

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Design and implementation of a low-level

language for interaction nets

Shinya Sato

Submitted for the degree of Doctor of Philosophy

University of Sussex

September 2014

iii

UNIVERSITY OF SUSSEX

Shinya Sato, Doctor of Philosophy

Design and implementation of a low-level language

for interaction nets

Summary

Interaction nets are a graphical model of computation based on a restricted form of graph
rewriting. A specific net can represent a program with a user-defined set of nodes and
computation is modelled by a user-defined set of rewrite rules. This very simple model has
had great success in modelling sharing in computation (specifically in the lambda calculus),
and there is potential for generating a new theoretical foundation of parallel computation
since all computation steps are local and thus can be implemented in parallel.

This thesis is about the implementation of interaction nets. Specifically, for the first
contributions we define a low-level language as an object language for the compilation of
interaction nets. We study the efficiency and properties of different data structures, and
focus on the management of the rewriting process which is usually hidden in the graph
rewriting system. We provide experimental data comparing the different choices of data
structures and select one for further development. For the compilation of nets and rules
into this language, we show an optimisation such that allocated memory for agents is
reused, and thus we obtain optimal efficiency for the rewriting process.

The second part of this thesis describes extensions of interaction nets so that they
can be used as a programming language. Interaction nets in their pure form are quite
restrictive in expressive power. By extending the notions of agents and rules we can
express computation more naturally, yet still preserve the good properties (such as strong
confluence) of the rewriting system. We then implement a selection of algorithms using
and extending the compilation techniques developed in the first part of the thesis. We
also demonstrate experimental results on multi-core CPUs, using the Posix-thread library,
thus realising some of the potential for parallel implementation mentioned above.

iv

Acknowledgements

First, I am deeply grateful to my supervisor Ian Mackie, for his enormous support and

encouragement. His insightful comments were also innumerably valuable during the course

of my study.

My joint work with Abubaker Hassan on the INET project has greatly benefited this

thesis. Discussions with Abubaker have been a great help to me. I also deeply appreciate

his painstaking effort at proofreading this thesis.

Special thanks go to Maribel Fernández, Eugen Jiresch and Nikolaos Siafakas for their

helpful opinions and information. I thank my friends from Sussex for their advice and

encouragements.

My intellectual debt is to my late former supervisor Shinichi Yamada, and my former

sub-supervisors Yasushi Kodama and Toru Sugimoto. I thank my fellow members of staff

and administrators at Himeji Dokkyo University for providing me with an opportunity

to join the INET project. Furthermore, I would particularly like to thank my examiners,

Bernhard Reus and Jorge Sousa Pinto, for the fruitful discussions at the viva and for

taking time to give invaluable feedback. Without their help this thesis would not have

been possible.

I would also like to express my gratitude to my family for their moral support and

warm encouragements.

v

Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Linear logic . 1

1.2 Interaction nets . 3

1.2.1 Interaction nets as an implementation language 4

1.2.2 Interaction nets as a programming language 5

1.3 Implementing and extending interaction nets 6

1.4 Contribution . 7

1.5 Thesis overview . 9

2 Background 11

2.1 Interaction nets . 11

2.1.1 Graph rewriting system . 11

2.1.2 A textual calculus for interaction nets 13

2.2 Examples . 18

2.2.1 Arithmetic operations on unary natural numbers 19

2.2.2 Gödel’s System T . 22

2.3 Summary . 29

3 Related works: evaluators towards efficient computation 30

3.1 Overview . 30

3.2 Evaluators based on the graph rewriting system 32

3.2.1 INET . 32

3.2.2 in2 . 39

3.3 Evaluators based on the textual calculi . 40

vi

3.3.1 AMINE (MPINE) . 40

3.3.2 amineLight . 50

3.4 Comparison of encoding methods . 55

3.4.1 Undirected graph encoding . 55

3.4.2 Directed graph encoding . 61

3.4.3 Experimental results . 64

3.5 Summary . 67

4 Single link encoding method 68

4.1 Motivation . 69

4.2 Lightweight textual calculus . 70

4.2.1 Lightweight interaction rules . 71

4.2.2 Decomposing Indirection rule . 72

4.2.3 Lightweight calculus . 73

4.2.4 Properties of lightweight reduction rules 74

4.3 Simpler lightweight abstract machine . 76

4.3.1 Correctness . 78

4.3.2 Computation without the map for connections 82

4.4 Simpler textual calculus . 84

4.4.1 Expressive power . 85

4.5 Encoding method . 92

4.5.1 Implementation model . 92

4.5.2 Reduction strategies . 94

4.5.3 Experimental results . 100

4.6 Summary . 103

5 Low-level language LL0 104

5.1 The Low-level language LL0 . 104

5.1.1 Constructing nets . 105

5.1.2 Defining interaction rules . 112

5.1.3 Instructions and Syntax of LL0 . 114

5.2 Translation of the textual calculus into LL0 114

5.2.1 Translation of configurations . 115

5.2.2 Translation of interaction rules . 122

5.3 Execution model in the C language . 126

vii

5.3.1 Implementation of instructions . 127

5.3.2 Implementation of rule procedures 128

5.4 Execution model in a bytecode interpreter 130

5.4.1 Implementation of instructions . 130

5.4.2 Implementation of rule procedures 134

5.5 Summary . 136

6 A language for programming in interaction nets 137

6.1 Pattern matching . 137

6.1.1 Motivations . 137

6.1.2 Interaction rules for nested patterns (INP) 138

6.1.3 Translation . 144

6.1.4 Related Works . 148

6.2 Agents and interaction rules with attributes 149

6.2.1 Agents hold attributes . 150

6.2.2 Interaction rules with expressions . 150

6.2.3 Conditional interaction rules . 152

6.2.4 Examples . 153

6.3 Syntax . 156

6.3.1 Nested pattern matching . 156

6.3.2 Agents and interaction rules with attributes 157

6.4 Extension of LL0 . 162

6.4.1 Extension of the syntax of LL0 . 162

6.4.2 Extension of the compilation method 166

6.5 Extension of execution models . 170

6.5.1 Data-structures for agents, ports and attributes 170

6.5.2 Execution model in the C language 171

6.5.3 Execution model in the byte-code interpreter 173

6.6 Summary . 178

7 Results and future work 179

7.1 Interpreter for interaction nets with LL0 . 179

7.1.1 Sequential execution model . 179

7.1.2 Parallel execution model . 183

7.1.3 Experimental results . 187

viii

7.2 Future work . 191

7.2.1 Reuse optimisation . 191

7.2.2 Parallelism . 194

7.2.3 Algebraic datatypes and sharing . 198

7.3 Summary . 199

8 Conclusion 200

Bibliography 202

A Programs in related works 208

A.1 amineLight: runtime functions . 208

B Benchmark programs 212

B.1 Ackermann function . 212

B.2 Fibonacci number . 213

B.3 Bubble sort . 214

B.4 Quicksort . 216

ix

List of Tables

2.1 Terms . 23

3.1 The execution time in seconds on the standardised implementation model . 67

3.2 The number of operations in Directed encoding method 67

4.1 The execution time in seconds on the standardised implementation model . 100

4.2 The number of operations in the single link method 101

7.1 The execution time in seconds on the standardised implementation model . 180

7.2 The execution time in seconds on interaction nets evaluators 187

7.3 The execution time in seconds on interpreters 190

7.4 The execution time in seconds on the single encoding method and the reuse

method . 194

7.5 Execution time in the multi-thread execution 198

x

List of Figures

2.1 An example of rules and rewritings of interaction nets 13

2.2 An example of nets . 15

2.3 Alternative rules of the addition on unary natural numbers 19

2.4 Fibonacci number on the unary natural number 21

2.5 Ackermann function on the unary natural number 22

2.6 Linear System T . 24

2.7 Ackermann function . 27

2.8 Interaction Rules . 28

3.1 Transitions for codes process((~xa).α(~s), (~ya).β(~u)) and process(x, y) 44

3.2 Transitions for other codes . 45

3.3 Transition for codes α(~t) = β(~s) . 53

3.4 Transitions for codes x = α(~t) and α(~t) = x 53

3.5 Transitions for codes x = y . 54

3.6 Configuration . 55

3.7 Undirected method: the net in Figure 2.2 58

3.8 Undirected encoding method: evaluation of the net in Figure 2.1 60

3.9 Transition rules in Figure 3.4 . 65

3.10 Directed encoding method: evaluation of the net in Figure 2.1 66

4.1 Transitions (E | ~u | H | Γ) =⇒ (E′ | ~u | H ′ | Γ′) 77

4.2 Transition rules in Figure 4.1 . 94

4.3 Single link encoding method: evaluation of the net in Figure 2.1 95

5.1 Configuration . 105

5.2 computation rules for name and indirection nodes 114

5.3 Instructions of LL0 . 115

5.4 Syntax of LL0 . 116

xi

5.5 Instructions of a bytecode interpreter . 131

6.1 Extended instructions of a byte-code interpreter 174

6.2 The translation exprBytes from expressions into byte-code sequences 175

7.1 Virtual machine in the sequential execution model 181

7.2 Configuration in the multi-threaded parallel execution model 184

7.3 Transition of states and equation stacks . 185

7.4 Stacking active pairs according to the condition of slept virtual machines . 185

7.5 The speedup in the multi-threads executions 189

7.6 The speedup in the multi-threads executions using attributes 191

7.7 Execution steps on benchmark programs in sequential and parallel 192

7.8 Rule procedures for the rule between Add and S 192

7.9 add(2̄, n̄) in a sequential version of addition 195

7.10 add(add(m,n), p) and add(m, add(n, p)) in the alternative rules 195

7.11 add(2̄, n̄) in a parallel version of addition . 196

7.12 Parallel execution of add(add(2, n̄), p̄) . 197

7.13 Behaviour of sequential and parallel versions of addition on Fibonacci function197

1

Chapter 1

Introduction

1.1 Linear logic

Linear logic [21] has had a profound impact in computer science over the last 25-30 years.

It has created new artefacts, such as proof nets, as well as providing deep insight into

others. It has been applied to many diverse areas of computer science. Some examples

include: security, complexity theory, semantics, compilation, type systems, etc. In many

of these application domains, there are now dedicated workshops or special sessions in

major conferences covering these topics.

It is not our goal to recall all the history of linear logic here, but we mention briefly

two instances where linear logic has been used to give some spectacular results: optimal

reduction in the λ-calculus and the full abstraction result for PCF through game semantics.

Both of these results do not rely directly on linear logic, but both were found passing

through it (often referred to as “looking through the linear logic looking glass”).

For us, one of the key features of linear logic is the idea of proof nets: a graphical

representation of proofs. They are fundamentally different from natural deduction, sequent

calculus, or axiom presentations of logic, because they take away some of the sequential

constraints of writing proofs. The multiplicative fragment of linear logic (tensor and par)

works particularly well as proof nets, and notions of parallel proof work very well. It is

this multiplicative fragment of proof nets that marked the starting point of interaction

nets which is the topic of this thesis.

Proof nets are a graphical syntax for linear logic proofs and they offer a representation

of proofs which are free from many of the permutation and commutation equivalences,

and thus are better suited for the study of computation. Specifically, the sequent calculus

presentation of linear logic lacks certain desirable properties:

2

• There is no notion of canonical proof. Logical rules can be permuted in a proof,

which gives several representations of the same object.

• The cut elimination process is overly complicated by the need for commutation rules

which essentially re-order the rules of the proof in order to create a principal cut

and to eliminate it. Moreover, the cut-elimination steps are not deterministic; that

is to say that in the right-hand side of the rewrite rule we are free to build the proof

in one of several different ways by re-ordering the logical and structural rules.

For intuitionistic logic, natural deduction is a solution to these issues: there is a canon-

ical notion of a proof, and a deterministic cut-elimination procedure. Proof nets can be

seen as the corresponding proof structure for linear logic having such properties. Here is

a well-known example, taken from Girard [22], of one of the problems of sequent calculus

with respect to representation of proofs. Let (r) and (s) be two logical rules, and the cut

is working on auxiliary formulas (not the main formula of the rules r and s):

Γ, A
(r)

Γ′,A

A⊥,∆
(s)

A⊥,∆′

(Cut)
Γ′,∆′

If we permute the cut rule up through r and s, then there are two possible choices

depending on whether we first permute through s or through r. These two choices are

represented by:

Γ,A A⊥,∆
(Cut)

Γ,∆
(r)

Γ′,∆
(s)

Γ′,∆′

Γ,A A⊥,∆
(Cut)

Γ,∆
(s)

Γ,∆′

(r)
Γ′,∆′

There is also no notion of canonical form for cut-free proofs, as the following example

indicates. There are two alternative proofs, π1 and π2 of the formula:

A⊥, C,A⊗B⊥, B ⊗ C⊥

which differ only by the order of combining the axiom links. π1 is:

(Ax)
A⊥, A

(Ax)
B⊥, B

(⊗)
A⊥, B,A⊗B⊥

(Ax)
C⊥, C

(⊗)
A⊥, C,A⊗B⊥, B ⊗ C⊥

and π2 is:

(Ax)
A⊥, A

(Ax)
B⊥, B

(Ax)
C⊥, C

(⊗)
C,B⊥, B ⊗ C⊥

(⊗)
A⊥, C,A⊗B⊥, B ⊗ C⊥

3

Having several different proof objects, distinguished only by the syntax means that it is

difficult to reason about equivalence (of proofs or programs).

The idea of proof nets is to define a proof structure that is free from these inessential

permutations. This will then give us a calculus, in a similar spirit to the λ-calculus, that

we can use for expressing proofs. Sequent calculus is often referred to as a sequential

presentation of the logic, as one must select a given order on the rules. However, as we

shall see below, we can free ourselves from such constraints. This is why proof nets are

often referred to as the parallel syntax for proof theory.

The following proof net represents both π1 and π2 defined above. This justifies the

motivation of finding a representation of proofs which factors out the order in which the

rules were used to build the proof.

⊗ ⊗

A⊥ A⊗B⊥ B ⊗ C⊥ C

This graphical representation not only has advantages for representing proofs, but also

for the cut-elimination procedure. We will not go further into this here, as we will focus

on a generalisation of the idea: interaction nets.

1.2 Interaction nets

Lafont [36] introduced a paradigm in programming languages based on interaction nets—

a networked system of interacting agents founded on proof nets for linear logic. From

one perspective, they are a generalisation of proof nets because they allow user defined

connectives and reduction rules (cut-elimination steps). We remark also that Bawden [9]

has also considered a system of connection graphs that is very similar to interaction nets,

and in particular he gave the first coding of a functional language (Scheme) into these

networks before interaction nets were introduced.

Interaction nets are very appealing from a computational point of view. On the one

hand we have a very simple graphical rewriting system which enjoys properties such as

confluence, and on the other hand there appears to be scope for trivial parallel implement-

ations.

An interaction net system is specified by a set Σ of agents, and a set R of interac-

tion rules. One can think of agents as logical symbols (connectives) and the interaction

rules specify the cut-elimination procedure. It is in this sense that interaction nets are a

4

generalisation of proof nets where the user defines the connectives of the logic. However,

interaction nets are not about defining new logics, they are about defining rewrite systems

analogous to term rewriting systems. Over the last years these rewriting systems have

been used to define various systems: implementation models, algorithm animation, visual

programming, simulating other rewriting systems, and even to model cut-elimination of

linear logic [42, 44]. In the next paragraphs we recall some key results of interaction nets.

Interaction nets are particular kinds of graph rewriting systems which have constraints

over both the construction of graphs and the corresponding rewrite rules. In fact they

are so constrained that it is surprising how they capture all computable functions—it

is possible to simulate a Turing Machine, so they are Turing complete. Unlike models

such as Turing machines, cellular automata, λ-calculus or combinators, an interaction net

computational step can be defined as a constant time operation, and the model allows

for parallelism (many steps can take place at the same time). The model therefore is an

interesting one if we are interested in cost models of computation, and also take advantage

of possible parallelism.

The fact that they lend themselves to modelling efficient computation, for instance

β-optimal and efficient reduction (see for instance [8, 46]) is evidence to the fact that

they can play an important rôle in computer science. There have been implementations

of interaction nets since Lafont introduced them in 1990, and there are both textual

and graphical representations of nets [58, 3]. In [45] an investigation began into the

development of a programming language for interaction nets. This language has developed

significantly over the last few years, and we contribute to it in this thesis.

We summarise some of the work done in interaction nets, grouping them into two

areas.

1.2.1 Interaction nets as an implementation language

One of the earliest applications of interaction nets, and perhaps one of the biggest successes

to date, is the encoding of the λ-calculus. The λ-calculus can be seen as a prototypical

functional programming language, and moreover can be seen as the foundation for an

implementation of a functional language. For several reasons however, the theory falls

short of this ideal because the reduction steps are too “big” in that β-reduction (λx.t)u→

t[u/x] takes us out of the realms of the pure theory since substitutions, which are the hard

part to implement, are not captured by the basic theory. Several possible solutions such

as explicit substitutions and combinators have been put forward to solve this problem.

5

However, none of these solutions offer atomic computation steps and as a consequence

they partially help to implement functional languages, but they do not offer any detail or

insight about the cost of reduction, or help in understanding topics such as sharing for

example.

The reduction steps in any interaction net on the other hand are always constant time

operations by construction. This is one reason they have been very useful for implementing

the λ-calculus. Further, sharing is very natural to capture in these nets, and in fact it is

very difficult to duplicate computation. There have been a number of different encodings

of the λ-calculus. We mention just a sample:

• Gonthier, Abadi and Lévy [24] gave an optimal implementation using an infinite set

of (indexed) agents. In practice, this system turns out to be very inefficient in time,

but several works (Asperti et al. [8] for example) have made significant performance

improvements.

• In [41] an interaction system is given which uses a finite number of agents, but it

does not implement substitution through λ-abstractions, which is essential to obtain

sharing. Although very little sharing is captured by this system it does better than

call-by-need. This system lead to a sequence of papers [43, 46] delivering more

efficient evaluators. These systems are the most efficient to date.

• Lippi [40]: has given an alternative approach based on encoding the λ-calculus in-

directly by implementing an environment machine.

Overall, these interaction net systems have given great insight into the λ-calculus, and

also given the most efficient implementations of the λ-calculus to date.

Interaction nets have also been used to implement other languages: term rewriting

systems [16], small functional languages, Prolog [13], etc. There is still more work to be

done in this area, especially once a better understanding of parallelism for interaction nets

can be achieved. We hope this thesis can assist in this respect.

1.2.2 Interaction nets as a programming language

Interaction nets were originally also put forward as a programming paradigm. Lafont

demonstrated that interaction nets are a graphical programming language when they

were introduced [36]. In particular, programming examples involving lists were given

(for instance an append operation). Numbers were also used, using the constructors zero

and successor. Other people, notably Lippi [39] investigated further the programming

6

paradigm, giving a sorting algorithm and an implementation of the Towers of Hanoi.

Later, starting in [45], an approach to extend (see below) the visual aspects of interaction

nets was developed (see for example [48, 47]). The motivation and the reasons for the

success of writing algorithms and programs in interaction nets comes from the following

points:

1. The graphical representation of the problem is directly cast into the graphical lan-

guage. The algorithm given can be understood as programming directly with the

internal data structures, rather than some syntax describing it. This therefore gives

the programmer a more direct access to the structure of the problem. The program-

mer is able to be more efficient and we believe also that it is easier to write a correct

program in the first instance.

2. All rewrite steps correspond to steps in the computation: there is no need to intro-

duce additional data structures and operations that are not part of the problem.

3. Because of point 1 above, if we single-step the computation we get an animation of

the algorithm directly from the rewriting system.

We will look at some example interaction net systems later. It was also useful, and

necessary in some cases, to extend interaction nets to a richer programming language.

1.3 Implementing and extending interaction nets

In order to facilitate the use of interaction nets we need a framework to aid program-

ming. Specifically, we need robust and efficient implementations and we need to extend

interaction nets with rich programming constructs. The novelty of this thesis is that we

develop the theory and practice of interaction nets at both the front-end (richer program-

ming language constructs) and also the back-end (internal data-structures and low-level

language).

There are several implementations of interaction nets in the public domain (for in-

stance [58, 40, 38, 5]), which have been developed to demonstrate interaction nets graph-

ically, or to test out various implementation ideas, such as parallelism. These are based on

a “pure” calculus of interaction nets (see [17] for such a calculus and details of the oper-

ational model), and thus writing programs with these can be understood as analogous to

writing functional programs with the pure λ-calculus. Although we can already program

in interaction nets (they are after all Turing complete) they lack the structure that we

7

expect from modern programming languages. What was therefore missing was a substan-

tial programming language development: syntax, semantics, implementation, as well as

a development environment (tools to facilitate program development, such as graphical

previewers).

In Chapter 3 we give in the background some detail of implementations, so we will not

repeat that here. The first documented implementations were given in [20, 58, 39]. Some

additional features were included in these implementations, and the work [45] started

a richer approach which lifts interaction nets from the “pure” world to allow them to

be used in practice. To give some analogies as what is being done here, consider the

relationship between the λ-calculus and functional programming languages such as Haskell

[55], Standard ML [54], or the relationship between Horn clauses and logic programming

languages, such as Prolog, or finally, the relationship between the π-calculus and the

language PICT [56].

In the list above, the programming language is there to provide not only some syn-

tactical sugar, but also to provide features that the theory does not offer. For instance,

if we look in detail at the analogy with the λ-calculus and functional programming lan-

guages, functional languages allow the definition of functions such as: twice f x = f(f

x), which is a significant improvement over λfx.f(fx) as a programming language, as

programs can be reused for instance. With respect to interaction nets, Hassan et al. [29]

provided a corresponding programming language called INET, which provides built-in

constants such as integer and float numbers, Boolean values and strings, operations for

those constants, conditional interaction rules, module system, input/output and side ef-

fects computation, and this has been built in Hassan’s thesis [26]. Other extensions have

been developed: multiple principal ports [2] and macros [59].

To facilitate some of the extensions, the theory of interaction nets has had to be

developed. Features such as type systems [14], strategies of reduction [17], operational

equivalence [18] and a semantics of interaction nets [52] have been developed. Finally, there

are also parallel implementations [57, 34], where both MPI (Message Passing Interface)

and GPU (Graphics Processing Units) have been used.

1.4 Contribution

This thesis builds on the research effort of using interaction nets to study computation

as outlined above. Our main interests are the following topics, and we briefly explain the

contributions made in each one.

8

• Standard implementation model: we give a standard implementation model written

in the C language. There are a number of evaluators for interaction nets, and this

model offers a unified implementation model for different encoding methods. It

is useful to compare properties such as efficiency, and locality which is one of the

important properties to exploit parallel computation in interaction nets. From this

study, we also propose a method of encoding that has good locality properties.

• Textual calculus: we give a new textual calculus for interaction nets, which is close to

the implementation model, and thus rewritings in this calculus correspond directly to

the operations on the data-structures. We also show some properties of the calculus,

such as correctness.

• Low-level language: we give a low-level language for interaction nets. This is not only

close to the implementation models, but also offers a bytecode execution model. We

believe that this language can help pave the way for a better theory of compilation

of interaction nets, and in particular, we mention that we can look for more efficient

implementation, for example reuse of memory in the compilation of rules (we mention

this in some detail in future work).

• Extending interaction nets: in order to use interaction nets as a programming lan-

guage, we add built-in constants such as integer numbers, tuples and lists, together

with operations for those constants. In addition, we introduce conditional interaction

rules and deeper pattern matching.

• Parallelism: we give a multi-threaded execution model of interaction nets that is

suitable to execute on recent multi-core processors. This execution model is an

instance of the low-level language, and the parallelism is naturally derived from the

locality of the implementation model.

Our work is not the first attempt at addressing these topics: a number of abstract

machines were developed in the early days of interaction nets (a number unpublished).

We build on those ideas, after experience and hindsight, to build more efficient data

structures. Our philosophy is to keep things very simple: we have one of the simplest data

structures for representing nets for instance. Experimental evidence shown in this thesis

demonstrates that this gives improvements on the current state of the art, and in addition

it also leads us to the possibility of using this kind of technology more widely.

9

1.5 Thesis overview

The structure of the rest of the thesis, and the main contributions of this thesis are as

follows.

Chapter 2. Background. Most of this is standard material, but we offer some original

contributions by adding some novel examples. For example, we give an implementa-

tion of Gödel’s System T as one of the examples that is the topic of a paper presented

at the 5th International Workshop on Graph Computation Models (GCM 2014) [50].

Some additional examples given in this chapter are used for producing benchmarks

in later chapters where we compare different evaluators.

Chapter 3. Here we give some details about related work by examining other implement-

ations of interaction nets developed to date. These evaluators include PIN, INET

and amineLight, published in the proceeding of the 7th International Workshop

on Graph Transformation and Visual Modeling Techniques (GT-VMT 2008) [28],

the Fifth International Workshop on Computing with Terms and Graphs (TERM-

GRAPH 2009) [29] and 9th International Workshop on Graph Transformation and

Visual Modeling Techniques (GT-VMT 2010) [30] respectively. In particular, we

focus on the internal data structures of these implementations and give the standard

implementation model. Finally we discuss the relative merits of each one.

Chapter 4. In this chapter we give the details of our proposed implementation based

on a single link encoding of the internal data-structure. This is simpler, but has

indirection nodes. In addition to the definition of the data-structures and rewrite

rules, this chapter also contains a contribution in the form of a textual calculus

based on this data-structure. We prove correctness and show various properties.

Novel feature: rules correspond directly to the data-structure (i.e. the calculus is

exactly the same as the data-structure so we can reason about it in a textual way).

(Lightweight calculus was published in the proceedings of GT-VMT 2010 [30]).

Chapter 5. In this chapter we introduce our low-level language for interaction nets. We

give instructions to manipulate the data-structure, and also show how to compile

the calculus to a list of instructions. We also provide lots of examples and details

so that this work is easily re-produced by anyone else wanting to contribute to this

area. Moreover, we give a correspondence to the standard implementation model

and show a bytecode execution model to interpret those instructions.

10

The previous two chapters: the calculus and the low-level language were presented

at TERMGRAPH 2014 [31].

Chapter 6. Extending interaction nets. A main contribution is pattern matching, which

was published in the proceedings of the Fourth International Workshop on Comput-

ing with Terms and Graphs (TERMGRAPH 2007) [32] (implementation issues were

published in the proceedings of the Tenth International Workshop on Rule-Based

Programming (RULE 2009) [27]), and we illustrate this mechanism with examples.

We also give an extension of our low-level language and compilation to cover this

extension.

Chapter 7. We implement a bytecode interpreter, which is an evaluator of the low-level

language, and we also introduce a multi-threaded execution model. We compare the

performance with other evaluators, and thus in this chapter the benchmark results

demonstrate the usefulness of the techniques developed. In addition to the results,

we give in this chapter the further work that we have identified. In particular, we

focus on parallel issues that have been in view for all the other works presented in

the thesis, and we demonstrate with benchmark results that have recently presented

at DCM 2014 [51].

Chapter 8. Finally we conclude the thesis by providing a commentary on the work done.

11

Chapter 2

Background

In this chapter we review the basic notions of interaction nets [36]. First, we recall the

original graphical presentation given by Lafont [36] then we review a textual calculus for

interaction nets presented by Fernández and Mackie [17].

We include a number of examples that demonstrate the usefulness of interaction nets

and also show how they are used in different ways. In particular, we show an implement-

ation of Gödel’s System T (an original contribution presented at the 5th International

Workshop on Graph Computation Models—GCM 2014) in addition to some standard ex-

amples such as the Fibonacci and Ackermann functions that are very useful for generating

a large number of interactions in the benchmark results that we shall give later in the

thesis.

2.1 Interaction nets

In this section we recall the graph rewriting formalism of interaction nets. In Section

2.1.1 we review the original presentation proposed by Lafont [36], and in Section 2.1.2 we

review a textual calculus of interaction nets [17]. Both graphical and textual presentations

are equal, but each formalism has its own advantages: the textual calculus is better for

proving some properties and is compact to write down, whereas the graphical presentation

gives a visual and hence clearer presentation of the rules.

2.1.1 Graph rewriting system

A net is an undirected graph with labelled vertices called agents. An agent with a symbol

α as a label is called an agent α. Each agent α has one principal port, depicted by an

arrow, and (fixed) n auxiliary ports as follows:

12

...

�

The number of auxiliary ports is called the arity, and each agent α has an associated arity

n given by a function ar(α) = n. The following is an example of agents Z, S, Add with

arity 0, 1, 2 respectively for unary natural numbers and the addition operation:

AddSZ

Each port is connected with at most one port of an agent. A port which is not connected

with another port is called free. A set of free ports is called an interface. We may use

labels for an interface to distinguish these ports as follows:

x
1

x
0

x
n

...

�

A pair of agents which are connected together by their principal ports is called an

active pair. A rewriting of a net is performed only on an active pair according to an

interaction rule. At most one interaction rule exists for each active pair, and the interface

is preserved before and after the rewriting as shown in the next figure, where N is any net

which contains no active pairs:

...

�

...

�

x
1

x
n

y
1

y
m

x
1

x
n

y
1

y
m

N⇒

... ...

We may write this rule as (α, β)⇒ N .

Interaction nets is a graph rewriting system, which is specified by a pair consisting of

a symbol set Σ and an interaction rule set R. We use Σ to range over symbol sets and R

to range over rule sets. For instance, in the above example of agents for natural numbers

and the addition operation, the symbol set is {Z, S, Add} and the rule set for addition is

given in Figure 2.1. By using these rules, a net representing 1 + 0 is reduced to a net

representing 1, as shown in the example reduction in Figure 2.1.

We write N1 → N2 when N1 reduces in one step to N2. Interaction nets have the

following property because there is at most one interaction rule for each active pair [36]:

Theorem 2.1.1 (Strong confluence (diamond property))

Let N be a net. If N → N1 and N → N2 with N1 6= N2, then there is a net N3 such that

N1 → N3 and N2 → N3. �

13

SAdd

r

⇒

Add

Z Z Z
S

r

Z

S

⇒

Z

r

S

SAdd

x
1

x
2

y
1

�→

Add

y
1

x
2

x
1

Add

x
1

x
2

�→

Z

x
1

x
2

Rules

Example of rewritings

Figure 2.1: An example of rules and rewritings of interaction nets

N1 is called a normal form when there is no N2 such that N1 → N2. We write N ⇓ N1

when N →∗ N1 and N1 is a normal form. By strong confluence, the following holds:

Theorem 2.1.2 (Determinacy)

If N ⇓ N1 and N ⇓ N2, then N1 = N2. �

Locality is a property of rewriting such that there is at most one interaction rule for each

active pair and the interface is preserved during the rewriting. By the locality property,

all rewritings are performed locally. In interaction nets, since strong confluence holds and

all rewrites are local, rewriting can be performed in any order. Therefore interaction nets

are inherently parallel.

2.1.2 A textual calculus for interaction nets

In this section, we review the textual calculus proposed by Fernández and Mackie [17].

This can be considered as a theoretical development of a syntactical notation described

by Lafont [36], extended with a rewriting mechanism.

First, we review definitions of terms and equations for representing nets:

Agents: Let Σ be a set of symbols, ranged over by α, β, . . . , each with a given arity

ar : Σ → N. An occurrence of a symbol will be called an agent. The arity of a

symbol corresponds precisely to the number of auxiliary ports.

14

Names: Let N be a set of names, ranged over by x, y, z, etc. N and Σ are assumed

disjoint. Names correspond to wires in the graphical system.

Terms: A term is built on Σ and N by the grammar: t ::= x | α(t1, . . . , tn), where

x ∈ N , α ∈ Σ, ar(α) = n and t1, . . . , tn are terms, with the restriction that each

name can appear at most twice. If n = 0, then we omit the parentheses. If a name

occurs twice in a term, we say that it is bound, otherwise (i.e. occurs once) it is free.

We write s, t, u to range over terms, and ~s,~t, ~u to range over sequences of terms. We

use T as the set of terms. A term of the form α(t1, . . . , tn) can be seen as a tree with

the principal port of α at the root, and where the terms t1, . . . , tn are the subtrees

connected to the auxiliary ports of α.

Equations: If t and u are terms, then the pair t = u is an equation. ∆, Θ, . . . will be

used to range over multisets of equations. An occurrence of an equation corresponds

to a connection between two ports.

Configurations: A configuration is a pair: 〈 ~t | ∆ 〉, where ~t is a sequence t1, . . . , tn

of terms, and ∆ a multiset of equations. Each variable occurs at most twice in a

configuration. Configurations that differ only on names are considered equivalent.

A name that occurs exactly once is free, and a name that occurs twice is bound.

We use C,C ′ to range over configurations. We call ~t the head and ∆ the body of a

configuration.

In this notation, we can obtain a configuration from a net by using the following

translation [49]:

• Agents: For every agent α, we introduce a term α(x1, . . . , xn) where each of

x1, . . . , xn is a fresh name. The occurrence of the term α(x1, . . . , xn) in this trans-

lation corresponds to the principal port of the agent α, and each occurrence of

x1, . . . , xn corresponds to the free auxiliary ports respectively.

• Connections between two principal ports: We assume that terms for these

principal ports are α(~t) and β(~s). For this connection, we introduce an equation

α(~t) = β(~s).

• Connections between a principal port and a free auxiliary port: We assume

that terms for a principal port and an auxiliary port are α(~t) and x respectively. For

this connection, we replace the occurrence of x with α(~t).

15

SAdd

r

Z

Add

Z

Z

Figure 2.2: An example of nets

• Connections between two free auxiliary ports: We assume that terms for two

free auxiliary ports are x and y respectively. For this connection, we introduce a

fresh name z and we replace the occurrence of x and y with z.

Example 2.1.3

Let us consider the nets in Figure 2.1. First, we consider the sub-net on the right. For

the following agent S with a labelled auxiliary port x and agent Z,

S Z

x

we obtain terms S(x) and Z, and for the result of connecting the agent Z to the auxiliary

port of the agent S, we obtain a term S(Z). Then, for the net, we obtain the following

configuration by collecting S(Z) into an interface:

〈 S(Z) | 〉.

For the net on the most left-hand side in the figure, we obtain the following configuration

because a connection between two principal ports is represented as an equation:

〈 r | Add(Z, r) = S(Z) 〉.

Example 2.1.4

As another example, let us consider the net in Figure 2.2 which has a connection between

two auxiliary ports. Because agents S and Add are connected by their auxiliary ports, we

obtain the following configuration by introducing a fresh name w corresponding to the

auxiliary ports in S and Add:

〈 r | Add(Z, r) = S(w), Add(Z, w) = Z 〉.

Next, we review the syntax of rewriting rules. In interaction nets, a rewriting is

performed only on an active pair (in a given net) according to an interaction rule, and

16

each auxiliary port of the active pair is preserved before and after the rewriting. Therefore

it is essential to know how the auxiliary ports of a rewrite rule are connected. For this

purpose, Lafont [36] proposed a compact notation by connecting auxiliary ports between

the left-hand side net and the right hand side net of an interaction rule:

...

�

...

�
N

... ...

We can now represent a rule as an equation α(t1, . . . , tn) = β(s1, . . . , sk). In order to

identify the equation as an interaction rule, we use on instead of = as follows:

α(t1, . . . , tn) on β(s1, . . . , sk).

Example 2.1.5

The interaction rules for addition on the natural numbers in Figure 2.1 can be described

using the nets:

S

SAdd Add Add Z

and these are represented syntactically using the equations:

Add(y, S(w)) on S(Add(y, w)), Add(y, y) on Z

To summarise interaction rules have the form:

α(t1, . . . , tn) on β(s1, . . . , sk)

where α(t1, . . . , tn) and β(s1, . . . , sk) are terms. All names occur exactly twice in a rule,

and there should be at most one rule between α and β in the set of rulesR of an interaction

nets system. R is closed under symmetry, thus if α(~t) on β(~s) ∈ R then β(~s) on α(~t) ∈ R.

Definition 2.1.6 (Names in terms)

The set Name(t) of names of a term t is defined in the following way, which extends

to sequences of terms, equations, sequences and multisets of equations, and rules in the

obvious way.

Name(x) = {x},

Name(α(t1, . . . , tn)) = Name(t1) ∪ · · · ∪ Name(tn).

17

Definition 2.1.7 (Linear)

When every name occurs twice in a term t, then we say t is linear. We extend this notion

into equations, sequences of terms, multisets of equations, and configurations.

We can replace its free names by new names, provided the linearity restriction is

preserved.

Definition 2.1.8 (Substitution)

The notation t[u/x] denotes a substitution that replaces the free occurrence of x by the

term u in t. We only consider substitutions that preserve the linearity of the terms.

Remark that since the name x occurs exactly once in the term, this operation can be im-

plemented directly as an assignment, as is standard in the linear case. This notion extends

to sequence of terms, equations, sequences and multisets of equations, and configurations

in the obvious way.

The reduction rules in the calculus are divided into three kinds: Indirection which

binds fragments of connections, Collect which records the result of computation into the

interface, and Interaction which performs the actual computation according to interaction

rules:

Indirection:

〈 ~t | x = t, u = s,∆ 〉 −→ 〈 ~t | u[t/x] = s,∆ 〉 where x occurs in u.

Collect:

〈 ~t | x = s,∆ 〉 −→ 〈 ~t [s/x] | ∆ 〉 where x occurs in ~t.

Interaction:

〈 ~t | α(~t1) = β(~t2),∆ 〉 −→ 〈 ~t | ~t1 = ~sr, ~t2 = ~ur,∆ 〉

where α(~s) on β(~u) ∈ R and ~sr and ~ur are the result of replacing each occurrence

of a name x for α(~s) on β(~u) by a fresh name xr respectively.

Example 2.1.9

The following is a possible reduction sequence for the most left-hand side net in Figure 2.1:

〈 r | Add(Z, r) = S(Z) 〉

−→ 〈 r | Z = y′, r = S(w′), Z = Add(y′, w′) 〉 (Interaction)

−→ 〈 r | r = S(w′), Z = Add(Z, w′) 〉 (Indirection)

−→ 〈 S(w′) | Z = Add(Z, w′) 〉 (Collect)

−→ 〈 S(w′) | Z = w′′, w′ = w′′ 〉 (Interaction)

−→ 〈 S(w′) | w′ = Z 〉 (Indirection)

−→ 〈 S(Z) | 〉. (Collect)

18

During rewritings, linearity is preserved, and so the following holds:

Theorem 2.1.10 (Linearity)

Let C be a linear configuration. If C −→ C1, then C1 is also linear. �

We define C1 ⇓ C2 by C1 →∗ C2 where C2 is in normal form. In contrast with this

normal form, as in the λ-calculus, there are two types of normal form: full normal form

and weak normal form. In our framework, we can define interface normal form (INF) as

a weak normal form paying attention to interfaces [17]:

Definition 2.1.11 (Interface normal form (INF))

A configuration 〈 ~t | ∆ 〉 is in interface normal form (INF) when every ti in the interface

~t has one of the following forms:

• an agent α(~s),

• a name x that occurs in ~t except for the ti,

• a name x that occurs in an irreducible equation in ∆.

Intuitively, a configuration is in INF when it is not expected to obtain new results that

could be observed from the interface even if some reductions were applied.

To obtain a normal form in INF, we define a reduction strategy called weak reduc-

tion [17]:

Definition 2.1.12 (Weak reduction)

For a given configuration 〈 t1, . . . , x, . . . , tn | s = u,∆ 〉, we apply any rule only to s = u

in which x occurs.

By using weak reduction, we can evaluate only active pairs that are connected to the

interface. In other words, we avoid evaluation of nets which are disconnected from the

interface. This reduction strategy will be particularly useful when we have infinite lists,

encodings of recursive functions, etc.

2.2 Examples

In this section we give some examples of interaction nets. First, we show two examples

involving arithmetic operations: a system of interaction nets to compute Fibonacci num-

bers and another to compute the Ackermann function. These examples demonstrate how

mathematical functions can be implemented in interaction nets. Next, we show a more

elaborate example, giving an encoding of Gödel’s System T . Some parts of this system

19

⇒ ⇒
Add

x
1

x
2

y
1

Add

y
1x

2

x
1

Add

x
1

x
2

x
1

x
2

Rules

Add

r

Add

r

�→ �→

Example of rewritings

r

S

Z

S

S

Z

Z

S

Z

Z

S

Z

Figure 2.3: Alternative rules of the addition on unary natural numbers

are a simplification, or refinement, of some of the encodings of the λ-calculus, for example

the YALE encoding [43].

2.2.1 Arithmetic operations on unary natural numbers

Unary natural numbers are built by the zero 0 and the successor S(x) for a natural number

x. In interaction nets this is expressed by using the following two agents Z and S as shown

in Section 2.1.1:

SZ

The addition operation is defined in Figure 2.1. Here, we introduce alternative rules

as shown in Figure 2.3, and the result of the addition of add(n,m) for natural numbers n

and m is obtained as the computation result of Add(m̄, r) = n̄, where m̄ and n̄ are nets of

unary natural numbers for m and n. The difference is discussed in Section 7.2.2.

We define basic operations for duplication, erasing and predecessor:

20

SDup ⇒

S S

Dup Dup ⇒Z
Z Z

Pred
⇒

S

Del
⇒

S Del Del
⇒

Z

These rules are written textually as follows:

Add(x1, x2) = Z ⇒ x1 = x2

Add(x1, x2) = S(y1) ⇒ Add(S(x1), x2) = y

Dup(a1, a2) = Z ⇒ a1 = Z, a2 = Z

Dup(a1, a2) = S(x) ⇒ a1 = S(w1), a2 = S(w2), x = Dup(w1, w2)

Del = Z ⇒

Del = S(x) ⇒ Del = x

Pred(a) = S(x) ⇒ a = x

We use those rules in the following Fibonacci number and Ackermann function.

Fibonacci number The definition of Fibonacci number Fn is as follows:
F0 = 1

F1 = 1

Fn = Fn−2 + Fn−1

The Fibonacci function can be encoded using the interaction net system given in

Figure 2.4.

These rules are written textually as follows:

Fib(r) = Z ⇒ r = S(Z)

Fib(r) = S(x) ⇒ Fib2(r) = x

Fib2(r) = Z ⇒ r = S(Z)

Fib2(r) = S(x) ⇒ x = Dup(x1, x2),

Fib(r1) = S(x1), Fib(r2) = x2, Add(r2, r) = r1

21

Fib Fib2Z
⇒

S

Z

Fib
⇒

S

Fib2 Z
⇒

S

Z

Fib2
⇒

S

Rules

r xrr xr

xr

Fib SFib

Dup

Add

x

r

r r

Fib

Example of rewritings

S

Z

S

S

Fib2

�→ �→

Fib S
Fib

Add

S

Z

S

Z

S

S

Z

�→
�

F
3

F
1

+ F
2

Fib SFib

Dup

Add

S

Z

Figure 2.4: Fibonacci number on the unary natural number

The number Fn is obtained by evaluation of Fib(r) = n̄ where n̄ is a unary natural

number with S and Z of n. For instance, F3 is obtained as the computation result of

Fib(r) = S(S(S(Z))).

Ackermann function The definition of Ackermann function A is as follows:

A(m,n) =

n+ 1 if m = 0

A(m− 1, 1) if n = 0

A(m− 1, A(m,n− 1)) otherwise

The Ackermann function can be represented using the interaction net system given in

Figure 2.5. These rules in this figure are written textually as follows:

A(y, r) = Z ⇒ r = S(y)

A(y, r) = S(x) ⇒ A2(S(x), r) = y

A2(x, r) = Z ⇒ Pred(A(S(Z), r)) = x

A2(x, r) = S(y) ⇒ x = Dup(Pred(A(w, r)), A(y, w))

22

SA ⇒ A2A ⇒Z

y r xy r

S

y r

r y

A2 ⇒Z

r

A

rx

x

S

Z

Pred SA2 ⇒

yrx

A

r

A

y

Pred

x

S

x

Rules

Dup

SA

Example of rewritings

Z

�→

A2

�→

A(1, 2)

�→
�

S

S

Z

S

S

Z

S

Z

AS

Z

A

S

Z

Z

A(0, A(1, 1))

S

Z

S

Z

A
A

Pred

Dup

Figure 2.5: Ackermann function on the unary natural number

The computation result of A(m,n) is obtained by evaluation of A(n̄, r) = m̄ where m̄

and n̄ are unary natural numbers with S and Z of m and n respectively. For instance,

A(1, 3) is obtained as the computation result of A(S(S(S(Z))), r) = S(Z).

2.2.2 Gödel’s System T

Gödel’s System T [23] is the simply typed λ-calculus, with function and product types,

extended with natural numbers. It is a very simple system, yet has enormous expressive

power—well beyond that of primitive recursive functions. We show how to encode this

system using interaction nets because it illustrates some of the ideas of encoding the λ-

calculus, and it is also an original contribution. We will assume some knowledge of the

λ-calculus and also of Gödel’s System T.

Specifically, this example brings together on one hand the successful study of encoding

λ-calculus and related systems into interaction nets, together with the result that Gödel’s

23

Terms Variable Constraint Free Variables (fv)

x − {x}

tu fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

λp.t bv(p) ⊆ fv(t) fv(t) r bv(p)

〈p, q〉 fv(p) ∩ fv(q) = ∅ fv(p) ∪ fv(q)

0 − ∅

S t − fv(t)

iter t u v fv(t) ∩ fv(u) = fv(u) ∩ fv(v) = ∅ fv(t) ∪ fv(u) ∪ fv(v)

fv(t) ∩ fv(v) = ∅

Pattern Variable Constraint Bound Variables (bv)

x − {x}

〈p, q〉 bv(p) ∩ bv(q) = ∅ bv(p) ∪ bv(q)

Table 2.1: Terms

System T can be encoded with the linear λ-calculus and an iterator [4]. What this latter

result says is that there are redundancies in Gödel’s System T—copying and erasing can

be done either by the iterator or by the λ-calculus. We can remove the copy and erasing

power of the λ-calculus, and still keep the expressive power. Table 2.1 summarises the

syntax of our linear version of System T. The first four lines give the linear λ-calculus with

pairs. The construct λp.t is the usual abstraction, extended to allow patterns of variables

or pairs of patterns (as defined at the bottom of the table). The remaining three rules

define the syntax for constructing numbers and the iteration. We work with terms modulo

α-conversion as usual. In Figure 2.6 we give the typing rules for the calculus. The syntax

judgements are written as p1 : A1, . . . , pn : An ` t : B, and the typing rules capture the

linear variable constraints.

The reduction rules for calculus are given below:

Reduction Condition

(λp.t)v −→ [p� v].t fv(v) = ∅

iter (S t) u v −→ iter t (vu) v fv(v) = ∅

iter 0 u v −→ u fv(v) = ∅

The construct [p� v].t is a matching operation, defined as:

[x� v].t −→ t[v/x]

[〈p, q〉 � 〈t, u〉].t −→ [p� t].[q � u].t

24

Context

(Var)
x : A ` x : A

Γ, p : A, q : B ` t : C
(Pattern Pair)

Γ, 〈p, q〉 : A⊗B ` t : C

Γ, p : A, q : B,∆ ` t : C
(Exchange)

Γ, q : B, p : A,∆ ` t : C

Logical Rules:

Γ, p : A ` t : B
(−◦Intro)

Γ ` λp.t : A−◦B
Γ ` t : A−◦B Γ ` u : A

(−◦Elim)
Γ ` tu : B

Γ ` t : A ∆ ` u : B
(Pair)

Γ,∆ ` 〈t, u〉 : A⊗B

Numbers:

(Zero)
Γ ` 0 : nat

Γ ` t : nat
(Succ)

Γ ` S t : nat

Γ ` t : nat ∆ ` u : A Θ ` v : A−◦A
(Iter)

Γ,∆,Θ ` iter t u v : A

Figure 2.6: Linear System T

25

Substitution is a meta-operation defined as usual, and reductions can take place in any

context. Matching forces evaluation of terms, and will always succeed. The conditions on

the rules are used to preserve the linearity of those terms.

We can now give a translation T (·) of linear System T terms into interaction nets. A

term t with fv(t) = {x1, . . . , xn} is translated as a net T (t) with the root edge at the top,

and n free edges corresponding to the free variables:

T (t)

· · ·
x1 xn

The agents needed for this compilation will be introduced, and then we give the interaction

rules at the end.

Variable. When t is a variable, say x, then T (t) is translated into an edge:

x

Abstraction. If t is an abstraction, say λp.t′, then there are two alternative translations

of the abstraction, which are given as follows. The one of the left corresponds to a closed

abstraction (when there are no free variables), and the one of the right has free variables

x1 · · ·xn.

λc

Tp(p) T (t′)

· · · · · ·

λ

T (t′)Tp(p)

b b v

x1 xn

r r

In these diagrams, we use an auxiliary function for the translation of patterns Tp(p)

which is given by the following two rules.

x

Tp(x)

O

Tp(p) Tp(q)
· · · · · ·
Tp(〈p, q〉)

If p is a variable, then it is translated into an edge. Otherwise, if it is a pair pattern, then

it is translated as shown in the right-hand diagram above.

26

Application. If t is an application, say uv, then T (uv) is given by the following net,

where we have introduced an agent @ of arity 2 corresponding to an application.

@

T (u) T (v)

· · · · · ·

Pair. If t is a pair, say 〈u, v〉, then T (〈u, v〉) is given by the following net, where we have

introduced an agent ⊗ of arity 2 corresponding to a pair.

⊗

T (u) T (v)

· · · · · ·

Numbers. A number will be represented by a chain of successor agents (S), terminating

with a zero (0) agent. S has one auxiliary port, and 0 has none:

0 S

Iterator. To encode iter t u v we introduce one new agent as shown below. The principal

port of this agent points to the function v, because we must wait for this to become a

closed term before starting the interaction process.

It

T (t) T (u) T (v)

· · · · · · · · ·

In Figure 2.7 we give the net corresponding to the Ackermann function:

T (λm.(iter m (λx.S x) (λxy.iter (S y) (S 0) x)))

(We have used η-conversion to slightly simplify this net.)

To complete this example, we give in Figure 2.8 most of the interaction rules for this

system. The first rule deals with β-reduction, the next with pair pattern matching, and

27

�
c

�
c

�
c

It

S

�

S

It

S

b v

0

Figure 2.7: Ackermann function

the next four deal with substitution. The final three rules are for duplication and erasing,

where we use α to range over all other agents in the system.

There are three additional rules not in the figure, that we explain in more details, that

implement iteration. When the iterator agent interacts with a closed abstraction we have

the following rule:

It

λc

=⇒
Itc

This rule creates a new agent Itc that will interact with numbers. The agent also holds

on to the body and the variable edge of the abstraction. The two rules for the Itc agent

are as follows. The first rule is when we erase the function, and connect the result to the

base value.

Itc

0

=⇒ ε ε

The final rule is when we unfold one level of iteration. Here the function is duplicated

with δ agents, and one copy is applied to the base value as required. Because the function

being duplicated is closed, the duplication process is easily proved to be correct.

28

λc

@

=⇒

O

⊗

=⇒

λc

b

=⇒
λc

v λ =⇒ λc

S

b

=⇒
S

0

b

=⇒
0

δ

δ

=⇒

α

· · ·

δ

=⇒

α α

δ δ· · ·

ε

α

· · ·

=⇒
ε · · · ε

Figure 2.8: Interaction Rules

29

Itc

S

=⇒
Itc

δ δ

2.3 Summary

In this chapter, we reviewed two presentations of interaction nets: the original graphical

calculus [36] and a textual calculus [17]. In the next chapter, we review interaction net

evaluators based on these calculi.

We also presented several examples of interaction nets that give a flavour of how

they are used. In particular, the examples of arithmetic operations will be used later as

benchmark programs to compare evaluators and other major interpreters in Chapter 3, 4

and 7.

30

Chapter 3

Related works: evaluators towards

efficient computation

In this chapter we review evaluators of interaction nets, focusing on efficiency. First, we

review previous evaluators that focus on efficient computation. Next, explicating internal

data structures in those evaluators, we introduce a standardised implementation model.

Finally, we compare those methods in terms of efficient computation, especially execution

time.

3.1 Overview

A number of evaluators for interaction nets have been developed, starting from Lafont [36].

A first attempt to build a programming language was Gay’s interpreter [20] in 1991.

This system provides an environment to develop interaction net programs with the typing

system proposed by Lafont. In 2002, a graphical interpreter in2 was proposed by Lippi [38]

and it showed an aspect of interaction nets as a visual programming tool, followed by

INblobs [3].

Over the years, various interaction nets evaluators have been proposed – AMINE (and

MPINE) [57] in 2000, PIN [28], INET [29], amineLight [30] and ingpu [34] in 2008, 2009,

2010, 2014 respectively. One goal of these evaluators was to produce efficient implementa-

tions of interaction nets. In the remainder of this section we review each of these evaluators

in turn.

AMINE was proposed in 2000 [57] and it is the first evaluator based on the textual

calculus of interaction nets [17]. In this evaluator, each variable in the calculus is repres-

31

ented as a node that has the same name as the variable, and the substitution operation

for a variable requires a search to find the node which corresponds to the variables. To

prevent searching those nodes deeply, annotated terms, that have name lists of terms as

annotations, are introduced; however, processing these annotations consume a consider-

able amount of time during execution [30]. MPINE was also proposed as a concurrent

computation version of AMINE.

in2 was proposed in 2002 [38] and it is based on Lafont’s original graphical calculus [36].

It is written in the C language in order to perform more efficiently.

PIN was proposed in 2008 [28] and it is also based on the graphical calculus, so it is free

from substitutions of variables. It works on a newly introduced abstract machine with its

bytecodes, and the computation is done by executing sequences of the bytecodes. Thanks

to the bytecode technology, it can perform three times faster than AMINE [28].

INET was proposed in 2009 [29] and it is considered as another version of PIN, therefore

it is also based on the graphical calculus. Instead of using bytecodes, it translates the given

nets into codes in the C language and compiles those. It can perform about six times faster

than AMINE [29].

amineLight was proposed in 2010 [30] and it is based on a newly introduced textual

calculus, called lightweight calculus, which is a refined version of the calculus [17]. This cal-

culus shows all essential computation can be performed by using lightweight substitutions:

x = t, x = s→ t = s rather than using deep level substitutions: x = t, u = s→ u[t/x] = s.

It can perform between 20 and 520 times faster than AMINE [30].

ingpu was proposed in 2014 [34] and it is also based on the lightweight calculus, which is

a textual calculus. This evaluator was implemented by using a Graphical Processing Unit

(GPU). One advantage of the textual calculi is locality in rewritings of interactions, and

this evaluator performs a great deal of interactions in parallel. Re-wirings, however, are

realised by substitutions that require synchronised rewritings, and this evaluator executes

each substitution operation sequentially. Consequently, its performance is about the same

as, or slightly lower than, amineLight [34].

All these evaluators are divided into two groups by the basis calculus: the graph

rewriting system and textual calculi. The former group of evaluators are in2, PIN and

INET, and these evaluators have almost the same encoding methods of nets. The latter

32

group includes AMINE (MPINE), amineLight and ingpu. Our method proposed in this

thesis belongs to this textual calculi group.

In this section, we review evaluators in the graph rewriting group and in the following

section we review the textual calculi group. Finally, we compare the encoding methods in

both groups in terms of efficient computation.

3.2 Evaluators based on the graph rewriting system

In this section we survey data-structures of nets in the evaluator in2 proposed by Lippi [38]

which was introduced two years after AMINE was defined. We also survey the two evalu-

ators PIN [28] and INET [29] which were proposed eight years after AMINE was defined.

With respect to the data-structure of nets, wires are represented as mutual connections

of the appropriate ports. Rewritings of nets in those evaluators are based on the graph

rewriting system, and they avoid having a complicated substitution problem that is caused

in AMINE.

The main feature of PIN and INET is to give a compilation from nets into abstract

machine codes and from nets into the C language respectively. Therefore, PIN and INET

are compilers, whereas in2, AMINE and amineLight are interpreters which evaluate nets

directly. INET is a successor version of PIN and experimental results [29] indicate that it

can perform approximately between four and six times faster than AMINE, while PIN is

about three times faster [28] than AMINE. The execution speed of in2 is not described in

the paper [38].

In terms of the data-structures, PIN and INET use the same method to represent nets.

The connection method of in2 is regarded as an alternative method to the one in PIN and

INETS. First we review INET, and then we introduce in2 as an alternative net encoding

method.

3.2.1 INET

In this section, we review the execution model of INET. Here we introduce a restric-

ted version which deals with only the original graph rewriting system (without syntactic

sugar).

A machine state in this model is defined by:

• a heap of agent nodes,

• a stack of active pairs,

33

• a rule table,

• a runtime environment.

Heap of agent nodes A heap is a memory model for agents, together with functions

to manipulate the name table. Intuitively, an agent node Agent, the heap Heap and these

runtime functions are written in the C language as:

/* for symbol unique numbers */

#define ID_NAME 0

/* agent nodes and the heap */

typedef struct Agent {

int id;

struct Port port[MAX_PORT];

} Agent;

typedef struct Port {

int portNum;

int agent;

} Port;

Agent Heap[];

where

• We assume that each symbol α1, . . . , αn for agents is allocated to a unique number

1, . . . , n, and these are stored with their arities ar(α1), . . . , ar(αn) into the array

Symbols and Arities as follows:

#define ID NAME 0

#define ID α1 1
...

#define ID αn n

#define MAX AGENTID n

char Symbols[MAX AGENTID+1] = {"", "α1", . . . ,"αn"};

int Arities[MAX AGENTID+1] = {1, ar(α1), . . . ,ar(α1)};

34

• In the Agent structure,

– an agent is defined by assigning a unique number for the agent to the id,

– a name in the interface, whose arity is 1, is defined by assigning ID NAME to the

id.

• We assume, for simplicity, the following pre-defined constant that can be known

during the compilation: MAX PORT which gives the size of Heap and the maximum

number of ports.

To allocate agent nodes, we define the following functions:

/* to allocate and de-allocate agents and the interface */

int mkAgent(int id);

int mkInterface();

void freeAgent(int a);

where

• the function mkAgent allocates an agent node and assigns the argument id to the

attribute id. It returns an index for the allocated node in the Heap.

• the function mkInterface allocates an agent node and assigns ID NAME to the at-

tribute id. It returns an index for the allocated node in the Heap.

• The function freeAgent deallocates an agent from the Heap.

Stack of active pairs Next, we define functions to manage the stack of active pairs

ActivePairs as:

typedef struct Active {

int a1;

int a2;

} Active;

Active ActivePairs[MAX_ACTIVE];

/* to manipulate ActivePairs */

void pushActive(int a1, int a2);

int popActive(int *a1, int *a2);

35

where

• we assume, for simplicity, a pre-defined constant: MAX ACTIVE, which is the maximum

size of ActivePairs,

• the function pushActive pushes the given arguments onto the stack ActivePairs,

• the function popActive pops values from ActivePairs. If it succeeds, then it sub-

stitutes the removed items for its arguments a1 and a2, and returns 1. If there is no

entry, it just returns 0.

To manipulate agent nodes, we define the following macro:

#define connect(a1, p1, a2, p2) \

Heap[a1].port[p1].agent = a2; \

Heap[a1].port[p1].portNum = p2; \

Heap[a2].port[p2].agent = a1; \

Heap[a2].port[p2].portNum = p1; \

if (p1==0 && p2==0) pushActive(a1, a2)

#define getPort(a, p) (Heap[a].port[p])

We note that every wire between agents is represented by mutual connections.

Example 3.2.1

We can represent the net on the most left-hand side in Figure 2.1, which is presented as

Add(Z, r) = S(Z), using the following set of codes:

/* symbols */

#define ID_Add 1

#define ID_Z 2

#define ID_S 3

#define MAX_AGENTID 3

char Symbols[MAX_AGENTID+1] = {"", "Add", "Z", "S"};

int Arities[MAX_AGENTID+1] = {1, 2, 0, 1};

/* interface */

int r;

void mkNet() {

36

r = mkInterface();

/* Add(Z,r) */

int aAdd = mkAgent(ID_Add);

int aZ = mkAgent(ID_Z);

connect(aAdd, 1, aZ, 0);

connect(aAdd, 2, r, 1);

/* S(Z) */

int bS = mkAgent(ID_S);

int bZ = mkAgent(ID_Z);

connect(bS, 1, bZ, 0);

/* Add(Z,r)=S(Z) */

connect(aAdd, 0, bS, 0);

}

Rule table Next, we define the rule table R which stores function pointers according

to the id attributes of agent nodes of active pairs. In this system, each interaction rule

is performed by applying a function that is provided for each interaction rule. Here, for

simplicity, we use the following symbol matrix while the original one is a hash table:

typedef void (*RuleFun)(int a1, int a2);

RuleFun R[MAX_AGENTID][MAX_AGENTID];

void initRuleTable();

These functions operate re-wiring of their arguments according to interaction rules. For

example a function for the interaction rule Add(x, x) on Z connects each agent that is

connected to the ports of agent Add and makes entries for Add and Z free. This can be

defined as follows:

void Add_Z(int a1, int a2) {

connect(getPort(a1,1).agent, getPort(a1,1).portNum,

getPort(a1,2).agent, getPort(a1,2).portNum);

freeAgent(a1);

freeAgent(a2);

}

37

A function for Add(y, S(w)) on S(Add(y, w))) is defined as:

void Add_S(int a1, int a2) {

int newS = mkAgent(ID_S);

int newAdd = mkAgent(ID_Add);

connect(newS, 1, newAdd, 2);

connect(getPort(a1,1).agent, getPort(a1,1).portNum,

newAdd, 1);

connect(getPort(a1,2).agent, getPort(a1,2).portNum,

newS, 0);

connect(getPort(a2,1).agent, getPort(a2,1).portNum,

newAdd, 0);

freeAgent(a1);

freeAgent(a2);

}

The function initRuleTable initialises the rule table R:

void errorPair(int a1, int a2) {

printf("There is no rule for the active pair (%d,%d).\n", a1, a2);

exit(-1);

}

void initRuleTable() {

int i,j;

for (i=0; i<= MAX_AGENTID; i++)

for (j=0; j<= MAX_AGENTID; j++)

R[i][j] = errorPair;

/* interaction rules */

R[ID_a][ID_b]=&a_b;
...

}

Assignments of functions for interaction rules to the set R are declared as exemplified

below:

/* interaction rules */

R[ID_Add][ID_Z] = &Add_Z;

R[ID_Add][ID_S] = &Add_S;

38

Runtime environment Next, we define runtime functions:

void eval();

void putsAgent(int a);

where

• the function eval runs through the active pair stack, pops an active pair and calls

the appropriate rule function which rewrites the active pair. The eval function is

defined as follows:

void eval() {

int a1, a2;

while (popActive(&a1, &a2)) {

R[Heap[a1].id][Heap[a2].id](a1, a2);

}

}

• the function putsAgent simply prints a net to the screen. It takes as an argument

a location of an agent in the heap and pretty prints the net connected to the agent.

void putsAgent(int a) {

int arity = Arities[Heap[a].id];

printf("%s", Symbols[Heap[a].id]);

if (arity != 0) {

printf("(");

int i;

for (i=1; i<=arity; i++) {

if (Heap[a].port[i].portNum == 0) {

putsAgent(Heap[a].port[i].agent);

} else {

printf("AUX");

}

if (i<arity) printf(",");

}

printf(")");

}

}

39

Main function The main function simply calls a set of pre-generated functions which

build a net and evaluates it to normal form. First, the environment (the heap, the active

pair stack and the rule table) is initialised by a call to a function init. Once the envir-

onment is initialised, the initial net is built using a function mkNet followed by the eval

function which evaluates the net. Finally, the putsAgent function is called with a refer-

ence to the interface of the net (which is preserved throughout execution). The following

is the main function of the net in Example 3.2.1:

int main() {

init();

mkNet();

eval();

putsAgent(Heap[r].port[1].agent);

return 0;

}

3.2.2 in2

in2 uses the same encoding method for wires between auxiliary ports, and thus those

are mutually connected. In contrast to PIN and INET, other sorts of connection are

represented as single links, and thus a connection between a principal port and an auxiliary

port is represented as a link from the auxiliary port to the principal port. Moreover, there

is no connection information between principal ports on these agents nodes because this

connection is managed by the active pair stack. Thus, the connection is defined as follows:

#define connect(a1, p1, a2, p2) \

if (p1 == 0 && p2 == 0) { \

pushActive(a1, a2); \

} else if (p1 == 0 && p2 != 0) { \

Heap[a2].port[p2].agent = a1; \

Heap[a2].port[p2].portNum = p1; \

} else if (p1 != 0 && p2 == 0) { \

Heap[a1].port[p1].agent = a2; \

Heap[a1].port[p1].portNum = p2; \

} else { \

Heap[a1].port[p1].agent = a2; \

Heap[a1].port[p1].portNum = p2; \

40

Heap[a2].port[p2].agent = a1; \

Heap[a2].port[p2].portNum = p1; \

}

3.3 Evaluators based on the textual calculi

In this section we review evaluators based on textual calculi, AMINE (MPINE) [57],

amineLight [30] and ingpu [34] in 2000, 2010 and 2014 respectively.

In the textual calculi, rewritings in interaction nets are divided into two groups: inter-

action and re-wiring. The rewritings for the interaction can be performed locally thanks

to names introduced for connections between auxiliary ports. The ingpu evaluator is

implemented in parallel taking advantage of this property. The re-wiring is realised by

substitution of names. To keep consistent relationship between names, some extra rules

are required which potentially cause some overhead in the computation. Consequently,

the performance of ingpu, although it can be performed in parallel, does not exceed the

performance of amineLight.

In this section we survey the management methods for the names that have been

introduced in these textual calculi. First, we review AMINE (MPINE) that is based on

the textual calculus [17]. Next, we review a lightweight abstract machine of amineLight

that is based on another textual calculus, called lightweight calculus [30] that is also the

base calculus of ingpu.

3.3.1 AMINE (MPINE)

AMINE and MPINE were proposed by Pinto [57] in 2000. Those are based on the textual

calculus [17]. MPINE is a concurrent version of AMINE.

First, we review the idea introduced in AMINE that avoids deep level searching for

substitutions. In the term calculus active pairs as well as connection information are

represented as equations. In order to bind fragments of connections such as x = t, we

search for the other occurrence of x (in the set of equations) and perform the substitution

operation on the x. In AMINE, to perform this searching efficiently, the LHS and the

RHS terms in equations are attached a sequence of names that occur in the term. This is

written as (~x).t for the t and the name sequence ~x, and it is called an annotated term1. The

name sequences are maintained correctly during rewritings. Thus, instead of searching all

terms deeply, the name x can be found at the top level.

1Originally, it is denoted as {~x}.t, but to avoid confusion of notation for sets, we write it as (~x).t

41

The annotated term is defined as follows:

Definition 3.3.1 (Annotated Terms)

• Annotated terms ta are built from Σ and N using the following grammar: ta ::=

x | (~xa).t, where x is a name, t is a term built from Σ and N , and ~xa is a sequence

of names possibly containing the terminator symbol �. The name sequence ~xa is

called an annotation.

• We use Ta as the set of annotated terms, ta, sa, ua, . . . to range over annotated

terms, ~ta, ~sa, ~ua, . . . to range over sequences of annotated terms, and “−” as the

empty sequence.

• Given ~ta = ta1 , . . . , tak and ~sa = sa1 , . . . , sak , we write (~ta, ~sa) to denote the list

(ta1 , sa1), . . . , (tak , sak). We use pa, qa, . . . to range over pairs of annotated terms,

~pa, ~qa, . . . to range over sequences of annotated terms pairs.

• We define function a function Name from a term into a sequence of names, and a

function Annt from a term into an annotated term as follows:

Name(x)
def
= x,

Name(α(t1, . . . , tn))
def
= Name(t1), . . . ,Name(tn).

Annt(x)
def
= x,

Annt(α(t1, . . . , tn))
def
= (Name(α(t1,... ,tn)),�).α(t1, . . . , tn).

• We extend the translation Annt into sequences of terms, term pairs, sequences of

term pairs, equations and multisets of equations as follows:

Annts(t1, . . . , tn)
def
= Annt(t1), . . . ,Annt(tn).

Annp(t1, t2)
def
= (Annt(t1),Annt(t2)).

Annps((s1, u1), . . . , (sn, un))
def
= Annp(s1, u1), . . . ,Annp(sn, un).

Anne(t1 = t2)
def
= (Annt(t1),Annt(t2)).

Annes(s1 = u1, . . . , sn = un)
def
= Anne(s1 = u1), . . . ,Anne(sn = un).

• We write just Ann instead of Annt, Annts, Annp, Annps, Anne, Annes when there is

no ambiguity.

Abstract machine of AMINE Here, we review the definition of the abstract machine

formally:

42

Definition 3.3.2 (Notations for maps)

• We use [] as an empty map.

• Let ψ be a map. We use the following notation:

ψ[x 7→ a](z)
def
=

 a (z is x)

ψ(z) (otherwise).

When ψ(x) is undefined, we use the following notation:

ψ[x 7→ ⊥](z)
def
=

 undefined (z = x)

ψ(z) (otherwise).

We may also write ψ(x) = ⊥ when ψ(x) is undefined.

Definition 3.3.3 (Connection maps)

• We define a heap E as a map from a name into an annotated term.

• We define a connection map P as a map between names having the following prop-

erty: if P(x) = y then P(y) = x. We use the following notation:

P[x↔ y](z)
def
=

y (z is x)

x (z is y)

P(z) (otherwise).

When P(x) is undefined, we use the following notation:

P[x↔ ⊥](z)
def
=

 undefined (z = x)

P(z) (otherwise).

– We write P1P2 as the union map of P1 and P2 where a given argument is

applied to P2 before P1.

– We write Pr as the result of replacing each occurrence of a name x for the

domain and range of P with conserving their relationship by a fresh name xr

respectively.

Definition 3.3.4 (Interaction operation)

• Interaction rules in the abstract machine have the form: (α(~s), β(~u), P). We

require that there exists at most one rule for the same active pair, and each rule is

closed under symmetry, thus if (t, s, P) exists then (s, t, P) also exists. In addition,

we also require that there is no name which occurs in both ~s and ~u.

43

• We use Rm as a set of interaction rules in the abstract machine. To write a rule

corresponding to r ∈ R, we need to split each linear name x in r into fresh names

x1 and x2 respectively and store their linking information as P[x1 ↔ x2]. We denote

a rule in the abstract machine for r ∈ R as Compile(r), and a rule set for R as

Compile(R).

• We define the interaction operations in the abstract machine as follows:

Interaction(α(~s1), β(~u1))
def
=

(Ann((~s1, ~sr), (~u1, ~ur)), Pr)

(when (α(~s), β(~u), P) ∈ Rm)

(−, []) (otherwise)

where ~sr, ~ur, Pr are the result of replacing each occurrence of a name x for ~s, ~u and

P, conserving their original relationship respectively.

Error(((~xa).α(~s), (~ya).β(~u)))
def
=

 − (when (α(~s), β(~u), P) ∈ Rm)

((~xa).α(~s), (~ya).β(~u)) (otherwise)

Definition 3.3.5 (Machine configuration)

We define a configuration of the abstract machine state as a tuple having the following

form:

(E | P | S | V | Cy | op),

where

• E is a heap,

• P is a connection map,

• S is a sequence of annotated terms pairs representing equations,

• V is a sequence of annotated terms representing an interface,

• Cy is a sequence of annotated terms pairs representing a sequence of cycles, and

pairs for which there is no interaction rule, and

• op is an instruction of this machine defined as follows:

Instruction Description

process(ta, ua) process the pair (ta, ua),

delist pop a pair from S to be processed,

enlist((~ta, ~ua)) push pairs (~ta, ~ua) onto S,

cycle(x, ta) push a cycle pair (x, ta) to Cy.

44

The abstract machine is loaded with op = delist, and stops when S is the empty sequence

and op is delist. In Figure 3.1 and 3.2 we give the semantics of the machine as a set of

transition rules of the form:

(E | P | S | V | Cy | op) =⇒ (E′ | P′ | S′ | V ′ | C ′y | op′).

For readability purposes, we present the transitions in a table format. For example, the

entry:

Before After

II.2 Heap E [z 7→ ta] E

Connection P [x↔ z] P

op process(x, y) process(ta, y)

corresponds to:

(E[z 7→ ta] | P[x↔ z] | S | V | Cy | process(x, y))

=⇒ (E | P | S | V | Cy | process(ta, y)).

Before After

I Connection P PP′

Cycles Cy ~pa, Cy

op process((~xa).α(~s), (~ya).β(~u)) enlist(~qa)

where Error((~xa).α(~s), (~ya).β(~u)) = ~pa,

Interaction(α(~s), β(~u)) = (~qa, P′).

II.1 Connection P [x↔ y] P [x↔ y]

op process(x, y) cycle(x, y)

II.2 Heap E [z 7→ (~xa).α(~t)] E

Connection P [x↔ z] P

op process(x, y) process((~xa).α(~t), y)

II.3 Heap E [z 7→ ⊥] [w 7→ (~xa).t] E

Connection P [x↔ z] [y ↔ w] P [x↔ z]

op process(x, y) process(x, (~xa).t)

II.4 Heap E [z 7→ ⊥] [w 7→ ⊥] E

Connection P [x↔ z] [y ↔ w] P [z ↔ w]

op process(x, y) delist

Figure 3.1: Transitions for codes process((~xa).α(~s), (~ya).β(~u)) and process(x, y)

45

Before After

III.0 op process((~xa).t, y) process(y, (~xa).t)

III.1 Heap E [x 7→ (~x,�).t] E

Connection P [x↔ y] P

op process(z, (y, ~ya).s) process(z, (~x, ~ya).s[t/y])

III.2 Heap E [x 7→ ⊥] E

Connection P [x↔ y] P [x↔ y]

op process(z, (y, ~ya).s) process(z, (~ya,y).s)

III.3 Connection P [x↔ y] P [x↔ y]

op process(x, (y, ~ya).s) cycle(x, (y, ~ya).s)

III.4 Heap E [x 7→ (~xa).t] E

Connection P [x↔ z] P

op process(z, (�, ~ya).s) process((~xa).t, (�, ~ya).s)

III.5 Heap E [x 7→ ⊥] E [z 7→ (~ya,�).s]

Connection P [x↔ z] P [x↔ z]

op process(z, (�, ~ya).s) delist

T.1 Pairs (ta, ua), S S

op delist process(ta, ua)

T.2 Pairs S (ta, ua), S

op enlist((ta, ua), ~p) enlist(~p)

T.3 op enlist(−) delist

T.4 Cycles Cy (ta, ua), Cy

op cycle(ta, ua) delist

Figure 3.2: Transitions for other codes

Definition 3.3.6 (Initial loading)

• We define a translation Compile() from a configuration of interaction nets into a

configuration of the abstract machine state as follows:

Compile(〈 ~t | ∆ 〉) def
= ([] | P′ | Ann(∆′) | Ann(~t′) | − | delist)

where ~t′ and ∆′ are the result of splitting each occurrence of a linear name x in ~t

and ∆ into fresh names x1 and x2 respectively, and P′ is the result of storing their

linking information [x1 ↔ x2].

We can obtain the computation result by using the following operation:

46

Definition 3.3.7 (Updating operation)

• We define a function remAnn : T ∪ Ta → T to obtain a term without annotation as

follows:
remAnn(x)

def
= x,

remAnn(α(t1, . . . , tn))
def
= α(remAnn(t1), . . . , remAnn(tn)),

remAnn((~xa).t)
def
= remAnn(t).

We extend this function into sequences as follows:

remAnn(t1, . . . , tn)
def
= remAnn(t1), . . . , remAnn(tn).

• We define the updating operation for distributed information Update as follows:

Update(E | P | S | V | Cy | op)
def
= Collect(E | P | V),

Collect(E | P[x↔ y] | V)
def
= Collect(E[y/x] | P | V [y/x]),

Collect(E[x 7→ (~xa).t] | [] | V)
def
= Collect(E | [] | V [t/x]),

Collect([] | [] | V)
def
= remAnn(V).

Example 3.3.8

Let us consider the case for Example 2.1.9. First, we obtain rules in the machine as follows: (Add(y1, S(w1)), S(Add(y2, w2)), [y1 ↔ y2][w1 ↔ w2])

(Add(y1, y2), Z, [y1 ↔ y2]).

For the configuration 〈 r | Add(Z, r) = S(Z) 〉, we obtain the following initial machine

state:

([] | [r1 ↔ r2] | (Add(Z, r2), S(Z)) | r1 | − | delist).

The execution result is given below:

(
[] [r1 ↔ r2] (Add(Z, r2), S(Z)) r1 − delist

)
=⇒T.3 (

[] [r1 ↔ r2] − r1 − process(Add(Z, r2), S(Z))
)

=⇒I []

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

− r1 − enlist

((�).Z, y

′
1),

(r2, (w′
1,�).S(w′1)),

((�).Z, (y′
2,w

′
2,�).Add(y′2, w

′
2))

=⇒∗T.2=⇒T.3 []

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

((�).Z, y
′
1),

(r2, (w′
1,�).S(w′1)),

((�).Z, (y′
2,w

′
2,�).Add(y′2, w

′
2))

r1 − delist

47

=⇒T.1 []

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

(r2, (w′
1,�).S(w′1)),

((�).Z, (y′
2,w

′
2,�).Add(y′2, w

′
2))

r1 − process((�).Z, y
′
1)

=⇒III.0 []

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

(r2, (w′
1,�).S(w′1)),

((�).Z, (y′
2,w

′
2,�).Add(y′2, w

′
2))

r1 − process(y′1, (�).Z)

=⇒III.5 [y′1 7→ (�).Z]

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

(r2, (w′
1,�).S(w′1)),

((�).Z, (y′
2,w

′
2,�).Add(y′2, w

′
2))

r1 − delist

=⇒T.1 [y′1 7→ (�).Z]

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

((�).Z, (y′
2,w

′
2,�).Add(y′2, w

′
2)) r1 −

process(r2,

(w′
1,�).S(w′1))

=⇒III.2 [y′1 7→ (�).Z]

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

((�).Z, (y′
2,w

′
2,�).Add(y′2, w

′
2)) r1 −

process(r2,

(�,w′
1)
.S(w′1))

=⇒III.5 [r2 7→ (w′

1,�).S(w′1)]

[y′1 7→ (�).Z]

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

((�).Z, (y′
2,w

′
2,�).Add(y′2, w

′
2)) r1 − delist

=⇒T.1 [r2 7→ (w′

1,�).S(w′1)]

[y′1 7→ (�).Z]

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

− r1 −
process((�).Z,

(y′
2,w

′
2,�).Add(y′2, w

′
2))

=⇒I

[r2 7→ (w′
1,�).S(w′1)]

[y′1 7→ (�).Z]

[y′′1 ↔ y′′2],

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

− r1 − enlist

 (y′2, y
′′
1),

(w′2, y
′′
2)

=⇒∗T.2=⇒T.3
[r2 7→ (w′

1,�).S(w′1)]

[y′1 7→ (�).Z]

[y′′1 ↔ y′′2],

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

(y′2, y
′′
1),

(w′2, y
′′
2)

r1 − delist

48

=⇒T.1
[r2 7→ (w′

1,�).S(w′1)]

[y′1 7→ (�).Z]

[y′′1 ↔ y′′2],

[y′1 ↔ y′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

(w′2, y
′′
2) r1 − process(y′2, y

′′
1)

=⇒II.4 [r2 7→ (w′

1,�).S(w′1)]

[y′1 7→ (�).Z]

[y′1 ↔ y′′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

(w′2, y
′′
2) r1 − delist

=⇒T.1 [r2 7→ (w′

1,�).S(w′1)]

[y′1 7→ (�).Z]

[y′1 ↔ y′′2]

[w′1 ↔ w′2]

[r1 ↔ r2]

− r1 − process(w′2, y
′′
2)

=⇒II.4 [r2 7→ (w′

1,�).S(w′1)]

[y′1 7→ (�).Z]

[w′1 ↔ y′1]

[r1 ↔ r2]
− r1 − delist

 .

Finally, by using the operation Update, we obtain the computation result as follows:

Update

 [r2 7→ (w′1,�,)
.S(w′1)]

[y′1 7→ (�).Z]

[w′1 ↔ y′1]

[r1 ↔ r2]
− r1 − delist

= Collect

 [r2 7→ (y′1,�)
.S(y′1)]

[y′1 7→ (�).Z]
[r1 ↔ r2] r1

= Collect

 [r2 7→ (y′1,�)
.S(y′1)]

[y′1 7→ (�).Z]
[] r2

= Collect

(
[y′1 7→ (�).Z] [] S(y′1)

)
= Collect

(
[] [] S(Z)

)
= S(Z).

Abstract machine of MPINE MPINE is a concurrent version of AMINE. The key

feature is that the number of instructions can increase to more than one according to the

number of threads.

49

Definition 3.3.9 (Multi-thread machine configuration)

We define an n-threads configuration of the abstract machine state as a tuple having the

following form:

(E | P | S | V | Cy | op1 , . . . , opn)

where

• op1 , . . . , opn is a sequence of instructions,

• all other components are the same as before.

Definition 3.3.10 (Concurrent transition)

We define the transition
ct

=⇒ of the n-threads configuration of the machine as follows:

(E | P | S | V | Cy | opi) =⇒ (E′ | P′ | S′ | V ′ | C ′y | op′i)

(E | P | S | V | Cy | op1 , ..., opi , ..., opn)
ct

=⇒ (E′ | P′ | S′ | V ′ | C ′y | op1 , ..., op′i , ..., opn)

where the index i is selected non-deterministically.

Intuitively, this definition is intended to work by using a thread pool with shared data

structures as follows:

• E, P, S, Cy are implemented on a shared memory area,

• each thread in the thread pool performs each instruction opi, according to the trans-

ition rules,

• by means of a synchronisation mechanism, it is ensured that there are no two threads

which access to the shared memory for S, Cy and both of E, P.

Next, we review an example such that the configuration may become inconsistent

during the
ct

=⇒-transition, even if some synchronisation mechanism avoids accessing shared

memory at once. Here, we take an example [57] such that a consistent configuration may

end in inconsistency. First, we look at the case where the configuration ends in consistency:

([] | [x↔ z][y ↔ w] | (x, (w,�).t), (y, (z,�).u), S | V | Cy | delist, delist)

ct
=⇒

∗
T.1 ([] | [x↔ z][y ↔ w] | S | V | Cy | process(x, (w,�).t), process(y, (z,�).u))

ct
=⇒III.2 ([] | [x↔ z][y ↔ w] | S | V | Cy | process(x, (�,w).t), process(y, (z,�).u))

ct
=⇒III.5 ([x 7→ (�,w).t] | [x↔ z][y ↔ w] | S | V | Cy | delist, process(y, (z,�).u))

ct
=⇒III.1 ([] | [y ↔ w] | S | V | Cy | delist, process(y, (w,�).u[t/x]))

ct
=⇒III.2 ([] | [y ↔ w] | S | V | Cy | delist, process(y, (�,w).u[t/x]))

ct
=⇒III.5 ([y 7→ (w,�).u[t/x]] | [y ↔ w] | S | V | Cy | delist, delist).

50

Since the order of the application of the
ct

=⇒-transition is non-deterministic, the configur-

ation can end without the substitution for x as follows:

([] | [x↔ z][y ↔ w] | (x, (w,�).t), (y, (z,�).u), S | V | Cy | delist, delist)

ct
=⇒

∗
T.1 ([] | [x↔ z][y ↔ w] | S | V | Cy | process(x, (w,�).t), process(y, (z,�).u))

ct
=⇒III.2 ([] | [x↔ z][y ↔ w] | S | V | Cy | process(x, (�,w).t), process(y, (z,�).u))

ct
=⇒III.2 ([] | [x↔ z][y ↔ w] | S | V | Cy | process(x, (�,w).t), process(y, (�,z).u))

ct
=⇒III.5 ([x 7→ (w,�).t] | [x↔ z][y ↔ w] | S | V | Cy | delist, process(y, (�,z).u))

ct
=⇒III.5 ([x 7→ (w,�).t][y 7→ (z,�).u] | [x↔ z][y ↔ w] | S | V | Cy | delist, delist).

This is because the traversing process for annotations, which is performed by applying rule

III.2, supposes a condition such that both of the heap and connection map should be kept

until the rule III.4 or III.5 is applied in order to finish the traversing. This condition may

not hold in the
ct

=⇒-transition due to non-determinacy of executing order of instructions.

Therefore, to preserve consistency of configurations, we need an extra synchronisation

mechanism so that, during the traversing process performed by a thread, only one thread

can access to the heap and connection map. The substitution could be realised by the

following method [57]:

First, we apply the translation b·c to a
ct

=⇒-normal form configuration, and

apply all Indirection rules to each equation x = t, thus bind all fragments of

connections. If there is no active pair, then the execution process is recognised

as finished. Otherwise, by using initial loading, we continue the execution for

the new configuration.

We have to think, however, the cost for binding all fragments and the initial loading

repeatedly.

3.3.2 amineLight

The amineLight [30] implementation was proposed in 2010, ten years after AMINE, and

it is based on a textual calculus called the lightweight calculus (introduced in Section 4.2),

which is a refined textual calculus introduced in Section 2.1.2.

Here, we review an abstract machine, called the lightweight abstract machine, based

on the lightweight calculus. First, we define maps for connections between terms.

Definition 3.3.11 (Operations for maps)

Let P be a set of pairs.

51

• We define a map P as a set of pairs:

P[n]
def
=

 m ((n,m) ∈ P)

⊥ (otherwise)

• We use the following notations to operate maps:

– P[n] := ⊥ as the set (P− {(n,m)}) for any m,

– P[n] := m as the set (P[n] := ⊥) ∪ {(n,m)}).

• We use the following notations to manage information of name connections:

– P[n↔ m] as a condition P[n] = m and P[m] = n,

– P + (n↔ m) as the set ((P[n] := m)[m] := n,

– P[n↔ m] := ⊥ as the set ((P[n] := ⊥)[m] := ⊥.

Next, we define a state of the abstract machine.

Definition 3.3.12

A state of the lightweight abstract machine is defined by the following 5-tuple

(E | P | ~t | H | Γ)

where

• E is an environment, which is a subset of N × T (where N is a set of names and T

is the set of terms),

• P is a map for connections, which is a subset of N ×N ,

• ~t is a sequence of terms,

• H is a sequence of error equations that are not executable,

• Γ is a sequences of equations. Equations are regarded as codes.

In those sequences, an empty sequence is denoted as “−”.

In contrast to the SECD machine [37], the stack S, the environment E and the control

C in the SECD machine correspond to the term sequence ~t, two maps E and P, and the

equation sequence Γ in this abstract machine respectively. There is no component which

corresponds to the dump D in the SECD machine because, during an execution of a rule,

other rules are not called (application of a rule can be seen as an atomic operation).

52

We define operations Interaction and Error for equations such as α(~t) = β(~s). In-

tuitively, Interaction is used to obtain an application result of “Interaction” rule in the

lightweight calculus, and Error is used to classify equations where the “Interaction” rule

cannot be applied.

Definition 3.3.13

We define the maps Interaction, Error that take an equation which has agents at the root of

the term on both sides, such as α(~t) = β(~s) and return sequences of equations as follows:

Interaction(α(~t) = β(~s)) =

 ∆ (when 〈 | α(~t) = β(~s) 〉 →int 〈 | ∆ 〉)

− (otherwise)

Error(α(~t) = β(~s)) =

 − (when 〈 | α(~t) = β(~s) 〉 →int 〈 | ∆ 〉)

α(~t) = β(~s) (otherwise)

where →int is a reduction by “Interaction” rule in the lightweight calculus (introduced in

Section 4.2).

Figures 3.3, 3.4 and 3.5 give the semantics of the machine as a set of transitional rules

of the form: (E | P | ~t | H | Γ) =⇒ (E′ | P′ | ~t | H ′ | Γ′). To aid readability we present

the transitions in a table format. For example, the entry:

Before After

II.0 Connections P [x] = ⊥ P

Env. E [x] = ⊥ E [x] := α(~t)

Code x = α(~t), Γ Γ

corresponds to:

(E[x] = ⊥ | P[x] = ⊥ | ~t | H | x = α(~t),Γ) =⇒ (E[x] := α(~t) | P | ~t | H | Γ).

Intuitively, in Figures 3.4 and 3.5, each suffix 0, e and c in rules means where names in

the code are captured. For instance, the transition rule II.0, II.e and II.c for x = t mean

operations in the case that x is not captured both in the environment and connections, that

x is in the environment map, and that x is captured in the connection map respectively.

Next we define a compilation from a configuration to a machine state.

Definition 3.3.14 (Compilation)

We define a translation Compile from a configuration into a machine state as follows:

Compile(〈 ~u | ∆ 〉) def
= (∅ | ∅ | ~u | − | Γ)

53

Before After

I Error H Error(α(~t) = β(~s)), H

Code α(~t) = β(~s), Γ Interaction(α(~t) = β(~s)), Γ

Figure 3.3: Transition for codes α(~t) = β(~s)

Before After

II.0 Connections P[x] = ⊥ P

Env. E[x] = ⊥ E[x] := α(~t)

Code x = α(~t), Γ Γ

II.e Connections P[x] = ⊥ P

Env. E[x] = β(~s) E[x] := ⊥

Code x = α(~t), Γ β(~s) = α(~t), Γ

II.c Connections P[x↔ y] P[x↔ y] := ⊥

Env. E[x] = ⊥,E[y] = ⊥ E[y] := α(~t)

Code x = α(~t), Γ Γ

II.− Code α(~t) = x, Γ x = α(~t), Γ

Figure 3.4: Transitions for codes x = α(~t) and α(~t) = x

where Γ is a sequence of equations that is the result of fixing an order of the multiset of

equations ∆, where the order may be decided arbitrarily. We use Γ to range over sequences

of equations.

We obtain the execution result by using the following update translation:

Definition 3.3.15

We define the operation update as follows:

• update(E | P[x↔ y] | ~t | H | −) = update(E | P | ~t[x/y] | H | −),

• update(E[x 7→ s] | [] | ~t | Θ | −) = update(E[s/x] | [] | ~t[s/x] | H | −),

• update([] | [] | ~t | H | −) = ~t.

Example 3.3.16

We show the computation of 〈 r | Add(r, Z) = S(Z) 〉. We start the abstract machine from

the following state:

([] | [] | r | − | Add(r, Z) = S(Z))

([] | [] | r | − | Add(r, Z) = S(Z))

54

Before After

III.0 0 Connections P[x] = ⊥,P[y] = ⊥ P + (x↔ y)

Env. E[x] = ⊥,E[y] = ⊥ E

Code x = y, Γ Γ

III.0 e Connections P[x] = ⊥,P[y] = ⊥ P

Env. E[x] = ⊥,E[y] = α(~t) (E[x] := α(~t))[y] := ⊥

Code x = y, Γ Γ

III.0 c Connections P[x] = ⊥,P[y ↔ w] (P[y ↔ w] := ⊥) + (x↔ w)

Env. E[x] = ⊥,E[y] = ⊥ E

Code x = y, Γ Γ

III.e 0 Connections P[x↔ y] = ⊥ P

Env. E[x] = α(~t),E[y] = ⊥ (E[x] := ⊥)[y] := α(~t)

Code x = y, Γ Γ

III.e e Connections P[x] = ⊥,P[y] = ⊥ P

Env. E[x] = α(~t),E[y] = β(~s) (E[x] := ⊥])[y] := ⊥

Code x = y, Γ α(~t) = β(~s), Γ

III.e c Connections P[x] = ⊥,P[y ↔ w] P[y ↔ w] := ⊥

Env. E[x] = α(~t),E[y] = ⊥ (E[x] := ⊥)[w] := α(~t)

Code x = y, Γ Γ

III.c 0 Connections P[x↔ z],P[y] = ⊥ (P[x↔ z] := ⊥) + (y ↔ z)

Env. E[x] = ⊥,E[y] = ⊥ E

Code x = y, Γ Γ

III.c e Connections P[x↔ z],P[y] = ⊥ P[x↔ z] := ⊥

Env. E[x] = ⊥,E[y] = α(~t) (E[y] := ⊥)[z] := α(~t)

Code x = y, Γ Γ

III.c c Connections P[x↔ z],P[y ↔ w] ((P[x↔ z] := ⊥)[y ↔ w] := ⊥) + (z ↔ w)

Env. E[x] = ⊥,E[y] = ⊥ E

Code x = y, Γ Γ

Figure 3.5: Transitions for codes x = y

=⇒ ([] | [] | r | − | r = S(x), Z = Add(x, Z)) (I)

=⇒ ([r 7→ S(x)] | [] | r | − | Z = Add(x, Z)) (II.0)

=⇒ ([r 7→ S(x)] | [] | r | − | x = Z)) (I)

=⇒ ([r 7→ S(x)][x 7→ Z] | [] | r | − | −). (II.0)

update([r 7→ S(x)][x 7→ Z] | [] | r | − | −)

= update([r 7→ S(Z)] | [] | r | − | −) = S(Z).

55

3.4 Comparison of encoding methods

In this section, we compare methods of encoding nets among evaluators which we have

discussed in the previous section so that we can compare them in terms of efficiency. To

unify the data-structures, we use a standardised implementation model such that, instead

of indexes of arrays, pointers are used for entries of the memory heaps.

A net configuration is represented by the following data (which is a similar configura-

tion implemented by INET discussed in Section 3.2.1):

• a heap of agent nodes Γ,

• a stack of active pairs AP ,

• an array of the interface I,

• a rule table R,

• a runtime environment.

This is summarised by Figure 3.6.

I

AP

. . .

.

.

.

Γ

Figure 3.6: Configuration

3.4.1 Undirected graph encoding

We call the encoding method of in2, PIN and INET Undirected graph encoding. The agent

node is represented using the following C codes:

typedef struct Agent {

int id;

struct Port *port[MAX_PORT];

} Agent;

56

typedef struct Port {

Agent *agent;

int portNum;

} Port;

For simplicity, we fix the size of ports with a pre-defined constant MAX PORT. The Port

has two components: a pointer to a connected agent node and a port number of the agent

node where 0 is used for the principal ports and n > 0 is for an auxiliary port. We draw,

when MAX PORT is 2, agents α, β whose arities are 2 and 1 respectively as follows:

� �

Similar to the INET mode, an interface is represented as a graph node whose id is

ID NAME and arity is 1. Agents and interface nodes are allocated and de-allocated using

the following functions:

/* to allocate and de-allocate agents and the interface */

Agent *mkAgent(int id);

Agent *mkInterface();

void freeAgent(Agent *a);

We have two alternative methods for port connections: one is the method used in

INET (and PIN), and the other method is used in in2. As an example, the net S(Z) is

represented in INET using the graph shown on the left and the same term is represented

in in2 using the graph shown on the right:

(a) the INET method

S

Z

(b) the in2 method

S

Z

To capture both representations in our C code, we introduce a constant IN2 which we can

use to switch between the INET and in2 representations:

#define connect(a1, p1, a2, p2) { \

#ifndef IN2 \

a1->port[p1]->agent = a2; \

a1->port[p1]->portNum = p2; \

a2->port[p2]->agent = a1; \

57

a2->port[p2]->portNum = p1; \

if (p1==0 && p2==0) pushActive(a1, a2)

#else

if (p1 == 0 && p2 == 0) { \

pushActive(a1, a2); \

} else if (p1 == 0 && p2 != 0) { \

a2->port[p2]->agent = a1; \

a2->port[p2]->portNum = p1; \

} else if (p1 != 0 && p2 == 0) { \

a1->port[p1]->agent = a2; \

a1->port[p1]->portNum = p2; \

} else { \

a1->port[p1]->agent = a2; \

a1->port[p1]->portNum = p2; \

a2->port[p2]->agent = a1; \

a2->port[p2]->portNum = p1; \

}

#endif

#define getPort(a, p) (a->port[p])

Active pairs are managed by the following LIFO stack:

typedef struct Active {

Agent *a1;

Agent *a2;

} Active;

Active ActivePairs[MAX_ACTIVE];

/* to manipulate ActivePairs */

int Ptr_APS = -1; // index of the stack of equations

void pushActive(Agent *a1, Agent *a2) {

Ptr_APS++;

if (Ptr_APS >= MAX_ACTIVE) {

puts("ERROR"); exit(-1);

}

ActivePairs[Ptr_APS].a1 = a1;

58

AP

Z Name

S Add

Z

ZAdd

Figure 3.7: Undirected method: the net in Figure 2.2

ActivePairs[Ptr_APS].a2 = a2;

}

int PopActivePair(Agent **a1, Agent **a2) {

if (Ptr_APS >= 0) {

*a1 = ActivePair[Ptr_APS].a1;

*a2 = ActivePair[Ptr_APS].a2;

Ptr_APS--;

return 1;

}

return 0;

}

The active pair stack is drawn as follows:

AP

For instance, the net in Figure 2.2 is drawn in the in2 method as shown in Figure 3.7.

Runtime functions are defined as follows:

void eval();

void putsAgent(Agent *a);

where

• the function eval operates all of stacked active pairs until the stack becomes empty

as follows:

59

void eval() {

Agent *a1, *a2;

while (popActive(&a1, &a2)) {

R[a1][a2](a1, a2);

}

}

• the function putsAgent takes a pointer to an entry of Heap and outputs the image

as strings.

For instance, a function for the interaction rule Add(x, x) on Z and Add(y, S(w)) on

S(Add(y, w))) are written as the following functions:

void Add_Z(Agent *a1, Agent *a2) {

connect(getPort(a1,1).agent, getPort(a1,1).portNum,

getPort(a1,2).agent, getPort(a1,2).portNum);

freeAgent(a1);

freeAgent(a2);

}

void Add_S(Agent *a1, Agent *a2) {

Agent *newS = mkAgent(ID_S);

Agent *newAdd = mkAgent(ID_Add);

connect(newS, 1, newAdd, 2);

connect(getPort(a1,1).agent, getPort(a1,1).portNum,

newAdd, 1);

connect(getPort(a1,2).agent, getPort(a1,2).portNum,

newS, 0);

connect(getPort(a2,1).agent, getPort(a2,1).portNum,

newAdd, 0);

freeAgent(a1);

freeAgent(a2);

}

and the net in Figure 2.1 is evaluated by these functions as shown in Figure 3.8.

60

AP

Add

Z Name

S Z

I

AP

Z Name

Z

I

Add_S S Add

AP

Z Name

I

Add_Z S

Figure 3.8: Undirected encoding method: evaluation of the net in Figure 2.1

61

3.4.2 Directed graph encoding

We call the encoding method of amineLight Directed graph encoding. The agent node is

represented using the following C codes:

typedef struct Agent {

int id;

struct Agent *port[MAX_PORT];

} Agent;

In an agent node, a port corresponds to an auxiliary port and stores the information

where the auxiliary port is connected to. A pointer to an agent node is regarded as the

principal port of the agent. We draw, when MAX PORT is 2, agents α, β whose arities are

2 and 1 respectively as follows:

� �

In contrast to the Undirected graph encoding method, the textual calculus requires

names as terms. In this method, names are represented as agent nodes whose id is 0

denoted as ID NAME and arity is 1. The port is filled with a null pointer when it has no

connection, as shown below:

N N null

Agent and name nodes are allocated and de-allocated using the following functions:

/* to allocate and de-allocate names and agents */

Agent *mkAgent(int id);

Agent *mkName();

void freeAgent(Agent *a);

A connection between a principal port and an auxiliary port, i.e. an agent node a and

an auxiliary port b->port[n] is represented as an assignment: b->port[n] = a. For

instance, the net S(Z) is represented as aS->port[0]=aZ where aS and aZ are variables

referring to the nodes corresponding to agents S and Z respectively. This net is drawn as

follows:

S

Z

62

The abstract machine of amineLight has two components to manage connections: an

environment E and a map for connections P. According to the source file that was obtained

by the link in the paper [30], E[x] = t is represented as x->port[0]=t. It is drawn as

follows:

N

�

With respect to a connection P[x↔ y], it is presented by two connections: x->port[0]=y

and y->port[0]=x. It is drawn as follows:

N N

In the textual calculus, active pairs are represented by equations. Graphically, these

equations are represented as two pointers to agent nodes. Thus, in order to manage

equations we deploy the same functions used in Undirected encoding method. The net in

Figure 2.2 is drawn in Directed encoding method as follows:

AP

Add Add Z

ZNNZ

S

null

null

Interaction rules are represented as functions that takes two pointers of equations and

make equations according to the rules. For instance, rules in Example 4.2.5 are written

as follows:

void Add_Z(Agent *a1, Agent *a2) {

/* x1=x2 */

pushActive(a1->port[0], a1->port[1]);

freeAgent(a1);

freeAgent(a2);

}

63

void Add_S(Agent *a1, Agent *a2) {

/* Add(x1,w)=y */

Agent *w = mkName();

Agent *aAdd = mkAgent(ID_Add);

aAdd[0] = a1->port[0];

aAdd[1] = w;

pushActive(aAdd, a2->port[0]);

/* x2=S(w) */

Agent *aS = mkAgent(ID_S);

aS[0] = w;

pushActive(a1->port[1], aS);

freeAgent(a1);

freeAgent(a2);

}

Besides interaction rules, there are transitions for equations contain names as shown

in Figure 3.4 and 3.5. Thus, the runtime function eval is written as follows:

void eval() {

Agent *a1, *a2;

while (popActive(&a1, &a2)) {

if (a2->id != ID_NAME) {

if (a1->id != ID_NAME) {

R[a1->id][a2->id](a1, a2);

} else {

/* operations for x=Alpha(x1,...,xn) */
...

}

} else {

/* operations for Alpha(x1,...,xn)=y and x=y */
...

}

}

}

64

Transition rules II.0, II.c and II.e in Figure 3.4 are written as follows and these are

placed under the comment /* operations for x=Alpha(x1,...,xn) */:

// a1 is a name, a2 is an agent

if (a1->port[0] == NULL) {

/* II.0 */

a1->port[0] = a2;

} else if ((a1->port[0])->id != ID_NAME) {

/* II.e */

Agent *a1p0 = a1->port[0];

freeAgent(a1);

a1=a1p0;

pushActive(a1,a2);

} else {

/* II.c */

(a1->port[0])->port[0] = a2;

freeAgent(a1);

}

These operations are drawn as Figure 3.9. For transition rules in Figure 3.5, see Ap-

pendix A.1.

The net in Figure 2.1 is evaluated by these functions as shown in Figure 3.10.

3.4.3 Experimental results

In this section we compare those encoding methods in terms of execution time by using

the following three benchmark programs:

• Fibonacci number Fn defined in Figure 2.4,

• Ackermann function A defined in Figure 2.5,

• Application of Church numerals n = λf.λx.fnx and I = λx.x. The encoding method

of those lambda terms is described in the paper [43].

The execution was performed on a laptop PC consisting of an Intel Core-i7(2.4GHz)

and 16GB RAM using Ubuntu 12.04 LTS operating system. The execution time was

measured using the UNIX time command. The Table 3.1 shows execution time in seconds

of those benchmark programs by using INET, in2 and amineLight (denoted as “Light”)

65

• II.0

AP

�

�→

AP

N �N null

• II.e

AP

N �

�→

�

AP

��

• II.c

AP

�N N

AP

�N

�→

Figure 3.9: Transition rules in Figure 3.4

encoding methods. Those are compiled by gcc 4.6.3 with -O3 optimisation option. Gener-

ally, the encoding method of in2 is more efficient than INET because the port connections

in in2 are simpler. The amineLight encoding is also simpler than INET, and amineLight is

faster except for the case in the execution of Application of Church numerals. It requires

a lot of operations for names as shown in Table 3.2 where the items “Interactions” and

“Names” mean the numbers of operations for interactions and names respectively. Ac-

cording to the increasing number of name operations, the execution time also increases,

and thus operations for those cause less efficiency.

In terms of the cost, therefore, the Undirected encoding method of in2 is the best. In

comparison with Directed encoding method, it is faster about from 10% to 70%. On the

other hand, the advantage of Directed encoding is parallelisation, and it is important to

bear in mind that this could improve performance. Further discussion of this topic with

our new method will be held in Section 4.5.3.

66

AP

Add

ZNZ

S

I

null

AP

ZNZ

I

Add N SAdd_S

null

null

AP

NZ

I

N SAdd_Z null

null

AP

NZ

I

N SII.0(II.-)

null

AP

NZ

I

N SII.0

Figure 3.10: Directed encoding method: evaluation of the net in Figure 2.1

67

Undirected(INET) Undirected(in2) Directed(Light) Light/in2

F32 1.58 1.37 1.52 1.11

F33 2.62 2.29 2.52 1.10

F34 4.37 3.80 4.21 1.11

A(3, 10) 1.77 1.42 1.59 1.12

A(3, 11) 7.12 5.73 6.44 1.13

A(3, 12) 29.47 24.01 26.39 1.13

2 7 6 I I 0.73 0.71 1.26 1.77

2 7 7 I I 2.12 2.13 3.58 1.68

Table 3.1: The execution time in seconds on the standardised implementation model

Interactions Names Names/Interactions

F32 74636718 51008017 0.68

F33 123315177 82532797 0.67

F34 203654818 133540964 0.66

A(3, 10) 134103148 134094952 1.00

A(3, 11) 536641652 536625264 1.00

A(3, 12) 2147025020 2146992248 1.00

2 7 6 I I 15676873 43111255 2.75

2 7 7 I I 46118916 126826871 2.75

Table 3.2: The number of operations in Directed encoding method

3.5 Summary

In this chapter we have reviewed evaluators of interaction nets, where the focus is on

efficiency. The efficiency of execution can depend on the skill of the developer(s), and

thus it is important to examine properties of these evaluators in a uniform way. For this

purpose we introduced a standardised implementation model, explicating internal data-

structures in those evaluators. This model uses, instead of indexes of arrays, pointers for

entries of the memory heaps, and builds nets according to the methods of encoding nets

in those evaluators. Of course, there is scope in the model for a number of design choices

and various models known in the literature, and thus the comparison result that we have

shown is just a criteria in the standardised model. However, it is useful to reason about

properties of those various models in a uniform way. In the next chapter, we introduce

our new method based on the standardised model, and discuss efficiency and suitability

for parallel execution.

68

Chapter 4

Single link encoding method

In this chapter we propose a new method for implementing interaction nets. Our new

method is a refinement of the method used in amineLight in that we use only single links

to encode nets as a tree-like data-structure. First, we explain why this method is required.

Next, we introduce the new abstract machine and textual calculus, which are called a

simpler lightweight abstract machine and a simpler textual calculus, as a refinement of

amineLight’s ones. An overview of the relationship between these calculi and abstract

machines is illustrated in the diagram below. We also give an encoding method based

on the standardised implementation model, and finally we give a comparison with other

encoding methods in terms of runtime efficiency.

Calculus Abstract Machine

The textual calculus
(Sec. 2.1.2)

AMINE’s abstract
machine (Sec. 3.3.1)

Lightweight calculus
(Sec. 4.2)

amineLight’s abstract
machine (Sec. 3.3.2)

Simpler lightweight
abstract machine
(Sec. 4.3)

Simpler textual
calculus (Sec. 4.4)

Indirection rule is splitted
into Communication and
Substitution rules.

The map for the
connections is removed.

completeness

completeness
-normal form

{

→

i

n

t,

→

c

o

m

}

in

69

4.1 Motivation

An important property of interaction nets is locality since all rewritings are performed

locally, and we’ll see later in Chapter 7 that interaction nets are very well suited for

parallel implementations. In terms of the locality, we review encoding methods in INET,

in2 and amineLight, which we have discussed in Section 3.4.

Generally, when an active pair is reduced, a new net is created according to an in-

teraction rule. The interface of the right hand side net of the rule must be connected to

ports that were connected to the active pair. Thus, two active pairs that are not con-

nected to each other via auxiliary ports can be reduced simultaneously. Reduction of two

active pairs that are connected via an auxiliary port(s) of an interacting agent need to be

managed differently because each rewrite will update the same set of auxiliary ports.

A net in Figure 2.2 is an example of this situation, which is also introduced as an

example to consider the cost of parallel execution in the paper [49]. The two active pairs

are connected to each other via the auxiliary port of the interacting agent S and Add, and

this connection information must be preserved when the active pairs are reduced at once.

In an execution model of in2 discussed in Section 3.4, which is considered as a simpler

version of INET, this net is represented as follows:

AP

Z Name

S Add

Z

ZAdd

An interaction involves manipulation of pointers stored in auxiliary ports by the operation

connect. For instance, at the second step Add Z in Figure 3.8 two pointers which are stored

in the auxiliary ports of Add are manipulated, and S(Z) is created as the manipulation

result. When stacked active pairs are reduced in parallel, we have to check whether the

active pairs are connected via their auxiliary ports, and lock those connected active pairs

so that the ports can be preserved until the rewriting finishes. In this net, the second

active pair in the stack should be locked while the top one is being reduced. This checking

process could be spread into other parts of the net globally.

The following is an example of the net in an execution model of amineLight:

70

AP

Add Add Z

ZNNZ

S

null

null

The connection via their auxiliary ports is preserved by a name, and thus reduction of

the two active pairs are performed in parallel as long as the operation of the name is

managed as a critical section. However, the connections between names are represented

as mutual links and we need to check for the lock and this can also spread globally. Take

the following as an example:

AP

�N N� N N

The three elements of the stack should not be performed at once, so the checking process

is required.

The mutual links affect the locality and thus we propose a new method of encoding so

that a connection between names can be represented by a single link.

4.2 Lightweight textual calculus

A textual calculus is introduced in Section 2.1.2, and it provides a simple and dynamic

semantics for interaction nets. There are, however, two concerns:

• One is that the calculus needs extra rewriting steps to reduce a given net to a normal

form. For instance, the net in Figure 2.1 is reduced by two steps in the graphical

calculus while the same net is reduced by six steps in the textual calculus as shown

in Example 2.1.9.

• The other is that it does not have the strong confluence property, which is an

important property, while it holds in the graphical calculus. This is because the

Indirection rule can allow two calculation results. For instance, a configuration

〈 ~t | α(x) = y, β(y) = x 〉 can be reduced to both 〈 ~t | α(β(y)) = y 〉 and

71

〈 ~t | β(α(x)) = x 〉 by the Indirection rule, and there is no confluence for these

configurations.

To solve these problems, a lightweight calculus was proposed, and the amineLight

implementation is based on this calculus.

In this section we introduce the lightweight calculus and show properties of the calculus.

4.2.1 Lightweight interaction rules

The notation of Lafont’s style generates (redundant) equations which will be reduced

by the Indirection rule. In particular, if an auxiliary port of an active pair in a rule is

connected to another auxiliary port, the application of “Interaction” rule will generate an

equation with a variable x on one side of the equation. Since all variables appear twice in

a rule, x will eventually be eliminated using the Indirection rule. For example, this can

be traced in Example 2.1.9 where the equation Z = y′ is generated in the configuration

after applying the first rule Add(y, S(w)) on S(Add(y, w)). In other words, the application

of “Interaction” rule to an active pair (α, β) where α(~t1, x,~t2) on β(~s1) ∈ R will generate

a configuration where the Indirection rule is applicable.

In order to eliminate the generation of redundant equations, we introduce an alternative

notation to represent interaction rules. We represent rules using the following syntax:

lhs ⇒ rhs

where lhs consists of an equation between the two interacting agents and rhs is a list of

equations which represent the right-hand side net. All rules α(~t) on β(~s) in Lafont’s style

can be written using our notation:

α(~x) = β(~y)⇒ ~x = ~t, ~y = ~s where ~x, ~y are meta-variables for terms.

As a concrete example, the rule Add(S(x), y) on S(Add(x, y)) can be represented as

Add(a1, a2) = S(b1)⇒ a1 = S(x), a2 = y, b1 = Add(x, y).

Moreover we can simplify rules by replacing equals for equals. The above rule can be

simplified to:

Add(a1, a2) = S(b1)⇒ a1 = S(x), b1 = Add(x, a2).

We obtain, therefore, a more efficient computation by using the notation of term rewriting

systems.

72

Definition 4.2.1 (Lightweight interaction rules)

A lightweight rule r ∈ Rlt has the form:

α(x1, . . . , xn) = β(y1, . . . , yk)⇒ ∆

where α, β ∈ Σ, ar(α) = n, ar(β) = k, and x1, . . . , xn, y1, . . . , yk are meta-variables for

terms. Each meta-variable occurs exactly twice in a rule: once on the left hand side (LHS)

and once on the right hand side (RHS). The set Rlt contains at most one rule between

any pair of agents; Rlt is closed under symmetry — if α(~x) = β(~y) ⇒ ∆ ∈ Rlt then

β(~y) = α(~x)⇒ ∆ ∈ Rlt.

Definition 4.2.2 (Instance of a rule)

If r is a lightweight rule α(x1, . . . , xn) = β(y1, . . . , ym) ⇒ ∆, then ∆̂ denotes a new

generic instance of r, that is, a copy of ∆ where we introduce a new set of bound names so

that those new names do not overlap with others already exist, but leave the free names

(parameters) unchanged. Example: if ∆ is α(x, x) = β(a), then ∆̂ is α(y, y) = β(a), where

y is a fresh name.

4.2.2 Decomposing Indirection rule

Let us now examine the Indirection rule of the calculus which eliminates bound variables

by means of variable substitution. The application of this rule will search through the

list of terms to locate a term which contains an occurrence of a particular variable. In

order to reduce the searching costs, Pinto’s abstract machine [57], which is based on the

textual calculus introduced in Section 2.1.2, attaches a list of variables to the head of every

term. This again introduces management overheads, hence the increase in the number of

operations required to perform rewriting.

Taking into consideration that every change of connection does not affect interactions

directly, it turns out that we do not have to perform all substitutions eagerly. Therefore

we decompose the Indirection rule into: Communication rule that will replace just a name,

and Substitution rule that will perform other substitutions.

Definition 4.2.3 (Communication and Substitution rules)

We define Communication and Substitution rules as follows:

Communication:

〈 ~u | x = t, x = s,∆ 〉 →com 〈 ~u | t = s,∆ 〉.

Substitution:

〈 ~u | x = s, β(~t) = u,∆ 〉 →sub 〈 ~u | β(~t)[s/x] = u,∆ 〉 where β ∈ Σ and x occurs

73

in ~t.

4.2.3 Lightweight calculus

Here, we introduce the lightweight calculus by using Definitions 4.2.1, 4.2.2 and 4.2.3 with

the Collect rule in the original textual calculus in Section 2.1.2:

Definition 4.2.4 (Lightweight reduction rules)

We define Lightweight reduction rules as follows:

Communication:

〈 ~u | x = t, x = s,∆ 〉 →com 〈 ~u | t = s,∆ 〉.

Substitution:

〈 ~u | x = s, β(~t) = u,∆ 〉 →sub 〈 ~u | β(~t)[s/x] = u,∆ 〉 where β ∈ Σ and x occurs

in ~t.

Collect:

〈 ~u | x = s,∆ 〉 →col 〈 ~u[s/x] | ∆ 〉 where x occurs in ~u.

Interaction:

〈 ~u | α(t1, . . . , tn) = β(s1, . . . , sm),Θ 〉

→int 〈 ~u | ∆̂[t1/x1, . . . , tn/xn, s1/y1, . . . , sm/ym],Θ 〉

where α(x1, . . . , xn) = β(y1, . . . , ym)⇒ ∆ ∈ Rlt.

We use just→ instead of→com,→sub,→col,→int when there is no ambiguity. We define

C1 ⇓ C2 by C1 →∗ C2 where C2 is in normal form.

Example 4.2.5

Rules in Figure 2.1 can be represented as follows:

Add(x1, x2) = S(y) ⇒ Add(x1, w) = y, x2 = S(w)

Add(x1, x2) = Z ⇒ x1 = x2

and the following computation can be performed:

〈 r | Add(Z, r) = S(Z) 〉 →int 〈 r | Add(Z, w′) = Z, r = S(w′) 〉

→int 〈 r | Z = w′, r = S(w′) 〉

→col 〈 S(w′) | Z = w′ 〉

→col 〈 S(Z) | 〉.

74

4.2.4 Properties of lightweight reduction rules

In this section we present some properties of the lightweight reduction rules. First, we

show that we can postpone applications of Collect rule as in Abramsky’s Computational

interpretations of linear logic [1].

Lemma 4.2.6

If C1 →col · →com C2, then C1 →com · →col C2.

Proof. By applying the Collect rule, no equations are caused such that the Commu-

nication rule can be applied. Thus, the result can become the same even if the Com-

munication rule is applied before the Collect rule. For instance, we assume that C1 is

〈 ~u | x = t, y = s, y = u,∆ 〉 where x occurs in ~u, then the following holds since x does

not occur in s, u and ∆:

〈 ~u | x = t, y = s, y = u,∆ 〉
com

- 〈 ~u | x = t, s = u,∆ 〉

〈 ~u[t/x] | y = s, y = u,∆ 〉

col

?

com

- 〈 ~u[t/x] | s = u,∆ 〉

col

?

�

Lemma 4.2.7

If C1 →col · →sub C2, then C1 →sub · →col C2.

Proof. Because there is no equation that overlaps with the Collect and Substitute rules,

the result can become the same regardless of the order of applying these rules.

〈 ~u | x = t, y = s,∆ 〉
sub

- 〈 ~u | x = t,∆[s/y] 〉

〈 ~u[t/x] | y = s,∆ 〉

col

?

sub

- 〈 ~u[t/x] | ∆[s/y] 〉

col

?

�

Lemma 4.2.8

If C1 →col · →int C2, then C1 →int · →col C2.

Proof. Because there is no equation that is overlapped with Collect rule and Interaction

rule, the result can become the same regardless order of applying these rules.

75

〈 ~u | x = t, s1 = s2,∆ 〉
int

- 〈 ~u | x = t,∆′,∆ 〉

〈 ~u[t/x] | s1 = s2,∆ 〉

col

?

int

- 〈 ~u[t/x] | ∆′,∆ 〉

col

?

�

By Lemmas 4.2.6, 4.2.7 and 4.2.8, the following holds.

Theorem 4.2.9

Let C1 ⇓ C2. Then there is a configuration C such that C1 →∗ C →∗col C2 and C1 is

reduced to C without application of any Collect rule. �

Next, we examine whether we can postpone the application of Substitution rules or

not. Note that applying the Substitution rule to an equation does not generate any other

equations which require an application of the Interaction rule. Therefore the following

properties hold.

Lemma 4.2.10

If C1 →sub · →com C2, then C1 →com · →sub C2.

Proof.

〈 ~u | x = s, α(~t) = y, y = t,∆ 〉
com

- 〈 ~u | x = s, α(~t) = t,∆ 〉

〈 ~u | α(~t)[s/x] = y, y = t,∆ 〉

sub

?

com

- 〈 ~u | α(~t)[s/x] = t,∆ 〉

sub

?

�

Lemma 4.2.11

If C1 →sub · →int C2, then C1 →int · →sub C2 or C1 →int · →com C2.

Proof. For an application of the Substitution rule in C1 →sub · →int C2, we assume

that, as the case that the equations are overlapped, there is an equation x = t in C1 such

that the x is occurred in a term s which is managed by the Interaction rule.

After applying the Interaction rule in C1, there are two possibilities. One is that there

are equations which have the term s as well. In this case, we can have the same result C2

by the application of the Substitution rule. The other is that there is an equation whose

LHS or RHS is just the x. By the Communication rule for x, we can have the same result

as well. �

By Theorem 4.2.9, and Lemmas 4.2.10 and 4.2.11, the following theorem holds.

76

Theorem 4.2.12

If C1 ⇓ C2, then there is a configuration C such that C1 →∗ C →∗sub→∗col C2 and C1 is

reduced to C by applying only Interaction and Communication rules. �

This theorem shows that all Interaction rules can be performed without application of

Substitution rules. We define C1 ⇓ic C2 by C1 →∗ C2 where C2 is a {→int,→com}-normal

form. Because all critical pairs that are generated by →int and →com are confluent, the

determinacy property holds:

Theorem 4.2.13 (Determinacy)

Let C1 ⇓ C2. When there are configurations C ′, C ′′ such that C1 ⇓ic C ′ and C1 ⇓ic C ′′,

then C ′ is equivalent to C ′′. �

4.3 Simpler lightweight abstract machine

In this section we adapt the lightweight abstract machine so that a connection between

names can be represented by single link. This is realised by allowing the environment to

contain a mapping of names to names which was not possible in the lightweight abstract

machine.

We define a configuration of our abstract machine state by the following 4-tuple

(E | ~t | H | Γ)

where

• E is an environment, which is a set N × T (where N is a set of names and T is the

set of terms),

• ~t is an interface, which is a sequence of terms,

• H is a sequence of equations that are not executable,

• Γ is a sequence of equations to operate.

In comparison to the SECD machine [37], the stack S, the environment E and the control

C in the machine are corresponding to the term sequence ~t, the map E, and the equation

sequence Γ in this abstract machine respectively. There is no element corresponding to

the dump D in the SECD machine because, during an execution of a rule, other rules are

not called.

In Figure 4.1 we give the semantics of the machine as a set of transitional rules of the

form: (E | ~t | H | Γ) =⇒ (E′ | ~t | H ′ | Γ′).

77

Before After

A Error H Error(α(~t) = β(~s)), H

Code α(~t) = β(~s), Γ Interaction(α(~t) = β(~s)), Γ

B.1 Env. E[x] = ⊥ E[x] := t

Code x = t,Γ Γ

B.2 Env. E[x] = ⊥ E[x] := t

Code t = x,Γ Γ

C.1 Env. E[x] = s E[x] := ⊥

Code x = t,Γ s = t, Γ

C.2 Env. E[x] = s E[x] := ⊥

Code t = x,Γ t = s, Γ

Figure 4.1: Transitions (E | ~u | H | Γ) =⇒ (E′ | ~u | H ′ | Γ′)

To aid readability we present the transitions in a table format. For example, the entry:

Before After

C.1 Env. E[x] = s E[x] := ⊥

Code x = t,Γ s = t, Γ

corresponds to: (E[x] = s | ~u | H | x = t, Γ) =⇒ (E[x] := ⊥ | ~u | H | s = t, Γ).

Next, we define a compilation from a configuration to a machine state.

Definition 4.3.1 (Compilation)

We define a translation Compile from a configuration into a machine state as follows:

Compile(〈 ~u | ∆ 〉) def
= (∅ | ~u | − | Γ)

where Γ is a sequence of equations that is the result of fixing an order of the multiset of

equations ∆.

The execution result is obtained by using the following Update operation:

Definition 4.3.2

We define an operation Update for a machine state as follows:

• Update({(x, s)} ∪ E | ~u | H | Γ)

=

 Update((E[s/x] | ~u[s/x] | H[s/x] | Γ[s/x])) (when x occurs in E, ~u,H or Γ)

Update((E | ~u | x = s, H | Γ) (otherwise)

• Update(∅ | ~u | H | Γ) = (∅ | ~u | H | Γ).

78

Example 4.3.3

The computation of the configuration 〈 r | Add(Z, r) = S(Z) 〉 in Figure 2.1 is given below:

(∅ | r | − | Add(Z, r) = S(Z))

=⇒ (∅ | r | − | Add(Z, x) = Z, r = S(x)) (A)

=⇒ (∅ | r | − | Z = x, r = S(x)) (A)

=⇒ ({(x, Z)} | r | − | r = S(x)) (B.2)

=⇒ ({(x, Z), (r, S(x))} | r | − | −). (B.1)

Update({(x, Z), (r, S(x))} | r | − | −)

= Update({(r, S(Z))} | r | − | −)

= Update(∅ | S(Z) | − | −)

= 〈 S(Z) | 〉.

4.3.1 Correctness

In order to show the correctness of our abstract machine for the lightweight calculus,

we first define a decompilation function from machine states to configurations. Several

lemmas follow before the correctness theorem.

Definition 4.3.4 (Decompilation)

• We define a translation ToConfige from an environment E into a multiset of equations

as follows:

ToConfige(∅)
def
= −,

ToConfige(E[x] = t)
def
= x = t, ToConfige(E[x] := ⊥).

• A translation ToConfigm translates a machine state into a configuration as follows:

ToConfigm(E | ~u | H | Γ)
def
= 〈 ~u | ToConfige(E), H, Γ 〉.

• We write just ToConfig instead of ToConfige, ToConfigm when there is no ambiguity.

The machine will stop when there is no executable code. We define consistency of a

machine state to ensure that each component has an appropriate piece of a configuration:

Definition 4.3.5 (Consistency of a machine state)

A state (E | ~u | H | Γ) is consistent iff

• ToConfig(E | ~u | H | Γ) is a configuration, thus every name occurs at most twice,

• 〈 | H 〉 is a normal form,

• for every x ∈ N , there is no elements such that (x, t1), (x, t2) in E where t1 6= t2.

79

The following lemma shows that consistency is preserved during transitions:

Lemma 4.3.6

Let M1 be a consistent state. If M1 =⇒M2, then M2 is also consistent. �

Lemma 4.3.7

Let M1 be a consistent state. If M1 =⇒M2, then one of the following holds:

• ToConfig(M1) = ToConfig(M2),

• ToConfig(M1)→int ToConfig(M2),

• ToConfig(M1)→com ToConfig(M2).

Proof. We check each transition rule.

A: M1 = (E | ~u | H | α(~t) = β(~s),Γ)

=⇒ (E | ~u | Error(α(~t) = β(~s)), H | Interaction(α(~t) = β(~s)),Γ) = M2. If there

is an interaction rule for the pair (α, β), then ToConfig(M1) →int ToConfig(M2).

Otherwise, ToConfig(M1) = ToConfig(M2).

B.1: M1 = (E | ~u | H | x = t,Γ) =⇒ (E[x] := t | ~u | H | Γ) = M2. By Definition 4.3.4,

ToConfig(M1) = ToConfig(M2).

B.2: The same as the case of B.1.

C.1: M1 = (E[x] = s | ~u | H | x = t,Γ) =⇒ (E[x] := ⊥ | ~u | H | s = t,Γ) = M2.

ToConfig(M1) = 〈 ~u | x = s,ToConfig(E), H, x = t,Γ 〉

→com 〈 ~u | ToConfig(E), H, s = t,Γ 〉 = ToConfig(M2).

C.2: The same as the case of C.1. �

Lemma 4.3.8

Let M1 be a consistent state. If M1 ⇓ (E | ~u | H | Γ), then Γ is empty.

Proof. There exists a transition which can be applied to an equation in Γ whenever

machine states are consistent. �

Let M1 and M2 be two machine states. We define M1 ⇓ M2 by M1 =⇒∗ M2 where

M2 is a =⇒-normal form.

With respect to {→int,→com}-normal forms, by Lemmas 4.3.7, 4.3.8, the following

correctness holds:

80

Theorem 4.3.9 (Correctness in {→int,→com}-normal forms)

Let C be a configuration. If Compile(C) ⇓ (E | ~u | H | Γ), then Γ is empty and

C ⇓ic ToConfig(E | ~u | H | −). �

In addition, the completeness also holds:

Theorem 4.3.10 (Completeness in {→int,→com}-normal forms)

Let C1, C2 be configurations such that C1 ⇓ic C2. Then there is a machine state M such

that Compile(C1) ⇓M and ToConfig(M) = C2.

Proof. If Compile(C1) has no normal forms, corresponding to an infinite transition

sequence starting from Compile(C1) we can construct an infinite reduction sequence start-

ing from C1 by Lemma 4.3.7 since the numbers of equations produced in each transition

are finite. This contradicts the assumption of this theorem, and thus there is an M

such that Compile(C1) ⇓ M . By Theorem 4.3.9, C1 ⇓ic ToConfig(M), and therefore

ToConfig(M) = C2 by the determinacy (Theorem 4.2.13). �

By Lemmas 4.3.12, 4.3.13 proved later, the following correctness property holds:

Theorem 4.3.11 (Correctness)

Let C be a configuration. If Compile(C) ⇓M , then C ⇓ ToConfig(Update(M)). �

Lemma 4.3.12

Let Γn be a sequence x1 = t1, x2 = t2, . . . , xn = tn where xi 6= xj(1 ≤ i, j ≤ n, i 6= j), ~u

be an interface and Cn = 〈 ~u | Γn 〉. Then there is a configuration C ′ such that Cn ⇓ C ′

by applying rules except for the Interaction rule.

Proof. By induction on the number n of the equations.

• In the case of n = 1: Let Γ1 be x1 = t1.

– When x1 does not occur twice in C1: There is no rule that can apply to C1

– Otherwise: x1 occurs in either t1 or ~u.

∗ In the case of t1, there is no rule that can apply to C1.

∗ In the case of ~u, C1 = 〈 ~u | x1 = t1 〉 →col 〈 ~u[t1/x1] | 〉.

• In the case of n = 2: Let Γ2 be x1 = t1, x2 = t2 where x1 6= x2.

– When x2 does not occur twice in C2: There is no rule that can apply to C2.

– Otherwise: x2 occurs in one of t2, t1 and ~u.

∗ In the case of t2: There is no rule that can apply to C2.

81

∗ In the case of t1:

C2 = 〈 ~u | x1 = t1, x2 = t2 〉 → 〈 ~u | x1 = t1[t2/x2] 〉 = C1 by →sub or

→com.

∗ In the case of ~u:

C2 = 〈 ~u | x1 = t1, x2 = t2 〉 →col 〈 ~u[t2/x2] | x1 = t1 〉. By applying the

result of the case of n = 1, it holds.

• In the case of n = k + 1:

In the similar way of the case of n = 2, the number of equations can be decreased.

Thus, by applying the induction hypothesis, it holds. �

The following shows that each execution of Update corresponds to an application of

either Substitution or Collect rules:

Lemma 4.3.13

Let M be a consistent normal form. Then ToConfig(M) ⇓ ToConfig(Update(M)) by ap-

plying rules except for the Interaction rule.

Proof. We assume that M is (E | ~u | H | Γ). Since Γ is empty by Lemma 4.3.8,

M = (E | ~u | H | −).

By induction on the number n of elements in E:

• In the case of n = 0: Trivial.

• In the case of n = 1:

Let E = {(x, s)}. Then M = ({(x, s)} | ~u | H | −) and ToConfig(M) = 〈 ~u | x =

s,H 〉. Because M is consistent, x occurs once in one of ~u,H and s, or not at all.

– In the case of ~u:

Update(M) = (∅ | ~u[s/x] | H | −) and ToConfig(Update(M)) = 〈 ~u[s/x] |

H 〉. Thus, ToConfig(M) →col ToConfig(Update(M)). Because there is no rule

that can apply to H, ToConfig(Update(M)) is a →-normal form, and therefore

ToConfig(M) ⇓ ToConfig(Update(M)).

– In the case of H:

Update(M) = (∅ | ~u | H[s/x] | −) and ToConfig(Update(M)) = 〈 ~u | H[s/x] 〉.

Thus, ToConfig(M) →sub ToConfig(Update(M)). Because there is no rule that

can apply to H[s/x], ToConfig(Update(M)) is a →-normal form.

82

– In the case of s:

Update(M) = (∅ | ~u | x = s,H | −) and ToConfig(Update(M)) = 〈 ~u | x =

s, H 〉. Thus, ToConfig(M) = Update(M). Because there is no rule that can

apply to x = s, ToConfig(Update(M)) is a →-normal form.

– In the case that x does not occur in ~u,H and s: Update(M) = (∅ | ~u | x =

s,H | −) and ToConfig(Update(M)) = 〈 ~u | x = s, H 〉. This is proven in the

similar way to the case of s.

• In the case of n = k + 1:

Let Ek+1 = {(x, s)} ∪ Ek. Then ToConfig(M) = 〈 ~u | x = s,ToConfig(Ek), H 〉.

Because M is consistent, x occurs once in one of ~u,H, s and ToConfig(Ek), or not at

all:

– In the case of one of ~u,H and s, or not at all:

In the similar way of the case of n = 1, the number of equations can be de-

creased by applying rules except for the Interaction rule. Thus, by applying

the induction hypothesis, it holds.

– In the case of ToConfig(Ek):

By Lemma 4.3.12, the number of equations can be decreased by applying rules

except the Interaction rule. Thus, by applying the induction hypothesis, it

holds. �

4.3.2 Computation without the map for connections

In this section we show an example such that the computation using the map for con-

nections in the lightweight abstract machine can be performed in the simpler lightweight

abstract machine without the map.

We take the following sequence of equations that requires the map for connections to

be performed in the lightweight abstract machine:

x = y, y = α, x = β.

The lightweight abstract machine reduces it to α = β by three steps:

(E | P | − | − | x = y, y = α, x = β)

=⇒ (E | P[x↔ y] | − | − | y = α, x = β) (III.0 0)

=⇒ (E[x 7→ α] | P | − | − | x = β) (II.e)

83

=⇒ (E | P | − | − | α = β). (II.c)

The simpler lightweight abstract machine allows the environment to contain a mapping

of names to names which was not possible in the lightweight abstract machine, and it

reduces the sequence without the map as follows:

(E | − | − | x = y, y = α, x = β)

=⇒ (E[x 7→ y] | − | − | y = α, x = β) (B.1)

=⇒ (E[x 7→ y][y 7→ α] | − | − | x = β) (B.1)

=⇒ (E[y 7→ α] | − | − | y = β) (C.1)

=⇒ (E | − | − | α = β). (C.1)

Although the simpler lightweight abstract machine is correct for the lightweight calcu-

lus, the reduction sequence tends to be longer than the sequence in the lightweight abstract

machine. This is caused by the absence of a map for names, and thus in equations such as

x = y only the LHS names x are managed. In the above example, the computation of the

equation x = y is managed only the LHS name x, and thus y = α is accumulated in the

environment on the third line, while in the lightweight abstract machine the y is managed

using information of the map P[x↔ y].

The method of computation without the map in the simpler lightweight abstract ma-

chine also requires the longer reduction sequence, when equations x = y are managed,

even if the map is not used in the lightweight abstract machine. For instance, we take the

following sequence of equations:

x = α, x = y, y = β.

While the lightweight abstract machine reduces it to α = β by three steps without using

the map:

(E | P | − | − | x = α, x = y, y = β)

=⇒ (E[x 7→ α] | P | − | − | x = y, y = β) (II.0)

=⇒ (E[y 7→ α] | P | − | − | y = β) (III.e 0)

=⇒ (E | P | − | − | α = β), (III.e)

the simpler lightweight abstract machine takes four steps:

(E | − | − | x = α, x = y, y = β)

=⇒ (E[x 7→ α] | − | − | x = y, y = β) (B.1)

=⇒ (E | − | − | α = y, y = β) (C.1)

=⇒ (E[y 7→ α] | − | − | y = β) (B.2)

=⇒ (E | − | − | α = β). (C.1)

84

This is because in the single link encoding method only a single side of an equation

is managed, while in the amineLight encoding both sides of an equation such as x = y

are managed using the map. The effect to the execution performance will be discussed in

Section 4.5.3.

4.4 Simpler textual calculus

In this section we introduce a simpler textual calculus as a fusion with the simpler abstract

machine by introducing a term $t, which is called an indirection term, to show that the

Environment E in a machine state has a pair (x, t), and by substituting $t for the name

x. This notation is closer to the implementation method.

First, we introduce the indirection term $t into the grammar definition of terms.

Definition 4.4.1 (Indirection terms)

• We extend terms on Σ and N by the following grammar:

t ::= x | α(t1, . . . , tn) | $t

where x ∈ N , α ∈ Σ, ar(α) = n and t1, . . . , tn are terms. We call the terms $t

indirection terms. When terms do not contain indirection terms, we call the terms

indirection free.

• We define a configuration as a pair: (~t | Γ), where ~t is a sequence t1, . . . , tn of

terms, and Γ is a sequence of equations. Each variable occurs at most twice in a

configuration. Configurations that differ only on names are considered equivalent.

According to this extension, the set of names in a term is also extended:

Definition 4.4.2 (Names in terms)

The set Name(t) of names of a term t is defined in the following way, which extends to

sequences of terms, equations, sequences of equations, and rules in the obvious way.

Name(x) = {x},

Name(α(t1, . . . , tn)) = Name(t1) ∪ · · · ∪ Name(tn),

Name($t) = Name(t).

Definition 4.4.3 (Computation Rules)

The operational behaviour of the system is given by the following set of computation rules.

Interaction: (~u | α(t1, . . . , tn) = β(s1, . . . , sm),Γ)

 (~u | Γ̂1[t1/x1, . . . , tn/xn, s1/y1, . . . , sm/ym],Γ)

85

where α(x1, . . . , xn) = β(y1, . . . , ym)⇒ Γ1 ∈ Rlt.

Var1: (~u | x = t,Γ) (~u | Γ)[$t/x] where t 6= $s.

Var2: (~u | t = x,Γ) (~u | Γ)[$t/x] where t 6= $s.

Indirection1: (~u | $t = s,Γ) (~u | t = s,Γ).

Indirection2: (~u | t = $s,Γ) (~u | t = s,Γ).

These rules will correspond directly to the graphical data structure and operations

given in the next section. Indirection is introduced so that the data-structure manipula-

tions can be kept simple. However, there is then the overhead of dealing with indirection

nodes. We remark also that normal forms can have indirections in them, but only inside

constructors. Computationally the interaction rule is the most expensive to implement:

the other rules will turn out to be implemented with a small number of instructions or

will be equivalences in the data structure. In particular, the renaming part of the hat

operation is zero cost, as no renaming is needed in an implementation.

4.4.1 Expressive power

In this section we examine the expressive power of the simpler textual calculus.

Intuitively, a configuration (~u | Γ) in the simpler textual calculus is regarded as an

abbreviation of a machine state (E | ~u | H | Γ) by ignoring the error code sequence H and

substituting $t for (x, t) ∈ E. Moreover, each rewriting step in the calculus corresponds

to a transition of a corresponding machine state since the transition rules Var1, Var2,

Indirection1 and Indirection2 correspond to the machine transition rules B.1, B.2, C.1

and C.2 respectively.

In the following discussion, we assume that, for every active pair α(~t) = β(~s) there is

an interaction rule.

First, we define a translation from a machine state to a configuration in the simpler

textual calculus.

Definition 4.4.4

We define a translation ToSimple from a machine state to the simpler textual calculus as

follows:

ToSimple(E[x] = t | ~u | H | Γ)
def
= ToSimple(E[$t/x] | ~u[$t/x] | H[$t/x] | Γ[$t/x]),

ToSimple(∅ | ~u | H | Γ)
def
= (~u | Γ).

86

We examine whether all transitions of machine states are performed in the simpler

textual calculus.

Lemma 4.4.5

Let M1 and M2 be consistent machine states such that M1 =⇒M2, then ToSimple(M1)

ToSimple(M2).

Proof. Let M1 be (E | ~u | H | Γ). We check each transition rule:

A: M1 = (E | ~u | H | t = s,Γ) =⇒ (E | ~u | H | Γ1,Γ) = M2.

Since M1 and M2 have the same E, the substitution performed by ToSimple is the

same, ToSimple(M1) and ToSimple(M2) are written as follows:

ToSimple(M1) = (~u | t = s,Γ)[$t1/x1, . . . , $tn/xn],

ToSimple(M2) = (~u | Γ1,Γ)[$t1/x1, . . . , $tn/xn].

Thus, ToSimple(M1) ToSimple(M2) by Interaction rule.

B.1: M1 = (E[x] = ⊥ | ~u | H | x = t,Γ) =⇒ (E[x] := t | ~u | H | Γ) = M2.

When ToSimple(M1) = (~u′ | x = t′,Γ′), then ToSimple(M2) = (~u′ | Γ′)[$t′/x].

Thus, ToSimple(M1) ToSimple(M2) by Var1.

C.1: M1 = (E[x] = s | ~u | H | x = t,Γ) =⇒ (E[x] := ⊥ | ~u | H | s = t,Γ) = M2

When ToSimple(M1) = (~u′ | x = t′,Γ′)[$s′/x], then ToSimple(M2) = (~u′ | s′ =

t′,Γ′).

Thus, ToSimple(M1) ToSimple(M2) by Indirection1.

B.2 and C.2: Similar to B.1 and C.1 respectively. �

Lemma 4.4.6

Let M be a =⇒-normal form, then ToSimple(M) is also a normal form.

Proof. We assume that M is (E | ~u | H | Γ). Since Γ is empty by Lemma 4.3.8,

ToSimple(E | ~u | H | −) = (~u1 | −)

for some term sequence ~u1, and thus ToSimple(M) is a normal form. �

Let C1 and C2 be configurations in the simpler textual calculus. We define C1 ⇓ C2

by C1 ∗ C2 where C2 is a -normal form.

By Lemmas 4.4.5 and 4.4.6, the following holds:

87

Theorem 4.4.7 (Correctness for the simpler abstract machine)

Let M1 and M2 be consistent machine states such that M1 ⇓ M2. Then ToSimple(M1) ⇓

ToSimple(M2). �

By Theorems 4.3.9, 4.3.10 and 4.4.7, this calculus has enough rules to compute all of the

interaction and communication rules.

Next, we examine whether all computation steps in the simpler textual calculus are

performed in the simpler abstract machine.

Definition 4.4.8

We define a translation ind2env from a term t into a pair of an indirection free term t′ and

an environment by induction on the structure of terms:

name
ind2env(x) = (x, ∅)

ind2env(t1) = (t′1,E1) · · · ind2env(tn) = (t′n,En)
agent

ind2env(α(t1, . . . , tn)) = (α(t′1, . . . , t
′
n),E1 ∪ · · · ∪ En)

ind2env(t) = (t′,E1)
indirection

ind2env($t) = (x, {(x, t′)} ∪ E1) where x is fresh.

Example 4.4.9

A term $S($Z) is translated into (y, {(y, S(x)), (x, Z)}) by ind2env as follows:

ind2env(Z) = (Z, ∅)
indirection

ind2env($Z) = (x, {(x, Z)})
agent

ind2env(S($Z)) = (S(x), {(x, Z)})
indirection

ind2env($S($Z)) = (y, {(y, S(x)), (x, Z)})

Definition 4.4.10

Let (t1,E1) and (t2,E2) be pairs of a term and an environment. The pairs (t1,E1) and

(t2,E2) are called α-equivalent when the following holds:

(t1,E1)[z1/x1, . . . , zn/xn] = (t2,E2)[z1/y1, . . . , zn/yn]

where x1, . . . , xn are names that occur in (t1,E1), y1, . . . , yn are names that occur in

(t2,E2), and z1, . . . , zn are fresh names.

Lemma 4.4.11

Let t be a term. When (t1,E1) and (t2,E2) are results of ind2env(t), then (t1,E1) and

(t2,E2) are α-equivalent.

Proof. By induction on the structure of terms:

88

• When t is x: ind2env(t) = (x, ∅), thus the result is defined uniquely.

• When t is α(t1, . . . , tn): We assume that, as the inductive hypothesis, for 1 ≤ i ≤ n

(t′i,E
′
i) and (t′′i ,E

′′
i) are results of ind2env(ti) and α-equivalent.

Then, results of ind2env(α(t1, . . . , tn)) are written as:

(α(t′1, . . . , t
′
n),E′1 ∪ · · · ∪ E′n) (α(t′′1, . . . , t

′′
n),E′′1 ∪ · · · ∪ E′′n).

By the induction hypothesis, the results of ind2env(t) are α-equivalent.

• When t is $t1: We assume that, as the inductive hypothesis, (t′1,E
′
1) and (t′′1,E

′′
1) are

results of ind2env(t1) and α-equivalent.

Then, results of ind2env($t1) are written as follows:

(x, {(x, t′1)} ∪ E′1) (y, {(y, t′′1)} ∪ E′′1)

where x and y are fresh. These are written by using a fresh name z as follows:

(x, {(x, t′1)} ∪ E′1)[z/x] = (y, {(y, t′′1)} ∪ E′′1)[z/y]

and by the induction hypothesis the results of ind2env(t) are α-equivalent. �

When (t1,E1) and (t2,E2) are α-equivalent, we may identify (t1,E1) and (t2,E2) as

equivalent.

Next, we extend the definition of ind2env into sequences of terms, equations, sequences

of equations and configurations.

Definition 4.4.12

We extend the definition of ind2env into sequences of terms, equations, sequences of equa-

tions and configurations as follows:

empty
ind2env(−) = (−, ∅)

ind2env(t1) = (t′1,E1) · · · ind2env(tn) = (t′n,En)
terms

ind2env(t1, . . . , tn) = (t′1, . . . , t
′
n,E1 ∪ · · · ∪ En)

ind2env(t) = (t′,E1) ind2env(s) = (s′,E2)
equation

ind2env(t = s) = (t′ = s′,E1 ∪ E2)

ind2env(t1 = s1) = (t′1 = s′1,E1) · · · ind2env(tn = sn) = (t′1 = s′1,En)
equations

ind2env(t1 = s1, . . . , tn = sn) = (t′1 = s′1, . . . , t
′
n = s′n,E1 ∪ · · · ∪ En)

ind2env(~u) = (~u′,E1) ind2env(Γ) = (Γ′,E2)
configuration

ind2env(~u | Γ) = ((~u′ | Γ′),E1 ∪ E2)

89

We extend the α-equivalence on pairs of a term and an environment into pairs of a

configuration and an environment:

Definition 4.4.13

Let (C1,E1) and (C2,E2) be pairs of a configuration and an environment. The pairs

(C1,E1) and (C2,E2) are called α-equivalent when the following holds:

(C1,E1)[z1/x1, . . . , zn/xn] = (C2,E2)[z1/y1, . . . , zn/yn]

where x1, . . . , xn are names that occur in (C1,E1), y1, . . . , yn are names that occur in

(C2,E2), and z1, . . . , zn are fresh names.

Lemma 4.4.14

Let C be a configuration in the simpler textual calculus. When (C1,E1) and (C2,E2) are

results of ind2env(C), then (C1,E1) and (C2,E2) are α-equivalent. �

When (C1,E1) and (C2,E2) are α-equivalent, we may identify (C1,E1) and (C2,E2) as

equivalent.

Next, we define a translation from a configuration in the calculus to a machine state.

Definition 4.4.15

Let C be a configuration in the simpler textual calculus and ind2env(C) = ((~u | Γ),E).

Then we define a translation ToState from the configuration to a machine state as follows:

ToState(C)
def
= (E | ~u | − | Γ).

Lemma 4.4.16

Let C1 and C2 be configurations in the simpler textual calculus such that C1 C2, then

ToState(C1) =⇒ ToState(C2).

Proof. We check each computational rule in the calculus.

Interaction: We use a notation Γ(x1, . . . , xn) to show occurrences of free names x1, . . . , xn

in a sequence of equations Γ explicitly and a notation Γ(t1, . . . , tn) as the result

obtained by substitution of terms t1, . . . , tn for the x1, . . . , xn in Γ(x1, . . . , xn).

We assume that:

• α(x1, . . . , xn) = β(y1, . . . , ym)⇒ Γ1(x1, . . . , xn, y1, . . . , ym) ∈ Rlt,

• C1 = (~u | α(t1, . . . , tn) = β(s1, . . . , sm),Γ)

 (~u | Γ̂1(t1, . . . , tn, s1, . . . , sm),Γ) = C2 by Interaction rule,

• ind2env(C1) = ((~u′ | α(t′1, . . . , t
′
n) = β(s′1, . . . , s

′
m),Γ′),E).

90

Γ1 does not contain any indirection terms because Γ1 is the RHS of the interaction

rule, and thus the following holds:

ind2env(C2) = ((~u′ | Γ̂1(t
′
1, . . . , t

′
n, s
′
1, . . . , s

′
m),Γ′),E).

Then,

ToState(C1) = (E | ~u′ | − | α(t′1, . . . , t
′
n) = β(s′1, . . . , s

′
m),Γ′),

ToState(C2) = (E | ~u′ | − | Γ̂1(t
′
1, . . . , t

′
n, s
′
1, . . . , s

′
m),Γ′),

and thus ToState(C1) =⇒ ToState(C2) by the transition rule A.

Var1: We assume that:

• C1 = (~u | x = t,Γ) (~u[$t/x] | Γ[$t/x]) = C2 by Var1,

• ind2env(C1) = ((~u′ | x = t′,Γ′),E).

Since x is fresh for ~u[$t/x] and Γ[$t/x], we obtain ((~u′ | Γ′), {(x, t′)} ∪ E) as the

result of ind2env(C2) by the assumption of ind2env(C1). Then,

ToState(C1) = (E | ~u′ | − | x = t′,Γ′),

ToState(C2) = ({(x, t′)} ∪ E | ~u′ | − | Γ′),

and thus ToState(C1) =⇒ ToState(C2) by the transition rule B.1.

Indirection1: We assume that:

• C1 = (~u | $t = s,Γ) (~u | t = s,Γ) = C2 by Indirection1,

• ind2env($t = s) = (x = s′, {(x, t′)} ∪ E1 ∪ E2) is obtained as follows:

···
ind2env(t) = (t′,E1)

indirection
ind2env($t) = (x, {(x, t′)} ∪ E1)

···
ind2env(s) = (s′,E2)

equation
ind2env($t = s) = (x = s′, {(x, t′)} ∪ E1 ∪ E2)

• ind2env(C1) = ((~u′ | x = s′,Γ′), {(x, t′)} ∪ E) where E ⊇ E1 ∪ E2.

Then, ind2env(t = s) = (t′ = s′,E1 ∪ E2) by the assumption, and thus ind2env(C2)

is obtained as ((~u′ | t′ = s′,Γ′),E). Since

ToState(C1) = ({(x, t′)} ∪ E | ~u′ | − | x = s′,Γ′),

ToState(C2) = (E | ~u′ | − | t′ = s′,Γ′),

ToState(C1) =⇒ ToState(C2) by the transition rule C.1.

Var2 and Indirection2: Similar to the cases of Var1 and Indirection1, respectively. �

91

Lemma 4.4.17

Let (~u | Γ) be a -normal form, then Γ is empty.

Proof. Assume that Γ is not empty.

• When Γ is α(~t) = β(~u),Γ1: By the assumption of this section such that for every

active pair α(~t) = β(~s) there is an interaction rule α(~x) = β(~y) ∈ Rlt, the Interaction

rule can be applied.

• When Γ is x = t,Γ1 where t 6= $s: The rule Var1 can be applied.

• When Γ is t = x,Γ1 where t 6= $s: The rule Var2 can be applied.

• When Γ is $t = s,Γ1: The rule Indirection1 can be applied.

• When Γ is t = $s,Γ1: The rule Indirection2 can be applied.

Thus Γ must be empty. �

Theorem 4.4.18 (Completeness for the simpler abstract machine)

Let C1 and C2 be configurations in the simpler textual calculus such that C1 ⇓ C2. Then

ToState(C1) ⇓ ToState(C2).

Proof. By Lemma 4.4.16, ToState(C1) =⇒∗ ToState(C2). When we assume C2 = (~u |

Γ), then Γ is empty by Lemma 4.4.17. Since ToState(~u |) has no code, ToState(C2) is a

normal form. �

Finally we define an operation Update to obtain an interface as a calculation result.

Substitution rules are performed in the course of computation, thus the operation of Update

is to apply Collect rules and to remove indirection terms $t.

Definition 4.4.19

• We define an operation remInd for terms to replace an indirection term $t with t as

follows:

– remInd(x)
def
= x,

– remInd($t)
def
= remInd(t),

– remInd(α(t1, . . . , tn))
def
= α(remInd(t1), . . . , remInd(tn)).

• We extend the operation remInd for sequences of terms:

– remInd(t1, . . . , tn)
def
= remInd(t1), . . . , remInd(tn).

• We define an operation Update for a configuration (~u | Γ) as follows:

92

– Update(~u | x = t,Γ)
def
= Update(~u[t/x] | Γ[t/x]),

– Update(~u | t = x,Γ)
def
= Update(~u[t/x] | Γ[t/x]),

– Update(~u | −)
def
= remInd(~u).

Example 4.4.20

The computation of the configuration (r | Add(r, Z) = S(Z)) in Figure 2.1 is given below:

(r | Add(Z, r) = S(Z))

 (r | Add(Z, x) = Z, r = S(x)) (Interaction)

 (r | Z = x, r = S(x)) (Interaction)

 (r | r = S($Z)) (Var2)

 ($S($Z) |). (Var1)

Update($(S($Z)) |)

= remInd($(S($Z)))

= S(Z).

4.5 Encoding method

In this section we propose an encoding method of the simpler textual calculus, which is

called a single link encoding method based on the standardised implementation model.

4.5.1 Implementation model

This abstract machine of the textual calculus is a refinement of the lightweight abstract

machine, and thus the encoding method for agents is the same as the Directed one. Names

and indirection are represented as graph nodes whose ids are ID NAME and ID INDIRECTION

and arities 0 and 1 respectively. Name and indirection nodes are drawn as the following

nodes N and $, when we fix the maximum arity as 2 for example:

$N

In addition, the consistency assures that there are no mutual connections such that

E[x] = y and E[y] = x, therefore every net has a tree-like data-structure and we draw a

net for a term t as follows:

t

...

93

where the bottom is a principal port of agent nodes and the top ports are free ports of

the net.

With respect to the transitions in Figure 4.1, the rule A is the same as Directed

encoding method, and the others are drawn as Figure 4.2. Thus, the run-time function

eval is written as follows:

void eval() {

Agent *a1, *a2;

while (popActive(&a1, &a2)) {

if (a2->id != ID_NAME) {

if (a1->id != ID_NAME) {

R[a1->id][a2->id](a1, a2);

} else if (a1->id == ID_INDIRECTION) {

/* C.1 */

Agent *a1p0 = a1->port[0];

freeAgent(a1);

pushActive(a1p0, a2);

} else {

/* B.1 */

a1->port[0] = a2;

a1->id = ID_INDIRECTION;

}

} else if (a2->id == ID_INDIRECTION) {

/* C.2 */

Agent *a2p0 = a2->port[0];

freeAgent(a2);

pushActive(a1, a2p0);

} else {

/* B.2 */

a2->id = ID_INDIRECTION;

a2->port[0] = a1;

}

}

}

94

B.1

t

u v

N

⇒

t

u v

$

C.1

s

t

$

⇒

s

t

B.2

t

u v

⇒

t

u v

$N

C.2

s

t

$

⇒

t

s

Figure 4.2: Transition rules in Figure 4.1

For instance, the net in Figure 2.1 is evaluated by this eval function as shown in

Figure 4.3.

4.5.2 Reduction strategies

In this section we show how some reduction strategies for equations can be realised in this

implementation. Here, to generalise a data structure for equations, we use a list structure

as follows:

typedef struct ApList {

struct Active ap;

struct ApList *next;

} ApList;

ApList *newApList(Agent *a1, Agent *a2, ApList *next) {

ApList *alist = malloc(sizeof(ApList));

alist->ap.a1 = a1;

alist->ap.a2 = a2;

alist->next = next;

return alist;

}

void freeApList(ApList *alist) {

95

AP

Add

ZNZ

S

I

Add_S

AP

ZNZ

I

Add N S

Add_Z

AP

NZ

I

N S

B.2

AP

NZ

I

$ S

B.1

AP

$Z

I

$ S

Figure 4.3: Single link encoding method: evaluation of the net in Figure 2.1

96

free(alist);

}

LIFO (Last In, First Out) LIFO stands for “Last In, First Out”, and in the imple-

mentation this means that an equation created last is operated first, thus equations in

some specific area tend to be performed eagerly. This is typically realised by a stack. Here

we implement such a stack by using the list data structure as follows:

Active pair list

pushActive
�→

�→

popActive

...

p
1

p
2

p
3

p

p
...

p
1

p
2

p
3

...

p
1

p
2

p
3

p
1

...

p
2

p
3

/* to manipulate the equation stack */

ApList *Aps = NULL;

/* Implementation of functions for active pairs*/

void pushActive(Agent *a1, Agent *a2) {

Aps = newApList(a1, a2, Aps);

}

int popActive(Agent **a1, Agent **a2) {

if (Aps == NULL) return 0;

*a1 = Aps->ap.a1;

*a2 = Aps->ap.a2;

ApList *tmp = Aps->next;

freeApList(Aps);

Aps = tmp;

return 1;

}

FIFO (First In, First Out) FIFO stands for “First In, First out”, and in the imple-

mentation this means that equations are operated in the order created, thus every equation

is performed evenly. This is typically realised by a queue, and implemented by using the

list data structure as follows:

97

Active pair list

pushActive
�→

�→

popActive

...

p
1

p
2

p
3

p

p

p
1

...

p
1

p
2

p
3

...

p
1

p
2

p
3

...

p
2

p
3

/* to manipulate the equation stack */

ApList *Top = NULL;

ApList *Bottom = NULL;

/* Implementation of functions for active pairs*/

void pushActive(Agent *a1, Agent *a2) {

ApList *newlist = newApList(a1, a2, NULL);

if (Top == NULL) {

Top = newlist;

Bottom = newlist;

} else {

Bottom->next = newlist;

Bottom = newlist;

}

}

int popActive(Agent **a1, Agent **a2) {

if (Top == NULL) {

Bottom = NULL;

return 0;

}

*a1 = Top->ap.a1;

*a2 = Top->ap.a2;

ApList *tmp = Top->next;

freeApList(Top);

Top = tmp;

return 1;

}

Weak reduction Weak reduction strategy (Definition 2.1.12) evaluates only equations

that contain names of the interface. First, we introduce two functions in order to check if

98

the given term includes those of the interface:

• nameInInterface takes a pointer to an agent node and returns 1 if there is the same

pointer in the interface list. Otherwise, it returns 0.

int nameInInterface(Agent *a) {

int i;

for (i=0; i<SIZE_INTERFACE) {

if (a == I[i]) return 1;

}

return 0;

}

• termHasInterface takes a pointer to an agent node and returns 1 if it contains one

of the interface. Otherwise, it returns 0.

int termHasInterface(Agent *a) {

int i;

for (i=0; i<SIZE_INTERFACE) {

if (a->id == ID_NAME) {

return nameInInterface(a);

} else {

int j;

for(j=0; j < Arities[a->id]; j++) {

if (termHasInterface(a->port[j])) {

return 1;

}

}

return 0;

}

}

}

By using those functions, the function pushActive and popActive are coded as follows:

99

Active pair list

pushActive
�→

�→

popActive

...

p
1

p
2

p
3

p

p
...

p
1

p
2

p
3

...

p
1

p
2

p
3

p
2

...

p
1

p
3

termHasInterface()==1p
2

/* to manipulate the equation stack */

ApList *Aps = NULL;

/* Implementation of functions for active pairs*/

void pushActive(Agent *a1, Agent *a2) {

Aps = newApList(a1, a2, Aps);

}

int popActive(Agent **a1, Agent **a2) {

ApList *before, *alist;

alist = Aps;

while (alist != NULL) {

if (termHasInterface(alist->ap.a1)

|| termHasInterface(alist->ap.a2)) {

*a1 = alist->ap.a1;

*a2 = alist->ap.a2;

if (alist == Aps) {

Aps = alist->next;

} else {

before->next = alist->next;

}

freeApList(alist);

return 1;

}

before = alist;

alist = alist->next;

}

return 0;

}

100

Undirected(INET) Undirected(in2) Directed(Light) Directed(Single)

F32 1.58 1.37 1.52 1.49

F33 2.62 2.29 2.52 2.49

F34 4.37 3.80 4.21 4.15

A(3, 10) 1.77 1.42 1.59 1.58

A(3, 11) 7.12 5.73 6.44 6.39

A(3, 12) 29.47 24.01 26.39 26.14

2 7 6 I I 0.73 0.71 1.26 1.28

2 7 7 I I 2.12 2.13 3.58 3.68

Table 4.1: The execution time in seconds on the standardised implementation model

4.5.3 Experimental results

In this section we examine the execution time in the single link encoding methods for

programs in Section 3.4.3, compared to other methods.

Table 4.1 is obtained by adding the execution time of the single link encoding method

(denoted as “Single”) into Table 3.1. The trend in the execution time is almost the same

as the encoding method of amineLight, and thus in terms of the cost, Undirected encoding

method of in2 is the best, though the single link encoding method is not the worst.

In comparison with the amineLight encoding method, the single link encoding method

computes Fibonacci number and Ackermann function a little faster. On the other hand,

Application of Church numerals demands a lot of computation for names, especially equa-

tions such as x = y, and those operations take a little more time than the amineLight

encoding. This can be caused, as shown in Section 4.3.2, by the absence of a map for

connections between names in the single link encoding method, while the amineLight en-

coding uses the map. Table 4.2 shows ratios of name operations to interaction operations.

With respect to the computation of Application of Church numerals, it increases to 4.12,

whereas it is 2.75 in Directed encoding method as shown in Table 3.2. Even though the

cost of each operation for those names is quite small, as shown in the computation of

Fibonacci numbers that is faster where the ratio increases by 0.18, the significant accu-

mulation of the cost leads to the less efficient system. Thus, it is important to reduce the

cost of operations for names. By changing the data structure it can be improved to some

extent. Further discussion will be made about this topic in Section 7.1.1.

In the single link encoding method, as shown in Section 4.3.2, only a single side of an

equation is managed, while in the amineLight encoding both sides of an equation such as

101

Interactions Names Names/Interactions

F32 74636718 65106325 0.87

F33 123315177 105344341 0.85

F34 203654818 170450820 0.84

A(3, 10) 134103148 134094952 1.00

A(3, 11) 536641652 536625264 1.00

A(3, 12) 2147025020 2146992248 1.00

2 7 6 I I 15676873 64538288 4.12

2 7 7 I I 46118916 190190039 4.12

Table 4.2: The number of operations in the single link method

x = y are managed using the map. When we take parallel execution into account, this

takes advantage of the locality of the rewriting. The critical sections are caused only by

B.1 and B.2 since the name agents can be linked by two active pairs as shown in Figure 4.2.

Moreover, those are performed by connecting the ports of names into other principal ports

of unlocked agent nodes, therefore these can be locked with an atomic operation like CAS

(Compare-and-swapping). For instance, when we represent name and indirection nodes

as just name nodes, we can regard name nodes whose ports are not NULL as indirection

nodes. In the following picture, the left graph node is a name and the right one is an

indirection:

NN null

Thus, the run-time function eval is written as follows:

#define CAS_SLEEP 4

void eval() {

Agent *a1, *a2;

while (popActive(&a1, &a2)) {

loop:

if (a2->id != ID_NAME) {

if (a1->id != ID_NAME) {

R[a1->id][a2->id](a1, a2);

} else if (a1->port[0] != NULL) {

/* C.1 */

Agent *a1p0 = a1->port[0];

102

freeAgent(a1);

pushActive(a1p0, a2);

} else {

/* B.1 */

if (!(__sync_bool_compare_and_swap(

&(a1->port[0]), NULL, a2))) {

usleep(CAS_USLEEP); // wait a little

goto loop; // and retry

}

}

} else if (a2->port[0] != NULL) {

/* C.2 */

Agent *a2p0 = a2->port[0];

freeAgent(a2);

pushActive(a1, a2p0);

} else {

/* B.2 */

if (!(__sync_bool_compare_and_swap(

&(a2->port[0]), NULL, a1))) {

usleep(CAS_USLEEP); // wait a little

goto loop; // and retry

}

}

}

}

Generally, in parallel execution, we have to manage other critical sections that arise

in the allocation and deallocation of graph nodes, and in the operations of the active pair

stack. Moreover, multi-thread executions require synchronisation so that those threads can

be controlled well. We will discuss those mechanism when we introduce a multi-threaded

interpreter in Section 7.1.2, and compare performance to other evaluators of interaction

nets.

103

4.6 Summary

In this chapter, we proposed a new method of encoding interaction nets, which is a refine-

ment of the method used in amineLight. This method requires only single links, and thus

every net is encoded as a tree-like data-structure. Moreover, this can be used to derive

parallel execution models naturally.

We also introduced the new abstract machine and a textual calculus, and an encoding

method based on the standardised implementation model.

Finally, we gave a comparison with other encoding methods that shows not the best

in terms of efficiency, thus at most about 1.8 times slower than the best, but it can be

recovered by parallel execution. This is discussed in Section 7.1.2 again.

104

Chapter 5

Low-level language LL0

In this chapter we propose the low-level language LL0 which defines a low level set of

instructions that can build a net and reduce it to normal form. Specific instructions in

LL0 have an almost one-to-one correspondence to the standardised implementation model

in the single encoding method. In addition, these instructions are considered as byte-codes

of an abstract machine.

First, we define LL0 and we give a compilation from interaction nets into LL0 instruc-

tions. Next, we illustrate how LL0 corresponds to the standardised implementation model

and finally, we show how LL0 can be used as an instruction set for an abstract machine.

5.1 The Low-level language LL0

In this section we introduce a low-level language to implement interaction nets. The

concrete representation of a configuration can be summarised by a diagram in Figure 5.1,

where

• Γ represents heaps of graph elements for a net,

• EQ a stack of equations,

• I an interface

and interaction rules are represented by:

• a set of procedures to perform interaction rules.

In the next section we show how to construct nets and in the following section we illustrate

how to represent interaction rules.

105

I

EQ

. . .

.

.

.

Γ

Figure 5.1: Configuration

5.1.1 Constructing nets

For a net, there are three kinds of graph element: agents, names and indirection nodes.

Each of these elements is allocated memory in the heap. An element, such as an agent,

may contain pointers to other elements (to represent auxiliary ports). Intuitively, an agent

can be represented in the C language as follows:

typedef struct Agent {

int id;

struct Agent *port[];

} Agent;

In this Agent structure, each symbol α1, . . . , αn for agents is distinguished by a unique

number id. The number of the port p, which is called arity, corresponds to a number of

auxiliary ports of an agent. To assign an arity to an agent, we use the following declaration

#agent:

#agent α1 : p1, . . . ,αn : pn

where pi is an arity for an agent symbol αi such that ar(αi) = pi. After this declaration,

these symbols αi are recognised as unique numbers and those arities pi can be referred by

a function arity such that arity(αi) = pi. We draw an agent node whose id is the number

assigned for the symbol α and arity is 3 as follows:

�

Name and indirection nodes are graph elements whose ids are denoted by symbols N and

$, and arities are 0 and 1 respectively, where N and $ are drawn from a set that does not

overlap with the set of agent symbols. We draw these nodes as follows:

106

N $

Agents and indirection nodes can point to other graph elements; variables represent leaves

of the structure and point no further. Agents and indirection nodes can be pointed to from

at most one of other elements while name nodes can be pointed from two other elements.

N$�

To allocate an agent graph element whose id is id , we use the following instruction:

x = mkAgent(id)

This instruction sets a pointer of the allocated memory to the variable x used by the rest

of the machinery.

For instance, by the following code, a term Z is assigned to a variable aZ:

/* Definition of Agents */

#agent Z:0

/* Z */

aZ=mkAgent(Z)

The result of executing the above two instructions is an agent node Z (with arity 0 and)

with no pointers:

Z

To dispose of an allocation a of a graph element, we use an instruction free(a). For

instance, the following code disposes of the above allocation of the aZ:

free(aZ)

A connection between a principal port and an auxiliary port is encoded by an assign-

ment. In this language, to assign a pointer of an existing graph element b to a port p of

another graph element a, we use the following instruction:

a[p]=b

We note that the index of these ports starts from 1. For instance, a term S(Z) is encoded

as follows:

107

/* Definition of Agents */

#agent Z:0, S:1

/* S(Z) */

aS=mkAgent(S)

aZ=mkAgent(Z)

aS[1]=aZ

This connection can be represented graphically as follows:

Z

S

We restrict that only one port can refer to an agent node.

To allocate a name node, we use the following instruction:

x=mkName()

For instance, a term Add(Z,r) is encoded as follows:

/* Definition of Agents */

#agent Z:0, Add:2

/* Add(Z,r) */

aAdd=mkAgent(Add)

aZ=mkAgent(Z)

r=mkName()

aAdd[1]=aZ

aAdd[2]=r

and depicted as follows:

Add

Z N

To allocate an indirection one, we use the following instruction:

x=mkInd()

Generally, when agent nodes are connected together, they are trees that we represent

in the following way, where the free names are at the top of the tree:

108

t

...

Next, we introduce a stack of equations EQ. The stack is initially created empty.

Intuitively, an element of this stack can be written using the following code fragment in

the C language:

typedef struct Equation {

Agent *a1;

Agent *a2;

} Equation;

An equation node can point to two graph elements. To create an equation of two graph

elements a1, a2 in the stack EQ, we use the following instruction:

push(a1,a2)

We draw this as follows:

EQ

a2a1

To pop an equation from the top of the stack EQ, we use the following instruction:

stackFree()

Like in the textual calculus, we represent a connection between principal ports by

creating an equation between the two agent nodes into the stack. For instance, we can

encode an equation Add(Z, r) = S(Z) in the configuration 〈 r | Add(Z, r) = S(Z) 〉 in

Figure 2.1 as follows:

/* Definition of Agents */

#agent Z:0, S:1, Add:2

/* Add(Z,r) */

aZ=mkAgent(Z)

aAdd=mkAgent(Add)

r=mkName()

aAdd[1]=aZ

aAdd[2]=r

109

/* S(Z) */

bS=mkAgent(S)

bZ=mkAgent(Z)

bS[1]=bZ

/* Add(Z,r)=S(Z) */

push(aAdd,bS)

and we depict it as follows:

EQ

Add

Z N Z

S

Next, we introduce the interface I. Interfaces are of fixed size n as the size of the

observable interface of a net can be pre-determined (and it is preserved during execution).

Interfaces are created with the following instruction:

I = mkInterface(n)

Those elements are accessed using the usual array notation I[1], . . . , I[n], and can point

to one graph element.

For instance, the configuration 〈 r | Add(Z, r) = S(Z) 〉 is encoded as follows:

/* Definition of Agents */

#agent Z:0, S:1, Add:2

/* create the interface */

I = mkInterface(1)

/* Add(Z,r) */

aZ=mkAgent(Z)

aAdd=mkAgent(Add)

r=mkName()

aAdd[1]=aZ

110

aAdd[2]=r

/* S(Z) */

bS=mkAgent(S)

bZ=mkAgent(Z)

bS[1]=bZ

/* Add(Z,r)=S(Z) */

push(aAdd,bS)

/* set the interface */

I[1]=r

and represented with each name of the interface pointing to a corresponding name node

as follows:

EQ

Add

Z N Z

S

I

For a connection between two auxiliary ports, we assign one name node to two ports.

For instance, the configuration 〈 r | Add(Z, r) = S(w), Add(Z, w) = Z 〉 in Figure 2.2 is

encoded as follows:

/* Definition of Agents */

#agent Z:0, S:1, Add:2

/* create the interface */

I = mkInterface(1)

/* Add(Z,r) */

aZ=mkAgent(Z)

aAdd=mkAgent(Add)

r=mkName()

aAdd[1]=aZ

aAdd[2]=r

111

/* S(w) */

bS=mkAgent(S)

w=mkName()

bS[1]=w

/* Add(Z,r)=S(w) */

push(aAdd,bS)

/* Add(Z,w) */

aZ=mkAgent(Z)

aAdd=mkAgent(Add)

aAdd[1]=aZ

aAdd[2]=w

/* Z */

bZ=mkAgent(Z)

/* Add(Z,w)=Z */

push(aAdd,bZ)

/* set the interface */

I[1]=r

and depicted as follows:

EQ

Add

Z N

S

I

Z

N

Add

Z

To avoid complex wiring, we introduce the following notation for equation nodes, and

we assume that our equation stack is drawn horizontally with the top placed at the most

left side.

112

==

Add

Z N

S

I

Z

N

Add

Z

5.1.2 Defining interaction rules

Next, we introduce rule procedures to perform interaction rules. For an interaction rule

between α(~x) and β(~y), we describe a rule procedure as follows:

rule α β {

...

}

We can write instructions between { and }, which we call a rule block, and the scope of

variables is within a rule block. In execution, the procedures provide special variables L, R

that are pointers to the left and the right hand side agents of the active pair equation. For

instance, for a rule Add(x1, x2) = Z ⇒ x1 = x2 in Figure 2.1, the function can be written

as follows:

rule Add Z {

stackFree()

push(L[1],L[2])

free(L)

free(R)

}

where the variables L and R can be used as pointers to the active pair agents Add and Z

respectively, and the arguments x1 and x2 can be pointed by L[1] and L[2] respectively.

In the rule procedure, we can also write an instruction stackFree() to remove the

top of the equation stack. The elements of the current top equation can be overwritten

with special variables StackL and StackR that contain pointers to the LHS and RHS in

the equation on the top of the stack respectively.

These rule procedures are represented as transformations on the data structure. For

instance, the rule between Add and Z is depicted with labels L, R, L[1] and L[2] as follows:

113

EQ

Add Z

L R

L[1] L[2]

t s ⇒

stackFree()

EQ

Z

L R
t s

⇒

push(L[1],L[2])

EQ

Add Z

L R

L[1] L[2]

t s ⇒

free(L),
free(R)

EQ

L[1] L[2]

t s

u v

Add

L[1] L[2]

u v

u v u v

To give an example for the other rule Add(x1, x2) = S(y1)⇒ Add(x1, w) = y1, x2 = S(w)

in Figure 2.1, the procedure creates new nodes of S, Add and w, and re-wires each port

according to the RHS in the rule. This can be written as follows:

rule Add S {

stackFree()

aS=mkAgent(S)

aAdd=mkAgent(Add)

w=mkName()

aAdd[1]=L[1]

aAdd[2]=w

push(aAdd, R[1])

aS[1]=w

push(L[2], aS)

free(L)

free(R)

}

114

(a) x = t, u = s u[$t/x] = s where x ∈ N (u)

t

u v

N

⇒

t

u v

$

(b) $t = s t = s

s

t

$

⇒

s

t

Figure 5.2: computation rules for name and indirection nodes

Figure 5.2 (a) and (b) are instances of Var1 and Indirection1 rules to illustrate the

ideas.

5.1.3 Instructions and Syntax of LL0

In this section, we define the syntax and instructions in LL0.

Figure 5.3 summarises the instruction set of LL0. The port numbers start from 1, and

by using the instruction x[p]=y, we can assign a graph node y to a port p > 0 of a graph

node x. We also use the port 0 to refer to the id element. For instance, x[0]=α changes

the id of an agent node x into α.

We define the syntax of LL0 as shown in Figure 5.4 where ALPHA means one of

letters a...zA...Z and DIGIT means one of letters 0...9. Instructions in Figure 5.3

and rule procedures using the instructions are accepted by 〈instruction〉 and 〈defRule〉 in

Figure 5.4, respectively.

5.2 Translation of the textual calculus into LL0

In this section, we introduce a translation of the simpler text calculus into LL0.

We use a set of pairs and operations for the pairs defined in Definition 3.3.11. We also

use the following notations for strings:

Definition 5.2.1 (Notations for strings)

• We use Str as a set of strings.

• We use “ and ” as a pair of delimiters to represent a string explicitly. For instance,

we write a string abc as “abc”.

• We use the notation {x} in a string as the result of replacing the occurrence {x}

with its actual value. For instance, if x = “abc” and y = 89 then “1{x}2{y}” =

115

Instruction Description

#agent α1 : p1, . . . ,αn : pn Declare α1, . . . , αn as symbols of agents whose arity

are p1, . . . , pn.

I=mkInterface(n) Create a fixed n-size interface and assign its pointer

to the variable I.

x = mkAgent(id) Allocate (unused) memory for an agent node whose id

is id and assign it to the variable x.

x = mkName() Allocate (unused) memory for a name node, and assign

it to the variable x.

x = mkInd() Allocate (unused) memory for an indirection node,

and assign it to the variable x.

free(x) Dispose of an assigned allocation x of a graph element.

x[p]=y Assign a graph element y to a port p > 0 of an agent

node x.

x[0]=α Change the id of an agent node x into α.

push(x,y) Create an equation of two graph element x, y in the

stack of equations.

stackFree() Dispose of an operating active pair in the rule proced-

ure from the stack of equations.

Figure 5.3: Instructions of LL0

“1abc289”.

• We use + as an infix binary operation to concatenate each string. For instance, if

x = “abc”, then x+ “123” = “abc123”.

5.2.1 Translation of configurations

A configuration 〈 ~u | ∆ 〉 will be translated into the following structure:

Definition 5.2.2 (Compilation of terms and nets)

• We use a set N : N × Str, which is called a name table, so that a name x ∈

N can correspond to a string of a variable name in a code sequence and those

corresponding can be looked up from compilation functions. We define a function

makeN to make such a name table and a code sequence for those names by a given

116

〈instruction〉 ::= 〈declaration〉 | 〈operation〉

〈declaration〉 ::= 〈decAgent〉 | 〈decInterface〉

〈decAgent〉 ::= ′#agent′ 〈agentArity〉 (′,′ 〈agentArity〉)∗

〈agentArity〉 ::= 〈symbol〉 ′:′ 〈num〉

〈decInterface〉 ::= ′I=mkInterface′ ′(′ 〈num〉 ′)

〈operation〉 ::= 〈assignment〉 | 〈disposeAgent〉 | 〈opEquation〉

〈assignment〉 ::= 〈nodeExp〉 ′=′ (〈nodeExp〉 | 〈mkGraphElement〉)

〈nodeExp〉 ::= 〈var〉 | 〈var〉 ′[′ 〈num〉 ′]′

〈mkGraphElement〉 ::= ′mkAgent′ ′(′ 〈symbol〉 ′)′) | ′mkName()′ | ′mkInd()′

〈disposeAgent〉 ::= ′free′ ′(′ 〈nodeExp〉 ′)′

〈opEquation〉 ::= ′push′ ′(′ 〈nodeExp〉 ′,′ 〈nodeExp〉 ′)′ | ′stackFree()′

〈symbol〉 ::= ALPHA 〈letter〉∗

〈var〉 ::= (′ ′)∗ ALPHA 〈letter〉∗

〈letter〉 ::= (ALPHA | DIGIT | ′ ′ | ′’′)+

〈num〉 ::= (DIGIT)+

〈defRule〉 ::= ′rule′ 〈symbol〉 〈symbol〉 〈ruleBlock〉

〈ruleBlock〉 ::= ′{′ 〈operation〉∗ ′}′

Figure 5.4: Syntax of LL0

name set {x1, . . . , xn} as follows:

makeN({x1, . . . , xn})
def
= makeN′({x1, . . . , xn}, ∅)

makeN′({x1, . . . , xn},N)
def
= let

N0 = N;

for(1 ≤ i ≤ n):

ai = freshStr();

ci = “{ai}=mkName()”;

Ni = (Ni−1[xi] := ai);

in

(Nn, c1 + · · ·+ cn)

end;

117

• We define a translation Compiles from a symbol set Σ into a code string as follows:

Compiles(∅)
def
= “”

| Compiles({α1, . . . , αn})
def
= “#agent ”+

“{α1}:{ar(α1)}” + · · ·+ “,{αn}:{ar(αn)}”;

• A translation Compilet from a term into a code string is defined, using a name table

N which is defined in Compilec, as follows:

Compilet(x)
def
= (“”,N[x])

| Compilet(α(t1, . . . , tn))
def
= let

a = freshStr();

c = “{a}=mkAgent({α})”;

(c1, a1) = Compilet(t1);

c1 = c1 + “{a}[1]={a1}”;
...

(cn, an) = Compilet(tn);

cn = cn + “{a}[n]={an}”;

in

(c+ c1 + · · ·+ cn, a)

end

| Compilet($t)
def
= let

a = freshStr();

(c1, a1) = Compilet(t);

in

(c1

+“{a}=mkInd()”

+“{a}[1]={a1}”, a)

end;

• A translation Compilei from an interface ~u into a code sequence is defined as follows:

Compilei(~u)
def
= let

(c, n) = Compile′i(~u);

in

“I=mkInterface[{n}]” + c

end;

118

Compile′i(−)
def
= (“”, 0)

| Compile′i(u1, . . . , un)
def
= let

(c1, a1) = Compilet(u1);

c1 = c1 + “I[1]={a1}”;
...

(cn, an) = Compilet(un);

cn = cn + “I[{n}]={an}”;

in

(c1 + · · ·+ cn, n)

end;

• A translation Compilee from an equation into a code string is defined as follows:

Compilee(t = s)
def
= let

(c1, a1) = Compilet(t);

(c2, a2) = Compilet(s);

c3 = “push({a1},{a2})”;

in

c1 + c2 + c3

end;

• A translation Compilees from an equation sequence into a code string is defined as

follows:

Compilees(e1, . . . , en)
def
= Compilee(e1) + · · ·+ Compilee(en);

• We define a translation Compilec from a configuration 〈 ~u | ∆ 〉 with a symbol set

Σ into a code string c, making a name table N which is used in Compilet (called by

Compilei, and Compilee via Compilees), as follows:

Compilec(Σ, 〈 ~u | ∆ 〉) def
= let

c0 = Compiles(Σ);

(N, c1) = makeN(Name(〈 ~u | ∆ 〉));

c2 = Compilei(~u);

c3 = Compilees(∆);

in

c0 + c1 + c2 + c3

end;

119

• We write just Compile when there is no ambiguity.

Example 5.2.3

Let us take a configuration 〈 r | Add(Z, r) = S(Z) 〉 with a symbol set {Z, S, Add} as an

example.

First, by applying Compilec to this configuration, we obtain the following:

Compilec({Z, S, Add}, 〈 r | Add(Z, r) = S(Z) 〉) =

let

c0 = Compiles({Z, S, Add});

(N, c1) = makeN({r});

c2 = Compilei(r);

c3 = Compilees(Add(Z, r) = S(Z));

in

c0 + c1 + c2 + c3

end

Next, we look at the expressions in the let clause precisely. In the first one, by unfolding

Compiles({Z, S, Add}), the following is obtained:

#agent Z:0, S:1, Add:2

By unfolding the second one makeN({r});, the following is obtained:

({(r, r)}, “r=mkName()”)

By unfolding the third one Compilei(r), the following is obtained:

I=mkInterface[1]

I[1]=r

By unfolding the last one Compilees(Add(Z, r) = S(Z)), we obtain the following:

let

(c1, a1) = Compilet(Add(Z, r));

(c2, a2) = Compilet(S(Z));

c3 = “push({a1},{a2})”;

in

c1 + c2 + c3

end

120

Here, in this let clause, we also look at the first two expressions. The following is an

unfolding result of Compilet(Add(Z, r)) provided that a1 is assigned as a fresh string:

let

c0 = “a1=mkAgent(Add)”;

(c1, a1) = Compilet(Z);

c1 = c1 + “a1[1]={a1}”;

(c2, a2) = Compilet(r);

c2 = c2 + “a1[2]={a2}”;

in

(c0 + c1 + c2, a0)

end

Taking account of the following:

• Compilet(Z) = (“a2=mkAgent(Z)”, a2),

• Compilet(r) = (“”, r),

the result of Compilet(Add(Z, r)) is obtained as follows:

(c1, a1) where c1 is as follows:

a1=mkAgent(Add)

a2=mkAgent(Z)

a1[1]=a2

a1[2]=r

Regarding the next expression Compilet(S(Z)), we obtain the following unfolding result

provided that b1 is assigned as a fresh string:

let

c0 = “b1=mkAgent(S)”;

(c1, a1) = Compilet(Z);

c1 = c1 + “b1[1]={a1}”;

in

(c0 + c1, b1)

end

Here, taking account of the following:

121

• Compilet(Z) = (“b2=mkAgent(Z)”, b2)

where c2 is assigned as a fresh string,

the result of Compilet(S(Z)) is obtained as follows:

(c2, b1) where c2 is as follows:

b1=mkAgent(S)

b2=mkAgent(Z)

b1[1]=b2

Thus, the result of Compilees(Add(Z, r) = S(Z)) is as follows:

a1=mkAgent(Add)

a2=mkAgent(Z)

a1[1]=a2

a1[2]=r

b1=mkAgent(S)

b2=mkAgent(Z)

b1[1]=b2

push(a1,b1)

Finally, collecting these results, we obtain the following sequence of code strings as a result

of Compilec({Z, S, Add}, 〈 r | Add(Z, r) = S(Z) 〉):

#agent Z:0, S:1, Add:2

r=mkName()

I=mkInterface[1]

I[1]=r

a1=mkAgent(Add)

a2=mkAgent(Z)

a1[1]=a2

a1[2]=r

b1=mkAgent(S)

b2=mkAgent(Z)

b1[1]=b2

push(a1,b1)

122

5.2.2 Translation of interaction rules

Next, we define a compilation for rules.

Definition 5.2.4 (Compilation of rules)

We define a translation Compiler from a rule into a sequence of code strings, making a

name table N which is used in Compilet (called by Compilee via Compilees), as follows:

Compiler(α(~x) = β(~y)⇒ Θ)
def
= let

N1 = Compilern(~x, L, ∅);

N2 = Compilern(~y, R,N1);

(N, c1) = makeN′(Name(Θ)− {~x, ~y},N2);

c2 = Compilees(Θ);

in

“rule {α} {β} {”

+“stackFree()”

+c1 + c2

+“free(L)”

+“free(R)”

+“}”

end;

Compilern((x1, . . . , xn), pos, N)
def
= let

N0 = N;

N1 = (N0[x1] := “{pos}[1]”);
...

Nn = (Nn−1[xn] := “{pos}[{n}]”);

in

Nn

end;

Example 5.2.5

Here, let us consider compilation of the following two rules:

• Add(x1, x2) = Z⇒ x1 = x2,

• Add(x1, x2) = S(y)⇒ x2 = S(w), Add(x1, w) = y.

123

First, we deal with the first rule Add(x1, x2) = Z ⇒ x1 = x2. By applying Compiler

into the rule, the following is obtained:

let

N1 = Compilern((x1, x2), L, ∅);

N2 = Compilern((−), R,N1);

(N, c1) = makeN′(∅,N2);

c2 = Compilees(x1 = x2));

in

“rule Add Z {”

+“stackFree()”

+c

+“free(L)”

+“free(R)”

+“}”

end

Here, in this let clause, we look at the first three expressions. The following is a result

after processing those:

({(x1, L[1]), (x2, L[2])}, “”)

The following is an unfolding result of the last expression Compilees(x1 = x2):

let

(c1, a1) = Compilet(x1);

(c2, a2) = Compilet(x2);

c3 = “push({a1},{a2})”;

in

c1 + c2 + c3

end

Taking account of the following:

• Compilet(x1) = (“”, L[1])

• Compilet(x2) = (“”, L[2])

the result of Compilees(x1 = x2) is obtained as follows:

push(L[1],L[2])

124

Thus, the result of Compiler(Add(x1, x2) = Z⇒ x1 = x2) is obtained as follows:

rule Add Z {

stackFree()

push(L[1],L[2])

free(L)

free(R)

}

Secondly, we deal with the other rule Add(x1, x2) = S(y)⇒ x2 = S(w), Add(x1, w) = y.

By applying Compiler into the rule, the following is obtained:

let

N1 = Compilern((x1, x2), L, ∅);

N2 = Compilern((y), R,N1);

(N, c1) = makeN′({w},N2);

c2 = Compilees(x2 = S(w), Add(x1, w) = y);

in

“rule Add S {”

+“stackFree()”

+c

+“free(L)”

+“free(R)”

+“}”

end

Here, we look the first three expressions in this let clause. The following is a result after

processing those:

({(x1, L[1]), (x2, L[2]), (y, R[1]), (w, w)}, “w=mkName()”)

By unfolding the last expression Compilees(x2 = S(w), Add(x1, w) = y) in the let clause,

125

we obtain the following:

let

c1 = Compilee(x2 = S(w));

c2 = Compilee(Add(x1, w) = y);

in

c1 + c2

end

In this let clause, we examine the first expression Compilee(x2 = S(w)). The following is

obtained by unfolding it:

let

(c1, a1) = Compilet(x2);

(c2, a2) = Compilet(S(w));

c3 = “push({a1},{a2})”;

in

c1 + c2 + c3

end

Taking account of the following:

• Compilet(x2) = (“”, L[2])

• Compilet(S(w)) = (c1, aS) where c1 is as follows:

aS=mkAgent(S)

aS[1]=w

push(L[2],aS)

the result of Compilee(x2 = S(w)) is obtained as follows:

aS=mkAgent(S)

aS[1]=w

push(L[2],aS)

Regarding the second expression Compilee(Add(x1, w) = y), we obtain the following by

126

unfolding it:

let

(c1, a1) = Compilet(Add(x1, w));

(c2, a2) = Compilet(y);

c3 = “push({a1},{a2})”;

in

c1 + c2 + c3

end

The same as the above, we can obtain the following as a result:

aAdd=mkAgent(Add)

aAdd[1]=L[1]

aAdd[2]=w

push(aAdd,R[1])

Thus, we obtain a code sequence as a result of Compiler(Add(x1, x2) = S(y) ⇒ x2 =

S(w), Add(x1, w) = y) as follows:

rule Add S {

stackFree()

w=mkName()

aS=mkAgent(S)

aS[1]=w

push(L[2],aS)

aAdd=mkAgent(Add)

aAdd[1]=L[1]

aAdd[2]=w

push(aAdd,R[1])

free(L)

free(R)

}

5.3 Execution model in the C language

In this section, we explain how these translated codes in Section 5.2.2 are evaluated on the

standardised implementation model in the C language, showing correspondence of codes

in LL0 with ones in the C language.

127

5.3.1 Implementation of instructions

In this section we explain how each instruction in Figure 5.3 corresponds to the C language

codes in the standardised implementation model.

• #agent α1 : p1, . . . ,αn : pn

For each sort of agent, we assign a unique number that is greater than 1. The

declaration for agent symbols corresponds as follows:

#define ID α1 1
...

#define ID αn n

#define MAX AGENTID n

In addition, to manage symbol characters and arities, we define two arrays named

Symbols and Arities respectively as follows:

char Symbols[MAX AGENTID+1] = {"", "α1", . . . ,"αn"};

int Arities[MAX AGENTID+1] = {1,p1, . . . ,pn};

• I=mkInterface(n)

This makes a global n-size array for the interface, and corresponds to the following

codes:

#define SIZE_INTERFACE n

Agent *I[SIZE_INTERFACE];

• x =mkAgent(id)

This makes a variable x whose type is Agent pointer and assigns an agent node

whose id is id . This corresponds to the following codes:

Agent *x=mkAgent(id);

• x =mkName()

This makes a variable x whose type is Agent pointer and assigns a name node. This

corresponds to the following codes:

Agent *x=mkName();

128

• x = mkInd()

This makes a variable x whose type is Agent pointer and assigns an indirection node.

Agent *x=mkAgent(ID_INDIRECTION);

• free(x)

This disposes of a graph node assigned to x. This corresponds to the following code:

freeAgent(x);

• x[p]=y

This assigns a graph element y to a port p of an agent node x. The port p in LL0

corresponds to the port p− 1 in the standardised implementation method, and thus

this instruction corresponds to the following code:

x[p− 1]=y;

• x[0]=α

This changes the id of an agent x into α. This corresponds to the following codes:

x->id=ID_α;

• push(x,y)

This pushes two agents onto the equation stack. This corresponds to the following

codes:

pushActive(x,y);

• stackFree()

This disposes of the top element of the equation stack. In the translation result, it

occurs in rule procedures. In the standardised implementation method, the function

popActive manages the index of the equation stack, and thus no code is required.

5.3.2 Implementation of rule procedures

Next, we manage the translated LL0 instructions for rule procedures.

A rule procedure in LL0 such as

rule Alpha Beta

129

is encoded as a function that is named as Alpha Beta, takes two pointers *a1 and *a2 to

two elements of the equation, and creates nets according to interaction rules. The special

variables L and R in the rule procedures are denoted as *a1 and *a2, and thus

L[1], L[2], . . . , R[1], R[2], . . .

are expressed as

a1->port[0], a1->port[1], . . . , a2->port[0], a2->port[1], . . .

.

For instance, the rule procedure for Add and Z in Section 5.1.2 is encoded as follows:

void Add_Z(Agent *a1, Agent *a2) {

pushActive(a1->port[0], a1->port[1]);

freeAgent(a1);

freeAgent(a2);

}

The rule procedure for Add and S is encoded as follows:

void Add_S(Agent *a1, Agent *a2) {

Agent *aS = mkAgent(ID_S);

Agent *aAdd = mkAgent(ID_Add);

Agent *w = mkName();

aAdd->port[0]=a1->port[0];

aAdd->port[1]=w;

pushActive(aAdd, a2->port[0]);

aS->port[0]=w;

pushActive(a1->port[1], aS);

freeAgent(a1);

freeAgent(a2);

}

To manage these functions, we define a rule table R, which stores pointers to those

functions. Here, for simplicity, we use the following simple matrix:

typedef void (*RuleFun)(Agent *a1, Agent *a2);

RuleFun R[MAX_AGENTID+1][MAX_AGENTID+1];

For instance, the above functions are stored as follows:

130

R[ID_Add][ID_Z] = &Add_Z;

R[ID_Add][ID_S] = &Add_S;

5.4 Execution model in a bytecode interpreter

In this section, as another correspondence of instruction sets in LL0, we introduce a

bytecode interpreter that can evaluate the translated LL0 code in Section 5.2.

This interpreter is built on the standardised implementation method, and thus it has

the same data-structure in the C language. These bytecodes are regarded as intermediate

codes of an interpreter of interaction nets, and those are evaluated by a register-based

virtual machine such as the Lua’s virtual machine [33]. The bytecodes mainly control the

following components:

• Registers Reg,

• Global array G for the interface,

• Equation stack.

We use the following notations: Reg(n), G(m) mean the nth Register and the mth element

of Global array respectively. We do not care about the sizes of the R and G.

The Reg and G are implemented by Agent* arrays. Each Register Reg(n) is used for

each variable in LL0 and the Global array G is used as the interface array.

The Figure 5.5 illustrates the bytecodes of the interpreter. We write a sequence of

bytecodes with the space and breakline separators such as:

MKAGENT 11 3

MKAGENT 12 4

PUSH 11 12

The code RETURN is used to return the execution call for these bytecodes by a runtime

function.

These codes are defined as the following integer constants in the standardised imple-

mentation method:

enum {MKAGENT,MKNAME,MKIND,FREE,MOVEP,MOVEG,CHGID,PUSH,RETURN};

5.4.1 Implementation of instructions

We explain how each instruction in LL0 (shown in Figure 5.3), which is required for the

translation from the nets, corresponds to the bytecodes below:

131

Bytecode Description

MKAGENT A B Reg(A):=mkAgent(B)

MKNAME A Reg(A):=mkName()

MKIND A Reg(A):=mkInd()

FREE A freeAgent(Reg(A))

MOVEP A B C Reg(A)->port[B]:=Reg(C)

MOVEG A B G(A):=Reg(B)

CHGID A B Reg(A)->id:=B

PUSH A B pushActive(Reg(A),Reg(B))

RETURN Return from the execution call.

Figure 5.5: Instructions of a bytecode interpreter

• #agent α1 : p1, . . . ,αn : pn

This model used the standardised implementation model, so it is the same as the

correspondence in the C language codes as follows;

#define ID α1 1
...

#define ID αn n

#define MAX AGENTID n

char Symbols[MAX AGENTID+1] = {"", "α1", . . . ,"αn"};

int Arities[MAX AGENTID+1] = {1,p1, . . . ,pn};

• I=mkInterface(n)

This makes a global n-size array for the interface. The interface is managed by the

Global array G, and thus there is no corresponding code.

• x =mkAgent(id)

We assume that each variable x is assigned to a Register Reg(n), and this instruction

corresponds to the following codes:

MKAGENT n id

• x =mkName()

The same as the case of mkAgent, this instruction corresponds to the following codes:

MKNAME n

132

• x = mkInd()

This is the same as the case of mkName:

MKIND n

• free(x)

This instruction directly corresponds to the following code, where x is assigned to a

Register Reg(n):

FREE n

• x[p]=y

When x and y are assigned to Registers Reg(m) and Reg(n), it corresponds to the

following codes, where q is a constant such as q = p− 1:

MOVEP m q n

• x[0]=α

When x are assigned to Registers Reg(n), this corresponds to the following codes:

CHGID n ID_α

• I[p]=y

When y are assigned to Registers Reg(m), it corresponds to the following code:

MOVEG p m

• push(x,y)

This instruction directly corresponds to the following code, when x and y are assigned

to Registers Reg(m) and Reg(n):

PUSH m n

• stackFree()

The same as the correspondence to the standardised implementation model, this is

managed by the function popActive, and thus no corresponding code is required:

A sequence of bytecodes is evaluated by the function evalCode as follows:

133

void evalCode(int *code) {

int pc=0; // program counter

while (1) {

switch(code[pc]) {

case MKAGENT:

Reg[code[pc+1]]=mkAgent(code[pc+2]);

pc+=3;

break;

case MKNAME:

Reg[code[pc+1]]=mkName();

pc+=2;

break;

case MKIND:

Reg[code[pc+1]]=mkInd();

pc+=2;

break;

case FREE:

freeAgent(Reg[code[pc+1]]);

pc+=2;

break;

case MOVEP:

Reg[code[pc+1]]=(Reg[code[pc+2]])->port[Reg[code[pc+3]]];

pc+=4;

break;

case MOVEG:

G[code[pc+1]]=Reg[code[pc+2]];

pc+=3;

break;

case CHGID:

(Reg[code[pc+1]])->id=code[pc+2];

pc+=3;

break;

case PUSH:

pushActive(Reg[code[pc+1]],Reg[code[pc+2]]);

134

pc+=3;

break;

case RETURN:

return;

break;

}

}

}

5.4.2 Implementation of rule procedures

Next, we explain how the translated rule procedures are realised in the bytecode inter-

preter.

A rule procedure has a sequence of instructions that contains the following special

variables

L[1], L[2], L[3], . . . , R[1], R[2], R[3], . . .

to refer to the ports of the active pairs. We assign those variables into the Registers Reg

as

0, 1, 2, . . . , MAX PORT, MAX PORT + 1, MAX PORT + 2, . . .

respectively, and starts the numbering for variables in the Registers from MAX PORT × 2.

For a rule procedure in LL0 such as

rule Alpha Beta

we store an integer array Alpha Beta with a sequence of codes.

For instance, a sequence of instructions of the rule procedure for Add and Z in Sec-

tion 5.1.2 is encoded as follows:

PUSH 0 1 // push(L[1],L[2])

RETURN

To make the correspondence clear, we add a corresponding instruction in LL0 as a com-

ment. The disposing of the active pair is managed by the runtime function eval. These

codes are executed by a runtime function, and we put RETURN at the end of codes to show

the termination of the codes. Those are stored in an integer array Add Z as follows:

int *Add_Z = {PUSH, 0, 1, RETURN};

135

The instruction sequence of the rule procedure for Add and S, when we assume that

MAX PORT is 5, is encoded as follows:

MKAGENT 10 ID_S // aS=mkAgent(S)

MKAGENT 11 ID_Add // aAdd=mkAgent(Add)

MKNAME 12 // w=mkName()

MOVEP 11 0 0 // aAdd[1]=L[1]

MOVEP 11 1 12 // aAdd[2]=w

PUSH 11 5 // push(aAdd, R[1])

MOVEP 10 0 12 // aS[1]=w

PUSH 1 10 // push(L[2], aS)

RETURN

and these are stored into an integer array Add S:

int *Add_S = {MKAGENT, 10, ID_S, MKAGENT, 11, ID_Add, MKNAME, 12,

MOVEP, 11, 0, 0, MOVEP, 11, 1, 12, PUSH, 11, 5, MOVEP, 10, 0, 12,

PUSH, 1, 10, RETURN};

To manage these codes, we define a code table Code, which stores codes for rule pro-

cedures. Here, for simplicity, we use the following simple matrix:

int *Code[MAX_AGENTID+1][MAX_AGENTID+1];

The code table is initialised by the function initRuleTable as follows:

void initRuleTable() {

int i,j;

for (i=0; i<= MAX_AGENTID; i++)

for (j=0; j<= MAX_AGENTID; j++)

Code[i][j] = NULL;

/* interaction rules */

Code[ID_a][ID_b]=a_b;
...

}

Assignments of code sequences for interaction rules to the Code are declared below the

comment line /* interaction rules */. For instance, the functions Add Z and Add S

are written as follows:

136

/* interaction rules */

Code[ID_Add][ID_Z] = Add_Z;

Code[ID_Add][ID_S] = Add_S;

Those code sequences are referred by the runtime function eval is written as follows:

void eval() {

Agent *a1, *a2;

while (popActive(&a1, &a2)) {

if (a2->id != ID_NAME) {

if (a1->id != ID_NAME) {

int i;

for (i=0; i<Arities[a1->id]; i++) //For L[0],L[1],L[2],...

Reg[i]=a1->port[i];

for (i=0; i<Arities[a2->id]; i++) //For R[0],R[1],R[2],...

Reg[MAX_PORT+i]=a2->port[i];

evalCode(Code[a1->id][a2->id]); //Evaluate code sequences

freeAgent(a1); freeAgent(a2);

} /* The below is operations for x=t */
...

} else {

/* The below is operations for t=y and x=y */
...

}

}

}

5.5 Summary

In this chapter we proposed the low-level language LL0. Instructions in LL0 not only

have almost one-to-one correspondence to the standardised implementation model, but

also are considered bytecodes of a virtual machine. We also introduced a compilation

from interaction nets to LL0. This compilation and bytecode aspect leads to our new

interpreter for interaction nets introduced in Chapter 7.

137

Chapter 6

A language for programming in

interaction nets

Programming with pure interaction nets is analogous to programming in the pure λ-

calculus. They lack datatypes and constructs that one would expect in a typical program-

ming language. In this chapter we take a step towards extending interaction nets from

their pure form and to allow them to facilitate nested pattern matching, built-in datatypes

and operations over these types.

First we extend interaction rules so that nested pattern matching can be performed.

This extension is conservative—the extended rules can be translated back into ordinary

rules in pure interaction nets. Next we introduce agents that may optionally contain at-

tributes, which are values of base type: integers, and interaction rules with these attributes

and conditions. Finally, we extend the execution model to make use of these extensions.

6.1 Pattern matching

6.1.1 Motivations

In this section, we motivate our work by investigating how we can translate a function

with pattern matching into interaction nets.

If we consider a functional programming language as an orthogonal term rewriting

system, we can translate programs into interaction nets [15]. In this way, if we take both

the name of the function and the first argument as agents, we can represent these programs

as computations in interaction nets. For example, the following function Last that returns

the last element of a given list:

fun Last [x] = x

138

| Last (x::xs) = Last xs;

can be represented as the following computations:

Last Cons

Nil

r x

�→
�

Last Cons

r x

�→
�

Cons

y ys

Last

r x

Cons

y ys

Del

r x

These computations, however, are not defined by interaction rules directly because these

LHS nets in the above graphs require other agents (Nil and Cons) that are connected to

their active pairs. By introducing an auxiliary agent these can be realised as interaction

rules:

Last Cons

r x xs

Aux

r x xs

⇒

Aux

r x

Nil ⇒

r x

Aux

r x

Cons

y ys

Last

r x

Cons

y ys

Del⇒

This set of rules will compute and return the last element of a list. We argue that the

introduction of the auxiliary agents to the system is not satisfactory from a programmer’s

perspective. Programmers want to write simpler programs rather than more complicated

ones. To solve this problem, we extend the definition of rules to facilitate nested pattern

matching.

6.1.2 Interaction rules for nested patterns (INP)

In this section we present our framework INP that extends ordinary interaction rules

(ORN) so that we can perform rewritings between nested agents. The main difference

from ORN is that we allow the left hand side of a rule to contain more than two agents.

The definitions of agents and nets remain the same as for ORN.

Definition 6.1.1

A nested active pair P is inductively defined as follows:

Base: Every active pair in ORN is a nested active pair. A nested active pair for an active

pair (α, β):

139

...

�

...

�

is represented textually as follows:

〈α(~x) on β(~y)〉

.

Step: A net obtained as a result of connecting the principal port of some agent to a free

port in a nested active pair P is also a nested active pair. For instance, the following

net such that an agent γ is connected to a free port yj of a nested active pair P is

also a nested active pair:

P

...

�

... ...y
j

We represent this textually as

〈P, yj − γ(~z)〉 .

Definition 6.1.2

An interaction rule in INP is given by P ⇒ N where P is a nested active pair. All the free

ports are preserved during reduction, and there is at most one rule with P in any given

system.

Proposition 6.1.3

Let R be a rule in ORN, then R is also a rule in INP.

Proof. All rules P ⇒ N where P contains just two agents (active pair) are valid ORN

rules. These active pairs fall into the base definition of nested active pairs. �

We aim to extend ORN in a conservative way and retain the property of strong con-

fluence. For this purpose, we introduce a condition that restricts the formation of the set

of interaction rules in INP.

Definition 6.1.4

A set of nested active pairs P is sequential if and only if, when 〈P, yj − γ(~z)〉 ∈ P, then

140

• for the nested pair P , P ∈ P and,

• for all free ports y in P except the yj and for all agents α, 〈P, y − α(~w)〉 6∈ P.

As an example, consider the following nested active pair P in a sequential set P:

...

�

...

�

x
1

x
n

y
2

y
m

...

�

z
1

z
l

represented textually as 〈α(x1, . . . , xn) on β(y1, . . . , ym), y1 − γ(z1, . . . , zl)〉. Then we can

not have any other nested active pair (α, β) such that the port y1 is free. Thus, the

following definitions violate the condition of the set P:

...

�

z
1

z
l

...

�

...

�

x
n

y
2

y
m

y
1

...

�

z
1

z
l

...

�

...

�

x
1

y
2

y
m

y
1

...

�

z
1

z
l

...

...

�

...

�

x
1

x
n

y
m

y
1

...

�

z
1

z
l

...

�

...

�

x
1

x
n

y
2

y
1

...

〈�(x�)⊲⊳ �(y�), x1 � 	(z�)〉 〈�(x�)⊲⊳ �(y�), x
n
� 	(z�)〉 〈�(x�)⊲⊳ �(y�), y2 � 	(z�)〉 〈�(x�)⊲⊳ �(y�), y

m
� 	(z�)〉

For clarity, we draw lines and triangles on auxiliary ports that connect to nested agents.

As an example, we represent a nested active pair 〈α(~x) on β(~y), ym − γ(~z), y1 − κ(~w)〉

graphically as follows:

...

�

...

�

...

�

...

�

y

m

y

1

Note that this nested active pair belongs to the set P because P ∈ P.

Definition 6.1.5

A set of rules R in INP is well-formed if and only if,

• there is a sequential set which contains every nested active pair of the LHS in R,

• for every rule P ⇒ N in R, there is no interaction rule P ′ ⇒ N ′ in R such that P ′

is a subnet of P .

141

Example 6.1.6

The computation in Section 6.1.1 is defined as a well-formed rule set:

Last Cons

Nil
r x

Last Cons

Cons

y ys

Last

r x

Cons

y ys

Del⇒ ⇒

r x

r x

and the following computation can be performed:

Last Cons

Nil

r

ConsFalse

True

�→
Last

Nil

r

ConsFalse

True

Del �→
Last

Nil

r

Cons

True

�→

r

True

In the above example, the rewriting is strongly confluent because there is no critical

pair. We loose this property if there are more than two rules that can be applied to the

same net.

Example 6.1.7

We can encode the following definition of the parallel-or function Por:

Por(True, y) = True

Por(y, True) = True

Por(False, y) = y

Por(y, False) = y

as a set of INP rules:

Por Pair

r y

True

⇒

r y

True

Del
Por Pair

r y

True

⇒

r y

True

Del

False

Por Pair

r y

⇒

r y

False

Por Pair

r y

⇒

r y

142

However, this is not a well-formed set of rules because there is no sequential set which

contains both 〈Por(x) on Pair(y1, y2), y1 − True〉 and 〈Por(x) on Pair(y1, y2), y2− True〉.

Therefore, the reduction is not strongly confluent (but still confluent in this example):

Por Pair

False

r

True

r

True

Del

False

r

True

�
→

�→

�
→

On the other hand, the following rule set for the Or function is well-defined:

Or(True, x) = True

Or(False, False) = False

Or(False, True) = True

Or Pair

True
r x

⇒

True
r x

Del

False

Or Pair

r

⇒

False

r

False

Or Pair

r

⇒

True

r

False

True

Example 6.1.8

Interaction rules for Fibonacci number in Figure 2.4 are written with nested pattern

matching as follows:

143

Fib Z
⇒

S

Z

⇒

S

Fib
⇒

S S

Z
Z

Fib S

r r

r r

x

r

Fib SFib

Dup

Add

x

r

Interaction rules for Ackermann function in Figure 2.5 are written with nested pattern

matching as follows:

A ⇒Z

y r

S

y r

⇒ A

r

x

S

Z

Pred

S

⇒

y

Z

SA

r x

SA

r x

x

A

r

A

y

Pred

Dup

Proposition 6.1.9 (Strong Confluence)

If a given rule set R in INP is well-formed, then the reduction in R is strongly confluent.

Proof. Assume that P ⇒ N ∈ R. There are two cases where critical pairs can arise for

a net which contains P :

case 1: there is no overlap between rules. We assume that there is a rule P1 ⇒ N1 ∈ R

where P1 does not overlap with P . In this case, the reduction is strongly confluent:

144

P

... P
1

...

�→

N

... P
1

...

P

... N1

...

�
→

�→

�
→

N

... N1

...

case 2: there are overlaps between rules.

case 2.1: We assume that there is a rule P2 ⇒ N2 ∈ R where P2 is a subnet of P .

P

...

P2

...

�
→

�
→

N

...

...

N2

...

This case can not arise if R is well formed. Therefore P2 ⇒ N2 6∈ R

case 2.2: We assume that there is a rule P3 ⇒ N3 ∈ R where P3 contains a subnet

of P .

P
′

...

...

�

P

⇒
N

...

P
′

...

P3

⇒
N3

...

...

�

There is no sequential set which contains both P and P3, therefore P3 ⇒ N3 6∈

R. �

6.1.3 Translation

In this section, we define the translation function T from interaction rules with nested

active pairs P ⇒ N to interaction rules with only active pairs:

• When P is just an active pair 〈α(x1, . . . , xn) on β(y1, . . . , ym)〉, then the translation

T is the identity:

145

T
...

�

...

�

x
1

x
n

y
m

y
1

N

...

⇒

x
1

x
n

y
m

y
1

...

...

�

...

�

x
1

x
n

y
m

y
1

N

...

⇒

x
1

x
n

y
m

y
1

...

=

• When P is a nested active pair such that

P = 〈α(p1, . . . , pw) on β(q1, . . . , qk, . . . , qu), qk − γ(z1, . . . , zl), ~a〉

where ~a is a sequence of agents connections such that ri− τ(~w), then the translation

T generates the following rules:

– α(p1, . . . , pw) = β(q1, . . . , qk, . . . , qu)

⇒ qk = αβ(p1, . . . , pw, q1, . . . , qk−1, qk+1, . . . , qu)

where αβ is a new agent named from a concatenation of the LHS nested active

pair agents. Since qk is connected to the principal port of γ, an active pair

(αβ, γ) will be formed.

–
〈
αβ(p1, . . . , pw, q1, . . . , qk−1, qk+1, . . . , qu) on γ(z1, . . . , zl), ~a

〉
⇒ N . This rule

is recursively translated to obtain a rule with just an active pair.

Graphically, this translation is given by:

...

�

...

x
1

x
n

y
m

y
1

...

T
N

...

⇒

x
1

x
n

y
m

y
1

......

�

...

�
...

p
1

p
w

q
1

q
u

q
k

q
k

�1

q
k+1

N
′

...

=
...

�

...

� ⇒

...

p
1

p
w

q
1

q
u

q
k

q
k

�1

q
k+1

...

��

...

p
1

p
w

q
1

q
u

q
k

q
k

�1

q
k+1 ,

146

...

x
1

x
n

y
m

y
1

...

T
N

...

⇒

x
1

x
n

y
m

y
1

...

...

�

N
′

... ...

��

...

Example 6.1.10

The rules in Example 6.1.6 are translated as follows:

Last Cons

Nil
r x

⇒

r x

T

Nil ⇒

r x

T
= LastCons

r x

Last Cons

r x xs

⇒

,xs

LastCons

r x

Nil ⇒

r x

= LastCons

r x

Last Cons

r x xs

⇒

,xs

LastCons

r x

Last Cons

Cons

y ys

Last

r x

Cons

y ys

Del⇒

r x

T

⇒T Cons

y ys

Last

r x

Cons

y ys

Del= LastCons

r x

Last Cons

r x xs

⇒

,xs

LastCons

r x

⇒Cons

y ys

Last

r x

Cons

y ys

Del= LastCons

r x

Last Cons

r x xs

⇒

,xs

LastCons

r x

147

Lemma 6.1.11

Let R be a well-formed rule set in INP and R1, R2 ∈ R. Then, a rule set T[R1] ∪T[R2]

contains no rule such that P ⇒ N1 and P ⇒ N2 where N1 6= N2.

Proof. Let R1, R2 be P1 ⇒M1, P2 ⇒M2 respectively.

case 1: the active pairs in P1 and P2 are different. In this case, distinct names are

introduced by T for those active pairs respectively. Therefore, every LHS of the

rules generated by recursively applying T also have distinct active pairs.

case 2: the active pairs in P1 and P2 are the same. Because both P1 and P2 belong to the

same sequential set, P1 and P2 have the same sequence of agents succeeding from

the active pair. Therefore, in the set obtained from this sequence by using T, there

is no rule such that P ⇒ M1 and P ⇒ M2. For the remaining agents, it turns out

that there is no such rule by applying case 1. �

Proposition 6.1.12

Let R be a well-formed rule set in INP. The set
⋃

T[R] where R ∈ R is a proper rule

set in ORN.

Proof. From the definition of T, it is clear that every LHS of rules obtained by using

T contains only an active pair. Moreover, by Lemma 6.1.11, there is no rule P ⇒ N1 and

P ⇒ N2, where N1 6= N2, in the resulting rule set. �

Proposition 6.1.13 (Conservativity)

Let R be a well-formed set of rules in INP. If P ⇒ N ∈ R, then P →∗ N by using the

rules obtained by the translation T[P ⇒ N].

Proof. If P is just an active pair, then we can perform P → N because T[P ⇒ N] =

P ⇒ N .

If P = 〈α(~x) on β(~y, y), y − γ(~z), ~a〉 where ~x, ~y, ~z are sequences of auxiliary ports and

~a is a sequence of agents, then

T[P ⇒ N] = (α(~x) = β(~y, y)⇒ αβ(~x, ~y) = y), T[
〈
αβ(~x, ~y) on γ(~z), ~a

〉
⇒ N].

By using the first rule,

α(~x) = β(~y, y), y = γ(~z) → αβ(~x, ~y) = y, y = γ(~z) → αβ(~x, ~y) = γ(~z).

Applying recursively this operation to the rule
〈
αβ(~x, ~y) on γ(~z), ~a

〉
⇒ N and the nested

agent pair αβ(~x, ~y) on γ(~z), we will perform P →∗ N . �

148

6.1.4 Related Works

In this section, we discuss other approaches to nested pattern matching by using methods

that have been proposed as extensions of interaction nets.

Pattern matching on more than one argument Sinot and Mackie [59] introduced

Macros for interaction nets and they allow pattern matching on more than one argument

by relaxing the restriction of one principal port per agent. Their system requires all

principal ports of an agent in the LHS net of a rule to be connected to principal ports of

other agents for the purpose of holding the property of strong confluence. Therefore, this

system is useful as a conservative extension. However, we can hardly encode the function

Last as it requires nested pattern matching. This is because in the case that the Cons

agent has two principal ports, we have to write all cases as follows:

Last Cons

Nil

⇒
Last

Cons

Del
Last Cons

Cons

Nil

⇒

Nil

Last

Cons

Del
Last Cons

Cons

Nil

⇒

Cons

Cons

Nil

...

Alexiv’s interaction nets with multiple principal ports (IMNPP) [2] is also useful for this

purpose because this system also allows more than one principal port per agent. However,

interactions are still performed only on an active pair. Therefore, in the case of nested

pattern matching, we have to introduce auxiliary agents and rules as in Section 6.1.1. As

another solution, we can introduce rules between Cons and Nil:

Cons

Nil

⇒

x

Cons

Nil

x

Cons

y ys

Cons

x

⇒ Cons

Cons

y ysx

Last
⇒

Cons

Nil

xr r x

Last

r

Cons

Cons

y ysx

⇒
Last

Cons

Del

r x

y ys

149

These cause, however, computation between the list structures even if it is not needed.

Last Last
Cons

Cons
Last

Cons

Del
Cons

Cons

Nil

�
→

�
→

Nil

�→

Nil

�→
�

Del

Last Cons

Cons

Nil

Computation for nets Bechet [10] proposed computation for nets on interaction rules

as abbreviations, where nets are captured as an agent and reductions of the agent are

realised by the rules corresponding to the computation of the net. As an example of

applying this method to nested pattern matching, we consider our example function Last.

One solution is to define the agent Last by using other agents that have already been

defined. It is not simple to find a good combination with those agents. As another

solution, we introduce abbreviations for list structures:

Cons

Nil

x

Cons

Nil

x

Cons

y ys

Cons

x

Cons

Cons

y ysx

=

def

=

def

However, we have to define rules between Last and Cons for the case that those abbrevi-

ations are unfolded, therefore we have to introduce auxiliary agents in the end.

6.2 Agents and interaction rules with attributes

An agent that contains a natural number was introduced in the paper [19]. In this section

we extend this notion so that any agent can have many attributes, which are integers.

Next, we extend interaction rules so that these agents can be managed with arithmetic

expressions and conditional operations.

150

6.2.1 Agents hold attributes

We write attributes in brackets after the symbols of agents: for instance, α(2, 4) is a node

called α which holds the values 2 and 4. From now on, we draw agents not only as circles

but also as squares or triangles.

�(2, 4)

Lists of integers are represented by using two agents: Cons(i) and Nil where i is an

attribute value:

Cons(i) Nil

To simplify the diagrams, we often just write the contents of the node and omit the name

when no confusion will arise. For instance, a list of 2,4,3 is written as follows:

2 4 3 Nil

When agents in active pairs hold attributes, we also say that the active pairs hold

attributes.

6.2.2 Interaction rules with expressions

In this section we extend interaction nets to create agents that hold new attributes as the

result of applying arithmetic operations o ∈ {+,−,×,÷, mod} to some of attributes that

are held by the original active pairs.

We consider relational operations r ∈ {=, 6=, <,≤, >,≥, and, or, not} as arithmetic

operations on integers, where the constant true, false are denoted as 1, 0 respectively,

and the results of relational operations are replaced with either 1 or 0. We call these

operations attribute operations.

Definition 6.2.1 (Interaction rules with expressions)

• Agents that hold expressions built on the attribute operations (+,−,×,÷, mod,=,

6=, <,≤, >,≥, and, or, not), variables and integer numbers are called agents with

expressions. For instance, α((x+ 1)× y, z) is an agent with expressions.

• Interaction rules with expressions are defined as interaction rules such that

– in the LHS, the active pair of the rule may hold variables for their attributes,

– in the RHS, agents with expressions may occur as long as every variable is held

by the active pair in the LHS.

151

• Interaction rules with expressions may be applied to active pairs the same as in

the original interaction nets. Attributes that are held by the active pairs of the

rule are substituted for variables that occur in agents with expressions in the LHS

of the rules, and each expression is performed and replaced with the calculation

result. For instance, when a rule (α(x1, x2), β(y)) ⇒ N is applied to an active pair

(α(1, 2), β(3)), these x1, x2, y that occur in N are replaced with 1, 2, 3 respectively.

Increments elements of lists The following is an example of interaction rules with

expressions such that the values of attributes in lists are incremented:

n n+1

Nilinc

⇒

⇒

inc inc

Nil

A list of 2,4,3 is changed into a list of 3,5,4 by applying the inc agent as follows:

inc �→

�→ inc �→
�

inc2 4 3 Nil 3 4 3 Nil

3 5 3 Nil 3 5 4 Nil

Duplication lists The following is an example of interaction rules with expressions that

duplicates lists:

�

�

n

n

�

⇒

⇒

Nil

n

Nil

Nil

A list is duplicated by applying the δ agent as follows:

� �→ �

2

2

�→
�

�

3

3

�→

2 4 3 Nil 4 3 Nil

2 4

2 4

Nil

2 4 3 Nil

2 4 3 Nil

152

6.2.3 Conditional interaction rules

We extended interaction rules with expressions so that these rules can be performed only

when attributes in the active pairs meet given conditions.

Definition 6.2.2 (Conditional interaction rules)

• Conditions for an active pair (α(x1, . . . , xn), β(y1, . . . , ym)) are expressions built on

attribute operations, integer numbers, and only variables x1, . . . , xn, y1, . . . , ym. For

instance, (x ≥ 1) and (x ≤ 10) is a condition for an active pair (α(x), β).

• We define conditional interaction rules for active pairs (α(x1, . . . , xn), β(y1, . . . , ym))

as interaction rules with expressions such that a condition Cond for the active pairs

is labelled on arrows:

(α(x1, . . . , xn), β(y1, . . . , ym))
Cond⇒ N

• Conditional interaction rules may be applied to active pairs only if the evaluation

result of the conditions is not 0.

• Each condition for the same active pair must be disjoint, and thus there is only one

rule that can be applied to the active pair.

We note that the Strong confluence property (Theorem 2.1.1) is preserved since there

is only at most one conditional interaction rule for each active pair.

Vending machine This is an example of a vending machine such that a candy is sold

at 45 pence. The agent Vending holds one integer number for the total value of inserted

coins, and when the total value exceeds 45 pence, it outs one candy and changes. This

logic is written by conditional interaction rules:

Vending
(p)

n ⇒

p + n

�

45

Candy

p+n-45

Vending
(0)

Vending
(p)

n ⇒

not

(p + n

�

45)

Vending
(p+n)

Cancel
Vending

(p) ⇒

p > 0

Vending
(0)

Vending
(p) ⇒

not

(p > 0)

p

Vending
(0)

Cancel

153

A list of coins 20p, 20p, 10p is changed into one candy and 5 pence:

�→
�

�→

Vending
(0)

20 1020
Vending

(40)
10

Candy
Vending

(0)

5

6.2.4 Examples

In this section we give some examples. Here we use the Tuple1 agent to hold an integer

number i:

Tuple1(i)

As long as there is no confusion, we omit the agent name and the bracket as follows:

i

Addition The addition operation is written as the following rules:

n ⇒ Addn

(n)

m n+m⇒

Add

Addn

(n)

For instance, the computation result of 2 + 3 is obtained as follows:

2

3

�→ 3 �→ 5Add Addn
(2)

Fibonacci number The following is an example of interaction rules of Fibonacci num-

ber.

n ⇒Fib

n=0

1

n ⇒Fib

n=1

1

n ⇒Fib

not(n=0) and

not(n=1)

Fib n-1

Fib n-2

Add

154

Ackermann function The following is an example of interaction rules of Ackermann

function.

1

⇒

m=0
m

A

A2(m)⇒

not(m=0)
m

A

n ⇒

n=0

m-1
A

n ⇒

not(n=0)
m-1

A

m

n-1

A

Addn
(1)

A2(m)

A2(m)

Bubble Sort The following is a set of rules for Bubble Sort algorithm. The agent M

works as a separator to indicate that all elements after are sorted.

⇒

⇒B(x)BS x

B(x) x

x

BS Nil ⇒

⇒

Nil

BS B(x)

BS M ⇒

⇒

⇒B(x)

B(x) y x B(y)

y B(x)

Nil M Nil

M M

x

�

y

not

(x

�

y)

y

For instance, a list [3,4,2] is sorted as follows:

BS 3 4 2 Nil �→ BS B(3) 4 2 Nil

�→ BS B(4)3 2 Nil �→ BS B(4)3 2 Nil

�→ BS 3 2 M Nil4 �→ 2 M Nil4BS B(3)

�→ 2 M Nil4BS B(3) �→ 2 M Nil4BS 3

M Nil43�→ BS B(2) M Nil43�→ BS 2

Nil43�→ 2

155

Quick Sort The next example is Quick Sort algorithm. The main mechanism of this

algorithm is given by the following rules. The first element of the list is used as a pivot:

QS x

QS Nil ⇒

⇒

Nil

x QS

QS

Part(x)Append

The agent Part(x) splits a list into two ones by less than x or not:

⇒y

y

�

x

Part(x) Part(x)
y

⇒yPart(x)
Part(x)

y

Part(x) Nil ⇒
Nil

Nil

not

(y

�

x)

The agent Append appends given two lists into one:

Append ⇒
Nil

⇒x x
Append

Append

For instance, a list [3,4,2,1] is sorted as follows:

QS 4 2 1 Nil3

�→ 4 2 1 Nil

�→
�

4 Nil

2 1 Nil

�→
�

Nil

1 Nil

�→
�

3

QS

QS

Part(3)Append
3

QS

QS

Append
3

Append
3

QS

QS

Part(4)Append
4

QS

QS

Part(2)Append
2

Append
4 Nil

Nil

Append
2 Nil

1 Nil

�→
� 2 3 4 Nil1Append

156

6.3 Syntax

In this section we introduce new syntax to express the extensions for agents and interaction

rules.

6.3.1 Nested pattern matching

Here we introduce the case-statements in the same style as functional programming lan-

guages in order to write interaction rules with nested pattern matching.

Definition 6.3.1 (case-statements)

We define an abbreviation for sets of interaction rules of nested patterns with case-

statements by the following grammar:

P ⇒ case x of α1(~x1) => E1 | · · · | αn(~xn) => En
def
= {〈P, x− α1(~x1)〉 → E1} ∪ · · · ∪ {〈P, x− αn(~xn)〉 → En}

where P is a nested active pair, and E1, . . . , En, called case-expressions, are defined by

the following grammar:

E ::= N

| case x of α1(~x1) => E1 | · · · | αn(~xn) => En.

Definition 6.3.2 (Sequential set for the case-statements)

Let P ⇒ E be an abbreviation with case-statements. We define a set of nested active

pairs by the following translation Seq(P,E) for nested agent pairs P and the syntax of

case-expressions E:

Seq(〈P 〉 , N)
def
= {〈P 〉},

Seq(〈P 〉 , case x of α1(~x1) => E1 | · · · | αn(~xn) => En)

def
= {〈P 〉} ∪ Seq(〈P, x− α1(~x1)〉 , E1) ∪ · · · ∪ Seq(〈P, x− αn(~xn)〉 , En).

Lemma 6.3.3

Let a set of rules α(~x) on β(~y) ⇒ E be given by an abbreviation with case-statements.

Then Seq(α(~x) on β(~y), E) is sequential.

Proof. Let P = Seq(α(~x) on β(~y), E). First, we show that, for 〈P, yj − γ(~z)〉 ∈ P,

P ∈ P:

• By Definition 6.3.2, Seq(〈P ′, y − β(~y)〉 , E′) contains P ′ and 〈P ′, y − β(~y)〉. Every

element in P occurs at the first argument of Seq, and 〈α(~x) on β(~y)〉 ∈ P. Thus, for

〈P, yj − γ(~z)〉 ∈ P, P ∈ P.

157

Next, we show that, when 〈P, yj − γ(~z)〉 ∈ P, then 〈P, y − α(~w)〉 6∈ P for all free

ports y in P except the yj and for all agents α:

• By Definition 6.3.2, the 〈P, yj − γ(~z)〉 is created by the case of a case-statement

such as Seq(〈P 〉 , case yj of γ(~z) => E | · · · | γ′(~z′) => E′ · · ·). Other case-

statements should occur in among E and E′, so there is no element such that

〈P, y − α(~w)〉 ∈ P where y 6= yj . �

Theorem 6.3.4

Let a rule set R = α(~x) on β(~y) ⇒ E be given by an abbreviation with case-statements.

Then R is well-formed.

Proof. Seq(α(~x) on β(~y), E) is a sequential set which contains every nested active pair

of the LHS in R. By Definition 6.3.2, for every rule P ⇒ N in R, there is no interaction

rule P ′ ⇒ N ′ in R such that P ′ is a subnet of P . �

Example 6.3.5

Interaction rules for Fibonacci number and Ackermann function are written as follows:

Fib(r) = Z ⇒ r = S(Z)

Fib(r) = S(x) ⇒ case x of

Z => r = S(Z)

| S(y) => y = Dup(y1, y2), Fib(r1) = S(y1),

Fib(r2) = y2, Add(r2, r) = r1

A(y, r) = Z ⇒ r = S(Z)

A(y, r) = S(x) ⇒ case y of

Z => Pred(A(S(Z), r)) = x

| S(u) => u = Dup(Pred(A(w, r)), A(y, w))

6.3.2 Agents and interaction rules with attributes

Here we introduce syntax for agents holding attributes and interaction rules with expres-

sions and conditions.

Agents hold attributes We write attributes the same as auxiliary ports. For instance,

α(2, 4, r) means that the α agent holds two attributes 2, 4 and has one auxiliary port r.

In the case of agents with expressions, we also write variables the same as auxiliary

ports. In order to distinguish those from auxiliary ports, we may use a modifier int before

each attribute: For instance, Cons(int x, r) means that the x is used for an attribute

variable and the r is for an auxiliary port.

158

We extend the syntax for terms t as follows:

V ::= int x | i where i is an integer number,

Arg ::= V | t,

t ::= x | α(Arg1, . . . ,Argn) | $t.

We use ∆,Θ also for multisets of equations of those extended terms.

Definition 4.4.2 for name sets in terms is extended as follows:

Definition 6.3.6 (Names in terms)

The set Name(t) of names of a term t is defined in the following way, which extends to

sequences of terms, equations, sequences of equations, and rules in the obvious way.

Name(i) = ∅ where i is an integer number,

Name((int)x) = ∅,

Name(x) = {x},

Name(α(t1, . . . , tn)) = Name(t1) ∪ · · · ∪ Name(tn),

Name($t) = Name(t).

Thus, the occurrence of attributes and attribute variables do not affect the linearity

condition.

Lists agents List data-structures are common and useful to manage sequences of data.

We introduce the Cons(x, xs) and the Nil agents as built-in agents for lists and, write

those by using the following abbreviations:

[x|xs], [].

In addition, we introduce an abbreviation of [x1|[x2|[x3| · · · |Nil]] · · ·] as

[x1, x2, x3, . . .].

For instance, [2,4,3] denotes a list of 2,4,3:

2 4 3 Nil

Tuple agents The tuple data-structure is common to manage fixed-length data. In

interaction nets programming, it is useful to concentrate on operations of attributes. We

introduce the following n-tuple built-in agents:

Tuple0(), Tuple1(x1), Tuple2(x1, x2), Tuple3(x1, x2, x3), . . .

159

and we write those agents by using the following abbreviations:

(), (x1), (x1, x2), (x1, x2, x3), . . .

For instance, the following is a 2-tuple for 3 and 5:

(3,5)

Interaction rules with expressions Each symbol of attribute operations

+,−,×,÷, mod,=, 6=, <,≤, >,≥, and, or, not

is written as

+, -, *, /, mod, ==, !=, <, <=, >, >=, and, or, not

respectively.

In the interaction rules with expressions, expressions ei that contain arithmetic oper-

ations are replaced with variable vi, and written as vi = ei in a where-clause as follows:

α(x1, . . . , xn) = β(y1, . . . , ym)⇒ ∆ where v1 = e1 v2 = e2 · · · vl = el

where

• variables for attributes among x1, . . . , xn, y1, . . . , ym are written with the modifier

int,

• every variable vi does not occur in ej such that j < i,

• each ei is an expression built on arithmetic operations, variables for the attributes

in the LHS and variables vj such that j < i.

By this separation of expressions from equation sequences, operations for attributes

are distinguished from the operations for the original interaction net.

Take the following rules as an example of this notation:

n n+1

Nilinc

⇒

⇒

inc inc

Nil

These are written as follows:

inc(r) = [int n|ns] ⇒ r = [n1|w], inc(w) = ns where n1 = n+1

inc(r) = [] ⇒ r = []

160

Conditional interaction rules We introduce the following notation for conditional

interaction rules for active pairs P with conditions Cond as follows:

P
Cond⇒ ∆

We also introduce the following notation for a set of conditional interaction rules for

the same active pairs P to ensure that conditions Cond i are disjoint:

P | Cond1 ⇒ ∆1

| Cond2 ⇒ ∆2

...

| otherwise⇒ ∆n

as the following abbreviation:

P
Cond1⇒ ∆1

P
not(Cond1) and Cond2⇒ ∆2

...

P
not(Cond1) and ··· and not(Condn−1)⇒ ∆n

For instance, the rules for the candy vending machine are written as follows:

Vending(int p, c, r) = [int n|ns]

| p+n>=45⇒ r = candy(w), Vending(0, c1, w) = ns, c = [p1|c1]

where p1 = p+n-45

| otherwise ⇒ Vending(p1, c, w) = ns where p1 = p+n

Vending(int p, c, r) = cancel(ns)

| p>0⇒ Vending(0, c1, r) = ns, c = [p|c1]

| otherwise ⇒ Vending(0, c, r) = ns

In the graph notation as well, we use the otherwise to denote negation of any other

conditions.

Example 6.3.7

• Interaction rules for Fibonacci numbers are written as follows:

Add(m, r) = (int n) ⇒ Addn(n, r) = m

Addn(int n, r) = (int m) ⇒ r = (i) where i = m+ n

Fib(r) = (int a)

| a == 0 ⇒ r = (1)

| a == 1 ⇒ r = (1)

| otherwise ⇒ Fib(Add(n, r)) = (b), Fib(n) = (c)

where b=a-1 c=a-2

161

• Ackermann function is written by the following rules:

A(n, r) = (int m)

| m == 0 ⇒ Addn((1), r) = n

| otherwise ⇒ A2(m, r) = n

A2((int)m, r) = (int n)

| n == 0 ⇒ A((1), r) = (m′) where m′ = m-1

| otherwise ⇒ A(w, r) = (m′), A((n′), w) = (m)

where m′ = m-1 n′ = n-1

In the rules for Ackermann function, we can omit the declaration of A2 when we use

the notation of nested pattern matching:

A(n, r) = (int m)

| m == 0 ⇒ Addn((1), r) = n

| otherwise ⇒ case n of

(int n1) =>

| n1 == 0 ⇒ A((1), r) = (m′) where m′ = m-1

| otherwise ⇒ A(w, r) = (m′), A((n′), w) = (m)

where m′ = m-1 n′ = n1-1

• Evaluation results of F39 and A(3, 8) are obtained by equations Fib(r) = (39) and

A((8), r) = (3) respectively.

Example 6.3.8

The rule set of Bubble Sort is written as follows:

BS(r) = [] ⇒ r = []

BS(r) = [x|xs] ⇒ B(x, BS(r)) = xs

BS(r) = M(w) ⇒ r = w

B(int x, r) = [] ⇒ r = M([x])

B(int x, r) = M(w) ⇒ r = M([x|w])

B(int x, r) = [int y|ys]

| x<=y ⇒ r = [x|w], B(y, w) = ys

| otherwise ⇒ r = [y|w], B(x,w) = ys

Example 6.3.9

The rule set of Quick Sort is written as follows:

QS(r) = [] ⇒ r = []

QS(r) = [int x|xs] ⇒ Part(x, QS(w), QS(Append([x|w], r))) = xs

162

Append(a, b) = [] ⇒ a = b

Append(a, b) = [x|xs] ⇒ b = [x|w], xs = Append(a,w)

Part(int x, a, b) = [] ⇒ a = [], b = []

Part(int x, a, b) = [int y|ys]

| y<=x ⇒ ys = Part(x, a, w), b = [y|w]

| otherwise ⇒ ys = Part(x,w, b), a = [y|w]

6.4 Extension of LL0

In this section we extend the syntax of LL0 and the compilation method so that agents

and interaction rules with attributes can be expressed. Finally, we introduce an execution

model.

6.4.1 Extension of the syntax of LL0

In this section, we extend the syntax of LL0.

Attributes and expressions We use attribute values the same as graph elements by

putting a modifier (int) before the values, and thus an assignment of an attribute i to a

port p ≥ 1 of a graph node x is written as:

x[p] = (int)i

For instance, x[1] = (int)2 and x[2] = (int)10 are assignments of attribute variables 2

and 10 to ports x[1] and x[2] of a graph element x respectively. Those values also can be

assigned to variables by using the modifier (int) such as v = (int)2.

Attribute values that are assigned to variables can be referred in expressions by putting

a modifier (int) before the variables. For instance, when an attribute value 2 is assigned

to v, then (int)v + 10 is an expression, and the evaluation result is 12. With respect

to ports of L and R, we only allow referring these in rule procedures such as (int)L[1],

(int)R[2] and so on.

Expressions, the same as attribute values, are also assigned to ports and variables

by using the modifier (int), and these are recognised as assignments of the calculation

results of the expressions. For instance, when x[1] has an attribute value 2, then x[2] =

(int)((int)x[1]+1) is an assignment of the calculation result x[1]+1, thus 3, to the port

x[2].

The following is the summary for the extension for instructions:

163

Instruction Description

x[p] = (int)e Assign the result of an attribute expression e to a port p ≥ 1 of a

graph element x.

v = (int)e Assign the result of an attribute expression e to a variable v.

and for expressions:

Expression Description

(int)L[p] Deal with the port p of the left agent of the operated active pair as

an attribute value.

(int)R[p] Deal with the port p of the right agent of the operated active pair as

an attribute value.

(int)v Deal with the value of the variable v as an attribute value.

op e1 Apply an unary operation op ∈ {-, not} to an expression e1.

e1 op e2 Apply a binary operation op to expressions e1, e2

where op ∈ {+, -, *, /, mod, ==, !=, <, <=, >, >=, and, or}

The syntax is extended as follows (where original definitions are underlined):

〈operation〉 ::= 〈attrAssign〉 | 〈assignment〉 | 〈disposeAgent〉 | 〈opEquation〉

〈attrAssig〉 ::= 〈var〉 ′=′ (int) 〈attrExp〉

〈attrExp〉 ::= 〈integer〉 | (int) 〈var〉 | (int) (′L′ | ′R′) ′[′ 〈num〉 ′]′ |

〈unaryArith〉 | 〈binaryArith〉 |′ (′ 〈attrExp〉 ′)′

〈unaryArith〉 ::= (′-′ | ′not′) | 〈attrExp〉

〈binaryArith〉 ::= 〈attrExp〉 | (′+′ | ′-′ | ′*′ | ′/′ | ′mod′ |
′==′ | ′!=′ | ′<′ | ′<=′ | ′>′ | ′>=′ | ′and′ | ′or′) | 〈attrExp〉

〈integer〉 ::= ′ −′ 〈num〉 | 〈num〉

Example 6.4.1

An agent holding attributes

�(2, 4)

is allocated by the following instructions:

aAlpha = mkAgent(ALPHA)

aAlpha[1] = (int)2

aAlpha[2] = (int)4

Example 6.4.2

A list [2,4,3] is allocated by the following instructions:

164

// []

aNil=mkAgent(NIL)

// [3]

aCons1=mkAgent(CONS)

aCons1[1]=(int)3

aCons1[2]=aNil

// [4,3]

aCons2=mkAgent(CONS)

aCons2[1]=(int)4

aCons2[2]=aCons1

// [2,4,3]

aCons3=mkAgent(CONS)

aCons3[1]=(int)2

aCons3[2]=aCons2

Interaction rules We introduce if-statements to the syntax of rule procedures so that

conditional rules can be described as follows:

rule α β {

if (Cond1) {· · ·}

elif (Cond2) {· · ·}
...

elif (Condn) {· · ·}

else {· · ·}

}

where Cond i are conditions. The same as the block in rule procedures, we also write

instructions between { and } in if-statements, which are called if-statement blocks, and

variables introduced in an if-statement block can live only in the block.

In the execution of an if-statement, each condition Cond i is evaluated in the order

Cond1,Cond2, . . . until its evaluation result is 0. When the evaluation result of Cond j

is not 0, then the block placed at the right of the Cond j is evaluated as the execution of

the if-statement. Otherwise, the block of else is evaluated. These elif-clauses can be

omitted if those are not needed.

With respect to the syntax of nested pattern matching, we deal with it as a syntax

sugar, and thus we assume that the case-statement is translated into normal interaction

165

rules automatically.

The syntax for rules are extended as follows:

〈ruleBlock〉 ::= 〈ifClause〉 〈elifClause〉∗ 〈elseClause〉 | ′{′ 〈operation〉∗ ′}′

〈ifClause〉 ::= ′if′ ′(′ 〈attrExp〉 ′)′ 〈ifBlock〉

〈elifClause〉 ::= ′elif′ ′(′ 〈attrExp〉 ′)′ 〈ifBlock〉

〈elseClause〉 ::= ′else′ 〈ifBlock〉

〈ifBlock〉 ::= ′{′ 〈operation〉∗ ′}′

Example 6.4.3

The interaction rule for Fibonacci number is written as follows:

rule Fib Tuple1 {

stackFree()

if ((int)R[1]==0) {

aTP1 = mkAgent(Tuple1)

aTP1[1] = (int)1

push(L[1],aTP1)

} elif ((int)R[1]==1) {

aTP1 = mkAgent(Tuple1)

aTP1[1] = (int)1

push(L[1],aTP1)

} else {

b = (int)((int)R[1]-1)

c = (int)((int)R[1]-2)

w1 = mkName()

aFib = mkAgent(Fib)

aAdd = mkAgent(Add)

aAdd[1]=w1

aAdd[2]=L[1]

aFib[1] = aAdd

aTP1 = mkAgent(Tuple1)

aTP1[1] = b

push(aFib,aTP1)

bFib = mkAgent(Fib)

bFib[1] = w1

bTP1 = mkAgent(Tuple1)

166

bTP1[1] = c

push(bFib,bTP1)

}

free(L)

free(R)

}

6.4.2 Extension of the compilation method

In this section we extend the compilation method that is defined by Definition 5.2.2

and 5.2.4 into the extended syntax. First we extend the compilation of terms.

• The translation Compilet defined by Definition 5.2.2 is extended into integer numbers

as follows:

Compilet(n)
def
= (“”, “(int){n}”) where n is an integer number

Next we extend the compilation for rules.

• The translation Compiler defined by Definition 5.2.4 is re-defined as follows:

Compiler(α(~x) = β(~y)⇒ Θ)
def
= Compiler(α(~x) = β(~y)⇒ Θ where)

| Compiler(α(~t) = β(~s)⇒ Θ
def
= “rule {α} {β} {”

where v1 = e1 · · · vn = en) + “stackFree()”

+ CompileRinst(α(~t) = β(~s)⇒ Θ

where v1 = e1 · · · vn = en)

+ “free(L)”

+ “free(R)”

+ “}”
| Compiler(α(~t) = β(~s)

def
= “rule {α} {β} {”

| e1 ⇒ Θ1 + “stackFree()”

| e2 ⇒ Θ2 + “if (” + CompileRexp(e1) + “) {”
... + CompileRinst(α(~t) = β(~s)⇒ Θ1) + “}”
| otherwise⇒ Θn) + “elif (” + CompileRexp(e2) + “) {”

+ CompileRinst(α(~t) = β(~s)⇒ Θ2) + “}”
...

167

+ “else {”
+ CompileRinst(α(~t) = β(~s)⇒ Θn) + “}”
+ “free(L)”

+ “free(R)”

+ “}”;

CompileRinst(α(~t) = β(~s)⇒ Θ)
def
= CompileRinst(α(~t) = β(~s)⇒ Θ where)

| CompileRinst(α(~t) = β(~s)⇒ Θ

where v1 = e1 · · · vn = en)

def
= let

~x = remInt(~t); ~y = remInt(~s);

N1 = Compilern(~x, L, ∅);

N2 = Compilern(~y, R,N1);

(N, c1) = makeN′(

Name(Θ)− {~x, ~y},N2);

in

c1 + CompileRes(Θ,

v1 = e1, . . . , vn = en);

end;

remInt((int)x,~t)
def
= (x, remInt(~t))

| remInt(t,~t)
def
= (t, remInt(~t));

CompileRes(Θ,

v1 = e1, . . . , vn = en)

def
= let

N[v1] := freshStr(); · · ·N[vn] := freshStr();

c1 = “{N[v1]}=(int)({Compileexp(e1)})”;
...

cn = “{N[vn]}=(int)({Compileexp(en)})”;

in

c1 + · · ·+ cn + Compilees(Θ)

end;

168

CompileRexp(i)
def
= i where i is an integer number

| CompileRexp(x)
def
= “(int){N[x]}”

| CompileRexp(op e)
def
= op + CompileRexp(e) where op ∈ {-, not}

| CompileRexp(e1 op e2)
def
= CompileRexp(e1) + op + CompileRexp(e2)

where op ∈ {+, -, *, /, mod,

==, !=, <, <=, >, >=, and, or}

| CompileRexp((e))
def
= CompileRexp(e);

Example 6.4.4

Here, as an example, we take the interaction rule for Fibonacci number in Example 6.3.7:

Fib(r) = (int a)

| a == 0 ⇒ r = (1)

| a == 1 ⇒ r = (1)

| otherwise ⇒ Fib(Add(n, r)) = (b), Fib(n) = (c)

where b=a-1 c=a-2

By applying Compiler to the rule, the following is obtained:

"rule Fib Tuple1 {

StackFree()

if ({CompileRexp(a == 0)}) {

{CompileRinst(Fib(r) = (int a)⇒ r = (1))} }

elif ({CompileRexp(a == 1)}) {

{CompileRinst(Fib(r) = (int a)⇒ r = (1))} }

else { {CompileRinst(Fib(r) = (int a)⇒ Θ where b=a-1 c=a-2)} }

free(L)

free(R)

}"

where Θ is Fib(Add(n, r)) = (b), Fib(n) = (c).

We manage the first if-block. By unfolding CompileRexp(a == 0) the following is

obtained:

(int)R[1]==0

By unfolding CompileRinst(Fib(r) = (int a)⇒ r = (1)), the following is obtained:

aTuple1=mkAgent(Tuple1)

aTuple1[1]=(int)1

push(L[1],aTuple1)

169

Next we manage the last if-block CompileRinst(Fib(r) = (int a) ⇒ Θ). This is

unfolded as follows:

n=mkName()

CompileRes(Θ, b=a-1, c=a-2)

with the following name table N:

N = {(n, n)}.

The CompileRes(Θ, b=a-1, c=a-2) is unfolded as follows:

b=(int)((int)R[1]-1)

c=(int)((int)R[1]-2)

Compilees(Θ)

Therefore, the outlook of the compilation result is obtained as follows:

rule Fib Tuple1 {

StackFree()

if ((int)R[1]==0) {

aTuple1=mkAgent(Tuple1)

aTuple1[1]=(int)1

push(L[1],aTuple1)

} elif ((int)R[1]==1) {

aTuple1=mkAgent(Tuple1)

aTuple1[1]=(int)1

push(L[1],aTuple1)

} else {

n=mkName()

b=(int)((int)R[1]-1)

c=(int)((int)R[1]-2)

Compilees(Θ)

}

free(L)

free(R)

}

Taking account of the unfolding result of Compilees(Θ), this has the same operations

of the rule procedure in Example 6.4.3.

170

6.5 Extension of execution models

In this section, we explain how these extended nets are evaluated. For this purpose, we

extend the execution model based on the standardised implementation model in the C

language. Next, we show correspondence of extended codes in LL0 with ones in the C

language. We also extend the byte-code machine to evaluate those extended nets.

6.5.1 Data-structures for agents, ports and attributes

Attributes, which are integer numbers, are held by agents. To manage attributes the same

as ports, thus to incorporate ports and integer numbers, we introduce VALUE type [6],

which is used in the implementation of Ruby [60]:

typedef unsigned long VALUE;

Thus, every object is managed by a pointer such as void*, which is assumed equivalent

to unsigned long, and referred by casting the pointer. To prepare a common method to

recognise which sort of a given VALUE object, the new Agent and Name structures have the

following Basic structure that has the original id value as the first element:

typedef struct {

int id;

} Basic;

Thus, the new data-structures for those nodes are written as follows:

typedef struct {

Basic basic;

VALUE port[MAX_PORT];

} Agent;

typedef struct {

Basic basic;

VALUE port;

} Name;

#define RBASIC(a) ((Basic *)(a))

#define RAGENT(a) ((Agent *)(a))

#define RNAME(a) ((Name *)(a))

171

For a given a1 of the VALUE type, the id can be referred by RBASIC(a1)->id, and according

to the id, other elements can be referred by RAGENT(a1) and RNAME(a1).

Integer numbers are embedded into values of pointers [25] by using arithmetic shift

operations, taking advantage of the alignment of pointers such as a 4-byte boundary. In

this implementation, we restrict integer numbers to 31-bits representation, called fixed

numbers, and we embed those into values of VALUE by using the lowest bit of pointers as

a tag of the fixed numbers [6]:

#define FIXNUM_FLAG 0x01

#define INT2FIX(i) ((VALUE)(((long)(i) << 1) | FIXNUM_FLAG))

#define FIX2INT(i) ((int)(i) >> 1)

#define IS_FIXNUM(i) ((VALUE)(i) & FIXNUM_FLAG)

By introducing the VALUE type, the following basic functions are also changed:

VALUE mkAgent(int id);

VALUE mkName();

VALUE mkInd();

void pushActive(VALUE a1, VALUE a1);

int popActive(VALUE *a1, VALUE *a1);

6.5.2 Execution model in the C language

In this section, we explain how these extended nets are evaluated, showing correspondence

of codes in LL0 with ones in the C language.

Instructions The correspondence of the extended instructions is as follows:

• x[p] = (int)e

The calculation result of the expression e is managed as a fixed number, and thus

this corresponds to the following code:

x->port[p-1]=INT2FIX(e);

• v = (int)e

The evaluation result of the expression e is assigned into v as a fixed number, and

thus this corresponds to the following code:

v=INT2FIX(e);

172

When the v occurs at first, then we add a declaration for the v:

VALUE v=INT2FIX(e);

Next, we show the correspondence of expressions:

• (int)L[p]

This refers the port x[p] of the left agent of the operated active pair as a fixed

number, and thus this corresponds to the following code:

FIX2INT(RAGENT(a1)->port[p− 1])

• (int)R[p]

The same as the case of (int)L[p], this corresponds to the following code:

FIX2INT(RAGENT(a2)->port[p− 1])

• (int)v

This also refers the value of the variable v as a fixed number, and thus this corres-

ponds to the following code:

FIX2INT(v)

• op e1, e1 op e2

We have the straightforward correspondences in those expressions since the C lan-

guage has almost the same operations, except for not, and, or that correspond to

!, &&, || respectively.

Rule procedures The extension of rule procedures is the if-statement that is written

as follows:

rule α β {

if (Cond1) {· · ·}

elif (Cond2) {· · ·}
...

elif (Condn) {· · ·}

else {· · ·}

}

173

Each expression Cond i is represented as an expression in the C language by applying

FIX2INT to variables and ports, and we call it Cond ′i. Then, the C language also has the

if-statement that works the same as the definition of the if-statement in LL0, and thus

the above rule procedure corresponds to the following function in the C language:

void α_β(VALUE a1, VALUE a2) {

if (Cond ′1) {· · ·}

elif (Cond ′2) {· · ·}
...

elif (Cond ′n) {· · ·}

else {· · ·}

}

The run-time function eval is also changed by using the type VALUE as follows:

void eval() {

VALUE a1, a2;

while (popActive(&a1, &a2)) {

if (RBASIC(a2)->id != ID_NAME) {

if (RBASIC(a1)->id != ID_NAME) {

R[RBASIC(a1)->id][RBASIC(a2)->id](a1,a2);

} /* The below is operations for x=t */
...

}

} else {

/* operations for t=y and x=y */
...

}

}

}

6.5.3 Execution model in the byte-code interpreter

To evaluate expressions and the extended rule procedures, we add codes into the set of

byte-codes as shown in Figure 6.1. The code JMPEQ0 is used to manage the program

counter according to evaluation results of conditional expressions, and the other codes are

used to operate on expressions.

174

Byte-code Description

MKVAL A B Reg(A):=INT2FIX(B)

MOVE A B Reg(A):=Reg(B)

ADD A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))+FIX2INT(Reg(C)))

SUB A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))-FIX2INT(Reg(C)))

MUL A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))*FIX2INT(Reg(C)))

DIV A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))/FIX2INT(Reg(C)))

MOD A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))%FIX2INT(Reg(C)))

LT A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))<FIX2INT(Reg(C)))

LE A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))<=FIX2INT(Reg(C)))

EQ A B C Reg(A):=INT2FIX(FIX2INT(Reg(B))==FIX2INT(Reg(C)))

NOT A B Reg(A):=INT2FIX(not(FIX2INT(Reg(B))))

UNM A B Reg(A):=INT2FIX((-1)*FIX2INT(Reg(B)))

JMPEQ0 A B if FIX2INT(Reg(A))==0 then pc=pc+B

Figure 6.1: Extended instructions of a byte-code interpreter

Instructions Here, we explain how each extended instruction in LL0 corresponds to

the byte-codes. We assume that each variable x is assigned to a Register Reg(n), and

this correspondence is managed by toReg such as toReg(x) = n. In addition, we use a

function newReg() to obtain i such that Reg(i) is not used. To translate expressions into

byte-codes [7], we define the translation exprBytes(target , expr) that takes a target register

number target and an expression expr , and returns a sequence of byte-codes as shown in

Figure 6.2, where each sub-expression of the expression is rewritten before applying to the

translation exprBytes as follows:

e1 > e2 −→ e2 < e1

e1 >= e2 −→ e2 =< e1

e1 != e2 −→ not(e1 == e2)

e1 or e2 −→ e1 + e2

e1 and e2 −→ e1 * e2

(int)e1 −→ e1

By using the translation exprBytes, we explain how each extended instruction corres-

ponds to a byte-code sequence:

• x[p] = (int)e

175

exprBytes(target , i)
def
= MKVAL target i where i is an attribute

| exprBytes(target , x)
def
= MOVE target toReg(x)

| exprBytes(target , L[n])
def
= MOVE target n

| exprBytes(target , R[n])
def
= MOVE target m where m = MAX PORT + n

| exprBytes(target , op e1)

where op ∈ {-, not}

def
= let

reg1 = newReg(); code1 = exprBytes(reg1, e1);

inst = {(-, UNM), (not, NOT)}[op]

in

code1 inst target reg1

end

| exprBytes(target , e1 op e2)

where op ∈ {+, -, *, /, %,

<, <=, ==}

def
= let

reg1 = newReg(); code1 = exprBytes(reg1, e1);

reg2 = newReg(); code2 = exprBytes(reg2, e2);

inst = {(+, ADD), (-, SUB), (*, MUL), (/, DIV),

(%, MOD), (<, LT), (<=, LE), (==, EQ)}[op]

in

code1 code2 inst target reg1 reg2

end

Figure 6.2: The translation exprBytes from expressions into byte-code sequences

Assume a register number r = Reg() and a byte-code sequence code = exprBytes(r, e).

When x is assigned to Reg(i), then the instruction corresponds to the following byte-

code sequence:

code MOVEP i p r

• v = (int)e

The same as the case of x[p] = (int)e let a register number r = Reg() and a

byte-code sequence code = exprBytes(r, e). When v is assigned to Reg(i), then the

instruction corresponds to the following byte-code sequence:

code MOVE i r

The function evalCode to evaluate instructions is extended in the part of the case-

176

branch as follows:

case MKVAL:

Reg[code[pc+1]]=INT2FIX(code[pc+2]);

pc+=3;

break;

case MOVE:

Reg[code[pc+1]]=Reg[code[pc+2]];

pc+=3;

break;

case ADD:

Reg[code[pc+1]]=INT2FIX(FIX2INT(code[pc+2])+FIX2INT(code[pc+3]));

pc+=4;

break;
...

case UNM:

Reg[code[pc+1]]=INT2FIX(-1*FIX2INT(code[pc+2]));

pc+=4;

break;

case JMPEQ0:

if (!Reg[code[pc+1]])

pc+=FIX2INT(code[pc+2]);

pc+=3;

break;

Rule procedures The extension of rule procedures is the if-statement that is written

as follows:

rule α β {

if (Cond1) {· · ·}

elif (Cond2) {· · ·}
...

elif (Condn) {· · ·}

else {· · ·}

}

177

Let block i be a byte-code sequence for the if-block placed at the right of Cond i,

and block be one at the right of the else. In addition, let the length of the sequence

block1, block2, . . . , blockn be l1, l2, . . . , ln respectively. Then, the extended rule procedure

corresponds to the following byte-code sequence:

let

reg1 = newReg(); code1 = exprBytes(reg1,Cond1);
...

regn = newReg(); coden = exprBytes(regn,Condn);

in

code1

JMPEQ0 reg1 l1 + 1

block1

RETURN

code2

JMPEQ0 reg2 l2 + 1

block2

RETURN

...

coden

JMPEQ0 regn ln + 1

blockn

RETURN

block

RETURN

end

Runtime functions eval The run time function eval is changed by using the type

VALUE as follows:

void eval() {

VALUE a1, a2;

while (popActive(&a1, &a2)) {

if (RBASIC(a2)->id != ID_NAME) {

if (RBASIC(a1)->id != ID_NAME) {

int i;

for (i=0; i<Arities[RBASIC(a1)->id]; i++)

178

Reg[i]=RAGENT(a1)->port[i];

for (i=0; i<Arities[RBASIC(a2)->id]; i++)

Reg[MAX_PORT+i]=RAGENT(a2)->port[i];

evalCode(Code[RBASIC(a1)->id][RBASIC(a2)->id]);

freeAgent(a1); freeAgent(a2);

} /* The below is operations for x=t */
...

}

} else {

/* operations for t=y and x=y */
...

}

}

}

6.6 Summary

In this chapter we extended interaction nets so that they can be used as a programming

language. The first extension was nested pattern matching that is conservative, thus

those rules can be translated into rules in the original interaction nets. Next we intro-

duced agents that optionally have attributes, which are values of base type: integers, and

interaction rules with these attributes and conditions. Finally, we extended the execution

model to evaluate those extensions.

179

Chapter 7

Results and future work

In this chapter we implement a multi-threaded interpreter for interaction nets that uses

LL0 as bytecode. As a result we obtain an improved performance in both sequential and

parallel execution in comparison to existent interaction net evaluators as well as fully

fledged programming languages SML and Python. Finally, we introduce some possible

optimisations and extensions to enhance performance.

7.1 Interpreter for interaction nets with LL0

In this section we introduce a byte-code interpreter for interaction nets by using LL0 as

an intermediate language. We use the C language to obtain efficient computation, and

flex and bison to parse the syntax of interaction nets.

7.1.1 Sequential execution model

The implementation method of the sequential interpreter is similar to the standardised

implementation model introduced in Sections 5.4 and 6.5.3, save some extensions which

we discuss below. First, we introduce a virtual machine for executing our bytecodes while

we look ahead to facilitate parallel execution where bytecodes can be evaluated by each

thread locally.

Data-structure We represent agent nodes by using the same data-structure used in

the standardised model where we fix the number of ports and we pre-populate the heap

with these nodes. The fixed-size node representation has the disadvantage of using more

space than needed, but the advantage of being able to manage and reuse nodes in a

simpler way [35]. In comparison to Undirected encoding methods, Directed encoding

methods introduce more name and indirection nodes. In order to separate these (name

180

in2 Single Value Single/Value

F32 1.37 1.49 1.29 1.16

F33 2.29 2.49 2.12 1.17

F34 3.80 4.15 3.49 1.19

A(3, 10) 1.42 1.58 1.52 1.04

A(3, 11) 5.73 6.39 6.06 1.05

A(3, 11) 24.01 26.14 24.34 1.07

2 7 6 I I 0.71 1.28 1.18 1.08

2 7 7 I I 2.13 3.68 3.48 1.06

Table 7.1: The execution time in seconds on the standardised implementation model

and indirection) nodes from agent nodes, we prepare another heap and use the VALUE

type introduced in Section 6.5. This separation simplifies the management of attributes

and contributes to efficient computation.

Table 7.1 shows the execution time in minutes of running the benchmark programs

in the standardised sequential implementation model using the VALUE type (labelled as

VALUE). These were also compiled with gcc’s -O3 option. We see that this sequential

implementation runs about from 4% to 19% faster and executes faster than in2 in the case

of the Fibonacci number.

Virtual machine A virtual machine (VM) manages the following components:

• A register Reg,

• LIFO stack for equations,

• Heaps for agents and names.

We represent our virtual machine using the code fragment:

typedef struct {

Heap agentHeap, nameHeap; // heaps for agents and names

Active *eqStack; // equation stack

VALUE Reg[REG_SIZE]; // Register

} VirtualMachine;

Figure 7.1 illustrates the virtual machine in contrast to the net configuration of the

standardised implementation model (Figure 3.6).

Our virtual machine uses the following runtime functions:

181

G

EQ

. . .

.

.

.

VM

agentHeap

nameHeap

Γ

Figure 7.1: Virtual machine in the sequential execution model

VALUE mkAgent(VirtualMachine *vm, int id);

VALUE mkName(VirtualMachine *vm);

VALUE mkInd(VirtualMachine *vm);

void pushActive(VirtualMachine *vm, VALUE a1, VALUE a1);

int popActive(VirtualMachine *vm, VALUE *a1, VALUE *a1);

void evalCode(VirtualMachine *vm, int *code);

void eval(VirtualMachine *vm);

Memory management Taking account of parallel execution, we use a ring buffer for

heaps:

typedef struct {

VALUE *heap;

int lastAlloc;

unsigned int size;

} Heap;

0
1

2

size-1

lastAlloc

.

.

.

In the Heap structure, heap is assigned to a large array of either Agent or Name that

are cast by (VALUE *), lastAlloc is the last used index, and size is the size of the heap.

To show that a node of the heap is available to use, we use the last bit of the id as a

bit flag:

#define FLAG_AVAIL 0x01 << 31

#define IS_FLAG_AVAIL(a) ((a) & FLAG_AVAIL)

#define SET_FLAG_AVAIL(a) ((a) = ((a) | FLAG_AVAIL))

182

#define TOGGLE_FLAG_AVAIL(a) ((a) = ((a) ^ FLAG_AVAIL))

To allocate an agent node, we start to search an available node from lastAlloc and

change the bit flag of the returned node to 0. The id recovers the original meaning:

VALUE myallocAgent(Heap *hp) {

int idx = hp->lastAlloc;

int i;

for (i=0; i < hp->size; i++) {

if (IS_FLAG_AVAIL(((Agent *)hp->heap)[idx].basic.id)) {

TOGGLE_FLAG_AVAIL(((Agent *)hp->heap)[idx].basic.id);

hp->lastAlloc = idx;

return (VALUE)&(((Agent *)hp->heap)[idx]);

}

idx++;

if (idx >= hp->size)

idx -= hp->size;

}

puts("Critical ERROR");

exit(-1);

}

VALUE myallocName(Heap *hp) {
...

if (IS_FLAG_AVAIL(((Name *)hp->heap)[idx].basic.id)) {

TOGGLE_FLAG_AVAIL(((Name *)hp->heap)[idx].basic.id);

hp->lastAlloc = idx;

return (VALUE)&(((Name *)hp->heap)[idx]);

}
...

}

To dispose of an agent node, we set the bit flag for availability into 1 again:

void myfree(VALUE ptr) {

TOGGLE_FLAG_AVAIL(RBASIC(ptr)->id);

}

183

Execution of bytecodes In order to avoid inefficient switch-statements in our gener-

ated bytecodes, we use a method known as threaded code [11] which uses the goto construct

to jump execution to some labelled block of code. In the C language, threaded code is

written by replacing each case-branch with a label; a goto pointer to a label label is

obtained by &&label. Following this technique, we write our runtime bytecode evaluation

function evalCode as follows:

void evalCode(int *code) {

static const void *table[] = {

&&E_MKAGENT, &&E_MKNAME, &&E_MKIND, &&E_FREE, &&E_MOVEP,

&&E_CHGID, &&E_PUSH, &&E_RETURN};

int pc=0; // program counter

goto *table[code[pc]];

E_MKAGENT:

Reg[code[pc+1]]=mkAgent(code[pc+2]);

pc+=3; goto *table[code[pc]];

E_MKNAME:

Reg[code[pc+1]]=mkName();

pc+=2; goto *table[code[pc]];

E_MKIND:

Reg[code[pc+1]]=mkInd();

pc+=2; goto *table[code[pc]];
...

E_RETURN:

return;

}

7.1.2 Parallel execution model

In this section we discuss a multi-threaded parallel execution model of our bytecode in-

terpreter for shared memory multiprocessors.

This model has the following objects:

• Multiple virtual machines,

• A thread pool for those virtual machines,

184

• Global equation stack GlobalEQ ,

• Global array for the interface G.

We have multiple virtual machines that are managed in a thread pool. Each virtual

machine has heaps which store graph elements and the net is constructed by connecting

those elements. The global equation stack is used as a buffer to give and take equations

among those virtual machines. Figure 7.2 illustrates a configuration where the thread pool

has two virtual machines. Notice that a net may be distributed across the heaps of various

VMs and an equation stack EQ of one VM may contain a pointer into the heap of another

VM. In this figure, Γ represents the net and therefore it is composed of (initialised parts

of) the heaps of the two virtual machines.

VM2

agentHeap

nameHeap

VM1

agentHeap

nameHeap

G

. . .

GlobalEQ

.

.

.

EQ

VM1(active)

Thread pool Γ

EQ

VM2(active)

Figure 7.2: Configuration in the multi-threaded parallel execution model

Next, we explain the inter-relations between instance of virtual machines:

State of threads: A thread can be in either of two states: 1) active when its equation

stack is not empty and 2) sleep when its stack and GlobalEQ is empty. A thread in

sleep state switches to active only when it receives a signal notEmpty. Intuitively,

the notEmpty signal is broadcast, when the GlobalEQ is not empty, to all VMs that

have an empty local stack.

Evaluation of equation in stacks: Each virtual machine evaluates equations in its own

stack. When the stack becomes empty, the VM tries to get an equation from

GlobalEQ . When the GlobalEQ is also empty the state of the virtual machine

switched to sleep and it remains in the sleep state until it receives a notEmpty

signal. Figure 7.3 illustrates this behaviour.

Stacking equations: When equations are created by evalCode they are pushed onto

185

receive

notEmpty

EQ

VM(active)

GlobalEQ

emptyEQ

VM(active)

empty

EQ

VM(sleep)

empty

GlobalEQ

EQ

VM(active)

empty

GlobalEQ

EQ

VM(active)

Figure 7.3: Transition of states and equation stacks

VM’s local stack. If there exist some slept VMs, other equations can be pushed onto

the GlobalEQ and this will trigger the broadcast of the notEmpty signal. In any case,

at least one equation is pushed on the VM’s local stack if one or more equations are

created. Figure 7.4 illustrates this stacking mechanism.

All VMs are active

Some VMs sleep

notEmpty
send

EQ

VM(active)

EQ

VM(active)

GlobalEQ

EQ

VM(active)

Figure 7.4: Stacking active pairs according to the condition of slept virtual machines

Termination: The evaluation finishes when all virtual machines sleep.

Communication between the global stack GlobalEQ and virtual machines requires syn-

186

chronisation in addition to the signalling. In the rest of this section we will discuss the

synchronisation mechanism which we deploy:

Transitions of B.1 and B.2 In parallel execution the operations of the transitions

B.1 and B.2 given in Figure 4.2, which correspond to rules Var1 and Var2 in Simpler

textual calculus (Definition 4.4.3), have critical sections since names can be shared by

two active pairs. These are locked lightly by using an atomic operation like CAS, as

shown in Section 4.5.3. The ports of agents and names can be changed by many threads

simultaneously and thus the declaration of the port structures requires synchronisation

code. We use volatile modifier as follows:

typedef struct {

Basic basic;

volatile VALUE port;

} Name;

typedef struct {

Basic basic;

volatile VALUE port[MAX_PORT];

} Agent;

Global equation stack GlobalEQ The Global equation stack GlobalEQ can be accessed

by many threads and therefore it requires synchronisation so that it can be managed by

only one thread at a time. This is realised by locks such as Mutex.

Heaps in virtual machines The allocation of nodes in a VM’s heap is performed

within the same VM and therefore synchronisation is not required. On the other hand,

the disposing of those nodes is performed by other threads. Still, synchronisation is not

required since those nodes are managed by ring buffers and the disposing does not affect the

start index lastAlloc to check a ready-to-use node. When the value of the searching index

idx which starts from lastAlloc is overlapped by the node index disposed of, the node will

not be regarded as ready-to-use. This overlap can happen as many times as threads dispose

of nodes during the searching of the ready-to-use nodes, however these opportunities are

greatly less than the size of the heap. In order to obtain efficient computation, therefore,

we do not use any lock mechanism, and thus use wait-free algorithm [53], assuming that

each virtual machine has sufficiently large size heaps.

187

INET amLight Inpla Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

F30 3.70 2.46 2.45 2.61 2.12 1.99 1.93 1.93

F31 -1 4.03 3.02 3.25 2.46 2.23 2.12 2.14

F32 -2 6.65 3.95 4.32 3.03 2.65 2.49 2.50

A(3, 9) 4.12 2.85 1.21 1.27 0.67 0.46 0.37 0.35

A(3, 10) 18.26 11.40 4.88 5.06 2.64 1.81 1.41 1.34

A(3, 11) 66.79 46.30 19.19 20.65 10.82 7.45 5.92 5.72

2 6 7 I I 1.60 1.49 1.51 1.57 1.27 1.23 1.33 1.23

2 7 6 I I -2 4.01 2.61 2.69 1.80 1.88 1.64 1.81

2 7 7 I I -2 11.96 6.07 6.19 3.77 2.88 2.90 2.80

1 Segmentation fault (core dumped)

2 Heap exceeds limit: <8388608>

Table 7.2: The execution time in seconds on interaction nets evaluators

7.1.3 Experimental results

We implemented a multi-threaded parallel interpreter of the bytecode, called Inpla, with

gcc 4.6.3 and the Posix-thread library. In this section, we compare the execution time

of Inpla with other evaluators and interpreters. First, in executions of the pure inter-

action nets, we take INET and amineLight and compare Inpla with those by using the

benchmark programs also used in Section 4.5.3 – Fibonacci number, Ackermann function

and application of Church numerals. Next, we compare Inpla with Standard ML of New

Jersey (SML) [54] and Python [61] in the extended framework of interaction nets given

in Chapter 6 which includes integer numbers and lists. SML is a functional programming

language and it has the eager evaluation strategy that is similar to the execution method

in interaction nets. Python is a widely-used interpreter, and thus the comparison with

Python gives a good indication on efficiency. Here we benchmark the Fibonacci number,

the Ackermann function on integer numbers, the Bubble Sort algorithm and the Quick

Sort algorithm.

The benchmark programs were run on a Linux PC (2.4GHz, Core i7, 16GB) and the

execution time was measured using the UNIX time command. The version of Python is

2.7.3, and SML is v110.74.

Pure interaction nets Table 7.2 shows execution time in seconds among interaction

nets evaluators: INET, amineLight and Inpla. In the table the subscript of Inpla gives

the number of threads in the thread pool, for instance Inpla3 means that it was executed

188

by using three threads. The ’-’ means no execution time due to some error.

We see that Inpla runs faster than INET since Inpla is a refined version of amineLight,

which is the fastest interaction nets evaluator [30].

In comparison to amineLight, Inpla compiles nets into bytecodes, whereas amineLight

interprets those directly. We see that in the case of 2 6 7 I I, amineLight executes faster

than Inpla; this is because Inpla compiles the program and this compilation contributes

towards obtaining efficient computation. For the same reason, the execution of F30 and 2

6 7 I I gives almost the same execution time. However, there is a significant increase in

the performance of Inpla when we increase the size of computation. For example, Inpla

runs 2.4 times faster than amineLight to execute A(3, 11).

Next, we discuss the parallel execution in Inpla. Figure 7.5 shows the average of

speedup as the ratio S(n) =
T (0)

T (n)
where T (0) is the best execution time in sequential

and T (i) is an execution time by i-threads. Generally, since Core i7 processor has four

cores, it tends to reach the peak in the four threads execution. In the case of Ackermann

function, those speedups have the best trends that are close to n-fold increasing to n-

threads executions. In the other cases, while the increasing trend is calm, the execution

becomes faster according to the number of threads in the pool. In contrast to the execution

of Ackermann function, these executions require quite a huge number of nodes in the

heaps. Actually the computations of Fibonacci number require 100,000,000 nodes as the

amount of the agent and the name heaps in each virtual machine, and the computations of

Applications of Church numerals require 60,000,000 nodes, whereas those of Ackermann

function are performed within 100,000 nodes, which is a normal setting in Inpla. Those

could induce a low hit of the cache memory and the speedup ratio would be calm.

Computation on integer numbers and lists Here we compare Inpla with SML and

Python. Table 7.3 shows execution time in seconds for SML, Python and Inpla in com-

putation on integer numbers and lists. Bubble Sort BS n and Quick Sort QS n sort lists

that have n-elements which are randomly generated. These programs use integer numbers,

whereas programs in Table 7.2 use unary natural numbers. In interaction nets these are

managed by using attributes discussed in Chapter 6.

First, we examine the computation results in the sequential execution. As shown in

the table, SML computes those arithmetic functions fastest. SML computes Fibonacci

number and Ackermann function around 19 times and 4.3 times faster at best than In-

pla, respectively. In the computation in Inpla, the functions and integer numbers are

represented by agents, and those agents are consumed and re-produced repeatedly dur-

189

 0

 1

 2

 3

 4

 5

 1 2 3 4 5

S
(n

)
(s

p
e
e
d
u
p
)

n (threads)

Fibonacci number
Ackermann function

Application of Church numerals

Figure 7.5: The speedup in the multi-threads executions

ing computation. Thus the execution time becomes slower eventually, compared to the

execution in SML that performs computation by function calls and managing stacked ar-

guments. This could be improved by re-using agents as discussed in Section 7.2.1. In

comparison with Python, Inpla computes those functions from about 17% faster at best

to about 6% faster at worst. This shows that Inpla can indeed be used in practical and

not only for theoretical investigation

The two sort algorithms are special cases in that interaction nets are efficient to imple-

ment the algorithms. We see that in the case of Bubble Sort, Inpla performs a little faster

than SML and 3.3 times faster than Python. In the case of Quick Sort, Inpla performs

around 31 times faster than Python. Although it performs around 2.6 times slower than

SML, this is improved in parallel execution: Inpla performs around 3.47 times faster at

best to around 1.04 times faster at worst.

Next we examine the parallel execution of Inpla. Table 7.6 shows the speedup in the

multi-threads executions. In the case of Fibonacci number, Bubble Sort and Quick Sort,

the speedup are also close to the n-fold increasing, which is the best performance in parallel

execution. Thus we expect parallel execution to obtain efficient computation.

On the other hand, the computations of Ackermann function becomes less efficient

with more number of threads execution. Figure 7.7 shows the trends on execution of those

benchmark programs in sequential and parallel where we assume unbounded resources

in terms of the number of processing elements available. In Ackermann function, there

190

SML Python Inpla Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

F37 0.43 8.26 7.05 8.10 4.20 3.05 2.36 2.43

F38 0.67 13.33 11.45 13.12 6.81 4.73 3.67 3.50

F39 1.08 21.87 20.49 21.90 10.73 7.49 5.84 5.85

A(3, 6) 0.05 0.05 0.03 0.03 0.07 0.25 0.23 0.27

A(3, 7) 0.05 -1 0.07 0.08 0.18 0.73 0.72 1.16

A(3, 8) 0.06 -1 0.26 0.28 0.63 1.90 3.06 3.63

BS 20000 8.60 28.06 8.45 9.43 4.89 3.37 2.59 2.57

BS 30000 21.43 63.28 19.01 21.20 10.97 7.55 6.16 6.48

QS 400000 0.65 49.65 1.54 1.62 0.88 0.70 0.62 0.76

QS 500000 0.91 77.56 2.53 2.68 1.25 0.99 0.79 0.94

1 RuntimeError: maximum recursion depth exceeded

Table 7.3: The execution time in seconds on interpreters

is no significant difference in sequential and parallel execution. This is one reason why

the parallel execution does not have good performance. In addition, this is caused by

the realisation of the computation for A(m− 1, A(m,n− 1)), which is a one step part of

Ackermann function, represented as the following two equations as shown in Example 6.3.7:

A(w, r) = (m′), A((n′), w) = (m) where m′ = m-1 n′ = n-1

The first equation A(w, r) = (m′) takes the computation result of the second equation,

which is corresponding to A(m,n − 1), via the name w. Actually the first equation

is reduced to A2((m′), r) = w, and then it waits the w. As for the second equation

A((n′), w) = (m), it reaches to the step of A(m− 1, A(m, (n− 1)− 1)) again unless m or

n− 1 is 0, and thus the two equations are produced that one waits the computation result

of the other. In the implementation of Inpla, this means that, when two equations are

produced by an active thread, then the thread would sleep while waking up another slept

thread. After that, the waked-up thread would produce the two equations again, and it

would sleep while waking up another thread. This is repeated until all of the computation

are finished, causing the overhead. This vicious repeat could not occur, when a large scale

computation is performed at once, because each thread could have huge numbers of active

pairs and there is not so many opportunities of the sleep.

191

 0

 1

 2

 3

 4

 5

 1 2 3 4 5

S
(n

)
(s

p
e
e
d
u
p
)

n (threads)

Fibonacci number
Ackermann function

Bubble Sort
Quick Sort

Figure 7.6: The speedup in the multi-threads executions using attributes

7.2 Future work

In this section we introduce other possible optimisations and extensions in terms of efficient

computation that we leave for future work.

7.2.1 Reuse optimisation

Once a net is compiled into an instruction list of LL0, operations such as producing, dis-

posing and connecting ports of agents is done at the level of execution of those instructions.

Here, we take an interaction rule between Add and S as an example:

• Add(x1, x2) = S(y)⇒ x2 = S(w), Add(x1, w) = y.

This compilation is illustrated in Example 5.2.5, and it is obtained as shown in Figure 7.8

(a). In the RHS of this rule, the same agents to the active pair occur. Thus, instead of

producing new those agents, it is possible to reuse active pair agents as the new ones.

Figure 7.8 (b) shows the rewritten lists by reusing the active pair agents. The number of

instructions decreases, and thus faster execution is expected.

In our language, moreover, an id of an agent node a is referred to a[0], and thanks

to their fixed arity number it is also possible to reuse an agent as another one. Therefore

this method works as optimisation for rule procedures.

In the standardised implementation model, the index of the equation stack is managed

by functions pushActive and popActive, and the instruction stackFree() is ignored.

192

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14

s
te

p
s

n

Fib n

sequential
parallel

 0

 10000000

 20000000

 30000000

 40000000

 50000000

 60000000

 70000000

 80000000

 90000000

0 2 4 6 8 10

s
te

p
s

n

Ack(3,n)

sequential
parallel

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60 70

s
te

p
s

n

BS n

sequential
parallel

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70

s
te

p
s

n

QS n

sequential
parallel

Figure 7.7: Execution steps on benchmark programs in sequential and parallel

(a) Instruction list

rule Add S {

stackFree()

w=mkName()

aS=mkAgent(S)

aS[1]=w

push(L[2],aS)

aAdd=mkAgent(Add)

aAdd[1]=L[1]

aAdd[2]=w

push(aAdd,R[1])

free(L)

free(R)

}

(b) Optimised one by the reuse method

rule Add S {

w=mkName()

x2=StackL[2]

tmpR=StackR

StackR=tmpR[1]

tmpR[1]=w

push(x2,tmpR)

}

Figure 7.8: Rule procedures for the rule between Add and S

193

Here, we modify this implementation model to manage the top element of the stack ex-

plicitly.

Explicitly managed equation stack To make explicit operations for the stack, the

following are introduced:

#define stackFree() Ptr_APS--

#define StackL ActivePairs[Ptr_APS].a1

#define StackR ActivePairs[Ptr_APS].a2

The macro stackFree() reduces the index of the equation stack. The StackL and StackR

are replaced with elements on the current top of the stack. The pop stack function is not

required since the elements in the top of the stack are referred by StackL and StackR.

In addition, each function for interaction rules does not require arguments Agent *a1

and Agent *a2 since those can be referred by StackL and StackR. The runtime function

eval is also changed as follows:

void eval() {

while (Ptr_APS >= 0) {

if (StackR->id != ID_NAME) {

if (StackL->id != ID_NAME) {

R[StackL->id][StackR->id]();

} else if (StackL->id == ID_INDIRECTION) {

/* C.1 */

Agent *tmpL = StackL;

StackL = StackL->port[0];

freeAgent(tmpL);

} else {

/* B.1 */

StackL->port[0] = StackR;

StackL->id = ID_INDIRECTION;

stackFree();

}

} else if (StackR->id == ID_INDIRECTION) {

/* C.2 */

Agent *tmpR = StackR;

StackR = StackR->port[0];

194

Single Reuse Single/Reuse

F32 1.49 0.80 1.86

F33 2.49 1.31 1.90

F34 4.15 2.14 1.94

A(3, 10) 1.58 1.24 1.27

A(3, 11) 6.39 4.97 1.29

A(3, 11) 26.14 21.21 1.23

2 7 6 I I 1.28 1.23 1.04

2 7 7 I I 3.68 3.63 1.01

Table 7.4: The execution time in seconds on the single encoding method and the reuse

method

freeAgent(tmpR);

} else {

/* B.2 */

StackR->port[0] = StackL;

StackR->id = ID_INDIRECTION;

stackFree();

}

}

}

Experimental results Table 7.4 shows execution time in seconds of programs that are

written manually in order to apply this method. Those are compiled with the -O3 option.

The speedup in the case of Fibonacci number, Ackermann function and Application

of Church numerals are about 1.9 times, 1.27 times and 1.02 times respectively. Although

there is fluctuation in the effect, this method can improve the computation efficiency.

Automatically applying this reuse optimisation is a future work.

7.2.2 Parallelism

In this section, we look where there is parallelism in interaction nets.

We introduced two rule sets for addition: one is in Figure 2.1 and alternative one is

in Figure 2.3. First, we take the alternative one that is regarded as a sequential version

of addition because the rules do not produce any active pairs. Actually, as shown in

Figure 7.9, the computation of add(m,n) has no scope for parallelism.

195

2

n

�→

2+1

S

Z

Add

S

S

Z

S

S

Z

Add

S

S

Z
S

�→

S

Z

Add

S

Z

S

S

�→

S

S

Z

S

S

Figure 7.9: add(2̄, n̄) in a sequential version of addition

Add

m

Add

n

p

add(add(m, n), p)

Add

m

Add

n
p

add(m, add(n, p))(a) (b)

Figure 7.10: add(add(m,n), p) and add(m, add(n, p)) in the alternative rules

Next we consider the cost of rewritings as the number of interactions. The net cor-

responding to add(m,n) requires m+ 1 interactions (Figure 7.9) regardless of the size of

the net n̄. Thus, the net corresponding to add(add(m,n), p) in Figure 7.10 (a) requires

(m+1)+(m+n+1) = 2m+n+2 interactions. This net is still sequential, and in parallel

execution the cost is the same (thus 2m + n + 2). If we use, however, the associative

property of addition, now the net is corresponding to add(m, add(n, p)) in Figure 7.10 (b),

then the situation changes significantly. The cost becomes (m+ 1) + (n+ 1) = m+n+ 2.

Moreover, in parallel execution, it is max(m+ 1, n+ 1). By applying the associative prop-

erty of addition, not only it becomes more efficient sequentially, but also it becomes able

to benefit from parallel evaluation.

196

2

n

�→

2+1

Add

S

Z

S

S

Z

S

Add S

Z
�→

Add Z

�→
S S

S

S

S

S

Z

S

S

Z

S

S

Z

S

Figure 7.11: add(2̄, n̄) in a parallel version of addition

On the other hand, in the rule set in Figure 2.1, the net corresponding to add(m,n)

also requires m+ 1 interactions (Figure 7.11), however we call the set a parallel version of

addition because it is possible to produce an active pair when the free port is connected

to a principal port of an agent. For instance, the net corresponding to add(add(m,n), p)

requires (m+ 1) + (m+ n+ 1) = 2m+ n+ 2 interactions the same as the alternative rule

set, however in parallel execution, as shown in Figure 7.12, the cost is (m+ 1) + (n+ 1) =

m+n+ 2. In the case of add(m, add(n, p)), the cost is the same as the alternative version

because the produced S by the rule is placed to the auxiliary port of another Add agent

and it does not contribute to parallel execution.

Next we consider how those two versions of addition work in Fibonacci number. Fig-

ure 7.13 shows the cost that is required to obtain the calculation result in sequential and

parallel versions of addition. In this graph, we assume unbounded resources in terms of the

number of processing elements available. The cost in the parallel version is significantly

less than the sequential version.

On the other hand, Table 7.5 shows the execution time in seconds by Inpla. In both

cases the execution becomes faster by using several threads, however the parallel version

is slower than the sequential one. This is because there are more active pairs for the

parallel execution. Moreover produced active pairs by the rules have the same vicious

repeat problem mentioned in Section 7.1.3.

We summarise this topic:

• some nets can use properties of the system (in this case associativity of addition) to

get better sequential and parallel behaviours;

197

2

�→

2+1

Add S

Z

S

Add S

Z
�→

Add Z

S S

S

Add

para

Add Add

�→
para

S

Add

S

S S S S

n�

p�

n�

p�

n� n�

p�

add(add(2, n), p)

Figure 7.12: Parallel execution of add(add(2, n̄), p̄)

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14

s
te

p
s

n

fib n

sequential add
parallel add

Figure 7.13: Behaviour of sequential and parallel versions of addition on Fibonacci function

• some systems can have modified rules that are more efficient, and also more appro-

priate to exploit parallelism.

Thus, we can choose rules to get better sequential and parallel behaviour, however the

criteria which we should choose is one of future work.

198

F30 Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

Sequential ver. 2.61 2.12 1.99 1.93 1.93

Parallel ver. 2.87 2.29 2.12 2.05 2.06

F31 Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

Sequential ver. 3.25 2.46 2.23 2.12 2.14

Parallel ver. 3.70 2.73 2.45 2.34 2.34

F32 Inpla1 Inpla2 Inpla3 Inpla4 Inpla5

Sequential ver. 4.32 3.03 2.65 2.49 2.50

Parallel ver. 5.06 3.47 2.99 2.81 2.82

Table 7.5: Execution time in the multi-thread execution

7.2.3 Algebraic datatypes and sharing

In this section, as another possible optimisation, we discuss sharing given nets defined by

algebraic datatypes.

An algebraic datatype with n constructors C1, . . . , Cn can be represented by using

n agents Ai where each agent Ai has the same arity of Ci. For instance, unary natural

numbers are defined as the following algebraic datatype Nat:

datatype Nat = Z | S of Nat;

and those are represented nets by using the agent Z and S. Those net are constituted only

by connection between auxiliary ports and principal ports, thus those have no names.

Therefore, it is possible to share pointers to those nets safely if we do not erase any of

those contents. The following are rules for duplication and erasing:

SDup ⇒

S S

Dup Dup ⇒Z
Z Z

Del
⇒

S Del Del
⇒

Z

Functions for those rules could be written by the pointer sharing:

void Dup_S(Agent *a1, Agent *a2) {

pushActive(a1->port[0],a2);

199

pushActive(a1->port[1],a2);

freeAgent(a1);

}

void Dup_Z(Agent *a1, Agent *a2) {

pushActive(a1->port[0],a2);

pushActive(a1->port[1],a2);

freeAgent(a1);

}

void Del_S(Agent *a1, Agent *a2) {

// no operation

}

void Del_Z(Agent *a1, Agent *a2) {

// no operation

}

Garbage nodes, thus unerased and unnecessary agents, are managed by a garbage

collector. The garbage can be found with Mark-and-sweep method by recursively tree-

walking on the interface (and active pair stacks if those are not empty). By using this

method, the computation could be improved efficiently.

7.3 Summary

In this chapter, we implemented a multi-threaded interpreter of interaction nets that uses

LL0 as bytecode, and we showed how our method improved the performance in sequential

and parallel execution. We also introduced some possible optimisations and extensions in

terms of efficient computation.

With respect to another improvement with LL0, we note the correspondence of LL0 to

the standardised implementation written in the C language as mentioned in Sections 5.3

and 6.5.2. PIN [28], which is a bytecode interpreter, led to INET [29], which is a compiler

to the C language. In the same way, a new compiler for interaction nets based on the LL0

language will be developed, followed by our interpreter Inpla.

200

Chapter 8

Conclusion

Interaction nets have been expected to give a new, alternative, theoretical foundation of

sequential and parallel computation since they were proposed in 1990, particularly with

respect to efficiency. To demonstrate this ideal, it is important to show that ideas work

efficiently not only in theory but also in practice. This thesis has contributed to this

research effort by providing more effective and simpler methods in the development of

implementations of interaction nets. Our main contributions can be summarised as:

• We introduced a standardised implementation model. There are so many implement-

ations of interaction nets, and they cannot be compared or analysed in a uniform

way. Having a standard model for evaluation allows us to start to develop tools

and techniques to reason about implementations. Of course, there are alternative

implementation models waiting to be developed. However, we see this work as an

important step to push forward the idea of a standard model—even if other models

are developed later, the techniques provide an important start to this work.

• By using this model, we examined a number of interaction net evaluators that have

been developed to date, and have demonstrated the necessity of our new method.

• In terms of sequential evaluation, our method is not necessarily the most efficient—

however, it is simpler (in some cases significantly) than extant evaluators. Having

a simple—perhaps the simplest—model allows us to see the essential structure of

interaction, and moreover it is possible to perform evaluation in parallel naturally.

The motivation to give a simple model is analogous to something like the Krivine

machine for the λ-calculus for example (this machine is not the most efficient way to

implement the λ-calculus, but it is important in the understanding of β-reduction).

201

• We introduced a new textual calculus that mirrors the implementation method.

This is useful to investigate properties of an implementation from a theoretical

perspective—it provides an interface between the theory and practice.

• We also introduced a bytecode execution model, which is called LL0. This offers not

only efficient implementation, but also parallel implementation.

• We implemented a parallel evaluator, called Inpla. This is the fastest evaluator for

interaction nets known to date. In comparison with Python, it is also faster. In

comparison with SML, it tends not to be faster, but it can be faster if we use a

specific, efficient, encoding of the algorithm.

• Finally, in the future works we gave significant evidence that using this model allows

us to reason about and develop optimisations, such as the reuse optimisation of

memory cells. This is another advantage to use LL0.

We hope that the methods proposed in this thesis could help push forward the devel-

opment of interaction based evaluators, and inspire new work on parallel implementations

of interaction nets and as a consequence parallel implementations of other programming

languages through translation.

202

Bibliography

[1] Samson Abramsky. Computational interpretations of linear logic. Theoretical Com-

puter Science, 111:3–57, 1993. 74

[2] Vladimir Alexiev. Non-deterministic interaction nets. PhD thesis, University of

Alberta, 1999. Adviser-Jia You. 7, 148

[3] José Bacelar Almeida, Jorge Sousa Pinto, and Miguel Vilaça. A tool for programming

with interaction nets. Electr. Notes Theor. Comput. Sci., 219:83–96, 2008. 4, 30

[4] Sandra Alves, Maribel Fernández, Mário Florido, and Ian Mackie. Gödel’s system T

revisited. Theor. Comput. Sci., 411(11-13):1484–1500, 2010. 23

[5] Oana Andrei, Maribel Fernández, Hélène Kirchner, Guy Melançon, Olivier Namet,

and Bruno Pinaud. PORGY: strategy-driven interactive transformation of graphs. In

Rachid Echahed, editor, Proceedings 6th International Workshop on Computing with

Terms and Graphs, TERMGRAPH 2011, Saarbrücken, Germany, 2nd April 2011.,

volume 48 of EPTCS, pages 54–68, 2011. 6

[6] Minero Aoki. Ruby source code: A full description. http://i.loveruby.net/ja/

rhg/book/, 2004. Accessed: 12 August 2014. English translation: The Ruby Hacker’s

Guide [12]. 170, 171

[7] Andrew W. Appel. Modern Compiler Implementation in ML: Basic Techniques. Cam-

bridge University Press, New York, NY, USA, 1997. 174

[8] Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Functional

Programming Languages, volume 45 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 1998. 4, 5

[9] Alan Bawden. Connection graphs. In Proceedings of ACM Conference on Lisp and

Functional Programming, pages 258–265, 1986. 3

http://i.loveruby.net/ja/rhg/book/
http://i.loveruby.net/ja/rhg/book/

203

[10] Denis Bechet. Partial evaluation of interaction nets. In M. Billaud, P. Castéran,

M. M. Corsini, K. Musumbu, and A. Rauzyand, editors, Proceedings of the Second

Workshop on Static Analysis WSA’92, volume 81-82 of Bigre Journal, pages 331–338,

1992. 149

[11] James R. Bell. Threaded code. Commun. ACM, 16(6):370–372, 1973. 183

[12] Clifford Escobar Caoile, Robert Gravina, Vincent Isambart, and C.E. Thronton. The

ruby hacker’s guide. http://edwinmeyer.com/Integrated_RHG.html. Accessed: 12

August 2014. 202

[13] Alain Colmerauer and Philippe Roussel. The birth of prolog. In The Second ACM

SIGPLAN Conference on History of Programming Languages, HOPL-II, pages 37–52,

New York, NY, USA, 1993. ACM. 5

[14] Maribel Fernández. Type assignment and termination of interaction nets. Mathem-

atical Structures in Computer Science, 8(6):593–636, 1998. 7

[15] Maribel Fernández and Ian Mackie. From term rewriting to generalised interaction

nets. In H. Kuchen and S. D. Swierstra, editors, Proceedings of the 8th Interna-

tional Symposium on Programming Languages, Implementations, Logics and Pro-

grams (PLILP’96), number 1140 in Lecture Notes in Computer Science, pages 319–

333. Springer-Verlag, September 1996. 137

[16] Maribel Fernández and Ian Mackie. Interaction nets and term rewriting systems.

Theoretical Computer Science, 190(1):3–39, January 1998. 5

[17] Maribel Fernández and Ian Mackie. A calculus for interaction nets. In G. Nadathur,

editor, Proceedings of the International Conference on Principles and Practice of De-

clarative Programming (PPDP’99), number 1702 in LNCS, pages 170–187. Springer-

Verlag, September 1999. 6, 7, 11, 13, 18, 29, 30, 31, 40

[18] Maribel Fernández and Ian Mackie. Operational equivalence for interaction nets.

Theoretical Computer Science, 297(1–3):157–181, February 2003. 7

[19] Maribel Fernández, Ian Mackie, and Jorge Sousa Pinto. Combining interaction nets

with externally defined programs,. In Electronic proceedings of the APPIA-GULP-

PRODE Joint Conference on Declarative Programming, 2001. http://hdl.handle.

net/1822/776. 149

http://edwinmeyer.com/Integrated_RHG.html
http://hdl.handle.net/1822/776
http://hdl.handle.net/1822/776

204

[20] S. J. Gay. Interaction nets. Diploma in computer science, University of Cambridge

Computer Laboratory, 1991. 7, 30

[21] Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50(1):1–102, 1987. 1

[22] Jean-Yves Girard. Linear logic : its syntax and semantics. In Jean-Yves Girard,

Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, number 222 in

London Mathematical Society Lecture Note Series, pages 1–42. Cambridge University

Press, 1995. 2

[23] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,

1989. 22

[24] Georges Gonthier, Mart́ın Abadi, and Jean-Jacques Lévy. The geometry of optimal

lambda reduction. In Proceedings of the 19th ACM Symposium on Principles of

Programming Languages (POPL’92), pages 15–26. ACM Press, January 1992. 5

[25] David Gudeman. Representing type information in dynamically typed languages.

Technical Report TR 93-27, Department of Computer Science. University of Arizona,

1993. 171

[26] Abubakar Hassan. Interaction Nets: Language Design and Implementation. PhD

thesis, University of Sussex, 2009. 7

[27] Abubakar Hassan, Eugen Jiresch, and Shinya Sato. An implementation of nested

pattern matching in interaction nets. In Ian Mackie and Anamaria Martins Moreira,

editors, RULE, volume 21 of EPTCS, pages 13–25, 2009. 10

[28] Abubakar Hassan, Ian Mackie, and Shinya Sato. Interaction nets: programming

language design and implementation. ECEASST, 10, 2008. 9, 30, 31, 32, 199

[29] Abubakar Hassan, Ian Mackie, and Shinya Sato. Compilation of interaction nets.

Electr. Notes Theor. Comput. Sci., 253(4):73–90, 2009. 7, 9, 30, 31, 32, 199

[30] Abubakar Hassan, Ian Mackie, and Shinya Sato. A lightweight abstract machine for

interaction nets. ECEASST, 29, 2010. 9, 30, 31, 40, 50, 62, 188

[31] Abubakar Hassan, Ian Mackie, and Shinya Sato. An implementation model for in-

teraction nets. In Aart Middeldorp and Femke van Raamsdonk, editors, Proceedings

205

8th International Workshop on Computing with Terms and Graphs, TERMGRAPH

2015, Vienna, Austria, July 13, 2014., volume 183 of EPTCS, pages 66–80, 2015. 10

[32] Abubakar Hassan and Shinya Sato. Interaction nets with nested pattern matching.

Electr. Notes Theor. Comput. Sci., 203(1):79–92, 2008. 10

[33] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. The im-

plementation of lua 5.0. Journal of Universal Computer Science, 11(7):1159–1176,

July 2005. http://www.jucs.org/jucs_11_7/the_implementation_of_lua. 130

[34] Eugen Jiresch. Towards a gpu-based implementation of interaction nets. In Benedikt

Löwe and Glynn Winskel, editors, DCM, volume 143 of EPTCS, pages 41–53, 2014.

7, 30, 31, 40

[35] S.L. Peyton Jones. The Implementatiion of Functional Programming Languages.

Prentice-Hall International, 1987. 179

[36] Yves Lafont. Interaction nets. In Seventeenth Annual Symposium on Principles of

Programming Languages, pages 95–108, San Francisco, California, 1990. ACM Press.

3, 5, 11, 12, 13, 16, 29, 30, 31

[37] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308–320,

January 1964. 51, 76

[38] Sylvain Lippi. in2 : A graphical interpreter for interaction nets. In Sophie Tison,

editor, RTA, volume 2378 of Lecture Notes in Computer Science, pages 380–386.

Springer, 2002. 6, 30, 31, 32

[39] Sylvain Lippi. Théorie et pratique des réseaux d’interaction. PhD thesis, Université

de la méditerranée, 2002. 5, 7

[40] Sylvain Lippi. The graphical krivine machine. Higher-Order and Symbolic Computa-

tion, 20(3):295–318, 2007. 5, 6

[41] Ian Mackie. The Geometry of Implementation. PhD thesis, Department of Comput-

ing, Imperial College of Science, Technology and Medicine, September 1994. 5

[42] Ian Mackie. Linear logic with boxes. In Proceedings of the 13th Annual IEEE Sym-

posium on Logic in Computer Science (LICS’98), pages 309–320. IEEE Computer

Society Press, June 1998. 4

http://www.jucs.org/jucs_11_7/the_implementation_of_lua

206

[43] Ian Mackie. YALE: Yet another lambda evaluator based on interaction nets. In Pro-

ceedings of the 3rd International Conference on Functional Programming (ICFP’98),

pages 117–128. ACM Press, 1998. 5, 19, 64

[44] Ian Mackie. Interaction nets for linear logic. Theoretical Computer Science, 247(1):83–

140, September 2000. 4

[45] Ian Mackie. Towards a programming language for interaction nets. Electronic Journal

in Theoretical Computer Science, 127(5):133–151, May 2005. 4, 6, 7

[46] Ian Mackie. Encoding strategies in the lambda calculus with interaction nets. In An-

drew Butterfield, editor, Proceedings of the 17th International Workshop on Imple-

mentation and Application of Functional Languages (IFL’05), volume 4015 of Lecture

Notes in Computer Science. Springer-Verlag, 2006. 4, 5

[47] Ian Mackie. A rewriting paradigm for program and algorithm animation. In IEEE

Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2009,

Corvallis, OR, USA, 20-24 September 2009, Proceedings, pages 170–173. IEEE Com-

puter Society, 2009. 6

[48] Ian Mackie. A visual model of computation. In J. Kratochvil et al., editor, Theory

and Applications of Models of Computation, 7th Annual Conference, TAMC 2010,

Prague, Czech Republic, volume 6108 of Lecture Notes in Computer Science, pages

350–360. Springer-Verlag, June 2010. 6

[49] Ian Mackie and Shinya Sato. A calculus for interaction nets based on the linear

chemical abstract machine. Electr. Notes Theor. Comput. Sci., 192(3):59–70, 2008.

14, 69

[50] Ian Mackie and Shinya Sato. An interaction net encoding of Gödel’s System T. In

Pre-Proceedings of the Fifth International Workshop on Graph Computation Models,

to appear. 9

[51] Ian Mackie and Shinya Sato. Some observations for the parallel implementation of

interaction nets. In Pre-Proceedings of the 10th International Workshop on Develop-

ments in Computational Models, to appear. 10

[52] Damiano Mazza. Interaction Nets: Semantics and Concurrent Extensions. Ph.D.

thesis, Université de la Méditerranée/Università degli Studi Roma Tre, 2006. 7

207

[53] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and

blocking concurrent queue algorithms. In Proceedings of the Fifteenth Annual ACM

Symposium on Principles of Distributed Computing, PODC ’96, pages 267–275, New

York, NY, USA, 1996. ACM. 186

[54] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of

Standard ML (Revised). MIT Press, 1997. 7, 187

[55] Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge University Press,

2003. 7

[56] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-

calculus. Technical Report 476, Indiana, 1997. 7

[57] Jorge Sousa Pinto. Sequential and Concurrent Abstract Machines for Interaction

Nets. In Jerzy Tiuryn, editor, Proceedings of Foundations of Software Science and

Computation Structures (FOSSACS), number 1784 in Lecture Notes in Computer

Science, pages 267–282. Springer-Verlag, 2000. 7, 30, 40, 49, 50, 72

[58] Jorge Sousa Pinto. Parallel Implementation with Linear Logic. PhD thesis, École

Polytechnique, February 2001. 4, 6, 7

[59] François-Régis Sinot and Ian Mackie. Macros for interaction nets: A conservative

extension of interaction nets. Electr. Notes Theor. Comput. Sci., 127(5):153–169,

2005. 7, 148

[60] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby 1.9: The Pragmatic

Programmers’ Guide. Pragmatic Bookshelf, 3rd edition, 2009. 170

[61] Guido van Rossum and Fred L. Drake. The Python Language Reference Manual.

Network Theory Ltd., 2011. 187

208

Appendix A

Programs in related works

A.1 amineLight: runtime functions

void eval() {

Agent *a1, *a2;

while (popActive(&a1, &a2)) {

if (a2->id != ID_NAME) {

if (a1->id != ID_NAME) {

R[a1][a2](a1, a2);

} else {

/* operations for x=Alpha(x1,...,xn) */

if (a1->port[0] == NULL) {

/* II.0 */

a1->port[0] = a2;

} else if ((a1->port[0])->id != ID_NAME) {

/* II.e */

Agent *a1p0 = a1->port[0];

freeAgent(a1);

a1=a1p0;

pushActive(a1,a2);

} else {

/* II.c */

(a1->port[0])->port[0] = a2;

freeAgent(a1);

}

209

}

} else {

/* operations for Alpha(x1,...,xn)=y and x=y */

if (a1->id != ID_NAME) {

/* II.- */

if (a2->port[0] == NULL) {

a2->port[0] = a1;

} else if ((a2->port[0])->id != ID_NAME) {

Agent *a2p0 = a2->port[0];

freeAgent(a2);

a2=a2p0;

pushActive(a1,a2);

} else {

(a2->port[0])->port[0] = a1;

freeAgent(a2);

}

} else {

if (a1->port[0] == NULL) {

if (a2->port[0] == NULL) {

/* III.0_0 */

a1->port[0] = a2;

a2->port[0] = a1;

} else if ((a2->port[0])->id != ID_NAME) {

/* III.0_e */

a1->port[0] = a2->port[0];

freeAgent(a2);

} else {

/* III.0_c */

a1->port[0] = a2->port[0];

(a2->port[0])->port[0] = a1;

freeAgent(a2);

}

} else if ((a1->port[0])->id != ID_NAME) {

if (a2->port[0] == NULL) {

210

/* III.e_0 */

a2->port[0] = a1->port[0];

freeAgent(a1);

} else if ((a2->port[0])->id != ID_NAME) {

/* III.e_e */

Agent *a1p0=a1->port[0];

freeAgent(a1);

Agent *a2p0=a2->port[0];

freeAgent(a2);

a1=a1p0;

a2=a2p0;

pushActive(a1,a2);

} else {

/* III.e_c */

(a2->port[0])->port[0] = a1->port[0];

freeAgent(a1);

freeAgent(a2);

}

} else {

if (a2->port[0] == NULL) {

/* III.c_0 */

(a1->port[0])->port[0] = a2;

a2->port[0] = a1->port[0];

freeAgent(a1);

} else if ((a2->port[0])->id != ID_NAME) {

/* III.c_e */

(a1->port[0])->port[0] = a2->port[0];

freeAgent(a1);

freeAgent(a2);

} else {

/* III.c_c */

(a2->port[0])->port[0] = a1->port[0];

(a1->port[0])->port[0] = a2->port[0];

freeAgent(a1);

211

freeAgent(a2);

}

}

}

}

}

}

212

Appendix B

Benchmark programs

In this chapter, we show the souce files of benchmark programs on interger numbers and

lists in SML, Python and Inpla.

B.1 Ackermann function

SML

fun ack 0 n = n+1

| ack m 0 = ack (m-1) 1

| ack m n = ack (m-1) (ack m (n-1));

ack 3 9;

Python

def ack(m,n):

if m==0:

return n+1

elif n==0:

return ack(m-1, 1)

else:

return ack(m-1, ack(m, n-1))

print ack(3,9)

Inpla

213

A(n,r) >< (int m)

| m==0 => Addn(1,r)~n

| _ => A2(m, r)~n;

A2(int m,r) >< (int n)

| n==0 => A((1),r)~(m1) where m1=m-1

| _ => A(w,r)~(m1), A((n1),w)~(m) where n1=n-1 m1=m-1;

Addn(int n, r) >< (int m)=> r~(i) where i=n+m;

A((9),r)~(3);

r;

B.2 Fibonacci number

SML

fun fib 0 = 1

| fib 1 = 1

| fib n = (fib (n-1)) + (fib (n-2));

fib 39;

Python

def fib(n):

if n == 0:

return 1

elif n == 1:

return 1

else:

return fib(n-1) + fib(n-2)

print fib(39)

Inpla

214

Fib(r) >< (int a)

| a == 0 => r~(1)

| a == 1 => r~(1)

| _ => Fib(n1)~(b),Fib(n2)~(c), Add(n2,r)~n1

where b=a-1 c=a-2;

Add(n2,r) >< (int i)

=> Add2(i, r) ~ n2;

Add2(int i, r) >< (int j)

=> r~(a) where a=i+j;

Fib(r)~(39);

r;

B.3 Bubble sort

SML

http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort#OCaml

local

fun bsortsub (x::x2::xs) =

if x > x2 then x2::(bsortsub (x::xs))

else x::(bsortsub(x2::xs))

| bsortsub x = x;

in

fun bsort x =

let

val s = bsortsub x;

in

if x=s then x else bsort s

end

end;

(* mkRandList *)

local

http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort#OCaml

215

val nextInt = Random.randRange(1,10000);

val r = Random.rand(1,1);

in

fun mkRandList 0 = []

| mkRandList n = (nextInt r)::(mkRandList (n-1))

end;

bsort (mkRandList 20000);

Python

http://www.geekviewpoint.com/python/sorting/bubblesort

import random

def mkRandList (n):

a=[]

for i in range(1,n+1):

a.insert(0, random.randint(0,10000))

return a

def bubblesort(A):

for i in range(len(A)):

for k in range(len(A) - 1, i, -1):

if (A[k] < A[k - 1]):

tmp = A[k]

A[k] = A[k-1]

A[k-1] = tmp

a = mkRandList(20000)

bubblesort(a)

Inpla

BS(r) >< [] => r~[];

BS(r) >< [x | xs] => B(x, BS(r))~xs;

BS(r) >< M(w) => r~w;

http://www.geekviewpoint.com/python/sorting/bubblesort

216

B(int x,r) >< [] => r~M([x]);

B(int x,r) >< M(w) => r~M([x | w]);

B(int x,r) >< [int y | ys]

| x<y => r~[x|w], B(y,w)~ys

| _ => r~[y|w], B(x,w)~ys;

MkRandList(r) >< (int n)

| n>0 => r~[rd|r1], MkRandList(r1)~(n1)

where n1=n-1 rd=rand(10000)

| _ => r~[];

MkRandList(r)~(20000), BS(r1)~r;

r1;

B.4 Quicksort

SML

http://www.webber-labs.com/mpl/source%20code/Chapter%20Twelve/quicksort.sml.txt

fun quicksort nil = nil

| quicksort (pivot :: rest) =

let

fun split(nil) = (nil,nil)

| split(x :: xs) =

let

val (below, above) = split(xs)

in

if x < pivot then (x :: below, above)

else (below, x :: above)

end;

val (below, above) = split(rest)

in

quicksort below @ [pivot] @ quicksort above

end;

http://www.webber-labs.com/mpl/source%20code/Chapter%20Twelve/quicksort.sml.txt

217

(* mkRandList *)

local

val nextInt = Random.randRange(1,10000);

val r = Random.rand(1,1);

in

fun mkRandList 0 = []

| mkRandList n = (nextInt r)::(mkRandList (n-1))

end;

quicksort (mkRandList 500000);

Python

http://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Python

import random

def quickSort(arr):

less = []

pivotList = []

more = []

if len(arr) <= 1:

return arr

else:

pivot = arr[0]

for i in arr:

if i < pivot:

less.append(i)

elif i > pivot:

more.append(i)

else:

pivotList.append(i)

less = quickSort(less)

more = quickSort(more)

return less + pivotList + more

http://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Python

218

def mkRandList (n):

a=[]

for i in range(1,n+1):

a.insert(0, random.randint(0,10000))

return a

a = mkRandList(500000)

quickSort(a)

Inpla

QS(r) >< [] => r~[];

QS(r) >< [int x|xs] => Part(x, QS(w), QS(App([x|w], r)))~xs;

App(a,b) >< [] => a~b;

App(a,b) >< [x|xs] => b~[x|w], xs~App(a,w);

Part(int x, a, b) >< [] => a~[], b~[];

Part(int x, a,b) >< [int y|ys]

| y<x => ys~Part(x, a, w), b~[y|w]

| _ => ys~Part(x, w, b), a~[y|w];

MkRandList(r) >< (int n)

| n>0 => r~[rd|r1], MkRandList(r1)~(n1)

where n1=n-1 rd=rand(10000)

| _ => r~[];

MkRandList(r)~(500000), QS(r1)~r;

r1;

	DPhil Coversheet
	Sato, Shinya
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Linear logic
	1.2 Interaction nets
	1.2.1 Interaction nets as an implementation language
	1.2.2 Interaction nets as a programming language

	1.3 Implementing and extending interaction nets
	1.4 Contribution
	1.5 Thesis overview

	2 Background
	2.1 Interaction nets
	2.1.1 Graph rewriting system
	2.1.2 A textual calculus for interaction nets

	2.2 Examples
	2.2.1 Arithmetic operations on unary natural numbers
	2.2.2 Gödel's System T

	2.3 Summary

	3 Related works: evaluators towards efficient computation
	3.1 Overview
	3.2 Evaluators based on the graph rewriting system
	3.2.1 INET
	3.2.2 in2

	3.3 Evaluators based on the textual calculi
	3.3.1 AMINE (MPINE)
	3.3.2 amineLight

	3.4 Comparison of encoding methods
	3.4.1 Undirected graph encoding
	3.4.2 Directed graph encoding
	3.4.3 Experimental results

	3.5 Summary

	4 Single link encoding method
	4.1 Motivation
	4.2 Lightweight textual calculus
	4.2.1 Lightweight interaction rules
	4.2.2 Decomposing Indirection rule
	4.2.3 Lightweight calculus
	4.2.4 Properties of lightweight reduction rules

	4.3 Simpler lightweight abstract machine
	4.3.1 Correctness
	4.3.2 Computation without the map for connections

	4.4 Simpler textual calculus
	4.4.1 Expressive power

	4.5 Encoding method
	4.5.1 Implementation model
	4.5.2 Reduction strategies
	4.5.3 Experimental results

	4.6 Summary

	5 Low-level language LL0
	5.1 The Low-level language LL0
	5.1.1 Constructing nets
	5.1.2 Defining interaction rules
	5.1.3 Instructions and Syntax of LL0

	5.2 Translation of the textual calculus into LL0
	5.2.1 Translation of configurations
	5.2.2 Translation of interaction rules

	5.3 Execution model in the C language
	5.3.1 Implementation of instructions
	5.3.2 Implementation of rule procedures

	5.4 Execution model in a bytecode interpreter
	5.4.1 Implementation of instructions
	5.4.2 Implementation of rule procedures

	5.5 Summary

	6 A language for programming in interaction nets
	6.1 Pattern matching
	6.1.1 Motivations
	6.1.2 Interaction rules for nested patterns (INP)
	6.1.3 Translation
	6.1.4 Related Works

	6.2 Agents and interaction rules with attributes
	6.2.1 Agents hold attributes
	6.2.2 Interaction rules with expressions
	6.2.3 Conditional interaction rules
	6.2.4 Examples

	6.3 Syntax
	6.3.1 Nested pattern matching
	6.3.2 Agents and interaction rules with attributes

	6.4 Extension of LL0
	6.4.1 Extension of the syntax of LL0
	6.4.2 Extension of the compilation method

	6.5 Extension of execution models
	6.5.1 Data-structures for agents, ports and attributes
	6.5.2 Execution model in the C language
	6.5.3 Execution model in the byte-code interpreter

	6.6 Summary

	7 Results and future work
	7.1 Interpreter for interaction nets with LL0
	7.1.1 Sequential execution model
	7.1.2 Parallel execution model
	7.1.3 Experimental results

	7.2 Future work
	7.2.1 Reuse optimisation
	7.2.2 Parallelism
	7.2.3 Algebraic datatypes and sharing

	7.3 Summary

	8 Conclusion
	Bibliography
	A Programs in related works
	A.1 amineLight: runtime functions

	B Benchmark programs
	B.1 Ackermann function
	B.2 Fibonacci number
	B.3 Bubble sort
	B.4 Quicksort

