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Abstract 

Amyloid (A)-induced synaptic and neuronal degeneration has been linked to 

the memory loss observed in Alzheimer’s disease (AD). Although A-induced 

impairment of synaptic and nonsynaptic plasticity is known to occur before any cell 

death, the links between these neurophysiological changes and the loss of specific 

types of behavioural memory are not fully understood. This thesis introduces a 

behaviourally and physiologically tractable animal model to the A field for the first 

time, allowing for an in-depth approach to investigating A-induced memory loss to be 

explored. In A 1-42- and A 25-35-treated Lymnaea stagnalis, retrieval of 

consolidated memory is disrupted after single-trial conditioning and single-injection of 

synthetic peptide. All succeeding work builds upon these findings using a top-down 

approach to investigate how A disrupts retrieval of consolidated memory. Neuronal 

and synaptic health were monitored over a 24 hour in vivo incubation period and other 

memory stages were considered to determine time points of memory vulnerability. In 

brains that displayed healthy neurons and degenerating synapses, only animals that 

were exposed to A during the 24-48 hour post-training time points exhibited any 

behavioural deficits. All other behavioural responses remained normal.  

Focus then shifted to investigate the peptide, as opposed to behaviour, involved 

in the above mentioned experiments. After systemic injection, A was found to 

penetrate the ganglia, enter cells, and localise to specific organelles by 24 hours 

exposure. A morphology and structure were also monitored over the 24 hour 

incubation period, using transmission electron microscopy (TEM), formic acid 

extraction, silver stain, and western blot. A large distinction between the two peptides, 

A 1-42 and A 25-35, became apparent at this point and even when peptides were 

prepared using the same procedure, their effects on behaviour became drastically 

different. However, it is interesting to note that although the two peptides used are very 

different, under different preparation procedures they will both produce predominantly 

tetramer species after 24 hour in vivo incubation. 

Finally, investigations into disruptions of molecular signalling cascades were 

considered in order to correlate these disruptions to the observed A-induced 

behavioural deficits. Specifically, molecular, pharmacological, and biochemical 

techniques were used to measure protein alterations and post-translational 

modifications, and to inhibit key protein components, involved in cAMP response 

element binding protein (CREB)-signalling pathways in Lymnaea brain after 24 hour in 
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vivo incubation of A. Phosphorylated CREB was found to be decreased in both A-

treated groups; this decrease pattern was also found in active protein kinase A (PKA) 

experiments. These experiments correlate memory deficits to A-induced disruptions in 

PKA and CREB activity; however, PKA inhibition experiments indicate that this 

molecular cascade disruption is not sufficient to cause the observed behavioural 

deficits.  

Taken together, this work correlates A-induced changes from a wide range of 

components involved in learning and memory, with A-disrupted memory recall. 

Importantly as well, this work develops Lymnaea stagnalis as a novel model for A 

research and continues to distinguish the two commonly used peptides, A 1-42 and 

A 25-35. By linking the effects of A on defined neuronal circuits to behavioural 

deficits in a novel model, the Afield has been further developed in an important and 

unique way. 
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1. General Introduction 

1.1 Learning and memory 

After the seminal work of Wilder Penfield (Penfield, 1952), further scientific 

investigation of the localisation of learning and memory within the brain was greatly 

facilitated by the case of patient H.M. (Scoville and Milner, 1957). The patient had 

severe epilepsy and was treated by removal of the medial temporal lobe. While 

treatment eradicated the seizures, he developed anterograde amnesia. Studies with 

H.M., and subsequent research, lead to an understanding that memory is acquired and 

consolidated in the hippocampus (Zola-Morgan and Squire, 1990; Kim et al., 1995; 

Anagnostaras et al., 1999). Once fully consolidated, memories are stored in the 

neocortex (for review, see Frankland and Bontempi, 2005). Cortical storage allows for 

further categorisation and generalisation of memories, which is advantageous for 

advanced cognitive function (for review, see Dudai, 2004).  

1.1.1 Synaptic and nonsynaptic plasticity 

These influential early studies, together with early seminal findings concerning 

the electrical properties of neurons and the role of synapses and neurotransmitters 

(Hodgkin and Huxley, 1952; Dale, 1934; Loewi, 1935) have lead to an increasing 

understanding of how signalling between neurons and storage of engrams in the brain 

leads to behavioural memory. During chemical transmission, an electrical signal in the 

presynaptic neuron will cause an influx of calcium (Ca2+) into the presynapse. This 

increase in Ca2+ will cause neurotransmitter-filled vesicles to dock at presynaptic active 

zones and release neurotransmitters into the synaptic cleft. Neurotransmitters will then 

be received by postsynaptic receptors, which will cause postsynaptic Ca2+ influx and 

further downstream signalling to occur (Figure 1.1; for review, see Purves et al., 2008). 

Electrical transmission can occur together, or instead of chemical transmission. This 

signalling does not involve chemical neurotransmission, but instead is dependent upon 

gap junctions (for review, see Purves et al., 2008) and ultimately, the direct 

depolarisation of the postsynaptic neuron by a presynaptic action potential. Signal 

transmission will lead to long-term memory (LTM) or long-term potentiation (LTP), the 

cellular correlate of LTM, if a sufficient signal is propagated. LTM/ LTP are often split 

into two temporal stages; the early stage lasts for 1-3 hours and the protein synthesis-

dependent late stage can last more than 24 hours (Frey et al., 1988; Frey et al., 1993). 

Coordination between the pre- and postsynapse is crucial for LTP and can be 

enhanced by increased presynaptic neurotransmitter release and/or increased 

postsynaptic responsiveness (Figure 1.2; for review, see Abraham and Williams, 2003; 
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Glanzman, 2010). Once LTP has been achieved in a circuit, these neurons are then 

capable of propagating the same signal with much less stimulation. This is in part due 

to the increased probability of quantal release, increased numbers of release sites at 

the presynapse (Oliet et al., 1996), increased synaptic vesicle fusion time, and/or 

increased fusion pore size (Zahkarenko et al., 2001) of the presynaptic neuron and the 

enlargement of the synapse and increased receptor insertion of the postsynaptic 

neuron. Another important aspect of this chemical communication between the 

synapses is the use of retrograde messengers sent from the postsynapse to feed 

information back to the presynapse (for review, see Glanzman, 2010).  

Postsynaptic depolarisation is often caused by the integration of both synaptic 

and nonsynaptic (or intrinsic) plasticity changes. This depolarisation is thought to 

influence the postsynapse by relieving the magnesium (Mg2+) block from N-methyl-D-

aspartate (NMDA) receptors, allowing Ca2+ influx to the postsynaptic neuron (for 

review, see Bliss and Collingridge, 1993). For the purposes of this chapter, only a brief 

description of postsynaptic molecular signalling cascades involved in learning and 

memory will be considered. A more in-depth background will be considered in 

Chapters 5 and 6. The initial point of chemical signal entry to the postsynapse occurs 

at receptors, including NMDARs, nicotinic acetylcholine receptors (nAChRs), -Amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPARs), and voltage-dependent 

calcium channels (VDCCs). NMDAR-dependent, and 7-nAChR-facilitated, LTP will 

lead to insertion of AMPARs into the postsynapse (Gu and Yakel, 2011). Addition of 

AMPA receptors into the postsynaptic membranes strengthens signalling, taking the 

postsynapse from a “silent”, NMDA-only state to a more active NMDA and AMPA state. 

The insertion of and conductance properties of AMPA receptors are dependent upon 

ratios of downstream protein kinases and phosphatases, which is swayed from 

equilibrium depending upon neurotransmitter binding, depolarisation, state of silencing, 

and more (Malinow and Malenka, 2002; Benke et al., 1998). NMDAR-independent LTP 

exists as well, with chemical signal entering via VDCCs. Both forms of LTP result in 

Ca2+ entry into the cell which will then signal downstream elements, eventually 

activating transcription factors, such as cAMP (cyclic adenosine monophosphate) 

response element binding protein (CREB), and up-regulating gene expression. This 

results in a rise in immediate early genes (IEGs) and eventual increases in synapses, 

dendritic spines, and protein rearrangement of the postsynapse for appropriate LTP 

storage and maintenance.  
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Figure 1.1 Sequence of events in chemical transmission. Representation of a typical 
synapse during chemical transmission. Sequence of events follows the numbered boxes 1-10 
(reproduced from Purves et al., 2008). 
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Figure 1.2 Model of excitatory glutamatergic synapse after learning-related enhancement. 
Presynaptic series of events: Modulatory interneurons release neurotransmitters, often in the 
form of monoamines which bind to G protein-coupled receptors on the presynaptic neuron. This 
stimulates several kinases, such as PKA and PKC. Both kinases phosphorylate K

+
 channels 

and enhance presynaptic vesicle mobilisation. Prolonged activation causes PKA to translocate 
into the nucleus, where is activates CREB and triggers LTP. Postsynaptic series of events: 
paired pre- and postsynaptic stimulation allows influx of Ca

2+
 into the postsynapse via 

NMDARs. Ca
2+

 is also released from intracellular Ca
2+

 stores after monoaminergic input at the 
postsynapse. This Ca

2+
 influx activates several kinases such as CaMKII, PKA, MAPK, and 

PKC, as well as triggers retrograde signalling to the presynapse. Kinase activation causes 
“AMPA-fication” at the postsynaptic terminal and prolonged activation results in kinase 
translocation to the nucleus and activation of CREB, resulting in increased protein synthesis 
and LTP (reproduced from Glanzman, 2010). 
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Depolarisation of the postsynapse also results in nonsynaptic plasticity 

changes. Training produces increases in cell excitability; this excitability can manifest 

as a reduction in spike threshold, spike accommodation, and amplitude of burst-evoked 

after-hyperpolarisation (AHP) (for review, see Zhang and Linden, 2003). Each of these 

components of excitability suggests modulation of potassium (K+) channels as a 

potential nonsynaptic mechanism. Other intrinsic properties may also contribute to 

changes in postsynaptic excitability, such as the resting membrane potential, leakage 

conductance, membrane capacitance, membrane pumps, action potential back-

propagation, and time- and voltage-dependent membrane conductance (for review, 

see Mozzachiodi and Byrne, 2010). As mentioned previously, LTP “primes” circuits for 

stimulation and it is believed that increased neuronal excitability may serve as a “label” 

to identify these cells as recently active (for review, see Janowitz and van Rossum, 

2006). Synaptic and nonsynaptic plasticity often coincide, making it difficult to 

distinguish which proteins are involved in strictly synaptic or nonsynaptic functioning. 

1.1.2 Dendritic alterations and new synaptic growth 

While synaptic and nonsynaptic biochemical changes play an important role in 

LTM/ LTP formation, dendritic structural rearrangements are ultimately how a memory 

trace is encoded. These structural rearrangements take the form of increased 

perforated postsynapses; formation of new dendritic spines; enlargement of spine 

heads; increase in number, size, and vesicle complements at presynaptic active zones; 

and modulation of the total number of presynaptic varicosities per presynaptic neuron 

(Bailey and Chen, 1988; Bosch and Hayashi, 2012; Maletic-Savatic et al., 1999; Nagerl 

et al., 2004). The synaptic tag hypothesis was created to explain this process; 

specifically, how newly synthesised proteins in the soma make their way to the correct 

synapses during this LTM/ LTP-induced dendritic growth or rearrangement. Potentiated 

synapses are “tagged”, allowing them to capture newly synthesised proteins as they 

are being transported through dendritic trees (Frey and Morris, 1997). Frey and Morris 

were the first to demonstrate the synaptic tag hypothesis in rat hippocampus (Frey and 

Morris, 1997), showing that once transcription dependent LTP has been induced in one 

pathway, this LTP can be captured at a second pathway receiving very weak stimuli. 

While many in the field believe the synaptic tag hypothesis, the specifics of how 

synaptic tagging and capture works are still unknown. Local protein synthesis also 

occurs in potentiated dendritic spines to regenerate proteins, which are naturally turned 

over within hours to days. Local protein synthesis is known to occur, due to the 

observation that ribosomes move to activated synaptic areas (for review, see Abraham 

and Williams, 2003). This localised protein synthesis is very important for developing 
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dendrites that are far from the soma to combat spatial restrictions. Spatial and temporal 

restrictions are also combated in the form of key proteins being made continuously 

activate or proteins that are able to catalyse its own kind, instead of being reliant upon 

naturally upstream molecules or protein turnover. The newly formed synaptic structures 

can be stable for at least a year (Grutzendler et al., 2002). 

1.1.3 Invertebrates used in learning and memory studies 

Many of the key factors in signalling cascades, such as transcription factors, 

protein kinases, and homeobox domains, retain high levels of conservation since the 

evolution of bilateral symmetry (for review, see Alberini, 2009). For this reason, 

invertebrates possess many genes that are highly homologous to human disease-

linked genes. The well-studied fruit fly, Drosophila, and nematode, C. elegans, have 

about 70% genetic homology in these genes in humans (for review, see Alberini, 

2009). Thus, invertebrates offer a simplified, but relevant, model to study human 

diseases and other highly evolutionarily conserved aspects of human biology. In fact, 

some of the most important learning and memory research has used invertebrates. 

The first compelling evidence for nonsynaptic changes associated with learning was 

provided in the mollusc Hermissenda. Crow and Alkon found that classical conditioning 

in this mollusc produced several changes in membrane properties that were retained 

even after these neurons were isolated from the nervous system (Crow and Alkon, 

1980). The Hermissenda model has since been developed to study alterations of 

synaptic structure and molecular signalling cascades following associative 

conditioning, as well (for review, see Crow, 2004). A selection of the most important 

Hermissenda findings include: anisomycin pre-treatment can disrupt structural 

remodelling of photoreceptor terminal branches following conditioning (Kawai et al., 

2003); protein kinase C (PKC), involved  in short-term memory (STM), and extracellular 

signal-regulated protein kinase (ERK), involved in later memory stages, modify both 

neuronal excitability and synaptic efficacy (Crow et al., 1991; Crow et al., 1998); and 

actin interacts with other cytoskeleton-related proteins to influence intermediate- and 

long-term excitability change (Crow and Xue-Bian, 2002). Non-molluscan models have 

also been influential to the field. Drosophila odour-related learning, combined with gene 

mutation, uncovered the necessity for the dunce (cAMP phosphodiesterase), rutabaga 

(calcium/calmodulin-dependent adenylate cyclase), amnesiac (pituitary peptide which 

activates adenylate cyclase), and linotte (a deoxyribonucleic acid helicase) genes in 

learning and memory (Preat, 1998; Folkers, 1982; Dura et al., 1993). The use of heat 

shock promoters in Drosophila has also uncovered the necessity of PKA catalytic 

activity and found that mutating turnip (PKC) inhibits memory acquisition but not LTM 
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(Kane et al., 1997; Horiuchi et al., 2008). These kinases converge on transcription 

factors to influence protein synthesis and the best studied transcription factor in 

Drosophila is CREB. Besides the seminal dunce and rutabaga studies previously 

mentioned, a direct study of CREB using dominant negative mutation deemed this 

transcription factor specific and necessary for LTM formation (Yin et al., 1994). 

The use of the mollusc, Aplysia californica, has helped to develop much of the 

current knowledge of LTM and its accompanying field, often preceding mammalian 

studies on the same topic. The tail-siphon withdrawal reflex paradigm is used to model 

facilitation in identified sensory neurons. When neurons are stimulated with only one 

pulse of serotonin (5-HT), giving rise to short-term facilitation (STF), PKA is activated 

and will phosphorylate K+ S channels which increase the intracellular Ca2+ levels and 

thus increases membrane excitability and broadens spikes (for review, see Lee et al., 

2008). Repeated 5-HT application to sensory neurons will produce a long lasting 

increase in synaptic transmission called long-term facilitation (LTF) (for review, see 

Burrell and Sahley, 2001) and this facilitation is dependent upon increased protein 

synthesis of sensory neurons (Barzilai et al., 1989), specifically at cAMP response 

element (CRE) sites (Dash et al., 1990). LTF is believed to follow this series of events 

in Aplysia presynapses (Figure 1.2): First, 5-HT is released by facilitating neurons once 

appropriate signal is received, which then activates 5-HT -sensitive adenylyl cyclase in 

the presynaptic membrane of sensory neurons (Brunelli et al., 1976; Cedar et al., 1972; 

Levitan and Barondes, 1974; Klein and Kandel, 1978). This increases the amount of 

cAMP at the synaptic terminal and activates PKA, which allows the catalytic subunit to 

phosphorylate a number of different proteins, including K+ channels (Backsai et al., 

1993; Dash et al, 1990) and CREB. Phosphorylation of K+ channels decreases the K+ 

currents, which increases membrane resistance and depolarises membrane potential; 

decrease of K+ currents therefore prolongs action potentials (termed broadening), 

which allows more Ca2+ to enter the neuron and thus, more neurotransmitters to be 

released into the synaptic cleft (Klein and Kandel, 1978; Klein and Kandel, 1980). PKA 

translocation to the nucleus and activation of CREB results in an up-regulation of 

protein synthesis. 

Since the early Aplysia facilitation studies, the animal has been further 

developed for studying LTP and postsynaptic neuronal change (Wainwright et al., 

2004) using classical conditioning of the siphon-withdrawal reflex. These paradigms 

result in both nonsynaptic and synaptic plasticity (Scholz and Byrne, 1987). 

Researchers have found that the sensory neuron to motor neuron post synaptic 

potentials (PSP) are glutamatergic and that these PSPs can be initiated by application 



8 
 

of L-glutamate to the culture (Dale and Kandel, 1993). It was also found that these 

PSPs have NMDAR-like properties (Antonov et al., 2003), similar to many vertebrate 

glutamatergic PSPs (Dale and Kandel, 1993; Glanzman, 1994; Conrad et al., 1999). 

Importantly, this LTP is dependent upon presynaptic and postsynaptic coincidence, as 

evidenced by reduction of associative plasticity after application of a presynaptic PKA 

inhibitor or a postsynaptic Ca2+ chelator (Bao et al., 1998). Besides phosphorylating 

channels that alter nonsynaptic plasticity, as mentioned previously, PKA can also be 

activated in the postsynapse causing it to phosphorylate proteins involved in synaptic 

plasticity, such as the transcription factor CREB. Injection of cloned, phosphorylated 

Aplysia CREB into the postsynapse will initiate the LTM process (Pittenger et al., 

2002). Also similarly to mammalian models, AMPA receptors are incorporated into the 

postsynaptic membrane as neurons are potentiated (Chitwood et al., 2001), CREB-

signalling cascades increase IEG production (for review, see Reissner et al., 2006), 

and retrograde signalling occurs to increase presynaptic neurotransmitter release (for 

review, see Kandel and Pittenger, 1999), all leading to synaptic rearrangements and 

new synaptic growth following LTP. These new synaptic formations can take place 

from 12-18 hours after the initial 5-HT application in Aplysia (Kim et al., 2003). 

 

1.2 Lymnaea stagnalis, a learning and memory model 

Lymnaea stagnalis, the freshwater pond snail, is in the phylum Mollusca and 

has a relatively simple brain consisting of about 20,000 neurons, many of which are 

large (~100 m diameter) and readily identifiable (for review, see Kemenes and 

Benjamin, 2009) (Figure 1.3). The circuit involved in the generation of feeding 

behaviour is well defined and contains approximately 100 neurons (for review, see 

Benjamin, 2012) located in the cerebral and buccal ganglia. For this reason, after using 

behavioural classical or operant conditioning, the underlying mechanisms can be 

investigated on a behavioural, circuitry, and single neuron level.  
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Figure 1.3 Photograph of the Lymnaea brain. The Lymnaea brain contains (A) a pair of 
buccal ganglia (B, connected to the cerebral ganglia) and (B) a ring of other ganglia. C = 
cerebral ganglia. Pe = pedal ganglia. Pl = pleural ganglia. Pa = parietal ganglia. V = visceral 
ganglia (reproduced from Benjamin and Kemenes, 2010). 
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1.2.1 Circuitry involved in feeding and memory 

This thesis specifically considers the single-trial food-reward classical 

conditioning paradigm, in which the same circuitry is involved in the generation of the 

feeding motor programme in untrained and trained animals (Straub et al., 2004). This 

gives rise to either unconditioned or conditioned feeding behaviour, with the implicit 

memory trace acquired and stored in the feeding network (Straub et al., 2004). The 

three-phase rhythmic feeding motor programme is driven by bursting of cerebral 

pattern generator (CPG) interneurons which leads to activation of buccal ganglia 

motoneurons (Benjamin and Rose, 1979; McCrohan and Benjamin, 1980). These 

motoneurons, B1-10, generate the rhythmic feeding pattern which includes a 

protraction, retraction, and swallow phase (Rose and Benjamin, 1979). Specifically, 

Lymnaea feeding involves the mouth opening and the toothed radula scraping forward 

over the food (protraction phase), followed by food being lifted into the mouth (rasp 

phase) and finished by mouth closure while the food is swallowed (swallow phase) (for 

review, see Benjamin, 2012) (Figure 1.4A). The CPG neurons, types N1-3, each 

control one of these phases of feeding (Rose and Benjamin, 1981; Yeoman et al., 

1995; Brierley et al., 1997). The cerebral giant cells (CGC) are higher order neurons 

that modulate these CPG and motoneuron functions (McCrohan and Benjamin, 1980; 

Yeoman et al., 1996) (Figure 1.4B-C). 

Analyses of the CGCs in this circuit revealed a correlation between cellular 

activity and behavioural effects (McCrohan and Benjamin, 1980). While unable to drive 

CPG activity via rates of firing, the continuous (called tonic) spiking of the CGC 

provides an increase in background excitatory modulation, lowering the threshold for 

activation of the downstream feeding network and thus the behavioural response (for 

review, see Benjamin, 2012). These CGCs are extremely important for the feeding 

network; CGC properties alone are capable of altering motoneuron bursting (Kemenes 

et al., 1989) which controls the feeding motor program of intact animals’ feeding 

behaviour (Yeoman et al., 1994) and this feeding is critically dependent on the CGCs 

(Yeoman et al., 1994; McCrohan and Benjamin, 1980). Importantly, when an animal 

learns to associate an unconditioned stimulus with a conditioned stimulus, CGC 

properties change (I. Kemenes et al., 2006). As early as 20 hours after training, CGCs 

are depolarised due to an up-regulation of persistent sodium (Na+) currents (Nikitin et 

al., 2008); this membrane depolarisation will persist for as long as the memory trace 

exists. 
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Figure 1.4 Diagram of feeding movements, cellular location, and circuitry. (A) The four 
phases of feeding in Lymnaea: rest, protraction, rasp, swallow. (B) Feeding neurons located in 
the buccal and cerebral ganglia. Unshaded neurons are motoneurons. Shaded neurons are 
interneurons/ initiating neurons/ or sensory neurons. A=anterior, CBC= cerebrobuccal 
connective, DSN= dorsobuccal nerve, L=left, LBN= laterobuccal nerve, MLN= median lip nerve, 
OM= oesophageal mechanoreceptor, P=posterior, R=right, SLN= superior lip nerve, VBN= 
ventrobuccal nerve. (C) Circuitry involved in the feeding behaviour. Dots indicate inhibitory 
chemical synapses, bars indicate excitatory chemical synapses, and resistor symbols indicate 
electrical synapses. CGC= cerebral giant cells, CBIs= cerebral-buccal interneurons, OC= 
octopamine-containing interneuron, P= protraction, R= rasp, SO= slow oscillator, S= swallow 
(reproduced from Benjamin, 2012). 
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1.2.2 Molecular signalling cascades involved in memory 

Besides the well-studied nonsynaptic, electrophysiological properties of key 

neurons within the feeding circuitry, there is a growing understanding of 

synaptic/nonsynaptic molecular components as well. Like Aplysia, Lymnaea maintains 

highly evolutionarily conserved molecular memory biology. Crucially for the 

postsynaptic component of LTP, the above mentioned NMDA-like receptors (Moroz et 

al., 1993), AMPA-like receptors (Darlison et al., 1993; Naskar et al., 2014), and nACh-

like receptors (van Nierop et al., 2006) have all been found in Lymnaea, as have many 

of the other kinases and transcription factors noted previously (Figure 1.5; Sadamoto et 

al., 2003; Naskar et al., 2014; I. Kemenes et al., 2002; Ribeiro et al., 2003; Fulton et 

al., 2005; Ribeiro et al., 2005; Korneev et al., 2005; G. Kemenes et al., 2006; Michel et 

al., 2008; Ribeiro et al., 2008; Wan et al., 2010; Pirger et al., 2010 a,b). It is important 

to note that while other behavioural conditioning paradigms exist; such as chemical or 

touch classical conditioning, aversive classical conditioning, or operant conditioning 

(Kemenes and Benjamin, 2009; Kemenes and Benjamin, 1989; Andrew and Savage, 

2000; Sakakibara, 2006; Lukowiak et al., 1996; Martens et al., 2007; Kojima et al., 

1997; for review, see Benjamin and Kemenes, 2010); the single-trial food-reward 

classical-conditioning paradigm has been used most prominently for molecular studies 

in Lymnaea (for review, see Kemenes, 2013). For this reason, only the single-trial food-

reward classical-conditioning paradigm-based molecular signalling cascade results will 

be further considered in this thesis.  

In Lymnaea, as in other animals used in learning and memory research, LTM is 

known to be dependent on transcription and translation, as has been shown by 

anisomycin- and actinomycin-D-induced LTM disruption when administered 10 minutes 

to 1 hour after conditioning (Fulton et al., 2005; Marra et al., 2013). Protein synthesis is 

initiated by transcription factors; CREB is the best-known transcription factor involved 

in Lymnaea LTM. Both CREB-1 (further referred to as CREB) and CREB-2 orthologues 

have been found (Ribeiro et al., 2003; Sadamoto et al., 2004) as well as CREB binding 

protein (CBP) (Hatakeyama et al., 2005) and CCAAT element binding protein (C/EBP) 

(Hatakeyama et al., 1996). Importantly, animals that have undergone single-trial food-

reward classical-conditioning have neurons within the feeding network that express 

increased phosphorylation of CREB (Ribeiro et al., 2005); all of these findings in 

Lymnaea coincide with the mammalian literature. Many pathways involved in LTM 

involve CREB-signalling and have been detailed in Lymnaea. Starting at the receptor 

level, memory acquisition is dependent on NMDARs; however, NMDARs are not 

important for late memory consolidation (Wan et al., 2010). AMPARs have also been 
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studied in Lymnaea and levels of the subunit GluA1 are found to be increased 6 hours 

after conditioning (Naskar et al., 2014). Finally, pituitary adenylate cyclase-activating 

peptide (PACAP) receptors have been investigated in Lymnaea as well and found that 

application of a PACAP receptor antagonist during training blocked LTM (Pirger et al., 

2010 a,b). Using semi-intact preparations, which involve 6+ trials to learn, PACAP was 

able to reduce the amount of training trials needed (Pirger et al., 2010 a); these 

experiments suggest that PACAP helps to boost memory formation. Downstream from 

receptors, there have been four key kinases studied in Lymnaea, one of which is PKA. 

Blocking catalytic PKA will inhibit LTM at the 24 hour post-conditioning time point in 

Lymnaea, as well as at earlier 5 minute, 10 minute, and 1 hour time points (Michel et 

al., 2008). These experiments were furthered by finding that injecting cAMP into the 

CGC soma will enhance the neuron’s output, similarly to artificial depolarisation (Nikitin 

et al., 2006). Importantly, behavioural pharmacology experiments were used to connect 

PKA to CREB; it was found that activating adenylyl cyclase using forskolin resulted in a 

large increase in CREB phosphorylation (Ribeiro et al., 2003). Another important 

kinase involved in Lymnaea LTM is mitogen-activated protein kinase (MAPK). Inhibiting 

phosphorylation of MAPK will disrupt 24 hour LTM; however, MAPK increases in 

response to the conditioned stimulus (CS) + unconditioned stimulus (US), or CS and 

US alone, suggesting that MAPK is necessary but not sufficient for LTM in Lymnaea 

(Ribeiro et al., 2005). PKC, along with its atypical isoform protein kinase M (PKM), 

have also been considered in Lymnaea. Both are important for STM recall, however at 

24 hours LTM is independent of both PKC and PKM (Marra et al., 2013). Finally, 

Ca2+/calmodulin-dependent kinase II (CaMKII), as well as its autophosphorylation of 

Thr286, is necessary for acquisition and late consolidation of memory (Wan et al., 

2010; Naskar et al., 2014). Also, CaMKII Thr305 studies in Lymnaea suggest that 

phosphorylation of CaMKII at this site is necessary for the increased GluA1 levels 

observed in the feeding network 6 hours after conditioning (Naskar et al., 2014). These 

experiments suggest a possible “AMPA-fication” of neurons in the memory network, as 

mentioned previously. Alongside these studies, the nitric oxide (NO)/cyclic guanosine 

monophosphate (cGMP) pathway has also been investigated in Lymnaea. The 

NO/cGMP pathway appears to be critical for LTM up to 5 hours after conditioning (I. 

Kemenes et al., 2002) and has been found to be important in memory consolidation 

using behavioural pharmacology (I. Kemenes et al., 2002), a network-level approach 

examining neuronal nitric oxide synthase (nNOS) messenger ribonucleic acids 

(mRNAs) (Korneev et al., 2005; Ribeiro et al., 2008), and electrophysiology to measure 

the role of the NO/cGMP pathway in the CGC (I. Kemenes et al., 2006; Ribeiro et al. 

2008).  
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Figure 1.5 CREB-signalling cascades involved in Lymnaea LTM. Schematic of key proteins 
involved in Lymnaea CREB-signalling pathways of LTM (reproduced from Kemenes, 2013). 
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1.3 Alzheimer’s Disease 

An estimated 30 million+ individuals currently suffer from dementia worldwide; 

these estimates are largely based on the United States statistics, with 4.5 million 

individuals within the United States diagnosed with AD prior to 2000 (Alzheimer’s 

Association, 2012). These numbers are staggering, with AD being the sixth leading 

cause of death in the United States and the fifth leading cause in individuals aged 65 

and over. The country is facing an aged population where 13% of those 65 and over, 

and 45% of the population over 85, have AD. Worse yet, the figures of individuals 

diagnosed are predicted to increase by 50% by 2030 and 130% by 2050 (Alzheimer’s 

Association, 2012). 

The preclinical stage of AD, up to 20 years before any symptoms have 

developed, already exhibits early neuropathologies which can be measured in the 

brain, cerebrospinal fluid (CSF), and blood (Alzheimer’s Association, 2012). The 

earliest symptoms manifest as a progressive loss of episodic memory which are often 

over-looked as normal age-related lapses. As the disease spreads and dementia 

grows, executive function declines, correct language use becomes obscured, and 

emotion becomes unstable (for review, see Selkoe, 2013). The final stage of AD brings 

loss of motor and sensory functions, often ending in death from minor respiratory 

complications. By this end stage the AD brain has enlarged ventricles and an atrophied 

hippocampus and cerebral cortex (for review, see Walsh and Selkoe, 2004), causing a 

10-20% brain volume decrease (for review, see Selkoe, 2013). The post-mortem 

diagnosable neuropathology of AD is the appearance of extracellular senile plaques 

made of A and the intracellular neurofibrillary tangles made of tau (for review, see 

Walsh and Selkoe, 2004).  

The cells most likely to be targeted in AD are those with cholinergic, 

glutamatergic, noradrenergic, and -aminobutyric acid-ergic (GABA) phenotypes. 

Within these diseased cells, there are alterations in Ca2+, increased free radical 

formation and oxidative injury, changes in membrane lipids and signalling, deregulation 

of metal ions, and possibly other changes and dysfunctions (for review, see Selkoe, 

2013). Inflammation has also been documented in AD, likely due to the excessive 

glutamate build up between neurons (for review, see Parameshwaran et al., 2007). 

Synapses are heavily disrupted; there is a drastic increase in synaptic loss in AD, far 

more than can be explained simply by the loss of neurons (for review, see Walsh and 

Selkoe, 2004). In fact, there is a 15-35% decrease in the number of synapses per 

cortical neuron in AD only a few years after disease onset and pre-mortem cognitive 
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deficits correlate more with synapse loss than with numbers of plaques or tangles 

(Terry et al., 1991). Yet even before synaptic loss, synaptic function is highly 

compromised (for review, see Walsh and Selkoe, 2004). This cellular and network 

dysfunction can manifest into compromised excitatory synaptic transmission and 

plasticity (for review, see Parameshwaran et al., 2007). Individuals with AD experience 

the early symptom of memory loss and in studies where A is extracted from post-

mortem AD brains, LTP in rat hippocampus and entorhinal cortex has been found to be 

disrupted (Walsh et al., 2002). 

1.3.1 Neuropathological characteristics of AD 

To reiterate, the diagnosable neuropathological characteristics of AD are the 

presence of A plaques and neurofibrillary tangles. The major component of 

neurofibrillary tangles is tau. Tau protein is soluble and belongs to the microtubule-

associated protein family, localised predominantly in neurons (for review, see 

Mietelska-Porowska et al., 2014). Its normal function is to stabilise axonal microtubules 

and does so by either being an isoform with increased binding domains or through 

phosphorylation. There are six tau isoforms in the human brain and each is 

distinguished by the amount of binding domains. There are 79 tau phosphorylation 

sites; at most, 30 sites are phosphorylated in normal tau proteins (for review, see 

Mietelska-Porowska et al., 2014). Functionally, tau facilitates the polymerisation of  

and  tubulin into microtubules. In AD, tau is hyperphosphorylated and detaches from 

microtubules to form paired-helical and straight filaments, which self-assemble to form 

tangles (for review, see Selkoe, 2013). Tau disruption can also lead to impaired 

transport of mitochondria, which can lead to mitochondria-induced non-apoptotic 

caspase activation (Eckert et al., 2010). This may be involved in the synaptic loss seen 

in AD (Eckert et al., 2010). Hyperphosphorylation of tau is believed to be a secondary 

effect of A-induced increase in intracellular Ca2+ (Ekinci et al., 1999); therefore, this 

thesis focuses on A. 

The other neuropathological hallmark of AD is A plaques. These plaques are 

not only composed of fibrillised Apeptides (these peptides will be considered in 

greater detail in section 1.4 of this chapter). Other substances are also found in these 

plaques, such as proteoglycans, inflammatory molecules, serum-related molecules, 

heavy metals, protease and clearance-related elements, antioxidant defence proteins, 

cholinesterases, and other miscellaneous proteins (for review, see Atwood et al., 

2002). In both human AD and in AD transgenic mice (Appendix I.1), synaptic loss is 

greatest near A plaques, which suggests a link between A and synaptotoxicity in 
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vivo (Lacor et al., 2004). In healthy brains, A can be detected in the picomolar to 

nanomolar range (Haass et al., 1992; Wilson et al., 1999; Seubert et al., 1993). 

However, AD brains exhibit a 70% increase in A oligomers (Gong et al., 2003), which 

can also be found in the CSF to a lesser extent (Georganopoulou et al., 2005). 

A peptides are believed to induce the Ca2+ dyshomeostasis seen in AD, 

resulting in increased reactive oxygen species (ROS) levels (for review, see Simonian 

and Coyle, 1996). ROS build-up damages membranes by compromising its integrity 

which allows for an increased permeability of several ions, including Ca2+, and this loop 

of increasing Ca2+ influx and ROS production renders the intracellular environment 

excitotoxic (Dykens, 1994; Khodorov et al., 1993). The ROS-induced disruption of cells 

is believed to be a secondary effect of A(for review, see Mattson, 2007). 

 

1.4 Amyloid  

1.4.1 Amyloid precursor protein (APP) 

A is cleaved from APP, a type-1 transmembrane protein of unknown function 

(for review, see Wilson et al., 1999). The gene is located on human chromosome 21q 

(for review, see Shirwany et al., 2007) and in humans, the protein is expressed as 

three isoforms. APP695 is the isoform most prominent in the brain (for review, see 

Hsiao et al., 1996) and is expressed in neurons, astrocytes, microglia, and endothelial 

cells (Haass et al., 1992; Busciglio et al., 1993). Low levels of A have been found to 

be secreted by each of these cell types (Ouimet et al., 1994; Busciglio et al., 1993). 

Glutamatergic neurons specifically express high levels of APP (Ouimet et al., 1994), 

both presynaptically and postsynaptically with high localisation at synaptic puncta (for 

review, see Hoe et al., 2012). APP is highly evolutionarily conserved, with >95% 

sequence homology existing across mammalian species and high homology within 

invertebrate species as well, with low sequence homology in the A region (Finch and 

Sapolsky, 1999; Tharp and Sarkar, 2013). Drosophila has an APP orthologue, APPL 

(Rosen et al., 1989), an -secretase orthologue (Allinson et al., 2003), and 

components of -secretase (Boulianne et al., 1997; Francis et al., 2002; Hong and Koo, 

1997). The Drosophila -secretase can process human APP (Fossgreen et al., 1998; 

Greeve et al., 2004) and human APP can be cleaved to produce A in flies, suggesting 

an endogenous -secretase-like protease (Greeve et al., 2004).  
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Although the function of APP is currently unknown, it is believed to play a role in 

neuromuscular junction formation, synaptic transmission, ion channel function (for 

review, see Hoe et al., 2010), and blood clotting regulation (Xu et al., 2005). At 

picomolar levels, A 1-42 has been shown to enhance learning and memory formation 

(Puzzo et al., 2008) and monomeric A is suggested to play a neuroprotective role in 

the brain (for review, see Randall et al., 2010). Kamenetz and colleagues have 

hypothesised that A is involved in a feedback loop regulated by neuronal intrinsic 

excitability (Kamenetz et al., 2003). They believe that A is produced after action 

potentials have propagated, increasing the amount of extracellular A at the synapse 

and reducing postsynaptic excitatory transmission (Kamenetz et al., 2003). However, 

there are others in the field who do not agree with this hypothesis. Some researchers 

believe that natural A may facilitate presynaptic transmitter release in neurons with 

low activity (Puzzo et al., 2008).  

APP cleavage and the functional end-products produced are well defined 

(Figure 1.6). APP is predominantly cleaved through the non-amyloidogenic pathway in 

healthy brains; the protein is first cleaved by -secretase (also called ADAM) in the 

trans-Golgi apparatus (Lammich et al., 1999) and then cleaved by -secretases 

(including the proteins presenilin, PEN2, APH1, niscatrin) (Xia et al., 1998). This 

process results in production of the p3 peptide and sAPP, which are thought to be 

neuroprotective, neurotrophic, and prevent A formation (for review, see Pearson and 

Peers, 2006). However, APP can also naturally be processed through the 

amyloidogenic pathway and it is the up-regulation of this processing that increases A 

in AD. -secretase first cleaves APP in the trans-Golgi apparatus (Xu et al., 1997; Xia 

et al., 1998; Greenfield et al., 1999) and then by -secretase in either the trans-Golgi 

apparatus (for A 1-40 production) or the endoplasmic reticulum (for A 1-42 

production) (Xia et al., 1998). This process results in A and sAPP (for review, see 

Pearson and Peers, 2006). A 1-40 and A 1-42 are the dominant products produced 

via amyloidogenic APP processing, but it is thought that other fragments may be 

produced through proteolytic degrading enzymes (for review, see Kaminsky et al., 

2010). These fragments include, but are not limited to, A 2-14, 1-17, 1-18, 1-33, 1-34, 

1-37, 1-38, 1-39, 1-43, and 1-46 (Maddalena et al., 2004). It is possible that these 

fragments play a role in pathology. Importantly, APP can also be cleaved by caspases, 

but this will not be further investigated in this thesis (for review, see Kaminsky et al., 

2010). 
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Figure 1.6 APP processing. APP may be processed through the amyloidogenic or non-

amyloidogenic pathway. Amyloidogenic processing involves BACE-1 (or -secretase) cleavage, 

followed by -secretase cleavage. Non-amyloidogenic processing involves -secretase (or 

ADAM) cleavage followed by -secretase cleavage. Each secretase cleavage produces a 
fragment of APP (adapted from Linchtenthaler, 2012). 
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1.4.2 Amyloid  peptide 

A is categorised as an amyloid-like protein, indicating that these peptides 

fibrillise and do not crystallise, and fold into a cross- structure (Figure 1.7) (for review, 

see Dobson, 2003). Monomeric A is predominantly unstructured, at least in aqueous 

solution (Baumketner et al., 2006), and fibrillisation involves a structural change to -

sheet formation, followed by self-assembly to form amyloid fibrils. These fibrils are 

composed of multiple protofilaments with cross- structure in which the -strands run 

perpendicular to the fibre axis and are held together by hydrogen bonds along the 

length of the fibril (for review, see Serpell, 2014). Side chains play an important role in 

associating several -sheets between protofilaments (for review, see Serpell, 2014). 

An example of one specific interaction that holds strands together occurs at the -

strands at residues 18-26 and 31-42, which forms salt bridges between Asp23 and 

Lys28 (for review, see Tycko, 2011). Other influencers include side chains that  stack 

with identical side chains of other peptides, self-association due to high net charge, 

changes in the number of aromatic side chains, exposed surface area, and dipole 

moments (for review, see Chiti and Dobson, 2006). This thesis specifically investigates 

A 1-42, which is an amphipathic peptide. Of the two physiologically relevant As, A 

1-42 is more neurotoxic and more redox active (for review, see Naylor et al., 2008), 

fibrillises much more quickly (for review, see Roychaudhuri et al., 2006), and has an 

increased “sticky” characteristic due to exposed hydrophobic residues (for review, see 

Chiti and Dobson, 2006). The primary sequence for A 1-42 is Asp-Ala-Glu-Phe-Arg-

His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-

Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-Val-Gly-Gly-Val-Val-Ile-Ala. 
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Figure 1.7 Examples of cross- structure. Schematic examples of (A) parallel -sheets (B) 

antiparallel -sheets, and (C) -helix formed into cross- structures (reproduced from Tycko, 
2011). 
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1.4.3 A’s involvement in AD 

A peptide is believed to be the main toxic element in AD, as detailed by the 

amyloid cascade hypothesis of AD (for review, see Hardy, 2009). The first evidence for 

A’s role in the disease is its presence in senile plaques, which are found in all AD 

brains. More recently, soluble extracts of AD brains show A monomers, dimers, and 

other low-n oligomers at higher concentrations than in healthy brains (McDonald et al., 

2010; McDonald et al., 2012) and many different length A peptides have been found 

in the CSF of those with AD (Maddalena et al., 2004). Secondly, synthetic A peptides 

are known to be toxic to cells. The next line of evidence comes from Down’s 

Syndrome, or trisomy 21, patients. These individuals exhibit typical AD neuropathology 

unless they are diploid for the distal location of chromosome 21q, where the APP gene 

is located, which then relieves the brain of any AD neuropathology (for review, see 

Ness et al., 2012). Further research has shown that soluble A 1-42 peptides precede 

senile plaques in the brains of these individuals (Russo et al., 1997). The fourth 

argument for the amyloid cascade hypothesis of AD states that familial mutations in 

APP, which are located within or near the A region, will alter aggregation properties of 

A and are sufficient to cause early-onset AD. Another set of familial mutations, within 

the presenilin 1 and 2 genes, increase the A 1-42/ A 1-40 ratio in favour of the more 

neurotoxic A 1-42 species which, again, leads to early-onset AD. Presenilins are the 

catalytic site of the -secretase complex which cleaves the C-terminus of A (for 

review, see Walsh and Selkoe, 2007). Yet another inheritable factor, the cholesterol-

transporter apolipoprotein E4 allele (APOE4), is a strong risk factor for AD and 

increases cerebral A in diseased brains (for review, see Holtzman et al., 2012). 

Finally, mice transgenic for mutant human APP show a time-dependent increase in A 

and develop neuropathological and behavioural changes similar to AD (for review, see 

Webster et al., 2014). 

As well as its central role in AD pathogenesis, A is believed to induce early 

stage synaptic dysfunction which leads to memory deficits (for review, see Selkoe, 

2002). The idea that A disrupts synapse function, which leads to synaptic 

degeneration and thus memory loss, is known to precede cell death (Lambert et al., 

1998; Walsh et al., 2002). Synaptic disruption has been found specifically at 

postsynaptic, as opposed to presynaptic, terminals (Lacor et al., 2007). This A-

induced memory dysfunction has been studied by many labs, using many different 

models. A-overproducing transgenic mice (including Tg2576; APP+PS1) have been 

seen to disrupt memory acquisition using a wealth of different training paradigms, 
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including the Morris water maze, Y-maze, fear conditioning, and social object 

recognition tasks (Hsiao et al., 1996; Westerman et al., 2002; Chapman et al., 1999; 

Arendash et al., 2001; Barnes and Good, 2005; Puolivali et al., 2002) (see Appendix 

I.1). Similar findings of memory acquisition inhibition have been found in animals 

treated with A (Delobette et al., 1997). However, some consolidated memory 

experiments indicate that A specifically affects this form of memory, and not memory 

acquisition (McDonald et al., 1994; Lesne et al., 2006; Tucci et al., 2014; Cleary et al., 

2005); while others suggest that neither memory acquisition nor retrieval of 

consolidated memory are inhibited by A, but instead memory is disrupted during the 

consolidation process, specifically at time points important for synaptic remodelling 

(Freir et al., 2011). 

A is also known to affect the cellular correlates of memory and forgetting, LTP 

and long-term depression (LTD). There is a great consensus that A-treatment impairs 

LTP (Walsh et al., 2002; Shankar et al., 2008; Lambert et al., 1998) and enhances LTD 

(Kim et al., 2001; Li et al., 2009; Shankar et al., 2008). This induction of LTD is 

believed to occur through internalisation of receptors or desensitisation of receptors, 

followed by collapse of the desensitised spines (Snyder et al., 2005; Hsieh et al., 

2006).  

1.4.4 Oligomeric A 

Fibrillisation requires a nucleation event to initiate assembly from monomeric 

species. This event creates intermediate species, including oligomers and protofibrils, 

and then elongates before mature fibrils are fully formed. Toxic oligomers may be 

created via this pathway; however, there is possibly off-pathway production of these 

toxic species. Importantly, buffer-soluble bioactive A oligomers have been found in 

synthetic A preparations (Lambert et al., 1998; Bitan et al., 2001), cell culture media 

(Walsh et al., 2002), Tg2567 mice (Lesne et al., 2006), and AD brains (Gong et al., 

2003; Shankar et al., 2008). One of the first studies to suggest that fibrillar A species 

were not affecting cognitive functions was the Nun Study. Researchers cognitively 

tested one convent of nuns every year over their lifespan. The nuns brains were then 

studied post-mortem for the presence of neurofibrillary tangles and amyloid plaques. 

Sister Mary, the study’s “gold star”, maintained high cognitive abilities throughout her 

lifetime and had a brain that contained many plaques and tangles (Snowdon, 1997). 

This study suggested that the presence of plaques, and thus fibrillar A, does not 

correlate to the cognitive decline observed in AD. Another important piece of evidence 
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in support of this hypothesis occurred in 1994 when Oda and colleagues treated A 

fibrils with clusterin to de-fibrillise them. This dismantling of A fibrils caused an 

increase in ROS in PC12 cells (Oda et al., 1994). Four years later, Lambert and 

colleagues found that a fibril free solution of A was neurotoxic to cells and caused a 

rapid inhibition of LTP which eventually resulted in cell death (Lambert et al., 1998). In 

2002, Walsh and colleagues were able to further the findings of Lambert et al. by 

separating monomers from oligomers and demonstrating that oligomers specifically, 

and not monomers, inhibit LTP (Walsh et al., 2002). However, not all oligomers are 

necessarily toxic. While many labs believe that low-n oligomers are neurotoxic 

(McLean et al., 1999; Hepler et al., 2006), two specific oligomeric species are 

suggested to be the toxic species. These toxic oligomers are dodecamers and dimers. 

Dodecamers have been found in human AD brain extracts (Gong et al., 2003) and 

these species have been found to bind neuronal cultures similar to A derived 

diffusible ligands (ADDLs; also known as soluble A oligomers) (Lacor et al., 2004). 

They can also be extracted from Tg2576 mice, which will disrupt LTM when injected 

into healthy mice (Lesne et al., 2006); other labs have found similar results in synthetic 

A at this size (Bernstein et al., 2009; Reed et al., 2011). Dimers are also believed to 

be neurotoxic. When A dimers are extracted from AD brains and applied to rat 

hippocampal slices, LTP is inhibited (Shankar et al., 2008). Besides LTP inhibition, AD 

brain-derived A dimers inhibit synaptic remodelling and impair memory consolidation 

(Shankar et al., 2008). These dimers will also induce degenerative effects when 

applied to neuronal cultures (Selkoe, 2008). It has more recently been suggested that 

protofibrils may also be neurotoxic, as seen by the enhancement of protofibril formation 

in the aggressive Arctic APP mutation (Nilsberth et al., 2001) (Appendix I.1). These 

toxic protofibrils may be linked to dimers (O’Nuallain et al., 2010). When A 1-40 is 

mutated to have Ser26 replaced with cysteine and cross-linked with disulphide bonds, 

dimers will form. The dimers in this study did not block LTP; however, when the dimers 

were allowed to form protofibrils, this more matured structure did block LTP. Thus, 

O’Nuallain and colleagues hypothesised that dimers are a crucial building block to form 

toxic protofibrillar A species (O’Nuallain et al., 2010).  

 Since the initial studies of Oda, Lambert, and Walsh, much more work has 

furthered the hypothesis of oligomer-induced toxicity. One area of important findings is 

that oligomers directly bind to neurons. There are three possible oligomer-neuron 

interactions that may be involved in toxicity. First, oligomers may interact directly with 

membranes, forming toxic gain-of-function pores in the lipid bilayer (for review, see 

Wilcox et al., 2011) and possibly increasing membrane conductance by the dielectric 
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barrier property of the membrane (Sokolov et al., 2006). A has been shown to 

specifically bind to GM1 gangliosides and the lipid rafts they inhabit (Zampagni et al., 

2010). This pore formation not only allows aberrant concentrations of Ca2+ into the cell, 

a known phenomenon in AD, but also disrupts certain aspects of nonsynaptic plasticity, 

such as inactivation of K+ channels (for review, see Mattson, 2007; Randall et al., 

2010). This binding is believed to occur through the hydrophobic residues on A 1-42 

interacting with the hydrophobic membrane lipids (Williams and Serpell, 2011). A 

second group of thought considers intracellular A to be the toxic species, directly 

altering synapses (Takahashi et al., 2004; Walsh et al., 2000). Intracellular A is found 

in AD brains (Gouras et al., 2000), can be produced intracellularly (for review, see 

Wilcox et al., 2011), and has been shown to cause synaptic degeneration (Oddo et al., 

2008). Specifically, intracellular oligomeric A was suggested through studies that 

showed that the intracellular peptides exist in a non-mature, non-fibrillar structure; this 

was examined with a lack of Bielschowsky silver staining, lack of Congo Red staining, 

and lack of thioflavin S staining (Gouras et al., 2000). What complicates this hypothesis 

is that this intracellular A is not necessarily in an oligomeric structure, although some 

oligomeric species have been discovered (Leon et al., 2010). The final suggestion for 

A oligomer binding to neurons is their binding to specific extracellular sites. This 

coincides with the finding that not all areas of the human brain are equally affected by 

AD (Braak and Braak, 1991) and that A will bind excitatory hippocampal neurons in 

vitro, but will bind with very low affinity to cerebellar neurons (Gong et al., 2003; Lacor 

et al., 2004). Extracellularly applied, naturally prepared A oligomers at physiological 

concentrations alter synaptic plasticity, lead to abnormal tau phosphorylation, cause 

neurite dystrophy, and disrupt memory (Cleary et al., 2005; Lesne et al., 2006; Shankar 

et al., 2008; Li et al., 2009). Recent studies have indicated that soluble oligomers will 

only bind to extracellular synaptic components, even when the membrane has been 

permeabilised (Lacor et al., 2004), and multiple studies have shown that A specifically 

binds to postsynaptic receptors and will pull-down with these receptors during 

immunoprecipitation (IP) (Lacor et al., 2004; Lacor et al., 2007; Gong et al., 2003; 

Renner et al., 2010; De Felice et al., 2007; Roenicke et al., 2011; Wang et al., 2000). 

Moreover, this final field of thought agrees with the hypothesis put forward by 

Kamenetz and colleagues for natural APP and A function as feedback loop 

regulators, as mentioned earlier (see section 1.4.1). An increase in APP cleavage to 

produce A would allow for greater A at the synapse and an even greater reduction of 

postsynaptic excitatory transmission after action potential production (Kamenetz et al., 

2003).  
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1.4.5 A affects nonsynaptic plasticity  

Besides synaptic plasticity disruption, A is also believed to disrupt nonsynaptic 

plasticity. Many A-treated or APP-over expressing transgenic mouse models (APdE9; 

hAPP; APP+PS1; Tg2576) have shown that A alters intrinsic neuronal excitability (for 

review, see Randall et al., 2010) (Appendix I.1). Aberrant neuronal excitability likely 

arises due to deregulation of ion channels or pore formation within the membrane. As 

mentioned previously, pore formation increases Ca2+ influx and inactivates K+ 

channels. However, application of A to neuronal cultures has been shown to enhance 

Ca2+ and K+ channel activity in some experiments (Ramsden et al., 2002). Pore 

formation is only one suggestion as to why intracellular Ca2+ is increased with A 

treatment. Controlled Ca2+ influx is a normal, rapid process involved in many different 

cell functions (for review, see Mattson, 2007). However, the A-induced influx of Ca2+ 

is not controlled and this prolonged influx of Ca2+ is toxic to cells, leading to generation 

of ROS and disruption of energy metabolism (for review, see Mattson, 2007).  

 

1.5 Thesis outline 

This thesis considers A peptide and its effect on long term memory using a 

top-down experimental approach in the pond snail Lymnaea stagnalis; combining the 

two fields of study for the first time. The four results chapters develop this animal model 

for use in behavioural, structural, molecular, and biochemical investigations in order to 

answer the question “How does A effect long term memory in Lymnaea?”. The top-

down approach is used to link A structural changes and molecular signalling cascade 

changes to behavioural deficits observed, while maintaining tight methodological 

consistency to reduce experimental error. Throughout the thesis, both A 1-42 and A 

25-35 are investigated and comparisons and contradictions are noted. Chapter 3 

utilises both behavioural, molecular, and imaging techniques to monitor behavioural 

abnormalities, neuronal health, and synapse health in the snail brain 24 hours post-A 

injection. Chapter 4 utilises imaging, molecular, biochemical, and behavioural 

techniques to monitor peptide localisation, peptide structure, peptide morphology, and 

the effect of differing structure on animal behaviour in snail brain or haemolymph after 

24 hour post-A injection. Chapter 5 and Chapter 6 utilise molecular, behavioural, and 

biochemical techniques to measure protein alterations and post-translational 

modifications, and to inhibit key protein components, involved in CREB-signalling 

pathways in Lymnaea brain after 24 hour in vivo incubation of A. These chapters 
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include a large amount of necessary background information on CREB-signalling 

pathways, explained only when each protein is investigated experimentally. Thus, the 

introduction and results are intertwined in these two chapters. Multiple conclusions are 

drawn throughout the results sections and in the main discussion. 
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2. Materials and methods 

 

2.1 Experimental animals 

Pond snails, Lymnaea stagnalis, were bred at the University of Sussex and 

maintained in large holding tanks containing 18-22°C copper-free water, at a 12:12 

hour light-dark cycle. The animals were fed Tetra-Phyll (TETRA Werke) twice a week 

and lettuce three times a week. 

 

2.2 Preparation and systemic application of Apeptides 

A1-42 was prepared in normal saline solution (50 mM NaCl, 1.6 mM KCl, 2 

mM MgCl2 x 6H2O, 3.5 mM CaCl2 x 2H2O, 10 mM HEPES [4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid]. pH 7.9) (Benjamin and Winlow, 1981) for maximally 

soluble oligomeric morphology, as previously described (Soura et al., 2012). Briefly, 

0.2 mg A1-42 (rPeptide) was solubilised in 200 L HFIP (hexafluoroisopropanol) 

(Sigma-Aldrich) to disaggregate the peptide. The solution was then vortexed on high 

for one minute and sonicated in a 50/60 Hz bath sonicator for one minute. The HFIP 

was then dried completely using a low stream of nitrogen gas for five to ten minutes. 

To ensure complete removal of HFIP, the sample was placed in a dessicator for 30 

minutes. Once completely dried, 200 L dry DMSO (Sigma-Aldrich) was added to the 

A1-42, vortexed for one minute, and sonicated for one minute. The A1-42 was then 

added to a prepared Zeba buffer-exchange column with 40 L normal saline solution 

as a stacking buffer and centrifuged for 30 minutes at 16k RPM. Using a molar 

absorption coefficient of 1490 M−1 cm−1, protein concentration was assessed by 

measuring at 280 nm using a NanoDrop spectrophotometer. The peptide was then 

diluted using normal saline to an injected concentration of 1 M. The peptide control, 
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created in the Serpell Lab, was prepared for systemic injection in the same manner as 

A 1-42 and diluted to the same injected concentration of 1 M. 

To prepare A25-35 for systemic injection, 0.25 mg AFragment 25-35 

(Sigma- Aldrich) was mixed with 1.25 mL copper-free water and left to incubate for two 

hours to allow the peptide to solubilise and assemble. After two hours, the sample was 

diluted with 1.25 mL normal saline solution to an injected concentration of 1 M or 0.1 

mM.  

To prepare oligomeric A 25-35, 0.25 mg A Fragment 25-35 (Sigma-Aldrich) 

was prepared as described above for A 1-42. Optical density (OD) was measured at 

220 nm using a NanoDrop spectrophotometer before the Zeba buffer exchange column 

run, and again after, to determine peptide concentration (Millucci et al., 2009). Final 

concentration was determined using the equation (ODbefore-ODafter)/ODbefore x 100% 

(Millucci et al., 2009). The peptides were administered to the animals directly after 

preparation. Using a 1 mL syringe with 30 gauge precision glide needles (Becton 

Dickinson), 100 L of the A25-35 or A1-42 peptide solution was injected into the 

haemolymph (~ 1 mL in volume) of each snail. The estimated final concentration in the 

animal was 0.1 M for A1-42 and 0.1 M or 10 M for A25-35. As there is no blood-

brain barrier in Lymnaea (Sattelle and Lane, 1972), the injected peptides have direct 

access to the animal’s central nervous system. For vehicle-injected control animals, 

100 L of normal saline was injected. 

 

2.3 Single-trial food-reward classical (CS+US) conditioning 

Using well-established methods (I. Kemenes et al., 2006), four-to six-month-old 

snails were removed from their home tanks and starved in new tanks for two days at 

the same temperature and light dark cycle as the home tanks. After the starvation 

period, the animals underwent single-trial food-reward classical conditioning 

(Alexander et al., 1984) in which the CS (amyl acetate: 0.004% final concentration) and 
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the US (sucrose: 0.6% final concentration) were paired. Initially, each individual snail 

was left to acclimatise in a 14 cm diameter Petri dish with 90 mL of 18-22°C copper-

free water for ten minutes. After the acclimatisation period, 5 mL of amyl acetate was 

added to the dish and after thirty seconds, 5 mL of sucrose was added. The snails 

were then left in their Petri dishes for two minutes, and then removed to their starvation 

tanks. Both the vehicle-injected and A-injected groups were trained. The naïve groups 

were not trained, but underwent the same starvation/feeding schedule and handling. 

All animals were tested with the CS. Each individual snail was left to acclimatise 

in a 14 cm-diameter Petri dish with 90 mL of 18-22°C copper-free water for ten 

minutes. After the acclimatisation period, 5 mL of 18-22°C copper-free water was 

added to the dish. Rasps, the animals’ feeding movements, were manually counted for 

two minutes to determine a baseline rasping rate (number of rasps per two minutes) for 

each individual. After two minutes, 5 mL amyl acetate was added to the dish. Rasping 

was tracked for two minutes. Rasping rates were determined by subtracting the 

individual animal’s baseline rasp from the amyl acetate induced rasp. As a control, a 

separate group of A-treated naïve animals were tested for their ability to produce the 

unconditioned feeding motor response to the US 24 hours post injection. Snails from 

the same home tanks as those used in the classical conditioning paradigm were 

submitted to the same starvation and acclimatisation procedures. However, these 

animals did not undergo training, only Aor vehicle-injection and testing. After the 

acclimatisation period, 5 mL of 18-22°C copper-free water was added to the dish. 

Rasping was tracked for two minutes to determine a baseline rasping rate for each 

individual. After two minutes, 5 mL sucrose was added to the dish. Rasping was 

tracked for a further two minutes.  

 

2.4 TEM immunolabelling 
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Buccal and cerebral ganglia were dissected and prepared for immunogold 

labelling using a previously described protocol involving minimal, cold fixation and 

embedding in Unicryl resin (Soura et al., 2012; Thorpe, 1999). Briefly, thin (100 nm) 

sections were labelled with either 1 g/mL mouse antibody specific for Nu1 (Klein lab), 

Nu2 (Klein lab), Nu4 (Klein lab), or 1 g/mL rabbit antibody specific for AlexaFluor 488 

(Molecular Probes). They were then labelled with either goat anti-mouse 10 nm gold-

conjugated secondary antibody or goat anti-rabbit 10 nm gold-conjugated secondary 

antibody (BBI Solutions OEM Ltd., Cardiff, UK) and stained with 2% aqueous uranyl 

acetate. The labelled thin sections were examined in a Hitachi 7100 TEM at 100 kV 

and digital images acquired with an axially mounted (2K x 2K pixel) Gatan Ultrascan 

1000 CCD camera (Gatan UK, Oxford, UK). 

 

2.5 Cell death and apoptosis measurements 

To test the integrity of the feeding network, behavioural testing with sucrose 

was used as described in 2.3.  

For the cell morphology analysis, TEM was used to examine buccal and 

cerebral ganglia as detailed above in 2.4. Images were then qualitatively scored for the 

health of the nucleolus, nuclear envelope, cellular membrane, and chromatin on a 

scale of 0 to 2, with 0= unhealthy 1= uncertain 2= healthy. 

For the TUNEL assay (Roche) analysis, buccal and cerebral ganglia were 

dissected and pinned on to a sylgard square. Samples were immediately placed in 4% 

paraformaldehyde (in 0.2 M phosphate buffer, pH 7.2) for 1 hour and then transferred 

into 30% sucrose in phosphate buffered saline (PBS) solution overnight at 4oC. 

Samples were removed from the sylgard square, coated in OCT (optical cutting 

temperature) embedding medium (VWR), and frozen in liquid nitrogen. Samples were 

sliced to 14 m thickness using a Cryostat and placed on to SuperFrost Plus slides 

(VWR). Slides were then allowed to dry for at least 30 minutes before being washed 
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three times for two minutes each in PBS. Slides were permeabilised in 0.1% Triton-X in 

PBS for 2 minutes on ice. The positive control slide was then treated with DNase I in 

Tris-HCl for 10 minutes, and all slides were labelled with TUNEL reaction mixture for 

60 minutes at 37oC except for the negative control, which was only labelled with the 

Label Solution. Slides received two final washes in PBS for two minutes each before 6 

drops of Fluoroshield (Sigma-Aldrich) was added to each slide, along with a cover slip. 

Slides were allowed to dry and samples were imaged using an Olympus BX61WI with 

a 10x 1.0 NA dipping objective and excitation and emission filters 470/22. Images were 

taken using an EMCCD camera (Andor iXon), processed using Manager software 

(Edelstein et al., 2010), and binned at 2x2. Images were analysed using ImageJ 

software and measured for area, mean, integrated density, and background signal 

mean all on the same ImageJ default setting for threshold. Final signal intensity was 

calculated using the Corrected Total Ganglia Fluorescence (CTGF) formula: 

CTGF=Integrated Density – (Area of selected ganglia X Mean fluorescence of 

background reading). 

 

2.6 SDS-PAGE and membrane immunolabelling 

First, Lymnaea ganglionic samples were prepared. Buccal and cerebral ganglia 

were dissected, pooled so that there were 5 buccal + cerebral ganglia per eppendorf 

tube, and stored at -80oC until use. For use, ganglia were homogenised in Tris 

Homogenisation Buffer (THB) (240 mM Trizma base, HCl to pH 6.8) and then Laemelli 

Buffer (BioRad) + 10% -Mercaptoethanol (BME) was added to the sample and pipette 

mixed. Samples were heated at 95oC for 5 minutes and centrifuged for 30 minutes at 

13K revolutions per minute (RPM) and 4oC. Only the supernatant was retained. For rat 

sample preparation, 1 part PEPI (1x PBS, 5mM EDTA, 1x Protease Inhibitor) to 1 

volume tissue were homogenised. Samples were vortexed, centrifuged at 14K for 10 

minutes, and only supernatant was retained. Samples were then treated the same as 
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Lymnaea samples, starting with the addition of Laemelli Buffer and finishing with 

centrifugation. Protein concentration was measured using a bicinchoninic acid (BCA) 

assay (see below) and samples were diluted (often to 20-40 g per well). 

For dot blot experiments, polyvinylidene fluoride (PVDF) membranes were 

prepared by allowing incubation in methanol (MeOH), water, and tris buffered saline 

(TBS) until fully immersed. Prepared samples were then dotted on to the membrane 

and allowed to dry for 1 hour. Membranes were then put into blocking solution (Table 

2.1) for 1 hour with gentle rocking, and incubated in primary antibody + blocking 

solution (Table 2.1) overnight at 4oC with gentle rocking. After the primary antibody 

labelling, membranes were washed in 20 mL TBS-Tween 20(T) (24.2 g Trizma base, 

80 g NaCl2, in 1 L H2O. pH 7.5. + 0.15% Tween 20) for 5 minutes three times, with 

moderate rocking. Membranes were then allowed to incubate with 5 mL blocking 

solution + horseradish peroxidase (HRP)-conjugated secondary antibody (Cell 

Signalling) (Table 2.1)  for 1.5 hours with gentle rocking. The membranes were then 

washed with 20 mL TBS-T for 10 minutes three times, with moderate rocking. Finally, 4 

mL HRP substrate (Millipore) was added to the membranes and allowed to incubate for 

5 minutes. Membranes were then removed from the substrate, immediately exposed to 

x-ray film, and developed. 

For sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE) 

experiments, prepared sample was run either on a hand cast gel (8.25%, 10%, or 12%) 

or on a Tris-glycine 4-20% gradient gel (BioRad), placed into a mini-PROTEAN tank 

(BioRad) with Running Buffer (30.3 g Trizma base, 144 g glycine, 10g SDS, in 1 L H2O. 

pH 8.3), and run at 120 V, 40 mA until the dye front reached the bottom of the gel. Gels 

were then either silver stained or transferred for western blot. 

For silver stain experiments, gels were subjected to a Proteo-Silver Silver Stain 

Kit (Sigma-Aldrich) and the manufacturer’s instructions were followed. Briefly, gels 

were fixed for 1 hour, followed by an ethanol (EtOH) wash and then a water wash. 

Next, Sensitisation Solution was added to the gel, followed by a water wash. Then, 
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Silver Equilibration was added to the gel, followed by a water wash. Finally, Developer 

Solution was added to the gel until bands were visible. Once developed, Stop Solution 

was added to the gel. Finally, the gel was imaged using a Gel Doc EZ System 

(BioRad), and used for qualitative analysis. 

For western blot experiments, the prepared sample was run using SDS-PAGE 

as described above. Gels were then wet transferred in Transfer Buffer (5.8 g Trizma 

base, 2.9 g glycine, 0.37 g SDS, 200 mL MeOH, 800 mL H2O. pH 8.3) on to a PVDF 

membrane at either: 80 V, 200 mA for 2 hours; 20V, 200 mA for 16 hours; or 25 V, 200 

mA for 2 hours. Membranes were then removed from the tank and allowed to incubate 

in an appropriate blocking solution (Table 2.1) for one hour with gentle rocking. After 

the block, membranes were then allowed to incubate in blocking solution + primary 

antibody (Table 2.1) at 4oC overnight with gentle rocking. After the primary antibody 

labelling, membranes were washed in 20 mL TBS-T for 5 minutes three times, with 

moderate rocking. Membranes were then allowed to incubate with 5 mL blocking 

solution + HRP-conjugated secondary antibody (Table 2.1)  for 1.5 hours with gentle 

rocking. The membranes were then washed with 20 mL TBS-T for 10 minutes three 

times, with moderate rocking. Finally, 4 mL HRP substrate was added to the 

membranes and allowed to incubate for 5 minutes. Membranes were then removed 

from the substrate, immediately exposed to x-ray film, and developed. 

All membranes were stripped at least once and no more than three times. 

Membranes were allowed to incubate in Stripping Buffer (12.5 mL Tris/HCl [12.11 g 

Trizma base, in 100 mL H2O. pH 6.8], 1.426 mL BME, 4 g SDS, in 200 mL H2O) for 15 

minutes at 65oC with vigorous shaking, twice. Membranes were then vigorously 

washed with TBS-T for 10 minutes. The washing step was repeated until all Stripping 

Buffer was removed. 

All dot blots and western blots were quantified using ImageJ software. Every 

result was normalised to an appropriate loading control; steady state proteins were 
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normalised to  tubulin and phosphorylated proteins were normalised to an appropriate 

steady state protein.  

 

Protein of interest Blocking solution Primary antibody Secondary 

antibody 

 tubulin 3% Milk in TBS-T 1/7000. Anti- - 

Tubulin antibody, 

Sigma Aldrich 

1/3000. Goat anti 

mouse 

PSD-95 5% Milk in TBS-T 1/1000. PSD95 

antibody, Novus 

Biological 

1/1000. Goat anti 

mouse 

Nu1 5% Milk in TBS-T 1 g/mL. Nu1, Klein 

Lab 

1/1000. Goat anti 

mouse 

Nu4 5% Milk in TBS-T 1 g/mL. Nu4, Klein 

Lab 

1/1000. Goat anti 

mouse 

CREB 3% bovine serum 

albumin (BSA) in 

TSB-T 

1/1500. CREB, Cell 

Signalling 

1/1000. Goat anti 

rabbit 

pCREB Ser133 3% Milk in TBS-T 1/5000. Anti-

phospho-CREB 

(Ser133), Millipore 

1/1000. Goat anti 

mouse 

H3 

 

5% Milk in TBS-T 1/10000 Anti-

Histone H3, Sigma 

Aldrich 

1/1000. Goat anti 

rabbit 

GluA1 3% Milk in TBS-T 1/1000. Anti- 

GluR1, Millipore 

1/1000. Goat anti 

rabbit 

pGluA1 Ser845 3% Milk in TBS-T 1/1000. Anti- 1/1000. Goat anti 
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GluR1-S845, 

Abcam 

rabbit 

pGluA1 Ser831 3% Milk in TBS-T 1/1000. Anti- 

GluR1-S831, 

Abcam 

1/1000. Goat anti 

rabbit 

NMDA NR1 (1)  Anti-NMDAR1 

antibody, Abcam 

Goat anti rabbit 

NMDA NR1 (2)  NMDAR1 Antibody, 

Novus Bio 

Goat anti mouse 

7-nAChR 3% BSA/ 10% fetal 

bovine serum (FBS) 

in TBS-T 

1/7000. Anti-

Nicotinic 

Acetylcholine 

Receptor alpha 7 

antibody, Abcam 

1/5000. Goat anti 

rabbit 

Adenylyl cyclase 5% Milk in TBS-T 1/2000. Anti- 

Adenylate cyclase 1 

antibody, Abcam 

1/1000. Goat anti 

rabbit 

cAMP 3% Milk in TBS-T 1/2000. Anti- cAMP 

antibody, Abcam 

1/1000. Goat anti 

mouse 

PKC 5% Milk in TBS-T 1/4000. Anti- PKC 

(), Millipore 

1/1000. Goat anti 

mouse 

PKA 3% Milk in TBS-T 1/6000. PKA cat 

antibody, Santa 

Cruz Biotech 

1/1000. Goat anti 

rabbit 

MAPK 5% BSA in TBS-T 1/1000. p44/p22 

MAPK (Erk 1/2) 

Antibody, Cell 

1/1000. Goat anti 

rabbit 
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Signalling 

pMAPK 5% BSA in TBS-T 1/3500. Phospho- 

p44/42 Map Kinase 

(Thr202/Tyr204) 

Antibody, Cell 

Signalling 

1/1000. Goat anti 

rabbit 

 

Table 2.1 Optimisation for antibodies used in this thesis. Proteins of interest and the 
corresponding blocking solution; primary antibody concentration, name, and company; and 
secondary antibody concentration and name are indicated. 

 

2.7 Measurement of protein concentration 

 A BCA Protein Assay Kit (Pierce) was used to measure protein concentration in 

samples. The procedure followed the manufacturer’s suggestions completely. Briefly, 

fresh standards and samples were prepared for each BCA. Working Reagent was 

added to all standards and samples, which were then heated to 37oC for 30 minutes. 

All standards and samples were then measured at 562 nm using a spectrophotometer. 

A standard curve was created using the results from the standards, allowing protein 

concentration of the sample to be identified.  

 

2.8 Preparation and imaging of AlexaFluor 488 tagged A1-42 

The protocol for preparation was fully described previously (Soura et al., 2012). 

Briefly, an AlexaFluor 488 Protein Labelling Kit (Invitrogen) was used to label the 

freshly solubilised A1-42 (described above), following the manufacturer’s instructions. 

A1-42 was prepared as normal up to the DMSO stage, where kit components were 

added to the vial and allowed to incubate for 15 minutes at 21o C. Tagged-peptide was 

then run on a 2 mL Zeba buffer-exchange spin column with 40 L normal saline 

solution as a stacking buffer and centrifuged for 30 minutes at 16k RPM, to remove any 

free tag from the solution. Protein concentration was measured as described for A1-
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42 preparation with the addition of a measurement at 495 nm and 0.11 correction 

factor to account for the added AlexaFluor 488 tag, and degree of labelling was then 

assessed using the molar extinction coefficient of the AlexaFluor 488 of 71,000 M−1 

cm−1. Protein labelling was low, 0.042 moles dye per moles protein, likely due to the 

low concentration of peptide (less than 2 mg/mL) used, as suggested by the 

manufacturer. Tagged-A1-42 was diluted to 1 M, 25 M, or 50 M in normal saline 

solution. 

For whole mount fluorescent imaging of AlexaFluor 488 tagged A1-42, snail 

brains were dissected and the desheathed brains were immediately placed on glass 

slides with cover slips and imaged using an Olympus BX61WI with a 10x 1.0 NA 

dipping objective and excitation and emission filters 470/22. Images were taken using 

an EMCCD camera (Andor iXon), processed using Manager software (Edelstein et 

al., 2010), and binned at 1x1. 

 

2.9 Formic acid extracted haemolymph preparation 

After 24 hours in vivo incubation of either A1-42, A25-35, or oligomeric A 

25-35, a 1 mL syringe with 30 gauge precision glide needles (Becton Dickinson) was 

used to extract roughly 1 mL of haemolymph from each snail. 10 mL of haemolymph 

was pooled to create one sample. Each sample was submitted to formic acid 

extraction, a method of removing soluble Afrom tissue samples (McDonald et al., 

2012). 1 mL of pooled haemolymph sample was mixed with 1 mL 0.4% 

diethylamine/100 mM NaCl. 400 L was then centrifuged at 14K RPM for 1 hour at 4o 

C. The supernatant was removed and 200 L 1M Tris Base pH 7.4 was added to the 

pellet. 400 L cold formic acid was then added. The sample was sonicated for 20 

seconds and then 400 L was centrifuged at 14K RPM for 1 hour at 4o C. 210 L of the 

supernatant was diluted into 4mL Formic Acid Neutralization Buffer (1M Tris Base, 0.5 

M Na2HPO4) and 2 mL of this mixture was centrifuged at 14K RPM for 1 hour at 4o C. 
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The supernatant was then neutralised with 1/10 volume 1M Tris Base (pH 6.8). The 

samples were stored at -80o C until used for imaging. 

 

2.10 TEM negative stain 

Formic acid extracted haemolymph samples were prepared for TEM negative 

stain to quantify soluble, oligomeric A within the animals’ body fluids. 4 L of each 

sample were pipetted on to Formvar/carbon coated 400-mesh copper grids (Agar 

Scientific, Essex, UK) for 1 minute. Excess liquid was removed with Whatman paper. 

Grids were washed with 4 L of Milli-Q water and blotted, followed by 4 L of filtered 

2% (w/v) uranyl acetate for 1 minute and blotted again. Grids were allowed to air dry 

before being examined in a Hitachi 7100 TEM at 100 kV and digital images acquired 

with an axially mounted (2K x 2K pixel) Gatan Ultrascan 1000 CCD camera (Gatan UK, 

Oxford, UK). After initial imaging, the samples were immunogold labelled (as previously 

described in Section 2.4) to determine oligomeric structure. A 1 g/mL mouse Nu1 

primary antibody (Klein lab) and a goat anti-mouse 10 nm gold-conjugated secondary 

antibody (BBI Solutions OEM Ltd., Cardiff, UK) were used and grids were imaged as 

stated previously. 

Negative staining of A1-42, A25-35, or oligomeric A 25-35 was used to 

determine peptide morphology. Aliquots of 94 M A25-35, 100 M A1-42, and 100 

M oligomeric A 25-35 were allowed to incubate in normal saline solution for 0, 3, or 

24 hours. Samples were prepared and images acquired as stated above. 

 

2.11 Behavioural pharmacology 

 Four animal groups were assessed in all behavioural pharmacology studies: 

trained, inhibitor-injected; trained, vehicle-injected; naïve, inhibitor-injected; naïve, 

vehicle-injected. Trained animals were trained, injected 24 hours post-training, and 

tested 24 hours post-injection, as stated in 2.2 and 2.3. Naïve animals were injected 
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during the same experimental time points as trained animals. The inhibitors used in this 

thesis include 10-4M Anisomycin (Sigma-Aldrich) (Fulton et al., 2005), 20 M MK-801 

(Sigma-Aldrich) (Wan et al., 2010), 0.04 M Bisindolylmaleimide I (Calbiochem) (Marra 

et al., 2013), and 5 M H-89 (Sigma-Aldrich) (Michel et al., 2008). 

 

2.12 S35-methionine labelling 

 Animals were trained, injected with 200 L of A. 10 Ci/mL S35-methionine 

(ICN Biomedicals), and tested, as stated in 2.3 and 2.4. Brains were dissected after 

testing and 5 buccal + cerebral ganglia were pooled to create one sample. Each 

sample was transferred to 60 L PBS; 10 L was used for BCA to determine protein 

concentration. The remaining 50 L solution was centrifuged at 10K RPM for 3 

minutes. The supernatant was retained and 1 mL 25% trichloroacetic acid (TCA) was 

added, along with 1 mL H2O. The mix was vortexed and precipitated on to cellulose 

paper using 10% TCA. The sample was then air dried in 100% industrial methylated 

spirits (IMS) and the sample was measured using a scintillator. Results were 

normalised to the appropriate BCA results. 

 

2.13 Chromatin Extraction 

 An Episeeker Chromatin Extraction Kit (Abcam) was used to extract chromatin 

from tissue samples; the manufacturer’s instructions were followed. Briefly, 5 buccal + 

cerebral ganglia were homogenised and 500 L Working Lysis Buffer was added. 

Tissue was further homogenised, followed by centrifugation at 5K RPM for 5 minutes at 

4oC. Supernatant was completely removed from the pellet and retained as the cytosolic 

fraction. 100 L Working Extraction Buffer was then added to the chromatin pellet and 

resuspended by pipette mixing. The sample was then allowed to incubate on ice for 10 

minutes and occasionally vortexed before being resuspended by pipette mixing and 

sonicated for 20 seconds, twice. The sample was then centrifuged at 12K RPM for 10 
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minutes at 4oC and the supernatant was retained as the chromatin fraction. A 1:1 ratio 

of Chromatin Buffer was added to the chromatin extract. Both the cytosolic extract and 

chromatin extract were measured for protein concentration using BCA and were 

maintained at -80oC until further use in western blot or ELISA. 

 

2.14 Enzyme-linked immunosorbent assay (ELISA) 

 For the CREB and pCREB ELISAs, sandwich ELISAs were used. To begin, a 

Nunc MaxiSorp flat-bottom 96-well plate (eBioscience) was coated with 100 L of 

Coating Buffer (1x PBS) + either 1/1500 rabbit anti CREB (Cell Signalling) or 1/1000 

mouse anti pCREB Ser133 (Millipore). The plate was covered with plastic wrap and 

allowed to incubate at 37oC for 2 hours. After incubation, the wells were washed with 

200 L Washing Buffer (1x PBS + 0.05% Tween 20) three times, and then 200 L 

Blocking Buffer (10 mg/mL BSA) was added to each well. The plate was again covered 

with plastic wrap and allowed to incubate at 37oC for 1 hour. After incubation, the wells 

were washed with 200 L Washing Buffer three times, and then 100 L of samples 

were applied to the appropriate well. The plate was covered with plastic wrap and 

allowed to incubate at 37oC for 2 hours. After incubation, the wells were washed with 

200 L Washing Buffer three times, and then 100 L Dilution Buffer + 1/1000 goat anti 

rabbit HRP-conjugated secondary antibody (Cell Signalling) or 1/1000 goat anti mouse 

HRP-conjugated secondary antibody (Cell Signalling)  was applied to each well. The 

plate was covered with plastic wrap and allowed to incubate at 37oC for 30 minutes. 

After incubation, the wells were washed with 200 L Washing Buffer three times, and 

75 L HRP substrate (Millipore) was added to each well and allowed to incubate in the 

dark for 10 minutes. The absorbance of each well was then read at 450 nm using a 

plate reader and values were normalised to BCA measurements of the appropriate 

sample. 
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 For the cAMP ELISA, a cAMP Direct ELISA kit (Enzo) was used, and 

manufacturer’s instructions were followed. Briefly, standards and samples were added 

to a 96-well plate along with colourimetric reagents. Once substrate was added and 

proper colour development was achieved, wells were measured at 405 nm using a 

plate reader. Sample values were determined by comparing to standard 

measurements. 

For the PKA ELISA, a PKA Kinase Activity Assay kit (Abcam) was used, and 

manufacturer’s instructions were followed. Briefly, samples were added to a 96-well 

plate along with kinase reagents. Once HRP substrate was added and proper colour 

development was achieved, wells were measured at 450 nm using a plate reader. 

Sample values were normalised to BCA measurements of the appropriate sample. 

 

2.15 Statistical analysis 

Data that passed the D’Agostino and Pearson omnibus normality test were 

subjected to parametric tests (one-way analysis of single variance [ANOVA] with 

Tukey’s multiple comparison, or t-tests) to establish significance (criterion, p < 0.05). 

Data that did not pass this normality test were subjected to nonparametric tests 

(Kruskal-Wallis with Dunn’s multiple comparison, or Mann-Whitney) to establish 

significance (criterion, p<0.05). All datasets were analysed for outliers using Grubbs’ 

test (criterion p<0.05). Any outliers detected were removed from the dataset. GraphPad 

Prism software was used for all analyses. 
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3. Lymnaea stagnalis as a novel behavioural model for Amyloid 

research 

 The pond snail Lymnaea stagnalis is a well-defined and tractable animal model 

used for the investigation of the cellular and molecular mechanisms of learning and 

memory. Behaviourally, Lymnaea has been used to investigate many different forms of 

associative memory (see 1.2; for review, see Benjamin and Kemenes, 2009); however, 

the single-trial food-reward classical-conditioning paradigm has been most successful 

in connecting cellular and molecular mechanisms to animal behaviour. This paradigm 

is based on the early discovery that it is possible to pair non-food chemicals with food, 

which results in a conditioned feeding response that can persist for up to 19 days 

(Alexander et al., 1984). The paradigm further developed when the optimal conditioned 

stimulus, amyl acetate solution, and unconditioned stimulus, sucrose solution, were 

successfully paired to train Lymnaea (Alexander et al., 1984). Today, the single-trial 

food-reward classical-conditioning paradigm is used to link behavioural findings to 

molecular, cellular, and network changes, and has revealed highly evolutionarily 

conserved memory mechanisms in the Lymnaea nervous system (for review, see 

Kemenes, 2013; Feng et al., 2009). 

 The conventional animal models to examine the effects of A on behaviour 

include transgenic mice and A-injected rodents. Multiple transgenic mouse lines exist 

to study A’s effect on the brain and behaviour, and show a correlation between 

increased A production in the brain and decreased performance in numerous memory 

tasks (PDAPP, Tg2576, APP23, TgCRND8, J20, APP+PS1, Tg2576+PS1, APP+ PS1 

KI, 5xFAD, and 3xTg-AD, Appendix I.1) (for review, see Webster et al., 2014). Injection 

of A has also been implicated in impairing complex learned behaviour in live rodents 

(Cleary et al., 2005; Shankar et al., 2008; Lesne et al., 2006). While A behavioural 

studies are mostly reserved to rats and mice, invertebrates have also made a large 

impact on the field. Drosophila, a well-developed genetic model, now has many AD 

transgenic tools available to investigate A’s neurotoxic influence and negative effect 

on memory (for review, see Prussing et al., 2013). C. elegans, another well-developed 

invertebrate model, is currently used for screening in vivo AD drugs targeting A-

induced toxicity; researchers argue that this allows for a greater study of therapeutics, 

as C. elegans offer more complexity than the current mammalian cell culture model (for 

review, see Lublin and Link, 2013). However, molluscan models have not been used 

for A study, even though they offer a wealth of learning and memory information and 
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unique approaches to the field. Only one group has successfully used a molluscan 

system to observe the peptide’s effect on behaviour. Helix lucorum were unable to 

learn a conditioned food aversion reflex when repeatedly injected with high 

concentrations of A 25-35, 24 hours before and 72 hours after training, in conjunction 

with a 5-day multi-trial training protocol (Samarova et al., 2005). However, the effect of 

A treatment on consolidated memory was not investigated in Helix and has been a 

relatively unexplored form of memory throughout the literature. 

 The wealth of already existing knowledge on the cellular and molecular 

mechanisms of associative memory made Lymnaea an ideal model system to test the 

behavioural, cellular, and molecular effects of A peptides using a top-down approach. 

In the experiments described in this chapter, Lymnaea stagnalis were subjected to a 

pre-neuronal loss A incubation time point paired with the single-trial food-reward 

classical conditioning paradigm to investigate the effects of A on associative LTM. 

Snails were treated with either a short amyloidogenic fragment (A 25-35) or full-length 

A 1-42 and tested to measure impairment of memory 24 hours after treatment. A 

induced changes in behaviour were measured for both consolidated memory and 

memory acquisition. 

 

3.1 A 1-42 and A 25-35 disrupts long term memory after 24 hour in 

vivo incubation 

 The short fragment peptide A 25-35 has been shown to have neurotoxic 

properties, to affect cognitive processes (for review, see Millucci et al., 2010), and has 

been used successfully in another molluscan model (Samarova et al., 2005). The 

fragment represents the core functional domain of the full length A peptide and is able 

to self-assemble to form a predominantly -sheet structure. For this reason, it has been 

used throughout the literature to test the effects of A exposure (for review, see 

Millucci et al., 2010). The concentration of A 25-35 used in these experiments was 0.1 

mM, a concentration used successfully in Helix (Samarova et al., 2005). A 24 hour 

post-training time point for injection of A has been chosen because memory in 

Lymnaea is considered to be fully consolidated (i.e., resistant to treatment with 

amnesic agents, such as Anisomycin and Actinomycin-D) by this time (Fulton et al., 

2005; Marra et al., 2015) and the primary goal was to investigate the disruption of 

consolidated memory by A. A pilot experiment was run to establish a testing time 
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point where A-induced memory loss was observed, ranging from 48 hours post-

training to 9 days post-training (Appendix II.1). Animals were starved for 2 days, trained 

at time point 0 hours (the day after starvation completed), injected with 0.1 mM A 25-

35 at time point 24 hours, and tested for the conditioned feeding response every day 

for up to 9 days post-training. The results of this pilot experiment, along with general 

incubation time points used in the literature, established the testing time point as 24 

hours post-injection and 48 hours post-training. 

Once a suitable experimental timeline had been established, animals were 

classically conditioned using the single-trial food-reward training paradigm. Treatment 

with 0.1 mM A 25-35 at 24 hours after training significantly reduced the animals’ 

feeding response to the CS 24 hours after injection and 48 hours after training (Figure 

3.1A and B). However, 0.1 mM A 25-35 is considered to be a rather high 

concentration, so a more commonly used concentration of 1 M A 25-35 was 

administered for comparison. The data showed a trend for decreased memory but no 

significant memory impairment (Figure 3.1B), so all subsequent experiments used 0.1 

mM A 25-35. 

While A 25-35 (racemised at D-Ser26) has been immunohistochemically 

detected in plaques of AD brains (Kubo et al., 2002), the peptide is not actively cleaved 

from APP. Therefore, the effect of A 1-42, the most toxic of the A peptides with a 

widely accepted physiological and pathological relevance, was also examined. At 1 

M, A 1-42 significantly reduced the animals’ feeding response to the conditioned 

stimulus (Figure 3.1B). For a treatment control, trained animals were injected with 

either vehicle or an A 1-42 variant (further referred to as peptide control), and no 

memory impairment was observed. Therefore, the behavioural effect observed is not a 

result of either the buffer the A is solubilised in, the injection itself, or a general effect 

of additional peptide being administered. Both 1 M A 1-42 and 0.1 mM A 25-35 

decreased the animals’ response rates to baseline, naive levels. Importantly, neither 

peptide affected the unconditioned feeding response to sucrose when tested 24 hours 

after systemic injection (Figure 3.1C). The lack of feeding response to the CS therefore 

was not due to an impairment of the animals’ ability to generate the feeding motor 

pattern. 
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Figure 3.1 A 1-42 and A 25-35 disrupt long term memory after 24 hour in vivo 

incubation. (A) Timeline of the experiment. (B) Six starved animal groups (0.1 mM A 25-35 

[n=18], 1 M A 25-35 [n=24], 1 M A 1-42 [n=55], vehicle [n=96], naive [n=55], peptide 
control [n=20]) were tested for rasp rate to amyl acetate, a measure of the feeding response to 
the CS. Means ± standard error mean (SEM) values are shown. Asterisks indicate behavioural 
responses that are significantly lower (***= p<0.0001, *= p<0.05) than those in the vehicle-
treated or peptide control groups. One-way ANOVA, p=0.0001. Tukey’s tests with p<0.05: 

Vehicle vs. Naive, A 1-42 vs. Vehicle, 0.1 mM A 25-35 vs. Vehicle, Peptide Control vs. Naive. 

(C) Four starved animal groups (0.1 mM A 25-35 [n=9], 1 M A 25-35 [n=15], 1 M A 1-42 
[n=12], naive [n=10]) were tested for rasp rate in response to the US, sucrose. Means ± SEM 
values are shown. One-way ANOVA, p=0.3542. All Tukey’s tests: p>0.05. 
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3.2 Animals treated with 1 M A1-42 or 0.1 mM A 25-35 do not 

exhibit neuronal death after 24 hours in vivo incubation 

 A causes neurodegeneration; cell death in the memory-encoding circuitry 

would completely abolish memory and would manifest as a severe behavioural deficit. 

The intent of the behavioural work in Figure 3.1 was to observe pre-neuronal death 

time points and so three indicators to monitor apoptosis or necrosis were used. First, 

as mentioned previously, sucrose testing was used to monitor circuitry function through 

behavioural methodology (Figure 3.1C). If A-induced neuronal death was occurring 

within the memory and feeding network, the animals would not have a response rate to 

the US as high as the uninjected, naive group since both the conditioned and 

unconditioned feeding motor programme are controlled by the same neuronal circuit 

(Straub et al., 2004). No significant difference was found between A-injected groups 

and naïve animals (Figure 3.1C). Second, TEM was used to examine sections from 

treated animals’ brains and qualitatively scored for evidence of apoptotic morphology 

within neurons, including: fractionation of the nucleolus, presence of holes in the 

nuclear envelope, fractionation of chromatin, and blebbing of the cellular membrane. 

No evidence of apoptosis was observed in 1 M A 1-42 or 0.1 mM A 25-35 treated 

animals when compared to vehicle-injected animals and scored for health (Figure 3.2).  
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Figure 3.2 A 1-42 and A 25-35 treated animals do not exhibit morphological indicators 

of cell death after 24 hours in vivo incubation. (A-D)Three animals groups (A 1-42, A 25-
35, Vehicle) were scored for characteristics of health using qualitative scoring (where 0= 
unhealthy, 1= uncertain, 2= healthy) of TEM images. Means + SEM values are shown. (A) 

Nucleolus. A 1-42 [n=7], A 25-35 [n=8], Vehicle [n=2]. One-way ANOVA, p=0.4895. All 

Tukey’s tests: p>0.05. (B) Nuclear envelope. A 1-42 [n=31], A 25-35 [n=38], Vehicle [n=20]. 
One-way ANOVA, p=0.9688. All Tukey’s tests: p>0.05. (C) Cellular membrane (lack of 

membrane blebbing) A 1-42 [n=47], A 25-35 [n=85], Vehicle [n=21]. One-way ANOVA, 

p=0.1136. All Tukey’s tests: p>0.05. (D) Absence of chromatin fractionation. A 1-42 [n=29], A 
25-35 [n=36], Vehicle [n=20]. One-way ANOVA, p=0.5063. All Tukey’s tests: p>0.05. (E-G) 

Representative TEM images of a cell within an A 1-42, A 25-35, or vehicle brain tissue 
section. The dotted line outlines the nuclear envelope. The asterisk indicates the nucleolus. 

Arrows indicate areas of heterochromatin. (E) A 1-42 image. Scale bar= 0.5 m. (F) A 25-35 

image. Scale bar= 0.2 m. (G) Vehicle image. Scale bar= 0.2 m. 
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Finally, a TUNEL assay was used on tissue slices from either 0.1 mM A 25-35, 

1 M A 1-42, or vehicle-injected animals and imaged using fluorescence microscopy 

for signal intensity. The TUNEL assay allows for fragmented DNA to be labelled with 

marked deoxyuridine triphosphates (dUTPs); this DNA fragmentation is a marker for 

apoptosis and thus an increased signal indicates increased apoptosis. Signal intensity 

was not significantly greater in either 0.1 mM A 25-35, 1 M A 1-42, or vehicle-

injected animals when compared to the negative control, but all experimental groups 

and the negative control showed significantly less signal than the positive control 

(Figure 3.3). As a negative control, vehicle-injected sections were prepared and 

imaged without TUNEL reagent  (Figure 3.3E). As a positive control, vehicle-injected 

sections were treated with DNase I, prepared, and imaged (Figure 3.3F). The 

successful use of the negative control and positive control suggests that the TUNEL 

assay is binding to apoptotic tissues and that the signal is not a result of tissue 

autofluorescence. The lack of behavioural, morphological, and DNA indicators of cell 

death, for both the 1 M A 1-42 and the 0.1 mM A 25-35, along with the memory 

impairment observed with both peptides in the previous experiment (Figure 3.1B), 

justifies the use of these concentrations to investigate pre-neuronal death effects of A 

1-42 and A 25-35 in Lymnaea. 
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Figure 3.3 A 25-35 and A 1-42 do not cause apoptosis after 24 hour incubation. (A) 
Graphical representation of the amount of dUTP signal in ganglionic sections from five animal 

groups (A 1-42 [n=12]; A 25-35 [n=7]; Vehicle [n=7]; negative control [n=6]; and positive 
control [n=3]). Means ± SEM values are shown. Asterisks indicate significantly higher signal 
intensity in the positive control group compared against each of the other groups. n.s. 
represents not significantly different groups. One-way ANOVA, p<0.0001. Tukey’s tests p<0.05: 

Vehicle vs. Positive Control, A 1-42 vs. Positive Control, 0.1 mM A 25-35 vs. Positive Control, 
Negative Control vs. Positive Control. (B-F) Representative fluorescence images of ganglia. (B) 

A 1-42 treated, labelled with TUNEL. (C) A 25-35 treated, labelled with TUNEL. (D) Vehicle-
treated, labelled with TUNEL. (E) Negative control, labelled with Labelling Solution only (F) 

Positive control, labelled with TUNEL. Scale bars represent 50 m. 
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3.3 Animals treated with 1 M A 1-42 and 0.1 mM A 25-35 have 

significantly decreased levels of PSD-95 in comparison to trained 

and vehicle-injected animals after 24 hours in vivo incubation 

 The previous section indicated that the “learning ganglia” (buccal+cerebral) 

which contain the circuitry where memory is encoded, do not exhibit cell death after 24 

hours in vivo incubation of A 1-42 or A 25-35. Importantly for A studies, 

neurodegeneration starts at the synapse (for review, see Mucke and Selkoe, 2012) and 

A exposure can reduce spine density and alter synaptic morphology after as little as 

24 hours of exposure (Smith et al., 2009). This synaptic deterioration can cause a loss 

of LTM before any measureable cell death. In fact, the synapse is the suggested target 

of toxic, oligomeric A in AD (for review, see Wilcox et al., 2011; Mucke and Selkoe, 

2012). Postsynaptic density (PSD)-95 is the predominant member of the PSD- 

membrane-associated guanylate kinase (MAGUK) family of proteins, which act as 

scaffolding for the postsynapse and helps to stabilise and traffic postsynaptic receptors 

(Kim and Sheng, 2004). This protein is an established, definitive marker for 

postsynaptic terminals (Rao et al., 1998) and is critical for LTP and plasticity 

(Schlueter, et al., 2006; Ehrlich and Malinow, 2004). A reduced PSD-95 protein 

expression has been found in AD brain (Proctor et al., 2010) and Tg2576 mice 

(Almeida et al., 2005).  A mammalian PSD-95 antibody has been used successfully in 

Lymnaea (Naskar et al., 2014), and the brains’ degenerative state was further 

assessed by quantifying the levels of total PSD-95 using western blotting. It was found 

that animals injected with either 1 M A 1-42 or 0.1 mM A 25-35 express significantly 

decreased levels of PSD-95 when allowed to incubate in vivo for 24 hours, in 

comparison to vehicle-injected animals (Figure 3.4). Naïve animals also had 

significantly decreased levels of PSD-95 compared to trained and vehicle-injected 

animals, indicating an increase in PSD-95 levels after training. These findings, along 

with those in Figures 3.1C, 3.2, and 3.3, suggest that the behavioural deficits observed 

in Figure 3.1B are not due to neuronal death, but may be due to the decrease in 

postsynaptic structure after A treatment. 
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Figure 3.4 PSD-95 levels significantly decrease in animals treated with 1 M A 1-42 or 

0.1 mM A 25-35 for 24 hours in vivo. A) Representative western blot for PSD-95 and the 

accompanying  tubulin loading control blot. B) Four animal groups (A 1-42 [n=5], A 25-35 
[n=3], Vehicle [n=4], Naïve [n=5]) were compared for intensity of PSD-95 labelling using 
western blotting. For each group 5 Buccal+Cerebral ganglia were pooled together, western 
blotted, and labelled with a PSD-95 antibody. Data represents PSD-95 band densitometry/ 
loading control densitometry.  Means ± SEM values are shown. One-way ANOVA, p=0.0318. 

Tukey’s tests p<0.05: Vehicle vs. A 1-42, Vehicle vs. A 25-35, Vehicle vs. Naive 
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3.4 1 M A 1-42 or 0.1 mM A 25-35 does not affect memory 

acquisition or early consolidation 

 While the primary focus of this body of work is on consolidated LTM, the bulk of 

experiments throughout the literature have focused on memory acquisition. Various 

labs have found that memory is impaired following multiple applications of A (Nitta et 

al., 1997; Chen et al., 1996) or in APP-over expressing transgenic animals (Arendash 

et al., 2001; Chapman et al., 1999). However, these impairments arise from prolonged 

exposure to significant amounts of A. Others have also looked at single injections of 

A, but paired with multiple training trials (McDonald et al., 1996; Stepanichev et al., 

2005). This alters the time point being viewed and thus makes the ability to distinguish 

between memory acquisition and other stages, such as late stage consolidation, very 

difficult if not impossible. The single-trial conditioning and pre-training single A 

injection paradigm (Figure 3.5A) shows that treatment does not hinder memory 

acquisition at 1 M A 1-42 or 0.1 mM A 25-35 concentrations when these peptides 

were applied immediately before training and allowed to incubate 24 hours in vivo 

(Figure 3.5B).  

Experiments also tested the same effect of A on early memory consolidation, 

with the peptide injections administered immediately after training (Figure 3.5C), and 

still no effect on behaviour was observed (Figure 3.5D). In both cases, A 1-42 and A 

25-35 groups showed similarities to the vehicle group in that animals produced a 

significantly increased feeding response to the CS in comparison to naive animals. 
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Figure 3.5 A 1-42 and A 25-35 do not disrupt memory acquisition or early consolidation 
when measured 24 hours post-training. (A) Timeline of experiment. (B) Four starved animal 

groups (1 M A 1-42 [n=27], 0.1 mM A 25-35 [n=30], vehicle [n=16], naive [n=16]) were 
tested for rasp rate to amyl acetate, a measure of the feeding response to the CS. Means ± 
SEM values are shown. Asterisks indicate behavioural responses that are significantly higher 
than those in the naive group. One-way ANOVA, p=0.0039. Tukey’s tests with p<0.05: Vehicle 

vs. Naive, A 1-42 vs. Naive, A 25-35 vs. Naive. (C) Timeline of experiment. (D) Four starved 

animal groups (1 M A 1-42 [n=14], 0.1 mM A 25-35 [n=10], vehicle [n=15], naive [n=9]) were 
tested for rasp rate to amyl acetate, a measure of the feeding response to the CS. Means ± 
SEM values are shown. Asterisks indicate behavioural responses that are significantly higher 
than those in the naive group. One-way ANOVA, p=0.0102. Tukey’s tests with p<0.05: Vehicle 

vs. Naive, A 1-42 vs. Naive, A 25-35 vs. Naive. 
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 The study was then extended to a 48 hour post-treatment testing time point. In 

this experiment, 1 M A 1-42 or 0.1 mM A 25-35 injections were applied immediately 

before training and allowed to incubate 48 hours in vivo (Figure 3.6A). By 48 hours, 

both A 1-42- and A 25-35-treated animals respond to the CS in a significantly 

decreased manner, when compared to vehicle-injected animals (Figure 3.6B). These 

three experiments clarify the importance of the incubation time point used and 

necessitates the distinction of a healthy circuitry at the testing time point. The 

behavioural disruption observed in Figure 3.6B is likely due to the amount of time that 

A is allowed to incubate in vivo. As circuitry health at 48 hours incubation has not 

been tested, the health of the network which encodes this memory trace is unknown at 

this time. However, A does not affect memory acquisition, as any disturbances to 

acquisition would have affected the 24 hour behavioural response. Another possibility 

is that memory development between 0 to 24 hour post-training is impervious to A 

treatment, but that further memory processing between 24 to 48 hour post-training is 

vulnerable to A treatment. 
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Figure 3.6 A 1-42 and A 25-35 disrupt memory measured 48 hours post-injection. (A) 

Timeline of experiment. (B) Four starved animal groups (1 M A 1-42 [n=18], 0.1 mM A 25-35 
[n=16], vehicle [n=32], naive [n=36]) were tested for rasp rate to amyl acetate, a measure of the 
feeding response to the CS. Means ± SEM values are shown. Asterisks indicate behavioural 
responses that are significantly lower (***= p<0.001, *= p<0.05) than those in the vehicle-treated 

group. One-way ANOVA, p=0.0002. Tukey’s tests with p<0.05: Vehicle vs. Naive, A 1-42 vs. 

Vehicle, A 25-35 vs. Vehicle. 
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3.5 Discussion 

 Lymnaea stagnalis, a well-established animal model for learning and memory 

research (for review, see Kemenes, 2013), is a prime candidate for investigations of 

memory dysfunction. Here, Lymnaea is established as a highly suitable behavioural 

model for A research. The experimental evidence indicates that A disrupts 

consolidated long term memory, but not the acquisition or early consolidation of 

memory, when allowed to incubate in vivo for 24 hours. This combination of the 24 

hour incubation time point and the 1 M A 1-42 and 0.1 mM A 25-35 injected 

concentrations are very important to this body of work; no cell death is observed, but 

A treatment clearly decreases postsynapses to naïve levels. The distinction of a 

healthy circuitry is crucial for future A work, as neuronal death is clearly not involved 

in early A-induced memory impairment. For example, these experiments suggest that 

acquisition is not disrupted by A. However, once the peptide is allowed to incubate 

beyond this “healthy” 24 hour time point, acquisition appears to be disrupted. Clearly, 

any disrupted acquisition would have been measurable at the 24 hour time point, so 

the health of the circuitry must instead be considered as the culprit to this contradiction. 

Other labs have found similar behavioural discrepancies between 24 and 48 hour in 

vivo incubation time points in rats (Freir et al., 2011; Borlikova et al., 2013). Another 

equally plausible explanation for the finding that A injected around the time of training 

impairs memory measured at 48 hours (Figure 3.6A) is of course that A incubation 

overlaps with the 24 hours post-training and 48 hour post-injection experimental time 

line (Figure 3.1A). This suggests that the 24-48 hour post-training memory is 

vulnerable to A treatment, likely affecting synaptic and dendritic alterations (Freir et 

al., 2011). 

 Lack of neuronal death is an important property of A-treated brains, as shown 

by the synapse degeneration memory deficit observed in this chapter. Memory may be 

disrupted by structural alterations of synapses or memory signalling cascades at these 

early, synapse degeneration-only time points. The experiments suggest a reversal or 

inhibition of synaptic structures that grow or alter due to training. These possibilities are 

further supported by the work of Borlikova et al., 2013, where they show that 48 hour in 

vivo incubation of A causes decreased synapse numbers and decreased diameter of 

the postsynaptic terminal of CA1 hippocampal slices, as measured using TEM 

(Borlikova et al., 2013). A decrease in the number of synapses at this same 48 hour in 

vivo incubation time point has also been found in Freir et al., 2011. When A was 

allowed to incubate in vivo for 1 hour, there was no measureable change in the 
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synaptic proteins synaptophysin, PSD-95, or synaptopodin, as measured using 

western blot (Borlikova et al., 2013). 

 Contradictions fill the A field. The use of Lymnaea will help to clarify some of 

these problems, which often arise from minor experimental differences. Over-

production of A in a transgenic mouse model, single-injections of A, or multiple-

injections of A in animals should not be considered as interchangeable methods; the 

concentrations and structure of the peptides are not comparable. For example, 

Brouillette et al. 2012, examined the effect of synthetic A 1-42 on passive avoidance 

task-based memory. In this experiment, animals were injected 6 times over 6 days with 

A before any training or testing; the A-injected animals expressed significantly less 

step through latency than the control group (Brouillette et al., 2012). However, as 

previously stated in this thesis, when synthetically prepared A 1-42 was injected into 

Lymnaea only once before training and tested at the same time point as those used in 

Brouillette et al., 2012, no behavioural deficits were found. It is worth noting that in the 

Brouillette et al., 2012 study, clear signs of neuronal death were measured by the 

testing time point; however in this thesis’ study, no neuronal death was observed. 

Beside comparisons between injected A, animals which naturally over express A are 

often compared within the literature as well. Transgenic mice are well known to display 

age-related memory deficits when compared to their wild-type litter mates; an example 

of a study examining such deficits in Tg2576 mice can be found in Lesne et al., 2006. 

However, the use of transgenic mice has the similar problem of large amounts of 

peptide affecting brain tissue, similar to multi-injection designs. Chapman et al., 1999 

found that APPswe transgenic mice were unable to improve behavioural performance 

over time in a T-maze, whereas litter mate controls would improve, and by day 12 only 

33% of transgenic mice would learn the behaviour (Chapman et al.,1999). This study 

also suggests a disruption to memory acquisition, similar to the multi-injection A 

studies but different from this thesis’ single-injection A studies. Notably, neither the 

Chapman et al., 1999 nor the Brouillette et al., 2012 studies are able to show memory 

disruption within a healthy brain. All three of these models should be used within the 

A field, yet comparisons can only be made if neuronal degeneration has first been 

removed as a possible obscuring factor for behavioural studies. Even then 

comparisons between the three models must be made carefully; it is important to 

remember that results obtained from different models may not completely complement 

each other. 
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Another difference is found when multiple- versus single-trial training is 

compared, as A affects memory stages differently. Some forms of memory, such as 

acquisition, are not precisely measurable using a multi-trial approach, as training 

requires multiple days and memory will be acquired over this extended time course. 

The research presented in this chapter suggests that consolidated memory is 

vulnerable to A, but acquisition of memory is not. Both the acquisition and 

consolidation results have also been found by Ozdemir et al., 2013, although their 

experimental procedure was drastically different. Importantly, there were no apoptotic 

cells observed in the CA1 or CA3 regions at these measured time points (Ozdemir et 

al., 2013).  Another group, which used differing methods, came to the same conclusion 

as well for A-disrupted consolidated memory, which can be more reliably measured 

with a multi-training approach than acquisition. Lesne et al., 2006 used a multi-training, 

multi-injection approach to measure the effects of A*56, an A dodecamer extracted 

from transgenic Tg2576 mice, on wild-type rats’ spatial memory. By 24 hour post-

training, A-injected animals showed a significant behavioural deficit (Lesne et al., 

2006) compaired to controls. The experiments in this chapter agree with those in 

Ozdemir et al., 2013 and Lesne et al., 2006, suggesting consolidated memory is 

vulnerable to A and that this memory process is measurable over single- and multi-

training trials. However, memory acquisition, which is much more dependent on 

training time points, has been found to be affected by A by other groups, as described 

above in the Chapman et al. 1999 and Brouillette et al. 2012 discussion. Similarly, 

Samarova et al., 2005 has shown that Helix lucorum expressed disrupted memory 

acquisition when trained multiple times and injected multiple times with A 25-35 

before training. These three acquisition studies involve a multi-training approach and 

the method used is not a reliable measurement of memory acquisition.  

For the studies referenced in this chapter, A’s effect on memory acquisition 

may be a false result arising instead from dead or dying circuitry and general 

unhealthiness of the brain in the animals tested, or as a measurement of memory 

processes that are not purely acquisition. Similar to the previous discussion of different 

models being used for A studies, the ability for degeneration to obscure behavioural 

results is too great not to be considered. However, when neuronal health remains 

intact, multi- and single-trial training may be comparable, as seen with the Lesne et al. 

2006 and Ozdemir et al. 2013 studies, if the form of memory being compared is in fact 

the same between the two experiments. 
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Even differences in peptide preparation and the type of fragment administered 

gives contradictory results; this chapter supports this view through the examination of 

behavioural deficits arising from A 1-42 compared to A 25-35. The experiment in this 

thesis suggest that 100-fold more A 25-35 is needed to cause similar behavioural 

disruption as A 1-42 (Figure 3.1). Similarly, a comparison between Freir et al., 2011 

and Borlikova et al., 2013 supports these claims. In Freir et al., 2011, A-containing 

medium from the 7PA2 cell line was used to consider 0, 3, 6, 9, and 12 hour post-

training injection time points with 24 and 48 hour testing time points. They found 

behavioural deficits only arising in the 6 and 9 hour post-training injection, 48 hour 

testing time points (Freir et al., 2011). A similar study was conducted by Borlikova et 

al., 2013, except this study injected A-extracts from AD brain samples and considered 

1, 6, and 9 hour post-training injection time points with 24 and 48 hour testing time 

points. They found behavioural deficits only at the 1 hour post-training injection, 48 

hour testing time point (Borlikova et al., 2013). Considering these two very similar 

experiments, the results differ greatly due to the methodological discrepancy of 

different forms of injected Abeing used (Freir et al., 2011; Borlikova et al., 2013). For 

this reason and those mentioned previously in the discussion, a highly tractable animal 

model was used in this thesis with very tightly controlled methodology to establish how 

A disrupts LTM. All proceeding experiments in this thesis used animals or tissue from 

animals which underwent the same precise training, injection, and testing as 

mentioned in this chapter, unless otherwise noted. 
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Chapter 4. A structure and location can be monitored and 

quantified in Lymnaea stagnalis 

As established in Chapter 3, Lymnaea offers a unique model system to 

investigate A-induced memory impairment. While the behaviour has been well 

investigated, a further investigation is needed into the peptides causing this effect. As 

raised within the previous discussion, contradictions exist throughout the A field. An 

in-depth study of A peptides, using this now established behavioural model, will help 

resolve these contradictions. 

A peptides are cleaved from the type-1 transmembrane protein APP, the 

function of which is still unknown. This protein is highly evolutionarily conserved 

throughout the animal kingdom, with orthologues found in Drosophila melanogaster 

(Luo et al., 1990), Caenorhabditis elegans (Daigle and Li, 1993), and Aplysia 

californica (Moroz and Kohn, 2010). Two aspartyl proteases cleave APP, -secretase 

followed by -secretase, to create A peptides. However, it is only vertebrates which 

contain the sequence coding pathological A (Tharp and Sarkar, 2013) and no 

invertebrates have been seen to produce A plaques naturally (Tharp and Sarkar, 

2013). It is worth noting, however, that most rodents do not form A deposits either 

(Link, 2005) and only O. degus (Tarragon et al., 2013) and non-human primates 

appear to model AD-like symptoms caused by endogenous APP proteins (Price and 

Sisodia, 1994). Interestingly, when Drosophila over express APP and -secretase, A 

deposits can develop and neurodegeneration and behavioural deficits arise (Carmine-

Simmen et al., 2009). These studies in the fruit fly indicate that, while invertebrates do 

not contain a conserved A sequence, an A-like peptide may be able to be 

processed. 

 A 1-42 and A 1-40 are the only naturally cleaved A peptides following 

normal APP processing. A 25-35 is not produced through APP processing, but may 

arise through proteolytic degrading enzymes or caspases, as many other fragments 

have been found in AD CSF (Maddalena et al., 2004) and A 25-35 racemised at D-

Ser26 has been detected in plaques of AD brain (Kubo et al., 2002). This fragment 

peptide is known to be neurotoxic and to take on -sheet structure (for review, see 

Millucci et al., 2010) which makes A 25-35 an interesting peptide to use in 

experimentation. However, there are some differing structural characteristics to 

consider. Pike et al., 1993 observed A 25-35 aggregation over time, initially finding 
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fine particulate and large sheet-like precipitates and only observing aggregates after 7 

days. This is very unlike typical amyloid fibrils formed by A 1-42 (for review, see 

Serpell, 2014). However, a second lab looked at A 22-35 morphology and found 

aggregation into straight fibrils (Takadera et al., 1993), which is much more similar to 

A 1-42 (for review, see Serpell, 2014). The two labs solubilised their fragment 

peptides using different methods. 

 Here, systemically applied A is monitored for localisation within the brain, to 

ensure that A is penetrating the “learning” ganglia. Once A brain penetration was 

established, different structures and morphologies of the peptides present were 

investigated in the snails’ body fluids and “learning” ganglia after the 24 hour in vivo 

incubation time point. This sheds light on how peptide structure may be linked to the 

previously established behavioural deficits. Importantly, through this structural study a 

close comparison between A 25-35 and A 1-42 was possible. 

 

4.1 A antibodies label untreated snail brain 

An important factor in developing a model for A research is the ability to track 

peptide expression in brain tissue. Antibodies are widely used to conduct this type of 

experimentation and since Lymnaea has not yet been subjected to these studies, an 

initial examination of antibody binding in untreated, naïve brains was necessary. 

Oligomeric A expression was observed in untreated, naïve ultra thin brain sections 

using three monoclonal conformational epitope antibodies: Nu1, Nu2, and Nu4 

(Lambert et al., 2007). These antibodies were created from three distinct culture 

colonies grown from the spleen of the same A 1-42 ADDL-treated mouse (Lambert et 

al., 2007). Nu1 and Nu4 discriminate between AD and control tissues, while Nu2 only 

recognises synthetic peptide, and all three antibodies show minimal detection of 

synthetic A 1-42 monomer (Lambert et al., 2007). These antibodies have been used 

successfully to measure oligomeric A in multiple labs, using different models (Lambert 

et al., 2007; Velasco et al., 2012; Soura et al., 2012). Labelled brain sections were 

imaged using a TEM and gold immuno-labelling. Nu1 labelled buccal ganglia sections 

modestly (Figure 4.1A), while Nu2 expressed higher labelling (Figure 4.1B) and  Nu4 

exhibited the highest degree of labelling (Figure 4.1C). It is unclear as to why some 

antibodies labelled more than others. 
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Figure 4.1 Antibodies which label A oligomers bind to naïve snail brains. Representative 
TEM images of untreated, untrained snail buccal ganglia labelled with (A) Nu1 antibody, (B) 
Nu2 antibody, or (C) Nu4 antibody. All sections were then labelled with a gold-conjugated 
secondary antibody. Magnified views of areas of interest are found within boxes in each image. 

All scale bars represent 0.2 m. 
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This study indicates possible antibody distinction for endogenous versus 

exogenous A signalling; the high Nu4 signal indicates that it could be good for 

endogenous labelling and the low Nu1 signal indicates that it could be good for 

exogenous labelling. However, it must be considered that Lymnaea stagnalis does not 

have an APP-like gene sequenced. For the closest possible comparison, Aplysia 

californica will be considered. An Aplysia APP has been sequenced as well as PSEN1 

and PSEN2 which are proteins involved in the proteolytic cleavage of APP to produce 

A (Moroz and Kohn, 2010). Aplysia APP shares 29% identity with human APP and 

the A peptide region expresses about 50% higher homology to humans than either 

Drosophila or C. elegans (Moroz and Kohn, 2010). Aplysia has also been found to 

contain a short region with probable amyloid forming potential, far more likely than 

either Drosophila or C. elegans (Tharp and Sarkar, 2013). Therefore, it is possible that 

Aplysia is capable of producing A fibrils in vivo. If Lymnaea APP is assumed to be 

similar to Aplysia APP, then it is possible that the Nu4 antibody is labelling endogenous 

A signal. However, this is speculative; the signal may just be antibody cross-reactivity. 

 While there is some information on both the amino acid sequence of Aplysia A 

region, as well as amyloid forming potential of this region, it is not sufficient to indicate 

what antibodies may be used to completely differentiate between endogenous and 

exogenous A signal. For this reason, a purely immuno-labelling approach to 

distinguish between endogenous and exogenous A signal was no longer considered. 

 

4.2 A unique combination of peptide-tagging and antibodies 

distinguishes exogenous from endogenous signal 

 As section 4.1 suggests, distinguishing between exogenous and endogenous 

A signal requires more than just antibody comparison. The applied A must be 

modified in such a way as to not alter its effect on the tissue, while offering an 

identifiable component; this component should not exist naturally in tissues. For this 

reason, an AlexaFluor 488 Protein Labelling Kit was used to tag freshly prepared A 1-

42, as described in the Methods. The kit has previously been used successfully to label 

A 1-42 and effects on cell lines have been observed (Soura et al., 2012), with the only 

identifiable difference being that tagged peptide fibrillisation occurs faster than 

untagged peptide (Soura et al., 2012). Animals were injected with freshly tagged A 1-

42 at concentrations of 1 M, 25 M, or 50 M and brains were viewed using a 
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fluorescence microscope. Systemically injected A entry into the buccal and cerebral 

ganglia was monitored. While non-specific tissue autofluorescence does exist in snail 

neurons, possibly masking the fluorescence of the 1 M A 1-42, samples from 

animals treated with 50 M of the peptide clearly exhibited bright fluorescent punctae 

surrounding the ganglia (Figure 4.2).  

The areas with the highest level of labelling appear to be where perineurium 

remained around the ganglia. These results indicated that A 1-42 reaches the snail 

brain within 24 hours after systemic injection. To confirm that A 1-42 actually 

penetrated the ganglia and neurons, the same AlexaFluor 488-tagged A 1-42 treated 

ganglia were used for the viewing of immunogold labelled AlexaFluor 488 under the 

TEM. Using a primary antibody specific for the AlexaFluor 488 tag and a 10 nm gold-

conjugated secondary antibody, visualisation of the location of A 1-42 at a high 

magnification level was possible. Figure 4.3 reveals AlexaFluor 488-tagged A within 

the ganglia and these can be tracked throughout the brain tissue and inside of cells. 

Upon determining that A 1-42 does enter ganglia and cells, focus was placed on 

organelles with a high degree of labelling. A 1-42 labelling was found within the 

nucleus, mitochondria, and dense-core granules/ vesicles (Figure 4.4). As the 

concentration of applied A 1-42 increased from 1 M to 25 M, so did the qualitative 

observation of labelling in granules/vesicles (Figure 4.4G-I). There were also areas of 

highly labelled perineurium (Figure 4.4D-F), suggesting that much of the systemically 

applied A 1-42 gets caught in the protective tissue surrounding the brain. 
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Figure 4.2 AlexaFluor 488-tagged A 1-42 (1M and 50 M) reaches the snail brain 

within 24 hours of in vivo incubation. (A-F) Whole mount fluorescent images of 1 M or 50 

M AlexaFluor-A, or untreated brains after 24 hour in vivo incubation. (A and D) 
Representative fluorescent images of untreated, desheathed buccal and cerebral ganglia. (B 

and E) Representative fluorescent images of 1 M treated, desheathed buccal and cerebral 
ganglia. High levels of fluorescence are indicated with yellow asterisks. (C and F) 

Representative fluorescent images of 50 M treated, desheathed buccal and cerebral 
ganglia. High levels of fluorescence are indicated with yellow asterisks. 
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Figure 4.3 AlexaFluor 488-tagged A 1-42 reaches the snail brain within 24 hours of in 

vivo incubation. (A-C) Immunogold labelled transmission electron micrographs of 1 M 

AlexaFluor-A, 24 hours in vivo incubation cerebral ganglia sections. (A) 10 nm gold labels that 

detect the AlexaFluor-A outside of the ganglia, as well as inside the cellular projections near 

the ganglion edge. (B) An accumulation of gold labelled A within cellular projections, well 

within the ganglia. (C) Gold labels within cells indicating that A enters cells. A also localises 

outside of the cell membrane. Scale bars represent 0.5 m. Box inserts represent high areas of 

immunogold label. Dotted line represents ganglia edge.
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Figure 4.4 AlexaFluor 488-tagged A 1-42 enters the snail brain by 24 hour in vivo 

incubation at 1 M and 25 M concentrations. Sections of treated buccal ganglia were 
labelled with an anti-AlexaFluor 488 primary antibody and a 10 nm gold-conjugated secondary 
antibody, and imaged using TEM. (A-C) Areas of gold labelling within the nucleus and 
mitochondria are indicated with arrows. (D-F) High labelling occurs within the 

perineurium/connective tissue of A injected animals only. Inserts are added to show areas of 
high labelling. (G-I) There is a qualitative increase in labelling of dense core granules/vesicles 

with an increase in A accumulation. Arrows indicate labelling and inserts are used to magnify 
highly labelled areas. 
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4.3 A can be extracted from animals, imaged, and quantified, 

indicating structural forms that exist after 24 hours in vivo 

incubation 

 As the oligomeric forms of A peptides are widely regarded as the toxic 

structure (for review, see Wilcox et al., 2011), an experiment was conducted in which 

animals were injected with either 1 M A 1-42, 0.1 mM A 25-35, or vehicle, and 

allowed to incubate for 24 hours before their haemolymph, body fluid, was extracted 

and subjected to formic acid extraction. The haemolymph extracts were added to TEM 

grids, negative stained, and labelled with the oligomer-specific Nu1 antibody. The Nu1 

antibody was specifically used for its lower binding to endogenous proteins (Figure 

4.1A). Immunogold particles were observed in both peptide-treated haemolymph 

samples, but were negligibly detected in vehicle-treated controls (Figure 4.5). 

Interestingly, A 1-42 has significantly more Nu1-labelling than A 25-35 regardless of 

the 100-fold higher injected concentration of A 25-35. There is a possibility that Nu1 

has a higher affinity for A 1-42, however, the presence of these immunogold particles 

in the haemolymph extracts indicate that even at 24 hours after systemic 

administration, soluble and oligomeric A 1-42 and A 25-35 are still available for 

uptake by the nervous system and that A 1-42 remains in a more oligomeric form than 

A 25-35 after 24 hours in vivo. 

 To assess whether the formic acid extraction truly separated soluble from 

insoluble proteins, A 25-35 fraction samples were run on a gel and silver stained to 

visualise proteins. SDS-PAGE will only allow SDS-soluble proteins to be separated and 

run correctly; SDS-insoluble proteins will remain stuck in the well. The insoluble 

fractions (lanes 8-10) did not run on the gel correctly, as seen by the very dark smears 

located toward the top of the gel in each lane (Figure 4.6); this is expected of insoluble 

proteins. The soluble fraction (lanes 4-7) did not smear or remain stuck in the wells 

(Figure 4.6), indicating that the soluble and insoluble proteins were appropriately 

separated using the formic acid extraction. Lane 6 exhibits a clear protein band at 15-

20 kD (Figure 4.6). The lack of banding in lanes 4, 5, and 7 does not necessarily 

indicate that there is no protein in these fractions, instead this was likely a method 

problem due to varying concentrations of protein loaded. There was much less protein 

loaded in all of the soluble fractions than the protein marker lanes and thus the silver 

stain procedure was stopped for the colour marker over expression and not left to 

develop long enough for the other soluble fractions. 
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Figure 4.5 Oligomeric A is found in the haemolymph after 24 hour in vivo incubation. (A-
C) Micrographs of negative stained and Nu1 immunogold labelled, formic acid extracted 

haemolymph from animals treated with either 1 M A 1-42, 0.1 mM A 25-35, or vehicle after 

24 hour in vivo incubation. Grids were immunogold labelled for oligomeric A. Circles represent 

immunogold labels counted. Scale bars represent 100 nm. (A)  A 1-42 (B) A 25-35 (C) 
Vehicle (D) Graphical representation of immunogold labels present in 20k magnification 

micrographs, normalised to protein concentrations measured by BCA. A 1-42 n=14, A 25-35 
n=24, Vehicle n=13. Means ± SEM values are shown. Asterisks indicate significant differences 
in gold particles per image between groups. One-way ANOVA, p<0.0001. ***= Tukey’s tests 

with p<0.0001: A 1-42 vs. A 25-35 and A 1-42 vs. Vehicle. *= Tukey’s tests with p<0.05: A 
25-35 vs. Vehicle. 
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Figure 4.6 Representative silver stained gels of formic acid extraction fractions. Protein 

markers and A 25-35 fractions were loaded on to an SDS-PAGE as follows: 1) Biotinylated 
protein marker 2) Dual Colour Marker [molecular weights defined with blue and pink lines, 
measured in kD] 3) Initial non-amyloid supernatant 4-7) Soluble fraction 8-10) Insoluble fraction; 
and silver stained for visualisation. The pink box in lane 6 indicates soluble proteins. 
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 The difference in oligomeric expression between A 1-42 and A 25-35 may 

arise from differences in how the synthetic peptide was prepared. A 25-35 was 

prepared in the same manner as used in Samarova et al., 2005; it was allowed to 

solubilise at room temperature for two hours in normal saline solution. The A 1-42 

was prepared with a specific effort put into retaining the oligomeric form for as long as 

possible (Soura et al., 2012). The peptide is first solubilised in HFIP, which keeps A in 

an -helical structure (Brooks and Nilsson, 1993). The solvent used to dissolve 

synthetic A is believed to determine not only initial conformation, but also the 

aggregation kinetic behaviour that will follow (Williams and Serpell, 2011). The two 

preparation processes are drastically different and so are likely different structurally 

from the point of injection. For this reason, Dr. Tom Williams allowed both peptides to 

incubate at room temperature and imaged at varying in vitro time points for 

morphological differences (Figure 4.7). Electron micrographs showed that A 25-35 

forms small crystalline structures that develop into larger elongated crystalline 

structures after 24 hours (Figure 4.7A-C). In contrast, A 1-42 formed small, spherical 

oligomeric species that developed into protofibrils and then mature fibrils after 24 hours 

(Figure 4.7D-F) (Ford et al., 2015). The difference in morphology may account for the 

observed differences in the behavioural experiments (Figure 3.1B). 
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Figure 4.7 A 1-42 and A 25-35 aggregates differently when allowed to incubate in 

normal saline solution for 24 hours, conducted by Dr. Tom Williams. 94 M A 25-35 and 

100 M A 1-42 were prepared as described in Methods and allowed to aggregate in normal 
saline solution over a 24 hour period. Samples were taken at 0, 3, and 24 hours, negative 

stained, and imaged using TEM. Both A 1-42 and A 25-35 self-assemble over the 24 hour 

period. A-C) A 25-35 forms small, wide crystalline structures. D-F) A 1-42 forms small 
spherical oligomers, protofibrils and finally, mature amyloid fibrils. 
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4.4 A can be measured in snail brain tissue 

 While measuring oligomeric A in the haemolymph is interesting for monitoring 

changes in the structural state of the peptides after 24 hour in vivo incubation, there is 

also interest in what forms of A are in the brain at this time point. Animals were 

trained, injected, and tested as mentioned in Figure 3.1A and tissue samples were 

subjected to western blot. The membrane was probed with Nu4, the oligomeric A 

antibody, which was previously determined to indicate predominantly endogenous A 

signal (Figure 4.1C). The membrane was then stripped and relabelled for Nu1, the 

oligomeric A antibody which was previously found to minimally label endogenous 

signal (Figure 4.1A). As shown in Figure 2.6, Nu4 labels at multiple molecular weights 

throughout the membrane, but importantly has no distinction between A-treated (1-42 

and 25-35) and untreated (Veh and Naïve) lanes. This suggests that the assumption of 

Nu4 largely labelling endogenous signal is valid. Nu1, however, labels only at three 

points throughout the membrane and only labels A-treated lanes at the 15-20 kD 

weight, whereas untreated lanes exhibit no banding or ghost-banding (Figure 4.8). This 

15-20 kD banding possibly represents an A tetramer. 
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Figure 4.8 Nu4 and Nu1 label A in the snail brain. The left panel represents membrane 
labelled with the Nu4 antibody. The right panel represents membrane labelled with the Nu1 
antibody. The ladder between the two panels indicates molecular weight of proteins, as 

measured in kD. Lanes are labelled with what protein sample group were loaded (A 1-42, A 
25-35, Vehicle, Naïve). Banding indicates labelling of proteins with the given antibody. The 
arrow in Nu1 indicates a band at 15-20 kD which labels in the 1-42 and 25-35 groups, but not in 
the Veh or Naïve groups.    
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4.5 Behavioural and structural studies of an oligomerically-

produced A 25-35 

 The experiments presented in this body of work so far consider behavioural 

deficits, oligomeric A concentration in body fluids and tissue, and TEM morphology 

differences between two peptides. A 25-35 only contains 11 amino acids, requires 

100-fold greater concentration to elicit behavioural deficits, exhibits approximately 100-

fold more oligomeric species in bodily fluids than vehicle-injected animals after 24 

hours in vivo, and is predominantly crystalline in its morphology for the first 24 hours. 

However, A 1-42 contains 42 amino acids, elicits behavioural deficits at only 1 M 

concentration, exhibits approximately 700-fold more oligomeric species in bodily fluids 

than vehicle-injected animals after 24 hours in vivo, and morphologically evolves from 

an oligomeric, to protofibrillar, and finally fibrillar state within 24 hours. With A 25-35 

being considered an alternative to A 1-42 in systemic studies, it is clear that the two 

cannot be used as if they are the same peptide. To be certain of this bold statement, 

A 25-35 was prepared as A 1-42 was prepared, and injected at 1 M concentration. 

This controlled preparation and concentration use should resolve any discrepancies 

between the two peptides if they in fact can be used interchangeably. 

 Animals were trained, injected with 1 M oligomerically prepared A 25-35, and 

tested within the same timeline as used for Figure 3.1A. This timeline is again 

presented here as Figure 4.9A. Previously shown data is again represented here, to 

provide a comparison between all 1 M-injected groups. Oligomerically produced A 1-

42, generically produced (solubilised in saline) A 25-35, oligomerically produced A 

25-35, vehicle-injected, and naïve animals were compared. Interestingly, oligomerically 

produced A 25-35 did not cause the same behavioural deficit as those observed in 

oligomerically produced A 1-42. Oligomeric A 25-35 and vehicle-treated animals had 

significantly greater behavioural response than both A1-42 and naïve animals (Figure 

4.9B).   

 Like the morphological TEM studies above, oligomerically prepared A 25-35 

was allowed to incubate up to 24 hours in vitro, added to a TEM grid, negative stained, 

and imaged using TEM. Devkee Vadukul prepared and imaged these grids, which 

exhibited some oligomeric species at 0 hours, but these were no longer seen at the 3 

hour incubation time (Figure 4.10). By 24 hours, the peptide appeared fibrillar in 

structure (Figure 4.10C), similar to the 24 hour in vitro time point for A 1-42 (Figure 

4.7F). 
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Figure 4.9 Oligomeric A 25-35 does not cause behavioural deficits when 1 M is allowed 
to incubate in vivo for 24 hours. (A) Timeline of the experiment. (B) Five starved animal 

groups (oligomeric 1 M A 1-42 [n=55], 1 M A 25-35 [n=24], oligomeric 1 M A 25-35 
[n=23], vehicle [n=96], naive [n=55]) were tested for rasp rate to amyl acetate, a measure of the 
feeding response to the CS. Means ± SEM values are shown. Asterisks indicate behavioural 
responses that are significantly different between groups. One-way ANOVA, p<0.0001. Tukey’s 

tests with p<0.05: A 1-42 vs. Oligomeric A 25-35, A 1-42 vs. Vehicle, Oligomeric A 25-35 
vs. Naïve, Vehicle vs. Naïve. 
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Figure 4.10 Oligomerically prepared A 25-35 fibrillises when allowed to incubate in 

normal saline solution for 24 hours, microscopy conducted by Devkee Vadukul. 100 M 

oligomerically prepared A 25-35 was prepared as described in Methods and allowed to 
aggregate in normal saline solution over a 24 hour period. Samples were taken at 0, 3, and 24 
hours, negative stained, and imaged using the TEM. The peptide self-assembles over the 24 

hour period. A) A 25-35 has few oligomeric species at the 0 hr time point. Blue boxes indicate 

oligomers. B) No observable morphological A 25-35 species are found at the 3 hr time point. 

C) A 25-35 has fibrillised by the 24 hour time point. Scale bars represent 100 nm. 
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Finally, as previously described for Figure 4.5, haemolymph was extracted from 

animals which had 1 M oligomerically prepared A 25-35 incubating in vivo for 24 

hours and subjected to formic acid extraction. Soluble fractions were then added to a 

TEM grid, negative stained, and immuno-labelled for Nu1. Devkee Vadukul imaged 

these grids. Gold labels were counted and normalised to BCA protein concentration 

measurements. They were then compared to the other formic acid extracted samples 

(Figure 4.11; some data in Figure 4.11B has been previously shown in Figure 4.5). 

Oligomerically prepared A 25-35 had significantly less oligomer labelling compared to 

A 1-42 and A 25-35; these low levels where similar to the vehicle-injected group. 
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Figure 4.11 Oligomeric A is not found in the haemolymph of oligomerically prepared A 
25-35-treated animals after 24 hour in vivo incubation, microscopy conducted by Devkee 
Vadukul. (A) Micrograph of negative stained and Nu1 immunogold labelled, formic acid 

extracted haemolymph from animals treated with 1 M oligomerically prepared A 25-35 after 

24 hour in vivo incubation. Grids were immunogold labelled for oligomeric A. Scale bar 
represents 100 nm. (B) Graphical representation of immunogold labels present in 20k 

magnification micrographs, normalised to protein concentration measured by BCA. A 1-42 

n=14, A 25-35 n=24, Vehicle n=13, Oligomeric A 25-35 n=19. Means ± SEM values are 
shown. Asterisks indicate significant differences in gold particles per image between groups, 

n.s. represents non-significance. One-way ANOVA, p<0.0001. *= Tukey’s tests with p<0.05: A 

1-42 vs. A 25-35, A 1-42 vs. Vehicle, A 1-42 vs. oligomeric A 25-35, A 25-35 vs. Vehicle, 

A 25-35 vs. oligomeric A 25-35. 
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4.6 Discussion 

 The experiments in this chapter show A penetration into snail ganglia and 

localisation within the brain, followed by structural analysis of both A 1-42 and A 25-

35 at the 24 hour in vivo incubation time point. To begin, the use of mammalian 

monoclonal antibodies Nu1, Nu2, and Nu4 were verified within Lymnaea, suggesting 

that Nu2 and Nu4 have high endogenous signalling. To completely distinguish 

exogenous from endogenous signal, a unique combination of AlexaFluor 488 peptide-

tagging with TEM immuno-labelling was successful in showing A brain penetration 

and localisation to specific organelles within neurons. Experiments then focused on 

structure and morphologies these peptides had by the 24 hour in vivo incubation time 

point; this was investigated through the use of formic acid extraction and TEM immuno-

labelling of haemolymph, TEM negative staining of in vitro incubated peptides, and 

western blotting of brain samples. Importantly, these studies made clear a distinction 

between the A 1-42 and A 25-35 used in these studies. For consistency, A 25-35 

was prepared as A 1-42 was prepared and its effects on behaviour, structure, and 

morphology were investigated. Behaviourally, A 1-42 causes a significantly decreased 

conditioned response 24 hours after injection and 48 hours after testing. This same 

deficit is observed in A 25-35 animals only when injected at 100-fold higher 

concentrations, and oligomerically prepared A 25-35 has a trend to have greater 

conditioned response than even the vehicle-injected control. Structurally, A 1-42 has 

600-fold more oligomeric species available in the haemolymph 24 hours after injection 

than A 25-35, and A 25-35 has 100-fold more oligomeric species than oligomerically 

produced A 25-35. Morphologically, A 1-42 assembles in vitro from oligomers, to 

protofibrils, and finally fibrils by 24 hours. A 25-35 forms crystalline structures, which 

eventually elongate and aggregate, and oligomerically prepared A 25-35 displays 

relatively few intermediate species until complete fibrilisation at 24 hours. These 

discrepancies all suggest one thing, the two peptides cannot be used interchangeably. 

 The differences between A 1-42, A 25-35, and oligomeric A 25-35 highlight 

a few very important points. First, that the initial substance that a synthetic peptide is 

prepared in will drastically alter its structure and aggregation kinetics (Williams and 

Serpell, 2011). This alteration of structure can cause drastically different effects on the 

system (i.e., observed memory deficit, no observable effect on memory, or even a 

trend for increased memory). Secondly, that the presence of the oligomeric species 

during the 24-48 hour post-training time point correlates to conditioned behavioural 

response deficits. A 1-42, at the low 1 M injected concentration, expresses 
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oligomeric or intermediate species morphology at the 0 and 3 hour time point when 

allowed to aggregate in vitro. Morphologically the A 1-42 sample appears to have 

fibrillised by 24 hours, but oligomers are still present in high quantities in the animals’ 

haemolymph. However, A 25-35 needs 100-fold greater concentration to induce the 

same behavioural response and only displays intermediate species morphology 

immediately after preparation. Like A 1-42, while oligomers could not be readily 

identified at later time points using TEM negative stain oligomers were found in the 

haemolymph at 24 hours. This suggests that while oligomers in A 25-35 animals are 

much less abundant, perhaps why 100-fold more peptide is needed to induced 

behavioural deficits, they likely exist between the 24-48 hour post-training time point in 

treated animals. The oligomerically prepared A 25-35, however, fail to remain in an 

oligomeric state much longer than immediately after preparation. Only a few oligomers 

were observed immediately after peptide preparation using TEM negative staining. No 

oligomers were observed at 3 or 24 hours and very few (>1 per image) were able to be 

extracted from the haemolymph. This animal group was also the only A-treated group 

to show a trend for increased conditioned behavioural response compared to vehicle-

injected controls. These experiments suggest a correlation between oligomeric A 

presence throughout the in vivo incubation time line and the observed behavioural 

deficits. 

 Interestingly, this results chapter links both formic acid extracted haemolymph 

samples with Nu1 antibody labelled brain tissue samples; they both suggest that the 

A tetramer is the dominant oligomer observed at the 24-48 hour in vivo incubation 

time point. Some methodology used may be falsely creating these tetramers. For 

example, formic acid extraction subjects the proteins to acid and pH changes, which 

are known to alter peptide characteristics (Brooks and Nilsson, 1993). It also is 

assumed that formic acid extraction separates the A peptides from other proteins, but 

A purity of the sample has not been investigated in this study. Any soluble impurities 

would run on the gel (Figure 4.6) from which was found a possible tetramer band by 

silver staining. Another potential methodological issue arises with SDS-PAGE. When 

samples are created for SDS-PAGE, they are treated with the detergent SDS and other 

denaturing procedures; this treatment may be causing the peptides to oligomerise or 

create a prominent trimer/ tetramer band by dissociating higher order aggregates 

(Bitan et al., 2005). However, many labs trust SDS-PAGE results to be a true 

representation of low n-oligomers within samples (e.g. Lesne et al., 2006; Shankar et 

al., 2008). This considered, it is still interesting that the tetramer appears with both the 

formic acid extraction and SDS-PAGE methods. 
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5. A 1-42 and 25-35 disrupts CREB in trained Lymnaea 

stagnalis. 

The previous two chapters established that systemically injected A enters the 

ganglionic tissue of Lymnaea and causes inhibition of LTM recall, likely through the 

constant levels of oligomeric A species during incubation. While the memory studied 

in this thesis is known to be consolidated by 24 hours in Lymnaea, the engram can be 

disrupted by inhibiting specific proteins within the first few days after conditioning (for 

review, see Alberini, 2011). Therefore, the important, novel findings from the first two 

chapters laid down a foundation for the analysis of the molecular signalling cascades 

affected by A. 

The key excitatory neurons within the brain are glutamatergic (Molnar and 

Isaac, 2002), which synapse on to neurons that express glutamate receptors on the 

postsynaptic terminal and recognise the neurotransmitter glutamate. Glutamate 

receptors are divided into two groups; ligand-gated (ionotropic) ion channels or G-

protein-coupled receptors (GPCRs) (metabotropic). Ionotropic receptors include 

NMDARs, AMPARs, and nAChRs; metabotropic receptors were not investigated in this 

thesis. NMDARs can induce either LTP or LTD, depending on the rise in Ca2+ at the 

synapse and the downstream activation of intracellular cascades (for review, see 

Alberini, 2009). Once LTP is induced, AMPARs are inserted into postsynapses, a 

process termed “AMPA-fication”, and new dendritic spines grow. However, if LTD is 

induced, spines shrink and some synapses are actively dismantled (for review, see 

Alberini, 2009). Both NMDAR and AMPAR activation cause an influx of Ca2+ into the 

cell, which is required for LTP formation. 7-nAChRs also increase Ca2+ influx and are 

particularly Ca2+ permeable (Buccafusco et al., 2005; Castro and Albuquerque, 1995). 

LTP is largely NMDAR-dependent; however, NMDAR-independent forms of LTP exist 

and rely upon VDCCs for Ca2+ influx (Grover and Teyler, 1990; Freir and Herron, 

2003). This Ca2+ influx activates Ca2+-sensitive proteins which in turn activate 

downstream elements of signalling cascades. Importantly, many of these signalling 

cascades result in protein synthesis, which is necessary for LTP and LTM formation 

(for review, see Alberini, 2009). A crucial transcription factor involved in protein 

synthesis underlying LTP and LTM is CREB (Impey et al., 1996; Schulz et al., 1999; 

Bourtchuladze et al., 1994; Barco et al., 2002; Impey et al., 1998b; Taubenfeld et al., 

1999; Bito et al., 1996; Deisseroth et al., 1996; Countryman et al., 2005; Pittenger et 

al., 2002; Yuan et al., 2003; Dash et al., 1990; Kida et al., 2002; Ribeiro et al., 2003).  
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CREB can be phosphorylated either directly or indirectly by downstream 

kinases of both ionotropic and metabotropic receptors (for review, see Alberini, 2009). 

These CREB-activating kinases are varied and include PKA (Abel et al., 1997; Huang 

et al., 2000; Brindle et al., 1995; Michel et al., 2008), the MAPK family (Huang et al., 

2000; English and Sweatt, 1996; Ribeiro et al., 2005; Atkins et al., 1998; Kelly et al., 

2003), the CaMK family (Silva et al., 1992 a, b; Wan et al., 2010), PKC (Sacktor et al., 

1988; Sossin et al., 1994), and many others. Activation of CREB occurs by 

phosphorylation of the Ser133 site. While pCREB Ser133 is critical to induce LTP, it is 

not sufficient (Brindle et al., 1995; Impey et al., 1996); CREB-2 must also be released 

(Bartsch et al., 1995). Known Aplysia CREB-2 substrates exist for PKC, MAPK, PKA, 

and CAMK (Bartsch et al., 1995). These kinases have the capability to both activate 

CREB and release CREB-2.  

 Not only does this chapter and the next chapter, for the first time, explore A-

induced disruption of CREB-signalling pathways in Lymnaea stagnalis, it is also one of 

very few studies (e.g. Vitolo et al., 2002) that encompass multiple CREB-signalling 

factors using the same experimental procedure. In addition, this chapter considers 

differences in CREB-signalling pathways between trained and untrained animals at a 

novel time point for Lymnaea stagnalis. All experiments have been built on the 

behavioural deficits described in Chapter 3, in order to directly link molecular disruption 

to behavioural memory loss. A combination of molecular, pharmacological, and 

biochemical techniques have been used to test A-induced disruption to protein 

synthesis and CREB in this chapter, and multiple CREB-signalling cascades in the next 

chapter. This approach offers an informative picture of how A is affecting memory 48 

hours after conditioning and 24 hours after injection in Lymnaea stagnalis. 
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5.1 Training and A treatment does not alter total protein levels at 48 

hours post-training 

The first approach taken was to test whether training induces changes in 

general protein levels over time within the consolidated LTM experimental protocol 

(Figure 3.1A) and if A treatment would alter this. For invertebrate single-trial training, 

the transcription- dependent and translation- dependent LTM emerges as early as 5 

hour after training (Fulton et al., 2005) and memory is thought to be fully consolidated 

in mammals by 10 to 10.5 hours post-conditioning (Sutherland and Lehmann, 2011). 

To address whether A disrupts protein levels at the time points used in this thesis, 

animals were trained, injected, and tested as described in the previous two chapters. 

The buccal and cerebral ganglia were dissected immediately after testing and protein 

concentration was measured using BCA. No significant change was found between 

A-treated, trained, or naive groups at the testing time point (Figure 5.1).  
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Figure 5.1 Total protein levels do not change 48 hours after training or 24 hours after A 
injection. BCA was used to measure protein concentration in pooled samples of 5 buccal + 

cerebral ganglia across four animal groups; A 1-42 n=6, A 25-35 n=6, Vehicle n=11, Naïve 
n=16. Kruskal Wallis, p=0.2855. Dunn’s Multiple Comparison Test, all p>0.05. 
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The lack of change between groups suggests that there is no significant 

increase in protein degradation or protein synthesis in any of the groups at this time 

point. More importantly, these results indicate that a general approach such as this is 

not sensitive enough to discriminate between protein level changes occurring on a 

smaller scale. For this reason, requirement for new protein synthesis was investigated, 

as opposed to general protein level change, at the time points used in this study. 

Between the 24 hour injection time point and the 48 hour testing time point, memory is 

being further developed through lingering consolidation, retention, maintenance, and/or 

storage processes. Once the animal has been tested, the memory will be recalled. 

Each of these memory processes have distinct biological characteristics and, with an 

exception for memory recall, likely overlap throughout the A in vivo incubation time 

point. Many labs have focused on exactly what is changing throughout these memory 

processes, with a strong emphasis on protein synthesis. Importantly, protein synthesis 

is needed for memory acquisition 0-1 hour after conditioning in Lymnaea (Fulton et al., 

2005) and many other animal models suggest this early acquisition time point is protein 

synthesis-dependent, as well as at a later stage during consolidation (for review, see 

Alberini, 2009). The Kemenes group have previously published data on memory 

retention at 24 hours being resistant to amnesic agents (G. Kemenes et al., 2006) and 

so those experiments were not repeated. However, memory recall has not yet been 

examined in Lymnaea stagnalis. There is a consensus, across studies that used 

vertebrate (e.g. Kida et al., 2002) and invertebrate (e.g. Pedreira et al., 2002) animals, 

that protein synthesis is not necessary for memory recall. However, this has not been 

investigated in Lymnaea and so to assess the need for protein synthesis at the 48 hour 

post-injection time point, a behavioural pharmacology approach was utilised. Many 

labs have used a similar approach to determine a necessity for protein synthesis, 

whereby the protein synthesis blocker anisomycin is injected directly into the animal 

(e.g. Fulton et al., 2005). Any protein synthesis will be disrupted by the blocker through 

inhibition of the peptidyl transferase reaction on ribosomes (Alberts et al., 2004) and 

should manifest as a behavioural disruption. Initially, an anisomycin incubation time 

point was determined for optimal blocker strength and minimal disturbance. All animals 

were injected with 10-4 M anisomycin (as used in G. Kemenes et al., 2006) and tested 

for their response to the US at either 30, 60, or 90 minutes post-anisomycin injection. 

All three groups responded in a healthy manner to the US (30 minute group [mean 

20.00, ±SEM 2.881, n=5], 60 minute group [mean 15.20, ±SEM 4.152, n=5], 90 minute 

group [mean 17.20, ±SEM 1.934, n=5], One-way ANOVA p= 0.5667), and so the 30 

minute incubation time point was used. Once the anisomycin incubation time point was 

established, it was investigated if protein synthesis was necessary for 48 hour post-
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training memory recall. Animals were trained at time point 0, injected with either 

anisomycin or vehicle at 48 hours, and tested at 48.5 hours. There was no significant 

difference between the anisomycin group and the vehicle group (Figure 5.2), 

suggesting that ongoing protein synthesis is not necessary for 48 hour memory recall. 

To be certain of the lack of protein synthesis occurring at the 24 hour retention 

and 48 hour recall time points, the protein synthesis study was extended by utilising 

radiolabelling. 35S-methionine is a radioactive amino acid that will be incorporated into 

newly synthesised proteins, which can then be precipitated from brain samples with 

TCA and quantitatively measured. This labelling procedure is a well-established 

method for measuring protein synthesis and has been used successfully in Lymnaea 

previously (Fulton et al., 2005). To assess A’s impact on protein synthesis occurring 

from the 24 hour injection to the 48 hour testing time point, animals were trained, 

injected, and tested as previously shown in Figure 3.1A. However, animals were 

injected with 35S-methionine along with 1 M A 1-42, 0.1 mM A 25-35, or vehicle. 

After testing, buccal+cerebral ganglia were immediately dissected. 35S-methionine 

measurements for each group were normalised to appropriate BCA measurements to 

give final results. There was no significant change between the A 1-42, A 25-35, 

vehicle, or naïve groups (Figure 5.3). These results suggest that A is not affecting 

protein synthesis between the 24 hour injection and 48 hour testing time point. 
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Figure 5.2 Anisomycin does not disrupt 48 hour memory recall. (A) Timeline of experiment. 
(B) Two starved animal groups (Anisomycin [n=34], vehicle [n=24]) were tested for rasp rate to 
amyl acetate, a measure of the feeding response to the CS. Means ± SEM values are shown. 
Mann Whitney, p=0.7044. 
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Figure 5.3 A and training do not affect protein synthesis between the 24 hour injection 
and 48 hour testing time point of the behavioural protocol. (A) Timeline of experiment. (B) 

Three animal groups were trained, injected with 
35

S-methionine/A 1-42 [n=4], 
35

S-methionine/ 

A 25-35 [n=4], or 
35

S-methionine/vehicle [n=4], and tested. A fourth naïve group was injected 

with 
35

S-methionine and vehicle [n=4], and tested. The graph represents [Ci/mL]/g, 
normalised to the protein concentration of the animal group measured. Means ± SEM values 
are shown. One-way ANOVA, p=0.6848. All Tukey’s tests p>0.05. 
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5.2 CREB is modified by treatment with A at the 24 hour post-

injection/ 48 hour post-training time point 

 While there is neither a great increase nor decrease in protein synthesis at the 

24 hour post-injection/ 48 hour post-training time point observed throughout this body 

of work (Figures 5.1, 5.2, 5.3), localised protein synthesis is known to occur at the 

synapse after cell-wide protein synthesis is no longer necessary (Casadio et al., 1999) 

and it is known that protein turnover occurs on a scale of hours to days naturally in 

cells (Pratt et al., 2002), demanding protein synthesis to maintain normal protein levels 

in trained cultures and animals. It is also worth noting that specific proteins are 

phosphorylated at the time of memory recall, including ERK and AMPA, which results 

in increased transcription of key immediate early genes, such as JunB (Szapiro et al., 

2000; Szapiro, 2002; Strekalova et al., 2003).  Although there was no change in or 

requirement for general protein synthesis, perhaps there is a need for even greater 

sensitivity to observe any A-induced change. Focusing on one transcription factor, in 

this case CREB, offers the specificity needed to uncover the A-induced disruption of 

memory. Increased CREB phosphorylation is sufficient to switch memory from short- to 

long-term (Impey et al., 1996; Schulz et al., 1999; Bourtchuladze et al., 1994; Barco et 

al., 2002; Impey et al., 1998b; Taubenfeld et al., 1999; Bito et al., 1996; Deisseroth et 

al., 1996; Countryman et al., 2005; Pittenger et al., 2002; Yuan et al., 2003; Dash et al., 

1990; Kida et al., 2002) and has been implicated in AD (Yamamoto-Sasaki et al., 

1999). However, it is important to note that with some experiments (Balschun et al., 

2003; Pittenger et al., 2002), when all isoforms of CREB are knocked out in mice 

undergoing hippocampal LTP-training, protein compensation can overcome the 

requirement for CREB in certain forms of LTP. So while CREB is critical for memory 

formation, it is not necessary and sufficient. That being said, CREB and its cAMP/PKA 

signalling cascade are considered one of the main molecular processes involved in 

LTM with evolutionary conservation spanning much of the animal kingdom (for review, 

see Alberini, 2009), including Lymnaea (Ribeiro et al., 2003; Michel et al., 2008; 

Sadamoto et al., 2004).  

CREB is a transcription factor that, when phosphorylated at Ser133 and 

repressors are removed, will recognise and bind as dimers to CRE regions on 

deoxyribonucleic acid (DNA) and lead to transcription and up-regulation of IEGs. Its 

structural motif helps CREB transcribe; the C-terminus binds to regulatory sequences 

via the basic leucine zipper (bZIP) domain and the N-terminus contains the 

transcriptional activation domain (for review, see Alberini, 2009). In between the C-
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terminal and N-terminal is the kinase inducible domain (KID), where Ser133 is located, 

and this region is where kinases activate CREB and where recruitment of 

transcriptional co-activators occur (for review, see Alberini, 2009). Besides its 

importance in synaptic plasticity, CREB also plays a key role in nonsynaptic plasticity. 

Dominant negative CREB mice had a reduced ability to generate action potentials, 

reduced membrane resistance due to increased M-K+ currents, and reduced intrinsic 

excitability (Jancic et al., 2009; Dong et al., 2006). Expression of constitutively active 

CREB increases firing frequency, reduces resting membrane potential, and increases 

intrinsic excitability via a reduction of slow and medium AHPs (Han et al., 2006).  

CREB-signalling pathways are known to be disrupted in AD, resulting in a 

decrease in phosphorylated CREB in AD brain (Yamamoto-Sasaki et al., 1999). In 

spatial-trained  APPswe,ind mice, 45 CREB target genes were down-regulated and 4 

were up regulated in comparison to wild type trained controls (Parra-Damas et al., 

2014), with a large number of down-regulated genes being important IEGs involved in 

LTP and LTM. Unsurprisingly, activating CREB-signalling pathways in AD transgenic 

mice has been shown to reverse learning and memory deficits (Gong et al., 2004; 

Caccamo et al., 2010; Yiu et al., 2011). Injection of A also results in CREB-signalling 

deregulation. At non-degenerative doses, oligomeric A inhibits CREB-signalling (Tong 

et al., 2004), especially impacting the cAMP/PKA pathway (Vitolo et al., 2002). For 

these reasons, the CREB-signalling pathway was selected as the main focus in this 

chapter to investigate how A is disrupting consolidated memory on a molecular level. 

 CREB, as well as CREB-2 and CBP, have been cloned in Lymnaea (Sadamoto 

et al., 2004; Hatakeyama and Kemenes, 2005) and CREB has been examined using 

western blot, immunohistochemistry (Ribeiro et al., 2003), and has been found in the 

CGC, a neuron involved in memory at the time points examined in this thesis (Ribeiro 

et al., 2003; Sadamoto et al., 2004). Importantly as well, both forskolin-induced and 

learning-induced CREB phosphorylation has been demonstrated after the single-trial 

food-reward classical-conditioning paradigm used in this thesis (Fulton et al., 2005; 

Ribeiro et al., 2003; Michel et al., 2008). To begin, an approach was used that 

combines basic sample preparation with western blotting to determine if there was any 

change in total CREB levels in the buccal+cerebral ganglia between these animal 

groups (Figure 5.4). This antibody and procedure has been used previously in 

Lymnaea (Ribeiro et al., 2003). There was no significant difference between any of the 

groups.   



93 
 

 

Figure 5.4 Basic sample preparation and western blotting indicate no change in total 

CREB levels across groups. Four animal groups (A 1-42 [n=9], A 25-35 [n=8], Vehicle 
[n=9], Naïve [n=3]) were compared for intensity of total CREB labelling using western blotting. 
For each group 5 buccal+cerebral ganglia were pooled together, run on a gel, and western 

blotted with a CREB antibody. (A) Representative CREB and  tubulin loading control bands. 
(B) Data represents CREB band densitometry/ loading control densitometry. Means ± SEM 

values are shown. Kruskal-Wallis, p=0.9060. Dunn’s Multiple Comparison all p>0.05. 
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However, CREB can only act as a transcription factor when it is within the 

nucleus and basic sample preparation includes all proteins within the tissue, including 

proteins found in the cytosol. Since proteins, including CREB, are processed in the 

endoplasmic reticulum (ER) and Golgi apparatus, it is important to measure CREB 

specifically within the nucleus. Phosphorylated CREB must also be measured within 

the nuclear extract, for similar reasons. To do this, an extraction of nuclear proteins 

from the tissue samples was needed and so an Episeeker Chromatin Extraction Kit 

was used to separate the samples into cytosolic and chromatin fractions. To assess if 

the extraction was successful, cytosolic fractions were detected using western blotting 

with an antibody raised against H3 and nuclear fractions were detected using anti- 

tubulin (Figure 5.5), commonly used markers for nuclear (H3) or cytosolic ( tubulin) 

proteins (Shaiken and Opekum, 2014). A lack of label will indicate proper separation of 

the two fractions. Both the H3 antibody (Souvik Naskar, personal communication) and 

the  tubulin antibody (Figure 3.4) have been shown to label appropriately in Lymnaea. 

No H3 signal was found in the cytosolic fraction and no  tubulin signal was found in 

the nuclear fraction (Figure 5.5). Thus, all samples had been appropriately separated. 

It is worth noting that the nuclear A 1-42 fraction exhibits banding that does not exist 

in any of the other nuclear samples. This is likely due to sample purification error; 

however, it is important to note that there is no banding at the 55 kD weight and so  

tubulin does not exist in the nuclear A 1-42 sample. 
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Figure 5.5 Lack of H3 labelling in the cytosolic fraction and lack of  tubulin labelling in 
the nuclear fraction show that the chromatin extraction procedure was successful. Four 

animal groups (A 1-42, A 25-35, Vehicle, Naïve) were subjected to chromatin extraction, 
giving two fractions: cytosolic (left) and nuclear (right). For each group 5 buccal+cerebral 
ganglia were pooled together, run on a gel, and western blotted with either an anti- H3 (left) or 

anti- tubulin (right) antibody. A protein ladder is indicated with bands (blue and pink) of 

different sizes and yellow arrows indicate areas of predicted molecular weights of H3 and  
tubulin, respectively. 
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Once separated, nuclear fractions did not have enough protein available for 

western blot detection and so a sandwich ELISA was considered for its increased 

quantitative properties. However, the use of a sandwich ELISA demands verification of 

the antibodies used to measure total CREB and phosphorylated CREB since an ELISA 

will measure all signal, including any non-specific labelling. There is a problem, 

however, with verification. The protein concentration in nuclear extracts, and the 

dilution that occurs from the chromatin extraction procedure, makes the use of western 

blotting not possible. Nuclear fractions were run on an SDS-PAGE and silver stained  

to determine weights of proteins within each fraction. It was then compared to a 

western blot of basic, predominantly cytosolic sample preparation of Lymnaea brain 

and labelled with CREB or pCREB Ser133 (Figure 5.6). These results suggest that 

most of the non-specifically labelled proteins found in the basic, cytosolic sample 

preparations are removed with the fractionation process. Unfortunately, this 

combination of SDS-PAGE and silver staining still does not verify if the sandwich 

ELISA signal is only specifically labelling for CREB or phosphorylated CREB. After 

many attempts, only one very background-heavy blot produced possible banding signal 

and this band was found at the appropriate molecular weight for pCREB (Figure 5.6). A 

clean, clear blot could not be produced for pCREB or CREB labelling with nuclear 

extracted samples. 

Since the extraction was successful and nuclear extracts have low non-specific 

labelling with CREB and pCREB antibodies, a sandwich ELISA was used to measure 

the amount of total CREB in the nuclear fractions (Figure 5.7). The sandwich ELISA of 

the nuclear extracts indicated that nuclear CREB levels are significantly decreased in 

A 25-35 animals compared to vehicle-injected animals and naïve animals. This is 

interesting, as other labs have found that steady state CREB levels do not change in 

A-over expressing transgenic mice (Dineley et al., 2001) or in neuronal cultures 

treated with A 1-42 (Tong et al., 2004). However, the lack of steady state CREB 

change in the A 1-42 group is in agreement with the background literature (Dineley et 

al., 2001; Tong et al., 2004). 
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Figure 5.6 Nuclear protein extraction removes non-specific signal from CREB and 
pCREB antibodies in Lymnaea brain tissue samples. From left to right, inserts of silver 
stained gels with nuclear extract samples from each experimental animal group (CM= colour 
marker); western blot of CREB-labelled cytosolic sample; western blot of pCREB-labelled 
cytosolic sample; and western blot of pCREB-labelled nuclear extracted sample. Green arrow 
indicates non-CREB/non-pCREB proteins in nuclear extract samples, which are at the same 
molecular weight as non-pCREB signal in cytosolic fractions. Purple arrow indicates proteins at 
the correct, 43 kD weight, in nuclear extract samples as well as in pCREB-labelled western 
blotted nuclear extract samples. Black circle indicates possible banding in pCREB-labelled 
western blotted nuclear extract samples at the correct 43 kD weight. 
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Figure 5.7 A 25-35 decreases total CREB labelling in nuclear fractions. 5 buccal+cerebral 

ganglia from four animal groups (A 1-42 [n=3], A 25-35 [n=3], Vehicle [n=3], Naïve [n=3]) 
were subjected to chromatin extraction and nuclear fractions were retained. Each group was 
added to a sandwich ELISA with total CREB antibody, and measured for absorbance at 450 
nm. Means ± SEM values are shown. Asterisks indicate significant difference between groups. 

One-way ANOVA, p=0.0076. Tukey’s tests with p<0.05: A 25-35 vs. Vehicle, A 25-35 vs. 
Naïve. 
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The investigation continued to CREB phosphorylated at Ser133. pCREB is the 

activated form of CREB critical for LTP and LTM formation (for review, see Alberini, 

2009). The natural regulation of pCREB occurs through phosphorylation by several 

protein kinases and phosphatase activity of PP1 and PP2A (Wadzinski et al., 1993; 

Hagiwara et al., 1992). It is important to note that CREB can be activated 

independently of phosphorylation of Ser133 (Bittinger et al., 2004); however, Ser133-

independent CREB activation was not explored in this thesis. Many studies have 

looked at timing of pCREB appearance after training; in mouse IA (inhibitory 

avoidance) tasks, increased pCREB was measured immediately after training and 

again at 3 to 6 hours post-training (Bernabeu et al., 1997), coinciding with the protein 

synthesis time window for memory formation. Another IA training paradigm found 

additional waves of pCREB at 9 and 20 hours post-training as well, which were found 

to last for 28 to 48 hours (Taubenfeld et al., 1999; Taubenfeld et al., 2001). This 

increased pCREB was from increased phosphorylation and not increased steady state 

CREB levels (Taubenfeld et al., 1999; Taubenfeld et al., 2001). Finally, in Lymnaea 

single-trial food-reward classical-conditioning, pCREB was found to be elevated at 6 

hours post-training (Ribeiro et al., 2003).  

Studying change in pCREB levels is not only relevant for memory studies, but 

has also been implicated in AD. Reduced phosphorylation of CREB Ser133 has been 

observed in post-mortem AD brains (Yamamoto-Sasaki et al., 1999), Tg2576 mice 

(Dineley et al., 2001), and A oligomers have been shown to inhibit glutamate-

stimulated phosphorylated CREB in cortical cultures (Tong et al., 2004). For this 

reason, phosphorylation of CREB at Ser133 was further investigated. Similar to total 

CREB measurements, a nuclear extract and sandwich ELISA was necessary to 

measure pCREB. An antibody for pCREB Ser133 that has previously been used in 

Lymnaea was used again for this study (Ribeiro et al., 2003) and it was found that both 

A 1-42 and A 25-35 groups have significantly decreased levels of pCREB Ser133 

compared to vehicle and naïve groups (Figure 5.8). A 1-42 and A 25-35 are also 

significantly different from each other, with pCREB significantly decreased in A 1-42 

treated animals. These results coincide with the down regulation of pCREB Ser133 

found in other models (Yamamoto-Sasaki et al., 1999; Dineley et al., 2001; Tong et al., 

2004). 
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Figure 5.8 pCREB Ser133 labelling is decreased in A 1-42 and A 25-35 nuclear 

fractions. 5 buccal+cerebral ganglia from four animal groups (A 1-42 [n=5], A 25-35 [n=5], 
Vehicle [n=5], Naïve [n=5]) were subjected to chromatin extraction and nuclear fractions were 
retained. Each group were added to a sandwich ELISA with pCREB Ser133 antibody, and 
measured for absorbance at 450 nm. Means ± SEM values are shown. Asterisks indicate 
significant difference between groups. One-way ANOVA, p<0.0001. Tukey’s tests with p<0.05: 

A 1-42 vs. A 25-35, A 1-42 vs. Vehicle, A 1-42 vs. Naïve, A 25-35 vs. Vehicle, A 25-35 
vs. Naïve. 
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5.3 Discussion 

 In this chapter, studies focused on differences in protein synthesis, CREB, and 

pCREB Ser133 levels in trained  and A- treated animals. No change was found in 

total protein levels or protein synthesis levels between A-treated, trained, and naïve 

animals. Animals’ brains were dissected directly after testing, suggesting that memory 

is most likely in the retrieval process during this time. It is well known that protein 

synthesis is not involved in memory retrieval (Kida et al., 2002; Pedreira et al., 1996), 

which was confirmed in this chapter. Total CREB levels were measured and compared 

between animal groups and found that total nuclear CREB is significantly decreased in 

A 25-35 injected animals, compared to vehicle and naïve animals. CREB and pCREB 

have not been directly quantified in A 25-35-injected animals previously; however, the 

decrease in CREB levels of A 25-35-treated Lymnaea does not coincide with the A- 

treated or AD models in the literature, which suggests that total CREB levels do not 

change (Dineley et al., 2001; Tong et al., 2004). However, Lymnaea treated with the 

full length, physiologically relevant form of the A peptide did not exhibit any difference 

in total CREB. It is possible that the difference in the two peptides is due to different 

concentrations applied or that the two peptides act on CREB differently. 

 Finally, pCREB Ser133 was measured and compared between animal groups. 

A 25-35- and A 1-42-injected animals showed significantly decreased pCREB 

compared to vehicle and naïve groups. The decrease of pCREB in the A-treated 

groups has also been found by other labs using different models (Yamamoto-Sasaki et 

al., 1999; Dineley et al., 2001; Tong et al., 2004). Since pCREB is necessary for 

memory retrieval (Szapiro et al., 2002), decreased pCREB level in trained/A-injected 

animals may be inhibiting memory retrieval. This could be the molecular disruption 

mechanism that causes the observed behavioural deficit previously found in these A-

treated animals. However, the vehicle-injected and naïve pCREB Ser133 levels are not 

significantly different and pCREB is likely important, but not sufficient, for the A-

induced LTM loss. Importantly, there is probably a baseline of pCREB necessary for 

this memory and the A levels are below this threshold, combining with other 

unidentified factors to cause the LTM inhibition observed in A-treated animals. 

 An interesting, and possibly confusing, aspect of the literature becomes 

apparent at this point in the discussion. How can CREB activation be necessary for 

memory retrieval, but not protein synthesis? There are two possible answers. First, 

CREB plays a key role in both synaptic and nonsynaptic plasticity, helping the neurons 
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to generate action potentials and to regulate membrane resistance, intrinsic excitability 

(Jancic et al., 2009; Dong et al., 2006), firing  frequency, and resting membrane 

potential (Han et al., 2006). A may widely disrupt nonsynaptic plasticity in this system 

through altering CREB function without drastically altering protein synthesis. Secondly, 

while protein synthesis is not required for memory retrieval, it is required for memory 

reconsolidation (for review, see Alberini and LeDoux, 2013). Reconsolidation is the 

strengthening of memory after retrieval and requires similar molecular signalling 

cascades as memory consolidation (for review, see Alberini and LeDoux, 2013). 

Although brains were dissected as soon as possible in these experiments, cascades 

were already shifting to reconsolidate the memory trace. It is impossible to distinctly 

pinpoint one memory process at this time point, as there are likely multiple memory 

processes undergoing change when the brain is removed. If the animals’ brains had 

not been removed, the decrease in pCREB of A-treated animals would have required 

a large amount of stimulus and significant overcompensation of the cascades to enable 

the protein synthesis necessary for memory reconsolidation. It is also worth noting that 

the decreased pCREB levels in affected neurons are also disadvantageous for any 

new memory formation within the circuitry as, similar to reconsolidation, it is dependent 

upon pCREB and protein synthesis. Considering the above, it is clear that decreased 

pCREB in A-treated animals may not only inhibit the animals’ ability to retrieve 

memory, but would also likely disrupt future memory processes such as 

reconsolidation or new memory formation within the diseased circuitry. This disruption 

would manifest as the observed behavioural memory deficits previously discussed in 

Chapter 3. 

  



103 
 

6. A 1-42 and 25-35 disrupts CREB-signalling cascades in 

trained Lymnaea stagnalis. 

The previous chapter indicated that protein synthesis is not necessary for 48 

hour memory recall in Lymnaea and that A injection does not disrupt protein synthesis 

when injected at 24 hours and measured at 48 hours post-conditioning. However, total 

CREB and pCREB Ser133 is disrupted by A 25-35 and pCREB Ser133 is disrupted 

by A 1-42 at these time points. This information may provide a direct link to A-

induced LTM deficits. However, CREB activation is a downstream element of many 

signalling cascades involved in LTM and synaptic plasticity (Figure 6.1) and any A-

induced disruption to an upstream element could manifest as changes in pCREB. 

Therefore, upstream disruptions to CREB-signalling cascades were measured in order 

to pinpoint where A is disrupting the pathway, starting with the most upstream 

element of CREB-signalling cascades: receptors in the postsynaptic membrane. Much 

of A’s influence on plasticity is believed to occur at the synapse at early time points 

before any synaptic loss is observed. For example, A treatment causes NMDARs 

(Lacor et al., 2007; Snyder et al., 2005) and AMPARs (Hsieh et al., 2006) to be 

internalised from the postsynaptic membrane. This is believed to mimic the loss of 

synaptic plasticity before synaptic structural changes are observed in early-stage AD 

(Klein et al., 2007; Lambert et al., 1998). 

Different forms of memory require different molecular cascade components. For 

example, LTM formation requires NMDARs (Steele and Morris, 1999), AMPARs, 

mGluRs (Schulz et al., 2001), CaMKII (Otmakhov et al., 1997; Giese et al., 1998; Wan 

et al., 2010; Naskar et al., 2014), PKA (Huang et al., 2000; Michel et al., 2008), MAPK 

(Huang et al., 2000; Ribeiro et al., 2005), PKC (Paratcha et al., 2000; Weeber et al., 

2000), transcription (Fulton et al., 2005; Pedreira et al., 1996), translation (Fulton et al., 

2005; Brink et al., 1966; Pedreira et al., 1996), and CREB activation (Impey et al., 

1996; Schulz et al., 1999; Bourtchuladze et al., 1994; Barco et al., 2002; Taubenfeld et 

al., 1999; Bito et al., 1996; Deisseroth et al., 1996; Countryman et al., 2005; Pittenger 

et al., 2002; Dash et al., 1990; Kida et al., 2002; Ribeiro et al., 2003). However, the 

behavioural time point investigated in this thesis is focused on consolidated memory, 

not memory formation or acquisition. As described in Chapter 3, Ainjection occurs at 

the 24 hour post-conditioning time point, when memory is known to be fully 

consolidated in Lymnaea (Fulton et al., 2005). Memory is tested and brain samples are 

collected 48 hours post-conditioning. The term “testing” can be considered memory 

retrieval (recall). Thus, the forms of memory that the A injection could be disrupting 



104 
 

include: memory retrieval, early memory reconsolidation, memory maintenance 

(retention), memory storage, or lingering memory consolidation (Dudai and Eisenberg, 

2004). Retrieval of LTM involves AMPARs (Hong et al., 2013), mGluRs (Szapiro et al., 

2000), VGCCs, PKA (Szapiro et al., 2000), MAPK (Szapiro et al., 2000), PKC, and 

calcineurin (Mayford and Kandel, 1999) but not CaMKII (Szapiro et al., 2000) or protein 

synthesis (Szaprio et al., 2002; Kida et al., 2002; Pedreira et al., 1996). The 

involvement of CREB activation (Szapiro et al., 2002; Kida et al., 2002) and NDMARs 

(Szapiro et al., 2000; Steele and Morris, 1999; Przybyslawski and Sara, 1997) in 

memory recall is controversial. 

Many of the above mentioned molecular contributors to LTM are disrupted in 

AD. Memory loss is the predominant symptom of AD and many studies have shown 

that A inhibits LTP and enhances LTD (Shankar et al. 2008; Li et al., 2009). It is 

widely accepted that A influences synaptic plasticity by structural and functional 

interaction with several membrane proteins, including: 7-nAChRs (Wang et al., 2000), 

NMDARs (Snyder et al., 2005), AMPARs (Parameshwaran et al., 2007; Alberdi et al., 

2010), and several others (for review, see Mucke and Selkoe, 2012), and, partially 

through these interactions, causes neurotoxicity by increasing intracellular Ca2+ levels 

(for review, see LaFerla, 2002). Interestingly, receptor antibody treatment (including 

NMDARs, insulin receptors, PrP receptor, mGluR5, AMPARs) decreases A oligomer 

binding to synapses (De Felice et al., 2009; Lauren et al., 2009; Renner et al., 2010; 

Zhao et al., 2010). It is important to keep in mind that the A-induced LTP deficits are 

thought to arise from A-induced LTD-like processes. A-induced synaptic depression 

has an initial increase in synaptic activation of NMDARs by glutamate, followed by 

synaptic NMDAR desensitization, NMDAR/AMPAR internalization, and activation of 

extrasynaptic NMDARs and mGluRs; all of these events are involved in the induction of 

LTD (for review, see Mucke and Selkoe, 2012). The inhibition of LTP can be abolished 

in A-treated tissues by applying blockers of LTD-related signalling cascades, such as 

mGluR or p38 MAPK (Wang et al., 2004c).  

Receptor dysfunction will lead to aberrant Ca2+ influx into the neurons and thus 

deregulate protein signalling cascades (Figure 6.2). Specifically, CREB-signalling has 

been found to be inhibited by non-degenerative doses of oligomeric A1-42 (Tong et 

al., 2004). The main CREB-signalling cascade, cAMP/PKA, is inhibited by synthetic 

Aoligomers in culture, slice, and in vivo Tg2576 mice (for review, see Benilova et al., 

2012). Unsurprisingly, CREB-signalling activation reverses learning and memory 
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deficits in APP+PS1, 3xTg, and TgCRND8 mice (Gong et al., 2004; Caccamo et al., 

2010; Yiu et al., 2011).  

All experiments in this thesis thus far have been built on the behavioural deficits 

described in Chapter 3 and this chapter continues to investigate CREB-signalling 

cascades upstream of the transcription factor. Chapter 5 previously demonstrated that 

pCREB Ser133 levels are decreased in A-treated animals, indicating the possibility 

that this molecular disruption leads to LTM loss. Any protein change examined in this 

chapter may provide a stronger correlative link to memory loss. A combination of 

molecular, pharmacological, and biochemical techniques have been used to test A-

induced disruption to CREB-signalling cascades. This approach offers a 

comprehensive picture of how A is affecting memory 48 hours after conditioning and 

24 hours after injection in Lymnaea stagnalis. 
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Figure 6.1 CREB-signalling cascades involved in LTP. Schematic of key proteins and events 
involved in CREB-signalling pathways of LTP (reproduced from Purves et al., 2008). 
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Figure 6.2 A’s effect on signalling cascades. Schematic of protein signalling cascades 

disrupted by A oligomers (adapted from Benilova et al., 2012). 
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6.1 Receptors involved in memory and/or CREB-signalling pathways 

may be disrupted by treatment with A at the 24 hour post-injection/ 

48 hour post-training time point. 

 Three different families of receptors have been selected for this study due to 

their known importance for LTM, involvement in CREB-signalling pathways, and/or 

because they are known to be disrupted by A. The first family of receptors considered 

was AMPA. AMPARs are ionotropic, tetrameric complex receptors assembled from a 

mixture of the subunits: GluA1, GluA2, GluA3, and GluA4, which express fast gating 

kinetics and rapid desensitisation (for review, see Dingledine et al., 1999). The 

incorporation of these receptors into and internalisation from postsynaptic sites is one 

of the main molecular mechanisms underlying LTP and LTD (for review, see Man et 

al., 2000; Sheng and Lee, 2001). Specifically, the GluA1 subunit mediates NMDAR-

dependent AMPAR insertion during LTP (Shi et al., 1999; Hayashi et al., 2000; Lu et 

al., 2001; Meng et al., 2003).  

APP knockout mice have aberrant AMPAR-mediated excitatory synaptic 

transmission and express reduced GluA1, GluA2, and GluA2/3 in A vulnerable 

regions of the AD brain (Armstrong et al.,1994; Carter et al., 2004; Thorns et al., 1997; 

Wakabayashi et al., 1994). A oligomer-induced removal of AMPARs from the post 

synapse has also been found in aberrant-APP transfected, APP transgenic mice, and 

A 1-42-treated animals (Gu et al., 2009; Hsieh et al., 2006). Interestingly, the AMPAR 

inhibitor DNQX (6,7-dinitroquinoxaline-2,3-dione) only slightly inhibits A-induced ROS 

generation and does not affect A binding to the synapse (De Felice et al., 2007). 

Taken together, the background indicates that A alters AMPAR distribution and 

function in an exposure-dependent manner, but that AMPARs are not a direct A 

target. 

Importantly for work in Lymnaea, an AMPA GluA1 orthologue exists (Darlison et 

al., 1993) and mammalian GluA1 antibodies have been used in Lymnaea successfully 

(Naskar et al., 2014). Western blotting was therefore used to measure total GluA1 in 

buccal+cerebral ganglia and no significant difference between any of the treated or 

control groups was observed (Figure 6.3). 

From Figure 6.3, it is clear that GluA1 is not being markedly produced or 

degraded from either the A treatment or conditioning at this time point. However, 

alterations in the form of post-translational modifications can affect receptor function 
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without changing total GluA1 levels. GluA1 Ser831 and Ser845  mutated knock-in mice 

are unable to have AMPARs properly trafficked into the postsynapse, suggesting a 

need for phosphorylation regulation at these amino acid residues for normal synapse 

AMPA-fication (Lee et al., 2003). These mutant mice are able to acquire memory, but 

are unable to recall memory when tested 8-24 hours after training, suggesting a role for 

pGluA1 at Ser831, Ser845, and a role for AMPAR trafficking in consolidated memory 

(Lee et al., 2003). Often, phosphorylation of Ser845 and Ser831 is rapid and transient, 

as seen by a lack of phosphorylation change in mice when measured multiple hours 

after undergoing contextual foot shock (Shukla et al., 2007). As part of the LTP 

sequence of events, CaMKII phosphorylates AMPARs at Ser831 in a rapid and 

transient manner which increases the single channel conductance of phosphorylated 

AMPARs (Barria et al., 1997; Benke et al., 1998). However, LTP can still occur in the 

absence of increased phosphorylation of Ser831 (Benke et al., 1998; Hayashi et al., 

2000; Lee et al. 2003). PKA phosphorylates GluA1 at Ser845, which is necessary but 

not sufficient to drive GluA1 into the synapse during AMPA-fication (Esteban et al., 

2003). When LTD is induced, the PKA-phosphorylated GluA1 Ser845 site becomes 

dephosphorylated (Montgomery and Madison, 2002). For these reasons, the 

phosphorylated state of GluA1 at Ser831 and Ser845 were also considered.  

Mammalian antibodies against GluA1 Ser831 and GluA1 Ser845 have been 

successfully used in Lymnaea (Souvik Naskar, personal communication). Neither 

Ser831 (Figure 6.4A, B) nor Ser845 (Figure 6.4C, D) phosphorylation levels differ 

significantly between any of the animal groups when quantified using western blot. 
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Figure 6.3 Total GluA1 levels are the same across treatment and control groups. Four 

animal groups (A 1-42 [n=15], A 25-35 [n=15], vehicle [n=15], naïve [n=9]) were compared for 
intensity of total GluA1 labelling using western blot. For each group 5 buccal+cerebral ganglia 
were pooled together, run on a gel, and western blotted with a GluA1 antibody. (A) 

Representative GluA1 and  tubulin loading control bands. (B) Data represents GluA1 band 
densitometry/ loading control densitometry. Means ± SEM values are shown. Kruskal-Wallis, 
p=0.8647. Dunn’s Multiple Comparison all p>0.05. 
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Figure 6.4 Levels of pGluA1 Ser831 and pGluA1 Ser845 are not different between A-
treated or trained animal groups. For each group 5 buccal+cerebral ganglia were pooled 
together, run on a gel, and western blotted with either a pGluA1 Ser831 or pGluA1 Ser845 

antibody. (A-B) Four animal groups (A 1-42 [n=8], A 25-35 [n=5], Vehicle [n=7], Naïve [n=4]) 
were compared for intensity of pGluA1 Ser831 labelling using western blot. (A) Representative 
pGluA1 S831 bands and GluA1 bands. (B) Data represents pGluA Ser831 band densitometry/ 
steady state protein densitometry. Means ± SEM values are shown. Kruskal-Wallis, p=0.9220. 

Dunn’s Multiple Comparison all p>0.05. (C-D) Four animal groups (A 1-42 [n=8], A 25-35 
[n=7], Vehicle [n=9], Naïve [n=6]) were compared for intensity of pGluA1 Ser845 labelling using 
western blot. (C) Representative pGluA1 S845 bands and GluA1 bands. (D) Data represents 
pGluA Ser845 band densitometry/ steady state protein densitometry. Means ± SEM values are 
shown. Kruskal-Wallis, p=0.5999. Dunn’s Multiple Comparison all p>0.05. 
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 The second family of receptors considered is NMDA. NMDARs act as a 

coincidence detector, allowing Ca2+ entry to the postsynapse only when presynaptic 

and postsynaptic activity coincides. At this time, a voltage-dependent release of the 

Mg2+ ion from the NMDAR pore must also occur to unblock the channel and glycine or 

D-serine must bind as a cofactor for NMDAR to allow Ca2+ influx (Mayer et al., 1984; 

Nowak et al., 1984; Fadda et al., 1988). NMDAR’s role as a coincidence detector, 

along with the Ca2+ entry into the postsynapse, is necessary for certain forms of LTP 

(Bliss and Collingridge, 1993). Besides its requirement in memory acquisition and 

consolidation, NMDARs have been shown to be important in memory storage as well, 

through the use of inducible and reversible NMDAR knockout mice (Cui et al., 2004). In 

fact, persistent NMDAR activity is believed to be necessary for the first several days 

after training to ensure proper LTM maintenance and storage (Frankland et al., 2001). 

One way in which NMDARs are regulated is by a redox modulatory site in the 

hydrophobic pore of the receptor complex, which allows retrograde messengers like 

NO and ROS to directly down-regulate gating frequency and open-time of the receptor 

(Aizenman et al., 1990; Lei et al., 1992). NMDARs also seem to be involved in their 

own downstream up-regulation; Ca2+ influx through these receptors can lead to CREB 

activation, which acts as a transcription factor for the NMDAR1 gene (Lau et al., 2004).  

The link between AD and NMDAR dysfunction is so great that Memantine, a 

non-selective NMDAR antagonist, is currently used for the treatment of moderate to 

severe AD (De Felice et al., 2007) due to its ability to slow cognitive decline (Fastbom 

et al.,1998; Winbald and Poritis, 1999). A significant loss of NMDARs occurs in AD 

brains (Sze et al., 2001; Mishizen-Eberz et al., 2004) and reduction of surface 

NMDARs is found in A-treated tissues (Brouillette et al., 2012; Roselli et al., 2005; 

Snyder et al., 2005; Lacor et al., 2007).  However, how A effects NMDARs is not 

completely clear. A is known to bind to NR1 and NR2B subunits in hippocampal 

neurons (Lacor et al., 2004; Lacor et al., 2007) and will immunoprecipitate with 

NMDAR subunits in synaptosomes (De Felice et al., 2007; Renner et al., 2010; 

Roenicke et al., 2011). Application of an NR1 antibody or the NMDA inhibitor APV 

((2R)-amino-5-phosphonovaleric acid) to cultured neurons results in a 50% decrease in 

A oligomer-synapse binding (De Felice et al., 2007; Lacor et al., 2007). For this 

reason, some reports suggest that A directly affects important functions of the 

receptors and inhibits induction of NMDAR-dependent LTP (Snyder et al., 2005; 

Shankar et al., 2007; Lambert et al., 1998; Wang et al., 2002), specifically NR2B 

subunit-containing receptors (Li et al., 2009; Rammes et al., 2011; Roenicke et al., 

2011). In vitro studies have shown that NMDAR-independent LTP is not inhibited by A 
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1-42 (Wang et al., 2004b) and both these NMDAR-dependent and NMDAR-

independent results have been replicated in vivo (Hu et al., 2009). NR1 antibodies, 

MK-801, APV, or Memantine, eliminate the Ca2+ influx that otherwise results in 

oligomer-induced ROS (De Felice et al., 2007; Lacor et al., 2007), decreasing the 

neurotoxicity within the cell and the amount of ROS able to act on the NMDAR redox 

modulatory site (Mattson, 1995). 

However, it is important to note that these findings are not simple; not all 

NMDAR-dependent LTP is vulnerable to A and A is able to facilitate NMDAR-

independent LTD (Hu et al., 2009; Li et al., 2009; Shankar et al., 2008). Extra- or 

perisynaptic NMDARs, which are often rich in the NR2B subunit, are known to induce 

LTD when activated and have been shown to mediate the inhibition of LTP/induction of 

LTD in the presence of A oligomers (Li et al., 2011; Hsieh et al., 2006; Li et al., 2009). 

The disruption to LTP is believed to be mediated by A-disrupted 7-nAChRs, causing 

NMDARs to be endocytosed (Snyder et al., 2005) and causing further deregulation of 

NMDAR signaling (Shankar et al., 2007). This A-induced disruption of 7-nAChRs 

may be the most upstream element of a cascade of deregulation, causing NMDARs to 

induce neurotoxicity and the dependence of 7-nAChR disruption may be why A’s 

effect on NMDAR function is complicated (for review, see Mucke and Selkoe, 2012).  

Importantly for this work in Lymnaea, 80% of central nervous system (CNS) 

neurons express the two NMDA NR1 isoforms (Ha et al., 2006), which have similar 

structure to mammalian NR1. Both NR1s have three transmembrane regions and a 

hydrophobic domain that forms a pore structure (Ha et al., 2006). Lymnaea NR1 also 

appear to have conserved redox modulation capabilities and sites for post-translational 

modifications (in the form of phosphorylation or N-glycosylation) mediated by PKC, 

casein kinase II, and PKA (Ha et al., 2006). Unfortunately, there are differences 

between NR1 function in Lymnaea and mammals. APV does not block Lymnaea’s 

NMDA receptors and the voltage-dependent Mg2+ block does not exist in Lymnaea 

(Moroz et al., 1993). Limitations considered, the basic NMDAR functions, such as 

permeability to Ca2+ ions and receptiveness to glutamate signal, are retained in 

Lymnaea NR1s and thus are very likely to play an important role in LTP in this model 

system (Moroz et al., 1993; Ha et al., 2006). Importantly as well, the inhibitor MK-801 

has been used successfully in Lymnaea (Wan et al., 2010). Because MK-801 can be 

used successfully in this model, NR1 inhibition at the 24 hour post-training time point 

was first investigated to determine if it was sufficient to inhibit LTM at 48 hour post-

training. Importantly, naïve animals injected with either vehicle or MK-801 had similar 
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behavioural responses, indicating that treatment does not drastically interfere with the 

animals’ motor abilities. Both naïve groups had significantly less behavioural response 

than trained, vehicle-injected animals. Trained and MK-801 injected animals showed 

neither significantly greater response from untrained animals nor decreased response 

from trained animals, instead exhibiting a decreasing trend  (Figure 6.5).  

NR1 was further investigated, but before any immuno-labelling could be 

performed, the use of a mammalian NR1 antibody needed to be verified for use in 

Lymnaea. To do this, a sequence alignment was compared between Lymnaea and rat 

NR1 to find sites of homology. Unfortunately, none of the homologous sites were 

matches to the antigens of commercially available antibodies. Still, two antibodies were 

considered. Lymnaea and rat brain tissue were run side-by-side and western blotted to 

compare banding patterns. The two antibodies were tested and both expressed low 

banding pattern between Lymnaea and rat, and did not exhibit banding at the 

appropriate molecular weight in the Lymnaea sample (Appendix III.1). These 

antibodies were deemed unsuitable for further use in Lymnaea.  
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Figure 6.5 MK-801 injection results in a trend for decreased LTM in trained animals. (A) 
Timeline of experiment. (B) Four starved animal groups (Trained, MK-801 [n=15]; Trained, 
Vehicle [n=15]; Naïve, MK-801 [n=15]; Naïve, Vehicle [n=14]) were tested for rasp rate to amyl 
acetate, a measure of the feeding response to the CS. Means ± SEM values are shown. 
Asterisks indicate significantly increased feeding response from naïve animals. Kruskal-Wallis, 
p=0.0011. Dunn’s Multiple Comparison with p<0.05= Trained, Vehicle vs. Naïve, MK-801; 
Trained, Vehicle vs. Naïve, Vehicle. 
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 The final family of receptors studied in this body of work are nicotinic 

acetylcholine receptors. nAChRs belong to the Cys loop family of pentameric ionotropic 

channels (Alkondon et al., 1998). These receptors can be homomeric or heteromeric 

and are composed of a mixture of the 8  subunits or 3  subunits (for review, see Dani 

and Bertrand, 2007), which are highly permeable to Na+, K+, and Ca2+ (for review, see 

Lendvai and Vizi, 2008). nAChRs pass current at highly negative membrane potentials 

and make only a small contribution to ion influx at very active synapses (for review, see 

Dani and Bertrand, 2007). In mammalian synaptic transmission, nAChRs 

predominantly mediate presynaptic modulation of neurotransmitter release, although 

are also located at many nonsynaptic sites (for review, see Lendvai and Vizi, 2008) 

and in the postsynapse, and are generally not involved in fast synaptic transmission 

(for review, see Dani and Bertrand, 2007). This is due to their predominant role in 

nonsynaptic transmission; nAChR-mediated effect on neurons is slow because 

neurotransmitter signal is received after long-lasting diffusion. However, once the 

receptors are activated, ion influx is rapid (for review, see Lendvai and Vizi, 2008). So 

while these receptors are not involved in fast synaptic transmission, they are 

considered to be involved in fast nonsynaptic transmission, especially in comparison to 

the other nonsynaptic metabotropic receptors (for review, see Lendvai and Vizi, 2008).  

Stimulation of excitatory synaptic transmission paired with release of acetylcholine 

results in induced LTP in the Schaffer-collateral/commissural pathway, which is 

mediated through either muscarinic or nicotinic receptors (Gu et al., 2011). Nicotinic 

receptor-dependent LTP is mediated predominantly by 7-nAChR facilitation of Ca2+ 

entry through NMDARs (Gu et al., 2011). This is done after a nAChR-induced 

enhancement of presynaptic neurotransmitter, especially the neurotransmitter 

glutamate, is released from the presynaptic terminal (for review, see Dani and 

Bertrand, 2007). 7-nAChR’s role as a presynaptic glutamate enhancer also increases 

AMPAR-mediated excitatory postsynaptic current (Mansvelder and McGehee, 2000). 

When 7-nAChRs are blocked pharmacologically, working memory is impaired in rats 

(Levin et al., 1996) and when nicotinic agonists are administered to human and non-

human primates, learning and memory is improved (Levin et al., 2006).  

As mentioned above, nAChRs play their major role in nonsynaptic plasticity. 86-

93% of cholinergic boutons in the CNS of mammals do not make synaptic connections 

but are still functionally active in releasing ACh into the extracellular space, contributing 

to diffuse volume transmission (Descarries et al., 1997; Kasa et al., 1995). 

Interestingly, the majority of these nAChR-containing hippocampal neurons are 

glutamatergic or GABAergic, not cholinergic (Fabian-Fine et al., 2001). Only 12% of 
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these are GABAergic, with the predominant nAChR-containing neuronal type being 

glutamatergic (Kawai et al., 2002). Therefore, in order for ACh to activate nAChRs in 

these neurons, it must diffuse into the synaptic cleft from the extracellular space in a 

nonsynaptic manner while glutamate or GABA signals synaptically (for review, see 

Lendvai and Vizi, 2008). Excess ACh in the synaptic cleft is hydrolysed by the enzyme 

acetycholinesterase (AChE), creating choline as one of its products (for review, see 

Dani and Bertrand, 2007). This choline is also able to activate and desensitise nAChRs 

(Alkondon and Albuquerque, 2006). 

The AChE inhibitor Donepezil is given to those with AD following the early 

studies which discovered a decrease in number of cholinergic neurons (Davies and 

Maloney 1976; Whitehouse et al., 1982), a decrease in acetylcholine synthesis (Sims 

et al., 1983), reduced number of cholinergic receptors in the cortex (White et al., 1977; 

Kellar et al., 1987), and reduced AChE activity (Perry et al., 1978a,b) in disease 

patients. AD brains also exhibit an increased proportion of 7-nAChR-expressing 

astrocytes (Jones and Wonnacott, 2004), which may contribute to the Ca2+ 

dyshomeostasis and aberrant inflammation found in the disease (Xiu et al., 2005). 

While nAChRs seem like a useful therapeutic target, these drugs only very modestly 

alleviate the cognitive deficits of AD (for review, see Dani and Bertrand, 2007). While 

pre-treatment with anticholinesterases can prevent A-induced inhibition of LTP, 

treatment no longer inhibits A’s effect when applied after the peptide (Klyubin et al., 

2014). A 1-42 has high affinity for 7-nAChRs (Wang et al., 2000) and when bound, 

causes inhibition of nicotine-evoked currents (Liu et al., 2001; Pettit et al., 2001). An 

interesting study suggests that A’s effect on 7-nAChR function is complex; Kroker et 

al., 2013 used oligomeric A 1-42 in combination with multiple receptor blockers to 

determine which receptors were most highly disrupted by A during LTP. They found 

that only one 7-nAChR drug, SSR180711, out of three nAChR drugs including 

Donepezil, was successful in rescuing oligomeric A 1-42 impairment of LTP (Kroker et 

al., 2013).  

Importantly for work in Lymnaea, 12 nAChR transcripts exist and are expressed 

exclusively on many of the CNS neurons (Zeimal and Vulfius, 1967; Vulfius et al., 

1967). Specifically, subunit B is predominantly found in the buccal ganglia and subunit 

A is predominantly found in the cerebral ganglia (van Nierop et al., 2006). The structure 

of Lymnaea nAChRs are similar to mammalian Cys loop family ionotropic channels 

with highest homology to mammalian nAChR and express 35-84% sequence 

homology to human nAChRs (van Nierop et al., 2006). In fact, experiments using 
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Lymnaea and the Ach binding protein offered a breakthrough in the structural and 

functional understanding of nAChRs (Smit et al., 2001). Importantly, nAChRs appear to 

function differently in Lymnaea than in mammals; in the molluscan CNS, cholinergic 

synaptic transmission is predominantly fast (van Nierop et al., 2006) as opposed to the 

slow synaptic, but fast nonsynaptic transmission observed in mammals. An nAChR 

mammalian antibody also has not yet been used successfully in Lymnaea so, similarly 

to the NR1 studies, before immuno-labelling could be performed an appropriate 

sequence alignment was done to find a mammalian nAChR antibody that may be used 

in this model. A rat 7-nAChR was aligned to nAChR subunit A in Lymnaea (Appendix 

III.2). Lymnaea nAChR A is one of the cation-selective nAChR receptors that display a 

particularly high contribution to the nAChRs in the cerebral ganglia (van Nierop et al., 

2006). With the alignment, an antibody was selected with highest sequence homology 

to the antigen. Similar to NR1, there were discrepancies between the Lymnaea 

sequence and the antigen and so samples were run on a gel and western blotted with 

7-nAChR to determine correct banding at the 56 kD weight (Figure 6.6). While there 

was smudging in the sample, likely due to low homology between Lymnaea and 

antigen, there is one distinct band at the predicted 56 kD weight in the Lymnaea 

sample. As there is non-specific signal in the Lymnaea sample, it would be best to use 

pre-absorption to ensure appropriate use of the antibody and this should be considered 

for future research. However, the single band appearing at the predicted weight in the 

Lymnaea sample makes it very likely that this antibody is useful. This antibody was 

used with western blotting to measure total 7-nAChR levels in the experimental and 

control samples (Figure 6.6). No significant difference was found between any of the 

animal groups. 
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Figure 6.6 7-nAChR-like subunit does not change in Lymnaea between A-treated and 

conditioned animal groups. (A) Representative nAChR bands and  tubulin loading control 

bands (B) Four animal groups (A 1-42 [n=6], A 25-35 [n=6], Vehicle [n=6], Naïve [n=6]) were 

compared for intensity of 7-nAChR labelling using western blot. Data represents 7-nAChR 
band densitometry/ loading control densitometry. Means ± SEM values are shown. One-way 
ANOVA, p=0.8841. Tukey’s tests all p>0.05. 
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6.2 Second messengers involved in CREB-signalling pathways are 

not disrupted by treatment with A at the 24 hour post-injection/ 48 

hour post-training time point. 

Adenylyl cyclase is a second messenger associated with GPCRs and is 

involved in the cAMP/PKA CREB-signalling pathway. When monoamine 

neurotransmitters such as dopamine (Self et al., 1998), octopamine, or serotonin 

(Levitan and Barondes, 1974) arrive at their appropriate GPCR, adenylyl cyclase will 

then be activated. This initiates the cAMP/PKA pathway by converting ATP into cAMP. 

Adenylyl cyclase is also known to be involved in LTP by acting as a Ca2+ sensor 

(Chetkovich and Sweatt et al., 1993; Wong et al., 1999). Besides direct GPCR 

activation, adenylyl cyclase is also sensitive to calmodulin in the presence of Ca2+ and 

thus can be stimulated by other receptors, such as NMDARs, that allow large amounts 

of Ca2+ into the cell (Eliot et al., 1989; Chetkovich et al., 1991). Therefore, adenylyl 

cyclase (and its downstream pathway) and CaMKII act together to potentiate signal; 

cAMP inhibits PP1, which allows CaMKII to autophosphorylate itself more easily and 

thus makes its signal persistent (Brown et al., 2000; Genoux et al., 2002). Besides 

adenylyl cyclases involvement in LTP, it is also involved in leading to the 

phosphorylation of Ca2+ channels in neuronal intrinsic plasticity (Zhang and Linden, 

2003).  

Adenylyl cyclase’s importance in LTM was brought to light by the genetic 

mutation of its orthologue, rutabaga, in Drosophila (Dudai et al., 1983; Levin et al., 

1992). Rutabaga mutation studies implicate adenylyl cyclase and the cAMP/PKA 

pathway in controlling neuronal firing patterns and synaptic efficacy (Zhao and Wu, 

1997; Renger et al., 2000). The need for adenylyl cyclase in spatial memory and LTP 

has also been found in rodents using both mutant mice and adenylyl cylcase 

antagonists (Wu et al., 1995; Huang et al., 1994; Frey et al., 1993; Wang et al., 2004a). 

Knockdown of adenylyl cyclase in mice results in the down-regulation of the expression 

of many genes in the hippocampus; interestingly, most of these genes are up-regulated 

at memory storage time points in wild type, trained mice (Wieczorek et al., 2010). This 

coincides with the knowledge that adenylyl cyclase is required for memory 

maintenance and retention (Wong et al., 1999; Shan et al. 2008; Wieczorek et al. 

2010), suggesting that this second messenger plays an important role in activating the 

long-lasting transcriptional change necessary for LTM persistence. Considering how 

integral a role this second messenger plays in memory, it is unsurprising that adenylyl 

cylcase dysfunction has been directly linked to AD (Terry et al., 1994)  
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Importantly for work in Lymnaea, an adenylyl cyclase orthologue exists (de 

Jong-Brink et al., 1986). However, an adenylyl cyclase mammalian antibody has not 

yet been used successfully in Lymnaea. Similarly to the NR1 and nAChR studies, 

before immuno-labelling could be performed, an appropriate sequence alignment was 

completed to find a mammalian adenylyl cyclase antibody that may be used (Appendix 

III.3). However, the sequences had low alignment. Still, a mammalian antibody was 

selected and used to label western blots of Lymnaea and rat samples. Banding 

patterns did not align and so the antibody was deemed unsuccessful in Lymnaea 

(Appendix III.3).  

When adenylyl cyclase is up regulated, it increases the amount of intracellular 

cAMP, another second messenger involved in the cAMP/PKA CREB-signalling 

pathway. However, the cAMP increase is only believed to last for 2 hours after stimulus 

exposure (Bacskai et al., 1993). During this time, cAMP will bind to the regulatory 

subunits of PKA, causing them to dissociate from the catalytic subunits and allowing 

the kinase to phosphorylate its downstream targets. The cAMP/PKA pathway has been 

implicated in A-induced memory dysfunction (Vitolo et al., 2002; Tong et al., 2004) 

and addition of the cAMP-phosphatase inhibitor rolipram has been found to rescue A-

induced memory deficits (Vitolo et al., 2002). In experiments where cAMP was already 

increased, treatment with the adenylyl cyclase activator forskolin did not rescue A-

diminished LTP (Grammas et al., 1994). Increased levels of cAMP have been 

measured in AD fibroblasts (Martinez et al., 1999) and this agrees with cAMP 

measurements from AD patient microvessels (Grammas et al., 1994).  

Experiments in Lymnaea examined the effect of injecting cAMP into the CGC 

soma and found an enhancement of the neuron’s output, similarly to artificial 

depolarisation (Nikitin et al., 2006); this suggests a direct link between the cAMP/PKA 

pathway and a key intrinsic function sufficient in influencing Lymnaea behaviour. As 

cAMP is not a protein, a cAMP antibody will label appropriately across all species. 

Instead of western blotting, a dot blot approach was taken to measure total cAMP 

levels within these samples (Figure 6.7A). No significant difference between any of the 

experimental or control groups was found (Figure 6.7B). However, the dot blot method 

is only semi-quantitative. To ensure the results, a direct ELISA was used to compare 

total cAMP levels between samples (Figure 6.7C-D). Again, no significant difference 

between groups was found. 
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Figure 6.7 cAMP levels do not change with A treatment or training. (A) Representative 

cAMP dot blot and  tubulin loading control dot blot. (B) Results from dot blot experiments. Four 

animal groups (A 1-42 [n=9], A 25-35 [n=9], Vehicle [n=8], Naïve [n=8]) were compared for 
intensity of cAMP labelling using dot blot. Data represents cAMP dot densitometry/ loading 
control densitometry. Means ± SEM values are shown. Kruskal-Wallis, p=0.7998. Dunn’s 
Multiple Comparison all p>0.05. (C) Graph of standards’ concentration vs. absorbance at 450 
nm, which allowed for values in D to be calculated. Best-fit line is shown, using a Boltzmann 

sigmoidal equation. R
2
=0.9456 (D) Four animal groups (A 1-42 [n=2], A 25-35 [n=2], Vehicle 

[n=2], Naïve [n=2]) were added to a cAMP direct ELISA kit, and measured for absorbance at 
450 nm. Means ± SEM values are shown. One-way ANOVA, p=0.4227. Tukey’s tests all 
p>0.05. 
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6.3 Kinases involved in CREB-signalling pathways are disrupted by 

treatment with A at the 24 hour post-injection/ 48 hour post-training 

time point. 

 Kinases are important components of signalling cascades in that they activate 

the most downstream proteins involved. This section will describe experiments to 

examine three key kinases involved in CREB-related cascades; however, it is 

important to note that these are only three kinases out of over 300 different kinase-

activating stimuli that are known to be capable of phosphorylating CREB at Ser133 

(Johannessen et al., 2004). Initially, changes in PKC levels were investigated. PKC is a 

multigene family, consisting of at least 10 isoforms, 9 of which are found in neurons 

(Naik et al., 2000; Sossin, 2007; Steinberg, 2008). A conventional metabotropic 

signalling pathway, through mGluR1/5s, yields inositol triphosphate (IP3) and diacyl-

glycerol (DAG). IP3 stimulates the release of intracellular Ca2+ and DAG activates the 

Ca2+-sensitive kinase PKC. This signalling allows the Ca2+-sensitive PKC to act out its 

role as a regulator in cell metabolism, neuronal function (Nishizuka, 1986; Hama et al., 

1986), and LTP/LTM (Anwyl, 1989; Linden and Routtenberg, 1989; Michel et al., 2011) 

(Figure 6.8), and allows for release of Ca2+ from intracellular stores. PKC activation has 

been implicated in the early phase of LTP, but not memory acquisition (Sweatt, 1999; 

Ren et al., 2013; Zhang et al., 2009), and the kinase was found to be 

autophosphorylated on Thr634 and Thr641 at this early LTP time point (Sweatt et al., 

1998). PKC may play its role in LTM through its necessity to maximally activate 

adenylyl cyclase, which in turn allows PKA to activate CREB (Sibley et al. 1986; 

Yoshimasa et al., 1987; Pieroni and Byrne, 1993; Cooper et al., 1995; Lorenzetti et al., 

2008). Multiple labs (Roberson et al., 1999; Stratton et al., 1989) have also provided a 

critical link between upstream PKC to MAPK, further suggesting PKC involvement in 

downstream CREB activation. This occurs by PKC activating Ras or Raf-1, both of 

which are part of the MAPK cascade (for review, see Sweatt, 2001). However, it is 

believed that MAPK-independent and PKA-independent PKC can phosphorylate CREB 

directly (Xie and Rothstein, 1995), as well as Aplysia CREB2 (for review, see Bailey et 

al., 2004).  
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Figure 6.8 Mechanism of activation of PKC. Binding of the second messenger, DAG, to PKC 
allows a conformational change of the kinase to expose the catalytic site. Once exposed, the 
catalytic domain can then be activated (reproduced from Purves et al., 2008). 

 

  



125 
 

A Ca2+-independent form of PKC, PKM, exists as well and it is this form that is 

necessary and sufficient for the maintenance phase of LTP (Klann et al., 1991; Sacktor 

et al., 1993) and LTM (Jerusalinsky et al., 1994; Shema et al., 2007; Serrano et al., 

2008), as well as being required for the storage of spatial memory (Ling et al., 2002; 

Pastalkova et al., 2006; Yao et al., 2008; Migues et al., 2010). In Aplysia, PKC is a 

calpain substrate (Inoue et al., 1977; Klann et al., 1991) which allows Ca2+-dependent 

protease to cleave PKC and yields the constitutively active form PKM (Bougie et al., 

2009; Villareal et al., 2009). This activation of PKM is dependent upon increased Ca2+ 

influx through NMDARs. When inhibited, loss of PKM results in the reversal of in vivo 

LTP and loss of fully consolidated behavioural memory (Ling et al., 2002; Serrano et 

al., 2005; Shema et al., 2007; Shema et al., 2011).  

PKC is also involved in intrinsic plasticity; it receives signals from VDCCs, 

activating PKC to phosphorylate ion channels and increasing neuronal intrinsic 

plasticity (for review, see Zhang and Linden, 2003) by increasing ion channel 

conductance (DeRemeir et al., 1985; Alkon et al., 1986; Madison et al., 1986; Malenka 

et al., 1986), changing rates of neurotransmitter synthesis or release (Berry, 1986; 

Wang et al., 1986; Zurgil and Zispel, 1985; Nichols et al., 1987; Shapira et al., 1987), 

changing cytoskeletal function (Litchfield and Bell, 1986), and regulating the sensitivity 

of neurotransmitter receptors (Kelleher et al., 1984; Sibley et al., 1984). Action potential 

height is also increased when PKC is activated (Sugita et al., 1992), but no change is 

observed in action potential width, amplitude of AHP, or input resistance (DeRiemer et 

al., 1985).  

Decreased levels of PKC have been found in AD tissues (Masliah et al., 1990; 

Matsushima et al., 1996; Favit et al., 1998; Battaini and Pascale, 2005); specifically, 

PKC activity is decreased in AD patient fibroblasts (Favit et al., 1998). A treatment 

studies have also found decreased steady state and active PKC levels in comparison 

to control groups (Chauhan et al., 1991; Favit et al., 1998; Lee et al., 2004). A-

induced reduction of PKC phosphorylation is likely due to the pseudo-substrate site on 

which A can directly bind to the kinase; this direct binding has been seen with A 1-42 

using pull-down assays (Lee et al., 2004). A 25-35 also appears to directly bind PKC 

through the pseudo-substrate site; when the site is mutated, peptide-induced reduction 

of kinase phosphorylation is no longer observed (Lee et al., 2004). When transgenic 

Tg2576 mice are treated over a 12 week period with the PKC and  activator 

Bryostatin 1, mice which usually exhibit behavioural deficits instead have enhanced 

learning abilities and memory performance (Hongpaisan et al., 2011). These Bryostatin 
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1-treated Tg2576 mice also exhibited decreased soluble A 1-42 in hippocampal CA1 

pyramidal neurons, and increased dendritic spines and total number of synapses 

compared to age-matched Tg2576 mice without treatment (Hongpaisan et al., 2011). 

Similar results were observed when A 25-35 and the PKC agonist phorbal 12-

myristate 13-acetate (PMA) were co-applied to cells. When cells would usually exhibit 

repressed late-LTP (L-LTP) signs with application of A25-35 alone, addition of the 

agonist rescued L-LTP signal (Zhang et al., 2009). Interestingly, PKC is thought to 

directly influence A production in healthy neurons by increasing degradation of A via 

the endothelin converting enzyme (Choi et al., 2006) and inhibiting the A forming 

secretase (Wang et al., 2009). 

Importantly for work in Lymnaea, a PKC orthologue exists (Dictus et al., 1998). 

However, a PKC mammalian antibody has not yet been used successfully in Lymnaea. 

Similar to other studies mentioned previously in this chapter, before any immuno-work 

could be performed, an appropriate sequence alignment was completed to find a 

mammalian PKC antibody that may be used in Lymnaea (Appendix III.4A). An  

PKC antibody with perfect sequence alignment to Lymnaea was selected and used 

successfully in western blotting. Only one single band appears in the Lymnaea sample 

and it occurs at the predicted 80 kD weight. However, to be certain that the band in 

Lymnaea is the same as the band found in mammalian animals, samples from both 

animals were run side-by-side on a gel and western blotted with the PKC antibody 

(Appendix III.4B). The bands match up exactly at 80 kD, with very strong signal in both. 

While a pre-absorption study should be conducted in the future for complete certainty, 

this antibody can be used successfully in Lymnaea. Therefore, this antibody was used 

to measure total  PKC in experimental and control groups. Using western blot, it 

was determined that there was no significant difference between animal groups (Figure 

6.9). 
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Figure 6.9 Total PKC is not affected by A treatment or training at the 24 hour post-

injection, 48 hour post-training time point. (A) Representative PKC bands and  tubulin 

loading control bands. (B) Four animal groups (A 1-42 [n=8], A 25-35 [n=8], Vehicle [n=8], 
Naïve [n=8]) were compared for intensity of PKC labelling using western blot. Data represents 
PKC band densitometry/ loading control densitometry. Means ± SEM values are shown. One-
way ANOVA, p=0.7383. Tukey’s tests all p>0.05. 
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 Although there was no change in total PKC levels, it was important to assess 

whether active PKC was involved in the behavioural time points used throughout this 

thesis. Thus, the next experiment investigated if PKC inhibition is sufficient to remove 

LTM when injected 24 hours after training and tested 48 hours after training. 

Bisindolylmaleimide I (Bis), a PKC inhibitor which acts at the ATP binding site (Toullec 

et al., 1991), has previously been used successfully in Lymnaea (Rosenegger and 

Lukowiak, 2013) and similar concentrations and incubation time points were used in 

these behavioural pharmacology studies. PKC inhibition was sufficient to disrupt LTM 

(Figure 6.10), similar to A 1-42 and 25-35 disrupted LTM. Specifically, this 

behavioural pharmacology indicates a need for either classical or novel PKC at the 24 

hour post-training time point, as Bis inhibits these forms of the kinase, but not the 

atypical form (Sossin, 2007; Villareal et al., 2009). These experiments also suggest 

that although total PKC levels do not change with A treatment, active PKC may be 

affected by A. However, it is also possible that A does not target PKC and the kinase 

is simply important for memory at this time point. A’s effect on active PKC will need to 

be considered in future research. 
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Figure 6.10 PKC inhibition is sufficient to disrupt LTM. (A) Timeline of experiment. (B) Four 
starved animal groups (Trained, Bis [n=19]; Trained, Vehicle [n=37]; Naïve, Bis [n=18]; Naïve, 
Vehicle [n=34]) were tested for rasp rate to amyl acetate, a measure of the feeding response to 
the CS. Means ± SEM values are shown. Asterisks indicate significantly decreased feeding 
response from trained, vehicle-injected animals. Kruskal-Wallis, p<0.0001. Dunn’s Multiple 
Comparison with p<0.05= Trained, Vehicle vs. Naïve, Vehicle; Trained, Vehicle vs. Naïve, Bis; 
Trained, Vehicle vs. Trained, Bis. 
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The second kinase investigated was PKA, well-known for directly 

phosphorylating CREB at Ser133. PKA is composed of two catalytic subunits and two 

regulatory subunits. Each regulatory subunit contains two cAMP binding sites (Taylor 

et al., 1990); when cAMP binds these two sites, the catalytic subunits will dissociate 

(Figure 6.11). Once dissociated, catalytic subunits will translocate to the nucleus to 

phosphorylate CREB and regulatory subunits will be degraded by ubiquitin-mediated 

proteolysis. Injection of the catalytic subunits alone is sufficient to elicit STF 

(Castellucci et al., 1980). PKA is also critical for multiple types of LTM, including: 

sensitisation, classical conditioning, and operant conditioning (Baxter and Byrne, 

2006). PKA is implicated at the time of training and at an intermediate phase of LTP, 

for maintaining the potentiation past the first 3 hours after training (Abel et al., 1997; 

Hayashi et al., 2004; Bourtchouladze et al., 1998; Michel et al., 2008). This biphasic 

profile of PKA activation coincides with CREB phosphorylation at Ser133 (Bernabeu et 

al., 1997; Roberson et al., 1999). In Aplysia, a third wave of PKA activation occurs 

around 20 hours post-sensitisation (Sutton et al., 2001) and a late phase persistent 

activation of PKA has been found in other LTF studies as well (Greenberg et al., 1987; 

Sweatt and Kandel, 1989; Muller and Carew, 1998). Besides its role in LTP, PKA also 

phosphorylates ion channels when activated by 5-HTRs, leading to increased neuronal 

intrinsic plasticity (Zhang and Linden, 2009). One of these channels is NMDAR; PKA 

phosphorylation has been found to both increase the amplitude and increase Ca2+-

dependent desensitisation of NMDAR-elicited currents in hippocampal neurons 

(Skeberdis et al., 2006). PKA application mimics effects of 5-HT and is the responsible 

component of increased neuronal excitability, spike broadening, neurotransmitter 

release, and S-K+ channel closure (Sugita et al., 1992; Baxter and Byrne, 1990; 

Goldsmith and Abrams, 1992; Siegelbaum et al., 1982). 
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Figure 6.11 Mechanism of activation of PKA. The second messenger, cAMP, will bind twice 
to each regulatory subunit of PKA. Once bound, the catalytic subunits will dissociate from the 
regulatory subunits, allowing the catalytic subunits to phosphorylate substrates (reproduced 
from Purves et al., 2008). 
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 Along with all of the previously noted disruption of cAMP and adenylyl cyclase 

in AD or A-treated tissues, activation of PKA has been found to prevent A-mediated 

inhibition of NMDAR-dependent LTP (Vitolo et al., 2002; Wang et al., 2009). This 

suggests that the PKA pathway, and especially the kinase which activates CREB, is a 

potential target for A’s effect on memory. This cAMP/PKA CREB-signalling occurs 

similarly in molluscs as in mammals. Much of this molecular cascade work was first 

discovered in the sea slug Aplysia and has been replicated in rodents. Importantly for 

work in Lymnaea, a PKA orthologue exists and a mammalian PKA antibody has been 

used successfully (Michel et al., 2008). Michel and colleagues also found that injecting 

a PKA inhibitor into trained animals when pCREB levels are increased will cause 

pCREB levels to immediately decrease (Michel et al., 2008). These studies suggest a 

specific link between PKA activity and pCREB levels in Lymnaea. The same antibody 

used by Michel and colleagues was used in the experiments presented in this thesis, to 

label western blots of experimental and control groups (Figure 6.12), and found no 

significant difference between any of the samples.  

Further PKA studies were conducted to investigate if the inhibition of PKA is 

sufficient to disrupt LTM at the 24 hour post-injection, 48 hour post-training time point. 

The PKA inhibitor, H-89, has been used successfully in Lymnaea previously (Marra et 

al., 2013) and similar concentrations and incubation time points were used for the drug. 

H-89 will competitively inhibit PKA activity with very little inhibition of other kinases 

(Chijiwa et al., 1990). PKA inhibition neither significantly decreased the conditioned 

response from trained levels nor increased it from naïve levels (Figure 6.13). These 

results suggest that PKA is likely involved in memory at this time point, but is not 

sufficient.  

The inconclusive behavioural pharmacology results lead us to further 

investigate A’s effect on active PKA by using an ELISA to measure PKA activity 

between animal groups (Figure 6.14). All trained groups had significantly decreased 

active PKA levels at this time point and both A groups had significantly less active 

PKA than vehicle-injected animals as well. 
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Figure 6.12 Total PKA levels are not affected by A-treatment or training at the 24 hour 
post-injection, 48 hour post-training time point. (A) Representative catalytic PKA bands and 

 tubulin loading control bands (B) Four animal groups (A 1-42 [n=16], A 25-35 [n=15], 
Vehicle [n=15], Naïve [n=13]) were compared for intensity of total PKA labelling using western 
blot. Data represents PKA band densitometry/ loading control densitometry. Means ± SEM 
values are shown. Kruskal-Wallis, p=0.5242. Dunn’s Multiple Comparison all p>0.05. 
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Figure 6.13 PKA inhibition leads to a behavioural response that is neither significantly 
decreased from trained levels nor significantly increased from naïve levels. (A) Timeline 
of experiment. (B) Four starved animal groups (Trained, H-89 [n=32]; Trained, Vehicle [n=33]; 
Naïve, H-89 [n=13]; Naïve, Vehicle [n=33]) were tested for rasp rate to amyl acetate, a measure 
of the feeding response to the CS. Means ± SEM values are shown. Asterisks indicate 
significantly decreased feeding response from trained, vehicle-injected animals. Kruskal-Wallis, 
p=0.0019. Dunn’s Multiple Comparison with p<0.05= Trained, Vehicle vs. Naïve, Vehicle; 
Trained, Vehicle vs. Naïve, H-89. 
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Figure 6.14 Active PKA is significantly decreased in trained animals, and further 

decreased by A injection. Four animal groups (A 1-42 [n=9]; A 25-35 [n=9]; Vehicle [n=8]; 
Naïve [n=8]) buccal+cerebral ganglia were subjected to an active PKA sandwich ELISA. Means 
± SEM values are shown. Asterisks indicate significantly decreased feeding response from 
trained, vehicle-injected animals or naïve animals. One-way ANOVA, p<0.0001. Tukey’s tests 

with p<0.05= A 1-42 vs. Vehicle, A 1-42 vs. Naïve, A 25-35 vs. Vehicle, A 25-35 vs. Naïve, 
Vehicle vs. Naïve. 
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 The final kinase investigated was ERK1/2. ERK1/2 is a member of the MAPK 

family, which consists of serine/threonine protein kinases and is involved in multiple 

signalling cascades, including cell growth and survival (Volmat and Pouyssegur, 2001). 

ERK has also been implicated in both the early phase and maintenance phase of LTP 

(Sweatt, 1999). This thesis only considers ERK, which will be further referred to as 

MAPK unless otherwise noted, as it is the only MAPK currently sequenced in 

Lymnaea. All three ionotropic receptors, as well as some of the metabotropic 

receptors, are able to modulate MAPK activity (for review, see Wang et al., 2007). 

Once stimulated, the MAPK cascade involves sequential signalling of four proteins, 

including small GTPases (such as Ras and Rac), MAPK kinase kinase (such as Raf 

and MEKK), MAPK kinase (such as MEK), and MAPK. Active pMAPKs, dual 

phosphorylated at Thr202 and Tyr204, translocate to the nucleus and phosphorylate 

target transcription factors. Specifically, MAPK indirectly phosphorylates CREB through 

RSK2 (for review, see Sweatt, 2001) at Ser133 and inhibition of MAPK results in 

reduced CREB phosphorylation (Mao et al., 2004; Xing et al., 1998). It has also been 

found that MAPK is responsible for phosphorylating CBP at Ser301, which is critical for 

activating transcription (Impey et al., 2002), and removes CREB-2, which has two 

MAPK consensus sites (Gonzalez et al., 1991; Michael et al., 1998). 

When synaptic NMDARs are pharmacologically activated in the rodent 

hippocampus, MAPK phosphorylation is found to increase (Wang et al., 2004b; English 

and Sweatt, 1996) and applying NMDAR antagonists during classical conditioning will 

block MAPK phosphorylation (Atkins et al., 1998). This increase in MAPK 

phosphorylation comes from Ca2+ influx through synaptic NMDARs which activates 

Ca2+-sensitive kinases, such as CaMKII and PKC (Thandi et al., 2002; English and 

Sweatt, 1996); these Ca2+-sensitive kinases, along with NMDAR-mediated generation 

of action potential, activate MAPK (Zhao et al., 2005).  The synaptic NMDAR-mediated 

increase in MAPK phosphorylation is found specifically in neurons, not glia, and this 

increase is rapid and transient (for review, see Wang et al., 2007). AMPARs and 

mGluRs are believed to positively regulate MAPK phosphorylation as well (Wang et al., 

2004c; Choe and Wang, 2001) and this allows MAPK to activate other signalling 

cascades, like the protein-synthesising mTOR pathway (for review, see Giovannini et 

al., 2015), which will not be further considered in this thesis. Receptors can inhibit 

MAPK activity as well, as seen with extrasynaptic NMDARs (Ivanov et al., 2006).  

The cAMP-PKA pathway is a well-known activator of the MAPK cascade 

(Impey et al., 1998a; Yao et al., 1998; Ambrosini et al., 2000; Vossler et al., 1997); 

even in Aplysia, MAPK and PKA appear to translocate to the nucleus together to 
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activate CREB and remove CREB-2 (for review, see Bailey et al., 2004). The adenylyl 

cyclase activator forskolin has also been shown to increase MAPK phosphorylation 

and nuclear translocation (Martin et al., 1997), suggesting cross-talk between the two 

pathways. MAPK’s phosphorylation of CREB at Ser133 thus makes it an important 

component of LTP and LTM (Thomas and Huganir, 2004; English and Sweatt, 1996; 

Ribeiro et al., 2005; Atkins et al., 1998; Selcher et al., 1999; Schafe et al., 2000). 

MAPK activation is thought to have two phases after training; one rapid and transient, 

where phosphorylation at Thr42 significantly increases at one hour and two hours after 

conditioning (Atkins et al., 1998) and a second that is delayed and persistent, which 

has been found to last at least 24 hours in rodent CA3 (Trifilieff et al., 2007; Trifilieff et 

al., 2006). MAPK is also believed to be involved at later memory storage time points 

(Eckel-Mahan et al., 2008) as well as having a known role in increasing neuronal 

intrinsic plasticity by phosphorylating ion channels when an appropriate signal is 

received by 5-HTRs (Zhang and Linden, 2003). MAPK’s phosphorylation of VDCCs 

attenuates the voltage-dependency of the channels and helps the cell more easily 

reach a depolarised state (Roberson et al., 1999).  

Through 7-nAChRs, ERK2 has been shown to be activated by A treatment 

(Wang et al., 2003a; Schliebs and Arendt, 2011). In A 25-35 injected animals, ERK 

protein level expression increased compared to uninjected animals (Ghasemi et al., 

2014). Increased phosphorylation of ERK protein has also been found in APPswe,ind 

mice, AD, and Down’s Syndrome post-mortem brains (Echeverria et al., 2004); 

however, other studies indicate that pERK is decreased in Tg2576 mice (Ma et al., 

2007).  

Importantly for work in Lymnaea, a MAPK orthologue exists (Ribeiro et al., 

2005) and there has been additional characterisation of Lymnaea MAPK. The MAPK 

inhibitor U0126 does not affect LTM when injected 24 hours after conditioning and 

tested either 30 minutes after injection or 24 hours after injection in Lymnaea (Ribeiro 

et al., 2005). Although there was no memory loss by inhibition of MAPK at the time 

points investigated in this thesis, it was important to test whether A affects MAPK in 

Lymnaea. The antibody previously found to appropriately label MAPK in Lymnaea was 

used (Ribeiro et al., 2005) to label western blots of the experimental and control groups 

(Figure 6.15A-B), and no significant difference was found between any of the samples. 

This agrees with a previous study looking at steady state MAPK levels in Lymnaea 

after conditioning (Ribeiro et al., 2005) and in tau over-expressing transgenic mouse 

hippocampus (Echeverria et al., 2004). However, considering the previous two kinases 

investigated in this chapter, it seems that the activated kinase is most important at this 
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testing time point and may be a target for A. A dual phosphorylated Thr202/Tyr204 

MAPK antibody has been successfully used in Lymnaea as well (Ribeiro et al., 2005), 

and this same antibody was used to measure activated MAPK levels (Figure 6.15C-D). 

No significant difference in any of the experimental or control groups was observed. 
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Figure 6.15 MAPK and dual pMAPK levels do not change with either A treatment or 

training at the observed time point. (A) Representative bands of total MAPK and  tubulin 

loading control (B) Four animal groups (A 1-42 [n=9], A 25-35 [n=8], Vehicle [n=10], Naïve 
[n=8]) were compared for intensity of total MAPK labelling using western blot. Data represents 
MAPK band densitometry/ loading control densitometry. Means ± SEM values are shown. 
Kruskal-Wallis, p=0.1868. Dunn’s Multiple Comparison all p>0.05. (C) Representative bands of 

dual pMAPK and total MAPK (D) Four animal groups (A 1-42 [n=9], A 25-35 [n=7], Vehicle 
[n=9], Naïve [n=7]) were compared for intensity of dual pMAPK labelling using  western blot. 
Data represents dual pMAPK band densitometry/ total MAPK band densitometry. Means ± SEM 
values are shown. Kruskal-Wallis, p=0.6488. Dunn’s Multiple Comparison all p>0.05. 
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6.4 Discussion 

 The background literature considered, A’s effect on consolidated memory is 

very difficult to unravel. There are synaptic and nonsynaptic components, many cases 

of correlation but very little of causation, and a large number of proteins that appear to 

be influenced by the peptide, many of which have not been considered in this thesis. 

Of course, many molecular signalling cascades overlap and influence other pathways, 

as well as play a role in both synaptic and nonsynaptic plasticity, making the task even 

trickier. However, Lymnaea may offer two unique perspectives in clarifying A’s effect 

on consolidated memory and, perhaps, offering fresh ideas for therapeutic targets. 

Firstly, many proteins possibly influenced by A treatment were examined here and 

these experiments were run using very tightly controlled procedures. Very few labs 

have looked at such an extensive list of proteins under the same experimental design 

(e.g. Vitolo et al., 2002). Secondly, Lymnaea offers a unique approach to 

understanding synaptic vs. nonsynaptic plasticity by measuring intrinsic neuronal 

properties of the key modulatory neuron, the CGC. As CGC depolarisation is sufficient 

to induce conditioned behavioural responses (I. Kemenes et al., 2006), it is an 

excellent model for studying nonsynaptic plasticity. Synaptic components have also 

been identified within the feeding and memory circuitry, offering points of synaptic 

measurement within the engram as well (for review, see Kemenes, 2013). 

 The experiments described in this results chapter verify the usefulness of 

Lymnaea as a model system for screening A targets. Both A 1-42 and A 25-35 

were shown to lead to decreased phosphorylation of nuclear CREB at Ser133 and A 

25-35 caused decreased steady state levels of nuclear CREB as well. This all occurs in 

animals that exhibit memory deficits, have no neuronal death, and have decreased 

postsynaptic scaffolding proteins, at a time point which is not dependent upon protein 

synthesis. In order to tackle the question of “How does A influence behaviour 

specifically by decreasing pCREB?” upstream elements of CREB signalling pathways 

were considered. Experimentation began at the receptor level, measuring changes in 

total receptor proteins as well as measuring changes in phosphorylation at key sites 

and inhibiting receptor function at the 24 hour time point. Total GluA1 and nAChR do 

not change after training or A treatment, the phospho-sites Ser831 and Ser845 on 

GluA1 do not change after training or A treatment, and NMDAR possibly plays a role 

in memory recall but its inhibition is not sufficient to fully disrupt memory. Much of the 

work at the receptor level still needs confirmation in order to draw a final conclusion. 

Firstly, it is believed that receptors at synaptic or perisynaptic sites are changing based 
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on both A treatment and training. Measuring total levels of receptors or subunits will 

likely mask any of these changes taking place, so a fractionation technique combined 

with protein quantification is needed. Secondly, localisation of these receptors is key to 

their function, especially for nAChRs and NMDARs. It will be important to visualise any 

change in receptor localisation on dendritic spines between A-treated and untreated 

groups. Finally, an NMDAR1 antibody needs to be successfully optimised for use in 

Lymnaea stagnalis to fully determine any changes occurring from A treatment. Only 

after these experiments are successful will it be possible to study A-induced 

deregulation of receptors and the correlative links to pCREB change and behavioural 

modification. 

 Next, second messenger levels in the buccal+cerebral ganglia were considered 

and found that cAMP levels do not change after A treatment or training. A total 

measurement of adenylyl cyclase was not possible due to antigen inaccuracies 

between the mammalian antibody and this molluscan model, but an appropriate 

antibody will need to be optimised for use in Lymnaea to consider A’s effect on 

second messengers of the cAMP/PKA pathway. As adenylyl cyclase is suggested to 

have an important role in memory maintenance (Wong et al., 1999; Shan et al. 2008; 

Wieczorek et al. 2010), it would be interesting to see if blocking adenylyl cyclase 

function at the 24 hour injection time point would result in a memory deficit at the 48 

hour testing time point. If so, an adenylyl cyclase activator could be injected alongside 

the A peptides and an observation could be made as to whether these animals 

express healthy behaviour 24 hours post-injection. This behavioural pharmacological 

approach may help uncover the role of second messengers in A-induced memory 

loss, which so far remains elusive. 

 Finally, three key kinases involved in CREB-signalling and memory were 

considered. No change was found in total kinase levels after training or A treatment, 

but active sites differed and inhibitors of some of these kinases disrupted memory in a 

similar manner as A treatment. First PKC was considered and found to be necessary 

for proper behavioural response at these time points, but exhibited no significant 

change in the steady state  PKC isoforms after training or A treatment. 

Unfortunately, an active PKC experiment has not yet been completed due to lack of 

time. This experiment is crucial to determine if A is affecting PKC; only when this 

experiment is completed can investigations be continued into A-induced change in 

PKC as a direct link to memory dysfunction. What must also be considered for future 

experiments are the isoforms being affected or measured in Lymnaea. PKM is the 
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suggested isoform necessary and sufficient for memory maintenance (Jerusalinsky et 

al., 1994; Shema et al., 2007; Serrano et al., 2008), but so far only  isoforms 

have been measured using western blot and Bis, an inhibitor for novel and classic 

isoforms, has been injected into the animal. None of the studies so far have considered 

PKM or atypical PKC. However, there may be overlap between the mammalian 

antibody and PKM signal in Lymnaea, and it is very likely that the Bis inhibitor is 

affecting atypical PKC as well. Inhibitor studies are done in mammals, but PKM is 

created in Aplysia and Lymnaea in a very different manner than in mammals (Michel et 

al., 2012), so it cannot be assumed that this atypical Lymnaea PKC is safe from Bis 

inhibition based on mammalian pharmacological studies alone. More experiments into 

PKM may help to reveal A-induced dysfunction of these pathways. 

 The second kinase considered in this results chapter was PKA and it was found 

that, similar to NMDAR inhibition, inhibiting PKA caused a decrease in behavioural 

response, but no significant effect on memory. This suggests that perhaps PKA plays a 

role in memory at this time point, but it is certainly not sufficient. Investigations were 

continued to include active PKA and found that all trained groups expressed decreased 

active PKA in comparison to naïve animals, and that both A treated groups had 

significantly less active PKA than vehicle-injected groups. Interestingly, the active PKA 

levels are similar to those seen in pCREB. And similarly to pCREB Ser133, the vehicle-

injected animals do not have significantly increased active PKA levels compared to 

naïve animals. Therefore, it is likely that the low PKA activity in A-treated group is 

leading to low phosphorylation of CREB in these animals. The active PKA results also 

bring up other interesting points. cAMP is known to activate PKA and a decrease in 

activated PKA in the A treated samples was observed, but no decrease in cAMP was 

seen. This suggests that perhaps the kinase is being degraded, abolishing active 

signal of the catalytic subunit since there is enough second messenger in the neurons 

to activate this kinase. However, there was no change in total catalytic PKA. In fact, 

there was no change in steady state measurements of any protein measured in this 

chapter, suggesting that there is not an aberrant increase in proteasomal degradation 

of these proteins. Instead, perhaps the target is not catalytic PKA, but is regulatory 

PKA. Only catalytic PKA was measured, and not the regulatory subunits which should 

detach and be degraded after animals are trained. It would be very interesting to 

measure regulatory PKA levels in A treated animals using western blot to determine if 

1) the PKA subunits are detaching appropriately and 2) if the proteasome pathway is 

appropriately degrading detached regulatory subunits. Another very interesting avenue 

to consider is measuring cAMP-bound proteins using western blot; quantifying bound 
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cAMP to regulatory PKA compared to bound cAMP to regulatory/catalytic PKA will 

show if cAMP is still capable of binding the regulatory subunit and if the regulatory 

subunit is capable of detaching from the catalytic subunit. Taken together with the 

regulatory PKA western blot measurements, these experiments will give further insight 

into the deregulation of active PKA in A treated animals.  

 The last kinase considered in this results chapter was ERK1/2. No change was 

found in steady state levels between A treated, trained, or naïve levels, or any change 

in dual phosphorylation sites Thr202/Tyr204. These experiments are a clear indication 

that, in the experimental timeline used in this thesis, A does not affect ERK1/2 protein 

level or function and is one of the proteins considered in this thesis that does not need 

further experimental work. Further experiments are needed to completely link A-

induced CREB pathway deregulation to the observed behavioural deficits in a 

causative, as opposed to correlative, way. 
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7. General Discussion 

 The experiments presented in this thesis study the effects of A 25-35 and 

A1-42 on Lymnaea LTM, with particular emphasis on peptide structure and change in 

molecular signalling cascades. To begin, a behavioural timeline was established. 

Animals were starved, trained, injected with A 25-35 or A 1-42 24 hours after 

training, and tested 24 hours after injection. This time line and the food-reward 

classical-conditioning paradigm were used to prepare animals and brain samples used 

in experiments mentioned throughout this entire thesis, to maintain consistency. 

Importantly, 0.1 mM A 25-35 and 1 M A 1-42 disrupts LTM recall when applied to 

this combination of time line and paradigm (Figure 7.1A). No cell death was found in 

the buccal and cerebral ganglia in these animals, but the postsynaptic terminal protein 

marker, PSD-95, levels were significantly decreased in the A-treated groups. Since 

LTM recall was inhibited by both A 25-35 and A 1-42, memory acquisition and 

consolidation were also considered. Neither of these stages of memory formation were 

compromised after 24 hour in vivo A incubation (Figure 7.1B-C). However, when A 

peptides were injected before training, allowed to incubate 48 hours, and then tested, 

animals exhibited decreased behavioural conditioned response rates (Figure 7.1D). 

These experiments together brought to light the importance of the duration of the 

incubation with the A peptides relative to memory phases. In Lymnaea, LTM is fully 

consolidated by 24 hours post-training and conditioned responses can be maintained 

for up to 14 days post-training (Alexander et al., 1984), so the difference in the effects 

of A injection before training on 24 hour vs. 48 hour memory is not due to testing 

different forms of memory at these two differing time points. Instead, the difference 

observed here is likely due to the amount of time that A is allowed to incubate in vivo. 

As a test for neuronal death after 48 hours of incubation was not performed, it cannot 

be ruled out that death had occurred by this later post-injection time point in the feeding 

and memory network. Although it is shown that A does not affect the acquisition of 24 

hour memory, it is possible that if the peptide is allowed to incubate long enough to 

disrupt the network, then appropriate memory retrieval is not possible. However, the 

most parsimonious explanation for the deleterious effects of both A peptides on 

memory at 48 hours is that at 24 hours post-training and post-injection there are still 

sufficient amounts of oligomeric A available to interfere with the consolidated memory 

trace, as was also indicated by measurements of oligomeric A levels in the 

haemolymph (Figure 4.4).  
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Figure 7.1 Behavioural memory timelines. (A) 24 hour in vivo incubation, memory recall time 
point. Memory is inhibited. (B) 24 hour in vivo incubation, memory acquisition time point. 
Memory functions correctly. (C) 24 hour in vivo incubation, memory consolidation time point. 
Memory functions correctly. (D) 48 hour in vivo incubation, memory acquisition time point. 
Memory is inhibited. The red “x” indicates experiments where memory is inhibited. The green 
“check” indicates experiments where memory functions correctly. The pink line indicates the 24-

48 hour post-conditioning time point that may be vulnerable to A treatment. 
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After establishing A-induced behavioural memory disruption, experimental 

focus shifted to the differences between A 25-35 and A 1-42 to determine why 100-

fold more A 25-35 is necessary to induce the same behavioural deficits as those 

observed with A 1-42. These investigations used peptide-tagging, conformational 

epitope antibodies, and TEM-observed morphology to compare structural differences 

between the two peptides. First, peptide localisation was observed on a ganglionic and 

ultrastructural level, showing ganglia penetration by the peptide and peptide 

localisation in the nucleus, mitochondria, and dense core granules. Once ganglia 

penetration was confirmed, the structural state of both A peptides was investigated. In 

A extracts from the haemolymph, significantly more A 1-42 oligomeric species were 

detected compared to A 25-35 and both A-treated extracts had more oligomeric 

species than the vehicle-treated group. In brain extracts, both A 1-42 and A 25-35 

treated groups exhibited bands at the molecular weight of A tetramers whereas 

vehicle-treated and naïve groups exhibited no bands. To complement immuno-labelling 

of oligomers in haemolymph extracts and brain samples, A morphology was also 

monitored in vitro using negative stain TEM. A 1-42 was found to assemble from an 

oligomeric, to protofibrillar, and finally into fibrils over a 24 hour period while A 25-35 

assembled from small crystalline structures into larger, aggregated crystalline 

structures. These experiments indicated that A 1-42 and A 25-35 are not 

interchangeable peptides since they appear to differ in their assembly process and 

eventual aggregated morphologies.  To confirm, A 25-35 was prepared in the same 

manner as A 1-42 and injected at A 1-42 concentrations. Oligomeric A 25-35 did 

not disrupt LTM recall and structurally, A extracts from haemolymph had virtually no 

oligomeric species after 24 hours of incubation. This oligomerically prepared A 25-35 

also assembled in vitro differently than A 25-35 or A 1-42, by exhibiting a small 

amount of oligomers immediately after preparation and eventually fibrillising by 24 

hours. These experiments together confirm that A 1-42 and A 25-35 cannot be 

treated as the same peptide, do not act in the same manner, and thus cannot be used 

interchangeably. The comparison of different preparations of A 25-35 also places an 

importance upon peptide preparation and the starting structural state of the peptide. A 

treated with HFIP and further processing to remain in an oligomeric form will initially 

exhibit oligomeric structure immediately after preparation and will be fibrillar by 24 

hours, as seen with both A 1-42 and A 25-35. However, when A 25-35 is simply 

solubilised in buffer it takes on a crystalline structure immediately after preparation and 

this structure elongates and aggregates by 24 hours. This is very important, as only 
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certain A structures are considered neurotoxic (for review, see Wilcox et al., 2011). 

Perhaps most excitingly, these experiments suggest that consistent levels of A 

oligomeric species from 24-48 hours post-training are necessary for the observed 

behavioural deficits to occur. A 1-42 and A 25-35 exhibit morphological intermediate 

species immediately after preparation and high levels of oligomeric A can be 

extracted from the animals’ haemolymph after 24 hour incubation; treatment with either 

peptide results in memory dysfunction. However, oligomerically prepared A 25-35 

exhibits small quantities of oligomers immediately after preparation, but no oligomers 

exist in the haemolymph after 24 hour incubation; animals treated with this peptide 

exhibit a trend for increased behavioural response. Finally, the tetrameric species 

appear to be the dominant oligomer in both the A 1-42 and A 25-35 treated samples 

after 24 hours in vivo; this was observed both when A-treated samples are run on a 

western blot and labelled with an A oligomer-detecting primary antibody and also 

when A-extracted haemolymph samples from A 25-35 treated animals were run on 

an SDS-PAGE and silver stained for protein content. While dimers and dodecamers 

are the current focus for identifying toxic A oligomers (Lesne et al., 2006; Shankar et 

al., 2008), many authors suggest that several soluble A species ranging from 10 to 

100 kD are toxic (McLean et al., 1999; Hepler et al., 2006). The tetramer falls within 

this molecular weight. In fact, structural studies on A suggest that the A 1-42 dimer is 

suited to form an open tetramer structure, which is believed to be crucial for the 

formation of hexamer paranuclei which will then stack to form dodecamers (Bernstein 

et al., 2010). A 1-40, the much less toxic A peptide, forms dimers which give rise to a 

closed tetramer structure, which does not allow the same paranuclei formation 

(Bernstein et al., 2010). Seemingly. this tetrameric A structure and the presence of 

oligomers over the 24-48 hour post-training time line are the only similarities between 

A 1-42 and A 25-35, which both cause behavioural disruption. Therefore, it is 

possible that the tetramer observed in this thesis is the toxic A structure that is 

disrupting memory. 

 The study of how A affects LTM in Lymnaea continued with experiments 

focusing on molecular signalling cascades leading to learning-induced protein 

synthesis. A general approach was taken first, viewing change in general protein 

synthesis after A injection or training. No gross increase or decrease in protein 

concentration between groups was observed. Protein synthesis was more specifically 

tested, using anisomycin and behavioural pharmacology with S35-methionine labelling; 

both experiments confirmed that there is no change in protein synthesis at the 48 hour 
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testing time point in either A-treated or trained animals. The experiments then 

became much more specific, focusing on the transcription factor CREB and its 

signalling cascades. In chromatin-extracted brain tissues, only the A 25-35 treated 

group showed significantly decreased levels of total CREB protein compared to all 

other animal groups. pCREB Ser133 levels were then measured using the same 

chromatin-extracted samples; all trained groups expressed significantly decreased 

pCREB levels, with both A-treated groups expressing significantly less pCREB 

Ser133 than vehicle-injected groups, and A 1-42 had even less signal than A25-35. 

Experiments then focused on what up-stream elements of CREB signalling may be 

causing the pCREB changes. Many elements expressed no significant increase or 

decrease from either training or A-injection; however, some proteins were identified 

as points of interest (see Table 7.1). NMDARs were considered, using behavioural 

pharmacology instead of western blotting. MK-801 was injected instead of A into 

trained animals, causing the animals to display a decreased trend for memory, but no 

significant difference between either trained animals or untrained animals. PKA was 

also considered. While there was no change in steady state catalytic PKA, behavioural 

pharmacology experiments using H-89 suggest that PKA may be important in the time 

points used, although is not sufficient for memory recall. ELISA experiments also 

suggest that activated PKA levels are significantly decreased in all trained groups, and 

are significantly decreased in Atreated groups in comparison to vehicle-treated 

groups.  Finally, while PKC , ,  steady state levels did not change from training or 

A treatment, when Bis was injected in place of A the animals were unable to express 

a behavioural response. This suggests that PKC is necessary at the memory time 

points considered in this thesis, making PKC a potential A target.  
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Protein Trained, A 1-42 

injected 

Trained, A 25-35 

injected 

GluA1 No change No change 

pGluA1 Ser831 No change No change 

pGluA1 Ser845 No change No change 

7-nAChR No change No change 

cAMP No change No change 

PKA No change No change 

pPKA Decreased Decreased 

MAPK No change No change 

pMAPK No change No change 

PKC No change No change 

CREB No change Decreased 

pCREB Ser133 Decreased, 

A 1-42< A 25-35 

Decreased 

 

Table 7.1 Summary of steady state and phosphorylation changes in CREB-signalling 
pathways. List of proteins studied in this thesis with their corresponding increased, decreased, 
or no change levels from trained and vehicle-injected animals. Animal groups compared to 

trained and vehicle-injected animals included in columns: trained, A 1-42 injected and trained, 

A 25-35 injected. 
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Collaborative experiments with Dr. Michael Crossley, which were not detailed in 

this thesis but are detailed in Ford et al. (2015), also provide insight into how A may 

be producing its effect on LTM. Using a two electrode current-clamp-based 

electrophysiological method, we found that CGCs in preparations from A 1-42-

injected animals had similar intrinsic properties as CGCs in preparations from vehicle-

injected animals. However, CGCs in preparations from A 25-35-treated animals 

displayed a repolarised membrane potential and a decreased membrane resistance 

compared to trained and vehicle-treated controls. Interestingly, the A 25-35-induced 

changes only occurred in animals that had been trained prior to injection. Animals 

injected without conditioning showed no A-induced change (Ford et al., 2015). This 

idea of a “training-induced vulnerability” of neurons to A is not novel; other labs have 

used different techniques to arrive at a similar conclusion (e.g. Deshpande et al., 

2009). For example, Deshpande and colleagues noted that the affinity of A oligomers 

to bind synaptic markers will increase after neuronal activation (Deshpande et al., 

2009). The electrophysiology studies presented here again discriminate A 1-42 and 

A 25-35, suggesting that A 25-35 has an added nonsynaptic effect on neurons which 

A 1-42 does not. This is important considering the integral role of nonsynaptic 

plasticity in learning and memory (for review, see Disterhof and Oh, 2006; Zhang and 

Linden, 2003), specifically in Lymnaea (for review, see Kemenes, 2013). However, the 

electrophysiological results of the A 25-35 treated animals is not congruent with the 

nonsynaptic plasticity changes observed throughout the literature in AD models. For 

example, the critical changes found in 5xFAD mice indicate decreased neuronal 

excitability and increased mean AHP peak (Kaczorowski et al., 2011), which were not 

affected in A 25-35 treated Lymnaea. Of course, transgenic mice are exposed to A 

much longer than the Lymnaea used in these studies, but current literature on intrinsic 

effects of A all suggest that excitability is disrupted (Kaczorowski et al., 2011; 

Minkeviciene et al., 2009; Driver et al., 2007; Kerrigan et al., 2014). Instead of a directly 

nonsynaptic disruption, the neuronal property changes measured in Lymnaea after 24 

hours of A 25-35 in vivo incubation is possibly a result of the decreased CREB and 

pCREB Ser133 found in these animals. CREB is known to play an important role in 

nonsynaptic plasticity, by helping to generate action potentials and to regulate 

membrane resistance, intrinsic excitability (Jancic et al., 2009; Dong et al., 2006), firing 

frequency, and resting membrane potential (Han et al., 2006). Importantly, a change in 

membrane potential and membrane resistance have been found in A 25-35 injected 

Lymnaea, properties directly influenced by CREB, but the typical nonsynaptic plasticity 

changes observed in other AD models are not found in A 25-35 treated Lymnaea. 
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Since both CREB and pCREB Ser133 are decreased after A 25-35 treatment, the link 

to intrinsic neuronal property changes observed in these animals, but not observed in 

A 1-42 which only display decreased pCREB Ser133, is most plausible. These 

experiments further suggest that A 25-35 is acting in a neurotoxic manner, but 

differently from how A 1-42 peptides act. Therefore, it must be reiterated that 

synthetically produced A 25-35 is not an appropriate substitute for A1-42. 

The results thus far help develop hypotheses concerning A’s effect on LTM. 

These combined experiments indicate three major disruptions that could directly impair 

LTM in Lymnaea (Figure 7.2). First, the decrease in PSD-95 suggests degeneration of 

the synapses which would remove memory traces via structural abnormalities. Second, 

pCREB Ser133 is necessary for memory recall (for review, see Alberini, 2009) and is 

shown to be significantly decreased in A-treated animals compared to vehicle-treated 

animals (Yamamoto-Sasaki et al., 1999; Dineley et al., 2001; Tong et al., 2004), 

suggesting that low pCREB levels may be an important factor disrupting memory recall 

via biochemical abnormalities. Finally, work done in collaboration with Dr. Michael 

Crossley showed a repolarisation of CGC membrane potential  and decrease of CGC 

membrane resistance in A 25-35 treated animals (Ford et al., 2015). This change in 

CGC membrane potential is known to be sufficient to inhibit memory function in 

Lymnaea (I. Kemenes et al., 2006) and so would be sufficient to disrupt memory recall 

via nonsynaptic cell properties. The structural and nonsynaptic properties have not 

been further investigated; however, it is interesting to consider the case of synaptic 

degeneration. As previously mentioned, it appears that A oligomers must be present 

during the 24-48 hour post-training time line to cause behavioural deficits. This 24-48 

hour post-training time line was also observed in the behavioural studies, where 

peptides allowed to incubate 0-24 hours post-training had no effect on behavioural 

responses but peptides allowed to incubate 0-48 and 24-48 hours post-training did 

cause memory deficits. As Lymnaea memory is known to be resistant to amnesic 

agents by the 24 hour injection time point, it can be assumed that memory is 

consolidated and is being maintained and stored between 24-48 hours post-training 

(for reviews, see Kemenes, 2013; Alberini, 2009). Storage and maintenance are 

heavily dependent on synaptic rearrangement, growth, and alterations within the 

dendritic tree (for review, see Alberini, 2009); avoidance conditioning studies suggest 

that this increase in synaptic remodelling lasts from 6 hours to 72 hours post-training 

before returning to basal levels (O’Malley et al., 1998). Thus, it is fully possible that the 

24-48 hour post-training time point of A vulnerability contains either memory lapses 

similar to those found at earlier time points in Lymnaea (Marra et al., 2013) or that A 
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is only able to have an effect on memory during time points dependent on dendritic/ 

synaptic growth and restructuring (Freir et al., 2011). This exciting hypothesis is further 

supported by the finding that PSD-95 levels are decreased in both A-treated groups 

compared to vehicle-treated groups, and is increased in vehicle-treated groups 

compared to naïve groups. This training-induced increase in PSD-95 from naïve levels 

is the only protein found to be increased at the time points used in this thesis, making it 

a very exciting target for future research. 

While only hypotheses can made about the structural and nonsynaptic 

influence of A on Lymnaea LTM, biochemical abnormalities have been extensively 

considered in this thesis (Figure 7.2). These experiments suggest that A’s effect on 

pCREB Ser133 may be one molecular disruption leading to the observed deficits in 

LTM recall. However, vehicle-injected animals and naïve animals had similar pCREB 

levels after recall, suggesting that pCREB is likely necessary for memory at this time 

point, but not sufficient. It also suggests that there is likely a pCREB baseline level 

necessary for appropriate CREB activity and that A-injected groups are below this 

baseline, which would ultimately lead to disrupted memory. The experiments of this 

thesis also suggest that A’s effect on pCREB levels is likely indirect, altering upstream 

signalling elements. One component directly upstream of CREB is PKA. Importantly, 

active PKA levels between experimental groups mimic levels observed in pCREB in 

the same groups. Behavioural pharmacology experiments also suggest that PKA may 

be involved in memory at this time point, but is not sufficient. This coincides with the 

active PKA and pCREB findings in vehicle-injected and naïve animals. Specifically, 

vehicle-injected groups do not have increased active PKA or pCREB, suggesting that 

neither component of the cascade is sufficient for the observed LTM deficits, but that 

there may be a baseline level of active PKA and pCREB needed for healthy function 

which the A-treated groups do not meet.  

The NMDAR behavioural pharmacology results suggest that these receptors 

may be the direct A target and upstream component of PKA, as both NMDAR 

inhibition and PKA inhibition express a similar decreased trend in behavioural 

response. The importance of NMDARs in A-treated animals and AD is overwhelming 

in the literature (De Felice et al., 2007; Sze et al., 2001; Mishizen-Eberz et al., 2004; 

Brouillette et al., 2012; Almeida et al., 2005; Roselli et al., 2005; Snyder et al., 2005; 

Lacor et al., 2007; Lacor et al., 2004; Renner et al., 2010; Roenicke et al., 2011). 

NMDAR’s involvement in recall is undecided; some labs have shown importance of 

NMDARs for recall at least two hours after reactivation (Przybyslawski and Sara, 1997) 
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while others claim NMDARs are not necessary for recall (Szapiro et al., 2000; Steele 

and Morris, 1999). This bolsters the claims of NMDAR’s importance suggested in this 

thesis. A direct targeting of NMDAR causing downstream disruption of 

phosphorylated CREB has also been suggested elsewhere (Snyder et al., 2005). 

Another very important component of these cascades is PKC. The behavioural 

pharmacology results suggest that PKC may be a target of A, considering that PKC is 

necessary for LTM recall at these time points,and both A 1-42 and 25-35 have been 

shown to directly bind to PKC (Lee et al., 2004), making PKC a possible direct target of 

A. Investigation into active PKC is a very exciting avenue for future research. Both 

PKA and PKC provide interesting insight into what may be occurring in the neurons 

after A treatment. 

The active PKA link to the A-induced pCREB disruption observed in this thesis 

gives rise to speculation about how A disrupts LTM recall. The upstream receptors of 

PKA in Lymnaea are GPCRs (for review, see Kemenes, 2013) (Figure 7.2), which have 

not been considered in this thesis. When these receptors are activated then adenylyl 

cyclase will be activated, increasing cAMP in the cell and thus allowing catalytic PKA to 

detach from its regulatory subunits. Since active PKA is decreased in A treated 

animals, this suggests that these GPCRs may be direct targets of A. However, the 

parallel behavioural pharmacology studies of NMDARs and PKA suggest that the A-

induced NMDAR disruption, which is known to exist (De Felice et al., 2007; Sze et al., 

2001; Mishizen-Eberz et al., 2004; Brouillette et al., 2012; Almeida et al., 2005; Roselli 

et al., 2005; Snyder et al., 2005; Lacor et al., 2007; Lacor et al., 2004; Renner et al., 

2010; Roenicke et al., 2011), could directly influence PKA activity. This second 

possibility would arise from the known A-induced aberrant increase in intracellular 

Ca2+ through multiple receptors, such as NMDAR; Ca2+ was not directly measured in 

this thesis, so it is assumed that the experimental groups have increased intracellular 

Ca2+ (Figure 7.2). An increased influx of Ca2+ could deregulate adenylyl cyclase, which 

can act as a Ca2+-sensor, leading to a change in downstream targets such as PKA 

(Figure 7.2). This aberrant Ca2+ influx also explains potential effects on PKC, which 

also acts as a Ca2+-sensor (Figure 7.2). Of course, this speculation assumes that 

changes at the receptor level alter ion influx, which alters PKA and PKC activation, 

inhibiting the kinases’ ability to phosphorylate CREB at Ser133 (Figure 7.2). However, 

alteration of PKA and PKC will change much more than CREB’s phosphorylation state. 

The two kinases also play important roles in nonsynaptic plasticity. Many K+ and Ca2+ 

channels are post-translationally modified by PKA and some Ca2+ channels are known 
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to be modified by PKC (for review, see Levitan, 1985). CREB also plays an important 

role in nonsynaptic plasticity, as mentioned previously. 

These initial experiments introduce Lymnaea stagnalis to the A field. With this 

animal model, A-induced memory disruption can be examined on a behavioural, 

network, cellular, and molecular level; these experiments can often be done in the 

same animal and often in vivo. Biophysical tools can also be used in Lymnaea for 

studying A peptide structural changes. This level of specificity and tight control over 

experimental design can and should be used to help further develop the A field. 

Besides introducing a new invertebrate model to A research, this thesis also 

disproves the interchangeable use of synthetically prepared A 25-35 in place of A 1-

42 and has built exciting ground-work for future CREB-signalling cascade studies. 
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Figure 7.2 Schematic of results found in this thesis. The dominant question of this thesis 
can possibly be answered by three important results- synaptic degeneration, CREB-signalling 
disruption, and intrinsic neuronal property disruption. CREB-signalling may further be disrupted 
directly at the receptor level, which alters downstream components and eventually decreasing 

pCREB levels. “?” indicate suggested A-induced alterations. Blue, thin arrows indicate 
suggested signalling pathways. 
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7.1 Future experiments 

 There are many additional studies that could take forward the experiments 

detailed in this thesis. First, understanding the interactions between A and CREB 

molecular signalling pathways will require further analysis. For example, NMDAR 

subunit NR1, adenylyl cyclase, and active PKC should be quantified. An appropriate 

NR1 antibody will need to be optimised for use in Lymnaea, as will an appropriate 

adenylyl cyclase antibody. This investigation into adenylyl cyclase has high potential to 

prove fruitful, as adenylyl cyclase is suggested to have an important role in memory 

maintenance (Wong et al., 1999; Shan et al. 2008; Wieczorek et al. 2010). To 

determine if adenylyl cyclase optimisation is worthwhile, it would be interesting to see if 

blocking adenylyl cyclase function at the 24 hour injection time point would result in a 

memory deficit at the 48 hour testing time point. If so, it would then be interesting to 

inject an adenylyl cyclase activator, such as forskolin, alongside the A peptides and 

observe if these animals express healthy behaviour. These experiments will further 

narrow the potential targets of A involved in CREB signalling. From the results 

displayed in this thesis, some very exciting and unique experiments will bolster the 

findings and further the understanding of how A disrupts CREB-signalling proteins.  

Interestingly, this thesis suggests that the decreased active PKA and pCREB 

observed in both A-treated groups may link the two cascade components. This 

hypothesis requires testing. Behavioural pharmacology would prove the hypothesis; 

animals would be trained, injected, and tested under the same protocol as has been 

used throughout this entire thesis. Importantly, a PKA activator, such as forskolin 

(Ribeiro et al., 2003) or PACAP (Pirger et al., 2010), would be injected alongside the 

A. If PKA is a target of A, then the A-treated animals would exhibit behavioural 

responses at similar levels as those measured in vehicle-treated animals. Assuming 

this experiment would be successful, another interesting PKA experiment would benefit 

these studies. This thesis has shown that the catalytic subunit of PKA does not change 

and thus the amount of protein capable of phosphorylation is the same across 

experimental groups. Therefore, for A to cause a decrease in active PKA, something 

must be disrupted in the normal PKA process. Normally, cAMP will bind to the 

regulatory subunits, causing them to detach from the catalytic subunits, exposing PKA 

phosphorylation sites. Does A inhibit regulatory subunit detachment, cAMP binding, or 

regulatory subunit degradation? Simple western blotting can answer each question. A 

cAMP antibody has already been used successfully in this thesis and should be used 

in a western blot of all experimental animal groups. The signal on these western blots 
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will indicate cAMP-bound proteins; specifically, bands for cAMP-bound regulatory PKA 

and cAMP-bound regulatory/catalytic PKA will indicate cAMP binding (regulatory PKA 

levels) and subunit detachment disruptions in A-treated animals (regulatory/catalytic 

PKA levels). The next western blotting experiment would be more difficult; a regulatory 

PKA antibody, for a subunit which has not been sequenced in Lymnaea, could be used 

to label a western blot to indicate levels of regulatory PKA in all experimental groups to 

determine if regulatory subunits are properly being degraded in A-treated and trained 

animals. Regulatory subunit degradation is crucial for conditioning (for review, see 

Hedge and DiAntonio, 2002) and an increase in rolipram, a cAMP enhancer, or an 

increase in Uch hydrolase, known to target regulatory PKA for degradation (for review, 

see Hedge and DiAntonio, 2002), will alleviate LTP and behavioural deficits in APP 

transgenic mice (Shirwany et al., 2007). Thus, inhibited degradation of regulatory PKA 

could inhibit catalytic PKA activation while allowing the steady state catalytic PKA 

levels to remain unchanged.  

 The first experiment to further PKC investigation will have to be quantification of 

its activation. If PKC activation is disrupted by A, then there are a few very interesting 

experiments which can continue the investigation of A’s effect on PKC. Importantly, 

PKM, an atypical isoform of PKC involved in memory maintenance (Jerusalinsky et 

al., 1994; Shema et al., 2007; Serrano et al., 2008), should be tested. First, a 

behavioural pharmacology test using the PKM inhibitor chelerythrine in place of A 

should be conducted to determine if PKM is important at the time points used in this 

thesis. The use of chelerythrine to block PKM has already been used successfully in 

Lymnaea (Marra et al., 2013). A western blot of PKM levels should also be quantified, 

to determine if A alters levels of this potentially important kinase. 

 Another very important study concerns all of the receptors examined in this 

thesis. No change in total receptor level or in specific phosphorylation states was 

found. However, total receptor quantification will likely mask any differences occurring 

at synaptic or perisynaptic locations. For synaptic studies, the sample will need to 

undergo a synaptic fractionation and then run on a western blot for proper 

quantification. Perhaps an even better method, considering that perisynaptic or 

presynaptic sites are important for many of the receptors considered, would be 

immunohistochemical quantification. Co-labelling would be used; the antibody for the 

receptor in question and an appropriate control label to verify dendritic localisation 

should be paired and any areas of co-labelling can be quantified and compared across 

experimental groups. NMDARs are of particular interest, considering their potential 
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influence on memory as indicated by previously mentioned behavioural pharmacology 

studies and the background literature indicating direct A binding and disruption of 

NMDARs (De Felice et al., 2007; Sze et al., 2001; Mishizen-Eberz et al., 2004; 

Brouillette et al., 2012; Almeida et al., 2005; Roselli et al., 2005; Snyder et al., 2005; 

Lacor et al., 2007; Lacor et al., 2004; Renner et al., 2010; Roenicke et al., 2011). Both 

NR1 and NR2B subunits should be considered, NR1 in the synaptic area and NR2B in 

the perisynaptic area of postsynapses. However, a decent NR1 antibody will need to 

be found for use in Lymnaea and an NR2B antibody will need more work for finding an 

appropriate use in Lymnaea, as NR2B has not yet been sequenced in this animal 

model. 7-nAChRs are similar for their importance in A-related studies and are 

importantly located in extrasynaptic areas of the postsynapse and on the presynapse. 

The antibodies used in this thesis, although sufficient for western blotting, will need to 

be further optimised for immunohistochemistry. The GluA1 antibodies used in this 

thesis have already been used successfully in immunohistochemistry experiments 

using Lymnaea (Naskar et al., 2014). 

 The suggested future experiments thus far have only considered CREB-

signalling pathways examined in this thesis. However, there are many other proteins 

believed to be involved in A-induced memory disruption. There are more direct targets 

of A, including but not limited to: NR2B, PrP receptors, insulin receptors, and mGluR5 

(De Felice et al., 2007; Lauren et al., 2009; Renner et al., 2010; Shankar et al., 2008; 

Lacor et al., 2007). There are also many more indirect targets of A, including but not 

limited to: PP1, PP2A, calcineurin, p38 MAPK, Wnt, and glycogen synthase kinase 3 

(GSK-3) (Knobloch et al., 2007; Snyder et al., 2005; Chen et al., 2002; Shankar et al., 

2007; Wang et al., 2004c; Anderton et al., 2000; Ma, 2014). However, studies of these 

additional proteins are limited in Lymnaea as the animal has not been fully sequenced 

and many of these proteins have not been identified. The lab of Ildiko Kemenes is 

currently developing Lymnaea for use as a genetic model (Ildiko Kemenes, personal 

communication), which when completed, may allow for further investigations into the 

above mentioned proteins. Luckily, A studies using Lymnaea do not have to stop 

while the model is being further developed. There are three more important and well-

documented Lymnaea proteins/ pathways that can and should be considered for how 

A disrupts LTM recall: CaMKII, PACAP and its receptors, and the NO/cGMP pathway. 

CaMKII is an essential kinase for LTM formation and maintenance in Lymnaea, as well 

as mammals (Wan et al., 2010; Frankland et al., 2001), and has been studied in 

Lymnaea using western blotting, immunohistochemistry, and behavioural 

pharmacology (Wan et al., 2010; Naskar et al., 2014). CaMKII is directly implicated in 
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the synaptic loss observed in A treatment and AD (for review, see Ly and Song, 

2011), possibly through its acting as a Ca2+ sensor. Another option is the PACAP 

receptor, which is upstream of PKA and is known to detect the conditioned stimulus 

after single-trial food-reward classical-conditioning (Pirger et al., 2010). Importantly, 

addition of PACAP successfully reversed age-related memory loss in Lymnaea (Pirger 

et al., 2014). Its connection to PKA and use in memory deficit reversal suggests it may 

be an interesting avenue to pursue. Finally, the NO/cGMP pathway should be 

considered in investigating how A disrupts LTM recall. NO is important for memory 

consolidation in Lymnaea, producing downstream effects that specifically influence the 

CGC (Ribeiro et al., 2008; Korneev et al., 2005; Nikitin et al., 2008) and has been 

implicated in causing increased neurotoxicity in A 25-35 treated rats (Limon et al., 

2009).  

 These future experiments may help unlock important therapeutic targets for A-

induced disruption of memory in AD. It is highly believed, in the learning and memory 

field, that the invertebrate model is a fantastic representation of the more complex 

mammalian model. Therefore, this model should be used to research A-induced 

memory deficits and well as other memory-related diseases. The simplicity of the 

model may offer an important tool in finding disease targets, which can then be further 

developed in a more complex mammalian model. However, the initial investigation into 

what specifically is being targeted, and not what is just an unimportant downstream 

effect, is difficult to dissociate. Lymnaea can help with that dissociation. This humble 

snail may provide therapeutic insight, by demanding a narrowed and precise approach 

to be taken by the field. 
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Appendix 

I. Throughout the thesis 

 I.1 Transgenic mouse models of AD 

 Many transgenic mouse lines are used to study AD. Confusingly, some of the 

most used lines have multiple names to indicate the same transgenics. Here, those 

that have multiple names are indicated with either a * or a ^. All transgenic mice 

mentioned in this thesis are included here, with a short description of their mutations 

and other relevant transgenics. 

Tg(APPswe)2576*: In these mice, human APP695 contains a double mutation at Lys670 

 Asn and Met671  Leu. APPswe was then inserted into a hamster prion protein vector 

with the open reading frame replaced from PrP  APP (Hsiao et al., 1996). 

Tg2576*: Also known as APPswe. In these mice, human APP695 contains a double 

mutation at Lys670  Asn and Met671  Leu (Westerman et al., 2002). 

APP695SWE*: Also known as APPswe. In these mice, human APP695 contains a double 

mutation at Lys670  Asn and Met671  Leu (Chapman et al., 1999). 

APP+PS1: Double transgenic mouse generated by crossing APPswe (see above) mice 

with a line expressing the PS1 (M146L) mutation in the PSEN1 gene (Arendash et al., 

2001). 

Arctic APP: A point mutation in APP at E693G (Nilsberth et al., 2001). 

APdE9: These transgenic mice are made by co-injecting a vector encoding mutant 

APP (the APPswe mutation) and mutant PSEN1 (the E9 mutation) (Minkevicience et 

al., 2009). 

hAPP^: This model over expresses human APP with two mutations; one at the above 

mentioned APPswe and the other at V717F, often referred to as APPInd (Palop et al., 

2007). 

PDAPP: This model is also known as APPind and contains the mutation V717F 

(Webster et al., 2014). 

APP23: This model has a 7-fold over expression of the APPswe mutation (Webster et 

al., 2014). 
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TgCRND8: These transgenic mice over express human APP, with APPswe and APPind 

mutations, 5-fold greater than endogenous murine APP (Webster et al., 2014). 

J20^: This line is also called hAPP. They over express human APP with the APPswe 

and APPind mutations (Webster et al., 2014). 

APP751SL/ PS1 KI: These transgenic mice are a cross between an over expressing 

human APP line, with mutations at APPswe and APPlon (V717I), and a PSEN1 knock-in 

line, with two point mutations at M233T and L235P (Webster et al., 2014) 

5xFAD: These mice are transgenic for both APP and PSEN1. The APP mutations 

include APPswe, APPflo (I716V), and APPlon. The PSEN1 mutations include M146L and 

L286V (Webster et al., 2014). 

3xTg: These mice are transgenic for APP (APPswe), PSEN1 (M146V), and MAPT 

(P301L) (Webster et al., 2014). 

APPswe,ind^: Transgenic mice that have both the APPswe and APPind mutations (Webster 

et al., 2014). 

*,^ denotes mice with the same mutation, but different names 

II. Chapter 3 

 II.1 Establishment of the behavioural testing time point 

A pilot experiment was run to establish a testing time point where A-induced 

memory loss was observed, ranging from 48 hours post-training to 8 days post-training 

(Figure II.1). Animals were starved for 2 days, trained at time point 0 hours (the day 

after starvation completed), injected with 0.1 mM A 25-35 at time point 24 hours, and 

tested for the conditioned feeding response every day for up to 8 days post-training. 

The results of this pilot experiment, along with general incubation time points used in 

the literature, established the testing time point as 24 hours post-injection and 48 hours 

post-training. 
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Figure II.1 Comparison of behavioural responses from day 1 to 7 after injection. Naïve, 

uninjected; trained, vehicle-injected; and trained, A 25-35-injected animals were behaviourally 
tested 1, 2, 3, 4, 5, 6, or 7 days after animals were injected. The average behavioural response 
of each group is represented for each day. 
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III. Chapter 6 

 III.1 NMDAR1 antibody studies 

As NMDAR1 antibodies have not been used successfully in Lymnaea, a 

sequence alignment between Lymnaea and rat NMDAR1 was compared for areas of 

high homology (Figure III.1A). Discrepancies between the two sequences were found 

in all antigens of commercial antibodies. The first antibody studied, Anti-NMDAR1 

(Abcam, aa 869-882), is a polyclonal antibody and exhibited banding at different 

weights in the rat sample (Figure III.1B). However, the predominant bands were not at 

the predicted weight of ~120kD. Unsurprisingly, since non-specific banding appeared 

throughout the rat sample, the Lymnaea sample was a long smudge of 

incomprehensible signal. Even with a lot of optimisation, this antibody is unlikely to 

offer decent results for Lymnaea, considering the poor results in the rat sample. A new 

antibody, NMDAR1 (Novus Bio, aa 1-564), was compared in a similar manner to 

assess usefulness in Lymnaea. Unlike the Abcam antibody, the Novus Bio antibody 

only showed banding at two weights in the rat sample, one of which is the predicted 

weight of NR1 at 120 kD, but with a more dominant band at a lower molecular weight 

(Figure III.1B). Lymnaea signal with the Novus Bio antibody is contained to the 200-

100 kD region, showing no equivalent banding to the non-specific band in the rat 

sample. The downside of this antibody is in how Lymnaea displays its banding. It is 

again largely smudgy, with no crisp band appearing. A great amount of optimisation, 

along with a pre-absorption study, would be needed to determine if this antibody is 

useful in Lymnaea. If determined useful, the antibody should be used to label surface 

expression of NNMDARs, as surface levels have been found to change, but total levels 

have not (Lacor et al., 2007; Snyder et al., 2005) after A treatment. The preliminary 

data suggests this antibody may be used successfully; however, will need to be further 

investigated. 
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Figure III.1 NR1 comparisons between Lymnaea and rat indicate discrepancies in protein 
sequences. (A) NR1 amino acid sequence alignment between Lymnaea and rat. Consensus 
amino acids are shown in red, discrepancies are shown in blue. (B) Western blots of two 
different NR1 antibodies; Abcam (left) and Novus Bio (right). Lymnaea, rat, and protein ladders 
are run side-by-side on a gel and western blotted with the appropriate NR1 antibody. Pink 
boxes indicate 150-100 kD regions, with particular interest in finding a 120 kD band. 
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III.2 7-nAChR antibody studies 

nAChR antibodies, like NMDAR1, have not been used successfully in Lymnaea 

(aa 365-384). Similarly, a sequence alignment between Lymnaea and rat was made 

(Figure III.2) to find an appropriate antibody that had an antigen within the high 

homology range. 

 

Figure III.2 7-nAChR sequence alignment (A) nAChR A subunit in Lymnaea and 7-nAChR 
in rat amino acid sequence alignment. Consensus amino acids are shown in red, discrepancies 
are shown in blue. 
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 III.3 Adenylyl cyclase antibody studies 

An adenylyl cyclase mammalian antibody has not yet been used successfully in 

Lymnaea so, similarly to the NR1 and nAChR studies, a sequence alignment was used 

to compare areas of high homology between Lymnaea and rat. A commercially 

available mammalian adenylyl cyclase antibody was selected (range 250-300). 

However, the antigen had low alignment and the antibody was not successful when 

Lymnaea and rat sample were run side-by-side on a gel and western blotted with the 

antibody (Appendix III.3).  

 

Figure III.3 An adenylyl cyclase mammalian antibody does not match well to Lymnaea 
adenylyl cyclase. (A) Adenylyl cyclase in Lymnaea and rat amino acid sequence alignment. 
Consensus amino acids are shown in red, discrepancies are shown in blue. (B) Western blots 
of Lymnaea and rat samples, run side-by-side on a gel and western blotted with an adenylyl 
cyclase antibody. Pink box indicates 150-100 kD regions, with particular interest in finding a 130 
kD band. 
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 III.4 PKC antibody studies 

Like the other studies in this section, an appropriate sequence alignment was 

used to find a mammalian PKC antibody that may be used in Lymnaea (Appendix 

III.4A). Once a PKC antibody was selected with perfect alignment between the 

Lymnaea sequence and the antigen (range 499-697), samples from Lymnaea and rat 

were run side-by-side on a gel and western blotted with the PKC antibody (Figure 

III.4B). The bands match up exactly at 80 kD, with very strong signal in both and no 

other signal at non-specific sites. 

 

Figure III.4 A mammalian PKC antibody can be used successfully in Lymnaea studies. (A) 
PKC in Lymnaea and rat amino acid sequence alignment. Consensus amino acids are shown in 
red, discrepancies are shown in blue. (B) Western blot of Lymnaea and rat samples, run side-
by-side on a gel and western blotted with a PKC antibody. Arrow indicates 80 kD. 
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