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Abstract 

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy with lower extremity 

predominance (SMA-LED) are two forms of motor neuron diseases at the opposite 

ends of the age spectrum, with ALS being mainly an adult-onset progressive and fatal 

neurodegenerative disease, and SMA-LED being a childhood-onset neuromuscular 

disease, manifested by muscle weakness, joint contracture, abnormal gait, and in 

some cases combined with intellectual disability.  This thesis represents my research 

on the role of mutant forms of two proteins, namely Tar-DNA binding protein 43 (TDP-

43) and cytoplasmic dynein heavy chain 1 (DYNC1H1) in the pathogenesis of ALS and 

SMA-LED, respectively. 

TDP-43 – an RNA/DNA binding protein – has been implicated in ALS. The function of 

TDP-43 in the nucleus is to regulate RNA processing, including RNA splicing and editing. 

Abnormal expression of the peripherin splice variant per61 has been found in 

transgenic mouse models of ALS. In addition, aberrant expression of EAAT2 (excitatory 

amino acid glutamate transporter 2) protein has been reported in some ALS cases. 

Thus, I investigated splicing of peripherin and GLT-1 (the murine homologue of EAAT2) 

RNAs, as potential targets of TDP-43 and examined whether mutations in TDP-43 alter 

the expression levels of the genes encoding the two proteins. My data show that per61 

is expressed in wild type mice at both RNA and protein levels. This suggests a role for 

this isoform in the assembly of peripherin filaments. Moreover, overexpression of TDP-

43A315T increases the expression level of per45 (an alternative translated isoform of 

peripherin) and leads to the instability of the filament network. Analysis of GLT-1B, the 

neuronal splice variant of GLT-1, reveals significant down-regulation in TDP-43A315T 

transgenic mice, indicating impaired RNA processing of GLT-1B. Collectively, these data 

show that the expression of peripherin and EAAT2 is regulated by TDP-43, and that 

aberrant expressions of these two genes caused by TDP-43 mutations could have a 

role in the pathology of ALS. 

A Phe580Tyr mutation in the mouse gene Dync1h1 impairs growth factor-induced 

endocytic trafficking in Dync1h1+/F580Y mouse motor neurons, resulting in aberrant 

activation of extracellular-signal-related kinases 1 and 2 (ERK1/2) and phosphorylation 

of the immediate early gene c-Fos. My data show that the induction of c-Fos upon 



 
 

serum starvation and/or growth factor stimulation is ERK1/2 dependent and that the 

mitogen-activated protein kinase p38 is also likely to be involved in c-Fos activation 

during starvation. Moreover, the activation of autophagy is reduced in Dync1h1+/F580Y 

motor neurons, suggesting a role for cytoplasmic dynein in autophagy 

induction/formation.  

In addition, the Dync1h1F580Y/F580Y mouse embryonic fibroblasts (MEFs) exhibit a defect 

in cell migration, as manifested by a delayed wound closure and reduced levels of 

paxillin phosphorylation at Tyr118 (p-paxillin). They also show abnormal and increased 

number of focal adhesions in spreading assays. Interestingly, human SMA-LED 

DYNC1H1R399G/R399G fibroblasts show defective lamellipodia formation, as well as 

reduced levels of p-paxillin. Moreover, Dync1h1+/F580Y mouse motor neurons show a 

defect in exploratory microtubules in the peripheral domain of their growth cones. As 

the molecular mechanism of growth cone motility is analogous to that found in 

fibroblasts, the molecular pathogenesis of SMA-LED caused by mutations in 

cytoplasmic dynein heavy chain 1, is likely to involve impaired growth cone 

development and axonal pathfinding, which could be exacerbated by the aberrant 

endocytic trafficking and signalling in mutant motor neurons. 
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1. The central nervous system 

The central nervous system (CNS) consists of seven basic components: cerebrum, 

diencephalon, midbrain, pons, cerebellum, medulla and spinal cord (Purves et al. 

2008). The medulla, pons and midbrain are, together, called the brainstem which acts 

as a passageway for the neuronal fibres that extend between the upper and lower 

neurons. The diencephalon and the cerebral hemispheres are called the forebrain, 

whereas the cerebellum and brainstem form the hindbrain.  The brainstem contains 

several nuclei (group of cell bodies) of which many belong to the cranial nerves. 

Extending from the brainstem is the spinal cord which is surrounded by the vertebral 

column. The spinal cord can be divided into five regions, namely: cervical, thoracic, 

lumbar, sacral and coccygeal. The spinal nerve (peripheral nerve) emerges from the 

spinal cord towards the periphery where it innervates muscles. It connects with the 

spinal cord through the ventral and dorsal roots which contain axons of motor neurons 

and sensory neurons respectively (Figure 1.1). The dorsal root ganglion is an organ 

located along the spinal nerves and contains a cluster of sensory cell bodies which 

project their axons to the spinal nerve and the spinal cord. The spinal cord consists of 

two types of tissue, the grey matter and the white matter. The grey matter is divided 

into three parts named the ventral (anterior), the dorsal (posterior) and the lateral 

horn. The dorsal horn contains axons of sensory neurons whereas the ventral horn 

contains cell bodies of motor neurons. The axons of sensory neurons synapse with 

motor neurons either directly (Figure 1.1, in blue and red respectively) or through 

inter-neurons (Figure 1.1, in purple). 

Neurons which are located in the primary motor cortex, control movements through 

descending pathways (Carlson 2012; Siegel and Sapru 2010). The pathways can be 

divided into the lateral and the ventromedial group, which are named according to 

their location in the white matter of the spinal cord. These pathways are composed of 

two neuronal groups: upper motor neurons and lower motor neurons (Monkhouse 

2007). The upper motor neurons can only be found in the CNS and their cell bodies are 

located in the motor cortex (Bhatnagar 2001). Their axons travel through the 

brainstem towards the ventral horn of the spinal cord where they synapse with the 

lower motor neurons.  
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Figure 1.1  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 - The internal structure of the spinal cord. Note: adapted from (Purves et al. 2008) with 

modifications.   
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The lower motor neurons’ cell bodies are located in the CNS and they extend their 

axons to the peripheral nervous system where they innervate muscles. The 

aforementioned cell bodies are found in two regions of the CNS: 1) in the cranial nerve 

motor nuclei of the brainstem and 2) in the ventral horn of the spinal cord. With 

regard to the descending pathways, the lateral group is comprised of the corticospinal, 

corticobulbar and rubrospinal tracts (Carlson 2012; Siegel and Sapru 2010). These 

tracts are responsible for controlling fine movements, as well as independent 

movements of limbs (e.g. moving the right hand in a different direction than the left 

hand). The ventromedial group consists of the reticulospinal, the vestibulospinal, the 

tectospinal and the ventral corticospinal tracts. Of relevance to motor neuron diseases 

are the corticospinal and the corticobulbar tracts from the lateral group and the 

ventral corticospinal tracts from the ventromedial group. Thus, the discussion of this 

thesis will focus on only these three tracts.   

The corticospinal tract which is comprised of axons of cortical neurons, arises from the 

primary motor cortex, where their cell bodies are located and terminates in the grey 

matter of the spinal cord (Carlson 2012; Siegel and Sapru 2010). The axons extend 

through the white matter of the motor cortex, descending through the forebrain, 

midbrain, pons, and the medulla. The majority of axons cross to the contralateral 

spinal cord at the juncture between medulla and spinal cord, leading to the formation 

of the lateral corticospinal cord. They either directly synapse, or synapse through 

interneurons with the spinal motor neurons. These motor neurons are located in the 

gray matter of the lateral horn and innervate muscles of distal extremities such as 

hands, arms, fingers, lower legs, feet and toes (Figure 1.2, the light blue tract). The 

remaining fibres continue descending through the ipsilateral spinal cord (the ventral 

corticospinal tract). The axons of the ventral corticospinal tract also synapse with 

motor neurons on both sides of the grey matter of the ventral horn and thus innervate 

muscles of the upper legs and trunk (Figure 1.2, the dark blue neurons). The 

corticobulbar tract also starts in the motor cortex, originates in the region that is 

responsible for controlling the face and tongue, and terminates in the motor nuclei in 

the brainstem (bulbar) (Figure 1.2, the green tract). The corticobulbar tract is  
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Figure 1.2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – Affected descending pathways in motor neuron diseases. The Figure shows the 

corticospinal and the corticobulbar tracts from the lateral group (light blue and green tracts 

respectively) and the ventral corticospinal tracts from the ventromedial group (dark blue tract). Note: 

image adapted from (Carlson 2012).   
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responsible for controlling the movement of the face, neck, tongue and some 

extraocular eye muscles. 

2. Motor neuron diseases (MND)  

Motor neuron diseases (MND) are neurological disorders characterized by motor 

neuron degeneration leading to muscle weakness and atrophy. Table 1.1 shows 

examples of several motor neuron diseases and their differentiating symptoms. Two 

forms of MNDs will be focused on in this thesis: Amyotrophic lateral sclerosis, the most 

common form of MND and Spinal muscular atrophy with lower extremity 

predominance (SMA-LED).         

2.1 Diseases of upper and lower motor neurons 

2.1.1 Amyotrophic lateral sclerosis (ALS)  

Amyotrophic lateral sclerosis is the most common form of motor neuron degeneration 

affecting upper motor neurons (cerebral cortex) and lower motor neurons (brainstem 

and spinal cord), leading to fatal paralysis  (OMIM #105400)  (Renton, Chiò, and 

Traynor 2014; Robberecht and Philips 2013). There are two types of ALS: familial ALS 

and sporadic ALS. The majority of ALS cases are sporadic (sALS), while 10% are familial 

(fALS). The familial ALS is predominantly autosomal dominant. There are, however, 

rare cases of familial ALS which are X-linked or recessive.   

2.1.2 Clinical features of ALS and its treatment 

ALS is characterized by muscle atrophy (amyotrophic) causing muscle weakness and 

fasciculation manifested in the lower motor neurons (LMN). Lateral sclerosis describes 

the hardened state of the lateral column in the spinal cord that was found in autopsy 

specimens (Ferguson and Elman 2007) . ALS is a late onset progressive disorder which 

commonly affects people between the age of 55-65. Ten percent of ALS cases show 

variant symptoms of either LMN manifestations (spinal muscular atrophy) or signs of 

degeneration in the upper motor neurons (UMN).  
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Table 1.1  

  

MND 

 

Overview of disease characteristics 

 

 

Ref. 

UMN and 

LMN 

 

Amyotrophic lateral 

sclerosis (ALS) 

(Lou Gehrig's disease) 

Late onset, rapidly progressive. Asymmetrical 

weakness of extremities, muscle fasciculation and 

cramps, bulbar signs: dysphagia and dysarthria.  (see 

Table 1.2 for more details)  

 

(Ferguson 

and Elman 

2007) 

ALS with 

frontotemporal 

dementia (FTD) 

FTD symptoms: loss of vision and volition, 

distractibility, social disinhibition and cognitive 

impairment (e.g. difficulty with planning and attention) 

 

 (Kinsley 

and 

Siddique 

2012) 

UMN only 

Primary lateral sclerosis 

(PLS) 

Late onset, slowly progressive. Primary motor neuron 

loss, weakness and spasticity in one lower limb 

(asymmetrical onset) and bulbar affect (dysarthria 

followed by dysphagia), pseudobulbar affect 

(uncontrolled emotion e.g. sudden crying), no LMN 

signs.  

 

 (Singer et 

al. 2007) 

Hereditary spastic 

paraplegia (HSP) 

Early childhood onset, genetically and clinically 

heterogeneous. Progressive spasticity and weakness in 

lower limbs. Pure HSP: spastic paraplegia, bladder 

spasticity and mildly impaired sensations. Complicated 

HSP: lower limb spasticity associated with other 

neurological or non-neurological diseases (e.g. 

intellectual disability and deafness respectively).  

 

 (Noreau, 

Dion, and 

Rouleau 

2014; Lo 

Giudice et 

al. 2014) 

 LMN 

only 

Distal hereditary motor 

neuropathies (dHMN) 

Early adulthood onset, autosomal dominant, slowly 

progressive. LMN weakness or degeneration in the 

ventral horn of spinal cord, distal muscle wasting and 

weakness, reduced or no reflex response. 

 

 

 

(Rossor et 

al. 2012) 
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Table 1.1 Cont. 

 

MND 

 

Overview of disease characteristics  

   

 

Ref. 

LMN 

only  

Progressive muscular 

atrophy (PMA) 

LMN loss, prominent weakness and atrophy, no UMN 

signs.  

 

(Cervenak

ova et al. 

2000)  

Monomelic amyotrophy 

(MMA) 

(Hirayama disease) 

Non-progressive. Muscle wasting and weakness in 

upper limb (can be bilateral), affects young males.  

 

 (Kiernan, 

Lethlean, 

and Blum 

1999) 

Multifocal motor 

neuropathy (MMN) 

Slowly progressive. No sensory involvement, 

asymmetric muscle weakness in upper limb.  

 

(Ferguson 

and Elman 

2007) 

Spinal muscular atrophy 

(SMA) 

Onset ranges from before birth to early adulthood. 

Progressive, familial, autosomal recessive. LMN loss in 

spinal cord and brainstem, proximal muscle wasting 

and weakness (symmetrical).  

 

 (Prior and 

Russman 

2013; 

Zanetta et 

al. 2014) 

Spinal and bulbar 

muscular atrophy 

(SBMA) (Kennedy's 

disease) 

Late onset, slowly progressive, affects only males. 

Fasciculation of the tongue, lips or perioral region; 

dysphagia, dysarthria, proximal muscle weakness of 

the limbs, muscle spasms; no UMN signs.  

 

 (Spada 

2011; 

Katsuno et 

al. 2012) 

 Spinal muscular 

atrophy with lower 

extremity 

predominance (SMA-

LED) 

Congenital or early childhood onset, autosomal 

dominant, non-progressive or slowly-progressive 

motor neuron degeneration. Walking delay, waddling 

walk, difficulty climbing stairs, muscle weakness and 

wasting of proximal lower limb muscles, mild cognitive 

disability, no sensory involvement.  

 

 (Harms et 

al. 2012) 
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Table 1.1 Cont. 

 

MND 

 

Overview of disease characteristics  

   

 

Ref. 

LMN 

only 

Progressive bulbar palsy 

(PBP) 

Progressive. Affects the motor nuclei in brainstem 

(bulbar motor neuron loss), dysphagia, dysarthria, 

tongue fasciculation, abnormal accumulation of 

secretions.  

 

 

 (Talacko 

and Reade 

1990) 

Motor 

and 

sensory  

Charcot–Marie–Tooth 

(CMT) disease 

also known as 

Hereditary motor and 

sensory neuropathy 

(HMSN)  

 

 

Genetically and clinically heterogeneous, slowly 

progressive. Spinal nerve involvement, muscle wasting 

of the toe, lower leg, forearm, and hand, Pes cavus 

foot deformity, sensory loss of the lower and upper 

extremities. 

 

 

 

 (Bucci, 

Bakke, and 

Progida 

2012) 

 

Table 1.1 - The Table shows examples of various types of motor neuron diseases. MNDs are classified 

according to the affected cell type: combined Upper Motor Neuron (UMN) and Lower Motor Neuron 

(LMN), UMN only, LMN only and combined motor and sensory involvement.  
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However, the majority of patients with ALS almost always show a combination of 

upper and lower motor neuron manifestations. In the 10% of ALS cases where patients 

only show signs in either LMN or UMN, later autopsies then reveal that in fact both 

LMN and UMN were affected. Approximately two thirds of patients with limb onset 

experience asymmetrical muscle wasting and weakness which might be preceded by 

fasciculation or cramps (Wijesekera and Leigh 2009). Later, most patients develop 

bulbar symptoms and ultimately respiratory symptoms. The atrophic limbs may 

develop spasticity which affects manual dexterity and gait. In later stages, patients 

may develop flexor spasms (bending of a limb upward towards the body). People 

affected by ALS with bulbar onset, usually experience dysarthria, yet rarely dysphagia. 

Most patients with bulbar onset also develop sialorrhoea (hypersalivation) due to 

difficulty in saliva swallowing. Most patients also present with simultaneous 

development of limb symptoms, as well as bilateral facial weakness. Pseudobulbar 

symptoms (such as emotional lability and excessive yawning) were also observed in a 

significant number of patients. Up to 5% of ALS cases experience respiratory 

weaknesses without having significant limb or bulbar symptoms. Table 1.2 shows UMN 

and LMN symptoms and signs which ALS patients develop. The disease progresses to 

paralysis, leading to death as a result of respiratory failure.  From the onset of the first 

symptoms, the average survival time is two to three years for sALS with bulbar onset 

and three to five years for patients with limb onset (Wijesekera and Leigh 2009). The 

average incidence rate of sALS in 1990 was 1.89 per 100,000/year in Europe and North 

America and the average prevalence was 5.2 per 100,000 (Worms 2001). Logroscino et 

al (2010) reported an incidence rate of ALS in 1998 and 1999 which was 2.16/100,000 

per year for the total European population (all age groups in UK, Italy and Ireland) and 

which was 2.7/100,000 for the European population who are 18 years old or older 

(Logroscino et al. 2010).   

ALS is incurable and riluzole is the only drug that has been shown to prolong the life 

span of patients (Wijesekera and Leigh 2009). Riluzole acts by blocking the sodium 

channels and thus inhibiting the release of glutamate from pre-synaptic terminals, as 

well as by increasing the glutamate uptake from the synaptic cleft (Fumagalli et al. 

2008). 
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Table 1.2 

 
UMN LMN 

Bulbar 

Symptoms 

Dysphagia , spastic dysarthria, 

Laryngospasm, pseudobulbar affect, cheek 

biting 

Difficulty chewing, sialorrhea, dysphagia, 

slurred speech, hoarseness  

Signs 

Poor palate movement, slow tongue 

movement, Jaw jerk, Palmomental sign, 

active facial reflex 

Facial weakness, tongue weakness, tongue 

atrophy, facial/tongue fasciculation 

 Limb 

Symptoms 
Stiff, slow movement, clonus triggered by 

movement 
Weakness, cramps 

Signs 
Spasticity, Hyperreflexia, spastic gait, 

pathologic reflexes (Babinski, Hoffman’s) 

Weakness, muscle atrophy, fasciculation, 

Hyporeflexia 

 Axial 

Symptoms Unsteadiness  
Head drop/difficulty holding up 

Trouble standing erect 

Signs Absent abdominal reflexes 
Neck extensor weakness, bent spine, 

abdominal protuberance 

 Respiratory  

Symptoms _____ 
Dyspnea, orthopnea, morning headache, 

daytime sleepiness, confusion 

Signs _____ 
Tachypnea, reduced volume of speech, use 

of accessory muscles, abdominal paradox 

 

Table 1.2 - The Table shows UMN and LMN symptoms and signs in ALS. Note: Adapted from (Ferguson & 

Elman 2007).  

2.1.3 ALS pathology 

2.1.3.1 Protein aggregate  

Cytoplasmic inclusions have been found in many neurodegenerative disorders e.g. 

Alzheimer’s, Parkinson’s, Huntington’s, prion, and Pick’s disease. They are formed by 

the abnormal accumulation of aberrant misfolded proteins (protein aggregates) in the 

neuronal cytoplasm. The accumulation of these protein aggregates results in selective 
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neuronal death in an age-dependent manner. It has been thought that these 

aggregates might trigger cellular stress which in turn compromises various cellular 

functions including cytoskeletal organization, intracellular transport, proteasome 

machinery, and mitochondrial function. Such cellular stress would result in axonal 

retraction (a dying-back neuronal phenotype) and consequently in neuronal death. In 

patients with ALS, protein aggregates were also observed in the cytoplasm of affected 

motor neurons and it is one of the hallmarks of ALS.  

There are three types of inclusions found in lower motor neurons of the anterior horn 

and brainstem of patients with ALS: ubiquitinated inclusions (UBIs), Bunina bodies and 

hyaline conglomerate inclusions (HCLs) (Wijesekera and Leigh 2009; Piao et al. 2003). 

Ubiquitinated inclusions can be divided into two types of inclusions based on 

morphology:  skein-like inclusions which have a filamentous structure and compact 

spherical inclusions named Lewy-like bodies. UBIs are the most specific type of 

inclusions and only exist in ALS, while the remaining (Bunina bodies and HCLs) can be 

found in other neurodegenerative disorders as well. Furthermore, UBIs were found in 

all studied cases of ALS which therefore is a strong indication for their significance in 

ALS pathogenesis. Bunina bodies are eosinophilic, approximately 2-3 µm in diameter 

and positively immunostained for cystatin C and transferrin. The presence of Bunina 

bodies was observed in lower motor neurons at rates ranging from 67% to 90.9% in 

various studies of ALS. In addition to their presence in lower motor neurons, they can 

be found in Betz cells of motor cortex as well as in subthalamic nuclei. HCLs are 

argyrophilic, most commonly observed in fALS and are immunostained against 

phosphorylated and nonphosphorylated neurofilaments.   

Some pathogenic proteins were detected in cytoplasmic inclusions of ALS patients, one 

of which is the Cu-Zn superoxide dismutase 1 (SOD1), which was discovered in the 

hyaline inclusions in the spinal cord of fALS  (Watanabe et al. 2001). It is an anti-

oxidant enzyme that is involved in scavenging oxygen-derived superoxide radicals (O-
2) 

from cells by metabolizing them to oxygen and hydrogen peroxide (see the Cu-Zn 

superoxide dismutase section for more details).  Other pathogenic proteins were also 

identified in cytoplasmic inclusions (see below).  
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2.1.3.2 Aberrant RNA metabolism 

Since 1993, SOD1 remained the only causative gene for ALS until 2006 when TDP-43, 

the DNA/RNA binding protein (encoded by TARDBP) was identified in UBIs in both 

sporadic and familial ALS and in UBIs of patients with ALS-FTLD, suggesting that 

dysregulation of RNA metabolism might be an underlying cause of ALS (Lagier-

Tourenne, Polymenidou, and Cleveland 2010; Wijesekera and Leigh 2009; Rosen et al. 

1993). Two years later, mutations in the gene TARDBP were reported in ALS cases 

(Kabashi et al. 2008; Sreedharan et al. 2008). Approximately 48 causative mutations 

were identified which accounted for 3% of fALS and 1.5% of sALS (Lattante, Rouleau, 

and Kabashi 2013)(see section, molecular genetics of ALS). The following year, another 

RNA/DNA binding protein implicated in ALS was discovered and named “fused in 

sarcoma and trans located in liposarcoma” (Fus/TLS), further highlighting the emerging 

role of RNA metabolism in ALS. At least 50 mutations of Fus were identified which 

accounted for 5% of fALS and 1% of sALS (Lattante, Rouleau, and Kabashi 2013).  

2.1.3.3 Oxidative stress 

Oxidative stress is the term used to describe an imbalance between the production of 

free radicals and the antioxidant defence mechanisms (Barber and Shaw 2010). Most 

free radicals are formed as a result of electron leakage from the process called 

“electron transport chain in mitochondria”. As a result of this leakage, the amount of 

electrons required for the complete reduction of oxygen molecules during oxidative 

phosphorylation decreases. This leads to abnormal free radicals homeostasis which 

results in an accumulation of free radicals and ultimately cell death.  

Oxidative stress is thought to be a contributory factor to neuronal death in ALS. Some 

ALS-causing mutations in the antioxidant enzyme SOD1 support this hypothesis. 

Oxidative damaged proteins in the spinal cord, elevated levels of biochemical markers 

of oxidative stress, as well as lipid peroxidation in the cerebrospinal fluid (CSF) and in 

post-mortem tissue, were found in ALS patients (Niebrój-Dobosz, Dziewulska, and 

Kwieciński 2004; Wijesekera and Leigh 2009).  Furthermore, fibroblasts and myoblasts 

derived from patients with ALS were found to be more susceptible to oxidative 

damage than the wild type (Aguirre et al. 1998; Bradley et al. 2009).    



13 
 

2.1.3.4 Glutamate excitotoxicity 

Glutamate excitotoxicity is the term used to describe the neuronal injury provoked by 

the abnormal excessive activation of the postsynaptic glutamate receptors (Wijesekera 

and Leigh 2009). The presence of excess glutamate in the synaptic cleft, triggers 

glutamate receptor activation, which results in massive uncontrolled influx of calcium 

ions into the neurons and thus in neuronal cell death (Foran and Trotti 2009). The 

increased levels of intracellular calcium ions, cause mitochondrial stress and 

consequently an increase in free radical production, as mitochondria are no longer 

capable of maintaining accurate electron activity. Elevated levels of glutamate were 

found in the CSF of some groups with ALS (Shaw et al. 1995). The loss of excitatory 

amino acid glutamate transporter (EAAT2) was believed to cause increased levels of 

glutamate in CSF (Rothstein et al. 1995).   

2.1.3.5 Mitochondrial dysfunction 

Histological analysis performed on sALS samples revealed an abnormal morphology of 

mitochondria (swelling and vacuolation) in motor neurons, muscles and intramuscular 

nerves and in motor neurons of the transgenic mouse carrying the mutant human 

SOD1 (G93A) (Dal Canto and Gurney 1994; AK et al. 1966; T 1981; Siklos et al. 1996). 

An increased calcium level in mitochondria was observed in motor nerve terminals, 

whereas impaired activity of complex I and IV could be seen in muscle biopsies 

(Wiedemann et al. 1998; Siklos et al. 1996).  

2.1.3.6 Impaired axonal transport 

In humans, the length of motor neuron axons may extend up to one meter, which 

therefore requires an efficient intracellular transport system to ensure their survival 

(Wijesekera and Leigh 2009). There are two types of intracellular transport systems: 

anterograde and retrograde transport, which are mediated by the molecular motor 

proteins kinesin and cytoplasmic dynein-dynactin complex respectively. Both 

molecular motors utilize microtubules as tracks for transporting cargo along 

microtubules: dynein transports its cargo in the microtubule minus-end direction 

towards the soma, while kinesins transport their cargos in the plus-end direction 

towards the cell periphery. Defects in axonal transport are known to be a contributory 
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factor in motor neuron diseases such as ALS, HSP and CMT (type 2A). Transgenic 

mouse models of ALS harbouring human mutant SOD1 (G37R and G93A) exhibit 

defects in both anterograde and retrograde transport (Borchelt et al. 1998; Murakami 

et al. 2001, Kieran et al. 2005, PMID: 15911875). Moreover, mutations in charged 

multivesicular body protein 2B (CHMP2B), a protein involved in vesicular trafficking, 

are associated with 1% of ALS cases (Ikenaka et al. 2012; Cox et al. 2010). Gene 

expression data from microarray analysis performed on motor neurons with ALS-

related CHMP2B mutations, showed down-regulation of proteins involved in 

transporting cargo along microtubules, which could indicate a defective axonal 

transport (see Table 1.3).  

Table 1.3  

    

            

 

 

   

 

 

Table 1.3 – The Table shows proteins that are involved in axonal transport and were identified to be 

affected by ALS-associated CHMP2B mutations.  

2.1.3.7 Neurofilament aggregation 

Neurofilament proteins have also been implicated in ALS pathogenesis. 

Neurofilaments, as well as the intermediate filament protein peripherin (PRPH) were 

both the major components of the argyrophilic inclusions (spheroid) of spinal cord 

neurons in ALS (Corbo and Hays 1992). Furthermore, mutations in the highly 

conserved repeat region XKSPYK (X represents a single amino acid and Y represents 

one to three amino acids) of the neurofilament heavy gene (NF-H), are associated with 

ALS (Al-Chalabi et al. 1999).     

Gene symbol Protein 

KIF1A Kinesin family member 1A 

KIF1C Kinesin family member 1C 

KIF5C Kinesin family member 5C 

DYNLRB1 
Dynein light chain roadblock-type 1 

(cytoplasmic dynein associated protein) 

DYNLL2 
Dynein light chain 2 

(cytoplasmic dynein associated protein) 

DYNC1H1 Cytoplasmic dynein heavy chain 



15 
 

2.1.3.8 Gliosis  

Gliosis is one of the hallmarks observed in both familial and sporadic ALS. It is 

characterized by activation of astrocytes and microglia (Joyce et al. 2011; Wijesekera 

and Leigh 2009). Inflammatory cytokines which are secreted by both astrocytes and 

microglia, were observed in CSF or in spinal cord specimens of patients with ALS. 

Gliosis was also observed in SOD1 and TDP-43 rodent models of ALS.    

2.1.3.9 Neurotrophin depletion  

A reduction in neurotrophic factors [brain derived neurotrophic factor (BDNF), Ciliary 

neurotrophic factor (CNTF), Glial cell line-derived neurotrophic factor (GDNF) and 

insulin-like growth factor (IGF-1)] has been observed post-mortem in the spinal cord 

and cerebral cortex of patients with ALS (Wijesekera and Leigh 2009). Furthermore, 

several studies on rodent models of ALS have implicated vascular endothelial growth 

factor (VEGF) in ALS and have shown that VEGF has a protective role in ALS. This was 

supported by two observations: 1) the expression of VEGF and VEGF receptor 2 were 

reduced in the spinal cord of symptomatic transgenic mice carrying the human 

SOD1G93A and 2) the toxic effects induced by the mutant SOD1 was reduced in VEGF-

treated motor neurons expressing the human SOD1G93A and therefore indicating that 

VEGF has a protective role (Lunn et al. 2009).  In addition to its role in angiogenesis and 

lymphangiogenesis, VEGF is a neuroprotective growth factor that stimulates axonal 

outgrowth, prevents neuronal apoptosis and has a role in neurogenesis (Keifer, 

O’Connor, and Boulis 2014; Lunn et al. 2009). In humans, there appears to be a 

significant association between the ‘-2578AA’ single nucleotide polymorphism (SNP) of 

VEGF and the increased risk of ALS in males (Keifer, O’Connor, and Boulis 2014).     

2.1.4 Molecular genetics of ALS 

Approximately 150 pathogenic mutations in the SOD1 gene are responsible for 20% of 

fALS and 4-5% of fALS are caused by mutations in the TARDBP and FUS genes (S. Chen 

et al. 2013). More than 40% of fALS are the result of mutations in the C9ORF72 gene. 

The remaining are caused by mutations in the following genes: alsin, senataxin (SETX), 

spatacsin, angiogenin (ANG), vesicle associated membrane protein associated protein 

B (VAPB), factor induced gene 4 (FIG4) and optineurin (OPTN). Table 1.4 and 1.5 show 
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all the currently known causative genes in both fALS and sALS. Mutations in these 

genes cause malfunctions in various molecular pathways which then subsequently lead 

to motor neuron degeneration (Figure 1.3).  

In this thesis, I will focus and elaborate on two causative genes for fALS: SOD1 and 

TARDBP and on one gene for sALS which is PRPH.    

2.1.4.1 SOD1 

Structure and function 

There are three types of superoxide dismutase proteins: SOD1, SOD2 and SOD3 which 

are mainly present in aerobic organisms (Levanon et al. 1985). Oxygen-enriched 

organisms produce reactive oxygen species (ROS) as part of their cellular metabolism 

and therefore require a defensive system against ROS (ZELKO, MARIANI, and FOLZ 

2002). Superoxide dismutase proteins are antioxidant enzymes that catalyse the 

conversion of superoxide anions (O-
2) into oxygen (O2) and hydrogen peroxide (H2O2). 

Both SOD1 and SOD3 require two metals, Cu and Zn for their catalytic activity. While 

SOD1 can be found intracellularly in the cytoplasm, nucleus, lysosomes and within the 

intermembrane of mitochondria, SOD3 can be found extracellularly, for examples in 

plasma, lymph and CSF. SOD2 requires manganese as a cofactor and is located in the 

mitochondria. As human mutations of SOD1 have been found to cause certain types of 

ALS, the following section will focus on this particular gene. 

SOD1 is a 32 kD protein that functions as a homodimer. The SOD1 gene is highly 

conserved among species and is located on chromosome 21 in humans and on 

chromosome 1 in mice.  
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   Table 1.4  fALS causative genes  

ALS form Locus Gene Protein Onset Inheritance Clinical feature Estimated% of FALS 

ALS1 21q22.1 SOD1 Cu/Zn SOD-1 Adult AD/AR Typical ALS 20% 

ALS2 
 

2q33-2q35 Alsin Alsin Juvenile AR 

Slowly progressive, 
predominantly UMN 

signs like limb, & facial 
spasticity 

<1% 

ALS3 
 

18q21 Unknown Unknown Adult AD 
Typical ALS with limb 

onset 
especially lower limb 

Unknown 

ALS4 
 

9q34 SETX Senataxin Juvenile AD 

Slowly progressive, 
distal hereditary 

motor neuropathy with 
pyramidal signs 

Unknown 

ALS5 15q15-21 SPG 11 Spatacsin Juvenile AR Slowly progressive Unknown 

ALS6 16p11.2 FUS Fused in Sarcoma Juvenile/Adult AD/AR Typical ALS 4-5% 

ALS7 20ptel-p13 Unknown Unknown Adult AD/AR Typical ALS Unknown 

ALS8 20q13.3 VAPB VAPB Adult AD Typical and atypical ALS <1% 

ALS9 14q11.2 ANG Angiogenin Adult AD 
Typical ALS, FTD and 

Parkinsonism 
<1% 

ALS10 
 

1p36.2 TARDBP 
DNA-binding 

protein 
Adult AD Typical ALS 4-5% 

ALS11 
 

6q21 FIG 4 
Phosphoinositide- 

5phosphatease 
Adult AD 

Rapid progressive with 
prominent 

corticospinal tract signs 
Unknown 
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   Table 1.4 Cont. 

ALS form Locus Gene Protein Onset Inheritance Clinical feature Estimated% of FALS 

ALS12 
 

10p13 OPTN Optineurin Adult AD/AR 

Slowly progressive with 
limb onset 

and predominant UMN 
signs 

<1% 

ALS14 9p13.3 VCP VCP Adult AD 
Adult onset, with or 

without FTD 
<1% 

ALS15/ALSX 
 

Xp11 UBQLN2 Ubiquilin 2 Juvenile/Adult XD 
ALSX UMN signs 

proceeding LMN signs 
<1% 

ALS16 9p13.2-21.3 SIGMAR1 SIGMAR1 Juvenile AR 
Juvenile onset typical 

ALS 
Unknown 

ALS-FTD1 9q21-22 unknown unknown Adult AD ALS with FTD unknown 

ALS-FTD2 9p21 C9ORF72 C9ORF72 Adult AD ALS with FTD 40-50% 

NA 
 

2p13 DCTN1 Dynactin Adult AD 
Distal hereditary motor 
neuropathy with vocal 

paresis 
unknown 

NA 12q22-23 DAO D-Amino Acid Oxidase Adult AD Typical ALS <1% 

 

Table 1.4 - The Table shows the causative genes that have been identified so far in fALS. These genetic mutations represent different molecular pathways of motor neuron 

degeneration. Abbreviations:  VAPB  Vesicle associated membrane protein associated protein B, VCP Valosin Containing Protein, SIGMAR1 Sigma Non Opiod Intracellular 

Receptor, C9ORF72 Chromosome 9 open reading frame 72, DAO D-Amino Acid Oxidase, FTD Frontal-temporal dementia, AD, Autosomal dominant, AR, Autosomal 

recessive. Gray shaded rows represent rare cases of ALS. Note: adapted from (S. Chen et al. 2013; Robberecht and Philips 2013). 
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Table 1.5 Causative genes in sALS   

Gene Protein Locus Variant associated with ALS 

APEX1 
Apurinic Endonuclease 
DNA repair enzyme 1 

14q11.2 SNP associations 

ATXN2 Ataxin-2 12q24.12 Poly Q repeats 

CHMP2B 
Chromatin Modifying 

Protein 2B 
3p11.2 Mutations 

HFE Haemochromatosis 6p22.2 SNP associations 

NEFH Neurofilament Heavy 22q12.2 Deletion and Insertions 

SMN1 
Survival Motor Neuron 

1 
5q12.2-q13.3 Abnormal copy number of genes 

SMN2 
Survival Motor Neuron 

2 
5q12.2-q13.3 Abnormal copy number of genes 

PON 1,2,3 e Paraoxonas 7q21.3 SNP associations and mutations 

PRPH Peripherin 12q13.12 mutations 

VEGF 
Vascular Endothelial 

Growth Factor 
6p21 Promoter SNP’s 

PGRN Progranulin 17q21.31 Deletions 

 

Table 1.5 - The Table shows the causative genes reported in sALS. Abbreviation: SNP’s, Single Nucleotide 

Polymorphisms; Poly Q, Polyglutamine. Note: adapted from (Chen et al. 2013).     
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Figure 1.3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 - Underlying pathogenic mechanisms that lead to demise of motor neurons in ALS. Note: 

adapted from (S. Chen et al. 2013) with modification. 
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SOD1 mouse models 

In order to understand the underlying pathogenic mechanisms of ALS and how SOD1 

mutations cause upper and lower motor neuron loss, mouse models were generated 

which display many phenotypes observed in ALS cases. In 1994, Gurney et al 

generated the first mouse model harbouring the mutation G93A (amino acid 

substitution of glycine to alanine at position 93) in the human SOD1 cDNA which had 

been inserted randomly into the mouse genome (Gurney et al. 1994). This transgenic 

mouse model, SOD1G93A, has been widely used in ALS research due to exhibiting the 

ALS-like phenotype including autosomal dominant pattern of inheritance, gait 

abnormality, tremor, paralysis, gliosis, ubiquitinated SOD1 containing inclusions, 

swollen and vacuolated mitochondria, altered axonal transport, and axonal and motor 

neuron degeneration (Joyce et al. 2011). Table 1.6 summarizes SOD1 transgenic 

models recently reviewed by Joyce et al 2011. As can be seen from the table, mutant 

SOD1 mouse models exhibit slightly various pathologies depending on mutation and 

the level of SOD1 transgene expression. For example, transgenic mice carrying a low 

(G93Adl) or high copy of the human SOD1G93A develop early or late onset phenotype of 

ALS, respectively.  

The role of SOD1 in ALS 

It was originally believed that the pathogenic effect of SOD1 mutations arises from 

toxic gain of function rather than the impairment of the antioxidant function of SOD1 

(loss of function) (Julien and Kriz 2006). This stems from the fact that transgenic mice 

overexpressing the human mutant SOD1 (G93A, G37R or G85R) show an increased 

enzymatic activity and reproduce the ALS-like phenotype, whereas the SOD1 knock-

out mice which have no enzymatic activity fail to develop an ALS-like phenotype. It is 

unlikely though that the toxic gain of function of these mutations is due to the increase 

in enzymatic activity, as overexpression of wild type SOD1 does not cause an ALS-like 

phenotype. However, recent research suggests that SOD1 loss of function might play a 

modifying role and therefore contribute to ALS pathogenesis (Saccon et al. 2013). 

Indeed, SOD1-knockout mice exhibited increased susceptibility to injury and a 

significant motor neuron loss compared to the wild type (Fischer et al. 2011). These    



22 
 

 

Table 1.6 

Mutation Promoter Protein expression (fold) Activity (fold) Symptom onset (weeks) 
Survival 

(weeks) 
Ref. 

A4Va Human SOD1 nd nd 35 48 Deng et al. (2006) 

G37R Human SOD1 nd 14 15-17 25-29 Wong et al.(1995) 

H46R Human SOD1 nd nd 20 24 Chang-Hong et al. (2005) 

H46R/H48Q Human SOD1 nd 0 17-26 nd Wang et al. (2002) 

H46R/H48Q/H63G/H120G Human SOD1 nd 0 35-52 nd Wang et al. (2003) 

L48V Human SOD1 nd nd 21-26 26-30 Tobisawa et al. (2003) 

G85R Human SOD1 1 0 35-43 37-45 Bruijn et al. (1997) 

G85R Human SOD1 1.5 nd 39.5-48 46-54 Wang et al. (2009) 

G85Rb Mouse SOD1 nd 0 13-17 17 Ripps et al. (1995) 

D90A Human SOD1 20 6-8 52 61 Jonsson et al. (2006) 

G93A Human SOD1 17 13 13-17 17-26 Gurney et al. (1994) 

G93A
dl

 Human SOD1 8 nd 24-26 40-50 Gurney (1997) 

I113T Human SOD1 nd nd 52 60 Kikugawa et al. (2000) 

T116X Human SOD1 nd nd 41 43 Deng et al. (2008) 
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 Table 1.6 Cont. 

      

Table 1.6 - The Table shows SOD1 mouse models with various mutations. All listed SOD1 mutations are reported in ALS cases unless stated. Superscripts: a. Double 

transgenic with SOD1wt , b. mouse transgene, c. mRNA expression is high, protein is low, dl. G1 del-low copy. Abbreviation: nd. not described. Artificial mutations: 

H46R/H48Q and H46R/H48Q/H63G/H120G prevent copper binding and mutation T116X results in a truncated SOD1 protein. Note: adapted from (Joyce et al. 2011).         

 

 

Mutation Promoter Protein expression (fold) Activity (fold) Symptom onset (weeks) Survival (weeks) Ref. 

L126X Human SOD1                       0-0.5c nd 28-36 nd Wang et al. (2005) 

L126Z Human SOD1    0-1
c
 nd 44 47 Deng et al. (2006) 

L126delTT Human SOD1 2 0 17 18 Watanabe et al. (2005) 

G127X Human SOD1 0.5-1 0 35 36 Jonsson et al. (2004) 
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mice develop age dependent features (by 12-18 months), such as significant loss of 

grip strength and progressive distal motor neuropathy (progressive denervation in 

neuromuscular junction). This suggests that SOD1 plays an important role in normal 

neuronal function. 

2.1.4.2 C9ORF72 and its role in ALS 

A hexanucleotide repeat expansion GGGGCC is the most common known causative 

mutation for ALS so far since its discovery in 2011 (Dejesus-hernandez et al. 2011; 

Renton et al. 2011). These GGGGCC repeat expansions are located in the non-coding 

region of open reading frame 72 in chromosome 9 (C9orf72). In addition to ALS, 

C9orf72 has also been associated with other neurological diseases including FTD, 

Alzheimer’s, Parkinson’s, and Huntington’s diseases, indicating a common pathological 

pathway. This further strengthens the need for understanding the molecular 

mechanism of disease caused by the GGGGCC repeat expansion, as well as for 

developing drugs to target this mutation. It is believed that GGGGCC repeat expansion 

causes the disease either by loss of function or by gain of function (Mizielinska and 

Isaacs 2014). Evidence for the former was based on findings such as reduced levels of 

C9orf72 transcripts in the brain of patients. Furthermore, based on homology, the 

structure of the C9orf72 protein is related to the DENN domain (differentially 

expressed in normal and neoplastic cells) containing proteins which function as Rab-

activating GEFs (guanine nucleotide exchange factors) and is, therefore, involved in 

regulating membrane trafficking (Levine et al. 2013). Indeed, knocking down C9orf72 

results in reduced endocytosis and therefore further suggesting a loss of function 

mechanism as a cause of the disease (Farg et al. 2014). There has been evidence 

indicating that the C9orf72-related disease might be caused by two gain-of-function 

mechanisms (Mizielinska and Isaacs 2014). In the first mechanism, the presence of 

RNA foci in neuronal nuclei, which contain aggregates comprised of expanded 

GGGGCC repeat RNA, can be observed. It has been believed that RNA foci-mediated 

gain of function takes place via sequestering some essential RNA-binding proteins and 

therefore affecting their downstream functions. The second mechanism is caused by 

the formation of toxic dipeptide repeat proteins generated through the translation of 
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repeat expansion GGGGCC transcripts. However, further studies are required to 

determine which pathway is responsible for neurodegeneration.   

2.1.4.3 TDP-43 

Structure and function 

The transactive response DNA binding protein (TDP-43), 43 kDa in size, is a 

multifunctional protein mainly located in the nucleus which is involved in transcription, 

pre-mRNA splicing, RNA transport and stability, micro RNA biogenesis and DNA repair. 

TDP-43 is encoded by the TARDBP gene which is located on chromosome 1p36. The 

TARDBP gene contains 6 exons and is conserved in organisms including humans, mice, 

Drosophilae melanogaster, and Caenorhabditis elegans. The combined information 

from database analysis and cDNA cloning revealed that the main transcript of TDP-43 

can undergo alternative splicing in order to generate 11 splice variants. Three TDP-43 

isoforms were reported and identified in the human brain and spinal cord. In addition 

to the full-length TDP-43 isoform (43 kDa), a second isoform exists which lacks 6 

nucleotides immediately upstream the termination codon (Strong et al. 2007). The 

third isoform is a 28 kDa isoform which lacks the amino acid segment encoded by exon 

3, as well as a significant portion of amino acids encoded by exon 6. The biological 

significance of the second and the third isoforms is still unknown. In 1995, TDP-43 was 

first identified as a protein that binds the transactive response DNA region of the HIV 

type 1 (the human immunodeficiency virus type 1) LTR (long terminal repeat) region. 

TDP-43 was shown to repress the promoter activity of the HIV LTR (Ou et al. 1995). 

Later, in 2001, it was discovered that TDP-43 is also involved in pre-mRNA splicing 

(Buratti and Baralle 2001). The first implication of TDP-43 as a splicing factor was 

initially reported with regard to promoting exon 9 skipping of the cystic fibrosis 

transmembrane conductance regulator gene (CFTR). TDP-43 was shown to preferably 

bind UG repeat elements at the 3’ end of exon 9 and thus inhibiting its recognition by 

the splicing machinery, which resulted in exon 9 skipping. Further confirmation was 

obtained by knocking down the endogenous TDP-43, which resulted in enhancing exon 

9 inclusion. A similar inhibitory role of TDP-43 for splicing was reported in exon 3 of the 

human apolipoprotein A-II (apoA-II) gene (Mercado et al. 2005). Deletion of TDP-43 is 
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embryonically lethal, reflecting the crucial multiple roles of TDP-43 in RNA processing 

during development (Sephton et al. 2010).  

TDP-43 is structurally similar to ribonucleoproteins (hnRNPs), a group of proteins that 

are known to bind heterogeneous nuclear RNAs and are involved in RNA biology, 

including pre-mRNA splicing. Like hnRNPs, TDP-43 has two highly conserved RNA 

recognition motifs i.e. RRM1 and RRM2 which are involved in binding RNA and DNA, as 

well as in mediating protein-protein interactions (Figure 1.4). RRMs are comprised of 

two conserved regions: an octapeptide region named RNP1 and a hexapeptide 

sequence called RNP2. A high degree of similarity between the aforementioned 

organisms was observed in a TDP-43 amino acid sequence up to the carboxyl end of 

RNP1 of RRM2. RRM1 is responsible for binding U/TG repeats in nucleic acids and it 

contains two residues i.e. Phe147 and Phe149 that are highly conserved and required 

for proper binding (Buratti and Baralle 2001). The N-terminal region of TDP-43 is 

required for the biological activity of TDP-43, since the mutant TDP-43 that lacks the 

amino acids 1-75, perturbs the skipping activity of exon 9 of the CFTR gene. Deletion of 

the first 75 amino acids of the mutant TDP-43 does not perturb its localization to 

nucleus. The first 75 amino acids were also found to be required for TDP-43 

homodimerization which is required for binding RNA targets (Zhang et al. 2009). Zhang 

et al further defined the first 10 N-terminal amino acids as those required for TDP-43 

exon skipping activity and homodimerization (Zhang et al. 2013). In addition, the C-

terminus of TDP-43 contains a glycine-rich region which mediates the interaction of 

TDP-43 with other partners like hnRNPs (hnRNP A1 and hnRNP A2/B1) (Emanuele 

Buratti et al. 2005). Furthermore, the amino acid sequence spanning the region 

between 321-366 of the C-terminus of TDP-43 was found to preferentially bind hnRNP 

A2. This sequence is also required for its exon 9 skipping activity of the CFTR gene 

(D’Ambrogio et al. 2009). The glycine-rich region additionally enables the TDP-43 to go 

through a verifiable and controlled protein aggregation process. Such a process shows 

the mRNA-binding proteins’ capability (such as TDP-43) to consolidate transcripts into 

RNA/Protein complexes, the so-called RNA granules. The RNA granules have several 

functions: facilitating RNA transport within neuronal processes, regulation of protein 

translation and RNA degradation. In addition, it was found that TDP-43 under cellular 
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stress, contributes to stress granule formation (SGs), which are  ribonucleoprotein 

complexes where protein synthesis is temporarily stalled, thus stopping RNA 

translation and causing the RNA molecules to be stored during cellular stress 

(Colombrita et al. 2009). The presence of the 216-315 amino acid region, as well as 

RRM1 are both required for TDP-43 recruitment to SGs.  

TDP-43 autoregulates its own cellular levels by directly binding to its own transcripts 

(Ayala et al. 2011). These RNA-binding properties of TDP-43 enable it to bind to its own 

3’ UTR transcripts, as well as to the amino acid residues 321 to 366. This binding of 

TDP-43 to its 3’ UTR, does not affect the pre-mRNA splicing, but rather it promotes 

RNA degradation partly through the exosome. Ectopic overexpression of TDP-43 

results in down-regulation of endogenous TDP-43, mediated by the TDP-43’s 

autoregulatory system.   

Although TDP-43 was mainly found in the nucleus, it also shuttles between the nucleus 

and cytoplasm in a transcription-dependent manner (Ayala et al. 2008). Evidence for 

which was confirmed by the fact that the inhibition of RNA polymerase II after 

treatment with actinomycin D leads to accumulation of TDP-43 in the cytoplasm. The 

N-terminus region of TDP-43 (at amino acid residues 82-98) contains a specific 

bipartite nucleus localization signal (NLS) which is comprised of two clusters of basic 

amino acids, separated by a sequence of 9-12 amino acids (Winton et al. 2008). NLS is 

required for TDP-43 entry into the nucleus. Winton et al also identified a leucine-rich 

TDP-43 nuclear exporting sequence spanning a region of 239-250. TDP-43 contains 

many potential phosphorylation sites: 41 serine, 15 threonine and 8 tyrosine amino 

acids, five of which are reported: Ser379, 403, 404, 409 and 410 (Gendron, Josephs, 

and Petrucelli 2010). TDP-43 bears three putative caspase-3 cleavage sites which 

generate C-terminal fragments of 42, 35 and 25 kDa (Gendron, Josephs, and Petrucelli 

2010). 
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Figure 1.4 

 

 

 

 

 

 

 

 

 

Figure 1.4 - The protein structure of TDP-43. TDP-43 consists of 414 amino acids. It contains several 

domains: nuclear localization signal (pink box), RRM1 and 2 (green box), nuclear exporting signal (yellow 

box) and glycine rich region (orange box). Red circles represent the reported serine phosphorylation 

sites. TDP-43 contains three putative caspase-3 cleavage sites, DEND, DETD and DVMD which generates 

three smaller molecular sizes of TDP-43, 42, 35 and 25 kDa respectively. Note: adapted from (Gendron, 

Josephs, and Petrucelli 2010).       
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The role of TDP-43 in ALS 

TDP-43 has been implicated in several neurodegenerative disorders including FTLD and 

ALS. The vast majority of ALS-associated mutations have been found in the glycine rich 

region (Figure 1.5). TDP-43 fragmentation, phosphorylation and ubiquitination are the 

hallmarks of ALS. It is still unclear whether motor neuron degeneration is the result of 

toxic gain of function that is caused by the presence of cytoplasmic TDP-43 

accumulation, or caused by loss of nuclear TDP-43 function. Nevertheless, the 

mechanism underlying the disease’s pathology caused by TDP-43 mutations is still 

under investigation.     

Much effort has been directed towards understanding the function of TDP-43 and thus 

understanding the contribution of TDP-43 mutations to the disease progression. 

Tollervey et al 2011 characterized the RNA targets and the binding region of TDP-43 

using an iCLIP experiment performed on cortical tissues from post mortem healthy 

brain, as well as from brains with FTLD-TDP, neuroblastoma cells and embryonic stem 

cells (Tollervey et al. 2011). TDP-43 was shown to bind introns, long non-coding RNA 

(ncRNA) and 3’ UTR of mRNAs. However, analysis of the protein binding properties of 

TDP-43 obtained from the brain tissues of patients with FTLD-TDP showed that there 

was a significant change in the binding of TDP-43 to 4 ncRNAs, 3’UTR of 7 transcripts 

and introns of 48 mRNAs. Also, TDP-43, from the brain tissues of FTLD-TDP patients, 

showed significant decreased binding to the 3’UTR region of EAAT2, a glutamate 

transporter gene that is required for glutamate clearance at the synaptic cleft (see 

section EAAT2).  

In brain and spinal cord samples of patients with ALS or FTLD-U, TDP-43 cytoplasmic 

inclusions accompanied by loss of nuclear TDP-43, which are the hallmarks of ALS, 

were found, leading to the implication of loss of nuclear TDP-43 function as the cause 

of the disease’s pathogenesis. However, Arnold et al (2013) ruled out both the loss of 

nuclear TDP-43 and TDP-43 cytoplasmic inclusions as the causes of motor neuron 

diseases. This stems from the fact that overexpression of ALS-related TDP-43 

mutations, M337V or Q331K at levels similar to the endogenous TDP-43 in non-

transgenic mice, causes age-dependent and mutant-dependent motor neuron 

degeneration without nuclear TDP-43 loss and cytoplasmic inclusions (Table 1.7).  Also, 
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overexpression of wild type TDP-43 at levels similar to the endogenous TDP-43 does 

not trigger motor neuron degeneration. Instead, almost complete replacement of 

endogenous TDP-43 with either wild type TDP-43, Q331K mutant TDP-43 or M337V 

mutant TDP-43 (as a result of TDP-43 autoregulation) exhibits changes in alternative 

splicing of pre-mRNAs. Interestingly, the TDP-43Q331K transgenic mice show mutant-

dependent changes in alternative splicing on a small subset of pre-mRNAs. They show 

both enhanced exon exclusions, as well as loss of function (exon inclusion), leading to 

the supposition that the mutant Q331K confers both gain- and loss-of-function 

properties to TDP-43 respectively. However, another conflicting report observed either 

reduced or loss of nuclear TDP-43 in cultured fibroblasts transfected with ALS mutants 

M337V, G287S or A321V (Highley et al. 2014). It further confirmed splicing 

dysregulation in ALS patients with TDP-43 proteinopathy. LMN-specific pre-mRNA 

splicing was examined from post mortem ALS patients. Importantly, a significant 

down-regulation of two genes of the spliceosomes named SNRNP25 and SNRNP48 was 

observed. Splicing dysregulation was also observed in some genes associated with ALS, 

including TARDBP, Fus, profillin, dynactin and C9ORF72. Similar findings were obtained 

from fibroblast ALS models expressing the aforementioned TDP-43 mutants.     

TDP-43 mouse models 

In an attempt to model ALS that is caused by TDP-43 mutations, several mouse models 

have been generated. However, these mouse models show varied phenotypes and 

they do not exhibit all features of ALS (McGoldrick et al. 2013). Like SOD1 mouse 

models, development of disease phenotypes is dependent on the level of transgene 

expression. Unlike SOD1 mouse models, overexpression of wild type TDP-43 leads to 

the development of neurodegeneration, therefore making it difficult to determine the 

relative contribution of TDP-43 mutations to disease progression. In addition, in almost 

all ALS mouse models that overexpress ectopic TDP-43, down-regulation of 

endogenous TDP-43 was observed as a result of TDP-43 autoregulation. Table 1.7 

summarizes the TDP-43 mouse models that have been generated up to date.   
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Figure 1.5  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 – The protein structure of TDP-43 with ALS-associated mutations. The Figure illustrates the 

protein structure of TDP-43, as well as mutations reported in sporadic and familial ALS cases indicated in 

black and blue respectively. Mutations in red are reported in both sporadic and familial ALS cases. The 

A90V mutation was found in both ALS and healthy controls. The structure of TDP-43 was previously 

described in Figure 1.4. All the aforementioned mutations resulted in dominant missense changes 

except Y374X which is a truncating mutation. The in-frame deletion/insertion mutation; 

S387del/insT387,N388,P389 is resulted from the deletion of two nucleotides (AT) at positions 1158-1159 

and the insertion of CACCAACC nucleotides at the same position. Note: adapted from (Gendron, 

Josephs, and Petrucelli 2010; Lattante, Rouleau, and Kabashi 2013).       
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Table 1.7    

Promoter Protein 
Protein 

expression 
(fold) 

Symptom 
onset 

(weeks) 

Survival 
(weeks) 

Phenotypes 

Reference 
Degeneration Pathology 

Abnormal 
motor 

behaviour 
LMN UMN Cortex Axonal Gliosis CTFs 

Inclusion 
Ubiquitin/TDP-43 

Hb9:Cre 

Motor 
neuron 
specific 

depletion 

0 13 40 Yes 
60% 
loss 

nd nd nd Yes nd 
Cytoplasmic: 
Ubiquitin (+) 

TDP-43 (-) 

(Wu, Cheng, and 
Shen 2012) 

Cre/loxp 
system 

MN specific 
depletion 

0  60 nd Yes Yes nd nd Yes Yes nd nd (Iguchi et al. 2013) 

mPrp 
 

TDP-43A315T 
 

3 13 22 Yes 
20% 
loss 

Yes nd Yes Yes Yes 
Cytoplasmic: 
Ubiquitin (+) 

TDP-43 (-) 

(Wegorzewska et al. 
2009) 

mPrp WT TDP-43 3-4 (mild) nd nd No nd nd nd nd Yes nd 
Cytoplasmic: 

Ubiquitin (diffuse) 
TDP-43 (nd) 

(Stallings et al. 2010) 

mPrp 
 

TDP-43A315T 
 

4 (mild) 4 37.5 Yes nd nd nd nd Yes Yes 
Cytoplasmic: 
Ubiquitin (+) 
pTDP-43 (+) 

(Stallings et al. 2010) 

mPrp WT TDP-43 1.9 Not affected (Xu et al. 2010) 

mPrp WT TDP-43 2.5 2 4-8 Yes No nd nd Yes Yes Yes 
Cytoplasmic: 
Ubiquitin (+) 
TDP-43 (+) 

(Xu et al. 2010) 

mPrp 
TDP-43M337V 

 
1.9 Not affected (Xu et al. 2011) 

mPrp 
TDP-43M337V 

 
2.5 2 4 Yes nd nd nd Yes Yes Yes 

Cytoplasmic: 
Ubiquitin (+) 
pTDP-43 (+) 

(Xu et al. 2011) 
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Table 1.7 Cont.  

Promoter Protein 
Protein 

expression 
(fold) 

Sympto
m onset 
(weeks) 

Survival 
(weeks) 

Phenotypes 

Reference 
Degeneration Pathology 

Abnormal 
motor 

behaviour 
LMN UMN Cortex Axonal Gliosis CTFs 

Inclusion 
Ubiquitin/TDP-43 

mPrp 
  

 
TDP-43WT

 

  
 

Expressed 
at levels 
similar to 

endogenous 
TDP-43 in 

non-
transgenic 

mice 

Not affected Arnold et al. 2013 

mPrp 
TDP-43Q337K 

 
12 nd Yes Yes nd nd Yes nd No No Arnold et al. 2013 

Thy1.2 
 

TDP-43WT
 

 
Males: 3.6 2-2.5 nd Yes No nd nd Yes Yes No 

Cytoplasmic: 
Ubiquitin (+)/TDP-

43 (-) 
Nuclear: 

Ubiquitin (-)/TDP-
43 (+)/Fus(+) 

(Shan et al. 2010) 

Thy1.2 
 

TDP-43WT
 

 
Female: 1.3 13 nd Yes No nd nd nd nd No No (Shan et al. 2010) 

Thy1.2  
TDP-43WT

 

 

1.9 56 nd Yes nd nd nd nd nd nd No (Wils et al. 2010) 

Thy1.2 
 

TDP-43WT
 

 
3.8 8 ~27 Yes 

10% 
loss 

15% 
loss 

nd nd Yes Yes nd (Wils et al. 2010) 
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Table 1.7 Cont.  

Promoter Protein 
Protein 

expression 
(fold) 

Symptom 
onset 

(weeks) 

Survival 
(weeks) 

Phenotypes 

Reference 
Degeneration Pathology 

Abnormal 
motor 

behaviour 
LMN UMN Cortex Axonal Gliosis CTFs 

Inclusion 
Ubiquitin/TDP-43 

Thy1.2 
 

TDP-43WT
 

 
5.1 2 4 Yes 

25% 
loss 

30% 
loss 

nd nd Yes Yes 

Cytoplasmic and 
Intracellular: 
Ubiquitin (+) 
pTDP-43 (+) 

(Wils et al. 2010) 

Thy1.2 TDP-25 4.7 nd nd nd nd nd No nd nd Yes No 
(Caccamo, 

Majumder, and 
Oddo 2012) 

Thy1.2 
 

TDP-43WT 
 

  
2 14 

25-26 
days 

Yes Yes nd Yes nd + Yes 
Cytoplasmic: 

Ubiquitin (+)/TDP-43 
(+)/pTDP-43(+) 

(Janssens et al. 
2013) 

Thy1.2 TDP-43M337V  1.7 11 
17-18 
days 

Yes Yes nd Yes nd ++ Yes 
Cytoplasmic: 

Ubiquitin (+)/TDP-43 
(++)/pTDP-43 (++) 

(Janssens et al. 
2013) 

CaMKII 
 

TDP-43WT
 

 
2 8 71 Yes nd nd Yes nd Yes Yes 

Cytoplasmic: 
Ubiquitin (+)/TDP-43 (+) 

(Tsai et al. 2010) 

CaMKII 
(TRE) 

TDP-43WT
 0.8 8-49 nd Yes nd Yes Yes nd Yes nd 

Rare Cytoplasmic: 
Ubiquitin (nd)/TDP-43 

(+) 

(Igaz et al. 2011) 
 
 
 

CaMKII 
(TRE) 

TDP-43-∆NLS 7.9 5 26 Yes nd Yes Yes Yes Yes nd 
Rare Cytoplasmic: 

Ubiquitin (+)/pTDP-43 
(+) 

 
     
 
  (Igaz et al. 2011) 
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Promoter Protein 
Protein 

expression 
(fold) 

Symptom 
onset 

(weeks) 

Survival 
(weeks) 

Phenotypes 

Reference 
Degeneration Pathology 

Abnormal 
motor 

behaviour 
LMN UMN Cortex Axonal Gliosis CTFs 

Inclusion 
Ubiquitin/TDP-43 

CaMKII 
(TRE) 

 
M337V TDP-

438A 
(low 

expressor) 

1.25 No nd No nd nd No nd nd Yes 

Cytoplasmic: 
Ubiquitin (+)/TDP-

43 (-) 
Nuclear: 

Ubiquitin (+)/TDP-
43 (-) 

(D’Alton et al. 2014) 

CaMKII 
(TRE) 

M337V TDP-
43

14A
 
(high 

expressor) 

nd No nd No nd nd Yes nd nd Yes 
Cytoplasmic: 

Ubiquitin (+)/TDP-
43 (-) 

(D’Alton et al. 2014) 

TARDBP    TDP-43WT 3 28-32 nd Yes nd nd nd No Yes nd 
Cytoplasmic: 

Ubiquitin (+)/TDP-
43 (+) 

(Swarup et al. 2011) 

 
TARDBP 

 
TDP-43A315T 

 

 
3 

 
28-32 

 
nd 

 
Yes 

 
nd 

 
nd 

 
nd 

 
No 

 
Yes 

 
Yes 

Cytoplasmic: 
Ubiquitin (+)/TDP-

43 (+) 

 
(Swarup et al. 2011) 

 
TARDBP 

 
TDP-43G348C 

 

 
3 

 
28-32 

 
nd 

 
nd 

 
nd 

 
nd 

 
nd 

 
No 

 
Yes 

 
Yes 

Cytoplasmic: 
Ubiquitin (+)/TDP-

43 (+) 

 
(Swarup et al. 2011) 

 
TARDBP 

 
TDP-43A315T 

 

 
2.5 

 
nd 

 
nd 

 
Yes 

 
10% 
loss 

 
nd 

 
nd 

 
nd 

 
nd 

 
No 

Cytoplasmic: 
Ubiquitin (+)/TDP-

43 (+) 

 
(Stribl et al. 2014) 

 

Table 1.7 - The Table shows a summary of TDP-43 mouse models. Abbreviation: nd not described, CTFs C-terminal fragments. Note: adapted from (McGoldrick et al. 2013) 

with slight modifications. Text includes more details about some mouse models but not all.   
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TARDBP knockout mouse models 

The identification of causative mutations in TARDBP for ALS, raised the question 

whether ALS is caused by TDP-43 loss of function. Hence, TARDBP knockout mouse 

models were generated to address this question. Depletion of TDP-43 resulted in 

lethality during embryogenesis indicating that TDP-43 has an essential role during 

development (Kraemer et al. 2010; Wu et al. 2010; Sephton et al. 2010). However, 

disruption of one allele of TARDBP (TARDBP+/-), using gene trap strategy, resulted in an 

age-dependant motor defect and muscle weakness. TARDBP+/- mice exhibited 

decreased forelimb grip strength, compared with wild type mice (Kraemer et al. 2010). 

Wu et al generated conditional TARDBP knockout mice to specifically eliminate TDP-43 

expression in motor neurons of spinal cords (Wu, Cheng, and Shen 2012). These mice 

were generated by crossing mice carrying the conditional allele of the Tardbp-floxed 

gene with mice harbouring a Cre-recombinase transgene under control of the HB9-

promoter, which is a motor neuron specific promoter. The conditional TARDBP 

knockout mice develop ALS-like pathological phenotypes: weight loss and abnormal 

hindlimb clenching (at 13 weeks of age), impairment in rotarod performance (the 

ability to walk on a rotating rod), kyphosis (at 20 weeks of age), lower motor neuron 

loss, gliosis and TDP-43-negative ubiquitinated cytoplasmic inclusions.      

TDP-43 transgenic mouse models 

Transgenic mice expressing TDP-43 under control of mPrp 

To understand the mechanisms underlying TDP-43 pathology, TDP-43 transgenic 

mouse models have been generated under control of tissue-specific promoters. 

Wegozewska et al generated the first transgenic mouse model expressing the TDP-43 

transgene under the mPrp which drives the expression of TDP-43 highly in the CNS and 

to a lesser extent in other tissues (Wegorzewska et al. 2009). This transgenic mouse 

expresses the coding sequence of the human mutant TDP-43 harbouring the mutation 

A315T (Prp-hTDP-43A315T) and it is Flag-tagged at the N-terminus. The Prp-TDP-43A315T 

expresses the TDP-43 transgene approximately 3-fold more than the endogenous TDP-

43. The Prp-TDP-43A315T mouse model exhibits some features of ALS such as gait  
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abnormality (at 13 weeks of age), weight loss (at 18 weeks of age) and swimming gait 

(mice unable to hold their body off the ground).  It also develops some ALS 

pathological features: TDP-43-negative ubiquitin-positive cytoplasmic inclusions which 

were predominantly observed in pyramidal cells of the cortex, as well as in motor 

neurons of the ventral horn of the spinal cord. These ubiquitinated cytoplasmic 

inclusions coincided with loss of nuclear TDP-43. Also, upper and lower motor neuron 

loss, as well as gliosis were observed in this mouse model.  

Stallings et al generated three mouse models, expressing native (without tagging) TDP-

43 cDNA (human wild type, A315T or M337V) under control of the prion promoter 

(Stallings et al. 2010). Transgenic mice expressing high levels of the TDP-43 transgene, 

exhibit a severe motor dysfunction, muscle weakness, spasticity and early mortality, 

(ranging from 12 to 34, 14 to 49 days or a mean of survival of 19 days, respectively). 

Furthermore, transgenic mice expressing mild levels of the wild type or TDP-43A315T (at 

~ 4 folds normalized to endogenous level of TDP-43), are viable and therefore this 

facilitates reproducing offspring carrying the same level of the transgene, in order to 

perform a complete analysis. The TDP-43A315T transgenic mice exhibit a progressive 

decrease in grip strength and a pronounced weakness in the hindlimbs. 

Immunofluorescence analysis revealed an increase in TDP-43 in the nucleus, as well as 

an increase in gliosis in the ventral horn of the spinal cord. Also, ubiquitinated 

cytoplasmic inclusions were observed in the ventral horn of spinal cord, with 

colocalization of TDP-43 when only probed with anti phospho-TDP-43 at residues 409-

410 in mice that reached the late stage of the disease. The wild type TDP-43 transgenic 

mice, however, do not develop a motor phenotype, but they exhibit a mild level of 

neuronal abnormality (showed by an increase in ubiquitin that was diffused in the 

neurons of the ventral horn or brainstem), as well as gliosis.  

However, Xu et al reported conflicting results about wild type TDP-43 transgenic mice 

in which overexpression of the wild type TDP-43 (at 2.5 fold normalized to TDP-43 

endogenous level) results in neurodegeneration and early mortality (Xu et al. 2010). 

The same group reported similar findings with transgenic mice overexpressing M337V 

(Xu et al. 2011). Similar to the wild type TDP-43 transgenic mice, TDP-43M337V 

transgenic mice expressing 1.9 fold of the transgene compared to the endogenous 
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TDP-43, were unaffected. However, when the level of the transgene increases to 2.5 

fold, they exhibit motor dysfunction, axonal degeneration and early mortality.  

Transgenic mice expressing TDP-43 under control of Thy1.2 

Other TDP-43 mouse models were generated in which the Thy1.2 promoter was used 

to drive the expression of the transgene postnatally in neuronal cells (Shan et al. 2010; 

Caccamo, Majumder, and Oddo 2012; Wils et al. 2010). Hence, this will eliminate any 

deleterious effects resulting from TDP-43 overexpression during embryogenesis 

(McGoldrick et al. 2013). Male transgenic mice expressing wild type TDP-43 exhibit 

weight loss, abnormal gait, tremor and abnormal reflexes of hindlimbs (Shan et al. 

2010). In addition, abnormal accumulation of mitochondria was found in cytoplasmic 

ubiquitinated aggregates of motor neurons and coincided with a marked reduction of 

mitochondria in nerve terminals at neuromuscular junctions (NMJ). Moreover, 

abnormal morphology of NMJ was also observed similar to that found in spinal 

muscular atrophy (SMA). Based on this similarity, the author also examined Gemini 

coiled bodies (GEMs), a nuclear structure that contains the survival of motor neuron 

protein (a deficiency of this protein is known to cause SMA).  Abnormal distribution of 

GEMs was observed in the nuclei of neurons. 

Similar to the prp-TDP-43WT mouse model, Wils et al generated wild type TDP-43 

mouse models under the control of the Thy1.2 promoter which exhibit motor neuron 

degeneration in a dose-dependent manner (Wils et al. 2010).  

The presence of N-terminal-cleaved TDP-43 fragments which forms C-terminal 

fragments (25 kDa) was found in the cytoplasm of almost all TDP-43 mouse models for 

ALS. The role of this small molecular weight fragment of TDP-43 in the disease 

pathogenesis is still unclear. Therefore, Caccamo et al generated a mouse model 

overexpressing TDP-43-25. This mouse model developed cognitive impairment 

reminiscent of FTLD-TDP (Caccamo, Majumder, and Oddo 2012). 

To determine the relative contribution of mutant TDP-43 to disease progression,  

Janssens et al established mutant transgenic mice that express a comparable level of 

human TDP-43M337V to that expressed by wild type human TDP-43 mice, i.e. 1.7 and 2 
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folds respectively. The mutant showed accelerated disease onset and progression 

(Table 1.7).  

Transgenic mice expressing TDP-43 under control of CaMKII 

Other groups generated TDP-43 mouse models under control of CaMKII (calcium-

calmodulin-dependent kinase II) which limits the expression of TDP-43 to the forebrain 

(Tsai et al. 2010; Igaz et al. 2011; Cannon et al. 2012). Tsai et al generated a mouse 

model overexpressing wild type TDP-43 at 2 fold compared to the endogenous TDP-43. 

This mouse develops cognitive abnormalities from 8 weeks of age. Interestingly, the 

mouse also develops motor dysfunction by 26 weeks of age manifested by abnormal 

hindlimb reflexes, decreased grip strength and rotarod deficits. This coincided with loss 

of cortical neurons, as well as cortical atrophy.  

Igaz et al generated conditional transgenic mouse models under the control of CaMKII 

and the tetracycline response element system (TRE). Briefly, transgenic hTDP-43 

mouse lines were first generated containing either hTDP-43WT or TDP-43-∆NLS (lacking 

the nuclear localisation signal domain), fused with a tetracycline-responsive promoter 

element (tetO). These mice were bred to Camk2a-tTA mice carrying the tetracycline-

controlled trans activator (tTA) under control of the promoter Camk2a. The bigenic 

mice carrying both Camk2a-tTA and tetO-hTDP-43 were given doxycycline-containing 

food. Doxycycline (dox) blocks the promoter until 28 days of age when mice were fed 

dox-free food to allow the transcription of tTA which then binds to tetO to activate the 

expression of TDP-43. 

In both bigenic lines, hTDP-43WT or TDP-43-∆NLS, the induction of their respective TDP-

43 expression led to neuron loss in selected regions of the forebrain (cortex and 

hippocampus), corticospinal tract degeneration and spastic motor impairment that 

was measured by abnormal clasping. The tetO-hTDP-43-∆NLS line facilitates the 

investigation of the impact of mislocalized TDP-43 on neuronal viability. Indeed, the 

cytoplasmic ubiquitinated phosphorylated TDP-43 was rarely observed. Furthermore, 

overexpression of the transgene TDP-43 resulted in a dramatic down-regulation of 

endogenous TDP-43. Taking all the above findings into account, this suggests that the 
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neuronal loss is more likely caused by the nuclear TDP-43 loss of function than by 

cytoplasmic inclusions.   

Other transgenic mice expressing the human mutant M337V and using the TRE system 

were generated by D’Alton et al 2014. The two lines which expressed the highest level 

of the transgene were used in this study, namely hTDP-438A and hTDP-4314A. The hTDP-

4314A mice express high amounts of the transgene compared to hTDP-438A (D’Alton et 

al. 2014). These mice do not develop any overt phenotypes. The hTDP-4314A mice, on 

the other hand, exhibit abnormal brain development at postnatal age of P0 without 

detection of TDP-43 aggregation. Furthermore, active caspase 3 was extensively 

detected in the cortex of hTDP-4314A indicating high levels of cell death as a result of 

overexpression of the mutant M337V. Ubiqutinated inclusions were detected in the 

cytoplasm of the cortex of hTDP-4314A and in the nuclear and cytoplasm of the cortex 

of hTDP-438A. Small molecular weight species of TDP-43 (25 kDa and 35 kDa) were also 

detected in both lines.   

TDP-43 transgenic mice using a bacterial artificial chromosome  

Swarup et al using a bacterial artificial chromosome generated TDP-43 mutant (A315T 

and G348C) and wild type transgenic mice by inserting the entire human TDP-43 gene 

under the control of its own promoter into the mouse genome (Swarup et al. 2011). In 

a nutshell, all transgenic lines, as well as the transgenic wild type TDP-43, express the 

transgene at 3 fold more than the endogenous TDP-43. The mice develop cognitive 

abnormalities and motor impairments by 26 and 42 weeks of age, respectively.  

Furthermore, peripherin aggregates were observed in the cross-sections from brain 

and spinal cord tissues of these mice.  

TDP-43 transgenic knock-in mice using recombinase-mediated cassette exchange 

Stribl et al generated a transgenic knock-in mouse model expressing the human TDP-

43A315T cDNA under the control of its own promoter (Stribl et al. 2014). The 

homozygotes die whereas the heterozygotes are viable. The heterozygotes express the 

transgene hTDP-43A315T at 2.5 fold greater than the endogenous TDP-43. As a result, 

the level of the endogenous TDP-43 decreased to 20% in comparison to the control 

non-transgenic mice. The heterozygotes exhibited body weight loss by 10%, as well as 
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insoluble TDP-43 inclusions that were detected in the brain lysate in an age dependent 

manner. The mice also exhibited a 10% reduction of motor neurons which correlated 

with a slight motor impairment. In addition, colocalization of TDP-43 with ubiquitin 

was observed in the cytoplasm of the brain (cortex) and in the anterior horn of the 

spinal cord. Furthermore, transmission electron microscopy (TEM) performed on the 

cortex of heterozygotes at 18-month of age revealed an abnormal morphology of 

mitochondria.   

The F210I TDP-43 mutant mouse model 

F210I is a missense mutation located in the RRM2 of TDP-43. Heterozygotes are viable 

whereas homozygotes are lethal. At E14.5 embryonic stage, the heterozygous embryos 

appear normal compared to the wild type, whereas the homozygotes appear to be less 

developed in contrast to the wild type. Ricketts investigated the negative impact of the 

F210I mutation on TDP-43 function by examining the RNA splicing role of TDP-43F210I 

using a CFTR mini gene assay (Ricketts 2012). TDP-43F210I exhibited a deficiency of exon 

9 exclusion of the CFTR gene. Heterozygotes showed a significant reduction in the 

ability of exon 9 skipping activity (by 67.7%) whereas the homozygotes showed an 

almost complete loss of this activity. As a result, TDP-43F210I cellular localization was 

determined using cell fractionation. Similar to the wild type, TDP-43F210I is 

predominantly localized to the nucleus. In addition, the binding affinity between TDP-

43 and the hnRNP family was not affected by F210I mutation. However, TDP-43F210I 

showed a significant reduction in the ability to bind the UG repeats which is known to 

be required for exon 9 skipping activity. Also, TDP-43F210I showed a reduced ability to 

bind its own 3’ UTR sequence.    

2.1.4.4 Peripherin 

Structure and function 

Peripherin is a type III intermediate filament expressed mostly in the peripheral 

nervous system (PNS) and in some neuronal populations in the central nervous system 

(Eriksson et al. 2008; Yuan et al. 2012). This classification as a type III intermediate 

filament is based on its structural properties, as well as on its ability to self-assemble or 

coassemble with either vimentin or neurofilament proteins. During neuronal 
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development, peripherin is up-regulated and then postnatally down-regulated, 

suggesting that peripherin has an influence on neurite elongation. Also, peripherin is 

up-regulated after brain damage which indicates that it also might play a role in axonal 

regrowth. Nevertheless, the exact physiological function of peripherin is still unknown.  

The peripherin gene is comprised of 9 exons (Figure 1.6A, blue boxes) that can be 

alternatively spliced to generate three different splice variants. Similar to 

neurofilaments, peripherin contains a conserved alpha helical rod domain flanked by 

non-alpha-helical head and tail domains (Figure 1.6B). The rod domain is subdivided 

into three coil domains: 1a, 1b, and 2 which are connected by non-alpha helical linker 

sequences (Figure 1.6B, thin red boxes). Both the rod and N-terminal domains are 

required for filament assembly whereas the C-terminal domain is dispensable for 

filament formation.    

Peripherin isoforms were first characterized in murine neuroblastoma cells in which 

the three peripherin cDNAs were entirely sequenced and characterized: Per58, per61 

and per56 (Figure 1.6B) (Landon, Wolff, and Nechaud 2000; Landon et al. 1989). The 

coding sequence is highly conserved between the three isoforms. Per58 is the 

predominant isoform and is comprised of 457 amino acids that are encoded by all nine 

exons. Per61 is generated by inclusion of 32 amino acids within the coil 2 domain as a 

result of the retention of intron 4. Per56 is generated by the presence of a cryptic 

acceptor site located at the start of exon 9. The use of this cryptic acceptor site leads 

to a deletion of 62 bp (21 amino acids) (Figure 1.6A, grey box). This deletion results in a 

change in the reading frame and thus the stop codon used in per58 and per61 is no 

longer the stop codon for per56. Instead, a new stop codon located 20 bp downstream 

from the original stop codon is generated, resulting in the replacement of 21 amino 

acids with 8 amino acids. Per45 is an alternatively translated isoform translated from 

the same per58 transcript. While the second start codon is used to translate per58, 

per45 is translated from the third start codon. In humans, however, per58 is translated 

from the first ATG, whereas per45 is generated from the second ATG. Regarding per61, 

the murine per61 is generated by the insertion of 96bp long intron 4. In the humans,  
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Figure 1.6  

 

 

       

 

 

 

 

 

 

 

 

Figure 1.6 – Peripherin gene and protein structure. (A) Thick blue boxes represent exons while thin black 

boxes represent introns. The red arrow refers to the position of intron 4. The grey box represents the 

deletion of 62 bp in the per56 splice variant as a result of the use of a cryptic site at the start of exon 9. 

(B) Figure showing the structure of peripherin isoforms. Thick black boxes represent coil domains while 

thin red boxes represent linker sequences. Stripped box represents the 32 amino acid inclusion. Note: 

adapted from (Robertson et al. 2003).    
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however, intron 4 of peripherin consists of 91 bp. If the insertion of 91 bp occurred, 

this would results in a frameshift and therefore in the formation of a C-terminally 

truncated protein, 32kDa in size. Hence, per61 cannot exist in humans (Xiao et al. 

2008). Moreover, per28 was found to be expressed at low stoichiometric levels in 

humans. Per28 results from the retention of intron 3 and 4 at RNA levels. However, 

due to the presence of a stop codon in intron 3, which is located 30 bp downstream of 

the start of intron 3, a ten amino acid sequence gets included in the translated product 

per28 and intron 4 is therefore untranslated.         

The role of peripherin in ALS 

Peripherin was found to be associated with hyaline conglomerate inclusions in ALS. 

Also, axonal spheroid (large swellings observed at the proximal axons of affected 

motor neurons) was  immunostained for peripherin, (McLean et al. 2008; Corbo and 

Hays 1992).   

Stoichiometric expression of peripherin isoforms is required for the formation of a 

proper cytoskeletal network. Changes in the ratio of peripherin isoforms may trigger 

aggregate formation (Xiao et al. 2008). For instance, per28 was found to be up-

regulated in ALS cases. Up-regulation of per28 results in changes in stoichiometric 

levels of peripherin, leading to aggregate formation. 

Peripherin isoforms contribute to the formation of filament networks through intra-

isoform association that are tissue-specific and post-transcriptionally regulated 

(McLean et al. 2008; McLean et al. 2010). Per45 is required for a proper network 

establishment of per58. Without per45, per58 would be unable to form a proper 

neurofilament network (McLean et al. 2008).  

The ability of each peripherin isoform to form filaments was first characterized when 

they were ectopically and individually expressed in the SW13 vim(-) cell line 

(Robertson et al. 2003). Per58 and per56 were both able to assemble neurofilaments, 

whereas per61 was not. Per61 also had a toxic effect on cultured motor neurons. In 

addition, abnormal expression of per61 was detected in the ALS transgenic mouse 

model SOD1G37R. This might be due to a disruption of the heptad repeat of coil 2 by 

inclusion of 32 amino acids in per58. This repeat is required for the formation of a 



45 
 

 

coiled-coil structure (the basic building block of neurofilaments) which leads to the 

dimerization of peripherin (Goldman et al. 2011).   

A heterozygous frameshift deletion of 1 bp in exon 1 of  peripherin was found to be 

associated with ALS (Gros-Louis et al. 2004). This deletion results in the generation of a 

stop codon in the head domain and thus creates a truncated peripherin species. 

Ectopic expression of this truncated peripherin leads to a disruption of neurofilament 

assembly. Moreover, a homozygous peripherin mutation Asp141Tyr which is located in 

the linker sequence between coil 1a and coil 1b domains was also associated with ALS 

(Corrado et al. 2011). Functional analysis of the aforementioned mutations revealed 

that these mutations lead to the formation of aggregates. Another mutation was 

identified as an Arg133Pro substitution mutation in the first linker sequence of the coil 

1 domain, however, functional assays are required to determine its association with 

aggregate formation (Corrado et al. 2011). 

2.1.4.5 EAAT2 

The excitatory amino acid glutamate transporter (EAAT2) is a glial glutamate 

transporter essential for clearing the synaptic cleft from the excess glutamate, in order 

to keep its level below excitotoxic concentration (Nicholls and Atewell 1990). 

Glutamate is an important neurotransmitter in the central nervous system. It is 

required for initiating various signalling cascades by binding to its receptor on the post-

synaptic neurons which in turn allows calcium ion influx to initiate intracellular 

signalling cascades. Clearing the synaptic cleft from glutamate is important for the 

prevention of excessive activation of the glutamate receptor which otherwise would 

lead to excitotoxicity.  Two isoforms of GLT-1, the murine homologue of EAAT2, are 

expressed in the CNS: GLT-1, mainly expressed in the astrocytes and GLT-1B, the 

neuronal splice variant.  

The loss of EAAT2 protein has been observed in the motor cortex and spinal cord in 

some ALS cases and hence negatively impacts the glutamate uptake (Rothstein, J D.; 

Martin, L J.;Kuncl 1992). Neither a mutation nor a reduction in transcript levels account 

for this selective loss of EAAT2 protein. It was reported that this loss might be the 

result of aberrant RNA processing that generates intron seven retention and exon 9 
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skipping splice variants, which have been seen in some ALS cases (Lin et al. 1998).  

However, subsequent studies found that these splice variants are also present in the 

controls and thus are not associated with ALS (Flowers et al. 2001). Another study 

reported the occurrence of RNA editing in EAAT2 in ALS, which results in an alternative 

polyadenylation signal in intron 7 (Flomen and Makoff 2011). Nevertheless, the precise 

process of the selective loss of EAAT2 protein is still under investigation. 

2.2 Diseases of upper motor neurons 

2.2.1 Hereditary spastic paraplegia 

 HSP is a genetically and clinically heterogeneous neurodegenerative disease which 

affects the longest axons of the corticospinal tract and which is characterized by 

progressive spasticity and weakness in lower limbs (Lo Giudice et al. 2014). HSP can be 

divided into two groups: pure HSP which is characterized by spastic paraplegia, bladder 

spasticity and mildly impaired sensations and complicated HSP which is characterized 

by lower limb spasticity associated with other neurological or non-neurological 

diseases. There are many genes and loci identified in HSP. Of these is kinesin (see 

section 2.3.2.1.1 for more details about kinesin structure and function). 

There are 15 classes of kinesins and approximately 45 kinesin superfamily genes 

(Hirokawa et al. 2009). Of relevance to HSP diseases are KIF5A and KIF1A. Mutations in 

the motor domain of one allele of KIF5A have been found to cause HSP whereas 

mutations in KIF1A are autosomal recessive. Table 1.8 shows all mutations that have 

been identified to date in KIF5A and KIF1A.  
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Table 1.8  

Kinesin type Mutations Substitution Location Inheritance Ref 

KIF5A N256S Asparagine to serine at 

position 256 

Located in loop 

11 that connects 

MTs and ATP-

binding sites 

Autosomal 

dominant 

OMIM, 

#602821 

R280C Arginine to cysteine 

substitution at position 

280 

Located in the MT 

binding site 

Y276C Tyrosine to cysteine at 

position 276 

nd 

A361V Alanine to valine at 

position 361 

Located in the 

coiled coil domain 

E251K Glutamic acid to lysine 

at position 251 

Located in the 

motor domain 

R204Q Arginine to glutamine   

at position 204 

Located in the 

motor domain 

A280H Alanine to histidine at 

position 280 

Located in the 

motor domain 

E755K Glutamic acid to lysine 

at position 755 

Located in the 

stalk domain 

G235E Glycine to lysine at 

position 235 

Located in the 

motor domain 

KIF1A A255V Alanine to valine at 

position 255 

nd Autosomal 

recessive 

OMIM, 

#610357 

R350G Arginine to glycine at 

position 350 

nd 

 

Table 1.8 - The Table shows all HSP-caused mutations that have been identified to date in two kinesin 

genes KIF5A and KIF1A. Abbreviations: MT, microtubule; nd, not determined.   
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2.3 Diseases of lower motor neurons 

2.3.1 Distal hereditary motor neuropathies 

The distal hereditary motor neuropathies (dHMN) include a group of heterogeneous 

disorders that share the common feature of distal lower-motor-neuron weakness 

(Rossor et al. 2012). dHMN is characterized by LMN weakness or degeneration in the 

ventral horn of the spinal cord and distal muscle wasting and weakness. Figure 1.7 

shows an example of a patient with dHMN demonstrating the distal wasting and 

weakness of the lower limb.  Table 1.9 shows all genes and loci that have been 

identified in dHMN.  

Figure 1.7  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 - The Figure demonstrates the distal wasting and weakness of dHMN patient legs [in both the 

anterior (A) and the posterior (B) compartment of the leg] with a mutation in heat-shock protein B1. 

Note: adapted from (Rossor et al. 2012).   
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Table 1.9  

dHMN form Locus Gene Inheritance Phenotype 

dHMN type I _ 

HSPB1 

HSPB8 

GARS 

DYNC1H1 

 

AD 
Juvenile onset with distal wasting and 

weakness 

dHMN type II _ 

HSPB1 

HSPB8 

BSCL2 

HSPB3 

(probable) 

AD 
Adult onset with distal wasting and 

weakness 

dHMN type III 11q13 Unknown AR 
Slowly progressive wasting and 

weakness 

dHMN type IV 11q13 Unknown AR 
Slowly progressive wasting and 

weakness with diaphragmatic paralysis 

dHMN type  V _ 
GARS 

BSCL2 
AD Upper-limb predominance 

dHMN type  VI _ IGHMBP2 AR 
Spinal muscular atrophy with 

respiratory distress type 1 

dHMN type  VII 2q14 

DCTN1 

TRPV4 

Unknown 

AD Adult onset with vocal-cord paralysis 

X-linked dHMN _ ATP7A X-linked Distal-onset wasting and weakness 

dHMN and 

pyramidal features 

 

 

4q34eq35 

7q34eq36 

SETX* 

BSCL2 

Unknown 

Unknown 

 

 

AD 

 

 

DHMN and pyramidal signs 

dHMN from the 

Jerash region of 

Jordan 

9p21.1ep12 Unknown AR 
DHMN and pyramidal signs originating 

in the Jerash region of Jordan 

Congenital distal 

spinal muscular 

atrophy AR 

_ TRPV4 AD 
Distal weakness at birth and 

arthrogryphosis 
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Table 1.9 - The Table shows the causative genes that have been identified so far in dHMN. 

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; ATP7A, copper-transporting ATPase 

1; BSCL2, BerardinellieSeip congenital lipodystrophy type 2; DCTN1, P150 subunit of dynactin; DYNC1H1, 

cytoplasmic dynein heavy chain 1; GARS, glycyl-tRNA synthetase; HSPB1, heat-shock protein B1; HSPB3, 

heat-shock protein B3; HSPB8, heat-shock protein B8; IGHMBP2, immunoglobulin m binding protein 2; 

TRPV4, transient receptor vallanoid 4 gene. *dHMN and pyramidal features due to senataxin (SETX) 

mutations are also referred to as amyotrophic lateral sclerosis type 4. Note: adapted from (Rossor et al. 

2012).   

2.3.2 SMA 

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder 

characterized by proximal muscle wasting and weakness due to LMN loss in the spinal 

cord and brainstem (Prior and Russman 2013).  SMA is genetically caused by a 

mutation in the survival motor neuron 1 (SMN1) gene. SMN1 is diminished in patients 

with SMA. Humans have two almost identical copies of SMN: SMN1 and SMN2. SMN2 

however cannot compensate for the lack of SMN1 protein in patients with SMA due to 

the absence of alternatively spliced exon 7 in SMN2. Thus, SMN2 only produces a small 

amount of a functional protein whereas the rest (about 80%) of SMN2 is unstable.  

 2.3.2.1 SMA-LED and its molecular genetics 

Spinal muscular atrophy with lower extremity predominance (SMA-LED) is an 

autosomal dominant congenital neurodegenerative disorder characterized by muscle 

weakness and wasting of the proximal lower limb muscles. SMA-LED is heterogeneous 

comprising multiple forms due to the presence of many causative mutations in 

different genes: TRPV4, transient receptor potential action channel, superfamily V, 

member 4; DYNC1H1, cytoplasmic dynein heavy chain 1; and BICD2, Bicaudal 

drosophila, homolog 2. SMA-LED which is caused by the aforementioned genes, shows 

similar symptoms such as early childhood onset and slowly or non-progressive motor 

neuron degeneration. Each have distinctive features such as vocal cord impairment or 

upper motor neuron signs. In this thesis, I will focus on SMA-LED which is caused by 

mutations in DYNC1H1. In addition to SMA-LED, mutations in DYNC1H1 are also known 

to be associated with other diseases such as Charcot-Marie-Tooth type 2 (CMT2), 

malformation of cortical development (MCD) and learning disability. Figure 1.8 shows 
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the structure of DYNC1H1 and demonstrates the location of all recently reported 

DYNC1H1 mutations in human cases with the main phenotypic features. For more 

details about the structure of DYNC1H1 see section 2.3.2.1.1.  

 2.3.2.1.1 Molecular motors 

Most intracellular transport in eukaryotic cells is performed by molecular motors. 

Molecular motors are motor proteins that are involved in transporting cargo (including 

newly synthesized proteins or mRNAs) to their cellular destination. This directional 

intracellular transport is more prominent in cell types with a highly polarized structure 

such as neurons and epithelial cells (Hirokawa et al. 2009). Such intracellular transport 

is required for the normal function and survival of neurons due to the presence of long 

axons which requires transporting material from the cell body to the nerve terminals. 

Cargos such as the membrane bound organelles (e.g. mitochondria, lysosomes, 

synaptic proteins and endosomes) are transported by fast axonal transport (100-400 

mm per day) whereas the cytosolic proteins such as tubulins and neurofilaments are 

transported at a lower speed, namely 0.1-3 mm per day.  There are three types of 

molecular motor proteins: kinesin, dynein and myosin. Kinesins utilize microtubules as 

a track to step along and anterogradely transport cargo from the microtubule minus 

end (points to the cell body) to the microtubule plus end (points to the nerve 

terminals). The cytoplasmic dynein is involved in retrograde transport along 

microtubules (from the plus end to the minus end). Myosin walks along actin filaments 

to drive muscles contraction and to provide short-term transport beneath the plasma 

membrane. These motor proteins use the chemical energy derived from ATP hydrolysis 

to generate the force that is required for their motility.  

Kinesins 

There are 15 classes of kinesins (Figure 1.9A) (Hirokawa et al. 2009). These kinesins can 

be further grouped into three types based on the location of the motor domain: in the 

amino terminus (N-kinesins), in the middle of the molecule (M-kinesins) or in the C-

terminus (C-kinesins) (Figure 1.9B). N-kinesins are involved in anterograde transport 

while some C-kinesins are involved in retrograde transport. M-kinesins are involved in  

     



52 
 

 

Figure 1.8  

 

 

 

 

 

 

 

 

 

Figure 1.8 - The Figure shows a schematic diagram of the human cytoplasmic dynein heavy chain 1. The 

arrows represent the human mutations. Mutations in black are found in individuals with MCD whereas 

those in red are found in individuals with SMA-LED or CMT2. Mutations in green cause SMA-LED while 

mutations highlighted in blue cause SMA-LED with mild cognitive impairment. Note: adapted from with 

some modifications (Schiavo et al. 2013).   
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Figure 1.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 - The Figure shows a phylogenetic tree of 45 kinesin genes in the mouse genome as well as 

the domain structure of major mouse kinesins. Note: adapted from (Hirokawa et al. 2009).  
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depolymerizing microtubules. In neurons, three members of the kinesin superfamily 

are involved in driving anterograde movement along the axon: kinesin 1, kinesin 2 and 

kinesin 3 (Moughamian and Holzbaur 2012).  Kinesins generally contain a motor 

domain, a coiled coil domain called stalk and a globular domain called tail (Figure 

1.10A). The motor domain is comprised of an ATP binding domain and a microtubule 

binding site. Some kinesins also contain additional domains: the pleckstrin homology 

(PH) domain in the KIF1A and KIFBβ, the CAP-Gly domain which exist in KIF13B and 

WD40 repeat found in KIF21A. Kinesins form a dimer by connecting their two heads 

with a coiled coil stalk. They move along microtubules through repeated cycles of 

coordinated binding and unbinding of their two heads.   

Myosin 

Based on genomic analysis, there are 17 classes of myosins. Myosin II is the first 

member which was identified and purified from skeletal muscles. There are additional 

myosin II isoforms that are expressed in non-muscle cells. Of relevance to my research, 

I will focus on non-muscle myosin II due to its role in cell migration and adhesion. 

Structurally, myosin II is composed of two heavy chains and four light chains. The 

heavy chain consists of the globular head domain which contains both actin and ATP-

binding sites (Figure 1.10B). Adjacent to the head domain is an alpha-helical region 

called neck, the region where the two light chains can bind: a regulatory light chain 

and an essential light chain (RLC and ELC, respectively) (Figure 1.10B, ELC, in red and 

RLC, in blue). RLC is required to regulate myosin II activity and ELC is required to 

stabilize the structure of the heavy chain. Adjacent to the neck domain is the alpha-

helical long tail domain. Myosin II is dimeric in which two tail domains associate to 

form a coiled-coil structure called bipolar filament. Myosin filaments tether actin 

filaments through their heads to exert tension by ATP hydrolysis (Vicente-Manzanares 

et al. 2009). Both the head and the neck represent the N-terminus of myosin II while 

the tail domain represents the C-terminus.  Myosin II plays an important role in cell 

motility (see section 2.3.2.1.4.4). 
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Figure 1.10  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10 - Schematic diagram of the motor proteins kinesin, KIF4 (A) and non-muscle myosin II (B). 

Two light chains bind to the neck namely a regulatory light chain and an essential light chain (RLC and 

ELC, in blue and red respectively). Note: adapted from (Vallee, Seale, and Tsai 2010; HIROKAWA and 

NODA 2008).     

 

 

 

 

 

 

 



56 
 

 

Dynein 

Two families of dynein exist: axonemal dynein and cytoplasmic dynein (Höök and 

Vallee 2006). Axonemal dynein is located in the axonemes found in flagella and cilia. 

The axoneme contains a highly conserved cytoskeletal structure and comprises an 

array of microtubules, two of which are located in the centre of the axoneme and the 

rest of microtubules form 9 pairs which are arranged in a circle (called the outer 

doublet) to form a cylinder like structure. The function of axonemal dynein is to 

connect the outer doublets. It is responsible for the movement of flagella and cilia by 

forcing the microtubule doublets to slide against each other. 

Two forms of cytoplasmic dynein exist: cytoplasmic dynein 1 and cytoplasmic dynein 2 

and both function as a complex (Höök and Vallee 2006). Of relevance to SMA-LED, the 

cytoplasmic dynein 1 complex will be the topic discussed from this point on. 

Cytoplasmic dynein 1 is the abundant form and is a large multi-subunit motor complex 

(about 1.5 MDa). It is involved in many crucial processes such as retrograde transport, 

cell migration, orientation of the mitotic spindle, nuclear translocation, Golgi 

maintenance, endocytic trafficking and autophagy. In the nervous system, cytoplasmic 

dynein 1 is the sole motor protein implicated in the retrograde transport (Schiavo et al. 

2013). It transports cargo within the dendrites and axons, carries signalling complexes, 

missfolded proteins and organelles from the nerve terminus to the soma. Based on 

similarity in sequence and structural organization, cytoplasmic dynein is related to the 

AAA superfamily of ATPases. The cytoplasmic dynein 1 complex is composed of two 

identical subunits of dynein heavy chain 1 (DYNC1H1 referred to as DHC hereafter) 

(Figure 1.11A). DYNC1H1 is a large gene composed of 78 exons and encodes an 

enormous protein which has a mass of approximately 500 kDa. DHC contains two main 

domains: motor and tail domains. The motor domain is approximately 380 kDa and 

contains an array of six ATPase catalytic units, which are arranged in a ring shape 

(Vallee, McKenney, and Ori-McKenney 2012; Carter et al. 2011) (Figure 1.11A, red 

circles). The site AAA1 is the main site responsible for ATP hydrolysis whereas the role 

of AAA2 to AAA4 in nucleotide binding and hydrolysis remains unclear. However, they 

seem to have an impact on the motor activity of dynein. The site AAA3 hydrolyses ATP 

more slowly than AAA1. Moreover, AAA3 acts as a switch to facilitate microtubule 
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release. AAA5 and AAA6 do not have their conserved nucleotide binding site and 

therefore they might only provide a structural role in dynein function. Projecting from 

AAA1 is the linker which makes contact between AAA1 and AAA4 or AAA5.The linker 

has a role in linking the chemical and the mechanical cycles of the motor. The 

truncated-linker motor domain of dynein affects the ATPase rate as well as the motor 

activity. While the position of the linker tip contacts AAA4 when the motor dynein is in 

the unprimed state (post power stroke), the linker undergoes a conformational change 

in the primed state (pre power stroke) in which the linker tip becomes close to AAA2 

(Kon, Sutoh, and Kurisu 2011; Burgess et al. 2003). Protruding from AAA4 is a 100 

amino acid coiled coil α helical structure called the stalk which contains at its distal end 

the microtubule binding domain. The stalk interacts with a small coiled coil structure 

called strut or buttress which is embedded in AAA5. The exact role for the strut is 

unknown, however it has been believed that it might provide a physical support for the 

stalk (Kon, Sutoh, and Kurisu 2011). 

The two subunits of DHC homodimerize and coil through the tail domains. Similar to 

the mouse DHC,  the dimerization domain lies between amino acids 300 and 1140 of 

the rat DHC and is homologous to amino acids 302-1142 of the human DHC (Tynan, 

Gee, and Vallee 2000) (Figure 1.11B). The tail domain contains binding sites for the 

following cytoplasmic dynein 1 components: intermediate (DYNC1I1 and DYNC1I2 

referred to as DICs) (Figure 1.11A and B, in blue), light intermediate (DYNC1LI1 and 

DYNC1LI2 referred to as DLICs) (Figure 1.11A and B, in green) and light chains (DYNLT1, 

DYNLT3, DNY1RB2, DYNLL1 and DYNLL2 referred to as DLCs) (Figure 1.11A, in orange) 

(Pfister et al. 2006). These subunits are part of the dynein complex and are necessary 

for binding the cargo to the complex. Both DIC and DLIC binding sites are located 

within the dimerization domain of DHC. The binding sites of the rat DIC and DLIC are 

distinct but overlapping (amino acids 446-701 and 649-800, respectively, which are 

homologous to amino acids 448-703 and 651-802 of human DIC and DLIC, respectively) 

(Tynan, Gee, and Vallee 2000). The cytoplasmic dynein 1 complex also binds accessory 

proteins (although they do not belong to the complex itself) required for a complete 

function of dynein either directly through DHC or indirectly through DIC or DLC (Table 

1.10) (Schiavo et al. 2013).  
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Figure 1.11  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 - The Figure shows a schematic diagram of the human cytoplasmic dynein 1 complex. (A) The 

cytoplasmic dynein complex includes the heavy chain dimer (HCs) and its associated subunits. (B) The 

motor domain of the cytoplasmic dynein heavy chain contains (in dark violet) six ATPase domains (in 

red), the stalk domain which includes the microtubule binding domain (in dark yellow and yellow, 

respectively) and the buttress (in orange).  The tail domain (in dark violet) contains the 

homodimerization domain and linker (in light violet). It also contains binding sites for intermediate chain 

(in blue) and light intermediate chain (in light green). The dark green region represents the overlapping 

region between intermediate chain and light intermediate chain. Note: adapted from (Schiavo et al. 

2013).   
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Table 1.10  

Protein Type of binding Site/ subunit 

LIS1  Direct 
DYNC1H1 (AAA3/AAA4 junction) 

DYNC1H1 (AAA4 arginine finger) 

NudE  Indirect  
Intermediate chain 

Light chain – LC8 

Dynactin Indirect Intermediate chain 

Snapin Indirect Intermediate chain 

Huntingtin (Htt) Indirect Intermediate chain 

HAP1  Indirect Dynactin 

BICD1 Indirect Dynactin 

BICD1 Indirect Intermediate chain 

 

Table 1.10 - The Table shows the cytoplasmic dynein 1-interacting partners. Note: adapted from 

(Schiavo et al. 2013). Abbreviations: LIS1, lissencephaly; NudE, nuclear distribution protein E; HAP1, 

huntingtin-associated protein 1; BICD1, Bicaudal D.    

The cytoplasmic dynein 2 is composed of dynein heavy chain 2 DYNC2H1 (Höök and 

Vallee 2006). Dynein 2 plays a role in retrograde intraflagellar transport and is required 

for the generation and maintenance of cilium and flagellum.  

The cytoplasmic dynein 1-interacting partners 

While there are several families of kinesins and myosins, which have evolved to 

maintain different cellular transport, cytoplasmic dynein is the sole minus-end directed 

motor protein which performs diverse cellular transport similar to that performed by 

different types of kinesins (Kardon and Vale 2009). Instead, dynein binds to several 

proteins (different from those that belong to the dynein complex itself) which are 

required for a complete function of dynein and for adaptation to its cellular function 

including dynactin, the essential adaptor (Table 1.10). Interestingly, inhibition or loss of 

function of either dynactin or LIS1 results in similar phenotypes (neurodegenerative 
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diseases) that are caused by loss of dynein function. A G59S mutation in p150Glued 

subunit of dynactin impairs binding of dynactin to microtubules and EB1 (a 

microtubule-plus end binding protein),  and is linked to motor neuron disease in 

humans (Levy et al. 2006). Also, mutations in LIS1 cause lissencephaly which is 

characterized by a defect in neuronal migration (Mesngon et al. 2006).  

The dynactin complex is composed of 11 different subunits and has a molecular weight 

of 1 MDa (Kardon and Vale 2009) (Figure 1.12). It has been found that dynactin is 

required for almost all dynein functions in cells. Dynactin is involved in coupling dynein 

to cargo, mediated by the interaction between the dynactin subunit ARP1 and βIII 

spectrin, the latter being a filamentous protein which coats the cytoplasmic surface of 

membranes in Golig and in membranous organelles. Cargo binding can also be 

performed by the interaction of dynein with specific receptors, either directly, or 

through dynactin or Bicaudal D. Dynactin also has a role in increasing the processivity 

of dynein mediated by the dynactin subunit p150. In addition, during cell division in 

Saccharomyces cerevisiae, dynein is known to be localized at the tip of microtubule 

plus end and then transferred to the cell cortex by binding to a membrane receptor 

called the cortically localized nuclear migration 1 (NUM1). While dynein stabilizes itself 

at the cell cortex, it pulls the astral microtubules to translocate the nucleus into the 

bud neck. Dynactin was shown to be required to transfer dynein to the cell cortex. Loss 

of dynactin function leads to dynein accumulation at the plus-end tip and depletion of 

dynein at the cell cortex. In metazoans, the role of dynein and dynactin localization at 

the tip of microtubules is less clear. Some evidence suggests that it might be involved 

in cargo loading and transport initiation.  

Other dynein interacting partners are also required for the dynein plus end 

localization: LIS1 and nuclear distribution protein E (NUDE) (Kardon and Vale 2009). In 

S. cerevisiae, the LIS1 and NUDE homologues: Pac1 and Ndl1 are required for targeting 

dynein to the plus end and deletion of Pac1 or Ndl1 resulted in depletion of dynein at 

that position as well as at the cell cortex of the bud cell. However, similar to dynactin, 

studies in the filamentous fungi Asperillus nidulans revealed that loss of NudE function 

results in the accumulation of dynein at the plus tip leading to a suggestion that NudE 

is required to release dynein from the plus end and therefore to promote the minus 
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end directed transport. Figure 1.13 shows several proteins that bind to the 

microtubule plus end and cooperate in targeting dynein to that position.  Also, NudE 

appears to function as an activator of LIS1, as overexpression of Pac1 and NudF, the 

LIS1 homologue in S. cerevisiae and A. nidulans respectively, results in the suppression 

of the phenotype of Ndl1 and NudE loss of function. In metazoans, dynein, LIS1 and 

NUDE/NUDEL (the NUDE isoform) are involved in the positioning of the nucleus and 

the microtubule organization centre (MTOC). During neuronal migration, dynein and 

LIS1-NUDEL are involved in coupling the movements of the centrosome and the 

nucleus. Inhibition of dynein or LIS1 increased the distance between the nucleus and 

the centrosome in the leading process (Shu et al. 2004). In migrating fibroblasts, 

dynein and LIS1 have a role in the reorientation of the centrosome towards the leading 

edge. While this centrosome positioning is dependent on cortical dynein, the nuclear 

movement, however, is nuclear dynein dependent (Levy and Holzbaur 2010).  

 2.3.2.1.2 Cytoplasmic dynein heavy chain mutation in human diseases 

Arg399Gly 

Arg399Gly is a mutation located in the tail domain of DHC and causes autosomal 

recessive congenital SMA-LED. This mutation lies within the dimerization domain but 

located outside the DIC binding region. A ten year old girl has been reported, carrying 

two alleles of the Arg399Gly mutation. She showed floppiness and joints contractures 

at birth. She displayed delays in motor development and speech and learning 

disabilities. Both parents carry one copy of Arg399Gly with the father exhibiting mild 

changes in the motor function detected by electromyography (EMG).       
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Figure 1.12 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12 - The Figure shows a schematic diagram of the dynactin complex. The dynactin complex 

contains actin-related protein 1 (ARP1) which forms the core of the complex (a short filament coloured 

in pink). It is involved in linking dynein to cargo through its binding with βIII spectrin. At the pointed end 

of ARP1, there is a subcomplex (coloured in cyan) including ARP11, p25, p27 and p62 which might be 

involved in the interaction of dynactin with cortical actin. The subcomplex at the barbed end is 

comprised of a dimer of p150, a tetramer of p50 (also called dynamitin), p24 and the heterodimer actin 

capping protein. The N-terminus of p150 contains a microtubule binding domain, called a cytoskeleton-

associated protein Gly-rich domain (CAP-Gly) as well as a basic region (coloured in yellow). Other 

proteins can also bind to the CAP-Gly domain including the microtubule plus end-associated proteins 

end binding 1 (EB1) and CAP-Gly domain-containing linker protein 170 (CLIP170). The binding of 

dynactin to cytoplasmic dynein is mediated through an interaction between p150 and DIC, the 

cytoplasmic dynein subunit. Note: adapted from (Kardon and Vale 2009).  
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Figure 1.13 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13 – Microtubule plus end binding proteins. The Figure shows several proteins including EB1, 

CLIP-170, dynactin and LIS1-NUDE and LIS1-NUDEL that bind to the microtubule plus end and cooperate 

in targeting dynein to that position. EB1 is required for CLIP170 and dynactin interaction with 

microtubules. All three can also bind directly to microtubule. CLIP-170 probably mediates LIS1 

recruitment to microtubule. Dynein can then be targeted to the plus end through its interaction with 

LIS-NUDE or LIS1-NUDEL and dynactin. Subsequently, dynein can probe for cargo or for the cell cortex. 

After cargo loading, the interaction between dynein and the microtubule plus end is released by 

dynactin and LIS1-NUDE or LIS1-NUDEL. Note: adapted from (Kardon and Vale 2009).     
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2.3.2.1.3 Cytoplasmic dynein heavy chain mutation in mouse models 

Loa (Legs at odd angles) 

Loa is a mouse model harbouring a mutation of phenylalanine to tyrosine at position 

580 in the tail domain of DHC (Hafezparast et al. 2003). Loa exhibits motor neuron 

dysfunction due to perturbation of neuron-specific functions of cytoplasmic dynein 

and is inherited in an autosomal dominant fashion. This mouse model was generated 

using the chemical mutagen N-ethyl-N-nitrosourea (ENU) which generates T to A point 

mutations in particular. Loa as the name implies exhibits abnormal hindlimb clenching 

when suspended by the tail reflecting motor dysfunction (Figure 1.14). The 

heterozygotes have a normal life span whereas the homozygotes die 24 hours after 

birth, possibly due to lacking the ability to move and feed. Heterozygous Loa develop 

an age-related slowly progressive locomotion deficit manifested by gait abnormality, 

unusual body twisting, decreased grip strength and rotarod performance deficits. The 

Loa mouse model also shows similar phenotypes to the SMA-LED in human cases: gait 

abnormality, spinal motor neuron loss (loss of α motor neurons of the anterior horn) 

and abnormality in cortical neuron migration and development (Hafezparast et al. 

2003; Ori-McKenney and Vallee 2011). Importantly, two mutations M581L and I584L in 

human DHC, which cause SMA-LED, are only 1 and 2 amino acids from the site of the 

substitution mutation in the Loa mouse (Harms et al. 2012; Scoto et al. 2014) (Figure 

1.15, I584L). As the Loa mutation is located in the tail domain which mediates 

dimerization with another tail domain of DHC and the association of DHC with DIC, it 

was predicted that Loa mutation affects the integrity of the dynein complex. Indeed, it 

has been documented that this mutation changes the binding property of DIC to DHC 

which subsequently affects DIC binding  affinity to dynactin (Deng et al. 2010). In 

addition, the Loa mutation affects the performance of cytoplasmic dynein during 

cellular stress (Hafezparast et al. 2003). Evidence for this came from the observation of 

impaired Golgi reassembly after nocodazole treatment in MEFs isolated from Loa 

homozygous embryos. Interestingly, the Loa mutation impairs the retrograde transport 

in α-motor neurons. This might explain the slowly progressive neurodegenerative 

phenotype observed in heterozygous Loa (due to reduced constant supply of trophic 

factors). Also, the abnormal facial neuron migration observed in homozygous Loa is 
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most likely due to a defect in dynein function at the cell cortex for pulling the 

microtubule organization centre (MTOC) and nucleus in the direction of migration. In 

addition to the overt motor neuron dysfunction, the Loa heterozygous mice exhibit 

proprioceptive sensory defect, +/Loa mutants exhibit a reduction in the number of 

lumbar dorsal root ganglion neurons (DRG), compared to the wild type, however, this 

change was not observed in the number of cervical DRG neurons (Chen et al. 2007). 

Like α-motor neurons, the sensory neurons with longer axons require a significant 

intracellular trafficking and therefore are most likely to be affected by mutations in 

DHC. This explains why the hindlimbs are more affected than the forelimbs in mice.  
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Figure 1.14  

 

 

 

 

 

 

 

 

 

Figure 1.14 - The Figure shows the Loa mouse model exhibiting hindlimb grasping when the mouse is 

suspended by the tail compared to the wild type mouse which shows splayed legs.       

Figure 1.15  

 

 

 

 

 

 

Figure 1.15 - The Figure shows a schematic diagram of cytoplasmic dynein heavy chain 1 with mutations. 

Arrows which are located above the diagram represent the human mutations while those that are 

located under the diagram represent the mouse mutations. Note: adapted from (Schiavo et al. 2013). 
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Cra1 (Cramping-1)  

Cra1 is another mouse model harbouring a mutation in the tail domain of DHC. The Cra 

1 mutation is caused by a change in tyrosine to cysteine at position 1055 (Hafezparast 

et al. 2003) (Figure 1.15). The Cra1 mouse model exhibits a dominant phenotype of 

neuronal dysfunction manifested by an age-related progressive locomotor deficit. The 

homozygous Cra 1 mutant exhibits a severe phenotype manifested by the inability to 

feed and die within 24 hours after birth. The Cra1 phenotype was initially interpreted 

as motor neuron dysfunction (Hafezparast et al. 2003). The heterozygous Cra1 shows a 

sever hindlimb clasping at 16 months of age consistent with motor neuron loss in the 

ventral horn of the spinal cord. However, Dupuis et al reported that the Cra1 mouse 

does not show overt motor neuron disease since no motor neuron loss was observed 

in the aged Cra1 mice but rather it exhibits proprioceptive sensory neuropathy (Dupuis 

et al. 2009).        

Swl (Sprawling) 

The sprawling mouse model exhibits a neuronal dysfunction phenotype and was 

generated in an irradiation-mutagenesis experiment (Figure 1.15). The phenotype 

arose from a 9 base pair deletion from exon 12 of cytoplasmic DHC (1040-1043) which 

results in substitution of four amino acid change (GIVT) with alanine (X.-J. Chen et al. 

2007). The DHC mutation in Swl mice leads to proprioceptive sensory neuron 

degeneration without motor neuron involvement.   

2.3.2.1.4 Dynein functions  

2.3.2.1.4.1 Intracellular trafficking and axonal transport 

Cytoplasmic dynein 1 is involved in microtubule-based transport of vesicles, organelles 

and proteins. Microtubule cytoskeleton is used for long distance intracellular 

transport. This type of transport is important especially in large polarized cells such as 

neurons that require transporting materials from soma to nerve termini and vice versa. 

In such cells it is difficult to rely on diffusion to distribute proteins and organelles, 

therefore directed transport is essential in neuronal cells. While there are three types 

of kinesins which drive anterograde motility along the axon, cytoplasmic dynein is the 

only known motor protein that drives the retrograde transport in neurons.  
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Cytoplasmic dynein 1 is also involved in driving the inward motility in biosynthetic 

pathways. For instance, dynein is implicated in transporting vesicles from the 

endoplasmic reticulum to Golgi.  

2.3.2.1.4.2 Degradative pathways 

Autophagy is a highly conserved dynamic process and requires autophagosome 

formation which sequesters some misfolded proteins and dysfunctional organelles for 

lysosomal degradation (Tanida, Ueno, and Kominami 2004). During autophagy, a part 

of the cytoplasm is sequestered by autophagosomes to form double-membraned 

organelles which engulf misfolded proteins and ageing organelles and subsequently 

fuse with lysosome for degradation. The resulted amino acids can then be recycled to 

synthesize new proteins. Atg12-conjugation, an autophagy related protein, and LC3-

modification, a microtubule associated protein 1 light chain 3, are important for 

autophagosome formation and dynamicity and they are involved in 

preautophagosomes and autophagosome formation, respectively. Conjugation of 

Atg12 with Atg5 necessitates the formation of an autophagosomal precursor, an 

isolation membrane, in the cytosol, where Atg12/Atg5 localizes to the outer side. This 

localization of Atg12/Atg5 conjugate is required for the isolation membrane 

elongation. In addition, another modification is performed on LC3 which is required for 

autophagosome formation. Immediately after translation, LC3 is cleaved at its C-

terminal in order to facilitate the formation of the cytosolic form LC3-I. This cleavage 

exposes its C-terminal glycine for phospholipid modification (by conjugating to 

phosphatidylethanolamine) to form the membrane-bound form LC3-II. This 

conjugation also facilitates its binding to the autophagosome membrane. The modified 

form LC3-II has been used as a universal marker for autophagy activity since it localizes 

to both preautophagosomes and autophagosomes during autophagy. It has been 

thought that the amount of LC3-II correlates with the extent of autophagosome 

formation as its levels increased during autophagy induction. However, since LC3-II is 

bound to the inner autophagosomal membrane, it is also subjected to degradation as 

ultimately all LC3-II-bound autophagosomes are degraded through fusion with 

autolysosomes (Juhasz 2012). Therefore, LC3-II levels depend on both autophagy 

induction and autophagic degradation activity (autophagy flux).     
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The removal of misfolded proteins or dysfunctional organelles is a critical process in 

maintaining the homeostasis of post-mitotic neuronal cells (Hara et al. 2006; Komatsu 

et al. 2006; Moughamian and Holzbaur 2012).  It is thought that autophagy has a 

protective role against the development of neurodegenerative disorders. Mice lacking 

either Atg5 or Atg7 develop cytoplasmic inclusions and ultimately motor impairment 

leading to neurodegeneration. This suggests that the continuous clearance of 

cytoplasmic inclusions is important for neuronal function.  

Cytoplasmic dynein 1 is involved in driving the inward motility in degradative 

pathways. For instance, dynein is implicated in transporting compartments such as late 

endosomes and autophagosomes for lysosomal degradation (Moughamian and 

Holzbaur 2012). During autophagosome formation, slow autophagosome movement 

through the cytoplasm was observed (Kimura, Noda, and Yoshimori 2008). After 

completion, autophagosomes undergo rapid movements towards the cell centre and 

near centrosomes where lysosomes are located.  It was documented that this rapid 

autophagosome movement is dynein-dynactin dependent (Kimura, Noda, and 

Yoshimori 2008). The inhibition of dynein by microinjecting anti-dynein intermediate 

chain antibody impaired the rapid movement of autophagosome. In neuronal cells, 

autophagosomes form at nerve terminus and undergo retrograde transport to the 

soma for lysosomal degradation. Therefore, microtubule-based and dynein-dependent 

movement of autophagosomes are important in neurons since clearance of protein 

aggregates has a protective role against neurodegeneration.  

2.3.2.1.4.3 Endocytic pathways 

Endosomes are one type of cargo that dynein carries via binding to dynactin. When a 

ligand binds to its receptor, the whole complex is endocytosed into clathrin-coated 

vesicles (Doherty and McMahon 2009). Clathrin is then dissociated from the vesicles 

before the latter start fusing with early endosomes. After fusion, efficient sorting 

occurs including the uncoupling of the receptor and the ligand. The receptor is then 

transported back for recycling while the ligand-containing early endosome continues 

traveling towards the perinuclear region where lysosomes are located for degradation. 

However, not all receptors are recycled. The transferrin receptor, for example, is 
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recycled but EGF receptors are mainly degraded in the lysosomes. The transport of the 

early endosomes to late endosomes is mediated by large vesicles named endosomal 

carrier vesicles (ECVs).  

The movement of ECVs to late endosomes was shown to be microtubule- and dynein-

dependent (Aniento et al. 1993). Dynein also has a role in receptor sorting, motility 

and maturation of early endosomes (Driskell et al. 2007). Using live cell imaging 

analysis, some early endosomes exhibit short-range motility while others alternate 

between short and long distance movements. When dynein function was inhibited by 

microinjecting Hela cells with CC1 [a polypeptide that binds dynactin binding site on 

dynein intermediate chain (DIC) and therefore preventing dynactin from binding], the 

long-range rapid movement of endosomes towards the cell centre was rarely 

observed. In addition, compared with control cells, which showed rapid separation of 

cargo (i.e. the separation of transferrin receptor from the epidermal growth factor-

containing endosomes for receptor recycling), CC1-injected cells exhibited a delay in 

cargo separation. This experiment suggests that dynein is also implicated in efficient 

receptor sorting at early endosomes. Inhibition of dynein also slowed the maturation 

of endosomes indicating that dynein is also involved in early endosome maturation.   

Growth factors and their signalling cascades 

Brain derived neurotrophic factor  

Neurotrophins are a family of four proteins which consists of: the nerve growth factor 

(NGF), the brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and 

neurotrophin 4 (NT4). Neurotrophins can bind to two types of structurally related 

receptors namely the tropomyosin-related kinase (Trk) receptor and pan-neurotrophin 

receptor (p57NTR) (Huang and Reichardt 2003). While all the aforementioned 

neurotrophins can bind to p75NTR receptor, each can bind differentially to Trk 

receptors: NGF binds to TrkA, BDNF and NT4 bind to TrkB and NT3 binds to TrkC. In 

relevance to my research, I will focus on TrkB and the signal transduction induced by 

BDNF binding.  

Upon BDNF binding, TrkB is activated by homodimerization and autophosphorylation 

of key tyrosine residues located in the cytoplasmic C-terminal domain. The active 
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BDNF-TrkB complex is then endocytosed and transported retrogradely (in a dynein-

dependent manner) towards the cell soma for degradation in the lysosomes. As the 

BDNF/TrkB-containing endosome is transported towards the cell soma, it signals which 

therefore triggers downstream signalling pathways.  

Phosphorylation of some key tyrosine residues located in the cytoplasmic C-terminal 

domain of the Trk receptor creates binding sites that can be recognized by the effector 

proteins (Figure 1.16). As a result, this stimulates many downstream signalling 

pathways including the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and the 

mitogen activated protein kinase. In relevance to my research, I will focus on BDNF-

mediated ERK1/2 (the extracellular signal related kinases 1 and 2) activation pathways.  

 Three signalling pathways are known to mediate ERK1/2 activation upon binding of 

BDNF to TrkB: PLC-γ1, Ras-MAP kinase and Crk/Rap1 (Figure 1.16) (Huang and 

Reichardt 2003). Phosphorylation of Tyr816 on the TrkB receptor creates a binding site 

for phospholipase C (PLC-γ1) which is therefore phosphorylated by the Trk receptor 

kinase. Active PLC-γ1 hydrolyses phosphatidylinositol 3,4-bisphosphate (PtdIns (4,5)P2) 

to generate inositol tris-phosphate (IP3) and diacylglycerol (DAG), required for the 

stimulation of  protein kinase C (PKC). PKC is required for ERK1/2 activation via MEK1/2 

to promote neurite outgrowth in PC12 upon NGF binding (Corbit, Foster, and Rosner 

1999). In addition, phosphorylation of Tyr515 creates a binding site for the adaptor 

protein Shc followed by a recruitment of the adaptor protein Grb2, which forms a 

complex with the Ras exchange factor SOS. The GEF activity of SOS promotes the 

dissociation of guanosine diphosphate (GDP) from inactive Ras, so that Ras can bind 

guanosine triphosphate (GTP) to become active. Active Ras then activates ERK1/2 

through a pathway involving sequential activation of Raf and MEK. ERK1/2 activation 

by the Ras-MAP kinase pathway is transient. Termination of this pathway seems to be 

mediated through phosphorylation of SOS by active ERK1/2 resulting in the 

dissociation of the SOS-Grb2 complex.  

On the other hand, prolonged activation of ERK1/2 is mediated through a distinct 

signalling pathway involving the adaptor protein Crk, the guanine nucleotide exchange 

factor C3G, the small G protein Rap1, and Raf (Huang and Reichardt 2003). Upon 
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activation of the TrkB receptor, Crk is phosphorylated which results in C3G activation. 

C3G acts as a guanine nucleotide exchange factor for Rap1. Consequently, Rap1-GTP 

stimulates Raf which subsequently activates ERK1/2.  

Activation of the aforementioned signalling pathways promotes several cellular 

functions including cell proliferation, survival, axon growth, differentiation and 

neuroplasticity (Duman and Voleti 2012). This can be mediated by phosphorylating 

proteins to promote local axonal elongation (Atwal et al. 2000). Alternatively,  

phosphorylated ERK1/2 translocates to the nucleus where it phosphorylates 

transcription factors including CREB (cAMP response element-binding) leading to the 

expression of immediate early genes such as c-Fos (Sheng, Mcfadden, and Greenberg 

1990). 
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Figure 1.16 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16 – Figure showing BDNF/TrkB-mediated ERK1/2 activation signalling pathways. BDNF binding 

to TrkB receptor induces dimerization and autophosphorylation of the receptor. Phosphorylated 

tyrosines act as a docking site for adaptor proteins: Crk (CT10 regulator of kinase), the Src homology 2 

domain-containing (Shc) adaptor protein, phospholipase C (PLCγ1). Phosphorylation of the tyrosine 816 

of TrkB leads to the recruitment of PLCγ1 which hydrolyses phosphatidylinositol 3,4-bisphosphate 

(Ptdlns(4,5)P2) and diacyglycerol (DAG). The latter is required to activate protein kinase C (PKC) which 

promotes differentiation and neurite outgrowth through activation of ERK1/2. Phosphorylation of 

tyrosine 515 of TrkB results in the recruitment of Shc followed by the formation of Grb2/SOS complex 

(Growth factor receptor-bound protein 2/ Son of sevenless). SOS acts as a guanine exchange factor for 

Ras which therefore results in transient activation of the mitogen-activated protein kinases (MAPK): Ras, 

Raf, MEK and ERK. Phosphorylation of TrkB receptor at 515 also promotes the recruitment of Crk and 

C3G and the activation of Rhoptry-associated protein 1 (Rap1) which leads to ERK1/2 activation. ERK1/2 

activation promotes several cellular functions including neuronal survival and axon growth either via 

phosphorylating proteins or activating transcription factors such as CREB. Dotted arrows refer to an 

ERK1/2 activation by PKC upon TrkA receptor activation (Corbit, Foster, and Rosner 1999). Note: 

adapted from (Duman and Voleti 2012; Huang and Reichardt 2003).         



74 
 

 

Epidermal growth factor (EGF) signalling cascade 

Epidermal growth factor receptor (EGFR) is a member of ErbB cell surface receptor 

tyrosine kinases (RTK) which span the cell membrane and endocytose upon binding the 

ligand EGF (Bazley and Gullick 2005).  

Similar to BDNF binding to TrkB receptor, upon binding of EGF to EGFR, this initiates 

the receptor dimerization and autophosphorylation followed by the internalization of 

the EGF/EGFR complex (Bazley and Gullick 2005). Phosphorylation of key tyrosine 

residues of the cytoplasmic C-terminal domain of EGFR results in initiating signalling 

pathways: the Ras MAPK and PI3K/Akt leading to cell proliferation and survival (Chong 

and Jänne 2013; Bazley and Gullick 2005). Activation of EGFR results in the recruitment 

of the adaptor protein Grb2 which forms a complex with SOS. This promotes a 

transient activation of ERK1/2 signalling pathway involving Ras, Raf, MEK1/2 and 

ERK1/2. Active ERK1/2 phosphorylates downstream transcription factors including 

ELK1 which induces the expression of the immediate early genes (IEGs) such as c-Fos 

by binding to the cis acting element SRE (serum response element) located upstream 

of the c-Fos promoter (Treisman 1992).   

We showed that EGF degradation was delayed in homozygous Loa mouse embryonic 

fibroblasts (MEFs) in comparison to the wild type. This delay caused aberrant ERK1/2 

activation and c-Fos expression (Garrett et al. 2014). Moreover, BDNF-induced 

endocytic trafficking was also impaired in cultured motor neurons isolated from 

heterozygous Loa embryos, resulting in aberrant ERK1/2 activation and c-Fos 

phosphorylation. In comparison to MEFs where ERK1/2 was not activated during 

serum starvation, ERK1/2 as well as c-Fos were activated in motor neurons of both 

wild type and +/Loa, however, levels of activation were higher in +/Loa (Garrett et al. 

2014). This, therefore, indicates that motor neurons are more susceptible to serum 

starvation-induced stress than MEFs. In addition, compared to ERK1/2 activation levels 

after stimulation with BDNF, active ERK1/2 was slightly increased in response to 

starvation whereas c-Fos was massively activated (Garrett et al. 2014). This raised the 

possibility of implicating other MAP kinases [such as c-Jun N-terminal kinase (JNK) and 

p38] in c-Fos activation. I contributed to this study by identifying the MAP kinase 

responsible for c-Fos activation during serum-starvation and/or BDNF stimulation. I 
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showed that c-Fos activation is ERK1/2 dependent during starvation and after BDNF 

stimulation. Thus, our study provides evidence for a cell type specific response to 

serum starvation stress and that the ERK1/2-cFos signalling pathway might be a 

contributory factor to the pathogenesis of Dync1h1-related neurological diseases 

(Garrett et al. 2014) (the paper is attached).   

2.3.2.1.4.4 Axonal pathfinding and growth dynamics  

Migration in non-neuronal cells  

Cell migration plays important roles during wound healing and development. During 

cell migration, the cell forms two dynamic and actin filament-based structures named 

the lamellipodia and lamella (Ponti et al. 2004). The lamellipodium is located 1-3 µm 

beneath the plasma membrane at the leading edge whereas the lamella is the zone 

located between the lamellipodium and the nucleus. The lamellipodial region contains 

a meshwork of actin filaments and actin polymerization in this region provides the 

force required for protrusion formation (Tojkander, Gateva, and Lappalainen 2012). 

The lamella, however, is composed of actin filament bundles called traverse arcs. 

Although both regions contain two distinct actin filament networks that are believed 

to overlap, the lamellipodial actin filament lies on top of the lamellal actin network 

(Figure 1.17, in light red and grey, respectively).  Each structure has a distinct 

molecular signature. The lamellipodium contains a high concentration of the actin 

nucleator Arp2/3, a protein that is responsible for generating free barbed ends of the 

filaments i.e. exposing certain domain of the F-actin filament so that it can be 

recognized for polymerization. In contrast, the lamella is enriched with myosin II and 

tropomyosin. In addition, the lamellipodium and the lamella have two distinct kinetics. 

The lamellipodium is known to have a fast retrograde flow, whereas the lamella has a 

slow retrograde flow (Ponti et al. 2004; Medeiros, Burnette, and Forscher 2006). Also, 

the dynamics of the actin filament network in the lamella, compared to that of the 

lamellipodium, is less, due to the presence of mature focal adhesions (FAs) (read below 

about the role of FAs). 
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Figure 1.17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.17 – Figure depicting the interplay between dynamic actin filaments and myosin II to promote 

the leading edge advance. (A) In the presence of strong adhesion sites, actin polymerization (yellow) 

results in growing the lamellipodial actin filament backward towards the myosin II cluster where they 

connect (i). The actomyosin contractility which is generated by myosin II pulling the actin filament 

backward causes retraction of the edge (iia). As a result, adhesion sites will form to stabilize the leading 

edge by bridging the lamellipodial actin filaments to the ECM. This will cause the lamellipodia buckling 

due to high tension exerted on the leading edge. Continuous pulling by myosin II will release the 

lamellipodia from the tip (iii). The tip will regrow again through actin polymerization resulting in the 

formation of new cell protrusions as well as new lamellipodial actin filaments (iv). The new edge 

protrusion will be further shifted forward (compare v with i). The advance of the leading edge will 

continue until the lamellipodial actin filaments reach another myosin II cluster which then will cause 

retraction of the edge (vi). (B) Depicting the leading edge ruffling as a result of weak or no adhesion sites 

(iib). Note: adapted from (Giannone et al. 2007).    
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Myosin II has a role in the formation of protrusion and actin filament bundles (stress 

fibres). No actin filament bundles were formed when myosin II was inhibited 

(Tojkander, Gateva, and Lappalainen 2012). The formation of cell protrusion depends 

on the interplay between actin filament dynamics, myosin II-dependant contraction 

and FA assembly and disassembly. The interaction between the actin filament and the 

motor protein myosin II generates contractile forces. As a result, these forces cause 

severing of actin filaments, a process that generates retrograde actin flow. These 

traction forces generated by actomyosin pull actin filaments away from the leading 

edge towards the cell centre. This pulling force will also cause the retraction of the 

leading edge and reduce protrusion formation. FAs are protein cluster bridges 

between the extracellular matrix (ECM) outside the cell and actin filaments inside the 

cell. Forces exerted by myosin are applied to (transmitted to) the ECM through focal 

adhesion connection to the actin filaments. Binding of FAs to actin filament attenuates 

contractile forces and reduces the retrograde actin flow. This linking breaks the 

balance between disassembling of the actin filaments (retrograde actin flow) and actin 

polymerization which as a result establishes protrusion (Dent, Gupton, and Gertler 

2011). Actin polymerization will continue to form protrusions, while FAs counter the 

contractile force and slow the retrograde actin flow. Thus, the balance between the 

rate of actin polymerization and retrograde flow determines the fate of protrusions 

(whether to be extended or withdrawn). During protrusion formation, actin 

polymerization exceeds both retrograde flow and actin depolymerisation whereas 

during the leading edge retraction, the retrograde flow and actin depolymerisation 

exceed actin polymerization (Gomez and Letourneau 2014).    

The distribution and the dynamics of actin filaments and FAs were mapped in 

migrating keratinocytes using live cell imaging of cells transfected with GFP-tagged 

vinculin, a FA marker, or GFP-tagged actin and applying the cell shape normalization 

technique as reported in Möhl et al (Möhl et al. 2012). Both FAs and actin filaments 

exhibit a polarized distribution during migration. The FAs are mainly present at the 

leading edge and on the lateral sides of the cell, being more concentrated in the 

former. At the rear, there are only a few focal adhesions. The amount of actin flow is 

negatively correlated with the presence of FAs. At the cell front, there is a large 
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number of small FAs which slow the centripetal movement of the actin flow, whereas 

at the back, it increases because of the low number of FAs. As FAs couple the 

actomyosin network to the substrate, therefore, the differential spatial distribution of 

FAs within the cell determines the pattern of traction forces that pull the cell towards a 

certain direction. Actin filaments show a more spread out pattern (criss-crossed) at the 

cell front due to the high density of FAs which decelerate actin flow. In the region of 

low FA density i.e. the cell rear, and therefore fast actin flow, the actin network was 

more compressed forming a narrow band behind the nucleus.  

Möhl et al (2012), using their mapping technique, revealed that differential patterns of 

FAs assembly and disassembly (FA turnover) affects the distribution of both actin flow 

and traction forces (Figure 1.18A, B and C). At the cell front, the rate of focal adhesion 

assembly relative to its disassembly is high, resulting in a large number of small FAs ( 

also termed focal complex, FXs) (Figure 1.18A, cell front). As a consequence of the 

coupling of the actin to the substrate by these FAs, there is reduced actin flow within 

this region (Figure 1.18B, cell front, and small arrows). However, due to their small size 

they only provide low traction forces (Figure 1.18C, small red arrows).  Nonetheless, 

the reduced actin flow promotes the formation of protrusion (Figure 1.18B, Cell front, 

brown arrows). These FAs start to disassemble when they depart the leading edge. 

This occurs when the cell membrane protrudes and as a consequence new FAs are 

formed (Figure 1.18A, cell front and small green spots) and the old FAs matured and 

ultimately disassembled (Figure 1.18A, cell front and large green spots). The FAs that 

are located to the sides do not disassemble and continue to grow and mature (Figure 

1.18A, lateral side of the cell). The turnover of these lateral FAs is low resulting in more 

matured, large and stable FAs (Figure 1.18A, lateral and dark green spots). This 

increases the effectiveness of the actin-substrate coupling resulting in higher traction 

compared to the frontal area (Figure 1.18C, lateral side, large red arrows). Due to the 

forward migration of the cell, these large FAs will reach the rear part of the cell and 

ultimately disassembled. At the rear, there is a low number of FAs, due to higher 

disassembling, resulting in a low actin-substrate coupling and high actin flow (no 

traction). This high actin flow promotes the retraction of the back of the cell (Figure 

1.18B, cell rear, and black large arrows). 
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 Figure 1.18 

 

 

 

 Figure 1.18 – The Figure shows the differential pattern of FA assembly and disassembly (A) and how this 

affects the distribution of actin flow (B) and traction forces (C). Note: adapted from (Möhl et al 2012). 
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Several models have been proposed to understand how actin filaments, myosin II and 

FAs are linked and organized to promote the leading edge advance. In the first model 

(Giannone et al. 2007), as it has been proposed by Ponti et al (2004) both the 

lamellipodium and the lamella appear as two distinct but overlapping actin networks 

(Figure 1.17, light red and gray, respectively). At the cell front, actin polymerization 

(yellow) results in growing the lamellipodial actin filaments (light red) backward 

towards the myosin II cluster (blue arrow) (Figure 1.17, i). Myosin II pulls the 

lamellipodial actin filaments to the back and simultaneously exerts high tension at the 

leading edge. As a result, nascent adhesions are formed (red). If nascent adhesions are 

strong, pulling the lamellipodial actin filament by myosin II will buckle the lamellipodial 

actin filament and retract the edge (Figure 1.17, iia).  Continuous pulling results in the 

release of the lamellipodial actin filaments from the tip (Figure 1.17, iii) and the tip will 

regrow again and extend backward until it reaches another cluster of myosin to start 

the cycle again (iv-vi). If nascent adhesions are weak, this will cause detaching the 

leading edge from the ECM and will cause the membrane to ruffle (iib).       

 A more recent model was proposed in which both the lamellipodium and the lamella 

appear as two non-overlapping distinct actin networks (Figure 1.19). When a new 

protrusion is formed, myosin II appears in the lamellipodia only during the peak of 

protrusion formation, compressing the meshwork of the lamellipodial actin filaments, 

transforming it into actin arcs and then pulling it back into the lamella. This process will 

result in the retraction of the leading edge. As a consequence of this pulling force, 

nascent adhesions are formed, coupling actin arcs with the ECM. If the coupling is 

strong, this will slow down the backward movement of actin arcs to the lamella and 

will allow another new protrusion to form. The new protrusion will be shifted forward 

compared to the old one and the edge retraction in this cycle will also be shifted 

further forward compared to the old retraction. If the coupling is weak, this will result 

in backward slipping of focal adhesions which are still associated with actin arcs but 

not with the ECM and consequently no new protrusion will be formed.     
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Figure 1.19 
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Figure 1.19 – The Figure shows a schematic diagram of the leading edge growth. Step (0) shows the base of an old retraction where focal adhesions link a newly formed 

actin arcs to the extracellular matrix (ECM). In step 0, actin arcs and ECM coupling is strong. This allows new lamellipodial actin network and new protrusion to form (by 

actin polarization) which is followed by the formation of nascent adhesions (step 1). In step 1, myosin II starts to appear at the peak of protrusion which results in 

generation of local network contraction. As a consequence, lamellipodial actin network is compressed and the edge is retracted (step 2). Actin arcs move backward towards 

the lamella due to the fast retrograde flow (step 2). This movement slows when actin arcs reach and link to focal adhesions (step 3). The base of retraction at this stage is 

shifted forward compared to the old one (compare 3 and 0). If the actin arcs/ECM coupling is strong, a new lamellipodial actin network is formed and a new protrusion is 

established (step 4). At this stage, the new protrusion is shifted forward compared to the older protrusion (compare 4 and 1). In cells that showed no leading edge advance, 

actin arcs which are linked to focal adhesions, slip rearward due to a weak coupling with the ECM.  
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Migration in neuronal cells  

The structure of growth cones 

A growth cone is a motile domain located at the distal tip of a growing axon. Based on 

the cytoskeleton location, the growth cone can be divided into three compartments: 1) 

The peripheral domain which is an actin-rich region, comprised of polarized actin 

filament bundles embedded in a criss-crossed, less polarized actin filament network. 2) 

The central domain contains microtubule bundles that extend from the axonal shaft 

and extend single microtubules to explore the peripheral domain. 3) The transition 

zone which represents an interface between the peripheral and the central domain 

and contains actin arcs (Figure 1.20). The actin filament bundles often extend beyond 

the lamellipodium to form a finger-like domain called filopodia which has an important 

role in axonal pathfinding. Abnormal growth cone steering was observed in growth 

cones lacking filopodia after treatment with cytochalasin B (Bentley and Toroian-

Raymond 1986).  

The growth cones respond to the environmental guidance cues by remodelling 

cytoskeletons to move forward and steer. Below is a brief description of the roles of 

two essential components responsible for growth cone remodelling: actin filaments 

and microtubules.    

The role of actin dynamics in growth cone motility 

Two aspects of actin dynamics underlie growth cone movement: 1) actin filament 

polymerization, depolymerisation and recycling and 2) retrograde actin flow, that is 

generated by both the interaction of myosin II with actin, and the resistance of the 

plasma membrane tension against actin polymerization (Gomez and Letourneau 2014; 

Medeiros, Burnette, and Forscher 2006). The fast retrograde flow in the peripheral 

domain pushes the actin network (Figure 1.21, in brown) and actin bundles (Figure 

1.21, in red) backward (Figure 1.21, step 1). This results in actin arcs formation and 

therefore translocation into the transition zone (pink area) where retrograde flow is 

slower (Figure 1.21, step 2). As a consequence of actin network contraction in the 

transition region, actin bundles exhibit buckling near the proximal end and are  
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Figure 1.20  

 

 

 

 

 

 

 

 

 

 

Figure 1.20 – The Figure shows the structure of the growth cone. The growth cone is divided into three 

regions according to the cytoskeleton location: central domain, transition zone and peripheral domain. 

The peripheral domain contains filopodia, lamellipodia, actin meshwork and bundles and microtubules 

that are exploring the domain. The transition zone forms a barrier between the P-domain and the C-

domain and it includes actin arcs. The central domain contains microtubule bundles. Note: adapted from 

(Lowery and Vactor 2009).  
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Figure 1.21 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 1.21 – The Figure shows a schematic diagram of actin filament dynamics in the growth cone. Fast 

retrograde flow moves actin meshwork and bundles backward away from the leading edge resulting in 

the formation of actin arcs in the transition zone. As a result of actin network contraction in the 

transition zone, actin buckling and severing occurred and ultimately depolymerized. To keep actin 

meshwork and bundles in the same position in the leading edge, actin bundle recycling is operated. 

Note: adapted from (Medeiros, Burnette, and Forscher 2006).   
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ultimately severed (Figure 1.21, step 3). The severed actin filaments keep moving 

backward by attaching to actin arcs (Figure 1.21, step 4) and ultimately undergo 

depolymerisation (Figure 1.21, step 5). Since the retrograde flow pushes the actin 

network and bundles backward away from the leading edge, actin bundle recycling is 

operated to keep them in the same position.   

Microtubules in growth cones 

Microtubules (MTs) play a significant role in growth cone motility. Applying low doses 

of vinblastine, that only interfere with microtubule dynamics, leads to depleting MTs 

from the P-domain and stops the growth cone translocation (Tanaka, Ho, and 

Kirschner 1995). The growth cone movement is resumed after washing the drug. MTs 

are thought to act as guidance sensors recruiting signalling molecules required for 

growth cone motility. For instance, binding of apCAM-coated beads (a polystyrene 

bead coated with apCAM, the immunoglobulin superfamily cell adhesion molecule) to 

the growth cone receptor during the latency phase (the stage when actin filaments 

weakly couple to the cell adhesions), increases the number of exploratory MTs in the 

P-domain. Moreover, this increase in exploratory MTs coincides with elevated levels of 

active Src kinase at adhesion sites (Suter et al. 2004). This accumulation of active Src 

kinase at adhesion sites is required for strong coupling between apCAM and actin 

filaments. Inhibition of MT dynamics perturbs active Src kinase accumulation at these 

sites.  

As microtubules usually follow the same trajectories of actin filament bundles in the P-

domain of the growth cone, this leads to an assumption that actin bundles might guide 

MT’s advance into the P-domain (Lowery and Vactor 2009). However, another study 

shows that this actin filament/MT interaction (which is mediated through cross linking 

proteins) is to inhibit MT penetration into the P-domain (Burnette et al. 2007). In 

addition, another interaction between MT and actin arcs occurs in the C-domain during 

engorgement. Actin arcs usually form a barrier between the P-domain and C-domain. 

During engorgement, actin arcs rearrange and concentrate on the sides of the growth 

cones to regulate MT advance by capturing them and transporting them into the C-

domain. Also, transporting MTs into the C-domain as well as MT consolidation requires 

actomyosin contractility since inhibition of myosin perturbs these processes (Burnette 
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et al. 2008). In addition, cytoplasmic dynein and LIS1 are also involved in growth cone 

neck consolidation. Inhibition of dynein or LIS1 interferes with this process (Vallee, 

Seale, and Tsai 2010).               

The dynamics of MTs in growth cones are also regulated by microtubule associated 

proteins (MAPs). MAPs are involved in microtubule stability during axonogenesis, 

mediate microtubule cross linking to actin filaments, regulate MT polymerization and 

depolymerisation, and facilitate motor protein interaction and transport initiation.  An 

example of MAPs that have an important role in growth cone motility is the family of 

plus-end tracking proteins (+TIPs) (see section 2.3.2.1.1,). Interestingly, cytoplasmic 

dynein and LIS1 (a dynein-interacting partner) are both known to be localized at the 

MT plus end and inhibition of either of them leads to MT depletion in the P-domain 

due to the inability of MTs to resist the retrograde actin flow (Grabham et al. 2007). 

This depletion of MTs in the P-domain is not due to changes in MT polymerization, as 

many MTs are shifted backward at rates consistent with retrograde actin flow. This 

phenotype can be recovered by inhibition of myosin II, which is known to underlie the 

retrograde actin flow (Myers et al. 2006). Thus, dynein is  required to maintain growing 

MTs at the leading edge by exerting force on MTs and therefore resisting  the 

retrograde actin flow (Vallee, Seale, and Tsai 2010).         

Growth cone dynamics and axon outgrowth 

During the stationary phase, in the absence of attractive adhesive substrates (Figure 

1.22A), no coupling exists between the substrate and actin filaments and the number 

of MTs exploring the P-domain is low (Figure 1.22A; B, step 1). MTs appear buckled 

and cannot penetrate the P-domain. Also, actin filaments move backward due to 

retrograde actin flow (Figure 1.22B, step 2, red arrow). At this stage, the position of 

MTs (Figure 1.22B, step 3) is determined by a balance between MT assembly and 

retrograde transport of MTs (Figure 1.22B, blue arrow) which are linked with actin 

filaments by cross linking proteins (Figure 1.22B, green). During the latency phase, the 

growth cone encounters attractive adhesive substrate (Figure 1.22A, green). A weak 

molecular clutch is formed (Figure 1.22B, step 1) and therefore no change in the rate 

of retrograde flow (no retrograde flow attenuation) (Figure 1.22B, step 2). Putative 

signals might be generated to form the adhesion sites and might result in reduced 



88 
 

 

coupling between MT and actin filaments, possibly by reducing the affinity of cross 

linking proteins (Figure 1.22B, step 3). This leads to an increase in the number of 

exploratory MTs towards the adhesion sites (Figure 1.22A; B). During the traction 

phase, the substrate and actin filaments are strongly coupled by adhesion molecules 

(Figure 1.22B, step 1) and thus attenuating the retrograde flow (Figure 1.22B, step 2). 

This allows filopodia and lamellipodia to extend (Figure 1.22A, protrusion formation) 

followed by rearrangement of actin arcs to the sides of the growth cone. This will clear 

the corridor for the transportation of the C-domain MTs (Figure 1.22A, engorgement; 

B, step 3). Finally, MTs located in the new region of the growth cone neck are 

compressed to form a new axon shaft (Figure 1.22A, consolidation).   

Focal adhesion proteins 

Focal adhesion kinase (FAK) 

FAK: phosphorylation and domain functions 

Focal adhesion kinase is a non-receptor tyrosine kinase (FAK) activated as a 

consequence of integrin activation as well as in response to other stimuli such as 

growth factors (M D Schaller 2001; Parsons 2003; Hall, Fu, and Schaller 2011). FAK 

contains six tyrosine residues and autophosphorylates at Tyr397 which is located just 

upstream of the kinase domain (Figure 1.23, red circles). Phosphorylation at this site 

results in FAK activation as well as provides binding sites for the Src-homology 2 (SH2)-

domain containing proteins including the Src family, phosphoinositide 3-kinase (PI3-

kinase), phospholipase C (PLCγ), the GTPase activating protein p120RasGAP and the 

growth-factor-receptor-bound protein 7 (Grb7). Src binds FAK through two sites: the 

phosphorylated Tyr397 site and the proline-rich region which is also located upstream 

the kinase domain (Figure 1.23, red circle and red box, respectively). This recruitment 

of Src to FAK leads to Src-dependent phosphorylation of several FAK tyrosine sites: 

Tyr576, Tyr577, Tyr861, and Tyr925 for the maximal activation of FAK. Tyr576 and 

Tyr577 are both located within the activation loop of the kinase domain (Figure 1.23). 

Phosphorylation of Tyr576 and Tyr577 is important to enhance the maximal activity of  
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Figure 1.22 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.22 - The Figure depicts the growth cone dynamics and axon outgrowth summarized into three 

phases: stationary, latency and traction (A). (B) Schematic diagrams show cross-sections of growth cones 

which depict the dynamics of as well as the interaction between microtubules and actin filaments at the 

corresponding phase. Note: adapted from (Lowery and Vactor 2009; Lee and Suter 2008) with 

modifications.     
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Figure 1.23  

 

 

 

 

 

 

 

 

 

Figure 1.23 - The Figure shows FAK functional domains: FAT, kinase and FERM (blue boxes) and six 

tyrosine phosphorylation sites (red circles). FAK autophosphorylation at tyrosine 397 provides binding 

sites for Src, PI3K, PLCγ, p120RasGAP and Grb7. Src further phosphorylates FAK at several tyrosine sites, 

576, 577, 861 and 925. Src phosphorylation of Tyrosine 925 provides binding site for Grb2. Red boxes 

represent proline rich regions that provide binding sites for proteins such as Cas and GTPase activating 

proteins. Image adapted from Hall et al. 2011 and Parsons, J. T. 2002.   
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the enzyme. Phosphorylation of Tyr925 on FAK provides a binding site for Grb2 which 

is required for the activation of the Ras/MAPK signalling pathway (Figure 1.23). Also, 

the binding of Src to FAK results in the formation of FAK/Src complex which facilitates 

Src phosphorylation of other substrates such as paxillin and p130Cas. Serine 

phosphorylation at Ser723 is mediated by Cdk5 and is essential for several 

physiological processes: cytoskeletal reorganization, neuronal migration and 

centrosome function during mitosis and neuronal migration. The N-terminus of the 

protein is constituted of a FERM domain which has a regulatory role in FAK function 

and the deletion of this domain results in elevated FAK catalytic activity. The FERM 

domain might also facilitate interaction with the cytoplasmic domain of 

transmembrane proteins including β3 integrin, the EGF and PDGF receptors. The C-

terminus of the protein consists of a region of no catalytic activity referred to as FRNK 

(FAK related non kinase) which itself includes a region known as the focal adhesion 

targeting domain (FAT).  It also contains several proline-rich regions that serve as 

binding sites for SH3 containing proteins: Cas (Crk-associated substrates: p130Cas and 

Hef1), and GTPase-activating proteins, ASAP1 (a GAP for Arf 1/6), PSGAP and GRAF (a 

GAP for Rho) (Parsons, J. T. 2003) (Figure 1.23, red boxes). A truncated form of FAK is 

also expressed consisting only of the FRNK domain, which instils a dominant negative 

effect by competing with FAK for localisation to FA. FAT is responsible for FAK’s 

localization to FAs as well as providing binding sites for focal adhesion associated 

proteins. Using deletion analysis, the FAT domain was defined as the region spanning 

amino acid residues 904-1040 (Hildebrand, Schaller, and Parsons 1995). Two proteins 

are known to bind the FAK FAT domain: paxillin and talin (Hildebrand, Schaller, and 

Parsons 1995; H.-C. Chen et al. 1995). 

 Paxillin binding and regulation of FAK function   

It was found that the binding sites of paxillin might potentially reside within the 904-

1054 amino acid residues of FAK (Jeffrey et al., 1995). Evidence for which came from 

in-vitro deletion analysis which showed that a region spanning the amino acids of the 

FAT domain (929-1023) is implicated in paxillin binding. Also, Jeffrey et al (1995) 

showed that the cFAK (missing the 13 distal amino acids of the C-terminus 1041-1054) 

prevents paxillin binding but retains normal FAK localization. Thus, this indicates that 
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paxillin is not essential for FAK localization. However, more recent papers showed that 

binding of FAK to paxillin is essential for FAK localization to adhesion sites, where it is 

activated, and for regulating FAK function (Scheswohl et al. 2008; Deramaudt et al. 

2014). FAK binding to paxillin is mediated by the two hydrophobic patches: HP1 and 

HP2 that reside within the FAT domain and are known to bind leucine-rich domains 

(LD) of paxillin. Scheswohl et al (2008) inhibited two binding sites of paxillin on FAK by 

introducing triple mutations into the HP1 (Glu949Ala/Lys956Ala/Arg963Ala) and a 

point mutation into the HP2 (I937A), Consequently, FAK localization to adhesion sites 

was reduced by 90%, which was completely abolished by introducing an additional 

mutation at site Glu997 to alanine. Despite this, FAK autophosphorylation as well as 

phosphorylation of Tyr861 levels were not affected suggesting that the 

phosphorylation at those two sites is not dependent on paxillin binding. However, 

phosphorylation of Tyr576 and Tyr577, located within the activation loop, as well as 

the phosphorylation of paxillin and p130Cas, the downstream targets of FAK, were 

reduced. Phosphorylation of paxillin and p130Cas was completely abolished by 

disrupting the two binding sites in HP1 and HP2, whereas it was attenuated when each 

binding site was disrupted individually. This attenuation suggests that both paxillin 

binding sites are required for the maximal FAK activation and function. Therefore, this 

study suggests that the binding of FAK to paxillin is indeed important for FAK 

localization and phosphorylation at some sites. Similar evidence also supports this, as 

paxillin binding to FAT domain was disrupted along with FAK targeting to adhesion 

sites by introducing two mutations located in HP1 and HP2, Ile998Glu and Ile936Glu, 

respectively (Deramaudt et al., 2014). In terms of phosphorylation, Ile998 and Ile936 

mutations affect both the phosphorylation status of FAK as well as the 

phosphorylation of the FAK downstream substrates, p130Cas and p-paxillin. For 

example, FAK phosphorylation at Tyr397, Tyr576 and Tyr925 was significantly reduced 

in FAKIle998/Ile936-expressing FAK-/- MEFs compared to those expressing the wild type 

FAK. Furthermore, the phosphorylation of Tyr118 of paxillin was reduced in 

FAKIle998/Ile936 by 29% compared to the wild type FAK.  Similarly, P130Cas 

phosphorylation at Tyr410 was reduced by 38% in FAKIle998/Ile936 compared to the wild 

type FAK. The reduced phosphorylation of FAK substrates suggests that FAK-paxillin 

interaction is required for maximal phosphorylation of downstream substrates. Also, 
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the reduction of p130Cas phosphorylation might be due to the loss of FAK at adhesion 

sites where p130Cas phosphorylation normally occurs. Furthermore, altered 

FAK/paxillin interaction led to defects in cell adhesion and migration. FAKIle998/Ile936- 

expressing FAK-/- cells exhibited reduced adhesion on fibronectin coated plates and 

decreased migration speed by 40% compared to FAK-/- cells expressing the wild type 

FAK. 

FAK’s role in cell motility 

FAK was shown to regulate signalling pathways involved in cell motility in response to 

ECM protein stimuli. The autophosphorylation of FAK at Tyr397 as well as FAK/Src 

complex formation are required to promote cell motility (M D Schaller 2001). FAK-/- 

fibroblasts exhibit defective cell migration and the re-expression of FAK in FAK-/- 

fibroblasts enhanced cell migration. Interestingly, if FAK was co-expressed with the Src 

negative regulator Csk, it reduced the ability of FAK from enhancing cell migration. This 

suggests that Src is also involved in cell migration in the context of FAK mediated cell 

migration. Another downstream target of FAK involved in promoting cell migration is 

p130Cas (Cary et al. 1998). Cells expressing FAK mutant with mutations in the proline 

rich region (Pro712Ala/Pro715Ala) fail to bind and phosphorylate p130Cas , leading to 

a defect in cell migration.  

Tyrosine phosphorylation of P130Cas by FAK/Src complex creates a binding site for Crk, 

which results in the formation of p130Cas/Crk complex (Figure 1.24 ) (Klemke et al. 

1998). The formation of this complex leads to Rac activation and subsequently actin 

polymerization and lamellipodia formation. Rac activation is mediated by the 

recruitment of P130Cas/Crk to DOCK180, which acts as a guanine nucleotide exchange 

factor (GEF) when bound to ELMO (Brugnera et al. 2002). Collectively, the above 

evidence is indicative of a pathway in which FAK activation results in the formation of 

the FAK/Src complex and consequently responsible for the phosphorylation of 

p130Cas. This phosphorylation promotes the formation of the p130Cas/Crk complex, 

which subsequently recruits more proteins (CAS/CRK/DOCK/ELMO) to stimulate Rac 

activity (Figure 1.24). Furthermore, phosphorylation of paxillin at Tyr31 and Tyr118, 

another downstream target of FAK/Src, generates a binding site for the SH2-containing 

protein Crk. Like p130Cas/Crk, the paxillin/Crk complex recruits DOCK180, which 
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stimulates Rac activity (Vallés, Beuvin, and Boyer 2004). Thus, FAK provides a second 

pathway to regulate Rac activity through paxillin phosphorylation. However, paxillin 

phosphorylation is also implicated in recruiting of Csk, the negative regulator of Src. 

However, the downstream signalling caused by this binding is still unclear (Parsons, J. 

T. 2003).  

In addition to the ECM, FAK is also implicated in cell motility in response to 

chemoattractants as shown by the inability of FAK-/- cells to migrate in the presence of 

EGF (Sieg et al. 2000). This phenotype can be rescued by the re-expression of wild type 

FAK, indicating that EGF is upstream of FAK. This is further supported by co-

immunoprecipitation assays, which show that FAK interacts with EGF receptor.  The 

mechanistic role of FAK in cell migration is still being elucidated but significant 

progress has been made. This includes the understanding of FAK’s role in focal 

adhesion turnover and the recruitment of focal adhesion proteins. 

FAK’s regulation of focal adhesion turn-over 

FAK’s role in FA turn-over is evidenced by the fact that FAK-/- MEFs exhibited an 

increase in the number of FAs compared to control cells (Ilić et al. 1995). Additionally, 

there are suggestions that FAK performs this function by suppressing Rho activity as 

shown by the fact that FAK-/- MEFs have constitutively high levels of Rho activity (Ren 

et al. 2000). This high level of activity decreased to normal levels upon the re-

expression of FAK. More specifically FAK is thought to affect Rho activity by its 

recruitment of GRAF (Figure 1.24), which is known to reduce Rho signalling.  

Additionally, FAK regulation of FA turn-over was affected upon disrupting FAK/paxillin 

interaction. FA turn-over was reduced in FAKIle998/Ile936- expressing FAK-/- cells 

compared to cells expressing wild type FAK. In FAKIle998/Ile936- expressing FAK-/- cells 58% 

of FAs remained stable, whereas this percentage reduced to 35% in FAK-/- cells 

expressing wild type FAK.  
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Figure 1.24 

 

 

 

 

 

 

 

 

 

Figure 1.24 - The Figure shows multiple signalling pathways that implicate FAK upon integrin activation. 

Up on integrin activation and clustering, FAK is autophosphorylated at Tyr397 which therefore provides 

binding sites for the SH2-containing proteins PI3K, PLCγ, Grb2 and Grb7. It also binds the SH3 containing 

proteins, GRAF and ASAP1 that regulate Rho and Arf families of proteins, respectively. FAK 

autophosphorylation recruits Src to form the FAK/Src complex, which subsequently phosphorylates the 

downstream targets Cas and paxillin (red arrows), each of which forms a complex with Crk, DOCK180 

and ELMO to activate Rac and lamellipodia formation. FAK is involved in the Ras/MAPK signalling 

pathway through its binding to Grb2. Image adapted from Parsons, J. T. 2003 with some modification.  
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FAK and the recruitment of focal adhesion proteins 

As mentioned above, FAK is involved in recruiting focal adhesion proteins to adhesion 

sites. For example, in FAK-/-
 cells, talin is not localised to nascent focal adhesions thus 

suggesting the requirement of FAK for its recruitment (Lawson et al. 2012). Similarly, 

talin was not localized to nascent adhesions when human ovarian carcinoma cells 

SKOV3.ip1 were transfected with siRNA against FAK.  Moreover, expressing the mutant 

FAK (E1015A), lacking the binding site of talin, in FAK-/- null fibroblasts does not rescue 

the recruitment of talin to nascent adhesions whereas expressing the wild type FAK 

retains talin to nascent adhesions. This recruitment of talin by FAK is independent of 

talin binding to integrin.  

Paxillin 

Paxillin structure and isoforms  

Paxillin is a 62-kDa adaptor protein localized to adhesion sites, where it provides a 

platform for the recruitment of more proteins. This facilitates actin cytoskeleton 

anchorage to adhesion sites and the formation of multi-protein complexes for 

coordinating the signalling pathways at these sites (M D Schaller 2001; Brown and 

Turner 2004). Three alternative-splice variants of paxillin give rise to α, β and γ 

isoforms. While paxillin α, β and γ are known to be expressed in humans, in murines 

only paxillin α and β are expressed (Mazaki et al. 1998). Paxillin α is the main isoform 

that is ubiquitously expressed, whereas β and γ are generated from a short exon 

insertion between lysine 277 and phenylalanine 278, located between leucine-rich 

motifs LD4 and LD5 motifs of paxillin α (Mazaki et al. 1997) (Figure 1.25). In addition, δ 

is an alternative translation isoform beginning at methionine 132 and thus lacking the 

first LD motif. Paxillin comprises multiple motifs and domains that are involved in 

mediating protein-protein interactions. These include five leucine-rich motifs and 

several proline-rich regions located in the N-terminus, as well as four zinc binding 

structures, known as LIM domains, which are located in the C-terminus (Figure 1.25 

and Table 1.11). The proline-rich region and the tyrosine phosphorylated sites provide 

binding sites for the SH3- and SH2-containing proteins, respectively. The LIM3 domain 

and, to a lesser extent, LIM2 are required for targeting paxillin to the adhesion sites. 

Moreover, the phosphorylation of LIM domain at Ser457 and Ser481 is required for 
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targeting paxillin to the focal adhesions (Brown, Perrotta, and Turner 1998). LD motifs 

mediate interactions with cytoskeletal proteins (actopaxin and vinculin), tyrosine and 

serine/threonine kinases (focal adhesion kinase FAK and the integrin linked kinase ILK) 

and the GTPase activating proteins (paxillin kinase linker PKL, p21 GTPase-activated 

kinase PAK). In addition, the LD4 motif is also known to bind a protein complex that 

contains PAK, the PAK-interacting exchange factor PIX and PKL which is required to 

stimulate Cdc42 activity and therefore cell polarity (Turner et al. 1999; Brown, West, 

and Turner 2002). Additional paxillin binding partners are shown in Table 1.11, 

including their binding region and function.     
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 Figure 1.25  

 

 

 

 

 

 

 

Figure 1.25 - The Figure shows the domain structure of paxillin α. Paxillin α is a 557 amino acid 

protein comprised of five leucine-rich (LD) motifs (consensus sequence LDXLLXXL, green boxes) 

and four zinc binding structures (LIM). The Figure also shows tyrosine, serine and threonine 

phosphorylation sites, as well as two isoforms β and γ generated from alternative splicing and 

one alternative translated isoform δ.         
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Table 1.11 Paxillin binding partners at adhesion sites 

Paxillin binding partner binding region Function 

The integrin-linked 

kinase (ILK) 
LD1 

- Paxillin/ILK interaction is required for 

targeting ILK to adhesion sites. 

- Paxillin/ILK interaction may be 

important in the regulation of ILK 

signalling ((Nikolopoulos & Turner 2000). 

FAK LD2 and 4 

- The binding sites were determined in 

Turner et al., 1999. 

- Paxillin/FAK interaction is important for 

FAK localization and the regulation of 

FAK function (Scheswohl et al., 2008 and 

Deramaudt et al., 2014). 

Tubulin LIM2 and 3 

- Paxillin co-localizes with γ and α-

tubulin at MTOC in T lymphoblasts, 

suggesting a potential role for paxillin in 

regulating the function of microtubule 

network (Herreros et al., 2000). 

- Mutations in the MT binding sites in 

LIM2 domain compromised cell 

spreading and caused cell rounding 

suggesting uncontrolled focal adhesion 

turnover (Brown and Turner 2002). 

Crk pTyr31/pTyr118 

Recruitment of CrK to the 

phosphorylated Tyr31 and Tyr118 

promotes lamellipodia formation 

(Lamorte et al., 2003). 

the extracellular signal 

related kinases (ERK) 

The ERK binding site: 

pTyr118,Sre119,Phe120, 

Pro121 

1. pTyr118/ERK interaction is important for 

normal cell spreading (Ishibe et al., 

2003). 
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Table 1.11 - The Table shows some paxillin binding partners, the binding regions and the known 

functions of these bindings. 

Phosphorylation of Tyr31 and Tyr118 and its role in adhesion dynamics and 

migration  

During migration, paxillin is primarily phosphorylated at Tyr31 and Tyr118 through 

which it creates binding sites for the SH2-containing proteins. For example, tyrosine 

phosphorylation results in the recruitment of adaptor proteins like Crk, which in turn 

recruit CrkL into a complex with paxillin (Schaller and Parsons 1995). The Crk/CrkL 

complexes then recruit additional signalling molecules such as the guanine exchange 

factors: C3G and DOCK180 in order to form a complex with paxillin. Consequently, the 

Crk-Dock180 complex results in the activation of Rac, which promotes lamellipodia 

extension and enhances migration (M D Schaller 2001; Brown and Turner 2004).  

Phosphorylation of paxillin at Tyr31 and Tyr118 is by FAK and FAK related protein 

kinases Cakβ, Pyk2, CadTK and RAFTK. Cakβ is thought to compensate for the loss of 

FAK in FAK-/- fibroblasts, as paxillin phosphorylation levels is only slightly reduced in 

these cells (Deramaudt et al. 2014; M D Schaller 2001). Moreover, FAK has been shown 

to phosphorylate paxillin at Tyr118 in vitro (Bellis, Miller, and Turner 1995). The in vitro 

assay was performed by incubating immuno-precipitated FAK with truncated paxillin 

fusion proteins which vary in size, in order to map the site of p-paxillin. These 

truncated fusion proteins were generated from the original paxillin fusion protein that 

covers the amino acid sequence from 54 to 313 and contains four tyrosine sites: Tyr76, 

Tyr88, Tyr118 and Tyr182. FAK was unable to phosphorylate the truncated paxillin that 

lacks Tyr118. This was further confirmed by incubating FAK with paxillin fusion proteins 

in which one of the tyrosine residues was mutated to phenylalanine. FAK was able to 

phosphorylate all the tyrosine paxillin mutants except the Tyr118Phe mutant. Further 

evidence for the phosphorylation of paxillin by FAK at Tyr118 came from the inhibition 

of p-FAK (Tyr397) by FAK targeting siRNA which resulted in reduced levels of both p-

FAK (Tyr397) and consequently p-paxillin (Li et al. 2009). Moreover, immuno-

precipitation of FAK, utilizing GST-paxillin, revealed that the mutant Tyr118Phe did not 

change the binding ability of paxillin to FAK (Bellis, Miller, and Turner 1995). 
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Paxillin is also tyrosine-phosphorylated by Src, as Csk-/- fibroblasts which lack the Src 

negative regulator, show enhanced Src activity, as well as elevated levels of tyrosine 

phosphorylation of substrates, including paxillin. This was further confirmed by the 

fact that Src-null fibroblasts showed a remarkable decrease of tyrosine 

phosphorylation of paxillin (Klinghoffer et al. 1999). Overall, these data indicate that 

both FAK and Src phosphorylate paxillin. Src, however, phosphorylates paxillin at a 

much higher rate than FAK. In addition, Src is also responsible for phosphorylating 

paxillin at Tyr118 upon the stimulation of mlMCD-3 epithelial cells with hepatocyte 

growth factor (HFG). This phosphorylation of Tyr118 induces the recruitment of 

inactive ERK to adhesion sites, where it binds directly to paxillin (Table 1.11, the ERK 

binding site: pTyr118, Ser119, phe120, pro121) (Ishibe et al. 2003). Inhibition of Src by 

pretreating mlMCD-3 cells with the Src inhibitor PP1, results in a reduction in the 

phosphorylation levels of Tyr118, as well as ERK/paxillin interaction. MEK and Raf were 

also found to be associated with paxillin and thus to activate ERK. Subsequently, ERK 

phosphorylates paxillin at serine/threonine sites, resulting in the recruitment of FAK to 

adhesion sites and the subsequent activation of FAK, in order to promote cell 

spreading and adhesion (Liu et al. 2002; Brown and Turner 2004). Interestingly, 

staining porcine aortic endothelial cells (PAECs) transfected with the phosphomimetic 

paxillin (Tyr118Glu/Tyr31Glu) shows that tyrosine phosphorylation of paxillin increases 

the recruitment of p-FAK (Tyr397) to adhesion sites to stimulate adhesion turnover 

(Zaidel-Bar et al. 2007). Conversely, PAECs transfected with Tyr118Phe or Tyr31Phe 

mutant paxillin suppressed the recruitment of FAK to adhesion sites. Overall, the data 

produced by Zaidel-Bar et al. (2007) and Ishibe et al. (2003) are indicative of a pathway 

in which Src phosphorylates paxillin at Tyr118, leading to the recruitment of inactive 

ERK and its subsequent activation by MEK. Once ERK is activated and subsequently 

phosphorylates paxillin, FAK is recruited and then activated, which is required for the 

recruitment of more proteins involved in cell spreading and adhesion (Figure 1.26).  
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Figure 1.26  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.26 - The Figure demonstrates a signalling pathway involving Src, ERK, paxillin and FAK upon HGF 

receptor activation. Binding of HGF to the cell receptor results in the recruitment of paxillin to adhesion 

sites and in its subsequent phosphorylation at tyrosine 118 by Src. This causes an increase in 

ERK/paxillin association and the subsequent phosphorylation of paxillin at Ser/Thr, which as a result 

recruits FAK to adhesion sites.  
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Tyrosine phosphorylation of paxillin was found to be associated with the assembly and 

disassembly of adhesion sites (Zaidel-Bar et al., 2007).  Focal complexes (FXs, formed 

at the leading edge where the lamellipodium is located) are considerably more 

dynamic than FAs (found further back from the leading edge where the lamella is 

located) and contain high levels of phosphorylated paxillin (pTyr118/ pTyr31), whereas 

FAs are more stable and contain comparatively lower levels of phosphorylated paxillin. 

As the cells move forward during migration, FAs, located at the cell front, translocate 

centripetally towards the cell centre, where they disassemble in the disassembly zone. 

High levels of tyrosine phosphorylated paxillin were observed in those FAs located in 

the disassembly zone, whereas levels varied in those located in the assembling front. 

Also, transfecting porcine aortic endothelial cells (PAECs) with the phosphomimetic 

paxillin, where tyrosine molecules at Tyr118 and Tyr31 were mutated to glutamic acid 

(Tyr118Glu/Tyr31Glu), enhanced adhesion dynamics, where cells showed numerous 

FXs, whereas the level of FAs did not change. Conversely, transfecting cells with the 

non-phosphorylatable paxillin, where tyrosine residues were mutated to phenylalanine 

(Tyr118Phe/Tyr31Phe), led to the stabilization of adhesion sites and cells showed more 

FAs and less FXs. It is noteworthy that the amount of tyrosine-phosphorylated paxillin 

is negatively regulated by mechanical force, as the ratio of pTyr-paxillin/paxillin 

increased 1 minute after treatment with the actomyosin-contractility inhibitor H7 [H7, 

1-(5-isoquinolinylsulfonyl)-2-methylpiperazine]. 

The role of cytoplasmic dynein 1 and paxillin in focal adhesion turnover 

Cytoplasmic dynein 1 has been shown to be involved in regulating the disassembly of 

focal adhesions (Rosse et al. 2012). This is mediated by the interaction of the DIC 

subunit of cytoplasmic dynein 1 with the focal adhesion protein, paxillin. This 

interaction increases during cell migration and therefore facilitates the endocytosis of 

focal adhesions. Subsequently, DIC is phosphorylated at Ser84 in an aPKC-dependent 

manner (aPKC, atypical protein kinase C). As a result, DIC no longer interacts with 

paxillin and subsequently all focal adhesion components are recycled. 
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3. Research 

My research focuses on the elucidation of the underlying molecular and cellular basis 

of motor neuron cell death in two motor neuron diseases namely amyotrophic lateral 

sclerosis (ALS) and spinal muscular atrophy with lower extremity predominance (SMA-

LED). 

The molecular mechanism underlying the degeneration of motor neurons in ALS is still 

unclear. Several genes have been implicated in ALS. One of them, the gene TARDBP 

encoding the DNA/RNA binding protein TDP-43 is known to underlie ~4% of ALS cases. 

Interestingly, there have been other genes also implicated in causing defects in RNA 

splicing in ALS pathogenesis including EAAT2 and peripherin. I hypothesized that TDP-

43 might be involved in the RNA splicing of EAAT2 and peripherin which therefore 

might highlight the RNA splicing mechanism as an underlying cause for ALS 

pathogenesis. In my results chapter 3, I investigated whether TDP-43 regulates RNA 

splicing of EAAT2 and peripherin and whether impaired function of TDP-43, caused by 

ALS-associated mutations, would lead to abnormal RNA splicing mechanisms of EAAT2 

and peripherin.  

Mutations in the cytoplasmic dynein heavy chain subunit (DYNC1H1) have been 

associated with several neurological disorders including SMA-LED, CMT type2 and 

learning disability. In this part of my research, I used the Loa mouse model of SMA-LED 

and fibroblasts isolated from human patients DYNC1H1R399G/R399G to investigate the 

impact of mutations in DYNC1H1 on cellular functions of cytoplasmic dynein including 

retrograde transport, growth cone movement and axonal elongation. Impaired 

retrograde transport of growth factor-induced endosomes were observed in 

heterozygous Loa motor neurons resulting in aberrant activation of extracellular-

signal-related kinases 1 and 2 and of the immediate early gene c-Fos. I investigated the 

MAP kinases responsible for c-Fos activation during starvation as well as during BDNF 

stimulation (results chapter 4). I also investigated whether autophagy has a role in c-

Fos activation during the aforementioned conditions. In addition, my research in 

chapter 5 focused on investigating the role of the mutant forms of cytoplasmic dynein 
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heavy chain including the Loa mouse mutation and the mutant human form 

DYNC1H1R399G/R399G on cell migration and growth cone motility.          
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                                                                   Chapter 2 

Materials and Methods 
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2.1 Genotyping 

2.1.1 DNA preparation from mouse tail biopsies 

Approximately 0.2 - 0.5 cm of the tail or ear tissue was lysed in 200 μl lysis buffer 

containing 2 μl Proteinase K (20 mg/ml) at 55oC in a water bath overnight. The samples 

were vortexed and centrifuged at 13,000 rpm for 10 minutes. The DNA was diluted to 

1:50 by adding 4 μl of the supernatant to 200 μl double distilled water. The diluted 

samples were then vortexed and centrifuged briefly. One or 2 μl of the dilution was 

used in PCR reaction.   

2.1.2 Genotyping TDP-43A315T transgenic mice 

To genotype TDP-43A315T transgenic mice, a standard PCR was performed using two 

sets of primers designed by Jackson laboratory (Table 2.1). One set was used to target 

and amplify part of the transgene (Figure 2.1A, primers are highlighted in yellow). The 

other set, which works as an internal positive control, was used to amplify part of the 

mouse DNA. The size of the transgene amplicon is 400 bp, whereas the control 

amplicon is 200 bp (Figure 2.1B).   

Table 2.1   

Primer Sequence 5’ 3’ 

TDP-43 transgene FWD   GGA TGA GCT GCG GGA GTT CT 

TDP-43 transgene REV   TGC CCA TCA TAC CCC AAC TG 

Internal positive control FWD   CAA ATG TTG CTT GTC TGG TG 

Internal positive control REV   GTC AGT CGA GTG CAC AGT TT 

 

Table 2.1 – The genotyping primer sequences for the TDP-43A315T transgenic mouse.  

2.1.3 Genotyping SOD1G93A transgenic mice 

Biopsies tissues were lysed following the same procedure mentioned in section 2.1.1. 

Two sets of primers designed by Jackson laboratory were used to genotype SOD1G93A 

transgenic mice carrying the human G93A mutant form of SOD1 under its own 

promoter (shown in Table 2.2). One set was used to target and amplify part of the 
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Stop codon

Reverse 

primer

ATGTCTGAATATATTCGGGTAACCGAAGATGAGAACGATGAGCCCATTGAAATACCATCGGAAG

ACGATGGGACGGTGCTGCTCTCCACGGTTACAGCCCAGTTTCCAGGGGCGTGTGGGCTTCGCTA

CAGGAATCCAGTGTCTCAGTGTATGAGAGGTGTCCGGCTGGTAGAAGGAATTCTGCATGCCCCA

GATGCTGGCTGGGGAAATCTGGTGTATGTTGTCAACTATCCAAAAGATAACAAAAGAAAAATGG

ATGAGACAGATGCTTCATCAGCAGTGAAAGTGAAAAGAGCAGTCCAGAAAACATCCGATTTAAT

AGTGTTGGGTCTCCCATGGAAAACAACCGAACAGGACCTGAAAGAGTATTTTAGTACCTTTGGA

GAAGTTCTTATGGTGCAGGTCAAGAAAGATCTTAAGACTGGTCATTCAAAGGGGTTTGGCTTTG

TTCGTTTTACGGAATATGAAACACAAGTGAAAGTAATGTCACAGCGACATATGATAGATGGACG

ATGGTGTGACTGCAAACTTCCTAATTCTAAGCAAAGCCAAGATGAGCCTTTGAGAAGCAGAAAA

GTGTTTGTGGGGCGCTGTACAGAGGACATGACTGAGGATGAGCTGCGGGAGTTCTTCTCTCAGT

ACGGGGATGTGATGGATGTCTTCATCCCCAAGCCATTCAGGGCCTTTGCCTTTGTTACATTTGC

AGATGATCAGATTGCGCAGTCTCTTTGTGGAGAGGACTTGATCATTAAAGGAATCAGCGTTCAT

ATATCCAATGCCGAACCTAAGCACAATAGCAATAGACAGTTAGAAAGAAGTGGAAGATTTGGTG

GTAATCCAGGTGGCTTTGGGAATCAGGGTGGATTTGGTAATAGCAGAGGGGGTGGAGCTGGTTT

GGGAAACAATCAAGGTAGTAATATGGGTGGTGGGATGAACTTTGGTGCGTTCAGCATTAATCCA

GCCATGATGGCTGCCGCCCAGGCAGCACTACAGAGCAGTTGGGGTATGATGGGCATGTTAGCCA

GCCAGCAGAACCAGTCAGGCCCATCGGGTAATAACCAAAACCAAGGCAACATGCAGAGGGAGCC

AAACCAGGCCTTCGGTTCTGGAAATAACTCTTATAGTGGCTCTAATTCTGGTGCAGCAATTGGT

TGGGGATCAGCATCCAATGCAGGGTCGGGCAGTGGTTTTAATGGAGGCTTTGGCTCAAGCATGG

ATTCTAAGTCTTCTGGCTGGGGAATGTAG

Start codon

Forward 

primer

c. 1077 G>A

200 bp

400 bp

A

B

transgene (Figure 2.2A, highlighted in yellow). The other set, functioning as an internal 

positive control, was used to amplify part of the mouse DNA. The size of the transgene 

amplicon is 236 bp, whereas the control amplicon is 324 bp in length (Figure 2.2B).  

Figure 2.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Genotyping the TDP-43A315T transgenic mouse. (A) The human TDP-43 coding sequence 

(NCBI, NM_007375.3) showing the annealing sites of the genotyping primers highlighted in yellow. The 

start codon and the stop codon are colored in red. The base pair change (c. 1077 G>A) is colored in 

green. (B) A 2% agarose gel, stained with 0.01% ethidium bromide, showing PCR product of the human 

TDP-43 transgene (400 bp) and the internal positive control (200 bp).  



109 
 

 

Table 2.2 

Primer Sequence 5’ 3’ 

SOD1 transgene FWD   CATCAGCCCTAATCCATCTGA   

SOD1 transgene REV   CGCGACTAACAATCAAAGTGA   

Internal positive control   CTAGGCCACAGAATTGAAAGATCT   

Internal positive control   GTAGGTGGAAATTCTAGCATCATC  

 

Table 2.2 - The genotyping primer sequences for the SOD1G93A transgenic mouse. 

2.1.4 Genotyping TDP-43F210I mutant mice 

Genotyping the TDP-43F210I mice was performed by multiplex PCR using three primers 

designed by PhD student Charlotte Chapman. One set of primers was used to amplify a 

product regardless of the genotype and therefore acting as an internal positive control 

(outer primers) (Figure 2.3, coloured in black and Figure 2.4, highlighted in yellow). The 

third primer (inner reverse primer) was designed to be allele specific. This was 

achieved by introducing a mismatch (the mismatch represents the F210I mutation, ‘A’ 

to ‘T’) between the last base of the 3’ end of the primer and the template. A second 

mismatch was introduced to enhance the specificity, represented by the asterisk at 

position -2 (Table 2.3). This would hinder the annealing of the last three bases of 3’ 

terminus (at 0, -1, and -2 positions) to the template and therefore creating an 

overhang. As a result, this overhang would prevent the binding of Taq polymerase to 

the 3’ end.  Two PCR products are expected from the multiplex PCR. Using both the 

outer primers and the inner wild type specific allele primer (Figure 2.3, coloured in red) 

to amplify the wild type template, two bands were amplified with equal intensity 

(Figure 2.3A, Table 2.4, and Figure 2.5). When they were used with the heterozygous 

mutant template, the PCR product of the outer primers was more intense than that 

amplified by the inner primer (Figure 2.3B, Table 2.4 and Figure 2.5). If the 

homozygous mutant template was amplified, only one intense band, produced by the 

outer primers, was observed (Table 2.4). No band was produced by the inner wild type 

allele specific primer due to the presence of two mutant alleles. When both the outer 

primers and the inner mutant specific primer were used (Figure 2.3, coloured in green) 
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to amplify the wild type template, only one intense band was observed, produced by 

the outer primers (Figure 2.3C, Table 2.4 and Figure 2.5).  

Figure 2.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2.2 – Genotyping the SOD1G93A transgenic mouse. Part of the human SOD1 gene sequence 

showing the annealing sites for the genotyping primers as well as gel electrophoresis for genotyping the 

SOD1G93A transgenic mouse. (A) Is part of the human SOD1 gene inserted into the mouse genome 

(Ensemble, ENSG00000142168). The annealing sites of the human SOD1 transgene primers are 

highlighted in yellow. The sequences in red bold font represent exons. (B) A 2% agarose gel, stained with 

0.01% ethidium bromide, showing the PCR products of human SOD transgene (236 bp) and the internal 

positive control (324 bp).  

TTGACAAATGGGGACACTTAAAACGATTTGGTTTTGTAGCATTTATTGAA

TATAGAACTAATACAAGTGCCAAAGGGGAACTAATACAGGAAATGTCATG

AACAGTACTGTCAACCACTAGCAAAATCAATCATCATTGTGAAACATAGG

AAGCTTCTGTAGATAAAAAAAAAAATTGATACTGAAAACTAGTCGAGACT

CCATTTATATGTGTATGTTTTCTGAAAGCCTTTCAGAAAAATATTAAATT

TAAGGACAAGATTTTTATATCAGAGGCCTTGGGACATAGCTTTGTTAGCT

ATGCCAGTAATTAACAGGCATAACTCAGTAACTGAGAGTTTACCCTTTGG

TACTTCTGAAATCAGGTGCAGCCCCATCTTTCTTCCCAGAGCATTAGTGT

GTAGACGTGAAGCCTTGTTTGAAGAGCTGTATTTAGAATGCCTAGCTACT

TGTTTGCAAATTTGTGTCTACTCAGTCAAGTTTTAATTTAGCTCATGAAC

TACCTTGATGTTTAGTGGCATCAGCCCTAATCCATCTGATGCTTTTTCAT

TATTAGGCATGTTGGAGACTTGGGCAATGTGACTGCTGACAAAGATGGTG

TGGCCGATGTGTCTATTGAAGATTCTGTGATCTCACTCTCAGGAGACCAT

TGCATCATTGGCCGCACACTGGTGGTAAGTTTTCATAAAAGGATATGCAT

AAAACTTCTTCTAACATACAGTCATGTATCTTTTCACTTTGATTGTTAGT

CGCGGTTTCTAAAGATCCAGATAAACTGTACTTGCAGTTCAAATTAGGAA

AAGCAATTTTATTGGACAATTACGGTGAAAATGAATTATTTTATCTAGGT

CAGTTAAGAACACTGTTCTGCTAAGATGCAGTAAAAAGCAGGTTACATTT

GACCATATTAGATCTGAGTTTGGAAAACAGAAGTAGTCTTTAGTTTTAAA

ATGGCCAGATTTTCTTGCCAGGATTGGGTTTCTCACTTGTTAAACAGAAC

ATTTTGTTAAGTTTAAAACCTGGGATGGACTTAAGTATTCATGTTCATTC

ATGTTCATTCAGGACTGCAGGTTATCATGACTTGTTTAACTTGTGGGAAG

CTGTTGTCCCAAGTTATCCTGGGGAACTGCATCTGGTTCTTGCAAAACAC

CAAGTAGACAGGCTCTCTTTTACCTCCCCTTGAGGGCATTAACATTCAGT

AGTCACTTCCATTCAGTTAACCCTTTATTTTTATGGTTTTTCTTGAGCCA

TAGTTGTAAAGCAGAAAAATCATTTATAAAGGTTTGTTGAACAAAATTCA

AAATACTGTTGCTTAAAGTATTAAGATTTTTTAGGATTATACCTTACTTA

TAGGCCCGTCATTCATTTGGCATGAAATTTTGAGTTTTATTCACTTTCAC

Forward 

primer 

Reverse 

primer 

324 

bp 236 

bp 

B 

A 
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When the heterozygous mutant template was amplified, one intense band amplified 

by the outer primers, was observed, as well as a band with lower intensity amplified by 

the mutant allele specific primer (Figure 2.3D, Table 2.4 and Figure 2.5). If the 

homozygous mutant template was amplified, two bands with equal intensity would be 

produced (Table 2.4). 

Reaction components   

Total reaction is 10 µl: [microzone master mix5μl, outer FWD primer1μl, outer REV 

primer1μl, inner REV primer1μl, template1μl, water1μl] 

 Two reactions were set up for each template, including the outer primers: one 

reaction was set up with the inner wild type allele specific primer and the other with 

the inner primer for the mutant allele.     

PCR cycle  

Temperaturetime: 95oC 5:00 [940:30, 60.50:30,720:45]35 722:00   

Table 2.3 

Primer Sequence 5’ 3’ 

Wild type specific allele (inner 

reverse) 

TACCACTTCTCCATACTGACAGAATAA 

Mutant specific allele (inner 

reverse) 

TACCACTTCTCCATACTGACAGAATAT 

Outer primer (FWD) GTGTTTACCATCTCCTGTTCTCTCTT 

Outer primer (REV) GACAAATGACCAACAAATATACCTTATC 

 

Table 2.3 - Sequences of genotyping primers of the mutant TDP-43 F210I. The mutation at the 3’ 

terminus of the inner primers are coloured in red whereas the mismatch is coloured in green.  
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Table 2.4 

 

 

 

 

 

 

 

Table 2.4 - The pattern of band intensity expected from the multiplex PCR for genotyping TDP-43F210I 

mice.  

        +/+      +/TDP-43F210I        TDP-43F210I/TDP-43F210I        

Outer primers  

Inner wild type allele  

   

   

Outer primers  

Inner mutant allele        
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Figure 2.3 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – Schematic diagram showing genotyping of TDP-43F210I using the multiplex PCR. The outer primers are coloured in black. The inner wild type specific reverse 

primer is shown in red whereas the inner mutant specific is coloured in green. The asterisk represents the mismatch introduced to enhance the specificity of the inner 

primer.
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Figure 2.4 

 

 

 

 

 

 

Figure 2.4 – The sequence of the mouse Tardbp gene showing the annealing sites of primers. Sequence 

is obtained from the Ensembl databases (ENSMUSG00000041459). The annealing sites of the outer 

primers are highlighted in yellow. The inner reverse primer is underlined with the mutation in larger font 

and bold. The second mismatch is in green.  

Figure 2.5 

 

 

 

 

 

 

 

 

 

Figure 2.5 - Gel electrophoresis showing bands produced from the multiplex PCR using the outer 

primers and the inner wild type or inner mutant specific primers. Lane A is the multiplex PCR reaction 

containing the outer primers and the inner wild type specific primer. Lane B is the multiplex reaction 

containing the outer primers and the inner mutant specific primer. The 225 bp band is the expected size 

of PCR product amplified by the outer primers whereas the 143 bp band represents the PCR product 

amplified by the inner primer.    

 

AGTAGTACACAGTTAGCCTCATCTTTAGAAACAAAAACACCCAAGACGGGAAGGCACTTA 

AGTATGCATTGATGTGTTTACCATCTCCTGTTCTCTCTTGACCAGCAAAGCCCAGACGAG 

CCTTTGAGAAGCAGAAAGGTGTTTGTTGGACGTTGTACAGAGGACATGACTGCTGAAGAG 

CTTCAGCAGTTTTTCTGTCAGTATGGAGAAGTGGTAGATGTCTTCATTCCCAAACCATTC 

AGAGCTTTTGCCTTCGTCACCTTTGCAGATGATAAGGTATATTTGTTGGTCATTTGTCCC 

AGGGCTGGGAATGGATCTGGTTTAGTGCTACTGTATGTGCCCAGCATGGTACACCAGGGG 

 

Forward 

outer 

Reverse 

outer 

Reverse inner 

 

+/F210I +/+ 

A A B B 

225 bp 

143 bp 
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2.1.5 Genotyping Loa mice 

Loa is a mouse model harboring a missense ‘T’ to ‘A’ point mutation in the cytoplasmic 

dynein heavy chain Dync1h1. A set of primers was designed to amplify a region where 

the mutation is located (Figure 2.6 and Table 2.5). The mutation generates a second 

restriction site for the enzyme RsaI (GT/AC) in the amplicon (Figure 2.7 and Table 6). 

Using the restriction site that already exists within the amplicon, two bands are 

generated: 672 and 24 bp in length. However, the latter is not visible on the gel. Using 

the second restriction site generated by the mutation, another two bands with 

different sizes are produced: 537 and 135 bp in length.    

Table 2.5 

Primer Sequence 5’ 3’ 

FWD TGCTGTGTGCTCTCCTGTTT 

REV TTTTACAAGCTTGGCTTTGC 

 

Table 2.5 - Primer sequences for genotyping the Loa mouse.  

Figure 2.6 

 

 

 

 

 

Figure 2.6 - Part of the cytoplasmic dynein heavy chain gene sequence Dync1h1 showing the primer 

annealing sites as well as RsaI restriction sites. The sequence is obtained from Ensembl databases 

(ENSMUSG00000018707). Exons are shaded in grey and the primers are highlighted in yellow. RsaI 

restriction sites are colored in red. The mutation T>A that creates the second RsaI restriction site is in 

bold and larger font.  

TGCTGCTGAGCTGCGTCCTAGTGCTGTGTGCTCTCCTGTTTTCATTCCCTCTTCACATTCATTAGTTCTT

TCCTTTAAGTATACACACACACACACACACACACACAGTAAAGACAGAAGTCTGCAGGGAGATCCTTATA

GTGTGCTCATGGCTGAATTGTGATGATAGAGTCCTAAAGGCCTAGAAGTCAGCATTGATGCAAGAATCCT

GTGCTGTGCCTGTGACAGAAAAACGTCATTTGCAGCTATGTTTTGTTCCAAACCTTTTGTTTTAGGTCAC

AGCAGTCGCACAACAGAACCAAGGAGAAGCACCTGAACCCCAAGACATGAAAGTGGCCGAGGTGCTCTTT

GATGCTGCCGACGCCAACGCCATTGAGGAGGTGAACCTGGCCTACGAGAATGTCAAGGAAGTCGATGGTC

TGGATGTTTCCAAAGAAGGGACGGAAGCCTGGGAGGCCGCGATGAAGAGATACGATGAGAGGATCGACCG

TGTGGAGACCCGCATCACCGCCCGCCTCCGAGATCAGCTCGGCACGGCCAAGAATGCCAATGAGATGTTC

AGGATTTTCTCCAGGTTCAATGCACTGTTCGTCCGCCCACACATCCGAGGGGCCATTCGTGAATACCAGA

CCCAGCTGATCCAACGTGTGAAAGATGACATCGAATCTCTGCACGACAAGTTCAAGGTCCAGTACCCGCA

AAGCCAAGCTTGTAAAATGA 

Forward 

primer 

Reverse 

primer 
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Table 2.6 

 672bp 537bp 135bp 24bp 

WT +   + 

Loa/Loa  + + + 

+/Loa + + + + 

 

Table 2.6 - Expected band sizes produced after RsaI restriction digestion of the PCR products of wild 

type, +/Loa and Loa/Loa. 

 

Figure 2.7 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 - Gel electrophoresis of wild type, +/Loa and Loa/Loa PCR products after digesting with RsaI. 

The left panel shows the expected band sizes in the homozygotes, 537 and 135 bp, and the wild types, a 

672 bp band.  The right panel shows the results of the restriction digestion of the heterozygotes. Three 

bands are expected: 672, 537 and 135 bp in length.   

 

 

 

672 bp 

537 bp 

135 bp 
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2.2 Dissection and cell culture 

2.2.1 Isolation and culture of mouse embryonic fibroblasts 

Pregnant female mice were sacrificed at 13 days post-coitum (dpc) through cervical 

dislocation. The uterine horn was dissected out and placed in a petri dish containing 

DPBS plus 1% penicillin and streptomycin (P/S). Each embryo was separated from its 

placenta and surrounding membranes and was kept on ice in a separate 15 ml Falcon 

tube in DPBS supplemented with 1% P/S. The embryo was placed on a 5 cm petri dish 

that had already been filled with black wax to increase the contrast during dissection 

under the microscopes. Using autoclaved dissecting instruments, the head was cut 

away, as well as any dark red visceral tissues. The remaining tissue was washed once 

with DPBS containing 1% P/S. Using a small amount of DPBS and a razor blade, the 

tissue was minced until it became pipettable and then transferred into a clean 15 ml 

falcon tube. The falcon tubes that contained the tissue were wiped with 70% IMS 

before transferring them to the laminar flow cabinet where they were subsequently 

left to stand for a few minutes to pellet the minced tissue through gravity. DPBS was 

removed and replaced with 1 ml of 0.05% trypsin-EDTA containing 100 units per ml 

DNAse. This was done to avoid viscosity due to cell lysis and genomic DNA, which 

might have prevented efficient pelleting of cells in the subsequent centrifugation 

steps. The minced tissue was suspended and incubated at 37oC in a water bath for 15 

minutes with occasional gentle shakes. The resulting cell suspension should be free of 

any larger pieces of tissue and should not be too viscous. The suspension was 

transferred to a universal tube and about 2 volumes of growth medium were added. 

The tubes were left to stand for a few minutes to pellet any remaining pieces before 

taking off the supernatant. Then, they were centrifuged at 390 g for 5 minutes. The 

cells were resuspended in MEFs culture medium and plated out in a T25 flask. The 

passage number should be zero. The medium was changed the following day.  

2.2.2 Motor neuron isolation and culture 

A pregnant female mouse was sacrificed at 13 dpc by cervical dislocation. The uterine 

horn was dissected out and placed on ice in a petri dish containing DPBS supplemented 

with 1% P/S. E13 embryos were removed from the uterine horn. The head and tail of 
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the embryo were removed and snap frozen in liquid nitrogen for further analyses and 

genotyping respectively. The body was placed on its sternum, with the dorsal side 

uppermost, on a 5 cm petri dish filled with black wax. The embryo was stabilised using 

its limbs. The spinal cord was clearly visible. Skin overlying the spinal cord was 

removed. The spinal cord was first separated from the right side of the body by 

inserting fine tweezers in between the cord and the body. Using curved tweezers to 

stabilise the body on its side, fine straight tweezers were used to separate the spinal 

cord from the vertebrae and to simultaneously remove the dorsal root ganglia. At the 

same time, the meninges were severed from the side of the spinal cord, as this would 

eventually facilitate removing it. The ventral side was oriented uppermost to remove 

any remaining dorsal root ganglia with a scalpel. The meninges were easily removed 

from the spinal cord by pulling them off, starting from the top of the spinal cord, 

where they could be easily visualized, all the way down. The ventral root containing 

the motor neurons was transferred to a 15 ml falcon tube containing fresh DPBS with 

antibiotics (P/S) and kept on ice. 

Under the laminar flow cabinet, DPBS was removed from the spinal tissue (by pipetting 

using a 1 ml pipette and without using a pump) and replaced with 1ml HBSS, 1% P/S 

and 0.025% trypsin (10 µl of 2.5% w/v stock). The samples were incubated in water 

bath at 37oC for 10 minutes with occasional agitation. The solution was then removed 

(using a 1 ml pipette) and 1 ml of complete L-15 media with 0.4% BSA (Sigma, A9056) 

and 100 µg DNaseI (Sigma, DN25) were added (Table 2.7). The tissue was dissociated 

by pipetting 16 times and then allowed to settle for 2 minutes before the supernatant 

containing the cells was collected and transferred to a fresh tube. One millilitre 

complete L-15 media with 0.4% BSA and 20 µg DNase were added to the pellet and 

triturated a further 16 times and then allowed to settle. Subsequently, the supernatant 

was removed and added to the previous collection. A 900 µl complete L-15 media was 

added to the remaining tissue and a final dissociation carried out before the removal 

of the supernatant and disposal of the remaining pellet. The collected supernatants 

were spun through a 1 ml of 4% BSA cushion at room temperature for 5 minutes at 

390 g. The supernatant was discarded and the pellet was resuspended in 600 µl motor 

neuron culture medium (Table 2.7). For live cell imaging, 300 µl of the suspension was 
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added per chamber (Lab-Tek II chamber slides, Fisher Scientific, #155379). For 

immunocytochemistry and imaging the growth cones of motor neurons, 50 µl of the 

suspension was added per well of a 24-well plate containing coverslips. Coverslips and 

live cell imaging chambers were coated with either 0.1 mg/ml poly-D-lysine (Sigma, 

P7280) or coated with poly-L-ornithine/Laminin (Sigma, P4538/L2020, respectively; 50 

µg/ml for each). For biochemical analysis, a 100 µl per well of a 24-well plate was 

added. Motor neuron culture media were added to reach a final volume of 1 ml in the 

live cell imaging chambers and 0.5 ml per well of a 24-well plate. Media were 

supplemented with 0.1 ng/ml GDNF, 0.5 ng/ml CNTF, 0.1 ng/ml BDNF. Cells were 

incubated at 37oC in a humidified 5% CO2 incubator.  

After 24 hours, half of the medium was removed and replaced with fresh medium 

containing 14 µM of cytosine β-D-arabinofuranoside hydrochloride (AraC) in order to 

obtain a final concentration of 7 µM. The cells were left to mature for at least 1 week 

before carrying out biochemical experiments and for two days before conducting 

immunocytochemistry or live cell imaging. 

2.2.3 Cell assay 

To measure solely the serum deprivation effect, motor neurons were starved for two 

hours in serum-free neurobasal media supplemented with serum-free B27, and growth 

factors; GDNF, CNTF and BDNF. To test their response to BDNF stimulation, motor 

neurons were first serum starved for two hours, without the addition of growth 

factors, followed by stimulation with 5 ng/ml BDNF.  

2.3 Biochemistry 

2.3.1 Preparation of lysates from tissues 

All materials required for preparing lysates from tissues as well as the homogenization 

process were kept and performed in cold condition. Centrifugation steps were all 

performed in a refrigerated microcentrifuge. With regard to homogenizing brain 

tissue, the brain was placed in a glass Dounce homogenizer and the pestle, which 

tightly fitted within the shaft of the homogenizer, was used for homogenising the 

brain. The amount of the lysis buffer required for homogenizing the tissue was added 
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in relation to the tissue weight. For example, for each a 100 mg of tissue, 1 ml of a lysis 

buffer was added. The brain was homogenized in a lysis buffer composed of DPBS, 1% 

Triton X-100, 1x phosphatase inhibitor cocktail 2 and 3 (Sigma, P0044), and 1x protease 

inhibitor cocktail (Roche, 11836170001) and was ice-cold prior to homogenization. The 

brain was first homogenized using the tight pestle followed by a further 

homogenization using a 21-gauge needle. The homogenate was then transferred to a  

Table 2.7 

motor neuron culture 
medium 

working 
concentration 

complete L-15 
medium 

working 
concentration 

Neurobasal medium 
(Gibco, 21103-049) 

________ 

L-15 medium (Sigma, 

L1518) 
________ 

B27 serum-free  
supplement 

( Gibco, 17504-044) 
1x 

Glucose 1% 

Glutamine (Gibco, 
Cat.no.25030) 

500 M 
penicillin/streptomycin 1% 

Β-mercaptoethanol 
(Fisher Scientific) 

0.1% 

progesterone (Sigma, 

P8783) 
20nM 

Horse serum (Sigma, 
H1270) 

2% 

Horse serum (Sigma, 

H1270) 
2% 

penicillin/streptomycin 
(Gibco, 15070-063) 

1% 
Insulin (Sigma, I6634) 5 g/ml 

BDNF (Invitrogen, 10908-
010) 

0.1 ng/ml 

Putrescine (Sigma, 

P5780) 
100 mM/ml  

GDNF (R&D system, 512-
GF) 

0.1 ng/ml 

Conalbumin (Sigma, 

C7786) 
100 g/ml  

CNTF (Gibco, PHC7015) 0.5 ng/ml 

Sodium selenite 

(Sigma, S5261)  30 nM/ml 

Cytosine β-D-
arabinofuranoside 

hydrochloride (Sigma, 
C6645) 

7 M 
 ________ 

         ________ 

 

Table 2.7 – The components of motor neuron culture medium as well as complete L-15 medium.   
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fresh cold 1.5 ml Eppendorf tube and centrifuged at 13,000 rpm for 10 min. Then, the 

supernatant was transferred into a fresh cold   tube and quantified for protein 

concentration. Both supernatant and the pellet were stored in -80oC for long term 

storage. 

2.3.2 Neurofilament extraction    

With regard to homogenizing lumbar spinal cord, three mouse lumbar spinal cords 

(LSCs) were pooled to facilitate homogenization as it is a small tissue and to avoid 

tissue loss. Considering that the spinal cord is a tough tissue, the tissue was subjected 

to sequential homogenization in order to obtain a high yield of proteins (Figure 2.8). 

This was conducted based on a protocol described by Xiao et al (2008) with some 

modifications. LSCs were placed in the glass Dounce homogenizer and homogenised 20 

times in DPBS, supplemented with phosphatase and protease inhibitors, using the tight 

pestle. A further homogenization was carried out using a 21-gauge needle. 

Subsequently, the homogenate was centrifuged at 13,000 rpm for 10 minutes by which 

two fractions were obtained: supernatant 1 and pellet 1 (referred to as S1 and P1, 

respectively). S1 was transferred to a fresh Eppendorf tube and kept on ice while P1 

was subjected to a further homogenization. P1 was re-homogenized in a high salt 

buffer (HSB) (750 mM NaCl, 5 mM EDTA, 50 mM Tris, pH 7.5), 1x of phosphatase 

inhibitor cocktails 2 and 3, 1x of protease inhibitors, and 1% Triton X-100 using the 21-

gauge needle. The addition of Triton X-100 facilitates the lysis of any remaining 

unlysed cells as well as the myelin sheaths from axons, whereas HSB precipitates 

neurofilaments. The homogenate was centrifuged at 13,000 rpm for 10 minutes and 

two fractions were obtained: supernatant 2 and pellet 2 (referred to as S2 and P2, 

respectively). S2 was transferred to a fresh Eppendorf tube and kept on ice while P2 

was processed with further homogenization. Lastly, P2 was re-homogenized in HSB 

buffer containing 1M sucrose (to remove myelin) using the 21-gauge needle. After 

centrifugation, two fractions were obtained: supernatant 3 (S3) and pellet 3 (P3). S3 

was collected and kept on ice while P3 was washed with DPBS and pelleted again by 

centrifugation. The supernatant was discarded and P3 was dissolved in DPBS 

containing 2% SDS.    



122 
 

 

Tissue

S1

40C

16000 gDPBS

P1
HSB

TX-100

S2

P2

40C

16000 g

16000 g

40C

HSB

1M sucrose

S3

P3

Figure 2.8 

                  

        

 

 

 

Figure 2.8 - Sequnetial extraction of neurofilaments from mouse lumbar spinal cords. 

2.3.3 Preparation of lysates from cell culture 

Motor neurons, cultured in a 24-well plate, were washed with warm PBS twice to 

remove any remaining media. A 50 µl of RIPA buffer, supplemented with 1X 

phosphatase inhibitor cocktails 2 and 3, and 1X protease inhibitors cocktail, was used 

to lyse motor neurons which were incubated on ice for 15 minutes. The lysate was 

collected into a fresh tube and centrifuged at 1000 g for 10 minutes to pellet the 

nuclei. Supernatants were collected and stored in -80 oC until being processed.  

With regard to lysing human and mouse fibroblasts, cells were harvested by 

trypsinization and washed twice with ice-cold DPBS without Mg+2 and Ca+2. Cells were 

centrifuged at low speed (2000 rpm) using the refrigerated microcentrifuge and 

freezed in -80oC prior to homogenization. Cells were resuspended in a homogenization 

buffer consisting of DPBS without Mg+2 and Ca+2 and supplemented with 1X 

phosphatase inhibitor cocktails 2 and 3, and 1X protease inhibitors cocktail. Using the 

glass homogenizer, cells were homogenized using the tight pestle followed by 

centrifugation at 13,200 rpm for 5 minutes. The clarified homogenate was transferred 

to a fresh cold tube and quantified for protein concentration.  

2.3.4 Determination of protein concentration 

Protein concentrations of tissue lysates were determined using bicinchoninic acid 

assay (BCA) (Thermo scientific, 23227). The assay was conducted following the 

manufacturer’s protocol. 
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2.3.5 SDS-PAGE electrophoresis 

Depending on the molecular weight of the target proteins (Table 2.8), 10% and 12% 

homogeneous standard SDS-PAGE as well as 4-12% gradient gels were used. The 12% 

gel was used to resolve proteins with small molecular weights such as LC3 I and LC3 II, 

14 and 16 kDa respectively, whereas the 4-12% gradient gels were used to resolve 

protein complexes. The 10% homogeneous standard SDS-PAGE was prepared in the 

laboratory whereas the gradient 4-12% (Life technology, NP0323BOX) and the 12% 

homogeneous standard gels (Life technology, NP0343BOX) were precast gels.  

2.3.6 Immunoblotting and analysis 

All membranes were blocked in 5% skimmed milk for at least two and a half hours at 

room temperature (unless specified, Table 2.9) with constant agitation. To prepare the 

blocking solution, milk was dissolved in PBS containing 0.05% Tween-20 (PBS-T) and 

mixed properly either by a magnetic bar or by rotating. For detecting phospho-

proteins, membranes were blocked in TBS containing 0.1% Tween-20 and 5% BSA. All 

primary antibodies were diluted (at the recommended dilution by the manufacturer) in 

PBS containing 0.2% Tween-20, 5% BSA and 0.1% sodium azide, unless specified in 

Table 2.9. The antibodies were applied on the membrane with the protein side facing 

up to ensure optimal binding. The membrane was incubated with the primary antibody 

overnight at 4oC with constant agitation. A short incubation for one hour at room 

temperature was performed for abundant proteins. Subsequently, the membranes 

were washed in PBS-T once for 15 minutes and three times for 5 minutes. The washing 

was performed in a big box (five times the size of the membrane) containing enough 

washing reagent to ensure a complete removal of excess antibodies. The membrane 

was incubated with secondary antibodies, 1:10,000 in PBS-T containing 0.05% 

skimmed milk, for 45 minutes at room temperature with constant agitation. 

Subsequently, the membrane was subjected to further washes with PBS-T (1 x 15 

minutes and 3 x 5 minutes). Afterwards, either substrate of the horse radish 

phosphatase (HRP) or alkaline phosphatase (AP) was applied evenly on the membrane, 

with the protein side facing up. The membrane was then placed in between 

transparency sheets to avoid drying and was placed in a film cassette. Films were   
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Table 2.8 

 

Protein name 
(protein symbol) 

Size (kDa) 
Gel 

percentage 
Running buffer 
/running time 

Amount 
protein 
loaded 

Stress-activated protein 
kinase/Jun-amino-terminal 

kinase 
(p-SAPK/ 

JNK) 
 

JNK: 48 
 

Bis-Tris 
precast 

12% 

MES SDS running 
buffer/50 min at 

200 volt 

15 µl of MN 
lysate 

Microtubule-associated 
protein light chain 3A 

(MAP1LC3A) 
 
  

LC3 I: 14 
 

LC3 II: 16 
 

Bis-Tris 
precast 

12% 

MES SDS running 
buffer/50 min at 

200 volt 

15 µl of MN 
lysate 

p38 mitogen-activated 
protein kinases 
(p38α, β, γ, δ) 

 
  

41, 41, 42 
and 42 

respectively 

Bis-Tris 
precast 

12% 

MES SDS running 
buffer/50 min at 

200 volt 

15 µl of MN 
lysate 

Glutamate 
transporter-1 

 
(GLT-1) 62 

Tris-glycine 
10% 

SDS running 

buffer/75 minutes 

at 140 volt 

1 µg of 
mouse 
brain 

 

  
 

(GLT-1B) 
 

 

60 
Tris-glycine 

10% 

SDS running 

buffer/75 minutes 

at 140 volt 

30 µg of 

mouse 

brain 

Peripherin 
(Prph) 

58 
Tris-glycine 

10% 

SDS running 

buffer/90 minutes 

at 140 volt 

20 µg of SC 

lysate 

Paxillin 
(Pxn) 

62 
Tris-glycine 

10% 

SDS running 

buffer/90 minutes 

at 140 volt 

15 µg  of 

MEF lysate 

Cytoplasmic dynein 

intermediate chain subunit 

(DYNC1I1) 

68 
Tris-glycine 

10% 

SDS running 

buffer/90 minutes 

at 140 volt    

15 µg  of 

MEF lysate 
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Table 2.8 - Proteins of interest for immunoblotting. Table provides information about the size of the 

proteins, the percentage of SDS PAGE for protein detection and the amount of protein loaded.     

subsequently developed using automated X-ray developers. Films were scanned using 

an Epson Perfection 4990 photo scanner and quantified using TotalLab TL100 image 

analysis software. GraphPad prism 5 was used for statistical analysis.    

2.3.7 Immuno-precipitation 

Protein A-Sepharose 4B beads (Invitrogen, 101041) were washed three times by 

adding 1 ml ice cold DPBS and centrifuged at 400 g for 2 minutes at 4oC before being 

incubated with the primary antibody (PA). Also, tubes with a narrow conical bottom 

were used to facilitate removing the washing buffer without disturbing the beads as 

well as using a 200 µl tip to remove the buffer that is in a close proximity with the 

beads. Subsequently, the beads were blocked in 3% BSA/DPBS for 1 hour followed by 

one wash with DPBS. The homogenate was cleared by incubation with the beads for 2 

hour at 4oC with agitation followed by centrifugation for 2 minutes at 400 g to collect 

the homogenate. The beads were incubated with either 1.5 µg of PA or IgG (negative 

control) for two hours at 4oC with shaking after which the beads were washed three 

times with DPBS to remove unbound antibody. Then, a 100 µl of cleared homogenate 

was incubated with either PA-linked or IgG-linked beads overnight at 4oC with 

agitation. Next day, the supernatant was aspirated and kept as a control and the beads 

were washed 6 x 10 minutes with DPBS on a rotator at 4oC followed by one wash with 

water for 10 minutes. Finally, the interaction between the beads and the protein 

complex-linked antibodies were released by adding 1x SDS sample buffer followed by 

boiling the sample at 95oC for 5 minutes. The samples were centrifuged at 16000 g for 

5 minutes to collect the supernatant using a fine loading gel pipette tip. The samples 

were kept in -20oC for short term storage prior to western blotting.                               

2.3.8 Immunocytochemistry 

Coverslips for immunofluorescence were cleaned with 70% ethanol and flamed to 

remove any dust that might cause artifacts. Under a fume cupboard, 22 mm2coverslips 

were placed in a 6-well plate and 13 mm round coverslips in a 24-well plate. Coverslips 

were then coated (unless stated) with 10 µg/ml collagen type I by adding 200 µl to the 
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22 mm2 coverslips or 50 µl to the 13 mm coverslips. Collagen was either allowed to air 

dry in a tissue culture hood at room temperature or baked at 60oC without the lid 

followed by UV sterilization. For coating with poly-D-lysine, 100 µg/ml of poly-D-lysine 

was added to the coverslips and incubated at 37oC for two hours. The excess solution 

was removed and wells were washed twice with double distilled water followed by air 

drying in the tissue culture hood without the lid. Fibroblast cells at a density of 5 x 105 

and 3 x 105 were seeded onto 22 mm2 and 13 mm coverslips, respectively. Seeding 

cells at this density was enough to obtain cells at 50% confluence. All reagents used in 

this procedure were added at 1 ml/22 mm2 and 0.5 ml/13 mm coverslips. For fixing 

cells, growth medium was removed and cells were washed three times with warm PBS. 

Cells were fixed with 4% paraformaldehyde diluted in PBS for 10-20 minutes at room 

temperature. The fixative solution was removed and cells were washed three times in 

PBS. Cells were then permeabilized with 0.1% Triton X-100 in PBS for 5 minutes to 

ensure a complete penetration of antibodies when applied. The permeabilizing 

solution was removed and cells were washed three times with PBS. Cells were blocked 

with 3% BSA in PBS for 20 minutes followed by further three washes with PBS. A 

humidified chamber was constructed to prevent cells from drying out and to be 

exposed to the light. To create the humidified chamber, a large box was wrapped with 

aluminium foil while ensuring that the lid could be removed. Paper towels were 

soaked in water and placed inside the box. The cells were incubated with primary 

antibodies for 1 hour and with secondary antibodies for 30 minutes at room 

temperature and were placed in the humidified chamber (Table 2.10). Following the 

application of antibodies, the cells were washed three times with PBS. To stain with 

DAPI, cells were incubated with DAPI diluted in water at the ratio of 1: 80,000 for 5 

minutes followed by three washes in double distilled water. For slide preparation, 

approximately 10 µl of mounting medium (Invitrogen, P36930) was placed onto the 

slide ensuring that no air bubbles were introduced. Using a tip-curved tool, the 

coverslip was removed from the 6-well plate and the excess liquid was removed by 

blotting the edge of the coverslip on a white paper towel. The edge of the coverslip 

was rested on the slide with the cell side facing towards the slide and gradually 

released so that it dropped onto the mounting medium.      
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Table 2.9 

primary antibody 
dilution/incubation 

buffer 

incubation 

time/temp 

blocking time/ 

buffer 

secondary 

antibody 

Peripherin 
(abcam,  AB1530) 

1:500/PBS-T + 5% 
BSA 

O/N 4oC 
O/N, PBS-T + 5% 

BSA 

Anti-Rabbit IgG 
antibody/AP  

(Sigma, A3812) 

Per61 
(abcam,  Ab4646) 

1:500/PBS-T + 5% 
BSA 

O/N 4oC 
O/N, PBS-T + 5% 

BSA 

Anti-Rabbit IgG 
antibody/AP  

(Sigma, A3812) 

GLT-1 
(Tocris, 2063) 

1:500/PBS-T + 5% 
BSA 

O/N 4oC 
2 h/PBS-T + 5% 
skimmed milk 

Anti-Rat IgG/AP 
(Sigma, A8438) 

GLT-1B 
(Thermo scientific, 

MA1-46011) 

1:200/PBS-T + 5% 
BSA 

O/N 4oC 
O/N, PBS-T +5% 
skimmed milk  

Anti-Mouse 
IgG/AP 

( Sigma, A3562) 

LC3A 
(Cell signalling, 

D50G8) 

1:500/PBS-T + 5% 
BSA 

O/N 4oC 
2 h, 30 min/ 
PBS-T + 5% 

skimmed milk 

Anti-Rabbit IgG 
antibody/HRP-

conjugated 
(G E Healthcare 

,NA934VS) 

pJNK 
(Cell signalling, 

9251) 

1:1000/PBS-T + 5% 
BSA 

O/N 4oC 
2 h, 30 min/ 
PBS-T + 5% 

skimmed milk 

Anti-Rabbit IgG 
antibody/HRP-

conjugated 
(G E Healthcare 

,NA934VS) 

c-Fos 
(Santa Cruz 

Biotechnology, sc-
52) 

1:400/PBS-T + 5% 
BSA 

O/N 4oC 
2 h, 30 min/ 
PBS-T + 5% 

skimmed milk 

Anti-Rabbit IgG 
antibody/HRP-

conjugated 
(G E Healthcare 

,NA934VS) 

Phospho-p38 
MAPK 

(Thr180/Tyr182) 
 

1:1000/PBS-T + 5% 
BSA 

O/N 4oC 
2 h, 30 min/ 
PBS-T + 5% 

skimmed milk 

Anti-Rabbit IgG 
antibody/HRP-

conjugated 
(G E Healthcare 

,NA934VS) 

Alpha-tubulin 
(Upstate,  05-829) 

1:1000/PBS-T + 5% 
BSA 

60 min R/T 
1 h/PBS-T + 5% 
skimmed milk 

Anti-Rabbit IgG 
antibody/HRP-

conjugated 
(G E Healthcare 

,NA934VS) 

Βeta-actin 
(Sigma, A5316) 

1:1500/PBS-T + 5% 
BSA 

60 min R/T 
1 h/PBS-T + 5% 
skimmed milk 

Anti-Mouse IgG 
antibody/HRP 
(Dako, P0260)   

cytoplasmic dynein 
intermediate chain 

(gift from Kevin 
Pfister) 

1:1000/PBS-T + 5% 
BSA 

60 min R/T 
2 h, 30 min/ 
PBS-T + 5% 

skimmed milk 

Anti-Mouse IgG 
antibody/HRP 
(Dako, P0260)   

p-Paxillin 
(Invitrogen) 

1:1000/TBS-T 
containing 3% BSA 

2 h R/T 
O/N, TBS-T + 5% 

BSA 

Anti-Rabbit IgG 
antibody/AP  

(Sigma, A3812) 

Paxillin 
( BD Transduction 
laboratory, cat no 

610051) 

1:1000/PBS-T + 5% 
BSA 

60 min R/T 
O/N, TBS-T + 5% 

BSA 

Anti-Mouse IgG 
antibody/HRP 
(Dako, P0260)   
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Table 2.9 – Antibodies for immunoblotting. Abbreviation: HRP Horse radish peroxidase, AP Alkaline 

phosphatase, O/N overnight, R/T room temperature, BSA Bovine serum albumin, PBS-T PBS containing 

0.2% Tween-20, TBS-T TBS containing 0.1% Tween-20. 

Table 2.10 

 

Table 2.10 - Antibodies for immunocytochemistry. Abbreviation: O/N overnight, R/T room temperature, 

BSA Bovine serum albumin. 

 2.3.9 Cell spreading assay 

In order to perform spreading assay on mouse embryonic fibroblasts (MEFs), cells were 

first treated with trypsin and then deactivated by adding complete MEF’s medium. 

Subsequently, the cells were pelleted in order to remove the trypsin, then washed 

once in DPBS to remove any remaining trypsin residues and at last resuspended in 

complete medium.  The cells were subsequently placed into an incubation shaker at 

37o C for 45 minutes in order to ensure recovery from the trypsin treatment. MEFs 

were plated onto 22 mm2 coverslips, pre-coated with collagen. Cells were incubated at 

37oC for 50-60 minutes until the cell population had reached its maximum spread. The 

primary antibody 
dilution/incubation 

buffer 

Incubation 

time/temp 
secondary antibody 

Paxillin 

(BD Transduction 
laboratory, cat no 

610051) 

1:100/PBS + 3% 
BSA 

1 h R/T 

Anti-Mouse IgG antibody/Alexa 
fluor 488 

(Molecular Probes, A11001) 

 

cytoplasmic dynein light 
intermediate chain  

(gift from Kevin pfister) 

 

1:100/PBS + 3% 
BSA 

1 h R/T 

Anti-Rabbit IgG antibody/Alexa 
fluor 546 

(Molecular Probes, A11035) 

Alpha-tubulin-1A 
chain/FITC-conjugated 

(Sigma, F2168) 

1:500/PBS + 3% 
BSA 

1 h R/T ______ 
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cells were either fixed in 4% paraformaldehyde for immunocytochemistry or lysed for 

immunoblotting.  

2.3.10 Wound healing/scratch assay 

For IP and western blotting, MEF cells were plated in a 10 cm petri dish in order to 

obtain a confluent monolayer after 24 hours. The cells were treated either with 30 

µg/ml mitomycin C for one hour  or with 10 µg/ml for two hours to inhibit cell 

proliferation as previously described (Menon et al. 2009). Subsequently, the cells were 

washed with warm DPBS to remove any remaining residue of mitomycin C. The 

monolayer was extensively scratched, using a 10 µl pipette tip. The medium was 

changed to remove floating cells. Cells were then incubated at 37oC for the following 

time points: 6, 11, 13 hours and then collected by trypsinization, followed by three 

consecutive washes with cold DPBS. The cells were then stored at -80oC prior to lysing. 

In order to capture images of the cells using a phase contrast microscope (Zeiss, 

Axiovert 25) and monitoring cell motility, cells were plated on a 6-well plate to obtain a 

cell monolayer after 24 hours followed by treatment with 10 µg/ml of mitomycin C for 

two hours. Subsequently, one scratch was performed onto the monolayer using a 10 µl 

pipette tip. Cells were captured at pre-migration (time 0) and during migration at the 

following time points 13, 15, 17, 19, 21 and 23 hours. In order to ensure that the plate 

was always placed in the same position for image capturing after each incubation time 

point, the following method was devised: at first masking tape was applied around the 

plate (Figure 2.9A). On this tape, lines could be drawn matching the lines drawn on 

each side of the plate itself (Figure 2.9A middle and bottom panel, red arrow). Five 

images were captured from each well (one scratch), each from a different position. 

After capturing the image from the first position, number 1 on the plate matched 

number 1 on the masking tape. The plate was then moved upward, thus number 2 on 

the plate matched number 1 on the masking tape on both sides of the plate (Figure 

2.9A, middle panel). Images of the cells were captured with a camera (Canon G3), 

mounted using an adaptor (Carl Zeiss, 426126), through a 5x objective, which 

combined with 4x optical zoom to give a total magnification of 20x. For statistical 

analysis, the time points, 13, 15, 17, 19, 21 and 23 hours were allocated ratio values by 
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dividing the scratch area at each time point by the scratch area at time point 0 (fold 

change of wound area in Figure 5.7). The mean of ratio values (five values for each 

time point corresponding to the five images captured at different regions from one 

scratch) were compared between wild type and mutant samples using unpaired t-test.   

Figure 2.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 - Setting up the microscope stage for capturing an image with the plate being in the same 

position. The masking tape surrounding the plate was marked every half a centimetre matching those 

marks on the side of the plate (red arrow). Capturing an image in the first position of the well, was 

achieved by matching the first line on the masking tape with the first line on both sides of the plate. The 

next position was determined by aligning the second line on the plate (middle panel, number 2 coloured 

in yellow) with the first line on the masking tape (middle panel, number 1 coloured in green).  
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2.3.11 RNA extraction and cDNA preparation 

RNA was extracted using a column based method (Qiagen, 74134). The tissue (lumbar 

spinal cord or brain) was homogenized in RLT Plus lysis buffer containing 1% beta 

mercaptoethanol. The tissue was first homogenized in a glass homogenizer using the 

tight pastel followed by a further homogenization using a 21 gage needle. Total 

homogenate was spun for 3 minutes at maximum speed. This is important for 

discarding all cell debris that might block the column. The supernatant was used to 

isolate RNAs following the manufacturer’s instructions. RNA integrity was determined 

by running a 0.8% agarose gel containing 0.1% ethidium bromide.  A 100 ng of total 

RNAs were loaded in 6 X 7 cm agarose gel. The gel was run at 11 volt/cm for 20 

minutes. The quality of total RNAs was examined by the presence of two intensive 

bands representative of the ribosomal RNAs 28S and 18S (Figure 2.10). The 28S rRNA 

band should be twice as intense as the 18S rRNA. The smearing represents mRNAs.  

cDNA was generated using the Promega reverse transcription system. In brief, about 

0.5-1 µg of total RNAs were used for reverse transcription reaction using random 

hexamer primers. The reaction was incubated at 42oC for 1 hour to synthesize cDNAs 

followed by a further incubation at 95oC for 5 minutes to deactivate the enzyme. One 

to two µl of cDNA was used in polymerase chain reaction (PCR) to amplify the target 

mRNAs (Table 2.11).    
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Table 2.11 

 

Table 2.11 – The primer sequences for mRNAs of interest. The FWD primer of per61 was adapted from 

(Swarup et al. 2011) with some modifications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene 

symbol  

FWD primer sequences 

(5’-3’) 

REV primer sequences 

 (5’-3’) 

annealing temp / 

elongation time 

Prph CTTGCCACCCGGCCTAGTT ACCATGGGGTCATTCTTGAG 58.1oC/2 min 

Per56/58 TGCCTGAGATGGAGCCTCTCCAG

GA 

GCATGCAGAGCAGGACTGGATA

CGA 

62oC/30 Sec 

Per61/58 TCCCGCCTAGAACTGGAGCGCA

AG 

TGGCGGCGTCCGACAGGTCAGC

AT 

69oC/30 Sec 

 

Per61 AGAGGAGTGGTATAAGTCGAAA

GTGCC 

TGACGTCGAGACTCGTTCAT 62oC/30 Sec 

GLT-1 AGAGAGGCTGCCCGTTAAAT ACAAAAGGAAGCTGGCAAGA 63.8oC/2:30 min 

GLT-1B TTAGAGGGGTGAGGTGGATG AACAATATGCCCAAGCAGGT 63.8oC/2 min 
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Figure 2.10 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 – Gel electrophoresis of purified total RNA using a column based method. Total RNA was 

extracted from brain tissue. Around 100 ng of total RNA was analysed on a 0.8% non-denaturing DNA 

agarose gel stained with ethidium bromide to determine the yield and the integrity. Two distinct bands 

were observed representing ribosomal RNA; 28S and 18S. 28S and 18S are just under 2 kb and 1 kb, 

respectively. The smearing represents mRNAs.   

2.4 Cloning and transfection 

2.4.1 Transformation of the chemically competent cells DH5 alpha 

Plasmids were first propagated into the chemically competent bacteria strain DH5a.  A 

50 µl of competent cells was thawed on ice. A 2 µl of a plasmid suspension was added 

into the 50 µl competent cells, mixed by gentle flicking a few time and incubated on ice 

for 30 min. A heat shock was applied on the mixture by the incubation at 42oC for 40 

seconds following by two-minute incubation on ice. The pre-warmed recovery 

medium, either super optimal broth (S.O.B) or lysogeny broth (LB), was then added to 

the cells followed by incubation at 37oC for 1 hour with agitation. The transformation 

mixture was then plated onto LB agar plates containing the selection marker (Table 

2.12) and spread using a sterilised spreader. The plates were kept on the bench for a 
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few minutes (10-15 min) for the agar to absorb the mixture then inverted and 

incubated at 37oC overnight. For miniprep isolation of the plasmids, LB broth 

containing a 100 µg /ml ampicillin was inoculated with a single colony and incubated in 

a shaker at 37oC overnight.   

Table 2.12 

Antibiotic Stock concentration 
Working concentration 

High copy plasmid 
(relaxed) 

Low copy plasmid 
(stringent) 

Ampicillin 50 mg/ml 50 µg/ml 20 µg/ml 

Kanamycin 40 mg/ml 50 µg/ml 10 µg/ml 

 

Table 2.12 - Antibiotics and their recommended concentration according to the type of plasmids. 

2.4.2 Miniprep isolation of plasmid DNA 

Plasmid DNA was isolated using a column based method (Promega miniprep kit, 

A1223) according to the manufacturer’s instructions. In sterilised conditions, a 5 ml of 

LB medium was added into a clean 10 ml bottle containing an appropriate selective 

antibiotic (Table 2.12). The medium was inoculated using an inoculating loop either 

from a single colony from a bacterial culture plate or directly from the bacterial 

glycerol stock. The culture was incubated at 37oC overnight with vigorous shaking at 

300 rpm. A 3 ml of the bacterial culture was used for plasmid isolation. For processing 

a total of 3 ml of culture, 1.5 ml of the bacterial culture was centrifuged at 13.000 rpm 

for 30 seconds and the supernatant was discarded. An additional 1.5 ml of the 

bacterial culture was added to the same tube that contained the pellet from the first 

centrifugation and subjected to the same centrifugation conditions. From this point 

onwards the manufacturer’s instruction were followed aside from the plasmid DNA 

being eluted in 30 µl double distilled water by centrifugation at 13000 rpm. The 

plasmid DNA concentration was estimated using a nanodrop spectrophotometer. The 

plasmid DNA was highly purified if, the 260/230 and 260/280 ratios were between 1.8-

2.  
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2.4.3 Midiprep isolation of plasmid DNA 

Plasmid DNA was isolated using the Invitrogen midiprep kit (K2100-04) following the 

manufacturer’s instructions. To prepare a 100 ml bacterial culture, a 5 ml LB medium 

was inoculated with a single colony from a freshly streaked plate and incubated at 

37oC for 8 hours with shaking. After 8 hours, the culture was sufficiently cloudy to 

perform a 1/1000 dilution in a final volume of 100 ml. The culture was incubated at 

37oC with shaking at 300 rpm. Twenty five millilitres (if high copy plasmid) or 75 ml (if 

low copy plasmid) of bacterial cells were harvested by centrifugation at room 

temperature at 3760 g for 15 minutes. Subsequently, the manufacturer’s instructions 

were followed. After pelleting the plasmid DNA by adding a 100% isopropanol, the 

pellet was washed with 70% ethanol without disturbing the pellet. The tube was 

centrifuged again and ethanol was discarded. The pellet was dried and resuspended in 

an appropriate volume of double distilled water to achieve a sufficient concentration 

or a sufficient volume of the plasmid DNA depending on requirements (100 µl to 

achieve a higher concentration or 200 µl for a higher volume).The plasmid DNA 

concentration was measured using a nanodrop spectrophotometer. A high purification 

of plasmid was always obtained using this kit (260/ 230 and 260/ 280 > 1.9).  

2.4.4 Transfecting mammalian cells by electroporation 

For the transfection of MEFs using the electroporation-based Neon Transfection 

system (Invitrogen, MPK10025), cells were grown in a T75 flask until confluent. 

Following the manufacture’s protocol, cells were harvested by trypsinization and 

counted (using a haemocytometer) in order to obtain the recommended cell density of 

5 x 106 cells/ml. Cells were washed with warm DPBS (37oC) without Mg+2 and Ca+2 

before re-suspending in Re-suspension buffer R. Using a 100 µl tip (provided with the 

kit), approximately 5 x 105 cells  were pipetted and mixed with 5-7 µg plasmid DNA. A 

pulse was then applied using the electroporation parameters that are shown in Table 

2.13. According to the manufacture’s instruction, the tip can be used up to three 

times. Therefore, the same tip was used to electroporate more cells (15 x 105 cells in 

total) and the cells were added into a T25 flask containing a recovery medium (a cell 

culture medium without antibiotics). After 24 hours, the recovery medium was 



136 
 

 

replaced with their growing medium. For live-cell imaging applications, cells were 

imaged 48-hour after electroporation and the medium was replaced with live-cell 

imaging medium (life technologies, A14291DJ). 

Table 2.13 

Cell type Pulse voltage (v) Pulse width (ms) Pulse number 

MEFs 1,650 20 1 

 

Table 2.13 - Electroporation parameters for transfecting MEFs with plasmid DNA.  

2.4.5 Replacing EGFP with m-Cherry in TRIP-Syn-G-W lentivirus plasmid and EB1 
cloning 

My aim was to replace EGFP which is already found in a 2nd generation lentivirus 

plasmid (p.TRIP-Syn-G-W), which contains the neuron specific synapsin promoter, with 

m-Cherry in order to create fusion proteins. This plasmid was a kind gift from Dr Piotr 

Michalak (UCL Institute of Neurology). M-Cherry was amplified from the m-Cherry-α-

tubulin-IRES plasmid (Add gene, 21043). The NheI restriction site was found in the 5’ 

end of both plasmids. However, no compatible site was found for the 3’ end of m-

Cherry. Therefore, I created an SpeI restriction site, which was already present in the 

lentivirus plasmid downstream of EGFP, for subcloning m-Cherry because it is not 

within the m-Cherry sequence or in any of my proteins of interest. To achieve this, I 

designed a primer to amplify m-Cherry and simultaneously create the SpeI restriction 

site (Figure 2.11A and Table 2.14). Also I designed primers to create the SpeI restriction 

site upstream the proteins of interest as well as remove the start codon (Figure 2.11B 

and Table 2.14). I also included the linker sequence in the m-Cherry-α-tubulin-IRES 

plasmid in between m-Cherry and alpha tubulin (Figure 2.11A). The reverse primer 

included the entire linker sequence and the SpeI restriction site was inserted at the 5’ 

end of the reverse primer (Figure 2.11A). I also ensured that the Kozak sequence is also 

included and therefore the translation will be initiated at the start codon of m-Cherry. 

As I aimed to clone End-binding protein 1 (EB1) downstream of m-Cherry, I designed 

primers to PCR amplify EB1 from the mouse brain cDNA (Table 2.14). As this protein 
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will be in fusion with m-Cherry, there is no need for a start codon. Therefore, the start 

codon was deleted by designing the primer to include nucleotides located just after 

the start codon and adding the SpeI restriction site at the 5’ end of the forward primer 

(Figure 2.11B). The reverse primer was designed from the 3’ UTR. The BstB1 restriction 

site was also added to the 5’ end of the reverse primer as this site is already found 

downstream the SpeI restriction site in the TRIP-Syn-G-W lentivirus plasmid (Figure 

2.11B). 

After PCR amplification, m-Cherry or EB1 was blunt-end ligated into pBluescript II 

SK(+). The blunt end ligation was conducted according to the manufacturer’s protocol 

(New England Biolabs, M0367). The m-Cherry coding sequence was restricted out from 

pBluescript II SK(+) using NheI and SpeI and was sticky-end ligated into the TRIP-Syn-G-

W lentivirus plasmid after excising EGFP out with the same enzymes. The sticky-end 

ligation was conducted according to the manufacturer’s protocol (New England 

Biolabs, M0370).  Subsequently, EB1 was subcloned into the TRIP-Syn-m-Cherry 

lentivirus plasmid downstream of m-Cherry (Figure 2.12). The next stage will be the 

packaging of p.TRIP-Syn-m-Cherry-EB1 lentivirus using HEK293 cells. Subsequently, the 

virus will be used to transduce the recombinant lentiviral construct into motor neurons 

to visualise the microtubule plus ends by conducting live-cell imaging.      

Table 2.14  

Primers  FWD primer sequence 5’-3’ REV primer sequence 5’-3’ 

m-Cherry   AGTGAACCGTCAGATCCGCT TATAACTAGTTCGAGATCTGAGTCCGGA 

EB1 TATAACTAGTGCAGTGAATGTGTAC
TCTACG 

TTAATTCGAAGATTAATAAAAGGGAGTA
T 

 

Table 2.14 - Primers for cloning m-Cherry and EB1 into the TRIP-Syn-G-W lentivirus plasmid. Bold letters 

represent the restriction sites for the enzymes SpeI and BstB1, ACTAGT and TTCGAA, respectively.  
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Figure 2.11 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 - Designing m-Cherry and EB1 primers for cloning into the TRIP-Syn-G-W lentivirus plasmid.
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 Figure 2.12  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.12 - A vector map of the 2nd generation TRIP-Syn-m-Cherry-EB1 lentivirus plasmid.   
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2.4.6 AdEasy mCherry-α-tubulin plasmid purification, isolation from HEK293 and 

preparation of high titre viral stock  

The AdEasy mCherry-α-tubulin plasmid (Add gene, 26767) was propagated into the 

chemically competent bacteria stain DH5α followed by purification using a Qiagen kit 

(27104) according to the manufacturer’s instructions. This kit enables purification of 

large plasmids as the size of pAdEasy mCherry-α-tubulin is approximately 30 kb. Prior 

to transfection into HEK293, the plasmid was linearized by restriction digestion using 

the restriction enzyme PacI followed by purification with phenol/chloroform/isoamyl 

alcohol. Briefly, one volume of phenol/chloroform/isoamyl alcohol was added to a 200 

µl of the digestion mixture containing 8 µg of plasmid. The mixture was gently 

vortexed for 2 minutes followed by centrifugation at 13000 rpm for 10 minutes. The 

upper phase, which contains the plasmids, was transferred into a 1.5 ml transparent 

Eppendorf tube to facilitate visualizing the small pellet at the end of the process. A 

1/10 volume of 3 M sodium acetate (pH 5.2) was added and mixed well by vortexing 

the mixture slightly. Subsequently, two volumes of 100% cold ethanol were added 

followed by a slight vortexing and centrifugation at 4oC at 13000 rpm for 10 minutes. 

The pellet was small but easy to visualize. The supernatant was removed and the pellet 

was washed with 70 % ethanol followed by centrifugation at 13000 rpm for 1 minute. 

The pellet was air dried and then suspended in either a complete culture medium, if 

peqFECT transfection reagent was used (cat no 13-8099, Peqlab), or in jetPRIM buffer 

(cat no 114-01), if Polyplus transfection reagent was used. The suspension was then 

incubated for 10 minutes at room temperature. The mixture was added dropwise into 

HEK293 cells, which are grown one day before transfection in a T25 flask 50% -70% 

confluent. The flask was gently rocked to ensure a good mixing between the medium 

and the reagent. The medium was replaced after four hours when Polyplus reagent 

was used. No medium change is required when using peqFECT reagent. The cells were 

incubated with the virus for upto three weeks. Subsequently, the virus was extracted 

by applying four freeze-thaw-vortex cycles (Figure 2.13). After centrifugation to pellet 

cell debris, the supernatant, which contains the virus, was collected. This supernatant 

was used to infect HEK293 grown in two T75 flasks (first round). Supernatants, 

containing virus, from the first round was used to infect four T75 flasks (second round). 
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Supernatants from the second round were used to infect HEK293 in eight flasks (third 

round).  After three rounds of viral amplifications, supernatants were pooled and 

filtered through a 0.45 µm syringe filter. Around 25 ml were centrifuged for two and a 

half hours at 47000 g at 4oC to pellet the virus. A visible pellet was observed and the 

supernatant was removed. The pellet was resuspended in 200 µl PBS, aliquotted into 

20 µl and stored in -80oC.  

2.5 Image acquisition and microscopy analysis 

Live cell images of m-Cherry microtubules in MEFs were taken every 5 seconds for a 

period of 10 minutes using a spinning disk confocal microscope. M-Cherry-

microtubules were captured with a 60X oil objective using a TRITC filter (561m) with an 

exposure time of 300 ms. Live cell images of RFP-EB1 in MEFs were taken every 2 

seconds for a 2 minute duration using personal DeltaVision (widefield deconvolution 

microscope) with a 100X oil objective and a TRITC filter (ex. 555/28, em. 617/73). The 

exposure time was 0.5 seconds at 50% transmission. Table 2.15 shows microscopes 

and parameters used to capture fixed-cell images.  

Table 2.15 

Proteins of 

interest/Cell type 
Microscope Objective Filter set 

Exposure 

time 
Transmission 

Paxillin/MEFs and 

human fibroblasts 

DeltaVision 

Core 
40X 

Fitc (ex. 490/20, 

em. 528/38) 
0.25 Sec 50% 

DLIC/MEFs 
DeltaVision 

Core 
40X 

Tritc (ex. 555/28, 

em. 617/73) 
0.5 Sec 100% 

Microtubules/MNs 
DeltaVision 

Core 
100X 

Fitc (ex. 490/20, 

em. 528/38) 
0.25 Sec 50% 

 

Table 2.15 – Microscopes and parameters for fixed-cell images.  

2.6 Measuring the pixel intensity of adhesion sites  

In order to measure the pixel intensity of adhesion sites, an algorithm was generated 

in collaboration with Dr Constantino Reyes Aldasoro. The leading edge of cells that 

were subjected to the spreading assay was first defined. This was performed by 
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measuring the average intensity of pixels from the cell centre to the cell periphery. 

Given the centre of the cell as the start point, the intensity increases, and then 

decreases due to the presence of a dark ring (Figure 2.14A and B, white arrow and 

cyan ring, respectively). The pixel intensity increases again at the cell periphery, after 

the dark ring (Figure 2.14C). This ring acts as the cut off by which the algorithm 

recognizes the beginning of the cell periphery, measuring objects (adhesion sites) 

beyond it and towards the cell edge (Figure 2.14D, red circles).  
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Figure 2.13 - Freeze-thaw-vortex cycles for virus extraction. 
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Figure 2.14 – High throughput focal adhesion quantification. The Figure demonstrates how the 

algorithm defined the leading edge for focal adhesion quantification. (A) Shows a cell subjected to the 

spreading assay. (B) Shows a cyan ring that represents the dark region between the cell centre and cell 

periphery. (C) Demonstrates the pixel intensity from the cell centre to the cell periphery. (D) Shows focal 

adhesions recognized by the algorithm.     
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Chapter 3 

Aberrant expression of peripherin and GLT-1B in TDP-43 mouse models 
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3.1 Introduction 

The molecular basis underlying the degeneration of motor neurons in ALS is still 

unclear. TDP-43, an RNA/DNA binding protein, is involved in RNA processing and has 

been implicated in ALS. Nuclear loss as well as cytoplasmic ubiquitin-positive inclusions 

of TDP-43 are some of the hallmarks of ALS and FTLD. Aberrant RNA splicing of 

peripherin and EAAT2 (excitatory amino acid glutamate transporter 2) have also been 

implicated in the pathogenesis of ALS (Lin et al. 1998; Robertson et al. 2003). Abnormal 

expression of the peripherin splice variant per61 was found in the SOD1 mouse models 

of ALS and was found to have a toxic effect on motor neurons (Robertson et al. 2003). 

Moreover, aberrant RNA splicing as well as the loss of EAAT2 protein have been 

reported in some ALS cases (Lin et al. 1998). In this chapter, I investigated whether: 1) 

TDP-43 regulates splicing of peripherin and GLT-1 (the murine homologue of EAAT2) 

RNAs. 2) Impaired function of TDP-43 caused by ALS-associated mutations would lead 

to abnormal splicing of peripherin and GLT-1 RNAs. To answer these questions, I 

utilized two mouse models of TDP-43 as a tool to study the effect of TDP-43 

dysfunction on peripherin and GLT-1 expression levels: The first was TDP-43A315T 

transgenic mouse model harbouring a mutation located in the C-terminal region of 

TDP-43. This mouse model recapitulates key features of ALS and FTLD. The second 

mouse model was an ENU-mutated TDP-43+/F210I mouse strain harbouring a missense 

mutation in the RNA recognition motif 2 (RRM2).  
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3.2 Investigating the expression of the peripherin splice variant per61 in TDP-43A315T 

and SOD1G93A transgenic mice 

Three alternatively spliced variants are produced from peripherin mRNA called: per58, 

per56 and per61. Per61 was reported as an aberrant splice variant of peripherin and 

was found in lumbar spinal cords (LSC) of SOD1G37R transgenic mice (Robertson et al. 

2003). Here, I asked whether peripherin is abnormally spliced in two ALS mouse 

models: TDP-43A315T and SOD1G93A. To answer this question, reverse transcription-PCR 

(RT-PCR) analysis of total RNA, which was isolated from lumbar spinal cords (LSCs) of 

symptomatic SOD1G93A and TDP-43A315T transgenic mice was performed using 

previously published primers (Landon et al. 2000). These primers are peripherin 

isoform specific i.e. each set of primers can detect two different isoforms: one set can 

detect per58 and per61 while the other set detect per58 and per56. All three 

peripherin isoforms (per58, per56 and per61) were detected in TDP-43A315T and 

SOD1G93A transgenic mice (Figure 3.1A, per58 and per61 represented by the 268 bp 

and 364 bp bands, respectively, and 3.1B, per58 and per56 represented by 240 bp and 

178 bp bands, respectively). Interestingly, the band representing per61 was also 

present in the samples isolated from the wild type mice (Figure  3.1A, a 364 bp band). 

The presence of per61 in all genotypes was further confirmed using a per61-specific 

primer set. This eliminated any possibilty of artifacts arising from non specific PCR 

amplification of this splice variant. Indeed, the expected 201 bp band was detected, 

which is the result of intron 4 retention in per61, in all genotypes (Figure  3.1C). Since 

per61 arises from intron 4 retention, it was important to check for genomic DNA 

(gDNA) contamination to ensure that the resultant band would be amplified from  

per61 cDNA and not from gDNA. To ensure that the RNA extracts were not 

contaminated with gDNA, a primer set spanning intron 7 in the Dync1h1 gene, which is 

known to be spliced out during RNA processing was utilized. No genomic DNA 

contamination was observed in any of the samples (Figure  3.2).  
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Figure  3.1 
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Figure 3.1 – Expression of per61 in SOD1G93A, TDP-43A315T and wild type mice at RNA level. Expression of all known peripherin isoforms including per61 in SOD1G93A, TDP-

43A315T symptomatic transgenic and wild type mice using RT-PCR. (A) Detection of both the major form per58, represented by 240 bp, and the minor form per61, 

represented by 364 bp PCR products, in all genotypes using Landon et al (2000) isoform specific primers. Other unknown amplicons were also amplified (white arrowheads). 

(B) The 58/56 primer set amplified the major and minor forms, per58 and per56 represented by 240 bp and 178 bp PCR products, respectively. In order to obtain a good 

separation between peripherin splice variants due to their close sizes, PCR products were run in 2% agarose gel mixed with 1% NuScieve agarose gel in the ratio of a 2:1, 

respectively (Lonza, 50080). (C) The presence of per61 transcript in all genotypes represented by the 201 bp PCR product from intron 4 inclusion. (D) RT-PCR products of the 

entire coding sequence of peripherin (1702 bp, black arrowheads). White arrowheads represent unknown bands lacking reproducibility. Asterisks indicate that two pooled 

LSCs were used to produce the data. NTC represent non-template negative control.    
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Figure  3.2 – DNA contamination test performed on cDNA samples. A DNA contamination test was 

performed on cDNA samples prepared from LSCs of SOD1G93A, TDP-43A315T symptomatic transgenic and 

wild type mice. Only one band was amplified from mouse genomic DNA using an intron primer spanning 

intron 7 in the Dync1h1 gene. The other cDNA lanes: SOD1G93A, TDP-43A315T and wild type did not contain 

this band because intron 7 was spliced out and therefore it confirmed the absence of gDNA in these 

samples. NTC represents non-template negative control.       
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In addition, I tested for the presence of novel alternative splice variants by designing 

primers which would amplify the entire coding sequence of peripherin. My primer set 

was able to detect just the major peripherin isoform per58, but not 56 or 61. 

Moreover, an amplicon in two out of four TDP-43 mutants in the 1-1.5 kb region was 

observed (white arrowheads in Figure  3.1D). Another band was observed at a size just 

above 0.5kb (white arrowhead in Figure  3.1D). However, these two bands lacked 

reproducibility. Collectively, these results indicate that per61 is not an aberrant splice 

variant of peripherin and that the presence of this isoform in the wild type LSC 

suggests a physiological role that per61 may play in peripherin filament formation. 

The presence of per61 was further examined at protein level. I perfomed sequential 

extraction of neurofilaments from LSC samples isolated from wild type and 

symptomatic SOD1G93A and TDP-43A315T transgenic mice. Low and high salt buffers 

were used, with the latter containing a nonionic detergent (Triton X-100) for 

seperating neurofilaments, as described in the materials and methods chapter (section 

2.3.2). Three supernantants and one pellet (the final pellet) were obtained from this 

preparation. Supernatants and the pellet were analysed in 10% and 12% 

polyacrylamide gels, respectively, using SDS-PAGE. The pellet (containing all 

filamentous neurofilaments) was examined for the presence of per61, using a specific 

antibody raised against an antigen corresponding to the retained intron 4 (Cogli et al. 

2012). In agreement with the data from RT-PCR analysis of the peripherin splice variant 

(Figure 3.1), per61 was detected in all three genotypes SOD1G93A, TDP-43A315T and wild 

type (Figure 3.3). 
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Figure 3.3  

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – Expression of per61 at protein level. Detection of per61 in the pelleted neurofilaments (P3) 

of LSCs of SOD1G93A and TDP-43A315T transgenic and wild type mice. Alpha-tubulin was used as the 

loading control. 

 

 

 

  

 

 

 

 

 

 

 

 

 



153 
 

 

3.3 Investigating the expression of peripherin isoforms: per58, per56 and per45 in 

TDP-43A315T and SOD1G93A symptomatic mice 

Peripherin levels in all three supernantants (S1, S2 and S3) and the final pellet (P3) that 

were optained from neurofilament preparation (described in the materials and 

methods chapter, section 2.3.2) were examined. Using a polyclonal anti-peripherin 

antibody, I observed per58, per45 and per61 in S1 obtained from wild type and 

symptomatic SOD1G93A and TDP-43A315T samples (Figure 3.4A). All peripherin isoforms 

in S1 are most likely non-filamentous forms and therefore unmodified forms since only 

DPBS was used in homogenization. Approximately a three fold increase in per45 levels 

in TDP-43A315T compared to the wild type was observed in the S1 fraction (Figure 3.4A 

and C, p-values = 0.08; n = 6; representing the number of mice used to produce the 

data from two independent experiments). In the TX-100 soluble fraction S2, two 

proteins were separated from the filaments: per58 and an unknown polypeptide, 50 

kDa in size, represented by a grey arrow in Figure 3.4B. This polypeptide might 

represent unidentified peripherin species which was also observed in other studies 

(referred to as 50 kDa polypeptide from this point onward) (McLean et al. 2008; 

McLean et al. 2010). No change in per58 was observed between the three genotypes.  

In fraction S3, after adding sucrose to remove myelin from the extracts as well as 

applying a mechanical force, more peripherin isoforms were separated from 

filamentous peripherin and their levels increased compared to S2. Although they 

required a better separation (by running the samples on a higher percentage gel e.g. 

12% as well as increasing the running time), the major isoform per58 and the minor 

isoform per56 were both identified in this fraction as well as the 50 kDa polypeptide 

(Figure 3.5A). Densitometry analysis of these polypeptides in western blots revealed 

that there was a change in peripherin solubility in SOD1G93A and TDP-43A315T mice in 

comparison with the wild type (Figure 3.5B). In SOD1G93A, per56 and the 50 kDa 

polypeptide exhibited a significantly lower solubility (Figure 3.5B left panel, P = 0.009 

and 0.03, respectively) compared to the wild type in this fraction. Per58 also showed a 

lower solubility, but this difference was not statistically significant (Figure 3.5B, p = 

0.1). No difference was observed in per58 solubility between TDP-43A315T and wild type 

in this fraction. However, per56 and the 50 kDa polypeptides showed a significant 
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increase in solubility by approximately two and ten fold, respectively (Figure 3.5B, right 

panel, p = 0.02 and = 0.003, respectively). Peripherin levels in the TX-100-insoluble 

fraction were also analysed to determine any changes in the ratios of polymerized 

forms of peripherin in the three genotypes. Samples were run on a 12% SDS-PAGE; 

however, the running time was not sufficient to obtain a better separation between 

the two isoforms per58 and per56. Nonetheless, there was no change in the ratios 

between peripherin isoforms in all genotypes: SOD1G93A, TDP-43A315T transgenic and 

wild type mice (Figure 3.6).  

In summary, these data suggest that overexpressing TDP-43A315T reduces the stability 

of the peripherin filament network. Conversely, the stability of the peripherin filament 

network is enhanced in the SOD1G93A transgenic mice. In addition, as per45 isoform is 

an alternatively translated product initiated from the third ATG of per58 transcript, 

these data suggest a potential role for TDP-43 in the alternative translation initiation of 

per45. 
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Figure 3.4 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 – Up-regulation of per45 in symptomatic TDP-43A315T transgenic mice. (A) Western blot 

analysis of S1 (TX-100-untreated) showing an increase in the intensity of per45 in TDP-43A315T. (B) 

Western blot of S2 (TX-100-treated) showing no change in proteins separated from the neurofilaments: 

per58 and a 50 kDa polypeptide. SDS-PAGE percentage in A and B is 10%. (C) Quantification of per45 in 

A. The quantification revealed a tendency towards up-regulation of per45 (unpaired t-test; p-values = 

0.08; n = 6, where n represents the number of mice used to produce the data). Data represent the mean 

of two independent experiments +SEM, pooled lumbar spinal cords from three mice for each genotype 

in one experiment. Alpha tubulin is used as a loading control and the intensity of per45 is normalized 

against it.  
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Figure 3.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



157 
 

 

Figure 3.5 – Change in stability of per56 and the 50 kDa polypeptide in S3 obtained from the SOD1G93A 

and TDP-43A315T transgenic mice. (A) Western blot analysis revealed an increase in the intensity of per56 

and the 50 kDa polypeptides in TDP-43A315T and that the intensities of both were reduced in SOD1G93A. 

SDS-PAGE percentage is 10%. (B) Quantifications of per58, per56 and the 50 kDa polypeptides in A. 

Unpaired t-test; p = 0.03 and 0.009 for the 50 kDa polypeptides and per56 obtained from the SOD1 

transgenic mice respectively, p = 0.003 and 0.02 for the 50 kDa polypeptides and per56 obtained from 

the TDP-43A315T transgenic mice respectively. The data represent the mean of three replicates of the 

same biological sample from one experiment (pooled lumbar spinal cords from three mice for each 

genotype) +SEM. Alpha tubulin is used as a loading control.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



158 
 

 

Figure 3.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 – No change in the stoichiometric ratio between peripherin isoforms in P3. (A) Western blot 

analysis performed on the TX-100 insoluble fraction P3. SDS-PAGE percentage is 12%. (B) Quantifications 

of per58, per56 and the 50 kDa polypeptides in A. Unpaired t-test, the data are produced from the mean 
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of three replicates of the same biological sample from one experiment (pooled lumbar spinal cords from 

three mice for each genotype) +SEM. Alpha tubulin is used as a loading control.    

3.4 Increased expression of per45 and reduced stability of the 50 kDa polypeptide in 

non-symptomatic TDP-43A315T  

Per45 levels were also examined in TDP-43A315T at 60 days of age, a non-symptomatic 

stage. Neurofilaments were extracted from LSCs of TDP-43A315T transgenic and wild 

type mice as previously described in Materials and Methods chapter (section 2.3.2). All 

supernatants: S1, S2 and S3 and the final pellet P3 were analysed in 10% 

polyacrylamide gels using SDS-PAGE. All known peripherin isoforms were resolved: 

per58, per56, per61 and per45. However, per56 was barely observed in S3 at low 

exposure (Figure 3.7A). Due to the short run time of the SDS-PAGE, the two isoforms 

per58 and per56 were not completely separated (Figure 3.7A). A tendency towards 

increased levels of per45 was observed in S1 isolated from TDP-43A315T supporting a 

possible role for TDP-43 in the alternative translation initiation site in per58 transcript 

(Figure 3.7A and B). Furthermore, a tendency towards increased solubility of the 50 

kDa polypeptide was observed in S3 of TDP-43A315T, suggesting that this polypeptide 

dissociates more easily from the neurofilaments in LSCs isolated fromTDP-43A315T mice.    
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Figure 3.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 – Per45 expression level in non-symptomatic TDP-43A315T mice. (A) Western blot analysis 

performed on S1, S2, S3 and P3. Per45 (in S1) showed a trend towards up-regulation. The level of the 50 

kDa polypeptide was increased in S3. SDS-PAGE percentage is 10%. (B) Quantifications of per45 (left 

panel) and the 50 kDa polypeptides (right panel). The data are produced from one experiment (pooled 

lumbar spinal cords from three mice for each genotype). Alpha tubulin is used as a loading control.     
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3.5 Significant down-regulation of the neuron-specific isoform of GLT-1 (GLT-1B) in 

both symptomatic and non-symptomatic TDP-43A315T transgenic mice  

I investigated whether A315T mutation in TDP-43 affects the RNA processing of GLT-1, 

the rodent homologue of EAAT2. I first examined the presence of novel splice variants 

in samples isolated from brain tissue of TDP-43A315T and SOD1G93A transgenic mice. This 

was achieved by performing reverse RT-PCR using primers which amplify the entire 

coding sequence of GLT-1 as well as the neuron-specific splice variant GLT-1B. Novel 

splice variants were not observed in either GLT-1 or GLT-1B (Figure 3.8A and 3.9A, 

respectively). Moreover, western blot analysis of GLT-1 on brain lysates from 

symptomatic transgenic TDP-43A315T and wild type mice showed no significant change 

in the level of GLT-1 between TDP-43A315T transgenic and wild type mice, neither in the 

dimer nor the monomer forms (Figure 3.8B and C; p = 0.7858 and 0.8033 for the dimer 

and the monomer GLT-1 respectively). The analysis of the levels of GLT-1B in brain 

tissues, however, revealed a significant reduction in GLT-1B expression in both non-

symptomatic (Figure 3.9B; p = 0.004) and symptomatic transgenic TDP-43A315T mice 

when compared to that in wild type mice (Figure 6C; p = 0.03). Thus, these results 

indicate that overexpression of A315T mutant form of TDP-43 selectively results in 

reduced expression of GLT-1B in neurons.     
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Figure 3.8  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 – GLT-1 expression level in TDP-43A315T transgenic mice. (A) RT-PCR showing no novel splice 

variants in GLT-1 from TDP-43A315T, SOD1G93A and wild type mice. SDS-PAGE percentage is 10%. (B) 

Western blot analysis showing a trend towards down-regulation of GLT-1 protein levels in TDP-43A315T 

mice. (C) Quantification of GLT-1 in B. Unpaired t-test; p = 0.7858 and 0.8033 for the dimer and the 

monomer GLT-1 respectively. Data represent the mean from two independent experiments with six 

independent mice for each genotype TDP-43A315T and wild type (+SEM). Alpha tubulin is used as a 

loading control, as well as for the normalization of the signal intensity from GLT-1 protein.  
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 Figure 3.9 

 

Figure 3.9 – GLT-1B expression level in TDP-43A315T transgenic mice. (A) RT-PCR, performed on RNA 

samples extracted from brain tissues of symptomatic transgenic TDP-43A315T, SOD1G93A and wild type 

mice, showing no novel splice variants in GLT-1B. (B) Immunoblotting of brain lysate obtained from non-

symptomatic TDP-43A315T and wild type mice revealing a significant down-regulation of GLT-1B in non-

symptomatic TDP-43A315T mice (left panel). Quantification of GLT-1B protein (right panel). (C) 

Immunoblotting analysis of brain lysate obtained from symptomatic TDP-43A315T and wild type mice 

showing a significant down-regulation of GLT-1B in symptomatic TDP-43A315T mice (left panel). 

Quantification of GLT-1B protein (right panel). SDS-PAGE percentage in B and C is 10%. Unpaired t-test; 

p = 0.004 and 0.03 for non-symptomatic and symptomatic mice. Data are shown as the mean of three 

independent mice for each genotype from one experiment (+SEM). Alpha tubulin is used as a loading 

control and GLT-1B band intensity is normalized against the α-tubulin signal.        
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3.6 Analysis of the neuron-expressed GLT-1B in the TDP-43+/F210I mouse strain 

In a series of tail suspension tests, I noticed that the heterozygotes TDP-43+/F210I 

exhibited abnormal hindlimb clenching at 11 months of age. Thus, given the 

importance of RRM1 and RRM2 of TDP-43 in binding to its mRNAs targets for 

regulation of RNA splicing (E Buratti and Baralle 2001), I investigated the level of GLT-

1B protein in TDP-43+/F210I mice, harbouring the F210I mutation in the RRM2 motif. 

Western blot analysis on brain lysates showed increased intensity in GLT-1B signal in 

TDP-43+/F210I when compared to that in the wild type mice, suggestive of a potential 

up-regulation of this isoform in the mutant mice (Figure 3.10). Other unknown bands 

were also detected which were also up-regulated (Figure 3.10, grey arrows).  
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Figure 3.10 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.10 – Increased levels of GLT-1B in TDP-43+/F210I mouse model. Immunoblotting of brain lysate 

showing increased levels of GLT-1B protein in the TDP-43+/F210I mutant compared to that in the wild type 

mice (black arrow). Other unknown bands were also up-regulated (grey arrows). Data are produced 

from one mouse for each genotype. The intensity of bands from GLT-1B is normalised against those 

from α-tubulin.  
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3.7 Chapter 3 summary 

Data from this chapter has shown that per61 is present in the wild type mice 

suggesting a role for this isoform in the assembly of peripherin filament network. Also, 

my data show that overexpression of TDP-43A315T induces up-regulation of the 

alternative translated isoform per45, suggesting a possible role for TDP-43 in 

alternative translation. In addition, overexpression of TDP-43A315T leads to the 

instability of the filament network as was observed by the increased solubility of per56 

and the 50 kDa polypeptide. The converse was observed in the SOD1G93A mutant. 

Moreover, the reduction of GLT-1B expression in the brain tissue isolated from TDP-

43A315T mice suggests impaired RNA processing of GLT-1B, which might exacerbate the 

disease progression. Collectively, these data show that the expression of peripherin 

and EAAT2 is regulated by TDP-43 and that aberrant expressions of these two genes 

caused by TDP-43 mutations could have a role in the pathology of ALS. 
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                                                                   Chapter 4 

Investigating the impact of the Loa mutation on MAP kinase signalling 

and autophagy during endocytic trafficking and nutrient deprivation 
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4.1 Introduction 

Mutations in DYNC1H1 result in cytoplasmic dynein dysfunction and defective axonal 

transport in motor neurons (Hafezparast et al 2003).  In a recent study in Hafezparast 

Laboratory, PhD student Caroline Garrett showed that the Loa mutation in DYNC1H1 

impairs BDNF-induced trafficking of endosomes along motor neuron axons (Garrett et 

al. 2014). Subsequently, she investigated whether this impaired trafficking negatively 

impacted on the MAP kinases ERK1/2 signalling cascade. To this end, motor neurons 

were serum starved for two hours followed by stimulation with BDNF. Surprisingly, 

there was a massive induction of c-Fos activation (a downstream target of MAPKs) 

upon starvation, which continued during stimulation with BDNF in both wild type and 

+/Loa motor neurons (Figure 4.1A). Interestingly, the c-Fos induction was found to be 

higher in +/Loa than in the wild type motor neurons during starvation, as well as after 

the addition of BDNF. This led to two questions: first, ‘which MAP kinases are 

responsible for the induction of c-Fos upon serum starvation?’ and second, ‘why is this 

induction more pronounced in +/Loa than in wild type motor neurons?’. Analysis of 

ERK1/2 MAP kinases, however, showed that, compared to BDNF stimulation, serum 

deprivation only slightly increased the active phospho-ERK1/2 levels in the motor 

neurons. This increase in phospho-ERK1/2 was observed in both genotypes, but more 

so in the +/Loa motor neurons (Figure 4.1B) (Garrett et al 2014). My contribution to 

this study started at this point, and it aimed to:  

1) Identify the kinases responsible for c-Fos activation in motor neurons upon 

serum starvation and/or BDNF stimulation. 

2) Determine whether autophagy has a role in the higher levels of c-Fos induction 

in +/Loa motor neurons compared to those in wild type neurons.  

Addressing these aims will be the topic of my research in this chapter.  
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Figure 4.1 – Levels of pc-Fos (A) and pERK1/2 (B) in motor neurons, following serum starvation and 

BDNF-stimulation (Garrett et al. 2014).    
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4.2 Increased JNK activity in cultured motor neurons after BDNF stimulation without 

a significant difference between wild type and Loa heterozygotes  

Three MAP kinases are known to activate c-Fos during biological stress or binding 

mitogens to cell receptors: ERK1/2, JNK and p38. We first asked whether JNK is the 

MAP kinase underlying c-Fos phosphorylation during starvation in motor neurons. Wild 

type and +/Loa motor neurons at 7 days in vitro were serum-starved for two hours 

followed by stimulation with 5 ng/ml of BDNF. Motor neurons were then lysed at 1, 3, 

6, and 8-hour incubation time point and subjected to a western blot for analysis of JNK 

activity. Using an anti-phospho-specific antibody that recognises two phosphorylated 

sites of JNK (Thr183 and Tyr185), two bands were detected, representing p54 and p46 

isoforms of JNK. p54 was used to quantify active JNK  (Figure 4.2A, top panel). There 

was no significant difference in the amount of p54 between the two genotypes in the 

control versus starved neurons (Figure 4.2B, comparison of non-starved and starved). 

However, when starved motor neurons were treated with BDNF, active JNK levels 

were increased up to 6 hours and started to decline at 8 hours post BDNF, possibly as a 

consequence of BDNF depletion (Figure 4.2B, post BDNF). Also, there was no 

difference in JNK activation between wild type and +/Loa after BDNF application 

(Figure 4.2B, compare blue and red lines respectively at time points 1, 3, 6, and 8 

hours). Thus, these data suggest JNK involvement in c-Fos induction in the presence of 

survival factors.    
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Figure 4.2  

 

Figure 4.2 – Increased active JNK levels in BDNF-stimulated motor neurons. (A) Western blot was 

performed for analysing JNK activity in non-starved and starved motor neurons, as well as in starved and 

BDNF stimulated motor neurons at the indicated time points (top panel). The intensity of bands from 

JNK were normalised against those from XRCC1. (B) p54-JNK was used for measuring the levels of active 

JNK. Data (at each time point) are representative of three independent cultures, six replicates from each 

culture corresponding to the following time points: non-starved, starved, 1, 3, 6 and 8 hours. 
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4.3 Aberrant p38 activation in +/Loa starved motor neurons  

Next, I examined activation of p38 to determine whether it contributes to the serum 

starvation-mediated c-Fos induction. Wild type and +/Loa motor neurons at 7 days in 

vitro were serum-starved for two hours, followed by stimulation with 5 ng/ml of BDNF 

and western blot analysis at 1, 3, 6, and 8 hour time points. Using an anti-phospho-p38 

antibody, a 62 kDa band was detected, representing a dimeric phosphorylated form of 

p38 (Figure 4.3A, top panel) (Diskin et al. 2007; Rothweiler et al. 2011). I also used an 

antibody that detects total p38 (Figure 4.3A, middle panel). P38 expression was 

normalized against XRCC1 as a nuclear marker, since p38 translocates into the nucleus 

to phosphorylate transcription factors.  

In untreated motor neurons, we found that both the monomer and the dimer forms of 

p38 were up-regulated in +/Loa compared to the wild type. During starvation, an 

increase in both the monomer and the dimer levels was observed which declined 

when starved motor neurons were treated with BDNF (Figure 4.3B and C). This 

reduction lasted for approximately 6 hours in the presence of BDNF and then started 

to increase again at the 8-hour time point, possibly due to BDNF depletion. These data 

indicate that starvation activates p38 and that activation is abnormal in +/Loa motor 

neurons. 
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Figure 4.3 – Increased levels of active p38 in +/Loa during serum-starvation. (A) Immunoblotting showed increased levels of active p38 in starved motor neurons which 

were reduced after stimulation with BDNF. P38 band intensity was normalized against XRCC1. (B and C) Quantification of p38 monomer and dimer. Data represent one 

experiment.  
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4.4 C-Fos induction is ERK1/2-dependent  

To determine the exact contribution of the MAP kinases JNK and ERK1/2 in c-Fos 

induction during starvation and after BDNF application, wild type motor neurons (at 7 

days in vitro) were treated with U0126 (a selective inhibitor of MEK1/2 which is 

upstream of ERK1/2) or with SP600125 (a selective inhibitor of JNK) (Figure 4.4). In 

comparison to motor neurons with no inhibitors, the inhibition of ERK1/2 attenuated 

c-Fos induction during starvation and after treatment with BDNF, while JNK inhibition 

increased c-Fos induction. These results indicate that c-Fos induction during starvation 

and after treatment with BDNF is at least partly ERK1/2-dependent and that JNK 

activation has an inhibitory role in inducing c-Fos under these conditions.    
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Figure 4.4 – c-Fos activation is ERK1/2 dependent. Western blot showing levels of c-Fos induction in 

starved wild type motor neurons and in those stimulated with BDNF after starvation: without inhibition 

(represented by a minus sign), treated with JNK inhibitor SP600125 or with ERK1/2 inhibitor U0126 at 

the indicated time points. pERK1/2 inhibition attenuated c-Fos induction, but inhibition of JNK enhanced 

phospho-c-Fos levels.  XRCC1 was used as a loading control and c-Fos staining intensity was normalized 

against XRCC1 signal.  
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4.5 Altered levels of LC3-II in Loa heterozygous motor neurons during starvation and 

stimulation with BDNF 

Nutrient deprivation induces autophagy. The significant increase in phospho-c-Fos in 

+/Loa motor neurons following serum starvation led to the question whether this 

activates autophagy in motor neurons. Moreover, I asked whether the higher levels of 

p-c-Fos in +/Loa motor neurons has an impact on this process and whether this 

process is impaired in +/Loa neurons as a consequence of higher levels of p-c-Fos.  

Autophagy was examined by measuring the levels of the autophagy marker LC3-II 

(microtubule-associated protein 1 light chain 3-II). Using anti LC3 antibody, two bands 

were detected: LC3-I and LC3-II (16 and 18 kDa, respectively). Although the molecular 

weight of LC3-II is higher than LC3-I, LC3-II migrates faster due to phospholipid 

modifications (by conjugating to phosphatidylethanolamine), which increases its 

hydrophobicity.  

Wild type and +/Loa motor neurons at 7 days in vitro were serum-starved for two 

hours followed by stimulation with 5 ng/ml of BDNF. Motor neurons were then lysed 

at 10, 30, 60, and 180-minute incubation time points and subjected to a western blot 

for analysis of LC3-II levels.  In untreated motor neurons, a slight reduction in LC3-II 

levels was observed in +/Loa compared to the wild type (Figure 4.5A and B, Non-

starved). Starvation induced autophagy and hence, LC3-II levels were increased in the 

motor neurons (Figure 4.5A and B, compare non-starved with starved). However, LC3-

II levels were lower in starved +/Loa compared to the wild type motor neurons (Figure 

4.5A and B). A drop in LC3-II levels was observed in both genotypes when starved 

motor neurons were stimulated with BDNF for 10 minutes (Figure 4.5A and B, 10 min 

post BDNF). This was followed by a gradual increase in LC3-II levels in both genotypes 

at later time points: 30, 60, and 180 min. However, the levels of LC3-II in +/Loa was 

higher than those in wild type at 10, 30 and 60 min post BDNF, but not at 180 min. At 

this point LC3-II levels in the wild type were increased compared to those in +/Loa. 

These data indicate that starvation fails to induce autophagy in serum starved +/Loa 

motor neurons. Furthermore, the accumulation of LC3-II in +/Loa after stimulation 
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Figure 4.5 - LC3-II levels in non-starved, starved and BDNF-stimulated motor neurons. (A) Western blot 

showing reduced LC3-II levels in +/Loa motor neurons during starvation, which increased gradually after 

stimulation with BDNF. (B) Quantification of LC3-II levels in A. Data (at each time point) are means of 

two independent cultures, six replicates from each culture corresponding to the following time points: 

non-starved, starved, 10, 30, 60 and 180 minutes. The intensity of bands from LC3-II were normalised 

against those from β-actin.    
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4.6 Reduced levels of LC3-II in Loa heterozygous motor neurons after bafilomycin A1 

treatment 

Autophagy is a dynamic process in which eventually all materials, including LC3-II, in 

the autophagolysosome will be degraded. LC3-II levels increased upon autophagy 

activation (autophagy induction) whereas levels reduced when degraded upon fusion 

of autophagosomes with the lysosomes (autophagy flux). To further define this 

measurement and rule out the latter, I used bafilomycin A1 to block autophagosome-

lysosome fusion and therefore to prevent degradation of autophagosomes. Wild type 

and +/Loa motor neurons at 7 days in vitro were serum-starved for two hours followed 

by stimulation with 5 ng/ml of BDNF. Motor neurons were then lysed at 1, 3, 6, and 8-

hour incubation time points and subjected to a western blot for analysis of LC3-II 

levels. The motor neurons were incubated in 2 µM bafilomycin A1 during serum 

starvation as well as during stimulation with BDNF.  

In non-starved samples, LC3-II levels were lower in +/Loa motor neurons, compared to 

the wild type (Figure 4.6A and B).  During starvation, LC3-II levels increased in both 

genotypes, but to a lesser extent in +/Loa (Figure 4.6A and B, compare non-starved 

with starved). When starved motor neurons were stimulated with BDNF, a drop in LC3-

II levels was observed in both genotypes at 1 hour post-BDNF, which increased again 

slowly at later time points (Figure 4.6A and B, compare time points 3, 6, and 8 hr). 

However, LC3-II levels in +/Loa were always lower compared to the wild type. 

Collectively, using bafilomycin A1 revealed that changes in LC3-II levels in +/Loa 

followed the same pattern as those in wild type motor neurons, but to a lower extent.  

These data indicate reduced autophagic activity in starved and in starved and BDNF 

stimulated +/Loa motor neurons.
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Figure 4.6 - LC3-II levels after bafilomycin A1 treatment. (A) Western blot showing reduced levels of LC3-

II in Loa heterozygous motor neurons in non-starved, starved and BDNF-stimulated motor neurons. (B) 

Quantification of LC3-II in A. Data (at each time point) are means of two independent cultures, six 

replicates from each culture corresponding to the following time points: non-starved, starved, 1, 3, 6 

and 8 hours. β-actin was used as a loading control and LC3-II staining intensity was normalized against β-

actin signal.    
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4.7 Chapter 4 summary 

Data from this chapter has shown that c-Fos activation is ERK1/2 dependent during 

starvation as well as after BDNF stimulation. Data also suggest that active p38 is 

implicated in c-Fos activation during starvation. In addition, the activation of 

autophagy is reduced in heterozygous Loa motor neurons. Autophagy is required to 

assist cells in dealing with serum-starvation by degrading and recycling damaged 

and/or old organelles to provide amino acids for the synthesis of new proteins. 

Therefore, the impaired activation of autophagy in Loa motor neurons is an indication 

that cytoplasmic dynein might be a contributing factor to autophagy 

induction/formation. This impaired autophagy might exacerbate the cellular stress 

leading to neurodegeneration.  
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                                                                    Chapter 5 

Investigating the Impact of Mutations in Cytoplasmic Dynein on Growth 

Cone Remodelling and Axonal Outgrowth 
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5.1 Introduction  

Cytoplasmic dynein is a motor protein involved in a wide variety of functions including 

microtubule-dependent retrograde transport, growth cone movement and axonal 

elongation. Mutations in the DHC subunit of cytoplasmic dynein have been associated 

with neurodegenerative disorders: spinal muscular atrophy with lower extremity 

predominance (SMA-LED), Charcot Marie Tooth type 2 and learning disability. Children 

with SMA-LED exhibit contracture of the lower limb, walking delay, waddling walk and 

difficulty in climbing stairs. The Loa mouse strain, harbouring the Phe580Tyr mutation 

in DHC, exhibits some phenotypes with similarities to the human SMA-LED disease 

including progressive limb weakness and a waddling gait. The Loa mutation is also 

known to cause neurodegeneration and defective neuronal migration resembling that 

of human diseases.  Although the precise mechanisms causing the defects in neuronal 

migration and neurodegeneration are yet to be identified, using multiple tools, we will 

be able to identify the intracellular events that contribute to the disease.   

In this chapter, I present my data concerning my attempt to understand the molecular 

mechanisms underlying the defects in neuronal migration caused by mutations in DHC. 

To this end, I utilized the Loa mouse strain and human fibroblasts harbouring an 

Arg399Gly substitution mutation in DHC, which causes SMA-LED. Focusing on two 

essential elements required for cell migration: microtubules and focal adhesions, I 

hypothesized that the Loa mutation affects microtubule stability in the growth cone 

either by perturbing the binding of cytoplasmic dynein to the microtubule plus end, or 

by perturbing its anchoring to the cell cortex. I also hypothesized that Loa mutation 

affects focal adhesion disassembly. To verify this, I utilized fixed and live-cell 

microscopy to analyse microtubule stability and focal adhesion disassembly. I also used 

immuno-precipitation and immunoblotting to determine the effects of DHC mutations 

on the interactions between dynein intermediate chain and paxillin as well as on the 

level of paxillin phosphorylation during cell migration.    
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5.2 Aberrant focal adhesions in Loa/Loa MEFs 

Cytoplasmic dynein was shown to be involved in regulating focal adhesion dynamics 

and migration (Rosse et al. 2012). To determine whether the Loa mutation affects focal 

adhesion dynamics, the spreading assay was conducted on MEFs, which were then 

fixed at the stage of the highest lamellipodia formation, followed by immuno-staining 

of MEFs against the focal adhesion protein paxillin and the dynein light intermediate 

chain subunit of cytoplasmic dynein (DLIC). These assays revealed that the adhesion 

sites located at the cell periphery were small, punctate and less distinct in Loa/Loa 

cells compared to those in the wild type which exhibited long and rod-shaped 

adhesions (Figure 5.1A, compare paxillin stain in wild type and Loa/Loa). Moreover, 

the intensity of DLIC at the cell periphery was reduced in the Loa/Loa cells compared 

to the wild type cells where DLIC was accumulated at the leading edge (Figure 5.1A). 

Focal adhesions were quantified for the number, size, eccentricity and ratios of major 

/minor axes (Figure 5.1B) (materials and methods chapter, section 2.6). The 

eccentricity was defined with 1 being the maximum and 0 being the minimum, where 

0 represents a circle and 1 represents a straight line. The ratio of major/minor axes 

represents the ratio between the length and the width of the focal adhesions.  

Interestingly, the average size of focal adhesions was significantly reduced in Loa/Loa 

cells compared to the wild type as seen in Figure 5.1B, I (p = 0.004, n = 2048 and 2793 

focal adhesions in wild type and Loa/Loa, respectively). Consistent with this, 

quantification of the major/minor axes ratios showed a significant reduction in the 

Loa/Loa cells as seen in Figure 5.1B, II (p = 0.01, n = 2048 and 2793 focal adhesions in 

wild type and Loa/Loa, respectively). Also, a trend was observed towards an increase 

in the number of focal adhesions in Loa/Loa cells compared to the wild type as shown 

in Figure 5.1B, III (n = 14 and 18 cells in wild type and Loa/Loa, respectively). The 

aforementioned trend in the difference in focal adhesion numbers was also observed 

when the lamellipodia size was taken into account (Figure 5.1B, IV).  No difference was 

observed in the eccentricity of focal adhesions in both wild type and Loa/Loa (Figure 

5.1B, V). 
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The aberrant focal adhesions that were observed in Loa/Loa MEFs prompted me to 

examine focal adhesions (point contacts) in growth cones of motor neurons. 

Therefore, motor neurons were cultured from E13 embryos of wild type and +/Loa. 

Motor neurons were fixed at day one of culture with 4% paraformaldehyde and 

stained with antibodies against paxillin and F-actin (Figure 5.2). No difference in point 

contacts was observed between wild type and +/Loa growth cones. Thus, these data 

suggest focal adhesion impairment in Loa/Loa MEFs.  

I also investigated focal adhesions in human fibroblasts obtained from patients with 

SMA-LED which harbour the Arg399Gly mutation in DYNC1H1, using the spreading 

assay described above for MEFs. Cells were then immunostained for paxillin (Figure 

5.3). While wild type cells showed lamellipodia formations which were enriched in 

small adhesions (Figure 5.3, white solid arrows), DYNC1H1R399G/R399G cells lacked 

lamellipodia (Figure 5.3, yellow arrows) which were barely observed in some cells 

(Figure 5.3, yellow solid arrows). These data indicate impaired lamellipodia formation 

in DYNC1H1R399G/R399G fibroblasts.   
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Figure 5.1 
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Figure 5.1 – Aberrant focal adhesions in Loa/Loa MEFs. (A) MEFs were subjected to a spreading assay 

and immunostained against the focal adhesion protein paxillin and cytoplasmic dynein subunit DLIC. 

Scale bar is 15 µm. Images were captured using the DeltaVision Core micorscope at 40x magnification. 

(B) The numbers, size, eccentricity (circle = 0, ellipse = 0< X <1 and straight line = 1, where X represents 

focal adhesions) and the ratios of major/minor axes of focal adhesions were quantified. Data are shown 
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Figure 5.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 – Analysis of point contacts in growth cones of +/Loa versus wild type motor neurons. Two 

day old primary motor neurons were fixed with 4% paraformaldehyde and immunostained against the 

point contact protein paxillin, and F-actin. Merged images showed paxillin in green and F-actin in red. 

Scale bar is 5 µm. Images were captured using the DeltaVision Core microscope at 100x magnification.  
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Figure 5.3 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 – Impaired lamellipodia formation in DYNC1H1R399G/R399G human fibroblasts. White solid 

arrows point to lamellipodia in wild type. Yellow arrows point to DYNC1H1R399G/R399G cells that are lacking 

lamellipodia. Yellow solid arrow points to a DYNC1H1R399G/R399G cell with a barely observable 

lamellipodia. Scale bar is 5 µm. Images were captured using the DeltaVision Core microscope at 40x 

magnification.   
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5.3 The immuno-precipitation of paxillin with dynein intermediate chain 

The aberrant focal adhesions in Loa/Loa MEFs prompted me to investigate whether 

the Loa mutation affects the interaction between dynein intermediate chain (DIC) and 

paxillin. To achieve this, a scratch assay on confluent MEFs was performed to stimulate 

cell migration.  Cells were extensively wounded after mitomycin C treatment, and 

homogenised 6 hours later, followed by immuno-precipitation (IP) with anti-DIC 

antibody and detection for paxillin. 

In non-migrating cells, no paxillin was observed in the IP samples either in wild type or 

Loa/Loa MEFs (Figure 5.4A). A faint band with a size similar to paxillin appeared in the 

IP samples at longer exposure. A band of similar intensity was also observed in the wild 

type IgG negative-control which was treated in a similar manner as the IP samples. 

However, this faint band did not appear when the IP samples were re-run (Figure 

5.4B). Furthermore, paxillin was detected in the post-IP samples, where no DIC was 

observed, indicating that most DIC was immuno-precipitated. 

During cell migration, no interaction was observed between paxillin and DIC either 

(Figure 5.4C). No band was detected in a region which previously had shown to contain 

a band with similar size to paxillin in non-migratory cells. These results show that the 

faint band could not be paxillin and it is more likely to be either a non-specific binding 

or a spillover from adjacent lanes. Furthermore, the results indicate that no interaction 

between DIC and paxillin was detected in MEFs.    
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Figure 5.4 – Immuno-precipitation of paxillin with dynein intermediate chain in migrating and non-

migrating cells. (A) A monolayer of confluent MEFs was harvested and subjected to immuno-

precipitation. Dynein IC was immuno-precipitated followed by immunoblotting for dynein IC and paxillin 

detection. (B) A second run of a western blot of non-migrating samples was performed.  (C) Immuno-

precipitation of dynein IC in migrating MEFs. A confluent monolayer of MEFs was extensively scratched 

using a 10 µl tip. Dynein IC was immuno-precipitated and subjected to immunoblotting for paxillin and 

dynein IC detection. Samples were run on a 12% precast polyacrylamide gel.  
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5.4 Reduced paxillin phosphorylation at Tyr118 in Loa/Loa MEFs 

Cell migration requires dynamic focal adhesions which are regulated by paxillin 

phosphorylation (Introduction, page 109) (Zaidel-Bar et al. 2007).  High levels of paxillin 

phosphorylation at Tyr118 were observed during focal adhesion disassembly (Zaidel-Bar 

et al. 2007). Therefore, in my experiment, increasing the number of focal adhesions in 

Loa/Loa MEFs suggests reduced levels of focal adhesion disassembly (Figure 5.1B, III). 

This prompted me to examine the level of paxillin phosphorylation. To achieve this, 

MEFs were plated on 10 cm culture plates and grown to a confluent monolayer. Cells 

were then treated with 10 µg mitomycin C before extensive scratching was performed 

to stimulate migration. Subsequently, cells were incubated at 37oC and collected at 

different time points: 6, 11, and 13 hours, followed by western blot analysis of paxillin 

phosphorylation using an anti phospho-antibody that recognises Tyr118. Paxillin 

phosphorylation levels were reduced in Loa/Loa MEFs compared to their levels in wild 

type in mitomycin C-untreated, mitomycin C-treated and across all the time points 

(Figure 5.5A and B). Consistent with the involvement of paxillin in cell division, the 

Tyr118 phosphorylation levels were reduced after mitomycin C treatment (Figure 5.5B 

and C). However, levels increased during migration consistent with the fact that Tyr118 

phosphorylation is required during migration. Levels of Tyr118 phosphorylation were 

also determined after wound closure when levels were reduced to those in the 

mitomycin C-treated sample (Figure 5.5B and C). This indicates that cells did not 

recover from mitomycin C treatment and that wound closure was the result of cell 

migration. Collectively, these data show impaired paxillin phosphorylation at Tyr118 in 

Loa/Loa MEFs. Moreover, the data suggest impaired cell migration in Loa/Loa MEFs as 

a result of reduced levels of Tyr118 phosphorylation of paxillin.              
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Figure 5.5 – Reduced levels of paxillin phosphorylation Tyr118 (p-paxillin) in Loa/Loa MEFs. (A and B) Immunoblotting of p-paxillin (Tyr118) in wild type and Loa/Loa MEFs. 

(C) Quantification of p-paxillin in B. Due to the reduced signal intensity of p-paxillin in Loa/Loa MEFs, quantification was only performed on p-paxillin in wild type MEFs. 

Total paxillin was used as a loading control for p-paxillin. 
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Next, I investigated the level of paxillin phosphorylation at Tyr118 in DYNC1H1R399G 

human fibroblasts. The same protocol which was used on MEFs was implemented 

here. The level of paxillin phosphorylation was again determined by a western blot 

using an anti phospho-antibody to Tyr118. In mitomycin C-untreated samples, Tyr118 

phosphorylation levels were reduced in DYNC1H1+/R399G and could barely be observed in 

DYNC1H1R399G/R399G compared to the wild type (Figure 5.6). In mitomycin C-treated 

samples, the levels of Tyr118 phosphorylation were abolished in all genotypes. Cells 

were stimulated for migration by introducing extensive scratches onto the cell 

monolayer followed by incubation for 6 hours at 37oC. While the level of Tyr118 

phosphorylation was detected neither in DYNC1H1+/R399G nor in DYNC1H1R399G/R399G, a faint 

band was observed in wild type at 6 hours post-migration (Figure 5.6, white arrow).   
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Figure 5.6 - Reduced levels of p-paxillin in DYNC1H1R399G human fibroblasts. Immunoblotting of p-paxillin 

(Tyr118) in wild type and DYNC1H1R399G human fibroblasts. The white arrow refers to a faint band 

corresponding to Tyr118 phosphorylation observed in wild type fibroblasts after 6 hours migration. Total 

paxillin was used as a loading control for p-paxillin.    

 

 

 

 

 

 

 

 



197 
 

 

5.5 Loa/Loa MEFs exhibit migration defects 

The reduced levels of phosphorylated paxillin at Tyr118 in Loa/Loa MEFs prompted me 

to examine migration competency of these cells. To achieve this, MEFs were grown on 

a 6-well plate and a confluent monolayer was obtained 24 hours after plating. Cells 

were then treated with 10 µg mitomycin C before introducing the scratch, using a 10 µl 

pipette tip. Cells were imaged at pre-migration (time 0) and during migration at 13, 15, 

17, 19, 21 and 23 hours post scratch (Figure 5.7A). Using image J, the speed of wound 

closure was measured by quantifying changes in wound size at the indicated time 

points.  Loa/Loa MEFs exhibited a delayed wound closure in comparison to the wild 

type (Figure 5.7A). This delay was statistically significant at time points 19, 21 and 23 (p 

= 0.01, 0.02, and 0.02, respectively) (Figure 5.7B).  
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Figure 5.7 – Migration is defect in Loa/Loa MEFs. Figure showing the rate of wound closure from the 

wound healing assay performed on both wild type and Loa/Loa MEFs. (A) The wound healing assay 

performed on MEFs. Cells were imaged at pre-migration (time 0) and during migration at the following 

time points: 13, 15, 17, 19, 21 and 23 hours.  Wound area was measured using image J at each indicated 

time points. Images were acquired at 20x magnification. The scale bar represents 200 µm. (B) 

Histograms representing the average area of the scratch wound at time points: 13, 15, 17, 19, 21 and 23 

hours relative to the original scratch area at time point 0. All quantitative data are shown as mean 

+SEM. Unpaired t-test; *P = 0.01, 0.02, and 0.02 for time points: 19, 21 and 23 hours, respectively. Data 

are produced from two independent experiments (five readings, corresponding to five different regions 

from one scratch, were obtained from each time point in one experiment). 
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5.6 Abnormal microtubule cytoskeleton in growth cones of +/Loa motor neurons 

The increased number of focal adhesions that was observed in Loa/Loa MEFs (Figure 

5.1) suggests a delay in focal adhesion disassembly. A role for microtubules is known to 

promote focal adhesion disassembly in non-neuronal cells. However, in neuronal cells, 

microtubules are required to stabilise point contacts in growth cones. Therefore, I 

investigated microtubule organization in the growth cones. To achieve this, primary 

motor neurons (MNs) were cultured from E13 embryos on coverslips coated with poly-

D-lysine (0.1 mg/ml) and fixed at day one with 4% paraformaldehyde. MNs were then 

stained with antibodies against microtubules, F-actin and dynein light intermediate 

chain (DLIC). In the wild type growth cones, microtubules extended their filaments 

reaching the peripheral domain of the growth cone whereas in the +/Loa growth 

cones, microtubule cytoskeleton appeared abnormal and depleted from the peripheral 

domain (Figure 5.8, white arrows). These data suggest that the Loa mutation affects 

microtubule stability in the growth cones of motor neurons.    
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Figure 5.8 
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Figure 5.8 

 

 

 

 

 

 

 

 

 

Figure 5.8 – Microtubule depletion in the P-domain of +/Loa growth cones of motor neurons. (A) 

Immuno-staining of growth cones against microtubules (green), F-actin (red) and dynein light 

intermediate chain (DLIC, yellow).  Scale bar is 15 µm. (B) Immuno-staining of microtubules in growth 

cones. White arrows showing microtubule depletion in the P-domain of growth cone. Scale bar is 5 µm. 

Images were captured using DeltaVision Core microscope at a 100x magnification.   
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5.7 Live cell imaging of m-Cherry-microtubules in MEFs 

To gain further insight into the microtubule stability in Loa cells, MEFs (wild type and 

Loa/Loa) were grown in a live-cell imaging chamber coated with 10 µg/ml collagen. 

Cells were grown until 50% confluent to stimulate migration and lamellipodia 

formation. At 50% confluency, cells were infected with the pAdEasy mCherry-α-tubulin 

adenovirus and subjected to time-lapse imaging 48 hours post-infection. Although it 

was difficult to obtain quantitative data, microtubules were scattered and less 

clustered along the leading edge in Loa/Loa MEFs compared to those in the wild type 

(Figure 5.9) (movies are attached). Thus, these data suggest abnormal microtubule 

bundling in Loa/Loa MEFs.       
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Figure 5.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 – Abnormal microtubule bundling in Loa/Loa MEFs. Figure showing representative time-lapse 

images of mCherry-tagged microtubules from wild type and Loa/Loa MEFs. Time-lapse images were 

taken every 5 seconds for a period of 10 minutes using a spinning disk confocal microscope (60x 

objective) equipped with an environmental chamber.   
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5.8 Analysis of microtubule dynamic instability in lamellipodia of wide type and 
Loa/Loa MEFs 

The abnormal microtubule bundling observed in Figure 5.9 as well as microtubule 

depletion in the P-domain of growth cones of +/Loa motor neurons (Figure 5.8) 

prompted me to examine the microtubule dynamic instability in mutant versus wild 

type cells. Due to the difficulty in obtaining quantitative data from fluorescently 

labelled microtubules (Figure 5.9), only the microtubule plus ends were labelled. EB1 is 

known to be localized at the plus end of microtubules and was therefore used to label 

the tip of the microtubules. To achieve this, MEFs were grown in a live-cell imaging 

chamber to a density of 75% confluency, followed by transfection with RFP-tagged 

human EB1 using electroporation (Add gene, 39323). Forty eight hours after 

transfection, the confluent monolayer was scratched to stimulate cell migration. 

Subsequently, time-lapse imaging was initiated two hours after wounding, at the stage 

when most cells start pointing towards the scratch and form lamellipodia (Figure 

5.10A) (movies are attached). To analyse the time-lapse images, the online Matlab-

based software u-track (http://lccb.hms.harvard.edu/software.html) (Applegate et al. 

2011) was used. This software enables tracking of thousands of microtubules in a very 

short time. Also, it offers an extensive list of parameters about microtubule dynamics. 

However, the most useful parameters for analysing microtubule dynamics in 

lamellipodia are the speed, lifetime and length of microtubule growth tracks. There 

was no significant difference in the aforementioned parameters between wild type 

and Loa/Loa lamellipodia of MEFs (Figure 5.10B).          

In addition, in order to determine microtubule stability in growth cones of motor 

neurons, I cloned mCherry-tagged EB1 into the T-Syn-G-W lentivirus plasmid as 

described in the Materials and Methods chapter (see section 2.4.5). 
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Figure 5.10 – Figure showing analysis of microtubule dynamic instability in lamellipodia of wide type and 

Loa/Loa MEFs. (A) A representative time-lapse image of RFP-tagged EB1 in a cell protrusion (surrounded 

by green dotted line) of wild type MEFs. Some EB1 are circled in yellow. Time-lapse images were taken 

every 2 seconds for 2 minutes at a 100x magnification using personal DeltaVision equipped with an 

environmental chamber. Scale bar is 10 µm. (B) The speed, lifetime and length of microtubule growth 

tracks were quantified (I, II and III respectively). All quantitative data are shown as mean +SEM. 
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Unpaired t-test; p = 0.467, 0.358 and 0.731 for the speed, lifetime and length of microtubule growth 

track respectively. N = 5 for wild type and 7 for Loa/Loa, where N represents the cell number; the 

number of microtubule growth tracks from each cell ranges from 200 to 500 tracks.         

5.8 Chapter 5 summary 

My data from this chapter indicate a link between mutations in DHC and a defective 

cell migration in both the Loa MEFs and human fibroblasts isolated from patients with 

SMA-LED. The underlying molecular mechanisms in the motility of growth cones is 

analogous to that in the fibroblasts, as they both utilize filopodia/lamellipodia 

dynamics and similar signalling cascades and cytoskeleton remodelling for pathfinding 

and motility. As point contact formation and stabilisation of microtubules in 

membrane protrusions at the growth cone play a central role in axonal outgrowth, my 

data suggest that the molecular pathogenesis of SMA-LED caused by mutations in DHC 

involves impaired growth cone development and axonal pathfinding. 
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Chapter 6 

Discussion 
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6.1 Investigating the effect of TDP-43 mutation A315T on RNA metabolism of 

peripherin and GLT-1 and their roles in ALS pathology (Chapter 3)  

6.1.1 GLT-1 expression in Prp-TDP-43A315T transgenic mouse model (Figure 3.8 and 
3.9)  

In the study presented in chapter 3, I used the mouse model Prp-TDP-43A315T 

generated by Wegorzewska et al (2009), which overexpresses the TDP-43 transgene 

under the mouse prion promoter in order to drive the expression of TDP-43 exclusively 

in the CNS. Due to the lack of a mouse model which overexpresses a similar level of 

wild type TDP-43, the contribution of TDP-43 overexpression to the observed 

phenotype cannot be excluded. However, it should be noted that Stallings et al (2010) 

generated a mouse model overexpressing wild type TDP-43 to a level almost similar to 

that shown in Wegorzewska’s mouse model TDP-43A315T (3-4 fold normalized to TDP-

43 endogenous level) under the regulation of the same promoter which, however, did 

not exhibit a motor phenotype. Despite this, the selective loss of some populations of 

neurons e.g. layer 5 cortical neurons and motor neurons strongly suggests that the 

phenotype observed in Wegorzewska’s mouse model is related to the TDP-43 

mutation A315T and therefore to the altered function of TDP-43 (Wegorzewska et al. 

2009). Interestingly, my experiments also showed that the levels of neuron specific 

GLT-1B significantly decreased while the astrocyte specific isoform GLT-1 showed only 

a trend towards down-regulation. However, the reduced protein level of GLT-1B 

cannot be due to neuronal cell loss, since the same phenotype was observed in non-

symptomatic TDP-43A315T mice when no neuron loss was observed (Wegorzewska et al. 

2009). The fact that these reduced GLT-1B levels were observed in non-symptomatic 

TDP-43A315T and not only in symptomatic TDP-43A315T further confirmed that they must 

be a cause for the symptoms rather than an additional symptom itself. Thus, based on 

GLT-1B results, A315T mutation causes the loss of function property in TDP-43 in this 

mPrp- TDP-43A315T mouse model.              

The mechanism through which overexpression of TDP-43A315T causes a reduced level of 

GLT-1B protein remains unidentified. However, I suggest several mechanisms that 

might be causing this altered level of GLT-1B protein. Several studies have reported 

splicing dysregulation in ALS patients with TDP-43 proteinopathy as well as in TDP-43 
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mouse models (Arnold et al. 2013; Highley et al. 2014). Also, Wegorzewska et al (2009) 

reported that the nuclear loss of TDP-43 was occasionally observed in neurons of TDP-

43A315T mice expressing late stage symptoms whereas in non-symptomatic TDP-43A315T 

mice, the nuclear loss of TDP-43 was not observed. This raised the possibility that, in 

my experiments, the reduced level of GLT-1B protein in both non-symptomatic and 

symptomatic mice is likely due to splicing deficiency of this neuronal specific splice 

variant which is caused by A315T mutation and not by nuclear loss of TDP-43.  

Moreover, the reduced level of GLT-1B protein might arise from other RNA-binding 

functions of TDP-43. Indeed, TDP-43 was shown to bind the 3’UTR region of the human 

neurofilament light (hNFL) mRNA, stabilising the hNFL mRNA levels and therefore 

preventing it from degradation (Strong et al. 2007). Evidence for this came from co-

transfecting HEK293 cells with TDP-43 and full length hNFL mRNA (including the 3’UTR 

region) resulting in the stabilization of the hNFL mRNA levels in comparison to those 

cells that were transfected with full length hNFL alone in which hNFL mRNA levels 

were reduced. Moreover, the level of hNFL mRNA (in cells co-transfected with TDP-43 

and hNFL-3’UTR) remained high up to 24 hours after being treated with actinomycin 

which acts to halt new mRNA synthesis. In addition, iCLIP experiments, performed on 

cytoplasmic and nuclear fractions of the human brain, revealed TDP-43 binding to the 

3’UTR of numerous mRNAs in the cytoplasmic fraction compared to the nuclear 

fraction, despite its minor level in the cytoplasm (Tollervey et al. 2011). This suggests 

that TDP-43 might play a role in stabilizing and transporting mRNA. TDP-43 has also 

been shown to bind the 3’UTR of EAAT2 and that the level of binding is reduced in 

FTLD patients with TDP-43-positive inclusions (Tollervey et al. 2011). Therefore, it is 

plausible that the A315T mutation might also affect the binding of TDP-43 to the 3’UTR 

of GLT-1B mRNA, which in turn might affect the stability of GLT-1B mRNA.  

In addition, TDP-43 has been shown to be present in axon terminals and co-purify with 

proteins involved in axonal transport of RNA (Freibaum et al. 2010; Fallini et al. 2012; 

Narayanan et al. 2013). Hence, it is possible that TDP-43 is involved in transporting 

GLT-1B mRNA to the synaptic terminals for local translation, where GLT-1B is required 

for glutamate clearance and thus for the prevention of excitotoxicity. Therefore, it is 
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possible that the A315T mutation might affect the transport of GLT-1B mRNA to 

synaptic terminals, which as a result might provoke excitotoxicity.          

Despite these reports which showed the effect of TDP-43 mutations on RNA splicing, 

stabilization and axonal transport, I cannot exclude the possibility that the reduced 

level of GLT-1B protein might be caused at the translational level. To answer this 

question, a real time quantitative PCR can be performed. If GLT-1B cDNA levels are 

reduced, this will confirm that reduced protein levels of GLT1B are due to aberrant 

RNA processing. If they are not reduced, this could be an indication that the phenotype 

might be caused at translational level.  

Given the multifunctional roles for TDP-43, the reduced level of GLT-1B protein is 

unlikely to be the sole contributor of A315T mutation to ALS. However, it is likely to be 

an important contributor to ALS in which a defect in GLT-1B might exacerbate disease 

progression. Indeed, elevated levels of glutamate were found in the cerebrospinal fluid 

(CSF) of some patients with sALS, which was attributed to abnormal glutamate 

transport (Rothstein et al. 1995). Moreover, the mechanism by which riluzole acts to 

prolong the life expectancy is by blocking the glutamate release from the pre-synaptic 

terminals (Fumagalli et al. 2008). Also, riluzole enhances the activity of glutamate 

transporters and thus increasing the glutamate uptake from the synaptic cleft.      

6.1.2 GLT-1B expression in the TDP-43+/F210I mutant mouse (Figure 3.10) 

My experiment showed that the level of GLT-1B proteins is increased in the 

heterozygous F210I mutant TDP-43 mouse. These data was produced from one mouse. 

I observed abnormal hindlimb clenching in two TDP-43+/F210I mutants at 11 month of 

age, of which one exhibited more severe clenching than the other. Further 

experiments are required to confirm this increased level of GLT-1B.      

6.1.3 Per61 expression in SOD1G93A, Prp-TDP-43A315T transgenic and wild type mice 

(Figure 3.1 and 3.3) 

I also analysed the effect of overexpression of A315T mutation on peripherin 

expression, by first investigating the presence of any novel splice variants. Using a 

primer set to amplify the entire coding sequence, I was not able to detect any novel 
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splice variants. However, I found that per61 was expressed at both RNA and protein 

levels in SOD1G93A, TDP-43A315T and wild type. This contradicts previous studies in 

which the abnormal expression of per61 polypeptide was found in the TX-100 

insoluble fraction of SOD1G93A and at the RNA level in SOD1G37R mice (McLean et al, 

2010; Robertson et al, 2003).  Per61 was first identified in wild type LSC tissue at RNA 

level by Landon et al (2000), who were the first group designing primers for specific 

amplification of per61. Therefore, Landon et al’s study further confirmed that per61 is 

normally expressed in wild type tissue.  However, Robertson et al (2003) reported the 

presence of per61 at RNA level in LSC SOD1G37R only but not in wild type, using the 

same primer set designed by Landon et al (2000). I further confirmed the normal 

expression of per61 using another primer set that amplifies only per61. My experiment 

also showed the presence of per61 protein in TX-100 insoluble fraction that contains 

polymerized filamentous peripherin, in all genotypes: SOD1G93A, TDP-43A315T and wild 

type (Figure 3.3). From this, I can conclude that per61 contributes in forming 

filamentous peripherin and that per61 expression is not associated with and does not 

play a pathological role in ALS, but rather it has a physiological relevance to the 

formation of peripherin neurofilaments. 

6.1.4 Per45 expression in Prp-TDP-43A315T transgenic mouse model (Figure 3.4)  

In eukaryotes, protein synthesis is initiated through a process called “the ribosome-

scanning mechanism of translation” (Touriol et al. 2003). This process involves the 

recruitment of the 40 S ribosomal subunit which recognizes the 5’-end cap structure of 

mRNA. Subsequently, using its ATP-dependent linear scanning, the 40 S ribosomal 

subunit reads through the sequence until it encounters an initiation codon in a Kozak 

consensus sequence. If the first codon is suboptimal, the 40 S ribosomal subunit reads 

through without recognizing it through a process called “leaky scanning”. Translation 

can also be initiated through a mechanism in which the 40 S ribosomal subunit 

recognizes cis-acting elements called internal ribosome entry site (IRES). This 

mechanism requires IRES trans-acting factors (ITAF) which stimulate translation of 

some mRNAs. Interestingly, using in vitro translation systems, the heterogeneous 

nuclear ribonucleoprotein A1 (hnRNPA1) was also found to be required for the 
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stimulation of the alternative translation (thorough IRES-dependent manner) of four 

isoforms of the human fibroblast growth factor 2 (FGF2) mRNA (Bonnal et al. 2005). 

Importantly, when hnRNPA1 was incubated with the whole nuclear extract of HeLa 

cells, it had no stimulatory effect on the alternative translation of FGF2 mRNA. 

However, this stimulatory effect was observed when the nuclear extract was 

fractionated to separate those proteins that have an inhibitory effect on the FGF2 

alternative translation.   

Although the sequence surrounding the ATG codon, which generates per45, is 

suboptimal for the ribosomal scanning mechanism (TTCTCCATGG) in comparison to the 

ATG start codon in per58 (GCCAGCATGA), cis and/or trans factors might influence the 

efficiency of this internal translation initiation. Given the structural similarity between 

TDP-43 and hnRNPs, it is not surprising that TDP-43 might also play a similar role in 

alternative translation as hnRNPA1 in stimulating the translation expression of FGF2 

isoforms. Indeed, in my experiments, the amount of soluble per45 increased in the 

cytosolic fraction S1 obtained from prp-TDP-43A315T transgenic mice (Figure 3.4) when 

compared with non-transgenic wild type and SOD1G93A transgenic mice. This indicates 

that the third ATG is highly selected in prp-TDP-43A315T transgenic mice. A recent study 

has shown that hnRNPU, hnRNPA2 and hnRNPA1 are TDP-43 interactors. Mild 

overexpression of any of these hnRNPs inhibits the neurotoxicity induced by 

overexpression of nuclear TDP-43WT, suggesting that the hnRNPs are negative 

regulators of TDP-43 (Suzuki et al. 2014). Therefore, it is possible that, either the 

A315T mutation in TDP-43 might affect its interaction with hnRNPA1, or 

overexpression of TDP-43 might overcome the inhibitory effect of hnRNPA1. In either 

case, the outcome would be the elevation of per45 expression. Thus, alterations in the 

level of TDP-43 expression or a direct mutation in TDP-43 may result in aberrant 

ribosomal scanning. This would result in a shift in the preference of the start codon 

and causes a change in the stoichiometry of peripherin isoforms. These aberrant 

changes may have pathological consequences, i.e. abnormal cytoskeletal stability or 

assembly. Indeed, my experiments showed abnormal stability of peripherin in the prp-

TDP-43A315T transgenic mouse model, which might be the result of a change in the 
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stoichiometric contribution of per45 in the filament network formation of peripherin 

(Figure 3.5). 

Interestingly, despite the low expression of per58 in the cortex, hippocampus, 

olfactory bulb and cerebellum, per45 was found to be highly expressed in these 

regions (McLean et al. 2008).  Further experiments are required to determine the level 

of per45 expression in these regions in TDP-43A315T transgenic mice, which might be 

relevant to some aspects of the neuropathology of mutant TDP-43.   

6.1.5 The 50 kDa polypeptide (Figure 3.5) 

My data and those reported by other groups (McLean et al. 2008), have shown the 

presence of an as yet unidentified 50 kDa polypeptide detected by anti-peripherin 

antibody. My experiments showed the presence of this polypeptide in all fractions (S2, 

S3 and P3) apart from the cytosolic fraction (S1). More importantly, my experiments 

showed increased levels of the soluble 50 kDa polypeptide in fraction S3 TDP-43A315T 

transgenic mice. Further experiments are required to determine the identity of this 

polypeptide and its role in peripherin filament network. 

6.2 Investigating the signalling cascade underlying c-Fos activation during starvation 
and BDNF stimulation (Chapter 4, Figure 4.2, 4.3 and 4.4)  

The aim of the study presented in chapter 4 was to investigate which MAP kinases 

were implicated in transmitting the signal responsible for inducing c-Fos 

phosphorylation in serum-starved primary motor neurons. In order to pursue this 

question, activation of MAP kinases: JNK, ERK1/2 and p38 was analysed in motor 

neurons using immunoblotting.  Our group had shown increased levels of active 

pERK1/2 in motor neurons during starvation, which remained higher in +/Loa motor 

neurons after the addition of BDNF (Garrett et al 2014). My experiment showed that 

starvation induces p38 activation whereas JNK is activated by BDNF stimulation. 

However, the elevated level of pc-Fos during starvation and after BDNF stimulation is 

at least partly resulted from ERK1/2 activation and not from the stress activated 

protein kinase JNK. Evidence for this conclusion came from the experiment where the 

inhibition of JNK in fact let to increased pc-Fos levels, whereas treating motor neurons 

with the ERK1/2 inhibitor, reduced pc-Fos levels, thus indicating that pc-Foc levels is 
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ERK1/2 dependent (Figure 4.4). Perhaps, it remains to be shown whether increasing 

the concentration of ERK1/2 inhibitor completely abolishes c-Fos activation or whether 

another kinase is involved.   

C-Fos induction in motor neurons is increased by both starvation and in response to 

BDNF stimulation (Garrett et al 2014). My data show that p38 activation is only 

increased in starvation, but not in response to BDNF. This suggests that BDNF inhibits 

p38 activation because the addition of BDNF to starved cells counteracts the activating 

effect of starvation until BDNF begins to disappear from the media at 8 hours, at which 

point p38 activity increases again. However, an experiment should be set up in which 

motor neurons are starved for a longer duration in the absence of  BDNF, in order to 

confirm the likely inhibitory effect of BDNF on p38 activity and to prove that the 

reduced p38 activity was not caused by a longer starvation period. My data also 

suggest that active p38 is responsible for c-Fos induction during starvation. Therefore, 

further experiments, using a selective p38 inhibitor, are required to establish the role 

of p38 in c-Fos induction, during serum starvation or in response to BDNF.   

Garrett et al showed that impaired trafficking of signalling endosomes in Loa results in 

higher levels of pERK1/2 in both motor neurons and MEFs without a significant impact 

on pc-Fos levels in Loa MEFs (Garrett et al 2014). However, in motor neurons, ERK1/2 

was activated during starvation and consequently led to c-Fos induction and 

phosphorylation. The level of both pERK1/2 and p-c-Fos were strikingly up-regulated in 

+/Loa motor neurons.  These data indicate that motor neurons are equipped with a 

stress response machinery involving ERK1/2 and its downstream effector c-Fos. This, 

therefore, might act as a protective mechanism against cellular stress.       

It has been shown that in response to glutamate excitotoxicity, BDNF transiently 

activates ERK1/2 to promote cell survival (Almeida et al. 2005). Moreover, persistent 

activation of ERK1/2 in cortical neurons in response to glutamate-induced oxidative 

stress causes cell death (Stanciu et al. 2000). Therefore, the persistent ERK1/2 

activation in +/Loa motor neurons, which is caused by impaired endocytic trafficking, is 

likely to contribute to neuronal death by making them more prone to physiological 

insults.  
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Mitchell et al (2012) showed that activation of ERK1/2 in cortical neurons upon BDNF 

stimulation leads to phosphorylation of dynein intermediate chain (DIC) (Mitchell et al. 

2012). Interestingly, Hafezparast laboratory previously showed that the amount of DIC 

phosphorylation is reduced in the brain tissue isolated from homozygous Loa embryos 

(Deng et al 2010). It is, therefore, possible that the increased affinity of DHC to DIC, as 

a result of the Loa mutation, causes conformational changes in DIC, which might 

impede its phosphorylation site from being phosphorylated by ERK1/2. As a 

consequence, this might lead to impaired dynein-mediated endocytic transport and 

consequently results in persistent ERK1/2 activation.                 

Collectively, these data indicate that in serum-starved motor neurons, active JNK was 

reduced, while the levels of active p38 and pERK1/2 increase. When starved motor 

neurons were treated with BDNF, the active p38 levels declined over the course of 6 

hours and increased again after 8 hours. However, the levels of active JNK and 

pERK1/2 increase after BDNF stimulation and decline after 8 hours, the time point 

when p38 activity increases again. These changes in the activation of MAP kinases 

might be related to the amount of BDNF in the media, which reduces over time. Based 

on these observations, I propose a model for the involvement of MAP Kinases in c-Fos 

induction upon starvation and stimulation with BDNF (Figure 6.1). According to this 

model, starvation induces activation of p38 and ERK1/2. C-Fos is phosphorylated 

through an ERK1/2-dependent pathway and possibly by active p38. Upon activation of 

TrkB receptor by BDNF and endocytosis of ligand-receptor, active p38 is suppressed, 

while both JNK and ERK1/2 are initiated. However, phosphorylation of c-Fos is ERK1/2-

dependent.  
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Figure 6.1 – Proposed model of signalling pathways underlying c-Fos activation in motor neurons upon 

serum starvation or stimulation with BDNF. Red arrows represent suppressed pathways, while green 

arrows represent active pathways. During starvation, p38 and ERK1/2 are activated but not JNK.  C-fos 

induction is ERK1/2 dependent and possibly by active p38. Solid green arrows indicate experimentally 

confirmed c-Fos induction by pERK1/2, while dotted green arrow indicates a potential c-Fos induction by 

active p38. Dotted black arrow indicates a potential signalling pathway in mediating autophagy.  When 

starved cells are stimulated with BDNF, ERK1/2 and JNK are activated, whereas the p38 pathway is 

suppressed. Note: the MAP kinase pathways are adapted from (Roux and Blenis 2004).  

 

 

 

 



218 
 

 

6.2.1 Autophagy during starvation (Chapter 4, Figure 4.5 and 4.6) 

Autophagy was activated in wild type motor neurons upon nutrient deprivation. 

However, starvation failed to induce autophagy in +/Loa as evidenced by down-

regulation of LC3-II in +/Loa compared to those in untreated motor neurons (Figure 

4.5). To further verify this phenotype, the autophagosome fusion with lysosome was 

blocked by treatment with bafilomycin A1. Bafilomycin A1 was used to facilitate the 

analysis by looking at LC3-II accumulation in a more defined temporospatial phase. 

Reduced levels of LC3-II can reflect either reduced generation of autophagosomes or 

increased clearance. Therefore, blocking the phagosome-lysosome fusion will rule out 

autophagy clearance as a cause for the phenotype (reduced LC3-II levels). In my 

experiment, In the presence of bafilomycin A1, changes in LC3-II levels in +/Loa 

followed the same pattern as those in wild type motor neurons. The level of LC3-II in 

+/Loa motor neurons increased during starvation, but to a lower extent compared to 

that in starved wild type motor neurons (Figure 4.6, starved). This leads me to believe 

that the lower LC3-II levels in +/Loa are likely due to reduced autophagy 

induction/formation in +/Loa.  

6.2.3 Autophagy in the absence of bafilomycin A1 (Chapter, Figure 4.5) 

When starved motor neurons were treated with BDNF, the level of LC3-II dropped 

after 10 minutes in both genotypes, but a more pronounced decrease was seen in wild 

type motor neurons. Subsequently, LC3-II levels gradually increased at time points 30, 

60 and 180 minutes. One possible reason is that the drop in LC3-II levels might be 

resulted from binding of BDNF to TrkB receptor, which induces the MAP kinase 

signalling cascade. However, due to the absence of vital nutrients autophagy is 

reinitiated, leading to increased LC3-II levels at time points 30, 60 and 180 minutes. 

Levels of LC3-II during these time points remained higher in +/Loa motor neurons in 

comparison to wild type except for the 180-minute time point, when LC3-II levels in 

wild type was higher. To explain these results, it is noteworthy to know that BDNF 

activates autophagy in primary cortical neurons (A. Chen et al. 2013). Therefore, the 

increased LC3-II levels in +/Loa are likely due to impaired endocytic trafficking of BDNF-

containing endosomes and therefore a delay in degradation of BDNF. As a 
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consequence, BDNF continues triggering autophagy, which results in increased LC3-II 

levels, while in the wild type, due to efficient endocytic trafficking, BDNF degrades 

faster which results in less LC3-II levels than those in the +/Loa. The reactivation of 

autophagy that is observed in the wild type after three hours, is most likely due to 

BDNF depletion. This might also be related to the efficiency of endocytic trafficking in 

wild type which results in faster depletion of BDNF compared to +/Loa where 

autophagy is still activated at three hours by BDNF.  

6.2.4 Autophagy in the presence of bafilomycin A1 (Chapter4, Figure 4.6) 

Next, I investigated LC3-II levels in BDNF-stimulated motor neurons after bafilomycin 

A1 treatment (Figure 4.6). Consistent with the results observed at 10 min post BDNF in 

the absence of bafilomycin A1 (Figure 4.5), the drop in LC3-II levels was also observed 

at 1 hour post BDNF in both wild type and +/Loa. At later time points 3 and 6 hours, 

increased levels of LC3-II was observed in both genotypes consistent with stimulation 

of autophagy by BDNF (A. Chen et al. 2013).  However, since bafilomycin A1 inhibits 

acidification of lysosomes which is important to mediate fusion with organelles for 

hydrolysis, the degradation of BDNF-containing endosomes are therefore inhibited. 

This will eliminate any changes in LC3-II that resulted from endocytic trafficking. 

Consistent with the fact that bafilomycin A1 inhibits endosome degradation and that 

endosomes will keep signalling in both genotypes, I expected that LC3-II levels will 

exhibit a similar pattern in both genotypes. Indeed, my experiment showed that the 

changes in LC3-II levels in +/Loa followed the same pattern as those in wild type motor 

neurons but was to a lower extent. This is consistent with LC3-II levels in +/Loa starved 

motor neurons in Figure 4.5 (Figure 4.5), Thus, the reduced levels of LC3-II observed in 

+/Loa motor neurons during starvation and stimulation with BDNF in the presence of 

bafilomycin further indicates  abnormal autophagy induction/formation in +/Loa.      
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6.3 Focal adhesions in Loa/Loa MEFs (Figure 5.1) 

My experiment showed abnormal focal adhesions in spreading Loa/Loa MEFs (Figure 

5.1). Although it is not statistically significant, the Loa/Loa MEFs also showed an 

increase in the number of focal adhesions compared to the wild type MEFs. It should 

be noted that focal adhesion kinase-null fibroblasts (FAK-/-) exhibit a similar phenotype 

following the spreading assay, i.e. they contain numerous small punctate adhesions 

(Ilić et al. 1995). Therefore, it is plausible that an impaired FAK pathway is the main 

cause for the focal adhesion abnormalities in the Loa/Loa MEFs and the increase in 

their number is a result of deficient focal adhesion disassembly.  

6.4 Immuno-precipitation of paxillin with dynein intermediate chain (Figure 5.4) 

Cytoplasmic dynein has been shown to be involved in regulating focal adhesion 

disassembly via the interaction of dynein intermediate chain 1/2 with paxillin (Rosse et 

al. 2012). This was shown by immuno-precipitating DIC followed by detection of 

paxillin. However, although the DIC antibody that I used in my experiment is able to 

detect all DIC isoforms, I could not detect this interaction. This is likely due to the cell 

type as Rosse et al used normal rat kidney cells (NRK) whereas I used fibroblasts. 

Another possibility is that DIC is an abundant protein involved in various intracellular 

events and it might be a small population of DIC that interacts with paxillin. Therefore, 

it would be useful to conduct immuno-precipitation using an anti paxillin antibody to 

detect DIC.   

6.5 Paxillin phosphorylation in Loa/Loa MEFs and in DYNC1H1R399G human fibroblasts 

(Figure 5.5 and 5.6) 

Tyr118 phosphorylation of paxillin was found to be associated with focal adhesion 

assembly and disassembly which is required to promote cell migration (Zaidel-Bar et 

al., 2007). It is also known that Tyr118 phosphorylation of paxillin is mediated by FAK 

and Src (Li et al. 2009; Bellis, Miller, and Turner 1995; Klinghoffer et al. 1999). My 

experiments showed that Tyr118 phosphorylation of paxillin was reduced in the 

Loa/Loa MEFs which therefore provided another evidence for implicating FAK and/or 

Src in focal adhesion abnormality in the Loa/Loa MEFs. This reduction in paxillin 
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phosphorylation might explain the increase in the number of focal adhesions as a 

result of the delayed focal adhesion disassembly. As the Tyr118 phosphorylated 

paxillin is required to stimulate focal adhesion assembly and disassembly during 

migration, reduced phosphorylation levels would lead to a defect in migration. Indeed, 

Loa/Loa MEFs exhibited migration deficits as proven by delayed wound closure (Figure 

5.7). 

My experiments also showed that Tyr118 phosphorylation of paxillin is reduced in 

mitomycin C-untreated DYNC1H1R399G/R399G human fibroblasts (Figure 5.6). However, 

when cells were treated with mitomycin C and stimulated for migration, Tyr118 

phosphorylation was barely seen in wild type after 6 hours post migration, while none 

was observed DYNC1H1+/R399G nor DYNC1H1R399G/R399G. Due to the reduced signal intensity 

of Tyr118 phosphorylation in wild type, this experiment should be repeated where 

cells should be incubated for a longer period to stimulate their migration. It is likely 

that the defect in lamellipodia formation in DYNC1H1R399G/R399G cells following the 

spreading assay is caused by the low level of Tyr118 phosphorylation (Figure 5.3). 

Indeed, Tyr118 and/or Tyr31 phosphorylation of paxillin was found to be required for 

the creation of binding sites for SH2-containing proteins (such as Crk) which is thought 

to be involved in Rac activation that is required to promote lamellipodia extensions 

(Zaidel-Bar et al. 2007; M D Schaller 2001; Brown and Turner 2004) (Introduction page 

106).  

6.6 Microtubule stability in +/Loa growth cones (Figure 5.8)  

The role of microtubules during cell migration is important for several processes 

including transporting vesicles to the leading edge of migrating cells and regulating 

focal adhesion disassembly. It should be noted that focal adhesions are usually 

covered with actin filament arrays that cannot be easily penetrated by microtubules 

alone. In growth cones of neurons, microtubule advancement to the P-domain is 

encountered by actin arcs and the retrograde actin flow. So, how do microtubules 

target focal adhesions as well as reach the cell cortex? One proposed mechanism is 

that the advancement of microtubules to focal adhesions as well as to the cell cortex is 

probably guided by actin stress fibres (Palazzo and Gundersen 2002). Moreover, live-



222 
 

 

cell imaging of microtubule dynamics at the cell cortex revealed that microtubules 

experience buckling as a result of being compressively loaded. Those microtubules 

were shown to be reinforced by the cytoskeletal actin network to attenuate their 

buckling and therefore to sustain the compressive forces (Brangwynne et al. 2006). 

This interaction between actin filaments and microtubules is mediated by cross-linking 

proteins which probably involves cytoplasmic dynein. In addition to its role in 

transporting cargo towards the nucleus, cytoplasmic dynein is involved in linking 

microtubules to the cell cortex which in turn facilitates transporting cargo from the cell 

centre to the periphery and vice versa. This requires dynein to stabilize itself by 

interacting with cortical proteins in order to exert a pulling force to hold microtubules 

and therefore to control microtubule growth and dynamics (Laan et al. 2012). 

Furthermore, inhibition of dynein or its binding partner LIS1 blocks microtubule 

transition from the C-domain into the P-domain which in turn results in aberrant 

growth cone development (Grabham et al. 2007). Thus, the invasion of microtubules 

into the P-domain is mediated by cytoplasmic dynein, located on the tip of 

microtubules, by exerting tension on the microtubules. Moreover, the binding of 

dynein to its regulatory proteins, such as LIS1, contributes to this force production. 

Interestingly, my experiment showed a similar phenotype to dynein or LIS1 inhibition. 

Microtubules were almost completely depleted from the P-domain of the +/Loa 

growth cones (Figure 5.8).  

How does the Loa mutation affect microtubule stability in the P-domain of growth 

cones? The mechanism through which the Loa mutation causes microtubule depletion 

in the P-domain remains unidentified. However, I suggest several mechanisms that 

might be causing this abnormal phenotype. First, it is possible that the Loa mutation 

might affect dynein binding to its regulatory proteins located at the tip of microtubules 

which therefore affect dynein stability and the force production required to exert 

tension on microtubules (Figure 6.2, 1). Also, dynein anchorage to the cell cortex might 

be affected by the Loa mutation, which is required for holding microtubules as well as 

for controlling microtubule growth and dynamics in the growth cones (Figure 6.2, 2). In 

addition, the establishment of point contacts prevents the retrograde flow of actin, 

hence promoting the advancement of microtubules to the P-domain. This results in 
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increased levels of active Src kinase at point contacts which therefore promote a 

strong coupling between point contacts and actin filament. It is therefore possible that 

the Loa mutation might affect point contact formation (Figure 6.2, 3) or it could be a 

downstream effect of impaired microtubule invasion to the P-domain caused by 

instability of cytoplasmic dynein at the tip of microtubules (Figure 6.2, 1). Although I 

could not detect a difference in point contacts between the wild type and +/Loa 

growth cones when immunostained against paxillin (Figure 5.2), further experiments 

are required to investigate point contacts and paxillin phosphorylation levels in the 

Loa/Loa growth cones.  

It was shown by live-cell imaging that in non-neuronal cells, microtubules target focal 

adhesions at the cell periphery for disassembling focal adhesions (Kaverina, 

Krylyshkina, and Small 1999). This disassembly is important for limiting adhesions at 

the cell front and to promote trailing back of the cell during cell migration. Two 

mechanisms were proposed by which microtubules might promote focal adhesion 

disassembly (Palazzo and Gundersen 2002): 1) Microtubules might transport factors to 

or away from focal adhesions. In this regard, the cytoplasmic dynein, located at the 

microtubule plus tip, may interact with those factors and transport them away from 

focal adhesion which results in promoting focal adhesion turn-over. 2) Focal adhesion 

disassembly can be mediated by inhibition of GEF-H1 (a Rho guanine exchange factor) 

and suppression of its nucleotide exchange activity through binding to microtubules. It 

is known that active Rho increases cell contractility which therefore promotes focal 

adhesion formation (Chrzanowska-wodnicka and Burridge 1996). It was also observed 

that binding of GEF-H1 to microtubules inhibits its Rho-GTP exchange activity (Krendel, 

Zenke, and Bokoch 2002). Interestingly, Meiri et al have shown that this binding 

happens in a cytoplasmic dynein-dependent manner. Lfc (the murine homologue of 

GEF-H1) is located on microtubules through its binding to Tctex1, the DLC subunit of 

cytoplasmic dynein (Meiri et al. 2012). Through this binding, Tctex1 represses Lfc 

nucleotide exchange activity. It is possible that the increased binding affinity between 

DIC and Tctex1 (Deng et al. 2010), which is caused by the Loa mutation, might lead to 

conformational changes which might impede the Lfc binding site.   
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Figure 6.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 – Possible mechanisms underlying the effects the Loa mutation has on microtubule stability in the P-domain of growth cones.
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6.7 Conclusion 

The data presented in this thesis have advanced our understanding of the roles of 

mutant forms of TDP-43 and cytoplasmic dynein in ALS and SMA-LED respectively 

which therefore may help us to identify potential causal pathways leading to 

neurodegeneration. Our understanding may bring us closer to finding a cure for these 

types of neurological diseases or to developing treatments which at least would be 

able to slow down these diseases.   

My data provide novel insights into the mechanisms underlying the neurotoxic effects 

of mutations in TDP-43 in the pathology of ALS. The data show for the first time a 

novel role of TDP-43 in alternative translation. The ALS-associated mutation A315T in 

TDP-43 affects the expression level of the alternative translated isoform of peripherin 

per45 leading to a change in the stability of the peripherin network. Further 

experiments are required to investigate this role in human tissue from patients with 

ALS and to further investigate other alternative translated isoforms with neurological 

functions. Moreover, the analysis of expression levels of the glutamate transporter 

isoforms reveals a significant down-regulation of the neuronal isoform GLT-1B. As a 

result, this might lead to excitotoxicity due to increased glutamate levels and 

ultimately to neurodegeneration.  

My data also provide further understanding of the role of cytoplasmic dynein in 

endocytic trafficking and signalling. The data show that the induction of c-Fos upon 

serum starvation and/or growth factor stimulation is ERK1/2 dependent. Moreover, 

activation of autophagy is reduced in mouse motor neurons with a mutation in the 

cytoplasmic dynein heavy chain subunit (Dync1h1+/Phe580Tyr) suggesting a role for dynein 

in this process.  

In addition, the data suggest a novel pathway underlying the molecular pathogenesis 

of SMA-LED, caused by mutations in the cytoplasmic dynein heavy chain subunit, 

which is likely to involve growth cone development and axonal pathfinding.   
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