P = 0.002). Plants in the 0 mg/kg Pb added 

(control) were not analysed for Pb as this work compares the binary treatment against 

the homogeneous. Mean total plant Pb concentrations in the homogeneous treatment 

was 41% higher than that of the binary (see Figure 5.4.9). Similarly, shoot and root Pb 

concentration in the homogeneous treatment were twice and 57% higher than those of 

the binary treatment respectively (Figures 5.4. 9 and 5.4.10). This is in line with similar 

findings of reduced contaminant concentrations (40-200%) in simplistic heterogeneous 

(binary) treatment of Zn and  Cd by Podar et al., (2004); Millis et al., (2004); Manciulea 

and Ramsey (2006); Thomas, (2010) and Moradi et al., (2009). 

 

 

Figure 5.4.9: Mean shoot Pb concentration (mg/kg) and total plant Pb concentration {mg/kg DW} 
between treatments of B. juncea. Error bars represent 1 standard error on the mean (SEM), for ten 
replicates (n=10). 
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Figure 5.4.10: Mean root Pb concentration mg/kg between treatments of B. juncea. Error bars 
represent 1 standard error on the mean (SEM), for ten replicates (n=10). 

 

5.4.6 Lead uptake results for Brassica napus. 
The mean Pb concentrations of shoot, roots and total plant (mg/kg, DW) also decreased 

in response to heterogeneity in the binary treatment as did the dry biomass (see biomass 

in Figure 5.4.4), as opposed to the case of B juncea which had reduced uptake and 

increased biomass. 

 

Figure 5.4.11: Mean shoot Pb (mg/kg) and total plant Pb concentration {mg/kg DW} between 
treatments of B. napus. Error bars represent 1 standard error on the mean (SEM), for ten replicates 
(n=10). 
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the binary treatment compared to the homogeneous treatment. Similar trend was 

observed for the shoot and the root Pb concentrations (See Figures 5.4.11 and 5.4.12 

below). 

 

Figure 5.4.12: Mean root Pb concentration mg/kg between treatments of B. napus. Error bars 
represent 1 standard error on the mean (SEM), for ten replicates (n=10). 

 

5.4.7 Uptake between species with respect to Concentration factor. 
 

The shoot concentration factor (CFshoot) for B. napus in the binary and homogeneous 

treatments were not significantly different whilst that of B. juncea was twice as low in the 

binary treatment when compared to the homogeneous treatment (Figure 5.4.13). The 

CFshoot was generally low (0.02-0.09) for both species. The total concentration factor 

(CFtotal) was 55% and 44% higher in the homogeneous than the binary treatment for B. 

juncea and B. napus respectively. There was a significant difference (P < 0.05) in CFtotal 

between treatments. 
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Figure 5.4.13: Mean total concentration factor (CFtotal), shoot concentration factor (CFshoot) and 
translocation factor (TF) of B. napus and B. juncea in homogeneous and binary treatments. Error 
bars represent 1 standard error on the mean where n=10. 

The translocation factor (TF) for both species ranged from 0.02-0.04. Results suggest 

that about 75-95% of Pb was accumulated in the root with 5-25% accumulated in the 

shoot.  

5.4.8 Uptake expressed as Pb mass (µg) for B. juncea and B. napus. 
Shoot and root uptake of both plant species expressed as Pb mass (µg) are shown in 

Figures 5.4.14 to 5.4.15. The advantage of expressing uptake in (µg) and the difference 

between this form, and uptake expressed as concentration (mg/kg), is discussed in 

Chapter 6: Section 6.4.3. 

Elevated shoot and root Pb masses in (µg) were observed in both treatments, when 

compared to uptake expressed as (mg/kg). However, reduced Pb mass was observed 

in the binary treatment of both species, when compared to the homogeneous as in 

uptake expressed in mg/kg concentration. 

There was no significant difference between Brassica juncea and Brassica napus shoot 

Pb masses in the binary treatments, with  B. napus having 21% higher Pb mass than B. 

juncea in the homogeneous treatment (Figure 5.4.14).There was no statistically 

significant difference (P = 0.185; 0.988 > 0.05) in shoot Pb mass between species 

(Appendix III.5:  AIII.5 and BIII.5). However, the differences in shoot Pb mass between 

the homogeneous and binary treatments were significant (P = 0.005; 0.0002 <0.05) 

respectively for B. napus and B. juncea (Appendix III.5: CIII.5 and DIII.5). 
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Figure 5.4.14: Mean shoot Pb mass (µg) for B. juncea and B. napus in homogeneous and binary 
treatments. Error bars represent 1 standard error on the mean where n=10. 

 

Figure 5.4.15: Mean root Pb mass (µg) for B. juncea and B. napus in homogeneous and binary 
treatments. Error bars represent 1 standard error on the mean where n=10. 

Root Pb mass of B. juncea in the binary treatment was 16% higher than that of  B. napus, 

whilst B. napus had 70% higher root Pb mass than B. juncea in the homogeneous 

treatment (Figure 5.4.15). The differences in root Pb mass between species in the 

homogeneous treatment was statistically significant (P=0.009 < 0.05), whilst the root Pb 

masses of both species in the binary treatment were not significantly different (P = 0.334 

> 0.05) (Appendix III.5:  CIII.5 and DIII.5). However, the difference in root Pb mass 

between the homogeneous and the binary was statistically significant (P=0.002 <0.05) 

for B. napus, and was not significant (P = 0.812 > 0.05) for B. juncea (Appendix III.5: 

EIII.5).  Root Pb masses in both treatments were ~40 to 60% higher than the shoot Pb 

mass.  

Results of the shoot and root Pb masses of both species in the two treatments show that 

heterogeneity has a significant impact on plant uptake expressed as Pb mass. 
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5.5 LEAD BIOAVAILABILITY IN POT TRIAL. 
 

The section presents the results of experiment which determined the extractable Pb of 

in situ soils and growth medium used in pot trials. It introduces the concept of 

bioavailability of contaminants in soil to plants and the some methods of determination 

of bioavailable Pb fraction. 

 

5.5.1 Bioavailability experiment. 
 

An experiment to determine the extractable fraction of Pb in the growth medium and soil 

samples collected from Gang Mine field site was carried out using the modified Tessier 

method {MgCl2  extraction} (Tessier et al., 1979) as described by Li et al., (1995). 

Experimental objective: To determine the bioavailable fraction of Pb in soil from field 

sites and in growth medium of pot trials to plants. 

 

5.5.2 Background to experiment. 
 

It is known that a part of the total Pb in soils may be taken up by plants roots and 

transferred to the shoots. Some plants are more effective in translocation of Pb to shoots 

than others (Romeiro et al., 2006). According to Huang and Cunningham, (1996), the 

amount of Pb bioavailable to plants depends partially on the concentration of Pb in the 

soil and growing medium.  

Bioavailability is defined as the degree to which chemicals present in the enviromment 

may be available for interaction with biological systems or ecological receptors such as 

plants (ISO, 2005). Bioavailability of contaminants is affected by several factors such as 

temperature, pH, chemical composition, cation exchange capacity and redox conditions 

(Kabata-Pendias, 2010). Other factors such as speciation or the form of Pb used may 

also affect bioavailability and uptake of contaminants by plants (Morrey et al., 1988). 

Uptake of Pb from the soil or growing medium varies with different species. 

The determination of actual metal bioavailability in soils to plants remains an unresolved 

problem in most environmental contamination analysis (Anyanwu et al., 2008). There is 

no universally established quantitative method for determining directly the exact fraction 

bioavailable to plants (Erickson et al., 1990; Anyanwu et al., 2008). Several chemical 

extraction methods have been used to determine the bioavailable fraction of metals in 
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soil. These are indirect methods which gives an estimate of the fractional amount of 

metals available to plants (Elsokkary and Lag, 1978; Farago and Mehra, 1992).  

Chemical extractants can be classified into the following groups: neutral salts dilute 

solutions of weak or strong acids and complexing agents (Harmsen, 2007). Such 

chemical extractants include ethylenediaminetetracetic acid (EDTA), diethylenetriamine 

pentacetic acid (DTPA), ammonium acetate, NaNO3, NH4NO3, CaCl2, CH3COOH and 

MgCl2 (McGrath, 1996; Brunoi et al., 2004). Helgesen and Larsen (1998) and Menzies 

et al., (2007) reported that, neutral salt extractants such as 0.01 M CaCl2 and 0.1 M 

NaNO3 provide the most useful indication of metal phytoavailability while Gupta et al., 

(2006), recorded a better correlation (r=0.87) between extractable metals in different 

amendments of tannery sludge on soil using EDTA compared to NaNO3 and CaCl2 

(r=0.53 and 0.60) respectively. Extractants used in single extractions are mainly to 

evaluate the exchangeable (bioavailable) fractions of elements in the soil (Mossop and 

Davidson, 2003: Sinha et al., 2006). 

One of the earliest extraction methods for determining exchangeable or bioavailable 

fraction of metals in soil is the Tessier procedure (Tessier et al., 1979).  A short extraction 

procedure which produced strong correlation data between the extraction method and 

amount of bioavailable fraction for many metals tested has been used (Maiz et al., 2000). 

The modified EDTA extraction method by the United Kingdom Ministry of Agriculture, 

Fisheries and Food (1986) has been reported by Anyanwu et al., (2008).  The method 

described by Rauret et al. (1999) to determine the phytoavailable fraction of Pb, Zn, Cd 

and Cr in soil has been used by Olayinka et al. (2011). Two commonly used and 

accepted methods for extractable metals by the European Commission are MgCl2 

extraction (Tessier et al., 1979) and the EDTA (Quevaulier, 1998). Extraction methods 

used in different studies are summarised in Table 5.5.1. 

 

 

 

 

 

 



156 
 

 

Table 5.5.1: Summary of different extraction methods used for bioavailable Pb in previous works.  

Plant species Form of  Pb 

in the soil 

 Total 

Conc.(mg/kg) in 

the soil 

Extractable 

conc. (mg/kg) 

% 

Extractable 

form 

Extraction 

method 

Heterogeneity Source 

Amaranthus 

viridis 

Not known 86.59 4.52 5 EDTA - Olajire et al., 2006 

Amaranthus 

viridis 

Not known 86.59 3.54 4 Acetic acid - Olajire et al., 2006 

Celosea 

argentea, 

Amaranthus 

viridis, Corchorus 

olitorius 

Not known 387 21.3 6 Acetic acid - Olayinka et al., 2011 

Oryza sativa Not known 359 0.06 0.02 CaCl2 - Kashem et al., 2007 

Oryza sativa Not known 359 16.7 5 DPTA - Kashem et al., 2007 

Oryza sativa Not known 359 70 19 1 M HCl - Kashem et al., 2007 

Food crops and 

vegetable 

Not known 7103.05 1509.65 21 Ammonium 

EDTA 

- Anyanwu et al., 2008 

Spinach, celery, 

garlic and cole 

PbO 79.50 10 13 MgCl2 - Zimmerman and Weidorf et al., 2010; Chao et 

al., 2007 



157 
 

 

5.5.3 Methods. 
 

Magnesium Chloride Extraction 

Of the two commonly used and accepted methods (MgCl2 extraction and the EDTA 

extraction) for extractable metals by the European Commission, MgCl2 extraction was 

considered appropriate for this study for the following reasons (i) the possibility of 

exaggeration of the bioavailable Pb by EDTA- a chelating agent, (ii) the high solubility of 

PbO  (the Pb species used to spike growth medium used in pot trials and the dominant 

Pb speciation at the two sites investigated in Chapter 3) in MgCl2 extraction (Foster and 

Lott, 1980; Clevenger et al., 1991).   

One gram of air dried soil sample was placed in 50 ml tube to which 8 ml of 0.5 M MgCl2 

was added at a temperature of 22±5ºC. The sample was continuously agitated or shaken 

for 1 hour on a shaker. The fraction was separated from the supernatant by centrifugation 

at 10,000 rotation per minutes (approximately 12, 000 gravity) for 30 minutes. The Two 

commonly used and accepted methods for extractable metals by the European 

Commission are MgCl2 extraction (Tessier et al., 1979) and the EDTA (Quevaulier, 

1998).  The supernatant was collected, filtered using Whatman filter paper and analysed 

for Pb using the AAS. One gram of certified reference material (BCR), duplicate samples 

and reagent blanks were used for quality control (Appendix III.4).  
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5.5.4 Results of Lead Bioavailability Experiment. 
 

The result of the analysis of growth medium and in situ soil samples are presented in 

Table 5.5.2 below. The result showed that on average, 18% of the growth medium total 

Pb is available for uptake, whilst 13% is available from the field site. This suggest that 

taking 13% of the mean measured total Pb concentrations of 5922 and 25212 mg/kg 

produces potentially bioavailable concentrations of 770 mg/kg  for Gang Mine and when 

applied to Black Rocks 3278 mg/kg. When the percentage extractable is applied to 

growth medium range of Pb concentrations (100 to 10000 mg/kg), it provides a 

potentially bioavailable concentration range of 18 to1800 mg/kg. 

Table 5.5.2: Summary of growth medium of pot trials and in situ soil sample from Gang Mine    
extractable Pb results.  

Sample 

Nominal  Pb 
concentration 
(mg/kg) 

Measured Pb 
concentration 
(mg/kg) 

Extractable 
Pb (mg/kg) 

% 
Extractable 
Pb 

Gang Mine-
C5 N/A 4020 507 13 

Gang Mine-
G6 N/A 11120 1571 14 

Gang Mine-J8 N/A 8085 995 12 

Gang Mine-I1 N/A 3700 489 13 

      Mean 13 

      STDEV 0.8 

      SEM 0.4 

Sample 

Nominal  Pb 
concentration 
(mg/kg) 

Measured Pb 
concentration 
(mg/kg) 

Mean 
extractable 
Pb (mg/kg) 

% 
Extractable 
Pb 

Growth 
medium 100 105 17 16 

  300 366 74 20 

  1000 956 174 18 

  1000 1012 189 19 

  3000 2943 475 16 

      Mean 18 

      STDEV 1.7 

      SEM 0.8 

     
 

Key: Gang Mine -C5; Gang Mine-G6; Gang Mine-J8; Gang-Mine-I1 represent soil samples from 

duplicate cores at   sample locations C5, G6, J8 & I1 of Gang Mine field site.     
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5.6 DISCUSSION 
 

Biomass results of B. juncea in this study is in line with previous works with Zn and Cd 

(e.g Millis et al., (2004); Podar et al., (2004); Manciulea and Ramsey, (2006); Menon et 

al., (2007); Moradi et al., (2009); Thomas, (2010) and support the findings of higher 

biomass and lower metal uptake in the binary treatment compared to the homogeneous 

treatment. However, lower biomass and lower Pb uptake expressed as concentration 

(mg/kg) and Pb mass (µg) was observed in B. napus in the binary treatment compared 

to the homogeneous treatment. Brassica napus grew better (26% higher biomass) in the 

homogeneous treatment than in the binary, whilst Brassica juncea had better growth in 

the heterogeneous (binary) treatment than in the homogeneous treatment. This 

contrasting behaviour of these two plant species in simplistic spatial heterogeneity is an 

indication that their responses to heterogeneity of Pb is species-specific.  

The species-specific behaviour can also be seen in the effect of Pb on shoot, root and 

total biomass DW in binary and homogeneous treatments. For example, a more severe 

effect of the added Pb (visible severe chlorosis and wilting of leaves) was seen in the 

binary treatment of B. napus than that of B. juncea. This was also observed in the 

decreases (43% and 26%) in total dry biomass of B. napus in the binary compared to 

the control and homogeneous treatments respectively. Whereas, B. juncea had 

significantly (p<0.05) higher biomass (41%) in the binary treatment than in the 

homogeneous treatment. As earlier mentioned in this chapter, B. juncea biomass and 

uptake result is in line with earlier studies on the variation in dry biomass and metal 

uptake between different plant species in response to simplistic spatial heterogeneity of 

zinc (Thomas, 2010). Nabulo et al., (2008) reported variation in dry biomass to a similar 

extent between plant species in response to different treatments with Zn and Cd in a pot 

trial. Variation in Cd uptake to a lesser extent between some varieties of lettuce has been 

reported (Millis et al., 2004). 

The root-shoot biomass ratio provides useful information on how these plants allocate 

carbon and resources to the above and below ground parts in the presence of 

contaminants in the soil.  This has impact on the uptake of contaminants and nutrients 

in the soil. The root biomass ratios in this study showed that 80% higher biomass was 

allocated to the above ground part, compared to the root in both plant species. This is in 

line with studies by Mokany et al., (2006) which suggest that root biomass can influence 

plants uptake potential. Decreased root-shoot biomass ratio in the homogeneous and 

binary treatments of B. juncea and B. napus, when compared to the control is an 

indication of the effect of the Pb added treatment on the plants. It also suggest that roots 
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were decreased in response to the spatial distribution of Pb in the growth medium as 

Brassica juncea had 15 to 38%  decrease in root-biomass ratio in the homogeneous, 

compared to the control and binary treatments. The effect of the varied Pb distribution 

on root-shoot biomass ratio was more pronounced in B. juncea than in B. napus, with 11 

to 30% higher root-shoot biomass ratio recorded for B. napus in control, homogeneous 

and binary treatments. However, B. napus had same root-shoot biomass ratio in the 

homogeneous and binary treatments. This indicated that both plant species have specific 

adaptation and variation in growth pattern in response to Pb heterogeneity. There was 

no statistically significant difference in the root-shoot biomass ratio between treatments 

of B. napus. It also suggest that B. napus tends to ignore heterogeneity in allocation of 

biomass and resources in the presence of Pb and its spatial distribution in the soil.  

A similar pattern of Pb uptake expressed as Pb concentration (mg/kg) was observed in 

both plants. Brassica napus and B. juncea had higher total plant Pb (316 and 227 mg/kg 

DW) in the homogeneous treatment, compared to the binary (199 and 161 mg/kg DW) 

respectively. This showed that that the simplistic binary treatment had lower Pb uptake 

(by 59 and 40%, respectively). Previous studies (Millis et al., 2004; Thomas, 2010), 

stated earlier in this section, had also observed lower contaminant concentrations in 

simplistic models when compared to the homogeneous patterns. Brassica juncea had 

22% decreased uptake in the homogeneous treatment when compared to B. napus. 

These two plant species accumulated Pb to a different extent in the heterogeneous 

treatment when compared to the homogeneous treatment and also affected to a differing 

extent in the binary treatment. Kabata-Pendias and Pendias, (2001); Audet and 

Charcrest, (2007) reported a great deal of variation in the degree to which different plant 

species can accumulate different heavy metals from the soil. 

Elevated Pb uptake expressed as Pb mass (µg) (twice higher) was observed in the 

homogeneous and binary treatments of both species, when compared to uptake 

expressed as concentration (mg/kg).  Results also suggest that B. napus would 

accumulate more Pb in shoots and roots in the homogeneous treatment than B. juncea, 

whilst B. juncea has the tendency of accumulating more Pb in the root in binary treatment 

than B. napus judging from their shoot and root Pb masses. It also supports the fact that 

response of these plant species to simplistic heterogeneity is species-specific, which 

may be influenced by individual plant adaptation and tolerance to Pb in the soil.  The 

differences in Pb masses between treatments also suggest that heterogeneity of Pb in 

the soil have a significant effect on plant uptake expressed as Pb mass, which could 

influence their choices for use in phytoremediation. This also provided an insight into 

how metal uptake can be enhanced in plants for phytoremediation by exploring the 
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uptake strength of homogeneous and heterogeneous treatments (discussed further in 

chapter 7). 

 

Neither species are hyperaccumulators of Pb as judged by the observed total 

concentration factor (CFtotal) (0.10 to 0.32), translocation factor (TF) (0.01 to 0.04) and 

the shoot concentration factor (CFshoot) (0.01-0.09). Criteria for classifying plants into 

accumulators and hyperaccumulators has been discussed in Chapter 2. However, plants 

with Pb concentration greater than 1000 mg/kg are also classified as hyperaccumulators. 

The low CFshoot recorded for both species is an indication that much of the Pb is excluded 

from the shoot in the homogeneous and binary treatments by both species. It implies 

that less Pb will be accumulated in their shoot. However, the amount accumulated in the 

shoot could be influenced by the soil Pb concentration and the bioavailable pool. Low 

shoot accumulation might have possible advantage in a way to consumers of leafy part 

of these plant species, if the concentration accumulated do not exceed Pb limit in 

vegetables. However, shoot Pb may be dependent on the soil Pb concentrations, soil 

characteristics and individual plant translocation mechanisms. 

 

The shoot Pb concentrations of both species in the homogeneous and binary treatments 

were 39 to 81% lower than the experimentally determined extractable Pb, when 

compared to the predicted bioavailability of 18% (Section 5.5). The root Pb 

concentrations were 6-7 fold higher, when compared to the experimentally determined 

bioavailable concentration. This suggest that other factors which increase the mobility 

and uptake by roots might have influenced the Pb accumulation in the root other than 

the bioavailable pool. Such factors include pH, soil microorganisms, root exudates and 

plants mechanisms for coping with heavy metal stress and delocalisation of heavy metals 

in plant cells and tissues (discussed in detail in Chapter 2). 

 

Higher proportion of roots were preferentially proliferated in  0 mg/kg Pb added patches 

(~70 mm and 33 mm) than in  the 2000 mg/kg Pb added (17 mm and 9.5 mm) 

respectively, as shown by the  root ball diameter for B. napus and B. juncea (Figures 

5.4.6 and 5.4.7). The root biomass for the different quadrants were not taken, but this 

was an improvement implemented in the subsequent fourth pot trial. A significant 

difference between these quadrants was recorded for B.napus and similarly for B.juncea 

(P < 0.05). The roots therefore effectively ‘avoided’ the Pb. This result is in line with 

similar observation by Millis et al., (2004) of higher root proliferation in patches of lower 

concentration of another toxic element Cd, in pot trial. Results here also indicated that 
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responses to heterogeneity might be due to the nature, morphology and size of the root 

ball. A central tap root (Figure 5.3.8) was observed in B. napus variety used in this study, 

but was absent in B. juncea. The Brassica juncea variety used had several branched 

fibrous root networks. 

 

A further experiment simulating a more realistic heterogeneity model (Chapter 6) 

confirmed this finding. It is highly unlikely that contaminant spatial heterogeneity in the 

field will have this simplistic distribution. The pot trial is just a way to try to understand 

mechanisms at work rather than being realistic for the real soil environment.  

Similarly, earlier studies by Thomas, (2010) suggest possible root proliferation in 

response to patchy distribution of Zn in a pot trial. Results indicated that the variation in 

the response of these plant species to the different treatments might be due to the 

different pattern of root allocation to resources and contaminants. However, it was 

opposed to the foraging habit observed for Zn in Thlaspi carulescens in previous studies 

by Haines (2002). 

Results of this experiment suggest that B. napus would be more sensitive to spatial 

heterogeneity than B. juncea and that Brassica juncea will therefore grow better than B. 

napus in soil that is heavily contaminated with Pb (i.e. > 1000 mg/kg) in a heterogeneous 

way. The reason for this sensitivity to spatial heterogeneity in B. napus is not known. 

However, it could be could be partially attributed to its root morphology and size. 

 

Other factors might have influenced the different response of this species to treatments 

compared to B. juncea in this study and in earlier work with Zn. For example, variation in 

genetic, physiological or biochemical adaptations of plants to different contaminants 

might have influenced this plant response to Pb heterogeneity. Macnair and Baker, 

(1994); Guefarchi et al., (2013); Park and Ahn, (2014); Kumagai et al., (2014) suggest 

that genetic, physiological and biochemical adaptations of different plant species could 

influence uptake, tolerance, response to contaminants in the soil. Other factors that could 

produce elemental variability or  variation in plant response to contaminants in soil such 

as transportation and deposition of contaminants within plant tissues, developmental 

stages, seasonal variation and differences in microclimatic/micro edaphic conditions has 

been reported by Farago and Mehra (1994); Lasat et al., (1996) Prado et al., (2010); 

Thomas, (2010). 

Findings of this experiment provided an insight to the important role of spatial distribution 

of contaminants in metal uptake from the soil by plants, tolerance to contaminants in soil 

and growth and development in plants.   
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5.6.1 Interpretation of results in relation to stated hypotheses. 

 

Hypothesis (1) is accepted that the simplistic binary design of Pb heterogeneity has a 

significant impact on (a) plant uptake of Pb and (b) plant biomass when compared to a 

homogeneous design (and in one case against a control treatment). Hypothesis (2) is 

accepted that roots of plants will preferentially proliferate in patches with no added Pb in 

the heterogeneous design, presumably to avoid the toxicity of the added Pb. The 

hypothesis tests are summarized in Table 5.6.1. 

 

Table 5.6.1: Summary hypothesis for each species based on Tukey H.S.D comparison of means, 
Analysis of variance (ANOVA) and Independent sample t-test where P < 0.05. 

Hypothesis B. juncea B. napus 

1 (a) Plant Pb  Accept Accept 

    (b) Biomass Accept Accept 

2 Root proliferation Accept Accept 

 

This study also showed that a simplistic binary heterogeneity model had a significant 

effect on plant uptake in comparison to homogeneous distribution. 

In nature, contaminants are rarely distributed in either homogeneous or simplistic binary 

model (as shown in Chapter 3), therefore a more realistic simulation of in situ 

heterogeneity was carried out to assess the effect of more realistic patterns of 

heterogeneity of Pb on plant uptake in pot trials. This is described in detail in Chapter 6.

  

 

 

 

 

 

 

 

 

 

 

 



164 
 

Chapter 6 – Experimental assessment of the effect of variable lead heterogeneity 

on lead uptake and biomass of two Brassica species. 

 

6.0 INTRODUCTION 
 

This chapter describes the design of the pot trial to simulate a more realistic in situ 

heterogeneity of Pb based upon that measured in the field investigation (Chapter 3) at 

the scale characteristic of the selected plant species (i.e. 2 cm). It discusses the 

background to the experiment and the details of experimental design, methods and 

results. 

This fourth pot trial was based on simulations of in situ Pb heterogeneity in a range of 

treatments. It was used to assess the effect of changing Pb heterogeneity on biomass 

(shoot and root), uptake of Pb and root placement of the two selected plant species 

(Brassica napus PI 601261 and Brassica juncea PI 182921. 

6.1.1 Objectives of experiment. 

i. To design a pot trial to mimic the range of in situ Pb heterogeneity found in the 

field. 

 

ii. To assess whether the variation in spatial heterogeneity of Pb in soil has a 

significant impact on Pb uptake by these plant species, and their biomass. 

6.1.2 Hypotheses 

1. The degree of spatial heterogeneity of Pb in the growth medium have an impact on 

(a) the extent of uptake of Pb (b) the plant biomass, by each species (B. juncea and B. 

napus.) between treatments. 

2. Each effect differs between various levels of heterogeneity (e.g. low, medium and high 

heterogeneities) compared with homogeneous treatment with the same overall 

concentration of Pb. 

3. These plant species respond to changing heterogeneity using modified root 

placement.  

4. Responses to changing heterogeneity differ between Brassica juncea and Brassica 

napus. 
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6.2 BACKGROUND TO THE EXPERIMENT 

 In situ heterogeneity of Pb in soil was estimated over a range of scales from two site 

investigations using in situ measurement techniques and the specific sampling design 

proposed by Thomas et al., (2008). The heterogeneity of these two sites (reported in 

chapter 3: Section 3.3) was compared with those of other previously studied sites by 

other workers (Chapter 2 Section 2.6.2 and published in Ramsey et al., 2013) upon which 

the range of heterogeneity in this pot trial was simulated. The degree of heterogeneity 

was expressed as a heterogeneity factor (HF), where a homogeneous distribution would 

result in a HF factor of 1 and heterogeneous distribution in a value of HF > 1 (Chapter 3: 

Section 3.3).   

Lead concentrations were measured at all sampling locations and results presented in 

Chapter 3: Table 3.2 shows how the spatial heterogeneity of Pb expressed as HF varied 

between sites and scales. Heterogeneity values used in this pot trial reflect the scale of 

heterogeneity that can be potentially seen by the selected plant species in the volume of 

soil contained in the pot. In situ heterogeneity of Pb at the 2 cm scale was chosen for the 

purpose of this experiment. Earlier work by Thomas, (2010) with zinc heterogeneity also 

used the 0.02 m (i.e. 2 cm) scale that can be replicated within a pot trial. Similarly, 

Manciulea and Ramsey, 2006 used a scale of 0.03 m (3 cm) with the simplistic chequer 

board models and showed that changes in heterogeneity of Cd can have a significant 

effect (+76%) on plant uptake (discussed in more detail in Chapter 2; Section 2.6). 
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6.3 EXPERIMENTAL DESIGN  
 

Four heterogeneity models were simulated here (using excel computer models with a 

combination of the Robust ANOVA- a visual basic programme developed based on a 

FORTRAN programme {(Ramsey, 1998}  and previous work {AMC, 1989}), which 

generated the levels of heterogeneity similar to those that had been found in field sites 

and previous field studies. The scale of heterogeneity used, the plant species selected, 

and the mean Pb concentration chosen, were based upon field experiment and 

conclusions of earlier pot trials in this thesis (Chapters 3, 4 and 5). 

The sample size was determined using power analysis to estimate the minimum number 

of replicates required to detect a statistically significant difference between means of 

different treatments based on the assumption that data are normal in their distribution 

(Zar, 1999). Data from the third pot trial used for power analysis were confirmed normally 

distributed using the Kolmogorov Smirnov test (Appendix III.2: Table LIII.2).   The power 

analysis was done as described by Zar, 1999 and Thomas, 2010. Power analysis used 

values for the variances of shoot Pb concentration (mg/kg) taken from the third pot trial. 

Mean shoot pooled standard deviation of 117 mg/kg and population mean difference of 

12 mg/kg were used. The estimated minimum number of replicates at 95 % confidence 

level and at 90 % probability of detecting a difference in population mean was 6.3. Using 

these data, a maximum number of 10 replicates per treatment (allowing for 20% failure 

rate and a chance of detecting smaller differences than the number from power analysis) 

was used.  Four treatments – homogeneous (HO), low (LH), medium (MH) and high 

heterogeneity {HH}) for each species making a total of 80 pots were maintained in 

randomized block design (Figure 6.3.2; Appendix IV.1: Table AIV.1). 

It is impossible to simulate the exact in situ heterogeneity (real life situation). The actual 

spatial heterogeneity of contaminants can only be estimated by sampling at the field site, 

and it is practically impossible to recreate the exact in situ heterogeneity in pot trials. In 

view of this potential complexity, the model of heterogeneity was designed to simulate 

as closely as practicably possible the in situ heterogeneity of Pb measured at this scale 

in field sites (Chapter 3: Table 3.4.1) including some previously studied sites by other 

workers (Chapter 3: Table 3.4.2) with a range of intermediate HF (HF ranged from 1 to 

3.22 (3.22 at the 20 m scale). The simulated heterogeneity factors (HF) were 1.00, 1.25, 

2.00 and 3.19 while an overall mean concentration of approximately 1000 mg/kg in all 

treatments was maintained (Figure 6.3.1a-d). The simulation is based on the log-normal 

distribution observed in the field sites, with increasing values of geometric standard 

deviation (GSD) and hence the values of HF. The central cell (C3) of all treatments was 
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also maintained at 1000 mg/kg Pb. This is to ensure that the heterogeneity treatment did 

not differentially affect the early establishment of the seedlings. The amount of Pb 

required to make each concentration was calculated as shown in Appendix IV.10: Table 

BIV.10). 

         

                         

 

                                                     

 Figure 6.3.1a: Homogeneous---GSD 0.0; robust mean=1000; HF=1.00 

 

                                                                                                   

 

 

 

Figure 6.3.1b: Low heterogeneity--GSD 0.1 Robust mean =1029; HF=1.2    

 

 

 

 

 

Figure 6.3.1c: Medium heterogeneity-- GSD=0.30; robust mean=962; HF=1.99. 

 

 

 

 

  

Figure 6.3.1d: High heterogeneity---GSD=0.50; robust mean=947; HF=3.19 

Figure 6.3.1: Four models of in situ heterogeneity for 4th pot trial. 

 

 

 

 

Cells 1 2 3 4 5 

A 1000 1000 1000 1000 1000 

B 1000 1000 1000 1000 1000 

C 1000 1000 1000 1000 1000 

D 1000 1000 1000 1000 1000 

E 1000 1000 1000 1000 1000 

Cells 1 2 3 4 5 

A 900 700 900 1100 900 

B 1100 1100 1400 1400 1400 

C 1100 700 1000 900 900 

D 1100 900 1100 1800 900 

E 900 1100 900 1100 700 

Cells 1 2 3 4 5 

A 500 300 500 1100 500 

B 1100 1100 2200 2200 2200 

C 1100 300 1000 500 500 

D 1100 500 1100 4000 500 

E 500 1100 500 1100 300 

Cells 1 2 3 4 5 

A 300 100 300 1000 300 

B 1000 1000 3000 3000 3000 

C 1000 100 1000 300 300 

D 1000 300 1000 10000 300 

E 300 1000 300 1000 100 
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6.3.1 Methods 
 

Eighty (80) rigid square pots (14 X14 cm and 17 cm deep) were thoroughly washed with 

detergents and labelled with names of plant species (BN & BJ) and four treatments e.g. 

Homogeneous (BNHO; BJHO), low heterogeneity (BNLH; BJLH), medium heterogeneity 

(BNMH; BJMH), high heterogeneity (BNHH; BJHH) (Appendix IV.1). 

The method used in the pot trial was based on the understanding from previous work by 

Thomas, (2010) with modifications to certain stages of the experiment, dimensions of 

pots, pot trial equipment (Appendix IV.1: Figure AIV.1) and identity of the contaminant. 

A customized cell divider made from a 1 mm clear polyethylene terepthalate glycol 

(PTEG) sheet was inserted into the pots to produce a 5 by 5, 2-dimensional grid with 

each cell measuring 25 mm square and 170 mm deep. This was used to create the 

designed heterogeneity models. The relatively thin PETG helped to maintain the 

heterogeneity design by reducing the collapse of each column after its removal. Labelled 

paper liners were inserted into each cell while filling cells with growth media. It provided 

a filling template, helped maintain the structural integrity of the divider and minimized 

spillage from adjacent cells. 

The gap between the paper liners and the outer edge of the pot were packed with an 

inert Sinclair Perlite (grain size 2.0-5.0 mm) because of the non-vertical sides of pots. 

Cells were filled according to the particular designed model of heterogeneity. Filling of 

the pots  (Appendix IV.1: Figure AIV.1) was done in two stages to ensure that equal 

volume of growth medium goes into the cells and that the growth medium is evenly 

distributed throughout the pot. The gently compacted growth medium was measured with 

a 100 ml customized container into each cell according to the design. The growth 

medium was tapped down before an additional 50 ml was added and tapped down again.  

Completed pots were placed on drip trays and arranged on benches in the randomized 

block design (Figure 6.3.2 and Appendix IV.1: Table AIV.1) with blocks of 4 rows and 10 

columns. 



169 
 

             

(a)                                                                    (b) 

Figure 6.3.2: Plants arranged in randomized block design showing (a) B. napus (Scale bar: 15 mm 
represents 20 mm) and (b) B. juncea (Scale bar: 9 mm represent 20 mm). Arrows represent scale 
bars. 

The growth medium was moistened from below by capillary action before transplanting 

seedlings already established in an unspiked growth media for two weeks. Tap water 

was applied using a fine rose watering can. This ensured that the heterogeneity was 

disturbed to a minimal extent. 

Seed germination, preparation of growth medium, transplanting of seedlings and 

harvesting were done as described in earlier experiments (Chapter 4: Section 4.3.3). The 

percentage moisture content of the growth medium was originally 8.5%. The pH of the 

growth media and field site (Gang Mine) soil were determined using pH meter {model: 

Hanna 209} (Appendix 6IV.10: Tables GIV.10 and HIV.10). Growth medium mean pH in 

pot trials was 6.44 ±0.05 whilst that of field site (Gang Mine) soil was 6.32 ± 0.12.The 

established seedlings of the selected plant species Brassica napus (BN SW) and 

Brassica juncea (BJ 18) were transplanted into the centre of each treatment after two 

weeks growing in the unspiked growth media. Ten replicates of each treatment were 

maintained in the greenhouse for six weeks under simulated sunlight using light-emitting 

diodes (LED) lights (under a photoperiod of 12 hours) at 20 ±5 C. 

6.3.2 Harvesting.  

 

 Harvesting was done after 60 days of growth. Data such as the longest leaf length, 

number of true leaves and height (to the nearest 1 mm) were collected after 14, 28 days 

and at harvest, to assess growth variation between treatments (Appendix IV.7). Plant 

biomass data such as root and shoot biomass (FW and DW) in all pots in homogeneous, 

low and medium, heterogeneity treatments were collected at harvest to assess the 

impact of heterogeneity on the plant species. Shoots of all treatments were harvested as 

described in earlier experiments (Chapter 4: Section 4.3.7). However, for the high 
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heterogeneity treatments, the roots in each cell were harvested as described below, the 

biomass measured, and used to test the root placement hypothesis (Section 6.3. 3). 

6.3.3 Chemical Analysis. 
 

 Roots were carefully washed to remove soil particles that could introduce potential bias 

in measurements of metal concentration. Harvested roots and shoots were dried at 60ºC 

for 48 hours in a fan oven, weighed for DW, and analysed for Pb concentration using an 

Atomic Absorption Spectrometer (AAS) after acid digestion using nitric and perchloric 

acids (Thompson and Walsh, 1983). Thompson and Walsh (1983) reported that a 

biomass of 1 gram (DW) was ideal for chemical analysis, but did not preclude the use of 

smaller masses, with suitable checks on data quality. In this study, an analytical test 

portion of 0.5 g was used, but for roots within single cells of some pots, a mass of 0.2 g 

was used generally, and 0.1 g exceptionally, but always with matching analytical quality 

control (Appendix 6IV.11:Tables AIV.11 to GIV.11). 

The growth medium was also analysed for their actual Pb concentration and result is 

presented in Table 6.3.1 below. This analysis did not show any significant difference 

between the nominal and actual soil Pb concentration. The regression analysis showed 

a strong positive relationship (r2=0.99) between the actual and nominal soil Pb 

concentration and the regression model accounted for 99% of variance (Appendix IV.10: 

Figure AIV.10). 

Table 6.3.1: Growth media actual Pb concentration for pot trial four. 

Nominal soil 
Pb 
concentration 

Actual Pb soil  
concentration STDEV SEM 

100 105 7.01 2.48 

300 366 60.60 27.05 

500 534 51.06 22.79 

700 681 52.90 21.59 

900 837 21.12 9.03 

1000 956 30.46 12.43 

1100 1198 45.90 19.61 

1400 1408 157.67 70.39 

1800 1782 116.83 47.69 

2200 2229 241.83 98.70 

3000 2943 225.34 91.97 

4000 4072 192.93 86.13 

10000 9670 495.82 221.35 

 
Key: STDEV- Standard deviation 
SEM—Standard error on the mean  
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6.3.4 Data analysis. 
 

Data were analysed using statistical software Minitab 16 and SPSS 21 for Windows. 

Statistical tools such as analysis of variance (ANOVA), Tukey post-hoc test and the 

mixed model ANOVA (treatment used as fixed factor and block as a random factor) were 

used to test for significance of measured variables (Appendices IV.2 to IV.6) whilst 

Kolmogorov-Smirnov test was used to test for normal distribution of data (Appendix  IV.9: 

Tables AIV.9 and BIV.9 ). Raw data of measured variables are presented in the Appendix 

(Appendix IV.8: Tables AIV.8 and BIV.8).  

6.3.5 Root Placement sub-experiment. 
 

The high heterogeneity treatment was used for this experiment, to represent the extreme 

case of heterogeneity. The roots were extracted by placing each of the 40 cubes of 

growing medium in a wooden box. The customized sleeve was removed. The cube was 

held securely in position with a holding block (Appendix IV.1: Figure AIV.1). A customized 

blade was used to divide growth medium into the 25 original individual cells, using 

measured grooves on top of the holding block. Roots were harvested from each cell and 

the dry biomass recorded. Root extraction device and pot divider were constructed as 

described in earlier work on zinc heterogeneity by Thomas, (2010) with slight 

modifications to dimensions of the pot equipment and methods as stated earlier on in 

this chapter. 

For the high heterogeneity treatment, harvested roots were weighed and those with 

equal nominal soil concentration from each pot were combined and analysed for Pb. The 

recorded mass of root biomass were subsequently combined (mathematically) for the 

measurement of total root biomass in each pot. The raw measurements were used to 

assess root distribution in response to heterogeneity.  
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6.4 RESULTS. 
 

Both species (B. juncea and B. napus) had 100% survival rate until harvest. Sufficient 

biomass suitable for individual analysis of the shoots and roots were produced. Visible 

signs of chlorosis such as loss of green colouration were observed in both species. Curly 

thinner stems, random turning of stem clockwise or anticlockwise to corners of pots and 

reduced leaf area were observed in B. juncea in low, medium and high heterogeneity 

treatments with severity in the HH treatment (Figure 6.4.4). Brassica napus had broader 

leaves and sturdier stem than B. juncea in all treatments (Figure 6.4.3). The result for 

each plant species is discussed separately for each variable. Condition of plants at 

harvest is shown in Figures 6.4.1 and 6.4.2. 

    

Figure 6.4.1: B. napus in order of increasing heterogeneity (HO, LH, MH & HH) {scale bar- ~8 mm 
represents 10 mm; Scale bar: 8 mm represents 10 mm; Scale bar: 6 mm represents 10 mm; Scale 
bar: 12 mm represents 10 mm for HO, LH, MH and HH respectively} from left to right generally 
showing decreased in biomass except with increasing heterogeneity, except for the MH treatment.  

     

Figure 6.4.2: B. Juncea in HO, LH, MH & HH treatments from left to right (Scale bar: 42 mm 
represents 500 mm; Scale bar: 48 mm represents 800 mm; Scale bar: 49 mm represents 900 mm; 
Scale bar: 51 mm represents 1000 mm for HO, LH, MH and HH respectively) showing narrower 
leaves, slimmer stem in LH, MH & HH (decreased biomass) compared to HO. 

Key: Black arrows represent scale bars for each Figure and scale bar information highlighted in 

red. 
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6.4.1 Biomass results of Brassica napus 
 

Biomass generally decreased with increasing heterogeneity (Figures 6.4.3-6.4.5) with a 

4.72 fold decrease in total dry biomass of B. napus in HH when compared to the HO 

treatment. However, the peak biomass was in the MH among heterogeneous treatments 

which had significantly higher total dry biomass (2 and 4) fold higher, when compared to 

LH and HH treatments respectively. This trend was similarly recorded for both shoots 

and roots. The highest total biomass (mean 9.7 g) was produced in the homogeneous 

treatments when compared to all the spatially heterogeneous treatments. This difference 

was statistically significant (F3, 36 = 687.40: P = 0.000 < 0.05). ANOVA and Tukey HSD 

test showed a statistically significant difference between the 3 heterogeneity treatments 

(Appendix IV.2). The overall differences between treatments was also statistically 

significant (F3, 36 = 917.05; P=0.000 P < 0.05). This is an indication that the degree of 

spatial heterogeneity of Pb had an impact on the biomass of B. napus. The mixed model 

ANOVA (Appendix IV.3:  AIV.3 and Table BIV.3) showed statistically significant effect P 

< 0.05 of spatially heterogeneous Pb treatments on plant biomass. 

  

Figure 6.4.3: Shoot biomass (DW) between treatments of B. napus.  Means that do not share the 
same letter are significantly different as judged by the Tukey Post hoc test. Error bars represent 1 
standard error on the mean, n=10.  

 HO---Homogeneous (grey), LH-----Low heterogeneity (green), MH----Medium heterogeneity 
(yellow), HH—high heterogeneity (peach) for all captions in this section. 
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Figure 6.4.4: Root biomass (DW) between treatments of B. napus. Means that do not share the 
same letter are significantly different as judged by the Turkey Post hoc test. Error bars represent 1 
standard error on the mean, n=10.  

 

 

Figure 6.4.5: Total plant biomass (DW) between treatments of B. napus.   Means that do not share 
the same letter are significantly different as judged by the Tukey Post hoc test. Error bars represent 
1 standard error on the mean, n=10. 
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6.4.2 Biomass result for Brassica juncea. 
 

Similarly for B. juncea, biomass decreased with increasing heterogeneity with a 3.95 fold 

decrease in total dry biomass in the HH treatment than the HO treatment (Figures 6.4.6-

6.4.8). Shoots and roots in the HH had 4.50 and 2.51 lower when compared to the HO 

treatment respectively.  

 

 

Figure 6.4.6: Shoot biomass (DW) between treatments of B. juncea. Means that share a letter are not 
significantly different as judged by the Turkey Post hoc test. Error bars represent 1 standard error 
on the mean n=10. 

HO---Homogeneous (grey), LH-----Low heterogeneity (green), MH----Medium heterogeneity 
(yellow), HH—high heterogeneity (peach) for all captions in this section. 

The LH treatment had significantly higher total dry biomass (1.66 and 2.34 fold higher) 

than the MH and HH treatments respectively. This was similarly recorded for shoots and 

roots (Figures 6.4.6-6.4.8). The HO treatment had an overall highest biomass (4.45 g).  
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Figure 6.4.7: Root biomass (DW) between treatments of B. juncea. Means that do not share the 
same letter are significantly different as judged by the Turkey Post hoc test. Error bars represent 1 
standard error on the mean, n=10. 

The differences between treatments were statistically significant (F = 202: P=0.000 < 

0.05). ANOVA and Tukey HSD test also showed a statistically significant difference in 

shoot, root and total dry biomass between the 3 levels of heterogeneity (Appendix IV.4). 

However, the difference in shoot dry biomass between the MH and HH treatments was 

not statistically significant. The mixed model ANOVA showed a statistically significant 

impact (P = 0.000 < 0.05) of spatially heterogeneous Pb treatments on plant biomass. 

This confirmed that the degree of spatial heterogeneity of Pb had an impact on the 

biomass of B. juncea. 

 

Figure 6.4.8: Total biomass (DW) between treatments of B. juncea. Means that do not share the 
same letter are significantly different as judged by the Tukey Post hoc test. Error bars represent 1 
standard error on the mean n=10. 
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6.4.3 Pb uptake results. 
 

Shoot and root uptake for both plant species are presented and discussed in terms of 

both Pb concentration in mg/kg and Pb mass per plant in µg (Pb mass (µg) used in 

phytoremediation studies e.g Husnain et al., 2013). Both methods of quantifying uptake 

showed varied effects on the plant from different perspectives. Lead concentration (in 

mg/kg) is often used in the estimation of human exposure to Pb and concentration of 

contaminant in herbage and soil, while the mass concentration (in µg), which 

compensates for simultaneous changes in both biomass and concentrations, finds useful 

application in estimating uptake for phytoremediation purposes. Both were used in this 

research because of the potential implications of this study for both human risk 

assessment and phytoremediation of Pb contaminated land. 

6.4.4 Pb uptake results for B. napus expressed as Pb concentration 

(mg/kg). 
 

The shoot and root Pb concentration in mg/kg increased with increasing heterogeneity 

with a peak uptake in the LH treatment, 2 fold higher than the HO treatment for roots 

(Figures 6.4.9 to 6.4.10). Shoot Pb concentration in the HH treatment decreased by 30% 

when compared to the HO treatment. A similar trend was observed in the root Pb 

concentration mg/kg with 40% lower root Pb in the HH treatment when compared to the 

HO.  

 

Figure 6.4.9: Shoot Pb concentration (mg/kg) between treatments of B. napus.  Means that share the 
same letter are not significantly different as judged by the Tukey Post hoc test. Error bars represent 
1 standard error on the mean n=10. 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

HO LH MH HH

Sh
o

o
t 

P
b

 c
o

n
ce

n
tr

at
io

n
 (

m
g/

kg
)

Treatments

c c

a

b

Increasing heterogeneity 



178 
 

 

Figure 6.4.10: Root Pb concentration (mg/kg) between treatments of B. napus. Means that do not 
share letter are significantly different as judged by the Tukey Post hoc test. Error bars represent 1 
standard error on the mean n=10. 

 

6.4.4.1 Uptake expressed as Pb mass (µg) for B. napus. 
 

The shoot and root Pb mass µg had 40-80% decrease in the HH treatment when 

compared to the HO (Figures 6.4.11-6.4.12).These two approaches showed differences 

in peak uptake. For example, the root Pb mass had peak uptake in the MH treatment 

which was 40% higher, compared to the HO treatment while shoot and root Pb 

concentration in mg/kg had its peak uptake in the LH treatment,  2 fold higher than the 

HO. 

However, the shoot Pb concentrations mg/kg of MH and HH treatments were not 

significantly different as judged by the Tukey HSD comparison. Shoot peak uptake was 

recorded in the HO treatment when Pb mass was used (Figures 6.4.11 and 6.4.12). 

There was a statistically significant (F3, 36   =164.38: P=0.000 < 0.05) difference in shoot 

Pb mass between treatments. The shoot Pb mass of the LH and MH treatments were 

not significantly different as judged by the Post-hoc comparison. The varied dry mass of 

shoot and roots recorded at harvest had influenced the uptake when expressed in terms 

of Pb mass. 
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Figure 6.4.11: Shoot Pb mass (µg) between treatments of B. napus. Means that share the same letter 
are not significantly different as judged by the Tukey Post hoc test. Error bar represent 1 standard 
error on the mean, n=10. 

HO---Homogeneous (grey), LH-----Low heterogeneity (green), MH----Medium heterogeneity 

(yellow), HH—high heterogeneity (peach) for all captions in this section. 

Figure 6.4.12: Root Pb mass µg between treatments of B. napus. Means that share the same letter 
are not significantly different as judged by the Tukey Post hoc test. Error bars represent 1 standard 
error on the mean, n=10. 
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 ANOVA and Tukey HSD test showed a statistically significant difference in shoot and 

root Pb uptake between the 3 heterogeneity treatments, and between the 3 

heterogeneity treatments and the HO treatment. 

The Mixed model ANOVA result also showed a significant effect of spatial heterogeneity 

on Pb uptake where P = 0.000 < 0.05 (Appendix IV.3: Table BIV.3). This clearly suggest 

that the degree of spatial heterogeneity had an impact on the extent of Pb uptake in B. 

napus. 

 

6.4.5 Pb Uptake result for B. juncea expressed as Pb concentration 

(mg/kg). 
 

Shoot Pb uptake in mg/kg concentration of B. juncea increased with increasing 

heterogeneity with a peak uptake in the HH treatment and higher by 20% than the HO 

shoot Pb (Figure 6.4.13).    

 

Figure 6.4.13: Shoot Pb concentration between treatments of B. juncea.  Means that do not letter are 
significantly different as judged by the Tukey Post hoc test. Error bars represent 1 standard error on 
the mean n=10. 
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Figure 6.4.14: Root Pb concentration between treatments of B. juncea. Means that share the same 
letters are not significantly different as judged by the Tukey Post hoc test. Error bars represent 1 
standard error on the mean, n=10. 

 

A similar trend of increased root Pb concentration mg/kg with increasing heterogeneity 

was also observed (Figure 6.4.14). However, the peak root Pb concentration was 

recorded in the MH treatment which was 2.2 fold higher than HO root Pb.  

  

6.4.5.1 Uptake expressed as Pb mass (µg) for B. juncea. 
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Figure 6.4.15: Shoot Pb mass µg between treatments of B. juncea. Means sharing letters are not 
significantly different as judged by the Tukey Post hoc test. Error bars represent 1 standard error on 
the mean n=10. 

The root Pb mass increased with increasing heterogeneity with a peak uptake recorded 

for MH treatment, which was 45% higher than HO root Pb mass (Figures 6.4.16). The 

HH treatment had significantly lower (by factors of 2.8 and 1.8) shoot and root Pb mass 

when compared to the HO treatment respectively (Figures 6.4.15 and 6.4.16). However, 

the lowest shoot and root Pb concentrations (mg/kg) for B. juncea was recorded in the 

LH treatment, whilst the lowest mean root Pb mass (222 µg) was recorded in the HH 

treatments when compared to the other treatments.   

 

Figure 6.4.16: Root Pb mass µg between treatments of B. juncea. Means that share the same letter 
are not significantly different as judged by the Tukey Post hoc test. Error bars represent 1 standard 
error on the mean n=10. 
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The MH treatment had significantly higher mean root Pb mass compared to HO, LH and 

HH treatments. However, the MH treatments had lower shoot Pb mass (by factors of 2.8 

and 1.5) when compared to the HO and LH treatments respectively (Figure 6.4.16). 

Generally the difference in shoot and root Pb mass between treatments was statistically 

significant (F3, 36 = 55.37: P = 0.000 < 0.05).  

A statistically significant difference in Pb uptake was observed between the 3 

heterogeneity treatments from the ANOVA result, further comparison with Tukey HSD 

test also showed that some treatments were significantly different, whilst some did not 

differ significantly (Appendix IV.5). The mixed model ANOVA result also showed a 

significant effect (F3, 36 = 284.29: P = 0.000 < 0.05) of different treatments on Pb uptake 

(Appendix IV.5: Tables DIV.5). It is an indication that these levels of spatial heterogeneity 

had an impact on the extent of Pb uptake in B. juncea.  
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6.4.6  Shoot and Root Concentration Factors (CFshoot and CFroot) of B. 

napus and B. juncea. 
 

The shoot and root concentration factor used in this thesis is calculated as Pb 

concentration of shoot or root (mg/kg DW)/ soil Pb concentration) as discussed in 

Chapter 2. Rotkttikhum et al., (2006), Baker et al., (1994) and Thomas, (2010) suggest 

that the concentration factor (CF) increases where mechanisms that exclude 

contaminants are weaker and subsequently result in contaminant accumulation into plant 

tissues. The CFshoot and CFroot of B. napus and B. juncea are compared in Figures 6.4.6.1 

and 6.4.6.2 below. 

 

Figure 6.4.17: Shoot Concentration Factors (Pb concentration in shoot (mg/kg DW)/mean soil 
concentration of Pb) for B. napus and B. juncea grown in 4 different treatments of Pb spatial 
heterogeneity. Where CF is greater than 1 (accumulator threshold) Pb is accumulated. Means that 
share the same letter are not significantly different for each species as judged by the Tukey Post hoc 
test.  

 

Generally, CFshoot for B.napus and B. juncea ranged from 0.03 to 0.06 with 1.7 and 1.5 

fold rise in LH and HH treatments, when compared to the HO treatment respectively. 

Peak CFshoots were recorded in LH and HH treatments of B. napus and B. juncea 

respectively (Figure 6.4.6.1). Shoot concentration factors in all treatments were below 

the accumulator threshold of 1 by factors of 16 to 25 for B. juncea and 20 to 33 for B. 

napus. 

Brassica juncea had 1.5 fold higher CFshoot in the HH treatment when compared to the 

HO treatment whilst B. napus had similar CFshoot in the HH as the HO treatment. This is 

an indication of increased shoot uptake, but not in terms of Pb mass of B. juncea in the 

HH treatment whilst B. napus might generally exclude Pb from the shoot in all treatments 

with an exception of the LH treatment. 
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Figure 6.4.18: Root Concentration Factors (Pb concentration in root (mg/kg DW)/mean soil 
concentration of Pb) for B. napus and B. juncea grown in 4 different treatments of Pb spatial 
heterogeneity. Where CF is greater than 1 (accumulator threshold) Pb is accumulated. Means that 
share the same letter are not significantly different for each species as judged by the Tukey Post hoc 
test. 

 

The root concentration factors (CFroot) of both species ranged from 0.41 to 1.41 (Figure 

6.4.6.2). The CFroot of B. juncea increased with increasing heterogeneity with 1.59 fold 

decrease in the HH treatment when compared to the peak CFroot in MH treatment. The 

CFroot of B. juncea in the HH was 1.41 fold higher than that of the HO treatment and 1.59 

fold lower than the peak CFroot in MH treatment. 
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in MH treatment of B. juncea showed high Pb accumulation. The CFshoot of both species 

were generally well below the accumulator threshold, which suggests that root Pb uptake 

is about 4-5 times higher than shoot Pb uptake. The HO, LH and HH treatments had 

CFroot below the accumulator threshold.  

Based on the exclusion principles proposed by Baker, (1981) and from previous work 

(Mishra et al., 2006), both species can be seen to possess strong mechanism of 

excluding Pb from its tissues across treatments. Results also indicated that both plant 

species will actively exclude Pb from the root in the highly heterogeneous treatment (with 

a decrease in CFroot in the HH treatment by factors of ~ 3 and 2 when compared to the 

peak CFroot in LH and MH treatments of B. napus and B. juncea respectively). Both 

species tend to actively exclude Pb at nearly all levels of heterogeneity to varying extent 

with a peak accumulation in the MH and LH treatments for B. napus and B. juncea 

respectively.  Similar trend of decreased CFroot has been reported in earlier studies 

(Thomas, 2010) with Plantago lanceolata in Zn spatial heterogeneity treatments.  

However, for pot trial four, B. juncea had higher CFshoot and CFroot (by a factor of 1.5 and 

2 respectively) in the HH treatment than B. napus.  This suggests that Pb can be more 

easily accumulated in roots of B. juncea than B. napus in the HH treatment. 
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6.5  Root placement sub-experiment results. 

 

A further sub-experiment into the root placement of plant species in high heterogeneity 

treatment was carried out in order to investigate the varying plant response to Pb spatial 

heterogeneity. The LH & MH treatments were not included in the root placement as the 

HH treatments was considered to represent extreme case of spatial heterogeneity (high 

heterogeneity). The HH treatment, had the highest patch contrast (cells with varied Pb 

distribution), was considered useful in investigating root response to heterogeneity that 

can  provide useful insights into plant root response to heterogeneity. This was also 

supported by biomass and uptake results which showed highly significant difference 

between HH and the other treatments. Typical root morphology for the two species are 

shown in Figure 6.5.19.   

 

                                   

 

Figure 6.5.19: Extracted roots showing (a) a tap root in C3 of B. napus (4 mm represents 5 mm) and 

(b) a fibrous root in B. juncea (4 mm represents 5 mm).                                                                                            

6.5.1 Root placement result for B. napus 
 

Dried, extracted roots from each cell were weighed and roots from cells of same nominal 

Pb concentration were combined and analysed for Pb. Figure 6.5.21 below shows mean 

root biomass DW in cells within the same concentric patches {outer, middle and central} 

(Figure 6.5.20) with same nominal soil Pb concentration of B. napus.  
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                                                             Outer patch  

          Middle patch  

              Central patch 

 

 Figure 6.5.20: An illustration of concentric patches. 

 

The ANOVA result show significant differences (F = 585.02; P = 0.000 < 0.05) between 

root biomass DW in concentric patches of varied soil Pb concentration (Appendix IV.6). 

The 1000 mg/kg concentration in the central patch had 13 to 94% higher root biomass, 

when compared to the all patches with the same nominal concentrations. 

Root biomass of the 300 mg/kg outer and middle patches were significantly different (T= 

-8.60; P = 0.000 < 0.05) with the outer having 10% higher biomass than the middle patch. 

The root biomass of the 100 and 300 mg/kg outer and middle patches did not differ 

significantly (T = 1.48; P=0.154 > 0.05). Patches with higher Pb concentrations (3000 

and 10000 mg/kg) were not significantly different in their root biomass (T= 2.24; P=0.066 

> 0.05). However, they differed significantly from the 100, 300 and 1000 mg/kg patches 

in their root biomass. The root biomass has been decreased by 17 to 90% in the patches 

with higher Pb concentrations (3000 and 10000 mg/kg). This is an indication that the root 

biomass had been impacted on by the patch contrast (heterogeneous distribution of Pb 

in cells). There was a trend (r2=0.996) of decreasing root biomass with increasing patch 

soil Pb concentration in the outer concentric patches (Figure 6.5.21a below: Appendix 

IV.6; Figure AIV.6). However, there was no significant linear relationship (r2=0.2364) 

between decreasing root biomass (6.5.21b) with increasing patch Pb concentration of 

the middle concentric patches (Appendix IIV.6: Figure BIV.6).      
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             (a) 

 

         (b) 

Figure 6.5.21:  (a) Root biomass DW in concentric patches of same nominal soil Pb concentration of 
B. napus in the HH treatment with the central 1000 mg/kg patch (b) Root biomass DW in the outer 
and middle concentric patches with same nominal soil Pb concentration of B. napus in the HH 
treatment without the central 1000 mg/kg patch. 
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The root Pb concentration in patches with same nominal concentration increased with 

increasing nominal soil Pb concentration of patches (Figure 6.5.22). There was a strong 

positive relationship (R2 = 0.98) between cell root Pb concentration and the nominal soil 

Pb concentration with the ~99% of the variance accounted for by the regression model 

of cell root Pb concentration against nominal soil Pb concentration (Figure 6.5.23) which 

suggest that the soil Pb concentration had an impact on root uptake in patches. It is also 

an indication this plant species responded to the increasing root uptake of Pb by 

decrease in the proportion of root biomass in patches with high Pb concentration. 

 

 

Figure 6.5.22: Root Pb concentration against nominal soil Pb concentrations of B. napus in the HH. 

 

 

Figure 6.5.23: Regression model of measured root Pb concentration of patches with same nominal 
soil Pb) against nominal soil Pb concentration of B. napus in the HH treatment. 
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6.5.2 Root placement Result for B. juncea. 
 

Figure 6.5.24 below show the root biomass DW in patches with same nominal soil Pb 

concentration of B. juncea. The ANOVA result also showed significant differences (F = 

13.77; P = 0.000 < 0.05) between cells of varied soil Pb concentration. The 1000 mg/kg 

central patch had 6 to 98% higher root biomass, when compared to the other concentric 

patches with same nominal soil Pb concentrations.  

The 100 and 300 mg/kg did not differ significantly (T= -0.80,-0.28; P=0.445, 0.784 > 0.05) 

in their outer and middle root biomasses with 50 and 5% higher root mass in middle and 

outer patches of  the 100 and 300 mg/kg respectively.  

Patches with higher Pb concentrations (3000 and 10000 mg/kg) were significantly 

different from the 100, 300 and 1000 mg/kg outer and middle patches in their root 

biomass. The 100, 300 and 1000 mg/kg patches were similar in the distribution of root in 

the outer and middle patches. The root biomass was decreased by 11 to 95% in the 

patches with higher Pb concentrations (3000 and 10000 mg/kg). Result showed that the 

root mass of B. juncea also decreased with increasing soil Pb concentration of cells 

which implied an ability of the root to detect patch contrast and contaminant 

heterogeneity. There was a trend (R2=0.7050 and 0.6589) of decreasing root biomass 

with increasing patch Pb concentration in the outer and middle concentric patches 

respectively (Figure 6.5.24; Appendix IV.6: Figures C -IV.6 and D-IV.6). 

 

 

Figure 6.5.24: Root biomass DW in concentric patches of same nominal soil Pb concentration of B. 
juncea in the HH treatment.  
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 A similar trend of increased root Pb concentration with increasing patch nominal Pb 

concentration was also observed in B. juncea (Figure 6.5.25). Cell root Pb concentrations 

did not differ significantly between cells with 100, 300 and 1000 mg/kg Pb concentrations. 

There was a strong positive relationship (R2=0.97) between cell root Pb concentration 

and the nominal soil Pb concentration with 97% of the variance accounted for by the 

regression model of cell root Pb concentration against nominal soil Pb concentration 

(Figure 6.5.26). This implies that individual cell root uptake has been influenced by the 

soil Pb concentration in the HH treatment. The slope of the regression model shows that 

root Pb uptake in B. juncea was approximately 2 times higher than that of B. napus. 

 

 

Figure 6.5.25: Mean root Pb concentration against nominal soil Pb concentrations of B. juncea in the 
HH treatment. 
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Figure 6.5.26: Regression model of mean root Pb concentration (Patches of same nominal soil Pb) 
against nominal soil Pb concentration of B. napus in the HH treatment. 
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6.5.3 Comparison of plant response to root placement. 
 

These results suggest that plant roots for both species have shown a response to 

changing heterogeneity. It also showed similarities in response to changing 

heterogeneity between the two plant species, though significantly impacted to varied 

extent. However, both plant species were significantly different (T = 2.68; P = 0.009 < 

0.05) in the proportion of root mass allocated to cells of varied Pb concentration 

(Appendix IV.6: JIV.6).  

Visible differences were observed in the root morphology of these species. Figure 6.5.27 

compares the root biomass of the 1000 mg/kg central patches of both species. The total 

root mass of B. napus and B. juncea varied by a factor of 2. Result suggest that Brassica 

napus had 53% higher root biomass in the central patch than B. juncea. This difference 

was statistically significant (T = -28.26; P = 0.000 < 0.05) (Appendix IV.6: I IV.6). This 

contrast in root morphology is due to the presence of tap root in B. napus and its absence 

in B. juncea. The differential root structure and morphology of these species might have 

contributed to the varied extent of the effect of the heterogeneity.  

 

Figure 6.5.27: Comparison of the central root biomass of B. napus and B. juncea. 

Root placement in the HH treatment provided an insight into the behaviour of these plant 

species in heterogeneous media. Decreased root mass was observed in patches with 

increased soil Pb concentration which suggest that both plant species were able to detect 

patch contrast (heterogeneity) of Pb concentration in the growth medium. Increased root 

Pb concentration with increasing soil Pb concentration of each cell, with the highest root 

Pb concentration in the 10000 mg/kg concentration is an indication that the contrast in 

Pb distribution across cell in each heterogeneity treatment could influence root Pb uptake 
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in each cell and subsequently the overall Pb uptake with impact on the proportion of 

roots. This might have partially influenced the instances of peak uptake at different levels 

of heterogeneity observed in these species. 

The similarities in how these species respond to heterogeneity despite their contrasting 

root morphology suggest an avoidance response to the toxicity of Pb irrespective of root 

morphology. However, it will take a multidisciplinary approach often involving 

physiological and biochemical investigations to confirm this inference and to provide 

further insights on varied plant response (see Chapter 8: Section 8.2). 

 

6.5.4 Growth parameters of Brassica napus and Brassica juncea in the 

fourth pot trial. 
 

Other growth parameters such growth index (GI), height, number of true and dead leaves 

and longest leaf length were used to study the behaviour of these species during the 

growth period in a  more realistic heterogeneity treatment as used in earlier pot  trials.The 

results are as shown in Figures 6.5.28 to 6.5.31. 

B. napus 

 

Figure 6.5.28: Mean height, number of true and dead leaves and growth index of B. napus. Error 
bars represent 1 standard error on the mean (n=10). 

The height of B. napus was maximum in the HO treatment, which was two fold higher 

than the HH treatment (Figure 6.5.28).  A trend of decreased height with increasing 

heterogeneity was observed between treatments. A peak height was recorded in MH 

among heterogeneity treatments.  

A Similar trend of decrease with increasing heterogeneity was observed in the growth 

index (GI) of B. napus (Figure 6.5.28), which supports better growth in the HO treatment, 
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when compared to the other treatments. This is an indication of its significant impact on 

the overall biomass. 

The number of true leaves were 20 to 50 % lower in the HH treatment, compared to the 

other treatments (Figure 6.5.28). The maximum number of true leaves were recorded for 

the MH treatment. 

The number of dead leaves were not significantly different between treatments.  

However, fewer number of dead leaves (10%) were recorded in the HO treatment, when 

compared to the LH, MH and HH treatments (Figure 6.5.28). 

The longest leaf length was recorded in the HO treatment, which was 40 % longer than 

the HH treatment (Figure 6.5.29). Leaves were narrower with increasing heterogeneity 

with an exception of the MH treatment. 

 

 Figure 6.5.29: Mean longest leaf length of B. napus. Error bar represent 1 standard error on the 
mean (n=10). 

B. juncea 

Conversely, the height of Brassica juncea increased with increasing heterogeneity. 

Maximum height was recorded in the HH treatment, which was two higher than the HO 

height (Figure 6.5.30).  

A similar trend of increased longest leaf length with increasing heterogeneity was 

observed in Brassica juncea with a maximum leaf length in the HH treatment (Figure 

6.5.30). 

However, the growth index did not follow this trend. The GI of B. juncea was not 

significantly different between treatments (Figure 6.5.30). 
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Figure 6.5.30: Mean height, longest leaf length and growth index of B. juncea. Error bars represent 
1 standard error   on the mean (n=10). 

 

The number of true leaves also increased with increasing heterogeneity with peak 

number of true leaves in  the HH treatment, which was 2% higher than the HO treatment 

(Figure 6.5 31). 

 

Figure 6.5.31:  Mean dead leaves between treatments of B. juncea. Error bar represent 1 standard 
error on the mean (n=10). 

The number of dead leaves were not significantly different between HO and LH 

treatments (Figure 6.5.31). However, ~3 % higher number of dead leaves were recorded 

in MH treatment, whilst the lowest was recorded in the HH treatment.  

Comparatively, fewer (~25%) number of dead leaves were recorded for B. juncea than 

B. napus. This suggests that reduction in the number of dead leaves might be an 

adaptation of B. juncea to tolerating heavy metal stress, while B. napus will shed more 

leaves as an adaptive mechanism to withstand heavy metal stress.  
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6.6  Discussion in relation to stated hypothesis. 
 

Hypotheses 1 and 2 in their alternative form  stated that (i) The degree of spatial 

heterogeneity of Pb in the growth medium will impact upon (a) the extent of uptake of Pb 

and (b) the plant biomass, by each species (B. juncea and B. napus.) between 

treatments. 

(ii) This effect differed at various levels of heterogeneity (e.g. low, medium and high 

heterogeneities) compared with the homogeneous treatment. 

The result showed that there was a significant effect of spatial heterogeneity on biomass 

and plant uptake of both species, but to a differing extent. The differences between 

treatments were also statistically significant.  

Uptake (Pb concentrations mg/kg) was maximum at the LH and MH treatments for both 

plant species and this was about 1.4 to 2.0 fold higher when compared to HO treatments 

of B. napus and B. juncea (Figures 6.4.11-12 and Figures 6.4.15-16). Brassica napus 

generally had thrice higher Pb uptake (as Pb mass) in HO, LH and MH treatments in 

comparison with B. juncea, but had 1.2 fold higher Pb mass in HH than B. juncea.  

Uptake increased with increasing heterogeneity for B. napus with the exception of the 

HH treatment where a decrease in Pb concentration (mg/kg) and mass was observed. 

This confirmed similar findings of increased uptake of Zn with increasing (µg) 

heterogeneity (by a factor of 1.2-1.6) for B. napus (Thomas, 2010).   

B. juncea which had decreased Pb uptake (expressed as Pb mass) with increasing 

heterogeneity with an exception of the MH treatment where a significantly higher uptake 

was recorded. This is in contrast to earlier findings for Zn (Thomas, 2010) of increased 

uptake of Zn with increasing heterogeneity with an exception in the binary simplistic 

treatment of B. juncea. This exceptional difference in Pb mass of MH treatment might 

have been influenced by the scale of heterogeneity, size of the root ball, biomass and 

root response to the spatial distribution of Pb.  

Brassica napus had approximately twice the biomass of B. juncea irrespective of the 

levels of heterogeneity.   However, both species were affected by a similar factor of ~ 

1.4 to 2 in their peak Pb uptake (expressed in both Pb concentration and mass) 

compared to a homogeneous treatment. Similarly, B. napus and juncea showed 

decreased uptake in the HH treatment, but to varying extent. Brassica napus had 5 and 

4 fold decrease in shoot and root Pb uptake (expressed as Pb mass) respectively in HH 

when compared to the HO treatment. Shoot and root uptake (Pb concentration mg/kg) 
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of B. juncea were higher by factors of 1.6 and 1.4 in HH when compared to HO treatment 

while B. napus was 1.2 and 1.4 fold lower respectively.  

Both plant species showed decreased biomass with increasing heterogeneity with an 

exception of the MH treatment of B. napus. Approximately 5 and 4 fold lower biomass 

were recorded in the high heterogeneity treatment when compared to the homogeneous 

treatment of B. napus and juncea respectively. This is in contrast to increased biomass 

with increasing Zn heterogeneity in earlier work by Thomas, (2010). The decreased 

biomass with increasing Pb heterogeneity as opposed to increased biomass with 

increasing Zn heterogeneity might be linked to the phytotoxicity of Pb, whilst Zn is an 

essential element to plants at low concentration levels. That study (Thomas, 2010) found 

no phytotoxic effect in B. juncea at root Zn concentration of 2500 mg/kg.  

Several factors might have be responsible for the contrast between the two plant species 

in response to spatial heterogeneity of Pb e.g. the scale of heterogeneity, the size of root 

ball and differing concentration factors (CF) when compared to the  threshold  CF of 1. 

Hypothesis 3 of this experiment states that the response of plant species to changing 

heterogeneity is associated with differences in root placement. There are two 

assumptions associated with this hypothesis (i) roots of these plants will be able to detect 

the degree of contrast between patches and (ii) that roots of these plant species will 

preferentially proliferate in patches with lower Pb concentration, presumably to avoid the 

toxicity of Pb 

Earlier (third) experiment with the simplistic binary model of Pb heterogeneity (Chapter 

5: Section 5.4.4) suggested that the roots of these plant species will proliferate in patches 

of zero added Pb. Two – fold increase in root diameter was observed in the zero Pb 

mg/kg added patch compared to the binary patch (2000 Pb mg/kg added) in the binary 

treatment (Chapter 5). Significant differences were observed in root ball diameter of 

these species in the binary model in comparison to the homogeneous treatment. This is 

an indication of an avoidance response to the toxic Pb.  

This (fourth) experiment, based on simulation of more realistic model of in situ 

heterogeneity, suggests that roots responded to more complex degrees of 

heterogeneity. Both plant species detected the differences in patches and responded to 

the different degrees of patch contrast (i.e. spatial distribution of contaminant). Results 

showed that plant root mass will change with the degree of patch contrast to a varying 

extent and in different ways e.g. by decreased root biomass in patches of high Pb 

concentration, for both species. Thomas, (2010) found differences in the response of 

these plants’ roots to Zn heterogeneity which suggested that root placement response 
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to heterogeneity may be plant specific. Results of this study showed that those same 

plant species though differed in morphology, both had similar response to Pb spatial 

heterogeneity. However, they differed in the proportion of root mass allocated to cells of 

varied soil Pb concentration. It supports the prediction of an avoidance response of roots 

presumably to Pb phytotoxicity by the binary simplistic model of Pb heterogeneity. 

Hypothesis 4 stated that there is a difference between responses to changing 

heterogeneity between the two plant species (Brassica juncea and Brassica napus). A 

comparison of biomass and uptake of both plant species showed a statistically significant 

difference (P = 0.000 <0.05) between both species. The summary of the hypotheses 

tested is shown in Table 6.6.1. 

 Table 6.6.1: Summary of hypothesis tested. 

Hypothesis (alternative) Species  

 B. napus B. juncea 

 
2. Biomass 

 
Accepted 

 
Accepted 

            (b)  Pb Uptake  
            (mg/kg and  mass ) 

Accepted Accepted 

3. Between heterogeneity   
levels      (a) biomass               
(b) uptake 

 
Accepted 
Accepted 

 
Accepted 
Accepted 

4. Root response to 
heterogeneity 

5. Between species 

Accepted 
 
Accepted 

Accepted 
 
Accepted 

   

Probability P < 0.05 of whether hypothesis is rejected or accepted. 
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6.6.1 Interpretation of results. 
 

The root placement experiment found three distinct regions of root distribution as a 

function of soil Pb concentration in both species. The highest proportion of B. napus roots 

(26 to 113%) were proliferated in the 1000 mg/kg central patch, when compared to the 

other patches. Results show that roots were selectively placed in the low Pb patches 

(100 and 300 mg/kg patch) with approximately 80% of roots proliferated in the central 

1000 mg/kg patch. This is an indication that the tap root which was located in the central 

cell (C3) of B. napus where greater proportion of the roots were placed has influenced 

the overall mass of roots in the 1000 mg/kg patches. This suggests that the tap root is a 

big proportion of root mass and might have influenced the proportion of root proliferated 

to other patches in response to spatial heterogeneity. It is also an indication that the 

contaminant concentration and the range at which these patches are located in relation 

to the root could play an important role in determining the distribution of roots into patches 

with similar or different contaminant concentrations.  

 

There was a continuous decrease in root biomass (~16 to 90 %) with increasing soil Pb 

concentration in the middle patches of B. juncea. The heterogeneity design (Chapter 6: 

Section 6.3) shows that cells with elevated Pb concentrations (patches with 3000 and 

10000 mg/kg) were located in the middle patch. It is a pointer to the fact that these 

patches with elevated Pb concentrations might have influenced the proportion of roots 

proliferated in the middle patches with an exception of the 100 mg/kg middle patch of B. 

napus. 

 

The 3000 outer patch had 20 to 80% lower root mass than the 100, 300 and 1000 mg/kg 

outer patches. Rather than a decreased root biomass in the outer 1000 mg/kg patch of 

B. juncea, the root biomass in the 100, 300 and 1000 mg/kg outer patches were not 

significantly different. It is an indication of the adaptation of this plant species to this Pb 

concentration range. The highest proportion of roots (10 to 50%) were proliferated in the 

1000 mg/kg central, when compared to the other patches. This denser root at 1000 

mg/kg represent the central cell (C3) where the seedling was transplanted originally and 

the additional root mass in B. napus due to the tap root. This suggests that the root 

morphology of both plant species plays an important role in the root response of this 

plant to Pb spatial heterogeneity, particularly in the proportion of roots proliferated into 

patches. Results also show that roots were selectively placed in the low Pb patches (100 

and 300 mg/kg patch).  
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B. napus and juncea generally showed a decreased biomass with increasing 

heterogeneity. The root mass in patches with the same Pb concentration also varied for 

both species in the high heterogeneity treatment. This is similar to findings of Menon et 

al., (2006) of decreased root mass in heterogeneously Zn contaminated loamy soil. 

However, the mechanism of root proliferation in cells is not yet understood. Studies by   

Barber and Silverbrush, 1984; Pierret et al. 2005 suggested that the mechanism of root 

proliferation involve interactions between the roots and the soil, based on root functional 

architecture. Some previous studies expressed varied opinion on the mechanism of root 

response in heterogeneous media. 

For example, Caldwell, (1994) suggested that proliferation of roots into patches can be 

influenced by the density of the plant tissue. Studies by (Hodge, 2004) suggested that 

root proliferation as a measure of increased root biomass does not give a complete 

picture of the change in the plant root system, as alterations in the architecture of root 

system can occur without a change in the biomass. Eissenstat and Caldwell (1988) 

argued that the proliferation of roots in patches may be related to the specific root length 

(SRL) or root length per unit mass (cm/g) which varies with root diameter and often used 

as a substitute to root diameter will provide relevant insight into root response. Menon et 

al., (2006) suggested that the use of neutron radiography to study live plant roots in 

heterogeneously contaminated soil provides a source of valuable information to explain 

root response in pot experiments. The short-fall of neutron radiography include problems 

of visibility and recognition of root orientation. Based on the nature of the root placement 

experiment, it was more practically possible to use the root biomass that has been widely 

used in previous studies (Haines, 2002; Millis et al., 2004; Schwartz et al., 2004; Thomas, 

2010). Results show that these plants will preferentially proliferate roots in patches with 

low Pb concentration in response to Pb heterogeneity to avoid Pb toxicity. 

 

Results also indicated that B. napus and B. juncea are tolerant Pb accumulators using 

classification by Baker, (1981) of three categories of plant in response to increasing 

metal concentrations namely, accumulators, indicators and excluders.  Both species had 

CF above accumulator threshold at peak uptake. Concentration factor below the 

accumulator threshold in some treatments, suggests strong exclusion mechanism at 

those levels of heterogeneity. This is in line with findings of Baker (1978, 1981) that all 

tolerant species show some degree of heavy metal exclusion from the shoot with varying 

degrees of accumulation in the root and some population showing reduced metal uptake. 

Lasat et al., (1996) and Fahr et al., (2013) also reported the ability of some plant species 
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to resist Pb concentration build up in certain parts of the plants by reduced movement of 

contaminant across the plasma membrane through the formation of a callose barrier. 

However, it is not known if these species are capable of forming a callose barrier in their 

roots. 

A trend of 4 to 7 fold increases in the root Pb concentration and mass was observed 

across treatments in both species, which is in line with previous studies on Pb 

accumulator plant species reviewed in literature (Chapter 2). The contrast in response 

of B. juncea and B. napus to the different levels of heterogeneity also showed that these 

plants have evolved diverse mechanisms to cope with heavy metal stress. Such 

mechanism of metal tolerance may be a complex syndrome of cellular, physiological and 

biochemical levels of adaptations the study of which is beyond the scope and objectives 

of this thesis. Baker et al., (1994) and Fahr et al., (2013) reported that tolerance 

mechanisms in excluder and accumulator species are largely internal with differing sites 

of detoxification of metal ions in the different parts of the plants.  

Whilst both plant species have shown the ability to recognise Pb patch contrast, it is 

essential to note that B. napus tended to be more sensitive (by factors of 1.2 to 2) in 

detecting patch contrast than B. juncea. However, B. juncea seemed to have stronger 

mechanism of excluding the Pb from the root with CF (0.4 to 0.8) below accumulator 

threshold at two levels of heterogeneity. As mentioned earlier on in this discussion, 

varying plant response to spatial heterogeneity, and the behaviour of the roots in 

response to changing heterogeneity, might also be associated with the evolution of 

diverse complex mechanisms by these plants to withstand heavy metal stress in the soil. 
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CHAPTER 7: DISCUSSION. 
 

7.0  INTRODUCTION 
 

This Chapter discusses the findings from the thesis. It also addresses the wider 

significance of the research results and their implications for both phytoremediation of 

Pb contaminated land and for the estimation of human exposure to Pb. 

 

7.1 Discussion. 
 

The field study reported in Chapter 3 addressed objective two of this thesis and found 

that the differences in heterogeneity factors between sites at some sampling scales could 

be quantified and might be associated with the sources of contamination and mode of 

deposition of Pb.  A review of contaminants heterogeneity across those sites, together 

with those previously reported, showed that high values of heterogeneity factor (HF > 

1.4) occurred at sites where these were sources that would be expected to give rise to 

spatially erratic distribution of Pb such as mine wastes, canal dredging, firing range or 

landfill, whilst low values of heterogeneity (HF ≤ 1.3) occur in  those on sites where the 

sources results in the homogeneous distribution of Pb such as sewage drying pans,  

smelter fume or flood plains  that are greater than 20 km downstream of Pb mines 

(Chapter 2: Section 2.4.2; already published in Ramsey et al., 2013). Sites histories 

discussed in Chapter 3 showed that both field sites studied here were abandoned Pb 

mining sites which have become modified by previous and current land uses (See 

Chapter 3: Section 3.1).  

 

The quantification of in situ Pb heterogeneity expressed as a heterogeneity factor was 

used to construct more realistic field conditions in pot trials, which provided insights into 

the impact of heterogeneity on plant uptake. This is useful for improved modelling of 

environmental processes such as Pb uptake, and potentially for improving the reliability 

of risk assessment and models of human exposure to Pb.  

The results of this study have shown that in situ heterogeneity of Pb could be a very 

significant factor affecting the effectiveness of phytoremediation and phytoming. This is 

in line with work by Robinson et al., (2006) which suggested that metal heterogeneity 

might be a key component of their proposed phytoremediation equation for contaminated 

land that used spatial position in form of longitude and latitude to account for metal 

heterogeneity. This phytoremediation equation in Robinson et al., (2006) which 
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incorporated metal heterogeneity in a qualitative way, did not include the quantification 

of the actual in situ metal heterogeneity.  The review of earlier studies on Pb 

accumulating plants suggests that some of the plant species used in this thesis have 

phyto-management potential. This has implications for remediation of contaminated land 

discussed in Section 7.2). 

 

The first and second pot trials with a wide range of plant species/varieties (reported in 

Chapter 4) showed varied Pb uptake rates between and within species, both at one Pb 

concentration and over a range of soil Pb concentrations. A range of 11 to 70% variation 

in Pb uptake rate was observed between BJ 21 and other Brassica juncea varieties. The 

B. napus variety BN K differed from BN SW variety in its Pb uptake rate by 21%, while 

the Zea mays varieties varied by 44 to 55%. The Thlaspi caerulesens varieties varied in 

Pb uptake by 34% within varieties. A variation of 20 to 100% in Pb uptake was observed 

between different species/varieties. This is a pointer to sub-specific adaptation and 

tolerance to contaminants in the soil with striking variation within varieties. Earlier work 

on Cd uptake with several varieties of lettuce (Millis et al., 2004), and for a range of 

contaminants (Nabulo et al., 2008), also found over a 100% variation between and within 

plant species/varieties.  

 

 In the current study, whilst some of the varieties used in this study appeared to have 

actively excluded Pb, others took up approximately 20 to 70% Pb over a range of 

concentrations, and a few showed hyperaccumulating tendencies (with Pb ≥1000 mg/kg) 

or adaptation to high Pb in the soil. This was in the case of Brassica juncea variety BJ 

21 and Thlaspi caerulescens variety TC BR respectively.  Different varieties of the same 

species have varied characteristics in terms of nutrient requirement, growth rate and size 

which might have influenced their ability to accumulate Pb and other heavy metals from 

the soil. Individual plant species/varieties showed variation in uptake of contaminants 

based on variation between cultivars. Differences in genotypic, physiological and 

biochemical adaptation could potentially influence Pb uptake between and within 

species/varieties. Establishing a causal mechanism between these parameters and plant 

growth and Pb uptake is beyond the scope of this study and could form a basis for further 

studies. 

 

Results from this study suggest that plants used in pot trials showed natural variability in 

plant growth and Pb uptake due to complex interplay of plant specific characteristics, 

site-specific heterogeneity and potentially environmental factors. This may also be 

applicable to plants growing on Pb contaminated sites such as the two investigated field 
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sites in Chapter 3. This variability might have further impact in estimation of human 

exposure to Pb and other contaminants. Work by Moir and Thornton, (1989) and Millis 

et al., (2004) suggest that the variability between plants of the same species and 

between different plant species contributes to the overall variance in uptake of 

contaminants, which is a source of uncertainty in modelled predictions of plant 

concentration factor and human exposure. These reports provide substantiation of the 

variation in plant growth and uptake observed in this study, and the inferred 

consequences of such variation. 

 

Results from growing plant species/varieties in a range of concentration showed a near 

linear positive relationship between the nominal soil Pb concentration and the plant Pb 

concentration for nearly all species. The shoot and root Pb concentrations (mg/kg) 

increased with increasing soil Pb concentration, but the concentration factor decreased 

as a function of increasing soil concentration, which is in line with findings of Baker et al., 

(1994).  The differences in shoot and root Pb concentration were statistically significant 

(P<0.05) between and within species, which implied that uptake will vary depending on 

the variety/species used. However some plant species were not significantly different in 

their shoot and root Pb concentration. For instance the Brassica juncea variety BJ 18 

and Brassica napus BN SW) had similar total plant Pb concentrations (15 to 113 mg/kg 

DW and 14 to 107 mg/kg DW) respectively in a range of soil Pb concentration, whilst BN 

SW had slightly higher biomass than BJ 18. However, clear distinctions between these 

two plant species were observed in further pot experiments using simplistic binary model 

of heterogeneity and field modelled heterogeneity (Chapters 5 and 6). 

 

 

Results in Chapter 4 indicate that variations in uptake between plant species are 

influenced by soil Pb concentration. This might have an influence on what the actual and 

predicted risk to humans is from consumption of Pb contaminated food crops based on 

plant concentration factor. This suggests that the prediction of one concentration factor 

at one pH for any soil Pb concentration often assumed by generic assessment criteria 

for estimation of human exposure to contaminants of interest might not be correct in 

many cases.  However, further work may be required to assess how a range of Pb soil 

concentration may influence plant Pb concentration and subsequently concentration 

factors. Such information could be useful in improving Pb uptake models used for human 

risk assessment and the quality of predictions made from such models.  

Elevated soil Pb concentration is often thought to impair plant growth and development.  

In this study, the biomass of some of the plant species/ varieties were not affected in the 
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presence of high soil Pb concentration (with significant plant Pb concentration) showing 

an absence of an observable effect of Pb toxicity (e.g BJ 17 and ZM OH43 of pot trial 2). 

This suggests that moderately elevated soil Pb concentration may not necessarily cause 

poor plant growth and health in some species/varieties. This might be advantageous 

from the phytoremediation point of view. 

 

The first and second pot trials were not only designed to use the variability between and 

within plant species/varieties to test specific hypotheses, but also to select suitable plant 

species for further pot trials in this overall study. They have been fit-for-purpose in 

selecting two Brassica species. However, more significant differences, and better 

delineation of between and within species/varieties effects, might have been obtained by 

increasing the number of replicates used in these first two pot trials. Never the less, 

results from the first and second pot trials have clearly shown that the Pb added 

treatments have statistically significant effects on uptake/biomass and also significant 

variation in these variables within and between the selected plant species/varieties. 

 

The third objective of this thesis investigated the effect of Pb-heterogeneity on plant 

uptake, firstly using the simplistic binary model and subsequently with a more closely 

field-modelled heterogeneity, and was addressed in pot trials 3 and 4 (Chapters 5 and 

6). Result from these pot trials showed that both the presence of heterogeneity and 

different levels of Pb heterogeneity have significant effects on plant Pb concentration, 

concentration factor and biomass of two plant species (Brassica napus and Brassica 

juncea). The effect of the binary simplistic model of heterogeneity varied in both species. 

Decreased uptake expressed as concentration in (mg/kg) and Pb mass (40 - 86%) was 

observed in the binary treatment over the homogeneous treatment for both species. This 

is in line with findings of Millis et al., 2004 who reported a 40% lower Cd concentration in 

a simplistic binary heterogeneity pot trial. However, shoot and root biomass was lower 

by 55 and 26 % for B. napus and higher by 31 and 24% for B. juncea in the binary 

treatment, when compared to the homogeneous treatment. Shoot uptake expressed as 

Pb mass (µg) was 40 to 70% higher in the homogeneous than the binary treatment of 

both species, whilst the root Pb mass was ~3 to 10% higher in the homogeneous as well 

(Chapter 5: Section 5.4).These results suggest that the homogeneous Pb distribution 

(mg/kg) and Pb mass (µg) may result in elevated Pb uptake for these plant species. 

Although better than assuming a homogeneous spatial distribution, this binary model is 

not very representative of the real field distribution of Pb. This may have serious 

implication for risk assessment models that use data from homogeneous pot trials as this 
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experiment suggests possible tendencies of over- prediction of risk using the 

homogeneous pot trial (as discussed further in Section 7.2.2).  

 

The result of the pot trial which simulated more realistic in situ heterogeneity (Chapter 6) 

showed a different trend. Shoot and root uptake (expressed as Pb concentration mg/kg) 

peaked in the low heterogeneity treatment for B. napus. Brassica juncea had shoot and 

root Pb uptake peaked in the high and medium heterogeneity treatments respectively. It 

is interesting to know that uptake expressed in Pb mass (µg) showed different effects 

than that expressed as Pb concentration for both plant species. The shoot and root peak 

Pb mass was in the homogeneous and medium heterogeneity treatments respectively 

for both species. This is an indication that the increased plant yield (biomass) in the 

above-ground part (i.e. shoot biomass) in the homogeneous treatment have influenced 

the shoot Pb mass. It also suggests that in situ heterogeneity of Pb may produce higher 

root Pb mass, which could affect the overall total plant Pb mass, depending on the level 

of heterogeneity. In this case study, higher Pb masses were recorded in the medium 

heterogeneity treatments for both species.  

 

The high heterogeneity treatment had significant decrease in shoot and root Pb mass 

when compared to the peak Pb mass found in the medium heterogeneity and 

homogeneous treatments. This might have been influenced by the root response to 

spatial heterogeneity, which showed that high proportion of roots are proliferated in low 

concentration patch. This suggests that plants with low biomass growing on 

contaminated land with highly heterogeneous distribution of Pb is expected to have low 

Pb mass. The low biomass in the high heterogeneity treatment has resulted in reduced 

Pb uptake expressed in terms of Pb mass. Results showed that differing levels of 

heterogeneity have a significant effect (between 60 and over 100%) on both uptake and 

biomass. This has implications for phytoremediation. Findings from this study suggest 

that predictions of plant uptake and plant performance for use in phytoremediation from 

homogeneous pot trials may not be accurate representations of plant uptake and 

performance under field conditions. Therefore, studies concerned with identification of 

suitable plant species for phytoremediation should take into consideration the spatial 

heterogeneity of contaminant in the field. This may be useful in making more effective 

selection of suitable plant species for specific contaminated sites. 

 

  

The shoot concentration factor (CFshoot) in all pot trials showed that about 4-5 times higher 

Pb was accumulated in the root than in the shoot for most plant species/varieties used. 
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This is in line with previous works of Baker et al., (1994); Reeves and Brooks (1989). 

Feleafel and Mirdad, (2013), who also reported that 90% of Pb is accumulated in the root 

and that increasing accumulation of Pb in the roots can cause some ultra-cellular 

changes within plant tissues. Symptoms of such ultra-cellular changes include chlorosis, 

wilting and death of the plant (Feleafel and Mirdad, 2013).  Severe chlorosis and wilting 

of leaves were observed in B. napus and some of the other species/varieties in the earlier 

pot trials. Similar observations were made by Thomas, (2010). However, the cause of 

these symptoms was not established in this study. Lead hyperaccumulation (≥1000 

mg/kg Pb) was shown only in Brassica juncea variety BJ 21 and Thlaspi caerulescens 

variety TC BR in the first pot trial (Chapter 4: Section 4.7). Hyperaccumulator species for 

Pb are capable of accumulating high levels (≥1000 mg/kg) of metal in their above-ground 

biomass (Brooks et al., 1977; Baker and Brooks, 1989; Baker et al., 1994; Huang and 

Cunningham, 1996; Baker and Whiting 2002).  

 

Results suggest that both species could exclude Pb at nearly all levels of heterogeneity 

to varying extents, with a peak Pb uptake in the medium and low heterogeneity 

treatments for B. juncea and B. napus respectively. It is an indication that they possess 

strong mechanism for excluding Pb from their tissues. The exclusion principles (Chapter 

2: Section 2.5) proposed by Baker, (1981), and substantiated in later work (Mishra et al., 

2006) describe well these findings in this thesis. The results also indicated that both plant 

species will actively exclude Pb from their roots in the highly heterogeneous treatment 

(with a decrease in CFroot in the HH treatment by factors of ~ 3 and 2, when compared 

against the peak CFroot in LH and MH treatments of B. napus and B. juncea respectively). 

A similar trend of decreased CFroot has been reported in earlier studies (Thomas, 2010) 

with Plantago lanceolata in Zn spatial heterogeneity treatments. However, B. juncea had 

higher CFshoot and CFroot (by factors of 1.5 and 2 respectively) in the HH treatment than 

B. napus. This suggests that Pb can be more easily accumulated in roots of B. juncea in 

the HH treatment than those of B. napus in the same treatment.  

Higher concentration factors suggest that these plants possess weak mechanisms to 

exclude heavy metals and so contaminant build up occurs in plant tissues especially in 

the roots), whilst lower CF, as mentioned earlier on in this discussion, suggests that 

plants have effective mechanisms to exclude heavy metals. Baker, (1981) described 

exclusion as one of plants’ responses to the presence of heavy metals in the soil. 

Exclusion is also one of the five theories postulated (discussed in Chapter 4: Section 4.9) 

to explain why plants take up Pb from the soil, despite its widely proven toxicity to plants. 

The others include tolerance, accumulation, indication and defence mechanism against 
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herbivory. Plants species/varieties in this study exhibited exclusion, accumulation and 

tolerance to high Pb in the soil in some cases. However, Thlaspi caerulenscens variety 

TC BR exhibited tolerance and accumulation, whilst its behaviour in a Pb-added 

treatment was typical of an indicator species. Most of the species/varieties studied in this 

thesis exhibited a combination of these traits with generally observed exclusion of Pb 

from the shoot. 

7.1.1 Spatial heterogeneity and root placement. 
 

The earlier pot trial with B. napus and B. juncea using the simplistic binary heterogeneity 

investigated root distribution in the binary treatment (Chapter 5) found that 78 to 80 % of 

root production was in the Pb-free (0 mg/kg Pb added) patches and the other 20 to 22% 

in the 2000 mg/kg Pb-added patches for both plant species. This is an indication that B. 

juncea and B. napus were either preferentially proliferating roots in patches away from 

Pb contamination or that root growth was stunted in the Pb rich patches presumably due 

to Pb toxicity. This could explain why B. juncea had better growth and bigger biomass 

by 30% in the binary treatment, when compared to the homogeneous. These findings 

are in line with studies on Cd and Zn in simplistic binary model (Millis et al., 2004 and 

Thomas, 2010). However, this does not seem to explain the stunted growth and reduced 

biomass observed in B. napus binary treatment when compared to the homogeneous 

and control treatments. The reason for this observed stunted growth in B. napus is not 

known. It suggests that other factors might have influenced this species-specific 

difference in response to simplistic heterogeneity. For instance, root morphology (e.g the 

presence of tap root in B. napus and its absence in B. juncea) might have contributed to 

the differences in plant growth and biomass between species in the binary treatment. 

 

An investigation of the root distribution and behaviour in the high heterogeneity treatment 

in the fourth pot trial which modelled field heterogeneity, also found some differences in 

response to more realistic heterogeneity between both species (Chapter 6).  

 

In this study, decreased root mass was recorded in patches with high Pb concentration,   

when compared with patches with low Pb. This suggest preferential proliferation of roots 

in low Pb patch. An earlier pot experiment with T. caerulescens in Haines (2002), 

suggested that some plant species could discriminate between patches with different Zn-

contaminant concentrations within the range of their root system.  A comparison of the 

root biomass of the central 1000 mg/kg patch of both species shows that B. napus had 

53% higher root mass in the central cell than B. juncea. This supports the fact that the 

higher central root biomass in B. juncea, when compared to the other patches did not 
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indicate a tap root as in B. napus. A network of fibrous roots were observed in B. juncea 

(Chapter 5: Section 5.4). This clearly supports the inference that the differential root 

morphology between species might have influenced root placement in patches of varied 

Pb concentrations.  

 

The regression model of root Pb concentration in patches against nominal soil Pb 

concentration for both species showed that there was a near linear positive relationship 

between root Pb concentration and nominal soil Pb concentration, which implies that root 

Pb concentration increased as a function of soil Pb.  The slope coefficient of this 

regression indicates that the the root-Pb concentration is present at ~9% and 15% total 

Pb concentration of the growth medium. The experimental determined percentage 

extractable Pb was 18 % of the total Pb, added as PbO (Chapter 5: Section 5.5). This 

suggest that B. napus might have excluded approximately half of the bioavailable Pb 

while B. juncea accumulated around 80% of the bioavailable Pb. However, this is a rough 

estimate of the plant Pb uptake. It is an indication that the bioavailable pool of 

contaminants in the soil may not be completely taken up by plants and the amount taken 

up is partially dependent on plant species. The  percentage  extractable Pb in this study 

is higher by a factor of ~2, when compared to the predicted 10% of bioavailable Pb in 

the soil to plants reported by Chaney et al., (1984), but  similar to reported values of 19 

and 21% by other workers (Kasheem et al., 2007; Anyanwu et al., 2008) respectively. 

This result suggest that percentage bioavailable Pb to plants could be higher than earlier 

predicted values, although there are other factors to consider. Bioavailability of Pb in soil 

to plants may be influenced by a number of factors. From literature, it is known that the 

bioavailability of Pb in soil to plant may be influenced by soil type, pH and Pb speciation 

(e.g. PbO in these pot trials) and of course, the estimation may also vary with the reagent 

used for extraction. 

 

The differences in root behaviour to Pb spatial heterogeneity and placement of roots in 

a heterogeneous distribution of contaminant might also have contributed to their varied 

response, for example, the peak effects observed at different levels of heterogeneity. 

Further work in this area may provide useful insights that could help enhance the success 

of phytoremediation. 
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7.2 IMPLICATIONS AND POTENTIAL APPLICATIONS OF THE 

STUDY. 
 

7.2.1 Implication for measurement of contaminant concentration in soil. 
 

The heterogeneity factor (HF) may have useful applications in the design of cost-effective 

measurement strategies for contaminated land. Estimation of the effects of measurement 

uncertainty and in situ heterogeneity can be made for the interpretation of measured 

concentration values, which enable users of this information to assess the effects of both 

uncertainty of measurement and in situ heterogeneity. This information can be useful in 

risk assessment in terms of determining whether the contaminant concentration exceeds 

the threshold value. Prior studies (Ramsey and Argyraki, 1997; Environment Agency, 

2009) have noted the importance of propagation of full uncertainty in the minimisation of 

the rates of false positive and false negative decisions as to whether the concentration 

of a contaminant {c} is greater than the threshold {T} (c >T) at any location is enhanced 

by estimates of full uncertainty.  

Estimation of in situ heterogeneity can also help to gain understanding of the relationship 

between in situ heterogeneity of contaminants and uncertainty of measurement. The 

equation Umeas = 200 smeas/mean, can be used to show the close relationship between in 

situ heterogeneity (RSDsamp) and uncertainty of measurement. Ramsey et al., (2013) 

used this equation to show how both affect each other. At very low in situ heterogeneity, 

the measurement uncertainty is mainly dominated by that arising in the chemical 

analysis, whilst at high in situ heterogeneity, the measurement uncertainty is totally 

dominated by in situ heterogeneity at a particular scale of measurement (Ramsey et al., 

2013). The analytical techniques used in this study (i.e. PXRF and AAS) can be widely 

applied in contamination studies with this limitation.  

The specific experimental design in conjunction with the measurement technique such 

as the P-XRF used in the field investigation enabled the quantification of in situ 

heterogeneity over a range of scales and enhanced measurements, within a two day 

period. It proved to be very useful in this study. It is therefore recommended for use in 

routine and preliminary contaminated land investigations. This will help improve sampling 

strategies as the specific sampling design has been developed with no  spatial bias in 

locating contaminant hot spots and does not require a prior knowledge of the sites for 

investigation (non-targeted or non-judgemental). In addition to these advantages, it  

adheres to the current recommendations on sampling strategies (EA, 2014) in the 

following ways  viz (i)  sampling areas are divided into definite (regular) sub-areas with 
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at least one sampling location within each area, (ii) It is systematic in its approach using 

the  full balanced and simplified design (Chapter 3: Section 3.2.1).   

The use of heterogeneity factor to express in situ heterogeneity can be regarded as new 

information to aid interpretations in geochemical investigations. It is recommended for 

use in contaminated land and geochemical investigations. It has wider application in the 

diagnosis of the source of contamination and mode of deposition of contaminants using 

the values of heterogeneity. As stated earlier on in this section (Section 7.1), high values 

of heterogeneity (HF>1.4) occur in sites where the contaminant sources produce 

spatially uneven pattern of Pb distribution such as mine waste, canal dredgings, firing 

range and landfill, and low values of heterogeneity (HF<1.3) occur at sites where 

contaminant sources result in a homogeneous distribution of Pb (e.g sewage drying 

pans, smelter fume or flood plains (> 20 km) downstream from Pb mine (Chapter 2: 

Section 2.6.2). Heterogeneity factor is also useful in improving the estimation of human 

exposure to contaminants and modelling of environmental processes (e.g. plant uptake), 

reliability of risk assessment and models.  

Spatial heterogeneity has a significant impact on the reliable assessment and sampling 

of contaminated site investigations. As discussed earlier in this thesis, contaminated 

sites with highly heterogeneous distribution of Pb stand a risk of potential 

misclassification of land as either contaminated or not contaminated, which could 

generate further problems of unnecessary remediation expenses, create dispute that 

could require legal action on eventual finding of the true status of such land and in the 

case of inability to detect hot spots, risk of exposure to human.  

 

7.2.2 Implications for human health risk assessment and 

phytoremediation. 
 

A generic assessment criteria for contaminated land uses the relationship between the 

Pb concentrations in the soil and the plant, expressed as concentration factors, to 

estimate the potential human exposure and therefore the risk to human health from 

consumption of vegetables grown on contaminated land (DEFRA and EA, 2002c). 

Variations in the levels of heterogeneity of Pb has been shown in this study to have 

significant impact on uptake of Pb and also on plant growth.  A range of plant 

species/varieties were used in this study, some of which are typical food crops that have 

been able to accumulate substantial amount of Pb in their shoots and roots above the 
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WHO and EU limits of Pb in food crops. This implies that these plant species may pose 

human health risk if they are grown on contaminated land and consumed by humans.  

The World Health Organization (WHO) maximum limit of Pb in fruits and vegetables is 

0.30 mg/kg FW, whilst the UK Food Standard Agency {FSA} is 0.1 mg/kg FW (CODEX, 

2001; FSA, 2007). Shoot Pb concentration in this study ranged from 0.9 to 30 mg/kg FW 

which have exceeded these maximum limits of Pb in vegetables (3 to 100 fold higher 

than the World Health Organisation (WHO) limit), and 9 to 300 fold higher than the 

European Union (EU) limit. This supports earlier work (Moir and Thornton, 1989, 

Fytianos et al., 2001; Adekunle et al., 2009; Opajobi et al., 2011 Jiang et al., 2013)  

suggest that some temperate and tropical vegetable plant species could accumulate Pb 

from the soil above these limits. However, the primary route of Pb exposure to humans 

is via ingestion of Pb contaminated soil (ATSDR, 2012). Results from this research 

indicates that there could also be potential health hazard to humans via consumption of 

crops grown on land heavily contaminated by Pb. This in line with studies by Finster et 

al., 2003; Anyanwu et al., 2008; Li et al., 2012; Oti-Wilberforce and Nwabue, 2013a; 

2013b on potential health risk from consumption of herbs, seeds and fruits of plants 

grown on Pb contaminated soils. Vegetables form a substantial part of man’s diet, 

therefore the mass and frequency of consumption of contaminated vegetables may also 

play a role in determining the level of risk. In this study, the seeds and fruits were not 

assessed for their level of contamination, therefore future work may consider this aspect 

to evaluate the potential risk posed by the consumption of the seeds and fruits of edible 

plant species (e.g. rape seed oil from Brassica napus and mustard seeds from B. juncea). 

A range of Pb concentrations were reported for different plant varieties/species used in 

this study. This has implications for human risk assessment. The variation between and 

within species/varieties could be a possible source of uncertainty in uptake models used 

to estimate Pb uptake from the soil for human health risk assessment. Studies concerned 

with the estimation of risk could consider using more consumed varieties of a particular 

species in plant uptake models (assuming homogeneous spatial distribution of 

contaminant in soil), to improve predictions for any species of interest.  

This study found that spatial heterogeneity of Pb had a significant impact on plant uptake, 

compared against uptakes measured for homogeneous spatial distributions. This also 

has implications for plant uptake models used for estimation of human exposure to 

contaminants in risk assessment.   

The results of this study suggest that uptake models based on more realistic field-

modelled heterogeneity could therefore help improve the accuracy and reliability of risk 
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assessment models used to estimate human exposure to toxic contaminants. This was 

identified for Zn heterogeneity (Thomas, 2010), which supports the finding in this study, 

that concentration factors predicted by models that assume homogeneous distribution of 

contaminant in the soil are not realistic.  

Realistic field-modelled heterogeneity could find useful application in phytoremediation 

by physically changing in situ heterogeneity of Pb in soil at contaminated sites prior to 

phytoremediation through specifically designed ploughing to mix the soil and thereby 

increase the mass of Pb taken up by specifically chosen plant species, thus increasing 

the success of phytoremediation of contaminated land based on the findings in Chapter 

6: Section 6.4). The variation between – and within -plant species/varieties can be 

explored and harnessed to determine  the most suitable varieties or species for 

phytoremediation of contaminated land by this approach.  

Based on the results of this research, it is recommended that this new technique of 

assessing the impact of different levels of heterogeneity be employed in research on 

plant uptake of contaminants for assessment of risk to human health or for preliminary 

trials for other potential plants suitable for phyto-management or phytoremediation, and 

for a wider range of contaminants. This will be a source of tremendously useful 

information which could provide a wide range of plant concentrations within which on-

site plant concentration might fall, especially at sites with unknown spatial distribution of 

the contaminant. Results for both plant species provide very strong support for growing 

plants in different levels of heterogeneities in pot trials and in a field trial, as a more robust 

way of comparing the effectiveness or efficiency of the different plant species prior to on-

site phytoremediation. 
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CHAPTER 8: SUMMARY OF FINDINGS, SUGGESTIONS FOR 

FURTHER WORK AND CONCLUSION. 
 

8.0 INTRODUCTION 
 

This Chapter summarizes the main findings from the thesis in relation to stated aims and 

objectives. It also addresses the strengths, limitations, conclusion, and makes 

suggestions for further research work. 

 

8.1 Summary of findings. 
 

This thesis introduced a new way of quantifying and expressing in situ spatial 

heterogeneity of contaminant concentration as Heterogeneity Factor (HF), and applied it 

to Pb at two heavily contaminated sites. A previously employed site-specific sampling 

design, and the in situ measurement technique of P-XRF, were employed for the in situ 

measurement of concentrations and in situ heterogeneity of Pb in soils in their 

undisturbed state. 

Thirteen varieties of six species of plant were selected to assess the impact of soil Pb on 

plant biomass and Pb-uptake in a first pot trial. Based on the results of this first pot trial, 

six species of four varieties were selected for a second pot experiment to examine this 

effect over a range of growth medium Pb concentrations. Results of this second pot trial 

were used to select two plant species for two further pot trials to investigate the effects 

of two models of in situ heterogeneity, that were initially a simplistic binary and finally a 

more realistic field-modelled design. A sub-experiment of the final pot trial assessed the 

effect of patchy distribution Pb on root growth and placement in the high heterogeneous 

treatment. 

This section brings together the main findings and conclusions from each chapter of this 

thesis, in order to assess their overall significance. 

 Chapters 1 and 2 identified the objectives of this research, and addressed the 

first objective, with an overview of soil pollution, heavy metal contamination and 

soil Pb contamination. 

 Chapter 2 also found Derbyshire to be a suitable area for the selection of field 

sites, and identified Brassica juncea, Brassica napus, Thlaspi caerulescens, Zea 

mays, Biden alba and Gentianna penneliana as candidate species for use in the 

first pot trial. 
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Chapter 3 described the quantification of in situ spatial heterogeneity of Pb at two heavily 

contaminated sites in the United Kingdom (Gang Mine and BlackRock). The specific 

sampling design which comprised the balanced sampling design and the duplicate 

method was used in conjunction with the measurement techniques of P-XRF to quantify 

heterogeneity over a range of scale (0.02 to 50 m). 

 The term Heterogeneity Factor (HF) was proposed as a better way to quantify in 

situ heterogeneity than the previous use of RSD. This is because HF allows for 

the non-normal frequency distribution of the Pb at these sites, but is equally 

applicable to sites that do have normal distributions. The use of HF, after a log 

transformation, also provided a better model of how the heterogeneity varied as 

a function of measurement scale.  

 The field investigations established that in situ heterogeneity differed significantly 

between the two sites and also varied with spatial scale at both sites. For 

example, heterogeneity of Pb in Gang mine site (an abandoned Pb mine 

characterised with several spoil heaps of mine tailings distributed randomly 

around the site) was highly heterogeneous in its Pb distribution (HF values were 

6-45% higher) when compared to Black Rock (abandoned Pb mine without such 

distribution of spoil heaps). 

  Heterogeneity factor (HF) ranged from 1.17 to 2.22 in Black Rock and 1.24 to 

3.22 in Gang Mine. Spatial heterogeneity changed as a function of scale. Both 

sites had similar frequency of distribution of Pb, with heterogeneity peaked at the 

highest spatial scale which was 60 to 90 % higher at the 20 m scale, compared 

to the 0.02 and the 2 m scale for Gang Mine and Black Rock respectively. Mean 

Pb concentration of contaminant also differed between sites with Black Rock 

having ~5 times higher mean than Gang Mine. However, there was no significant 

relationship between Pb heterogeneity and concentration at both sites.  

 The use of heterogeneity factor (HF) to express in situ heterogeneity in this study 

has shown that heterogeneity of contaminated sites could be more accurately 

quantified and can be useful in improving the reliability of contaminated land 

investigation, risk assessment and modelling of geochemical processes such as 

plant uptake. 

Chapter 4 presented two pot trials whose results answered their own scientific objectives, 

made suitable selections of plant species for further pot trials and secondly helped with 

the design of subsequent experiments. 
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 The first pot trial found that a fixed Pb concentration of 1000 mg/kg has a significant 

effect on biomass and Pb uptake of four Brassica juncea varieties (BJ 17, BJ 18, BJ 

21 and BJ 42), two of Brassica napus (BN SW and BN K), three of Thlaspi 

caerulescens, (TC HS, TC GM and TC BR), four of Zea mays (ZM B37, ZM B73, ZM 

OH43 and ZM 64), Gentianna pennelianna and Biden alba. It also found ~20 to 100% 

variability in uptake rates between and within species comprising varieties with 10 to 

70% variability in biomass from the first pot trial. 

  The first pot trial selected four species of six varieties suitable Pb accumulators for 

the second pot trial in a range of Pb concentration based on this variability in biomass 

and uptake rates. 

The second pot trial assessed the effect of a range of Pb concentrations on the uptake 

and biomass of the selected plant species. 

 It found significant effect of the varied Pb concentration on these plant species with 

20 to 70% variability in plant uptake and up to 60% in biomass between and within 

species and varieties.  

 This pot trial showed that the selected plant species could thrive within this range of 

Pb concentration with more severe effects of the added Pb in the highest Pb 

concentration for most species.  

 Having compared between- and within - species/varieties based on the observed 

variability in biomass and uptake, it found B. juncea and B. napus suitable for the 

subsequent pot trials using the simplistic binary and field models of heterogeneity.  

 The first and second pot trials were not only fit for purpose in selecting suitable plant 

species for further experiments, but also provided insights on the adaptation and 

tolerance of these plant species to Pb added treatments at varied concentrations, 

which was helpful in choosing Pb concentrations in subsequent experiments. 

In Chapter 5, the simplistic binary model of heterogeneity was used to assess the effect 

of heterogeneity on plant biomass, Pb uptake and root response to heterogeneity, 

compared to the homogeneous and control treatments for the two selected plant species.  

 This experiment found reduced metal uptake for both species with ~ 20 to 40% 

increased biomass for B. juncea and ~ 30 to 60 % decreased biomass for B. napus 

in the binary treatment.  

 For B. juncea shoot and root Pb uptake was reduced by 86 and 56 % in the binary 

treatment respectively compared to the homogeneous treatment. By contrast, the 

shoot biomass increased by 9 and 31 % and the root biomass increased by 17 and 
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52%, when the binary treatment was compared to the control and homogeneous 

treatments respectively.  

 Shoot and root uptake in B. napus decreased by 37% and 58% respectively in the 

binary treatment, when compared to the homogeneous treatment.  

 Conversely, for B. napus shoot biomass decreased by 40% and 26% and root by 61 

and 26 % in the binary treatment, compared to the control and homogeneous 

respectively. 

 Four times more roots were proliferated in the 0 mg/kg binary patches of both species 

which indicated an avoidance response presumably to the toxicity of Pb.  

  

Chapter 6 addressed the effects of more realistic field-modelled heterogeneity. The 

experiment in Chapter 5 compared a simplistic binary model of heterogeneity to 

homogeneous treatment and found significant differences in plant growth and Pb uptake. 

However, none of these models represented the field heterogeneity found in nature and 

experienced by most plant species. The three models of Pb heterogeneity used in this 

experiment were based upon the findings of the field investigations, reported in Chapter 

3. The heterogeneity design described in Chapter 6 ensured that Pb is heterogeneously 

distributed while the average contaminant concentration in all pots remained constant at 

all levels of heterogeneity, making heterogeneity as the key factor. This experiment 

therefore bridges the gap between the homogeneous and the simplistic binary model of 

heterogeneity. The same two plant species and varieties (Brassica juncea and Brassica 

napus) were selected for this experiment, as were used for the previous experiment 

(reported in Chapter 5). Results showed varied plant response to the different treatments 

and findings for each species is summarised below. 

Brassica napus  

 There were significant differences in both biomass and Pb uptake between 

treatments. Shoot and root dry biomass decreased with increasing heterogeneity 

with a peak biomass in the medium heterogeneity treatment. The shoot and root 

biomass in the homogeneous treatment was significantly higher (5 fold), than the 

high heterogeneity treatment.  

 Lead uptake expressed in units of concentration (mg/kg) generally increased with 

increasing heterogeneity but with a peak uptake at the low heterogeneity, which was 

2 times higher than that of the homogeneous treatment.   

 Shoot uptake expressed in units of Pb mass (µg) decreased with increasing 

heterogeneity, with a peak shoot uptake in the homogeneous treatment which was 
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higher by a factor of 7 than the high heterogeneity treatment. This leads to the 

suggestion (In Section 7.2.2) that the mixing of soil in situ by ploughing may increase 

the efficiency of phytoremedation by this species at the concentration of Pb in this 

pot trial. 

 However, root uptake expressed in Pb mass (µg) increased with increasing 

heterogeneity with a maximum root uptake in the medium heterogeneity treatment 

which was 2 and 6 fold higher than the homogeneous and high heterogeneity 

treatments respectively. Results suggest that realistic spatial heterogeneity of Pb is 

a significant factor influencing growth and Pb uptake for this species.  

Brassica juncea 

 Similarly, significant differences in both biomass and Pb uptake were also found 

between treatments for B juncea. 

 Shoot and root biomass decreased with increasing heterogeneity with maximum 

biomass in the homogeneous treatment which was 4 fold higher than the high 

heterogeneity treatment.  

 Uptake expressed as concentration (mg/kg) increased with increasing heterogeneity 

with peak uptake in the high heterogeneity treatment for the shoot and medium 

heterogeneity for the root, which were twice as high as the homogeneous treatment. 

  Shoot Pb uptake expressed as Pb mass (µg) decreased with increasing 

heterogeneity with a peak shoot Pb  mass in the homogeneous treatment, which was 

about twice as high as the high heterogeneity treatment.  Similarly, this leads to a 

suggestion that ploughing contaminated sites to reduce heterogeneity should 

increase the amount of Pb removed by this plant species (Section 7.2.2).  

 However, the root Pb mass increased with increasing heterogeneity with a peak Pb 

mass in the medium heterogeneity treatment. Results also suggest that spatial 

heterogeneity of Pb is also a fundamental factor affecting plant growth and uptake of 

Pb in this species. 

 The impact on both species is an indication that site specific heterogeneity is an 

important factor in producing reliable estimates of Pb uptake and growth compared 

to the homogeneous and binary simplistic model.  

 However, both plant species differ in morphology and size, both were affected by Pb 

heterogeneity to differing extent and peak effect was maximum at different levels of 

heterogeneity (Table 8.1.1 below summarises the similarities and differences 

between the two plant species in terms of the effects of realistic in situ heterogeneity). 

This suggest that the effect of Pb heterogeneity is plant specific. It implies that results 
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will vary for other different plant species and at different concentration of Pb 

potentially. 

Table 8.1.1: Summary of the similarities and differences between B. napus and B. juncea on the effect 
of realistic in situ heterogeneity.  

 

 

 

 

B. napus            B. juncea 

 Biomass decreased with increasing 

heterogeneity with the exception of the MH 

treatment. 

 Biomass decreased with 

increasing heterogeneity without 

an exception. 

 Pb uptake (mg/kg) increased with 

increasing heterogeneity with a peak 

uptake in LH treatment for shoot and root 

by a factor ~2, compared to the HO 

treatment. 

 

 Had ~5 times lower biomass in HH than 

HO 

 Increased Pb uptake (mg/kg) with 

increasing heterogeneity with a 

peak uptake in the HH treatment 

for shoot and MH treatment for 

the root by a factor of ~2, 

compared to the HO treatment. 

 Had 4 times lower biomass in HH 

than HO. 

 Root uptake expressed as Pb 

concentration (mg/kg) was~ 2 times lower 

than that of B. juncea in the HH treatment. 

 Root uptake expressed as Pb 

concentration (mg/kg) was ~2 

times higher than B. napus in the 

HH treatment. 

 Shoot uptake expressed as Pb mass 

(µg) decreased with increasing 

heterogeneity with a peak shoot Pb mass 

in the HO treatment. 

 Shoot uptake expressed as Pb 

mass (µg) decreased with 

increasing heterogeneity with a 

peak shoot Pb mass in the HO 

treatment. 

 Root uptake expressed as Pb mass (µg) 

increased with increasing heterogeneity 

with a peak root Pb mass in the MH 

treatments. 

 Increased root Pb mass (µg) with 

increasing heterogeneity with a 

peak Pb mass in the MH 

treatment. 

 Shoot and root Pb mass (µg) was 

approximately 50% lower in the HH 

treatment, compared to HO.  

 Shoot and root Pb mass (µg) 

approximately 20 to 70% lower 

in the HH treatment, compared to 

HO. 
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Root Response of both species to Pb heterogeneity. 

The root placement investigation was a sub-experiment in Chapter 6 which addressed 

one of the objectives of the pot trial simulating in situ heterogeneity of Pb.  

 An earlier experiment in Chapter 5 with the simplistic binary model of heterogeneity 

showed that roots of both species had root ball diameter in the 0 mg/kg quadrant 

twice as large as that of the 2000 mg/kg quadrant of the binary treatment which 

suggest a change in root morphology in response to Pb distribution in the binary 

treatment.   

 The simplistic binary experiment found differing root morphology in both species with 

B. napus having four times as large root ball diameter  as B. juncea in both binary 

quadrants. For example, a tap root was observed in B. napus, whilst B. juncea had 

no tap root, but a complex network of fibrous roots. 

 The root placement experiment in the high heterogeneity treatment found similar 

morphology (presence of tap root in B. napus and absence in B. juncea).  

 There was a definite pattern of root response typically of decreased root mass to 

increasing patch soil Pb concentration.  

 However, the proportion of roots proliferated in concentric patches (outer, middle and 

central) differ significantly between species and in most cases between patches.  

 Results suggest that Pb heterogeneity has a significant effect on root proliferation in 

heterogeneous environment and provided insights into these species behaviour in 

heterogeneous patchy distribution of Pb by proliferation of more roots in patches with 

low Pb concentration. 
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8.2 Suggestions for further work.  
 

Having discussed the implications and potential applications of this research (Chapter 7: 

Section 7.2), this section makes suggestions for further work on possible aspects of 

future research.  

1. This study did not quantify Pb heterogeneity at the micro scale. Further work 

could be developed to overcome this limitation (e.g. going down to lower 

scales of heterogeneity with micro scale measurement) with comparable 

data quality (precision and bias) to the macro scale measurement used in 

this study (with the P-XRF). This will be useful to see if linear function continues 

down to smaller scales. 

2.  Spatial patterns of different contaminants (e.g. Cr, Ni, As etc) can be used 

for quantification of their in situ heterogeneity. This will be enormously useful 

in building predictive models of geochemical processes and in the remediation of 

contaminated land. Further research is required in quantification of in situ 

heterogeneity both at macro, micro and nano scales for different elements and 

not just for Pb. Other effects and uses of in situ heterogeneity may well be 

discovered as more values of heterogeneity are reported.  

3.  One of the pot trials assessed the effect of Pb heterogeneity on biomass and 

plant uptake of Pb.  Lead is one of the toxic contaminants that can be taken up 

by plants from the soil. There is a need for further work on the effect of in situ 

heterogeneity of other contaminants in soil on plant uptake either as 

individual study or a combination of contaminants in soil as these metals do not 

often exist in isolation in field scenario. The antagonistic and synergistic effects 

of such contaminants could be studied to improve the understanding of their 

geochemical pathway. Studies can also be expanded to essential trace elements 

or nutrients necessary for plant growth taking advantage of plant root response. 

This will be useful in increasing the uptake of such essential elements in food 

crops and vegetable plant species with the aim of improving human and animal 

dietary needs for essential microelements. 

4. The first and the second pot trials which assessed the effect of a fixed and range 

of Pb concentrations on uptake and biomass of selected plant species also 

compared uptake rates between and within species/varieties. Further 

experiments in this area can explore such intra and inter–specific 

comparison to select food plant varieties with low Pb uptake and high metal 

excluding potential.  
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Such information will be useful to farmers and vegetable growers in highly 

contaminated regions of the world where immediate remediation is not imminent 

to ensure that varieties cultivated are safer for human and animal consumption.  

5. This research has shown that spatial heterogeneity of Pb has significant impact 

on plant uptake of Pb. Further work could seek to incorporate Pb heterogeneity 

parameter into the generic assessment criteria used to estimate the risk of 

Pb to human health from consumption of food crops and vegetables which 

assumed homogeneity in concentration of Pb and other potentially toxic heavy 

metals. This will be useful in improving the reliability of future estimates of human 

exposure to Pb and other contaminants of interest. 

6. The pot experiments did not explore the physiological and biochemical basis 

of varied plant responses to heterogeneity. This is an interesting 

interdisciplinary area of research that could provide further insights into varied 

plant response and unravel the internal mechanisms behind plant behaviour to 

metal heterogeneity. 

7.  The root placement experiment needs to be expanded to include other levels of 

heterogeneity in future work. This is to ensure that root responses in the other 

levels of heterogeneity are explored to provide supporting evidence for results 

found in the high heterogeneity treatment. This will be useful in understanding 

further the concept of root response to contaminant heterogeneity. Developing 

experimental techniques such as neutron radiography, tomography and image 

processing tools should be used in future experiments that will enhance the 

study of whole root system in different levels of heterogeneity to obtain 

qualitative data useful in making accurate whole root system model in 

contaminant transport.   

8. Further work with contaminants other than Pb should incorporate the site-specific 

geochemical mineral phases and speciation of such elements. This might provide 

insights into link between mineral phases of the different contaminants, 

spatial distribution in the soil and behaviour during uptake by plants.   

9.  Heterogeneity in the pot trials undertaken in this research reflect the small 

volume of soil in the pot that can be potentially seen by plants roots. It might be 

worth comparing future work in practical field trials with results obtained 

from pot trials. Field trials might allow future research to explore effects of larger 

scales of heterogeneity and the potentials of using larger plant species (e.g using 

trees for metal uptake). Ploughing of experimental field sites could be used 

to reduce heterogeneity in the field, as a control to such experiment. Such 

ploughing could also provide homogeneous field condition for plants species, 
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whose Pb uptake is maximum or enhanced in homogeneous media, thus 

improving the success of phytoextraction.  

10. This research explored the effect of spatial heterogeneity at an average Pb 

concentration of 1000 mg/kg. Further work will be required in higher average 

Pb concentrations (e.g 5000 mg/kg and above). This will be useful in 

assessing the effects of Pb spatial heterogeneity at higher concentrations, which 

could form a very vital stage in preliminary investigations prior to 

phytoremediation.  

11. The field modelled heterogeneity pot trial used two species B. napus and B. 

juncea which showed species-specific differences in response to heterogeneity. 

Future studies could explore a wide range of plant species. Results from 

such research could be used in building geochemical baseline data on plant 

uptake (that incorporate metal heterogeneity) for many plant species, which will 

be tremendously useful in improving geochemical models of plant uptake for risk 

assessment, phyto-management and phytoremediation. 

12.  An observation made during the growing season of the field-modelled 

heterogeneity experiment showed that flowering time was delayed in B. juncea 

in the homogeneous treatment, but earlier in the heterogeneity treatments 

especially in the high heterogeneity treatment, whilst B. napus never flowered. 

This suggest a probable link between contaminant heterogeneity and 

reproductive stages of these plant species. Future work might be required to 

investigate and validate this potential link. Knowledge from such studies will 

provide insights on how contaminants interfere with plants reproduction and 

consequently potential contamination of seeds and fruits produced, which are 

consumed by humans. Such knowledge will be useful in improving plant yield 

and quality of farm products. 

13. The variation in Pb masses (µg) between treatments of both species show that 

plant biomass could influence the amount of Pb uptake, consequently affecting 

their selection for phytoremediation. Future research work could look at ways 

of increasing biomass of these plant species (e.g exploring the biomass 

increasing potential of mycorrhizae in roots of B. juncea and some other 

plant species), thus improving their efficiency for use in phytoremediation. 

In conclusion, this study has evidently demonstrated that spatial heterogeneity of Pb 

plays a key role in plant Pb uptake and growth. Future research on plant uptake should 

adopt the realistic heterogeneity models. 
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APPENDICES RELATED TO FIELD INVESTIGATION (CHAPTER 3). 

Appendix I.1: Specification, principle of operation and calibration of the 

Portable X-Ray Fluorescence (P-XRF). 
 

Specification 

The Niton XL3t900 GOLDD P-XRF used represent a category of hand-held 

instrumentation that is capable of in situ simultaneous multi-element analysis outside the 

confines of a laboratory. It has a Ag target X-ray tube, Si drift detector, 6.2 kV Si and P 

X-ray tube voltage, 100µA tube current, an  8mm X-ray spot  diameter and two K element 

lines.  

Principle of operation. 

The principle of operation is as described by AMC, (2009). X-rays from an excitation 

source interact with the test surface, causing an emission of secondary fluorescence X-

rays that have energies characteristic of the atoms of the excited material. Fluorescence 

X-rays area detected using an energy dispersive system (Silicon drift detector {SDD}). 

In-built sophisticated software with high computing power compensates for background 

variation and line overlap and provides a comprehensive matrix correction.  Qualitative 

analytical results can be obtained while an analysis is being undertaken or immediately 

after the end of a count. 

Calibration. 

The empirical and the fundamental approaches are two ways to calibrate the P-XRF. A 

site specific calibration is employed by the empirical method. Prior to analysis with the 

P-XRF, samples are taken and analysed using traditional laboratory techniques. They 

are then used to create sub-site specific reference materials (Kerna et al., 2011). 

The fundamental method uses a theoretical approach involving inter element coefficient 

(Kalnicky and Singhvi, 2001). In this approach, the inverse relationship between peak 

intensities of the Rayleigh and Compton scatter to atomic number is used to estimate the 

average balance of the sample. The Niton XL3t900 GOLDD P-XRF is calibrated by 

analysing a range of reference material prior to in situ analysis. 
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Appendix I.2:  Field mesurements data quality. 
 

Table AI.2: Summary table showing Detection limits of in situ measurement using the P-XRF. 

CRM 
 Mean measured 
Pb conc. (mg/kg) median 3 s 

CCRMP TILL-
4 26 12 

GBW 7411 2618 72 

HRM 31 6754 109 

NCS 73308 11 8 

NIST 2710a 5447 108 

NIST 2711a 1347 47 

RCRA 467 36 

   
 

 

 

 Figure AI.2 Regression model of median of 3 s of CRM readings against measured concentration. 

Detection limits have been calculated using median value of 3 standard deviation for each CRM 

readings extrapolated to zero concentration. 
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Appendix I.3: Data from regression analysis of P-XRF mean Pb 

measurements of certified reference materials against certified values. 
 

Table AI.3: Measured and certified values of CRMs. 

CRM 

Mean measured 
concentration 
(mg/kg) 

Certified 
values 

NCS 73308 11 27 

CCRMP TILL-4 26 50 

RCRA 467 500 

NIST 2711a 1347 1400 

GBW 7411 2618 2759.24 

NIST 2710a 5447 5552 

HRM 31 6754 6895 

 

 

Figure AI.3: Regression of certified reference materials (CRMS) for estimation of instrumental bias 

for P-XRF. 

Model Summary 

Model R R Square Adjusted R 

Square 

Std. Error of the 

Estimate 

1 1.000a 1.000 1.000 28.45141 

CRMs 

Coefficientsa 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) -35.463 14.888  -2.382 .063 

Certified Pb .991 .004 1.000 236.313 .000 
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Appendix I.4:  Table of Summary of in situ Pb measurements. 
  

 Table AI.4: Summary of RANOVA analysis for Gang Mine 

Site 
  GANG MINE (GM) Pb     

Scale (m)  0.02 0.05 0.2 0.5 2.0 5 20 

 
  n=10 

                     
n=8 n=6  n=8 n=8  n=360 n=240 

Robust Mean 
conc(mg/kg) 7991 5362 6401 5907 6720 5443 5617 

Geometric mean 
(mg/kg) 6773 4547 3115 3667 3752 3348 3371 

Arithmetic mean 
(mg/kg) 8958 7100 6401 6130 6720 6070 6210 

HFsamp  1.24 1.44 1.95 1.88 2.33 2.36 3.22 

Class u(1s) 18 25 54 77 97 97 118 

Robust u(1s) 13 37 61 50 107 71 86 

 

Table BI.4: Summary of RANOVA analysis for Black Rock 

Site  
BLACK ROCKS 
(BR) Pb     

Scale (m)  0.02 0.05 0.2 0.5 2.0 5 20 

  n=10 n=8  n=6  n=8  n=8  n=360 n=240 

Robust Mean 
conc(mg/kg) 35107 32781 26631 33100 24627 29829 30013 

Geometric mean 
(mg/kg) 32506 28136 19752 27024 18337 23299 23679 

Arithmetic mean 
(mg/kg) 35107 32781 26631 31758 24374 30846 30834 

HFsamp  1.17 1.23 1.31 1.21 1.97 1.81 2.22 

Class u(1s) 16 24 10 22 34 42 58 

Robust u(1s) 15 22 12 22 33 40 59 

 

Footnote: HFsamp-Heterogeneity factor of sample 

Classical u (1s)—Classical uncertainty 1standard deviation, Robust u (1s)–Robust uncertainty 1 standard 
deviation, 
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Appendix I.5: Regression of in situ Heterogeneity factor (HF) against scale 

for Black Rocks and Gang Mine. 

 

Table AI.5: Black Rocks 

 

Coefficientsa 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 1.373 .125  11.004 .000 

Scale .047 .016 .797 2.954 .032 

a. Dependent Variable: HF 

 

 

Table BI.5: Gang Mine 

 

Coefficientsa 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 1.748 .157  11.158 .000 

Scale .079 .020 .869 3.928 .011 

a. Dependent Variable: HF 
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Appendix I.6: Heterogeneity factor HF and soil Pb concentration (mg/kg). 
 

 

 

 

Figure AI.6:  A regression model of Heterogeneity factor (HF) against soil Pb 

concentration (mg/kg) in Gang Mine. 

 
 

 

Figure BI.6: Regression model of heterogeneity factor (HF) against soil Pb 

concentration (mg/kg) in Black Rocks. 
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Appendix I.7: Test for normal distribution of log-transformed measured Pb 

concentration of field sites. 
 

Table AI.7: Gang Mine 

One-Sample Kolmogorov-Smirnov Test 

 

Gang mine Pb 

concentration 

N 100 

Normal Parametersa,b Mean 3.5122 

Std. Deviation .51132 

Most Extreme Differences Absolute .070 

Positive .066 

Negative -.070 

Test Statistic .070 

Asymp. Sig. (2-tailed) .200c,d 

a. Test distribution is Normal. 

b. Calculated from data. 

c. Lilliefors Significance Correction. 

d. This is a lower bound of the true significance. 

 

Table BI.7: Black Rocks. 
 

One-Sample Kolmogorov-Smirnov Test 

 

BlackrockPbcon

centration 

N 100 

Normal Parametersa,b Mean 4.3632 

Std. Deviation .38885 

Most Extreme Differences Absolute .107 

Positive .093 

Negative -.107 

Test Statistic .107 

Asymp. Sig. (2-tailed) .006c 

a. Test distribution is Normal. 

b. Calculated from data. 

c. Lilliefors Significance Correction. 
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Appendix I.8: Copyright permission for maps used in Chapter 3 
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APPENDICES RELATED TO POT TRIALS 1 AND 2 (CHAPTER 4) ON 

REWRITABLE CD ATTACHED TO THESIS. 

 

Appendix II.3: First pot trial test for significance shoot dry biomass between treatments 

of statistically significant species/varieties (BJ 18, BJ 42, BN SW, BNK, ZM B73 and ZM 

64)-----CD 

Appendix II. 4: First pot trial test for significance of root and total dry biomass between 

treatments of statistically significant species/varieties (BJ 18, BJ 42ZM B73, ZM OH43, 

ZM 64, BNK & BN SW)-----CD 

Appendix II.6: Table of significance and Tukey HSD homogeneous subset of 

comparison of shoot, root, and total plant Pb concentrations mg/kg DW between 

species/varieties (First pot trial)-----CD 

Appendix II.7: Tukey H.S.D comparison of shoot, root and total plant Pb mg/kg within    

species/varieties (Pot trial 1) ---CD 

Appendix II. 9: Tukey HSD test of significance of shoot, root, total dry   biomass and 

Growth Index (Pot trial 2) ----CD 

Appendix II. 10: Table of homogeneous subsets of Tukey HSD test for shoot, root and 

total plant Pb mg/kg DW (Pot trial 2) -----CD 

Appendix II. 15: ANOVA of shoot, root and total biomass of species/varieties in pot trial 

2----CD 

Appendix II. 16: Regression of biomass against lead concentration gradient for all 

species and varieties (2nd pot trial) -----CD 
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 APPENDICES RELATED TO POT TRIALS 1 AND 2 (CHAPTER 4) ON HARD 

COPY 
 

Appendix II.5:Pot trial 1 test for significance of shoot and root 

Concentration factors.  
 

AII.5: One-way ANOVA: CFshoot between Species/varieties  

 

Source                DF        SS        MS       F      P 

Species or varieties  12  2.321149  0.193429  371.57  0.000 

Error                 26  0.013535  0.000521 

Total                 38  2.334684 

 

S = 0.02282   R-Sq = 99.42%   R-Sq(adj) = 99.15% 

 

Grouping Information Using Tukey Method 

 

Species or 

varieties   N    Mean  Grouping 

BJ 21       3  0.9931  A 

 TC HS      3  0.2895    B 

BJ 42       3  0.1576      C 

ZM 64       3  0.1381      C D 

TC BR       3  0.1320      C D 

BJ 17       3  0.1295      C D 

BJ 18       3  0.0910      C D E 

ZM 73       3  0.0906      C D E 

BN K        3  0.0723        D E 

ZM 37       3  0.0572          E 

BN SW       3  0.0530          E 

ZM OH43     3  0.0489          E 

TC GM       3  0.0468          E 

 

Means that do not share a letter are significantly different. 
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BII.5: One-way ANOVA: CFroot between Species/varieties  

Source                DF       SS       MS      F      P 

Species or varieties  12  1.51690  0.12641  58.75  0.000 

Error                 26  0.05595  0.00215 

Total                 38  1.57285 

 

S = 0.04639   R-Sq = 96.44%   R-Sq(adj) = 94.80% 

Grouping Information Using Tukey Method 

Species or 

varieties   N     Mean  Grouping 

BJ 18       3  0.70533  A 

TC BR       3  0.69194  A 

ZM 73       3  0.63370  A 

BJ 42       3  0.49525    B 

ZM 64       3  0.45902    B C 

BN K        3  0.42206    B C 

ZM 37       3  0.41124    B C 

 TC HS      3  0.39331    B C D 

BN SW       3  0.33430      C D E 

ZM OH43     3  0.26820        D E 

BJ 17       3  0.21591          E F 

TC GM       3  0.12508            F G 

BJ 21       3  0.04195              G 

 

Means that do not share a letter are significantly different. 

 

 

 

 

 

 

 

 

 

 

 



280 
 

Appendix II.1: Data from first pot trial. 
 

Table AII.1: Simple randomized block design for the first pot trial. 

Treatment Block  1     
 

        

               

1 

BN 

SW TC BR 

ZM 

64 

BJ 

18 

ZM 

73 

 BJ 

17 

TC 

HS 

ZM 

64 

ZM 

OH43 

BJ 

21 TC BR BJ17 ZM73 

2 BJ 21 

ZM 

37 

BJ 

42 

BN 

K 

TC 

GM 

 BJ 

21 

BJ 

18 

BN 

SW BJ 42 

BN 

SW 

ZM  

OH43 

ZM 

64 BJ 42 

3  BN K 

ZM 

OH43 

TC 

HS 

BJ 

17 

TC 

HS 

 ZM 

37 

TC 

GM 

ZM 

73 TC BR 

ZM 

37 BN K 

TC 

GM BJ  18 

  Treatment Block 2            

              

1 

TC 

BR BJ 42 TC GM 

BN 

K 

BJ  

18 

TC 

HS 

ZM  

OH43 

TC 

GM 

ZM 

64 

BJ 

42 

TC 

BR 

ZM 

OH43 

BN 

SW 

2 

ZM 

73 BJ 21 ZM 37 

TC 

HS 

TC 

GM 

BJ 

21 BJ 17 ZM73 

TC 

BR 

 BN 

K 

BJ 

17 BJ 21 

BJ 

18 

3 

BJ 

18 

ZM 

OH43 BJ 17 

ZM 

64 

BJ 

42 

ZM 

37 

BN 

SW BN K 

TC 

HS 

ZM 

37 

BN 

SW 

ZM 

64 

ZM 

73 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



281 
 

Table BII.1: Estimated water content of silver sand of growth media (First and second pot trial). 

 

Dish  No Sand bag 

No 

Dish WT (g) Dish + 

FW(g) 

 Dish + DW 

(g) 

FW(g) DW (g) % Moisture 

1 1 42.48 196.93 196.82 154.45 154.34 0.07 

2 1 54.40 199.16 199.04 144.76 144.64 0.08 

3 2 51.19 183.49 183.42 132.30 132.23 0.05 

4 2 61.55 205.81 205.73 144.26 144.18 0.05 

5 3 42.48 196.93 196.82 154.45 154.34 0.07 

6 3 63.83 188.49 188.40 124.66 124.57 0.07 

7 4 54.19 205.39 205.21 151.20 151.02 0.12 

8 4 51.20 201.59 201.41 150.39 150.21 0.12 

9 5 61.55 139.40 139.32 77.85 77.77 0.10 

10 5 31.31 108.22 108.12 76.91 76.81 0.13 

11 6 32.39 101.88 101.80 69.49 69.41 0.11 

12 6 32.04 99.23 99.04 67.19 67.00 0.28 

13 7 101.79 180.51 180.37 78.72 78.58 0.18 

14 7 113.03 194.93 194.78 81.90 81.75 0.18 

15 8 61.55 140.84 140.73 79.29 79.18 0.21 

16 8 31.31 118.61 118.50 87.30 87.19 0.13 

17 9 32.39 115.03 114.92 82.64 82.53 0.13 

18 9 32.04 112.06 111.92 80.02 79.88 0.18 

19 10 31.30 135.42 135.35 104.12 104.05 0.06 

20 10 58.48 109.66 109.58 51.18 51.10 0.20 

            Mean 0.12 

            SD 0.06 

            %RSD 49 
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Table CII.1: Estimated water content of John Innes compost 2.  

 

 

 

 

 

 

 

 

 

 

Dish  

No 

Compost 

bag No 

Dish WT (g) Dish + 

FW(g) 

 Dish + 

DW (g) 

FW(g) DW (g) % Moisture 

1 1 58.49 128.83 113.80 70.34 55.31 27.17 

2 1 92.09 162.67 149.38 70.58 57.29 23.19 

3 2 58.45 136.23 116.76 77.78 58.31 33.39 

4 2 62.85 133.29 115.84 70.44 52.99 32.93 

5 3 62.12 145.14 123.36 83.02 61.24 35.56 

6 3 42.45 116.22 98.64 73.77 56.19 31.29 

7 4 58.50 142.36 121.10 83.86 62.60 33.96 

8 4 51.40 122.83 106.46 71.43 55.06 29.73 

9 5 63.54 139.71 121.44 76.17 57.90 31.55 

10 5 55.00 126.40 108.53 71.40 53.53 33.38 

11 6 54.21 90.61 82.89 36.40 28.68 26.92 

12 6 42.45 82.62 73.97 40.17 31.52 27.44 

13 7 61.55 97.78 90.07 36.23 28.52 27.03 

14 7 62.87 96.65 88.90 33.78 26.03 29.77 

15 8 61.22 96.81 88.20 35.59 26.98 31.91 

16 8 149.51 184.57 175.64 35.06 26.13 34.17 

17 9 42.50 82.29 73.41 39.79 30.91 28.73 

18 9 54.21 86.95 79.89 32.74 25.68 27.49 

19 10 58.57 96.02 85.57 37.45 27.00 38.70 

20 10 62.93 100.21 90.21 37.28 27.28 36.66 

            Mean 31.05 

            SD 4.00 

            %RSD 13 
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Table DII.1 Calculation of PbO for pot trials 1 and 2. 

 

Concentration 

mg/kg 

PbO required in 

mg/kg/treatment 

PbO 

required in 

g/kg 

g required 

per fresh 

weight of 

pot . 1 

pot=2.8 kg 

DW 

PbO required 

per treatment 

by Nos of 

pot. n=3 

PbO required 

per treatment 

by pot and 

species  (g) 

100 107. 72  

 

0.108 

 

0.302 

 

0.905 

 

5.429 

300 323.16 

 

0.323 

 

0.905 

 

2.715 

 

16.287 

 

1000 1,077.20 

 

1.077 

 

3.016 

 

9.048 

 

54.291 

 

3000 3,231.60 

 

3.232 

 

9.048 

 

27.145 

 

162.873 

 

10000 10,772.00 

 

10.772 

 

30.162 

 

90.485 

 

542.909 

 

 

 

 

           Figure AII.1: Percentage moisture content of dried PbO against time (hours).
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Appendix II.2: Growth and biomass data from first pot trial. 
 

Table AII.1: Summary table of test of significance of growth and data biomass between treatment 

for each variety and species (First pot trial) with P values in brackets. 

 

 

 

 

KEY: 

 NS = Not significant, S- = Significant, NTL= Number of true leaves, NDL-= Number of dead leaves, LL= Longest 

leaf length,  

 

 

 

 

 

 

 

BIOMASS 

DATA 

 

BJ 

18 

BJ 

42 

BJ 17 BJ 21 ZM 

B73 

ZM 

B37 

ZM 

OH43 

ZM 

64 

BN 

SW 

BN 

K 

TC 

BR 

TC 

GM 

TC 

HS 

Height NS 

(0.315) 

NS 

(0.273) 

NS 

(0.480) 

S 
(0.021) 

 

NS 
(0.718) 

S 

(0.012)  

NS 
(0.668) 

S 

(0.015) 

NS 

(0.380) 

NS 
(0.106) 

NS 

(0.080) 

S 

(0.000) 

S 

(0.005) 

Shoot dry 

biomass 

S 
(0.012) 

S 
(0.006) 

NS 

(0.101) 

NS 

(0.185) 

S 
(0.036) 

NS 

(0.238) 

NS 

(0.351) 

S 
(0.007) 

S 
(0.002) 

S 

(0.012) 

NS 

(0.725) 

NS 

(0.519) 

NS 

(0.163) 

Root dry 

biomass 

S 
(0.001) 

NS 

(0.498) 

NS 

(0.624) 

NS 

(1.00) 

S 

(0.004) 

NS 

(0.267) 

S 

(0.002) 

NS 

(0.267) 

S 

(0.000) 

NS 

(0.670) 

NS 

(0.678) 

NS 

(0.374) 

S 

(0.030) 

Total dry 

biomass 

S 
(0.007) 

S 
(0.009) 

NS 

(0.115) 

NS 

(0.184) 

S 

(0.003) 

NS 

(0.185) 

NS 

(0.047) 

S 

(0.012) 

S 

(0.001) 

S 

(0.068) 

NS 

(0.692) 

NS 

(1.00) 

NS 

(0.051) 

NTL NS 

(0.275) 

NS 

(0.070) 

NS 

(0.116) 

S 

(0.014) 

NS 

(0.422) 

NS 

(0.643) 

NS 

(0.101) 

NS 

(1.00) 

NS 

(1.00) 

NS 

(1.00) 

NS 

(0.101) 

S 

(0.025) 

NS 

(0.101) 

LL S 
(0.016) 

S 

(0.001) 

NS 

(0.644) 

S 

(0.042) 

NS 

(0.056) 

NS 

(0.310) 

S 

(0.029) 

NS 

(0.215) 

NS 

(0.079) 

NS 

(1.00) 

NS 

(0.069) 

NS 

(0.116) 

NS 

(0.089) 

Growth 

Index NS 

(0.325) 

NS 

(0.264) 

NS 

(0.469) 

S 

(0.017) 

NS 

(0.403) 

S 

(0.001) 

NS 

(0.707) 

S 

(0.008) 

 

NS 

(0.071) 

NS 

(0.150) 

NS 

(0.078) 

S 

(0.000) 

S 

(0.002) 
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Appendix II. 8: Randomized block design for pot trial 2. 
 

 

 

 

 

Treatment Block 1             

Control (0 mg/kg 

Pb)             

 BN SW BJ 18 ZM  OH43 BJ 17 ZM B73 TC BR 

 TC BR ZM B73 BJ 17 ZM OH43 BJ 18 BN SW 

 ZM OH43 BJ 17 BN SW BJ 18 TC BR ZM B73 

Treatment Block 2             

 (100 mg/kg Pb)             

 TC BR ZM B73 BJ 17 ZM  OH43 BJ 18 BN SW 

 BN SW BJ 18 ZM  OH43 BJ 17 ZM B73 TC BR 

 ZM B73 BJ 17 TC BR BJ 18 

ZM 

OH43 BN SW 

Treatment Block 3             

 (300 mg/kg Pb)             

 ZM B73 BJ 17 TC BR BJ 18 ZM  OH43 BN SW 

 BN SW ZM  OH43 BJ 18 TC BR BJ 17 ZM B73 

 BJ 17 TC BR BN SW ZM  OH43 ZM B73 BJ 18 

Treatment Block 4             

 (3000 mg/kg Pb)             

 BJ 17 TC BR BN SW ZM  OH43 ZM B73 BJ 18 

 BJ 18 ZM B73 ZM  OH43 BJ 17 TC BR BN SW 

 BN SW BJ 17 TC BR ZM B73 BJ 18 

ZM  

OH43 

Treatment Block 5             

 (10000 mg/kg Pb)             

 ZM  OH43 BJ 18 ZM B73 TC BR BJ 17 BN SW 

 BJ 17 TC BR BN SW ZM B73 ZM  OH43 BJ 18 

 BJ 18 ZM  OH43 TC BR BJ 17 BN SW ZM B73 
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Appendix II. 11: Pot trial 2 Analysis of variance for shoot, root and total 

plant Pb mg/kg between species. 

      

Table AII.11: Shoot Pb ANOVA 

 
Sum of 

Squares 

df Mean Square F Sig. 

BJ 18 shoot Pb 

Between Groups 8636.987 3 2878.996 70.036 .000 

Within Groups 328.860 8 41.108 
  

Total 8965.847 11 
   

BJ 17 shoot Pb 

Between Groups 10172.889 3 3390.963 203.082 .000 

Within Groups 133.580 8 16.698 
  

Total 10306.469 11 
   

ZM OH43 shoot 

Pb 

Between Groups 199724.769 3 66574.923 99.578 .000 

Within Groups 5348.540 8 668.567 
  

Total 205073.309 11 
   

ZM B73 shoot 

Pb 

Between Groups 25613.563 3 8537.854 71.085 .000 

Within Groups 960.867 8 120.108 
  

Total 26574.429 11 
   

BN SW shoot Pb 

Between Groups 10787.107 3 3595.702 126.154 .000 

Within Groups 228.020 8 28.503 
  

Total 11015.127 11 
   

TC BR shoot Pb 

Between Groups 559443.333 2 279721.667 17.338 .022 

Within Groups 48400.667 3 16133.556 
  

Total 607844.000 5 
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Table BII.11: ANOVA Root Pb  

 
Sum of Squares df Mean Square F Sig. 

BJ 18 root Pb 

Between Groups 748729.209 3 249576.403 36.850 .000 

Within Groups 54182.540 8 6772.818 
  

Total 802911.749 11 
   

BJ 17 root Pb 

Between Groups 193168.727 3 64389.576 42.708 .000 

Within Groups 12061.400 8 1507.675 
  

Total 205230.127 11 
   

ZM OH43 

root Pb 

Between Groups 5419441.629 3 1806480.543 1074.027 .000 

Within Groups 13455.760 8 1681.970 
  

Total 5432897.389 11 
   

ZM B73 root 

Pb 

Between Groups 5287797.083 3 1762599.028 12.007 .002 

Within Groups 1174380.167 8 146797.521 
  

Total 6462177.249 11 
   

BN SW root 

Pb 

Between Groups 162668.756 3 54222.919 58.497 .000 

Within Groups 7415.467 8 926.933 
  

Total 170084.223 11 
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Table CII.11: ANOVA Total plant Pb mg/kg DW 

 
Sum of Squares df Mean Square F Sig. 

BJ 18 total plant 

Pb 

Between Groups 16830.000 3 5610.000 98.277 .000 

Within Groups 456.667 8 57.083 
  

Total 17286.667 11 
   

BJ 17 total plant 

Pb 

Between Groups 18960.917 3 6320.306 267.055 .000 

Within Groups 189.333 8 23.667 
  

Total 19150.250 11 
   

ZM OH43  total 

plant Pb 

Between Groups 629914.917 3 209971.639 234.933 .000 

Within Groups 7150.000 8 893.750 
  

Total 637064.917 11 
   

ZM  B73  total 

plant Pb 

Between Groups 403108.250 3 134369.417 20.990 .000 

Within Groups 51212.667 8 6401.583 
  

Total 454320.917 11 
   

BN SW total 

plant Pb 

Between Groups 18699.000 3 6233.000 134.525 .000 

Within Groups 370.667 8 46.333 
  

Total 19069.667 11 
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 Appendix II. 12: Other information from the second pot trial. 

 

  

 

Figure AII.12: Caterpillar on B. juncea (pot trial 2) 

 

      

 

 

 

 

 

 

 

 

 

 

Leaf caterpillar on the 

shoot of Brassica 

juncea in pot trial 2 

 



290 
 

 Appendix II. 13: Analytical/Laboratory methods. 
 

AII.13. NITRIC AND PERCHLORIC ACID DIGESTION (Thompson and Walsh, 1983). 

DESCRIPTION: Nitric and Perchloric acid attack. 

Sample types: Soil, herbage, silage, animal faeces. 

Sample weight: 0.010 - 0.500 g for herbage and 0.250g for soil. 

Final volume: 10.0 ml 

Dilution Factor: 20-1000 ml g-1 (herbage), 40 ml g-1 (soil) 

COSSH Assessment 

Hydrochloric Acid AR 36% w/w 

Nitric Acid AR 70% w/w 

Perchloric Acid 60% w/w 

SAFETY POINTS: 

1. Do not add perchloric acid to samples in the absence of Nitric acid. 

2. Samples with high organic content may react vigorously with Nitric and Perchloric 

acids. Watch for frothing when adding Nitric acid. If frothing occurs increase step 

1 dwell time to 12 hours. 

3. This method must not be attempted on samples containing oil or bitumen. 

BATCH ORGANISATION 

Maximum batch size: 214 samples (252 solutions). 

Block Time: 36 hours (or 5 pm day 1 to 9 am day 3). 

Total Prep Time: 3 days 

Solution preferably less than 3 months (if capped). 

QUALITY CONTROL 

Reagent Blanks: 5% (of total number of samples) ≥2 

Duplicated Samples: 10% (of total number of samples) 

Reference materials: 4% (all RM’s should be duplicated) 

Possible Reference Materials: (HRM1, HRM2, HRM 31+ NIST SRM 2709a, 2710a, 

2711a for soil) and (HRM14, HRM11+ Certified RM BCR 60). 
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EQUIPMENT  

Test tubes 18 mm o.d. x 180 mm (PYREX) 

Wire test tube racks (plastic coated). 

Stainless steel test tube racks 

Aluminium heating block (deep, 252 holes). 

Shallow aluminium heating block (315 holes) 

Oxford dispensers 

Centrifuge tubes 18 mm x 110 mm (polystyrene). 

Vortex tube mixer 

Balance, top pan. 

Centrifuge GF8 

REAGENTS 

Water-Reverse Osmosis (RO) 

Nitric Acid A.R. 70% w/w 

Perchloric Acid A.R. 60% w/w 

Hydrochloric Acid A.R. 36% w/w 

5M HCl (Dilute   430 ml of hydrochloric Acid A.R. 36% w/w to 1 litre with DIW). 

PROCEDURE 

1. Prepare a weighing list 

2. Number a set of test tubes using a waterproof marker pen. 

3. Weigh 0.500g or 0.250g (±0.001) of sample (oven dried and milled) onto a clean 

piece of weighing paper using a top pan balance. Transfer carefully into clean, 

dry, numbered test tubes (in wire test tube racks). 

4. Add 4.0 ml Nitric Acid into each clean tube from an Oxford dispenser. 

5. For herbage samples place tubes in the aluminium heating block and leave 

overnight at 50ºC. 

6. For soil samples, add 1.0 ml Perchloric Acid from an Oxford dispenser. 

7. Place tubes of soil samples in the aluminium heating block. Switch the block 

programmer to Manual  mode, then set up as follows: 
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Programme 4: Total metal soil attack 

Rise Rate sec/deg Dwell time hrs Dwell time ºC 

001 3.0 50 

001 3.0 150 

001 18.0 190 

001 0.1 200 

 

8. For herbage samples, remove tubes from heating block and add 1.0 ml Perchloric 

Acid from an Oxford dispenser. 

9. Place tubes in the aluminium heating block. Switch Programmer to Manual mode, 

then set up as follows: 

Programme 3- Herbage attack 

Rise Rate sec/deg Dwell time hrs Dwell Temp ºC 

0.001 0.1 50 

0.001 3.0 150 

0.001 18.0 190 

0.001 0.1 195 

     

10. Check the fume cupboard is on and switch the block programmer to ‘Auto’ and 

press ‘Reset’ button. 

11. When attack cycle is complete, check each tube to ensure that residue is dry. If 

any liquid remains, continue heating at 195ºC until dry. Transfer tubes to stainless 

steel rack. 

12. When tubes are cool. Add 2.0 ml of 5M HCl to each tube from Oxford dispenser 

(Calibrated gravimetrically). 

13. Place tubes in shallow heating block and leave to leach   for one hour at 60ºC. 

14. Transfer tubes to wire racks and allow to cool. 
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15. Add 8.0 ml DIW from Oxford dispenser (calibrated gravimetrically) and mix each 

tube using a vortex mixer. 

16. Decant into polystyrene tubes and cap. 

17. Centrifuge at 2000 rpm for 2 minutes. 

18. Deliver the tubes (with Analytical Request form) to room 4.59 at least 12 hours 

before analysis, to allow solutions to equilibrate at 21ºC. 
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Appendix II. 14: Quality control data for pot trials 1 and 2. 
 

 Table AII.14: Certified CRMs for herbage analysis --Pot trial 1 

Sample   BCR-60 HRM 11 HRM 14  

x1   57.30 33.25 11.3 

x2   65.26 20.1 7.06 

MEAN   61.28 26.68 9.18 

CERTIFIED 

VALUES   64.00 26.00 9.00 

BIAS   -2.7 0.68 0.18 

BIAS%   -4.3 2.6 2.0 

 

 BII.14: Regression Analysis:  Mean measured values versus certified values of CRMs {mg/kg} - 

(Pot trial 1) 

 

The regression equation is 

Measured values = 1.32 + 0.941 Certified values 

 

Predictor            Coef SE Coef      T      P 

Constant            1.323    1.124      1.18    0.448 

Certified values 0.94111     0.02796     33.66   0.019 

 

S = 1.11339   R-Sq = 99.9%   R-Sq(adj) = 99.8% 

Analysis of Variance 

 

Source          DF      SS      MS        F      P 

Regression       1   1404.7   1404.7   1133.15   0.019 

Residual Error   1     1.2     1.2 

Total            2    1405.9 
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Table CII.14: Test for significance of blanks for herbage analysis (Pot trial 1) 

SAMPLE mg/kg Pb     

RBLK 1 1.76     

RBLK 2 1.28     

RBLK 3 -0.04      

RBLK 4 0.28     

RBLK 5 -0.22     

Mean 0.61     

Std 0.86     

µ 0     

SEM 0.39     

mean-µ 0.61     

t-test 1.59     

 T-TAB.  2.78   df(n-1) =4 

 

two tailed 

test 

 

   1.59<2.78 

 Not 

significant 

   

 P>0.05 at 95% confidence 

interval  

 Table DII.14: Certified CRMs for herbage analysis --Pot trial 2 

Sample HRM 11 HRM 14 BCR-60  

X1 34.30 15.50 70.80 

X2 29.30 15.60 69.3 

MEAN 31.80 15.55 71.03 

CERTIFIED VAL. 26.00 9.00 64.00 

BIAS 5.80 6.55 7.03 

BIAS% 22.3 72.8 11.0 
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Table EII.14: Regression Analysis:  Mean measured values versus certified values of CRMs {mg/kg} 

- (Pot trial 2) 

 

The regression equation is 

Measured values = 6.04 + 1.01 Certified values 

 

Predictor            Coef SE Coef      T      P 

Constant           6.0412   0.7234   8.35 0.076 

Certified values   1.01269 0.01799   56.30 0.011 

 

S = 0.716313   R-Sq = 100.0%   R-Sq(adj) = 99.9% 

Analysis of Variance 

 

Source          DF      SS      MS        F      P 

Regression       1   1626.5   1626.5 3169.95 0.011 

Residual Error   1     0.5     0.5 

Total            2   1627.0 

Table FII.14: Test for significance of blanks for herbage analysis (Pot trial 2). 

BLANK CORRECTION   

SAMPLE mg/kg Pb 

RBLK  -8.3 

RBLK  -4.5 

RBLK  -10.7 

RBLK  -5.3 

RBLK  -2.8 

Mean -6.32 

STD 3.16 

µ 0 

SEM 0.36 

mean-µ -6.32 

t-test -17.56 

T-TAB. 2.78  P>0.05 df(n-1) 4 

two tailed test    17.56>2.78  Significant 
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Table GII.14: Certified CRMs for Soil Pb analysis (Pot trials 1&2). 

  

 

 

 

 

 

 

 

 

 

I II.14: Regression Analysis:  Mean measured values versus certified values of CRMs {mg/kg} - (Soil 

Pb analysis Pot trials 1& 2) 

The regression equation is 

Measured values = - 24 + 1.05 Certified values 

 

Predictor            Coef SE Coef      T      P 

Constant            -23.8    126.6 -0.19 0.860 

Certified values 1.05088 0.03455   30.42    0.000 

 

S = 234.541   R-Sq = 99.6%   R-Sq (adj) = 99.5% 

Analysis of Variance 

Source          DF        SS        MS       F      P 

Regression       1    50896444 50896444 925.23     0.000 

Residual Error   4    220037     55009 

Total            5    51116481 

 

 

 

 

 

 

 

 

 

 

Sample 

 

HRM 1 HRM 2 

SRM 

2709 

SRM 

2710 

SRM 

2711 HRM 31 

x1  16.2 599.6 36.84 6300 1284.4 7272 

x2  19.84 414.8 32.56 6032 1276.8 6668 

mean  18.02 507.2 34.7 6166 1280.6 6970 

Certified 

value 

 

13 510 17.3 5552 1400 6895 

BIAS  5.02 -2.8 17.4 614 -119.4 75 

BIAS%  39 -1 101 11 -9 1 
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 Table J II.14: Test for significance of Blanks for soil Pb analysis (pot trial 2) 

       Samples          Pb (mg/kg) 

RBLK 1 1.28 

RBLK 2 -9 

RBLK 3 -6.24 

RBLK 4 -1 

RBLK 5 4 

Mean -2.19 

Std 5.35 

µ 0.00 

SEM 2.39 

mean-µ -2.19 

t-test -0.92 

T-TAB. 2.78   df(n-1)=4 

two tailed test   0.92<2.78 

Not 

significant 

 

Table KII.14: Precision and detection 

limit of the first and second pot trials 

analysis. 

Experiment Precision  
Detection 
limits 

Herbage 
analysis pot 
trial 1 6.8% 

1.72 
mg/kg 

Herbage 
analysis  
pot trial 2 6.4% 

3.15 
mg/kg 

 

Detection limit of herbage analysis in all pot trials were calculated by using 3 standard 
deviation of 11 blank analysis multiplied by the dilution factor.  
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APPENDICES RELATED TO THIRD POT TRIAL (CHAPTER 5). 
 

Appendix III. 1: Data from pot third pot trial (Simplistic binary 

heterogeneity experiment).  
Table AIII.1: Randomized block design 

 

 

 

 

 

 

 

 

BNB-------Brassica napus   Binary,   BJB---------Brassica juncea binary. 

BNC--------Brassica napus control,   BJC---------Brassica juncea control 

BNH------- Brassica napus homogeneous,   BJH------- Brassica juncea homogeneous 

Pot numbers are added to treatment names and treatments are coloured tagged e.g blue for homogeneous, 

red for binary and black for control. 

Table BIII.1:  Estimate of compost, sand and PbO (Analytical grade supplied Sigma Aldrich was 

used throughout the pot trial) required in growth media. 

Sand Compost PbO Carrier Sand Growth Media 

192 kg sand 

(DW) per batch 

in all 60 pots (3.2 

kg per pot) 

54 L compost per 

batch in all 60 pots 

(0.78 kg per pot) 

31 g  dry PbO per 

batch of growth 

media to make  1000 

mg/kg (DW) Pb  

treatment ( total 

required for 2 species 

= 62 g 

10 g per batch  2.88 kg (DW) 

per pot. 

 %Moisture 

=26% 

 

  15.5 g per batch of 

growth media to 

make 2000 mg/kg Pb  

treatment (2 

species=31 g) 

  

 

 

Treatment block 1 (Brassica 
napus) 
A                          B                       C 

Treatment block 2 
(Brassica juncea) 
A                     B  C 

BN B 4 BN H10 BN C8 BJ H2 BJ B8 BJ H7 

BN C2 BN B6 BN  H1 BJ B10 BJ C10 BJ B7  

BN B7  BN C4 BN  B3 BJ C3 BJ B4 BJ C4 

BN  H3 BN B5 BN C9 BJ H8 BJ C6 BJ  H5 

BN B2 BN H6 BN B9 BJ  B1 BJ H6 BJ C5 

BN C7 BN C10 BN H7 BJ H4 BJ C1 BJ  B3 

BN H9 BN H4 BN C3 BJ B9 BJ H9 BJ  H1 

BN C1 BN B8 BN H5 BJ C7 BJ B 5 BJ C8 

BN B10 BN C6 BN  B1 BJ H3 BJ C2 BJ B2 

BN C5 BN H8 BN H2 BJ C9 BJ B6 BJ H10 
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Appendix III.2: Statistical analysis for simplistic binary experiment (Third 

pot trial). 
 

  Table AIII.2: ANOVA of Shoot, root and total dry biomass between control, homogeneous and binary 

treatments of B. napus and juncea.  

 Sum of Squares df Mean Square F Sig. 

BNSW Shoot DW 

Between Groups 70.098 2 35.049 48.969 .000 

Within Groups 19.325 27 .716   

Total 89.423 29    

BJ18 Shoot DW 

Between Groups 97.395 2 48.698 23.969 .000 

Within Groups 54.857 27 2.032   

Total 152.252 29    

BN Root DW 

Between Groups 4.856 2 2.428 27.710 .000 

Within Groups 2.366 27 .088   

Total 7.222 29    

BJ Root DW 

Between Groups 7.602 2 3.801 64.112 .000 

Within Groups 1.601 27 .059   

Total 9.203 29    

BN Total DW 

Between Groups 110.546 2 55.273 64.782 .000 

Within Groups 23.037 27 .853   

Total 133.583 29    

BJ Total DW 

Between Groups 158.386 2 79.193 32.384 .000 

Within Groups 66.026 27 2.445   

Total 224.411 29    
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Table BIII.2: Independent Samples Test for root ball diameter in binary quarters between species. 

 

Levene's Test for 

Equality of Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differen

ce 

Std. 

Error 

Differen

ce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

BN root 

ball 

diameter 

Equal 

variances 

assumed 

17.718 .000 34.7

28 

38 .000 52.8500

0 

1.52182 49.7692

5 

55.9307

5 

Equal 

variances 

not 

assumed 

  

34.7

28 

21.8

39 

.000 52.8500

0 

1.52182 49.6926

0 

56.0074

0 

BJ root ball 

diameter 

Equal 

variances 

assumed 

31.716 .000 23.4

06 

38 .000 23.3250

0 

.99656 21.3075

8 

25.3424

2 

Equal 

variances 

not 

assumed 

  

23.4

06 

20.7

27 

.000 23.3250

0 

.99656 21.2508

8 

25.3991

2 
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Table CIII.2:  Summary of homogeneous subset –Tukey H.S.D post-hoc test (Simplistic binary 

experiment) 

Treatments Parameters Species Subset for  Alpha  p=0.05  

   C B A 

Binary Shoot dry 

biomass 

B. napus 9.1890   

Homogeneous    11.6190  

Control     12.8710 

Homogeneous  Shoot dry 

biomass 

B. juncea 10.0320   

Binary    13.1640  

Control    14.2910  

Binary Root dry biomass B. napus 1.5950   

Homogeneous    2.0140  

Control     2.5770 

Homogeneous  Root dry biomass B. juncea 1.3250   

Binary    2.0150  

Control     2.5550 

Binary Total dry biomass B. napus 10.7840   

Homogeneous    13.6330  

Control     15.4480 

Homogeneous  Total dry biomass B. juncea 11.3570   

Binary    15.1790  

Control    16.8460  

N=10 95% confidence interval. 

 

DIII.2: One-way ANOVA: B. juncea root-shoot biomass ratio versus Treatment 
(pot trial 3).  
 
Source     DF        SS        MS      F      P 

Treatment   2  0.011771  0.005885  16.74  0.000 

Error      27  0.009495  0.000352 

Total      29  0.021265 

 

S = 0.01875   R-Sq = 55.35%   R-Sq(adj) = 52.04% 

 

 

Grouping Information Using Tukey Method 

 

Treatment     N     Mean  Grouping 

Control      10  0.17979  A 

Binary       10  0.15401    B 

Homogeneous  10  0.13131      C 

 

Means that do not share a letter are significantly different. 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Treatment 
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EIII.2:One-way ANOVA: B. napus root-shoot biomass ratio versus Treatment (pot 
trial 3). 
 
Source     DF        SS        MS     F      P 

Treatment   2  0.004666  0.002333  2.65  0.089 

Error      27  0.023768  0.000880 

Total      29  0.028433 

 

S = 0.02967   R-Sq = 16.41%   R-Sq(adj) = 10.22% 

 

 

Grouping Information Using Tukey Method 

 

Treatment     N    Mean  Grouping 

Control      10  0.20078  A 

Binary       10  0.17450  A 

Homogeneous  10  0.17415  A 

 

Means that do not share a letter are significantly different. 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Treatment. 

 

 

FIII.2: Shoot, root and total plant Pb concentration (mg/kg) between 
homogeneous and binary treatments of B. juncea (pot trial 3). 
 
Two-Sample T-Test : B. juncea shoot Pb 
Two-sample T for BJ shoot Pb 

 

Treatment     N   Mean  StDev  SE Mean 

Binary       10  22.04   2.50     0.79 

Homogeneous  10  41.01   5.57      1.8 

 

T-Test of difference = 0 (vs not =): T-Value = -9.83 P-Value = 0.000 DF = 12 

  

Two-Sample T-Test: B. juncea root Pb  
 
Two-sample T for BJ root Pb 

 

Treatment     N  Mean  StDev  SE Mean 

Binary       10  1065    295       93 

Homogeneous  10  1664    332      105 

 

T-Test of difference = 0 (vs not =): T-Value = -4.26  P-Value = 0.001  DF = 17 

 

Two-Sample T-Test: B. juncea total plant Pb  
 
Two-sample T for BJ total plant Pb 

 

                                 SE 

Treatment     N   Mean  StDev  Mean 

Binary       10  161.0   40.3    13 

Homogeneous  10  227.8   41.4    13 

 

T-Test of difference = 0 (vs not =): T-Value = -3.66  P-Value = 0.002  DF = 17 

 

 
 
 
 



304 
 

GIII.2: Shoot, root and total plant Pb concentration (mg/kg) between 
homogeneous and binary treatments of B. napus (pot trial 3). 
 

 

Two-Sample T-Test B. napus shoot Pb 
 

Treatment     N   Mean  StDev  SE Mean 

Binary       10  31.43   9.85      3.1 

Homogeneous  10   43.2   16.6      5.3 

 

T-Test of difference = 0 (vs not =): T-Value = -1.93  P-Value = 0.074  DF = 14 

 

Two-Sample T-Test B. napus root Pb  
 
Two-sample T for BN root Pb 

 

Treatment     N  Mean  StDev  SE Mean 

Binary       10  1166    429      136 

Homogeneous  10  1845    456      144 

 

T-Test of difference = 0 (vs not =): T-Value = -3.43  P-Value = 0.003  DF = 17 

 

Two-Sample T-Test B. napus total plant Pb, Treatment  
 
Two-sample T for BN total plant Pb 

 

                                 SE 

Treatment     N   Mean  StDev  Mean 

Binary       10  198.6   68.8    22 

Homogeneous  10    316    106    34 

 

T-Test of difference = 0 (vs not =): T-Value = -2.93  P-Value = 0.010  DF = 15 

 

Two-Sample T-Test B. napus TF  
 
Two-sample T for BN TF 

 

Treatment     N    Mean   StDev  SE Mean 

Binary       10  0.0312  0.0160   0.0050 

Homogeneous  10  0.0250  0.0119   0.0038 

 

T-Test of difference = 0 (vs not =): T-Value = 0.98  P-Value = 0.343  DF = 16 

 

HIII.2: T-test for B. juncea shoot and total concentration factor and translocation 
factor.  
 
Two-Sample T-Test B. juncea  
Two-sample T for BJ CFshoot 

 

Treatment     N      Mean     StDev  SE Mean 

Binary       10  0.005444  0.000618  0.00020 

Homogeneous  10   0.01013   0.00138  0.00043 

 

T-Test of difference = 0 (vs not =): T-Value = -9.83  P-Value = 0.000  DF = 12 

 
Two-Sample T-Test B. juncea CFtotal  
 
Two-sample T for BJ CFtotal 

 

Treatment     N     Mean    StDev SE Mean 

Binary       10  0.03976  0.00996   0.0032 

Homogeneous  10   0.0563   0.0102   0.0032 

 

T-Test of difference = 0 (vs not =): T-Value = -3.66  P-Value = 0.002  DF = 17 
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Two-Sample T-Test B. juncea TF  
 
Two-sample T for BJ TF 

 

Treatment     N     Mean    StDev  SE Mean 

Binary       10  0.02211  0.00608   0.0019 

Homogeneous  10  0.02567  0.00678   0.0021 

 

T-Test of difference = 0 (vs not =): T-Value = -1.24  P-Value = 0.233  DF = 17 

 

I III.2: T-test for B. napus shoot and total concentration factor and translocation 
factor (Pot trial 1).  
 
Two-Sample T-Test B. napus CFshoot  
 
Two-sample T for BN CFshoot 

 

Treatment     N     Mean    StDev  SE Mean 

Binary       10  0.00777  0.00243  0.00077 

Homogeneous  10  0.01068  0.00411   0.0013 

 

T-Test of difference = 0 (vs not =): T-Value = -1.93 P-Value = 0.074 DF = 14 

 

Two-Sample T-Test B. napus CFtotal, Treatment  
 
Two-sample T for BN CFtotal 

 

Treatment     N    Mean   StDev  SE Mean 

Binary       10  0.0491  0.0170   0.0054 

Homogeneous  10  0.0781  0.0263   0.0083 

 

 

T-Test of difference = 0 (vs not =): T-Value = -2.93  P-Value = 0.010  DF = 15 
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Table J III.2: Mixed model ANOVA for B. juncea (pot trial 3). 

Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. 

Partial Eta 

Squared 

Treatment Pillai's Trace 1.869 42.899 10.000 30.000 .000 .935 

Wilks' Lambda .001 105.370b 10.000 28.000 .000 .974 

Hotelling's Trace 193.096 251.024 10.000 26.000 .000 .990 

 
Roy's Largest Root 186.120 558.359c 5.000 15.000 .000 .995 

a. Design: Treatment b. Exact statistic c. The statistic is an upper bound on F that yields a lower bound on the 

significance level. 

 

Tests of Between-Subjects Effects for B. juncea 

Source Dependent Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Model Shoot Pb 21677.837a 2 10838.918 581.768 .000 

Root Pb 39026517.663b 2 19513258.831 197.700 .000 

Total plant Pb 778460.500c 2 389230.250 232.975 .000 

Shoot biomass 2739.319d 2 1369.660 554.710 .000 

Root biomass 58.159e 2 29.079 435.862 .000 

Total biomass 3593.835f 2 1796.917 582.619 .000 

Treatment Shoot Pb 21677.837 2 10838.918 581.768 .000 

Root Pb 39026517.662 2 19513258.831 197.700 .000 

Total plant Pb 778460.500 2 389230.250 232.975 .000 

Shoot biomass 2739.319 2 1369.660 554.710 .000 

Root biomass 58.158 2 29.079 435.862 .000 

Total biomass 3593.835 2 1796.917 582.619 .000 

Error Shoot Pb 335.358 18 18.631   

Root Pb 1776625.213 18 98701.401   

Total plant Pb 30072.500 18 1670.694   

Shoot biomass 44.445 18 2.469   

Root biomass 1.201 18 .067   

Total biomass 55.516 18 3.084   

Total Shoot Pb 22013.195 20    

Root Pb 40803142.875 20    

Total plant Pb 808533.000 20    

Shoot biomass 2783.764 20    

Root biomass 59.359 20    

Total biomass 3649.351 20    
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Table KIII.2: Mixed model ANOVA for B. napus (pot trial 3). 

Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. 

Partial Eta 

Squared 

Treatment Pillai's Trace 1.179 4.310 10.000 30.000 .001 .590 

Wilks' Lambda .002 55.475b 10.000 28.000 .000 .952 

Hotelling's Trace 353.544 459.607 10.000 26.000 .000 .994 

Roy's Largest Root 353.321 1059.964c 5.000 15.000 .000 .997 

a. Design: Treatment   b. Exact statistic    c. The statistic is an upper bound on F that yields a lower bound on the 

significance level 

Tests of Between-Subjects Effects for B. napus 

Source Dependent Variable 

Type III Sum of 

Squares Df Mean Square F Sig. 

Model Shoot Pb 28563.870a 2 14281.935 76.381 .000 

Root Pb 47631594.698b 2 23815797.349 121.445 .000 

Total plant Pb 1394244.000c 2 697122.000 86.994 .000 

Shoot biomass 2194.389d 2 1097.194 1715.322 .000 

Root biomass 66.002e 2 33.001 409.587 .000 

Total plant biomass 3021.533f 2 1510.767 2083.808 .000 

Treatment Shoot Pb 28563.870 2 14281.935 76.381 .000 

Root Pb 47631594.698 2 23815797.349 121.445 .000 

Total plant Pb 1394244.000 2 697122.000 86.994 .000 

Shoot biomass 2194.389 2 1097.194 1715.322 .000 

Root biomass 66.002 2 33.001 409.587 .000 

Total plant biomass 3021.533 2 1510.767 2083.808 .000 

Error Shoot Pb 3365.704 18 186.984   

Root Pb 3529875.202 18 196104.178   

Total plant Pb 144242.000 18 8013.444   

Shoot biomass 11.514 18 .640   

Root biomass 1.450 18 .081   

Total plant biomass 13.050 18 .725   

Total Shoot Pb 31929.573 20    

Root Pb 51161469.900 20    

Total plant Pb 1538486.000 20    

Shoot biomass 2205.902 20    

Root biomass 67.452 20    

Total plant biomass 3034.583 20    
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Table LIII.2: Test for normal distribution for B. juncea  and B. napus variables 

One-Sample Kolmogorov-Smirnov Test for B. juncea shoot, root and total plant Pb 

  Shoot Pb Root Pb Total plant Pb 

N 20 20 20 

Normal 

Parametersa,b 

Mean 31.5260 1364.4250 194.4500 

Std. Deviation 10.60144 433.47016 52.47403 

Most Extreme 

Differences 

Absolute .209 .164 .145 

Positive .209 .150 .143 

Negative -.138 -.164 -.145 

Test Statistic .209 .164 .145 

Asymp. Sig. (2-tailed) .022c .168c .200c,d 

a. Test distribution is Normal. 

  b. Calculated from data. 

c. Lilliefors Significance Correction. 

d. This is a lower bound of the true significance. 

One-Sample Kolmogorov-Smirnov Test for B. napus shoot, root and total 

plant Pb 

 Shoot Pb Root Pb 

Total plant 

Pb 

N 20 20 20 

Normal Parametersa,b Mean 37.3290 1505.4300 257.4000 

Std. 

Deviation 
14.61882 554.17460 105.97686 

Most Extreme 

Differences 

Absolute .182 .098 .138 

Positive .182 .098 .138 

Negative -.139 -.084 -.078 

Test Statistic .182 .098 .138 

Asymp. Sig. (2-tailed) .083c .200c,d .200c,d 

a. Test distribution is Normal. 

b. Calculated from data. 
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One-Sample Kolmogorov-Smirnov Test for B. juncea shoot, root, total biomass and root-shoot 

biomass ratio. 

   shoot biomass Root biomass Total biomass 

Root-shoot 

biomass ratio 

N 30 30 30 30 

Normal 

Parametersa,b 

Mean 12.4957 1.9650 14.4607 .1550 

Std. Deviation 2.29130 .56333 2.78178 .02713 

Most Extreme 

Differences 

Absolute .140 .093 .111 .160 

Positive .096 .068 .093 .160 

Negative -.140 -.093 -.111 -.127 

Test Statistic .140 .093 .111 .160 

Asymp. Sig. (2-tailed) .138c .200c,d .200c,d .048c 

a. Test distribution is Normal. 

  b. Calculated from data. 

One-Sample Kolmogorov-Smirnov Test for B. napus shoot, root, total biomass and root-shoot 

biomass ratio 

 Shoot biomass Root biomass Total biomass 

Root shoot 

biomass  

N 30 30 30 30 

Normal 

Parametersa,b 

Mean 11.2263 2.0620 13.2883 .1837 

Std. Deviation 1.75601 .49904 2.14624 .03222 

Most Extreme 

Differences 

Absolute .117 .099 .140 .145 

Positive .117 .099 .140 .145 

Negative -.081 -.092 -.078 -.070 

Test Statistic .117 .099 .140 .145 

Asymp. Sig. (2-tailed) .200c,d .200c,d .138c .106c 

a. Test distribution is Normal. 

b. Calculated from data. 
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Appendix III 3: Raw data from third pot trial. 
 

Table AIII.3: Raw data of shoot, root/ total biomass and growth variables of B. juncea from third pot 

trial. 

  Treatments 

Shoot 
biomas
s DW 
(g) 

Root 
biom
ass 
DW 
(g) 

Total 
biom
ass  
(g) 

Root-
shoot 
biomas
s ratio 
(g) 

Growt
h 
index 

Heig
ht 
(mm) 

Numb
er of 
true 
leaves 

Numb
er of 
dead 
leaves 

Longe
st leaf 
length 
(mm) 

1 Control 14.1 2.22 16.32 0.16 474 1390 50 0 232 

2 Control 14.11 2.55 16.66 0.18 439 1290 40 0 250 

3 Control 13.02 2.63 15.65 0.20 427 1260 45 0 222 

4 Control 14.75 2.48 17.23 0.17 448 1320 52 0 210 

5 Control 15.67 2.53 18.20 0.16 416 1220 43 0 224 

6 Control 12.33 2.52 14.85 0.20 499 1472 40 0 250 

7 Control 14.56 2.32 16.88 0.16 441 1290 52 0 226 

8 Control 15.93 2.55 18.48 0.16 523 1540 47 0 210 

9 Control 14.2 2.96 17.16 0.21 424 1250 46 0 175 

10 Control 14.24 2.79 17.03 0.20 421 1230 48 0 224 

11 Homogeneous 10.29 1.11 11.40 0.11 346 1010 36 5 240 

12 Homogeneous 10.02 1.5 11.52 0.15 444 1310 36 3 220 

13 Homogeneous 4.84 0.58 5.42 0.12 278 820 25 4 185 

14 Homogeneous 10.26 1.24 11.50 0.12 353 1040 38 5 230 

15 Homogeneous 10.24 1.13 11.37 0.11 455 1335 35 4 245 

16 Homogeneous 11.46 1.69 13.15 0.15 320 940 33 4 178 

17 Homogeneous 10.19 1.66 11.85 0.16 355 1040 35 4 210 

18 Homogeneous 11.38 1.54 12.92 0.14 461 1360 34 4 246 

19 Homogeneous 10.81 1.21 12.02 0.11 391 1150 36 3 190 

20 Homogeneous 10.83 1.59 12.42 0.15 410 1200 38 4 245 

21 Binary 14.1 2.19 16.29 0.16 484 1425 46 4 225 

22 Binary 11.54 1.86 13.40 0.16 417 1224 36 4 200 

23 Binary 14.64 1.96 16.60 0.13 452 1330 39 3 260 

24 Binary 11.79 1.9 13.69 0.16 433 1280 47 3 225 

25 Binary 13.97 1.97 15.94 0.14 476 1400 41 2 220 

26 Binary 13.05 2.21 15.26 0.17 429 1260 39 2 230 

27 Binary 12.1 2.18 14.28 0.18 416 1220 42 2 226 

28 Binary 13.09 1.99 15.08 0.15 456 1340 38 4 275 

29 Binary 12.61 1.94 14.55 0.15 435 1285 36 3 220 

30 Binary 14.75 1.95 16.70 0.13 454 1338 40 2 200 
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Table BIII.3: Raw data of shoot, root/ total biomass and growth variables of B. napus from third pot 

trial. 

  Treatments 

Shoot 
bioma
ss DW 
(g) 

Root 
biom
ass 
DW 
(g) 

Total 
biom
ass  
(g) 

Root-
shoot 
biom
ass 
ratio 
(g) 

Growth 
index 

Heig
ht 
(mm) 

Num
ber 
of 
true 
leave
s 

Num
ber 
of 
dead 
leav
es 

Longest 
leaf 
length 
(mm) 

1 Control 14.22 2.51 16.73 0.18 26 45 14 0 333 

2 Control 14.35 2.78 17.13 0.19 27 45 13 0 310 

3 Control 13.83 2.93 16.76 0.21 31 55 14 0 310 

4 Control 11.85 2.36 14.21 0.20 21 35 15 0 315 

5 Control 12.00 2.98 14.98 0.25 23 40 15 0 311 

6 Control 12.25 2.09 14.34 0.17 23 40 14 0 267 

7 Control 12.12 2.81 14.93 0.23 29 50 15 0 332 

8 Control 12.85 2.33 15.18 0.18 24 45 13 0 302 

9 Control 12.68 2.78 15.46 0.22 30 52 15 0 352 

10 Control 12.56 2.20 14.76 0.18 21 40 14 0 278 

11 Homogeneous 10.86 1.98 12.84 0.18 15 26 11 3 298 

12 Homogeneous 11.60 1.92 13.52 0.17 17 30 12 2 315 

13 Homogeneous 11.52 2.40 13.92 0.21 12 20 12 4 310 

14 Homogeneous 11.36 1.74 13.10 0.15 13 25 12 2 315 

15 Homogeneous 11.29 1.60 12.89 0.14 16 30 11 2 311 

16 Homogeneous 10.80 2.55 13.35 0.24 17 30 12 4 267 

17 Homogeneous 11.58 2.10 13.68 0.18 12 20 10 4 332 

18 Homogeneous 11.82 1.86 13.68 0.16 18 30 12 2 302 

19 Homogeneous 11.03 1.78 12.81 0.16 15 24 10 3 352 

20 Homogeneous 14.33 2.21 16.54 0.15 17 31 11 3 332 

21 Binary 9.22 1.42 10.64 0.15 11 21 13 3 311 

22 Binary 9.56 1.87 11.43 0.20 13 20 13 4 332 

23 Binary 8.50 1.42 9.92 0.17 13 21 13 4 328 

24 Binary 9.07 1.60 10.67 0.18 12 18 13 4 300 

25 Binary 9.85 1.22 11.07 0.12 13 19 13 3 295 

26 Binary 9.75 1.52 11.27 0.16 12 20 12 2 333 

27 Binary 9.09 1.96 11.05 0.22 12 20 13 3 278 

28 Binary 9.42 1.77 11.19 0.19 14 20 12 3 276 

29 Binary 9.19 1.28 10.47 0.14 11 19 13 3 304 

30 Binary 8.24 1.89 10.13 0.23 12 21 12 3 288 
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Table CIII.3: Shoot, root, total plant Pb concentrations (mg/kg), Shoot, total concentration and 

translocation factors of B. juncea.  

  Treatment 

Shoot Pb 
concentratio
n (mg/kg) 

Root Pb 
concentratio
n (mg/kg) 

Total 
plant 
Pb 
(mg/kg
) DW 

Shoo
t CF 

Tota
l CF 

Translocatio
n factor 

1 Homogeneous 42.78 2056 239 0.011 0.06 0.02 

2 Homogeneous 52.7 1960 301 0.013 0.07 0.03 

3 Homogeneous 43.16 1118 158 0.011 0.04 0.04 

4 Homogeneous 37.4 1724 219 0.009 0.05 0.02 

5 Homogeneous 40 1952.25 230 0.010 0.06 0.02 

6 Homogeneous 36.12 1476.5 221 0.009 0.05 0.02 

7 Homogeneous 32.26 1763 275 0.008 0.07 0.02 

8 Homogeneous 45.34 1675.5 240 0.011 0.06 0.03 

9 Homogeneous 40.1 1799 217 0.010 0.05 0.02 

10 Homogeneous 40.27 1114.5 178 0.010 0.04 0.04 

11 Binary 19 1080 162 0.005 0.04 0.02 

12 Binary 24.35 841.5 138 0.006 0.03 0.03 

13 Binary 21.7 1197.5 161 0.005 0.04 0.02 

14 Binary 23.4 1065.75 168 0.006 0.04 0.02 

15 Binary 19.76 705 104 0.005 0.03 0.03 

16 Binary 20.68 768 129 0.005 0.03 0.03 

17 Binary 22.05 1277.5 214 0.005 0.05 0.02 

18 Binary 18.77 1706 241 0.005 0.06 0.01 

19 Binary 25 869.5 138 0.006 0.03 0.03 

20 Binary 25.68 1139 156 0.006 0.04 0.02 
 

Table DIII.3: Shoot, root, total plant Pb concentrations (mg/kg), Shoot, total concentration and 

translocation factors of B. napus. 

  Treatments 

Shoot Pb 
concentrati
on (mg/kg) 

Root Pb 
concentratio
n (mg/kg) 

Total 
plant 
Pb 
(mg/kg) 
DW 

Shoo
t CF 

Tota
l CF 

Translocatio
n factor 

1 Homogeneous 87.62 1650.5 329 0.02 0.08 0.05 

2 Homogeneous 45.18 2008 324 0.01 0.08 0.02 

3 Homogeneous 35.86 1758 333 0.01 0.08 0.02 

4 Homogeneous 36.83 1851.2 278 0.01 0.07 0.02 

5 Homogeneous 45.78 1559 234 0.01 0.06 0.03 

6 Homogeneous 28.32 2934 583 0.01 0.14 0.01 

7 Homogeneous 35.44 2182 365 0.01 0.09 0.02 

8 Homogeneous 44.82 1318.6 218 0.01 0.05 0.03 

9 Homogeneous 40.16 1678.4 268 0.01 0.07 0.02 

10 Homogeneous 32.22 1509.6 230 0.01 0.06 0.02 

11 Binary 33.52 789.6 134 0.01 0.03 0.04 

12 Binary 27.42 511.2 107 0.01 0.03 0.05 

13 Binary 26.98 1102.4 181 0.01 0.04 0.02 

14 Binary 19.8 1227.1 201 0.00 0.05 0.02 

15 Binary 29.72 1882.4 234 0.01 0.06 0.02 

16 Binary 37.7 637.6 119 0.01 0.03 0.06 

17 Binary 18.28 1394.6 262 0.00 0.06 0.01 

18 Binary 50.61 1625.6 300 0.01 0.07 0.03 

19 Binary 28.56 1164.4 167 0.01 0.04 0.02 

20 Binary 41.76 1324.4 281 0.01 0.07 0.03 
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Table EIII.3: Shoot and root Pb mass of B. juncea and B. napus between treatments in third pot 

trial. 

  Species Treatments 

Shoot 
Pb 
mass 
(µg) 

Root 
Pb 
mass 
(µg)   Species Treatments 

Shoot 
Pb 
mass 
(µg) 

Root 
Pb 
mass 
(µg) 

1 
B. 
juncea Homogeneous 440.21 2282.16 1 

B. 
napus Homogeneous 440.21 2282.16 

2   Homogeneous 528.05 2940.00 2   Homogeneous 528.05 2940.00 

3   Homogeneous 208.89 648.44 3   Homogeneous 208.89 648.44 

4   Homogeneous 383.72 2137.76 4   Homogeneous 383.72 2137.76 

5   Homogeneous 409.60 2206.04 5   Homogeneous 409.60 2206.04 

6   Homogeneous 413.94 2495.29 6   Homogeneous 413.94 2495.29 

7   Homogeneous 328.73 2926.58 7   Homogeneous 328.73 2926.58 

8   Homogeneous 515.97 2580.27 8   Homogeneous 515.97 2580.27 

9   Homogeneous 433.48 2176.79 9   Homogeneous 433.48 2176.79 

10   Homogeneous 436.12 1772.06 10   Homogeneous 436.12 1772.06 

11   Binary 267.90 2365.20 11   Binary 267.90 2365.20 

12   Binary 281.00 1565.19 12   Binary 281.00 1565.19 

13   Binary 317.69 2347.10 13   Binary 317.69 2347.10 

14   Binary 275.89 2024.93 14   Binary 275.89 2024.93 

15   Binary 276.05 1388.85 15   Binary 276.05 1388.85 

16   Binary 269.87 1697.28 16   Binary 269.87 1697.28 

17   Binary 266.81 2784.95 17   Binary 266.81 2784.95 

18   Binary 245.70 3394.94 18   Binary 245.70 3394.94 

19   Binary 315.25 1686.83 19   Binary 315.25 1686.83 

20   Binary 378.78 2221.05 20   Binary 378.78 2221.05 

 

   

  Table GIII.3: Root ball diameter (mm) of B. juncea and B. napus in binary quadrants (patches). 

B. 
junce
a 

0 mg/kg 
quadran
t 1 

0 mg/kg 
Quadran
t 2 

2000 
mg/kg 
quadran
t 1 

2000 
mg/kg 
Quadran
t 2 

B. 
napu
s 

0 mg/kg 
quadran
t 1 

0 mg/kg 
Quadran
t 2 

2000 
mg/kg 
quadran
t 1 

2000 
mg/k
g 
Qua
drant 
2 

1 33.00 36.00 10.00 10.00 1 62.00 60.00 15.00 15.00 

2 30.00 30.00 10.00 10.00 2 70.00 66.00 16.00 18.00 

3 27.00 27.00 9.00 9.00 3 61.00 63.00 15.00 16.00 

4 32.00 33.00 7.50 7.50 4 65.00 69.00 15.00 15.50 

5 30.00 30.00 8.50 8.50 5 78.00 80.00 15.00 16.00 

6 38.00 37.00 10.00 10.50 6 61.00 70.00 19.00 18.50 

7 30.00 30.00 9.00 9.50 7 71.00 74.00 17.50 18.00 

8 30.00 30.00 10.00 10.00 8 80.00 80.00 20.00 20.00 

9 40.00 41.00 10.00 10.00 9 72.00 70.00 15.50 15.00 

10 35.00 40.00 10.50 11.00 10 65.00 70.00 14.50 15.50 
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Table HIII.3: Root ball diameter (mm) for B. juncea and B. napus in homogeneous quadrants 

(patches). 

B. 
junce
a 

1000 
mg/kg 
quadran
t 1 

1000 
mg/kg 
Quadran
t 2 

1000 
mg/kg 
quadran
t 1 

1000 
mg/kg 
Quadran
t 2 

B. 
napu
s 

1000 
mg/kg 
quadran
t 1 

1000 
mg/kg 
Quadran
t 2 

1000 
mg/kg 
quadran
t 1 

1000 
mg/k
g 
Qua
drant 
2 

1 10.00 10.00 20.00 10.00 1 32.00 30.00 31.00 30.00 

2 12.00 12.50 12.50 12.50 2 25.00 24.00 25.00 25.00 

3 9.50 9.00 9.50 9.50 3 30.00 30.00 30.00 31.00 

4 15.00 15.00 15.00 15.00 4 29.00 28.00 29.00 29.00 

5 13.00 13.00 13.00 13.00 5 28.00 25.00 25.00 25.00 

6 10.00 10.50 10.50 10.00 6 28.00 29.00 29.00 27.00 

7 10.00 10.00 10.00 10.00 7 25.00 25.00 24.00 25.00 

8 11.50 12.50 12.50 12.50 8 26.00 26.00 26.00 26.00 

9 10.50 11.00 10.50 10.00 9 22.00 23.00 22.00 22.00 

10 12.50 12.50 12.50 12.50 10 30.00 31.00 30.00 30.00 
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 Appendix III.4: Quality control data for third pot trial. 
 

         Table AIII.4: Certified reference materials for extractable Pb analysis 

  

BCR 
142 

BCR 
143 

SRM-
2709 

SRM 
2710 

SRM 
2711 

HRM 
1 

HRM 
2 

HRM 
31 

X1 30.27 29.71 15.65 533.50 105.06 12.72 99.10 687.98 

X2 29.34 30.48 15.41 593.66 105.30 11.78 111.66 612.38 

Mean  29.80 30.10 15.53 563.58 105.18 12.25 105.38 650.18 

Stdev 0.66 0.55 0.17 42.54 0.17 0.66 8.88 53.46 

Certified 
values 37.8 1,333 17.3 1400 5552 13 510 6895 

% Recovery 78.85 2.26 89.77 40.26 1.89 94.23 20.66 9.43 

 

            Table BIII.4: Certified reference materials for third pot trial herbage analysis 

Sample BCR-60 HRM 11 HRM 14  

x1 78.58 27.05 10.3 

x2 76.12 25.08 8.45 

MEAN 77.35 26.07 9.38 

CERTIFIED 
VALUES 64.00 26.00 9.00 

BIAS 13.4 0.06 0.38 

BIAS% 20.9 0.2 4.2 

 

             Table CIII.4: Blank analysis for third pot trial herbage analysis 

       

                      

                   

                  

 

 

 

 

 

     

 

 

 

              Table DIII.4: Precision and detection limit of third pot trial analysis. 

Experiment Precision  Detection limits 

Herbage 
analysis pot 
trial 3 3.6% 2.65 mg/kg 

Extractable Pb 
analysis 7.4% 3.01 mg/kg 

   

BLANK  
ANALYSIS   

SAMPLE 
mg/kg 
Pb 

RBLK 1 -0.06 

RBLK 2 0.74 

RBLK 3 1.4 

RBLK 4 1.8 

RBLK 5 -0.68 

Mean 0.64 

Std 1.02 

µ 0 

SEM 0.46 

mean-µ 0.64 

t-test 1.40 

          

T-TAB. 2.78   df(n-1) 4 

two 
tailed 
test    1.40<2.78 

 Not 
significant 

 P 
>0.05 
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Appendix III. 5: Test for significance of shoot and root Pb masses (µg) 

(Third pot trial). 
 

 AIII.5: Two-Sample T-Test of B. napus HO shoot Pb (µg), and B. juncea HO shoot 
Pb (µg) 
 
Two-sample T for B. Napus HO shoot Pb (ug) vs B.juncea HO shoot Pb (ug) 

 

                                              SE 

                           N   Mean  StDev  Mean 

B. Napus HO shoot Pb (ug  10    497    173    55 

B.juncea  HO  shoot Pb (  10  409.9   91.3    29 

 

 

T-Test of difference = 0 (vs not =): T-Value = 1.41 P-Value = 0.181 DF = 13 

 

  

 BIII.5: Two-Sample T-Test of B. napus binary shoot Pb (µg) and B. juncea binary 
shoot Pb (µg)   
 
Two-sample T for B. napus binary shoot Pb (ug) vs B.juncea binary shoot Pb 

(ug) 

 

                                              SE 

                           N   Mean  StDev  Mean 

B. napus binary shoot Pb  10  289.0   92.4    29 

B.juncea binary shoot Pb  10  289.5   38.2    12 

 

 

T-Test of difference = 0 (vs not =): T-Value = -0.02 P-Value = 0.988 DF = 11 

 

CIII.5: Two-Sample T-Test of B. napus HO shoot Pb (µg) and B. napus binary 
shoot Pb (µg) 
 
Two-sample T for B. Napus HO shoot Pb (ug) vs B. napus binary shoot Pb (ug) 

 

                                              SE 

                           N   Mean  StDev  Mean 

B. Napus HO shoot Pb (ug)  10    497    173    55 

B. napus binary shoot Pb  10  289.0   92.4    29 

 

T-Test of difference = 0 (vs not =): T-Value = 3.36  P-Value = 0.005  DF = 13 

 

Two-Sample T-Test of B. napus HO root Pb (µg) and B. napus binary root Pb (µg)  
 
Two-sample T for B. n HO root Pb (ug) vs B. n binary root Pb (ug) 

 

                           N  Mean  StDev  SE Mean 

B. n HO root Pb (ug)      10  3790   1467      464 

B. n binary root Pb (ug)  10  1848    730      231 

 

T-Test of difference = 0 (vs not =): T-Value = 3.75  P-Value = 0.002  DF = 13 

 

DIII.5: Two-Sample T-Test of B. juncea HO shoot Pb (µg) and B. juncea binary 
shoot Pb (µg)  
 
Two-sample T for B.juncea  HO  shoot Pb (ug) vs B.juncea binary shoot Pb (ug) 

 

                                              SE 

                           N   Mean  StDev  Mean 

B.juncea  HO  shoot Pb (  10  409.9   91.3    29 

B.juncea binary shoot Pb  10  289.5   38.2    12 

 



317 
 

 

T-Test of difference = 0 (vs not =): T-Value = 3.84 P-Value = 0.002 DF = 12 

 

 
 
Two-Sample T-Test B. napus HO root Pb (µg), B. juncea HO root Pb (µg)  
 
Two-sample T for B. n HO root Pb (ug) vs B.j HO root Pb (ug) 

 

                       N  Mean  StDev  SE Mean 

B. n HO root Pb (ug)  10  3790   1467      464 

B.j HO root Pb (ug)   10  2217    659      208 

 

 

T-Test of difference = 0 (vs not =): T-Value = 3.09  P-Value = 0.009  DF = 12 

 

  

EIII.5: Two-Sample T-Test of B. napus binary root Pb (µg), B. juncea binary root 
Pb (µg)  
 
Two-sample T for B. n binary root Pb (ug) vs B.j binary  root Pb (ug) 

 

                           N  Mean  StDev  SE Mean 

B. n binary root Pb (ug)  10  1848    730      231 

B.j binary  root Pb (ug)  10  2148    615      194 

 

 

T-Test of difference = 0 (vs not =): T-Value = -0.99  P-Value = 0.334  DF = 17 

 
Two-Sample T-Test of B. juncea HO root Pb (µg) and B. juncea binary root Pb 
(µg)  
 
Two-sample T for B.j HO root Pb (ug) vs B.j binary root Pb (ug) 

 

                           N  Mean  StDev  SE Mean 

B.j HO root Pb (ug)       10  2217    659      208 

B.j binary  root Pb (ug)  10  2148    615      194 

 

 

T-Test of difference = 0 (vs not =): T-Value = 0.24  P-Value = 0.812  DF = 17 
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APPENDICES RELATED TO FOURTH POT TRIAL (CHAPTER 6). 
 

Appendix IV.1: Randomized Block design  
 

Table AIV.1: Treatment blocks for Brassica napus and Brassica juncea 

 

Treatment 
block for 
Brassica 
napus         

Treatment 
block for 
Brassica 
juncea       

Columns A B C D Columns A B C D 

1 BNMH4 BNHO3 BNHH1 BNMH3 1 BJLH8 BJHO10 BJMH6 BJHH6 

2 BNHO10 BNHH7 BNHO2 BNHL6 2 BJHO8 BJLH9 BJHO3 BJMH5 

3 BNHH4 BNHL5 BNHH9 BNHO7 3 BJHH8 BJHH3 BJMH3 BJLH1 

4 BNMH5 BNMH1 BNHL2 BNMH2 4 BJMH8 BJHO7 BJLH5 BJMH2 

5 BNHL10 BNHO6 BNHH2 BNHL8 5 BJLH10 BJMH1 BJHO9 BJHH1 

6 BNMH8 BNHH10 BNMH7 BNHH3 6 BJHH2 BJHO4 BJHH4 BJLH7 

7 BNHH8 BNMH9 BNHL7 BNMH6 7 BJMH7 BJLH4 BJLH6 BJHO2 

8 BNHO5 BNHL4 BNHH6 BNHL3 8 BJHH7 BJHH10 BJHH5 BJMH4 

9 BNHL9 BNHO1 BNHO9 BNHH5 9 BJHO1 BJLH2 BJMH10 BJHO6 

10 BNHO4 BNMH10 BNHL1 BNHO8 10 BJHH9 BJMH9 BJHO5 BJLH3 
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Appendix IV.2: Tests of significance of biomass for B. napus. 
 

One-way ANOVA: Shoot dry biomass versus Treatment  

 
Source     DF       SS      MS       F      P 

Treatment   3   259.880   86.627   687.40 0.000 

Error      36    4.537    0.126 

Total      39   264.416 

 

S = 0.3550   R-Sq = 98.28%   R-Sq(adj) = 98.14% 

 

Grouping Information Using Tukey Method 

 

Treatment   N    Mean Grouping 

HO         10 8.1497 A 

MH         10 6.0447    B 

LH         10 3.3902      C 

HH         10 1.4478        D 

 

Means that do not share a letter are significantly different. 

One-way ANOVA: Root dry biomass versus Treatment  
 
Source     DF       SS       MS       F      P 

Treatment   3   9.44493   3.14831   536.71 0.000 

Error      36   0.21118   0.00587 

Total      39   9.65611 

 

S = 0.07659   R-Sq = 97.81%   R-Sq(adj) = 97.63% 

 

Grouping Information Using Tukey Method 

 

Treatment N Mean Grouping 

MH         10 1.9051 A 

HO         10 1.5458    B 

LH         10 1.1086      C 

HH         10 0.6060        D 

 

Means that do not share a letter are significantly different. 

 

One-way ANOVA: Total dry biomass versus Treatment  
 
Source     DF       SS       MS       F      P 

Treatment   3   352.750    117.583   917.05 0.000 

Error      36    4.616      0.128 

Total      39    357.366 

 

S = 0.3581   R-Sq = 98.71%   R-Sq(adj) = 98.60% 

 

 

Grouping Information Using Tukey Method 

 

Treatment N Mean Grouping 

HO         10 9.6955 A 

MH         10 7.9498    B 

LH         10 4.4988      C 

HH         10 2.0538        D 

 

Means that do not share a letter are significantly different. 
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Appendix IV.3: Test of significance of uptake for B. napus 
 

 AIV.3: Analysis of variance. 
One-way ANOVA: Shoot Pb versus Treatment  
 
Source     DF     SS     MS       F      P 

Treatment   3   264451   88150 164.38 0.000 

Error      36   19305    536 

Total      39   283756 

 

S = 23.16   R-Sq = 93.20%   R-Sq(adj) = 92.63% 

 

Grouping Information Using Tukey Method 

 

Treatment N    Mean   Grouping 

HO         10   269.18   A 

MH         10   169.94    B 

LH         10   147.50     B 

HH         10   40.36       C 

 

Means that do not share a letter are significantly different. 

 

One-way ANOVA: Root Pb versus Treatment  
 
Source     DF     SS       MS       F      P 

Treatment   3   11833490 3944497 259.20 0.000 

Error      36   547847    15218 

Total      39   12381337 

 

S = 123.4   R-Sq = 95.58%   R-Sq(adj) = 95.21% 

 

Grouping Information Using Tukey Method 

 

Treatment   N   Mean Grouping 

MH         10 1708.8 A 

LH         10 1496.5    B 

HO         10 1042.4      C 

HH         10   289.5        D 

 

Means that do not share a letter are significantly different. 

 

One-way ANOVA: Total plant Pb versus Treatment  
 
Source     DF        SS       MS       F      P 

Treatment   3   13942306     4647435 287.31 0.000 

Error      36    582316      16175 

Total      39   14524622 

 

S = 127.2   R-Sq = 95.99%   R-Sq(adj) = 95.66% 

 

Treatment N Mean Grouping 

MH         10 1878.7 A 

LH         10 1644.0    B 

HO         10 1311.6      C 

HH         10   329.9        D 

 

Means that do not share a letter are significantly different. 

One-way ANOVA: B. napus CFshoot versus Treatment  
 
Source     DF         SS         MS      F      P 

Treatment   3   0.0017229   0.0005743   51.53   0.000 

Error      36   0.0004013   0.0000111 

Total      39   0.0021242  
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S = 0.003339   R-Sq = 81.11%   R-Sq(adj) = 79.54% 

Grouping Information Using Tukey Method 

 

Treatment   N     Mean  Grouping 

LH         10  0.045306  A 

HO         10  0.034491    B 

MH         10  0.029381      C 

HH         10  0.029084      C 

 

Means that do not share a letter are significantly different. 

 

One-way ANOVA: B. napus CFroot versus Treatment  
 
Source     DF       SS       MS       F      P 

Treatment   3  4.61293  1.53764  195.68  0.000 

Error      36  0.28288  0.00786 

Total      39  4.89582 

 

S = 0.08864   R-Sq = 94.22%   R-Sq(adj) = 93.74% 

 

Grouping Information Using Tukey Method 

 

Treatment   N    Mean  Grouping 

LH         10  1.4118  A 

MH         10  0.9380    B 

HO         10  0.7064      C 

HH         10  0.4989        D 

 

Means that do not share a letter are significantly different. 

 

Table BIV.3: Mixed model ANOVA for B. napus (shoot, root and total plant Biomass and 
uptake) 
 

 

 

 

 

 

 

Multivariate Testsa 

Effect Value F 

Hypothesis 

df Error df Sig. 

Partial Eta 

Squared 

Treatment Pillai's Trace 3.602 81.491 16.000 144.000 .000 .901 

Wilks' Lambda .000 614.539 16.000 101.454 .000 .970 

Hotelling's Trace 890.410 1752.994 16.000 126.000 .000 .996 

Roy's Largest 

Root 
837.479 7537.311b 4.000 36.000 .000 .999 

a. Design: Treatment   

b. The statistic is an upper bound on F that yields a lower bound on the significance level. 
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Tests of Between-Subjects Effects for B. napus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source Dependent Variable 

Type III Sum of 

Squares Df Mean Square F Sig. 

Model  Shoot DW 1165.463a 4 291.366 2312.058 .000 

 Root DW 76.150b 4 19.038 3245.452 .000 

 Shoot Pb 45282.790c 4 11320.698 1112.447 .000 

 Root Pb 33098580.337d 4 8274645.084 1152.026 .000 

Treatment  Shoot DW 1165.463 4 291.366 2312.058 .000 

Root DW 76.150 4 19.038 3245.452 .000 

Shoot Pb 45282.790 4 11320.697 1112.447 .000 

Root Pb 33098580.337 4 8274645.084 1152.026 .000 

Error Shoot DW 4.537 36 .126   

Root DW .211 36 .006   

 Shoot Pb 366.350 36 10.176   

 Root Pb 258576.753 36 7182.688   

Total Shoot DW 1170.000 40    

 Root DW 76.362 40    

Shoot Pb 45649.140 40    

 Root Pb 33357157.090 40    
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Appendix IV.4: Test of significance of biomass for B. juncea 
 

One-way ANOVA: Shoot dry biomass versus Treatment  

Source     DF      SS      MS       F      P 

Treatment   3   50.071 16.690 165.38 0.000 

Error      36   3.633   0.101 

Total      39   53.704 

 

S = 0.3177   R-Sq = 93.23%   R-Sq(adj) = 92.67% 

 

Grouping Information Using Tukey Method 

 

Treatment   N Mean Grouping 

HO         10 3.6783 A 

LH         10 2.0305    B 

MH         10 1.0891      C 

HH         10 0.8183      C 

 

Means that do not share a letter are significantly different. 

 

One-way ANOVA: Root dry biomass versus Treatment  
 
Source     DF    SS       MS       F      P 

Treatment   3 1.13660 0.37887 181.36 0.000 

Error      36 0.07520 0.00209 

Total      39 1.21180 

 

S = 0.04571   R-Sq = 93.79%   R-Sq(adj) = 93.28% 

 

 

Grouping Information Using Tukey Method 

 

Treatment   N Mean Grouping 

HO         10 4.4513 A 

LH         10 2.6328    B 

MH         10 1.5868      C 

HH         10 1.1262        D 

 

Means that do not share a letter are significantly different. 

 

One-way ANOVA: Total dry biomass versus Treatment  
 
Source     DF      SS      MS       F      P 

Treatment   3    65.359 21.786   201.64 0.000 

Error      36    3.890   0.108 

Total      39   69.248 

 

S = 0.3287   R-Sq = 94.38%   R-Sq(adj) = 93.91% 

 

 

Grouping Information Using Tukey Method 

 

Treatment   N    Mean Grouping 

HO         10 4.4513 A 

LH         10 2.6328    B 

MH         10 1.5868      C 

HH         10 1.1262        D 

 

Means that do not share a letter are significantly different. 
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Appendix IV.5: Test of significance of uptake for B. juncea 
 

AIV.5: Analysis of variance. 

One-way ANOVA: Shoot Pb versus Treatment  
 
Source     DF   SS      MS      F      P 

Treatment   3 46513    15504 55.37 0.000 

Error      36 10081    280 

Total      39 56593 

 

S = 16.73   R-Sq = 82.19%   R-Sq(adj) = 80.70% 

Grouping Information Using Tukey Method 

 

Treatment   N   Mean   Grouping 

HO         10   129.38 A 

LH         10   70.38    B 

HH         10   46.32      C 

MH         10   45.54      C 

 

Means that do not share a letter are significantly different. 

 

One-way ANOVA: Root Pb versus Treatment  
 
Source     DF   SS      MS       F      P 

Treatment   3   834751   278250 116.40 0.000 

Error      36   86059    2391 

Total      39 920811 

 

S = 48.89   R-Sq = 90.65%   R-Sq(adj) = 89.88% 

 

 

Grouping Information Using Tukey Method 

 

Treatment   N Mean Grouping 

MH         10 577.79 A 

HO         10 399.27    B 

LH         10 235.01      C 

HH         10 222.57      C 

 

Means that do not share a letter are significantly different. 

 

 

One-way ANOVA: Total plant Pb versus Treatment  
 
Source     DF     SS      MS       F      P 

Treatment   3   885809    295270   106.66 0.000 

Error      36   99663    2768 

Total      39   985473 

 

S = 52.62   R-Sq = 89.89%   R-Sq (adj) = 89.04% 

 

Grouping Information Using Tukey Method 

 

Treatment   N Mean Grouping 

MH         10 623.32 A 

HO         10 528.65    B 

LH         10 305.39      C 

HH         10 268.90      C 

 

Means that do not share a letter are significantly different. 
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One-way ANOVA: B. juncea CFshoot versus Treatment  
 
Source     DF         SS         MS      F      P 

Treatment   3  0.0035915  0.0011972  14.36  0.000 

Error      36  0.0030019  0.0000834 

Total      39  0.0065934 

 

S = 0.009132   R-Sq = 54.47%   R-Sq(adj) = 50.68% 

 

Grouping Information Using Tukey Method 

 

Treatment   N      Mean  Grouping 

HH         10  0.059540  A 

MH         10  0.043895    B 

HO         10  0.036493    B 

LH         10  0.036172    B 

 

One-way ANOVA: B. juncea CFroot versus Treatment  
 
Source     DF       SS       MS       F      P 

Treatment   3  3.66352  1.22117  313.54  0.000 

Error      36  0.14021  0.00389 

Total      39  3.80374 

 

S = 0.06241   R-Sq = 96.31%   R-Sq(adj) = 96.01% 

 

Grouping Information Using Tukey Method 

 

Treatment   N     Mean  Grouping 

MH         10  1.20853  A 

HH         10  0.75729    B 

HO         10  0.54093      C 

LH         10  0.41241        D 

 

Means that do not share a letter are significantly different. 

 

Two-Sample T-Test and CI: B. napus CFshoot, B. juncea CFshoot  
 
Two-sample T for B. napus CFshoot vs B. juncea CFshoot 

 

                    N     Mean    StDev  SE Mean 

B. napus CFshoot   40  0.03457  0.00738   0.0012 

B. juncea CFshoot  40   0.0440   0.0130   0.0021 

 

 

Difference = mu (B. napus CFshoot) - mu (B. juncea CFshoot) 

Estimate for difference:  -0.00946 

95% CI for difference:  (-0.01419, -0.00473) 

T-Test of difference = 0 (vs not =): T-Value = -4.00  P-Value = 0.000  DF = 61 

 

Two-Sample T-Test and CI: B.napus CFroot, B. juncea CFroot  
 
Two-sample T for B.napus CFroot vs B. juncea CFroot 

 

                   N   Mean  StDev  SE Mean 

B.napus CFroot    40  0.889  0.354    0.056 

B. juncea CFroot  40  0.730  0.312    0.049 

 

 

T-Test of difference = 0 (vs not =): T-Value = 2.13 P-Value = 0.037 DF = 76 
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Table BIV.5: Mixed model ANOVA for Brassica juncea 

 

Tests of Between-Subjects Effects for B. juncea 
 

 

 

 

 

 

Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. 

Partial Eta 

Squared 

Treatment Pillai's Trace 3.135 32.642 16.000 144.000 .000 .784 

Wilks' Lambda .000 277.562 16.000 101.454 .000 .945 

Hotelling's Trace 463.055 911.640 16.000 126.000 .000 .991 

Roy's Largest 

Root 
417.424 3756.812b 4.000 36.000 .000 .998 

a. Design: Treatment 

b. The statistic is an upper bound on F that yields a lower bound on the significance level. 

Source Dependent Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Model Shoot DW 195.085a 4 48.771 483.265 .000 

Root DW 13.029b 4 3.257 1559.200 .000 

Shoot Pb 74156.989c 4 18539.247 243.205 .000 

Root Pb 22824165.240d 4 5706041.310 1602.590 .000 

Treatment Shoot DW 195.085 4 48.771 483.265 .000 

Root DW 13.029 4 3.257 1559.200 .000 

Shoot Pb 74156.989 4 18539.247 243.205 .000 

Root Pb 22824165.240 4 5706041.310 1602.590 .000 

Error Shoot DW 3.633 36 .101   

Root DW .075 36 .002   

Shoot Pb 2744.241 36 76.229   

Root Pb 128178.404 36 3560.511   

Total Shoot DW 198.718 40    

Root DW 13.104 40    

Shoot Pb 76901.230 40    

Root Pb 22952343.645 40    
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Appendix IV.6: Tests for significance of root placement data. 
 

 AIV.6: Analysis of variance. 
 
One-way ANOVA: B. juncea root biomass versus Patch with same nominal Pb 
concentration. 
 
Source               DF        SS        MS      F      P 

Patch with  same Pb   9  0.017729  0.001970  13.77  0.000 

Error                90  0.012875  0.000143 

Total                99  0.030604 

 

S = 0.01196   R-Sq = 57.93%   R-Sq(adj) = 53.72% 

 

One-way ANOVA: B. juncea root Pb versus Nominal soil Pb  
 
Source           DF        SS       MS       F      P 

Nominal soil Pb   4   16000700    4000175 946.49 0.000 

Error            45    190185     4226 

Total            49    16190885 

 

S = 65.01   R-Sq = 98.83%   R-Sq (adj) = 98.72% 

 

Grouping Information Using Tukey Method 

Nominal 

soil Pb   N    Mean  Grouping 

10000    10   1551.3   A 

 3000    10   415.9    B 

  100    10   134.6      C 

 1000    10    81.0      C 

  300    10    62.2      C 

 

Means that do not share a letter are significantly different. 

 

Regression Analysis: B. juncea root Pb versus Nominal soil Pb  
 
The regression equation is 

BJ root Pb = 12.21 + 0.1517 Nominal soil Pb 

 

 

S = 91.9045   R-Sq = 97.5%   R-Sq(adj) = 97.4% 

 

 

Analysis of Variance 

 

Source      DF        SS        MS        F      P 

Regression   1   15785457  15785457  1868.89  0.000 

Error       48    405429      8446 

Total       49  16190885 

 

BIV.6: Patch comparison for B. juncea 
 
Two-Sample T-Test and CI: B. juncea 100, Patch  
 
Two-sample T for BJ 100 

 

Patch    N     Mean    StDev  SE Mean 

middle  10  0.01683  0.00466   0.0015 

Outer   10   0.0259   0.0355    0.011 

 

T-Test of difference = 0 (vs not =): T-Value = -0.80  P-Value = 0.445  DF = 9 
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Two-Sample T-Test and CI: B. juncea 300, Patch  
 
Two-sample T for BJ 300 

 

Patch    N     Mean    StDev  SE Mean 

middle  10  0.01238  0.00725   0.0023 

Outer   10  0.01305  0.00210  0.00066 

 

T-Test of difference = 0 (vs not =): T-Value = -0.28  P-Value = 0.784  DF = 10 

 

  

Two-Sample T-Test and CI: B. juncea 1000, Patch  
 
Two-sample T for BJ 1000 

 

Patch    N     Mean    StDev  SE Mean 

middle  10  0.00856  0.00231  0.00073 

Outer   10  0.01374  0.00288  0.00091 

 

 

T-Test of difference = 0 (vs not =): T-Value = -4.44  P-Value = 0.000  DF = 17 

 

  

Two-Sample T-Test and CI: B. juncea 3000, Patch  
 
Two-sample T for BJ 3000 

 

Patch    N     Mean    StDev  SE Mean 

middle  10  0.00522  0.00351   0.0011 

Outer   10  0.00476  0.00104  0.00033 

 

T-Test of difference = 0 (vs not =): T-Value = 0.40  P-Value = 0.699  DF = 10 

  

Two-Sample T-Test and CI: B. juncea 100 and 300  
 
Two-sample T for BJ 100 vs BJ 300 

 

         N     Mean    StDev  SE Mean 

BJ 100  20   0.0214   0.0251   0.0056 

BJ 300  20  0.01272  0.00521   0.0012 

 

 

T-Test of difference = 0 (vs not =): T-Value = 1.51  P-Value = 0.147  DF = 20 

 

  

Two-Sample T-Test and CI: B. juncea 100 and 1000  
 
Two-sample T for BJ 100 vs BJ 1000 

 

          N     Mean    StDev  SE Mean 

BJ 100   20   0.0214   0.0251   0.0056 

BJ 1000  20  0.01115  0.00367  0.00082 

 

T-Test of difference = 0 (vs not =): T-Value = 1.80  P-Value = 0.088  DF = 19 

 

  

Two-Sample T-Test and CI: B. juncea 100 and 3000  
 
Two-sample T for BJ 100 vs BJ 3000 

 

          N     Mean    StDev  SE Mean 

BJ 100   20   0.0214   0.0251   0.0056 

BJ 3000  20  0.00499  0.00253  0.00057 

 



329 
 

 

T-Test of difference = 0 (vs not =): T-Value = 2.90  P-Value = 0.009  DF = 19 

 

  

Two-Sample T-Test and CI: B. juncea 100 and 10000  
 
Two-sample T for BJ 100 vs BJ 10000 

 

           N      Mean     StDev  SE Mean 

BJ 100    20    0.0214    0.0251   0.0056 

BJ 10000  10  0.002470  0.000650  0.00021 

 

 

T-Test of difference = 0 (vs not =): T-Value = 3.36  P-Value = 0.003  DF = 19 

 

  

Two-Sample T-Test and CI: B. juncea 300 and 1000  
 
Two-sample T for BJ 300 vs BJ 1000 

 

          N     Mean    StDev  SE Mean 

BJ 300   20  0.01272  0.00521   0.0012 

BJ 1000  20  0.01115  0.00367  0.00082 

 

 

T-Test of difference = 0 (vs not =): T-Value = 1.10  P-Value = 0.280  DF = 34 

 

  

Two-Sample T-Test and CI: B. juncea 300 and 3000  
 
Two-sample T for BJ 300 vs BJ 3000 

 

          N     Mean    StDev  SE Mean 

BJ 300   20  0.01272  0.00521   0.0012 

BJ 3000  20  0.00499  0.00253  0.00057 

 

 

T-Test of difference = 0 (vs not =): T-Value = 5.97  P-Value = 0.000  DF = 27 

 

  

Two-Sample T-Test and CI: B. juncea 300 and 10000  
 
Two-sample T for BJ 300 vs BJ 10000 

 

           N      Mean     StDev  SE Mean 

BJ 300    20   0.01272   0.00521   0.0012 

BJ 10000  10  0.002470  0.000650  0.00021 

 

 

T-Test of difference = 0 (vs not =): T-Value = 8.67  P-Value = 0.000  DF = 20 

 

  

Two-Sample T-Test and CI: B. juncea 3000 and 10000  
 
Two-sample T for BJ 3000 vs BJ 10000 

 

           N      Mean     StDev  SE Mean 

BJ 3000   20   0.00499   0.00253  0.00057 

BJ 10000  10  0.002470  0.000650  0.00021 

 

 

T-Test of difference = 0 (vs not =): T-Value = 4.19  P-Value = 0.000  DF = 23 
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Two-Sample T-Test and CI: B. juncea 1000 and 3000  
 
Two-sample T for BJ 1000 vs BJ 3000 

 

          N     Mean    StDev  SE Mean 

BJ 1000  20  0.01115  0.00367  0.00082 

BJ 3000  20  0.00499  0.00253  0.00057 

 

 

T-Test of difference = 0 (vs not =): T-Value = 6.18  P-Value = 0.000  DF = 33 

 

  

Two-Sample T-Test and CI: B. juncea 1000, BJ 10000  
 
Two-sample T for BJ 1000 vs BJ 10000 

 

           N      Mean     StDev  SE Mean 

BJ 1000   20   0.01115   0.00367  0.00082 

BJ 10000  10  0.002470  0.000650  0.00021 

 

 

T-Test of difference = 0 (vs not =): T-Value = 10.26  P-Value = 0.000  DF = 21 

 

  

CIV.6: Analysis of variance and Regression 
 
One-way ANOVA: B. napus root biomass versus Patch with same nominal Pb  
Concentration. 
Source               DF        SS        MS       F      P 

Patch with same Pb   9  0.973881  0.108209  585.02  0.000 

Error                90  0.016647  0.000185 

Total                99  0.990528 

 

S = 0.01360   R-Sq = 98.32%   R-Sq(adj) = 98.15% 

 

One-way ANOVA: B. napus root Pb versus Nominal soil Pb  
 
Source           DF       SS       MS        F      P 

Nominal soil Pb   4  5110863  1277716  3007.41  0.000 

Error            45    19119      425 

Total            49  5129981 

 

S = 20.61   R-Sq = 99.63%   R-Sq(adj) = 99.59% 

 

Grouping Information Using Tukey Method 

 

Nominal 

soil Pb   N    Mean  Grouping 

10000    10   1551.3  A 

 3000    10   415.9    B 

  100    10   134.6      C 

 1000    10    81.0      C 

  300    10    62.2      C 

 

Means that do not share a letter are significantly different. 

 
 
Regression Analysis: B. napus root Pb versus Nominal soil Pb  
 
The regression equation is 

BN root Pb = 8.674 + 0.08598 Nominal soil Pb 

 

 

S = 34.1943   R-Sq = 98.9%   R-Sq(adj) = 98.9% 
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Analysis of Variance 

 

Source      DF       SS       MS        F      P 

Regression   1  5073857  5073857  4339.41  0.000 

Error       48    56124     1169 

Total       49  5129981 

 

 

DIV.6:  T-test patch comparison for B. napus 
 

 

One-Sample T: B. napus 100  
 
Variable   N     Mean    StDev  SE Mean        95% CI 

BN 100    20  0.01733  0.01967  0.00440  (0.00812, 0.02653) 

 

  

Two-Sample T-Test and CI: B. napus 100, Patch  
 
Two-sample T for BN 100 

 

Patch    N     Mean    StDev  SE Mean 

middle  10   0.0190   0.0279   0.0088 

Outer   10  0.01570  0.00574   0.0018 

 

T-Test of difference = 0 (vs not =): T-Value = 0.36  P-Value = 0.725  DF = 9 

 

  

Two-Sample T-Test and CI: B. napus 300, Patch  
 
Two-sample T for BN 300 

 

Patch    N     Mean    StDev  SE Mean 

middle  10  0.00673  0.00219  0.00069 

Outer   10  0.01457  0.00187  0.00059 

 

 

T-Test of difference = 0 (vs not =): T-Value = -8.60  P-Value = 0.000  DF = 17 

 

  

Two-Sample T-Test and CI: B. napus 100 and 300  
 
Two-sample T for BN 100 vs BN 300 

 

         N     Mean    StDev  SE Mean 

BN 100  20   0.0173   0.0197   0.0044 

BN 300  20  0.01065  0.00448   0.0010 

 

 

T-Test of difference = 0 (vs not =): T-Value = 1.48  P-Value = 0.154  DF = 20 

 

  

Two-Sample T-Test and CI: B. napus 300 and 3000  
 
Two-sample T for BN 300 vs BN 3000 

 

          N     Mean    StDev  SE Mean 

BN 300   20  0.01065  0.00448   0.0010 

BN 3000  20  0.00534  0.00444  0.00099 

 

 

T-Test of difference = 0 (vs not =): T-Value = 3.76 P-Value = 0.001 DF = 37 
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Two-Sample T-Test and CI: B. napus 100 and 3000  
 
Two-sample T for BN 100 vs BN 3000 

 

          N     Mean    StDev  SE Mean 

BN 100   20   0.0173   0.0197   0.0044 

BN 3000  20  0.00534  0.00444  0.00099 

 

 

T-Test of difference = 0 (vs not =): T-Value = 2.66  P-Value = 0.015  DF = 20 

 

  

Two-Sample T-Test and CI: B. napus 3000 and 10000  
 
Two-sample T for BN 3000 vs BN 10000 

 

           N     Mean    StDev  SE Mean 

BN 3000   20  0.00534  0.00444  0.00099 

BN 10000   2  0.00255  0.00106  0.00075 

 

 

T-Test of difference = 0 (vs not =): T-Value = 2.24  P-Value = 0.066  DF = 6 

 

  

Two-Sample T-Test and CI: B. napus 100 and 1000  
 
Two-sample T for BN 100 vs BN 1000 

 

          N     Mean    StDev  SE Mean 

BN 100   20   0.0173   0.0197   0.0044 

BN 1000  20  0.00848  0.00542   0.0012 

 

 

T-Test of difference = 0 (vs not =): T-Value = 1.94  P-Value = 0.066  DF = 21 

 

  

Two-Sample T-Test and CI: B. napus 300 and 1000  
 
Two-sample T for BN 300 vs BN 1000 

 

          N     Mean    StDev  SE Mean 

BN 300   20  0.01065  0.00448   0.0010 

BN 1000  20  0.00848  0.00542   0.0012 

 

 

T-Test of difference = 0 (vs not =): T-Value = 1.38  P-Value = 0.177  DF = 36 

 

  

Two-Sample T-Test and CI: B. napus 3000 and 1000  
 
Two-sample T for BN 3000 vs BN 1000 

 

          N     Mean    StDev  SE Mean 

BN 3000  20  0.00534  0.00444  0.00099 

BN 1000  20  0.00848  0.00542   0.0012 

 

 

T-Test of difference = 0 (vs not =): T-Value = -2.00  P-Value = 0.053  DF = 36 

  

Two-Sample T-Test and CI: B. napus 10000 and 1000  
 
Two-sample T for BN 10000 vs BN 1000 

 

           N     Mean    StDev  SE Mean 

BN 10000   2  0.00255  0.00106  0.00075 
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BN 1000   20  0.00848  0.00542   0.0012 

 

 

T-Test of difference = 0 (vs not =): T-Value = -4.16  P-Value = 0.002  DF = 9 

Two-Sample T-Test and CI: B. napus 1000 outer and Patches  
 
Two-sample T for BN 1000 

 

Patch    N     Mean    StDev  SE Mean 

middle  10  0.00401  0.00346   0.0011 

Outer   10  0.01294  0.00240  0.00076 

 

T-Test of difference = 0 (vs not =): T-Value = -6.70  P-Value = 0.000  DF = 16 

 

 

EIV.6: Central (1000 mg/kg Pb) patch comparison for B. napus and B. juncea 
 
One-way ANOVA: B. napus 1000 versus Patch  
 
Source  DF        SS        MS        F      P 

Patch    2  0.724834  0.362417  1096.40  0.000 

Error   27  0.008925  0.000331 

Total   29  0.733759 

 

S = 0.01818   R-Sq = 98.78%   R-Sq(adj) = 98.69% 

 

 

Grouping Information Using Tukey Method 

 

Patch     N     Mean  Grouping 

Central  10  0.33812  A 

Outer    10  0.01294    B 

middle   10  0.00401    B 

 

Means that do not share a letter are significantly different. 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Patch 

 

  

One-way ANOVA: B. juncea 1000 versus Patch  
 
Source  DF         SS         MS       F      P 

Patch    2  0.0103149  0.0051575  199.76  0.000 

Error   27  0.0006971  0.0000258 

Total   29  0.0110120 

 

S = 0.005081   R-Sq = 93.67%   R-Sq(adj) = 93.20% 

 

 

Grouping Information Using Tukey Method 

 

Patch     N      Mean  Grouping 

Central  10  0.050230  A 

Outer    10  0.013737    B 

middle   10  0.008565    B 

 

Means that do not share a letter are significantly different. 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Patch 
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Two-Sample T-Test: B. juncea central root biomass, B. napus central root 
biomass  
 
Two-sample T for B.juncea central root biomass vs B.napus central root biomass 

 

                              N     Mean    StDev  SE Mean 

B.juncea central root biomass 10  0.05023  0.00799   0.0025 

B.napus central root biomass   10   0.3381   0.0312   0.0099 

 

 

T-Test of difference = 0 (vs not =): T-Value = -28.26  P-Value = 0.000  DF = 

10 

 

 

FIV.6: Comparison of B. napus and B. juncea root response. 
 
Two-Sample T-Test and CI: B. napus root biomass, B. juncea root biomass  
 
Two-sample T for B.napus root biomass vs B. juncea root biomass 

 

                          N    Mean   StDev  SE Mean 

B.napus root biomass    100   0.042   0.100    0.010 

B. juncea root biomass  100  0.0153  0.0176   0.0018 

 

 

T-Test of difference = 0 (vs not =): T-Value = 2.68  P-Value = 0.009  DF = 105 

 

 

 
Figure AIV.6: Regression model of root biomass of outer concentric patches against Patch Pb 
concentration of B.napus. 
 

 
 

Figure BIV.6: Regression model of root biomass of middle concentric patches against Patch Pb 
concentration of B. napus. 
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Figure CIV.6: Regression model of root biomass of outer concentric patches against Patch Pb 
concentration of B. juncea. 
 

 
 

Figure DIV.6: Regression model of root biomass of middle concentric patches against Patch Pb 
concentration of B. juncea. 
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Appendix IV.7: Other information related to pot trial four (pot trial 

simulating in situ heterogeneity). 
 

              

        (a)                                                                                  (c) 

             

    (d)                                             (e) 

Figure AIV.1: Pot trial 4 experimental method showing (a) pot filled with heterogeneous distribution 
of Pb, (b) Filling of pots with growth media (c) PTEG pot divider (d) Root extraction showing wooden 
box and sleeve (e) customized metal blade.

(b) 
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Appendix IV.8: Raw data for pot trial four.  
 

Table AIV.8: Biomass and Pb uptake data for B. napus 

S/N 
Pot 
No 

Species & 
treatment 

Shoot 
DW (g) 

Root 
DW 
(g) 

Total 
DW (g) 

Shoot 
Pb 
(mg/kg) 

Shoot Pb 
(µg) 

Root Pb 
(mg/kg) 

Root Pb 
(µg) 

Total plant 
Pb (µg) 

1 1 BNHO 8.2921 1.5438 9.8359 31.17 258.4648  676.53 1044.4270 1302.8918  

2 2 BNHO 7.7833 1.3921 9.1754 28.08 218.5551  763.74 1063.2025 1281.7575  

3 3 BNHO 8.4376 1.5193 9.9569 33.37 281.5627  610.24 927.1376 1208.7003  

4 4 BNHO 8.7488 1.4376 10.186 34.9 305.3331  701.99 1009.1808 1314.5139  

5 5 BNHO 8.3025 1.5873 9.8898 33.36 276.9714  648.24 1028.9514 1305.9228  

6 6 BNHO 8.2843 1.5711 9.8554 28.32 234.6114  641.74 1008.2377 1242.8491  

7 7 BNHO 8.0268 1.563 9.5898 33.72 270.6637  690.74 1079.6266 1350.2903  

8 8 BNHO 8.2727 1.647 9.9197 37.1 306.9172  674.24 1110.4733 1417.3905  

9 9 BNHO 8.3767 1.5894 9.9661 37.27 312.1996  638.24 1014.4187 1326.6183  

10 10 BNHO 6.9725 1.6073 8.5798 32.48 226.4668  708.24 1138.3542 1364.8210  

11 11 BNLH 3.8722 1.1071 4.9793 49.58 191.9837  1446.7 1601.6859 1793.6695  

12 12 BNLH 3.4174 1.1017 4.5191 42.66 145.7863  1206.7 1329.4655 1475.2517  

13 13 BNLH 3.0378 1.0489 4.0867 33.37 101.3714  1167.7 1224.8425 1326.2139  

14 14 BNLH 3.6345 1.1079 4.7424 41.68 151.4860  1167.1 1292.9858 1444.4717  

15 15 BNLH 3.6213 1.1004 4.7217 40.08 145.1417  1378.2 1516.6153 1661.7570  

16 16 BNLH 3.5239 1.2158 4.7397 48.28 170.1339  1215.2 1477.4888 1647.6227  

17 17 BNLH 3.5064 1.1156 4.622 42.82 150.1440  1471.7 1641.8731 1792.0172  

18 18 BNLH 3.5212 1.1164 4.6376 47.84 168.4542  1580.2 1764.1799 1932.6341  

19 19 BNLH 2.9426 1.1527 4.0953 43 126.5318  1465.7 1689.5585 1816.0903  

20 20 BNLH 2.8246 1.0195 3.8441 43.87 123.9152  1399.2 1426.5252 1550.4404  

21 21 BNMH 6.1651 1.8308 7.9959 27.4 168.9237  774.24 1417.4786 1586.4023  

22 22 BNMH 6.1303 1.9475 8.0778 30.1 184.5220  879.24 1712.3199 1896.8419  

23 23 BNMH 5.1469 1.9378 7.0847 26.72 137.5252  952.24 1845.2507 1982.7758  

24 24 BNMH 6.2564 2.1008 8.3572 29.56 184.9392  900.05 1890.8250 2075.7642  

25 25 BNMH 6.1468 1.7262 7.873 29.18 179.3636  960.24 1657.5663 1836.9299  

26 26 BNMH 6.0528 1.8623 7.9151 29.06 175.8944  808.24 1505.1854 1681.0797  

27 27 BNMH 6.1136 1.9893 8.1029 28.68 175.3380  915.24 1820.6869 1996.0250  

28 28 BNMH 6.1568 1.8937 8.0505 24.12 148.5020  955.24 1808.9380 1957.4400  

29 29 BNMH 6.1457 1.9702 8.1159 27.04 166.1797  908.53 1789.9858 1956.1655  

30 30 BNMH 6.1329 1.7922 7.9251 29.06 178.2221  914.74 1639.3970 1817.6191  

31 31 BNHH 1.8607 0.4775 2.3382 28.74 53.4765  450.32 215.0278 268.5043  

32 32 BNHH 1.338 0.6157 1.9537 23.16 30.9881  508.79 313.2620 344.2501  

33 33 BNHH 1.2802 0.6287 1.9089 28.01 35.8584  415.91 261.4826 297.3410  

34 34 BNHH 1.7349 0.6283 2.3632 25.69 44.5696  477.52 300.0258 344.5954  

35 35 BNHH 1.0782 0.647 1.7252 26.43 28.4968  496.17 321.0220 349.5188  

36 36 BNHH 1.2831 0.6284 1.9115 27.22 34.9260  509.34 320.0693 354.9952  

37 37 BNHH 1.5267 0.6313 2.158 27.51 41.9995  500.41 315.9088 357.9084  

38 38 BNHH 1.5174 0.6221 2.1395 31.24 47.4036  476.03 296.1383 343.5418  

39 39 BNHH 1.4804 0.6429 2.1233 30.42 45.0338  465.06 298.9871 344.0208  

40 40 BNHH 1.3782 0.5382 1.9164 29.66 40.8774  470.19 253.0563 293.9337  
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Table BIV.8: Biomass and Pb uptake data for B. juncea 

S/N 
Pot 
No 

Species & 
treatment 

Shoot 
DW (g) 

Root 
DW (g) 

Total 
DW (g) 

Shoot 
Pb 
(mg/kg) 

Shoot Pb 
(µg) 

Root Pb 
(mg/kg) 

Root Pb 
(µg) 

Total 
plant Pb 
(µg) 

1 1 BJHO 3.8502 0.7997 4.6499 35.41 136.3356 487.69 390.0057 526.3413 

2 2 BJHO 3.6778 0.7527 4.4305 36.22 133.2099 497.54 374.4984 507.7083 

3 3 BJHO 2.6016 0.8052 3.4068 31.72 82.5228 444.94 358.2657 440.7884 

4 4 BJHO 4.0583 0.7547 4.813 37.96 154.0531 593.74 448.0956 602.1486 

5 5 BJHO 3.5058 0.7878 4.2936 34.26 120.1087 519.34 409.1361 529.2448 

6 6 BJHO 3.952 0.7343 4.6863 35.27 139.3870 502.29 368.8315 508.2186 

7 7 BJHO 3.8807 0.7926 4.6733 38 147.4666 484.54 384.0464 531.5130 

8 8 BJHO 3.5142 0.7421 4.2563 31.82 111.8218 557.74 413.8989 525.7207 

9 9 BJHO 3.4553 0.7827 4.238 28.54 98.6143 565.34 442.4916 541.1059 

10 10 BJHO 4.2871 0.7778 5.0649 39.72 170.2836 518.74 403.4760 573.7596 

11 11 BJLH 1.4502 0.6465 2.0967 32.14 46.6094 409.54 264.7676 311.3770 

12 12 BJLH 2.4085 0.6677 3.0762 35.38 85.2127 307.94 205.6115 290.8243 

13 13 BJLH 1.9312 0.526 2.4572 34.02 65.6994 470.39 247.4251 313.1246 

14 14 BJLH 2.2554 0.5147 2.7701 35.49 80.0441 378.24 194.6801 274.7243 

15 15 BJLH 2.2761 0.6078 2.8839 30.62 69.6942 427.44 259.7980 329.4922 

16 16 BJLH 2.3221 0.6513 2.9734 35.16 81.6450 342.89 223.3243 304.9693 

17 17 BJLH 1.275 0.509 1.784 34.53 44.0258 438.79 223.3441 267.3699 

18 18 BJLH 2.0389 0.5418 2.5807 37.88 77.2335 450.54 244.1026 321.3361 

19 19 BJLH 2.1917 0.6713 2.863 37.36 81.8819 367.74 246.8639 328.7458 

20 20 BJLH 2.156 0.687 2.843 33.26 71.7086 349.59 240.1683 311.8769 

21 21 BJMH 1.1545 0.5398 1.6943 40.38 46.6187 1176.7 635.2043 681.8230 

22 22 BJMH 0.8154 0.4671 1.2825 39.42 32.1431 1113.2 519.9944 552.1375 

23 23 BJMH 1.4865 0.5267 2.0132 38.82 57.7059 1281.7 675.0925 732.7984 

24 24 BJMH 0.9781 0.4878 1.4659 38.99 38.1361 1191.7 581.3308 619.4669 

25 25 BJMH 1.1332 0.5177 1.6509 41.08 46.5519 1169.2 605.3155 651.8674 

26 26 BJMH 1.1459 0.4911 1.637 47.86 54.8428 1154.7 567.0928 621.9356 

27 27 BJMH 1.1751 0.5722 1.7473 37.32 43.8547 1249.7 715.1012 758.9560 

28 28 BJMH 0.9299 0.4756 1.4055 48.26 44.8770 971.86 462.2166 507.0936 

29 29 BJMH 1.11 0.4864 1.5964 43.36 48.1296 1208.7 587.9311 636.0607 

30 30 BJMH 0.9621 0.4132 1.3753 44.2 42.5248 1037.2 428.5876 471.1124 

31 31 BJHH 0.7094 0.3383 1.0477 99.5 70.5853 693.59 234.6415 305.2268 

32 32 BJHH 0.6083 0.3268 0.9351 42.88 26.0839 735 240.1980 266.2819 

33 33 BJHH 0.9935 0.3097 1.3032 49.36 49.0392 739.12 228.9055 277.9446 

34 34 BJHH 0.8414 0.2834 1.1248 66.52 55.9699 741.07 210.0192 265.9892 

35 35 BJHH 0.9254 0.3038 1.2292 60.98 56.4309 738.45 224.3411 280.7720 

36 36 BJHH 0.8256 0.3023 1.1279 47.94 39.5793 708.62 214.2158 253.7951 

37 37 BJHH 0.8508 0.3434 1.1942 48.8 41.5190 683 234.5422 276.0612 

38 38 BJHH 0.8596 0.2614 1.121 52.92 45.4900 768.59 200.9094 246.3995 

39 39 BJHH 0.7592 0.2929 1.0521 54.36 41.2701 703.04 205.9204 247.1905 

40 40 BJHH 0.8094 0.3178 1.1272 46.02 37.2486 730.14 232.0385 269.2871 
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Appendix IV.9: Result of test of experimental data for normal distribution 

(fourth pot trial). 
 

Table AIV.9:One-Sample Kolmogorov-Smirnov Test  for shoot, root and total DW 

 Shoot DW Root DW Total DW 

N 40 40 40 

Normal Parametersa,b 
Mean 4.7581 1.2914 6.0495 

Std. Deviation 2.60383 .49759 3.02708 

Most Extreme Differences 

Absolute .165 .152 .202 

Positive .142 .152 .142 

Negative -.165 -.127 -.202 

Kolmogorov-Smirnov Z 1.047 .963 1.275 

Asymp. Sig. (2-tailed) .223 .311 .078 

 

 

 

 

 

 

 

 

 

 

 

Table BIV.9: One-Sample Kolmogorov-Smirnov Test for shoot, root and total Pb (mg/kg & µg) 

 Shoot Pb 

µg 

Root Pb µg Total Pb µg Shoot Pb 

mg/kg 

Root Pb 

mg/kg 

N 40 40 40 40 40 

Normal Parametersa,b 

Mean 
156.7430 1134.2975 1291.0395 33.0488 849.760

0 

Std. 

Deviation 

85.29774 563.44510 610.26686 7.05625 338.760

18 

Most Extreme 

Differences 

Absolute .137 .176 .196 .176 .137 

Positive .137 .176 .187 .176 .137 

Negative -.096 -.136 -.196 -.099 -.100 

Kolmogorov-Smirnov Z .866 1.110 1.242 1.114 .866 

Asymp. Sig. (2-tailed) .441 .170 .092 .167 .441 

a. Test distribution is Normal. 

b. Calculated from data. 
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Appendix IV.11: Quality control data for pot trial four soil and herbage 

analysis. 
 

Table AIV.11: Analysis of certified reference materials for pot trial four herbage 

analysis. 

 

 

 

 

 

 

Regression Analysis: Measured values versus certified values    
 
The regression equation is 

Measured values = 1.12 + 0.996 Certified values 

 

 

Predictor            Coef  SE Coef      T      P 

Constant           1.1165   0.5280   2.11  0.281 

Certified values  0.99617  0.01313  75.89  0.008 

 

S = 0.522773   R-Sq = 100.0%   R-Sq(adj) = 100.0% 

 

Table BIV.11: Blank analysis for pot trial 4 herbage analysis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample BCR-60 HRM 11 HRM 14  

x1 43.96 27.46 9.52 

x2 86.04 25.74 11.21 

MEAN 65.00 26.60 10.37 

CERTIFIED 
VALUES 64.00 26.00 9.00 

BIAS 1.0 0.60 1.37 

BIAS% 1.6 2.3 15.2 

BLANK        

SAMPLE mg/kg Pb     

RBLK 1 4.94     

RBLK 2 12.14     

RBLK 3 10.44      

RBLK 4 6.96     

RBLK 5 4.24     

Mean 7.74     

Std 3.44     

µ 0     

SEM 1.54     

mean-µ 7.74     

t-test 5.04     

           

 T-TAB. 2.78   df(n-1) 4 

 
two tailed 
test   

 
5.04>2.78 

  
significant   
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Table CIV.11: Analysis of Certified Reference Materials for root placement 

herbage analysis (pot trial 4) 

Sample BCR-60  HRM 11 HRM 14  

x1 48.44 28.26 7.88 

x2 78.82 24.56 10.62 

MEAN 63.63 26.41 9.25 

CERTIFIED 
VALUES 64.00 26.00 9.00 

BIAS -0.4 0.41 0.25 

BIAS% -0.6 1.6 2.8 

 

Regression Analysis: Measured values versus certified values  
 
The regression equation is 

Measured values = 0.520 + 0.987 Certified values 

 

 

Predictor             Coef   SE Coef       T      P 

Constant            0.5199    0.2832    1.84 0.318 

Certified values 0.987175   0.007040 140.22 0.005 

 

 

S = 0.280378   R-Sq = 100.0%   R-Sq(adj) = 100.0% 

 

 

Table DIV.11: Blank analysis for root placement herbage analysis (Pot trial 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLANKS       

SAMPLE mg/kg Pb     

RBLK 1 0.28     

RBLK 2 3.68     

RBLK 3 2.40      

RBLK 4 4.00     

RBLK 5 0.08     

Mean 2.09     

Std 1.84     

µ 0     

SEM 0.82     

mean-µ 2.09     

t-test 2.54     

           

 T-TAB. 2.78   df(n-1) 4 

 
two tailed 
test    2.54<2.78 

  Not 
significant   
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Table EIV.11: Analysis of Certified Reference Materials for growth media soil 

analysis (pot trial 4). 

Sample   HRM 31 
SRM-
2711 

SRM-
2709 HRM 1 HRM 2 

SRM-
2710 

x1   7196.00 1340.80 20.08 8.80 567.20 5884.00 

x2   6716.00 1418.40 16.88 17.60 447.20 4452.00 

MEAN   6956.00 1379.60 18.48 13.20 507.20 5168.00 

CERTIFIED 
VALUES   6895.00 1400.00 17.30 13.00 510.00 5552.00 

BIAS   61.0 -20.40 1.18 0.2 -2.80 -384.00 

BIAS%   0.9 -1.5 6.8 1.5 -0.5 -6.9 

 
Regression Analysis: Measured values versus certified values  
The regression equation is 

Measured values = - 9.8 + 0.980 Certified values 

 

Predictor            Coef  SE Coef      T      P 

Constant            -9.83    90.99  -0.11  0.919 

Certified values  0.98015  0.02483  39.48  0.000 

 

S = 168.556   R-Sq = 99.7%   R-Sq (adj) = 99.7% 

Table FIV.11: Blank analysis for growth media soil analysis (Pot trial 4). 

 

BLANK       

SAMPLE mg/kg Pb    

RBLK 1 8.28    

RBLK 2 -3.80    

RBLK 3 2.92     

RBLK 4 5.64    

RBLK 5 7.44    

mean 4.10    

std 4.87    

µ 0    

SEM 2.17    

mean-µ 4.10    

t-test 1.88    

         

 T-TAB. 2.78   df(n-1) 

 
two tailed 
test    1.88<2.78 

 Not  
significant 

 

Table GIV.11:  Precision and detection limits of herbage and soil Pb analysis (Pot 

trial 4). 

Analysis Precision% 
Detection limit  
(mg/kg) 

Herbage 
analysis  1 6.6 0.81 

Root placement 
herbage 
analysis 3.5 0.91 

Growth media 
soil analysis 5.2 12.96 
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Appendix IV.10: Growth media concentration check data analysis 

 

 

 

Figure AIV.10: Regression model of Actual soil Pb concentration against Nominal soil Pb 

concentration. 

 

Table BIV.10:  Summary of the amount of PbO used to make grow media.  

Pb conc. 
(mg/kg)  

No. of 
cells 

No. of 
pots/treatment 

No of 
species 

g of PbO for 
mg/kg (DW  
in whole PT4 

Kg of growth 
media for both 
species (DW) 

Kg of 
growth 
media  
(FW) 

100 3 10 2 0.81 7.52 8.16 

300 12 10 2 9.72 30.08 32.64 

500 9 10 2 12.15 22.56 24.48 

700 3 10 2 5.67 7.52 8.16 

900 9 10 2 21.87 22.56 24.48 

1000 36 10 2 97.22 90.25 97.92 

1100 16 10 2 47.53 40.11 43.52 

1400 3 10 2 11.34 7.52 8.16 

1800 1 10 2 4.86 2.51 2.72 

2200 3 10 2 17.82 7.52 8.16 

3000 3 10 2 24.30 7.52 8.16 

4000 1 10 2 10.80 2.51 2.72 

10000 1 10 2 27.00 2.51 2.72 
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Table CIV.10: Growth media pH. 

TUBE NO 
SAMPLE 
ID 

 MASS (g) pH 

1 1000 4 6.62 

2 700 4 6.27 

3 500 4 6.73 

4 1000 4 6.54 

5 100 4 6.22 

6 900 4 6.49 

7 1100 4 6.25 

8 4000 4 6.36 

9 1800 4 6.60 

10 2200 4 6.68 

11 500 4 6.35 

12 300 4 6.28 

13 1400 4 6.43 

14 3000 4 6.15 

15 10000 4 6.57 

    MEAN 6.44 

    STDEV 0.18 

    SEM 0.05 

 
 
Table DIV.10: Gang Mine soil pH determination 

SAMPLE 
ID 

 MASS 
(g) 

pH 

GM-E8 4 6.84 

GM-A1 4 6.11 

GM-J6 4 6.36 

GM-B2 4 5.95 

GM-F1 4 6.27 

GM-G6 4 6.41 

  MEAN 6.32 

  STDEV 0.30 

  SEM 0.12 

STDEV--- Standard deviation 

SEM----Standard error on the mean 
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APPENDIX RELATED TO COPYRIGHT 

Appendix VI: Copyright permission of some figures used in the thesis and 

seeds used in pot trials. 
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