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Summary

The ATLAS experiment at the Large Hadron Collider has collected an unprecedented
amount of data in the 3 years of data taking since its start. In this document I will dis-
cuss the results of the analysis I performed during my PhD at the university of Sussex
for the search of Supersymmetry in events with three leptons (electron/muon/tau) and
missing transverse energy in the final state. The search is performed on the full dataset
collected by the experiment in 2012, at a centre-of-mass energy of 8 TeV. These results are
interpreted in SUSY models with chargino-neutralino pair production via decays involving
sleptons, staus, gauge bosons and the newly discovered Higgs boson. These results presen-
ted improve on previous searches performed at ATLAS in three lepton final states with
only electrons and muons. Special focus will be given to the optimisation process of Su-
persymmetry signal with respect to the SM background, and the statistical interpretation
of the results obtained with this search.
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so glad I found you... this is for us.



v

Contents

List of Tables ix

List of Figures xiv

1 Introduction 1

2 Theoretical Introduction 2

2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Shortcomings of The Standard Model . . . . . . . . . . . . . . . . . 8

2.2 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Minimal Supersymmetric Standard Model . . . . . . . . . . . . . . . 12

2.2.2 R-Parity SUSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Simplified Supersymmetric Models . . . . . . . . . . . . . . . . . . . 17

2.2.4 Phenomenological MSSM . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The ATLAS detector at the LHC 26

3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 The ATLAS detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Magnet System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Calorimeter System . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 ATLAS Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Level 1 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 High Level Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Event Simulation and Reconstruction 41

4.1 Event Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



vi

4.2 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.4 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Pile-up Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 MC samples 51

5.1 MC Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Background MC Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Signal MC Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Object Selection 56

6.1 Overlap Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Object Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.2 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.4 Taus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.5 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . . . . 67

7 SUSY Searches in Three Lepton Final States 68

7.1 The 2012 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Analysis Strategy and Personal Contribution . . . . . . . . . . . . . . . . . 69

7.3 Event pre-selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3.1 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.4 Signal Region Definition and Optimisation . . . . . . . . . . . . . . . . . . . 72

7.4.1 3`+ 0τ channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4.2 2`+ 1τ channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4.3 1`+ 2τ channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.5 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.5.1 Irreducible Background . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.5.2 Reducible Background . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.5.3 Validation of Background Estimation Method . . . . . . . . . . . . . 93

7.6 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



vii

7.6.1 Uncertainties on the Irreducible Background . . . . . . . . . . . . . 105

7.6.2 Uncertainties on the Reducible Background . . . . . . . . . . . . . . 109

7.6.3 Uncertainties on the Signal . . . . . . . . . . . . . . . . . . . . . . . 110

8 Results 111

8.1 Statistical Analysis Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Observed Events in Signal Regions . . . . . . . . . . . . . . . . . . . . . . . 114

8.3 Statistical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.3.1 Model Dependent Interpretation: Simplified Models . . . . . . . . . 121

8.3.2 Model Dependent Interpretation: pMSSM . . . . . . . . . . . . . . . 127

9 Conclusion 133

A Observed Data 134

B Improvements to the ATLAS offline shifter Tools 138

B.1 Offline Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.2 Debug Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.2.1 Automatic debug stream defect and web interface . . . . . . . . . . 140

B.2.2 New debug stream analysis histograms . . . . . . . . . . . . . . . . . 141

Bibliography 142



viii

List of Tables

2.1 Quarks in the Standard Model. . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Leptons in the Standard Model. . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Gauge Bosons in the Standard Model. . . . . . . . . . . . . . . . . . . . . . 4

2.4 Supersymmetric Particles in the MSSM [28]. . . . . . . . . . . . . . . . . . . 12

2.5 List of main free parameters within the pMSSM description. . . . . . . . . . 14

3.1 General performance goals of the ATLAS detector. . . . . . . . . . . . . . . 30

5.1 MC samples used in this analysis for background estimates, the generator

type and the order of cross section calculations used for yield normalisation

are also reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 MC signal samples used in this analysis. . . . . . . . . . . . . . . . . . . . 55

6.1 Overlap removal criteria for objects used in the analysis presented in this

thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Baseline selection criteria for electrons. . . . . . . . . . . . . . . . . . . . . 58

6.3 Signal selection criteria for electrons. . . . . . . . . . . . . . . . . . . . . . 59

6.4 Baseline selection criteria for muons. . . . . . . . . . . . . . . . . . . . . . 61

6.5 Signal selection criteria for muons. . . . . . . . . . . . . . . . . . . . . . . . 61

6.6 Baseline selection criteria for hadronic taus. . . . . . . . . . . . . . . . . . 66

6.7 Signal selection criteria for hadronic taus. . . . . . . . . . . . . . . . . . . . 66

7.1 The trigger chains used and the offline pT threshold used ensuring that the

lepton(s) triggering the event are in the plateau region of the trigger efficiency. 72

7.2 Summary of the selection requirements for the signal regions. . . . . . . . . 73

7.3 Summary of the bins in mSFOS, mT, and Emiss
T for SR0τa. . . . . . . . . . 75

7.4 Total irreducible background yields in the signal regions. . . . . . . . . . . . 87

7.5 Summary of the selection requirements for the validation regions. . . . . . 93



ix

7.6 Expected numbers of SM background events in selected validation regions,

as defined in table 7.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.7 Expected numbers of SM background events using MC based estimates in

selected validation regions, as defined in table 7.5. . . . . . . . . . . . . . . 95

7.8 Summary of the dominant systematic uncertainties in the background es-

timates for each SR defined in Section 7.4. . . . . . . . . . . . . . . . . . . . 105

8.1 Expected numbers of SM background events and observed numbers of data

events in all signal regions for 20.3 fb−1. . . . . . . . . . . . . . . . . . . . . 115

8.2 Expected numbers of SM background events and observed numbers of data

events in the signal regions SR0τb, SR1τ , SR2τa and SR2τb for 20.3 fb−1. . 116

8.3 Expected numbers of SM background events and observed numbers of data

events in the 20 bins in signal region SR0τa for 20.3 fb−1. . . . . . . . . . . 117

A.1 Full breakdown of expected numbers of SM background events and observed

numbers of data events in the signal regions SR0τa-bin01–bin12 for 20.3 fb−1.135

A.2 Full breakdown of expected numbers of SM background events and observed

numbers of data events in the signal regions SR0τa-bin13–bin20 for 20.3 fb−1.136

A.3 Full breakdown of expected numbers of SM background events and observed

numbers of data events in the signal regions SR0τb, SR1τ , SR2τa and

SR2τb for 20.3 fb−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.1 Main types of debug stream errors. . . . . . . . . . . . . . . . . . . . . . . . 139



x

List of Figures

2.1 Visualisation of the Higgs potential, so called “Mexican hat” in the complex

(φ1, φ2) plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Summary of several Standard Model total production cross section meas-

urements at ATLAS, compared to the corresponding theoretical expectations. 9

2.3 One-loop quantum corrections to the Higgs squared mass parameter m2
H ,

due to (a) a fermion field f and (b) a scalar field S. . . . . . . . . . . . . . 10

2.4 Production cross section for supersymmetric particles at the LHC energy

of
√
s = 8 TeV as a function of mass. . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Diagrams for the electroweak SUSY production of charginos with leptons

in the final state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Diagrams for the electroweak SUSY production of neutralinos with leptons

in the final state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 SUSY production process, with a simplified model decay chain highlighted

by the red arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Diagram for the ˜̀
L-mediated simplified models of the direct production of

χ̃±1 χ̃
0
2 studied in this analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Diagram for the WZ-mediated simplified models of the direct production

of χ̃±1 χ̃
0
2 studied in this analysis. . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Diagram for the τ̃L-mediated simplified models of the direct production of

χ̃±1 χ̃
0
2 studied in this analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Diagram for the Wh-mediated simplified models of the direct production

of χ̃±1 χ̃
0
2 studied in this analysis. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.12 Three possible electroweak SUSY mass spectra and their dependency on

the values of the parameters M1 , M2 and µ . . . . . . . . . . . . . . . . . 22

2.13 Dominant diagrams for the electroweak SUSY production in the pMSSM

model via ˜̀
R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



xi

2.14 Dominant production of EWK SUSY processes in the pMSSM model via τ̃R. 24

2.15 Dominant production of EWK SUSY processes in the pMSSM model via

no-˜̀. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 A schematic view of the LHC with the four main experiments. . . . . . . . 27

3.2 The CERN accelerator complex. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 A cut-away view of the ATLAS detector. . . . . . . . . . . . . . . . . . . . . 29

3.4 Schematic view of the layout of the four superconducting magnets forming

the ATLAS magnetic system. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Diagram of the ATLAS inner detector and its components. . . . . . . . . . 32

3.6 Schematic image of the sub-detectors within the ID tracker. . . . . . . . . . 33

3.7 A cut-away view of the ATLAS electromagnetic and hadronic calorimeter

layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 The ATLAS muon system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 A schematic view of the ATLAS trigger system. . . . . . . . . . . . . . . . . 38

3.10 A schematic view of the ATLAS L1 trigger system. . . . . . . . . . . . . . . 39

4.1 Full MC production chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Diagram of a simulated high energy proton-proton collision process. . . . . 43

4.3 Schematic representation of the Full Chain Monte Carlo production. . . . . 45

4.4 The 2011 (red) and 2012 (blue) electron reconstruction efficiency, including

track quality criteria, is shown as a function of the pseudo-rapidity η for

electrons with transverse energy ~Emiss
T between 15 and 50 GeV for data and

MC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Representation of a b-jet accompanied by two light jets, where the distance

of the secondary vertex (Lxy) and the impact parameter (d0) of each track

is illustrated in the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Luminosity-weighted distribution of the mean number of interactions per

crossing for the 2011 and 2012 data. . . . . . . . . . . . . . . . . . . . . . . 50

6.1 2012 Electron identification efficiency as a function of ET. . . . . . . . . . . 60

6.2 Three-prong tau reconstruction cone. . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Distributions of a selection of jet discriminating variables for simulated

Z → ττ and W → τν MC signal samples and a jet background sample

selected from 2012 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



xii

6.4 Signal (top) and background (bottom) efficiencies for 1-prong (left) and

multi-prong (right) τhad using simulated Z → ττ and W → τν as signal

samples and a jet background sample selected from 2012 data. . . . . . . . 65

6.5 Signal (left) and background (right) efficiencies for 1-prong τhad using sim-

ulated Z → ττ as signal sample and Z → ee as background sample selected

from 2012 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Total integrated luminosity in the 2012 LHC run. . . . . . . . . . . . . . . . 69

7.2 Efficiency of the single muon trigger (EF mu24i tight) with respect to offline

reconstructed isolated muons as a function of pT for the barrel region. . . . 71

7.3 Standard Model Higgs boson decay branching ratios. . . . . . . . . . . . . . 76

7.4 The Emiss
T distribution after SFOS veto and a b-jet veto are applied in SR0τb. 76

7.5 The p3rd `
T distribution after SFOS veto, b-jet veto and Emiss

T > 50 GeV are

applied in SR0τb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.6 The m`τ distribution (a) before and (b) after applying Z(→ ee) veto for

`±`±τ∓ events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.7 The sum of the lepton pT where b-jet veto, Z(→ ee) veto and Emiss
T require-

ments have been applied in SR1τ . . . . . . . . . . . . . . . . . . . . . . . . 79

7.8 The pT of the sub-leading lepton in `±`±τ∓ events where the b-jet veto,

Z(→ ee) veto, Emiss
T ,

∑
p`T requirements are applied in SR1τ . . . . . . . . . 80

7.9 The m`τ distribution in `±`±τ∓ events where the b-jet veto, Z(→ ee) veto,

Emiss
T and

∑
p`T and p 2nd`

T requirements are applied in SR1τ . . . . . . . . . 80

7.10 The Emiss
T distribution in 1`+2τ events where b-jet veto is applied in SR2τa. 82

7.11 The Emiss
T distribution in `τ+τ− events where b-jet veto is applied SR2τb. . 83

7.12 The mττ distribution in for `τ+τ− events where the b-jet veto and Emiss
T

requirements are applied in SR2τb. . . . . . . . . . . . . . . . . . . . . . . . 84

7.13 The
∑
pτT distribution in for `τ+τ− events where the b-jet veto, Emiss

T and

mττ requirements are applied in SR2τb. . . . . . . . . . . . . . . . . . . . . 85

7.14 Sources of electrons, muons and taus obtained from MC after all cuts in

the signal regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.15 The purity of the leading light lepton in SR0τb, SR1τ , SR2τa and SR2τb

using MC events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.16 Number of expected and observed events in the validation region VR0τb. . 96

7.17 Distributions in VR0τnoZa. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.18 Distributions in VR0τZa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



xiii

7.19 Distributions in VR0τnoZb. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.20 Distributions in VR0τZb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.21 Distributions in VR1τa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.22 Distributions in VR1τb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.23 Distributions in VR2τa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.24 Distributions in VR2τb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.1 Distribution of the pdf of a test statistic (q) for background-only and sig-

nal+background hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2 Expected distributions of SM background events and observed data distri-

butions in (a) the binned signal regions SR0τa. . . . . . . . . . . . . . . . . 118

8.3 Expected distributions of SM background events and observed data for

∆φmin
``′ in SR0τb, prior to the requirement on this variable. . . . . . . . . . 119

8.4 Expected distributions of SM background events and observed data for

Emiss
T in SR1τ , prior to the requirement on this variable. . . . . . . . . . . . 120

8.5 Expected distributions of SM background events and observed data for (a)

mmax
T2 and (b) mττ variables in SR2τa and SR2τb regions respectively, prior

to the requirements on these variables. . . . . . . . . . . . . . . . . . . . . . 120

8.6 Observed and expected 95% CL exclusion contours for chargino and neut-

ralino production in the ˜̀
L-mediated simplified models. . . . . . . . . . . . 122

8.7 Observed and expected 95% CL exclusion contours for chargino and neut-

ralino production in the WZ-mediated simplified models. . . . . . . . . . . 123

8.8 The observed (left) and expected (right) CLs for (a-b) ˜̀
L-mediated and

(c-d) WZ-mediated, using pseudo-experiments. . . . . . . . . . . . . . . . . 124

8.9 Observed and expected 95% CL exclusion contours for chargino and neut-

ralino production in the τ̃L-mediated simplified model. . . . . . . . . . . . . 125

8.10 Observed and expected 95% CL exclusion contours for chargino and neut-

ralino production in the Wh-mediated simplified model. . . . . . . . . . . . 126

8.11 The observed (left) and expected (right) CLs for (a-b) τ̃L-mediated and

(c-d) Wh-mediated, using pseudo-experiments. . . . . . . . . . . . . . . . . 127

8.12 Observed and expected 95% CL exclusion contours in the pMSSM model

with sleptons, M1 = 100 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.13 Observed and expected 95% CL exclusion contours in the pMSSM model

with sleptons, M1 = 140 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . 129



xiv

8.14 Observed and expected 95% CL exclusion contours in the pMSSM model

with sleptons, M1 = 250 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.15 Observed and expected 95% CL exclusion contours in the pMSSM model

with τ̃R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.16 Observed and expected 95% CL exclusion contours in the pMSSM model

with no ˜̀. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.1 Percentage of debug stream events in a given luminosity block. . . . . . . . 140

B.2 Debug stream error history plot. . . . . . . . . . . . . . . . . . . . . . . . . 141



1

Chapter 1

Introduction

This document summarises the work done during the four years of my PhD at the Uni-

versity of Sussex as part of the ATLAS collaboration at the Large Hadron Collider. The

analysis presented in this thesis describes the search for Supersymmetry in events with

three leptons and missing transverse energy in the final state using the ATLAS detector.

Firstly, the theoretical background is reviewed in Chapter 2, which describes the features

of the Standard Model of particle physics as well as its shortcomings, which motivate the

need for an extended theory such as Supersymmetry. Chapter 3 focuses on introducing

the experimental setup used for these searches: the ATLAS detector at the Large Hadron

Collider. Chapters 4-6 give an overview of the tools used in the analysis presented in this

thesis, from MC-simulated and real data, to the algorithms used for particle reconstruc-

tion and identification. Chapter 7 provides a description of the SUSY trilepton analysis,

focusing on my personal contribution. Chapter 8 shows the results of this analysis and

Chapter 9 provides some concluding remarks. A brief description on the service work done

for the ATLAS experiment during the qualification period is also provided in Appendix B.

This analysis has been published in a refereed paper [1] in April 2014.
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Chapter 2

Theoretical Introduction

“It doesn’t matter how beautiful

your theory is, it doesn’t matter

how smart you are. If it doesn’t

agree with experiment, it’s

wrong.”

Richard P. Feynman

The Standard Model (SM) theory aims to provide a general description of funda-

mental particles and the way they interact in nature. However, there are several “known

unknowns” that are not addressed by this theory.

This chapter gives a brief overview of the most successful theory in particle physics, the

Standard Model, as well as some of its limitations which motivate the need for an extended

description. Many theoretical extensions of the Standard Model have been formulated to

cover such limitations, one of the most popular being Supersymmetry.

2.1 The Standard Model

The Standard Model of particle physics [2, 3, 4] is a remarkable theory which can explain

most of the current experimental observations as well as some cosmological phenomena in

the early universe. It summarises the current knowledge of the fundamental particles and

their interactions in terms of three forces: the electromagnetic, weak and strong (gravity

is not considered). It is based on a relativistic Quantum Field Theory (QFT) [5], where

particles are treated as fields. This section focuses on the description of the field content

of the SM, the interactions compatible with that content and the limitations they imply.
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2.1.1 Overview

Elementary particles are generally distinguished by mass eigenstates and quantum num-

bers. Based on the spin quantum numbers, the elementary particles described within the

SM are divided into two types: fermions and bosons, with corresponding spin quantum

numbers of half-integer and integer, respectively.

Fermions

Fermions are subdivided into: six quarks, also referred to as “colour triplets” due to the

fact that they carry one of three so-called “colour” charges (red, green or blue); and six

leptons, three of them electrically neutral, known as neutrinos. Tables 2.1- 2.2 show the

categorisation of quarks and leptons, respectively, along with a few of their fundamental

properties. Leptons and quarks are organised in three generations each containing one

charged lepton, one neutrino, and one up- and down-type quarks. The masses of fermions

increase with each generation. The generations are grouped according to their left- and

right-handed chirality states, this due to the chiral nature of the theory discussed in Sec-

tion 2.1.1. Chirality is an non-physical concept closely related to handedness (defined as

the projection of the spin of a particle onto its direction of motion), which is equivalent

in the case of massless particles. Neutrinos are the only fermionic fields which are as-

sumed massless in the SM and can therefore be considered as either left- or right-handed.

Each fermion has an associated antiparticle with all the same quantum numbers but one

(two in case of quarks), which is inverted: this is the charge in case of charged leptons,

“handedness” in case of neutrinos, and charge as well as colour in case of quarks.

Table 2.1: Quarks in the Standard Model.

Name Symbol Mass [MeV] Charge [e]

Generation

1st
Up u 2.3 +2/3

Down d 4.8 −1/3

2nd
Charm c 1.3×103 +2/3

Strange s 9.5×101 −1/3

3rd
Top t 1.7×105 +2/3

Bottom b 4.2×103 −1/3
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Table 2.2: Leptons in the Standard Model.

Name Symbol Mass [MeV] Charge [e]

Generation

1st
Electron e 0.511 -1

Electron Neutrino νe ≤ 0.022× 10−1 0

2nd
Muon µ 1.057× 102 -1

Muon Neutrino νµ ≤ 0.017× 101 0

3rd
Tau τ 1.777× 103 -1

Tau Neutrino ντ ≤ 0.155× 102 0

Forces

Each force in the SM is described by a gauge theory, where the interactions are mediated

by gauge fields of the corresponding local symmetry group. All fermions can interact via

the weak and electromagnetic forces; additionally quarks can also interact via the strong

force. These interactions arise from the exchange of gauge bosons. Table 2.3 summarises

the three forces described in the SM, the mass and charge properties of their corresponding

mediating particle(s) (gauge bosons).

Table 2.3: Gauge Bosons in the Standard Model.

Force Name Symbol Mass [GeV] Charge [e]

Electromagnetic Photon γ 0 0

Weak
W W± 80.398 ±1

Z Z 91.188 0

Strong Gluons g 0 0

The theory that describes the electromagnetic interactions is the Quantum ElectroDynam-

ics (QED) [6], where the force carrier is the electrically neutral and massless photon, which

couples to all charged particles. The strong force, mediated by the exchange of the electric-

ally neutral, coloured and massless gluons, is described by the Quantum ChromoDynamics

(QCD) gauge field theory [7]. The weak force is mediated by the heavy Z and W± bosons.

The gravitational force, with the Graviton as mediator, is not included in Table 2.3, as it

is not a part of the SM description.

The electromagnetic and weak forces are described by one unified gauge theory, known

as the electroweak theory [8]. It is believed [9] that at very high energies (∼ 1016 GeV)

the strong and electroweak forces are unified into one force, which may be described by a
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Grand Unified Theory (GUT).

Gauge Groups in the SM

In gauge field theory, an interaction can be described by the invariance of fermion fields

under a transformation, TX , where the quantity X is conserved [10].

The SM force interactions can be mathematically described by the local gauge sym-

metry group presented in Equation 2.1.

SU(3)C × SU(2)L × U(1)Y , (2.1)

where the indices: C denotes colour charge; L denotes left-handedness; and Y denotes

weak-hypercharge, a variable used to assess the correlation between the electric charge

(Q) and the third component of the weak isospin (I3), defined as Q = I3 + Y
2 , where I3 is

equal to ±1/2 for left-handed particles and 0 for right-handed particles.

The SU(3)C gauge group [11] describes the strong interactions (using QCD) acting

on coloured fermion fields. This is a non-Abelian group, meaning that not all the group

elements commute, where self-interaction terms are allowed, i.e. gluons may couple to

themselves. The specific gauge bosons associated to the algebra of the SU(3)C group are

eight massless gluons, denoted as Gα=1,...8.
µ , which mediate the interactions. Quark fields

are treated as colour triplets (three component field) under the SU(3)C symmetry, gluons

are colour octets and the rest of the gauge bosons and leptons are colour singlets (colourless

particles). Another property of the SU(3)C group symmetry is that it acts in the same

way for left- and right-handed particles, and it is therefore considered a non-chiral gauge

group.

The weak interactions [6] are represented by the massless SU(2)L [2] gauge fields,

Wα=1,2,3.
µ . These massless gauge fields violate parity by acting only on left-handed com-

ponents of the fermion fields, and therefore left-handed particles are treated as doublets

and right-handed particles as singlets. SU(2)L is also a non-Abelian symmetry group,

hence, the weak gauge bosons may couple to each other.

QED is based on the Abelian symmetry group is U(1)Q [2], which is used to describe

the electromagnetic force, where the interaction is between charged fermions and the

massless photon. Since it acts on left- and right-handed particles with different strength,

it is considered a chiral gauge group.

The ElectroWeaK (EWK) sector corresponds to the SU(2)L × U(1)Y term in Equa-

tion 2.1, where the gauge field associated to the U(1)Y symmetry is identified by B0
µ.
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The four non-physical bosons, Wα=1,2,3.
µ and B0

µ, associated with the SU(2)L, U(1)Y

symmetries and with corresponding gauge coupling constants g and g′, respectively, are

related to the physical bosons that mediate the electroweak interactions: W±, Z and γ.

The electroweak mixing for gauge bosons (field mixing) is expressed as:

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ) (2.2)

Zµ = B0
µcos(θW ) +W 3

µsin(θW ) (2.3)

Aµ = −B0
µsin(θW ) +W 3

µcos(θW ) (2.4)

where θW is the experimentally determined weak mixing angle defined as a ratio of the

electroweak coupling constants g and g′ (tanθW = g′/g) and Aµ is the associated photon

field.

Electroweak Symmetry Breaking

The SM can be described by the invariance of massless fermion fields under SU(3)C ×

SU(2)L×U(1)Y transformations, where all the gauge bosons responsible for mediating the

forces are considered massless. This is not a problem for the gluon and photon, which me-

diate long range forces and must be massless. However, it is known from experiments [12]

that three of the gauge bosons, W± and Z, have mass, as do the charged leptons and

quarks. In order for the SM assumptions to be valid, the electroweak sector symmetry

must be broken.

Equation 2.5 defines the Standard Model Lagrangian as the sum of the Lagrangians

describing the action of each force in the SM, the interactions and masses of all elementary

particles in nature:

LSM = LQCD + LEWK + LMass, (2.5)

If mass terms (LMass) are inserted by hand into the SM Lagrangian, this would break

the gauge invariance of the SM theory, which also leads to divergences and thus, a non-

renormalisable theory. The Higgs mechanism [13] overcomes this problem by introducing

a scalar field, known as the Higgs field, which couples to massive fermionic and bosonic

particles. A complex scalar field (two degrees of freedom) can be generally written as

φ =
φ1 + iφ2√

2
, (2.6)

with a description provided by a Lagrangian density,

L = (∂µφ)∗(∂µφ)− V (φ), (2.7)
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and an associated potential,

V (φ) = µ2|φ|2 + λ|φ|4. (2.8)

If the µ and λ constants in Equation 2.8 are assumed to be real, the V (φ) potential

has the shape shown in Figure 2.1. The ground state (minimum) of this potential, the

so-called Vacuum Expectation Value (VEV) of the Higgs field, is a circle in the complex

plane of radius |φ0|, which is non-zero (|φ0| =
√
−mu2

λ = ν). In order to generate masses,

the gauge symmetry must be broken in a way that preserves the global Lagrangian sym-

metry at the same time, in order to guarantee a renormalisable theory. This dilemma

can be solved by “Spontaneous” Symmetry Breaking (SSB), a mechanism where there

is a symmetric Lagrangian, but not a symmetric VEV. For example if a Lagrangian in-

variant under a generic transformation, G, has a degenerate set of states with minimal

energy that transform under G as the members of a given multiplet, and if one of those

states is arbitrarily selected as the ground state of the system, the symmetry is said to be

spontaneously broken.

Figure 2.1: Visualisation of the Higgs potential, so called “Mexican hat” in the complex

(φ1, φ2) plane [14]. The lowest-energy state is described by a randomly chosen point

around the bottom of the hat.

The VEV of the Higgs field is not invariant under gauge transformations and so spon-

taneously breaks the gauge symmetry, which means that the symmetry is preserved in

the model but not on the ground state of the vacuum. The Lagrangian in equation 2.7

is expanded around the selected minimum in order to obtain the equations of motion in

terms of new fields which have a zero VEV, η and ξ:
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φ(x) =
ν + η(x) + iξ(x)√

2
. (2.9)

The expanded Lagrangian becomes

L =
1

2
(∂µη)(∂µη)− 1

2
(∂µξ)(∂µξ)−

1

2
m2
η + const+O(η, ξ). (2.10)

This equation shows that only one of the two fields, η, contains mass and the other

one, ξ, is massless. The higher-order terms in η and ξ represent the field interactions. If

the same reasoning is applied to a doublet of complex scalar field (four degrees of freedom)

then it is possible to generate all the necessary masses for the gauge bosons. Three out of

the four degrees of freedom will generate masses for the W±, Z bosons, the fourth degree

of freedom generates the mass for a real neutral scalar field, the Higgs boson. The photon

does not pick up such mass terms in the Lagrangian, hence remaining massless.

This mechanism gives mass to the gauge bosons without violating gauge symmetry.

The weak gauge bosons and fermions acquire mass by interacting with the Higgs field, and

the mass generated is proportional to the strength of their coupling with the Higgs boson.

In particular, fermions can acquire mass through Yukawa couplings [15] to the Higgs field,

where the coupling constant and thus the mass can be different for each particle.

The observed differences in the masses of fermions across generations and bosons are

not explained by the SM, these unknown features can be parametrised by the SM Lag-

rangian implying that they are to be considered as “free” parameters in the SM theory.

There are 19 free parameters in the SM, including the masses for all charged fermions,

mixing parameters, coupling constants, the Z boson mass, and the mass of the Higgs

boson, which has been a main subject of study for many experiments.

In 2012, searches at the LHC showed evidence for the discovery of a new particle whose

mass was consistent with the SM Higgs (∼125 GeV) [16, 17]. The following year, studies

from the ATLAS and CMS experiments confirmed that this particle is consistent with the

SM Higgs (some of the latest results can be found in [18, 19]), completing the SM particle

content description.

2.1.2 Shortcomings of The Standard Model

Experimental results on the measurements of several of the parameters in the SM have

demonstrated the goodness of this model [20]. In Figure 2.2 the measurement of the

production cross section of several processes is compared to the SM prediction, showing a

very good agreement between the two.
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Despite the experimental success of SM theory, many fundamental questions remain

unanswered, some of them associated with the adhoc tuning of its free parameters (also

known as “fine-tuning” [21]) and others associated to unexplained observational facts.

This section briefly describes some of these limitations.

Figure 2.2: Summary of several Standard Model total production cross section measure-

ments at ATLAS, compared to the corresponding theoretical expectations. All theoretical

expectations were calculated at NLO or higher. The W and Z vector-boson inclusive

cross sections were measured at ATLAS with 35 pb−1 of integrated luminosity from the

2010 dataset. All other measurements were performed using the 2011 or 2012 ATLAS

dataset [20].

Hierarchy Problem

The mass of the Higgs, m2
H , receives extremely large quantum corrections [22] from the

coupling of every particle to the Higgs field. If the Higgs couples to a fermion (scalar)

field, , f (S), with mass mf (mS), then this introduces a term in the Lagrangian of the

form −λfHf̄f (−λSHS̄S). The diagrams shown in Figure 2.3 illustrate the coupling (loop

diagram) of a Higgs boson to a fermion (a) and scalar (b) field.

The corresponding quadratic Higgs mass corrections from the loop diagrams shown in
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f

H

S

H

(b)(a)

Figure 2.3: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due

to (a) a fermion field f and (b) a scalar field S.

Figure 2.3 are

∆m2
H = −

|λf |2

8π2
Λ2
UV + . . . (2.11)

and

∆m2
H = −|λS |

2

16π2
[Λ2
UV − 2m2

S ln(ΛUV /mS) + . . . ], (2.12)

where Λ2
UV is an ultraviolet momentum cut-off used to regulate the loop integral. If Λ2

UV

is of the order of the Planck scale, then the quantum correction to m2
H is around 30

orders of magnitude larger than the value of the mass of the Higgs boson associated with

electroweak symmetry breaking scale (∼ (100 GeV)2). In other words, the mass of the

Higgs will not be at the electroweak scale but much more massive. Given that all fermions

and electroweak bosons in the SM obtain masses from the Higgs expectation value (〈H〉),

the entire mass spectrum of the Standard Model will be sensitive to this cut-off scale,

Λ2
UV .

Dark Matter

Dark matter is a form of matter that cannot be observed directly, but whose existence can

be inferred from gravitational effects on matter that is visible, such as the rotation curve

of galaxies (rotational velocity as function of the distance from the centre of the galaxy).

Latest cosmological observations [23] suggest that this new kind of matter makes up about

27% of the energy density of the universe. Very little is known about the remaining 68%

fraction of the universe, called dark energy. Candidate particles for dark matter include

the so-called Weakly-Interacting Massive Particles (WIMPs). These hypothetical neutral

particles only participate in the gravitational and weak interactions and thus are extremely

difficult to detect. Neutrinos are the only WIMP-like particles within the Standard Model

field content. However, they are not massive and abundant enough to account for dark
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matter, which means that the particle content within the SM fails to provide a dark matter

candidate.

Given all the experimental work in the last 4 decades, it becomes clear that the SM

provides a rather incomplete description of nature, which only works at the electroweak

energy scale. Physics Beyond the Standard Model (BSM) aims to fill the gaps of the SM

and by doing so, reduces the number of free parameters in the SM theory, which are to be

determined experimentally. One approach of BSM theories is to consider the same funda-

mental fields but with new interactions, covered by theories such as supersymmetry [24].

Supersymmetry is one of the favoured BSM theory candidates, which by introducing a

new symmetry manages to solve the hierarchy problem, provide a dark matter candidate

(more on Section 2.2.2) and provide new spectrum of particles that can enable exploring

physics beyond the electroweak scale. SUperSYmmetry (SUSY) is the main focus of the

search discussed in this thesis.

2.2 Supersymmetry

Supersymmetry introduces a new symmetry that relates scalar fields to fermionic fields,

and in doing so, prevents large radiative corrections to the Higgs mass. Each SM particle

will have an associated superpartner (known also as “sparticles”) which differs in spin by

1/2.

The SUSY algebra is generated with operators Q that transform a fermionic state into

a bosonic one, and vice versa

Q|Fermion〉 = |Boson〉 (2.13)

Q|Boson〉 = |Fermion〉. (2.14)

If supersymmetry was an exact symmetry of nature, then SM particles and their su-

perpartners would have the same quantum numbers, thus the same mass. However, super-

partners are yet to be observed, therefore, supersymmetry must be a broken symmetry.

The SUSY breaking must occur in such a way that the sparticles are not too heavy to avoid

re-introducing the hierarchy problem and still manage to solve the shortcomings within

the Standard Model. This can be achieved with the “soft” SUSY breaking mechanism [25].

This form of SUSY breaking imposes constrains on the masses of all superpartners and

sets them to a phenomenologically suitable range.

As seen in Section 2.1.2, the SM introduces radiative corrections to the Higgs boson
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mass squared due to its coupling to scalar and fermionic fields. Comparing the correction

terms for the Higgs mass due to its coupling to a fermionic and bosonic field (Equa-

tions 2.11 and 2.12) strongly suggests that if there is a symmetry that can relate fermions

and bosons with λ2
f = 2m2

f/ν
2 = −λS [26], then the quadratic divergences of the Higgs

mass term cancel each other out. If this new symmetry exists, it can naturally solve the

hierarchy problem.

2.2.1 Minimal Supersymmetric Standard Model

A Minimal Supersymmetric extension of the SM (MSSM) [27] is defined so that it contains

all the SM particles described in Section 2.1 as well as their corresponding superpartners,

and by so, effectively doubling the particle content in the theory. The MSSM particle

content is listed in Table 2.4.

Table 2.4: Supersymmetric Particles in the MSSM [28].

Name Spin Gauge Eigenstates Mass Eigenstates

Squarks (q̃) 0

ũL ũR d̃L d̃R (same)

s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

Sleptons (˜̀) 0

ẽL ẽR ν̃e (same)

µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

Higgs bosons 0 H0
u H

0
d H

+
u H−

d h0 H0 A0 H±

Neutralinos (χ̃0
j ) 1/2 B̃0 W̃ 0 H̃0

u H̃
0
d χ̃0

1 χ̃
0
2 χ̃

0
3 χ̃

0
4

Charginos (χ̃±
i ) 1/2 W̃± H̃+

u H̃−
d χ̃±

1 χ̃±
2

Gluino 1/2 g̃ (same)

Gravitino 3/2 G̃ (same)

The spin-0 superpartners of the quarks and leptons are called squarks (q̃) and sleptons

(˜̀), short for “scalar quark” and “scalar lepton”, respectively, and are also collectively

known as sfermions (f̃). In the case of bosonic fields, each of the vector bosons and the

SM Higgs have a fermionic superpartners which are jointly referred to as gauginos and

higgsino (Hu and Hd), respectively. There are two complex Higgs doublets Hu = (H+
u , H

0
u)

and Hd = (H0
d , H

−
d ) rather than just one as in the Standard Model, with a νu and νd as

their respective VEVs, where both of these values are constrained by the SM Higgs VEV

as ν =
√
ν2
u + ν2

d .

After electroweak symmetry breaking, the two Higgs doublets generate eight degrees of



13

freedom: three for neutral Higgs bosons (h0, the one with the lightest mass, H0 and A0),

two for charged Higgs bosons (H±) and the rest to give mass to the Z and W± bosons of

the SM. The higgsinos and electroweak gauginos (the so called wino, W̃±, and bino, B̃0)

mix with each other because of the effects of electroweak symmetry breaking, resulting in

four neutralinos (χ̃0
1,2,3,4) and four charginos (χ̃±1,2). The mixing of these gauginos is given

by Equations 2.15-2.16.χ̃±1
χ̃±2

 =

 M2

√
2mW sinβ

√
2mW cosβ µ

W̃±
H̃±

 (2.15)


χ̃0

1

χ̃0
2

χ̃0
3

χ̃0
4

 =


M1 0 −mZcosβsinθW mZsinβcosθW

0 M2 mZcosβcosθW mZsinβcosθW

−mZcosβsinθW mZcosβcosθW 0 −µ

mZsinβcosθW mZsinβcosθW −µ 0




B̃0

W̃ 0

H̃0
u

H̃0
d

 ,

(2.16)

where the parameters M1,M2,M3 refer to the gaugino masses; µ refers to the higgsino

mass; β is defined as a ratio of the electroweak coupling constants g and g′ and θW is

defined as the ratio of the VEVs of the two Higgs doublet fields; and the mZ(mW ) are

the masses of the W (Z) boson. Charginos are linear combinations of the charged winos

and higgsinos, while the neutralinos are linear combinations of the neutral wino, bino

and higgsinos. Therefore, each neutralino and chargino will have a different composition

(bino-like, wino-like or higgsino-like) that determines the way in which they decay.

In the MSSM, the soft SUSY-breaking terms [22] introduce a large number of unknown

parameters (∼ 100) in addition to the 19 free parameters of the SM, which makes any

phenomenological analysis extremely complicated. There are several complementary su-

persymmetric models within the MSSM framework which are mainly defined to reduce

the number of free parameters in the MSSM: the so-called “simplified models” [29], which

significantly reduce the number of parameters to only the masses of the particles that are

relevant for a particular SUSY process of study, by setting all other masses to experi-

mentally inaccessible values; and the phenomenological MSSM [30], which uses existing

experimental data and conservative phenomenological assumptions to constrain the val-

ues for the mass parameters. A subset of these parameters is listed in Table 2.5, which

contains: the gaugino masses (M1,M2,M3); the Higgs mass parameters (m2
H1
,m2

H2
); and

the ratio of the Higgs VEVs related to the mass of the Z boson and the electroweak gauge

couplings (g and g′)

ν2
u + ν2

d = 2m2
Z/(g

2 + g′2) (2.17)
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with

νu = 〈H0
u〉 , νd = 〈H0

d〉. (2.18)

Table 2.5: List of main free parameters within the pMSSM description [22].

Parameters Definition

tanβ The ratio of the VEVs of the two Higgs doublet fields (〈H0
u〉/〈H0

d〉).

mA0 , µ The higgsino mass parameters.

M1,M2,M3 The bino, wino and gluino mass parameters.

mq̃,mũR
,md̃R

,ml̃,mẽR The first/second generation sfermion mass parameters.

Au, Ad, Ae The first/second generation tri-linear couplings.

mQ̃,mt̃R
,mb̃R

,mL̃,mτ̃R The third generation sfermion mass parameters.

At, Ab, Aτ The third generation tri-linear couplings.

Simplified models and pMSSM are used to perform the SUSY searches described in

this thesis.

SUSY Models

There are very powerful constraints on the production of strongly interacting SUSY

particles (squarks and gluinos) [31], and depending on the mechanism of SUSY break-

ing, it could be that these strongly interacting squarks and gluinos are too massive to

be produced at the LHC. This motivates a separate consideration for electroweak SUSY

particle production, i.e. direct production of colourless particles. The pair production

cross section as a function of mass for the EWK processes: ν̃eν̃e, ˜̀
e
˜̀
e, χ̃

0
2χ̃
±
1 and χ̃0

2g̃, is

shown in Figure 2.4.

One of the most promising ways to discover EWK SUSY production at the LHC is

through the detection of events with multiple charged leptons in the final state. Partic-

ularly, charginos and neutralinos can produce sleptons, gauge bosons or Higgs bosons as

an intermediate particle in their decays into charged leptons, as shown in Figures 2.5-2.6.

Charged sleptons may also be produced directly if they are sufficiently light. Chargino

(or sleptons) decays can have one charged lepton in the final state and neutralino decays

can have two charged leptons in the final state, which combined yield three leptons in the

final state. It is for this reason that the EWK SUSY production mode of charginos and

neutralinos, mediated by electroweak interactions is explored in this analysis.
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Figure 2.4: Production cross section for supersymmetric particles at the LHC energy of
√
s = 8 TeV as a function of mass [32].

(a) χ̃±1 decaying into a W± boson and the

LSP.

(b) χ̃±1 decaying into a ˜̀/ν̃ and ν/`.

Figure 2.5: Diagrams for the electroweak SUSY production of charginos with leptons in

the final state. The symbols ˜̀ and ` refer to ẽ/µ̃/τ̃ and e/µ/τ , respectively.
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(a) χ̃0
2 decaying into a Z boson and the

LSP.

(b) χ̃0
2 decaying into a ˜̀/ν̃ and `/ν.

(c) χ̃0
2 decaying into a h boson and the

LSP.

Figure 2.6: Diagrams for the electroweak SUSY production of neutralinos with leptons in

the final state. The symbols ˜̀ and ` refer to ẽ/µ̃/τ̃ and e/µ/τ , respectively.
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2.2.2 R-Parity SUSY

Some terms in the “unconstrained” MSSM Lagrangian can lead to a violation of the baryon

and lepton symmetries, unlike in the SM, where this was an accidental symmetry. A way

to avoid these terms is to impose a discrete symmetry on the MSSM, under which all SM

fields are even and all superpartners are odd. This symmetry is referred to as R-parity [33],

and can be defined as a multiplicatively conserved quantum number

R = (−1)3(B−L)+2s, (2.19)

where B,L, s correspond the baryon, lepton and spin quantum numbers, respectively.

If the theory is R-parity conserving, SM particles have R = 1 and sparticles have R =

−1. If R-parity conservation is imposed on MSSM models, the mixing between particles

and sparticles is not allowed and at every interaction vertex the number of sparticles must

be even. This has the effect that the Lightest Supersymmetric Particle (LSP) is stable

and all other heavier sparticles can decay only to odd numbers of it and that all sparticles

must be produced in pairs.

Dark Matter

In R-Parity conserving SUSY models, the LSP is stable and can be neutral and weakly

interacting, therefore, fulfilling all features of a WIMP, which makes for a possible dark

matter candidate. The fact that the LSP is weakly interacting means that it will appear

as missing energy at the LHC.

In the analysis presented in this thesis, only R-parity conserving SUSY models are

considered, where the lightest neutralino (χ̃0
1) is considered as the LSP.

2.2.3 Simplified Supersymmetric Models

A simplistic approach for SUSY breaking models is to focus on one or more SUSY produc-

tion processes and their decay chain, which has the advantage of considering the minimal

particle content necessary to reproduce such events. This approach is referred to as a

“simplified” model.

Figure 2.7 shows a schematic representation of a simplified model process, where the

red arrows highlight the decay chain of interest, in this case is qq̄′ → W±∗ → χ̃±1 χ̃
0
2

decaying into LSP with 100% branching ratio, where the out of all the allowed SUSY

decays.
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Figure 2.7: SUSY production process, with a simplified model decay chain highlighted by

the red arrows.

Only simplified models for the associated production of the lightest chargino (χ̃±1 ) and

the second-lightest neutralino (χ̃0
2) are considered in this analysis, which are amongst some

of the electroweak gaugino (also referred to as “electroweakino”) pair-production processes

that can lead to three leptons and missing transverse energy in the final state. In most

of the MSSM parameter space χ̃±1 χ̃
0
2 production has a higher cross section with respect

to other EWK pair production modes such as which can lead to three leptons in the final

state. The masses of the relevant particles in the decay chain are the only free parameters

in these models. The following assumptions are made on the simplified models considered

in this analysis: the χ̃±1 and χ̃0
2 consist purely of the wino component and are degenerate

in mass; the χ̃0
1 consists purely of the bino component; and in all cases, the squark and

gluino masses are set as as high as a few hundreds of TeV.

The different scenarios for the decay of χ̃±1 and χ̃0
2 are classified according to the

particles (or sparticles) participating in an intermediate step of the decay chain. Four

simplified models are explored in the analysis discussed in this thesis and are described in

the following.

Simplified Models with Three Lepton Final States via Sleptons

In this simplified model scenario, the left-handed charged sleptons and sneutrinos are

assumed to be light, whereas the right-handed charged sleptons are considered to be very

heavy. Thus, the wino-like chargino and neutralino will dominantly decay through left-

handed charged sleptons or sneutrinos as shown in the diagram in Figure 2.8. For these
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models, the masses of χ̃±1 , χ̃
0
2, l̃L, ν̃, χ̃

0
1 are the free parameters. Degeneracy of m˜̀

L,ν̃
for

various flavours is assumed for simplicity, these are set such that m˜̀
L

= (mχ̃0
1

+ mχ̃0
2
)/2.

Both the branching ratio of the χ̃±1 into `ν̃ and the branching ratio into ˜̀
Lν are set equal

to 50%. Also, both the branching ratio of the χ̃0
2 into `˜̀L and the branching ratio into ν̃ν

are set equal to 50%.

Figure 2.8: The diagrams for the ˜̀
L-mediated simplified models of the direct production of

χ̃±1 χ̃
0
2 studied in this analysis. The symbols ˜̀ and ` refer to ẽ/µ̃/τ̃ and e/µ/τ , respectively.

Simplified Models with Three Lepton Final States via WZ

In the second simplified model scenario, all sleptons and sneutrinos are assumed to be

heavy, and the χ̃±1 and χ̃0
2 decay via W (∗) and Z(∗) bosons, respectively, with a branching

fraction of 100%, leading to three leptons and missing transverse energy in the final state.

The decay chain for this process is shown in the diagram in Figure 2.9.
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Figure 2.9: The diagrams for the WZ-mediated simplified models of the direct production

of χ̃±1 χ̃
0
2 studied in this analysis. The symbols ` refer to e/µ/τ .

Simplified Models with three lepton final states via staus

In the third simplified model considered for this analysis, the first- and second-generation

sleptons and sneutrinos are assumed to be heavy, so that the χ̃±1 and χ̃0
2 can decay into

tau leptons with a 50% branching fraction via τ̃ or ν̃ with degenerate masses mν̃ = mτ̃ =

(mχ̃0
1

+mχ̃0
2
)/2. For these models, the masses of χ̃±1 , χ̃

0
2, τ̃L, ν̃τ , χ̃

0
1 are the free parameters.

The diagram representing the decay chain for this model is shown in Figure 2.10.

Figure 2.10: Diagram for the τ̃L-mediated simplified models of the direct production of

χ̃±1 χ̃
0
2 studied in this analysis.

Simplified Models with Three Lepton Final States via Wh

In the final simplified model scenario considered in this analysis, all sleptons and sneutrinos

are assumed to be heavy, and the wino-like χ̃±1 and χ̃0
2 decay via W and lightest Higgs

boson (h), respectively, with a branching fraction of 100%. The Higgs boson considered
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in this model is SM-like, meaning it has a mass of 125 GeV and decays into other SM

particles with SM branching ratios.

The decay chain is shown on the diagram in Figure 2.11.

Figure 2.11: The diagrams for the Wh-mediated simplified models of the direct production

of χ̃±1 χ̃
0
2 studied in this analysis. The dots in the figure depict possible additional decay

products of the lightest Higgs boson decaying via intermediate ττ , WW or ZZ states.

The symbols ` refer to e/µ/τ .

2.2.4 Phenomenological MSSM

The phenomenological MSSM (pMSSM) [30] is defined by making the following assump-

tions on the phenomenology of the free parameters of the MSSM theory: all the soft SUSY-

breaking parameters are real and therefore there is no new source of CP-violation [34]

generated; the matrices for the sfermion masses and for the tri-linear couplings are all di-

agonal (no flavour changing neutral currents at tree level); the soft SUSY-breaking masses

and tri-linear couplings of the first- and second-generation sfermions are the same at low

energy. Making these three assumptions will lead to the free parameters summarised in

Table 2.5.

The Electroweak Sector

The electroweak sector within the pMSSM is mainly characterised by the following para-

meters [27]: the U(1) gaugino (bino) mass parameter, M1; the SU(2) gaugino (wino) mass

parameter, M2; the higgsino mass parameter, µ; and the ratio of the VEVs of the two

Higgs doublets, denoted as tanβ in Table 2.5.

In the scenarios explored for this analysis, the pMSSM parameters are tuned in such

a way that direct electroweak production is the dominant SUSY process. This is achieved
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by setting the masses of the coloured sparticles (gluinos and squarks), the CP-odd Higgs

boson (mA0), and the left-handed sleptons to high values at the TeV scale. The lightest

Higgs mass is given by mh = mZcos
22β + δt2, where δt is a loop contribution from top

quarks and stop squarks. Therefore, the mass of the SM-like Higgs can be tuned to

125 GeV (consistent with the mass of the observed Higgs boson [16, 17]) using mixing in

the stop sector.

Figure 2.12 shows the mass hierarchy of the electroweakinos in three different MSSM

scenarios, which are governed by tanβ, the gaugino mass parameters M1 and M2, and the

higgsino mass parameter µ.
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χ̃0
3, χ̃

0
4

χ̃±
2

χ̃0
3, χ̃

0
4

χ̃±
2

χ̃0
4, χ̃

±
2

χ̃0
1

χ̃0
2

χ̃0
3χ̃0

2, χ̃
±
1

χ̃0
1, χ̃

±
1

χ̃0
1, χ̃

0
2

χ̃±
1

(a) (b) (c)

Figure 2.12: Three possible electroweak SUSY mass spectra and their dependency on the

values of the parameters M1 , M2 and µ .

For instance, if M1<M2<µ, case shown in Figure 2.12(a), the corresponding compos-

ition of the χ̃0
1 is driven by M1 (bino-like) and the composition of χ̃±1 and χ̃0

2 is driven by

M2 (wino-like). In this case, the dominant electroweakino production process with three

leptons in the final state is pp → χ̃±1 χ̃
0
2. For cases shown in Figure 2.12(b)-(c), searches

with three leptons in the final states offer less sensitivity than in case (a) because of the

mass difference between χ̃±1 and χ̃0
2.

The pMSSM scenarios described in the following paragraphs are parametrised in the

µ–M2 phase space and classified into three groups based on the masses of the right-handed

sleptons.

pMSSM ˜̀
R

In this scenario, the right-handed sleptons (ẽR, µ̃R, τ̃R) are degenerate in mass with a

value set at midpoint between the LSP and next-to-lightest neutralino masses: m˜̀
R

=

(mχ̃0
1

+ mχ̃0
2
)/2. Setting the parameter tanβ = 6 yields comparable χ̃0

2 branching ratios



23

into each slepton generation.

There are many different EWK production modes available for this model, the dom-

inant ones are shown in Figure 2.13, where process (a) has the highest cross section out

of all the production modes that can lead to three-lepton final states, although, in some

areas of the parameter space, sub-processes involving heavier sparticles can be important.

The χ̃±1 decays predominantly via a W boson when kinematically allowed and to τ̃

otherwise. The χ̃0
2 decays occur via ˜̀̀ , χ̃0

1h or τ̃ τ .

To probe the sensitivity for different χ̃0
1 compositions, three values ofM1 are considered:

100 GeV (bino-like), 140 GeV (bino- and wino- like) and 250 GeV (higgsino-like).

(a) χ̃±1 -χ̃0
2 pair production. (b) χ̃±1 -χ̃0

1 pair production. (c) χ̃±1 -χ̃±1 pair production.

(d) τ̃ -τ̃ pair production. (e) ˜̀-˜̀ pair production.

Figure 2.13: Dominant diagrams for the electroweak SUSY production in the pMSSM

model via ˜̀
R. The symbols ˜̀ refer to ẽ/µ̃/τ̃ .

pMSSM τ̃R

In the next pMSSM scenario, the selectrons and smuons are heavy, the τ̃R mass is set to

mτ̃R = (mχ̃0
1
+mχ̃0

2
)/2 and tanβ = 50, so that the decays via right-handed staus dominate.

The parameter M1 is set to 75 GeV resulting in a bino-like composition of χ̃0
1. There are

four main production modes in this model, shown in Figure 2.14, where generally processes

(b) and (d) have the highest cross section. For the purpose of the three lepton analysis
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presented here, the production modes with the highest cross sections are (a) and (d). χ̃±1

decays predominantly via a W boson when kinematically allowed and to τ̃ otherwise. χ̃0
2

decays are mainly via τ̃ τ (where staus will decay to tau leptons and the LSP), with smaller

branching ratios into χ̃0
1Z and χ̃0

1h.

(a) χ̃±1 -χ̃0
2 pair production. (b) χ̃±1 -χ̃0

1 pair production. (c) χ̃±1 -χ̃±1 pair production.

(d) τ̃ -τ̃ pair production.

Figure 2.14: Dominant production of EWK SUSY processes in the pMSSM model via τ̃R.

pMSSM no ˜̀

The final pMSSM scenario, assumes all sleptons to be heavy (set to 3 TeV) so that decays

via W , Z or Higgs bosons dominate. The remaining parameters are set to M1 = 50 GeV

and tanβ= 10. There are three main production modes in this model, shown in Fig-

ure 2.15, where processes (a) has the highest cross section. The χ̃±1 decays predominantly

via a W boson, and the χ̃0
2 decays via χ̃0

1Z or χ̃0
1h.
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(a) χ̃±1 -χ̃0
2 pair production. (b) χ̃±1 -χ̃0

1 pair production. (c) χ̃±1 -χ̃±1 pair production.

Figure 2.15: Dominant production of EWK SUSY processes in the pMSSM model via

no-˜̀.
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Chapter 3

The ATLAS detector at the LHC

This chapter provides an overview of the ATLAS experiment at the Large Hadron Col-

lider. The Large Hadron Collider particle accelerator is introduced in Section 3.1, followed

by a detailed description of the various components of the ATLAS detector. Finally, a

description of the trigger system used by ATLAS to cope with the high LHC event rate is

discussed in Section 3.3.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [35] is the largest particle accelerator ever built, achiev-

ing the highest energies in proton-proton, lead-proton and lead-lead collisions yet. Situated

100 m underground inside the tunnel previously occupied by the Large Electron Positron

Collider (LEP) [36], the LHC consists of a 27 km ring of superconducting magnets and

accelerating elements, which support same-charge hadron beams circulating in opposite

directions. These beams are forced to collide at four specific points around the ring as

shown in Figure 3.1. In these points are located the experiments: LHCb [37], ALICE [38],

ATLAS [39] and CMS [40].

The LHC magnetic system consists of 1232 superconducting dipole and 392 quadrupole

magnets, with an average magnetic field of 8.3 T which are kept at a temperature of 1.7 k.

The purpose of the dipole magnets is to bend the beam and keep it in circular motion while

the purpose for the quadrupole magnets (and a few higher-moment magnets) is to keep

the beam focused as it gets accelerated around the ring. There are two transfer tunnels

(each around 2.5 km long) which connect the LHC to the rest of the CERN accelerator

complex that acts as an injector.

Proton-proton collisions at the LHC begin with the extraction of protons from hydrogen
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Figure 3.1: A schematic view of the LHC with the four main experiments [41].

gas, from which the electrons are stripped using an electric field, followed by acceleration

and injection into successively larger storage rings. Figure 3.2 shows the acceleration and

injection process, beginning with the extracted protons being accelerated to an energy of

50 MeV by a linear accelerator (LINAC2) and then further accelerated to 1.4 GeV by the

Proton Synchrotron Booster (PSB). The beam then enters the Proton Synchrotron (PS)

where its energy is increased to 25 GeV and finally gets accelerated up to an energy of

450 GeV by the Super Proton Synchrotron (SPS). The resulting beam is split into two

parts which are accelerated around the LHC in opposite directions. The acceleration to

the collision energy is carried out by eight superconductive RF cavities located at four

different places around the the LHC itself. These RF cavities also provide longitudinal

beam focusing to maintain the bunch structure within the beam.

Performance of the LHC

The “luminosity” of the LHC (L) is defined as

L = f
nbN1N2

4πσxσy
, (3.1)

where f is the revolution frequency of the bunches, N1 and N2 the number of bunches

per beam, nb the amount of particles per bunch and σx and σy the physical size of the

beams at the interaction point. The luminosity is related to the total number of collisions
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Figure 3.2: The CERN accelerator complex [42].

generated in the LHC collisions, given by

Nevent = Lσevent (3.2)

where σevent is the cross section for the process under study.

The nominal design of the LHC called for an energy of 7 TeV per beam corresponding

to a centre-of-mass-energy of up to
√
s = 14 TeV at a frequency of 40 MHz. Inside the

LHC, 2808 proton bunches of up to 1011 protons will collide every 25 ns to provide 14 TeV

proton-proton collisions at a design peak luminosity of 1034 cm−2s−1. These running

conditions are, however, expected to be achieved only at the start of the second run of

the LHC in 2015. The luminosity for the first run of the LHC (Run1) increased over the

years, starting from a centre-of-mass-energy of
√
s = 900 GeV in 2009, to

√
s = 7 TeV

during 2010-2011 and finally to
√
s = 8 TeV at the beginning of 2012. This was achieved

by improving with time several of the LHC parameters, such as increasing the number of

protons per bunch, reducing the physical size of the bunch, and many more [35].

3.2 The ATLAS detector

ATLAS is one of two general-purpose experiments recording LHC collisions, designed to

study many different physics signatures both to prove the validity of the SM, like searching

for the Higgs boson, and to search for physics beyond the SM. It measures the particles and

energy of particles produced as a result of the proton-proton collisions at the LHC with
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high precision, offering a nearly 4π solid angle coverage which provides a full description

for every collision.

Throughout this thesis, the standard ATLAS coordinate system is adopted for the

spatial description of the various detector components and in kinematic measurements of

physics processes. This coordinate system is defined by taking the beam direction as the

z-axis, and the x-y plane as transverse to the beam direction. The azimuthal angle, φ, is

measured around the beam axis and the polar angle, θ. A spacial coordinate is introduced

to describe the angle of a particle with respect to the beam axis, this is known as pseudo-

rapidity and is defined as η ≡ −ln(tan(θ/2)). ATLAS (25 m high and 44 m long) has a

forward-backward symmetric cylindrical geometry with respect to the interaction point.

Therefore, detector components are described as being part of the barrel if they are in the

central region of pseudorapidity or part of the end-caps if they are in the forward regions.

The overall ATLAS detector layout with its components is shown in Figure 3.3. ATLAS

Figure 3.3: A cut-away view of the ATLAS detector [43].

innermost layer is the so-called “Inner Detector” (ID) which performs a fine grained track-

ing system for charged particles, and consists of a pixel and silicon micro-strip tracker and

a transition radiation tracker. It is enclosed by a thin superconducting solenoid provid-

ing a magnetic field of 2 T which allows for measurement of the transverse momentum

of charged particles. The following layers correspond to electromagnetic and hadronic

calorimeters that jointly allow precise energy measurements of photons, electrons, and

hadronic jets. The outermost layer corresponds to the Muon Spectrometer (MS), which
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is embedded in a toroidal field, and designed to measure the position and momentum of

muons.

The main ATLAS detector performance goals are summarised in Table 3.1.

Table 3.1: General performance goals of the ATLAS detector [39]. Pseudorapidity range

used for the trigger system is specified in brackets if different to the range used for offline

measurements. The units for E and pT are in GeV.

System Sub-detector Resolution Pseudorapidity Coverage

Tracking
ID

σpT
pT

= 0.05% pT+1% |η| < 2.5

MS
σpT
pT

= 10% at pT =1 TeV % |η| < 2.7 ( |η| < 2.4)

Calorimetry
Electromagnetic σE

E
= 10%√

E
+ 0.7% |η| < 3.2 ( |η| < 2.5)

Hadronic (central) σE
E

= 50%√
E

+ 3% |η| < 3.2

Hadronic (forward) σE
E

= 100%√
E

+ 10% 3.1 < |η| < 4.9

The various sub-detector systems are described in the following paragraphs.

3.2.1 Magnet System

The ATLAS magnet system (22 m in diameter and 26 m long) is formed by a thin central

superconducting solenoid surrounding the ID system, and three large outer superconduct-

ing toroids arranged around the calorimeters that provide the field for the MS. These key

components of the detector generate the bending power for the momentum measurement

of charged particles. Figure 3.4 provides an overview of these components, which are

discussed in the following.

Figure 3.4: Schematic view of the layout of the four superconducting magnets forming the

ATLAS magnetic system [44].
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Central Solenoid

The central solenoid magnet is designed for bending charged particles going through the

inner detector, and its geometry also takes into account the operational constrains of the

calorimeters. This 2.3 m diameter and 5.3 m long component is aligned with the beam

axis and provides a 2 T axial magnetic field, which allows for very accurate momentum

measurements of charged particles with momenta up to 100 GeV [44]. The electromagnetic

calorimeter of the experiment is situated outside this solenoid, which means that the

winding must be as transparent as possible for the particles traversing the detector.

Barrel and End-cap Toroids

The toroid magnet system is a cylindrical volume surrounding the calorimeters. It consists

of a long barrel and two end-caps toroids, each with eight superconducting coils (see

Figure 3.4) . The toroidal system is surrounded by muon detectors. The barrel and two

end-cap toroids produce a toroidal magnetic field of approximately 0.5 T and 1 T for the

muon detectors in the central and end-cap regions, respectively. The toroidal magnetic

fields enable the momentum measurement of low-pT muons by a bending force acting in

the θ-direction.

3.2.2 Inner Detector

The inner detector is the part of the ATLAS detector closest to the beam pipe and provides

a tracking system for momentum and vertex measurements of charged particles. When a

charged particle traverses the ID it will experience a force due to the 2 T magnetic field

surrounding it, acting orthogonally to the direction of motion of the particle, causing its

trajectory to curve. It is possible to calculate the momentum of a charged particle once

this curvature is measured.

The ID is divided into three independent concentric sub-detectors: a pixel detector, the

innermost sub-detector, consisting of three silicon pixel layers; the SemiConductor Tracker

(SCT) or “silicon strip detector” as the central layer of the ID; and surrounding all ID sub-

detectors is the Transition Radiation Tracker (TRT). Combining these three sub-detectors

gives a tracking acceptance in the region |η| < 2.5 for tracks with pT > 0.5 GeV [45].

The following paragraphs provide a brief description of the ID sub-systems shown in

Figure 3.5.
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Figure 3.5: Diagram of the ATLAS inner detector and its components [46].

Silicon Pixel Tracker

The pixel detector [47] is equipped with 1750 identical sensorchip-hybrid modules, each

covering an active area of 16.4 × 60.8 mm. The total number of modules correspond to

approximately 80 million semiconductor silicon pixels (50×400 µm2 rectangular segments

of silicon sensors), to cope with high rate luminosity of the ATLAS detector. This is

achieved by reading out every pixel with an independent electronics channel.

The silicon pixel detector is inside a cylindrical envelope of 48.4 cm diameter and

approximately 6.2 m length providing a pseudorapidity coverage of |η| < 2.5. Figure 3.5

shows the composition of the pixel detector as three concentric barrel layers of radii:

50.5 mm (the so-called b-layer), 88.5 mm and 122.5 mm. It also consists of a total of six

disk layers, three at each forward region. Particles will go through all three barrel layers of

the pixel detector, making hits in each of them as they traverse the ID. The 2× 3 end-cap

disks are mounted perpendicularly to the beam axis to track the momentum of charged

particles at high η. The main feature of the pixel detector is its fine granularity 1 which

is essential for high resolution measurement and precise vertex reconstruction.

1The granularity is the size of each pixel, which determines the resolution of the detector since the finer

granularities the more “detection area” giving a more accurate position.
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SemiConductor Tracker

The SCT [45], the second innermost system in the ID, designed to measure four precision

space points (corresponding to eight silicon layers) on the track of a charged particle over a

range |η| < 2.5, which is mainly useful for precise momentum reconstruction, with intrinsic

resolutions per module of 17 νm in the R− φ direction and 580νm in the z direction.

The SCT consists of 4088 modules of semi-conducting silicon micro-strip detectors

arranged in four concentric barrel layers (as shown in Figure 3.6) with radii ranging from

299 mm to 514 mm and two end-cap layers. The silicon-strip sensors are read out by

radiation-hard front-end chips, each chip reading out 128 channels. Due to the SCT larger

radius from the beam pipe than the pixel detector, there is a reduced particle density

expected upon the SCT which allows for a smaller pixel density (coarser granularity) to

maintain the same levels of performance while using ∼6.3 million readout channels (∼ 2

million fewer than the pixel detector).

Figure 3.6: Schematic image of the sub-detectors within the ID tracker [46].

Transition Radiation Tracker

The TRT [48] is the outermost component of the ID which utilises layers of gaseous

straw tube elements (4 mm in diameter) and transition radiation material. As a charged

particle goes through the TRT it will ionise the gas (a mixture of xenon, carbon dioxide

and oxygen) inside the straw tubes. It has an average of 36 hits per track in the central

region, providing continuous tracking to enhance the pattern recognition and improve

the momentum resolution over the pseudorapidity range |η| < 2.0, important feature

for electron identification [49]. This design is complementary to the pixels detectors,
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and aims to improve the pT resolution for particles with longer track length. It also

provides particle identification capability through the detection of transition radiation X-

ray photons generated by high velocity particles traversing through various materials with

different dielectric constants.

The TRT barrel section is arranged in three concentric layers each with 32 modules

jointly containing approximately 50 000 straws of 1.44 m length in total, which are aligned

parallel to the beam direction with independent readout at both ends. Each of the two

end-cap sections are divided into 14 wheels, with around 320 000 straws that run in the R-

direction. The transition radiator material surrounding the straws in the barrel (end-caps)

consists of polypropylene fibres (polypropylene foils).

3.2.3 Calorimeter System

The ATLAS calorimeters, illustrated in Figure 3.7, consist of detectors with full φ-symmetry

and η coverage of |η| < 4.9 around the beam axis. The inner layer corresponds to the

electromagnetic (EM) calorimeter and the outer layer corresponds to the hadronic calori-

meter.

The EM calorimeter is composed by one barrel (LAr electromagnetic barrel) and two

end-cap (EMEC ) sections using Liquid Argon (LAr) as sensing element, where the showers

in the Argon liberate electrons that are collected and then recorded, these sections also

referred to as “LAr calorimeters” [50].

The hadronic calorimeter contains one barrel (Tile barrel and ‘Tile extended barrel)

and two end-cap (HEC ) sections. The sensors used for the barrel sections of the hadronic

calorimeter are tiles of scintillating plastic, which cause the plastic to emit light that gets

detected and then recorded, these sections are known as “tile calorimeters” [39]. The

end-cap sections use LAr as sensing element.

A LAr forward calorimeter (FCal) is also part of the calorimeter system, which aims

to cover the region closest to the beam.

A brief overview of the two calorimeter sensing elements is provided below.

Liquid Argon Calorimeters: The LAr EM calorimeter covers a pseudorapidity range

of |η| < 1.475 and 1.375 < |η| < 3.2, with one barrel and two end-cap regions,

respectively.

The LAr end-cap HEC covers a pseudorapidity range of 1.5 < |η| < 3.2. It consists

of two independent wheels for each end-cap, located directly behind the end-cap EM



35

Figure 3.7: A cut-away view of the ATLAS electromagnetic and hadronic calorimeter

layers [51].

calorimeter and sharing the same LAr cryostat. Its coverage overlaps with that of

the forward calorimeter to ease transitions between regions.

The LAr FCal covers a pseudorapidity range of 3.1 < |η| < 4.9 and it is formed by

one EM layer with copper as passive material and two hadronic layers which use

tungsten as absorbers.

These three sub-detectors share the same read-out electronics (182 468 channels in

total) that can be individually calibrated.

Tile Calorimeter: The tile calorimeter is the central ATLAS Hadronic Calorimeter, sur-

rounding the EM calorimeter system. Its main purpose is to provide hadronic energy

measurements. This calorimeter is built out of steel and scintillating tiles coupled

to optical fibres which are read out by photo-multipliers. It is is divided into three

cylinders with an inner radius of 2.28 m and an outer radius of 4.23 m: a central

barrel part that is 5.64 m long covering a region |η| < 1.0 and two “extended barrel”

parts, which are 2.91 m long and cover the pseudorapidity range 0.8 < |η| < 1.7.

Each cylinder consists of 64 modules spread in φ. Radially, each module is further

segmented in three layers with a cell (smallest calorimeter section) granularity of

∆η ×∆φ = 0.1× 0.1 for the two inner most layers and ∆η ×∆φ = 0.2× 0.1 for the

outermost layer.
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3.2.4 Muon Spectrometer

The MS [52] is the outermost part of the ATLAS detector which surrounds the calorimeters

and measures muon paths to determine their momenta with high precision (specified in

Table 3.1). The conceptual layout of the muon spectrometer is shown in Figure 3.8.

Its design is based on the magnetic deflection of muon tracks due to large supercon-

ducting air-core toroid magnets and high-precision tracking chambers.

chambers
chambers

chambers

chambers

Cathode strip
Resistive plate

Thin gap

Monitored drift tube

Figure 3.8: The ATLAS muon system [39].

The bending of the track is achieved by utilising one large barrel toroid to cover the

rapidity region |η| ≤ 1.4 and two end-cap magnets covering the rapidity regions 1.6 <

|η| < 2.7 inserted at both ends of the barrel toroid. In the barrel region, the toroidal field

is produced by eight very large superconducting coils arranged in an open geometry, with

a B-field varying from 0.5 to 2 T.

Tracks are measured using chambers arranged in three cylindrical layers around the

beam axis in the barrel region; in the transition region (1.4 < |η| < 1.6) and end-cap

regions, the chambers are installed in planes perpendicular to the beam, also in three

layers. Over most of the η-range, a precision measurement of the track coordinates in
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the principal bending direction of the magnetic field is provided by Monitored Drift Tubes

(MDTs). At large pseudorapidities, Cathode Strip Chambers (CSCs), which are multiwire

proportional chambers with cathodes segmented into strip with higher granularity, are used

in a pseudorapidity region of 2 < |η| < 2.7 to cope with demanding rates and background

conditions.

The use of the Resistive-Plate Chambers (RPCs) in the barrel and the Thin-Gap

Chambers (TGCs) in the end-caps is dedicated to the trigger system, this is described in

Section 3.3.

3.3 ATLAS Trigger System

The purpose for the development of the ATLAS trigger system is to reduce the event rate

taken from the LHC at 40 MHz bunch crossing2 to a recordable size of approximately

200 Hz, which corresponds to an average data rate of ∼ 300 MB/s. This is achieved by a

3-level system, shown in Figure 3.9, which ensures high acceptance for low-pT particles in

the events, thus providing a high efficiency for most physics processes of interest at LHC.

The first level of the trigger system, Level 1 (L1), is a hardware-based system that uses

information from the calorimeters and muon sub-detectors. The two subsequent levels:

Level 2 (L2) and Event Filter (EF), are software-based systems that use information from

all ATLAS sub-detectors, and together form the so-called the High Level Trigger (HLT).

Each level refines the decisions made by the previous one and, where necessary, applies

additional selection criteria.

The rest of this chapter is dedicated to the description of these three levels used by

the ATLAS triggering system.

2The collision of two proton bunches is commonly referred to as a “bunch crossing”. Most of the protons

within each bunch will not interact with each other, therefore, an average for the number of interactions

per bunch crossing (〈µ〉) is used.
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Figure 3.9: A schematic view of the ATLAS trigger system [53].

3.3.1 Level 1 Trigger

The L1 trigger system performs the first selection step by identifying Regions of Interest

(ROIs), η-φ regions within the detector where its selection process has identified interesting

event features. The identified RoIs within the detector will be subsequently investigated by

the HLT. The selection made by L1 uses a limited amount of the total detector information

in order to make a decision on whether or not to continue processing an event, which

effectively reduces the input rate to a maximum of 75 kHz. In order to achieve a latency

of less than 2.5 µs (time it would take to reach the front-end electronics), the L1 trigger

system is implemented in fast custom electronics. Event data from the sub-detectors are

stored in front-end pipeline memories awaiting a decision from the L1 trigger system.

If the event passes the L1 trigger selection, the ReadOut Buffers (ROBs) processes the

information in the RoIs, which will be passed onto the L2 trigger system.
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The RoIs mainly focus on searching for high-pT objects, such as: muons, electrons,

photons, jets, and τ - leptons decaying into hadrons; as well as large missing and total

transverse energy. Information used to identify high-pT muons is provided to the L1

trigger system by the MS chambers: the RPCs in the barrel (|η| < 1.05) and the TGCs

in the end-caps (1.05 < |η| < 2.4), which have a time resolution capable of identifying the

bunch crossing, a key feature of the L1 trigger. The calorimeter sub-systems provide coarse

granularity information used to select electromagnetic clusters, jets, τ -leptons, Emiss
T , and

large total transverse energy.

Figure 3.10: A schematic view of the ATLAS L1 trigger system [39]. The overall L1 trigger

decision is made by the Central Trigger Processor (CTP), taking input from calorimeters

and muon sub-detectors. The paths to the detector front-end electronics, L2 trigger, and

data acquisition system are shown from left to right in red, blue and black, respectively.

3.3.2 High Level Trigger

The second trigger level, L2, has a selection seeded by the RoI information provided by

the L1 trigger. Unlike L1, the L2 trigger system selection uses fine-granularity information

available from all sub-detectors, including the inner detector. Meanwhile, the ROBs store

the event data in fragments until the L2 decision is ready. The L2 selection is based on

fast custom algorithms processing partial event data within the RoIs identified by the L1

triggers. The L2 trigger system uses processor farms, consisting of around 500 quad-core

CPUs, and has an average latency of up to ∼ 10 ms [39]. The L2 triggers are designed to
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reduce the trigger rate to approximately 3.5 kHz, with an event processing time of about

40 ms, averaged over all events. All event fragments from the ROBs for events accepted by

L2 trigger system are passed onto the Event Builder, which assembles all the information,

providing full event information to the EF, the final level of the ATLAS trigger system.

The final online selection is performed by software algorithms running on the EF with

a farm of processors consisting of 1800 dual quad-core CPUs [45]. The EF is designed to

reduce the rate to ∼ 200 Hz with an average processing time of ∼ 4 s/event. Rejected

events are not further processed while accepted events are stored for offline analyses.
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Chapter 4

Event Simulation and

Reconstruction

Monte Carlo (MC) simulation is used in ATLAS to mimic particle interactions or decays,

each of them referred to as an “event”. These simulated events provide a tool for compar-

ison and validation with those events from real data taken by the detector. The process of

generating an event using MC simulation can be categorised into two parts: event genera-

tion and detector simulation. This chapter describes event generation, detector simulation

and the subsequent reconstruction of particles most relevant to the analysis presented in

this thesis.

4.1 Event Generation

The main software framework used in ATLAS, Athena [54], provides the tools to run

MC simulation of proton-proton collisions as well as the ATLAS detector response to

such physics processes. Figure 4.1 illustrates the various levels of processing for ATLAS

simulated data. This section describes the first step in the MC production chain: the

event generation of the primary event from the proton-proton interaction.

Scattering processes at high energy hadron colliders can be classified as either hard

(high energy) or soft, which can be theoretically described by QCD. Figure 4.2 provides a

schematic representation of a hadronic scattering process. During event generation, MC

generators are used to simulate the result of such interactions which can described by

four-vectors.

In the following, a brief description of the basic simulation steps performed by gener-

ators is given: the initial state of the proton, where the momentum shared amongst the
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Figure 4.1: Full MC production chain.

partons is described by a so-called Parton Density Function (PDF); any activity outside

the hard process, known as the “underlying event”; the final state parton showers; and

the hadronisation. The MC generators used for the MC samples used in this thesis are

listed in Section 5.1

Parton Density Function

PDFs [55] provide a measure of the partonic structure of hadrons, which is important for

any process which involves colliding hadrons. Their main purpose is to simulate partons

coming into the hard scatter process using matrix elements in lowest order perturbation

theory to calculate a probabilistic distribution of the outgoing partons.

Parton Showers

Once a description of the outgoing partons is obtained, Parton Showers (PS) are used to

describe the evolution of the partons involved in the hard collision, in this case coloured

particles (quarks and gluons). Incoming and outgoing partons can radiate gluons, causing

an extended shower and a loss in momentum of the incoming parton shower. This can be

calculated using Sudakov form factors [55], which describe the probability that a parton

evolves from an initial scale t0 to a final scale t without radiating or splitting. The parton
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Figure 4.2: Diagram of a simulated high energy proton-proton collision process.

shower evolution starts from the hard process until a specific lower momentum scale is

reached to a point where perturbation theory is no longer viable. This non-perturbative

effect that causes the formation of hadrons from partons is called hadronisation.

Hadronisation and the Underlying Event

After the PS, hadronisation proceeds by using all partons which have been evolved and

other soft gluons coming from partons themselves. Partons are combined with their neigh-

bours to form colour singlets. After the hadronisation, the stable particles are passed to

the detector simulation to interact with the detector material.

In hadron collisions there will be partons that do not take part in the hard interaction

and which can interact among them and contribute to the final state. These form the

underlying event and are also taken into account by the MC generators.

4.2 Detector Simulation

Generated events are passed through a detector simulation, which mimics the response

of the real detector to the physics processes. In ATLAS, this is performed using the

GEANT4 [56] simulation framework, integrated in the ATLAS offline software. The de-
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tector simulation produces GEANT4 hits, which record positions in the tracking detectors

and the energy deposits in the calorimeter cells. At this stage, output files containing data

of the detector simulation, known as a “hit files”, are generated. These are then “digit-

ised” to produce voltages and currents in the detector. The simulation of electronic noise,

pile-up (see Section 4.4), as well as other effects from the detector electronics will also

be taken into account at digitisation stage. Data in “raw digits” format are known as

Raw Data Object (RDO) which is the default format used by the ATLAS trigger and all

reconstruction algorithms (described in Section 4.3). It is important to mention that the

same detector geometry and simulation infrastructure is used for simulation, digitisation

and reconstruction processes to ensure agreement between simulation and reconstruction.

At the end of the detector simulation, the simulated data (in the form of digits) are in a

format that is equivalent to the data recorded with the ATLAS detector. This is what is

referred to as “full” MC simulation. Figure 4.3 shows a detailed MC simulation chain and

the corresponding data format at every stage.

A faster simulation process can also be performed using the “ATLFAST-II” pack-

age [57], which takes the generated events and performs a parametrisation of the calori-

meters response, which accounts for the missing simulation steps with respect to the full

simulation, to produce a format equivalent to that obtained after the reconstruction stage.

A fast simulation is important in cases when the total number of events simulated is a

limiting factor for analysis. For the work reported in this thesis, this is the case for the

production of tt̄ events and some SUSY signal samples, discussed in Chapter 5.

The next section details how the simulated detector signals and the real data are

processed in order to reconstruct the physics objects that are most relevant for the analysis

discussed in Section 7.
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Figure 4.3: Schematic representation of the Full Chain Monte Carlo production. The

orange boxes highlight the various stages in a “full” MC simulation; blue ovals correspond

to the data format obtained at every stage of the MC simulation chain.

4.3 Reconstruction

The ATLAS offline reconstruction software processes the raw detector and simulated data

to reconstruct the physics objects in each event. The building blocks of object recon-

struction are ID and MS tracks (only in the case of muons), and energy deposits in the

electromagnetic and hadronic calorimeters. The reconstruction of physics objects is done

by dedicated algorithms which are specific to signals of different detector components.

These algorithms are implemented within the Athena framework and their performance

is detailed in ref. [45].

In the following sections, the reconstruction of physics objects relevant for the analysis

presented in this thesis, such as, leptons and jets (narrow cone of hadrons), are discussed.

A more refined identification procedure is performed on the reconstructed physics ob-

jects, combining calorimeter and track quantities to discriminate mis-reconstructed or

background objects from the signal objects; details are discussed in Chapter 6.
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4.3.1 Tracks

A collection of hits in the tracking sub-systems of the inner detector linked to a charged

particle traversing the ID forms “tracks”, which provide the information necessary to

reconstruct the path of a charged particle. Generally, a track can be parametrised using

variables which are defined relative to the position of the primary interaction point. In

particular, the Primary Vertex (PV) of the event defines the reference point with respect

to which impact parameters (d0 and z0) and vertex displacements are measured, it is

defined as the interaction point (vertex) with associated tracks that have the highest

sum of p2
T. Impact parameters are track distance variables defined relative to an origin,

hence, their sign provides a discriminator for tracks originating from b-hadron decays to

those originating from the primary vertex. Track candidates are reconstructed in the ID

using standard ATLAS track reconstruction algorithms [58]. In the analysis presented in

this document, track selection refers to those originating from prompt particles (or from

primary vertices), which satisfy the following quality criteria: |η| < 2.5, |d0| < 1.5 mm

and |z0| < 1.0 mm, where the origin is taken to be the position of the primary vertex.

4.3.2 Electrons

As electrons traverse the detector, they will leave a track in the inner detector layer,

continuing to deposit most of their energy in the electromagnetic calorimeters (ECAL)

where they stop. A “calorimeter cluster” of an electron is defined as the energy deposit in

a given η − φ region of the electromagnetic calorimeter. Electron candidates in a pseudo-

rapidity range of |η| < 2.47 are reconstructed by matching ECAL clusters to charged

particle tracks in the ID. To reconstruct calorimeter clusters, a “sliding-window” algorithm

is used [59]. It starts from “seed” clusters with a fixed rectangular shape, usually a size

corresponding to the granularity of the middle layer of the EM calorimeter (3× 5 cells of

size 0.025 × 0.025 in η × φ), and transverse energy of at least 2.5 GeV. Seed clusters are

then matched to tracks reconstructed in the ID (as in Section 4.3.1), with tracks being

extrapolated from their last hit in the ID to the middle layer of the ECAL. To form an

electron candidate, at least one track must be within ∆|η| < 0.05 of the reconstructed

seed cluster. If more than one track is available, tracks with silicon hits are preferred, and

the track with the smallest ∆R =
√

∆η2 + ∆φ2 value is chosen.

Once seed clusters and ID tracks are matched, seed clusters are rebuilt using a cluster

size of 3× 7 (5× 5) cells in the barrel (endcap), centred around the track-matched cluster

centre to determine the energy of the electron candidate (detailed in ref [60]). The total
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energy of the electron candidate is determined by two components: the measured cluster

energy plus an estimate of any energy deposited outside the ECAL cluster (referred to as

leakage, detailed in ref [60]).

At this stage, electron candidates are referred to as reconstructed electrons. The

efficiency for central electrons to pass the cluster reconstruction and track matching re-

quirements, shown in Figure 4.4, is above 96% in 2012.

Figure 4.4: The 2011 (red) and 2012 (blue) electron reconstruction efficiency, including

track quality criteria, is shown as a function of the pseudo-rapidity η for electrons with

transverse energy ~Emiss
T between 15 and 50 GeV for data and MC. The reconstruction and

track-quality efficiency shown in the figure is measured with Z→ ee events in data and

MC using the “tag-and-probe” method [61].

The direction of the reconstructed electron will be mainly determined by that of the

track, however, if the track quality criteria discussed in Section 4.3.1 is not passed, the

direction of the cluster will determine the one of the electron candidate.

4.3.3 Muons

Muons can go through all detector layers: ID, electromagnetic and hadronic calorimeters

and MS. In general, muon candidates are reconstructed using the STAtistical COmbin-

ation (STACO) algorithm [62] combining inner detector and muon spectrometer track

information, with three different procedures:

• “standalone” reconstruction, where the muon trajectory is reconstructed using only

MS track segments, which are built from hits in each section of the MS are combined
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to build track segments up to |η| < 2.7 and then get extrapolated to the beam line;

• “combined” muon reconstruction, where a standalone muon track and the ID track

are reconstructed independently and afterwards matched (provided that the meas-

ured pT for both tracks are compatible);

• “segment tagged”muon reconstruction, which identifies muon candidates with a track

in the ID only if the trajectory extrapolated to the muon spectrometer can be asso-

ciated with straight track segments in the MS.

Reconstruction algorithms that rely on both the MS and ID provide a better momentum

measurement. Therefore, only combined and segment tagged muons are considered in this

analysis.

The next and final stage of muon reconstruction determines the energy loss of muons

in the calorimeters which causes the measured momentum in the MS to differ from the

initial momentum of the muon. The energy of the reconstructed muon candidate will

need corrections to take this into account, which is known as smearing. The pT of the

measured tracks in the MS is corrected in MC to match the resolution observed in data [63].

The muon reconstruction efficiency is found to be greater than 98% [64] using a tag-and-

probe tool with Z→ µµ events. The muon candidates at this stage are referred to as

“reconstructed muons”.

4.3.4 Jets

As hadronic jets travel across the detector they can leave tracks in the ID layer and deposit

energy in both electromagnetic and hadronic calorimeters. Therefore, clusters of calori-

meter cells are the building blocks of jets. Jet reconstruction starts with the formation of

topological clusters [59], which are a type of clustering algorithm with a variable number

of cells (unlike the sliding-window algorithm described in 4.3.2). Topological clusters are

seeded by calorimeter cells with large signal (S) to noise (N) ratio (S/N ≥ 4), which grow

by iteratively adding neighbouring cells with S/N ≥ 2. The resulting topological clusters

are taken as input by the anti-kt jet algorithm [65] with a distance parameter ∆R = 0.4

to form a jet candidate.

Calibration of the topological clusters is performed by weighting differently the energy

deposits arising from electromagnetic showers (also known as “EM scale”) to those from

hadronic showers [66]. The jet reconstruction in the analysis presented in this thesis is

performed using the “antiKT 4LCTopoJets” algorithm, which takes calibrated topological
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clusters as jet constituents.

b-tagged jets

B quarks hadronise into b-hadrons which will then decay in cascades to lighter hadrons or

leptons. These are commonly referred to as b-jets. b-jet algorithms are designed to identify

heavy flavour content in reconstructed jets by taking advantage of specific properties of the

b-hadrons such as high mass (of about 5 GeV) and long lifetime of the b quark (∼1.5 ps)

with respect to the lighter quarks. The presence of a displaced secondary vertex is a

characteristic of a b-jet, this is due to the long lifetime of the b quark which translates

into a large decay length, Lxy. The secondary vertex will generate displaced vertex tracks,

which are characterised by larger impact parameters than the ones defining the primary

vertex (see Figure 4.5). Displaced vertices and charged tracks are key objects taken as

Figure 4.5: Representation of a b-jet accompanied by two light jets, where the distance of

the secondary vertex (Lxy) and the impact parameter (d0) of each track is illustrated in

the figure [67].

input for the b-tagging algorithms. There is a wide variety of b-tagging algorithms, such

as IP3D (impact parameter based), SV1 (secondary vertex based) and JetFitter (decay

chain reconstruction based), which are discussed in [68]. The analysis discussed in this

thesis makes use of the MV1 [69] algorithm, which is a multivariate technique1, based on

inputs from these three algorithms, and by combining them it achieves higher rejection of

1Multivariate techniques use physically motivated variables to generate a discriminant, a single number

which summarises the final discriminatory performance of the variables when various cuts are applied.
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light quark jets. In Section 6.2.3, the specifications on the operating point for the MV1

algorithm are detailed.

4.4 Pile-up Simulation

With high instantaneous luminosity (defined in Equation 3.1) the number of non-hard-

scattering interactions for every beam crossing in an event will increase. This is known as

pile-up. In general, the mean number of interactions per bunch crossing µ corresponds to

the mean of the Poisson distribution on the number of interactions per crossing that can

be derived from the instantaneous luminosity definition 3.1.

In order to match the pile-up conditions observed in data, simulated samples of both

background and signal processes are overlayed with a Poissonian-distributed number of

pile-up events and the resulting events are re-weighted such that the distribution of the

number of interactions per bunch crossing agrees with the data. Figure 4.6 shows the

luminosity-weighted mean number of interactions per bunch crossing µ for the 7 TeV and

8 TeV centre-of-mass luminosities.

Figure 4.6: Luminosity-weighted distribution of the mean number of interactions per

crossing for the 2011 and 2012 data. The mean number of interactions per bunch crossing

(µ) corresponds the mean of the Poisson distribution on the number of interactions per

crossing calculated for each bunch [70].
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Chapter 5

MC samples

ATLAS simulated data are generated by a set of well known MC generators. This chapter

provides a description of the relevant generators used to simulate the SM processes and

new physics signals relevant for the SUSY searches described in this document.

5.1 MC Generators

The main features of the different types of MC generators employed in this thesis are

described below.

General Purpose MC Generators

Pythia [71], Herwig [72] and Herwig++ [73] are general purpose MC event generators

that use Matrix Element (ME) calculations at Leading Order (LO), which include the

simulation of both hard and soft interactions. For the simulation of the underlying event,

Herwig is interfaced with Jimmy [74]. Both Pythia and Jimmy simulate the Underlying

Event (UE) as a scattering between proton remnants using matrix elements at LO.

Sherpa [75] is another multi-purpose event generator, interfaced with Pythia for

the simulation of the parton shower, that uses a multiple parton scattering model for

underlying event simulation.

Matrix Element MC Generators

The Alpgen [76], MadGraph [77] and AcerMC [78] generators simulate the hard pro-

cess of a proton-proton collision using calculations at fixed order in perturbation theory.

Events are generated with different multiplicities of outgoing partons, and cross sec-

tions are calculated at LO. For the parton shower and hadronisation, these generators are
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interfaced with Pythia or Herwig because they can only provides generation of events at

parton-level. The addition of parton shower introduces a double-counting of events. This

is because the effect of parton shower on a sample with n-partons can produce additional

jets that are already taken into account in the n+1-partons sample. When more than two

generators are interfaced, matching techniques, such as CKKW [79] and MLM [80], are

used to remove double counting the matrix element and parton shower emissions.

Next-to-Leading Order MC Generators

MC@NLO [81] and Powheg [82] provide alternative simulation methods which combine

lowest-multiplicity Next-to-Leading Order (NLO) matrix elements with parton showers

without double counting. MC@NLO and Powheg produce hard scattering processes at

NLO, the difference lying on the fact that former includes negative weighted events in the

method used to prevent double counting. The MC@NLO generated events are typically

used as input to Herwig for the parton shower and hadronisation, and to Jimmy for

the underlying event. Powheg generated events are interfaced with Pythia to include

parton shower and underlying event effects.

5.2 Background MC Samples

Several background samples have been considered in this analysis and can be grouped in

different categories, as detailed in the following.

Dibosons: WW, WZ and ZZ processes are generated with the NLO generator Powheg.

These samples correspond to all SM diboson diagrams leading to `ν`′ν ′, ```′ν ′ and

```′`′, respectively, with `, `′ = e/µ/τ and ν, ν ′ = νe/νµ/ντ . The Sherpa generator

is used for the Z/W + γ processes.

Tribosons: pp → WWW → lνlνlν, pp → ZWW → lllνlν and pp → ZZZ → llllνν

processes (collectively referred to as V V V ) were generated with MadGraph to LO

in QCD.

tt̄+boson: tt̄+Z(+jets) and tt̄+W (+jets) samples were generated using the LO generator

Alpgen, while the tt̄+WW and tZ samples were generated using MadGraph. All

tt̄+boson samples are collectively referred to as tt̄V and have at least one of the top

quarks is decaying semi-leptonically (t→Wb→ b`ν).
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Top: pair-production, tt̄, was generated with Powheg (+Pythia for simulating the par-

ton shower, hadronisation and the underlying event); single top production in the

t-channel (bq → tq′ and bq̄′ → tq̄) was generated with MC@NLO (+Herwig for

the simulation of parton shower and hadronisation); and single top production pro-

cesses in the s-channel (qq̄ → W ∗ → tb̄) and the associated production of a top

quark and a W boson, Wt, was generated with AcerMC (+Pythia). All samples

are produced using a top quark mass of 172.5 GeV and have been re-normalised to

Next-to-Next-to Leading Order (NNLO).

Boson+jets: samples of Z/γ∗ production and W production in association with jets

(light and heavy flavour jets are taken into account) are produced with Alpgen

(+Pythia). For simplicity, these samples are referred to as “V+jets”. The W and

Z/γ∗ Alpgen LO cross sections are re-normalised to NNLO.

Standard Model Higgs: production samples, where the Higgs decays are via taus or

via W/Z bosons, are generated with Pythia. H → ττ , H → WW ∗ and H → ZZ∗

decaying into leptonic final states are considered, as these are expected to be the

most important sources of Higgs background in this analysis. Five production mech-

anisms are included: gluon Fusion (ggF ), Vector Boson Fusion (V BF ), associated

production with a W (WH) or Z boson (ZH), and associated production with a tt̄

pair (tt̄H). All cross sections are calculated at NNLO, except pp → tt̄H, which is

calculated at NLO QCD precision.

For all simulated processes, the propagation of particles through the ATLAS detector is

modelled with GEANT4 using the full ATLAS detector simulation, except the tt̄ Powheg

sample, for which ATLFAST-II simulation is used.

Simulated events are weighted to match the distribution of the number of interactions

per bunch crossing observed in data, as discussed in Section 7.6.

Free parameters for the different PS, UE and hadronisation models are tuned to data. The

three different parameter tunes used for the underlying event generation in all MC samples

are the ATLAS Underlying Event Tune 2B (AUET2B), AU2 and PERUGIA2011C, which

are discussed in detail in [83].

Dedicated calculations are used to provide a re-normalisation of the total cross sections

for each SM processes at NLO or NNLO, these have been specified in Table 5.1. The choice

of parton density function depends on the generator and for this analysis the CTEQ6L1 [84]

PDFs are used with MadGraph, Alpgen, AcerMC, and Pythia and the CT10 [85]
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PDFs with MC@NLO, Powheg and Sherpa.

The choice of the generator type and the order of cross section calculations used for

yield normalisation for the SM processes are summarised in Table 5.1

Table 5.1: MC samples used in this analysis for background estimates, the generator type

and the order of cross section calculations used for yield normalisation are also reported.

Process Generator Cross section

Dibosons

WW,WZ,ZZ Powheg + Pythia 8 NLO QCD with MCFM [86, 87]

Tribosons

WWW,ZZZ,WWZ MadGraph +Pythia NLO[88]

Top+Boson

tt̄ W/Z Alpgen +Herwig NLO [89, 90]

tt̄ WW MadGraph +Pythia NLO [90]

t Z MadGraph +Pythia NLO [91]

Top-quark pair-production

tt̄ Powheg +Pythia NNLO+NNLL [92]

Single top

t-channel AcerMC +Pythia NNLO+NNLL [93]

s-channel, Wt MC@NLO +Herwig NNLO+NNLL [94, 95]

W/Z+jets Alpgen +Pythia DYNNLO [96]

Higgs

via gluon fusion Powheg +Pythia 8 NNLL QCD, NLO EW [97]

via vector-boson fusion Powheg +Pythia 8 NNLL QCD, NLO EW [97]

associated W/Z production Pythia 8 NNLL QCD, NLO EW [97]

associated tt̄ production Pythia 8 NNLO QCD [97]

5.3 Signal MC Samples

Signal samples referring to the models considered in this analysis (Section 2.2.3) are gen-

erated with Herwig++, using the CTEQ6L1 PDFs. Signal cross sections are calculated

to NLO+NLL using PROSPINO2 [98]. Lepton or hadronic tau filters are applied during

event generation to enhance decays into a particular final state. In particular, a generator-

level filter was applied to the simplified model with staus requiring at least one hadronic

tau (“tau filter”) with visible pT > 15 GeV and |η| < 2.7. Moreover, a “light lepton filter”
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(electron/muon) with the additional requirement of an electron/muon with pT > 5 GeV,

|η| < 2.7 is applied to explore final states with and without hadronic taus.

The list the signal samples used in this thesis can be found in Table 5.2.

Table 5.2: MC signal samples used in this analysis.

Signal Grid Remarks Dataset ID

via sleptons 144871-144896, 157461-157968,

176531-176557

via WZ 164274-164323, 174663-174678,

174835-174840

simplified via staus 176776-176852 (tau filter),

model 179223-179299 (light lepton filter)

via Higgs 176641- 176707

pMSSM

˜̀
R, tanβ = 6, M1 = 100 GeV 164949-165230

˜̀
R, tanβ = 6, M1 = 140 GeV 165239-165519

˜̀
R, tanβ = 6, M1 = 250 GeV 165525-165740

τ̃R, tanβ = 50, M1 = 75 GeV 183236-183335

no ˜̀, tanβ = 10, M1 = 50 GeV 186100-186199
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Chapter 6

Object Selection

The process of identifying the reconstructed particles in the analysis presented in this

thesis is detailed in this chapter. The particle identification criteria will be classified as

“baseline” and “signal”, where the former provides a basic description of a particle and

the latter satisfies a tighter selection criteria, which is analysis dependent.

6.1 Overlap Removal

It often occurs that the same objects are reconstructed by more than one of the particle

identification algorithms described in Section 4.3. To avoid double counting objects, a

preference to one of the objects needs to be defined. The preference of one object over

another can be based on the level of efficiencies or on the “purity” of the object, which is

enhanced by suppressing background events or wrongly reconstructed objects as the cor-

responding object. The so-called “overlap removal” is performed between loosely identified

objects (defined as “baseline” objects in Section 6.2) and is applied in the order presented

in Table 6.1. The following describes the procedure of the overlap removal scheme.

Whenever two electron candidates are found geometrically close to each other in a

cone of ∆R < 0.05, this can be an indicator that two calorimeter clusters were matched

to the same ID track, in this case, the lowest pT electron candidate is removed from the

event. In case where two muon candidates overlap due to shared tracks (∆Rµ,µ <0.05),

then both muon candidates are removed from the event. Electron candidates may also

be found by jet algorithms (used for jet and hadronic tau reconstruction), but due to

the higher efficiency and purity of the electron reconstruction algorithms, the jet and

hadronic tau candidates are rejected if the overlap with an electron within ∆R < 0.2.

Similarly, if a tau candidate is close-by (∆R < 0.2) to a muon candidate, the tau is



57

Table 6.1: Overlap removal criteria for objects used in the analysis presented in this

thesis. The indices refer to the object pair being evaluated, where the first object will take

precedence over the second object.

Overlap Removal Cuts Definition

∆Relectron1,electron2 <0.05 Discard lowest pT electron to remove duplicated electrons

with different calorimeter clusters and shared tracks.

∆Relectron,jet <0.2 Discard jet to remove electron duplication coming from the jets.

∆Relectron,τ <0.2 Discard tau to remove electron duplication coming from the taus.

∆Rµ,τ <0.2 Discard tau to remove muon duplication coming from the tau.

∆Rjet,electron <0.4 Discard electron to remove electrons within jets.

∆Rjet,µ <0.4 Discard muon to remove muons within jets.

∆Relectron,µ <0.01 Discard both electron and muon candidates

due to muons undergoing Bremsstrahlung.

∆Rµ,µ <0.05 Discard both muons due to shared tracks.

∆mSFOS <12 GeV Discard leptons pairs with same flavour and opposite charge

to suppress background from low mass resonances.

∆Rsignal τ,jet <0.2 Discard jets to remove “signal taus” (defined in Section 6.2.4)

duplicated among the jets.

rejected. Jets may contain leptons from semi-leptonic b- and c-quark decays, and they

can reconstructed as light leptons (e/µ). To remove such leptons from jet candidates,

and additional ∆R requirement is imposed on electrons and muons. Another possible

scenario is if a high-pT muon candidate undergoes Bremsstrahlung (radiates a photon),

the resulting photon may be wrongly reconstructed as an electron (jet overlap removal

has already been applied at this point). Both mis-reconstructed objects are removed if

close-by to each other (∆Relectron,µ <0.01). Hadronic taus are reconstructed using jets

as building blocks, hence, any overlapping jet with a “signal” tau candidate (defined in

Section 6.2.4) is discarded.

6.2 Object Identification

A detailed description of the physics objects used in this analysis is of primary importance

to understand the results in this thesis. The rest of this chapter focuses on the description

of the object identification criteria that follows from reconstruction, used for electrons,

muons, taus, jets and missing transverse energy.
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6.2.1 Electrons

Electron identification criteria rely on a cut-based1 selection using tracking and calorimeter

information which are applied to the reconstructed electron described in Section 4.3.2. This

is performed to reduce the number of non-prompt (“fake”) electrons. Three reference sets

of requirements are used [60]: “loose”, “medium” or “tight”, in order of decreasing effi-

ciency and increasing background rejection power. Some of these requirements include:

shower shape variables of the EM calorimeter middle layer are used in the loose selection;

track quality requirements and track-cluster matching added on top of the loose require-

ments for the medium selection; and the tight selection adds requirements on the track

matching (i.e. ratio of the cluster energy, E, to the track momentum, p), uses informa-

tion from the TRT (i.e. number of hits in the TRT), and discriminates against photon

conversions using hit information in the ID.

The electron candidates passing the cuts listed in Table 6.2 and the overlap removal

requirements in Table 6.1 are considered as baseline electrons.

Table 6.2: Baseline selection criteria for electrons.

Baseline Cuts Definition

Medium++ Medium ID selection in the egamma algorithm.

|ηcl| <2.47 Cluster pseudorapidity requirement.

ET >10 GeV The electron energy in Monte Carlo is smeared to reproduce

the resolution observed in data.

author == 1 or author selects only electrons reconstructed by the egamma-algorithm

author == 3 optimised for high pT electrons.

Signal electrons are selected starting from baseline electrons with additional (tighter)

quality requirements listed in Table 6.3. These include impact parameter requirements

to remove tracks associated to pile up interactions and isolation requirements to discrim-

inate against heavy flavour decays. This selection is designed to reject “fake” electrons

coming from non-isolated electrons, photon conversion produced electrons, and jets faking

electrons.

A tag-and-probe method is performed using Z → ee and J/Ψ→ ee events to measure

the efficiency of electron identification [60]. Figure 6.1 shows the efficiencies obtained using

Z→ ee events for the various levels of identification cuts as a function of transverse energy.

1Cut-based techniques use a set of criteria motivated by physical considerations and cut values are

determined by analysing samples of signal and background objects. The cuts can be applied independently.
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Table 6.3: Signal selection criteria for electrons.

Signal Cuts Definition

T ight++ Tight ID selection within the egamma algorithm.

Impact Parameter Requirements

Unbiased |d0|/σ(d0) <5 Distance of closest track to the reconstructed

primary vertex in the transverse plane.

Unbiased |z0sin(θ)| <0.4 mm z0 is the longitudinal distance of closest track to PV.

Isolation Requirements

pTcone30/ET < 0.16 Transverse momentum of all tracks pT > 1 GeV within ∆R ≤ 0.3

around the electron track and ET is the electron transverse energy.

eTcone30corrected/ET < 0.18 eTcone30corrected = eTcone30−A×Nvtx with

A = 20.15 MeV (17.94 MeV) in data (MC),

Nvtx is the number of vertices with at least 5 tracks,

and eTcone30 is the pT and energy-density corrected isolation.
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Figure 6.1: 2012 Electron identification efficiency as a function of ET. Four sets of cut-

based identification criteria are employed for the 2012 analyses. Data and MC efficiencies

are reported [61].

6.2.2 Muons

Muon identification is performed on all the tracks where the MS tracks are associated to ID

tracks. This is done by requiring high quality track selection (as defined in Section 4.3.1)

and track-based isolation criteria. A summary of the requirements for a baseline muon is

in Table 6.4, where candidates have also passed the overlap removal described in Table 6.1.

Additional isolation requirements to define a signal muon are described in Table 6.5.

These signal requirements use isolation parameters to help discriminate signal muons from

background ones, this is to avoid jets coming from heavy flavour decays that can be mis-

identified for prompt muons. Also, impact parameters with constraints placed on the

muon origin (with respect to the primary vertex of the event) are used to reject muons

from cosmic rays.

Corrections to the reconstructed muon momentum have been derived by comparing

the reconstructed muon momentum in experimental and simulated data [99]. For these

corrections, Z → µµ and J/Ψ events have been used by comparing the invariant mass

line-shape of the resonances and, in case of Z events reconstructed with muons in the MS,

also the difference between transverse momentum reconstructed in the ID and in the MS.
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Table 6.4: Baseline selection criteria for muons.

Baseline Cuts Definition

loose id Minimal ID tracking information for the combined and

segment tagged muons within the STACO algorithm [45].

|η| <2.5 Pseudorapidity requirement.

pT >10 GeV The muon pT is shifted and smeared in MC

to better reproduce the resolution in data

(as recommended by the Muon Combined Performance Group).

b-layer hit ≥ 1,

ID track requirements.pixel hit ≥ 1 and SCT hits≥ 6,

less than 3 holes in the pixel and SCT,

n > 5 and noutliersTRT < 0.9× n (n = nhitsTRT + noutliersTRT )

Table 6.5: Signal selection criteria for muons.

Signal Cuts Definition

unbiased |d0|/σ(d0) <3
Impact Parameter requirements.

Unbiased |z0sin(θ)| significance ≤1 mm

Isolation Requirements

pTcone30corrected/pT < 0.12 pTcone30corrected = pTcone30−A×Nvtx
with A = 10.98 MeV (6.27 MeV) in data (MC).

6.2.3 Jets

The baseline jet identification criteria is based on kinematic requirements which aim to

efficiently reject background jets while keeping the highest efficiency selection for jets pro-

duced in proton-proton collisions. All selected jets must: have high transverse momentum,

pT > 20 GeV; be within the pseudorapidity coverage of the calorimeters, |η| < 4.5; and

pass the overlap removal scheme explained in Section 6.1.

Signal jets are selected from baseline jets, which are required to cover a pseudorapidity

range of |η| < 2.5 and that the fraction of jet transverse energy associated to tracks coming

from the primary vertex, the so-called Jet Vertex Fraction (JVF) is greater than 0.5. Large

JVF values suppresses jets from a different (not primary) interaction in the same beam

bunch crossing.

B-tagged jets

Classification of signal jets as b-jet candidates is done using a multivariate tagging al-

gorithm, the MV1 algorithm [69]. This algorithm has various levels of identification based
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on the tagging efficiency. Signal jets are identified as b-jets if the output of the MV1

algorithm is greater than 0.3511. This corresponds to an average b-tagging efficiency of

80% [69], with a light-flavour jet mis-identification probability of about 4%.

6.2.4 Taus

Tau leptons are much heavier than any other lepton and have a very short lifetime (ττ =

1.9 × 10−13 s equivalent to a path length of 87 µm). This means that they will decay

in the beam pipe. Taus can decay either leptonically (τ → `ν`ντ , ` = e/µ) with a 35%

probability, or hadronically (τ → πντ ) 64.7% of the times. The hadronic decay modes are

classified as either “1-prong” or “3-prong” decays, where the number of prongs or tracks

is determined by the number of charged decay products (pions) in the tau decays.

Figure 6.2 shows the description of the reconstruction cone of a three-prong hadronic

tau.

Figure 6.2: Three-prong (3 charged pions and one neutral pion) tau reconstruction cone.

In the illustration, the green cone represents the tau “core” cone.

The signature of a jet is very similar to that of a hadronic tau, therefore, hadronic

tau reconstruction is seeded by jets (as discussed in Section 4.3.4) reconstructed with the

anti-kt algorithm , with a distance parameter R=0.4, pT > 10 GeV and |η| < 2.5 (which

corresponds to the η−coverage in the tracking system). Electromagnetic and hadronic

cluster shapes in the calorimeters as well as tracks in a cone within ∆R < 0.2 of the seed

jet are key properties of the tau identification algorithm, which help differentiate tau from

jet candidates.
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The identification of hadronic taus requires further discriminating variables to reject

fake taus from jets. This can be achieved using both a set of requirements and a Boosted

Decision Tree (BDT)2 multi-variate technique [100].

The following paragraphs show some of the discriminators used for tau identification,

a full list of variables can be found in [101]. The working points for the different selection

of variables used in the analysis are summarised in Table 6.7.

Jet BDT Discriminators

The discrimination of hadronic taus against jets is based on a BDT, which relies on seven

or more discriminating track and cluster variables depending on the number of tau prongs,

see [100]. The distribution of some of the discriminating variables are computed for τ -rich

events and quark- or gluon-jets are shown in 6.3. These variables are the fraction of the

total tau energy contained in the core cone defined by ∆R < 0.1, f corrcore , the track distance

from the tau axis, Rtrack, in case of 1-prong taus and the maximum distance between two

reconstructed tracks within a cone around the tau candidate, ∆Rmax, in case of 3-prong

taus. Also, the significance of a reconstructed secondary vertex, Sflight
T .

The signal and background efficiencies for tau identification are defined as

εn−prongSignal =
# of identified τ candidates with n reco tracks

# of true decays with n prongs
(6.1)

εn−prongBackground =
# of identified τ candidates with n reco tracks

# of reconstructed taus with n tracks
(6.2)

Jet BDT working points are defined to target signal efficiencies of 70(65)%, 60(55)%

and 40(35)% for 1(3)-prong, respectively. Background rejection factors of 10-40 for signal

efficiencies of 70% are achieved, going up to 500 for 35% signal efficiencies for 1- and 3-

prong taus [101].

The 2012 signal and background jet BDT identification efficiencies for 1- and 3-prong

tau candidates in all BDT working points as a function of the number of vertices is shown

in Figure 6.4.

Electron BDT Discriminators

The characteristic signature of 1-prong hadronic taus can also be mimicked by prompt

electrons. There are several properties that can be used to discriminate between electrons

2 Decision trees apply cuts on multiple variables in a recursive manner to classify objects as signal or

background. It produces a continuous score between 0 (background-like) and 1 (signal-like), on which a

user may cut to yield the desired signal or background efficiency.
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(a) (b)

(c) (d)

Figure 6.3: Distributions of a selection of jet discriminating variables for simulated

Z → ττ and W → τν MC signal samples and a jet background sample selected from 2012

data. The sudden discontinuity in (b) at 0.2 is due to a pile-up correction applied below

this threshold to reduce pile-up dependence of the calorimeter variables. The distributions

are normalised to unity [101].

and 1-prong taus, such as, the emission of transition radiation of the electron track and

the longer and wider shower produced by the hadronic tau decay products in the calori-

meter, compared to the one created by an electron. These properties are used to define

tau identification discriminants specialised in the rejection of electrons mis-identified as

hadronically decaying tau leptons. An electron veto based on BDTs makes use of these

discriminants and is optimised using simulated Z → ττ events for the signal and Z → ee

events for the background. The dependence of the signal and background efficiency of the

electron veto on transverse momentum is shown in Figure 6.5. The e-veto BDT working

points target signal efficiencies of 95%, 85% and 75%, respectively. Background rejection

factors of 1/10 for signal efficiencies of 95% are achieved for 1-prong taus [101].

The tau candidates passing the cuts listed in Table 6.6 and the overlap removal scheme

explained in Section 6.1 are considered as baseline taus.



65

(a) (b)

(c) (d)

Figure 6.4: Signal (top) and background (bottom) efficiencies for 1-prong (left) and multi-

prong (right) τhad using simulated Z → ττ and W → τν as signal samples and a jet

background sample selected from 2012 data [101].

The BDT method explained previously is used to provide further discrimination against

jets and electrons. Moreover, a cut-based muon veto is used to reject candidates with hits

in the MS. The set of requirements used to define signal taus are summarised in Table 6.7.
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(a) (b)

Figure 6.5: Signal (left) and background (right) efficiencies for 1-prong τhad using simulated

Z → ττ as signal sample and Z → ee as background sample selected from 2012 data [101].

The sudden change of the efficiency at 80 GeV is due to a different pile-up correction

applied to one of the calorimeter variables below and above this threshold.

Table 6.6: Baseline selection criteria for hadronic taus.

Baseline Cuts Definition

pT > 20 GeV Tau transverse momentum requirement.

|η| < 2.5 Pseudorapidity range for the calorimeters.

ntracks = 1 or 3 Number of associated charged tracks.

the tau charge must be ±1 Charge (derived from the tracks) requirement on the tau candidate.

Table 6.7: Signal selection criteria for hadronic taus.

Signal Cuts Definition

JetBDTSigMedium=1 “Medium” jet BDT score.

EleBDTLoose=0, “Loose” electron veto BDT score

(only for 1-prong tau candidates).

muonVeto=0 muon veto
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6.2.5 Missing Transverse Energy

The missing transverse energy, ~Emiss
T , is defined as the momentum imbalance in the plane

transverse to the beam axis due to neutrinos and other weakly-interacting particles:

Emiss
T =

√
(Emiss

(x) )
2

+ (Emiss
(y) )

2
. (6.3)

The calculation of ~Emiss
T uses the reconstructed physics objects discussed in Section 4.3.

The vector sum of transverse energy in the calorimeters, as well as tracks measured in

the muon spectrometer defines the missing transverse energy of the event:

Emiss
(x,y) = Emiss, calo

(x,y) + Emiss, µ
(x,y) , (6.4)

where the muon component is calculated by summing over muon track momenta (within

|η| < 2.7):

Emiss, µ
(x,y) = −

∑
pµ(x,y). (6.5)

The calorimeter term, Emiss, calo
(x,y) , is defined as

Emiss, calo
(x,y) = Emiss, e

(x,y) + Emiss, γ
(x,y) + Emiss, τ

(x,y) + Emiss, jets
(x,y)

+ Emiss, cellOut
(x,y) + E

miss, µ(calo)
(x,y) ,

(6.6)

where the Emiss, e
(x,y) , Emiss, γ

(x,y) and Emiss, τ
(x,y) terms are calculated from energy deposits in the

calorimeter cells associated to electrons, photons and hadronic taus, respectively. The

muon term E
miss, µ(calo)
(x,y) is calculated from the energy loss of all muons in the calorimeters

(the energy deposits from isolated muons are not taken into account to avoid double-

counting of the muon energy). The jet term Emiss, jets
(x,y) is calculated using jets with local

calibration applied, and with pT > 20 GeV. Any cells in clusters associated to jets with

softer pT (7 GeV< pT < 20 GeV) and the remaining low energy calorimeter deposits

(within |η| < 4.9) not associated with any of the above objects form the cell out term

(Emiss, cellOut
(x,y) ) [102].

Hadronic taus are not distinguished from jets, hence, they are accounted in the ~Emiss
T

calculation as jets, which provides a stable ~Emiss
T description, corresponding to “Egamma10NoTau

RefFinal”, which takes as input all baseline objects (without overlap removal being per-

formed on them) defined previously in this chapter. This is defined as

Emiss
(x,y) = Emiss, e

(x,y) + Emiss, γ
(x,y) + Emiss, jets

(x,y)

+ Emiss, cellOut
(x,y) + E

miss, µ(calo)
(x,y) −

∑
pµ(x,y).

(6.7)
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Chapter 7

SUSY Searches in Three Lepton

Final States

Direct electroweak production of charginos (χ̃±i=1,2) and neutralinos (χ̃0
j=1,2,3,4) can lead

to leptons in the final state, missing energy and very low hadronic activity.

This chapter presents the search strategies developed in this thesis which particularly

focus on direct production of χ̃±1 χ̃
0
2 decaying to three leptons and missing energy using

the complete ATLAS dataset collected during the 2012 LHC run at 8 TeV centre-of-mass

energy. Each of the intermediate particles in the decay chain of χ̃±1 χ̃
0
2 pair production

into three leptons (e/µ/τ) can provide different SUSY scenarios. All scenarios described

in Section 2.2.1 are considered for this search, where the χ̃±1 χ̃
0
2 decays are mediated by

production of WZ, Wh, ˜̀ or τ̃ particles.

7.1 The 2012 Data

In 2012, the LHC delivered pp collisions at a centre-of-mass energy of
√
s = 8 TeV,

corresponding to a total integrated luminosity of 22.8 fb−1, and a total luminosity recorded

by the ATLAS detector equivalent to 21.3 fb−1. “Data-quality” criteria are imposed to

the 2012 data collected by ATLAS [1], which take into account possible hardware and

data-taking problems by the various ATLAS sub-systems. The resulting data used for

this analysis corresponds to a total integrated luminosity of 20.3 fb−1. The evolution of

the 8 TeV cumulative integrated ATLAS luminosity as a function of time is shown in

Figure 7.1.

The improvements to the instantaneous luminosity from year to year were due to

increases in the number of proton bunches in each beam, increases in the number of
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Figure 7.1: Total integrated luminosity in the 2012 LHC run. Cumulative luminosity

versus time delivered to the LHC (green), recorded by ATLAS (yellow), and certified

to be “good quality” data for ATLAS analyses (blue) during stable beams and for pp

collisions at 8 TeV centre-of-mass energy in 2012.

protons per bunch, and improvements in beam focusing.

7.2 Analysis Strategy and Personal Contribution

The three lepton search is designed to select events containing charginos and neutrali-

nos from events due to SM processes. Trilepton events are selected based on the object

identification criteria discussed in Chapter 6. Events are required to pass further quality

selection criteria (detailed in Section 7.3), as well as the trigger requirements described

in Section 7.3.1. After all quality requirements are satisfied, the search for “interesting”

events begins by defining “signal regions” where signal events are maximised over contribu-

tion from SM background events (see Section 7.4). At the same time, “validation regions”

are identified, dominated almost exclusively by SM backgrounds, where the contribution

of the different SM events are estimated. The results are discussed in Chapter 8.

Throughout this document, signal electrons and muons are labelled as ` or `′ where

the flavour of ` and `′ is assumed to be different, whereas signal hadronic taus are denoted

as τ for simplicity.
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Personal contribution

I had the responsibility within the ATLAS multilepton SUSY analysis to add the hadronic

tau final states as part of the three lepton analysis, which have been proven to be very

important for an increase in sensitivity with respect to channels with only light leptons

(e/µ) previously studied [103, 104, 105].

I was responsible for defining new signal regions (defined in Section 7.4 as SR0τb,

SR1τ , SR2τa/b) with the purpose of enhancing the signal contribution of the newly ex-

plored SUSY scenarios with χ̃±1 χ̃
0
2 pair production with decays into three leptons mediated

by Wh or τ̃ . I also contributed to the MC-based estimation and modelling of the main

SM backgrounds in the signal regions mentioned above and in dedicated Validation Re-

gions (VR) where the signal contamination is low, defined in Section 7.5 as VR1τa/b and

VR2τa/b. Details of the thorough modelling of the event kinematics in these VRs can

be found in Section 7.5. I evaluated the main systematic uncertainties, e.g. theoretical

cross section uncertainty and lepton identification systematics, on the SM backgrounds

for the signal regions stated above, as well as those related to the PDF sets for all signal

regions, and the experimental systematics. I have been responsible for the setting of the

mass exclusion limits for four new SUSY models: two simplified models (the τ̃ - and Wh-

mediated) and two pMSSM models (dominated by no-˜̀ and τ̃ decays). These results are

detailed in Chapter 8.

A paper summarising the results of these searches was published in the Journal of High

Energy Physics (JHEP) in April 2014 [1]. This paper contains the first SUSY results from

the ATLAS collaboration which include the SM Higgs.

7.3 Event pre-selection

7.3.1 Triggers

This analysis makes use of single-isolated light lepton triggers as well as di-lepton triggers,

listed in Table 7.1. The selected events in this analysis are required to pass any of these

light-lepton trigger chains. A logical OR of the triggers is used to enhance the trigger

selection efficiencies. To ensure that trigger efficiency is independent of the pT of the

leptons, events are required to have a pT above a specific threshold for each trigger chain,

also listed in Table 7.1. Figure 7.2 shows an example of the “turn-on curve” for one of the

single-muon triggers used in this trigger menu, where the plateau is reached at ∼25 GeV,

which is the threshold selected for this trigger chain. The pT thresholds are also chosen
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such that the overall trigger efficiency with respect to the selected events is above 90%,

and is independent of the lepton pT [106].
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Figure 7.2: Efficiency of the single muon trigger (EF mu24i tight) with respect to offline

reconstructed isolated muons as a function of pT for the barrel region. The tag-and-probe

method in Z → µµ events was used to derive these efficiencies. The vertical error bars in

the figure represent the statistical errors. The amount of data used corresponds to 5.56

fb−1 [107].

Any event overlap in the data streams is removed by requiring that events in the

“EGamma” stream were triggered by the “EGamma-triggers” (specified in table 7.1)

and any events in the “Muons” stream fail to pass the “EGamma-triggers” and pass

the “Muons-triggers” instead. The same requirements are applied to the MC-simulated

events (in MC simulated data events are not duplicated so no overlap removal is needed).

The ATLAS hadronic tau triggers use a tau identification criteria that is tighter than

the signal tau selection used in this analysis, see Section 6.2.4. Therefore, only triggers

based on light leptons are used to trigger events.

The trigger performance has been studied in detail in ref. [106], where the electron

(muon) trigger efficiencies are measured by using the tag-and-probe method on Z → ee

(Z → µµ) events. In particular, the three-lepton analysis team performed similar studies

to show the agreement between the trigger performance in data and MC simulation for

all single and double triggers, where it is seen that discrepancies are smaller than 2%. A

conservative systematic of 5% is applied to account for these differences seen between the

trigger in data and simulation.
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Table 7.1: The trigger chains used and the offline pT threshold used ensuring that the

lepton(s) triggering the event are in the plateau region of the trigger efficiency.

Trigger Detail Stream offline threshold [GeV]

Single Isolated e e24vhi medium1 EGamma 25

Single Isolated µ mu24i tight Muons 25

Double e
2e12Tvh loose1 EGamma 14,14

e24vh medium1 e7 medium1 EGamma 25,10

Double µ
2mu13 Muons 14,14

mu18 tight mu8 EFFS Muons 18,10

Combined eµ
e12Tvh medium1 mu8 EGamma 14,10

mu18 tight e7 medium1 Muons 18,10

Event Quality Requirements

All events must have exactly three signal leptons (e/µ/τ), as in Chapter 6. Data are

selected if one or more of the signal light leptons in the event matches one of the light lepton

triggers and is within ∆R < 0.15 from the relevant trigger object. Furthermore, there are

requirements which are applied to reject events that might suffer from reconstruction

problems, such as, jets which do not originate from hard scattering events [108] and fake

missing transverse energy in the event originating from instrumental effects ( e.g. detector

noise), cosmic ray muons, non-operational detector parts. All events are required to have

a primary vertex with five or more associated good tracks. In addition, well-isolated

muons in the event which also satisfy |z0| < 1 mm or |d0| < 0.2 mm are required to

suppress cosmic rays; and events with muons that may be mis-measured in charge (q)

and/or momentum (p) in the ID are discarded if they satisfy:
σq/p
|q/p| ≥ 0.2.

7.4 Signal Region Definition and Optimisation

Five main signal regions (SR) are defined according to the flavour and charge of the

leptons surviving pre-selection. The hadronic tau multiplicity drives the categorisation of

the signal regions in: 3` + 0τ , 2` + 1τ and 1` + 2τ channels, where ` refers to electrons

and muons only. Since no b-jets are expected in the final states studied, a veto on events

containing b-tagged jets is applied in all signal regions. All signal regions have a high

missing transverse energy requirement of at least 50 GeV.
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Signal regions are defined by varying the requirements on selected kinematic variables

to maximise the signal significance, ZN [109], defined as:

ZN =
√

2erf−1(1− 2p(S,B, σB)). (7.1)

In this formula p indicates the probability to observe more data than the background-

only hypothesis prediction (see Section 8.1 for more details); S and B are the number of

expected signal and background events, respectively, in a given region; and σB corresponds

to the uncertainty associated to the background yields. The uncertainty choice is driven

by the available statistics for the dominating background in a given region, in the case

of SR2τa, the backgrounds is largely dominated by reducible SM processes with poor

statistics, hence a conservative 100% is used, and 30% is used for all other signal regions.

The requirements on the kinematic variables used to define the SRs are shown in

Table 7.2. The optimisation process focuses on fixing a requirement of one of the kin-

ematic variable at a time and varying the others in order to reduce SM background pro-

cesses and preserve the signal events denoted throughout this document as “SM WH/staus

(mχ̃±1
,mχ̃0

1
)” which refer to selected simplified model via Wh/τ̃ benchmark points with

various masses of χ̃±1 and χ̃0
1. These requirements are chosen such that the significance

value (zN ) for most signal benchmark points is optimal without statistical bias. For this

reason, it is important to show the kinematic variable distribution before a requirement

has been applied and also, the signal significance of a few benchmark points as the re-

quirement on the variable itself is varied. The definition of signal regions and optimisation

studies performed using MC-simulated data are detailed in the following paragraphs.

Table 7.2: Summary of the selection requirements for the signal regions. The SR0τa bin

definitions are shown in Table 7.3. Energies, momenta and masses are given in units of

GeV. The signal models targeted by the selection requirements are also shown.

Signal region SR0τa SR0τb SR1τ SR2τa SR2τb

Flavour/sign `+`−`, `+`−`′ `±`±`′∓ τ±`∓`∓, τ±`∓`′∓ ττ` τ+τ−`

b-tagged jet veto veto veto veto veto

~Emiss
T binned > 50 > 50 > 50 > 60

Other mSFOS binned p3rd`
T > 20 p2nd`

T > 30 mmax
T2 > 100

∑
pτT > 110

mT binned ∆φmin
``′ ≤ 1.0

∑
p`T> 70 70<mττ < 120

m`τ < 120

mee Z veto

Target model ˜̀,WZ-mediated Wh-mediated Wh-mediated τ̃L-mediated Wh-mediated
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7.4.1 3`+ 0τ channel

SR0τa (`+`−`, `+`−`′)

The presence of one same-flavour and opposite-charge (SFOS) light lepton pair is the first

requirement for the definition of this SR. This is motivated by the expected final state of

χ̃±1 and χ̃0
2 decays shown in 7.2- 7.3 where the decay chains are mediated by ˜̀

L and WZ

particles, respectively.

χ̃±1 χ̃
0
2 →W±χ̃0

1Zχ̃
0
1 → `±νχ̃0

1`
∓`±χ̃0

1 (7.2)

χ̃±1 χ̃
0
2 → ˜̀±ν ˜̀±`∓ → `±χ̃0

1ν`
±χ̃0

1`
∓ (7.3)

These decay modes have been studied in previous searches [103, 104, 105], where it was

found that Emiss
T and the “transverse” mass (mT) are the most powerful discriminators.

The variable mT is defined using the pT of the light lepton not part of the SFOS pair

(with invariant mass closest to the mass of the Z boson) and the Emiss
T :

mT(~p `T, ~p
miss
T ) =

√
2p `TE

miss
T − 2~p `T · ~pmiss

T . (7.4)

A requirement on mT will suppress the background from WZ SM processes, where

it is expected that mT ≤ mW . This signal region is further subdivided in bins defined

by the invariant mass of the SFOS lepton pair (mSFOS) closest to the Z boson mass,

the transverse mass mT, and Emiss
T . Furthermore, events with trilepton invariant mass,

m3`, close to the Z boson mass (|m3` − mZ | <10 GeV) are vetoed in bins 5, 9 and 13

to suppress contributions from Z boson decays with converted photons from final-state

radiation, this is denoted in Table 7.3 as “3` Z veto”. The total list of bins considered is

shown in Table 7.3.

The first step in the optimisation of this region consists of defining five bins in the

mSFOS as shown in the second column of Table 7.3. The chosen values of the selection

requirements on mSFOS have been found most favourable in a previous optimisation [103].

The first three and fifth mSFOS bins are defined in order to maximise the sensitivity

of the analysis to the ˜̀
L-mediated model as well as the WZ-mediated model where the Z

boson is produced virtually (off-shell), analogous to the Z-depleted region in [103]. The

fourth bin is defined to be sensitive to the WZ-mediated model, in analogy to the Z-

enriched region in [103]. The WZ and tt̄ backgrounds generally dominate the SR0τa bins

in varying proportions, with WZ mainly dominating the bins for which mSFOS is in the
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Table 7.3: Summary of the bins in mSFOS, mT, and Emiss
T for SR0τa.

SR0τa bin mSFOS [GeV] mT [GeV] Emiss
T [GeV] 3` Z veto

1 12–40 0–80 50–90 no

2 12–40 0–80 > 90 no

3 12–40 > 80 50–75 no

4 12–40 > 80 > 75 no

5 40–60 0–80 50–75 yes

6 40–60 0–80 > 75 no

7 40–60 > 80 50–135 no

8 40–60 > 80 > 135 no

9 60–81.2 0–80 50–75 yes

10 60–81.2 > 80 50–75 no

11 60–81.2 0–110 > 75 no

12 60–81.2 > 110 > 75 no

13 81.2–101.2 0–110 50–90 yes

14 81.2–101.2 0–110 > 90 no

15 81.2–101.2 > 110 50–135 no

16 81.2–101.2 > 110 > 135 no

17 > 101.2 0–180 50–210 no

18 > 101.2 > 180 50–210 no

19 > 101.2 0–120 > 210 no

20 > 101.2 > 120 > 210 no

81.2 − −101.2 GeV range. Additionally, bins 5, 9, and 13 veto events with m``` within

10 GeV of the Z boson mass in order to suppress SM background from Z → ``` processes

where one lepton arises from a converted photon from final state radiation.

The values considered for the requirements on the mT and Emiss
T shown in Table 7.3

(third and fourth column, respectively) were found to be optimal in studies done within

the trilepton analysis group.

SR0τb (`±`±`′∓)

This signal region is designed to be sensitive to the Wh-mediated scenario where the Higgs

decays which can lead to light lepton final states are via intermediate WW and ττ :

χ̃±1 χ̃
0
2 →W±χ̃0

1hχ̃
0
1 → `±χ̃0

1`
∓`±χ̃0

1 + Emiss
T (ν) (7.5)

Figure 7.3 shows that the SM Higgs branching ratios (BR) of h → WW or h → ττ

processes is very low compared to others, such as h→ bb.

Events with a SFOS light lepton pair are vetoed to suppress WZ background, which

is the main SM background process in this scenario. The optimisation process begins by
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Figure 7.3: Standard Model Higgs boson decay branching ratios [110]

requiring high missing transverse energy to reduce WZ and tt̄ contamination. Figure 7.4

shows the distribution of Emiss
T , which clearly peaks at around 50 GeV.
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Figure 7.4: The Emiss
T distribution after SFOS veto and a b-jet veto are applied. The chosen

signal benchmark points shown correspond to simplified models via Wh with masses:

mχ̃±1
= 140, 152.5 GeV and mχ̃0

1
= 10, 22.5 GeV.

After the Emiss
T requirement, the majority of the background is due to tt̄ events, which

have a low-pT third-leading lepton from a leptonic b decay. The pT distribution for the

third-leading lepton is shown in Figure 7.5(a) alongside a plot 7.5(b) which shows that a

cut at p3rd `
T > 20 GeV is optimal based on the ZN values calculated for various signal

benchmark points shown, which have been chosen based on their expected yields. Lastly,

the ∆φ angle between two opposite-sign (OS) light leptons (coming from the Higgs decay
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according to the model) is studied. The minimum value out of all possible ∆φ combina-

tions between OS light-lepton pairs, ∆φmin
``′ , is shown in Figure 7.5(c). The signal events

have opposite-sign leptons closer in φ space than the SM background events, which is

relatively flat in ∆φmin
``′ . Therefore, a requirement of ∆φmin

``′ ≤1.0 shows to be optimal (see

Figure 7.5(d)).
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Figure 7.5: The p3rd `
T distribution after SFOS veto, b-jet veto and Emiss

T > 50 GeV are

applied (a). The ∆φmin
``′ distribution after a veto on SFOS lepton pair, b-jet veto, Emiss

T >

50 GeV and p3rd`
T > 20 GeV are applied (c). The signal significance is also shown for Wh

SUSY benchmark points as the lower cut on p3rd `
T (b) and upper cut on ∆φmin

``′ (d) are

varied. The chosen signal benchmark points shown correspond to simplified models via

Wh with masses: mχ̃±1
= 140, 152.5(130, 140, 150) GeV and mχ̃0

1
= 10, 22.5(0, 10, 0) GeV

on the left (right) plots.

The remaining processes come from tt̄ and V V V production and are estimated as

discussed Section 7.5.
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7.4.2 2`+ 1τ channel

SR1τ (τ±`∓`∓, τ±`∓`′∓)

This signal region is designed to be sensitive to the Wh-mediated scenario, where one of

the taus decays hadronically and the other leptonically:

χ̃±1 χ̃
0
2 →W±χ̃0

1hχ̃
0
1 → `±νχ̃0

1τ
∓τ±χ̃0

1 (7.6)

Because of the expected final state, the selection requires two same-sign (SS) signal elec-

trons/muons and one signal hadronic tau with opposite charge.

A requirement on the invariant mass of the `τ pair, m`τ , closest to the Higgs boson

mass of 125 GeV is made. Same-sign electron pairs with invariant mass consistent with a

Z boson mass (81.2 GeV < mee < 101.2 GeV) are vetoed to suppress events in which the

charge of an electron is wrongly assigned due to a converting photon. This effect is rare in

di-muon events due to the higher performance of combined-track information from the ID

and MS at reconstruction level and also because muons undergo far less Bremsstrahlung

than electrons. Figure 7.6 shows the effect of the Z-veto on the background yields, mainly

coming from Z+jets processes.
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(a) SR1τ : m`` before Z(→ ee) veto

 (sfss) [GeV]llm

0 20 40 60 80 100 120 140 160 180 200

E
v
e

n
ts

 /
 1

0
 G

e
V

­210

­110

1

10

210

3
10

410

5
10 W+jets

Z+jets
tt

single t
Dibosons
ttbar+V
Tribosons
higgs
Total SM
sm WH (140,10)
sm WH (152.5,22.5)

= 8 TeVs ­1
L dt = 20.3 fb∫

ATLAS Thesis

(b) SR1τ : m`` after Z(→ ee) veto

Figure 7.6: The m`τ distribution (a) before and (b) after applying Z(→ ee) veto for

`±`±τ∓ events, with ` = e/µ. The chosen signal benchmark points shown correspond to

simplified models via Wh with masses: mχ̃±1
= 140, 152.5 GeV and mχ̃0

1
= 10, 22.5 GeV

on the plots.

Further signal optimisation is done by exploring the scalar sum of pT of the two same-

sign leptons, shown in Figure 7.7(a). A requirement on the sum of pT of the light leptons

(
∑
p`T> 70 GeV) seems to discriminate well against the SM processes, where the effect on

the selected signal benchmark points can be seen in Figure 7.7(b).
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Figure 7.7: The sum of the lepton pT where b-jet veto, Z(→ ee) veto and Emiss
T require-

ments have been applied. The signal significance is also shown for Wh SUSY benchmark

points as the lower cut on
∑
p`T is varied.The chosen signal benchmark points shown cor-

respond to simplified models via Wh with masses: mχ̃±1
= 140, 152.5(130, 140, 150) GeV

and mχ̃0
1

= 10, 22.5(0, 10, 0) GeV on the left (right) plots.

Once all of these requirements have been applied, the pT of the sub-leading light

lepton is investigated, as shown in Figure 7.8(a). The remaining contribution to the SM

background, are mainly coming from diboson and tt̄ processes, which have soft sub-leading

leptons compared to the SUSY events considered. Therefore, the sub-leading light lepton

in the event is required to have pT> 30 GeV to discriminate against these SM backgrounds.

Due to missing neutrinos from the tau decays and the two LSP (χ̃0
1) in the event,

the Higgs mass cannot be accurately measured. This can be seen in the distribution of

the invariant mass of the hadronic tau and the leptonic tau candidate, assuming that the

second leading light lepton comes from the h → ττ decay, shown in Figure 7.9(a). A

upper limit on the invariant mass of the lepton-tau pair (m`τ < 120 GeV) is chosen as the

optimal requirement to remove SM contributions, mainly from diboson processes.

After these requirements are imposed, the diboson and tt̄ processes dominate the re-

maining SM background.
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Figure 7.8: The pT of the sub-leading lepton in `±`±τ∓ events where the b-jet veto,

Z(→ ee) veto, Emiss
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∑
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while (b) shows the signal significance as a lower cut on p 2nd`
T is varied. The chosen

signal benchmark points shown correspond to simplified models via Wh with masses:

mχ̃±1
= 140, 152.5(130, 140, 150) GeV and mχ̃0

1
= 10, 22.5(0, 10, 0) GeV on the left (right)

plots.
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(a) SR1τ : m`τ
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(b) SR1τ : m`τ optimisation

Figure 7.9: The m`τ distribution in `±`±τ∓ events where the b-jet veto, Z(→ ee) veto,

Emiss
T and

∑
p`T and p 2nd`

T requirements are applied. The signal significance ZN for Wh

SUSY benchmark points as the upper threshold on m`τ is varied (b). The chosen signal

benchmark points shown correspond to simplified models via Wh with masses: mχ̃±1
=

140, 152.5(130, 140, 150) GeV and mχ̃0
1

= 10, 22.5(0, 10, 0) GeV on the left (right) plots.
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7.4.3 1`+ 2τ channel

SR2τa (τhadτhad`)

This signal region is sensitive to the τ̃L-mediated scenario, where the two tau leptons decay

hadronically:

χ̃±1 χ̃
0
2 → τ̃±ντ τ̃

±τ∓ → τ±χ̃0
1νττ

∓χ̃0τ±. (7.7)

In this SUSY scenario there are three leptons that can originate from the staus or

directly from the χ̃0
2, making them indistinguishable.

Discrimination between SUSY signal and main SM backgrounds, such as, top and

W+jets, is achieved using the “stransverse mass” variable, mT2 [111, 112]. This variable

is designed to select events where there are particles decaying to one visible and one

invisible object, e.g. WW → `ν`ν and χ̃±1 χ̃
0
2 decays as in Equation 7.7.

The stransverse mass is defined as

mT2 = min
~qT

[
max

(
mT(~pT, 1, ~qT),mT(~pT, 2, ~p

miss
T − ~qT)

)]
, (7.8)

where ~pT, 1 and ~pT, 2 are the transverse momenta of the two visible objects and ~qT corres-

pond to the transverse vector that minimises the larger of the two transverse masses. For

signal events the mT2 end-point is correlated to the mass difference between the lightest

chargino or next-to-lightest neutralino and the LSP. For large values of this difference, the

mT2 distribution for signal events extends significantly beyond the distributions of the SM

background events which have in this case have a kinematic upper end-point at around the

mass of the decaying particle. Therefore, events in this SR are selected requiring that they

have high Emiss
T and high “maximum stransverse mass” mmax

T2 , where mmax
T2 is formed by

taking the largest mT2 value out of all possible combinations of `, τ, Emiss
T and τ, τ, Emiss

T

taken as input for the calculation. No charge requirement is made on any of the three

leptons.

The optimisation process is done by looking at the Emiss
T and mmax

T2 distributions, as

shown in Figure 7.10. The chosen SUSY signal points shown on the plots, characterise

the main features of the τ̃L-mediated scenario. This signal region is defined by having

a minimum requirement on the Emiss
T (Emiss

T > 50 GeV) and a large mmax
T2 cut (mmax

T2 >

100 GeV), in order to reduce background events coming from V+jets processes, which lie

at values below ∼100 GeV.
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(d) SR2τa: mmax
T2 optimisation

Figure 7.10: The Emiss
T distribution in 1`+2τ events where b-jet veto is applied (a). The

mmax
T2 distribution in 1`+2τ events where a b-jet veto and Emiss

T > 50 GeV is applied (c).

The signal significance for τ̃ SUSY benchmark points as a lower cut on Emiss
T (b) and mmax

T2

(d) is varied. The chosen signal benchmark points shown correspond to simplified models

via τ̃ with masses: mχ̃±1
= 150, 225(150, 325, 400) GeV and mχ̃0

1
= 50, 25(50, 75, 0) GeV

on the left (right) plots.

SR2τb (τ+τ−`)

This signal region is sensitive to the Wh-mediated scenario shown in Equation 7.6, where

the two tau leptons decay hadronically. Therefore, selected events are required to have

two opposite-sign hadronic taus and one light signal lepton.

A high Emiss
T requirement of 60 GeV is used to reduce contributions from V+jets

processes. The missing transverse energy for events with `τ+τ− and a b-jet veto is shown

in Figure 7.11(a). The effect on the signal significance can be seen in Figure 7.11(b), where

a cut of Emiss
T > 60 GeV is shown to be optimal for the SUSY benchmark points with

highest yields.

The di-tau invariant mass, mττ , is calculated for events passing the Emiss
T requirement
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(b) SR2τb: Emiss
T optimisation

Figure 7.11: The Emiss
T distribution in `τ+τ− events where b-jet veto is applied (a). The

signal significance ZN for Wh SUSY benchmark points as a lower cut on Emiss
T is varied

(b). The chosen signal benchmark points shown correspond to simplified models via Wh

with masses: mχ̃±1
= 140, 152.5(130, 140, 150) GeV and mχ̃0

1
= 10, 22.5(0, 10, 0) GeV on

the left (right) plots.

(see Figure 7.12). Due to escaping neutrinos in the event, the peak of the mττ is lower

than the Higgs mass at 125 GeV. The WZ and ZZ backgrounds have broad mττ values

below the Z mass. Upper and lower requirements on mττ can reduce contamination

from backgrounds with Z bosons due to the mass difference between Z and H boson

(∼ 30 GeV). This signal region is required to have mττ in the mass window 70–120 GeV

to mainly reduce such diboson background contributions. Furthermore, the scalar sum

of pT of the two hadronic taus in the event is investigated and its distribution shown

in Figure 7.13. The SUSY events tend to have larger total energy than the SM events,

due to the higher mass of the particles, and result in particles with large momenta in

the final state for SUSY signals. A requirement on the sum of pT of the two hadronic

taus (
∑
pτT> 110 GeV) discriminates well against SM background coming from V+jets

processes.

The remaining backgrounds surviving the SR2τb selection are due to diboson and tt̄

processes.

7.5 Background Estimation

Several SM processes can lead to events with three leptons in the final state and therefore

enter the signal regions as background contamination. All lepton candidates (e/µ/τ) in

the events entering the SR can be categorised according to the process they originate
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(b) SR2τb: mττ optimisation

Figure 7.12: The mττ distribution in for `τ+τ− events where the b-jet veto and Emiss
T

requirements are applied. The signal significance ZN for Wh SUSY benchmark points

as the lower threshold on mττ is varied (b). The chosen signal benchmark points shown

correspond to simplified models via Wh with masses: mχ̃±1
= 140, 152.5(130, 140, 150) GeV

and mχ̃0
1

= 10, 22.5(0, 10, 0) GeV on the left (right) plots.

from using MC-simulated data. These categories are: “real” leptons, which are prompt

and isolates, and originate from W , Z, h and τ decays; and “fake” leptons, which can

originate from a mis-identified light-flavour quark or gluon jet. Real leptons that are non-

prompt are considered as fake leptons since they can originate from a semi-leptonic decay

of a heavy-flavour quark, or an electron from a Bremsstrahlung photon conversion.

Figure 7.14 shows the origin of the lepton candidates passing signal regions selection

using MC simulated background processes categorised as either “Top” or “Boson”. “Bo-

son” processes accounts for contributions coming from dibosons, tribosons, W/Z+jets and

Higgs (ggF/V BF/WH/ZH) backgrounds; and the “Top” processes accounts for contri-

butions coming from tt̄, tt̄ + V , single-t and Higgs (tt̄H). Electrons and muons mainly

originate from a prompt decay, whereas hadronic taus are mainly fakes originating from

heavy flavour and light flavour jet decays.

Based on whether leptons are real or fake, SM processes are classified into irreducible

background (all leptons in the events are real) and reducible background (events with at

least one fake lepton). This section describes how the background contribution in the

signal regions is estimated, by using data-driven techniques for the reducible processes

and MC-based techniques for the irreducible processes. The predictions for irreducible and

reducible backgrounds, discussed in 7.5.1 and 7.5.2 respectively, are tested in validation

regions (section 7.5.3) by comparing them to what is seen directly from the real data in

kinematic regions that are close yet disjoint from SRs.
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pτT optimisation

Figure 7.13: The
∑
pτT distribution in for `τ+τ− events where the b-jet veto, Emiss

T and mττ

requirements are applied (a). The signal significance ZN for Wh SUSY benchmark points

as the lower
∑
pτT threshold is varied (b). The chosen signal benchmark points shown

correspond to simplified models via Wh with masses: mχ̃±1
= 140, 152.5(130, 140, 150) GeV

and mχ̃0
1

= 10, 22.5(0, 10, 0) GeV on the left (right) plots.
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(d) SR2τb: e/µ/τ

Figure 7.14: Sources of electrons, muons and taus obtained from MC after all cuts in the

signal regions.
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7.5.1 Irreducible Background

The processes that form the irreducible background for this analysis areWZ(/γ∗), ZZ(/γ∗),

tt̄+Z(/W/WW ), tZ, V V V and Higgs boson production (ggF/V BF/WH/ZH). The MC-

based estimates are shown in table 7.4 and indicate that WZ dominates the irreducible

background in all SRs, except in SR0τb (where the optimisation uses a SFOS veto to

specifically reject WZ events). In this SR is the V V V background is the one that domin-

ates. All background estimates are determined using corresponding MC-simulated data,

for which lepton (e/µ/τ) and b-jet selection efficiencies are corrected to account for differ-

ences with respect to the real data (more details in Section 7.6).
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Table 7.4: Total irreducible background yields in the signal regions. The different com-

ponents are derived purely from MC. All background contributions are normalised to

20.3 fb−1. Uncertainties are statistical and systematic, as described in Section 7.6.

Sample WZ ZZ top+ V V V V Higgs

SR0τa-bin01 13.2+3.4
−3.2 1.4+0.6

−0.5 0.14+0.05
−0.05 0.33+0.33

−0.33 0.66+0.26
−0.26

SR0τa-bin02 3.0+1.4
−1.4 0.12+0.06

−0.06 0.07+0.04
−0.04 0.0982+0.1015

−0.1016 0.15+0.08
−0.08

SR0τa-bin03 7.8+1.6
−1.6 0.40+0.14

−0.14 0.035+0.046
−0.047 0.19+0.19

−0.19 0.64+0.22
−0.22

SR0τa-bin04 4.5+1.1
−1.0 0.20+0.18

−0.18 0.14+0.13
−0.13 0.6+0.6

−0.6 0.46+0.18
−0.17

SR0τa-bin05 6.3+1.6
−1.6 1.5+0.5

−0.5 0.11+0.08
−0.08 0.26+0.27

−0.27 0.36+0.14
−0.15

SR0τa-bin06 3.7+1.6
−1.6 0.25+0.14

−0.11 0.047+0.022
−0.021 0.24+0.24

−0.24 0.33+0.13
−0.12

SR0τa-bin07 7.6+1.3
−1.3 0.55+0.16

−0.14 0.04+0.15
−0.15 0.9+0.9

−0.9 0.98+0.29
−0.30

SR0τa-bin08 0.30+0.25
−0.24 0.012+0.008

−0.007 0.12+0.13
−0.13 0.13+0.14

−0.14 0.13+0.06
−0.06

SR0τa-bin09 16.2+3.2
−3.1 1.43+0.32

−0.28 0.16+0.09
−0.12 0.23+0.24

−0.23 0.32+0.11
−0.11

SR0τa-bin10 13.1+2.5
−2.6 0.60+0.12

−0.13 0.12+0.10
−0.10 0.4+0.4

−0.4 0.22+0.10
−0.11

SR0τa-bin11 19+4
−4 0.7+1.2

−1.2 0.41+0.24
−0.22 0.6+0.6

−0.6 0.28+0.12
−0.12

SR0τa-bin12 3.7+1.2
−1.2 0.14+0.09

−0.09 0.12+0.11
−0.11 0.6+0.6

−0.6 0.12+0.06
−0.06

SR0τa-bin13 613+65
−64 29+4

−4 2.9+0.7
−0.6 1.3+1.3

−1.3 2.2+0.7
−0.7

SR0τa-bin14 207+33
−32 5.5+1.5

−1.5 2.0+0.7
−0.6 0.8+0.8

−0.8 0.98+0.20
−0.20

SR0τa-bin15 58+12
−13 3.5+1.1

−1.0 0.67+0.29
−0.28 1.0+1.0

−1.0 0.31+0.11
−0.11

SR0τa-bin16 3.9+1.6
−1.4 0.12+0.08

−0.07 0.08+0.10
−0.10 0.33+0.33

−0.33 0.033+0.018
−0.018

SR0τa-bin17 50+7
−6 2.4+0.7

−0.6 0.8+0.5
−0.5 3.2+3.2

−3.2 0.95+0.29
−0.29

SR0τa-bin18 2.3+1.3
−1.3 0.08+0.04

−0.04 0.15+0.16
−0.16 0.5+0.5

−0.5 0.05+0.04
−0.04

SR0τa-bin19 0.9+0.4
−0.4 0.021+0.019

−0.019 0.0023+0.0032
−0.0019 0.08+0.08

−0.08 0.007+0.006
−0.006

SR0τa-bin20 0.12+0.11
−0.11 0.009+0.009

−0.009 0.012+0.016
−0.016 0.07+0.08

−0.07 0.0009+0.0004
−0.0004

SR0τb 0.68+0.20
−0.20 0.028+0.009

−0.009 0.17+0.32
−0.32 0.997+1.001

−1.001 0.49+0.17
−0.17

SR1τ 4.6+0.6
−0.6 0.36+0.08

−0.08 0.16+0.18
−0.18 0.5+0.5

−0.5 0.28+0.12
−0.12

SR2τa 1.51+0.35
−0.33 0.049+0.016

−0.014 0.21+0.27
−0.29 0.09+0.09

−0.09 0.02052+0.00988
−0.00979

SR2τb 2.09+0.30
−0.31 0.135+0.025

−0.025 0.023+0.015
−0.018 0.031+0.033

−0.033 0.08+0.04
−0.04
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7.5.2 Reducible Background

For the analysis presented in this thesis, the processes that form the reducible background

in the case of two real leptons are tt̄, single top (Wt), WW , Z/γ∗, accompanied by a

fake lepton, which originates from heavy flavour decay (HF), light flavour jet (LF), or

a converted photon (CO). In the case of 1 real lepton, the main background comes from

single top (s-channel, t-channel) processes, W accompanied by two fake leptons originating

from HF decay, LF decay, or a conversion.

A data-driven technique is used to model the reducible background component. This

data-driven technique is known as “matrix method” (MM) and exploits differences in

object characteristics between real and fake leptons on a statistical basis. Leptons are

first classified as “loose” (L) or “tight” (T ) depending on isolation criteria and/or quality

of the reconstruction. For this analysis, baseline leptons are considered loose leptons and

signal leptons are considered tight leptons, as defined in Chapter 6.

The principle on which the method is based on is that the number of events with

different proportions of the number of L and T leptons can be expressed as a linear

combination of the number of events with real and fake leptons in a given region. In a

three lepton final state, an 8×8 matrix is built to account for all possible combinations of

real and fake leptons.

MC studies reported in Figure 7.15 show that the composition of the highest-pT light

lepton in signal regions SR0τb, SR1τ ,SR2τa and SR0τb is real in the majority of the

events, particularly for fake lepton background processes. By assuming that the highest

pT light lepton is always real, the dimension of the matrix is reduced from 8×8 to 4×4,

which can be rewritten in terms of the remaining sub-leading leptons (e/µ/τ):


NTT

NTL′

NL′T

NL′L′

 =


ε1ε2 ε1f2 f1ε2 f1f2

ε1(1− ε2) ε1(1− f2) f1(1− ε2) f1(1− f2)

(1− ε1)ε2 (1− ε1)f2 (1− f1)ε2 (1− f1)f2

(1− ε1)(1− ε2) (1− ε1)(1− f2) (1− f1)(1− ε2) (1− f1)(1− f2)

 ·

NRR

NRF

NFR

NFF

 , (7.9)

where:

• ε is the probability that a real-loose lepton is identified as a tight lepton, referred to

as “real efficiencies”;

• f is the probability that a fake-loose lepton is mis-identified as a tight lepton, referred

to as “fake rates” or “fake efficiencies”;
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(d) SR2τb: e/µ

Figure 7.15: The purity of the leading light lepton in SR0τb, SR1τ , SR2τa and SR2τb

using MC events.

• NRR is the number of events with two real leptons, NRF + NFR is the number of

events with one real and one fake lepton, and NFF is the number of events with two

fake leptons;

• NTT , NTL′ , NL′T and NL′L′ , denote the number of events with two leptons with

the first (second) index corresponds to the higher (lower) pT lepton. Given that

the leading light lepton is always a true one, the MM only considers the other two

leptons (e/µ/τ). L′ indicates loose leptons that fail the tight requirement.

In order to obtain the real composition (NRR) and fake composition (NFF ) of loose leptons,

the matrix must be inverted. This can be obtained if the efficiencies (ε and f) are known.

The total number of events with fake-loose leptons1 is then given by

1NRR does not contribute to the fake lepton estimate.
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NFake = NRF + NFR + NFF

=
1

(ε1 − f1)(ε2 − f2)
[ (ε1ε2 − ε1f2 − f1ε2 + f1 + f2 − 1)NTT

+ (ε1ε2 − ε1f2 − f1ε2 + f2)NTL + (ε1ε2 − ε1f2 − f1ε2 + f1)NLT

+ (ε1ε2 − ε1f2 − f1ε2)NLL ].

(7.10)

Since the analysis uses signal selection leptons (tight leptons), an extra step to extra-

polate LL→ TT is needed to estimate the fake-tight leptons selection:

NLL→TT
Fake = NLL→TT

RF +NLL→TT
FR +NLL→TT

FF

= ε1f2 ×NRF + f1ε2 ×NFR + f1f2 ×NFF

(7.11)

with

NLL→TT
RR = ε1ε2 ×NRR

NLL→TT
RF = ε1f2 ×NRF

NLL→TT
FR = f1ε2 ×NFR

NLL→TT
FF = f1f2 ×NFF .

(7.12)

The real lepton efficiencies and fake rates are measured in each SR and VR using MC

and corrected to those measured in data using “scale factors”. These are measured for

each lepton flavour as detailed below.

Real Lepton Efficiencies

The efficiency for real-loose leptons to satisfy the tight lepton requirements is measured on

MC-simulated data using a tag-and-probe method on Z → `` events with two loose light

leptons (e/µ) forming a SFOS pair with |mSFOS −mZ | < 10 GeV. The “tag” light lepton

is required to satisfy the tight identification requirements and must be matched to the

relevant single-lepton trigger chain. The efficiency calculation is tested on the other light

lepton (the “probe”). Both light leptons are be considered as tags if they pass the tight

requirements. The real efficiencies are then corrected via scale factors, which are assumed

to be independent of the process, to account for potential differences with respect to the

data. These scale factors are taken as the ratio of the efficiency measured in data over the

efficiency measured in MC.

The real lepton efficiency scale factors for electrons and muons are found to be 0.998±

0.013 and 0.996 ± 0.001 respectively, where the uncertainties are statistical [1]. The real

tau efficiency scale factor is assumed to be 1.0.
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Fake Lepton Efficiencies

The fake lepton efficiencies for loose leptons (` = e/µ/τ) in a given region will depend

on: the type of the fake candidate (heavy flavour, light flavour, conversion); and the process

it originates from (top, Z+jets, V + γ, and diboson). These different behaviours will lead

to different fake estimates in SRs and VRs. To accounts for potential differences arising

from these behaviours and also for differences between data and simulation, scale factors

are introduced for each measured fake rate. The total estimate will be a weighted average

of the measured fake rates with the scale factors acting as weights, as in Equation 7.13,

fSR/V R = Σi,j(sf
i ×RijSR/V R × f

ij), (7.13)

where:

• the indices i indicate the fake type (LF, HF, CO) and j the process category the

fake originates from (top, Z+jets, V + γ, and diboson);

• sf i is the scale factor dependent only on the fake type.

• RijSR/V R are the fake fractions measured as the ratio of fake leptons of type i origin-

ating from the process category j with respect to the total number of all fake leptons

from all processes, in a SR or VR. .

• f ij is the fake rate measured as the ratio between tight leptons and loose leptons of

a given type i and a originating process j.

The fake rates (f ij) for each relevant fake lepton type (HF, LF or CO) and for each

reducible background process are obtained using MC-simulated events with a three lepton

selection, where the leading light lepton is assumed real and the other two leptons enter

the calculation. These fake rates are parametrised with the lepton pT and η and are then

corrected using the scale factors described below.

Heavy Flavour scale factors: sfHF are measured as the ratio of the fake rate of HF

candidates in data over the fake rate in MC simulation.

The electron and muon HF fake rate scale factor is calculated using a tag-and-probe

method. In this case, the bb̄ and cc̄ production are chosen as the source of leptons

from heavy flavour decay. Selected events must pass standard quality criteria and

contain one tag muon within ∆R< 0.4 from a b-tagged jet that fired the single-

muon trigger and one loose probe lepton (e/µ). To suppress background, events
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are rejected if there is more than one b-jet in the event. The missing transverse

momentum for each event must be ≤ 60 GeV, and the transverse mass of the probe

lepton is ≤ 50 GeV. In data, any remaining background (∼ 1%) due to non heavy

flavour leptons is subtracted using the predictions from MC (these predictions include

all relevant processes normalised to the luminosity in the data). The fake rate is then

measured as the probability that the probe lepton passes the tight requirements.

The heavy-flavour scale factors found are: sfHF
e = 0.74± 0.04, sfHF

µ = 0.89± 0.03,

where the uncertainties are statistical [1]. Studies done in the trilepton analysis

group showed that HF tau fakes are negligible in three lepton regions, therefore this

value is taken to be sfHF
τ = 1.0 with a 10% uncertainty, which is conservative with

respect to the other measured HF scale factors.

Light Flavour scale factors. Studies done in the trilepton analysis group showed that

LF electron and muon fakes are negligible in three lepton events[103] and so the LF

scale factors are taken as sfLF
e/µ = 1.0 with a conservative uncertainty of 10%. The

light flavour fake rate for taus is measured in a W+jets enriched region that is rich

in taus faked by quark jets. The same LF scale factor is applied also to fake rates of

taus from gluon jets. Taus faked by quark jets are seen to be the dominating source

of light flavour faked taus (by roughly a factor of 10) due to the larger fake rate

compared to those faked by gluon jets.

Selected events must contain one tight muon and an additional loose tau to derive

the LF tau fake rate. The muon is required to have fired the single isolated muon

trigger with pT > 25 GeV. Significant background suppression of the Z → ττ decays

is obtained by requiring the transverse mass mT (µ,EmissT ) > 60 GeV and
∑

cos(∆φ)

= cos(∆φ(Emiss
T , µ)) + cos(∆φ(Emiss

T , τ)) ≤ -0.15. In addition, a b-jet veto is applied

to separate the light and heavy flavour fake rates. The remaining background is

subtracted using a MC based estimate (method explained in the HF section).

The LF tau scale factors are separated into 1- and 3-prong taus due to observed

differences in the fake rates and scale factors. These scale factors decrease from 0.9

to 0.6 (1.0 to 0.6) for 1-prong (3-prong) taus as the pT increases from 20 GeV to

150 GeV, therefore a pT dependent scale factor is applied to correct the MC based

fake rates [1].

Conversions scale factors. The electron conversion fake rate is the probability that

a loose electron originating from a photon conversion passes the tight identification
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requirements. The conversion scale factors are determined in events with a converted

photon radiated from a muon in Z → µµ decays. Events passing the quality and

trigger requirements are requested to contain a pair of OS tight muons and one loose

electron (tag) such that the tri-lepton invariant mass, mµµe, is compatible with the

Z boson hypothesis (81.2 <mµµe< 101.2 GeV). A constraint on mµµe helps suppress

contributions from jets in Z/γ∗+ jets processes. Additional fake contributions from

dibosons and tt̄ samples are subtracted from the data during the calculation of the

fake rate (following the same procedure described in the HF section).

The conversion scale factor for electrons is sfCO
e = 1.14 ± 0.12. The background

from muons coming from electron conversion is considered to be negligible.

7.5.3 Validation of Background Estimation Method

To validate the background modelling, the MC estimates for irreducible backgrounds and

the data-driven estimates for the reducible backgrounds estimated in VRs are compared

to the observed data.

The definition of the VRs used in this analysis are shown in Table 7.5 with the re-

spective SM background(s) that each of them is sensitive to.

Table 7.5: Summary of the selection requirements for the validation regions.

Region name N(`) N(τ) Flavour/sign Z boson Emiss
T [GeV] N(b-jets) Target process

VR0τnoZa 3 0 `+`−`, `+`−`′ mSFOS & 3$ell Z veto 35–50 – WZ∗, Z∗Z∗

0 Z∗+jets

VR0τZa 3 0 `+`−`, `+`−`′ request 35–50 – WZ, Z+jets

VR0τnoZb 3 0 `+`−`, `+`−`′ mSFOS & m3` veto > 50 1 tt̄

VR0τZb 3 0 `+`−`, `+`−`′ request > 50 1 WZ

VR0τb 3 0 `+`−`, `+`−`′ binned binned 1 WZ, tt̄

VR1τa 2 1 τ±`∓`∓, τ±`∓`′∓ – 35–50 – WZ, Z+jets

VR1τb 2 1 τ±`∓`∓, τ±`∓`′∓ – > 50 1 tt̄

VR2τa 1 2 ττ` – 35–50 – W+jets, Z+jets

VR2τb 1 2 ττ` – > 50 1 tt̄

Similarly to the tri-lepton SRs, VRs are distinguished in terms of tau multiplicity final

states (```, ``τ and `ττ VRs). For each considered τ multiplicity, validation regions are

defined with either low-Emiss
T (“a” regions) or high-Emiss

T + b-tagged jet (“b” regions)

to target different background processes. To validate the background model in the light

lepton SRs (SR0τa/b), two different VRs are defined: a low-Emiss
T validation regions are

defined so that the dominant backgrounds, WZ and/or Z processes, are enhanced; and

a binned high-Emiss
T + b-jet validation region so that tt̄ is enhanced. Additionally, VRs

with a Z-veto and a Z-request are also defined in the regions “a” and “b”. In the Z-veto
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region, Z candidates are vetoed using an invariant mass window on the invariant mass

of the SFOS pair, thus reducing the Z → ``` contribution from Z+jets processes (where

the third lepton is a converted photon from final state radiation). Even though Z+jets

contribute very little to the total background estimate in light lepton SRs (due to high

Emiss
T requirements), by vetoing them in the VRs a better modelling of more relevant

backgrounds is achieved.

An orthogonal validation region (VR0τb) to the light lepton binned signal region SR0τa

is defined, by having the same binning as in Table 7.3 with the addition of a b-jet request.

Similarly, for tau-rich SRs, the VRs are split into low-Emiss
T and high-Emiss

T + b-jet

selections. A same charge requirement of the light lepton pair in 1-τ VR regions is required

to remain close to SR1τ .

The agreement between the background expectation and the data within statistical

and systematic uncertainties (described in the Section 7.6) can be seen in Table 7.6, in

which the reducible background is estimated with the MM and the irreducible is estimated

from MC. This indicates that the reducible background is well described by the matrix

method. The number of expected and observed events for all bins defined in VR0τb can

be seen in Figure 7.16.

Table 7.6: Expected numbers of SM background events in selected validation regions,

as defined in table 7.5. The binned validation region VR0τb is displayed in Figure 7.16.

Statistical and systematic uncertainties are included (as described in section 7.6).

Sample VR0τnoZa VR0τZa VR0τnoZb VR0τZb VR1τa VR1τb VR2τa VR2τb

WZ 91± 12 471± 47 10.5+1.8
−2.0 58± 7 14.6± 1.9 1.99± 0.35 14.3+2.4

−2.5 1.9± 0.4

ZZ 19± 4 48± 7 0.62± 0.12 2.6± 0.4 1.76+0.29
−0.28 0.138± 0.028 1.8± 0.4 0.12± 0.04

tt̄V + tZ 3.2± 1.0 10.1+2.3
−2.2 9.5± 3.1 18± 4 0.9± 0.9 2.8± 1.3 1.0± 0.7 1.7± 0.7

V V V 1.9± 1.9 0.7± 0.7 0.35+0.36
−0.35 0.18± 0.18 0.4± 0.4 0.08± 0.08 0.12± 0.12 0.06+0.07

−0.06

Higgs 2.7± 1.3 2.7± 1.5 1.5± 1.0 0.71± 0.29 0.57± 0.34 0.5± 0.5 0.6± 0.4 0.5± 0.5

Reducible 73+20
−17 261± 70 47+15

−13 19± 5 71± 9 22.7± 2.8 630+9
−12 162+6

−8

Total SM 191+24
−22 794± 86 69+15

−14 98± 10 89+10
−9 28.2± 3.2 648+10

−13 166+6
−8

Data 228 792 79 110 82 26 656 158

Also, the agreement between the MC-only background expectation and the data within

statistical and systematic uncertainties (described in the Section 7.6) can be seen in

Table 7.7. This indicates that the SM background is moderately well described by the MC.

The MC-only expectation in the “b” regions is seen to agree well with the observed data.

However, in the “a” regions, the MC-only expectation is slightly lower than the observed
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data in three out of four regions, due to small MC statistics in the reducible background

processes.

Table 7.7: Expected numbers of SM background events using MC based estimates in

selected validation regions, as defined in table 7.5. Statistical and systematic uncertainties

are included (as described in section 7.6).

Sample VR0τnoZa VR0τZa VR0τnoZb VR0τZb VR1τa VR1τb VR2τa VR2τb

WZ 91+12
−12 471+47

−47 10.5+1.8
−2.0 58+7

−7 14.6+1.9
−1.9 1.99+0.35

−0.35 14.3+2.4
−2.5 1.9+0.4

−0.4

ZZ 19+4
−4 48+7

−7 0.62+0.12
−0.12 2.6+0.4

−0.4 1.76+0.29
−0.28 0.138+0.028

−0.028 1.8+0.4
−0.4 0.12+0.04

−0.04

Top+ V 3.211+1.010
−0.970 10.1+2.3

−2.2 9.5+3.1
−3.1 18+4

−4 0.9+0.9
−0.9 2.8+1.3

−1.3 1.0+0.7
−0.7 1.7+0.7

−0.7

V V V 1.9+1.9
−1.9 0.7+0.7

−0.7 0.35+0.36
−0.36 0.18+0.18

−0.18 0.4+0.4
−0.4 0.08+0.08

−0.08 0.12+0.12
−0.12 0.06+0.07

−0.07

Higgs 2.7+1.3
−1.3 2.7+1.5

−1.5 1.5+1.0
−1.0 0.71+0.29

−0.29 0.57+0.34
−0.34 0.5+0.5

−0.5 0.6+0.4
−0.4 0.5+0.5

−0.5

Z+jets 36+21
−20 143+54

−46 0.0+0.0
−0.0 6+6

−6 28+17
−14 1.1+1.4

−1.4 212+61
−54 0.5+0.6

−0.4

WW 0.45+0.19
−0.16 0.14+0.10

−0.10 0.04+0.04
−0.04 0.0+0.0

−0.0 0.14+0.12
−0.12 0.0+0.0

−0.0 3.7+0.5
−0.6 0.54+0.17

−0.19

V + γ 20.2+3.3
−4.1 31+5

−5 0.26+0.33
−0.47 0.9+0.7

−0.6 6+4
−4 0.5+0.5

−0.6 15+6
−6 0.0+0.0

−0.0

tt̄ 22+5
−4 4.7+1.9

−1.4 53+7
−7 13.9+2.3

−2.3 9.8+3.0
−2.8 16.00+2.50

−2.50 78+9
−10 112+9

−10

t 2.5+1.4
−1.4 0.7+1.4

−0.7 1.5+0.9
−1.0 1.1+1.3

−1.3 1.0+0.7
−0.7 1.3+0.8

−0.8 11+7
−6 13.6+3.1

−3.3

Σ SM 198+32
−30 713+86

−79 78+10
−9 101+11

−11 68+18
−15 24.3+3.5

−3.6 654+165
−154 146+16

−15

Data 228 792 79 110 82 26 656 158
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Figure 7.16: Number of expected and observed events in the validation region VR0τb [1].

Also shown are the respective contributions of the various background processes as de-

scribed in the legend. The uncertainty band includes both the statistical and systematic

uncertainties on the SM prediction.

The following paragraphs show the most interesting kinematic distributions relevant

to each validation region (except for the binned VR, VR0τb).

3`+ 0τ channel

A few kinematic distributions in validation regions with three light leptons (VR0τnoZa,

VR0τZa, VR0τnoZb and VR0τZb) are shown in Figures 7.17-7.20. Table 7.6 shows the

yields in these regions (using the MM estimates for the reducible background), where good

agreement is seen between data and the expected SM background. The shapes of these

kinematic variables are seen to agree well with data in VR0τnoZa, VR0τZa, VR0τnoZb

and VR0τZb.
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Figure 7.17: Distributions in VR0τnoZa. The uncertainties are statistical and systematic

(as described in section 7.6). The last bin in each distribution includes the overflow.
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Figure 7.18: Distributions in VR0τZa. The uncertainties are statistical and systematic

(as described in section 7.6). The last bin in each distribution includes the overflow.
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Figure 7.19: Distributions in VR0τnoZb. The uncertainties are statistical and systematic

(as described in section 7.6). The last bin in each distribution includes the overflow.
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Figure 7.20: Distributions in VR0τZb. The uncertainties are statistical and systematic

(as described in section 7.6). The last bin in each distribution includes the overflow.
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2`+ 1τ channel

The yields (using the MM estimates for the reducible background) in VRs with two light

leptons and one hadronic tau (VR1τa and VR1τb) show excellent agreement between the

expected background and observed events (see Table 7.6). The ability to correctly model

kinematic variables used to define SR1τ is also tested. The shapes of the expected m`τ ,

Emiss
T ,

∑
pT(e/µ) distributions shown in Figure 7.21-7.22 are seen to agree well with data

in VR1τa and VR1τb.
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Figure 7.21: Distributions in VR1τa. The uncertainties are statistical and systematic (as

described in section 7.6). The last bin in each distribution includes the overflow. The data

excess shown in the overflow bin in Figure 7.21(b) is above 1 TeV.
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Figure 7.22: Distributions in VR1τb. The uncertainties are statistical and systematic (as

described in section 7.6). The last bin in each distribution includes the overflow.
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1`+ 2τ channel

In VRs with two hadronic taus and one light lepton (VR2τa and VR2τb), the shapes of

the expected mττ , Emiss
T , mmax

T2 , and pT of the taus are seen to agree well with data, as

shown in Figures 7.23-7.24. Table 7.6 shows the very good agreement between data and

expected MC background in these two VRs.
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Figure 7.23: Distributions in VR2τa. The uncertainties are statistical and systematic (as

described in section 7.6). The last bin in each distribution includes the overflow. The data

excess shown in the overflow bin in Figure 7.23(a) is above 1 TeV.
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Figure 7.24: Distributions in VR2τb. The uncertainties are statistical and systematic (as

described in section 7.6). The last bin in each distribution includes the overflow.
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7.6 Systematic Uncertainties

A summary of the dominant sources of systematic uncertainties in the background and

signal estimates for each SR are listed in Table 7.8, where the component due to the

limited number of simulated events (also referred to as statistics) available in the MC-

simulated data is separated into both the reducible and irreducible background parts. In

SR0τa, the leading systematic uncertainties are due to theoretical uncertainties on the

cross sections of the irreducible backgrounds, the choice of MC generator for the diboson

and tt̄V processes, and the statistical uncertainty on the irreducible and reducible back-

ground estimates. In SR0τb, the theoretical cross section uncertainties on the irreducible

backgrounds dominates the overall uncertainty. In SR1τ , the total uncertainty is mainly

dominated by uncertainties on the reducible background and the theoretical cross section

uncertainty on on the irreducible backgrounds. In the two tau signal regions SR2τa and

SR2τb, the total uncertainty is mainly dominated by the systematics that arise from the

fake background estimation, particularly from the tau fake rate measurements described

in Section 7.5.2 and the statistical uncertainties.

Table 7.8: Summary of the dominant systematic uncertainties in the background estimates

for each SR defined in Section 7.4. Uncertainties are quoted relative to the total expected

background. For the 20 bins of the SR0τa the range of the uncertainties is provided.

SR0τa SR0τb SR1τ SR2τa SR2τb

Cross section 4–25% 37% 9% 3.1% 3.0%

Generator 3.2–35% 11% 3.1% 6% < 1%

Statistics on irreducible background 0.8–26% 8% 5% 5% 3.1%

Statistics on reducible background 0.4–29% 14% 8% 13% 12%

Electron mis-identification probability 0.3–10% 1.3% < 1% – –

Muon mis-identification probability 0.1–24% 2.2% < 1% – –

τ mis-identification probability – – 8% 4% 5%

7.6.1 Uncertainties on the Irreducible Background

Theoretical uncertainties affecting the simulation-based background estimates used for the

analysis presented in this thesis are detailed in the following.

MC Cross Section. Theoretical cross section uncertainties on the irreducible background

processes due to the choice of re-normalisation, factorisation scales and PDFs are

summarised below:
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• a 30% systematic on the production cross section of tt̄+ Z(/W/WW ) at NLO

is applied based on the resulted in ref. [89, 90];

• 5% for ZZ and 7% for WZ production cross section has been applied based on

the predictions in ref. [113];

• 100% uncertainty is assumed as a conservative approach for triboson processes

since there are no measurements yet;

The Higgs boson production cross sections are calculated with varying precision in

the perturbative expansion. For total cross sections, the calculations are performed

up to the NNLO QCD correction (and NLO electroweak corrections) for the following

production modes: gg → H, qq′ → qq′H and qq̄ → WH/ZH processes, while up to

NLO for qq̄/gg → tt̄H process.

• 20% uncertainty is used for V H and V BF production, while a 100% uncertainty

is assigned to tt̄H and ggF production, based on studies detailed in Ref. [97].

The uncertainty for tt̄H and ggF production are assumed to be large to account

for uncertainties on the acceptance, while the inclusive cross-sections are known

to better precision.

MC Generator Systematic uncertainties arising from the choice of MC generator used

to simulate the irreducible SM processes are estimated by comparing the acceptance

in the SR between two different MC generators. For WZ,ZZ diboson processes, the

comparison is done between Powheg (main generator) and aMC@NLO samples.

For the tt̄+Z/W background processes, events generated using MadGraph (main

generator) are compared to those simulated in Alpgen. The generator systematic

uncertainties found to be in a range from 3-35% in regions without a hadronic tau

requirement in the final state, whereas the regions which do have this requirement

have a systematic uncertainty of around 1-6%.

PDF The acceptance uncertainty due to PDFs was also estimated for the diboson irre-

ducible background.

These PDF uncertainties are estimated using 90% confidence level CT10 PDF eigen-

vectors [114]. The CT10 PDF set is based on 26 free parameters and the resulting

90% confidence level upper and lower variations in these parameters form the “error

set” for the PDF. The asymmetric positive and negative uncertainties of the PDFs

(fa) are computed as
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σ+[f ] =
1

C90

√√√√ 26∑
i=1

(max[(f+
i − f0), (f−i − f0), 0])2,

σ−[f ] =
1

C90

√√√√ 26∑
i=1

(max[(f0 − f+
i ), (f0 − f−i ), 0])2.

(7.14)

C90 = 1.64485 is a re-scaling factor to convert the 90% CL variations into 1σ vari-

ations and f0 is the nominal eigenvector value.

The impact of the PDF uncertainties on the acceptance was found to be negligible

(< 3%).

The experimental systematic uncertainties on the SM backgrounds estimated with MC-

simulated data considered in the analysis presented here are described in the following.

Luminosity. The uncertainty of the total integrated luminosity for 2012 data collected

by the ATLAS detector is found to be 2.8% [115], where this uncertainty is estimated

by evaluating the luminosity scale using several luminosity- sensitive detectors, and

comparisons are made of the long-term stability and accuracy of this calibration

applied to the pp collisions for a given luminosity.

Pile-up. In the 2012 MC-simulated data, events with a certain 〈µ〉 have a number of

primary vertices comparable with data by 1.11×〈µ〉. Therefore, the uncertainty on

the MC modelling of the pile-up is provided by assessing the up- and down-variation

of the scale factor 1/1.11 .

Trigger. A conservative systematic uncertainty of 5% is assigned to the trigger simulation

used in this analysis, to account for any differences in efficiency observed between

the trigger in data and the MC trigger simulation. Particularly, the studies were

performed by evaluating muon and electron triggering efficiency derived in data

and MC simulation using a tag-and-probe method with Z+jets events [103]. These

studies were performed for all single and dilepton triggers available in data in 2012.

b-tagging efficiency. Uncertainties arising from a b-jet identification and mis-identification

(charm and light-flavour jet rejection) efficiency are also taken into account in this

analysis. ATLAS developed calibration methods based on tt̄ events to exploit their

large b-jet content, where the efficiencies are found to be jet pT dependent. Scale

factors with this jet pT dependence are derived to correct the performance of the

“b-tagging” in simulation to the one observed in data. The total uncertainties range
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from 5% to 15% for jet pT in the range 25 GeV to 300 GeV [116]. These uncertainties

are found to be ≤ 1% for all SRs described in this document.

Electrons. Uncertainties on the electron identification efficiencies, energy scales and res-

olutions are determined using Z → ee, W → eν and J/ψ → ee events in data [60].

The reconstructed energy of electrons, referred to as Electron Energy Scale (EES), is

determined by applying an in-situ calibration dependant on ET and η. The corres-

ponding Electron Energy Resolution (EER) uncertainties are also taken into account

after the calibration is applied by comparing the di-electron mass spectrum in the

Z, J/ψ → ee decays. Lastly, an uncertainty based on the electron identification ef-

ficiency (ESF) measurements is applied to all electrons which satisfy the “signal”

criteria described in 6.2.1.

Muons. Uncertainties on the muon identification efficiencies, energy scales and resolu-

tions are determined using Z → µµ events in data [64]. The effect of the uncertainty

on the muon momentum scale in the inner detector track and the muon spectrometer

track has been studied for both combined and segment-tagged muons. The muon

momentum scale is calibrated by comparing the invariant mass spectrum of the

J/Ψ→ µµ and Z → µµ decays between simulation and data. A smearing correction

is derived to match the MC simulated di-muon mass resolution to the one measured

in data. The uncertainty based on the muon identification efficiency measurements

is applied to all muons which satisfy the “signal” criteria described in 6.2.2.

Taus. The systematic uncertainties on the hadronic tau energy scale (TES) were eval-

uated by combining individual visible decay products, namely neutral and charged

pions [117]. These single particle uncertainties are given by an in-situ measurement

comparing calorimeter energy measurements to momenta measured in the ID. The

propagated uncertainty is also validated with studies using Z → ττ decays. An

uncertainty in the Tau Identification Scale Factor (TIDSF) is applied to all true

“signal” taus in the event, is provided which accounts for the uncertainties from the

BDT identification: jet-BDT and the electron-veto.

Jets. Uncertainties arising from the jet energy scale calibration and resolution are derived

from a combination of simulated data, in-situ measurements and test-beam data. In

particular, jet energy and angle corrections are determined from MC simulations to

calibrate jets with transverse momenta greater than 20 GeV and pseudorapidities

|η| < 4.5; and the jet energy scale systematic uncertainty is estimated using the
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single-isolated hadron response measured in-situ and in test-beams, exploiting the

transverse momentum balance between central and forward jets in events with di-jet

events and studying systematic variations in MC simulations.

These uncertainties due to jet identification were found to be negligible in the SR

presented here.

Missing Transverse Energy Measurement. The Emiss
T is affected by various uncer-

tainties coming from energy measurements of the physics objects that are taken as

input in the calculation described in Section 6.2.5. Any variation in the electron,

muon and/or jet energies will directly propagate to the Emiss
T calculation. The un-

certainty associated with the soft term of the Emiss,CellOut
T is estimated by adjusting

the energy scale (5%) and resolution of this term [102]. The uncertainties arising

from the measurement of Emiss
T is seen to be negligible in the SR discussed in this

thesis.

7.6.2 Uncertainties on the Reducible Background

Systematic uncertainties on the reducible background estimated with the data-driven tech-

nique, the matrix method, can be classified into systematics arising from the various

components entering the calculation on the weighted average fake rates defined in Equa-

tion 7.13: on the fake rate and real lepton efficiencies (f and ε respectively), the scale

factors fake rates (sf), and the fake fractions (R), defined in Section 7.5.2. Below is a

discussion of these sources of systematic uncertainties affecting the final estimate of the

reducible background.

f and ε Efficiencies . The measured fake rate and real lepton efficiencies are taken from

MC-simulated events which are corrected for any discrepancies with respect to data.

These efficiencies showed a dependence on pT, η and the number of τ prongs, there-

fore parametrised in these three kinematic variables. The dependency of these effi-

ciencies on variables used in the event selection of the signal regions were thoroughly

investigated by the 3L analysis team. The source of systematic uncertainties due to

a dependence on other important event kinematics not taken into account by the

parametrisation range between: Emiss
T (0–7%), mT (1–7%), mmax

T2 (0–18%), mSFOS

(0–18%), SFOS veto (0–5%), and η (1–5%) in the SR.

Fake Rate SF. The measurement of the fake rate scale factors for the different fake

sources showed no strong dependence in pT, |η|, and number of good vertices. There-
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fore, they are fitted to a constant function. The central values of the scale factors

are calculated without parametrisation on any variable and the differences with re-

spect to the results of the fit in these three variables are assigned as a systematic

uncertainty of the order of 5%.

Fake Fractions. The uncertainty on the fake fractions originates from a potential lack of

knowledge of the relative contributions of a certain type of physics process in a given

region (SR/VR). This uncertainty is covered by varying the yields of the physics

processes by the following amounts: top processes by 50%, diboson processes by

50%, and V+jets processes by 30%.

Also included in the uncertainty on the reducible background is the the statistical uncer-

tainty on the data events, used to apply the matrix equation and the statistical uncertainty

from the fake rates measured in simulation.

7.6.3 Uncertainties on the Signal

The systematic uncertainties on the SUSY signal processes also include theoretical uncer-

tainties on the calculated NLO cross sections, due to envelope of cross-section predictions

using different PDF sets and factorisation and re-normalisation scales. These theoretical

systematic uncertainties on all signal processes are evaluated by varying the factorisation

and re-normalisation scales in PROSPINO and are calculated using the method described

in ref. [118]. The uncertainties on the signal are in the 20-40% range, including the un-

certainties due to the sources considered above for the irreducible background and the

uncertainty due to limited Monte Carlo statistics.
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Chapter 8

Results

In Chapter 7, the analysis strategy developed for the search for SUSY events in three

lepton final states has been described. This chapter presents the interpretation of the

results obtained, starting with an introduction of the statistical tools used, followed by an

assessment of compatibility between the expected SM background and the observed events

in data in all signal regions, finishing with the statistical interpretation of the results for

each SUSY model considered.

8.1 Statistical Analysis Tools

The way to assess the statistical significance of the number of observed events in data

with respect to the expected background is to define the probability that the observation

agrees with the background-only hypothesis (H0) or with the signal+background hypo-

thesis (H1) [109]. The so-called “p-values” for H0 and H1 are defined by:

p0 = P (q ≤ qobs|H0) =

∫ qobs

−∞
f(q|b)dq

p1 = P (q ≥ qobs|H1) =

∫ ∞
qobs

f(q|s+ b)dq

(8.1)

where f(q|b) and f(q|s+b) are the probability density functions (pdfs) of the test statistic

q, and qobs is the observed result. The test statistic is a scalar quantity representative of

the experiment. An illustration of both pdfs as a function of the test statistic is shown in

Figure 8.1 along with their corresponding one-sided p-values.

A given “signal” hypothesis, corresponding in this case to a given SUSY model, is

considered to be excluded when p1 ≤ 0.05, i.e. the probability of wrongly excluding the

hypothesis is 5%. One can also say that the hypothesis is excluded at 95% Confidence

Level (CL), which is equivalent to a value of ZN (see Equation 7.1) of 1.64 σ.
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Figure 8.1: Distribution of the pdf of a test statistic (q) for background-only and sig-

nal+background hypotheses [109].

For the case where no excess is observed above the expected SM background then the

alternative hypothesis (signal+background), predicted by some new physics model, can be

excluded. This can be done by using the CLs prescription [119, 120]. The CLs is defined

as a ratio of p-values (in order to prevent inconsistencies from cases when the signal yields

are low):

CLs =
CLs+b
CLb

, (8.2)

where s is the expected signal,

CLs+b = P (q ≥ qobs|s+ b), (8.3)

and

CLb = P (q ≥ qobs|b). (8.4)

Using this, a given hypothesis can be excluded if CLs ≤ 0.05.

Another procedure used for the exclusion of hypothesis is performed using a likelihood

ratio [121] as a test statistic, which incorporates systematic uncertainties in its calculation.

Starting for the case where there are n events measured in each signal region, with s signal

and b background expected events, the expectation value for n can be written as

E[n] = µs+ b (8.5)

where µ is a strength parameter ( µ = 0 for background-only and µ = 1 for signal+background
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hypothesis). A resulting likelihood function can be constructed as a product of Poisson

probabilities, one for each signal region,

L(µ, θ) =

SR∏
i=1

(µsi + bi)
ni

ni!
e−(µsi+bi) (8.6)

where the systematic uncertainties enter the likelihood calculation as nuisance parameters,

θ, which must be simultaneously fitted from the data. To determine a value for µ, the

likelihood function (see Equation 8.6) has to be maximised, which can be achieved by

using the likelihood ratio as:

λ(µ) =
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
(8.7)

where µ̂ and θ̂ are the maximum likelihood estimators, value which maximises L(µ, θ); and

ˆ̂
θ denotes the value of θ that maximises L given a specified µ. The inclusion of nuisance

parameters broadens the profile likelihood distribution as a function of µ with respect to

a function with fixed values.

The compatibility with the SM, upper limits on the expected and observed number

of beyond-the-SM events and the exclusion limits obtained considering the events seen in

data are assessed with a profile likelihood ratio test statistic. For the interpretation of the

observed results in this analysis, the profile likelihood used is of the form

L(n|µ, b,θ) = Pois(n|λ(µ, b,θ)) × PSys(θ
0,θ)

where parameter n represents the number of observed events in data, P (n|λ) a Poisson

distribution modelling the expected event count in the SR, given an expectation value

λ. The parameter µ is the SUSY signal strength to be tested, b is the background,

and θ describes the systematic uncertainties as nuisance parameters. PSys represents

the constraints on systematic uncertainties and θ0 are the nominal values around which

θ can be varied, for example when maximising the likelihood. PSys is the product of

Gaussian distributions with σ = 1 (one Gaussian for each nuisance parameter). The

modelling of the likelihood, calculation of the CLs and p-values, were performed using the

ATLAS HistFitter package (version HistFitter-00-00-33) [119, 109], a tool able to perform

likelihood fits and their statistical interpretation.
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8.2 Observed Events in Signal Regions

The observed number of events in all signal regions along with the total background

expectations and uncertainties are shown in Table 8.1 (full breakdown can be found in

App A). The quoted uncertainties include both the statistical and systematic components,

as described in Section 7.6.



115

Table 8.1: Expected numbers of SM background events and observed numbers of data

events in all signal regions for 20.3 fb−1. Statistical and systematic uncertainties are in-

cluded as described in section 7.6.

Sample Irreducible Reducible Σ SM Data

SR0τa-bin01 15.8+3.6
−3.4 6.7+2.4

−2.4 23+4
−4 36

SR0τa-bin02 3.4+1.4
−1.4 0.8+0.4

−0.4 4.2+1.5
−1.5 5

SR0τa-bin03 9.0+1.7
−1.7 1.6+0.7

−0.6 10.6+1.8
−1.8 9

SR0τa-bin04 5.9+1.3
−1.3 2.656+1.043

−0.988 8.5+1.7
−1.6 9

SR0τa-bin05 8.6+1.8
−1.8 4.3+1.6

−1.4 12.9+2.4
−2.3 11

SR0τa-bin06 4.6+1.7
−1.6 2.0+0.8

−0.8 6.6+1.9
−1.8 13

SR0τa-bin07 10.1+1.7
−1.7 4.0+1.5

−1.4 14.1+2.2
−2.2 15

SR0τa-bin08 0.69+0.32
−0.31 0.40+0.27

−0.26 1.1+0.4
−0.4 1

SR0τa-bin09 18.3+3.3
−3.1 4.1+1.3

−1.2 22.4+3.6
−3.4 28

SR0τa-bin10 14.4+2.6
−2.7 1.9+0.9

−0.8 16.4+2.8
−2.8 24

SR0τa-bin11 21+4
−4 5.7+2.1

−1.9 27+5
−5 29

SR0τa-bin12 4.7+1.4
−1.4 0.9+0.5

−0.4 5.5+1.5
−1.4 8

SR0τa-bin13 648+67
−66 68+21

−19 715+70
−68 714

SR0τa-bin14 216+33
−33 2.2+1.9

−2.0 219+33
−33 214

SR0τa-bin15 64+13
−13 1.2+0.6

−0.6 65+13
−13 63

SR0τa-bin16 4.4+1.7
−1.5 0.14+0.25

−0.27 4.6+1.7
−1.5 3

SR0τa-bin17 58+8
−7 11.3+3.5

−3.2 69+9
−8 60

SR0τa-bin18 3.1+1.4
−1.4 0.27+0.20

−0.20 3.4+1.4
−1.4 1

SR0τa-bin19 1.0+0.4
−0.4 0.17+0.16

−0.15 1.2+0.4
−0.4 0

SR0τa-bin20 0.21+0.14
−0.14 0.08+0.11

−0.10 0.29+0.18
−0.17 0

SR0τb 2.4+1.1
−1.1 1.5+0.4

−0.4 3.8+1.2
−1.2 3

SR1τ 5.9+0.9
−0.8 4.3+0.8

−0.8 10.3+1.2
−1.2 13

SR2τa 1.9+0.5
−0.5 5.1+0.7

−0.7 6.9+0.8
−0.8 6

SR2τb 2.36+0.32
−0.34 4.9+0.7

−0.7 7.2+0.7
−0.8 5
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In order to quantify the probability of the background-only hypothesis to fluctuate to

the observed number of events or higher, the one-sided p0-value is calculated (truncated to

0.5 for p0 > 0.5). Also, upper limits at 95% CL on the expected and observed number of

beyond the SM events (N95
exp and N95

obs) for each signal region are calculated using the CLs

prescription. For both of these calculations the profile likelihood ratio is used as a test

statistic. The p0 and CLs values are calculated using pseudo-experiments (also referred

to as toys). A full description of these is given in Section 8.1.

Tables 8.2-8.3 shows the p0-values of the background-only hypothesis and the the upper

limits at 95% CL on the expected and observed number of BSM (signal) events for each

signal region. Some fluctuations are visible in the binned SRs, particularly for SR0τa-

bin01, when 23 ± 4 expected events have to be compared with 36 observed events. The

local p0-value for this bin is 0.015 corresponding to a significance of 2.16σ. Fluctuations

are to be expected whenever the binning approach is implemented on a variable, i.e. the

p-values are calculated locally (per bin) rather than globally, which can cause over- or

under-fluctuations [122].

Table 8.2: Expected numbers of SM background events and observed numbers of data

events in the signal regions SR0τb, SR1τ , SR2τa and SR2τb for 20.3 fb−1. Statistical

and systematic uncertainties are included as described in section 7.6. Also shown are the

one-sided p0-values and the upper limits at 95% CL on the expected and observed number

of beyond-the-SM events (N95
exp and N95

obs) for each signal region, calculated using pseudo-

experiments and the CLs prescription, described in Section 8.1. For p0-values below 0.5,

the observed number of standard deviations, σ, is also shown in parentheses.

Sample SR0τb SR1τ SR2τa SR2τb

Total SM 3.8± 1.2 10.3± 1.2 6.9± 0.8 7.2+0.7
−0.8

Data 3 13 6 5

p0 (σ) 0.50 0.19 (0.86) 0.50 0.50

N95
exp 5.6+2.2

−1.4 8.1+3.2
−2.2 6.8+2.7

−1.9 6.7+2.8
−1.8

N95
obs 5.4 10.9 6.0 5.2
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Table 8.3: Expected numbers of SM background events and observed numbers of data

events in the 20 bins in signal region SR0τa for 20.3 fb−1. Statistical and systematic

uncertainties are included as described in section 7.6. Also shown are the one-sided p0-

values and the upper limits at 95% CL on the expected and observed number of beyond

the SM events (N95
exp and N95

obs) for each signal region, calculated using pseudo-experiments

and the CLs prescription, described in Section 8.1. For p0-values below 0.5, the observed

number of standard deviations, σ, is also shown in parentheses.

Bin01 Bin02 Bin03 Bin04 Bin05 Bin06 Bin07

∑
SM 23± 4 4.2± 1.5 10.6± 1.8 8.5+1.7

−1.6 12.9+2.4
−2.3 6.6+1.9

−1.8 14.1± 2.2

Data 36 5 9 9 11 13 15

p0 0.02 0.35 0.50 0.40 0.50 0.03 0.37

(σ) (2.16) (0.38) (0.26) (1.91) (0.33)

N95
exp 14.1+5.6

−3.6 6.2+2.5
−1.7 8.4+3.1

−2.3 7.7+3.1
−2.1 9.0+3.6

−2.5 8.0+3.2
−1.9 9.6+3.9

−2.5

N95
obs 26.8 6.9 7.3 8.4 7.9 14.4 10.8

Bin08 Bin09 Bin10 Bin11 Bin12 Bin13 Bin14

Total SM 1.1± 0.4 22.4+3.6
−3.4 16.4± 2.8 27± 5 5.5+1.5

−1.4 715± 70 219± 33

Data 1 28 24 29 8 714 214

p0 (σ) 0.50 0.13 0.07 0.39 0.21 0.50 0.50

(σ) (1.12) (1.50) (0.28) (0.82)

N95
exp 3.7+1.5

−0.9 12.7+4.9
−3.5 11.3+4.5

−3.1 13.8+5.4
−3.7 6.9+2.9

−1.7 133+46
−36 66+24

−18

N95
obs 3.7 18.0 18.3 15.3 9.2

Bin15 Bin16 Bin17 Bin18 Bin19 Bin20

Total SM 65± 13 4.6+1.7
−1.5 69+9

−8 3.4± 1.4 1.2± 0.4 0.29+0.18
−0.17

Data 63 3 60 1 0 0

p0 0.50 0.50 0.50 0.50 0.50 0.50

N95
exp 28.6+10.1

−7.2 5.9+2.6
−1.5 21.4+8.2

−5.6 4.8+2.0
−1.1 3.7+1.4

−0.7 3.0+0.8
−0.0

N95
obs 27.6 5.2 18.8 3.7 3.0 3.0
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Kinematic distributions

Figure 8.2 shows the SM expectations and the observations in data in the individual SR0τa

bins as well as the distribution of Emiss
T , mT and mSFOS in the combination of all SR0τa

regions. For illustration purposes, the distributions are also shown for two representative

SUSY benchmark points, one for each of the most sensitive models for these signal regions:

WZ-mediated and ˜̀
L-mediated simplified models.
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Figure 8.2: Expected distributions of SM background events and observed data distribu-

tions in (a) the binned signal regions SR0τa. The distributions of (b) Emiss
T , (c) mT and

(d) mSFOS are shown in the summation of all SR0τa regions prior to the requirements on

these variables. Also shown are the respective contributions of the various background

processes as described in the legend. Both the statistical and systematic uncertainties

are shown. The plots also show the distribution for signal hypotheses, where the paren-

theses following the simplified model denote the mass parameters in GeV as (m(χ̃±1 , χ̃
0
2),

m(χ̃0
1)) [1].

Figures 8.3-8.5 show the distributions of the quantities ∆φmin
``′ , Emiss

T , mmax
T2 and mττ
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chosen in the SR0τb, SR1τ , SR2τa and SR2τb regions respectively, prior to the require-

ments made on the variables themselves. The arrows in the figures shows where the

requirement on the variable is placed. Also shown are the distributions for representative

SUSY benchmark points selected for the signal hypotheses. In the case of the τ̃L-mediated

simplified model, points are shown only in the mmax
T2 distribution for SR2τa and in case

of the Wh-mediated simplified model, points are shown only in the ∆φmin
``′ , Emiss

T and mττ

distributions for SR0τb, SR1τ and SR2τb regions respectively.

It is important to highlight the signal shape feature seen in the mmax
T2 distribution

(see Figure 8.5(a)), where at high values of mmax
T2 there is a clear separation from the

SM background. This shows the importance of this particular variable when it came to

defining SR2τa.
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Figure 8.3: Expected distributions of SM background events and observed data for

∆φmin
``′ in SR0τb, prior to the requirements on this variable. Arrows indicate the limits on

the value of the variable used to define the signal region. Also shown are the respective

contributions of the various background processes as described in the legend. Both the

statistical and systematic uncertainties are shown. The plots also show the distribution

for signal hypotheses, where the parentheses following the simplified model denote the

mass parameters in GeV as (m(χ̃±1 , χ̃
0
2), m(χ̃0

1)) [1].
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Figure 8.4: Expected distributions of SM background events and observed data for

Emiss
T in SR1τ , prior to the requirement on this variable. Arrows indicate the limits on

the value of the variable used to define the signal regions. Also shown are the respective

contributions of the various background processes as described in the legend. Both the

statistical and systematic uncertainties are shown. The plots also show the distribution

for signal hypotheses, where the parentheses following the simplified model denote the

mass parameters in GeV as (m(χ̃±1 , χ̃
0
2), m(χ̃0

1)) [1].
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Figure 8.5: Expected distributions of SM background events and observed data for

(a) mmax
T2 and (b) mττ variables in SR2τa and SR2τb regions respectively, prior to the

requirements on these variables. Arrows indicate the limits on the values of the variables

used to define the signal regions. Also shown are the respective contributions of the various

background processes as described in the legend. Both the statistical and systematic

uncertainties are shown. The plots also show the distribution for signal hypotheses, where

the parentheses following the simplified model denote the mass parameters in GeV as

(m(χ̃±1 , χ̃
0
2), m(χ̃0

1)) [1].
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The number of observed events is consistent with the SM expectation in all signal

regions, within uncertainties. Since no significant excess is observed, these results are used

to derive exclusion limits on the simplified and pMSSM models described in section 2.2.

8.3 Statistical Interpretation

Exclusion limits are calculated by statistically combining results from a number of dis-

joint signal regions in order to obtain maximum exclusion. SR2τa and SR2τb are not

disjointed, hence only one of the two must be chosen for the combination based on the

highest sensitivity provided for the model studied. For the ˜̀
L-mediated, WZ-mediated and

τ̃L-mediated simplified models and for the pMSSM scenarios, SR0τa, SR0τb, SR1τ and

SR2τa are statistically combined. For the Wh-mediated simplified model, the statistical

combination of SR0τa, SR0τb, SR1τ and SR2τb is used.

For the exclusion limits, the observed and expected 95% CL limit contours are calcu-

lated using MC pseudo-experiments for each SUSY model point, taking into account the

theoretical and experimental uncertainties on the SM background and the experimental

uncertainties on the signal, σexp, as well as the Poissonian fluctuations on the number

of observed events. The yellow bands in the figures for the exclusion contours show the

impact of ±1σ variations of σexp on the expected limit. The theoretical uncertainties on

the signal cross section, σSUSY
theory, are not included, however, their impact is shown as the

±1σ variation bands (red dashed lines) on the observed limit.

8.3.1 Model Dependent Interpretation: Simplified Models

Figure 8.6 shows the ˜̀
L-mediated simplified model interpretation, where the masses of the

degenerate χ̃±1 and χ̃0
2 are excluded up to 700 GeV. In the WZ-mediated simplified model

shown in figure 8.7, χ̃±1 and χ̃0
2 masses are excluded up to 345 GeV.

The over- (under-) fluctuations in the observed results in the signal regions lead to a

weaker (stronger) observed exclusion limits with respect to the expected for the compressed

scenarios (small mχ̃0
2
−mχ̃0

1
) in both the ˜̀

L-mediated and WZ-mediated simplified models.

The two exclusion limits shown in Figures 8.6-8.7 improve those reported by the previ-

ous ATLAS publication [103], also shown in the figures as a blue line. For the ˜̀
L-mediated

simplified model and the WZ-mediated simplified model, an improvement of ∼200 GeV

for high χ̃±1 and χ̃0
2 masses is seen.
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Figure 8.6: Observed and expected 95% CL exclusion contours for chargino and neut-

ralino production in the ˜̀
L-mediated simplified models [1]. The band around the expected

limit shows the ±1σ variations of the expected limit, including all uncertainties except the-

oretical uncertainties on the signal cross section. The dotted lines around the observed

limit indicate the sensitivity to ±1σ variations of these theoretical uncertainties. The blue

contour corresponds to the 7 TeV limits from the ATLAS three-lepton analysis. Linear

interpolation is used to account for the discrete nature of the signal grids.
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Figure 8.7: Observed and expected 95% CL exclusion contours for chargino and neutralino

production in the WZ-mediated simplified models [1]. The band around the expected

limit shows the ±1σ variations of the expected limit, including all uncertainties except

theoretical uncertainties on the signal cross section. The dotted lines around the observed

limit indicate the sensitivity to ±1σ variations of these theoretical uncertainties. The blue

contour corresponds to the 7 TeV limits from the ATLAS three-lepton analysis. Linear

interpolation is used to account for the discrete nature of the signal grids.
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In the ˜̀
L-mediated simplified model, the region with high-mSFOS bins in SR0τa (i.e.

SR0τa-bin20) offers the best sensitivity to scenarios with high χ̃±1 and χ̃0
2 masses, and the

low-mSFOS bins in SR0τa to scenarios where the mχ̃0
2
−mχ̃0

1
is small. In the WZ-mediated

simplified model, SR0τa-bin16 offers the best sensitivity to scenarios with high χ̃±1 and χ̃0
2

masses, and SR0τa-bin01 to scenarios where the mχ̃0
2
−mχ̃0

1
is small. There is a reduced

sensitivity to scenarios in the mχ̃0
2
− mχ̃0

1
= mZ region as the signal populates regions

with high WZ background. These statements are verified by computing the observed

and expected CLs values, which are shown in Figure 8.8, for the ˜̀
L- and WZ-mediated

simplified models using only bins SR0τa-bin20 and SR0τa-bin16 respectively.
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Figure 8.8: The observed (left) and expected (right) CLs for (a-b) ˜̀
L-mediated and (c-d)

WZ-mediated, using pseudo-experiments [1]. Each signal point in the parameter space is

shown by a black dot, and the numbers show the observed or expected CLs at each point,

calculated using the prescription defined in Section 8.1. For ˜̀
L-mediated, only SR0τa bin

20 is used. For WZ-mediated, only SR0τa bin 16 is used.

In the τ̃L-mediated simplified model, χ̃±1 and χ̃0
2 masses are excluded up to 380 GeV
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for massless χ̃0
1 as shown in figure 8.9. In the Wh-mediated simplified model shown in

figure 8.10, χ̃±1 and χ̃0
2 masses are excluded up to 148 GeV.
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(a) τ̃L-mediated simplified model

Figure 8.9: Observed and expected 95% CL exclusion contours for chargino and neut-

ralino production in the τ̃L-mediated simplified model [1]. The band around the expected

limit shows the ±1σ variations of the expected limit, including all uncertainties except

theoretical uncertainties on the signal cross section. The dotted lines around the observed

limit indicate the sensitivity to ±1σ variations of these theoretical uncertainties. Linear

interpolation is used to account for the discrete nature of the signal grids.
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(a) Wh-mediated simplified model

Figure 8.10: Observed and expected 95% CL exclusion contours for chargino and neut-

ralino production in the Wh-mediated simplified model [1]. The band around the expected

limit shows the ±1σ variations of the expected limit, including all uncertainties except the-

oretical uncertainties on the signal cross section. The dotted lines around the observed

limit indicate the sensitivity to ±1σ variations of these theoretical uncertainties. Linear

interpolation is used to account for the discrete nature of the signal grids.

The low mSFOS SR0τa bins offer the best sensitivity to the small mχ̃0
2
−mχ̃0

1
scenarios

in the τ̃L-mediated simplified model, and SR2τa to the high-mass χ̃±1 , χ̃0
2 scenarios. The

results in the low mSFOS SR0τa bins lead to a weaker observed exclusion than expected for

the compressed scenarios. In case of the Wh-mediated simplified model, regions SR0τa,

SR0τb, SR1τ and SR2τb jointly offer the best sensitivity. The over-fluctuations in the

observed results in some SR0τa bins and SR1τ , which were specifically designed to provide

sensitivity to this model, are responsible for the observed exclusion contour being slightly

weaker than the expected. These statements are verified by computing the observed

and expected CLs values, which are shown in Figure 8.11, for the τ̃L- and Wh-mediated

simplified models using only bins SR2τa and SR2τb respectively.
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Figure 8.11: The observed (left) and expected (right) CLs for (a-b) τ̃L-mediated and (c-d)

Wh-mediated, using pseudo-experiments [1]. Each signal point in the parameter space is

shown by a black dot, and the numbers show the observed or expected CLs at each point,

calculated using the prescription defined in Section 8.1. For τ̃L-mediated, SR2τa is used.

For Wh-mediated, SR2τb is used.

8.3.2 Model Dependent Interpretation: pMSSM

In the pMSSM scenarios, for a given value of M1 , the sensitivity for high values of M2 and

µ, and therefore for high values of chargino and heavy neutralino (not the LSP) masses,

is driven by the decrease of the production cross section.

Figures 8.12-8.15 show the exclusion contours for pMSSM ˜̀
R scenarios and the pMSSM

τ̃R scenario, which have limited sensitivity in the regions with M1∼M2�µ, due to small

mχ̃0
2
−mχ̃0

1
or mχ̃±1

−mχ̃0
1
. Values for the masses of χ̃±1 and χ̃0

1 are shown in the figure as

gray isolines.

In the case of the pMSSM ˜̀
R with M1 = 250 GeV and τ̃R scenarios shown in Figure 8.14

and Figure 8.15 respectively, the small mass splittings (mχ̃±1
− mχ̃0

1
) also reduces the
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sensitivity in the M1 ∼ µ � M2 region. In particular, the pMSSM ˜̀
R scenario with

M1 = 250 GeV, the M2 & 250 GeV and µ & 250 GeV, a region characterised by small

mχ̃±1 ,χ̃
0
2
− mχ̃0

1
, due to the over-fluctuation seen in SR0τa-bin01 the observed exclusion

region is significantly smaller than that expected.

For the pMSSM no ˜̀ scenarios (Figures 8.16), in the region with M2 & 200 GeV

and µ & 200 GeV the decay mode χ̃0
2 → hχ̃0

1 is kinematically allowed and reduces the

sensitivity due to its branching ratios into three light lepton final states.
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(a) pMSSM ˜̀
R, M1=100 GeV

Figure 8.12: Observed and expected 95% CL exclusion contours in the pMSSM model

with sleptons, M1 = 100 GeV [1]. The band around the expected limit shows the ±1σ

variations of the expected limit, including all uncertainties except theoretical uncertain-

ties on the signal cross section. The dotted lines around the observed limit indicate the

sensitivity to ±1σ variations of these theoretical uncertainties. The area covered by the

−1σ expected limit is shown in green. The blue contours correspond to the 7 TeV limits

from the ATLAS three-lepton analysis. Linear interpolation is used to account for the

discrete nature of the signal grids.
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(a) pMSSM ˜̀
R, M1=140 GeV

Figure 8.13: Observed and expected 95% CL exclusion contours in the pMSSM model

with sleptons, M1 = 140 GeV. The band around the expected limit shows the ±1σ vari-

ations of the expected limit, including all uncertainties except theoretical uncertainties on

the signal cross section. The dotted lines around the observed limit indicate the sensit-

ivity to ±1σ variations of these theoretical uncertainties. The area covered by the −1σ

expected limit is shown in green. The blue contours correspond to the 7 TeV limits from

the ATLAS three-lepton analysis. Linear interpolation is used to account for the discrete

nature of the signal grids.
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Figure 8.14: Observed and expected 95% CL exclusion contours in the pMSSM model

with sleptons, M1 = 250 GeV [1]. The band around the expected limit shows the ±1σ

variations of the expected limit, including all uncertainties except theoretical uncertain-

ties on the signal cross section. The dotted lines around the observed limit indicate the

sensitivity to ±1σ variations of these theoretical uncertainties. The area covered by the

−1σ expected limit is shown in green. The blue contours correspond to the 7 TeV limits

from the ATLAS three-lepton analysis. Linear interpolation is used to account for the

discrete nature of the signal grids.
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Figure 8.15: Observed and expected 95% CL exclusion contours in the pMSSM model

with τ̃R [1]. The band around the expected limit shows the ±1σ variations of the expected

limit, including all uncertainties except theoretical uncertainties on the signal cross section.

The dotted lines around the observed limit indicate the sensitivity to ±1σ variations of

these theoretical uncertainties. The area covered by the −1σ expected limit is shown in

green. Linear interpolation is used to account for the discrete nature of the signal grids.
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Figure 8.16: Observed and expected 95% CL exclusion contours in the pMSSM model

with no ˜̀ [1]. The band around the expected limit shows the ±1σ variations of the

expected limit, including all uncertainties except theoretical uncertainties on the signal

cross section. The dotted lines around the observed limit indicate the sensitivity to ±1σ

variations of these theoretical uncertainties. The area covered by the −1σ expected limit

is shown in green. Linear interpolation is used to account for the discrete nature of the

signal grids.
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Chapter 9

Conclusion

This thesis summarises the work done during my PhD at the University of Sussex on

the search at ATLAS for the production of charginos and neutralinos decaying into final

states with three leptons (e/µ/τ) and missing transverse momentum. The analysis was

performed using 20.3 fb−1 of the
√
s = 8 TeV proton-proton collision data delivered by the

LHC and recorded with the ATLAS detector in 2012. The results presented in Chapter 8

show no significant excess of events above SM expectations with respect to what was found

in data. These are interpreted in different simplified SUSY models and in various pMSSM

scenarios, detailed in Section 2.2.1. For the simplified SUSY models with intermediate

slepton decays, degenerate χ̃±1 and χ̃0
2 masses up to 700 GeV are excluded for large mass

differences with the χ̃±1 , while for the simplified SUSY models with gauge boson (W,Z)

decays, the mass exclusion limit reaches 345 GeV. These limits improve upon the previous

ATLAS results in ref [103] by almost 200 GeV. For the newly explored simplified SUSY

models with intermediate staus, degenerate χ̃±1 and χ̃0
2 masses up to 380 GeV are excluded,

while for the simplified SUSY models with intermediate Higgs boson decays, degenerate

χ̃±1 and χ̃0
2 masses up to 148 GeV are excluded.

This analysis has been published in a refereed paper [1] in April 2014.
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Appendix A

Observed Data

This Section provides a full process breakdown for the MC-based estimates of the ir-

reducible background in each SR. Also shown, are the MM estimates for the reducible

background, the total expectation of SM and the observed data. These estimates are

provided in Table A.1-A.3.
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Table A.1: Expected numbers of SM background events and observed numbers of data

events in the signal regions SR0τa-bin01–bin12 for 20.3 fb−1. Statistical and systematic

uncertainties are included as described in section 7.6.

Sample SR0τa-bin01 SR0τa-bin02 SR0τa-bin03 SR0τa-bin04 SR0τa-bin05 SR0τa-bin06

WZ 13.2+3.4
−3.2 3.0± 1.4 7.8± 1.6 4.5+1.1

−1.0 6.3± 1.6 3.7± 1.6

ZZ 1.4+0.6
−0.5 0.12± 0.06 0.40± 0.14 0.20± 0.18 1.5± 0.5 0.25+0.14

−0.11

tt̄V + tZ 0.14± 0.05 0.07± 0.04 0.04+0.05
−0.04 0.14± 0.13 0.11± 0.08 0.047+0.022

−0.021

V V V 0.33± 0.33 0.10± 0.10 0.19± 0.19 0.6± 0.6 0.26+0.27
−0.26 0.24± 0.24

Higgs 0.66± 0.26 0.15± 0.08 0.64± 0.22 0.46+0.18
−0.17 0.36+0.14

−0.15 0.33+0.13
−0.12

Reducible 6.7± 2.4 0.8± 0.4 1.6+0.7
−0.6 2.7± 1.0 4.3+1.6

−1.4 2.0± 0.8

Total SM 23± 4 4.2± 1.5 10.6± 1.8 8.5+1.7
−1.6 12.9+2.4

−2.3 6.6+1.9
−1.8

Data 36 5 9 9 11 13

Sample SR0τa-bin07 SR0τa-bin08 SR0τa-bin09 SR0τa-bin10 SR0τa-bin11 SR0τa-bin12

WZ 7.6± 1.3 0.30+0.25
−0.24 16.2+3.2

−3.1 13.1+2.5
−2.6 19± 4 3.7± 1.2

ZZ 0.55+0.16
−0.14 0.012+0.008

−0.007 1.43+0.32
−0.28 0.60+0.12

−0.13 0.7± 1.2 0.14± 0.09

tt̄V + tZ 0.04+0.15
−0.04 0.12+0.13

−0.12 0.16+0.09
−0.12 0.12± 0.10 0.41+0.24

−0.22 0.12± 0.11

V V V 0.9± 0.9 0.13+0.14
−0.13 0.23+0.24

−0.23 0.4± 0.4 0.6± 0.6 0.6± 0.6

Higgs 0.98+0.29
−0.30 0.13± 0.06 0.32± 0.11 0.22+0.10

−0.11 0.28± 0.12 0.12± 0.06

Reducible 4.0+1.5
−1.4 0.40+0.27

−0.26 4.1+1.3
−1.2 1.9+0.9

−0.8 5.7+2.1
−1.9 0.9+0.5

−0.4

Total SM 14.1± 2.2 1.1± 0.4 22.4+3.6
−3.4 16.4± 2.8 27± 5 5.5+1.5

−1.4

Data 15 1 28 24 29 8
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Table A.2: Expected numbers of SM background events and observed numbers of data

events in the signal regions SR0τa-bin13–bin20 for 20.3 fb−1. Statistical and systematic

uncertainties are included as described in section 7.6.

Sample SR0τa-bin13 SR0τa-bin14 SR0τa-bin15 SR0τa-bin16 SR0τa-bin17 SR0τa-bin18

WZ 613± 65 207+33
−32 58+12

−13 3.9+1.6
−1.4 50+7

−6 2.3± 1.3

ZZ 29± 4 5.5± 1.5 3.5+1.1
−1.0 0.12+0.08

−0.07 2.4+0.7
−0.6 0.08± 0.04

tt̄V + tZ 2.9+0.7
−0.6 2.0+0.7

−0.6 0.67+0.29
−0.28 0.08+0.10

−0.08 0.8± 0.5 0.15+0.16
−0.15

V V V 1.3± 1.3 0.8± 0.8 1.0± 1.0 0.33± 0.33 3.2± 3.2 0.5± 0.5

Higgs 2.2± 0.7 0.98± 0.20 0.31± 0.11 0.033± 0.018 0.95± 0.29 0.05± 0.04

Reducible 68+21
−19 2.2+1.9

−2.0 1.2± 0.6 0.14+0.25
−0.14 11.3+3.5

−3.2 0.27± 0.20

Total SM 715± 70 219± 33 65± 13 4.6+1.7
−1.5 69+9

−8 3.4± 1.4

Data 714 214 63 3 60 1

Sample SR0τa-bin19 SR0τa-bin20

WZ 0.9± 0.4 0.12± 0.11

ZZ 0.021± 0.019 0.009± 0.009

tt̄V + tZ 0.0023+0.0032
−0.0019

V V V 0.08± 0.08 0.07+0.08
−0.07

Higgs 0.007± 0.006 0.0009± 0.0004

Reducible 0.17+0.16
−0.15 0.08+0.11

−0.08

Total SM 1.2± 0.4 0.29+0.18
−0.17

Data 0 0
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Table A.3: Expected numbers of SM background events and observed numbers of data

events in the signal regions SR0τb, SR1τ , SR2τa and SR2τb for 20.3 fb−1. Statistical and

systematic uncertainties are included as described in section 7.6.

Sample SR0τb SR1τ SR2τa SR2τb

WZ 0.68± 0.20 4.6± 0.6 1.51+0.35
−0.33 2.09+0.30

−0.31

ZZ 0.028± 0.009 0.36± 0.08 0.049+0.016
−0.014 0.135± 0.025

tt̄V + tZ 0.17+0.32
−0.17 0.16+0.18

−0.16 0.21+0.27
−0.21 0.023+0.015

−0.018

V V V 1.0± 1.0 0.5± 0.5 0.09± 0.09 0.031± 0.033

Higgs 0.49± 0.17 0.28± 0.12 0.021± 0.010 0.08± 0.04

Reducible 1.5± 0.4 4.3± 0.8 5.1± 0.7 4.9± 0.7

Total SM 3.8± 1.2 10.3± 1.2 6.9± 0.8 7.2+0.7
−0.8

Data 3 13 6 5
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Appendix B

Improvements to the ATLAS

offline shifter Tools

This section introduces the technical work done in order to obtain the ATLAS authorship

qualification. The main purpose of this task was to add and improve features of some of

the main tools available for the so-called “trigger offline” shifts. In these shifts the quality

of the data collected by the ATLAS detector is thoroughly analysed to identify failures in

the data processing with the ATLAS trigger, in particular in those areas where the trigger

fails to promptly categorise events during data taking.

B.1 Offline Data Quality

For each physics object, one or more trigger objects can be defined (µ, τ, e, γ, jet,

b-tagged jet and Emiss
T ); given the complexity of the ATLAS trigger system, thorough

monitoring of the performance of these trigger objects is vital. A data quality assessment

of the events as soon as they are collected by the experiments was developed and deployed

successfully in 2011, including tools which tested the analysis of events whilst data taking

(online analysis) as well as the events produced after standard reconstruction is performed

(offline analysis). The online data quality analysis focuses on major failures in the system

and corrects them instantly, while the offline part is used to verify the online assessment

and also to perform a more detailed analysis and filter out unsuitable data for physics

analyses.
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B.2 Debug Stream

Data for which the HLT failed to make a decision are automatically streamed into an

output category known as the “debug stream”. Events that “fire” the debug stream are

still considered for analysis, based on the assumption that only a small fraction of those

events are unsuitable for physics. The offline data quality assessment ensures that all debug

stream events are recovered after reprocessing of the raw data with validated improvements

in the trigger configuration, and also provides tools to distinguish between known and

unknown problems during data taking, which can help understand the behaviour of the

trigger.

Events where an error is detected at the level of the trigger are sent to the debug stream

for further evaluation. These are events where one or more trigger algorithms failed, and

therefore a trigger decision is not possible. These trigger events can be categorised as

type L2 or EF, depending on which stage these events ended up in the debug stream. For

example, very busy events (large pileup, large number of tracks, etc) can cause a timeout

in the execution of the trigger algorithm. A list of the most frequent debug stream errors

found in in 2011 and 2012 are listed in Table B.1.

Table B.1: Main types of debug stream errors.

Name HLT system Description

L2HltError L2 Level-2 algorithm errors.

L2HltTimeout L2 Level-2 timeouts which are usually recovered.

L2ForcedAccept L2 Event algorithm timeouts at Level-2, reprocessing usually leads to recovery.

L2ProcTimeout L2 Event processing timeout where the result at Level-2 is lost.

L2MissingData L2 Major problem that leads to all events ending up in the debug stream.

efdProcTimeout L2,EF HLT processing timeout expired.

EFHLTError EF Severe algorithm errors at EF, which abort the event processing.

EFHltTimeout EF Event algorithm timeouts at EF, usually can be recovered.

EFMissingData EF Major problem that leads to all events ending up in the debug stream.

Events in the debug stream are analysed offline to study problems in the online system

caused by the trigger. Such information is provided in detail with the dedicated tools for

the analysis of debug stream events, which are aimed to promptly identify problems and

while doing so, reducing the turn-around time for fixing these problems in future data



140

taking. Debug stream analysis tools produce several histograms needed for online and

offline systems, however, this document will focus only on the description of some of the

tools and histograms used during 2012. These are described in the following sections.

B.2.1 Automatic debug stream defect and web interface

The first part of my qualification task involved producing many debug stream analysis

histograms by using legacy code as well as developed code. The analysis involved assessing

whether there were too many events in the debug stream, i.e. more than 5% of the total

number of events per luminosity block. In such cases, the production of a new histogram

would take place, which contained information of the ratio of debug stream events and

total events, clearly highlighting the luminosity block and run number for data with such

feature. Finally an automated email notification to the expert shifters mailing list was sent

out in these instances to warn the shifter and have him/her take immediate action. These

plots were included along with the default histograms for the debug stream analysis in the

official ATLAS trigger offline monitoring web-pages. The web-pages were also redesigned

as part of my technical work, this re-design was motivated mainly to highlight the relevant

information for the shifter without inspecting an overwhelming number of histograms by

hand. An example of such plot is shown in Figure B.1.

Figure B.1: Percentage of debug stream events in a given luminosity block [123].
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These features were in place and fully functional throughout Run2.

B.2.2 New debug stream analysis histograms

Generally, one of the most useful things a shifter could know is whether a specific type

of debug stream error was understood or even known. This motivated the need for a

histogram with the error history over a relevant time period, in this case we set this to be

60 runs (also for cosmetic reasons). An example of a “history plot” is shown in Figure B.2.

The y-axis incorporates the elements of Figure B.1 by showing the percentage of debug

stream events.

Figure B.2: Debug stream error history plot. [123].

These features were in place and fully functional throughout Run2.
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[90] A. Kardos, Z. Trócsányi, and C. G. Papadopoulos, Top quark pair production in

association with a Z boson at next-to-leading-order accuracy, Phys. Rev. D 85

(2012) 054015. http://link.aps.org/doi/10.1103/PhysRevD.85.054015. 54,

106

[91] J. Campbell, R. K. Ellis, and R. Rtsch, Single top production in association with a

Z boson at the LHC, Phys.Rev. D87 no. 11, (2013) 114006, arXiv:1302.3856

[hep-ph]. 54

[92] M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, and M. Wiedermann,

HATHOR - HAdronic Top and Heavy quarks crOss section calculatoR, Computer

Physics Communications 182 no. 4, (2011) 1034 – 1046.

http://www.sciencedirect.com/science/article/pii/S0010465510005333. 54

[93] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for

t-channel single top quark production, Phys.Rev. D83 (2011) 091503,

arXiv:1103.2792 [hep-ph]. 54

[94] N. Kidonakis, NNLL resummation for s-channel single top quark production,

Phys.Rev. D81 (2010) 054028, arXiv:1001.5034 [hep-ph]. 54

[95] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated

production with a W- or H-, Phys.Rev. D82 (2010) 054018, arXiv:1005.4451

[hep-ph]. 54

[96] S. Catani, L. Cieri, G. Ferrera, D. de Florian, and M. Grazzini, Vector Boson

Production at Hadron Colliders: A Fully Exclusive QCD Calculation at

Next-to-Next-to-Leading Order, Phys. Rev. Lett. 103 (2009) 082001.

http://link.aps.org/doi/10.1103/PhysRevLett.103.082001. 54

[97] S. Dittmaier, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka, et al., Handbook

of LHC Higgs Cross Sections: 2. Differential Distributions, arXiv:1201.3084

[hep-ph]. 54, 106

[98] W. Beenakker, R. Hopker, M. Spira, and P. Zerwas, Squark and gluino production

at hadron colliders, Nucl.Phys. B492 (1997) 51–103, arXiv:hep-ph/9610490

[hep-ph]. 54

http://dx.doi.org/10.1103/PhysRevD.85.054015
http://dx.doi.org/10.1103/PhysRevD.85.054015
http://link.aps.org/doi/10.1103/PhysRevD.85.054015
http://dx.doi.org/10.1103/PhysRevD.87.114006
http://arxiv.org/abs/1302.3856
http://arxiv.org/abs/1302.3856
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2010.12.040
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2010.12.040
http://www.sciencedirect.com/science/article/pii/S0010465510005333
http://dx.doi.org/10.1103/PhysRevD.83.091503
http://arxiv.org/abs/1103.2792
http://dx.doi.org/10.1103/PhysRevD.81.054028
http://arxiv.org/abs/1001.5034
http://dx.doi.org/10.1103/PhysRevD.82.054018
http://arxiv.org/abs/1005.4451
http://arxiv.org/abs/1005.4451
http://dx.doi.org/10.1103/PhysRevLett.103.082001
http://link.aps.org/doi/10.1103/PhysRevLett.103.082001
http://arxiv.org/abs/1201.3084
http://arxiv.org/abs/1201.3084
http://dx.doi.org/10.1016/S0550-3213(97)80027-2
http://arxiv.org/abs/hep-ph/9610490
http://arxiv.org/abs/hep-ph/9610490


151

[99] ATLAS Collaboration, Measurement of the W → `ν and Z/γ∗ → `` production

cross sections in proton-proton collisions at
√
s = 7 TeV with the ATLAS detector,

JHEP 1012 (2010) 060, arXiv:1010.2130 [hep-ex]. 60

[100] ATLAS Collaboration, Performance of the Reconstruction and Identification of

Hadronic Tau Decays with ATLAS, Tech. Rep. ATLAS-CONF-2011-152, CERN,

Geneva, Nov, 2011. https://cds.cern.ch/record/1398195. 63

[101] Identification of the Hadronic Decays of Tau Leptons in 2012 Data with the

ATLAS Detector, Tech. Rep. ATLAS-CONF-2013-064, CERN, Geneva, Jul, 2013.

https://cds.cern.ch/record/1562839. 63, 64, 65, 66

[102] ATLAS Collaboration, Performance of Missing Transverse Momentum

Reconstruction in Proton-Proton Collisions at 7 TeV with ATLAS, Eur.Phys.J.

C72 (2012) 1844, arXiv:1108.5602 [hep-ex]. 67, 109

[103] ATLAS Collaboration, Search for direct production of charginos and neutralinos in

events with three leptons and missing transverse momentum in 21 fb−1 of pp

collisions at
√
s = 8 TeV with the ATLAS detector, Tech. Rep.

ATLAS-CONF-2013-035, CERN, Geneva, Mar, 2013.

https://cds.cern.ch/record/1532426. 70, 74, 92, 107, 121, 133

[104] ATLAS Collaboration, Search for direct production of charginos and neutralinos in

events with three leptons and missing transverse momentum in 13.0 fb-1 of pp

collisions at sqrt(s)=8 TeV with the ATLAS detector, Tech. Rep.

ATLAS-CONF-2012-154, CERN, Geneva, Nov, 2012.

https://cds.cern.ch/record/1493493. 70, 74

[105] ATLAS Collaboration, Search for direct production of charginos and neutralinos in

events with three leptons and missing transverse momentum in
√
s = 7 TeV pp

collisions with the ATLAS detector, Phys.Lett. B718 (2013) 841–859,

arXiv:1208.3144 [hep-ex]. 70, 74

[106] M. Wielers, R. Mantifel, A. Tricoli, and P. Bell, Single Electron Trigger

Performance Plots, Tech. Rep. ATL-COM-DAQ-2012-146, CERN, Geneva, Jun,

2012. https://cds.cern.ch/record/1456795. 71

[107] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

MuonTriggerPublicResults#Muon_trigger_performances_in_AN1. 71

http://dx.doi.org/10.1007/JHEP12(2010)060
http://arxiv.org/abs/1010.2130
https://cds.cern.ch/record/1398195
https://cds.cern.ch/record/1562839
http://dx.doi.org/10.1140/epjc/s10052-011-1844-6
http://dx.doi.org/10.1140/epjc/s10052-011-1844-6
http://arxiv.org/abs/1108.5602
https://cds.cern.ch/record/1532426
https://cds.cern.ch/record/1493493
http://dx.doi.org/10.1016/j.physletb.2012.11.039
http://arxiv.org/abs/1208.3144
https://cds.cern.ch/record/1456795
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MuonTriggerPublicResults#Muon_trigger_performances_in_AN1
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MuonTriggerPublicResults#Muon_trigger_performances_in_AN1


152

[108] ATLAS Collaboration, Jet energy measurement with the ATLAS detector in

proton-proton collisions at
√
s = 7 TeV, Eur.Phys.J. C73 (2013) 2304,

arXiv:1112.6426 [hep-ex]. 72

[109] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for

likelihood-based tests of new physics, Eur.Phys.J. C71 (2011) 1554,

arXiv:1007.1727 [physics.data-an]. 73, 111, 112, 113

[110] https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSectionsFigures.

76

[111] A. Barr, C. Lester, and P. Stephens, m(T2): The Truth behind the glamour,

J.Phys. G29 (2003) 2343–2363, arXiv:hep-ph/0304226 [hep-ph]. 81

[112] C. Lester and D. Summers, Measuring masses of semiinvisibly decaying particles

pair produced at hadron colliders, Phys.Lett. B463 (1999) 99–103,

arXiv:hep-ph/9906349 [hep-ph]. 81

[113] J. Butterworth, E. Dobson, U. Klein, B. Mellado Garcia, T. Nunnemann, J. Qian,

D. Rebuzzi, and R. Tanaka, Single Boson and Diboson Production Cross Sections

in pp Collisions at sqrts=7 TeV, Tech. Rep. ATL-COM-PHYS-2010-695, CERN,

Geneva, Aug, 2010. https://cds.cern.ch/record/1287902. 106

[114] http://www.hep.ucl.ac.uk/pdf4lhc/PDF4LHC_practical_guide.pdf. 106

[115] ATLAS Collaboration, Improved luminosity determination in pp collisions at
√
s =

7 TeV using the ATLAS detector at the LHC, Eur.Phys.J. C73 (2013) 2518,

arXiv:1302.4393 [hep-ex]. 107

[116] ATLAS Collaboration, Measuring the b-tag efficiency in a top-pair sample with 4.7

fb−1 of data from the ATLAS detector, tech. rep., 2012.

https://cds.cern.ch/record/1460443. 108

[117] ATLAS Collaboration, Determination of the tau energy scale and the associated

systematic uncertainty in proton-proton collisions at
√
s = 8 TeV with the ATLAS

detector at the LHC in 2012, ATL-PHYS-PUB-2013-044 (2013).

https://cdsweb.cern.ch/record/1544036. 108

[118] M. Kramer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi, et al.,

Supersymmetry production cross sections in pp collisions at
√
s = 7 TeV,

arXiv:1206.2892 [hep-ph]. 110

http://dx.doi.org/10.1140/epjc/s10052-013-2304-2
http://arxiv.org/abs/1112.6426
http://dx.doi.org/10.1140/epjc/s10052-011-1554-0
http://arxiv.org/abs/1007.1727
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSectionsFigures
http://dx.doi.org/10.1088/0954-3899/29/10/304
http://arxiv.org/abs/hep-ph/0304226
http://dx.doi.org/10.1016/S0370-2693(99)00945-4
http://arxiv.org/abs/hep-ph/9906349
https://cds.cern.ch/record/1287902
http://www.hep.ucl.ac.uk/pdf4lhc/PDF4LHC_practical_guide.pdf
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://arxiv.org/abs/1302.4393
https://cds.cern.ch/record/1460443
https://cdsweb.cern.ch/record/1544036
http://arxiv.org/abs/1206.2892


153

[119] A. L. Read, Presentation of search results: the CL s technique, Journal of Physics

G: Nuclear and Particle Physics 28 no. 10, (2002) 2693.

http://stacks.iop.org/0954-3899/28/i=10/a=313. 112, 113

[120] A. L. Read, Modified frequentist analysis of search results (the CLs method), Tech.

Rep. CERN-OPEN-2000-205, 2000. https://cds.cern.ch/record/451614. 112

[121] E. Gross, LHC Statistics for Pedestrians,.

https://cds.cern.ch/record/1099994. 112

[122] E. Gross and O. Vitells, Trial factors for the look elsewhere effect in high energy

physics, European Physical Journal C 70 (2010) 525–530, arXiv:1005.1891

[physics.data-an]. 116

[123] https://atlas-trigmon.cern.ch/debug_stream/2012.php. 140, 141

http://stacks.iop.org/0954-3899/28/i=10/a=313
https://cds.cern.ch/record/451614
https://cds.cern.ch/record/1099994
http://dx.doi.org/10.1140/epjc/s10052-010-1470-8
http://arxiv.org/abs/1005.1891
http://arxiv.org/abs/1005.1891
https://atlas-trigmon.cern.ch/debug_stream/2012.php

	DPhil Coversheet
	Castillo, Itzebelt Santoyo
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Theoretical Introduction
	2.1 The Standard Model
	2.1.1 Overview
	2.1.2 Shortcomings of The Standard Model

	2.2 Supersymmetry
	2.2.1 Minimal Supersymmetric Standard Model
	2.2.2 R-Parity SUSY
	2.2.3 Simplified Supersymmetric Models
	2.2.4 Phenomenological MSSM


	3 The ATLAS detector at the LHC
	3.1 The Large Hadron Collider
	3.2 The ATLAS detector
	3.2.1 Magnet System
	3.2.2 Inner Detector
	3.2.3 Calorimeter System
	3.2.4 Muon Spectrometer

	3.3 ATLAS Trigger System
	3.3.1 Level 1 Trigger
	3.3.2 High Level Trigger


	4 Event Simulation and Reconstruction
	4.1 Event Generation
	4.2 Detector Simulation
	4.3 Reconstruction
	4.3.1 Tracks
	4.3.2 Electrons
	4.3.3 Muons
	4.3.4 Jets

	4.4 Pile-up Simulation

	5 MC samples
	5.1 MC Generators
	5.2 Background MC Samples
	5.3 Signal MC Samples

	6 Object Selection
	6.1 Overlap Removal
	6.2 Object Identification
	6.2.1 Electrons
	6.2.2 Muons
	6.2.3 Jets
	6.2.4 Taus
	6.2.5 Missing Transverse Energy


	7 SUSY Searches in Three Lepton Final States
	7.1 The 2012 Data
	7.2 Analysis Strategy and Personal Contribution
	7.3 Event pre-selection
	7.3.1 Triggers

	7.4 Signal Region Definition and Optimisation
	7.4.1 3  channel
	7.4.2 2  channel
	7.4.3 1  channel

	7.5 Background Estimation
	7.5.1 Irreducible Background
	7.5.2 Reducible Background
	7.5.3 Validation of Background Estimation Method

	7.6 Systematic Uncertainties
	7.6.1 Uncertainties on the Irreducible Background
	7.6.2 Uncertainties on the Reducible Background
	7.6.3 Uncertainties on the Signal


	8 Results
	8.1 Statistical Analysis Tools
	8.2 Observed Events in Signal Regions
	8.3 Statistical Interpretation
	8.3.1 Model Dependent Interpretation: Simplified Models
	8.3.2 Model Dependent Interpretation: pMSSM


	9 Conclusion
	A Observed Data
	B Improvements to the ATLAS offline shifter Tools
	B.1 Offline Data Quality
	B.2 Debug Stream
	B.2.1 Automatic debug stream defect and web interface
	B.2.2 New debug stream analysis histograms


	Bibliography


