
   

 

A University of Sussex DPhil thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



i 

 

Advanced Electrode Models and 
Numerical Modelling for High 
Frequency Electrical Impedance 
Tomography Systems 

 

 

 

 

 

 

 

 

 

 

 

 

Weida Zhang 

 

A Thesis Submitted for the Degree of 

Doctor of Philosophy 

 

School of Engineering and Informatics 

University of Sussex 

February 2015 

  



ii 

 

Declaration  

I hereby declare that this thesis has not been and will not be, submitted in whole or in 

part to another University for the award of any other degree. 

 

 

 

 

 

Signature: 

 

 

Weida Zhang 

  



iii 

 

Abstract  

The thesis discusses various electrode models and finite element analysis methods for 

Electrical Impedance Tomography (EIT) systems. EIT is a technique for determining the 

distribution of the conductivity or admittivity in a volume by injecting electrical currents into 

the volume and measuring the corresponding potentials on the surface of the volume. Various 

electrode models were investigated for operating EIT systems at higher frequencies in the 

beta-dispersion band. Research has shown that EIT is potentially capable to distinguish 

malignant and benign tumours in this frequency band. My study concludes that instrumental 

effects of the electrodes and full Maxwell effects of EIT systems are the major issues, and they 

have to be addressed when the operating frequency increases. 

In the thesis, I proposed 1) an Instrumental Electrode Model (IEM) for the quasi-static EIT 

formula, based on the analysis of the hardware structures attached to electrodes; 2) a 

Complete Electrode Model based on Impedance Boundary Conditions (CEM-IBC) that 

introduces the contact impedances into the full Maxwell EIT formula; 3) a Transmission line 

Port Model (TPM) for electrode pairs with the instrumental effects, the contact impedance, 

and the full Maxwell effects considered for EIT systems. 

Circuit analysis, Partial Differential Equations (PDE) analysis, numerical analysis and finite 

element methods were used to develop the models. The results obtained by the proposed 

models are compared with widely used Commercial PDE solvers. 

This thesis addresses the two major problems (instrumental effects of the electrodes and full 

Maxwell effects of EIT systems) with the proposed advanced electrode models. Numerical 

experiments show that the proposed models are more accurate in the high frequency range of 

EIT systems. The proposed electrode models can be also applicable to inverse problems, and 

the results show promising. Simple hardware circuits for verifying the results experimentally 

have been also designed. 
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Chapter 1 Introduction 

The thesis discusses the electrode modelling for Electrical Impedance Tomography (EIT) 

systems. More accurate electrode models are proposed in the frequency range over which 

traditional models are not able to accurately describe the electrode. 

This chapter provides a brief introduction to the field of study. The literatures are reviewed, 

the problems being investigated are stated here, as well as the contributions of this thesis. The 

background materials will be detailed in Chapter 2. 

1.1 Characteristics and Classification 

The Electromagnetic (EM) detection and imaging technique, is one of the major research areas 

which make uses of the electromagnetic fields or electromagnetic waves to obtain medical 

images for diagnosis applications. Different criterions are used for classifying the imaging 

techniques, including frequency ranges, radiators, target features, etc., or different types of 

algorithms as shown in Figure 1-1. 

 

Figure 1-1 Divisions of Electromagnetic Detection and Imaging 
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The radar (RAdio-Detection-And-Ranging) based imaging methods, including Ultra-Wide Band 

(UWB) imaging methods, Through-the-Wall Radar (TWR) methods, etc. use the linear 

relationship between the target distances and the phase shift developed in the reflected 

signals to identify and localise the potential targets. 

Tomography is to image by sections or slices. Generally, tomographic techniques are used to 

image the distribution of a specific property. For example, EIT is used to image the impedance 

distribution, while Computed Tomography (CT) is used to image the distribution of the ability 

to block the X-ray beam. 

The tomographic techniques usually obtain images by evaluating the difference between the 

observation and the estimation. The estimation is obtained by solving the forward problem, 

which approximates the “observation” with a known image (e.g., typically start with an initial 

guess). The evaluation refers to the inverse problem, which feedbacks the difference to the 

observation to update the image. 

Particularly, EIT (Barber & Brown, 1984; Webster, 1990; Metherall, et al., 1996; Cheney, et al., 

1999; Saulnier, et al., 2001; Holder, 2005) is a technique for determining the distribution of the 

conductivity or admittivity in a volume by injecting electrical currents into the volume and 

measuring the corresponding potentials on the surface of the volume. A 3-D image of the 

admittivity distribution is generated by using inverse algorithms. The forward problem of EIT is 

capable of predicting the voltages on defined surface electrodes for a given admittivity 

distribution (Lionheart, 2004). 

EIT is an important sub-division of the tomographic techniques. Other similar scenarios are 

using different excitations, or imaging different property distributions, or both. The Electric 

Resistance Tomography (ERT) (Daily, et al., 2004), is imaging the resistance distribution, while 

the Electric Capacitance Tomography (ECT) (Yang & Peng, 2003), is imaging the capacitance. 

Magnetic Induction Tomography (MIT) (Griffiths, 2001), is injecting magnetic fields or more 

precisely exciting the sample with the eddy current, and imaging the admittivity. 

Microwave Tomography (MWT) (Semenov, 2009) has been investigated following the 

advances in numerical analysis, computational electromagnetism and inverse problems (such 

as EIT). The technique solves the full Maxwell’s equations and obtaining all the three 

electromagnetic properties distributions.  
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However, although these scenarios have a similar tomography method to EIT, different 

forward problems and inverse problems are consequently performed based on the behaviours 

of the electromagnetic fields. 

CT (X-ray CT) is the most commonly used tomographic technique. However, since the 

frequency of X-rays and visible light are too high, the forward problems of CT and also Optical 

Diffusion Tomography (ODT) degrade to projections (Herman, 2009). This property makes X-

ray CT and ODT less in ill-posedness and better in imaging resolution. Magnetic Resonance 

Imaging (MRI) is another widely used medical imaging technique. Although it uses tomographic 

techniques in imaging, but MRI images the nuclear spinning instead of properties of 

electromagnetic fields, therefore is not discussed here. 

Tomography techniques are unlike the radar based modalities, which aimed to detect the 

scatters and to locate the discontinuities of the intrinsic impedance. Tomography techniques 

obtain the property distributions as results.  

However, the tomography techniques, such as EIT, MIT and MWT, have a number of 

disadvantages. As mentioned above, only the absorption that lies along the X-ray beam, affects 

the corresponding pixels in CT. This is a property of the modality called local (Holder, 2005). 

The EIT and other similar methods are non-local. At low frequencies, the excitation spreads all 

over the object non-linearly. Furthermore, the non-locality is deeply related to the ill-posed 

nature of the problem. The ill-posedness of the EIT means the uncertainties in the 

measurements taken on the boundary could map to an arbitrarily wide range of the admittivity 

causing artefacts easily. The features of the EIT and similar modalities, including non-local, 

non-linear and ill-posed, are resulting in that: 

 Much lower resolution than modalities such as CT; 

 Higher accuracy of observations is required; 

 A priori information about the distribution is needed. 

Due to the ill-posed nature of the inverse problem, the measureable information is insufficient 

for robust reconstruction of high-resolution admittivity images (Seo & Woo, 2011). The 

practical difficulties have led researches to searching for new ways to bypass the ill-posedness 

of the corresponding inverse problems. Dual-modality imaging methods such as ultra sound 

EIT, Magnetic Resonance EIT (MREIT) and Breast Microwave Radar (BMR) EIT etc., have been 

invested, and promising results have been obtained since 2008 (Hasanov, et al., 2008; Ammari, 

et al., 2008; Flores-Tapia, et al., 2011). 
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Overview and review of these modalities can be find in later sections. 

1.2 Motivations 

Researches have shown that a difference in admittivity and its spectrum between malignant 

and normal tissues can be observed in the beta dispersion band, the frequency range 0.1 MHz 

– 0.1 GHz (Schwan, 1957; Surowiec, et al., 1988; Gabriel, et al., 1996; Grimnes & Martinsen, 

2008). 

Dispersion is a phenomenon that the dielectric properties (permittivity) of materials are 

dependent on the frequency. The correspondent concept of dispersion in time domain is called 

relaxation. Permittivity is a measure of how much a material can be polarised, whereas 

relaxation is a measure of how fast it can be polarised (Grimnes & Martinsen, 2008).  

Dispersions of biomaterials are divided in three groups based on different relaxation 

mechanisms: alpha-, beta-, and gamma-dispersion. The three groups are located at 100Hz, 

1MHz and 10GHz on the frequency axis. For the gamma-dispersion being the fastest, its 

mechanism is considered as the polarisation of the dipoles in polar media such as water, 

solutions and proteins. The responses of the passive cell membranes, intracellular organelle 

membranes and the protein molecules, are the contributors to the beta-dispersion. Some 

other effects, mainly from large structures, are corresponding to the alpha-dispersion (Schwan, 

1957). 

A report (Surowiec, et al., 1988) about the dielectric properties of breast cancer tissues at the 

beta-dispersion band has been shown in Figure 1-2. The central and surrounding parts of the 

tumours are different from the normal tissues in both conductivity, permittivity and their 

spectrums. The possible interpretation is that, the cancer cells are different from normal ones 

for complicated and disorderly arranged membranes. These membranes correspond to the 

difference in the beta-dispersion band (Grimnes & Martinsen, 2008). 
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Figure 1-2 Beta Dispersion of Breast Cancer Tissue (*): central part of tumour; (+): tissue surrounding the tumour; 
(o): mainly fatty tissue containing infiltrating tumour cells; (x): peripheral sample located relatively far from central 

part of tumour; (v): normal breast tissue. Source: Dielectric Properties of Breast Carcinoma and the Surrounding 
Tissues (Surowiec, et al., 1988) 

The dielectric properties of the breast tissues behave almost the same with water when the 

frequency is higher than the microwave band (300MHz – 300GHz). The distinguishability of the 

EM imaging modalities working at these frequency bands are therefore reduced. 

For example, mammography, an X-ray based imaging technique widely used in breast cancer 

screening, provides overall high false-positive and false-negative rates, 5-15% and 10-50% 

respectively (Säbel & Aichinger, 1996). 40% and 26% of these rates were found in later reports 

(Bayford, 2006). Screening mammography is reported to be less sensitive for dense breast 

tissue in radiographic sense (Jackson, et al., 1993). Low contrasts in biological tissues of the X-

ray to a variation less than 5%, has been reported and suspected to be the interpretation of 

the high false rates (Meeson, 1997). 

Recent research results also show that malignant and benign can be distinguished using the 

low-microwave band up to 20GHz, lying in the gamma dispersion range. 10:1 contrast has 

been found in breast tissue samples which are adipose-dominant, however, only 10% 

difference were found between malignant and normal glandular/fibro-connective tissues 

(Lazebnik, et al., 2007). 

The tomography imaging methods provide the electromagnetic properties in contrast to the 

radar based methods, which are obtaining reflection maps. The electromagnetic properties 

and the features in dispersion provide a foundation for EIT, MIT and MWT to detect cancerous 

tissues. Figure 1-3 provides a brief view of the frequency range used for different modalities of 

EM imaging. The EIT, ERT, ECT and MIT operate in the frequency range from a few kHz to a few 

MHz. The MWT has been reported to use over hundreds MHz (Meaney, et al., 2000). The radar 
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based techniques are using GHz range, while the ODT and CTs (including X-ray CT, PET and 

SPECT etc.) are using the frequencies up to the Gamma ray band. 

 

Figure 1-3 Frequencies Usage of Electromagnetic Detection and Imaging 

In order to cover the beta-dispersion band, efforts have been made in extending the frequency 

range of EIT systems (or MIT systems). MWT uses the gamma dispersion band, has also 

attracted attention in recent years, for the potential of being capable of distinguishing 

different tumour types. 

The motivation of this research is to investigate the flexibility of applying EIT systems in the 

whole beta-dispersion band. In this frequency range, EIT will be useful for cancer screening 

and diagnosis. 

1.3 Literature Review and State-of-the-art 

In this section, we will review the literature about EIT algorithms, EIT instruments, and also 

some of the similar modalities mainly tomography techniques and dual-modalities.  

1.3.1 EIT Algorithms 

The first EIT system was introduced in 1978, for obtaining impedance by spatial measurements 

of thorax (Henderson & Webster, 1978). 144 electrodes are placed as a square array on one 



7 

 

side of the body, with another large one on the other side. A complex impedance was 

measured, and a tissue impedance model was proposed as well. In 1980, Alberto Calderon's 

famous paper that laid the foundation for the mathematical study of the inverse conductivity 

boundary value problem (Calderon, 1980). However, it appeared only in a crudely typed 

conference proceeding, and was reprinted in Computational and Applied Mathematics in 2006. 

Reconstructing the conductivity for medical imaging was first addressed in 1984 (Barber & 

Brown, 1984). A backprojection algorithm, which is similar to those used in CT, was proposed. 

A Finite Element Method (FEM) was first applied to EIT algorithms in 1985 (Murai & Kagawa, 

1985). 

Piecewise analytic conductivities can be determined by boundary measurements theoretically 

(Kohn & Vogelius, 1985) and was mathematically proved in 1985. A smooth complex 

conductivity distribution can be determined by boundary measurements with infinite precision 

if the distribution is isotropic (Sylvester & Uhlmann, 1987), and this was proved in the research 

of seeking complex geometrical optics solutions for Schrödinger equations. 

Also in 1987, different algorithms are compared, and two are concluded to be most robust and 

efficient (Yorkey, et al., 1987): Standard (Yorkey, 1986) and Compensation Theorem (Murai & 

Kagawa, 1985). The two are found to be the same in later literatures with the Newton-

Raphson method. 

The distinguishability of conductivity was first defined and analysed (Isaacson, 1986). The 

criteria for determining the measurement precision and selecting current driving patterns, 

were presented. Similarly, the sensitivity and resolution of EIT were assessed (Seagar, et al., 

1987). The smallest detectable object and contrast (to the background) were given by levels of 

noise in the measurements. Following the previous work, the spectral properties of the 

forward problem operators were analysed (Gisser, et al., 1990), and the work presents the way 

of choosing a proper driving pattern, electrode size and number of electrodes for EIT systems. 

The instability of EIT problems was analysed (Breckon & Pidcock, 1988) using Singular Value 

Decomposition (SVD). A 2-D disc with driving electrode pairs has been found extremely ill-

posed. The data errors that affect the EIT algorithms, were investigated using their Levenberg-

Marquardt methods (Breckon & Pidcock, 1988). 

A set of boundary conditions was first proposed for EIT forward problems, called the gap 

model in the later literatures (Wexler, 1988). The Complete Electrode Model (CEM) was 

proposed in 1989 to include the effect of the contact impedance (Cheng, et al., 1989). The 
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accuracy of 0.1% has been reported at the frequency of 15 kHz, whereas the previous 

researches using point, gap and shunt electrode models were struggled with the model 

accuracies. The existence and uniqueness of the forward problem solutions using CEM 

(Somersalo, et al., 1992) is proved in 1992. 

Newton's One-Step Error Reconstructor (NOSER), which is the most commonly used approach 

based on Gaussian-Newton algorithm for EIT reconstruction, was proposed (Cheney, et al., 

1990). The reconstructed conductivity was not accurate, however for the reason of one step 

(only one iteration), most of the calculation can be done prior to reconstructions. 

A robust image reconstruction algorithm using Hachtel’s augmented matrix has been proposed 

(Woo, et al., 1993), and it is found more accurate than the Newton-Raphson method (Yorkey, 

et al., 1987). Different from most iterative non-linear inverse methods, a single iteration 

algorithm was proposed (Somersalo, et al., 1991), which attempted to solve the conductivity 

from the boundary to inner layers by inserting boundary surfaces to the inner layers. 

A priori information of the conductivity distribution, which is assumed to be blocky, was first 

incorporated into EIT formulations (Dobson & Santosa, 1994). The research led to the Total 

Variation (TV) regularised method, by applying Markov Chain Monte Carlo (MCMC) methods to 

solve the TV regularised inverse problems (Somersalo, et al., 1997). The efficient and stable 

solution of the TV regularised EIT problems was addressed later (Borsic, et al., 2001; Borsic, 

2002). 

An algorithm based on backprojection of Lagrange multipliers was proposed with experimental 

validations (Bayford, et al., 1995), which overcomes the ringing artefact in previous 

backprojection algorithms. A direct sensitivity matrix approach for fast 3-D image 

reconstruction was proposed (Morucci, et al., 1995) using the boundary element method 

(BEM). 

3-D EIT experiments were performed with the Sheffield system (Brown & Seagar, 1987) based 

on the point electrode model (Metherall, et al., 1996). 3-D EIT experiments were then 

performed with cylindrical saline filled tank based on CEM, obtaining both difference and static 

images (Vauhkonen, et al., 1999). 

A new method to include the prior information of the conductivities in the optimization 

algorithm was presented (Vauhkonen, et al., 1997). The method is compared with their later 

proposed (Vauhkonen, et al., 1998) Subspace Regularization Method (SSRM) together and the 

NOSER (single step) method (Cheney, et al., 1990). The SSRM was found to be better. 



9 

 

A Matlab toolkit was developed for 2-D reconstruction and released in 2000, called Electrical 

Impedance and Diffuse Optical Reconstruction Software (EIDORS). The later version of the 

EIDORS (Polydorides & Lionheart, 2002) supporting 3-D reconstruction was released in 2002. 

The Nachman’s proof, first introduced in 1996, says that the coefficients of 2-D elliptic 

equation (the governing equation of an EIT system) can be uniquely determined by the 

corresponding Dirichlet-to-Neumann map on the boundary. The D-Bar method was proposed 

(Mueller, et al., 2002) based on the Nachman’s proof although only in 2-D but showing 

promising results, with a number of reports (Isaacson, et al., 2004). 

Anisotropic smoothness constraints and spatial prior information were applied to the 

regularisation methods of EIT inverse problems. Better results were found than those using the 

identity regularisation, no worse results can be obtained using incorrect prior information 

comparing with those regularised with identity matrices (Kaipio, et al., 1999). The conductivity 

patterns can be still found in the reconstruction results even the patterns violated the prior 

information (Borsic, et al., 2002). 

The EIT problem was brought in the framework of Bayesian statistics with MCMC integration 

methods for searching the maximum a posteriori estimate (Kaipio, et al., 2000). Research had 

been done to address the relation between the number of electrodes and the number of the 

mesh elements (Tang, et al., 2002). It concluded that increasing the electrode number 

improves the ill-posed conditions and the image areas closer to the boundary rather than the 

centre. It also concluded that increasing the mesh density worsens the ill-posed conditions. 

A scheme, using the level set method for the representation of interface between regions with 

different conductivities (Chung, et al., 2005), was proposed upon the TV regularisation. An EIT 

reconstruction algorithm with 4D regularisation was proposed (Dai, et al., 2008) which took 

electrode movements into consideration as the 4th dimension. 

To take the advantage of beta dispersion, frequency-different EIT (fdEIT) was shown 

interesting. Feasibility study (Seo, et al., 2008) had been done and experiments (Jun, et al., 

2009) were reported. 

The full Maxwell’s algorithm was proposed (Soni, et al., 2006) with simulation and 

experimental results for 2-D EIT. It followed the early investigations in MWT, and made a 

progress in numerically solving the Maxwell’s equations (Paulsen, et al., 1992; Boyse & 

Paulsen, 1997). This algorithm is then applied to the EIT applications with full Maxwell’s 

equations as forward problems. 
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A consensus linear reconstruction framework, called GREIT (Graz consensus Reconstruction 

algorithm for EIT) was proposed for lung EIT. The framework consists of: FEM models of a 

representative adult and neonatal thorax; consensus on the performance figures of merit for 

EIT image reconstruction; and a systematic approach to optimize a linear reconstruction matrix 

to desired performance measures (Adler, et al., 2009). 

Different from the 4D regularisation, an approximation error approach was proposed to 

compensate for the modelling errors caused by inaccurately known body shape (Nissinen, et 

al., 2011). The approach was demonstrated with experimental data obtained with body 

movements. A sparsity regularisation incorporating with a Tikhonov functional was recently 

proposed with promising 2-D simulated results (Jin, et al., 2012), based on the assumption of 

sparsity of the inhomogeneity. 

1.3.2 EIT Instruments 

A number of EIT systems have been developed since the first EIT experiment was performed, 

including Sheffield Marks, OxB-ACTs, and ACTs, etc. These systems had been reviewed 

previously (Boone & Holder, 1996). 

Multi-frequency EIT systems with voltage sources were demonstrated in 2004 (Halter, et al., 

2004), and later improved in 2008 (Halter, et al., 2008), where calibration methods were 

proposed to increase the hardware accuracy. The “KHU Mark I” was developed in 2007 (Oh, et 

al., 2007) with the second version (Oh, et al., 2011) reported later in 2011. Parallel driving and 

measuring hardware were developed, with Generalized Impedance Converters (GIC) included 

for increasing the output impedance of the current sources to be larger than 1 MΩ at 495 kHz. 

Hardware errors especially for multi-frequency EIT systems were reviewed (McEwan, et al., 

2007) which concluding that the major sources of error are common-mode voltages, stray 

capacitance and contact impedance, all of which are frequency and load dependent. 

1.3.3 Other Modalities and Dual-Modalities 

Different modalities (from those using electrical current sources) were first proposed between 

1992 and 1993 in a few conferences including MIT, Mutual Inductance Tomography (also MIT) 

and magnetiostatic permeability tomography or Electromagnetic Tomography (EMT) (Peyton, 

et al., 1996). A system was reported employing a parallel excitation magnetic field generated 

by two pairs of large coils (Yu, et al., 1993) and obtaining coarse images from experiments. A 

reconstruction algorithm based on general backprojection technique was used with forward 

problems solved by an experimental method. A fundamental work was carried out a year later 
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on the sensitivity of MIT (Dyck, et al., 1994), derived from Tellegen's theorem (Penfield, et al., 

1970). 

A single-channel MIT system operating at 10 MHz was detailed for measuring biomedical 

tissues (Griffiths, et al., 1999). Eddy currents were induced in the object, and images were 

reconstructed with a backprojection algorithm. A multi-coils system for MIT was reported later 

with experimental results (Korjenevsky, et al., 2000), operating at 20MHz with images 

reconstructed with the filtered backprojection algorithm. At that time, MIT was still using 

linear reconstruction methods such as backprojection. However, as an ill-posed non-linear 

problem similar to EIT, it was suggested to be solved non-linearly. 

The developments of Ground Penetrating Radar (GPR) and edge FEM had advanced MIT 

technologies. The sensitivity matrix was deriving by an adjoint field method (Dorn, et al., 

1999), whereas the forward problem is discretised from Maxwell’s equations with finite-

difference frequency-domain (FDFD) method. The edge-element FEM on vector and scalar 

potentials was first proposed (Bíró, 1999) for solving eddy current problems in the same year. 

Based on the breakthroughs in GPR and edge FEM earlier, MIT forward problems with 

numerical solutions were reported (Merwa, et al., 2003), and Gaussian-Newton reconstruction 

algorithms were proposed (Merwa, et al., 2005) with simulation data. It followed by iterative 

reconstruction algorithm proposed (Soleimani & Lionheart, 2005) with numerical results, 

which solves the inverse problems of MIT non-linearly. Experimental results were reported 

(Soleimani, et al., 2006) with 3-D reconstructed images. 

The MWT, however, was investigated following the introduction of ultra-sound diffraction 

tomography and X-ray CT. An algorithm called Born or Rytov approximations was proposed 

(Devaney, 1983) and used for electromagnetic imaging at microwave frequencies (Semenov, et 

al., 1998; Souvorov, et al., 1998). Although the inverse problems of MWT are using Newton 

iteration scheme similar to EIT, the solutions of the forward problems (called direct problems 

in MWT) are obtained from the approximation of Hankel functions (Bessel functions in 2-D). 

Another research following the progress made in hybrid element method, which solves the 

forward problems numerically, was reported (Meaney, et al., 1998). This is the first simplified 

version of the full Maxwell’s EIT method. 

The MREIT is a dual-modality imaging method, closely related to EIT and MRI. It adopted the 

current injection MRI techniques (Scott, et al., 1991) and magnetic resonance current density 

imaging (Scott, et al., 1992). In which, the magnetic flux densities in 3-D are detected to 
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reconstruct the induced current density under the quasi-static assumption. The induced 

current is corresponding to a low frequency bipolar current applied through electrodes. 

Different algorithms are proposed for MREIT, including J-substitution (Kwon, et al., 2002; 

Khang, et al., 2002), current constrained voltage scaled reconstruction (Birgül, et al., 2003), 

equipotential line method (Kwon, et al., 2002) and current density impedance image (Hasanov, 

et al., 2008) method. All of these algorithms requires observation on the 3-D magnetic flux. In 

order to obtain all the components of magnetic flux, the object under test has to be rotated 

within the MRI scanner, which is causing mechanical difficulties. 

The mechanical rotational-free MREIT method was proposed which requires the magnetic flux 

only on the axis direction (Seo, et al., 2003). This breakthrough allows the MREIT in vivo animal 

and human imaging experiments. 

Another dual-modality algorithm, which obtained images using impedance tomography 

perturbed by ultrasound waves, was proposed (Ammari, et al., 2008), numerically illustrated 

and showing new directions for EIT applications. 

Following the rapid developments in UWB techniques, the Breast Microwave Radar (BMR) has 

shown its advantages as free from ionizing radiation and breast compression. BMR has been 

reported to integrate with EIT in a dual-modality, in which BMR is to obtain the reflection 

structure and EIT is (to extract the) admittivity distribution (Flores-Tapia, et al., 2011). 

1.4 Problems 

EIT has been applied to cancer diagnosis applications. Recently, several image reconstruction 

methods have been proposed to enhance the EIT contrast, but only in the frequency range of 

tens of kHz (Seo, et al., 2008; Jun, et al., 2009; Ahn, et al., 2010; Harrach, et al., 2010). In order 

to fully use the beta-dispersion band (generally higher than the frequency range of most of the 

EIT systems) some issues in EIT instruments and algorithms need to be addressed. 

There are two major problems in extending the operating frequency of EIT systems. Firstly, it is 

difficult to obtain accurate measurements from experimental devices when the operating 

frequency increases. The instrumental effects including non-idealities of the sources, parasitic 

capacitance (from the cables, connectors or the electrodes themselves), etc., start to degrade 

the measurement accuracy at frequencies larger than hundreds of kHz. Secondly, the Laplace 

equation used by the EIT forward problem is an approximation derived from Maxwell’s 

equations (Boyse, et al., 1992; Paulsen, et al., 1992; Boyse & Paulsen, 1997; Soni, et al., 2006) . 
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The “irrotational electric field” approximation tends to fail when the frequency increases, as 

the quasi-static assumption is no longer valid (Sheng & Song, 2012). 

For the first problem, we found that the boundary conditions (BCs) used for forward problems 

are not sufficient for system modelling in the low MHz band. There are different kinds of BCs 

used in the EIT forward problems, including the Gap Model (Boyle & Adler, 2010), Shunt 

Electrode Model (Boyle & Adler, 2010) and Complete Electrode Model (CEM) (Boyle & Adler, 

2010; Cheng, et al., 1989; Somersalo, et al., 1992; Vauhkonen, et al., 1999). The CEM 

constrains the electrical currents flowing on the electrode surfaces and on the boundary of the 

imaging volume. It also includes the contact impedance on the electrode surface and therefore 

accounts for the voltage difference between the electrode and the outer surface of the 

imaging volume. It has been reported that the CEM can match experimental results with a very 

high precision up to 0.1% (Somersalo, et al., 1992). To reconstruct accurate images from in vivo 

data an accurate electrode model is usually required, and thus, the CEM is generally preferred 

(Boyle & Adler, 2010). 

The CEM, however, assumes that the system hardware is ideal and therefore does not 

consider the loading effects of the current excitation sources or the voltage measurement 

components. This assumption is only valid at frequencies much lower than 1 MHz. Several 

research groups have described design implementations, simulations and experiment results 

using hardware with current source output impedances measured in MΩ at frequencies up to 

hundreds of kHz (Denyer, et al., 1994). Usually the input impedance of the front-end amplifiers 

in voltage measurement components (such as op-amp follower (Oh, et al., 2011) or 

instrumentation amplifier (Oh, et al., 2007)) is around several GΩ. 

To overcome the first problem, the requirements for high output/input impedance of the 

excitation/measurement circuits pose a significant challenge in hardware implementation, 

especially at high frequencies, and therefore impose a limitation on the effective use of the 

forward model. Recent research efforts have been devoted to enhancing the output 

impedance of current sources, such as using driven shields and generalized impedance 

converters (GIC) (Ross, et al., 2003). It has been shown that a GIC can increase the output 

impedance up to 2MΩ at 495kHz (Oh, et al., 2011).  Another method for modelling and 

optimising the hardware of EIT systems has been proposed (Hartinger, et al., 2006) using a 

Howland current source and a bootstrapped follower to model the hardware effects and 

optimise the parameters of the circuit, but it only improved the performance at frequencies 

less than 100kHz. An image reconstruction method has been reported in which hardware 
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effects were modelled through modification of the system matrix used for the inversion 

(Hartinger, et al., 2007). However, the reported operating frequency was much lower than 

500kHz as there was no optimisation of the forward model. 

Several calibration algorithms have been proposed for correcting the measurement errors 

caused by hardware non-idealities (McEwan, et al., 2006; Halter, et al., 2008; Holder, 2005; Oh, 

et al., 2007). These effectively compensate the instrumental effect on driving electrodes but it 

is difficult to remove all instrumental effects (including measuring electrode error) in the 

frequency range we are considering. 

For the quasi-static approximation, which is the second problem mentioned earlier, a finite 

element analysis method derived from the full Maxwell equations (called the 𝐀 −Φ 

formulation or four-potential formulation) has been proposed (Soni, et al., 2006) and the 

formulations (which did not apply the quasi-static assumption) have been applied to voltage 

source based systems operating up to 10MHz (Halter, et al., 2004; Halter, et al., 2008). Being 

derived from the full Maxwell equations, the formulation is very computationally intensive 

compared to a Laplace formulation. A calibration method is used for compensating the 

instrumental effects (which also appear in voltage source systems). However, the electrodes 

used in their algorithm are not carefully considered. An electrode model similar to the shunt 

electrode model, but for the full Maxwell’s formula, was used in the algorithm. This implies 

that neither the contact impedance nor the instrumental effect is considered. Research on 

contact impedance of electrodes has shown the impedance degrading while the frequency 

increases (Mirtaheri, et al., 2005), which suggests the effect of contact impedance can be small 

in the frequency range. However, instrumental effects are generally increasing, with skin 

effects and reflections start to appear in the frequency range. At a frequency as high as 

10MHz, electrodes are not able to derive the current into the imaging object unless the 

impedance between electrodes pair are controlled specially. 

It is worth noting that although the two previously mentioned problems are normally 

combined when operating in the MHz frequency range, they do not necessarily occur together. 

The instrumental effect is due to hardware non-idealities and depends on the parameters of 

the hardware alone, while the full Maxwell effect is caused by the quasi-static assumption and 

depends on the admittivity and permeability of the material, the overall system geometry, and 

the scale size. In all none of the two is definitely happening prior to the other while increasing 

the operating frequency. 
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Furthermore, for applications at high enough frequencies (in the beta-dispersion range still), 

both the instrumental effects and the full Maxwell effect need to be addressed. 

1.5 Objectives and Contributions 

The research aims to address the two major problems stated in the previous section: 1) to 

investigate the electrode models and 2) to build a numerical model for the proposed electrode 

models for high frequency EIT systems. 

The high frequency regards the frequencies that are higher than the frequency a general EIT 

system can obtain stable images, and it is supposed to be in the beta-dispersion band. A 

frequency range from 500 kHz to tens of MHz is to be covered. 

The contributions of the research can be summarised as follows: 

 An Instrumental Electrode Model (IEM) is proposed for general EIT forward problems, 

with instrumental effects considered; (‘General’ here refers to EIT algorithms with the 

quasi-static assumption.) 

 A full Maxwell version of CEM, using Impedance Boundary Conditions (IBC), is 

proposed for full Maxwell EIT forward problems; 

 A Transmission line Port Model (TPM) is proposed for full Maxwell EIT forward 

problems; 

 An EIT inverse formula incorporated with IEM is derived and proposed with simulated 

results. 

From Figure 1-1, there are two types of forward problems following the EIT block. The IEM is 

one of the electrode models that can be used for quasi-static EIT forward problems. The CEM-

IBC and TPM are two models suitable for full Maxwell EIT forward problems. The IEM together 

with other forward problems lead to inverse problems, and a particular one derived from IEM 

is plotted with a block. The full Maxwell EIT forward problems also lead to their own inverse 

formulas, however these are not included in the research and are not detailed in the figure. 

The proposed IEM considers the effects on the potential distribution in the volume caused by 

hardware non-idealities, especially at frequencies larger than 500 kHz. An extra boundary 

condition is introduced accordingly to the CEM in the forward problem. The IEM can provide a 

much more accurate representation of the overall system including instrumental effects 

introduced by the hardware (the first problem mentioned).  
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The CEM-IBC brought the CEM into forward problems of the full Maxwell EIT formula. The 

formula considers the full Maxwell effects which quasi-static approximation is not able to 

handle when the frequency increases (the second problem mentioned). The proposed CEM-

IBC on four-potential is applied to the electrode surface to enable the contact impedance 

being included in the full Maxwell EIT formula. 

The TPM is the model of electrode pairs in full Maxwell EIT formula. It is to model the surface 

of the transmission-line type of electrode pairs as well as the port impedance in between 

them. The pair has to be formed a transmission line port, so that the electromagnetic wave 

propagating in the line can reach the imaging object with the characteristic impedance well 

defined. This model considers the two problems mentions together. 

From Figure 1-3, general EIT systems work in the frequency range from a few kHz to 500 kHz. 

For those systems in which the instrumental effects dominate, the proposed IEM enables them 

to work up to a few MHz. For those systems in which the full Maxwell effects dominate, the 

proposed CEM-IBC enables the systems to work up to a few MHz, till the instrumental effects 

become dominating. The proposed TPM with the full Maxwell EIT formula enables the systems 

to work when both effects (two problems mentioned) are notable.  

1.6 Thesis Organisation 

This thesis is divided into 6 Chapters. The first chapter introduces the EM detection/imaging 

techniques and their classifications. The motivations of the research are described in this 

chapter. Literatures on EIT and some other similar modalities are reviewed. Problems of the 

state-of-the-art systems are discussed. The goals and contributions of the research are briefed. 

Chapter 2 is used to introduce the basis of the research. Methods that are generally used in EIT 

forward problems and inverse problems will be detailed. Hardware and instrumental systems 

will be also discussed, where the instrumental effects will be explained. The full Maxwell EIT 

formula for forward problems will be derived as the basis of the proposed CEM-IBC and TPM.  

In Chapter 3, the proposed IEM for forward problems of quasi-static EIT (general EIT) formula 

will be detailed from derivations of the equations to numerical experiments. 

In Chapter 4, CEM-IBC and TPM will be detailed for forward problems of full Maxwell EIT 

formula. Derivations of the proposed models and numerical experiments will be included. 

In Chapter 5, IEM will be applied to inverse problems in a general EIT algorithm, and the 

derivations of the proposed models and numerical experiments will be included.  
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A conclusion and suggested future works will be given in Chapter 6, where some hardware 

design and experimental results will be presented as well. 
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Chapter 2 Background of Research 

2.1 Introduction 

In this chapter, I will describe general methods in establishing and solving the EIT problems. 

The physical models of EITs and their numerical methods are referred to as forward problems. 

The forward solutions are evaluated with the real measurements to obtain inverse solutions to 

the inverse problems.  

The way EIT algorithms are proposed is known as an ill-posed problem. It means a small 

measurement inaccuracy or random noise can easily cause a deviation in the inverse results, as 

mentioned in Chapter 1. Therefore, regularisation and iterative methods performed in solving 

the inverse problems are introduced. To build a system operating at a higher frequency, the 

physical models need to undergo a full Maxwell’s analysis in order to avoid quasi-static 

inaccuracy. Some fundamental work of the physical model, such as the potential Helmholtz 

formula, will be derived in this chapter. The instrumental effects that cause inaccuracy at high 

frequency will be analysed and discussed using general hardware analysis methods. 

EIT is a technique used to calculate the impedance distribution in the volume of an object by 

measuring the potential distribution on the surface when the object is excited electrically. The 

EIT algorithm can be simply defined as, 

𝑈(𝑥)
EIT
→ 휀∗(Ω). 

Equation 2-1 

It solves for the admittivity distribution in the region Ω, with the voltages measured on finite 

positions 𝑥, where 휀∗ is the admittivity, the positions 𝑥 are on the outer surface of object, and 

𝑈 is a set of measured differential voltages between pairs of electrodes. 

There is no obvious way to solve the problem directly. Usually, EIT employs a forward problem 

and an inverse problem to solve it instead, 

𝐹[휀∗(Ω)] = 𝑈(𝑥), 𝐹−1[𝑈(𝑥)] = 휀∗(Ω), 

Equation 2-2 (a - b) 

where 𝐹[ ] and 𝐹−1[ ] refer to the forward problem and the inverse problem, respectively. 

The benefit is that there are well-established physical models for the forward problems, and 

also there are optimization techniques for solving the non-linear inverse problems. 
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The physical model of the forward problem (usually called forward model) is used to describe 

the relation between the electromagnetic fields and a known property distribution (it can be 

conductivity, permittivity and permeability). 

The inverse problem is solved by linearising the problem and solving the difference, as, 

𝐹−1[𝑈 ∗
0
] = 휀∗0, 𝐹−1[𝑈 ∗

0+∆
∗] = 휀∗0 + ∆휀

∗, 

lim
∆ ∗→0

𝑈 ∗
0+∆

∗ = 𝐹(휀∗0) +
𝜕𝐹(휀∗0)

𝜕휀∗
∆휀∗. 

Instead of directly solving the non-linear Equation 2-2, the problem is linearised by expanding 

with the first order Taylor series. The derivative of the forward problem with respect to the 

admittivity is used to calculate the perturbation. ∆휀∗ is the variation of the admittivity. 

∆휀∗ = [
𝜕𝐹(휀∗0)

𝜕휀∗
]

−1

[𝑈 ∗
0+∆

∗ − 𝐹(휀∗0)]. 

Equation 2-3 

Equation 2-3 holds under the assumption that ∆휀∗ → 0. Based on Equation 2-3, a general 

working procedure of an EIT algorithm (Yorkey, et al., 1987) can be given. Figure 2-1 shows a 

block diagram of an EIT algorithm structure. Applications using differences of measured 

voltages to obtain ∆휀∗ are usually called difference imaging or dynamic imaging. However, 

applications are called static imaging or absolute imaging if they start with an initial state, and 

iteratively approach the observation (only the foreground). A “switch” in the block of the 

inverse problem is placed to illustrate the difference between these two approaches. 

 

Figure 2-1 Structure of EIT Algorithm 

In this chapter, the forward problems (the green block in Figure 2-1), will be introduced in 

Section 2.2. The inverse problems (the pink block in Figure 2-1), will be introduced in 
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Section2.3. The fundamental work of the full Maxwell’s analysis, the potential Helmholtz-like 

formula, and the boundary conditions previously used will be introduced in Section 2.4. The 

instrumental effects that appear in the orange blocks in Figure 2-1, will be analysed and 

discussed in Section 2.5. 

This chapter will introduce some previously published methods proposed by other research 

groups. My research will be based on these methods, and I will introduce my main 

contributions in the next few chapters. 

2.2 Forward Problem 

The EIT forward problem is a kind of Boundary Value Problems (BVP). It provides the 

relationship between a known admittivity distribution and simulated voltages based on 

Maxwell’s equations. 

In this section we will apply quasi-static approximation to the physics model and derived the 

governing Laplace equation of an EIT system. We will describe the full Maxwell’s equations 

without applying the quasi-static assumption in another section.  

2.2.1 Quasi-static Maxwell’s Equation  

From the harmonic Maxwell’s equations (Stratton, 1941; Harrington, 1961),  

∇ × 𝐄 = −j𝜔𝜇𝐇, 

∇ × 𝐇 = 𝐉 + j𝜔휀𝐄, 

∇ ∙ 휀𝐄 = 𝜌, 

∇ ∙ 𝜇𝐇 = 0. 
Equation 2-4 (a - d) 

where 𝜔 is the angular frequency, 𝐄 is electric field intensity, 𝐁 is the magnetic flux density, 𝐇 

is magnetic field intensity, 𝐉 is the electric current density (vector field), 𝜌, 𝜎, 휀 and 𝜇 are the 

charge density, conductivity, permittivity and permeability distribution, respectively. The time 

convention 𝑒𝑖𝜔𝑡 is used. The continuity equation and medium-dependent equations are given 

as Equation 2-5 (a - c), 

∇ ∙ 𝐉 = −j𝜔𝜌, 𝐁 = 𝜇𝐇, 

𝐉 + j𝜔휀𝐄 = 𝜎𝐄 + j𝜔휀𝐄 = 휀∗𝐄. 

Equation 2-5 (a - c) 
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The EIT forward problem is to map a known 휀∗distribution to the electric potential on the 

surface of a volume to be solved. 

The solution to an EIT forward problem is a set of voltages, defined from the potentials of 

electromagnetic fields. A vector potential 𝐀0 is defined as (Sheng & Song, 2012), 

∇ × 𝐀0 = 𝐁. 

Equation 2-6 

𝐀0 is also called magnetic vector potential in contrast to the electric scalar potential which is 

defined as follows. Substituting the above definition into Maxwell’s equations, we obtain, 

∇ × 𝐄 = −j𝜔𝜇𝐇 = −j𝜔∇ × 𝐀0, 

∇ × (𝐄 + j𝜔𝐀0) = 0, 

∇Φ0 = −(𝐄 + j𝜔𝐀0). 

The subscription of 0 is attached because these potentials are not unique. The uniqueness will 

be discussed in later sections. 

Applying divergence and replacing the electric field with the potentials, the map between the 

admittivity and the potential can be given as, 

∇ × 𝐇 = 휀∗𝐄, 

Equation 2-7 

∇ ∙ 휀∗𝐄 = ∇ ∙ ∇ × 𝐇 = 0, 

𝐄 = −∇Φ0 − j𝜔𝐀0, 

Equation 2-8 

∇ ∙ 휀∗(∇Φ0 + j𝜔𝐀0) = 0. 

Equation 2-9 

The approximation is based on the quasi-static assumption, which states that the electric field 

can be considered as an irrotational field in a low frequency electromagnetic system, 

∇ × 𝐄 = −j𝜔∇ × 𝐀0 ≅ 𝟎. 

Equation 2-10 

With this assumption, the map between the admittivity and the scalar potential distribution 

degrades to the Laplace equation, 

∇ ∙ 휀∗∇Φ = 0, 
Equation 2-11 
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which is also called the governing equation for the EIT forward problem. We use Φ without the 

subscription as, for an EIT system, the differential voltages between pairs of electrodes are 

used (instead of using the electric potential). 

Further, we will provide detailed derivations of the condition for with or without (full Maxwell 

forward problem) using the quasi-static assumption in later chapters. 

With the governing equation, the forward problem can be solved by numerical technique and 

boundary conditions, which will be detailed in the following section. 

2.2.2 Numerical Techniques and FEM 

FEM is one of the well-developed numerical techniques for solving differential equations. The 

idea of FEM is to discretise the continuous problem in infinite dimensions, and solve the 

problem in finite number of small domains (Strang & Fix, 1973). 

There are different types of FEMs, and we choose to introduce the Galerkin’s method and use 

it in later derivations. It says, for a Hilbert space 𝒰, to find 𝑢 ∈ 𝒰 such that for all 𝜙 ∈ 𝒰, there 

is, 

𝑎(𝑢, 𝜙) = 𝑓(𝜙). 

Equation 2-12 

Here, 𝒰 is the domain of the problem, 𝑎(, ) is a bilinear form, and 𝑓 is a bounded linear 

function on 𝒰. 𝑢 is the solution of the problem and 𝜙 can be any arbitrary function. To solve 

the problem in finite dimensions, domain discretisation is applied to give the subspace 𝒰N ⊂

𝒰. The problem becomes to find uN ∈ 𝒰N such that for all 𝜙N ∈ 𝒰N, as Equation 2-13. 

𝑎(uN, 𝜙N) = 𝑓(𝜙N), 𝜙N =∑𝜙𝑖

𝑁

𝑖=1

, uN =∑u𝑗𝜙𝑗

𝑁

𝑗=1

  

𝑎 (∑u𝑖

𝑁

𝑖=1

𝜙𝑖, 𝜙𝑗) =∑u𝑖𝑎(𝜙𝑖 , 𝜙𝑗)

𝑁

𝑖=1

= 𝑓(𝜙𝑗), 𝑗 ∈ [1,2,⋯𝑁]. 

Equation 2-13 

Here, 𝜙N ∈ 𝒰N can be any arbitrary function on 𝒰N, and the bilinear form allows to bring the 

coefficients u𝑗 outside 𝑎(, ). The solution uN is the approximation to 𝑢 on discretised domain 

𝒰N. The Galerkin’s method uses the sum of the bases in 𝒰N as the 𝜙N, we use Figure 2-2 to 

show a typical 1-D problem. 
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Figure 2-2 the Galerkin’s Method 

In Figure 2-2, the horizontal axis is the continuous domain 𝒰 and the brown curve is the 

solution 𝑢 on it. The square dots are the discretised domain 𝒰N, and the green polyline is the 

FEM approximation uN. Each of the blue lines is one of the bases 𝜙𝑗 of 𝒰N, and the dashed 

lines are the weighted bases u𝑗𝜙𝑗. A basis can be a higher-order polynomial; linear bases are 

plotted in Figure 2-2, and uN appears to be piecewise linear on the figure consequently. 

In order to solve the forward problems with FEM techniques, the governing equation has to be 

changed to a bilinear form. An arbitrary trial function and BCs are added to make a bilinear 

form as in Equation 2-12. 

2.2.3 Weak Formula and Boundary Conditions 

In order to solve Equation 2-11 with the FEM, the corresponding bilinear form 𝑎(, ) and 

bounded linear function 𝑓 needs to be found. A weak formula consists of 𝑎(, ), and 𝑓 is 

therefore introduced as the governing equation standing for the strong formula. Applying the 

vector derivative identity, Green’s identity and divergence theorem, respectively, we obtain 

the weak form, 

𝑣∇ ∙ 휀∗∇Φ = ∇ ∙ 𝑣휀∗∇Φ− 휀∗∇Φ ∙ ∇𝑣, 

∫ 𝑣∇ ∙ 휀∗∇Φd𝑉
Ω

= ∫ ∇ ∙ 𝑣휀∗∇Φd𝑉
Ω

−∫ 휀∗∇Φ ∙ ∇𝑣 d𝑉
Ω

= 0, 

∫ ∇ ∙ 𝑣휀∗∇Φd𝑉
Ω

= ∫ 휀∗∇Φ ∙ ∇𝑣 d𝑉
Ω

, 

∫ 휀∗∇Φ ∙ ∇𝑣 d𝑉
Ω

= ∮ 𝑣휀∗∇Φ ∙ �̂� d𝑆
∂Ω

. 

Equation 2-14 

where 𝑣 is an arbitrary scalar trial function, Ω is the volume of the object, 𝑉 denotes the 

volume, ∂Ω is the outer surface of the object, 𝑆 denotes the surface area, and �̂� is the unit 

vector pointing outward normal to the surface. 
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The weak formula allows solving the potential distribution by providing boundary conditions 

and discretizing the domain with Galerkin’s method. 

We first apply the boundary conditions (BCs) to the problem. In EIT applications, the BCs 

describe the relationship between the electrodes and the potential distributions on their 

surfaces. A set of multiple BCs is usually called an electrode model. It includes the electric 

currents going into and out of the electrode surfaces, and the differences in electric potentials 

(where present) between the object surface and the electrodes. Different electrode models 

have been proposed and used, as introduced in Chapter 1. 

In this section the CEM (Cheng, et al., 1989; Somersalo, et al., 1992; Vauhkonen, et al., 1999) is 

explained as it is much more accurate than the PEM and closely related with our electrode 

model, the IEM (Chapter 3). 

The CEM consists of the following equations,  

휀∗∇Φ ∙ �̂� = 0 (position not on electrodes), 

∫ 휀∗∇Φ ∙ �̂� d𝑆
𝑆𝑙

= 𝐼𝑙  (position on 𝑙
th electrode), 

Φ+ 𝜂𝑙휀
∗∇Φ ∙ �̂� = 𝑈𝑙 , 

∑ 𝐼𝑙
𝐿

𝑙=1
= 0, 

∑ 𝑈𝑙
𝐿

𝑙=1
= 0. 

Equation 2-15 (a - e) 

where 𝑆𝑙 is the surface of the 𝑙 th electrode, 

 𝐼𝑙 is the current on the 𝑙 th electrode, 

 𝜂𝑙  is the contact impedance in Ω ∙ m2 on the 𝑙 th electrode, 

 𝑈𝑙  is the voltage measured on the 𝑙 th electrode, 

 𝐿 is the total number of the electrodes. 

Equation 2-15 (a) prevents the current from flowing through the surface other than electrodes. 

Equation 2-15 (b) defines the current on the driving electrodes. Both of Equation 2-15 (a) and 

Equation 2-15 (b) are Neumann conditions. Equation 2-15 (c) allows the potential on the 

surface to be different from the voltage on the electrode circuit node, caused by the contact 
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impedance on the surface of electrodes, which is a Cauchy boundary condition. Equation 2-15 

(d) and Equation 2-15 (e) ensure the existence and uniqueness of the solution. 

To apply the CEM to Equation 2-14, the surface integral is divided into integrals on the 

electrode and non-electrode surfaces, 

∫ 휀∗∇Φ ∙ ∇𝑣 d𝑉
Ω

= ∫ 𝑣휀∗∇Φ ∙ �̂� d𝑆
∂Ω∉𝑆𝑙

+∑ ∫ 𝑣휀∗∇Φ ∙ �̂� d𝑆
𝑆𝑙

𝐿

𝑙=1
 , 

substituting the Non-Electrode surface BC Equation 2-15 (a), 

∫ 휀∗∇Φ ∙ ∇𝑣 d𝑉
Ω

=∑ ∫ 𝑣휀∗∇Φ ∙ �̂� d𝑆
𝑆𝑙

𝐿

𝑙=1
 . 

The additional unknowns 𝑈𝑙  are added to the system equations, the potential on the 

electrodes. We use Equation 2-15 (c) to add an extra unknown 𝑈𝑙, 

∫ 휀∗∇Φ ∙ ∇𝑣 d𝑉
Ω

=∑ ∫ 𝑣
𝑈𝑙 −Φ

𝜂𝑙
d𝑆

𝑆𝑙

𝐿

𝑙=1
 , 

∫ 휀∗∇Φ ∙ ∇𝑣 d𝑉
Ω

+∑
1

𝜂𝑙
∫ 𝑣Φd𝑆
𝑆𝑙

𝐿

𝑙=1
−∑

𝑈𝑙
𝜂𝑙
∫ 𝑣 d𝑆
𝑆𝑙

𝐿

𝑙=1
= 0 . 

To constrain 𝑈𝑙, Equation 2-15 (c) is substituted into Equation 2-15 (b) to establish extra 

equations for 𝑈𝑙, 

∫
𝑈𝑙 −Φ

𝜂𝑙
d𝑆

𝑆𝑙

= 𝐼𝑙  . 

Combining the above equations to obtain, 

∫ 휀∗∇Φ ∙ ∇𝑣 d𝑉
Ω

+∑
1

𝜂𝑙
∫ 𝑣Φd𝑆
𝑆𝑙

𝐿

𝑙=1
−∑

𝑈𝑙
𝜂𝑙
∫ 𝑣 d𝑆
𝑆𝑙

𝐿

𝑙=1
= 0 , 

∫
𝑈𝑙 −Φ

𝜂𝑙
d𝑆

𝑆𝑙

= 𝐼𝑙  . 

Equation 2-16 (a - b) 

Equation 2-16 is in the form of Equation 2-12, which is a bilinear form on the Left Hand Side 

(LHS), with a bounded linear function on the Right Hand Side (RHS). Galerkin’s method can 

then be applied by replacing 𝑣 and Φ with 𝜙N and uN to achieve the FEM formula for EIT 

forward problems. 
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2.3 Inverse Problem 

The general idea of an inverse problem is given in Section 2.1, with Equation 2-3. We rewrite 

the formula here again as, 

∆휀∗ = [
𝜕𝐹(휀∗0)

𝜕휀∗
]

−1

[𝑈 ∗
0+∆

∗ − 𝐹(휀∗0)]. 

The inverse problem needs the derivative of the forward problem, with respect to the 

admittivity distribution. To do so, the forward formula is perturbed with ∆휀∗. The 

corresponding derivative forms are usually called the Jacobian matrix.  

We will introduce the procedure of obtaining the Jacobian matrix first. As the problem is ill-

posed, the inversion results are easily affected by measurements or numerical errors. 

Consequently, by simply inversing the Jacobian matrix, it is not able to find a meaningful ∆휀∗. 

General methods for obtaining stable solutions, such as regularisation etc., are introduced 

following the Jacobian section. 

2.3.1 Perturbation and Jacobian Matrix 

We take the weak formula given in Equation 2-14 and use a potential distribution Φ𝑣 in the 

place of 𝑣 the arbitrary function of distribution,  

∫ 휀∗∇Φ ∙ ∇Φ𝑣d𝑉
Ω

= ∫ Φ𝑣휀∗∇Φ ∙ �̂�d𝑆
∂Ω

. 

Φ𝑣can be the same one or different from Φ, and we use 𝑣 as superscript to emphasise that it 

is used as the trial function. 

To determine a potential distribution, an excitation set with related boundary conditions is 

required, which is a set of 𝐼𝑙 in Equation 2-16 (b). Here, we use the superscription 𝑑, 𝛿 for 

identifying different exciting sets (driving). Φ𝑑 is the potential distribution driven by the 

current injection set 𝐢𝑑 = [𝐼𝑑1, 𝐼
𝑑
2,⋯ 𝐼

𝑑
𝐿]
T, whereas Φ𝛿 is a different distribution by a 

different excitation 𝐢𝛿 = [𝐼𝛿1, 𝐼
𝛿
2,⋯ 𝐼

𝛿
𝐿]
T

. The weak formula then becomes, 

∫ 휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

= ∫ Φ𝛿휀∗∇Φ𝑑 ∙ �̂�d𝑆
∂Ω

. 

CEM boundary conditions are used to obtain, 

Φ𝑑 + 𝜂𝑙휀
∗∇Φ𝑑 ∙ �̂� = 𝑈𝑑𝑙 , Φ𝛿 + 𝜂𝑙휀

∗∇Φ𝛿 ∙ �̂� = 𝑈𝛿𝑙 , 
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∫ 휀∗∇Φ𝑑 ∙ �̂� 𝑑𝑆
𝑆𝑙

= 𝐼𝑑𝑙, ∫ 휀∗∇Φ𝛿 ∙ �̂� 𝑑𝑆
𝑆𝑙

= 𝐼𝛿𝑙 . 

Similarly, 𝑈𝑑𝑙 is the voltage on the 𝑙𝑡ℎ electrode when the excitation set 𝐢𝑑 is applied, and the 

relative voltage measurement vector is expressed as 𝐮𝑑 = [𝑈𝑑1, 𝑈
𝑑
2,⋯𝑈

𝑑
𝐿]
T. 

By substituting the BC under different excitations, we can obtain, 

∫ 휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

+∑𝜂𝑙∫ (휀∗∇Φ𝛿 ∙ �̂�)(휀∗∇Φ𝑑 ∙ �̂�)d𝑆
𝑆𝑙

𝐿

𝑙=1

=∑𝑈𝛿𝑙𝐼
𝑑
𝑙

𝐿

𝑙=1

. 

Equation 2-17 

Usually, an EIT system uses a single pair of current injections, which means that for a specific 

𝐢𝑑only two of the 𝐼𝑑𝑙 on the 𝐿 electrodes are non-zeroes. This means that the RHS can be 

further simplified. 

When the driving pattern 𝐢𝑑 is applied, the measured voltages are 𝐮𝑑 =

[𝑈𝑑1, 𝑈
𝑑
2,⋯𝑈

𝑑
𝑙+ , ⋯𝑈

𝑑
𝑙− ,⋯𝑈

𝑑
𝐿]
T, where 𝑙+ and 𝑙− are electrode numbers. Then another 

driving pattern 𝐢𝛿  is used, the current is applied on the two electrodes mentioned 𝑙+ and 𝑙− 

only. Describing this procedure with equations we have, 

∫ 휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

+∑𝜂𝑙∫ (휀∗∇Φ𝛿 ∙ �̂�)(휀∗∇Φ𝑑 ∙ �̂�)d𝑆
𝑆𝑙

𝐿

𝑙=1

 

=∑𝑈𝑑𝑙𝐼
𝛿
𝑙

𝐿

𝑙=1

= (𝑈𝑑𝑙+𝐼
𝛿
𝑙+) + (𝑈

𝑑
𝑙−𝐼

𝛿
𝑙−). 

In this way, as 𝐢𝛿 ≠ 𝐢𝑑, 𝐮𝑑 has to be obtained from current being injected from a set of 

electrodes other than the 𝑙+ and 𝑙− pair used by 𝐢𝛿. Therefore, only voltages on electrodes 𝑙+ 

and 𝑙− contribute to the RHS. This special design of the EIT procedure can avoid affecting the 

algorithm with an unknown contact impedance. If 𝐢𝛿 = 𝐢𝑑 instead, the contact impedance of 

the electrodes 𝑙+ and 𝑙− are contributing to the RHS, which can be observed by substituting 

Equation 2-15 (b - c) into the RHS. 

However, the assumption of not introducing contact impedance uncertainty is only for ideal 

systems. In reality, it is impossible to have 𝐼𝛿𝑙 being exactly zero due to non-ideal instrumental 

loading. A model considering non-ideal instrumental effects will be discussed later. 



28 

 

To obtain the first order partial derivative of 𝐹(휀∗0), perturbation approaches are performed 

as 휀∗ → 휀∗ + ∆휀∗, Φ𝑑 → Φ𝑑 + ∆Φ𝑑, Φ𝛿 → Φ𝛿 + ∆Φ𝛿 and 𝑈𝛿𝑙 → 𝑈
𝛿
𝑙 + ∆𝑈

𝛿
𝑙. The excited 

current is kept the same to ensure the existence of the solution. By ignoring the higher order 

terms, and removing the reference terms, we have, 

∫ 휀∗∇(∆Φ𝑑) ∙ ∇Φ𝛿 + 휀∗∇Φ𝑑 ∙ ∇(∆Φ𝛿) + ∆휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

 

+∑𝜂𝑙∫ 휀∗2
𝜕∆Φ𝛿

𝜕𝑛

𝜕Φ𝑑

𝜕𝑛
+ 휀∗2

𝜕Φ𝛿

𝜕𝑛

𝜕∆Φ𝑑

𝜕𝑛
+ 2∆휀∗휀∗

𝜕Φ𝛿

𝜕𝑛

𝜕Φ𝑑

𝜕𝑛
d𝑆

𝑆𝑙

𝐿

𝑙=1

 

=∑∆𝑈𝛿𝑙𝐼
𝑑
𝑙

𝐿

𝑙=1

. 

By evaluating the weak formula with 𝑣 = ∆Φ𝑑 , ∆Φ𝛿, we have, 

∫ ∆Φ𝛿휀∗∇Φ𝑑 ∙ �̂�d𝑆
∂Ω

+∫ ∆Φ𝑑휀∗∇Φ𝛿 ∙ �̂�d𝑆
∂Ω

+∫ ∆휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

 

+∑𝜂𝑙∫ 휀∗2
𝜕∆Φ𝛿

𝜕𝑛

𝜕Φ𝑑

𝜕𝑛
+ 휀∗2

𝜕Φ𝛿

𝜕𝑛

𝜕∆Φ𝑑

𝜕𝑛
+ 2∆휀∗휀∗

𝜕Φ𝛿

𝜕𝑛

𝜕Φ𝑑

𝜕𝑛
d𝑆

𝑆𝑙

𝐿

𝑙=1

=∑∆𝑈𝛿𝑙𝐼
𝑑
𝑙

𝐿

𝑙=1

 . 

Applying the vector derivative identity, Green’s identity and divergence theorem again as what 

we did to obtain Equation 2-14, then inserting the perturbed BC Equation 2-15 (c) and BC 

Equation 2-15 (b), we can finally derive, 

∫ ∆휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

= −∑∫ 휀∗
𝜕Φ𝛿

𝜕𝑛
∆𝑈𝑑𝑙d𝑆

𝑆𝑙

𝐿

𝑙=1

= −∑∆𝑈𝑑𝑙𝐼
𝛿
𝑙

𝐿

𝑙=1

. 

Equation 2-18 

Equation 2-18 is the general formula of EIT inverse problems with the CEM as the BC set. We 

apply to a simple case to explain the usage. By assuming the measuring pattern to be 𝐢𝛿 =

[𝐼𝛿0, −𝐼
𝛿
0, 0,⋯0]

T
, which means 𝐼𝛿1 = −𝐼

𝛿
2 = 𝐼

𝛿
0 and 𝐼𝛿𝑙|3~𝐿 = 0, we have, 

∫ ∆휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

= −∑∆𝑈𝑑𝑙𝐼
𝛿
𝑙

𝐿

𝑙=1

= −(∆𝑈𝑑1 − ∆𝑈
𝑑
2)𝐼

𝛿
0 . 

∆𝑈𝑑1 − ∆𝑈
𝑑
2 is the difference between two measured differential voltages as,  

∆𝑈𝑑1 − ∆𝑈
𝑑
2 = [𝑈

𝑑
1(휀

∗ + ∆휀∗) − 𝑈𝑑2(휀
∗ + ∆휀∗)] − [𝑈𝑑1(휀

∗) − 𝑈𝑑2(휀
∗)]. 
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The difference ∆𝑈𝑑1 − ∆𝑈
𝑑
2 is caused by ∆휀∗. Here, ∆𝑈𝑑1 − ∆𝑈

𝑑
2 should not be confused 

with 𝑈𝑑1 − 𝑈
𝑑
2. The latter one is the voltage difference measured across the two electrodes 

of the measuring pattern, numbered 1 and 2. We call this 𝑈𝑑1 −𝑈
𝑑
2 the measured 

differential voltage. 

The perturbation technique provides the relationship between ∆휀∗ and ∆𝑈𝑑1 − ∆𝑈
𝑑
2 in 

Equation 2-18. It is then formed as the derivative of the voltage measurements with respect to 

∆휀∗, and it is discretised from the volume Ω to ∑ 𝑉𝑒
𝐸
𝑒=1 . 

∑∆휀∗𝑒

𝐸

𝑒=1

∫ ∇Φ𝑑 ∙ ∇Φ𝛿𝑑𝑉
𝑉𝑒

= −∑∆𝑈𝑑𝑙𝐼
𝛿
𝑙

𝐿

𝑙=1

 

∑
∆𝑈𝑑𝑙𝐼

𝛿
𝑙

∆휀∗𝑒

𝐿

𝑙=1

= −∫ ∇Φ𝑑 ∙ ∇Φ𝛿𝑑𝑉
𝑉𝑒

 

Equation 2-19 

Here ∆휀∗𝑒 is the ∆휀∗on the 𝑒th element.  

This formula is suitable for any excitation and measurement setting, and some simplifications 

can be made for those applications using driving and measuring electrodes in pairs. Assume 

that the measuring pattern 𝐢𝛿 is on a pair of electrodes 𝑙+ and 𝑙−, while the driving pattern 𝐢𝑑 

is on a pair of electrodes not 𝑙+ and 𝑙−, with the current ±𝐼𝑑0. The resulted potential 

distribution in the object is Φ𝑑. The voltages on the measuring electrode pair (the measuring 

pattern 𝐢𝛿) are then 𝑈𝑑𝑙+ and 𝑈𝑑𝑙−. Equation 2-19 then becomes 

𝜕𝑈𝑑,𝛿
𝜕휀∗𝑒

≡
𝜕(𝑈𝑑𝑙+ − 𝑈

𝑑
𝑙−)

𝜕휀∗𝑒
=
−1

𝐼𝛿0
∫ ∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
𝑉𝑒

 

Equation 2-20 

A new notation 𝑈𝑑,𝛿 is defined here for the LHS, which is the change of differential voltage due 

to ∆휀∗𝑒. This change is measured on electrodes 𝑙+ and 𝑙− (pattern 𝐢𝛿) with the object excited 

with 𝐼𝑑. The RHS says, this ratio can be determined by ∇Φ𝑑 and ∇Φ𝛿. 𝐼𝛿0 is kept as constant 

for all measuring patterns (can be considered as a normaliser). 

Both of the potential distributions are established without the admittivity change. The first 

potential distribution Φ𝑑 is excited with 𝐼𝑑, on the driving electrode pair. The second potential 

distribution Φ𝛿 is excited by 𝐼𝛿, on the measuring electrode pair. In EIT algorithms, a number 

of driving pairs and measuring pairs are used to solve the inverse problem. These driving and 
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measuring pairs comprise the so called driving and measuring patterns. The notation 𝑈𝑑,𝛿, 

uses subscript 𝑑 and 𝛿 to denote the related driving and measuring pattern, respectively. 

With the partial derivative given, the Jacobian matrix can be easily obtained. The formula is 

similar to the forward problem, and many of the matrixes can be reused in calculating the 

Jacobian matrix. We eliminate the need for deriving this by only explaining the procedure. 

Equation 2-20 is the contribution from an element to a driving and measuring pattern. The 

Jacobian matrix is built up by columns being the contribution of elements and rows being the 

contribution of patterns. The FEM is applied on the RHS of Equation 2-20 to provide the 

Jacobian matrix, replacing the gradient with combinations of the FEM bases.  

We now name a row of the Jacobian matrix following the naming  𝑱𝑑,𝛿, which is related to the 

contribution of all the elements in the object to a specific driving and measuring pattern 𝑑, 𝛿, 

as follows, 

 𝑱𝑑,𝛿 = [
𝜕𝑈𝑑,𝛿
𝜕휀∗1

⋯
𝜕𝑈𝑑,𝛿
𝜕휀∗E

] ∈ ℂ1×E. 

Then, the overall Jacobian matrix is made up as below, 

𝑱 =

[
 
 
 
 
 
 
𝑱𝑑1,𝛿1

⋮
𝑱𝑑𝐶,𝛿1

⋮
𝑱𝑑1,𝛿𝑀

⋮
𝑱𝑑𝐶,𝛿𝑀]

 
 
 
 
 
 

∈ ℂ(𝑀𝐶)×𝐸 .  

where there is a total of 𝐶 drive patterns 𝑑1~𝑑𝐶, each of which driving patterns works with 𝑀 

measurement patterns 𝛿1~𝛿𝑀. 

The Jacobian matrix is an essential part in establishing many numerical problems. The accuracy 

of calculation is closely related to the ill-posed problem in hand. Furthermore, the efficiency of 

calculating the Jacobian matrix is also important. In many EIT applications, iterative solvers are 

involved in solving the inverse problems, which require calculating the Jacobian matrix in each 

iteration. 

2.3.2 Regularisation and Iterative Method 

Equation 2-3 is the relationship between measurements and admittivity, and it can be replaced 

with the Jacobian matrix as, 
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𝑱[∆휀∗] =
−1

𝐼𝛿0

[
 
 
 
 
 
 
 
 
 
 
 
 ∫ ∇Φ𝑑1 ∙ ∇Φ𝛿1d𝑉
𝑉1

⋯ ∫ ∇Φ𝑑1 ∙ ∇Φ𝛿1d𝑉
𝑉𝐸

⋮

∫ ∇Φ𝑑1 ∙ ∇Φ𝛿𝑀d𝑉
𝑉1

⋯ ∫ ∇Φ𝑑1 ∙ ∇Φ𝛿𝑀d𝑉
𝑉𝐸

⋮

∫ ∇Φ𝑑𝐶 ∙ ∇Φ𝛿1d𝑉
𝑉1

⋯ ∫ ∇Φ𝑑𝐶 ∙ ∇Φ𝛿1d𝑉
𝑉𝐸

⋮

∫ ∇Φ𝑑𝐶 ∙ ∇Φ𝛿𝑀d𝑉
𝑉1

⋯ ∫ ∇Φ𝑑𝐶 ∙ ∇Φ𝛿𝑀d𝑉
𝑉𝐸 ]

 
 
 
 
 
 
 
 
 
 
 
 

[∆휀∗] =

[
 
 
 
 
 
 
∆𝑈𝑑1,𝛿1
⋮

∆𝑈𝑑1,𝛿𝑀
⋮

∆𝑈𝑑𝐶,𝛿1
⋮

∆𝑈𝑑𝐶,𝛿𝑀]
 
 
 
 
 
 

∈ ℂ𝑀𝐶×1, 

𝑱[∆휀∗] = [�̃�𝑑,𝛿(휀
∗
0 + ∆휀

∗) − 𝑈𝑑,𝛿(휀
∗
0)], 

𝑱[∆휀∗] = [�̃�𝑑,𝛿(휀
∗
F) − �̃�𝑑,𝛿(휀

∗
B)]. 

Equation 2-21 (a - c) 

Here [∆휀∗] ∈ ℂ𝐸×1 is a finite dimensions estimation of ∆휀∗. The symbol ̃  means the 

observations in contrast to the forward solutions. 휀∗F and 휀∗B are the admittivities of the 

foreground (after admittivity changes) and the background (before changes), respectively. 

For absolute imaging, Equation 2-21 (b) is used. When voltage measurements of the 

foreground and the background are both available, the difference imaging can be applied with 

Equation 2-21 (c). 

By inverting the Jacobian matrix, [∆휀∗] can be obtained from Equation 2-22.  

[∆휀∗] = 𝑱−1[�̃�𝑑,𝛿(휀
∗
0 + ∆휀

∗) − 𝑈𝑑,𝛿(휀
∗
0)]. 

Equation 2-22 

However, due to the fact that the EIT inverse problem is ill-posed, the solution of Equation 

2-22 is obtained using special techniques for solving inverse problems, discussed below. 

2.3.2.1 Linear Least Squares and Regularisation 

Equation 2-22 can be seen as a typical inverse problem in the form of 𝑥 = 𝑨−1𝑏. It can be 

easily recognised as an Ordinary Least Squares (OLS) problem as, 

𝑥OLS = argmin
𝑥
{‖𝑨𝑥 − 𝑏‖2

2
}. 

Here ‖ ‖2 is the Euclidean norm, argmin
𝑥
{ } is the denotation of an optimisation problem, 

and 𝑥OLS is the estimation of the parameter 𝑥, which minimizes the square norm. The OLS 
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searches the estimations by taking the derivative of the sum of the squared errors (residuals) 

with respect to 𝑥.  

𝑆(𝑥) = ‖𝑨𝑥 − 𝑏‖2
2
= [𝑏 − 𝑨𝑥]∗[𝑏 − 𝑨𝑥]. 

The estimation 𝑥OLS minimises the optimisation problem by finding a solution to the following 

form. 

𝜕𝑆(𝑥)

𝜕𝑥
=
𝜕[𝑏∗𝑏 − 𝑥∗𝑨∗𝑏 − 𝑏∗𝑨𝑥 + 𝑥∗𝑨∗𝑨𝑥]

𝜕𝑥
= 0 

𝑥OLS = (𝑨
∗𝑨)−1𝑨∗𝑏 

However, a small residual 𝑟E exists, contributed to by noise and errors, limiting the usage of 

OLSs in ill-posed problems. Suppose there is an OLS estimation for a problem, the 

measurement of which is perturbed by 𝑟E, 

𝑨𝑥 = 𝑏 − 𝑟E, ‖𝑨𝑥OLS − 𝑏‖2
2
< ‖𝑨𝑥0 − 𝑏‖2

2
= ‖𝑟E‖2

2
. 

Here, 𝑥OLS minimises the residuals of the optimisation problem. However, the observation is 

perturbed, and 𝑥OLS may not be close to the true parameter 𝑥0 of 𝑨𝑥 − 𝑏 + 𝑟E (as ill-posed 

problems are sensitive to 𝑟E).  

In order to overcome the problem, regularisation techniques are used. We take the Tikhonov 

regularisation as example, which states as, 

𝑥TR = argmin
𝑥
{‖𝑨𝑥 − 𝑏‖2

2 + ‖𝜞𝑥‖2
2
}. 

Equation 2-23 

When a proper Tikhonov matrix 𝜞 is used, the best estimation 𝑥TR → 𝑥0 can be found as, 

‖𝑨𝑥TR − 𝑏‖2
2 + ‖𝜞𝑥TR‖2

2 = ‖𝑨𝑥0 − 𝑏‖2
2 + ‖𝜞𝑥0‖2

2 = ‖𝑟E‖2
2 + ‖𝜞𝑥0‖2

2. 

The problem becomes to seek an estimation which potentially minimises the squared 

residuals, by the use of a penalty term. 

Equation 2-23 is the Tikhonov regularisation in the form of optimisation problems. It can also 

be treated as an OLS problem, by letting the objective function 𝑆(𝑥) to be the norm of the 

residuals.  

𝑆(𝑥) = ‖𝑨𝑥 − 𝑏‖2
2 + ‖𝜞𝑥‖2

2 = ‖𝑟(𝑥)‖2
2
, 
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𝑟(𝑥) = [
𝑨
𝜞
] 𝑥 − [

𝑏
0
]. 

The estimator can be found by solving ∇𝑆(𝑥) = 0. The solution is given by the normal 

equations (also known as regularised normal equations) as, 

𝜕𝑆(𝑥)

𝜕𝑥
= ∇𝑆(𝑥) = 2𝑨∗𝑨𝑥 − 2𝑨∗𝑏 + 2𝜞∗𝜞𝑥 = 0. 

𝑨∗𝑨𝑥 + 𝜞∗𝜞𝑥 = 𝑨∗𝑏, 𝑥TR = (𝑨
∗𝑨 + 𝜞∗𝜞)−1𝑨∗𝑏. 

Equation 2-24 (a – b) 

The Tikhonov Matrix is usually normalised as 𝜞 = 𝜆𝑳. 𝜆 is a real value, called the regularisation 

parameter. The normal equations become, 

𝑥TR = argmin
𝑥
{‖𝑨𝑥 − 𝑏‖2

2 + 𝜆2‖𝑳𝑥‖2
2
}, 𝑨∗𝑨𝑥 + 𝜆2𝑳∗𝑳𝑥 = 𝑨∗𝑏 

Equation 2-25 (a – b) 

We bring back Equation 2-22 and insert it in the normal equation of the Tikhonov 

regularisation. Here, we use 𝑥0 to present the initial 휀∗0, ∆𝑥 to present [∆휀∗] in order to avoid 

confusing with conjugate transport symbol, and we have, 

∆𝑥TR = argmin
∆𝑥
{‖𝑱∆𝑥 − (�̃�𝑑,𝛿(𝑥0 + ∆𝑥) − 𝑈𝑑,𝛿(𝑥0))‖

2

2
+ 𝜆2‖𝑳𝑥‖2

2
} 

= argmin
∆𝑥
{‖[

𝑱
𝜆𝑳
] ∆𝑥 − [

�̃�𝑑,𝛿(𝑥0 + ∆𝑥) − 𝑈𝑑,𝛿(𝑥0)

0
]‖
2

2

}, 

∆𝑥TR = [𝑱
∗𝑱 + 𝜆2𝑳∗𝑳]−1𝑱∗[�̃�𝑑,𝛿(𝑥0 + ∆𝑥) − 𝑈𝑑,𝛿(𝑥0)]. 

2.3.2.2 Typical Iterative Inverse Methods 

The OLS, however, is not capable of finding the solution of EIT inverse problems in the general 

sense. In Section 2.1 we mentioned that Equation 2-3 can be sustained under the assumption 

of ∆휀∗ → 0. The assumption suggests 𝜕𝐹 𝜕휀∗⁄  used in Newton’s method (which is the Jacobian 

matrix used in the OLS normal equation) is local to 휀∗0. Therefore, global methods for EIT 

inverse problems are needed such as nonlinear Least Squares (LS). 

Nonlinear LS approaches usually solve the EIT inverse problems iteratively (Lionheart, 2004). In 

each iteration, the OLS solves a linearised problem. Equation 2-2 (a - b) is linearised iteratively 

as, 
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휀∗𝑘+1 = 휀
∗
𝑘 + [

𝜕𝐹(휀∗𝑘)

𝜕휀∗
]

−1

[𝑈 ∗
0+∆

∗ − 𝐹(휀∗𝑘)]. 

Equation 2-26 

Equation 2-26 is the iterative version of Equation 2-3, with the derivative referring to Equation 

2-20 and the forward operation referring to Equation 2-16. In each iteration, the derivative 

and the forward operation are evaluated with 휀∗𝑘, and the OLS updates 휀∗𝑘 to 휀∗𝑘+1. 

The nonlinear LS is formulated by expending Equation 2-26 with normal equations of the OLS, 

as, 

𝑥𝑘+1 = 𝑥𝑘 + 𝛽LS, 𝛽LS = argmin
𝛽
{‖𝑱𝑘𝛽 − �̃�𝑑,𝛿(𝑥0 + ∆𝑥) + 𝑈𝑑,𝛿(𝑥𝑘)‖2

2
}, 

𝑥𝑘+1 = 𝑥𝑘 + ([𝑱𝑘]
∗[𝑱𝑘])

−1[𝑱𝑘]
∗[�̃�𝑑,𝛿(𝑥0 + ∆𝑥) − 𝑈𝑑,𝛿(𝑥𝑘)]. 

Equation 2-27 

Equation 2-27 is a general formula of the Gauss-Newton algorithm for solving the nonlinear LS 

problems. It is also called the modified Newton-Raphson method in some literature (Yorkey, et 

al., 1987). The latter was derived from Newton’s method of iterative optimisation and the 

Newton-Raphson algorithm for nonlinear LS. The modification was made on the Hessian 

matrix, by neglecting the terms involving second derivatives. 

However, each iteration is also ill-posed if the nonlinear problem is ill-posed (Kaltenbacher, et 

al., 2008). Therefore, regularisations upon the nonlinear LS approach are required. 

Applying the Tikhonov regularisation to each iteration leads to the Levenberg-Marquardt 

method (Marquardt, 1963; Moré, 1978; Kaltenbacher, et al., 2008). It takes the form of the 

optimisation problem, and adds penalty terms as additional information, 

𝑥𝑘+1 = 𝑥𝑘 + 𝛽LMR,   

𝛽LMR = argmin
𝛽
{‖𝑱𝑘𝛽 − �̃�𝑑,𝛿(𝑥0 + ∆𝑥) + 𝑈𝑑,𝛿(𝑥𝑘)‖2

2
+ 𝛼𝑘

2‖𝑫𝛽‖2
2
}, 

𝑥𝑘+1 = 𝑥𝑘 + ([𝑱𝑘]
∗[𝑱𝑘] + 𝛼𝑘

2𝑫∗𝑫)−1[𝑱𝑘]
∗[�̃�𝑑,𝛿(𝑥0 + ∆𝑥) − 𝑈𝑑,𝛿(𝑥𝑘)]. 

Equation 2-28 (a - c) 

Here, 𝑫 is any given non-singular matrix, diagonal matrix for scaling by default, and 𝛼𝑘 is the 

Levenberg-Marquardt parameter, which is iteration-dependent. An appropriate solution of 

𝑥𝑘+1 is obtained by carefully choosing the sequence and values of the regularisation 

parameters 𝛼𝑘. 
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Similar to the Levenberg-Marquardt method, another iteratively regularised Gauss-Newton 

method (Bakushinskii, 1992; Holder, 2005; Kaltenbacher, et al., 2008) is to minimise the 

optimisation problems and solve the normal equations, as below, 

𝑥𝑘+1 = 𝑥𝑘 + 𝛽GNR, 

𝛽GNR = argmin
𝛽
{‖𝑱𝑘𝛽 − �̃�𝑑,𝛿(𝑥0 + ∆𝑥) + 𝑈𝑑,𝛿(𝑥𝑘)‖2

2
+ 𝜆2‖𝑳[𝛽 − (𝑥0 − 𝑥𝑘)]‖2

2
}. 

([𝑱𝑘]
∗[𝑱𝑘] + 𝜆

2𝑳∗𝑳)[𝑥𝑘+1 − 𝑥𝑘] = [𝑱𝑘]
∗[�̃�𝑑,𝛿(𝑥0 + ∆𝑥) − 𝑈𝑑,𝛿(𝑥𝑘)] + 𝜆

2𝑳∗𝑳(𝑥0 − 𝑥𝑘). 

Equation 2-29 (a - c) 

Compared to the Levenberg-Marquardt method, Equation 2-29 (b) uses a constant 

regularisation parameter through the iterations. The residual functions show that the penalty 

term of the Levenberg-Marquardt method is applied on the step of the current iteration 

(concept of a trust region), and the penalty term of Equation 2-29 (b) is applied on the steps of 

all the iterations (Holder, 2005; Kaltenbacher, et al., 2008).  

𝑟(𝛽LMR) = [
𝑱𝑘
𝛼𝑘𝑫

]𝛽 − [
�̃�𝑑,𝛿(𝑥0 + ∆𝑥) − 𝑈𝑑,𝛿(𝑥𝑘)

0
], 

𝑟(𝛽GNR) = [
𝑱𝑘
𝜆𝑳
]𝛽 − [

�̃�𝑑,𝛿(𝑥0 + ∆𝑥) − 𝑈𝑑,𝛿(𝑥𝑘)

𝜆(𝑥0 − 𝑥𝑘)
]. 

The two methods are identical for the first iteration. The iteratively regularised Gauss-Newton 

method Equation 2-29 is better in getting convergence, from the second iteration onwards, 

but it relies on initial guesses. The Levenberg-Marquardt method however, is relies on the 

chosen trust region 𝛼𝑘𝑫 instead of the initial guesses. The method used in Chapter 5 is the 

iteratively regularised Gauss-Newton method based on Equation 2-29. 

2.4 Full Maxwell’s Equations in Potential Formula 

Numerical methods for solving electromagnetic field (EMF) problems have been investigated 

over many decades. Similar to the forward problem in EIT applications, these field solvers 

calculate fields from given property distributions and applied excitations. However, the quasi-

static assumption is not made, and the Laplace equations are not used. As far as the primary 

EMFs are interested, electric potential distributions are usually not directly solved. 

Furthermore, due to the spurious modes and vector parasites found in EMF solutions from 

curl-curl equations (Davies, et al., 1982; Lynch & Paulsen, 1991), different modification of 

numerical methods are proposed. The main reason for these “fake” solutions is the 
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discontinuity of the prime fields. The penalty method (Strang & Fix, 1973; Rahman & Davies, 

1984), the edge-element FEM (Barton & Cendes, 1987) and the Helmholtz-like potential 

formula (Paulsen, et al., 1992) are some of the major approaches to overcome the spurious 

modes and vector parasites problems. 

We choose to use the potential formula in the Helmholtz-like equation method, which has 

been reported to have succeeded in overcoming the spurious and parasitic problems. More 

important, the penalty methods and edge-element approaches modify the governing formula 

or the FEM shape functions. These modifications are conflicting with the inverse problem of 

EIT currently in use. On the other hand, the EMF solved using a potential formula has the 

benefit of directly obtaining the potentials, whereas prime fields are solutions of the penalty 

method and edge-element FEM. 

The disadvantage of using the potential formula is that the processes of gauge fixing and gauge 

BCs are rather complicated, which have seriously limited the usage of the formula.  

The Helmholtz-like potential formula (Soni, et al., 2006) was first used in an EIT algorithm in 

2006, based on the research (Lynch & Paulsen, 1991; Paulsen, et al., 1992; Boyse, et al., 1992; 

Boyse & Paulsen, 1997) done in the 1990’s. My contributions are based on their work, 

including deriving the 3-D FEM formula for EIT applications and proposing more accurate 

electrode models for the problem. In the following sections, I will introduce their method, and 

leave my work detailed in Chapter 4. 

2.4.1 Maxwell’s Equations in Potential Fields and Gauge Fixing 

To obtain Maxwell’s equations in potential fields, the curl-curl formula is first derived by 

inserting Equation 2-4 (a) into Equation 2-4 (b), 

∇ × 𝐇 = −
1

j𝜔
∇ ×

1

𝜇
∇ × 𝐄 = 휀∗𝐄 , 

∇ ×
1

𝜇
∇ × 𝐄 + j𝜔휀∗𝐄 = 0 . 

Equation 2-30 

By replacing the electric field with Equation 2-8 and removing the term that performs a curl 

operation on scalar field Φ0, we obtain, 

∇ ×
1

𝜇
∇ × 𝐀0 + 휀

∗(j𝜔𝐀0 + ∇Φ0) = 0 , 

Equation 2-31 
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Together with Equation 2-9, the potential formulation of Maxwell’s equations can be found. As 

we have mentioned earlier, the potential fields are not uniquely defined. For any arbitrary 

scalar function 𝜓, there is a pair of potential fields 𝐀1 and Φ1 obeying the definition but 

different from 𝐀0 and Φ0, as shown below, 

∇ × 𝐀1 = ∇ × (𝐀0 + ∇𝜓) = 𝐁, 𝐀1 = 𝐀0 + ∇𝜓, 

∇Φ1 = −(𝐄 + j𝜔𝐀1) = ∇Φ0 − j𝜔∇𝜓, Φ1 = Φ0 − j𝜔𝜓. 

Equation 2-32 (a - b) 

The arbitrary scalar function 𝜓, which has provided the extra freedom, is brought by the 

definition of the potential fields. According to the Helmholtz theorem, a vector field is uniquely 

specified with its divergence and curl, if the field reaches zero at infinity (Griffiths, 1998). In 

order to uniquely define the potentials, the divergence of the vector potential field has to be 

defined. The process is called gauge fixing (Van Bladel, 1964), meaning to settle down the 

potentials, and remove the extra degrees of freedom. 

The gauge fixes the potentials 𝐀 and Φ from arbitrary function 𝜓, so called the gauge function. 

As the potentials are not observable, it does not change the EMF intensities by choosing 

different gauges. Therefore, the chosen gauge only needs to benefit the derivation of the EMF 

potential formula. 

The Lorenz Gauge is used in the Helmholtz-like equations, and it states, 

∇ ∙ 𝐀 = −휀∗𝜇Φ . 

Equation 2-33 

In order to insert Equation 2-33 into the potential formulation of Maxwell equations, the 

gradient is taken and the vector identities are applied to it to obtain, 

−(∇
1

𝜇
∇ ∙ 𝐀 + Φ∇휀∗) = 휀∗∇Φ . 

By substituting the gauge into Equation 2-31, the potential fields are no longer arbitrary and 

we use 𝐀 and Φ without the subscription to denote them, and we have, 

∇ ×
1

𝜇
∇ × 𝐀 + j𝜔휀∗𝐀 − ∇

1

𝜇
∇ ∙ 𝐀 − Φ∇휀∗ = 0 

Equation 2-34 

For Equation 2-9, the vector identity is applied on the vector potential and Equation 2-33 is 

directly plugged in to obtain, 
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휀∗2𝜇Φ −
1

j𝜔
∇ ∙ 휀∗∇Φ− 𝐀 ∙ ∇휀∗ = 0 

Equation 2-35 

For homogenous admittivity applications, the gradient of 휀∗ vanishes in both Equation 2-34 

and Equation 2-35. The potential fields are therefore completely decoupled. These decoupled 

formulas lead to the general electromagnetic wave equations. However, for EIT applications, 

the heterogeneity of the admittivity distribution is the key property for imaging, therefore we 

do not have the benefit of decoupled equations. 

2.4.2 Weak Formula on Potential Helmholtz-like Equations 

In order to numerically solve the potential formula, Equation 2-34 and Equation 2-35 have to 

appear in bilinear form as Equation 2-12. The weak formula therefore is derived in a potential 

form by integrating the equations with an arbitrary scalar trial function 𝑣 over the region. 

∫ 𝑣∇ ×
1

𝜇
∇ × 𝐀d𝑉

Ω

+∫ j𝜔𝑣휀∗𝐀d𝑉
Ω

−∫ 𝑣∇
1

𝜇
∇ ∙ 𝐀d𝑉

Ω

−∫ 𝑣Φ∇휀∗d𝑉
Ω

= 0 

∫ 𝑣휀∗2𝜇Φd𝑉
Ω

−∫ 𝑣
1

j𝜔
∇ ∙ 휀∗∇Φd𝑉

Ω

−∫ 𝑣𝐀 ∙ ∇휀∗d𝑉
Ω

= 0 

Equation 2-36 (a - b) 

All the second order derivatives on field variables should be replaced with the product of first 

order derivatives on field variables and on the trial function. Vector identities provide these 

equalities for us as, 

𝑣∇ ×
1

𝜇
∇ × 𝐀 = ∇ × 𝑣

1

𝜇
∇ × 𝐀 − ∇𝑣 ×

1

𝜇
∇ × 𝐀 , 

𝑣∇
1

𝜇
∇ ∙ 𝐀 = ∇𝑣

1

𝜇
∇ ∙ 𝐀 −

1

𝜇
∇ ∙ 𝐀∇𝑣 . 

Considering the discretise procedure, the electromagnetic properties are approximated with 

discontinuous constant values in every element. Any derivative on admittivity or permeability 

would therefore cause singularity in the FEM formula, and these derivatives need to be 

avoided by moving the gradient onto other functions, as,  

∇(휀∗𝑣Φ) = (𝑣Φ)∇휀∗ + 휀∗∇(𝑣Φ) = (𝑣Φ)∇휀∗ + 휀∗𝑣∇Φ + 휀∗Φ∇𝑣 . 

Plugging in the reformed terms into Equation 2-36 (a) we have, 
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∫ ∇ × 𝑣
1

𝜇
∇ × 𝐀d𝑉

Ω

−∫ ∇𝑣 ×
1

𝜇
∇ × 𝐀d𝑉

Ω

+∫ j𝜔𝑣휀∗𝐀d𝑉
Ω

−∫ ∇(𝑣
1

𝜇
∇ ∙ 𝐀)d𝑉

Ω

+∫
1

𝜇
∇ ∙ 𝐀∇𝑣d𝑉

Ω

−∫ ∇(휀∗𝑣Φ)d𝑉
Ω

+∫ 휀∗𝑣∇Φd𝑉
Ω

+∫ 휀∗Φ∇𝑣d𝑉
Ω

= 0 

Equation 2-36 (a - b) are free of source, and the excitations have to be attached on the 

boundary. In order to have boundary conditions plugged in, the Stokes’ theorem, divergence 

theorem and Green’s identities are used for moving the integrals to the surface, so that the 

terms, 

∇ × 𝑣
1

𝜇
∇ × 𝐀, ∇ (𝑣

1

𝜇
∇ ∙ 𝐀) , ∇(휀∗𝑣Φ) 

become surface integrals. In all, the weak formula for Equation 2-34 is given as, 

∫ (
1

𝜇
∇ × 𝐀) × ∇𝑣d𝑉

Ω

+∫
1

𝜇
∇ ∙ 𝐀∇𝑣d𝑉

Ω

+∫ j𝜔𝑣휀∗𝐀d𝑉
Ω

+∫ 휀∗𝑣∇Φd𝑉
Ω

+∫ 휀∗Φ∇𝑣d𝑉
Ω

= −∮ �̂� × 𝑣
1

𝜇
∇ × 𝐀d𝑆

∂Ω

+∮ (𝑣
1

𝜇
∇ ∙ 𝐀) �̂� d𝑆

∂Ω

+∮ (휀∗𝑣Φ)�̂� d𝑆
∂Ω

 . 

Equation 2-37 

Similarly, the steps of exchanging derivation variables and moving to boundary integrals are 

performed on Equation 2-36 (b) as, 

∫
1

j𝜔
𝑣∇ ∙ 휀∗∇Φ𝑑V

Ω

= ∮
1

j𝜔
𝑣(휀∗∇Φ ∙ �̂�)𝑑𝑆

∂Ω

−∫
1

j𝜔
휀∗∇Φ ∙ ∇𝑣𝑑V

Ω

 , 

∫ 𝑣𝐀 ∙ ∇휀∗𝑑V
Ω

= ∮ 휀∗(𝑣𝐀 ∙ �̂�)𝑑𝑆
∂Ω

−∫ 휀∗∇ ∙ (𝑣𝐀)𝑑V
Ω

 , 

∇ ∙ (𝑣𝐀) = 𝑣∇ ∙ 𝐀 + 𝐀 ∙ ∇𝑣 . 

The weak formula of Equation 2-35 is then obtained as,  

∫ 𝑣휀∗2𝜇Φd𝑉
Ω

+∫
1

j𝜔
휀∗∇Φ ∙ ∇𝑣d𝑉

Ω

+∫ 휀∗𝑣∇ ∙ 𝐀d𝑉
Ω

+∫ 휀∗(𝐀 ∙ ∇𝑣)d𝑉
Ω

= +∮ 휀∗(𝑣𝐀 ∙ �̂�)d𝑆
∂Ω

+
1

j𝜔
∮ 𝑣(휀∗∇Φ ∙ �̂�)d𝑆
∂Ω

 

Equation 2-38 

2.4.3 Boundary Conditions for EIT in Full Maxwell’s Equations 

The FEM formula based on the weak formulas in Equation 2-37 and Equation 2-38 is 

implemented in 2-D (Soni, et al., 2006), with boundary conditions given. The electrode model 
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used is the Shunt Electrode Model (SEM), which describes the electrode as a perfect electric 

conductor (PEC). For the non-electrode boundary, a perfect magnetic conductor (PMC) and 

Impedance boundary conditions (IBC) (Senior, 1960) were used. In this thesis the above two 

sets of BCs are called SEM-PMC and SEM-IBC respectively. It also has been mentioned that 

CEM can be applied based on IBC (Soni, et al., 2006), without implementing it. 

For electrode regions, the BCs were implemented as, 

�̂� × (∇Φ + j𝜔𝐀) = 𝐌s = 𝟎 , 

∫ (𝜙𝑖
1

𝜇
∇ ∙ 𝐀) �̂� d𝑆

𝑆𝑙

+∫ (휀∗𝜙𝑖Φ)�̂� d𝑆
𝑆𝑙

= 0 , 

Φ = 𝑈𝑙  . 
Equation 2-39 (a - c) 

Infinite conductivity on the metal electrode is enforced by setting 𝐌s to vanish, which is the 

PEC condition in Equation 2-39 (a). The Dirichlet condition on the gauge function is used in 

Equation 2-39  (b), which is one of the possible gauge conditions. The potentials on the 

electrodes are set to voltage 𝑈𝑙, as voltage sources are used. As a PEC condition is used, the 

contact impedance is not considered. Non-exciting electrodes are not mentioned in these 

methods. 

For the non-electrode boundary, two types of BCs are used, so called the mixed condition and 

IBC. The mixed condition states, 

∫ �̂� × 𝜙𝑖
1

𝜇
∇ × 𝐀d𝑆

𝑆O

= ∫ 𝜙𝑖𝐉s d𝑆
𝑆O

= 0 , 

1

j𝜔
∫ 𝜙𝑖휀

∗(j𝜔𝐀 + ∇Φ) ∙ �̂�𝑑𝑆
𝑆O

= 0, 

𝐀 ∙ �̂� = 0 . 
Equation 2-40 (a - c) 

𝑆O is the non-electrode surface. The surface current density on the boundary is enforced to 

vanish by Equation 2-40 (a), which leads to a PMC condition. The homogeneous Neumann 

condition on the gauge function is used in Equation 2-40 (b). The gradient of scalar potential 

on normal direction is set to vanish to avoid the outward electric current with Equation 2-40 

(c). The mixed condition behaves as PMC, and the spreading of the EMF is not considered. 

The IBC is then used for the non-electrode boundary and compared with the SEM-PMC. IBC 

allows to truncate the mesh and generate a closed numerical model by adding constrains 
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between electric and magnetic fields (Soni, et al., 2006). It is derived based on the impedance 

Z of the imperfect conductive medium (Senior, 1960). 

𝐄 − (�̂� ∙ 𝐄)�̂� =   jZ�̂� × 𝐇, Z = √
𝜇

휀 − j
𝜎
𝜔

 

Equation 2-41 

Based on Equation 2-41, the condition is translated in terms of potentials. 

−jω𝐀 − ∇Φ− (−jω𝐀 ∙ �̂� − ∇Φ ∙ �̂�)�̂� = jZ�̂� ×
1

𝜇
∇ × 𝐀 

Separating the components in Equation 2-41 gives, 

𝜕𝐄t1
𝜕𝑡1

= jZ
𝜕𝐇t2
𝜕𝑡1

,
𝜕𝐄t2
𝜕𝑡2

= −jZ
𝜕𝐇t1
𝜕𝑡2

 , 

−∇s ∙ [jω𝐀 + ∇Φ− (jω𝐀 ∙ �̂� + ∇Φ ∙ �̂�)�̂�] = ∇s ∙ 𝐄 = jZ�̂� ∙ ∇ × 𝐇 = jZ�̂� ∙ ∇ ×
1

𝜇
∇ × 𝐀 . 

So the boundary terms can be obtained as, 

−(jω𝐀s + ∇sΦ) = jZ𝐉s = jZ�̂� ×
1

𝜇
∇ × 𝐀 

−∇s ∙ (jω𝐀s + ∇sΦ) = −jZ휀
∗(j𝜔𝐀 + ∇Φ) ∙ �̂� 

Equation 2-42 (a - b) 

Equation 2-42 (a) provides the surface electric current density. Equation 2-42 (b) is a Neumann 

condition for gauge function, which also gives the outward field based on the impedance Z.  

The SEM-IBC gives better modelling for the high frequency EIT systems compared to the SEM-

PMC (Soni, et al., 2006). However, the electrode model (SEM) holds back the performance. 

Our FEM formula based on the weak formulas in Equation 2-37 and Equation 2-38 as 

implemented in 3-D is detailed in Chapter 4. The full set of gauge conditions also will be 

detailed in Chapter 4, where we discuss the choosing of the gauge conditions based on 

available extra information. Furthermore, more accurate electrode models for high frequency 

EIT systems are proposed and detailed, including CEM-IBC and TPM, with numerical cases 

studied. 

2.5 Hardware and Instrument 

Hardware and Instruments of EIT systems provide voltage observations on the object and 

excitation to the object (the orange blocks in Figure 2-1). A set of EIT hardware usually consists 
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of electrical sources, voltage measurement devices, digitisers, switch networks and electrodes, 

etc. 

 

Figure 2-3 EIT System Instrument 

Figure 2-3 provides general idea of an EIT instrumentation system, together with major 

instrumental effects and sources of inaccuracy. EIT instruments are designed to work with the 

algorithm in Equation 2-20. The current excitation 𝐢𝑑 is implemented by applying signal 

sources on the object under test through electrodes. The signal sources can be current sources 

or current monitored voltage sources. Differential voltages 𝑈𝑑𝑙+ − 𝑈
𝑑
𝑙− are taken with 

differential amplifiers, sampled and quantised with Analog-Digital Converters (ADCs). In order 

to access many electrodes according to the driving and measuring patterns, a switch network 

is often used. As switches generally only contribute gain errors to the whole system, they are 

not plotted in the figure for simplicity. 

The quantised signals of each driving measuring pattern compose a set of time series. The Fast 

Fourier Transform (FFT) is then applied to the series to separate the signals with most of the 

noise falling into different frequency bins. The FFT extracts the amplitudes and the phases of 

the quantised signals, which are fed into inverse problems (the pink block in Figure 2-1). 

However, as explained, instruments of EIT systems are riddled with inaccuracies, especially for 

high frequency applications. Efforts are made to reduce these inaccuracies as reviewed in 

Section 1.3. In this section, we detail some of the major issues in the instrumentation 

described above. 

In the EIT instrument signal chain, two types of inaccuracy occur, including deterministic errors 

and noise of stochastic processes. The deterministic errors are usually presented as ratios or 

percentages to the ideal signals, including: 

 Scaling errors between the sources in any chosen pair and also between the pairs; 
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 The current which is leaked partially through the impedance attached on the 

electrodes to ground; 

 The gain errors between the inputs of a differential amplifier and those across 

differential amplifiers. 

The uncertainty caused by stochastic processes is expressed as a Power Spectral Density (PSD), 

as the amplitudes and phases are unpredictable. In EIT system, this uncertainty is contributed 

to by: 

 The thermal noise in the object and all the types of impedance in the system; 

 The noise of the electronic devices; 

 The quantisation errors of the ADCs. 

2.5.1 Deterministic Errors 

2.5.1.1 The Sources 

The sources scaling errors are significantly dependent on the design of the sources. The EIT 

systems with current sources are setting the voltage-current convertion ratio with a matched 

resistors network, e.g., a Howland current source (Ross, et al., 2003). However the matched 

ratios of resistance are hardly reaching 0.01%, and the mismatch reactance ratios are even 

lower at high frequencies. 

The exciting current is injected through the driving electrodes only, and accurately controlled. 

However, as frequency increases, the output impedance of the current sources reduces. The 

output current partially flows through the output impedance, without having interacted with 

the object. The GIC and other circuits are designed to increase the output impedance of 

current sources. However, it is a challenge to achieve that at high frequencies, as mentioned in 

Chapter 1. 

Using current monitored voltage sources is an approach which can potentially solve the 

problem. These systems include voltage sources that are monitoring the current by a monitor 

resistor. Operational Amplifiers (OpAmps) are used for including the monitor resistor in the 

feedback loop, so that the output impedance of the sources does not increase (Holder, 2005). 

The monitoring circuit is attached on the monitor resistor to measure the voltage difference 

across the monitor resistor. However, the accuracies of the monitor resistors are finite. Also 

there is capacitance attached to the monitoring circuit in the form of distributed parameters. 

When the frequency increases, the monitor resistor and distributed capacitance both cause 

inaccuracies.  
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The gains of the OpAmps also vary when frequency increases. The gain error reduces the 

accuracy of the current monitored voltage sources. The gain equation (Hayt, et al., 2011) of a 

negative feedback OpAmp is given with input terminal voltages 𝑈i+ and 𝑈i−, differential mode 

signal gain 𝐺D, common mode gain 𝐺C, source impedance 𝐙S, input impedance 𝐙i+ and 𝐙i−, 

gain resistor 𝐙G, feedback resistor 𝐙F and output impedance 𝐙O as, 

𝐺D(𝑈i+ − 𝑈i−) + 𝐺C (
𝑈i+ + 𝑈i−

2
) = 𝑈O, 

𝑈i− = 𝑈O
𝐙i− ∥ 𝐙G

(𝐙i− ∥ 𝐙G) + 𝐙O + 𝐙F
, 𝑈i+ = 𝑈I

𝐙i+
𝐙i+ + 𝐙S

, 

𝐺OpAmp =
𝑈O
𝑈I
= (

𝐺D +
𝐺C
2

𝐺D −
𝐺C
2

)(
𝐙i+

𝐙i+ + 𝐙S
)

(𝐙i− ∥ 𝐙G) + 𝐙O + 𝐙F
(𝐙i− ∥ 𝐙G) + 𝐙O + 𝐙F

𝐺D −
𝐺C
2

+ (𝐙i− ∥ 𝐙G)
≈ 1 +

𝐙F
𝐙G
. 

Equation 2-43 

As we are considering the non-idealities at high frequencies, the reactance of resistors in the 

circuit is included by using impedances. Equation 2-43 is approximated based on the 

assumption the 𝐺C and 𝐙O are close to zero while 𝐺D, 𝐙i+ and 𝐙i− are infinite. 

 

Figure 2-4 A Typical OpAmp and its Non-idealities in a Negative Feedback Setting 

On the OpAmp datasheets, 𝐺D is given as the open loop gain, and the common mode rejection 

rate is given in −dB(𝐺C). The input impedances 𝐙i+ and 𝐙i− are given in the form of 

differential and common mode input impedances, as is also shown in Figure 2-4. It can be seen 

from datasheets these parameters are functions of frequency. When the frequency is high, 

none of them can be considered as infinite. Consequently, the gains of the OpAmp circuits are 

inaccurate and vary from device to device. 
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2.5.1.2 The Measuring Devices 

On the voltage measuring circuits, when the frequency increases, the input impedance of the 

differential amplifiers is not high enough to be considered as infinite. Current is flowing 

through the path formed by these input impedances, driven by the potential difference 

between electrodes. Especially, these potential differences are not in the form of an ideal 

voltage source. They are not capable of maintaining the potential differences as constants. As 

a result, the current injected to the object is partially leaked through these measuring 

electrodes. The potential distribution in the object is interfered by the electrodes on the 

object’s point of view.  

In order to increase the input impedance of the measuring circuits, followers, i.e. unity gain 

OpAmps, are added between the differential amplifiers and the measuring electrodes. This is 

shown in Figure 2-3. The followers achieve high impedances, but only when the frequency 

does not reach the MHz range. By adding these followers, the gain errors on the measuring 

channels also increases, this being another disadvantage of adding the followers. 

For an EIT algorithm, a great number of measurements is needed on the object surface. In 

order to reduce the acquisition time, multi-channel systems are usually used. For a multi-

channel system, at least one differential amplifier is used in each acquisition channel. 

Differential amplifiers, which are responsible for obtaining the voltage differences, usually 

introduce significant gains. These gains of the differential amplifiers are set by on-board 

resistors or by on-chip feedback networks. Therefore, the accuracy of these gains needs to be 

considered. 

Between the electrodes and each differential amplifier, there can be found the follower and 

switch network. As analysed, these components contribute to the inaccuracy since the gains 

they introduce are not identical. 

2.5.2 Stochastic Processes 

2.5.2.1 Thermal Noise and Noise of Devices 

The power of the thermal noise 𝑃n on a frequency range is given by, 

𝑃n = 4𝑘B𝑇∆𝑓. 

Equation 2-44 

Here 𝑘B is Boltzmann’s constant, 𝑇 is the temperature in kelvin, and ∆𝑓 is the bandwidth. 

Thermal noises are considered as white and stationary, having uniform PSD and constant 
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probability distribution through time. Therefore the Root Mean Square (RMS) voltage can be 

given as, 

  𝑈RMS(𝑅) = √𝑃n𝑅 = √lim
𝜏→∞

1

2𝜏
∫
𝑈n
2(𝑡)

𝑅
d𝑡

𝜏

−𝜏

𝑅 = √4𝑘B𝑇𝑅∆𝑓 

However, the voltage noise cannot be established at high frequency, due to the existence of 

stray capacitance (Sarpeshkar, et al., 1993). Therefore the RMS voltage on impedance 𝒁 in a 

bandwidth of ∆𝑓 can be given as, 

𝒁 = 𝒁C ∥ 𝑅,    𝑈RMS(𝒁) = √lim
𝜏→∞

1

2𝜏
∫
𝑈n
2(𝑡)

𝑅
d𝑡

𝜏

−𝜏

𝑅 (
𝒁C

𝒁C + 𝑅
)
2

= √4𝑘B𝑇𝑅∆𝑓 |
𝒁C

𝒁C + 𝑅
| 

Equation 2-45 

Similar to the passive components, the uncertainty introduced by the electronic devices can be 

expressed through the PSD, but using different expressions. The noise generated by an OpAmp 

itself is referred to its input terminals, called “input referred current/voltage noise”. It means 

virtual noise sources are applied on the inputs of noise-free OpAmps. These noise sources are 

used for assessing the noise generated and measured at the output of the OpAmp, as shown in 

Figure 2-4. For example, an OpAmp in the setting of Figure 2-4 treats the negative input-

referred current density in the following way. The current density 𝑖iN is applied to Equation 

2-43 as, 

𝑢in− = 𝑢iN + 𝑖iN[𝐙i− ∥ 𝐙G ∥ (𝐙O + 𝐙F)]. 

Here 𝑢in− is the input voltage noise density, and 𝑢iN is the negative input-referred voltage 

noise density. The input referred current and voltage noise density can be found in the 

datasheets of the OpAmps, and for a specific circuit design (such as EIT systems), the output 

noise density can be calculated. 

2.5.2.2 ADC Non-idealities and Quantisation Errors 

The differential mode signals extracted by the differential amplifiers are then acquired by an 

ADC. Typical non-idealities, which degrade the acquisition quality, include quantisation error, 

Integral Linearity Error (INL), Differential Linearity Error (DNL), offset and gain errors etc.  

The quantisation error 𝑞(𝑡) is the difference between the signal 𝑈(𝑡) and the quantised finite 

states series, and it is depended on the input signal of the ADC. The maximum amplitude 𝑞(𝑡) 

is the quantisation resolution of the ADC 𝑞0. 
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𝑞(𝑡) = 𝑈𝑑,𝛿(𝑡) − 𝑥(𝑛)⊗ rect(𝑡 𝑡0⁄ ), 𝑞(𝑡) ∈ (0, 𝑞0). 

Equation 2-46 

𝑥(𝑛) is the sampled finite states series, and 𝑛 is the index of the samples. rect(𝑡 𝑡0⁄ ) is the 

sampling window, 𝑡0 is the sampling interval, ⊗ is the convolution operator. 

Though the quantisation errors of sine waves do not exhibit a clear interdependence, 

periodicity yields a discrete spectrum, thus whiteness (uniform spectrum) in the strict sense 

certainly does not hold (Widrow & István, 2008). Investigations have shown, when quantising a 

sine wave, the PSD of the 𝑞(𝑡) is quasi-uniform with spikes appearing at the frequencies 

𝑓Spurious, (Claasen & Jongepier, 1981), as follows, 

𝑓Spurious =
2𝜋𝐴

𝑞0
𝑚𝑓0. 

Equation 2-47 

Here, 𝑚 is any integer number, while 𝐴 is the amplitude of the signal being quantised and 𝑓0 is 

the frequency of the sine wave. Therefore, once the signal frequency, amplitude and the 

quantisation resolution together have avoided the spurious frequencies, the quantisation error 

can be considered quasi-uniform. 

The DNL is the error between the actual voltage of two adjacent quantised states and 𝑞0,  

which is the voltage it is supposed to be ideally. Similarly, the INL is the error between the 

actual voltage of all the quantised states and the straight line 𝑞0𝑑, where 𝑑 = [0,1,⋯ , 2𝐷 − 1] 

is the index of the quantised states (digital codes) and 𝐷 is the total quantisation bits (IEEE-SA 

Standards Board, 2000). The error of DNL and INL is due to the implementation of the ADCs, in 

contrast to 𝑞(𝑡), which is a fundemantal error. DNL and INL contribute to the quantised series 

by adding uncertenties on every sample. The Effective Number of Bits (ENoB) instead of 𝐷 is 

usually used for assessment of whether to include the influence of the DNL and INL (Flores, et 

al., 2004; Platonov, et al., 2006). 

𝑞0 = 𝐴FS2
−𝐷, 𝑞0ENoB = 𝐴FS2

−ENoB. 

For those ADCs sampling at hundreds of MHz, clock jitter and phase noise play an important 

role in the ENoB. We ignore it here for low sampling rate systems. 

2.5.3 Analysis and Discussions 

In order to analyse the inaccuracies contributed by the EIT instruments, we introduce the 

typical procedure of extracting the amplitude and phase of the EIT measurements. 
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In EIT systems, linear relationship holds for both algorithms (can be seen from Equation 2-16) 

and instruments (can be seen from Figure 2-3). Therefore the frequency of the measured 

signal is not spread or shifted from the excited frequency, ideally. The signal bandwidth can be 

designed very narrow, and a Fourier transform can be used for analysing this narrow 

bandwidth signal. 

ADCs are used for not only quantising but also sampling the signal (Pelgrom, 2010) to produce 

discrete time serises 𝑥(𝑛), as shown in Equation 2-46. The amplitudes and phases of 𝑥(𝑛) are 

extracted by applying the discrete Fourier transform (DFT). Furthermore, the length of the 

sampling series 𝑁, is normally designed to be 𝑁 = 2𝑀 to use the FFT algorithm, where 𝑀 is an 

integer, 

𝑋(𝑘) =∑ 𝑥(𝑛)𝑒−j2𝜋𝑘
𝑛
𝑁

𝑁−1

𝑛=0
, 𝑁 = 2𝑀 . 

Equation 2-48 (a - b) 

Here, 𝑘 is the index in the discrete frequency domain, and 𝑛 is the index in the sampled time 

domain. The amplitudes and phases of the sampled signal become the coefficients of the 

frequency bases given by the FFT, as shown in Figure 2-5. 

 

Figure 2-5 Fourier Transforms of a Signal with Quasi-Uniform Spectrum 

According to previous discussions, the quantised signal can be assumed to be 

𝑥(𝑛) = Real{𝐺ADC𝑐0𝑒
j𝜑0𝑒j𝜔0𝑛𝑡0} + 𝐺ADC𝓃(𝑛𝑡0) + 𝑞(𝑛𝑡0) . 

Equation 2-49 

Here, 𝐺ADC is the gain of the ADC, 𝑐0 is the amplitude of the signal, 𝜑0 is the phase of the 

signal and 𝜔0 is the angular frequency of the signal. The signal here is the sum of all the 
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deterministic components. It includes the scaling and gain errors, and also the current that is 

partially leaked through unknown paths. 𝓃(𝑛𝑡0) are the noises resulted by the system and 

sampled by the ADC. 𝑞(𝑛𝑡0) is the quantisation error in every sample. 

Fourier analysis provides the amplitudes and phases of each frequency basis as, 

𝑋(𝑘) =∑ 𝑥(𝑛)𝑒−j2𝜋𝑘
𝑛
𝑁

𝑁−1

𝑛=0
 . 

So the signal Real{𝑐0𝑒
j𝜑0𝑒j𝜔0𝑛𝑡0} is transferred into the (𝑘0 + 1)

th bin (and another bin for 

the imaginary part with Euler’s equation) in the discrete frequency domain as,  

𝑘0 = [
𝜔0𝑡0𝑁

2𝜋
]
Int
= [
𝑓0𝑁

𝑓s
]
Int

, 

𝑋(𝑘0) =
𝑁

2
𝐺ADC𝑐0𝑒

j𝜑0 + 𝐺ADC∑ 𝓃(𝑛𝑡0)𝑒
−j2𝜋𝑘0

𝑛
𝑁

𝑁−1

𝑛=0
+∑ 𝑞(𝑛𝑡0)𝑒

−j2𝜋𝑘0
𝑛
𝑁

𝑁−1

𝑛=0
 . 

Equation 2-50 (a - b) 

The length of the sampling series 𝑁 determines the frequency resolution of 𝑋(𝑘). By assuming 

the bandwidth of the signal is the same to the frequency resolution 𝑓s𝑁
−1, the uncertainties 

added to 𝑋(𝑘0) are modelled by 𝓃(𝑛𝑡0) and 𝑞(𝑛𝑡0). 

We assume 𝓃(𝑡) to be a Gaussian white noise, which is a normal (Gaussian) distributed serially 

uncorrelated stationary stochastic process, denoted by 𝓃0,𝜎n(𝑡), with expectation 𝜇 = 0 and 

standard deviation 𝜎 = 𝜎n. Stationary processes yield 𝜎n to not be a function of 𝑡 (Jones & 

Smith, 2010). However, in general the Fourier transform of stationary stochastic processes 

does not exist, as invariance the 𝜎n will result in infinite energy (Vasilescu, 2006). On the other 

hand, an infinite bandwidth uniform spectrum signal does not exist, which also results in 

infinite power (Iniewski, 2008). 

In practice however, a finite observation time and a finite signal (or noise) power can be 

analysed, such as Equation 2-50, which truncates the time period to be [0, 𝑡0𝑁]. Also, Equation 

2-45 shows the bandwidth 𝓃(𝑡) is limited when establishing it based on impedances. 

Therefore 𝓃(𝑡) is assumed as stationary in [0, 𝑡0𝑁], of uniform spectrum in [0, 𝑓s], with 

Gaussian distributed noise with zero mean and variance 𝜎n
2, and its uncertainty contributed to 

𝑋(𝑘0) can be given as a sinc function, and is approximately equal to 𝜎n (Jerri, 1977).  

The stochastic processes 𝑞(𝑛𝑡0) can be assumed as 𝑞s(𝑡) is stationary in [0, 𝑡0𝑁] and of 

uniform spectrum in [0, 𝑓s], as discussed in Equation 2-47. The uniform distribution is 
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commonly used for the quantisation error, and results in the contribution to 𝑋(𝑘0) being 

𝑞0 2√3⁄  (Widrow & István, 2008). 

In all, Equation 2-50 (b) becomes Equation 2-51, with 𝑒𝑖𝜑n and 𝑒𝑖𝜑𝑞  indicating the uncertain 

phase of the noise and the quantisation error. 

𝑋(𝑘0) ≈
𝑁

2
𝐺ADC𝑐0𝑒

𝑖𝜑0 + 𝐺ADC𝜎n𝑒
𝑖𝜑n +

𝑞0

2√3
𝑒𝑖𝜑𝑞 . 

Equation 2-51 

There is one more inaccuracy effect, but more related to the EIT systems design, known as 

spetral leakage. Recalling Equation 2-50 (b), 𝑐0𝑒
𝑖𝜑0 are obtained relying on the spectrum of 

𝑥0(𝑛) to fall in a single FFT bin. However, if the integer requirement in Equation 2-50 (a) is not 

satisfied, the spectrum of 𝑥0(𝑛) shall leak to other FFT bins. 

Spetral leakage can be partially avoided by carefuly choosing the signal frequencies, by 

considering Equation 2-48 (b), Equation 2-50 (a) and Equation 2-47 together. Other methods 

used in obtaining accurate amplitudes and phases include applying windows and apFFT (Fu, et 

al., 2012; Li, 2014), etc. 

Considering Equation 2-51, the differential voltages 𝑈𝑑,𝛿(𝑡), and all the deterministic errors go 

into 𝑐0𝑒
𝑖𝜑0. Together, the gain by 𝑁𝐺ADC 2⁄  is applied to them. The noises, contributed by the 

thermal noise and the electronic devices, go into 𝜎n𝑒
𝑖𝜑n. 𝐺ADC as gain is applied to them, but 

not accumulated by 𝑁. The quantisation errors appear in (𝑞0𝑒
𝑖𝜑𝑞) 2√3⁄ , which is limited to 

the same order of magnitude as the quantisation resolution 𝑞0. 

We discuss these signals based on the expression, some calculations and some basic 

assumptions of EIT systems, 

 Intuition concepts suggest that the more samples aquired, the more accurate the 

result obtained by the accumulation processing. But a long acquisition time for each 

measurement is not appropriate for EIT system, as the admittivity distribution may 

vary on a longer time scale. Also a significent amount of data may be produced as a 

reconstruction process requires thousands of measurements. 

  𝐺ADC applies to only the input signals of the ADCs, not quantisation errors, which 

means a large gain is equivalent to reducing the quantisation error. But normally it is a 

relatively small number compared to 𝑁, and it is not easy to make it too large without 

saturating the input signal or generating non-linear terms. 
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 Based on the input-referred noises of some commonly used components from the 

datasheets, we calculated the overall RMS noise 𝜎n is of the order of 10μV. 

 The quantisation error of a typical ADC chip (ADC14L020, 20Msps 14-bit resolution), 

can be calculated from its ENoB and its full scale range. It is to the order of 100μV. 

 Compared to the quantisation errors and the noises, the signal amplitude 𝑁𝐺ADC𝑐0 2⁄  

is normally much larger. This implies the deterministic errors are much larger than the 

uncertainty caused by stochastic processes. 

 The scaling errors across the sources, and the gain errors across measurement 

channels can be as large as 1%. However, these errors can be calibrated out in a 

carefully designed system. Figure 2-3 and analysis show that these errors are not 

dependent on the admittivity distribution. 

 The current leakages however, have to be handled differently, as their effect relies on 

the unknown admittivity of the object. Calibration processes can only obtain the 

output impedances of the sources and input impedances of the measurement circuits. 

These impedances are needed for solving the current leakages together with the 

forward problems. 

2.6 Summary 

In this chapter, we have introduced the general problem EIT is solving, and the procedure of 

the EIT algorithm.  

The typical forward problem and inverse problem are detailed, including the concepts of 

electrode models, ill-posed problems, regularisation and iterative methods. We introduced the 

full Maxwell’s equations in potential formula form for solving EIT forward problems. 

We then analysed typical EIT hardware systems. Comparisons between different kinds of 

inaccuracies were made. We have concluded that current leakages, as one of the instrumental 

effects, have to be considered for higher accuracy systems at higher frequencies. They need to 

be modelled and solved together with the forward problems. 

In the following chapters, we will detail the methods of solving instrumental effects together 

with different forward problems, and also the inverse problem. 
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Chapter 3 EIT Forward Problems with IEM 

This chapter is based on Zhang, W. & Li, D., 2014. An instrumental electrode model for solving 

electrical impedance tomography forward problems. Physiological Measurement. (Zhang & Li, 

2014). 

3.1 Introduction 

In the Chapter 1, we have introduced the state of the art of the EIT problems. Two major 

problems in extending the frequency usage of EIT has been brought forward, including the 

electrode models are not suitable for high frequencies, and the quasi-static assumption 

conflicts with the extending the frequency. In the previous chapter, we have introduced the 

typical EIT problems and algorithms, and also analysed general hardware systems of EIT. We 

have concluded that the instrumental effects have to be considered, modelled in the electrode 

models when solving the forward problems. 

In this chapter, we will detail the method we used for solving the forward problems with 

instrumental effects considered. The proposed instrumental electrode model (IEM) considers 

the effects on the potential distribution in the volume caused by hardware non-idealities, at 

higher frequencies. An extra boundary condition is introduced accordingly to the CEM in the 

forward problem. 

In this chapter, the concept of the instrumental impedance is first introduced. Numerical 

methods of solving forward problems with IEM are detailed in Section 3.3, which is modified 

from the commonly used CEM numerical methods. Cases studies are in Section 3.4, including 

two different EIT problems, and comparisons across different forward solvers. Full Maxwell’s 

analysis is also done to check the effectiveness of the quasi-static assumption (the second 

major problem mentioned). Summaries and conclusions take place in the Section 3.5. For the 

reason that analysis is done for current sources, an IEM which is suitable for voltage sources 

has been given as Appendix in Section 3.6. 

3.2 IEM Boundary Conditions 

To solve the partial differential Equation 2-14, proper boundary conditions should be applied 

to describe the current injection and model the behaviour of electrodes. The CEM (Cheng, et 

al., 1989; Somersalo, et al., 1992; Vauhkonen, et al., 1999) is commonly used and has been 

experimentally proven to be accurate in low frequency EIT systems, and detailed in Section 

2.2.3. The proposed IEM is based on the CEM, but instrumental non-ideality is given additional 
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consideration within the electrode model. The CEM boundary conditions can be understood 

from Figure 3-1, 

 

Figure 3-1 EIT electrode geometry and circuit model. (Zhang & Li, 2014) 

where Ω is the volume to be solved, 

 ∂Ω is the surface of the volume, 

𝐼S𝑙 is the current output by the current source which is connected with the 𝑙 th 

electrode,  

𝐙O is the output impedance of the current source, 

𝐂S is the total parasitic capacitance of the cable, PCB trace and electrode itself, 

𝐙I is the input impedance of the voltage measurement device, and 

𝐙F is the virtual impedance, equivalent to the total effect of the above impedance. 

For the remaining symbols in the figure we kept the previous definitions. 

Referring to the EIT electrode model in Figure 3-1, each electrode can be configured either as a 

driving electrode (with the switch closed and the current source connected to the electrode) 

or as a measuring electrode (with the switch opened and the current source disconnected). 

The current source has an output impedance 𝐙O with the electrode contributing some 

parasitic capacitance 𝐂S to ground, and the measurement circuit can be modelled with an 

input impedance 𝐙I. The current source generates a current of 𝐼S𝑙. 

In the ideal situation, 𝐙O and 𝐙I are assumed to be infinite, 𝐂S to be zero, and all of the current 

generated from the source goes into the electrode, 𝐼S𝑙 = 𝐼𝑙, when the switch is closed. When 

the switch is opened (the circuit acts as a measurement circuit), 𝐼𝑙 = 0. 
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The frequency of interest for many EIT applications extends up to several MHz, and difficulties 

therefore emerge when applying the CEM. Some of the assumptions in the ideal situation 

mentioned above need to be re-examined and modified, since non-ideal loading effects are 

not negligible in the MHz frequency range. 

Firstly, the output impedance  𝐙O of the current source and input impedance 𝐙I of the 

measurement circuit are not infinitely high. The circuit front-ends can easily contribute a few 

pF of parasitic capacitance contributed by the devices, therefore reducing input/output 

impedances and degrading the performance in the MHz range. In addition the parasitic 

capacitance of the cable, PCB trace and electrode itself (modelled by 𝐂S in general) is not 

negligible. Although 𝐂S almost remains constant across the frequency range, the equivalent 

impedance of the capacitance 1 j𝜔𝐂S⁄  reduces and starts loading the front-ends as the 

frequency increases. 

At high frequencies, the electrode current flows therefore behave differently. In contrast to 

the assumption made by the CEM, at high frequencies some portion of 𝐼S𝑙  flows through 𝐙O, 𝐙I 

and 𝐂S (this part is negligible when the frequency is low) rather than entirely into the 

electrode. Also, for electrodes in measuring mode (with the switch open), there is some 

current flowing through 𝐙I and 𝐂S to ground, as 𝐼𝑙, even though there is no driving current 𝐼S𝑙. 

Analytical calculations based on typical circuit parameters provide some indication of typical 

input and output impedances. When the operating frequency is 1MHz, the output impedance 

𝐙O typically comprises a resistance of 5MΩ in parallel with a capacitance of 4pF and the input 

impedance 𝐙I comprises a resistance of 10MΩ in parallel with a capacitance 4pF (This comes 

from an easily accessible front-end amplifier, for example, 4.5pF from the Analog Devices 

AD8065 or 6pF from the Texas Instruments OPA2365.) and a parasitic capacitance 𝐂S of 2pF. 

At 1MHz, the overall instrumental effect is modelled with a virtual impedance 𝐙F, as shown in 

Figure 3-1, and becomes 16 kΩ in driving mode and 26 kΩ in measuring mode, which is far 

from infinite.  

For EIT systems working at lower frequencies (< 500kHz), the GIC (Oh, et al., 2007; Ross, et al., 

2003; Oh, et al., 2011) is widely used to alleviate the effects of capacitive loading, but it 

performs poorly at frequencies higher than 500kHz. 

From the above calculations, it is obvious that there is a significant “leakage current” flowing 

through the instrumental path (with an equivalent impedance of 𝐙F) from the current source 
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(in the driving mode) or from the imaging volume (in the measuring mode) and for accurate 

representation this leakage current must be included when solving the system matrix.  

We can reformulate the electrode model to include the “leakage currents” in the forward 

problem. We obtain, in the driving mode, 

𝐼S𝑙 +
𝑈𝑙 − 𝑈GND

𝐙F
+ 𝐼𝑙 = 0 , 

and in the measuring mode, 

𝑈𝑙 − 𝑈GND
𝐙F

+ 𝐼𝑙 = 0 , 

combined as 

𝐼S𝑙 +
𝑈𝑙
𝐙F
+ 𝐼𝑙 = 0 . 

Equation 3-1 

Together with the CEM BCs, we have the IEM as 

휀∗∇Φ ∙ �̂� = 0 (Surface not on electrodes), 

∫ 휀∗∇Φ ∙ �̂� d𝑆
𝑆𝑙

= 𝐼𝑙  (Surface on 𝑙
th electrode), 

Φ+ 𝜂𝑙휀
∗∇Φ ∙ �̂� = 𝑈𝑙 , 

𝐼S𝑙 +
𝑈𝑙
𝐙F
+ 𝐼𝑙 = 0, 

∑ 𝐼𝑙
𝐿

𝑙=1
= 0. 

Note that, with the external circuit attached, the total current generated from current sources 

∑ 𝑈𝑙
𝐿
𝑙=1  may not be balanced any more (as 𝐙F on different driving electrodes may vary), but 

the total charge in the volume to be solved ∑ 𝐼𝑙
𝐿
𝑙=1  has to be zero.  

In our IEM formulations, the potential balance condition ∑ 𝑈𝑙
𝐿
𝑙=1 = 0 used in CEM is removed. 

As the CEM does not have a reference ground, whereas the IEM embeds one in the 

instrumental circuit.  
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When the operating frequency is low enough, the current flowing through the instrumental 

path 𝐙F is negligible, in which case the IEM will behave just like the CEM. 

The IEM provides a method for describing non-ideal hardware behaviours and is therefore able 

to obtain accurate solutions of the forward problem with knowledge of the hardware, unlike 

the CEM which assumes perfect hardware.  

3.3 Numerical Implementation and Finite Element Method 

Finite element methods (FEM) are used for solving the forward model with the IEM. Our 

programs were developed based on the software package EIDORS (Electrical Impedance and 

Diffuse Optical Reconstruction Software). EIDORS is a Matlab toolkit for three-dimensional EIT 

(Polydorides & Lionheart, 2002; Adler & Lionheart, 2006). To apply our IEM model, similar 

formulations were derived, but with modifications. 

3.3.1 Numerical Modelling with IEM  

We take the same steps which deriving CEM forward problems have taken until Equation 2-16 

(a - b). And to constrain 𝐼𝑙 in Equation 2-16 (b), we have the additional Equation 3-1, with the 

known instrument impedance as the factor,  

𝑈𝑙
𝐙F
+ 𝐼𝑙 = −𝐼S𝑙 . 

Equation 3-2 

Imposing the constraint of charge balance, Equation 3-2 becomes 

𝑈𝐿
𝐙F
−∑ 𝐼𝑙

𝐿−1

𝑙=1
= −𝐼S𝑙 . 

Equation 3-3 

Finally, we obtain  

{
 
 
 
 

 
 
 
 ∫ 휀∗∇𝑣 ∙ ∇Φd𝑉
Ω

+∑
1

𝜂
∫ 𝑣Φd𝑆
𝑆𝑙

𝐿

𝑙=1
−∑

𝑈𝑙
𝜂
∫ 𝑣 d𝑆
𝑆𝑙

𝐿

𝑙=1
= 0 ,

∫
𝑈𝑙 −Φ

𝜂
d𝑆

𝑆𝑙

− 𝐼𝑙 = 0 ,

𝑈𝑙
𝐙F
+ 𝐼𝑙 = −𝐼S𝑙  , 𝑙 = 1,2,3,… , 𝐿 − 1,

𝑈𝐿
𝐙F
−∑ 𝐼𝑙

𝐿−1

𝑙=1
= −𝐼S𝑙 .

 

Equation 3-4 (a - d) 
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3.3.2 Discretisation and Shape Function  

The governing equation of EIT forward problems has been reduced to Equation 3-4 with a trial 

function and IEM BCs. Equation 3-4 is in the weak form of Equation 2-12, which can be 

discretised using Galerkin’s method to the form of Equation 2-13. In Equation 2-13, there are 

bases of the domain 𝜙𝑗s. In FEM, the bases in each element are also known as the shape 

functions which are determined by the coordinates of the nodes. The number of nodes in an 

element (discretised small domain) is defined by the order of the shape functions and the 

physical dimension of the problem. In our models, the first order shape functions tetrahedron 

elements in 3-D are used. 

The method called the Isoparametric, which isolate the global coordinate system from the 

local element, is used. The local element is represented in Barycentric coordinate system, 

which looks the same to each element. The shape functions (Strang & Fix, 1973) for 

tetrahedrons in Barycentric coordinate are given as, 

𝜙1(𝑥, 𝑦, 𝑧) = 𝜉1(𝑥, 𝑦, 𝑧) 

𝜙2(𝑥, 𝑦, 𝑧) = 𝜉2(𝑥, 𝑦, 𝑧) 

𝜙3(𝑥, 𝑦, 𝑧) = 𝜉3(𝑥, 𝑦, 𝑧) 

𝜙4(𝑥, 𝑦, 𝑧) = 1 − 𝜉1(𝑥, 𝑦, 𝑧) − 𝜉2(𝑥, 𝑦, 𝑧) − 𝜉3(𝑥, 𝑦, 𝑧) 

Equation 3-5 

[
 
 
 
 
 
 
𝜕𝜙𝑖
𝜕𝑥
𝜕𝜙𝑖
𝜕𝑦
𝜕𝜙𝑖
𝜕𝑧 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝜕𝑥

𝜕𝜉1

𝜕𝑦

𝜕𝜉1

𝜕𝑧

𝜕𝜉1
𝜕𝑥

𝜕𝜉2

𝜕𝑦

𝜕𝜉2

𝜕𝑧

𝜕𝜉2
𝜕𝑥

𝜕𝜉3

𝜕𝑦

𝜕𝜉3

𝜕𝑧

𝜕𝜉3]
 
 
 
 
 
 
−1

[
 
 
 
 
 
 
𝜕𝜙𝑖
𝜕𝜉1
𝜕𝜙𝑖
𝜕𝜉2
𝜕𝜙𝑖
𝜕𝜉3]
 
 
 
 
 
 

= 𝐉−1

[
 
 
 
 
 
 
𝜕𝜙𝑖
𝜕𝜉1
𝜕𝜙𝑖
𝜕𝜉2
𝜕𝜙𝑖
𝜕𝜉3]
 
 
 
 
 
 

= [

𝑥1 − 𝑥4 𝑦1 − 𝑦4 𝑧1 − 𝑧4
𝑥2 − 𝑥4 𝑦2 − 𝑦4 𝑧2 − 𝑧4
𝑥3 − 𝑥4 𝑦3 − 𝑦4 𝑧3 − 𝑧4

]

−1

[
 
 
 
 
 
 
𝜕𝜙𝑖
𝜕𝜉1
𝜕𝜙𝑖
𝜕𝜉2
𝜕𝜙𝑖
𝜕𝜉3]
 
 
 
 
 
 

 

Equation 3-6 

And the integral under Barycentric coordinates in triangle and tetrahedron elements, is given 

as follows (Eisenberg & Malvern, 1973) 

∫ 𝜉1
𝑎𝜉2

𝑏(1 − 𝜉1 − 𝜉2)
𝑐dS

S

=
𝑎! 𝑏! 𝑐!

(𝑎 + 𝑏 + 𝑐 + 2)!
2|S| 

∫ 𝜉1
𝑎𝜉2

𝑏𝜉3
𝑐(1 − 𝜉1 − 𝜉2 − 𝜉3)

𝑑dV
V

=
𝑎! 𝑏! 𝑐! 𝑑!

(𝑎 + 𝑏 + 𝑐 + 𝑑 + 3)!
6|V| 

Equation 3-7 (a - b) 
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3.3.3 FEM Forward Problem in Matrix Form 

With the help of Barycentric coordinate system, we, here, explain the process of bring the 

forward problem in to matrix form with FEM. 

Equation 3-4 (a - d) gives the weak formula of the problem with the boundary conditions 

inserted. With the Galerkin method, we discretize the potential distribution Φ into piecewise 

linear distribution ΦN, which can be represented by the bases 𝜙𝑗, as following, 

Φ𝑁 =∑ u𝑗𝜙𝑗
𝑁

𝑗=1
, 

And replace the trial function 𝑣 with shape functions 𝜙𝑖, so obtain, 

∫ 휀∗∇𝜙𝑖 ∙ ∇∑ u𝑗𝜙𝑗
𝑁

𝑗=1
d𝑉

Ω

+∑
1

𝜂𝑙
∫ 𝜙𝑖∑ u𝑗𝜙𝑗

𝑁

𝑗=1
d𝑆

𝑆𝑙

𝐿

𝑙=1
−∑

𝑈𝑙
𝜂𝑙
∫ 𝜙𝑖 d𝑆
𝑆𝑙

𝐿

𝑙=1
= 0 , 

1

𝜂𝑙
∫ (𝑈𝑙 −∑ u𝑗𝜙𝑗

𝑁

𝑗=1
)d𝑆

𝑆𝑙

− 𝐼𝑙 = 0 , 

𝑈𝑙
𝐙F
+ 𝐼𝑙 = −𝐼S𝑙, 𝑙 = 1,2,3,… , 𝐿 − 1 , 

𝑈𝐿
𝐙F
−∑ 𝐼𝑙

𝐿−1

𝑙=1
= −𝐼S𝑙 . 

Following the steps of Galerkin method as shown in Equation 2-13, the sum is taken out of the 

bilinear form, and gives,  

∑ u𝑗
𝑁

𝑗=1
∫ 휀∗∇𝜙𝑖 ∙ ∇𝜙𝑗 d𝑉
Ω

+∑ ∑ u𝑗
1

𝜂𝑙
∫ 𝜙𝑖𝜙𝑗 d𝑆
𝑆𝑙

𝑁

𝑗=1

𝐿

𝑙=1
−∑

𝑈𝑙
𝜂𝑙
∫ 𝜙𝑖 d𝑆
𝑆𝑙

𝐿

𝑙=1
= 0 , 

−∑
u𝑗

𝜂𝑙
∫ 𝜙𝑗d𝑆
𝑆𝑙

𝑁

𝑗=1
+
𝑈𝑙
𝜂𝑙
𝑆𝑙 − 𝐼𝑙 = 0 , 

𝑈𝑙
𝐙F
+ 𝐼𝑙 = −𝐼S𝑙, 𝑙 = 1,2,3,… , 𝐿 − 1 , 

𝑈𝐿
𝐙F
−∑ 𝐼𝑙

𝐿−1

𝑙=1
= −𝐼S𝑙 . 

Equation 3-8 (a - d) 

Then, taking the unknowns u𝑗, 𝑈𝑙  and 𝐼𝑙 out of the inner products, and it leads to the system 

matrix in the form 
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[
𝑨 + 𝑩 𝑪 𝟎𝑁×𝐿

𝑪T 𝑫 −𝕀𝐿

𝟎𝐿×𝑁 𝑬 𝑭

] [
𝐮
𝐯
𝐢
] = [

𝟎(𝑁+𝐿)×1

−𝐢𝐒
], 

𝑨 = ∫ 휀∗∇𝜙𝑖 ∙ ∇𝜙𝑗 d𝑉
Ω

∈ ℂ𝑁×𝑁, 

𝑩 =∑
1

𝜂𝑙
∫ 𝜙𝑖𝜙𝑗 d𝑆
𝑆𝑙

𝐿

𝑙=1
∈ ℂ𝑁×𝑁 , 

𝑪 = −
1

𝜂𝑙
∫ 𝜙𝑖 d𝑆
𝑆𝑙

∈ ℂ𝑁×𝐿, 𝑫 = diag {
𝑆𝑙
𝜂𝑙
} ∈ ℂ𝐿×𝐿, 

𝑬 = diag {
1

𝐙F
} ∈ ℂ𝐿×𝐿 , 𝑭 = [

1
0
0
−1

0
1
0
−1

0
0
⋱
⋯

0
0
0
0

] ∈ ℂ𝐿×𝐿 , 

Equation 3-9 

where 𝕀𝐿 is identity matrix, 𝐮𝑁×1 is the nodal potential vector (made up with u𝑗), 𝐯
𝐿×1 is the 

electrode voltage vector(made up with 𝑈𝑙), 𝐢
𝐿×1 is the electrode current vector (made up with 

𝐼𝑙), 𝐢𝐒
𝐿×1 is the source injection current vector (made up with 𝐼S𝑙), 𝜙𝑖,𝑗 is the shape functions, 

N is the total number of the vertices, and 𝑖, 𝑗 are the index of vertices. 

In the Equation 3-9, the left up corner of the system matrix consists with 𝑨 + 𝑩, 𝑪, 𝑪T and 𝑫 

are the same to the system matrix given by the boundary conditions CEM. Compared with the 

CEM, our IEM adds the matrix 𝕀𝐿 providing extra freedom to the electrode current, and 

regulates the electrode current by 𝑬 and 𝑭. When the frequency increases with the 𝐙F 

reduced, 𝑬𝐯 increases and therefore reduces the current applied on the products 𝑪T𝐮 and 𝑫𝐯 

in the driving mode. For the measuring mode, (although the imposed source current 𝐼S𝑙 is 

zero) 𝑬𝐯 + 𝑭𝐢 allows the current to flow through electrodes. While on the other hand, if the 

frequency is low, 𝐙F tends to infinity and the system matrix is equivalent to the CEM. In 

addition, the process to find the ground node is removed, as the ground node is embedded in 

the IEM formulations. 

To assemble the FEM matrix form, we take the first term 𝑨 first. The formula, which consists 

inner product of the gradient of shape functions, is usually called stiffness matrix in stress 

applications of FEM, and we borrow the name here. By inserting the gradient of the shape 

function respect to global coordinates then, we have, 
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∑ u𝑗
𝑁

𝑗=1
∫ 휀∗∇𝜙𝑖 ∙ ∇𝜙𝑗 d𝑉
Ω

=∑ u𝑗
𝑁

𝑗=1
∫ 휀∗

[
 
 
 
 
 
 
𝜕𝜙𝑖
𝜕𝑥
𝜕𝜙𝑖
𝜕𝑦
𝜕𝜙𝑖
𝜕𝑧 ]
 
 
 
 
 
 
T

[
 
 
 
 
 
 
𝜕𝜙𝑗

𝜕𝑥
𝜕𝜙𝑗

𝜕𝑦
𝜕𝜙𝑗

𝜕𝑧 ]
 
 
 
 
 
 

d𝑉
Ω

, 

and for the fact that the derivative of the shape functions in every element is constant, the 

integral is removed therefor, 

∑ u𝑗
𝑁

𝑗=1
∫ 휀∗

[
 
 
 
 
 
 
𝜕𝜙𝑖
𝜕𝑥
𝜕𝜙𝑖
𝜕𝑦
𝜕𝜙𝑖
𝜕𝑧 ]
 
 
 
 
 
 
T

[
 
 
 
 
 
 
𝜕𝜙𝑗

𝜕𝑥
𝜕𝜙𝑗

𝜕𝑦
𝜕𝜙𝑗

𝜕𝑧 ]
 
 
 
 
 
 

d𝑉
Ω

=∑ u𝑗
𝑁

𝑗=1
∑휀∗𝑒𝑉𝑒

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑖
𝜕𝑥
𝜕𝜙𝑒𝑖
𝜕𝑦
𝜕𝜙𝑒𝑖
𝜕𝑧 ]

 
 
 
 
 
 
T

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑗

𝜕𝑥
𝜕𝜙𝑒

𝑗

𝜕𝑦

𝜕𝜙𝑒𝑗

𝜕𝑧 ]
 
 
 
 
 
 

E

𝑒=1

 

Here, 휀∗𝑒 is the admittivity of the element 𝑒, 𝑉𝑒 is the volume and 𝜙𝑒𝑖 is part of the 𝜙𝑖 which 

is the element 𝑒. By extend the sum of the node index 𝑗 in the equation, there is, 

∑ u𝑗
𝑁

𝑗=1
∑휀∗𝑒𝑉𝑒

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑖
𝜕𝑥
𝜕𝜙𝑒𝑖
𝜕𝑦
𝜕𝜙𝑒𝑖
𝜕𝑧 ]

 
 
 
 
 
 
T

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑗

𝜕𝑥
𝜕𝜙𝑒

𝑗

𝜕𝑦
𝜕𝜙𝑒𝑗

𝜕𝑧 ]
 
 
 
 
 
 

E

𝑒=1

=∑

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑖
𝜕𝑥
𝜕𝜙𝑒𝑖
𝜕𝑦
𝜕𝜙𝑒𝑖
𝜕𝑧 ]

 
 
 
 
 
 
T

[
휀∗𝑒𝑉𝑒 0 0
0 휀∗𝑒𝑉𝑒 0
0 0 휀∗𝑒𝑉𝑒

]

[
 
 
 
 
 
 
𝜕𝜙𝑒1
𝜕𝑥
𝜕𝜙𝑒1
𝜕𝑦
𝜕𝜙𝑒1
𝜕𝑧

⋯

𝜕𝜙𝑒𝑁
𝜕𝑥
𝜕𝜙𝑒𝑁
𝜕𝑦
𝜕𝜙𝑒𝑁
𝜕𝑧 ]

 
 
 
 
 
 

[

u1
⋮
u𝑁
]

E

𝑒=1

 

Then extending the sum of the element index 𝑒, and defining the matrix [휀𝑉𝐿𝑒], 𝝓𝑖
𝑒 and 𝝓𝑒, 

we have, 

∑ u𝑗
𝑁

𝑗=1
∑휀∗𝑒𝑉𝑒

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑖
𝜕𝑥
𝜕𝜙𝑒𝑖
𝜕𝑦
𝜕𝜙𝑒𝑖
𝜕𝑧 ]

 
 
 
 
 
 
T

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑗

𝜕𝑥
𝜕𝜙𝑒

𝑗

𝜕𝑦
𝜕𝜙𝑒𝑗

𝜕𝑧 ]
 
 
 
 
 
 

E

𝑒=1

=∑𝝓𝑖
𝑒T[휀𝑉𝐿𝑒]𝝓𝑒 [

u1
⋮
u𝑁
]

E

𝑒=1
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= [
𝝓𝑖
1

⋮
𝝓𝑖
𝐸
]

T

diag [
휀𝑉𝐿1

⋮
휀𝑉𝐿𝐸

] [
𝝓1
1

⋮
𝝓1
𝐸
⋯

𝝓𝑁
1

⋮
𝝓𝑁
𝐸
] [

u1
⋮
u𝑁
] = 𝑲𝑖

T[휀𝑉𝐿]𝑲[

u1
⋮
u𝑁
] . 

Here, the three matrices are defined as, 

[휀𝑉𝐿𝑒] = [
휀∗𝑒𝑉𝑒 0 0
0 휀∗𝑒𝑉𝑒 0
0 0 휀∗𝑒𝑉𝑒

] , 𝝓𝑖
𝑒 =

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑖
𝜕𝑥
𝜕𝜙𝑒𝑖
𝜕𝑦
𝜕𝜙𝑒𝑖
𝜕𝑧 ]

 
 
 
 
 
 

, 𝝓𝑒 =

[
 
 
 
 
 
 
𝜕𝜙𝑒1
𝜕𝑥
𝜕𝜙𝑒1
𝜕𝑦
𝜕𝜙𝑒1
𝜕𝑧

⋯

𝜕𝜙𝑒𝑁
𝜕𝑥
𝜕𝜙𝑒𝑁
𝜕𝑦
𝜕𝜙𝑒𝑁
𝜕𝑧 ]

 
 
 
 
 
 

 . 

And we also define, 

𝑲𝑖 = [
𝝓𝑖
1

⋮
𝝓𝑖
𝐸
] , [휀𝑉𝐿] = diag [

[휀𝑉𝐿1]
⋮

[휀𝑉𝐿𝐸]
] , 𝑲 = [

𝝓1
1

⋮
𝝓1
𝐸
⋯

𝝓𝑁
1

⋮
𝝓𝑁
𝐸
] . 

The derivative of shape functions, which appeared in 𝑲 and its components, can be given by 

the Barycentric coordinate system. Recall Equation 3-6, [𝐷𝐸𝑒] can be easily given by column 

operation, and also [𝐷𝐸]. 

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑒1
𝜕𝑥
𝜕𝜙𝑒𝑒1
𝜕𝑦

𝜕𝜙𝑒𝑒1
𝜕𝑧

⋯

𝜕𝜙𝑒𝑒4
𝜕𝑥
𝜕𝜙𝑒𝑒4
𝜕𝑦

𝜕𝜙𝑒𝑒4
𝜕𝑧 ]

 
 
 
 
 
 

= [𝑱𝑒]−1

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑒1
𝜕𝜉1

𝑒

𝜕𝜙𝑒𝑒1
𝜕𝜉2

𝑒

𝜕𝜙𝑒𝑒1
𝜕𝜉3

𝑒

⋯

𝜕𝜙𝑒𝑒4
𝜕𝜉1

𝑒

𝜕𝜙𝑒𝑒4
𝜕𝜉2

𝑒

𝜕𝜙𝑒𝑒4
𝜕𝜉3

𝑒 ]
 
 
 
 
 
 

= [

𝑥1
𝑒 − 𝑥4

𝑒 𝑦1
𝑒 − 𝑦4

𝑒 𝑧1
𝑒 − 𝑧4

𝑒

𝑥2
𝑒 − 𝑥4

𝑒 𝑦2
𝑒 − 𝑦4

𝑒 𝑧2
𝑒 − 𝑧4

𝑒

𝑥3
𝑒 − 𝑥4

𝑒 𝑦3
𝑒 − 𝑦4

𝑒 𝑧3
𝑒 − 𝑧4

𝑒
]

−1

[
1 0
0 1
0 0

0 −1
0 −1
1 −1

] , 

[𝐷𝐸𝑒] =

[
 
 
 
 
 
 

diag

(

 
 
 
 

𝜕𝜙𝑒𝑒1
𝜕𝑥
𝜕𝜙𝑒𝑒1
𝜕𝑦
𝜕𝜙𝑒𝑒1
𝜕𝑧 )

 
 
 
 

⋯ diag

(

 
 
 
 

𝜕𝜙𝑒𝑒4
𝜕𝑥
𝜕𝜙𝑒𝑒4
𝜕𝑦
𝜕𝜙𝑒𝑒4
𝜕𝑧 )

 
 
 
 

]
 
 
 
 
 
 

, [𝐷𝐸] = [
𝐷𝐸1 𝟎 𝟎
𝟎 𝐷𝐸𝑒 𝟎
𝟎 𝟎 𝐷𝐸E

] . 

Equation 3-10 

It can be seen however, in first order tetrahedron FEM mesh, each element contents 4 nodes. 

This means [𝐷𝐸𝑒] ∈ ℝ3×12, which hardly forms 𝑲 in dimensions of (3𝐸) × 𝑁. Also it should be 

notice that [𝝓𝑒] which is consisting 𝑲, is a sparse matrix. For those nodes which are not in the 

element 𝑒, the corresponding columns are filled with zeroes. So we use connection 
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matrix [𝐸𝑁𝑖] to build these sparse matrices, by converting the local node index (which is 

defined within the element) and global node index. 

[𝐸𝑁𝑖] is in the matrix which connects the element to the nodes. Assume node 𝑖 is shared by 3 

different elements, 𝑒1, 𝑒2 and 𝑒3. And it is the 2nd, 1st and 4th node of these 3 elements 

respectively. Then we can have [𝐸𝑁𝑖] made up with 𝐸 blocks in a column, corresponding to all 

the 𝐸 elements. Each block has 4 sub-blocks placed in the column, corresponding to the 4 

nodes of the element. The node 𝑖 is shared by blocks 𝑒1, 𝑒2 and 𝑒3, where the 2nd, 1st and 4th 

sub-blocks are 3 × 3 identity matrices respectively. 

[𝐸𝑁𝑖] =

⋮
⋮
𝑒1
⋮
⋮
⋮
⋮
⋮
𝑒2
⋮
⋮
⋮
⋮
⋮
𝑒3
⋮
⋮
⋮

⋮
1
2
3
4
⋮
⋮
1
2
3
4
⋮
1
2
3
4
⋮

⋮
⋮
→
⋮
⋮
⋮
⋮
→
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
→
⋮

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
⋮

𝟎3×3

𝕀3

𝟎3×3

𝟎3×3

⋮
𝕀3

𝟎3×3

𝟎3×3

𝟎3×3

⋮
𝟎3×3

𝟎3×3

𝟎3×3

𝕀3

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∈ ℝ12𝐸×3, [𝐷𝐸][𝐸𝑁𝑖] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝜙1𝑖
𝜕𝑥

0 0

0
𝜕𝜙1𝑖
𝜕𝑦

0

0 0
𝜕𝜙1𝑖
𝜕𝑧

⋮
𝜕𝜙𝐸𝑖
𝜕𝑥

0 0

0
𝜕𝜙𝐸𝑖
𝜕𝑦

0

0 0
𝜕𝜙𝐸𝑖
𝜕𝑧 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

Equation 3-11 (a -b) 

As [𝐸𝑁𝑖] provides map from global nodes to element local nodes, we can have the product 

[𝐷𝐸][𝐸𝑁𝑖] in Equation 3-11 (b) in the form which is similar to the [𝑲𝑖]. With the help of the 

tool vector [𝑆𝑉0] which squeezes diagonal matrices to vectors, we then have, 

[𝐷𝐸][𝐸𝑁𝑖][𝑆𝑉0] = [𝑲𝑖], [𝑆𝑉0] = [
1
1
1
] , 

[𝐸𝑁] = [[𝐸𝑁1] ⋯ [𝐸𝑁𝑁]], [𝐷𝐸][𝐸𝑁][𝑆𝑉] = 𝑲, [𝑆𝑉] = diag [
[𝑆𝑉0]
⋮

[𝑆𝑉0]
] ∈ ℝ3𝑁×𝑁 

Equation 3-12 

And together the stiffness matrix, 

∑ u𝑗
𝑁

𝑗=1
∫ 휀∗∇𝜙𝑖 ∙ ∇𝜙𝑗 d𝑉
Ω

= 𝑲T[휀𝑉]𝑲[

u1
⋮
u𝑁
] 
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= [𝑆𝑉]T[𝐸𝑁]T[𝐷𝐸]T[휀𝑉][𝐷𝐸][𝐸𝑁][𝑆𝑉] [

u1
⋮
u𝑁
] , 𝑖 = 1,2,⋯ ,𝑁. 

Equation 3-13 

And further, for the second term 𝑩, the mass matrix, in Equation 3-9, it can be extend as, 

∑ ∑ u𝑗
1

𝜂𝑙
∫ 𝜙𝑖𝜙𝑗 d𝑆
𝑆𝑙

𝑁

𝑗=1

𝐿

𝑙=1
=∑ (𝑀𝑖

𝑙 [

u1
⋮
u𝑁
])

𝐿

𝑙=1
 , 

𝑀𝑖
𝑙 [

u1
⋮
u𝑁
] =

1

𝜂𝑙
∑ u𝑗∫ 𝜙𝑖𝜙𝑗 d𝑆

𝑆𝑙

𝑁

𝑗=1
=
1

𝜂𝑙

[
 
 
 
 
 ∫ 𝜙𝑖𝜙1 d𝑆
𝑆𝑙

⋮

∫ 𝜙𝑖𝜙𝑁 d𝑆
𝑆𝑙 ]

 
 
 
 
 
T

[

u1
⋮
u𝑁
] . 

In contrast to the element-to-node matrix [𝐸𝑁] in composing the stiffness matrix Equation 

3-13, here we use [𝐵𝑁] which connects the boundary faces to the nodes. [𝐵𝑁] is made up 

with [𝐵𝑁𝑖] which indicate the existence and location of the node 𝑖 in each boundary face. 

[𝐵𝑁𝑖] =

⋮
⋮
𝑏1
⋮
⋮
⋮
𝑏2
⋮
⋮
⋮
𝑏3
⋮
⋮

⋮
1
2
3
⋮
1
2
3
⋮
1
2
3
⋮

⋮
⋮
→
⋮
⋮
→
⋮
⋮
⋮
⋮
⋮
⋮
→
⋮ [

 
 
 
 
 
 
 
 
 
 
 
⋮

𝟎3×3

𝕀3

𝟎3×3

⋮
𝕀3

𝟎3×3

𝟎3×3

⋮
𝟎3×3

𝟎3×3

𝕀3

⋮ ]
 
 
 
 
 
 
 
 
 
 
 

∈ ℝ9𝐵×3, [𝐵𝑁] = [
[𝐵𝑁1]

T

⋮
[𝐵𝑁𝑁]

T
]

T

∈ ℝ9𝐵×3𝑁 

Equation 3-14 (a -b) 

Each 3 columns, which is [𝐵𝑁𝑖], in the [𝐵𝑁] related to the node 𝑖 in the whole volume. The 3 

columns in [𝐵𝑁𝑖] are related to the 3 axes. Each 9 rows in [𝐵𝑁𝑖] is associated with a boundary 

face on the outer boundary. The 9 rows are consist with 3 blocks of 3 × 3 matrices, each one 

of them represents one of the 3 nodes of the face. And if the node 𝑖 is on the face, identity 

matrix is used as the block, empty matrix otherwise. 

With [𝐵𝑁𝑖] and [𝐵𝑁], which bring the global node index to the local boundary face node 

index, 𝑀𝑖
𝑙  can be expressed as, 

𝑀𝑖
𝑙 =

1

𝜂𝑙
[𝑆𝑉0]

T[𝐵𝑁𝑖]
T[𝐵𝑆𝑙]T[𝑃𝑆][𝐵𝑆𝑙][𝐵𝑁][𝑆𝑉], 
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[𝑃𝑆] = diag [
[𝑃𝑆1]
⋮

[𝑃𝑆𝐵]
] , [𝑃𝑆𝑏] =

[
 
 
 
 
 ∫ 𝜙𝑏𝑏1𝜙

𝑏
𝑏1 d𝑆

𝑆𝑏

⋯ ∫ 𝜙𝑏𝑏1𝜙
𝑏
𝑏3 d𝑆

𝑆𝑏

⋮ ⋱ ⋮

∫ 𝜙𝑏𝑏3𝜙
𝑏
𝑏1 d𝑆

𝑆𝑏

⋯ ∫ 𝜙𝑏𝑏3𝜙
𝑏
𝑏3 d𝑆

𝑆𝑏 ]
 
 
 
 
 

 . 

Equation 3-15 

Here, 𝐵 is the number of boundary faces and 𝑏 is the index of these boundary faces. [𝐵𝑆𝑙] is a 

matrix which indicates whether the boundary face 𝑏 is on the electrode 𝑙. [𝑃𝑆𝑏] is localised to 

each boundary face, and the entries in it are the integrals of shape functions. By Equation 3-7 

(a), the entries can be given, and we have, 

[𝐵𝑆𝑙] =
1

3
diag [

[𝑆𝑉0]
T

⋮
[𝑆𝑉0]

T
] ∈ ℝ3𝐵×9𝐵 , [𝑃𝑆𝑏] =

|𝑆𝑏|

12
[
2 1 1
1 2 1
1 1 2

] ∈ ℝ3×3 . 

The third term 𝑪, in Equation 3-9, can be treated similar to the mass matrix as, 

∑
𝑈𝑙
𝜂𝑙
∫ 𝜙𝑖 d𝑆
𝑆𝑙

𝐿

𝑙=1
=∑ ([𝑀𝑀𝑖

𝑙] [
𝑈1
⋮
𝑈𝐿

])
𝐿

𝑙=1
 , 

[𝑀𝑀𝑖
𝑙] =

1

𝜂𝑙
∫ 𝜙𝑖 d𝑆
𝑆𝑙

=
1

𝜂𝑙
[𝑆𝑉0]

T[𝐵𝑁𝑖]
T[𝐵𝑆𝑙]T[𝑃𝑃𝑆], 

[𝑃𝑃𝑆] = [
[𝑃𝑃𝑆1]
⋮

[𝑃𝑃𝑆𝐵]
] , [𝑃𝑃𝑆𝑏] =

[
 
 
 
 
 ∫ 𝜙𝑏1 d𝑆
𝑆𝑏

⋮

∫ 𝜙𝑏3 d𝑆
𝑆𝑏 ]

 
 
 
 
 

=
|𝑆𝑏|

3
[𝑆𝑉0] . 

Equation 3-16 

Finally, the matrix formula of FEM system Equation 3-9 is assembled with Equation 3-13, 

Equation 3-15 and Equation 3-16. Matrices 𝑫, 𝑬 and 𝑭 do not involve in assembling process, as 

they are isolated with the shape functions but only associated with 𝑈𝑙  and 𝐼𝑙 to form inner 

products. 

The FEM formula of a Laplace equation is quite often appeared in computational technique or 

numerical problems text book, and the EIT forward problem with CEM or IEM boundary 

conditions is basically in the Laplace formula, with only the electrodes part modified a bit. The 

reasons we detailed it here are that, first, the stiffness matrix is reused in the inverse problem, 

and we are going to discuss it in Chapter 5; second, we introduced a set of different boundary 

conditions to fine the forward problem solution corresponding to the hardware non-ideal 
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effects, and it is different from the FEM formula given by CEM; third, in order to extend the 

frequency usage of the EIT applications, we derived the EIT forward problem from the 

Maxwell’s equation in Chapter 4, it needs the FEM-Laplace formula as the foundation and for 

comparison with as well. 

3.4 Case Studies and Discussions 

The following sections illustrate solutions of the forward model for two different geometry 

models and compare the results obtained using different solution methods.  

3.4.1 Lumped Model 

The first geometry model, called “Lumped Model,” is a cylinder with two electrodes at each 

end. The cylinder is filled with materials to simulate breast tissues (Surowiec, et al., 1988) and 

placed in free space as Figure 3-2 defines. 

 

Figure 3-2 the geometry of the Lumped Model 

In contrast to typical EIT models, the Lumped Model is clearly not able to predict the 

impedance distribution inside the volume without the prior knowledge of its homogeneity, as 

there are not enough electrodes. The free space outside the cylinder is usually ignored. The 

benefit of the Lumped Model is that as long as the free space (in the sphere) is removed, then 

it can be verified analytically by considering the model as a lumped circuit containing a 

parallel-plate capacitor CS in parallel with a resistor RS. As the material in the cylinder is 

homogeneous, the circuit components are given as  

RS =
𝐿

𝜎 × 𝑆
    , CS =

휀 × 𝑆

𝐿
, 
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𝐙S =
RS

1
j𝜔CS

RS +
1
j𝜔CS

=
𝐿

휀∗𝑆
 , 

where RS, CS and 𝐙S  are the equivalent resistor, capacitor and impedance of the material, 

 𝜎, 휀 and 휀∗ are the conductivity, permittivity and admittivity of the material, 

 𝑆 is the surface area of the electrode (also the top/bottom surface area of the 

cylinder), 

 𝐿 is the distance between the electrodes (also the length of the cylinder). 

In addition, on each electrode, a circuit unit consisting of a resistor RF and a capacitor CF can 

be attached to simulate the instrumental impedance 𝐙F we proposed in the IEM. Because 

there are only two electrodes in the model, current sources are applied on both of them in 

opposite direction and no measuring electrode is included. 

When the surrounding free space is considered, the two electrodes form another capacitor 

(reflecting the interaction with the free space electric field) connected in parallel with 𝐙S. We 

denote it as CA or its reactance 𝐗CA, and solve it numerically. 

As mentioned in section 2.2.1, the Laplace equations under the quasi-static approximation are 

not sufficient to obtain accurate solutions for the frequency range of interest. Here we denote 

the difference between the solutions obtained from the full Maxwell equations and the 

Laplace equations as the full Maxwell effect, and we use a circuit unit 𝐙M
+ to model this effect 

although a simplistic equivalent impedance cannot fully represent this effect. 

The equivalent circuit of the Lumped Model is shown in Figure 3-3(a). 

       
Figure 3-3(a). The equivalent circuit for Lumped Model        Figure 3(b). The equivalent circuit for method h) and i) 
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In our simulations, three main effects are included in the Lumped Model for solving the 

forward models. Note that we are not trying to quantify these effects, as they vary with 

geometries and materials, but merely to use the combinational effects to verify the IEM. These 

three effects are: 

 Instrumental effect, 𝐙F; 

 Volume Cut-off effect, 𝐗CA; 

 Full Maxwell’s effect, 𝐙M
+. 

We obtained the simulation results by using the following nine methods (forward problem 

solvers or BCs sets) and cross-compared the results to assess the accuracy of the IEM 

implementation. The methods are:  

a) analytical lumped method 

An analytical solution based on an equivalent circuit of the cylinder and current 

sources.  

b) analytical lumped method with the instrumental effect 𝐙F 

Similar to a), but the instrumental impedance effect 𝐙F is also included in the analysis. 

c) CEM by EIDORs (Polydorides & Lionheart, 2002) without considering the free space (no 

𝐗CA) 

An FEM forward model of the cylinder solved with the CEM. This models the potential 

distribution in the cylinder, contact impedance and the potentials on the two 

electrodes. Only the cylinder (coloured in dark red in Figure 3-2) is meshed and solved 

without considering the surrounding free space (or 𝐗CA).  

d) CEM by EIDORs with 𝐗CA 

Similar to c), but with the free space (in Figure 3-2) included and solved. Note that the 

governing Equation 2-11 and the derivation in Section 3.3.1 are free of sources inside 

the volume, which differs from the configuration for this simulation (the source 

electrodes are inside the finite elements volume). They are equivalent mathematically, 

but we do not need to detail the equations here.  

e) IEM without considering the free space (no 𝐗CA) 
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Similar to c), but using the IEM we proposed in the Sections 3. It models the potential 

distribution in the cylinder, contact impedance on the two electrodes with the 

instrumental effect 𝐙F included.  

f) IEM with 𝐗CA 

Similar to e), but the free space (𝐗CA ) is included in the simulations.  

g) 𝐀 −Φ forward model in Helmholtz-like equations  

An FEM forward model that solves the full Maxwell equations. It models the vector 

potential (𝐀) and scalar potential (Φ) distribution in the cylinder and also the 

surrounding free space shown in Figure 3-2, but the contact impedance or 

instrumental effect is not considered. We derived the formula of the 𝐀 −Φ method 

based on a previously published 2-D work (Soni, et al., 2006), and the data structure in 

Matlab is based on EIDORS using the mesh generating software NETGEN. A description 

of the forward model formulation can be found in the Chapter 4. 

h) COMSOL Multiphysics without the instrumental effect 𝐙F 

The solution is obtained by COMSOL Multiphysics (well-known commercial finite-

element software developed for solving differential equations in different applications, 

denoted as COMSOL hereafter). It models the electric field distribution in the cylinder 

and the surrounding free space (perfect matching layer, PML, is usually used in solving 

Maxwell’s equations).  

i) COMSOL Multiphysics with 𝐙F  

Similar to h), but we included the instrumental effect 𝐙F on electrodes.  

Table 3-1 summarises the methods we used. 

Table 3-1 List of the effects considered by each method 

Index Name Effect 𝐙F Effect 𝐗CA Effect 𝐙M
+ 

a) Analytical No No No 

b) Analytical w/ 𝐙F Yes No No 

c) CEM No No No 

d) CEM w/ 𝐗CA No Yes No 

e) IEM Yes No No 

f) IEM w/ 𝐗CA Yes Yes No 
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g) 𝐀 −Φ No Yes Yes 

h) COMSOL No Yes Yes 

i) COMSOL w/ 𝐙F Yes Yes Yes 

Note: The contact impedance in c) – f) is set to be 1 × 10−6 Ω ∙ m2 in order to compare with other 

methods which the contact impedance are not considered. 

For all methods the dimensions of the cylinder, conductivity, permittivity, instrumental 

impedance, stimulation and frequencies are kept constant to allow fair comparison. The 

parameters are: 

 Material conductivity, 0.03S/m, (Surowiec, et al., 1988) 

 Material relative permittivity, 40, (Surowiec, et al., 1988) 

 Cylinder radius, 0.01m 

 Cylinder length, 0.10m 

 Current source driving current, 1mA 

 Frequency range, 250kHz – 20MHz. 

Various other parameters apply to some of the individual methods: 

 The equivalent impedance of the cylinder 𝐙S in a) and b) is calculated from the 

material property and cylinder dimension above. 

 The resistive part of the instrumental impedance, RF, in methods b), e) and f) is 

5MOhm 

 The capacitive part of the instrumental impedance, CF, in methods b), e) and f) is 10pF 

 The diameter of the free space sphere in methods d), f) and g) is 0.15m. 

 The diameter of the free space plus PML sphere in method h) and i) is 0.15m. 

 Method h) and i) which uses COMSOL requires a uniform “port” defined as field 

excitation, so the two opposing electrodes are considered as a single “port”, and the 

instrumental impedance, which is attached on each electrode in methods b), e) and f), 

is combined into a single effective impedance connected in parallel with the port, as 

shown in Figure 3-3(b) (with the impedance doubled to maintain equivalence with 

Figure 3-3(a)). 

Figure 3-4 and Figure 3-5 show the differential voltage in magnitude and phase obtained by 

the methods, a) – i). 
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Figure 3-4 Solutions in magnitude of the forward problem obtained by using methods a) – i) 

 

Figure 3-5 Solutions in phase of the forward problem obtained by using methods a) – i) 
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Key findings from the various solution methods are as follows: 

 The results from a), analytical method, and c), FEM with CEM BCs are almost the same, 

as they describe the same problem in analytical and numerical ways. 

 The results from b), analytical method with 𝐙F, and e), FEM with IEM BCs are in a good 

agreement, as they discribe the same problem. And this shows our IEM describes the 

instrumental effect correctly. 

 Both b) and e) start to attenuate at a much lower frequency than a) and c). This comes 

from the instrumental effect, where 𝐙F provides an extra path for the current and 

reduces the current injected into the cylinder.  

 Similarly, the results for d), FEM with CEM BCs and 𝐗CA, attenuate in magnitude at a 

lower frequency than the a) and c) results. This illustrates the volume cut-off effect. 

The capacitance contributed by the free space is not considered in a) and is 

numerically chopped off in c), which provides an extra path for the current.  

 Similarly, the results for f), FEM with IEM BCs and 𝐗CA, also shows the volume cut-off 

effect, but are not so different from the results for b) and e). This demonstrates that 

the instrument effect dominates in this case.  

 The results for g), FEM of 𝐀−Φ problem with 𝐗CA, are very similar to the results for 

d), FEM with CEM BCs and 𝐗CA. This shows that the full Maxwell effect 𝐙M
+ is not 

obvious for the structure we chose in this frequency range.  

 The h) curves (obtained using COMSOL, but without considering 𝐙F) are similar to the 

d) curves, showing further that the Maxwell effect is not significant. The error between 

g) and h) will be discussed shortly. 

 The results for i) using COMSOL (including 𝐙F) show the combined effects of 𝐙F, 𝐗CA 

and 𝐙M
+, and they are close to the results for f). 

From the above, we conclude that: 

 The numerical methods match the analytical methods perfectly; a) with c) and b) with 

e).  

 The volume cut-off effect, 𝐗CA, contributed by the free space surrounding the 

cylinder, is observable, based on the comparison between groups d), g) and h) and 

groups a) and c) (groups are circled in the figures).  

 The instrumental effect, 𝐙F, is significant. Based on comparisons between a) and b), c) 

and e), d) and f), and h) and i) in both magnitude and phase plots.  
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 The Maxwell effect, 𝐙M
+, is insignificant, for the geometry and material property we 

chose.  

 The two different Maxwell solvers (COMSOL and 𝐀−Φ) give similar but not identical 

results. Both methods solve full Maxwell equations and are mathematically equivalent, 

and theoretically should obtain the same results. Potential reasons for the small 

discrepancy are:  

o In method g), the 𝐀−Φ method solves Helmholtz-like equations with nodal 

FEM, as described in section 2.4, while in method h), COMSOL solves curl-curl 

Equation 3-17 with edge element FEM (in which 𝜖r, 𝜇r, 𝜖0 and 𝑘0 are relative 

permittivity, relative permeability, permittivity in free space and propagation 

constant) (Firoozabadi & Miller, 2010 ).  

∇ × 𝜇r
−1(∇ × 𝐄) − 𝑘0

2 (𝜖r −
j𝜎

𝜔𝜖0
)𝐄 = 𝟎 

Equation 3-17 

o COMSOL builds the numeric problem, meshes the geometry and solves the 

matrix differently compared to method g) (which uses NETGEN and Matlab). 

3.4.2 Tank Model and Discussion 

For the second forward problem we use a simple cylinder tank as shown in Figure 3-6 

(relatively simple to model but complicated enough to illustrate the differences between the 

IEM and the other methods). There are six electrodes located at the vertical mid-point of the 

cylinder wall with free space surrounding the tank. Each electrode is modelled as a small circle 

distributed around the perimeter of the cylinder tank at a uniform 60-degree angular spacing. 

 
Figure 3-6 the geometry setting of Tank Model 
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Furthermore, a more realistic contact impedance is introduced in this forward problem. The 

electrochemical (polarization) impedance part of the contact impedance (Kolehmainen, et al., 

1997) is considered. Based on experimental measurements of polarization impedance 

(Mirtaheri, et al., 2005), we set the contact impedance of electrodes in the Tank Model using 

0.9%-saline-gold data measured at 1kHz. It is the highest frequency measured in the report 

and the experimental results suggest that the impedance tends to reduce with increasing 

frequency (Mirtaheri, et al., 2005), so we can expect the effect of contact impedance is less 

significant in the frequency range considered here. The contact impedance is given by, 

𝜂 = 𝐙C𝑆 = (RC +
1

j2𝜋𝑓CC
) 𝑆C 

where RC is the resistive part measured in the contact impedance experiment (Mirtaheri, et 

al., 2005), 

CC is the capacitive part, 

𝐙C is the measured impedance, 

𝑓 =  1kHz is the frequency,  

𝑆C is the electrode surface area, 0.07 cm2. 

In a similar fashion to the Lumped Model described previously, we use several methods to 

solve the forward problem, and make cross-comparisons to verify the results obtained from 

IEM, subject to the following effects,  

 Instrumental effect, 𝐙F; 

 Volume Cut-off effect, 𝐗CA; 

 Full Maxwell’s effect, 𝐙M
+. 

Figure 3-7 illustrates the equivalent circuit for the Tank Model. A pair of ideal current sources 

are attached to two electrodes of the tank. Each of these sources comes with its instrumental 

impedance 𝐙FD, consisting of RF and CFD. The sources drive the tank through the contact 

impedance 𝜂D (expressed as an impedance 𝜂D𝑆
−1 where S is the electrode surface area). The 

impedances 𝜂D𝑆
−1 are shown with dashed lines, as the true locations are at the surface of the 

electrodes. Two electrodes (No. 4 and No. 5 on the right hand side) constitute the 

measurement circuit with the differential voltage between them (DV45) measured down-

stream from the contact impedance (𝜂M𝑆
−1) and with their instrumental impedance attached 

(𝐙FM to ground comprising RF and CFM in parallel). The model includes instrumental 

impedances for all six electrodes (𝐙FMfor measuring and 𝐙FD for driving) although these are 
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not all shown on the diagram. Once again the model uses simplistic equivalent impedance 

representations for the volume cut-off effect (represented by capacitor CA) and the full 

Maxwell effect (represented by the two port network 𝐙M
+). In simulations, the driving and 

measuring pattern can be varied to use any of the available electrode pairs. 

 

Figure 3-7 Equivalent circuit of Tank Model including instrumental effects 

We obtained the results using the following solution methods:  

a) CEM using EIDORs 

b) CEM including the outer free space using EIDORs 

c) IEM including the outer free space and instrumental effects 

d) 𝐀 −Φ forward model in Helmholtz-like equations 

e) COMSOL without the instrumental effect 

f) COMSOL including the instrumental effect 

The model parameters are: 

 Material conductivity, 0.03S/m 

 Material relative permittivity, 40 

 Tank radius, 0.05m 

 Tank height, 0.05m 

 Electrode radius, 0.002m 

 Driving current, 1mA 
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 An electrode drive pattern based on opposite driving (1 and 4) and measuring 

electrodes (2 and 5) is used. 

Together with some parameters which apply to particular solution methods, 

 For method c), RF = 5MOhm, CFD (the capacitive part of the instrumental impedance 

on driving electrodes) = 10pF, and CFM (the capacitive part of the instrumental 

impedance on measuring electrodes) = 6pF.  

 The diameter of the free space sphere in methods b) - f) is 0.15m. 

 The BC used in d), 𝐀−Φ forward model, is similar to the shunt electrode model (Boyle 

& Adler, 2011) (see section 2.4) and does not include the contact impedance or 

instrumental impedance. 

 Contact impedance is not applicable in COMSOL Electromagnetic simulation, and is not 

applied in methods e) and f). 

 For methods a) – c), the contact impedance on measuring electrodes, 

𝜂M = 7 × 10
−4 − j5 × 10−4Ω ∙ m2. 

 For methods a) – c), the contact impedance on driving electrodes, 

𝜂D = 1 × 10
−6Ω ∙ m2. 

For all three methods the contact impedance of the driving electrodes is set to the 

same small value used for the Lumped Model, so that the measured voltage difference 

is comparable with methods d) – f) which do not include contact impedance. (The 

contact impedance on driving electrodes is in series with the impedance of the whole 

tank, which reduces the current flowing through the driving electrodes when a finite 

instrumental impedance is present at the electrodes.) The contact impedance on the 

driving electrodes exacerbates the instrumental effects but here we ignore it to show 

the instrumental effects caused by the measuring electrodes.  

Table 3-2 summarises the methods we used. 
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Table 3-2 List of the effects considered by each method 

Index Name ηD ηM Effect 𝐙F Effect 𝐗CA Effect 

𝐙M
+ 

a) CEM Small Yes No No No 

b) CEM w/ 𝐗CA Small Yes No Yes No 

c) IEM w/ 𝐗CA Small Yes Yes Yes No 

d) 𝐀 −Φ No No No Yes Yes 

e) COMSOL No No No Yes Yes 

f) COMSOL w/ 𝐙F No No Yes Yes Yes 

 

Figure 3-8 and Figure 3-9 show magnitude and phase for the measured differential voltage for 

methods a) – f) (driving at electrode No. 1 and 4 and measuring at No. 2 and 5). 

 
Figure 3-8 Voltage difference (magnitude) on measuring electrodes 
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Figure 3-9 Voltage difference (phase) on measuring electrodes 

From Figure 3-8 and Figure 3-9 we found: 

 The volume cut-off effect, 𝐗CA, due to the free space surrounding the tank, is not 

easily observed until the frequency exceeds 5MHz. See curves a) and b).  

 The full Maxwell effect, 𝐙M
+, is not easily observed until the frequency exceeds 5MHz. 

See curves b), d) and e).  

 The instrumental effect, 𝐙F, can be easily observed from f > 300kHz. See curves b), c) 

and f). 

 The observed discrepancy between d) and e) may be due to numerical differences in 

the methods for 𝐀 −Φ and COMSOL (as discussed previously for the Lumped Model). 

 The difference between c) and f) could result from a combination of the full Maxwell 

effect, lack of contact impedance in f) and differences in numerical methods (different 

mesh, nodal/edge elements, solver, etc.), but it is not significant 

 Results e) and f) obtained using COMSOL do not converge for frequencies lower than 

2MHz (3MHz for f)). These results illustrate the limitations of COMSOL. 

It is desirable to check at high frequencies whether the Laplace equation with our IEM model is 

adequate to predict the potential distribution without resorting to the full Maxwell equations, 

especially at frequencies where the quasi-static hypothesis tends to fail. In other words, we 
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check here whether the instrumental effect is the effect dominates the full Maxwell effect 

across the frequency range of interest. 

Figure 3-10 and Figure 3-11 show contour plots (logarithmic scale) for the electric potential 

obtained by different methods with opposite and adjacent electrode drive at f = 5.01MHz. The 

three subplots illustrate results for (a) the 𝐀−Φ method, (b) CEM with  𝐗CA and (c) IEM. 

 

Figure 3-10 Contours of potential with opposite electrode drive at frequency 5.01MHz 

 

Figure 3-11 Contours of potential with adjacent electrode drive at frequency 5.01MHz 

In Figure 3-10 and Figure 3-11, the contours are at z = 0.025m (electrodes slice, see Figure 3-6). 

The edge of the tank is in blue. The green dots in the plots represent electrodes and the red 

ones represent the driving electrodes.  

The electric potentials obtained using the 𝐀−Φ and CEM methods are similar, whereas the 

IEM method produces different results. It suggests the Maxwell effect does not contribute to 

the difference as much as the instrumental effect does for the parameters we chose. Hence if 

the instrumental effect is taken into account then the Laplace equations as implemented by 

the IEM should be used to predict the potential distribution.  

3.5 Summary 

This paper investigates the effects of non-ideal instrumentation on the performances of EIT 

front-end hardware. A more accurate electrode model for forward problems, IEM, is presented 
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which includes the instrumental loading effects in the electrode model. We conclude that the 

instrument loading effects should be considered by both semi Maxwell and full Maxwell 

methods, and the full Maxwell results (using the COMSOL with instrumental boundary 

conditions; see Figure 3-8 and Figure 3-9) confirm our argument. 

Modelling demonstrates that the IEM model provides a more accurate representation in the 

frequency range from 500 kHz to a few MHz, a range where it is difficult for GIC circuits to 

overcome instrument effects at the driving electrodes and for calibration methods to 

compensate for effects at the measuring electrodes.  Simulations show that an IEM 

formulation of the semi-Maxwell equations can provide a more accurate solution for the 

forward problems in situations where the full Maxwell effect is not the dominant effect in the 

frequency range. It is suggested to check with full Maxwell’s solvers whether the material and 

frequency is suitable for the Laplace equations. 

Table 3-3 summarises the general characteristics of the various solution methods investigated 

in this paper. 

Table 3-3 Comparison of general characteristics of different methods for solving the forward problems 

 Analytical CEM IEM 𝐀 −Φ Method COMSOL 

Inversion No Capable Capable Capable Difficult 

Instrumental Effect Yes No Yes No Yes 

Maxwell’s Effect No No No Yes Yes 

Complicated Geometry 

& Outer Space 

No Yes Yes Yes Yes 

Processing Density Low Normal Normal High High 

Low Frequency Stability Good Good Good Good Poor 

High Frequency Accuracy Normal Poor Material 
Dependant 

Material 
Dependant 

Good 

 

It is worth noting that the beta dispersion frequency used in some studies for distinguishing 

cancerous from normal tissues is reported to be fall in the same  frequency range (100kHz to 

10MHz) (Schwan, 1957; Grimnes & Martinsen, 2008; Surowiec, et al., 1988). 

3.6 Appendix 

As mentioned in Section 3.1, the IEM formula needs to be revised for voltage source EIT 

systems, and we derive it here including a simple example. Theoretically, there is no difference 

between voltage source and current source EIT systems, as voltage sources and current 
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sources can be made equivalent in circuits. However, using voltage source systems can avoid 

the situation where current source systems are not able to provide output impedance high 

enough to avoid from loading effects (Holder, 2005). 

Although voltage source EIT systems can bring some benefits, the non-idealities, however, 

cannot be completely avoided. First, the input impedance between the voltage measuring 

electrode pairs cannot be infinite. Second, voltage source systems need to measure the 

currents on the exciting electrodes as it appears in inverse problems (Holder, 2005), but the 

current measurements can be inaccurate due to the finite impedance attached to electrodes. 

Different approaches have been used for implementing EIT systems with voltage sources, 

including resistive sensors (Saulnier, et al., 2006; Halter, et al., 2008), bridges (Dutta, et al., 

2001; Li, et al., 2013), etc. Typically, the voltage source system can be modelled as a collection 

of voltage sources, current measurement and voltage measurement components. We use 

Figure 3-12 to explain this, which is modified from Figure 3-1. 

 

Figure 3-12 EIT electrode geometry and voltage source circuit model  

In Figure 3-12, 𝑈S𝑙  is the voltage generated by the source, connected with the 𝑙th electrode, 𝐙S 

is the impedance of the sensor resistor. For the remaining symbols in the figure we kept the 

previous definitions. 

The switch controls the electrode to be in the exciting mode or measuring mode. In the 

exciting mode, an ideal voltage source is assumed and applied, generating a voltage 𝑈S𝑙. A 

small resistor (connected between the source and the electrode) is used to measure the 

injected current. Similar to current source systems, not all the current measured by the sensor 

goes into the electrode especially when the operating frequency is high due to the finite 
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impedance attached to electrode (measurement circuit, switches and parasitic capacitor, etc.). 

These non-ideal instrumental effects result in inaccuracy. In the measuring mode, there are 

leakage currents flowing throughout the electrode and perturbing the potential distribution in 

the volume in a way similar to current source systems. 

To derive the forward model for voltage source systems, the same procedure as in section 3.2 

is used. We apply the current equation for the circuit node E to obtain, 

𝑈𝑙 − 𝑈S𝑙
𝐙S

+
𝑈𝑙 − 𝑈GND

𝐙F
+ 𝐼𝑙 = 0, 

in the driving mode, and 

𝑈𝑙 − 𝑈GND
𝐙F

+ 𝐼𝑙 = 0 , 

in the measuring mode, where 𝐙S denotes the sensing impedance of each electrode. 

Combining these two equations, we obtain (with 𝐙S = ∞ indicating the measuring mode), 

(
1

𝐙S
+
1

𝐙F
)𝑈𝑙 + 𝐼𝑙 =

𝑈S𝑙
𝐙S
 . 

Equation 3-18 

Substituting the above equation into the weak formula, we have, 

{
 
 
 
 

 
 
 
 ∫ 휀∗∇𝑣 ∙ ∇Φ𝑑𝑉
Ω

+∑
1

𝜂
∫ 𝑣Φ𝑑𝑆
𝑆𝑙

𝐿

𝑙=1
−∑

𝑈𝑙
𝜂
∫ 𝑣 𝑑𝑆
𝑆𝑙

𝐿

𝑙=1
= 0 ,

∫
𝑈𝑙 −Φ

𝜂
𝑑𝑆

𝑆𝑙

− 𝐼𝑙 = 0 ,

(
1

𝐙S𝑙
+
1

𝐙F𝑙
)𝑈𝑙 + 𝐼𝑙 =

𝑈S𝑙
𝐙S𝑙
 , 𝑙 = 1,2,3,… , 𝐿 − 1,

(
1

𝐙S𝐿
+
1

𝐙F𝐿
)𝑈𝐿 −∑ 𝐼𝑙

𝐿−1

𝑙=1
=
𝑈S𝐿
𝐙S𝐿

.

 

Equation 3-19 

With 𝐙S = [𝐙S1 ⋯ 𝐙S𝐿]
T and 𝐯𝐒 = [𝑈S1 ⋯ 𝑈S𝐿]

T the FEM matrix can be, 

[
𝑨 + 𝑩 𝑪 𝟎𝑁×𝐿

𝑪T 𝑫 −𝐈𝐿×𝐿

𝟎𝐿×𝑁 𝑮 𝑭

] [
𝐮
𝐯
𝐢
] = [

𝟎(𝑁+𝐿)×1
𝐯𝐒
𝐙S

], 

𝑮 = diag {
1

𝐙S𝑙
+
1

𝐙F𝑙
} ∈ ℂ𝐿×𝐿 . 



82 

 

In the measuring mode, 1 𝐙S⁄  is set to zero. The formula is very similar to the current source 

IEM but more complicated than the voltage source CEM. In addition, it predicts the current on 

the sensing resistor, but it requires the information of instrumental impedance 𝐙F and sensing 

impedance 𝐙S. 

We use the tank model with the following parameters to show the difference between the 

voltage source CEM and the voltage source IEM. 

 Driving Voltages: +/-2V 

 An electrode-driving pattern based on the opposite driving (1 and 4) and measuring 

electrodes (2 and 5) is used. 

 In order for comparison, the voltage across the driving electrode pair is monitored. 

 For IEM RF = 5MOhm, CFM = CDM = 6pF, and 𝐙S = 10 Ohm for voltage driving 

electrodes.  

 The contact impedance on both driving and measuring electrodes, 

𝜂 = 7 × 10−4 − j5 × 10−4Ω ∙ m2. 

 

Figure 3-13 Voltage Difference on Electrode Pairs, with Voltage Source Setup. 

Simulation results are shown in Figure 3-13. The instrumental effect on driving electrodes, 

contributed by the measuring circuits and parasitic capacitors, is not significant. The difference 

between the voltages on the CEM driving pair (red dot curve) and the IEM driving pair (orange 

dot curve) is caused by the sensor impedance, and we ignore it for simplicity here. On the 

other hand, it suggests that the CEM solutions can be significantly inaccurate on the measuring 
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electrode pairs due to the instrumental effects. The CEM shows an almost constant voltage 

across the frequency band (blue curve), whereas the IEM concludes that the input impedance 

of the measuring pair varies with frequency (green curve), and it changes the potential 

distribution inside the object accordingly. 

Furthermore, the current measurements in the voltage source systems affected by hardware 

non-idealities can be more serious than what the simulation shows, especially when the 

sensing impedance contains a significant capacitive component. This problem is system 

dependent and closely related to the inverse problem, but we would like to discuss it in a 

different report. 
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Chapter 4 EIT Forward Problems with Full Maxwell’s Equations 

4.1 Introduction 

In order to extend the frequency range of the EIT for better covering the beta-dispersion band, 

the quasi-static assumption has to be revised. With the full Maxwell’s equations applied, the 

EIT forward problem becomes a full-vectorial analysis instead of an electro-quasi-static 

problem (Larsson, 2007). 

I have mentioned a few different modalities including UWB and MWT in Chapter 1 which use 

frequencies higher than the beta-dispersion or even gamma-dispersion band. For these high 

frequency applications, full Maxwell’s equations are solved. However, a background medium 

with a uniform distribution of electromagnetic properties (including admittivity, permeability, 

etc.) has to be assumed to avoid complicated FEM analysis (Semenov, 2009). 

The difficulty in the FEM analysis of electromagnetic fields is mainly due to the discontinuities 

of the 𝐄 and 𝐇 fields (the prime fields). It can be successfully handled by the Edge-Element 

FEM methods (Barton & Cendes, 1987). However, the discontinuous functions are 

incompatible with inverse schemes (Somersalo, et al., 1992), which can be also seen from 

Equation 2-3. 

A traditional EIT solves electric scalar potentials in forward problems and obtains the 

distribution of the admittivity by inversing the forward solutions under the quasi-static 

assumption. In this way, the discontinuities of the prime fields are not involved. 

Solving the potential formula of the full Maxwell’s equations with nodal-element FEM (Soni, et 

al., 2006) is an appropriate method for high frequency EIT applications. It obtains full-vectorial 

forward solutions without including the discontinuities of the prime fields. However, to 

propose realistic BCs for both the potentials and gauge functions can be challenging, for two 

reasons. Firstly, the potentials themselves are not observable, extra degrees of freedom are 

embedded in the definition of potentials. Gauge fixing has to be performed to remove the 

arbitrariness. Secondly, proper methods for injecting electromagnetic field are needed, and 

the contact impedance and instrumental impedance have to be modelled by the proper BCs. 

Table 4-1 summarises different methods for solving forward problems. 
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Table 4-1 Comparison between different methods for solving forward problems  

 Inversion Contact 
Impedance 

Instrumental 
Effect 

Maxwell’s 
Effect 

Processing 
Density 

Low 
Frequency 

Stability 

High 
Frequency 
Accuracy 

CEM Yes Yes No No Low Yes Poor 

IEM Yes Yes Yes No Low Yes Normal 

SEM-IBC Yes No No Yes High Yes Normal 

CEM-IBC Yes Yes No Yes High Yes Normal 

TPM Yes Yes Yes Yes High Yes Good 

COMSOL No No Yes Yes High No Good 

 

In this chapter, we will introduce the difference between the quasi-static assumption and full 

Maxwell’s equations. The continuity of the EMF is introduced in Section 4.2. The derivations 

the 3-D potential formula, the potential BCs and the gauge fixing are described in Section 4.3. I 

proposed two sets of BCs for high frequency EIT applications including CEM-IBC and TPM, and 

they will be detailed in Section 4.4. They model the effects of the contact impedance and the 

instrumental impedance. A tank structure similar to the model in Section 3.4.2, will be studied 

with different sets of BCs, and with the results discussed in Section 4.5. 

4.2 Fundamental of Electromagnetic Field and Potentials 

4.2.1 Quasi-static Approximation 

The quasi-static approximation is made in Chapter 2 (Equation 2-9), and it says that at a low 

frequency, the electric field can be considered as an irrotational field. This assumption 

simplifies an EIT forward problem to a Laplace equation (Equation 2-10).  

It is necessary to re-examine the quasi-static assumption when extending the frequency range 

of an EIT system, as we stated in earlier chapters. 

It is not obvious to see the inaccuracy introduced by the approximation, 

∇ ∙ 휀∗(∇Φ0 + j𝜔𝐀0) ≅ ∇ ∙ 휀
∗∇Φ . 

We can estimate the quasi-static error. Take a simple structure shown in Figure 4-1 as an 

example. The top and bottom circles are PEC plates, with radii being the same as 𝑅, separated 

by a distance of 𝑑. Between the two plates, there is a virtual circle with the radius of 𝑟. A 

virtual rectangular is placed between the two plates, perpendicular to the surfaces of the 

plates, with the height 𝑑 and width 𝑅 − 𝑟. 
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In order to describe the example, we use the cylindrical coordinates and let the vertical 

direction to be 𝑥, the radial direction to be �̂�, and the direction tangent to the edge of the 

circle to be 𝜃. The material in the geometry is assumed to be homogeneous and isotropic. 

 

Figure 4-1 Simple Geometry Setup for Estimating the Quasi-static Error 

Assume there is a source generating a voltage difference 𝑈 = 𝑈0𝑒
j𝜔0𝑡 between the two plates. 

Under the quasi-static assumption, the electric field intensity between the plates can be 

approximated as, 

𝐄 = −∇Φ− j𝜔𝐀 ≅ −∇Φ, 𝐄 = 𝐸0𝑥 + 𝐸r�̂� ≈ 𝐸0𝑥 =
𝑈

𝑑
𝑥. 

At the edge of the plate 𝐸r can exist, but we ignore it here for simplicity. 

Recall the integral form of the Ampère's circuital law (with Maxwell's addition), and apply it on 

the electric field throughout the virtual circle. As the geometry is angular symmetrical and 

homogenous, the integral becomes  

∮ 𝐁(𝑟) ∙ d𝜃
2𝜋

0

= ∫ 𝜇휀∗𝐄 ∙ d𝑺
vc

, 𝐇(𝑟) =
휀∗𝐸0𝑟

2
𝜃. 

Then we consider the magnetic field intensity throughout the virtual rectangle, apply the 

integral form the Maxwell-Faraday equation. 

∮ 𝐄 ∙ d𝑙
∂Rect

= −∫ j𝜔𝜇𝐇 ∙ d𝑺
Rect

= −∮ (∇Φ+ j𝜔𝐀) ∙ d𝑙
∂Rect

.  

Equation 4-1 



87 

 

Here the quasi-static error appears by inserting the potential definition equation. If the vector 

potential field 𝐀 is ignored, the most RHS of the equation will vanish according to gradient 

theorem, which means the 𝐇 filed does not contribute to the electric field.   

𝐄 is perpendicular to the surfaces of the metal plates, so only the vertical paths contribute to 

the integral of the LHS of Equation 4-1. Therefore, we have, 

∫ 𝐄(𝑟) ∙ d𝑥
𝑑

0

+∫ 𝐄(𝑅) ∙ d𝑥
0

𝑑

= −∫ j𝜔𝜇𝐇 ∙ d𝑺
Rect

, 

= 𝑈𝑟 −𝑈𝑅 = −∫ j𝜔𝜇
휀∗𝐸0𝑟

′

2
𝑑d𝑟′

𝑅

𝑟

= −j𝜔𝜇휀∗
𝑈

4
(𝑅2 − 𝑟2). 

The integral on the LHS are replaced with the potential difference 𝑈𝑟 − 𝑈𝑅, but it is different 

from the voltage generated by the source 𝑈. The equation says that the intensity of the 

electric field is re-distributed, due to the change of the magnetic field in the 𝜃 direction, so 

does the potential. 

In some circumstances, the difference between the potentials given by quasi-static and full 

Maxwell analysis can be ignored. These circumstances must obey the following relationship, 

𝑄 = |
𝑈𝑟 −𝑈𝑅
𝑈

| = |
𝜔𝜇휀∗(𝑟′)2

4
| ≪ 1 

Equation 4-2 

Equation 4-2 indicates that 𝜔, 𝜇, 휀∗ and 𝑟′ affect the accuracy of the quasi-static assumption in 

different ways. Here 𝑟′ is the distance from the voltage source to the position of the 

measurement. 

We consider a cylinder of saline with the 𝑅 = 0.1m, 𝜎 = 0.1S/m, relative permittivity = 81, and 

the relative permeability = 1. By evaluating Equation 4-2 with the assumption of 𝑄 ≤1%, the 

limit of the frequency is 5.212 MHz. Or for 𝑄 ≤ 0.1%, the limit becomes 1.018MHz.  

In EIT applications, the admittivity or the size of the object can have a significant variation, and 

therefore it is difficult to ensure that the quasi-static assumption is valid.  

In order to obtain accurate forward solutions for realistic EIT geometries, it is necessary to 

introduce the full Maxwell (non-quasi-static) formula with its numerical methods as well as 

their BCs in the following sections.  
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4.2.2 Continuity Conditions 

It has been mentioned, that the curl-curl FEM formula (Davies, et al., 1982) can have spurious 

solutions due to the discontinuities of the prime fields. In this section, we will explain the 

continuity conditions of the EMF for the prime fields and the potentials. 

The continuity conditions (or boundary conditions in some literatures) of the prime fields are 

well studied (Wangsness, 1986). The continuity conditions can be obtained with the integral 

form of the Maxwell’s equations. 

�̂� ∙ (𝐃1 − 𝐃2) = 𝜌s 

�̂� × (𝐇1 −𝐇2) = 𝐉s 

�̂� × (𝐄1 − 𝐄2) = 𝟎 

�̂� ∙ (𝐁1 − 𝐁2) = 0 

Equation 4-3 (a - d) 

Equation 4-3 (c - d) ensure that the tangential components of the electric field or the normal 

components of the magnetic field have to be continued across a boundary. But due to the 

surface charge density 𝜌s or the surface current density 𝐉s, the normal component of the 𝐃 

field and the tangential component of the 𝐇 field can be discontinuous. 

Reviewing the FEM approach we introduced in Section 2.2.2, the unknown function 𝒰 is 

approximated by the discrete functions 𝒰N = ∑u𝑗𝜙𝑗. From the nodal-based shape function 𝜙𝑗 

in Figure 2-2 (blue lines), the discretisation requires 𝒰 to be smooth. The discontinuity in the 𝐃 

and 𝐇 fields violates the requirements of the nodal-based FEM discretisation, and this 

violation produces spurious modes. 

The continuity of potentials is different from the prime fields. As the potentials are defined by 

their derivatives in Equation 2-6, Equation 2-8 and Equation 2-33, they are naturally 

continuous and one order smoother than the prime fields.  

4.3 Numerical Implementation of Helmholtz-like Equations 

With the weak formula derived in Chapter 2, we apply discretisation and 3-D implementation 

in this section. The boundary coordinates are introduced and the typical BCs of the potentials 

formula are discussed. The derivations of the BCs specifically for EIT applications are detailed 

the next section. 
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4.3.1 FEM for Potential Formula 

Apart from the piecewise linear distribution Φ𝑁 used to approximate Φ in Chapter 2 and 

Chapter 3, now we add 𝐀𝑁 for the vector potential. 

Φ𝑁 =∑ u𝑗𝜙𝑗
𝑁

𝑗=1
, 𝐀𝑁 =∑ 𝚲𝑗

𝑁

𝑗=1
𝜙𝑗 =∑ (𝚲𝑥𝑗�̂� + 𝚲𝑦𝑗�̂� + 𝚲𝑧𝑗�̂�)

𝑁

𝑗=1
𝜙𝑗  

By inserting the discretised potentials, we have, 

∑ ∫
1

𝜇
[∇ × (𝜙𝑗𝚲𝑗)] × ∇𝜙𝑖d𝑉

Ω

𝑁

𝑗=1
+∑ ∫

1

𝜇
∇ ∙ (𝜙𝑗𝚲𝑗)∇𝜙𝑖d𝑉

Ω

𝑁

𝑗=1

+∑ j𝜔∫ 휀∗𝜙𝑖(𝜙𝑗𝚲𝑗)d𝑉
Ω

𝑁

𝑗=1
+∑ ∫ 휀∗𝜙𝑖∇(𝜙𝑗u𝑗)d𝑉

Ω

𝑁

𝑗=1

+∑ ∫ 휀∗(𝜙𝑗u𝑗)∇𝜙𝑖d𝑉
Ω

𝑁

𝑗=1

= −∮ �̂� × 𝑣
1

𝜇
∇ × 𝐀d𝑆

𝜕Ω

+∮ (𝑣
1

𝜇
∇ ∙ 𝐀) �̂� d𝑆

𝜕Ω

+∮ (휀∗𝑣Φ)�̂� d𝑆
𝜕Ω

 , 

∑ ∫ 휀∗2𝜇𝜙𝑖(𝜙𝑗u𝑗)d𝑉
Ω

𝑁

𝑗=1
+∑

1

j𝜔
∫ 휀∗∇(𝜙𝑗u𝑗) ∙ ∇𝜙𝑖d𝑉
Ω

𝑁

𝑗=1
+∑ ∫ 휀∗𝜙𝑖∇ ∙ (𝜙𝑗𝚲𝑗)d𝑉

Ω

𝑁

𝑗=1

+∑ ∫ 휀∗(𝜙𝑗𝚲𝑗) ∙ ∇𝜙𝑖d𝑉
Ω

𝑁

𝑗=1
= ∮ 휀∗(𝑣𝐀 ∙ �̂�)d𝑆

𝜕Ω

+
1

j𝜔
∮ 𝑣(휀∗∇Φ ∙ �̂�)d𝑆
𝜕Ω

 . 

Equation 4-4 (a - b) 

Compared with Equation 2-11, Equation 4-4 (a - b) are much more complicated, and most of 

these terms are ignored by the quasi-static approximation. 

We leave the surface integrals on the RHS for later discussions in BCs sections. In order to 

compose the FEM matrix in the form of a stiffness matrix and mass matrix, some of the terms 

need to be rearranged. The vectors, u𝑗 and 𝚲𝑗 are not functions of positions, so the gradients 

of u𝑗, the curls and divergences of 𝚲𝑗 are vanished. Applying vector identities on the terms, we 

have, 

∑ 𝚲𝑗∫
1

𝜇
∇𝜙𝑖 ∙ ∇𝜙𝑗d𝑉

Ω

𝑁

𝑗=1
+∑ ∫

1

𝜇
[(∇𝜙𝑗 ∙ 𝚲𝑗)∇𝜙𝑖 − (∇𝜙𝑖 ∙ 𝚲𝑗)∇𝜙𝑗]d𝑉

Ω

𝑁

𝑗=1

+∑ j𝜔𝚲𝑗∫ 휀∗𝜙𝑖𝜙𝑗d𝑉
Ω

𝑁

𝑗=1
+∑ u𝑗∫ 휀∗(𝜙𝑖∇𝜙𝑗 + 𝜙𝑗∇𝜙𝑖)d𝑉

Ω

𝑁

𝑗=1

= −∮ �̂� × 𝑣
1

𝜇
∇ × 𝐀d𝑆

𝜕Ω

+∮ (𝑣
1

𝜇
∇ ∙ 𝐀) �̂� d𝑆

𝜕Ω

+∮ (휀∗𝑣Φ)�̂� d𝑆
𝜕Ω

 , 
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∑ ∫ 휀∗(𝜙𝑖∇𝜙𝑗 +𝜙𝑗∇𝜙𝑖)d𝑉
Ω

∙ 𝚲𝑗
𝑁

𝑗=1
+∑

u𝑗

j𝜔
∫ 휀∗∇𝜙𝑗 ∙ ∇𝜙𝑖d𝑉
Ω

𝑁

𝑗=1

+∑ u𝑗∫ 휀∗2𝜇𝜙𝑖𝜙𝑗d𝑉
Ω

𝑁

𝑗=1
= ∮ 휀∗(𝑣𝐀 ∙ �̂�)𝑑𝑆

𝜕Ω

+
1

j𝜔
∮ 𝑣(휀∗∇Φ ∙ �̂�)𝑑𝑆
𝜕Ω

 . 

Equation 4-5 (a - b) 

By expanding the components of 𝚲, and insertting u, the unknown vector [u𝚲] is composed. In 

Electrodynamics (Westgard, 1997), the concept of 4-potentials [u𝚲] is commonly used for 

simplifying the description EMF, in contrast to the prime fields having 6 variables. 

𝚲𝑗 = [𝚲𝑥𝑗 𝚲𝑦𝑗 𝚲𝑧𝑗]T, [u𝚲] = [𝚲1𝑥 𝚲1𝑦 𝚲1𝑧 u1 ⋯ 𝚲𝑁𝑥 𝚲𝑁𝑦 𝚲𝑁𝑧 u𝑁]
T, 

Before implementing the FEM formula, we introduce a few matrices which are constantly used 

for composing the FEM matrix. The gradient to a shape function of the 𝑖th node, within the 

element 𝑒 has been placed in a 4 by 4 diagonal matrix as [𝝓𝝓𝑖
𝑒].  

[𝝓𝝓𝑖
𝑒] =

[
 
 
 
 
 
 
 
𝜕𝜙𝑒𝑖
𝜕𝑥

0 0 0

0
𝜕𝜙𝑒𝑖
𝜕𝑦

0 0

0 0
𝜕𝜙𝑒𝑖
𝜕𝑧

0

𝟎1×4 ]
 
 
 
 
 
 
 

, [𝐸𝑁𝑖] =

⋮
⋮
𝑒1
⋮
⋮
⋮
⋮
⋮
𝑒2
⋮
⋮
⋮
⋮
⋮
𝑒3
⋮
⋮
⋮

⋮
1
2
3
4
⋮
⋮
1
2
3
4
⋮
1
2
3
4
⋮

⋮
⋮
→
⋮
⋮
⋮
⋮
→
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
→
⋮

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
⋮

𝟎4×4

𝕀4

𝟎4×4

𝟎4×4

⋮
𝕀4

𝟎4×4

𝟎4×4

𝟎4×4

⋮
𝟎4×4

𝟎4×4

𝟎4×4

𝕀4

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∈ ℝ16𝐸×4. 

[𝐸𝑁𝑖] is in the matrix which connects the element to the nodes, similar to the matrix we 

introduced in Equation 3-11 (a), Chapter 3, but here more dimensions are added, and it is 

modified respectively. Assume the node 𝑖 is shared by three different elements, 𝑒1, 𝑒2 and 𝑒3. 

And it is the 2nd, 1st and 4th node of these 3 elements respectively. Then we can have [𝐸𝑁𝑖] 

made up with 𝐸 blocks in a column, corresponding to the elements. Each block has 4 sub-

blocks placed in the column, corresponding to the 4 nodes of the element. The node 𝑖 is 

shared by blocks 𝑒1, 𝑒2 and 𝑒3, where the 2nd, 1st and 4th sub-blocks are 4 × 4 identity 

matrices respectively. 
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[𝝓𝝓𝑒] = [[𝝓𝝓1
𝑒] ⋯ [𝝓𝝓𝑁

𝑒 ]], [𝑲𝑲𝑖] = [
[𝝓𝝓𝑖

1]

⋮
[𝝓𝝓𝑖

𝐸]
], 

[𝑲𝑲] = [[𝑲𝑲1] ⋯ [𝑲𝑲𝑁]], [𝐸𝑁] = [[𝐸𝑁1] ⋯ [𝐸𝑁𝑁]] 

The [𝝓𝝓𝑖
𝑒] and [𝐸𝑁𝑖] for different nodes and elements are together made up matrices named 

as above. Another two matrices are made for their functionalities, as, 

[𝑆𝑉0] = [𝟎
4×3

1
1
1
0

] , [𝑆𝑆0] = [𝟎
4×3

0
0
0
1

] , [𝑆𝑆/𝑉] = diag [
[𝑆𝑆/𝑉0]
⋮

[𝑆𝑆/𝑉0]
] ∈ ℝ4𝑁×4𝑁. 

These matrices are responsible for selecting the vector potentials or scalar potentials. The 

subscript 0 indicates that they are constant.  

With the above matrices defined, the FEM matrix can be given as follows. The first one is the 

stiffness matrix for the vector potential. 

∑ 𝚲𝑗∫
1

𝜇

[
 
 
 
 
 
 
𝜕𝜙𝑖
𝜕𝑥
𝜕𝜙𝑖
𝜕𝑦
𝜕𝜙𝑖
𝜕𝑧 ]
 
 
 
 
 
 
T

[
 
 
 
 
 
 
𝜕𝜙𝑗

𝜕𝑥
𝜕𝜙𝑗

𝜕𝑦
𝜕𝜙𝑗

𝜕𝑧 ]
 
 
 
 
 
 

d𝑉
Ω

𝑁

𝑗=1
=∑𝚲𝑗∑

𝑉𝑒

𝜇𝑒

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑖
𝜕𝑥
𝜕𝜙𝑒𝑖
𝜕𝑦
𝜕𝜙𝑒𝑖
𝜕𝑧 ]

 
 
 
 
 
 
T

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑗

𝜕𝑥
𝜕𝜙𝑒

𝑗

𝜕𝑦
𝜕𝜙𝑒𝑗

𝜕𝑧 ]
 
 
 
 
 
 

E

𝑒=1

𝑁

𝑗=1

 

= (∑[𝝓𝝓𝑖
𝑒]T[𝜇𝑉𝑒][𝝓𝝓𝑒]

E

𝑒=1

) [u𝚲] = [𝑲𝑲𝑖]
T[𝜇𝑉][𝑲𝑲][u𝚲] , 

[𝜇𝑉𝑒] =
𝑉𝑒

𝜇𝑒
𝕀4, [𝜇𝑉] = diag [

[𝜇𝑉1]
⋮

[𝜇𝑉𝐸]
]. 

We arrange the stiffness matrix in four-potential form for compatibility, including the three 

vector potential dimensions and one scalar potential dimension, although the scalar potential 

is not involved in the operation.  

The second stiffness matrix of 𝚲𝑗, 
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∑ ∫
1

𝜇

(

 
 
 
 

[
 
 
 
 
 
 
𝜕𝜙𝑖
𝜕𝑥
𝜕𝜙𝑖
𝜕𝑦
𝜕𝜙𝑖
𝜕𝑧 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜕𝜙𝑗

𝜕𝑥
𝜕𝜙𝑗

𝜕𝑦
𝜕𝜙𝑗

𝜕𝑧 ]
 
 
 
 
 
 
T

−

[
 
 
 
 
 
 
𝜕𝜙𝑗

𝜕𝑥
𝜕𝜙𝑗

𝜕𝑦
𝜕𝜙𝑗

𝜕𝑧 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜕𝜙𝑖
𝜕𝑥
𝜕𝜙𝑖
𝜕𝑦
𝜕𝜙𝑖
𝜕𝑧 ]
 
 
 
 
 
 
T

)

 
 
 
 

𝚲𝑗 d𝑉
Ω

𝑁

𝑗=1
 

=∑∑
𝑉𝑒

𝜇𝑒

(

 
 
 
 
 

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑖
𝜕𝑥
𝜕𝜙𝑒𝑖
𝜕𝑦
𝜕𝜙𝑒𝑖
𝜕𝑧 ]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑗

𝜕𝑥
𝜕𝜙𝑒

𝑗

𝜕𝑦
𝜕𝜙𝑒𝑗

𝜕𝑧 ]
 
 
 
 
 
 
T

−

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑗

𝜕𝑥
𝜕𝜙𝑒

𝑗

𝜕𝑦
𝜕𝜙𝑒𝑗

𝜕𝑧 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑖
𝜕𝑥
𝜕𝜙𝑒𝑖
𝜕𝑦
𝜕𝜙𝑒𝑖
𝜕𝑧 ]

 
 
 
 
 
 
T

)

 
 
 
 
 

𝚲𝑗

E

𝑒=1

𝑁

𝑗=1

 

=∑([𝝓𝝓𝑖
𝑒]T[𝜇𝑉𝐵𝑒][𝝓𝝓𝑒] − [𝑲𝑹𝑲𝑖])

E

𝑒=1

[u𝚲] = ([𝑲𝑲𝑖]
T[𝜇𝑉𝐵][𝑲𝑲] − [𝑲𝑹𝑲𝑖])[u𝚲] , 

[𝜇𝑉𝐵𝑒] =
𝑉𝑒

𝜇𝑒
[

1 1
1 1

1 0
1 0

1 1
0 0

1 0
0 0

] , [𝜇𝑉𝐵] = diag [
[𝜇𝑉𝐵1]
⋮

[𝜇𝑉𝐵𝐸]
] , 

[𝑲𝑹𝑲𝑖] = [[𝑲𝑲𝑖]
T[𝜇𝑉𝐵][𝑲𝑲1] ⋯ [𝑲𝑲𝑖]

T[𝜇𝑉𝐵][𝑲𝑲𝑁]] . 

The mass matrix of 𝚲𝑗 can be given with the similar method introduced in Section 3.3.3, and 

the integral of the shape functions can be given with Equation 3-7 (b), 

(

 
 
 

∑j𝜔휀∗𝑒

[
 
 
 
 
 ∫ 𝜙𝑖𝜙1 d𝑉
𝑉𝑒

⋮

∫ 𝜙𝑖𝜙𝑁 d𝑉
𝑉𝑒 ]

 
 
 
 
 
T

E

𝑒=1

)

 
 
 

[u𝚲] = [𝐸𝑁𝑖]
T[휀𝑉𝑀][𝐸𝑁][u𝚲] 

[휀𝑉𝑀𝑒] =
j𝜔휀∗𝑒𝑉𝑒

20
[
2𝕀4 ⋯ 𝕀4

⋮ ⋱ ⋮
𝕀4 ⋯ 2𝕀4

] ∈ ℂ16×16, [휀𝑉𝑀] = diag [
[휀𝑉𝑀1]
⋮

[휀𝑉𝑀𝐸]
] . 

The second mass matrix of 𝚲𝑗 can be given as, 

∑([𝑆𝑉0]
T휀∗∗𝑒∫ 𝜙𝑖

𝑒 d𝑉
𝑉𝑒

[𝝓𝝓𝑒] + [𝑆𝑉0]
T휀∗∗𝑒∫ 𝜙𝑗

𝑒 d𝑉
𝑉𝑒

[𝝓𝝓𝑖
𝑒]T) [u𝚲]

E

𝑒=1

 

= ([𝑆𝑉0]
T[𝐸𝑁𝑖]

T[휀𝑉∗][𝑲𝑲] + [𝑆𝑉0]
T[𝑲𝑲𝑖]

T[휀𝑉∗]T[𝐸𝑁])[u𝚲] 
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  [휀𝑉∗𝑒] = 휀∗∗𝑒
𝑉𝑒

4
[

𝕀4

𝕀4

𝕀4

𝕀4

] , [휀𝑉∗] = diag [
[휀𝑉∗1]
⋮

[휀𝑉∗𝐸]
]. 

휀∗∗ is the complex conjugate of admittivity where the conjugate is brought by the inner 

product. The product of this mass matrix is a scalar, but we made it into the four-potential 

form for compatibility. 

The stiffness matrix of u𝑗 can be the same from the Laplace forward problem in Equation 3-13, 

in Chapter 3. We made modifications to fit into the four-potential form. 

∑
u𝑗

j𝜔
∫ 휀∗

[
 
 
 
 
 
 
𝜕𝜙𝑖
𝜕𝑥
𝜕𝜙𝑖
𝜕𝑦
𝜕𝜙𝑖
𝜕𝑧 ]
 
 
 
 
 
 
T

[
 
 
 
 
 
 
𝜕𝜙𝑗

𝜕𝑥
𝜕𝜙𝑗

𝜕𝑦
𝜕𝜙𝑗

𝜕𝑧 ]
 
 
 
 
 
 

d𝑉
Ω

𝑁

𝑗=1
= (∑[𝑆𝑉0]

T[𝝓𝝓𝑖
𝑒]T[휀𝑉𝐾𝑒][𝝓𝝓𝑒][𝑆𝑉]

E

𝑒=1

) [u𝚲] 

= [𝑆𝑉0]
T[𝑲𝑲𝑖]

T[휀𝑉𝐾][𝑲𝑲][𝑆𝑉][u𝚲] 

[휀𝑉𝐾𝑒] =
휀∗𝑒𝑉𝑒

j𝜔
𝕀4, [휀𝑉𝐾] = diag [

[휀𝑉𝐾1]
⋮

[휀𝑉𝐾𝐸]
] 

The first mass matrix for u𝑗 can be given, 

(

 
 
 

∑휀∗𝑒2𝜇𝑒

[
 
 
 
 
 ∫ 𝜙𝑖𝜙1 d𝑉
𝑉𝑒

⋮

∫ 𝜙𝑖𝜙𝑁 d𝑉
𝑉𝑒 ]

 
 
 
 
 
T

E

𝑒=1

)

 
 
 

[u𝚲] = [𝑆𝑆0]
T[𝐸𝑁𝑖]

T[휀𝑉𝑆][𝐸𝑁][𝑆𝑆][u𝚲] 

[휀𝑉𝑆𝑒] =
휀∗𝑒2𝜇𝑒𝑉𝑒

20
[
2𝕀4 ⋯ 𝕀4

⋮ ⋱ ⋮
𝕀4 ⋯ 2𝕀4

] ∈ ℂ16×16, [휀𝑉𝑆] = diag [
[휀𝑉𝑆1]
⋮

[휀𝑉𝑆𝐸]
] . 

The second mass matrix for u𝑗 can be given, 

∑휀∗𝑒 (∫ 𝜙𝑖d𝑉
𝑉𝑒

[𝝓𝝓𝑗
𝑒][𝑆𝑉] + [𝝓𝝓𝑖

𝑒]T∫ 𝜙𝑗d𝑉
𝑉𝑒

[𝑆𝑉])

E

𝑒=1

[u𝚲] 

= ([𝐸𝑁𝑖]
T[휀𝑉][𝑲𝑲][𝑆𝑉] + [𝑲𝑲𝑖]

T[휀𝑉]T[𝐸𝑁][𝑆𝑉])[u𝚲] 
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The matrix [휀𝑉] is the conjugate of [휀𝑉∗] which has been defined earlier. In all, the FEM 

formula for the 3-D four-potential can be given in matrix form as, 

(

 
 
 
 
 
 
 
 

[𝑲𝑲𝑖]
T[𝜇𝑉][𝑲𝑲]

+[𝑲𝑲𝑖]
T[𝜇𝑉𝐵][𝑲𝑲] − [𝑲𝑹𝑲𝑖]

+[𝐸𝑁𝑖]
T[휀𝑉𝑀][𝐸𝑁]

+[𝑆𝑉0]
T[𝐸𝑁𝑖]

T[휀𝑉∗][𝑲𝑲]

+[𝑆𝑉0]
T[𝑲𝑲𝑖]

T[휀𝑉∗]T[𝐸𝑁]

+[𝑆𝑉0]
T[𝑲𝑲𝑖]

T[휀𝑉𝐾][𝑲𝑲][𝑆𝑉]

+[𝑆𝑆0][𝐸𝑁𝑖]
T[휀𝑉𝑆][𝐸𝑁][𝑆𝑆]

+[𝐸𝑁𝑖]
T[휀𝑉][𝑲𝑲][𝑆𝑉]

+[𝑲𝑲𝑖]
T[휀𝑉]T[𝐸𝑁][𝑆𝑉] )

 
 
 
 
 
 
 
 

[u𝚲] =

(

 
 
 
 
 
∮ (𝜙𝑖

1

𝜇
∇ ∙ 𝐀) �̂� d𝑆

𝜕Ω

+∮ (휀∗𝜙𝑖Φ)�̂� d𝑆
𝜕Ω

−∮ �̂� × 𝜙𝑖
1

𝜇
∇ × 𝐀d𝑆

𝜕Ω

∮ 휀∗(𝜙𝑖𝐀 ∙ �̂�)𝑑𝑆
𝜕Ω

+
1

j𝜔
∮ 𝜙𝑖(휀

∗∇Φ ∙ �̂�)𝑑𝑆
𝜕Ω )

 
 
 
 
 

 . 

Equation 4-6 

Reviewing the RHS of Equation 4-6, it can be found, the terms are in boundary coordinates, 

normal/tangential vectors instead of global coordinates, �̂� �̂� �̂�. This suggests that one side 

of the equations has to be rotated before both sides are applied together. In practice, the 

system matrix (LHS) is transferred, due to the fact the boundary conditions usually use local 

coordinates.  

We define the transform as 𝑻𝑖, which is the transform for the 𝑖th node. 𝐢�̂� = [i𝑛𝑥 i𝑛𝑦 i𝑛𝑧]T 

is the unit normal vector in the �̂� �̂� �̂� coordinates on the 𝑖th node. 

𝑻𝑖 = [
𝐢�̂� 𝐢𝑡1̂ 𝐢𝑡2̂
𝟎1×3

𝟎3×1

1
] =

[
 
 
 
i𝑛𝑥 i𝑡1𝑥
i𝑛𝑦 i𝑡1𝑦

i𝑡2𝑥 0

i𝑡2𝑦 0

i𝑛𝑧 i𝑡1𝑧
0 0

i𝑡2𝑧 0

0 1]
 
 
 
 . 

Therefore, the coordinate transform can be obtained by multiplying the transform matrix,  

[𝑻𝑻] = [
𝑻1 𝟎 𝟎
𝟎 ⋱ 𝟎
𝟎 𝟎 𝑻𝑁

]. 

Equation 4-7 

For those elements not on the boundary, the corresponding 𝑻𝑖  is the identity matrix. 

4.3.2 Boundary Conditions for Potential Equations 

In order to solve electromagnetic problems numerically, it is necessary to apply proper 

boundary conditions. According to the uniqueness, the boundary current density (electric or 

magnetic) needs to be properly defined over the boundaries (Stratton, 1941). But, for the 

potential formula, the BCs for the gauge are needed, which we will detail in this section. 



95 

 

Specifying BCs for an electromagnetic problem in the four-potential formula can be 

summarised in three steps as shown in Figure 4-2. 

 

Figure 4-2 Specifying the BCs for four-potential formula 

The BCs brought by the Maxwell’s equations are in the form of tangential components, and 

among all the terms on RHS of Equation 4-6, the tangential components are, 

∮ �̂� × 𝜙𝑖
1

𝜇
∇ × 𝐀d𝑆

𝜕Ω

= ∮ 𝜙𝑖�̂� × 𝐇d𝑆
𝜕Ω

= ∮ 𝜙𝑖𝐉
𝐢
s d𝑆

𝜕Ω

 . 

Equation 4-8 

The imposed surface electric current density is denoted by 𝐉𝐢s. This part meets the uniqueness 

theorem, which says the tangential components of the 𝐇 field over the whole boundary 

completely define the EMF. This BC is shown as ❶ in Figure 4-2. 

In practise however, the BCs in the form of 𝐌𝐢s are sometimes required, which is not obvious 

in the potential formula. As the uniqueness theorem suggests tangential component of 𝐄 over 

the boundary can specify the EMF as well, the BCs leading to 𝐌𝐢s can be given as, 

−∮ 𝜙𝑖�̂� × (∇Φ + j𝜔𝐀)d𝑆
𝜕Ω

= ∮ 𝜙𝑖�̂� × 𝐄d𝑆
𝜕Ω

= ∮ 𝜙𝑖𝐌
𝐢
s d𝑆

𝜕Ω

 . 

Equation 4-9 

Although the LHS form of Equation 4-9 does not appear on the RHS of Equation 4-6, it can be 

imposed by removing the row related with 𝜙𝑖 and inserting the boundary values directly. This 

BC is shown as ① in Figure 4-2. Step ① (Equation 4-9) or ❶ (Equation 4-8) is the first step for 

specifying the BCs of the four-potential formula. 

Re-examining Equation 4-6, there are terms other than the surface current density 𝐉𝐢s or 𝐌𝐢s 

on the RHS. The existence of these terms is due to the gauge. 
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Neither the imposed 𝐉𝐢s nor 𝐌𝐢s is constrained by the gauge, and they are both gauge 

invariant, see Equation 4-10 (a - b), 

�̂� ×
1

𝜇
∇ × 𝐀 = �̂� ×

1

𝜇
∇ × (𝐀 + ∇𝜓) = 𝐉𝐢s , 

�̂� × (∇Φ + j𝜔𝐀) = �̂� × [∇(Φ − j𝜔𝜓) + j𝜔(𝐀 + ∇𝜓)] = 𝐌𝐢s . 

Equation 4-10 (a - b) 

Therefore, the gauge fixing has to be applied to 𝐉𝐢s or 𝐌𝐢s with another BC, and this is the 

second step of specifying the BCs for four-potential formula, which is shown as ② in Figure 

4-2. 

Applying the Lorenz gauge to the normal component of Equation 4-6, we have, 

∮ 𝜙𝑖 (
1

𝜇
∇ ∙ 𝐀 + 휀∗Φ) �̂�d𝑆

𝜕Ω

= 0 . 

Equation 4-11 

By evaluating the scalar component of Equation 4-6, the Lorenz gauge is also found but in a 

different form. Substituting Equation 2-32 into Equation 2-38, 

∫ 𝑣휀∗2𝜇Φ +
1

j𝜔
휀∗∇Φ ∙ ∇𝑣 + 휀∗𝑣∇ ∙ 𝐀 + 휀∗𝐀 ∙ ∇𝑣d𝑉

Ω

+∫ 𝑣휀∗(∇ ∙ ∇𝜓 − j𝜔휀∗𝜇𝜓)d𝑉
Ω

=
1

j𝜔
∮ 𝑣 휀∗(j𝜔𝐀 + ∇Φ) ∙ �̂�d𝑆
∂Ω

 . 

Equation 4-12 

From the gauge Equation 2-33, a Helmholtz equation of the gauge function 𝜓 can be found as, 

∇ ∙ (𝐀 + ∇𝜓) = −휀∗𝜇(Φ − j𝜔𝜓) , 

∇ ∙ ∇𝜓 = j𝜔휀∗𝜇𝜓 . 

Equation 4-13 (a - b) 

Therefore the second volume integral in Equation 4-12 is equivalent to the Lorenz gauge as, 

∫ 𝑣휀∗(∇ ∙ ∇𝜓 − j𝜔휀∗𝜇𝜓)d𝑉
Ω

= ∫ 𝑣휀∗(∇ ∙ 𝐀 + 휀∗𝜇Φ)d𝑉
Ω

= 0 . 

From Equation 4-12, the Lorenz gauge is satisfied only when the given scalar value of 

휀∗(j𝜔𝐀 + ∇Φ) ∙ �̂� can cooperate with one of the tangential BCs in Equation 4-8 or Equation 

4-9. The scalar value provides the gauge fixing for the tangential BCs. By applying the normal 

component of Equation 2-7 on the boundary surface, 
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1

j𝜔
∮ 𝑣 휀∗(j𝜔𝐀 + ∇Φ) ∙ �̂�d𝑆
∂Ω

=
1

j𝜔
∮ 𝑣 (∇ ×

1

𝜇
∇ × 𝐀) ∙ �̂�d𝑆

∂Ω

 

1

j𝜔
∮ 𝑣 휀∗(j𝜔𝐀 + ∇Φ) ∙ �̂�d𝑆
∂Ω

=
−1

j𝜔
∮ 𝑣∇ ∙ 𝐉𝐢s d𝑆
∂Ω

  

Equation 4-14 

Therefore, both Equation 4-11 and Equation 4-14 can achieve the second step of specifying the 

BCs, which is shown as ② in Figure 4-2. The choice between the two equations depends on 

the knowledge about the scalar value 휀∗(j𝜔𝐀 + ∇Φ) ∙ �̂�. 

There is the third step to take shown as ③ in Figure 4-2. From Equation 4-13 (b), the Lorenz 

gauge is incomplete in the sense that there remains degrees of freedom on the gauge function 

𝜓 (Jackson, 2002). Every solution of the gauge function satisfying Equation 4-13 (b) 

corresponds to a 4-potential distribution. This suggests that, in order to have the potentials 

completely settled down, BCs for the gauge function are needed. Equation 4-13 (b) shows that, 

Lorenz gauge allows the gauge function 𝜓 to propagate at the speed of light. For simplicity, 

𝜓 = 0 throughout the region is clearly the solution of Equation 4-13 (b). 

In order to specify the gauge function 𝜓 = 0, Equation 4-11 and Equation 4-14 are used again. 

Whenever Equation 4-11 is used, ∇ ∙ 𝐀 or Φ needs to be set with the scalar component of 

Equation 4-6, whereas when Equation 4-14 is applied, 𝐀 or ∇Φ has to be defined with the 

normal component of Equation 4-6. Setting the scalar or normal component of Equation 4-6 

achieves the third step of specifying the BCs, which is shown as ③ in Figure 4-2. 

It is useful to list the conditions in a table, Table 4-1. 

Table 4-2 Boundary Conditions for the Potential Formula 

Typ

e 

LHS Original RHS BCs Step Extra 

Information 

EIT Front-end 

Structure 

 

A 

Kept (∇ ∙ 𝐀 + 휀∗𝜇Φ)�̂� Equation 4-11 ② N.A. Surface Current 

Source Kept �̂� × 𝜇−1∇ × 𝐀 Equation 4-8 ❶ 𝐉s 

Replaced (j𝜔𝐀 + ∇Φ) ∙ �̂� N.A. ③ ∇ ∙ 𝐀 / Φ 

 

B 

 

Replaced (∇ ∙ 𝐀 + 휀∗𝜇Φ)�̂� N.A. ③ 𝐀 ∙ �̂� / ∇Φ ∙ �̂� Floating Current 

Sources Kept �̂� × 𝜇−1∇ × 𝐀 Equation 4-8 ❶ 𝐉s 

Kept (j𝜔𝐀 + ∇Φ) ∙ �̂� Equation 4-14 ② �̂� ∙ (휀∗𝐄) 

 

C 

Kept (∇ ∙ 𝐀 + 휀∗𝜇Φ)�̂� Equation 4-11 ② N.A. Voltage Source 

Replaced �̂� × 𝜇−1∇ × 𝐀 Equation 4-9 ① 𝐌s 
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Replaced (j𝜔𝐀 + ∇Φ) ∙ �̂� N.A. ③ ∇ ∙ 𝐀 / Φ 

 

D 

 

Replaced (∇ ∙ 𝐀 + 휀∗𝜇Φ)�̂� N.A. ③ 𝐀 ∙ �̂� / ∇Φ ∙ �̂� Referenced 

Current Source Replaced �̂� × 𝜇−1∇ × 𝐀 Equation 4-9 ① 𝐌s 

Kept (j𝜔𝐀 + ∇Φ) ∙ �̂� Equation 4-14 ② �̂� ∙ (휀∗𝐄) 

 

An extra type of BCs based on the IBC (Senior, 1960) is included to the potential formula 

(Boyse & Paulsen, 1997). We call it the Type E BC. Different from the Type A-D, the IBC 

achieves the first step by specifying the ratio between 𝐌𝐢s and 𝐉𝐢s, namely the impedance. 

Table 4-3 Impedance Boundary Conditions for the Potential Formula 

Type LHS Original RHS BCs Step Extra Information 

E 

 

Replaced (∇ ∙ 𝐀 + 휀∗𝜇Φ)�̂� N.A. ③ 𝐀 ∙ �̂� / ∇Φ ∙ �̂� 

Kept �̂� × 𝜇−1∇ × 𝐀 Equation 2-42 (a) ①/❶ −(jZ)−1(jω𝐀s + ∇sΦ) 

Kept (j𝜔𝐀 + ∇Φ) ∙ �̂� Equation 2-42 (b) ② (jZ)−1∇s ∙ (jω𝐀s + ∇sΦ) 

 

The LHS marked as “Kept” in Table 4-2 and Table 4-3 means that without changing the LHS, the 

BC can be achieved by the formula on RHS. Whereas, those marked as “Replaced” mean that 

the LHS is changed based on the extra given information. 

The BCs for the potential formula were not clarified when the potential formula was proposed. 

The types A-D were mentioned, but only Type B and Type C were derived (Boyse, et al., 1992). 

Type E for the potential formula was proposed and detailed in the IBC by Boyse and Paulsen 

(Boyse & Paulsen, 1997). The potential formula was first introduced to EIT systems using 

voltage sources (See Section 3.6 Appendix), where Type B and C BCs are for their SEM-PMC 

model, and Type C and E are for their SEM-IBC model (Soni, et al., 2006). Also we have 

reported the formula of Type B on EIT systems as a comparison group for proposing the IEM 

(Zhang & Li, 2014). 

4.4 Boundary Conditions for EIT and Electrode Models 

BCs and electrode models introduced in preceding sections and chapters will determine the 

accuracy of high frequency EIT systems. The previously proposed SEM-PMC and SEM-IBC 

conditions, however, are inaccurate due to the reasons below. 

Firstly, the contact impedance is not modelled in the two models. Secondly, the measuring 

electrodes attached on the surface usually affect on the potential distributions in the object, 

similar to the instrumental effects discussed in Chapter 3. The loading effects of these 
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measuring electrodes are not considered in these two models. Thirdly, a single electrode 

attached on an object is not able to inject currents at the frequency of a few MHz. The EMF 

surrounding the electrode and its wire in this case is unbounded. A serial inductive impedance 

is therefore produced along the longitudinal direction of the wire and electrode. In other 

words, the imposed field is reflected. 

In the following two sections, we will detail the electrode models proposed to overcome the 

above-mentioned issues. 

4.4.1 Complete Electrode Model with Impedance Boundary Condition 

Soni et al., mentioned that the contact impedance can be modelled with the IBC (Soni, et al., 

2006), but without implementations. The effects caused by the contact impedance on the 

potential distribution can be large in the frequency range of the beta-dispersion. Therefore, we 

apply the contact impedance in the electrode model to derive the CEM-IBC. 

By inserting Equation 2-42 (a) to the tangential components of Equation 4-6, and Equation 

2-42 (b) to the scalar components of Equation 4-6, we have, 

−∮
𝑣

jZ
(jω𝐀s + ∇sΦ)d𝑆

𝜕Ω

= ∮ �̂� × 𝑣
1

𝜇
∇ × 𝐀d𝑆

𝜕Ω

 . 

1

j𝜔
∮

𝑣

jZ
∇s ∙ (jω𝐀s + ∇sΦ)d𝑆

𝜕Ω

=
1

j𝜔
∮ 𝑣 휀∗(j𝜔𝐀 + ∇Φ) ∙ �̂�d𝑆
𝜕Ω

 . 

Equation 4-15 (a - b) 

The impedance Z is replaced with ZC, the surface impedance of an electrode. The contact 

impedance 𝜂C is assumed to be isotropic, and the surface impedance ZC 

ZC =
𝜂C(𝜔) 

𝑆𝑙
. 

In Section 2.3, it has been explained that the voltage differences across electrode pairs are 

measured and used in the inverse algorithm. Also an electrode is usually meshed to several 

elements with many nodes, unless the PEM is used. Therefore, it is much more convenient to 

have a SINGLE voltage attached on each electrode, instead of having a GROUP of potentials on 

each node. So that the voltage difference can be calculated easily. The potentials for every 

node on electrode surfaces are the same if the SEM-PMC is applied, however it is not the case 

if the CEM-IBC is applied. The surface current is allowed in the CEM-IBC, which leads to a 

potential variance. In order to obtain the voltage on the conductive electrode as SINGLE 

voltage value, an extra equation is added, similar to the CEM.  
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Therefore, for measuring electrodes, an extra equation for voltages and potentials can be 

given as, 

Φ+ ZC𝑆𝑙휀
∗(j𝜔𝐀+ ∇Φ) ∙ �̂� = 𝑈𝑙  . 

Equation 4-16 

Equation 4-16 suggests that the voltage on the electrode is the scalar potential on the 

electrode surface plus the voltage drop on the surface impedance.  

4.4.1.1 Current Driving Electrodes 

For the current driving electrodes, Equation 2-42 (b) needs to be re-evaluated. As the source 

attached, the normal projection needs to be revised. 

 

Figure 4-3 CEM-IBC Electrode Region 

Figure 4-3 shows the current driving electrode region where the CEM-IBC is applied. Some of 

the nodes (circles) and elements (dot line) are plotted above the boundary surface, which 

consists of the electrode region (grey) and non-electrode regions (slashes). The CEM-IBC does 

not require the electric field (orange arrows) to be perpendicular to the electrode surface. A 

portion of the injected (or drained) current is contributed by (j𝜔𝐀 + ∇Φ) ∙ �̂� (green arrows). 

The rest of the current is provided by the surface terms (purple arrows). This is different from 

the SEM-PMC (Section 2.4.3), as the SEM-PMC does not allow a surface current. It is also 

different from the measuring electrode, where the current throughout the electrode is zero. 

Based on the analysis on the electrode region, for the current driving electrode, there is, 

𝐉𝐢 ∙ �̂� = 휀∗𝐄 ∙ �̂� −
1

jZC
∇s ∙ 𝐄𝑠 = −휀

∗(j𝜔𝐀 + ∇Φ) ∙ �̂� +
1

jZC
∇s ∙ (j𝜔𝐀𝑠 + ∇sΦ) 
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−
1

j𝜔
∫ 𝑣 휀∗(j𝜔𝐀 + ∇Φ) ∙ �̂�d𝑆
𝑆𝑙

+
1

j𝜔
∫

𝑣

jZC
∇s ∙ (jω𝐀s + ∇sΦ)d𝑆

𝑆𝑙

=
1

j𝜔
∫ 𝑣 𝐉𝐢 ∙ �̂�d𝑆
𝑆𝑙

 . 

Equation 4-17 (a - b) 

In Equation 4-17 (a), 𝐉𝐢 is provided by the current source denoted with the superscript 𝐢. 휀∗𝐄 ∙

�̂� is the complex electric current density inside the object. 𝑍C
−1∇s ∙ 𝐄𝑠 is the surface electric 

current density (complex) due to the surface impedance.  

The most RHS of Equation 4-17 (a) is the complex electric densities in the potential formula. 

Equation 4-17 (a) can be derived from the original IBC formula (Senior, 1960) Equation 2-42 

(b). Equation 4-17 (b) is the weak formula which will be inserted to the Equation 4-6 as a BC. 

4.4.1.2 Voltage Driving Electrodes 

For the voltage excitation electrodes, however, the voltages cannot be inserted directly by 

Dirichlet conditions for the scalar potentials similar to the SEM-PMC (Section 2.4.3). In the 

CEM-IBC, all the nodes on the electrode surfaces do not represent the metal surface, but a thin 

layer above the metal with a finite conductivity. Considering Figure 4-3, the purple arrows are 

on the surface, however the equipotential electrode is below the surface, and connected to 

the surface with the surface impedances. The relationship between both sides of this thin layer 

has to be established. 

Re-examining Equation 4-16, the relationship can be established with the electric current 

density (complex current density), 

Φ− 𝑈𝑙
ZC𝑆𝑙

= 𝐉𝐢 ∙ �̂� = −휀∗(j𝜔𝐀 + ∇Φ) ∙ �̂� +
1

jZC
∇s ∙ (j𝜔𝐀𝑠 + ∇sΦ) . 

−
1

j𝜔
∫ 𝑣 휀∗(j𝜔𝐀 + ∇Φ) ∙ �̂�d𝑆
𝑆𝑙

+
1

j𝜔
∫

𝑣

jZC
∇s ∙ (jω𝐀s + ∇sΦ)d𝑆

𝑆𝑙

−
1

j𝜔
∫

𝑣Φ

ZC𝑆𝑙
d𝑆

𝑆𝑙

= −
1

j𝜔
∫

𝑣𝑈𝑙
ZC𝑆𝑙

d𝑆
𝑆𝑙

 . 

Equation 4-18 (a - b) 

Based on Equation 4-17 (a), Equation 4-18 (a) establishes the relation by replacing 𝐉𝐢 with the 

current provided by the voltage sources. This current is defined with the voltage difference 

and the surface impedance. Equation 4-18 (b) is the weak formula being inserted to the 

Equation 4-6 as a BC. 
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Together, the CEM-IBC provides the BCs for current exciting electrodes as Equation 4-15 (a) 

and Equation 4-17 (b); for voltage exciting electrodes as Equation 4-15 (a) and Equation 4-18 

(b); and for measuring electrodes, the voltage can be given by Equation 4-16. 

4.4.1.3 Implementation 

In order to implement the CEM-IBC, the second order derivative of the scalar potential is 

needed, which appears in the BCs for both voltage and current driving electrodes (derived 

from Equation 4-15 (b)). As the first-order FEM is used, the second derivatives on shape 

functions have to be reformed. We apply the vector identities and the Green’s theorem on Φ. 

The LHS of Equation 4-15 (b) becomes, 

1

j𝜔
∫

𝑣

jZC
∇s ∙ (jω𝐀s + ∇sΦ)d𝑆

𝑆𝑙

= ∫
𝑣

jZC
∇s ∙ 𝐀s d𝑆

𝑆𝑙

+
1

j𝜔
∫ [∇s ∙ (

𝑣

jZC
∇sΦ) − ∇sΦ ∙ ∇s

𝑣

jZC
] d𝑆

𝑆𝑙

 

= ∫
𝑣

jZC
∇s ∙ 𝐀s d𝑆

𝑆𝑙

−
1

j𝜔
∫ ∇sΦ ∙ ∇s

𝑣

jZC
d𝑆

𝑆𝑙

+
1

j𝜔
∮

𝑣

jZC
∇sΦ ∙ 𝐧B̂ d𝑙

𝜕𝑆𝑙

 . 

In which, 𝐧B̂, is the normal unit vector. It is perpendicular to the edge of the boundary surface 

and it is in the surface plane. 𝜕𝑆𝑙 is the edge (1-D) of an electrode region.  

However, as these components are boundary-coordinated variables, they cannot be directly 

inserted to the system matrix. Coordinate transformation from the boundary to global 

coordinate is needed. 

To apply the discretisation of FEM, we replace the trial function 𝑣 and the potentials with finite 

dimension vectors 𝜙𝑖,𝑗. The typical method is modified to have surface components in the 

global coordinate system. A few matrices are repeatedly used in the later deriving for their 

functionalities. We denote them as following, 

[𝑇𝑆] = [
0 𝟎1×2 0
𝟎2×1 𝕀2 𝟎2×1

0 𝟎1×2 0

] , [𝑻𝑺𝑻𝑗] = 𝑻𝑗[𝑇𝑆]𝑻𝑗
T, [𝑻𝑺𝑻] = diag [

[𝑻𝑺𝑻1]
⋮

[𝑻𝑺𝑻𝑁]
]. 

Here, 𝑻𝑗 is the coordinate transform matrix of the 𝑗th node. [𝑻𝑺𝑻𝑗] is responsible for removing 

the normal component from a global coordinate vector. 
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[𝝓𝝓𝑩𝑖
𝑏] =

[
 
 
 
 
𝜕𝜙𝑏𝑖
𝜕𝑥
0
0

0
𝜕𝜙𝑏𝑖
𝜕𝑦
0

0
0

𝜕𝜙𝑏𝑖
𝜕𝑧

𝟎3×1

𝟎1×4 ]
 
 
 
 

, [𝑲𝑩] = [
[𝝓𝝓𝑩1

1] ⋯ [𝝓𝝓𝑩𝑁
1 ]

⋮ ⋱ ⋮
[𝝓𝝓𝑩1

𝐵] ⋯ [𝝓𝝓𝑩𝑁
𝐵 ]
]. 

[𝝓𝝓𝑩𝑖
𝑏] is the gradient matrix of the shape functions, with 𝑏 denoting the boundary face and 𝑖 

denoting the node index. [𝝓𝝓𝑩𝑖
𝑏] is similar to [𝝓𝝓𝑖

𝑒] we used in earlier sections, but for 

boundary faces only. 

In contrast to the element-to-node matrix [𝐸𝑁] in deriving the system matrix, here we use 

[𝐵𝑁] which connects the boundary faces to the nodes. [𝐵𝑁] is similar to the one we used in 

Equation 3-14, but with a different dimension. 

[𝐵𝑁𝑖] =

⋮
⋮
𝑏1
⋮
⋮
⋮
𝑏2
⋮
⋮
⋮
𝑏3
⋮
⋮

⋮
1
2
3
⋮
1
2
3
⋮
1
2
3
⋮

⋮
⋮
→
⋮
⋮
→
⋮
⋮
⋮
⋮
⋮
⋮
→
⋮ [

 
 
 
 
 
 
 
 
 
 
 
⋮

𝟎4×4

𝕀4

𝟎4×4

⋮
𝕀4

𝟎4×4

𝟎4×4

⋮
𝟎4×4

𝟎4×4

𝕀4

⋮ ]
 
 
 
 
 
 
 
 
 
 
 

∈ ℝ12𝐵×4, [𝐵𝑁] = [
[𝐵𝑁1]

T

⋮
[𝐵𝑁𝑁]

T
]

T

∈ ℝ12𝐵×4𝑁 

For the surface components, which cannot be done in global coordinates, we discretise them 

in the following way, with the above matrices introduced. 

𝐀s = (𝐭1̂ ∙ 𝐀)𝐭1̂ + (𝐭2̂ ∙ 𝐀)𝐭2̂ =∑ 𝜙𝑗[𝑻𝑺𝑻𝑗]

[
 
 
 
𝚲𝑥𝑗
𝚲𝑦𝑗
𝚲𝑧𝑗
u𝑗 ]
 
 
 𝑁

𝑗=1
 . 

The derivatives (∇s𝜙𝑖, ∇s ∙ 𝐀s and ∇sΦ) with respect to the boundary coordinates can be given 

by derivative of 𝑻𝑗 as, 

∇s𝜙𝑖 =

[
 
 
 
 
 
 
𝜕𝑛

𝜕𝑥

𝜕𝑡1
𝜕𝑥

𝜕𝑛

𝜕𝑦

𝜕𝑡1
𝜕𝑦

𝜕𝑡2
𝜕𝑥

0

𝜕𝑡2
𝜕𝑦

0

𝜕𝑛

𝜕𝑧

𝜕𝑡1
𝜕𝑧

0 0

𝜕𝑡2
𝜕𝑧

0

0 1]
 
 
 
 
 
 

[𝑇𝑆]

[
 
 
 
 
 
 
 
𝜕𝑥

𝜕𝑛

𝜕𝑦

𝜕𝑛
𝜕𝑥

𝜕𝑡1

𝜕𝑦

𝜕𝑡1

𝜕𝑧

𝜕𝑛
0

𝜕𝑧

𝜕𝑡1
0

𝜕𝑥

𝜕𝑡2

𝜕𝑦

𝜕𝑡2
0 0

𝜕𝑧

𝜕𝑡2
0

0 1]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜕𝜙𝑖
𝜕𝑥
𝜕𝜙𝑖
𝜕𝑦
𝜕𝜙𝑖
𝜕𝑧
0 ]
 
 
 
 
 
 

= [𝑻𝑺𝑻𝑖][𝝓𝝓𝑩𝑖
0][𝑆𝑉0] . 
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∇s ∙ 𝐀s =∑ ∇s𝜙𝑗 ∙ 𝚲s𝑗
𝑁

𝑗=1
=∑ [𝑆𝑉0]

T[𝑻𝑺𝑻𝑗][𝝓𝝓𝑩𝑗
0]

[
 
 
 
𝚲𝑥𝑗
𝚲𝑦𝑗
𝚲𝑧𝑗
u𝑗 ]
 
 
 𝑁

𝑗=1
 , 

∇sΦ =∑∇s𝜙𝑗u𝑗

𝑁

𝑗=1

=∑[𝑻𝑺𝑻𝑗][𝝓𝝓𝑩𝑗
0][𝑆𝑉0]

[
 
 
 
𝚲𝑥𝑗
𝚲𝑦𝑗
𝚲𝑧𝑗
u𝑗 ]
 
 
 𝑁

𝑗=1

 . 

Substituting 𝑣, 𝐀s and Φ into Equation 4-15.The terms on the LHS in Equation 4-15 (a) are 

represented by the unknowns and appear on the LHS of the FEM as, 

−∑∑(
jω

jZC
𝑙
∫ 𝜙𝑖𝜙𝑗 d𝑆
𝑆𝑏

[𝑻𝑺𝑻𝑗] +
1

jZC
𝑙
∫ 𝜙𝑖 d𝑆
𝑆𝑏

[𝑻𝑺𝑻𝑗][𝝓𝝓𝑩𝑗
𝑏][𝑆𝑉0])

𝐵𝑙

𝑏=1
[
 
 
 
𝚲𝑥𝑗
𝚲𝑦𝑗
𝚲𝑧𝑗
u𝑗 ]
 
 
 𝑁

𝑗=1

 . 

Equation 4-19 

Here, 𝑆𝑏denotes the surface area of the 𝑏th boundary face and 𝐵𝑙  is the total boundary faces 

number for the 𝑙th electrode.  Note, the contact impedance 𝑍C
𝑙 used in CEM-IBC, is assumed 

uniform distributed on each electrode, so we use the superscript 𝑙 to denote the electrode. 

Insert the discrete vectors to Equation 4-15 (b), we have,  

∑∑(
1

jZC
𝑙
∫ 𝜙𝑖 d𝑆
𝑆𝑏

[𝑆𝑉0]
T[𝑻𝑺𝑻𝑗][𝝓𝝓𝑩𝑗

𝑏])

𝐵𝑙

𝑏=1
[
 
 
 
𝚲𝑥𝑗
𝚲𝑦𝑗
𝚲𝑧𝑗
u𝑗 ]
 
 
 𝑁

𝑗=1

−
1

j𝜔
∑∑([𝑆𝑉0]

T[𝝓𝝓𝑩𝑖
𝑏]
T
[𝑻𝑺𝑻𝑖]

1

jZC
𝑙
∫ d𝑆
𝑆𝑏

[𝑻𝑺𝑻𝑗][𝝓𝝓𝑩𝑗
𝑏][𝑆𝑉0])

𝐵𝑙

𝑏=1
[
 
 
 
𝚲𝑥𝑗
𝚲𝑦𝑗
𝚲𝑧𝑗
u𝑗 ]
 
 
 𝑁

𝑗=1

+
1

j𝜔
∑∑(

1

jZC
𝑙
∮ 𝜙𝑖𝐧ê d𝑙
𝜕𝑆𝑏

∙ [𝑻𝑺𝑻𝑗][𝝓𝝓𝑩𝑗
𝑏][𝑆𝑉0])

𝐵𝑙

𝑏=1
[
 
 
 
𝚲𝑥𝑗
𝚲𝑦𝑗
𝚲𝑧𝑗
u𝑗 ]
 
 
 𝑁

𝑗=1

 

Equation 4-20 

Here 𝐧ê is the discretised version of 𝐧B̂. The relationship between 𝐧ê, 𝐧n̂ and �̂� can be found 

in Figure 4-4. The three normal vectors are the edge normal vector in the plane of the element 

face, the face normal vector, and the node normal vector respectively.  
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Figure 4-4 Difference in normal unit vector of element edge, face and surface 

A procedure similar to the derivations of the FEM system matrix Equation 4-6 is applied to 

imposing the IBC. Equation 4-19 becomes the mass matrices.  

−(
[𝐵𝑁𝑖]

T[𝑍𝑆𝑀][𝐵𝑁][𝑻𝑺𝑻]T

[𝐵𝑁𝑖]
T[𝑍𝑆][𝑲𝑲𝑩][𝑆𝑉]

) [u𝚲] 

Equation 4-21 

[𝑍𝑆𝑀𝑏] = j𝜔
𝑆𝑏

12jZC
𝑙 [
2𝕀4 𝕀4 𝕀4

𝕀4 2𝕀4 𝕀4

𝕀4 𝕀4 2𝕀4
] ∈ ℂ12×12, [𝑍𝑆] =

[
 
 
 
 𝑆

1

3jZC
𝑙 [
𝕀4

𝕀4

𝕀4
]
⋱ 𝑆𝐵

3jZC
𝑙 [
𝕀4

𝕀4

𝕀4
]
]
 
 
 
 

, 

[𝑍𝑆𝑀] = diag [
[𝑍𝑆𝑀1]
⋮

[𝑍𝑆𝑀𝐵]
] , [𝑲𝑲𝑩] = [

[𝑻𝑺𝑻1][𝝓𝝓𝑩1
1] ⋯ [𝑻𝑺𝑻𝑁][𝝓𝝓𝑩𝑁

1 ]
⋮ ⋱ ⋮

[𝑻𝑺𝑻1][𝝓𝝓𝑩1
𝐵] ⋯ [𝑻𝑺𝑻𝑁][𝝓𝝓𝑩𝑁

𝐵 ]
] . 

The integral of the shape functions is given in Equation 3-7 (a) to determine the coefficients in 

[𝑍𝑆𝑀] and [𝑍𝑆].  

Equation 4-20 becomes, 

(

[𝑆𝑉0]
T[𝐵𝑁𝑖]

T[𝑍𝑆][𝑲𝑲𝑩]

−[𝑆𝑉0]
T[𝑲𝑲𝑩𝑖]

T[𝑍𝑆𝐾][𝑲𝑲𝑩][𝑆𝑉]

[𝐵𝑁𝑖]
T[𝑍𝐿][𝑵𝑬][𝑲𝑲𝑩][𝑆𝑉]

) [u𝚲] 

Equation 4-22 

The stiffness term uses [𝑲𝑲𝑩𝑖] is the columns in [𝑲𝑲𝑩] corresponding to node 𝑖.  

[𝑲𝑲𝑩𝑖] = [

[𝑻𝑺𝑻𝑖][𝝓𝝓𝑩𝑖
1]

⋮
[𝑻𝑺𝑻𝑖][𝝓𝝓𝑩𝑖

𝐵]
] , [𝑍𝑆𝐾] =

[
 
 
 
−𝑆1𝕀4

𝜔ZC
𝑒∗

⋱ −𝑆𝐵𝕀4

𝜔ZC
𝑒∗ ]
 
 
 
 . 

Calculating the line integral in Equation 4-20 is done by composing the matrices [𝑵𝑬] and 

[𝑍𝐿]. 
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[𝑵𝑬] = diag [[

𝐧e1̂
1
0

𝐧e2̂
1
0

𝐧e3̂
1
0

] ⋯ [

𝐧e1̂
𝐵
0

𝐧e2̂
𝐵
0

𝐧e3̂
𝐵
0

]] ∈ ℝ3𝐵×4𝐵, 

[𝑍𝐿] = diag [
[𝑍𝐿1]
⋮

[𝑍𝐿𝐵]
] , [𝑍𝐿𝑏] =

−1

2𝜔ZC
𝑙

[
 
 
 
 
 
 

𝟎3×3

𝑙𝑏1 𝑙𝑏2 0

𝟎3×3

0 𝑙𝑏2 𝑙𝑏3
𝟎3×3

𝑙𝑏1 0 𝑙𝑏3]
 
 
 
 
 
 

∈ ℝ12×3. 

As shown in Figure 4-5, [𝑵𝑬] is responsible for rotating the ∇s𝜙𝑖 with edge normal vector 𝐧ês, 

and [𝑍𝐿] is to sum the potentials along 𝑙1, 𝑙2 and 𝑙3. 

 

Figure 4-5 Line integral on the boundary face of an element 

One more term appeared when voltage driving electrode is used, Equation 4-18 (b) leads to, 

∑∑
1

𝜔ZC
𝑙𝑆𝑏
∫ 𝜙𝑖𝜙𝑗 d𝑆
𝑆𝑏

[𝑆𝑆0]

𝐵𝑙

𝑏=1
[
 
 
 
𝚲𝑥𝑗
𝚲𝑦𝑗
𝚲𝑧𝑗
u𝑗 ]
 
 
 𝑁

𝑗=1

= [𝐵𝑁𝑖]
T[𝑍𝑀][𝐵𝑁][𝑆𝑆][u𝚲] . 

Equation 4-23 

Similar to the mass matrix we have introduced in Equation 4-21, however the face area 𝑆𝑏 is 

cancelled in [𝑍𝑀𝑏] as, 

[𝑍𝑀𝑏] =
−1

12𝜔ZC
𝑙 [
2𝕀4 𝕀4 𝕀4

𝕀4 2𝕀4 𝕀4

𝕀4 𝕀4 2𝕀4
] ∈ ℂ12×12, [𝑍𝑀] = diag [

[𝑍𝑀1]
⋮

[𝑍𝑀𝐵]
] . 

In all the CEM-IBC for current driving electrodes appears to be, 
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(

 
 
 

−[𝐵𝑁𝑖]
T[𝑍𝑆𝑀][𝐵𝑁][𝑻𝑺𝑻]T

−[𝐵𝑁𝑖]
T[𝑍𝑆][𝑲𝑲𝑩][𝑆𝑉]

+[𝑆𝑉0]
T[𝐵𝑁𝑖]

T[𝑍𝑆][𝑲𝑲𝑩]

−[𝑆𝑉0]
T[𝑲𝑲𝑩𝑖]

T[𝑍𝑆𝐾][𝑲𝑲𝑩][𝑆𝑉]

+[𝐵𝑁𝑖]
T[𝑍𝐿][𝑵𝑬][𝑲𝑲𝑩][𝑆𝑉] )

 
 
 
. 

Equation 4-24 

For voltage driving electrodes, the RHS of Equation 4-23 has to be added to the matrix in 

Equation 4-24.  

The CEM-IBC can be solved by adding Equation 4-24 with Equation 4-6 directly. However, the 

RHSs for current or voltage driving electrodes are different. The derivation of the RHSs can be 

simply obtained from Equation 4-17 (b) and Equation 4-18 (b) respectively. We do not detail 

them here. 

For the measuring electrodes, the CEM-IBC for current driving electrodes can be applied with 

the 𝐉𝐢 set to zero. The SINGLE voltage on the measuring electrodes can be obtained with 

Equation 4-16 after the whole system matrix is solved. 

4.4.2 Instrumental Electrode and Transmission Line Port Model 

In the previous sections, the boundary conditions of SEM-PMC, SEM-IBC and CEM-IBC for EIT 

applications are introduced and detailed. However, the behaviours of EMF at the frequencies 

of the beta dispersion band are more complicated than the assumptions made. Three 

problems have been mentioned in full Maxwell’s EIT electrode models, the contact impedance, 

the instrumental effect, and the port reflection. The first problem is solved by the CEM-IBC 

detailed in the previous section. The latter two problems will be discussed in this section. 

An EMF decays rapidly in an unbounded media from the Maxwell’s equations. In practice, the 

fields are guided in bounded regions when possible. Transmission lines and waveguides are 

typical wave-guiding systems (Rao, 1991). For EIT systems, the electrical current is used as an 

excitation source driven by an EMF. However, the electrode pairs used in traditional EIT 

systems are not suitable for guiding the EMF to excite the object. 

A wave-guiding system is usually characterised by its characteristic impedance. When the EMF 

is propagating in a wave-guiding system, the ratio between the electric field and the magnetic 

field depends on the impedance. Variations, and especially discontinuities, of the characteristic 

impedance along the propagation direction usually cause reflections. 

The EMF that surrounds the wire, drives the electric current flowing inside the wire, but only 

when the frequency is low. A pair of electrodes (one sourcing and one sinking) with the wires 
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attached to them consist of a wave-guiding system. However, the characteristic impedance of 

the electrodes-wires-wave-guiding system varies along the lines. For high frequency signals, 

the skin effects, reflections and radiations of such wave-guiding systems can be significant. 

By considering the electrodes of EIT systems in pairs and each pair as a port of a wave-guiding 

system, the characteristic impedance 𝑍P of the port can characterise the instrumental effects 

that load EIT systems at high frequencies. 

A pair of measuring electrodes work as a port, with a finite impedance 𝑍PM. The EMF in the 

object propagates into the port. Due to the difference between the object impedance and 

𝑍PM, however, the EMF is partially reflected. Furthermore, as the characteristic impedance 

along the electrodes-wires-wave-guiding system varies from 𝑍PM, the EMF is partially 

reflected, partially radiated, and partially transmitted to the measuring electronic devices. In 

total the fields in the object is disturbed and the measurements are inaccurate. 

A pair of driving electrodes also form a port, with an impedance 𝑍PD. The EMF generated by a 

source transmits through the electrodes-wires-wave-guiding system. Before the field even 

reaches the object, the variation of the characteristic impedance reflects and radiates a 

portion of the field. When the EMF finally reached the object (because of the difference 

between the object impedance and the port 𝑍PD), the EMF is partially bounced back through 

the electrodes-wires-wave-guiding system. 

 

Figure 4-6 EIT System Instrument as Wave-Guiding System 

Figure 4-6 shows an EIT system instrument with wave-guiding ports, modified from Figure 2-3. 

The electronic devices are simplified, and the connections between electronics and electrodes 

are detailed instead in the figure. 

Figure 4-6 yields that, without applying the wave-guiding systems, any effort to enhance the 

output or the input impedances of the EIT electronic systems to avoid instrumental effects is 

futile when the frequency is in the beta-dispersion band.  
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The above findings suggest that traditional hardware settings of electrodes-wires-wave-guiding 

are not compatible with the frequency extension. 

Electronic systems have been long investigated in radio frequency measurement applications, 

transmission lines are used to propagate a signal at a longer distance. It may overcome the 

problems in delivering the EMFs by slightly changing the electrode-electronic connections. 

The approach we are proposing to solve the forward problem more accurately at higher 

frequencies has considered the issues above. By providing the BCs a step further than the 

electrode surface, the wave-guiding systems are included in the forward problems. The wave-

guiding systems for delivering the EMFs from the sources to the object and from the object to 

the measuring devices, is replaced by transmission lines. The typical electrodes of EIT systems 

are replaced with the transmission line ports, so that the EIT system can be more suitable for 

high frequency excitation-measurement operations. The instrumental effects we have 

discussed in Chapter 3 can be included in the transmission line model and characterised by 

impedance matching 

The transmission line requires the “electrode” of the driving pairs and the measuring pairs to 

have a fixed structure. This structure forms a port of the transmission line. In the transmission 

line, a constant characteristic impedance is maintained and normally only 1-D differential 

equations are needed. Two types of transmission lines are usually used in electronic 

applications: parallel field transmission lines (such as strip-line) and coaxial transmission lines. 

Differential strip-line is chosen in our study. 

A cross section on the axial direction of the transmission line is shown in Figure 4-7, together 

with the port consisting of the electrodes. Similar to Figure 4-3, we use orange arrows to 

represent the fields in the object, the green ones to represent the electric field on the metal 

surface. The grey blocks are the conductive metal parts of the electrodes and the strip-line. 

The electrodes and the strip-line, although drawn separately in Figure 4-7, are physically 

jointed together. The electrode pair is the port of the strip-line. 
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Figure 4-7 Axial Direction Cross Section of Strip-line Port 

In order to derive the BCs for this transmission line port, we define a few variables. The index 

of this port structure is 𝑙 while the two conductive surfaces touching the object (the two 

electrode surfaces) are 𝑙+ and 𝑙−. The characteristic impedance of the strip-line is 𝑍0. The 

inner distance between the metals is 𝑑, and the width of each metal piece is 𝑤 (on 𝐭2̂ 

direction). The transmission line is placed along �̂� direction. The source or measurement 

device is applied on the far-side of the transmission line, at 𝑛 = 𝑛T.. The object interface is 

located on the near-side of the line, at 𝑛 = 0. 

Assuming the EMF in the transmission line is a Transverse Electromagnetic (TEM) wave, which 

obeys one-dimension Maxwell’s equations (Shen & Kong, 1995), the general solution therefore 

can be expressed as, 

∂𝐄𝑡1
𝜕𝑛

= j𝜔𝜇𝐇𝑡2,
∂

𝜕𝑛

1

j𝜔𝜇

∂𝐄𝑡1
𝜕𝑛

= 휀∗𝐄𝑡1, 𝑘 = ±√−j𝜔𝜇휀∗ = ±√𝜔2𝜇휀 , 

𝐄𝑡1 = 𝐄0
𝑛−𝑒+j𝑘𝑛 + 𝐄0

𝑛+𝑒−j𝑘𝑛, 𝐇𝑡2 = √휀 𝜇⁄ (𝐄0
𝑛−𝑒+j𝑘𝑛 − 𝐄0

𝑛+𝑒−j𝑘𝑛) . 

Equation 4-25 (a - b) 

From Equation 4-25, the EMF propagates on both directions ±�̂� along the transmission line 

(also shown in Figure 4-7), with the magnitude of the electric field intensities 𝐄0
𝑛− and 𝐄0

𝑛+, 

respectively. On each direction, the fields obey the same relationship provided by the 

characteristic impedance. The characteristic impedance of the transmission line is given by the 

ratio (Wheeler, 1964) between the voltage and the current as, 
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𝑍0 = 𝑍0
𝑛+ =

𝑑𝐄0
𝑛+𝑒−j𝑘𝑛

𝑤√휀 𝜇⁄ 𝐄0
𝑛+𝑒−j𝑘𝑛

= 𝑍0
𝑛− =

𝑑𝐄0
𝑛−𝑒+j𝑘𝑛

𝑤√휀 𝜇⁄ 𝐄0
𝑛−𝑒+j𝑘𝑛

=
𝑑

𝑤
√
𝜇

휀
 . 

The voltage across the transmission line cross section, and the current along each parallel 

metal piece are given as, 

𝑈(𝑛) = ∫ 𝐄𝑡1𝐭1̂ ∙ d𝑡1

𝑙+

𝑙−
= 𝑑(𝐄0

𝑛−𝑒+j𝑘𝑛 + 𝐄0
𝑛+𝑒−j𝑘𝑛), 

𝐼(𝑛) = ∮ 𝐇𝑡2 ∙ d𝑆
𝑙±

= ±𝑤√휀 𝜇⁄ (𝐄0
𝑛−𝑒+j𝑘𝑛 − 𝐄0

𝑛+𝑒−j𝑘𝑛). 

Equation 4-26 (a - b) 

Different from the electrodes-wires-wave-guiding systems, the voltage and current across the 

transmission line are functions of location 𝑛. As 𝐄𝑡1 and 𝐇𝑡2 are outside the object region, the 

quasi-static assumption is valid considering the dielectric properties of transmission line. 

Therefore the voltages can represent the EMF in the transmission line. We have the voltage 

across the near-end port to be 𝑈(0) = 𝑈𝑙+ −𝑈𝑙−. The voltage across the far-end port is 

𝑈(𝑛T) = 𝑈0. Similarly, when the signal reaches the print circuit boards (PCB) or the 

semiconductor devices, quasi-static fields are always assumed. 

The ratio between the field intensities propagating on the two directions is the reflection 

coefficient ΓO. For driving transmission lines, �̂� is the direction of reflection, and ΓO is defined 

as 𝐄0
𝑛+ 𝐄0

𝑛−⁄ . Substitute ΓO into the Equation 4-26, it can be given, 

𝑈(𝑛) = 𝑑𝐄0
𝑛−(𝑒+j𝑘𝑛 + ΓO𝑒

−j𝑘𝑛), 

𝐼(𝑛) = ±𝑤√휀 𝜇⁄ 𝐄0
𝑛−(𝑒+j𝑘𝑛 − ΓO𝑒

−j𝑘𝑛). 

𝑍(𝑛) =
𝑈(𝑛)

𝐼(𝑛)
=

𝑑(𝑒+j𝑘𝑛 + ΓO𝑒
−j𝑘𝑛)

𝑤√휀 𝜇⁄ (𝑒+j𝑘𝑛 − ΓO𝑒
−j𝑘𝑛)

= 𝑍0
𝑒j𝑘𝑛 + ΓO𝑒

−j𝑘𝑛

𝑒j𝑘𝑛 − ΓO𝑒
−j𝑘𝑛

 . 

Equation 4-27 

The voltage exciting CEM-IBC is inserted with the transmission line equations. Substituting 

Equation 4-27 into Equation 4-18 (b) and evaluating with 𝑛 = 𝑛T and 𝑛 = 0, the BCs for the 

two electrodes 𝑙+ and 𝑙− are obtained,  

−
1

j𝜔
∫ 𝑣 휀∗(j𝜔𝐀 + ∇Φ) ∙ �̂�d𝑆
𝑆𝑙± 

+
1

j𝜔
∫

𝑣

𝑍C
∇s ∙ (jω𝐀s + ∇sΦ)d𝑆

𝑆𝑙± 

−
1

j𝜔
∫

𝑣Φ

𝑍C𝑆𝑙± 
d𝑆

𝑆𝑙± 

= −
1

j𝜔
∫

𝑣𝑈𝑙± 
𝑍C𝑆𝑙± 

d𝑆
𝑆𝑙± 

 , 
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∫ 𝐉𝐢 ∙ �̂�d𝑆
𝑆𝑙±

= 𝐼(0) = ±𝑤√휀 𝜇⁄ 𝐄0
𝑛−(𝑒+j𝑘𝑛 − ΓO𝑒

−j𝑘𝑛) = ±𝑤√휀 𝜇⁄ 𝐄0
𝑛−(1 − ΓO) , 

𝑈𝑙+ = −𝑈𝑙− = 𝑈(0) =
𝑑

2
𝐄0
𝑛−(𝑒+j𝑘𝑛 + ΓO𝑒

−j𝑘𝑛) =
𝑑

2
𝐄0
𝑛−(1 + ΓO) , 

𝑈0 = 𝑈(𝑛T) = 𝑑𝐄0
𝑛−(𝑒+j𝑘𝑛T + ΓO𝑒

−j𝑘𝑛T).  

Equation 4-28 (a - d) 

Equation 4-28 provides the BCs for the metal pieces (electrode areas) of an exciting 

transmission line. Equation 4-28 (a) is same to the CEM-IBC for voltage exciting electrodes, but 

the voltage of the electrodes 𝑈𝑙± are unknowns. Equation 4-28 (b) provides the relationship 

between the 𝐉𝐢 ∙ �̂� on the object surface and the current in the transmission line, with two 

extra unknowns, 𝐄0
𝑛− and 𝐄0

𝑛−ΓO, added. Equation 4-28 (c - d) are the transmission line 

equations at the near and far end of the line. The voltage source (providing the potential 

difference of 𝑈0) is applied at the far-end with the output impedance 𝑍0 (same as the 

characterisation impedance of the transmission line). 

For the dielectric surface regions between the conductive pieces (electrodes) of the 

transmission line port, different the BCs are needed. The general IBC given in Section 2.4.3 

(Soni, et al., 2006) is not appropriate for this region, as the object boundary is clearly specified. 

According to the continuity condition Equation 4-3 (c), tangential components of 𝐄 field 

remain the same on both sides of a boundary surface. Our assumption about the transmission 

line (1-D differential equations) allows only tangential components to exist. Therefore, the 𝐄 

field in the transmission line at 𝑛 = 0 is the tangential components 𝐄 of on the object surface. 

Reconsidering Table 4-2 and Table 4-3, Type C BC can be used for the dielectric surface region 

as, 

�̂� × (∇Φ + j𝜔𝐀) =
𝑈𝑙+ −𝑈𝑙−

𝑑
𝐭1̂, 

∫ (𝜙𝑖
1

𝜇
∇ ∙ 𝐀) �̂� d𝑆

𝑑𝑤𝑙

+∫ (휀∗𝜙𝑖Φ)�̂� d𝑆
𝑑𝑤𝑙

= 0 , 

Φ(t1) = 𝑈𝑙− +
𝑈𝑙+ −𝑈𝑙−

𝑑
t1 . 

Equation 4-29 (a - c) 

Equation 4-29 is similar to the PMC BCs used in Equation 2-39, but with the 𝐌s provided. 𝑑𝑤𝑙 

is the area of dielectric surface region of port 𝑙. The tangential electric field is assumed to be 
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uniformly distributed along the 𝐭1̂ direction, as Equation 4-29 (a) states. The Dirichlet condition 

is chosen for the gauge, as Equation 4-29 (b). The extra Information of Type C is given in the 

form of Φ. The distribution of Φ is considered to be linear, as Equation 4-29 (c).  

The BCs of an exciting transmission line port can be given by Equation 4-28 (a - d) for the 

conductive surface and the Equation 4-29 (a - c) for the dielectric surface. 

For the measuring transmission line port, different BCs have to be applied. A terminator with 

the impedance 𝑍0 is kept the same with the characteristic impedance of the transmission line 

is placed at 𝑛 = 𝑛T instead of the source. The voltage across the terminator becomes one of 

the unknowns. Also the EMF is terminated at the terminator, which means there is no 

reflection when the field reaches the terminator.  

The 𝑍0 terminator prevents the field from propagating towards the object (-�̂� direction) in the 

transmission line. Only the outward field, heading to the terminator, exists. Furthermore, this 

outward field obeys the transmission line equations. So we can have the Equation 4-28 revised 

as, 

−
1

j𝜔
∫ 𝑣 휀∗(j𝜔𝐀 + ∇Φ) ∙ �̂�d𝑆
𝑆𝑙± 

+
1

j𝜔
∫

𝑣

𝑍C
∇s ∙ (jω𝐀s + ∇sΦ)d𝑆

𝑆𝑙± 

−
1

j𝜔
∫

𝑣Φ

𝑍C𝑆𝑙± 
d𝑆

𝑆𝑙± 

= −
1

j𝜔
∫

𝑣𝑈𝑙± 
𝑍C𝑆𝑙± 

d𝑆
𝑆
𝑙± 

 , 

∫ 𝐉𝐢 ∙ �̂�d𝑆
𝑆𝑙±

= 𝐼(0) = ±𝑤√휀 𝜇⁄ 𝐄0
𝑛+ , 

𝑈𝑙+ = −𝑈𝑙− = 𝑈(0) =
𝑑

2
𝐄0
𝑛+  , 

𝑈(𝑛T) = 𝑑𝐄0
𝑛+𝑒−j𝑘𝑛T .  

Equation 4-30 (a - d) 

Equation 4-30 (b) is the current on the transmission line. The voltage across the transmission 

line port is given by the intensity in Equation 4-30 (c).  

The dielectric surface of the transmission line behaves the same with the exciting port, and the 

boundary conditions, Equation 4-29 (a - c), can be used directly for the measuring ports. 

The TPM for EIT forward problems are described by Equation 4-28, Equation 4-29 and Equation 

4-30. The TPM covers both driving and measuring transmission line ports, including the metal 
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pieces of the port (electrode pair surfaces) and the dielectric surface in between. The TPM 

provides better accuracy and is more suitable for higher frequency applications. 

We will use Section 4.5 to illuminate the difference of these approaches we have introduced. 

4.5 Case Study and Discussions 

We use a geometry model similar to the Tank Model used in Section 3.4.2 to illustrate the 

CEM-IBC and TPM. The Transmission Line Tank model is shown in Figure 4-8 given by COMSOL. 

The model consists of a conductive cylinder tank and a sphere with a distribution of the 

conductivity inside. Five pairs of electrodes are attached along the middle line of the cylinder 

wall.  

 
Figure 4-8 Transmission Line Tank Model 

The parameters of the geometry are given as  

 Material conductivity, 0.05S/m; 

 Material relative permittivity, 81; 

 Tank diameter, 80mm; 

 Tank height, 40mm; 

 Electrode width, 12.5mm; 

 Electrode height, 5mm; 

 Electrode gap width, 12.5mm; 

 Electrode gap height, 5mm; 
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 Driving current, 1mA; 

 Insertion sphere conductivity, 0.1S/m; 

 Insertion sphere relative permittivity, 400; 

 Insertion sphere diameter, 15mm; 

 Insertion sphere centre position (to tank centre), [15, 25, 5] mm. 

The geometry is designed to have electrodes placed as a transmission line port, which ensures 

that the TPM can be applied. We performed several simulations applying the following BC sets 

in this section, to demonstrate the effect of the contact impedance, quasi-static and port 

impedances, as well as the skin effect, 

a) Traditional CEM; 

b) IEM, we have introduced in Chapter 3; 

c) SEM-PMC, the 𝐀−Φ with mixed BCs used in (Soni, et al., 2006; Zhang & Li, 2014); 

d) SEM-IBC, the 𝐀 −Φ IBC used in (Soni, et al., 2006); 

e) CEM-IBC, the BCs set introduced in Section 4.4.1; 

f) TPM, the BCs set introduced in Section 4.4.2; 

g) COMSOL, the electromagnetic field solving software. 

For the traditional CEM simulation, Case a), a pair of electrodes are set as driving electrodes, 

and all the other pairs are measuring ones. In order to compare the solution of the forward 

problem with those of other electrode models, the model is driven with voltage sources. 

However, the input/output impedances of any electrode are ignored and are excluded. The 

parameters of the simulation Case a) are, 

 Driving amplitude: ±0.5V; 

 Source output impedance: 0 Ohm(not available in the model); 

 Measuring input impedance: infinite (not available in the model); 

 Contact impedance: 𝜂 = 7 × 10−4 − j5 × 10−4Ω ∙ m2 (same to Section 3.4.2). 

For the IEM simulation, Case b), settings are applied similar to Case a). To have the port 

impedance compatible with the TPM setting, the input and output impedance of the 

electrodes are set to be half of the port impedance. The parameters for Case b) are, 

 Driving amplitude: ±0.5V; 

 Source output impedance: 75 Ohm; 

 Measuring input impedance: 75 Ohm; 

 Contact impedance: 𝜂 = 7 × 10−4 − j5 × 10−4Ω ∙ m2 (same to Section 3.4.2). 
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For the SEM-PMC simulation, Case c), voltage driving and PEC surface on all electrode surfaces 

are applied. Same as a) that input/output impedances are excluded. The parameters of Case c) 

are, 

 Driving amplitude: ±0.5V; 

 Source output impedance: 0 Ohm(not available in the model); 

 Measuring input impedance: infinite (not available in the model); 

 Contact impedance: PEC (not available in the model). 

For SEM-IBC simulation Case d), all the electrode settings are the same to SEM-PMC Case c), 

and only the non-electrode boundary surface is dealt with IBC. The parameters of Case d) are, 

 Driving amplitude: ±0.5V; 

 Source output impedance: 0 Ohm(not available in the model); 

 Measuring input impedance: infinite (not available in the model); 

 Contact impedance: PEC (not available in the model); 

 Non-electrode surface: Z = √𝜇0 휀0⁄ . 

For Case e), our CEM-IBC introduced in Section 4.4.1 is used to solve the forward problem. 

Compared with Case d), the contact impedances on both the driving electrodes and the 

measuring electrodes are considered, which allows the potentials to vary on the electrode 

surfaces. The parameters of Case e) are, 

 Driving amplitude: ±0.5V; 

 Source output impedance: 0 Ohm(not available in the model); 

 Measuring input impedance: infinite (not available in the model); 

 Contact impedance: : 𝜂 = 7 × 10−4 − j5 × 10−4Ω ∙ m2 (same to Section 3.4.2); 

 Non-electrode surface: Z = √𝜇0 휀0⁄ . 

For Case f), our TPM introduced in Section 4.4.2 is used to obtain the results. The ten 

electrodes are considered as five transmission line ports. The contact impedances are applied 

to the metal contact surfaces of the transmission line ports, which are considered as electrode 

surfaces. The input/output impedance of each transmission line port is defined by the size of 

the dielectric part of the transmission line port. The air is the dielectric medium of the 

transmission line for simplicity.  The parameters of Case f) are, 

 Port Driving amplitude: 1V; 

 Non-electrode surface: Z = √𝜇0 휀0⁄ ; 

 Source output impedance: Z0 = (𝑑√𝜇0 휀0⁄ ) 𝑤⁄ ≈ 150 Ohm; 
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 Measuring input terminator: Z0 = (𝑑√𝜇0 휀0⁄ ) 𝑤⁄ ≈ 150 Ohm; 

 Contact impedance: 𝜂 = 7 × 10−4 − j5 × 10−4Ω ∙ m2 (same to Section 3.4.2); 

 Transmission line Length: 𝑛T = 10 mm. 

For Case g), simulations using COMSOL are also included for comparison. The parameters for 

the COMSOL simulation are, 

 Port Driving Electric Field: 1 𝑑⁄ = 200V/m; 

 Non-electrode surface: Z = √𝜇0 휀0⁄ ; 

 Source output impedance: Z0 = (𝑑√𝜇0 휀0⁄ ) 𝑤⁄ ≈ 150 Ohm; 

 Measuring input terminator: Z0 = (𝑑√𝜇0 휀0⁄ ) 𝑤⁄ ≈ 150 Ohm; 

 Contact impedance: PEC (not available in the model); 

 Transmission line Length: 𝑛T = 10 mm; 

 Free space sphere diameter: 400mm; 

 PML thickness: 40mm. 

The potential distributions of forward solutions for Cases a), c), d), e), f) and g) are plotted in 

the following figures. The potential distribution for Cases a) is obtained by solving the quasi-

static problem, where vector potentials are not considered and only the electric scalar 

potential is plotted (Figure 4-9). The solutions for Cases c), d), e) and f) are four potentials and 

the vector potentials are shown in arrows (Figure 4-10 to Figure 4-13). The magnitude and 

phase are plotted and compared in terms of the voltage differences between measuring 

electrode pairs (or the port voltages in the TPM simulation) in the Figure 4-15 and Figure 4-16. 

The COMSOL solves the prime field, similar to most electromagnetic field solvers. To obtain 

the scalar and vector potentials from the prime field will be too complicated to achieve, 

therefore we only plot the magnitude and directions of the electric field in Figure 4-14. The 

port voltages however can be easily obtained by applying the line integral on the solved 

electric field along the vertical direction. It results in the potential differences (voltages), which 

we used in the port voltage figures (Figure 4-15 and Figure 4-16) to compare with other 

simulations. 

  



118 

 

The potentials of the forward problem solution given by the traditional CEM BCs are plotted in 

Figure 4-9. 

 

Figure 4-9 Potentials of Forward Problem Solution with Traditional CEM at 5.01MHz 

The potentials of the forward problem solution given by the SEM-PMC BCs are plotted in 

Figure 4-10. 

 

Figure 4-10 𝐀 − Φ Potentials of Forward Problem Solution with SEM-PMC at 5.01MHz 
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The potentials of the forward problem solution given by the SEM-IBC are plotted in Figure 

4-11. 

 

Figure 4-11 𝐀 − Φ Potentials of Forward Problem Solution with SEM-IBC at 5.01MHz 

The potentials of the forward problem solution given by the CEM-IBC are plotted in Figure 

4-12. 

 

Figure 4-12 𝐀 − Φ Potentials of Forward Problem Solution with CEM-IBC at 5.01MHz 
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The potentials of the forward problem solution given by the TPM are plotted in Figure 4-13. 

 

Figure 4-13 𝐀 − Φ Potentials of Forward Problem Solution with TPM at 5.01MHz 

The magnitude and directions of the electric field of the forward problem solution given by the 

COMSOL are plotted in Figure 4-14. 

 

Figure 4-14 Magnitude and Directions of Forward Problem Solution with TPM at 5.01MHz 
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As every simulation employs a pair of voltage sources for excitation, the comparison of the 

voltage differences on the driving electrodes becomes meaningless. We plot the amplitudes 

and phases of the voltage differences on the next pair (top clockwise) of electrodes to the 

driving pair. For Case f), the port voltages are plotted in Figure 4-15 and Figure 4-16.  

In both Figure 4-15 and Figure 4-16, there are two curves obtained from Case f). We marked 

the two curves with “TPM” and “TPM 𝜂 ↓” with the contact impedance of the latter being set 

much smaller, as 𝜂 = 7 × 10−5 − j5 × 10−5Ω ∙ m2.  

 
Figure 4-15 Amplitudes of the Voltage Differences on the Measuring Electrode Pair (or Transmission Line Port) 

 
Figure 4-16 Phases of the Voltage Differences on Measuring Electrode Pair (or Transmission Line Port) 
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Some key findings from the various solution methods are as follows: 

 The shapes of the scalar potential distributions are similar for Cases a), b), d), e) and f). 

 The shape of the distribution for Case c) in Figure 4-10 is clearly distorted. The reason 

can be that the SEM-PMC assumes the tangential component of the 𝐇 field disappear 

on the non-electrode boundary. It was also concluded by Soni et al. that, the SEM-PMC 

behaves badly (Soni, et al., 2006). The SEM-PMC has been used in the Tank Model 

(Section 3.4.2) as comparison, however we used a surrounding air sphere to avoid the 

effect in the tank. 

 The behavior of the vector potential around the measuring electrode pairs in Case d) 

SEM-IBC is not correct. The reason can be that Type D BC (Table 4-2) on measuring 

electrodes forces the tangential electric field to vanish. However, the IBC on the non-

electrode boundary dictates the tangential electric field to exist. 

 The skin effect on the driving electrodes can be seen in the solutions of Case e) CEM-

IBC and Case f) TPM. Equation 4-16 and Equation 4-17 (b) allow the current density to 

choose its path, instead of being a uniform distribution forced by other BCs. Equation 

4-17 (a) allows the potentials varying on the electrode surfaces, instead of being 

constant forced by other BCs. 

 For Case f) TPM, the excitation current density is constrained by the transmission line 

Equation 4-28 and characteristic impedances 𝑍PM and 𝑍PD, making the electric field 

more consentrated on the port dielectric surface. 

 The distribution plotted in Figure 4-14 is the magnitude of electric field obtained by 

COMSOL (which is not the same with the scalar and vector potentials plotted in other 

figures). The potential distribution similar to Cases e) CEM-IBC and f) TPM is implied 

from the electric field intensity. 

 The voltages on the measuring electrode pair (measuring port voltages) given from 

different simulations conflict between all Cases. 

 At a relative low frequency, the magnitudes of voltages converge to three groups for 

three reasons: 

o Case c) and d), lack of input/output and contact impedance; 

o Case a) and e), lack of input/output impedance; 

o Case b), f) and COMSOL, with input/output (port) impedance. 

 For Case g) simulations using COMSOL do not converge at frequencies lower than 

2MHz. 
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 The solutions for Case e) are similar in both magnitude and phase to those for Case a). 

The CEM-IBC obtained identical results to the CEM does, when the frequency is low 

enough. It confirms the quasi-static assumption can be used at low frequencies. On the 

other hand, the full Maxwell’s equation reduces the magnitudes while distorting the 

phases when the frequency increases.  

 A peak is found in both Case f) and Case g) COMSOL. The peak appears at the 

frequency where the impedance of the tank matches the characteristic impedance of 

the transmission line. However, the two methods predict three different frequencies 

for the impedance matching points. 

 The phase differences to the driving signal on the measuring electrode pairs 

(transmission line port) are similar for Cases f) and Case g) COMSOL. The same 

tendency is found between the two, whereas the largest derivative of phases appear 

at different frequencies. 

Based on the above findings, we conclude the following: 

 Simply solving the EIT forward problems with the full Maxwell’s equations using the 

potential formula is not necessarily providing more accurate results than the quasi-

static solutions, unless the BCs including electrode models are carefully considered. 

 Solving the forward problems with the Laplace equations under quasi-static 

assumption is still able to find relatively accurate results at a frequency up to a few 

MHz with IEM. 

 The CEM-IBC successfully takes the contact impedances of the electrode surfaces into 

account. However, a general electrode is not able to deliver the electromagnetic field 

to the amount it assumes. 

 The COMSOL simulations verify that the TPM is able to obtain accurate forward 

solutions for EIT. The difference at the same frequency between the two methods may 

due to the PEC used on the electrode surface by COMSOL. 

 The TPM gives the best predictions on the forward problems of EIT in the frequency 

range, among the BCs used in this case study. 

 The contact impedance of the electrode (port) surface can significantly affect the 

accuracy of the forward problems, and has to be accurately measured. 

 Experimental results are needed for verifying the proposed model. 
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There are also other defects that will contribute the inaccuracy of the TPM. 

The accuracy of the IBC is determined by the geometry size and the medium propagation 

constant (Senior, 1960). In EIT applications such as our case study, however, the accuracy of 

the IBC limits the performance of the forward solver, especially on the non-electrode boundary 

surface and at low frequencies. 

The transmission line equations (Equation 4-26) constraining the port excitation are one-

dimension differential equations approximated from the Maxwell’s equations. The normal 

component of the electric field is forced to vanish with Equation 4-28 (c - d), so that the 

transmission line equations can be applied. The normal component of the electric field can 

exist in reality at the dielectric region of a transmission line port, as shown in Figure 4-7 with 

green dash arrows. But, the EMF propagating in a differential strip-line is mainly TEM wave, 

and the TE and TM modes can propagate at only high frequencies (Shen & Kong, 1995). 

Therefore, the normal component limits the accuracy of the forward solver when the 

wavelengths are comparable with the port size. 

4.6 Summary 

This chapter investigates the full Maxwell’s equations applying on the EIT forward problems. A 

3-D FEM model using the potential formula is derived. More accurate BCs including electrode 

models for forward problems, CEM-IBC and TPM, are presented. The CEM-IBC takes the 

contact impedance of electrodes into the considerations for the forward modelling. The TPM 

treats a pair of electrodes as a transmission line port, which provides appropriate ways for 

injecting and measuring electromagnetic fields. Our results were verified with different BCs 

and also a commercial EMF solver, COMSOL. The results confirm that at a frequency range up 

to a few MHz, the IEM we proposed in Chapter 3 can accurately obtain the forward solutions 

without solving the full Maxwell’s formula. The similarity in the measured voltages between 

TPM and COMSOL has been found in Figure 4-15 and Figure 4-16, where the difference in 

frequency of the peaks is contributed by the contact impedances. The TPM including the 

effects caused by the contact impedance, the skin effects and the instrumental loading effects, 

can obtain the best results (against the COMSOL results) and provide a much wider 

resolvability range than COMSOL. 
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Chapter 5 EIT Inverse Problems with IEM 

5.1 Introduction 

Based on the forward problem detailed in earlier sections, we know that the analytical solution 

does not exist. Therefore, the inverse problem 𝑈(𝐱)
EIT
→ 휀∗(𝑥) is linearized as the variation of 

the measured voltage to that of the admittivity. The general concept of this linearised inverse 

problem is described by Equation 2-3, we rewrite the formula again as, 

∆휀∗ = [
𝜕𝐹(휀∗0)

𝜕휀∗
]

−1

[𝑈 ∗
0+∆

∗ − 𝐹(휀∗0)]. 

In order to solve the inverse problem, Equation 2-3 is obtained numerically, where 

[𝜕𝐹(휀∗0) 𝜕휀
∗⁄ ] is usually called the Jacobian matrix. 

The Jacobian matrix is derived from EIT forward problems detailed in Section 2.3.1, where BCs 

such as CEM are involved. As CEM does not consider the instrumental effects of EIT systems, 

the EIT inverse problem derived from CEM forward problems fails to describe the real 

scenario. However, our IEM model (introduced in Chapter 3) is designed to model the 

instrumental effects. Therefore, the inverse problems derived from IEM forward problems are 

supposed to be better in handling the data affected by instrumental loadings. 

To derived inverse problems with IEM, linearisation and perturbation techniques are applied. 

In order to compensate the ill-posedness, regularisations and non-linear LS are used, similar to 

the inverse problems derived from CEM forward problems. 

In this chapter I will detail the derivations of the IEM inverse problem. Two numerical 

experiments will be performed, and the comparison between the inverse problems based on 

CEM and IEM will illustrate the reduction of instrumental effects on reconstructed images. The 

general approaches including the regularisation methods, iterative inversion etc., introduced in 

the Section 2.3.2 were used to obtain the images. 

5.2 Perturbation and IEM Jacobian Matrix 

To obtain Jacobian matrix in Equation 2-3, the derivative [𝜕𝐹(휀∗0) 𝜕휀
∗⁄ ] is calculated. Similar 

to the derivation of the Jacobian matrix from CEM in Section 2.3.1, Equation 2-17 can be 

modified when our IEM is considered. Substituting the IEM BC to the RHS of Equation 2-17, we 

obtain, 
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∫ 휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

+∑𝜂𝑙∫ (휀∗∇Φ𝛿 ∙ �̂�)(휀∗∇Φ𝑑 ∙ �̂�)d𝑆
𝑆𝑙

𝐿

𝑙=1

= −∑𝑈𝛿𝑙 (𝐼
𝑑
S𝑙 +

𝑈𝑑𝑙

𝐙F𝑙
𝑑)

𝐿

𝑙=1

 . 

Equation 5-1 

As realistic systems are considered, the instrumental impedance (𝐙F in the IEM forward 

problem), is impossible to maintain a constant value, on any electrode. We use 𝐙F𝑙
𝑑 to indicate 

the instrumental impedance on the 𝑙th electrode and when a driving/measuring pattern 𝑑 is 

applied. 

When the IEM is not involved, 𝐙F → ∞, only the voltages on the two driving electrodes are 

used. All voltages on the other electrodes do not contribute to the RHS, as 𝐼S𝑙 = 0 for non-

exciting electrodes. However, when IEM is included, the contribution of non-exciting 

electrodes becomes noticeable. 

The perturbation procedure can be applied to Equation 5-1 as 휀∗ → 휀∗ + ∆휀∗, Φ𝑑 → Φ𝑑 +

∆Φ𝑑, Φ𝛿 → Φ𝛿 + ∆Φ𝛿 and 𝑈𝛿𝑙 → 𝑈
𝛿
𝑙 + ∆𝑈

𝛿
𝑙, to obtain the potential and voltage variation 

with respective to the admittivity variation. Ignoring the high order terms, the perturbed 

formula becomes,  

∫ 휀∗∇Φ𝑑 ∙ ∇Φ𝛿 + 휀∗∇(∆Φ𝛿) ∙ ∇Φ𝑑 + 휀∗∇(∆Φ𝑑) ∙ ∇Φ𝛿 + ∆휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

 

+∑𝜂𝑙∫ 휀∗2
𝜕Φ𝑑

𝜕𝑛

𝜕Φ𝛿

𝜕𝑛
+ 휀∗2

𝜕∆Φ𝑑

𝜕𝑛

𝜕Φ𝛿

𝜕𝑛
+ 휀∗2

𝜕∆Φ𝛿

𝜕𝑛

𝜕Φ𝑑

𝜕𝑛
+ 2∆휀∗휀∗

𝜕Φ𝛿

𝜕𝑛

𝜕Φ𝑑

𝜕𝑛
d𝑆

𝑆𝑙

𝐿

𝑙=1

 

= −∑(𝑈𝛿𝑙𝐼
𝑑
S𝑙 +

𝑈𝛿𝑙𝑈
𝑑
𝑙

𝐙F𝑙
𝑑
+ 𝑈𝛿𝑙

∆𝑈𝑑𝑙

𝐙F𝑙
𝑑
+ 𝑈𝑑𝑙

∆𝑈𝛿𝑙

𝐙F𝑙
𝑑
+ ∆𝑈𝛿𝑙𝐼

𝑑
S𝑙)

𝐿

𝑙=1

 

Equation 5-2 

Removing all the reference terms in Equation 5-1 from Equation 5-2, and we obtain, 

∫ 휀∗∇(∆Φ𝛿) ∙ ∇Φ𝑑 + 휀∗∇(∆Φ𝑑) ∙ ∇Φ𝛿 + ∆휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

 

+∑𝜂𝑙∫ 휀∗2
𝜕∆Φ𝑑

𝜕𝑛

𝜕Φ𝛿

𝜕𝑛
+ 휀∗2

𝜕∆Φ𝛿

𝜕𝑛

𝜕Φ𝑑

𝜕𝑛
+ 2∆휀∗휀∗

𝜕Φ𝛿

𝜕𝑛

𝜕Φ𝑑

𝜕𝑛
d𝑆

𝑆𝑙

𝐿

𝑙=1

 

= −∑(𝑈𝛿𝑙
∆𝑈𝑑𝑙

𝐙F𝑙
𝑑
+𝑈𝑑𝑙

∆𝑈𝛿𝑙

𝐙F𝑙
𝑑
+ ∆𝑈𝛿𝑙𝐼

𝑑
S𝑙)

𝐿

𝑙=1

 . 

Equation 5-3 
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The first two terms in the volume integral are dependent on variation of admittivity. We use 

Equation 2-14 to move them into the boundary integral by replacing 𝑣 with ∆Φ𝑑 and ∆Φ𝛿, and 

substituting it into Equation 5-8. 

∫ ∆Φ𝛿휀∗∇Φ𝑑 ∙ �̂�d𝑆
∂Ω

+∫ ∆Φ𝑑휀∗∇Φ𝛿 ∙ �̂�d𝑆
∂Ω

+∫ ∆휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

 

+∑𝜂𝑙∫ 휀∗2
𝜕∆Φ𝛿

𝜕𝑛

𝜕Φ𝑑

𝜕𝑛
+ 휀∗2

𝜕Φ𝛿

𝜕𝑛

𝜕∆Φ𝑑

𝜕𝑛
+ 2∆휀∗휀∗

𝜕Φ𝛿

𝜕𝑛

𝜕Φ𝑑

𝜕𝑛
d𝑆

𝑆𝑙

𝐿

𝑙=1

= −∑(𝑈𝛿𝑙
∆𝑈𝑑𝑙

𝐙F𝑙
𝑑
+ 𝑈𝑑𝑙

∆𝑈𝛿𝑙

𝐙F𝑙
𝑑
+ ∆𝑈𝛿𝑙𝐼

𝑑
S𝑙)

𝐿

𝑙=1

 . 

Inserting the perturbed BC Equation 2-15 (c), 

∆Φ𝛿 + 𝜂𝑙∆휀
∗
𝜕Φ𝛿

𝜕𝑛
+ 𝜂𝑙휀

∗
𝜕∆Φ𝛿

𝜕𝑛
= ∆𝑈𝛿𝑙, ∆Φ𝑑 + 𝜂𝑙∆휀

∗
𝜕Φ𝑑

𝜕𝑛
+ 𝜂𝑙휀

∗
𝜕∆Φ𝑑

𝜕𝑛
= ∆𝑈𝑑𝑙 , 

∫ ∆휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

+∑∆𝑈𝛿𝑙∫ 휀∗
𝜕Φ𝑑

𝜕𝑛
d𝑆

𝑆𝑙

𝐿

𝑙=1

+∑∆𝑈𝑑𝑙∫ 휀∗
𝜕Φ𝛿

𝜕𝑛
d𝑆

𝑆𝑙

𝐿

𝑙=1

 

= −∑(𝑈𝛿𝑙
∆𝑈𝑑𝑙

𝐙F𝑙
𝑑
+𝑈𝑑𝑙

∆𝑈𝛿𝑙

𝐙F𝑙
𝑑
+ ∆𝑈𝛿𝑙𝐼

𝑑
S𝑙)

𝐿

𝑙=1

 . 

Here the IEM BCs for both excitation patterns 𝑑 and 𝛿, are used and inserted. So we obtain, 

∫ 휀∗
𝜕Φ𝑑

𝜕𝑛
𝑑𝑆

𝑆𝑙

= 𝐼𝑑𝑙 = −(𝐼
𝑑
S𝑙 +

𝑈𝑑𝑙

𝐙F𝑙
𝑑) 

∫ 휀∗
𝜕Φ𝛿

𝜕𝑛
𝑑𝑆

𝑆𝑙

= 𝐼𝛿𝑙 = −(𝐼
𝛿
S𝑙 +

𝑈𝛿𝑙

𝐙F𝑙
𝛿
) 

∫ ∆휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

=∑∆𝑈𝑑𝑙 [𝐼
𝛿
S𝑙 + 𝑈

𝛿
𝑙 (

1

𝐙F𝑙
𝛿
−
1

𝐙F𝑙
𝑑
)]

𝐿

𝑙=1

 

Equation 5-4 

Equation 5-4 is the general formula for EIT inverse problems with the IEM included. Similar to 

the CEM inverse model, it requires to specify exciting patterns and measuring patterns. 

We use the same simple example to explain Equation 5-4. Let the measuring pattern to be 

𝐢𝛿 = [𝐼𝛿0, −𝐼
𝛿
0, 0,⋯0]

T
, which means 𝐼𝛿1 = −𝐼

𝛿
2 = 𝐼

𝛿
0 and 𝐼𝛿𝑙|3~𝐿 = 0. And then, let the 
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driving pattern to be 𝐢𝑑 = [0,0, 𝐼𝑑0, −𝐼
𝑑
0, 0,⋯0]

T, which means 𝐼𝑑3 = −𝐼
𝑑
4 = 𝐼

𝑑
0 and 

𝐼𝑑𝑙|1,2,5~𝐿 = 0. 

Because only the 1st and the 2nd electrodes are driving when 𝐢𝛿 applied, the sum of  ∆𝑈𝑑𝑙𝐼
𝛿
S𝑙 is 

reduced to 2 terms. Between the patterns 𝛿 and 𝑑, only the instrumental impedances on 

electrodes 1 ~ 4 have been changed in driving and measuring modes, which means on the rest 

electrodes 𝐙F𝑙
𝛿 = 𝐙F𝑙

𝑑 for 𝑙 ∈ {5,⋯ , 𝐿}. 

Together with the Equation 5-4 in this simplified case, it becomes, 

∫ ∆휀∗∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
Ω

= (∆𝑈𝑑1 − ∆𝑈
𝑑
2)𝐼

𝛿
0 +∑∆𝑈𝑑𝑙𝑈

𝛿
𝑙 (

1

𝐙F𝑙
𝛿
−
1

𝐙F𝑙
𝑑
)

4

𝑙=1

 . 

Equation 5-5 

Here, ∆𝑈𝑑𝑙 is the voltage variation on electrodes between 𝑈𝑑𝑙(휀
∗) and 𝑈𝑑𝑙(휀

∗ + ∆휀∗), and 

this difference is caused by ∆휀∗. Considering Equation 5-5, the following points can be 

conclude: 

 When 𝐙F → ∞, and the potential distributions is free from the instrumental effects. 

The IEM inverse problem degrades to the CEM inverse problem. 

 When 𝐙F𝑙
𝛿 = 𝐙F𝑙

𝑑, the inverse formula with IEM is the same to the CEM. The IEM is 

only involved in obtaining the forward solutions, and these solutions are used in the 

calculations of the Jacobian matrix, which we are going to derive as follows. 

However, the above two are not the common cases, especially in the frequency range from 

hundreds kHz to a few MHz. In Section 2.4, we have explained, at such a frequency range, it is 

challenging to make the instrumental impedance of an electrode to be the same in the driving 

and measuring modes; it is also challenging to make it large enough to be free from 

instrumental effects.  

 If the above two conditions cannot be met, then the second term (on the RHS) of 

Equation 5-4 comes into play. In the term, the voltage variations due to the admittivity 

change, as well as the voltages on electrodes, are involved. 

To derive the Jacobian matrix, Equation 5-4 is first discretised to 𝐸 dimensions as, 

∑∆휀∗𝑒

𝐸

𝑒=1

∫ ∇Φ𝑑 ∙ ∇Φ𝛿𝑑𝑉
𝑒

=∑∆𝑈𝑑𝑙 (𝐼
𝛿
S𝑙 +

𝑈𝛿𝑙

𝐙F𝑙
𝛿
−
𝑈𝛿𝑙

𝐙F𝑙
𝑑
)

𝐿

𝑙=1
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∑
∆𝑈𝑑𝑙
∆휀∗𝑒

(𝐼𝛿S𝑙 +
𝑈𝛿𝑙

𝐙F𝑙
𝛿
−
𝑈𝛿𝑙

𝐙F𝑙
𝑑
)

𝐿

𝑙=1

= ∫ ∇Φ𝑑 ∙ ∇Φ𝛿𝑑𝑉
𝑒

 

Equation 5-6 

We rewrite it as, 

∑(𝐼𝛿S𝑙 +
𝑈𝛿𝑙

𝐙F𝑙
𝛿
−
𝑈𝛿𝑙

𝐙F𝑙
𝑑
)
𝑈𝑑𝑙(휀

∗
𝑒 + ∆휀

∗
𝑒) − 𝑈

𝑑
𝑙(휀

∗
𝑒)

∆휀∗𝑒

𝐿

𝑙=1

= ∫ ∇Φ𝑑 ∙ ∇Φ𝛿𝑑𝑉
𝑒

 

∑(𝐼𝛿S𝑙 +
𝑈𝛿𝑙

𝐙F𝑙
𝛿
−
𝑈𝛿𝑙

𝐙F𝑙
𝑑
) lim
∆ ∗

𝑒→0

𝑈𝑑𝑙(휀
∗
𝑒 + ∆휀

∗
𝑒) − 𝑈

𝑑
𝑙(휀

∗
𝑒)

∆휀∗𝑒

𝐿

𝑙=1

 

 

=∑(𝐼𝛿S𝑙 +
𝑈𝛿𝑙

𝐙F𝑙
𝛿
−
𝑈𝛿𝑙

𝐙F𝑙
𝑑
)
𝜕𝑈𝑑𝑙
𝜕휀∗𝑒

𝐿

𝑙=1

= ∫ ∇Φ𝑑 ∙ ∇Φ𝛿𝑑𝑉
𝑒

 

Equation 5-7 

Considering the simplified case, the measuring pattern 𝐢𝛿 is on a pair of electrodes 𝑙𝛿+ 

and 𝑙𝛿−, with the current ±𝐼𝛿0 respectively, when in the driving mode. It causes the potential 

distribution in the object to be Φ𝛿; the driving pattern 𝐢𝑑 is exciting the object on a pair of 

electrodes 𝑙𝑑+ and 𝑙𝑑−, with the current ±𝐼𝑑0 respectively. The potential distribution in the 

object is Φ𝑑. There is 𝐙F𝑙
𝛿 = 𝐙F𝑙

𝑑 for the electrodes apart from 𝑙𝛿+, 𝑙𝛿−, 𝑙𝑑+ and 𝑙𝑑−. We have, 

𝐼𝛿0
𝜕𝑈𝑑𝑙𝛿+

𝜕휀∗𝑒
− 𝐼𝛿0

𝜕𝑈𝑑𝑙𝛿−

𝜕휀∗𝑒
+ ∑ 𝑈𝛿𝑙 (

1

𝐙F𝑙
𝛿
−
1

𝐙F𝑙
𝑑
)
𝜕𝑈𝑑𝑙
𝜕휀∗𝑒

𝑙=𝑙
𝛿+ 𝑙𝛿−

𝑙𝑑+ 𝑙𝑑−

= ∫ ∇Φ𝑑 ∙ ∇Φ𝛿𝑑𝑉
𝑒

 

𝜕𝑊𝑑,𝛿
𝜕휀∗𝑒

= ∫ ∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
𝑒

 

Equation 5-8 (a - b) 

Then, the differential formula can be easily recognised, by comparing with Equation 2-20. We 

rewrite it here as, 

𝜕𝑈𝑑,𝛿
𝜕휀∗𝑒

≡
𝜕(𝑈𝑑𝑙+ − 𝑈

𝑑
𝑙−)

𝜕휀∗𝑒
=
−1

𝐼𝛿0
∫ ∇Φ𝑑 ∙ ∇Φ𝛿d𝑉
𝑉𝑒

 . 

The LHS of Equation 5-8 (a) suggests that the integral can be expressed by the linear 

combinations of the voltage variation on the electrodes, with respect to the admittivity. We 

therefore use the new notation 𝑊𝑑,𝛿 in contrast to the 𝑈𝑑,𝛿 in Equation 2-20, for the 
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combinations. Its subscripts 𝑑 and 𝛿 denote the related driving pattern and measuring pattern, 

respectively. 

With the partial derivative given, the Jacobian matrix can be easily obtained as the formula is 

similar to Equation 3-13 in the forward problem Section 3.3.1. Many of the matrices can be re-

used in calculating the Jacobian matrix, therefore we eliminate the derivations here. 

The Equation 5-8 (b) is the contribution from the integral of an element to a driving and a 

measuring pattern. In order to provide the Jacobian matrix, the FEM is applied on RHS of 

Equation 5-8 (b) with the gradient on potentials being replaced with the shape functions. 

𝜕𝑊𝑑,𝛿
𝜕휀∗𝑒

= 𝑉𝑒 [
u𝑒1

𝑑

⋮
u𝑒4

𝑑
]

∗

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑒1
𝜕𝑥
𝜕𝜙𝑒𝑒1
𝜕𝑦

𝜕𝜙𝑒𝑒1
𝜕𝑧

⋯

𝜕𝜙𝑒𝑒4
𝜕𝑥
𝜕𝜙𝑒𝑒4
𝜕𝑦

𝜕𝜙𝑒𝑒4
𝜕𝑧 ]

 
 
 
 
 
 
T

[
 
 
 
 
 
 
𝜕𝜙𝑒𝑒1
𝜕𝑥
𝜕𝜙𝑒𝑒1
𝜕𝑦

𝜕𝜙𝑒𝑒1
𝜕𝑧

⋯

𝜕𝜙𝑒𝑒4
𝜕𝑥
𝜕𝜙𝑒𝑒4
𝜕𝑦

𝜕𝜙𝑒𝑒4
𝜕𝑧 ]

 
 
 
 
 
 

[
u𝑒1

𝛿

⋮
u𝑒4

𝛿
] 

Here 𝑉𝑒 is the volume of the 𝑒th element, and note that, the inner product in complex domain 

is the product of the conjugate transport of the matrix and the other matrix. 

By extending the local nodes to global nodes, it can be recognised as the stiffness matrix. 

𝜕𝑊𝑑,𝛿
𝜕휀∗𝑒

= [
u1
𝑑

⋮
u𝑁

𝑑
]

∗

[
𝝓1
𝑒

⋮
𝝓𝑁
𝑒
] [𝑽𝑒] [

𝝓1
𝑒

⋮
𝝓𝑁
𝑒
]

T

[
u1
𝛿

⋮
u𝑁

𝛿
] = [

u1
𝑑

⋮
u𝑁

𝑑
]

∗

𝑲T[𝑽𝑒]𝑲 [
u1
𝛿

⋮
u𝑁

𝛿
] 

Equation 5-9 

In the above form, only the matrix [𝑽𝑒] need to be redefined by replacing the [휀𝑉𝑒] term in 

the forward FEM matrix. The entries of the Jacobian matrix by Equation 5-8 are then given by 

the product of forward solutions of the two patterns 𝑑 and 𝛿.  

As explained earlier, each column of the Jacobian represent the ∆휀∗𝑒 at an element, and we 

denote a row of the Jacobian with 𝑱𝑑,𝛿, which related to a specific driving and measuring 

pattern 𝑑, 𝛿, as following, 

 𝑱𝑑,𝛿 = [
𝜕𝑊𝑑,𝛿
𝜕휀∗1

⋯
𝜕𝑊𝑑,𝛿
𝜕휀∗𝐸

] ∈ ℂ1×𝐸 . 

Each entry in 𝑱𝑑,𝛿 is the contribution of an elements to the variation of 𝑊𝑑,𝛿. Assume there are 

𝐶 driving patterns 𝑑1~𝑑𝐶 with each of these driving patterns having 𝑀 measurement patterns 

𝛿1~𝛿𝑀, then the overall Jacobian matrix is made up as follows, 
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𝑱 = [
 𝑱𝑑1,𝛿1

⋮
𝑱𝑑𝐶,𝛿𝑀

] ∈ ℂ(𝑀𝐶)×𝐸 . 

In order to calculate the Jacobian matrix effectively, each column of the matrix is calculated at 

once, by applying the forward solutions u𝑑1~𝑑𝐶 and u𝛿1~𝛿𝑀as Equation 5-10. 

𝑱𝑒 = −[
u1
𝑑1

⋮
u𝑁

𝑑1
⋯

u1
𝑑𝐶

⋮
u𝑁

𝑑𝐶
]

∗

𝑲T[𝑽𝑒]𝑲 [
u1
𝛿1

⋮
u𝑁

𝛿1
⋯

u1
𝛿𝑀

⋮
u𝑁

𝛿𝑀
] 

Equation 5-10 

The differences appears on the RHS, and every element in the IEM Jacobian matrix is 

∆𝑊𝑑,𝛿 ∆휀
∗⁄  instead of ∆𝑈𝑑,𝛿 ∆휀

∗⁄ . Consequently, modifications are made on the RHS of 

Equation 2-22 corresponding to ∆𝑊𝑑,𝛿. 

𝑱

[
 
 
 
 
∆휀∗1
⋮

∆휀∗𝑒
⋮

∆휀∗𝐸]
 
 
 
 

=

[
 
 
 
 
∆𝑊𝑑1,𝛿1
⋮

∆𝑊𝑑,𝛿
⋮

∆𝑊𝑑𝐶,𝛿𝑀]
 
 
 
 

, ∆𝑊𝑑,𝛿 =

[
 
 
 
 
 
 
 
 
 
 𝐼𝛿0 + 𝑈

𝛿
𝑙𝛿+ (

1

𝐙F𝑙𝛿+
𝛿
−

1

𝐙F𝑙𝛿+
𝑑
)

−𝐼𝛿0 + 𝑈
𝛿
𝑙𝛿− (

1

𝐙F𝑙𝛿−
𝛿
−

1

𝐙F𝑙𝛿−
𝑑
)

𝑈𝛿𝑙𝑑+ (
1

𝐙F𝑙𝑑+
𝛿
−

1

𝐙F𝑙𝑑+
𝑑
)

𝑈𝛿𝑙𝑑− (
1

𝐙F𝑙𝑑−
𝛿
−

1

𝐙F𝑙𝑑−
𝑑
)

]
 
 
 
 
 
 
 
 
 
 
T

[
 
 
 
 
∆𝑈𝑑𝑙𝛿+

∆𝑈𝑑𝑙𝛿−

∆𝑈𝑑𝑙𝑑+

∆𝑈𝑑𝑙𝑑−]
 
 
 
 

 . 

Equation 5-11 (a - b) 

From Equation 5-11 (b), ∆𝑊𝑑,𝛿 is an inner product of two vectors corresponding to the driving 

and measuring patterns 𝑑 and 𝛿. We form a diagonal matrix and combine it into the Jacobian 

matrix. 

𝑱

[
 
 
 
 
∆휀∗1
⋮

∆휀∗𝑒
⋮

∆휀∗𝐸]
 
 
 
 

=

[
 
 
 
 
 
 
𝑏𝑑1,𝛿1

⋱
𝑏𝑑𝐶,𝛿1

⋱
𝑏𝑑1,𝛿𝑀

⋱
𝑏𝑑𝐶,𝛿𝑀]

 
 
 
 
 
 

[
 
 
 
 
 
 
∆𝑈𝑑1,𝛿1

⋮
∆𝑈𝑑𝐶,𝛿1

⋮
∆𝑈𝑑1,𝛿𝑀

⋮
∆𝑈𝑑𝐶,𝛿𝑀]

 
 
 
 
 
 

= [𝑱𝑰𝑪]

[
 
 
 
 
 
 
∆𝑈𝑑1,𝛿1

⋮
∆𝑈𝑑𝐶,𝛿1

⋮
∆𝑈𝑑1,𝛿𝑀

⋮
∆𝑈𝑑𝐶,𝛿𝑀]

 
 
 
 
 
 

 . 

Equation 5-12 

Here, [𝑱𝑰𝑪] is the instrumental correction matrix for the Jacobian consisting of 𝑏𝑑,𝛿 in 

diagonal. The two vectors in the Equation 5-12 are defined as followed. 
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𝑏𝑑,𝛿 =

[
 
 
 
 
 
 
 
 
 
 𝐼𝛿0 +𝑈

𝛿
𝑙𝛿+ (

1

𝐙F𝑙𝛿+
𝛿
−

1

𝐙F𝑙𝛿+
𝑑
)

−𝐼𝛿0 + 𝑈
𝛿
𝑙𝛿− (

1

𝐙F𝑙𝛿−
𝛿
−

1

𝐙F𝑙𝛿−
𝑑
)

𝑈𝛿𝑙𝑑+ (
1

𝐙F𝑙𝑑+
𝛿
−

1

𝐙F𝑙𝑑+
𝑑
)

𝑈𝛿𝑙𝑑− (
1

𝐙F𝑙𝑑−
𝛿
−

1

𝐙F𝑙𝑑−
𝑑
)

]
 
 
 
 
 
 
 
 
 
 
T

, ∆𝑈𝑑,𝛿 =

[
 
 
 
 
∆𝑈𝑑𝑙𝛿+

∆𝑈𝑑𝑙𝛿−

∆𝑈𝑑𝑙𝑑+

∆𝑈𝑑𝑙𝑑−]
 
 
 
 

. 

Equation 5-12 gives the formula of inverse problems derived from IEM forward problems, in 

which the instrumental effects caused by the instrumental impedance are considered. 

However, it does not change the fact that the inverse problem of EIT is ill-posed. Therefore, 

the solutions can be obtained after the regularisation and non-linear LS techniques are 

applied. 

The same procedures have been used to obtain Equation 2-29 from Equation 2-21 (b) by using 

the iterative regularised Gauss-Newton method. The inverse problem with IEM in Equation 

5-12, therefore can be solved as, 

𝑥𝑘+1 = 𝑥𝑘 + ([𝑱𝑘]
∗[𝑱𝑘] + 𝜆

2𝑳∗𝑳)−1[𝑱𝑘]
∗[𝑱𝑰𝑪𝑘][�̃�𝑑,𝛿(𝑥0 + ∆𝑥) − 𝑈𝑑,𝛿(𝑥𝑘)]

+ 𝜆2𝑳∗𝑳(𝑥0 − 𝑥𝑘). 

Equation 5-13 

5.3 Case Studies and Discussions 

In the following sections, two cases are studied for illustrating the instrumental effects in the 

reconstructed images and the benefit provided by using the IEM inverse problem.  

Both cases are numerical simulations, the input of the inverse problems are given by EIT 

forward problems, in which IEM is used to include the instrumental effects. The typical 

absolute imaging procedure of EIT is used, which has been introduced in Chapter 2 Equation 

2-29. The iterative inverse solver based on iterative regularised Gauss-Newton method is 

included in the algorithm. For each case study, reconstructed images are obtained from both 

the CEM based inverse problem and the IEM based inverse problem, introduced in Section 2.3 

and Section 5.2 respectively. The regularisation parameter 𝜆 in Equation 2-29 (c) and Equation 

5-13 are chosen based on the residuals obtained from first iteration.  
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Both the foreground and the background of first case study are simulated on homogeneous 

admittivity distributions, therefore the difference between the foreground and the 

background is homogeneous. We name the case study, the homogeneous case. 

The second case simulated is on a homogeneous background admittivity distribution, however 

for the foreground, a cylinder and a sphere of different admittivity are placed in the model. We 

name it the elementary object case. 

5.3.1 Homogeneous Case 

The homogeneous case is designed to show the artefacts in reconstructed image caused by 

inaccurate electrode models, or more precisely caused by the instrumental effects not being 

considered in the electrode model. 

A cylinder tank similar to the case studied in section 3.4.2 is used. However there are 16 

electrodes, placed in two rings, as shown in Figure 5-1. In order to simulate the instrumental 

effects, the signal frequency used in this experiment is 1.25 MHz, and typical circuit 

parameters are chosen for the driving and measuring instruments. The parameters of the tank 

and the electrode circuits are listed as, 

 Tank radius, 0.06m; 

 Tank height, 0.05m; 

 Electrode radius, 0.004m; 

 Driving current, 1mA; 

 Resistance part of the driving electrode 5MΩ; 

 Capacitance part of the driving electrode 20pF; 

 Resistance part of the driving electrode 5MΩ; 

 Capacitance part of the driving electrode 10pF. 
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Figure 5-1 Tank Model for Homogeneous Case Study 

As mentioned in Section 5.2, the instrumental impedance of each electrode is not the same, 

we set the standard deviation of all the instrument impedances to be within 1% of the 

impedance values listed previously. 

The background of the simulation is a homogeneous admittivity distribution with the 

conductivity part being 0.05S/m while the relative permittivity being 81. This is a typical setting 

for saline. The foreground of the simulation is also a homogeneous admittivity distribution as 

mentioned. The conductivity is set to be 0.06S/m, and the relative permittivity is 200. This can 

be considered as a tank of conductive gel or AGAR, which is commonly used in EIT applications. 

 

(a) Inverse Solution with IEM           (b) Inverse Solution with CEM  

Figure 5-2 Reconstructed Images for Homogeneous Case Study 

The reconstructed images of inverse problems using IEM and CEM as electrode models 

respectively are shown in Figure 5-2 (a - b). The colour bar in the figures is in the unit of S/m, 
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while the x, y and z axes are in meters. Because the case study is designed for showing the 

artefact caused by the instrumental effects, the histogram of the admittivity on each mesh 

element is plotted in Figure 5-3. The horizontal axis is in the unit of S/m and vertical is element 

count. The true solution of this case study is a homogenous admittivity distribution, and the 

value of which equals to the foreground admittivity. Due to the ill-posedness and numerical 

errors, the admittivity distribution spreads along the admittivity axes across the elements in 

the geometry. From both figures, it can be seen, IEM provides smaller distribution in 

admittivity range, compared with the solution given by CEM. 

 

Figure 5-3 Histogram of Inverse Solutions for Homogeneous Case Study 

This difference in the admittivity variation between the two reconstructions is the artefact 

caused by the instrumental effects. Recall Equation 2-29 (c) and Equation 5-13, the observed 

voltage differences on electrodes contribute to the estimation of admittivity, along with the 

instrumental effects on the observations. Without considering these instrumental effects, the 

Equation 2-29 (c) generates artefacts in the reconstruction result to compensate the 

observation error. The Equation 5-13 however uses the terms [𝑱𝑰𝑪𝑘] to cancel the 

instrumental effects. 

5.3.2 Elementary Objects Case 

The elementary objects case is designed to show the effects on objects in the reconstructed 

image caused by the instrumental effects. 

A cylinder tank similar to the homogeneous case studied is used, but 24 electrodes are placed 

in three rings one upon others on the wall of the cylinder, as shown in Figure 5-4. A higher 

signal frequency of 2 MHz is used in this experiment, and the electrode radii are reduced to 

2.5mm for sake of image reconstruction. 
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Figure 5-4 Tank Model for Elementary Objects Case Study 

A cylinder with diameter 40mm is placed at the centre of the tank throughout the height. A 

sphere with diameter 5mm is placed inside the cylinder in the tank. The coordinates of the 

sphere centre is set to be (15, 10, 37.5) mm. The conductivity of the cylinder is set to be 

0.06S/m, and with relative permittivity being 160. The electrical parameters of the sphere are 

0.10S/m and 200, respectively. 

A slice of each reconstructed image is plotted in Figure 5-5 (a - b) of the two methods. The 

slices are taken in parallel with the top and bottom of the tank, across the centre of the 

spheres. 

Both solutions are given by the 5th iteration, with the same regularisation parameter. Some of 

the typical features mentioned in Section 1.3 can be clearly seen in the figures, including lack 

of sensitivity at locations far from electrodes and errors due to non-linearity, etc. The 

reconstructed admittivity at the centre of the tank is lower than the value it is supposed to be, 

whereas the admittivity at the centre of the sphere is lower as well. However, we do not 

discuss these common issues of EIT inverse problems, since it is not in the scope of this 

chapter. 

Apart from these known issues, due to the instrumental effects, the artefacts appear near the 

electrodes and also distribute inside the elementary objects when using the CEM 
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reconstruction. These artefacts are significantly suppressed when using IEM inverse problem 

to reconstruct the image, as the instrumental effects in the observations are handled by the 

IEM.  

 

(a) Inverse Solution with IEM                 (b) Inverse Solution with CEM  

Figure 5-5 Reconstructed Images for Elementary Objects Case Study 

5.4 Summary 

We have simulated and shown with the above two case studies, that the inverse problems 

including IEM can improve the quality of reconstructed image when the signal frequency is 

high enough when instrumental effects take places. 

The IEM inverse problem provides a new viewpoint for the high frequency EIT applications. 

The instrumental problems and modelling errors (McEwan, et al., 2007) in traditional EIT 

instruments when operating at a high frequency can be overcome by correctly modelling these 

errors, and having the corrected models included in the forward and inverse problems. 
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Chapter 6 Summarise and Further Work 

6.1 Summarise 

EIT is a non-invasive imaging modality. EIT applications covering the beta-dispersion frequency 

are potentially capable of detecting early stage cancers. On the other hand, the ill-posedness, 

modelling errors and instrumental effects have been significantly preventing them from being 

widely applied.  

In this thesis, I have investigated the electrode models and developed numerical models for 

EIT systems to be used in the frequency range from 500 kHz to tens of MHz. 

The contributions of the research can be summarised as follows: 

 An Instrumental Electrode Model (IEM) has been proposed for general EIT forward 

problems, with instrumental effects considered;  

 A full Maxwell version of CEM, using Impedance Boundary Conditions (IBC), is 

proposed for full Maxwell EIT forward problems; 

 A Transmission line Port Model (TPM) is proposed for full Maxwell EIT forward 

problems; 

 An EIT inverse formula including IEM is derived and proposed with simulated results. 

Promising numerical simulation results have been produced, which provides a way of using the 

quasi-static or full Maxwell EIT models with the realistic EIT instrumental effects considered. 

6.2 Future Work 

In the UK, more than 1000 people will be diagnosed with cancer everyday by the end of 2016, 

and almost 400 of them will die from cancer within 5 years, according to a new analysis from 

Macmillan Cancer Support.  One of the most important factors that affects cancer survival 

rates in a population appears to be the stage at which cancers are diagnosed (Torre, et al., 

2012), and Cancer Research UK has been urging to invest more resources in early-stage 

diagnosis and effective treatments.  

Various medical imaging tools are available for cancer detection, and biopsies are usually 

carried out a definitive diagnosis on tissues of abnormality. The accuracy (rate of true 

outcomes to population) of the most commonly used imaging tools, such as X-rays (including 

X-ray CT, mammography et al.), MRI and Ultrasound, are still limited making them poorly 

suited for prognosis (Center, et al., 2011), although they can assist diagnosis. The cost and 

safety issues still prevent them from being used for screening (Wall, et al., 2006; Penfield & 
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Reilly, 2007). There is much unmet need still for low-cost, accurate early-stage prognostic / 

diagnostic tools. 

Previous research found that the difference in bioimpedance between malignant and benign 

tissues is pronounced in the beta-dispersion band (100kHz-100MHz) (Surowiec, et al., 1988; 

Gabriel, et al., 1996). This phenomenon is the foundation for EIT instruments, and it has been 

exploited in commercial electrical impedance spectroscopy tools used in clinical trials for 

cervical intraepithelial neoplasia diagnosis (Tidy, et al., 2013). However, all currently available 

EIT instruments suffer from ill-posedness, making them sensitive to measurement noise and 

modelling errors (Holder, 2005). The quasi-static approximation techniques widely applied in 

the EIT society are not able to cover this frequency band (Soni, et al., 2006). Moreover, 

traditional EIT instruments require front-end circuits to have gigantic input and output 

impedances (Guermandi, et al., 2015), making it impossible achieve reliable imaging 

construction at such high frequencies. Furthermore, traditional EIT instruments use wet 

electrodes to physically contact with patients and therefore are prone to artefacts, greatly 

degrading their performances.  

The research of this thesis tackled the modelling errors and front-end circuits for extending the 

operating frequency of EIT instruments. Moreover, 3-D full-Maxwell models for high-frequency 

operations without making any quasi-static assumption has been proposed. Most recent 

results suggest that the full-Maxwell model shows better performances against ill-posedness 

than the traditional EIT solutions. 

With the previous work done in this thesis, the complexity of EIT system design can be greatly 

reduced by considering realistic instrumental effects. The full-Maxwell EIT algorithms allow 

robust reconstruction of the admittivity in the beta-dispersion band and therefore promise a 

potential non-invasive early stage diagnostic tool. 

A new project, to develop a low-cost contact-free EIT instrument (denoted Electro-Magnetic 

Tomography, EMT, hereafter) that can well cover the beta-dispersion band and provide robust 

imaging reconstruction, has been established with the following objectives: 

 Develop contact-free EMT front-end transceivers that allow injecting/receiving signals 

in the beta-dispersion band. 

 Characterise the developed front-end to provide accurate parameters for the 

proposed full-Maxwell EMT models.  
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 Use full-Maxwell algorithms to ensure the stability and the well-posedness of inverse 

problems. 

Experiments will be performed on laboratory phantoms and biological samples to verify the 

accuracy of the modelling and the efficiency of the reconstructions. 

The proposed EMT technique probes the sample with electromagnetic fields instead of 

electrical currents at the beta-dispersion frequencies. It makes full use of the contrast in 

admittivity between malignant and benign tissues. The reconstructed images do not suffer 

from the artefacts introduced by the electrode-contacts or modelling errors from the quasi-

static approximation. The EMT instrumentation gains benefits from well-developed 

commercial off-the-shelf electronics and carefully-considered theoretical modelling. It has a 

potential to become a non-invasive early stage cancer diagnostic tool. 

  



141 

 

 References 

Adler, A. et al., 2009. GREIT: a unified approach to 2D linear EIT reconstruction of lung images. 

Physiological Measurement, 30(6), p. S35–S55. 

Adler, A. & Lionheart, W. R. B., 2006. Uses and abuses of EIDORS: an extensible software base 

for EIT. Physiological Measurement, Issue 27, p. 25–42. 

Ahn, S. et al., 2010. Weighted frequency-difference EIT measurement of hemisphere phantom. 

s.l., s.n. 

Ammari, H. et al., 2008. Electrical Impedance Tomography by Elastic Deformation. SIAM 

Journal on Applied Mathematics, 68(6), pp. 1557-1573. 

Bakushinskii, A. B., 1992. The problem of the convergence of the iteratively regularized Gauss-

Newton method. Computational Mathematics and Mathematical Physics, 32(9), pp. 1353-

1359. 

Barber, D. C. & Brown, B. H., 1984. Applied potential tomography. J. Phys. E: Sci. Instrum, Issue 

17, pp. 723-733. 

Barton, M. L. & Cendes, Z. J., 1987. New vector finite elements for three‐dimensional magnetic 

field computation. Journal of Applied Physics, 61(8), pp. 3919-3921. 

Bayford, R., 2006. Bioimpedance Tomography (Electrical Impedance Tomography). The Annual 

Review of Biomedical Engineering, Volume 8, p. 63–91. 

Bayford, R., Hanquan, Y., Boone, K. & Holder, D. S., 1995. Experimental validation of a novel 

reconstruction algorithm for electrical impedance tomography based on backprojection of 

Lagrange multipliers. Physiological Measurement, 16(3A), pp. A237-A247. 

Birgül, Ö., Eyüboğlu, B. M. & Ider, Y. Z., 2003. Experimental results for 2D magnetic resonance 

electrical impedance tomography (MR-EIT) using magnetic flux density in one direction. 

Physics in Medicine and Biology, 48(21), pp. 3485-3504. 

Bíró, O., 1999. Edge element formulations of eddy current problems. Computer Methods in 

Applied Mechanics and Engineering, 169(3,4), pp. 391-405. 

Boone, K. G. & Holder, D. S., 1996. Current approaches to analogue instrumentation design in 

electrical impedance tomography. Physiological Measurement, 17(4), p. 229–247. 



142 

 

Borsic, A., 2002. Regularisation Methods for Imaging from Electrical Measurements. PhD Thesis 

ed. Oxford, UK: Oxford Brookes University. 

Borsic, A., Lionheart, W. & McLeod, C., 2002. Generation of anisotropic-smoothness 

regularization filters for EIT. IEEE Transactions on Medical Imaging, 21(6), pp. 579-587. 

Borsic, A., McLeod, C. N. & Lionheart, W. R., 2001. Total Variation regularisation in EIT 

Reconstruction. Hannover, Germany, International Society for Industrial Process Tomography. 

Boyle, A. & Adler, A., 2010. Electrode models under shape deformation in Electrical Impedance 

Tomography. Journal of Physics: Conference Series, 224(1). 

Boyle, A. & Adler, A., 2011. The impact of electrode area, contact impedance and boundary 

shape on EIT images. Physiological Measurement, Issue 32, p. 745–754. 

Boyse, W. E., Lynch, D. R., Paulsen, K. D. & Minerbo, G. N., 1992. Nodal-Based Finite-Element 

Modeling of Maxwell's Equations. IEEE Transactions on Antennas and Propagation, 40(6), pp. 

642-651. 

Boyse, W. E. & Paulsen, K. D., 1997. Accurate Solutions of Maxwell's Equations Around PEC 

Corners and Highly Curved Surfaces Using Nodal Finite Elements. IEEE Transactions on 

Antennas and Propagation, 45(12), pp. 1758-1767. 

Breckon, W. R. & Pidcock, M. K., 1988. Data errors and reconstruction algorithms in electrical 

impedance tomography. Clinical Physics and Physiological Measurement, 9(4A), pp. 105-109. 

Breckon, W. R. & Pidcock, M. K., 1988. Some Mathematical Aspects of Electrical Impedance 

Tomography. Mathematics and Computer Science in Medical Imaging NATO ASI Series, Volume 

39, pp. 351-362. 

Brown, B. H. & Seagar, A. D., 1987. The Sheffield data collection system. Clinical Physics and 

Physiological Measurement, 8(4A), pp. 91-97. 

Calderon, A. P., 1980. On an Inverse Boundary Value Problem. Rio de Janeiro, Sociedade 

Brasileira de Matematica. 

Center, M., Siegel, R. & Jemal, A., 2011. Global cancer facts & figures 2nd Edition, Atlanta, 

Georgia: American Cancer Society. 

Cheney, M., Isaacson, D. & Newell, J. C., 1999. Electrical impedance tomography. SIAM Review, 

Issue 41, pp. 85-101. 



143 

 

Cheney, M. et al., 1990. NOSER: An algorithm for solving the inverse conductivity problem. 

International Journal of Imaging Systems and Technology, 2(2), pp. 66-75. 

Cheng, K. S., Isaacson, D., Newell, J. C. & Gisser, D. G., 1989. Electrode models for electric 

current computed tomography. IEEE Transactions on Biomedical Engineering, pp. 918-924. 

Chung, E. T., Chan, T. F. & Tai, X.-C., 2005. Electrical impedance tomography using level set 

representation and total variational regularization. Journal of Computational Physics, 205(1), p. 

357–372. 

Claasen, T. & Jongepier, A., 1981. Model for the Power Spectral Density of Quantization Noise. 

IEEE Transactions on Acoustics, Speech and Signal Processing, 29(4), pp. 914 - 917. 

Daily, W., Ramirez, A., Binley, A. & LeBrecque, D., 2004. Electrical Resistance Tomography. The 

Leading Edge, 23(5), pp. 438-442. 

Dai, T., Soleimani, M. & Adler, A., 2008. EIT image reconstruction with four dimensional 

regularization. Medical & Biological Engineering & Computing, 46(9), pp. 889-899. 

Davies, B., Fernandez, F. & Philippou, G., 1982. Finite Element Analysis of All Modes in Cavities 

with Circular Symmetry. IEEE Transactions on Microwave Theory and Techniques, 30(11), pp. 

1975-1980. 

Denyer, C. W., Lidgey, F. J., Zhu, Q. S. & McLeod, C. N., 1994. A high output impedance current 

source. Physiological Measurement, 15(2A), pp. A79-A82. 

Devaney, A. J., 1983. A Computer Simulation Study of Diffraction Tomography. IEEE 

Transactions on Biomedical Engineering, BME-30(7), pp. 377-386. 

Dobson, D. C. & Santosa, F., 1994. An image-enhancement technique for electrical impedance 

tomography. Inverse Problems, 10(2), pp. 317-334. 

Dorn, O., Bertete-Aguirre, H., Berryman, J. G. & Papanicolaou, G. C., 1999. A nonlinear 

inversion method for 3D electromagnetic imaging using adjoint fields. Inverse Problems, 15(6), 

pp. 1523-1558. 

Dutta, M., Rakshit, A. & Bhattacharyya, S. N., 2001. Development and study of an automatic AC 

bridge for impedance measurement. IEEE Transactions on Instrumentation and Measurement, 

50(5), pp. 1048-1052. 



144 

 

Dyck, D., Lowther, D. & Freeman, E., 1994. A method of computing the sensitivity of 

electromagnetic quantities to changes in materials and sources. IEEE Transactions on 

Magnetics, 30(5), pp. 3415-3418. 

Eisenberg, M. A. & Malvern, L. E., 1973. On finite element integration in natural co-ordinates. 

International Journal for Numerical Methods in Engineering, 7(4), pp. 574-575. 

Firoozabadi, R. & Miller, E. L., 2010 . Finite Element Modeling of Electromagnetic Scattering for 

Microwave Breast Cancer Detection. Boston, s.n. 

Flores, M. G. C., Negreiros, M., Carro, L. & Susin, A. A., 2004. INL and DNL estimation based on 

noise for ADC test. IEEE Transactions on Instrumentation and Measurement, 53(5), pp. 1391-

1395. 

Flores-Tapia, D., O'Halloran, M. & Pistorius, S., 2011. A BIMODAL RECONSTRUCTION METHOD 

FOR BREAST CANCER IMAGING. Progress In Electromagnetics Research, 118(1), pp. 461-486. 

Fu, J., Hou, C. & Zhao, Z., 2012. MIMO-OFDM scheme using ApFFT over 3GPP SCM channels. 

Transactions of Tianjin University, 18(2), pp. 128-134. 

Gabriel, C., Gabriel, S. & Corthout, E., 1996. The dielectric properties of biological tissues: I. 

Literature. Physics in Medicine and Biology, 41(11), pp. 2231-2249. 

Gisser, D. G., Isaacson, D. & Newell, J. C., 1990. Electric Current Computed Tomography and 

Eigenvalues. SIAM Journal on Applied Mathematics, 50(6), pp. 1623-1634. 

Griffiths, D. J., 1998. Introduction to Electrodynamics. 3rd ed. Upper Saddle River: Pearson 

Education (US). 

Griffiths, H., 2001. Magnetic induction tomography. MEASUREMENT SCIENCE AND 

TECHNOLOGY, Volume 12, pp. 1126-1131. 

Griffiths, H., Stewart, W. R. & Gough, W., 1999. Magnetic Induction Tomography: A Measuring 

System for Biological Tissues. Annals of the New York Academy of Sciences, 873(1), pp. 335-

345. 

Grimnes, S. & Martinsen, O., 2008. Bioimpedance and Bioelectricity Basics. Oxford, UK: Elsevier 

Ltd. 



145 

 

Guermandi, M., Cardu, R., Franchi Scarselli, E. & Guerrieri, R., 2015. Active Electrode IC for EEG 

and Electrical Impedance Tomography With Continuous Monitoring of Contact Impedance. 

IEEE Trans Biomed Circuits Syst., 9(1), pp. 21-33. 

Halter, R., Hartov, A. & Paulsen, K. D., 2004. Design and implementation of a high frequency 

electrical impedance tomography system. Physiological Measurement, Issue 25, p. 379–390. 

Halter, R. J., Hartov, A. & Paulsen, K. D., 2008. A Broadband High-Frequency Electrical 

Impedance Tomography System for Breast Imaging. IEEE Transactions on Biomedical 

Engineering, 55(2), pp. 650-659. 

Harrach, B., Seo, J. K. & Woo, E. J., 2010. Factorization Method and Its Physical Justification in 

Frequency-Difference Electrical Impedance Tomography. IEEE Transactions on Medical 

Imaging, 29(11), p. 1918. 

Harrington, R. F., 1961. Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill. 

Hartinger, A. E., Gagnon, H. & Guardo, R., 2006. A method for modelling and optimizing an 

electrical impedance tomography system. Physiological Measurement, Volume 27, pp. 51-64. 

Hartinger, A. E., Gagnon, H. & Guardo, R., 2007. Accounting for hardware imperfections in EIT 

image reconstruction algorithms. Physiological Measurement, Volume 28, pp. 13-27. 

Hasanov, K. F., Ma, A. W., Nachman, A. I. & Joy, M. L., 2008. Current density impedance 

imaging. IEEE Transactions on Medical Imaging, 27(9), pp. 1301-1309. 

Hayt, W., Kemmerly, J. & Durbin, S., 2011. Engineering Circuit Analysis. 8 ed. s.l.:McGraw-Hill 

Companies. 

Henderson, R. P. & Webster, J. G., 1978. An Impedance Camera for Spatially Specific 

Measurements of the Thorax. IEEE Transactions on Biomedical Engineering, 25(3), pp. 250-254. 

Herman, G. T., 2009. Fundamentals of computerized tomography: Image reconstruction from 

projection. 2nd ed. s.l.:Springe. 

Holder, D., 2005. Electrical Impedance Tomography: Methods, History and Applications. Bristol: 

Institute of Physics Publishing. 

IEEE-SA Standards Board, 2000. IEEE Standard for Terminology and Test Methods for Analog-

to-Digital Converters. IEEE Std 1241-2000, 1(12), pp. 1-98. 



146 

 

Iniewski, K., 2008. Wireless Technologies: Circuits, Systems, and Devices. 1st ed. London: CRC 

Press, Taylor & Francis Group. 

Isaacson, D., 1986. Distinguishability of Conductivities by Electric Current Computed 

Tomography. IEEE Transactions on Medical Imaging, 5(2), pp. 91-95. 

Isaacson, D., Mueller, J., Newell, J. & Siltanen, S., 2004. Reconstructions of Chest Phantoms by 

the D-Bar Method for Electrical Impedance Tomography. IEEE Transactions on Medical 

Imaging, 23(7), pp. 821-828. 

Jackson, J. D., 2002. From Lorenz to Coulomb and other explicit gauge transformations. 

American Journal of Physics, 70(9), pp. 917-928. 

Jackson, V. P., Hendrick, R. E., Feig, S. A. & Kopans, D. B., 1993. Imaging of the radiographically 

dense breast. Radiology, 188(2), pp. 297-301. 

Jerri, A. J., 1977. The Shannon sampling theorem—Its various extensions and applications: A 

tutorial review. Proceedings of the IEEE, 65(11), pp. 1565-1596. 

Jin, B., Khan, T. & Maass, P., 2012. A reconstruction algorithm for electrical impedance 

tomography. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 89(3), p. 

337–353. 

Jones, P. W. & Smith, P., 2010. Stochastic Processes: An Introduction. 2nd ed. London, UK: CRC 

Press. 

Jun, S. C. et al., 2009. Frequency-difference EIT (fdEIT) using weighted difference and 

equivalent homogeneous admittivity: validation by simulation and tank experiment. 

Physiological Measurement, p. 1087–1099. 

Kaipio, J. P., Kolehmainen, V., Somersalo, E. & Vauhkonen, M., 2000. Statistical inversion and 

Monte Carlo sampling methods in electrical impedance tomography. Inverse Problems, 16(5), 

p. 1487–1522. 

Kaipio, J. P., Kolehmainen, V., Vauhkonen, M. & Somersalo, E., 1999. Inverse problems with 

structural prior information. Inverse Problems, 15(3), pp. 713-729. 

Kaltenbacher, B., Neubauer, A. & Scherzer, O., 2008. Iterative regularization methods for 

nonlinear ill-posed problems. s.l.:Berlin : Walter de Gruyter & Co. 



147 

 

Khang, H. S. et al., 2002. J-substitution algorithm in magnetic resonance electrical impedance 

tomography (MREIT): phantom experiments for static resistivity images. IEEE Transactions on 

Medical Imaging, 21(6), pp. 695-702. 

Kohn, R. V. & Vogelius, M., 1985. Determining conductivity by boundary measurements II. 

Interior results. Communications on Pure and Applied Mathematics, 38(5), p. 643–667. 

Kolehmainen, V., Vauhkonen, M., Karjalainen, P. A. & Kaipio, J. P., 1997. Assessment of errors 

in static electrical impedance tomography with adjacent and trigonometric current patterns. 

Physiological Measurement, 18(4), pp. 289-303. 

Korjenevsky, A., Cherepenin, V. & Sapetsky, S., 2000. Magnetic induction tomography: 

experimental realization. Physiological Measurement, 21(1), p. 89–94. 

Kwon, O., Lee, J.-Y. & Yoon, J.-R., 2002. Equipotential line method for magnetic resonance 

electrical impedance tomography. Inverse Problems, 18(4), pp. 1089-1100. 

Kwon, O., Woo, E. J., Yoon, J.-R. & Seo, J. K., 2002. Magnetic resonance electrical impedance 

tomography (MREIT): simulation study of J-substitution algorithm. IEEE Transactions on 

Biomedical Engineering, 49(2), pp. 160-167. 

Larsson, J., 2007. Electromagnetics from a quasistatic perspective. Am. J. Phys., 75(3), pp. 230-

239. 

Lazebnik, M. et al., 2007. A large-scale study of the ultrawideband microwave dielectric 

properties of normal, benign and malignant breast tissues obtained from cancer surgeries. 

Physics in Medicine and Biology, 52(20), pp. 6093-6115. 

Li, N., 2014. DEVELOPMENT OF A REAL-TIME CELLULAR IMPEDANCE ANALYSIS SYSTEM. PhD 

Thesis ed. Brighton: University of Sussex. 

Li, N. et al., 2013. A high-speed bioelectrical impedance spectroscopy system based on the 

digital auto-balancing bridge method. Measurement Science and Technology, 24(6), p. 065701. 

Lionheart, W. R. B., 2004. EIT reconstruction algorithms: pitfalls, challenges and recent 

developments. Physiological Measurement, Issue 25, p. 125–142. 

Lynch, D. R. & Paulsen, K. D., 1991. Origin of Vector Parasites in Numerical Maxwell Solutions. 

IEEE Transactions on Microwave Theory and Techniques, 39(3), pp. 383-394. 



148 

 

Marquardt, D. W., 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. 

Journal of the Society for Industrial and Applied Mathematics, 11(2), pp. 431-441. 

McEwan, A., Cusick, G. & Holder, D. S., 2007. A review of errors in multi-frequency EIT 

instrumentation. Physiological Measurement, 28(7), p. S197–S215. 

McEwan, A. et al., 2006. Design and calibration of a compact multi-frequency EIT system for 

acute stroke imaging. Physiological Measurement, 27(5), pp. 199-210. 

Meaney, P. M. et al., 2000. A Clinical Prototype for Active Microwave Imaging of the Breast. 

IEEE Transactions on Microwave Theory and Techniques, 48(11), pp. 1841-1853. 

Meaney, P. M., Paulsen, K. D. & Chang, J. T., 1998. Near-field microwave imaging of 

biologically-based materials using a monopole transceiver system. IEEE Transactions on 

Microwave Theory and Techniques, 46(1), pp. 31 - 45. 

Meeson, S., 1997. An investigation of optimal performance criteria in Electrical Impedance 

Tomography. PhD Thesis ed. Southampton, UK: University of Southampton. 

Merwa, R., Hollaus, K., Brandstätter, B. & Scharfetter, H., 2003. Numerical solution of the 

general 3D eddy current problem for magnetic induction tomography (spectroscopy). 

Physiological Measurement, 24(2), p. 545–554. 

Merwa, R., Hollaus, K., Brunner, P. & Scharfetter, H., 2005. Solution of the inverse problem of 

magnetic induction tomography (MIT). Physiological Measurement, 26(2), pp. S241-S250. 

Metherall, P., Barber, D. C., Smallwood, R. H. & Brown, B. H., 1996. Three-dimensional 

electrical impedance tomography. Nature, Issue 380, pp. 509-512. 

Mirtaheri, P., Grimnes, S. & Martinsen, O. G., 2005. Electrode Polarization Impedance in Weak 

NaCl Aqueous Solutions. IEEE Transactions on Biomedical Engineering, 52(12), pp. 2093-2099. 

Moré, J. J., 1978. The Levenberg-Marquardt algorithm: Implementation and theory. Numerical 

Analysis, Volume 630, pp. 105-116. 

Morucci, J. P. et al., 1995. 3D reconstruction in electrical impedance imaging using a direct 

sensitivity matrix approach. Physiological Measurement, 16(3A), pp. A123-A128. 

Mueller, J. L., Siltanen, S. & Isaacson, D., 2002. A direct reconstruction algorithm for electrical 

impedance tomography. IEEE Transactions on Medical Imaging, 21(6), pp. 555-559. 



149 

 

Murai, T. & Kagawa, Y., 1985. Electrical Impedance Computed Tomography Based on a Finite 

Element Model. IEEE Transactions on Biomedical Engineering, BME-32(3), pp. 177-184. 

Nissinen, A., Kolehmainen, V. & Kaipio, J., 2011. Compensation of Modelling Errors Due to 

Unknown Domain Boundary in Electrical Impedance Tomography. IEEE Transactions on 

Medical Imaging, 30(2), pp. 231-242. 

Oh, T. I. et al., 2007. Calibration methods for a multi-channel multi-frequency EIT system. 

Physiological Measurement, 28(10), p. 1175. 

Oh, T. I. et al., 2011. A fully parallel multi-frequency EIT system with flexible electrode 

configuration: KHU Mark2. Physiological Measurement, Issue 32, p. 835–849. 

Oh, T. I., Woo, E. J. & Holder, D., 2007. Multi-frequency EIT system with radially symmetric 

architecture: KHU Mark1. Physiological Measurement, Issue 28, p. S183–S196. 

Paulsen, K. D., Boyse, W. E. & Lynch, D. R., 1992. Continuous Potential Maxwell Solutions on 

Nodal-Based Finite Elements. IEEE Transactions on Antennas and Propagation, 40(10), pp. 

1192-1200. 

Penfield, J. G. & Reilly, R. F., 2007. What nephrologists need to know about gadolinium. Nature 

Clinical Practice Nephrology, 3(12), p. 654–68. 

Penfield, P., Spence, R. & Duinker, S., 1970. Tellegen's theorem and electrical networks. 1 ed. 

Cambridge, Massachusetts, US: M.I.T. Press. 

Peyton, A. J. et al., 1996. An overview of electromagnetic inductance tomography: description 

of three different systems. Meas. Sci. Technol., 7(3), pp. 261-271. 

Platonov, A. A., Jedrzejewski, K., Małkiewicz, Ł. & Jasnos, J., 2006. Principles of optimisation, 

modelling and testing of intelligent cyclic A/D converters. Measurement, 39(3), pp. 213-231. 

Polydorides, N. & Lionheart, W. R. B., 2002. A Matlab toolkit for three-dimensional electrical 

impedance tomography: a contribution to the. MEASUREMENT SCIENCE AND TECHNOLOGY, 

Issue 13, p. 1871–1883. 

Rahman, B. M. A. & Davies, B. J., 1984. Penalty Function Improvement of Waveguide Solution 

by Finite Elements. IEEE Transactions on Microwave Theory and Techniques, 32(8), pp. 922-

928. 



150 

 

Rao, N. N., 1991. Elements of Engineering Electromagnetics. 3rd ed. New Jersey, US: Prentice-

Hall, Inc.. 

Ross, A. S., Saulnier, G. J., Newell, J. C. & Isaacson, D., 2003. Current source design for electrical 

impedance tomography. Physiological Measurement, 24(2), pp. 509-516. 

Säbel, M. & Aichinger, H., 1996. Recent developments in breast imaging. Physics in Medicine 

and Biology, 41(3), pp. 315-368. 

Sarpeshkar, R., Delbruck, T. & Mead, C., 1993. White noise in MOS transistors and resistors. 

IEEE Circuits and Devices Magazine, 9(6), pp. 23-29. 

Saulnier, G. J. et al., 2001. Electrical impedance tomography. IEEE Sig. Proc. Mag., Issue 18, pp. 

31-43. 

Saulnier, G. J., Ross, A. S. & Liu, N., 2006. A high-precision voltage source for EIT. Physiological 

Measurement, 27(5), pp. 221-236. 

Schwan, H., 1957. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys., 

Volume 5, pp. 147-209. 

Scott, G. C., Joy, M. L. G., Armstrong, R. L. & Henkelman, R. M., 1992. Sensitivity of magnetic-

resonance current-density imaging. Journal of Magnetic Resonance, 97(2), pp. 235-254. 

Scott, G., Joy, M., Armstrong, R. & Henkelman, R., 1991. Measurement of nonuniform current 

density by magnetic resonance. IEEE Transactions on Medical Imaging, 10(3), pp. 362-374. 

Seagar, A. D., Barber, D. C. & Brown, B. H., 1987. Theoretical limits to sensitivity and resolution 

in impedance imaging. Clinical Physics and Physiological Measurement, 8(4A), pp. 13-31. 

Semenov, S., 2009. Microwave tomography: review of the progress towards clinical 

applications. Philosophical Transactions A, 367(1900), pp. 3021-3042. 

Semenov, S. Y. et al., 1998. Microwave Tomography: Theoretical and Experimental 

Investigation of the Iteration Reconstruction Algorithm. IEEE Transactions on Microwave 

Theory and Techniques, 46(2), pp. 133-141. 

Senior, T. B. A., 1960. Impedance boundary conditions for imperfectly conducting surfaces. 

Applied Scientific Research, Section B, 8(1), pp. 418-436. 



151 

 

Seo, J. K. et al., 2008. Frequency-difference electrical impedance tomography (fdEIT): 

algorithm development and feasibility study. Physiological Measurement, 29(8), p. 929. 

Seo, J. K. & Woo, E. J., 2011. Magnetic Resonance Electrical Impedance Tomography (MREIT). 

SIAM Review, 53(1), pp. 40-68. 

Seo, J. K., Yoon, J.-R., Woo, E. J. & Kwon, O., 2003. Reconstruction of conductivity and current 

density images using only one component of magnetic field measurements. IEEE Transactions 

on Biomedical Engineering, 50(9), pp. 1121-1124. 

Sheng, X.-Q. & Song, W., 2012. Essentials of Comupational Electromagnetics. Singapore: John 

Wiley & Sons Singapore Pte.. 

Shen, L. C. & Kong, J. A., 1995. Applied Electromagnetism. 3rd ed. Boston: PWS Publishing Co.. 

Soleimani, M. & Lionheart, W., 2005. Image Reconstruction in Three-Dimensional 

Magnetostatic Permeability Tomography. IEEE Transactions on Magnetics, 41(4), pp. 1274-

1279. 

Soleimani, M. et al., 2006. A three-dimensional inverse finite-element method applied to 

experimental eddy-current imaging data. IEEE Transactions on Magnetics, 42(5), pp. 1560-

1567. 

Somersalo, E., Cheney, M. & Isaacson, D., 1992. Existence and uniqueness for electrode models 

for electric current computed tomography. SIAM Journal on Applied Mathematics, p. 1023 

1040. 

Somersalo, E., Cheney, M., Isaacson, D. & Isaacson, E., 1991. Layer stripping: a direct numerical 

method for impedance imaging. Inverse Problems, 7(6), pp. 899-926. 

Somersalo, E. et al., 1997. Impedance imaging and Markov chain Monte Carlo methods. San 

Diego, CA, SPIE. 

Soni, N. K., Paulsen, K. D., Dehghani, H. & Hartov, A., 2006. Finite Element Implementation of 

Maxwell's Equations for Image Reconstruction in Electrical Impedance Tomography. IEEE 

Transactions on Medical Imaging, 25(1), pp. 55-61. 

Souvorov, A. E. et al., 1998. Microwave Tomography: A Two-Dimensional Newton Iterative 

Scheme. IEEE Transactions on Microwave Theory and Techniques, 46(11), pp. 1654-1659. 



152 

 

Strang, G. & Fix, G. J., 1973. An analysis of the finite element method. 1st ed. New Jersey, US: 

Prentice-Hall Englewood Cliffs, NJ. 

Stratton, J. A., 1941. Electromagnetic Theory. New York: McGraw-Hill. 

Surowiec, A., Stuchly, S., Barr, J. & Swarup, A., 1988. Dielectric Properties of Breast Carcinoma 

and the Surrounding Tissues. IEEE Transactions on Biomedical Engineering, 35(4), pp. 257 - 

263. 

Sylvester, J. & Uhlmann, G., 1987. A Global Uniqueness Theorem for an Inverse Boundary 

Value Problem. Annals of Mathematics, 125(1), pp. 153-169. 

Tang, M. et al., 2002. The number of electrodes and basis functions in EIT image 

reconstruction. Physiological Measurement, 23(1), p. 129–140. 

Tidy, J. A. et al., 2013. Accuracy of detection of high-grade cervical intraepithelial neoplasia 

using electrical impedance spectroscopy with colposcopy. An International Journal of 

Obstetrics & Gynaecology, 120(4), pp. 400-411. 

Torre, L., Siegel, R. & Jemal, A., 2012. Global cancer facts & figures 3rd Edition, Atlanta, 

Georgia: American Cancer Society. 

Van Bladel, J., 1964. Electromagnetic Fields. Revised printing by Hemisphere Publishing, New 

York, 1985 ed. New York: McGraw-Hill. 

Vasilescu, G., 2006. Electronic Noise and Interfering Signals. 2nd ed. Berlin : Springer. 

Vauhkonen, M., Kaipio, J. P., Somersalo, E. & Karjalainen, P. A., 1997. Electrical impedance 

tomography with basis constraints. Inverse Problems, 13(2), p. 523–530. 

Vauhkonen, M. et al., 1998. Tikhonov Regularization and Prior Information in Electrical 

Impedance Tomography. IEEE Transactions on Medical Imaging, 17(2), pp. 285-293. 

Vauhkonen, P. J., Vauhkonen, M., Savolainen, T. & Kaipio, J. P., 1999. Three-dimensional 

electrical impedance tomography based on the complete electrode model. IEEE Transactions 

on Biomedical Engineering, Issue 46, pp. 1150-1160. 

Wall, B. F. et al., 2006. What are the risks from medical X-rays and other low dose radiation?. 

The British Journal of Radiology, 79(940), pp. 285-294. 

Wangsness, R. K., 1986. Electromagnetic Fields. 2nd Edition ed. Chichester: John Wiley & sons. 



153 

 

Webster, G. J., 1990. Electrical Impedance Tomography. Bristol, UK: Adam Hilger. 

Westgard, J. B., 1997. Electrodynamics: A Concise Introduction. New York: Springer-Verlag New 

York, Inc.. 

Wexler, A., 1988. Electrical impedance imaging in two and three dimensions. Clinical Physics 

and Physiological Measurement, 9(4A), pp. 29-33. 

Wheeler, H., 1964. Transmission-line properties of parallel wide strips by a conformal-mapping 

approximation. IEEE Transactions on Microwave Theory and Techniques, 12(3), pp. 280-289. 

Widrow, B. & István, K., 2008. Spectrum of Quantization Noise and Conditions of Whiteness. 

In: Quantization Noise. Cambridge: Cambridge University Press, pp. 529-562. 

Woo, E., Hua, P., Webster, J. & Tompkins, W. J., 1993. A robust image reconstruction algorithm 

and its parallel implementation in electrical impedance tomography. IEEE Transactions on 

Medical Imaging, 12(2), pp. 137-146. 

Yang, W. Q. & Peng, L., 2003. Image reconstruction algorithms for electrical capacitance 

tomography. Measurement Science and Technology, 14(1), p. R1. 

Yorkey, T., 1986. Comparing reconstruction algorithms for electrical impedance tomography. 

PhD Thesis ed. Madison, US: University of Wisconsin and madison. 

Yorkey, T. J., Webster, J. & Tompkins, W. J., 1987. Comparing Reconstruction Algorithms for 

Electrical Impedance Tomography. IEEE Transactions on Biomedical Engineering, BME-34(11), 

pp. 843-852. 

Yu, Z. et al., 1993. Imaging system based on electromagnetic tomography (EMT). Electronics 

Letters, 29(7), pp. 625-626. 

Zhang, W. & Li, D., 2014. An instrumental electrode model for solving EIT forward problems. 

Physiological Measurement, 35(10), pp. 2001-2026. 

 


	DPhil Coversheet
	Zhang, Weida
	Declaration
	Abstract
	Acknowledgments
	Table of  Contents
	List of Publications
	List of Acronyms
	List of Symbols
	Chapter 1 Introduction
	1.1 Characteristics and Classification
	1.2 Motivations
	1.3 Literature Review and State-of-the-art
	1.3.1 EIT Algorithms
	1.3.2 EIT Instruments
	1.3.3 Other Modalities and Dual-Modalities

	1.4 Problems
	1.5 Objectives and Contributions
	1.6 Thesis Organisation

	Chapter 2 Background of Research
	2.1 Introduction
	2.2 Forward Problem
	2.2.1 Quasi-static Maxwell’s Equation
	2.2.2 Numerical Techniques and FEM
	2.2.3 Weak Formula and Boundary Conditions

	2.3 Inverse Problem
	2.3.1 Perturbation and Jacobian Matrix
	2.3.2 Regularisation and Iterative Method
	2.3.2.1 Linear Least Squares and Regularisation
	2.3.2.2 Typical Iterative Inverse Methods


	2.4 Full Maxwell’s Equations in Potential Formula
	2.4.1 Maxwell’s Equations in Potential Fields and Gauge Fixing
	2.4.2 Weak Formula on Potential Helmholtz-like Equations
	2.4.3 Boundary Conditions for EIT in Full Maxwell’s Equations

	2.5 Hardware and Instrument
	2.5.1 Deterministic Errors
	2.5.1.1 The Sources
	2.5.1.2 The Measuring Devices

	2.5.2 Stochastic Processes
	2.5.2.1 Thermal Noise and Noise of Devices
	2.5.2.2 ADC Non-idealities and Quantisation Errors

	2.5.3 Analysis and Discussions

	2.6 Summary

	Chapter 3 EIT Forward Problems with IEM
	3.1 Introduction
	3.2 IEM Boundary Conditions
	3.3 Numerical Implementation and Finite Element Method
	3.3.1 Numerical Modelling with IEM
	3.3.2 Discretisation and Shape Function
	3.3.3 FEM Forward Problem in Matrix Form

	3.4 Case Studies and Discussions
	3.4.1 Lumped Model
	3.4.2 Tank Model and Discussion

	3.5 Summary
	3.6 Appendix

	Chapter 4 EIT Forward Problems with Full Maxwell’s Equations
	4.1 Introduction
	4.2 Fundamental of Electromagnetic Field and Potentials
	4.2.1 Quasi-static Approximation
	4.2.2 Continuity Conditions

	4.3 Numerical Implementation of Helmholtz-like Equations
	4.3.1 FEM for Potential Formula
	4.3.2 Boundary Conditions for Potential Equations

	4.4 Boundary Conditions for EIT and Electrode Models
	4.4.1 Complete Electrode Model with Impedance Boundary Condition
	4.4.1.1 Current Driving Electrodes
	4.4.1.2 Voltage Driving Electrodes
	4.4.1.3 Implementation

	4.4.2 Instrumental Electrode and Transmission Line Port Model

	4.5 Case Study and Discussions
	4.6 Summary

	Chapter 5 EIT Inverse Problems with IEM
	5.1 Introduction
	5.2 Perturbation and IEM Jacobian Matrix
	5.3 Case Studies and Discussions
	5.3.1 Homogeneous Case
	5.3.2 Elementary Objects Case

	5.4 Summary

	Chapter 6 Summarise and Further Work
	6.1 Summarise
	6.2 Future Work

	References


