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Development of nanoflow liquid chromatography-nanoelectrospray ionization mass 
spectrometry methodology for improved urine metabolomics 

SUMMARY 

 

Global metabolomic analysis of urine offers great potential for detection of early 

warning markers of disease. Current methods focus on rapid sample preparation and high 

throughput analyses at the expense of the detection of low abundance metabolites. The aim of 

this study was to develop sensitive analytical methods for metabolomic profiling. Methods 

were developed to use nanoflow ultra high performance liquid chromatography-nanospray 

ionization-mass spectrometry (nUHPLC-nESI-TOFMS), normally used for proteomics, for 

metabolomic analyses of urine samples. Compared with a conventional UHPLC-ESI-TOFMS, the 

use of a nanoflow-nanospray platform increased the sensitivity to a standard mixture of 

metabolites by 2-2000 fold. Highly repeatable results for retention time and metabolome peak 

area were achieved, where the coefficients of variation were <0.2% and <30% respectively for 

the majority of peaks present in the urine metabolome. To further increase sensitivity and 

enable small injection volumes, a sample preparation method was developed using polymeric 

anion and cation exchange mixed mode solid phase extraction with pre-concentration. 

Combined with the nano platform, this enabled the detection of low abundance signalling 

molecules (estrogens, eicosanoids and unconjugated androgens) not usually detected with 

conventional methods. A pre-analysis normalisation technique based on osmolality 

concentrations was used to reduce sample variability due to differing urine concentrations. 

These methods were used to investigate the metabolomic consequences of HIV infection and 

patient response to combined antiretroviral therapy (cART). No significant differences in 

metabolomic profiles between HIV positive and negative patients were observed. However, 

disruption of bile acid profiles and decreased concentrations of selected carnitines, steroid 

conjugates, polypeptides and nucleosides were detected in patients on cART therapy 

indicating disrupted lipid and protein metabolism but improved immunological function 

associated with antiretroviral medication. These finding highlight the importance of these 

newly developed SPE sample preparation and nUHPLC-nESI-TOFMS analysis methods for global 

profiling of the urinary metabolome.  
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OPLS-DA Orthogonal partial least square discriminant analysis  

P Progesterone 

PCA Principal component analysis 

PEEK Polyetheretherketone 

PI Protease inhibitor 

PLS-DA Partial least square discriminant analysis 

ppm Parts per million 

PR Propranolol 

psi Pounds per square inch 

PW Peak width 
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QC Quality control 

QTOF Quadrupole time of flight 

r.f Radio frequency 

RNA Ribonucleic acid 

ROC Receiver operator curve 

RP Reversed phase 

RPLC Reversed phase liquid chromatography 

Rt Retention time 

S/N Signal to noise ration 

SD Standard deviation 

SIM Selected ion monitoring 

SPE Solid phase extraction 

SSRI Selective serotonin reuptake inhibitor 

T2 Testosterone 

T2G Testosterone glucuronide 

TBEP Tris(2-butoxyethyl)phosphate 

TCA Taurocholic acid 

Thr. Theoretical 

TOF Time of flight 

TxB2 Thromboxane B2 

UHPLC Ultra high pressure liquid chromatography 

UPCR Urinary protein creatinine ratio 

-ve Negative 
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Chapter 1: General Introduction 

1.1 The -Omics sciences 

The -omic sciences are a rapidly expanding area of analytical approaches which 

generate vast amounts of experimental data. Through analysis of these data mechanisms of 

disease, physiology and toxic exposures can be elucidated (Alvarez-Sanchez et al., 2010a). The 

4 major –omics are genomics the study of an organism’s genome (Sadee, 2011),  proteomics  

the study of the proteins within an organism (Perrett, 2007), transcriptomics which studies the 

RNA transcripts of the genome (Hegde et al., 2003) and metabolomics the study of an 

organism’s metabolites (Nicholson et al., 1999). The first three approaches study products that 

are entirely dependent on the nature of the encoded genome, whereas metabolomics is 

concerned with the products of both physiological and cellular metabolism and therefore more 

closely reflects the phenotype (Fiehn, 2002, Vinayavekhin et al., 2010).  The combination of -

omic sciences provide models and uncover emergent properties of an entire organism which 

can be split to its constituent organs/biofluids and subsequent cells, all falling under the remit 

of systems biology (Nicholson and Wilson, 2003, Bruggeman and Westerhoff, 2007, Dunn et 

al., 2011). 

1.2 Metabolomics 

In 1999 Nicholson coined the term to describe the analysis of small molecules in a 

biological matrix in response to pathological stimulus (Nicholson et al., 1999). Metabolomics is 

the semi quantitative study of the small molecules involved in enzymatic metabolic reactions, 

as either the reactants, intermediaries or products of such reactions (Dunn et al., 2011, 

Alvarez-Sanchez et al., 2010b). Since their inception, both metabolomics and metabonomics 

have been used interchangeably. Metabolites are defined as low molecular weight organic 

molecules typically less than 1000Da (Nicholson, 2006, Guy et al., 2008), and the metabolite 

collective of a sample matrix is known as the metabolome (Nicholson, 2006). Metabolomic 

variation between sample groups may be indicative of physiological stress or environmental 

exposures. The metabolites driving the metabolic variation under these stressors, once 

extensively validated, are often referred to as biomarkers (Want et al., 2010, Gika et al., 2014). 

Like the other major  –omics sciences, with the exception of genomics, metabolomics is 

capable of being implemented across all levels of complexity within an organism, with 

metabolic profiles being possible for cells, tissues, biological fluids, cellular and sub-cellular 

compartments (Fiehn, 2002). In addition, metabolomics is also referred to as a top-down 

approach (Spagou et al., 2011, Nicholson and Lindon, 2008) whereby disrupted metabolic 

pathways are identified and then linked to changes in gene expression controlling these 
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pathways thus providing a detailed overview of the metabolic stress being exerted (Gika et al., 

2014). 

Metabolomics as we know it today is a relatively new area of science which only 

recently has been made possible by the advances in analytical techniques allowing hundreds if 

not thousands of molecules to be separated and identified with relative ease (Mamas et al., 

2011). There are two strategies for metabolomic analysis for any given sample matrix, these 

are; non-targeted/global metabolomics and targeted metabolomics. The desired approach is 

determined based upon the aim of the study. Non-targeted or global metabolomics is the 

study of the entire metabolome of a biological sample and requires a methodology that allows 

for the detection of the greatest number of metabolites as possible (Issaq et al., 2009, 

Vinayavekhin et al., 2010, Raterink et al., 2014).  This method is a discovery-based approach 

where there is limited prior knowledge of the biology involved in the case study. Comparison 

of case study metabolomes with matched controls utilizing multivariate statistics enables the 

identification of discriminating metabolites as the result of metabolic challenges. Global 

metabolomics is generally a theory producing experiment, where variations in metabolome 

profiles are used to produce theories about the cause of the metabolite variation and how it 

influences disease state (Mamas et al., 2011).  In contrast, a targeted metabolomics approach 

is a (semi)quantitative analysis of a small number of metabolites which are usually known in 

advance (Vinayavekhin et al., 2010, Dunn et al., 2011, Issaq et al., 2009). The biology behind 

them is well understood, possibly due to a previous global analysis (Mamas et al., 2011). This 

method is typically used once a potential biomarker or collection of potential biomarkers has 

already been identified, and it becomes necessary to (semi)quantify these metabolites to 

diagnose or observe a disease state.  

1.3 Analytical platforms for metabolomic analysis 

The diverse range of metabolites within the metabolome from any given matrix offers 

significant challenges for analytical chemists to overcome.  The human metabolome comprises 

more than 6,500 characterised metabolites (Wishart et al., 2009, Wishart et al., 2007, Wishart 

et al., 2013) a number which will only grow with new improved analytical platforms. In 

addition to endogenously derived metabolites, there are exogenously derived metabolites 

often referred to as xenobiotics and xenometabolites (Holmes et al., 2007), which are 

introduced to the overall metabolome through the diet (Andersen et al., 2013, Pujos-Guillot et 

al., 2013, Wang et al., 2012a, Jacobs et al., 2012, Hall et al., 2011b, Edmands et al., 2011, Lloyd 

et al., 2011, Fave et al., 2009), pharmaceuticals (Loo et al., 2012, Holmes et al., 2007) and 

environmental exposure (Nomura et al., 2013, Ueyama et al., 2012, Johnson et al., 2012a). 
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When combined with the endogenous metabolites it is thought that the total number of 

metabolites present in the human metabolome could be as many as 40,000 (Wishart et al., 

2009, Wishart et al., 2013).  The entire human metabolome covers a broad range of polarities 

(Want et al., 2010) and spans at least 11 orders of magnitude in compound concentrations 

(Bouatra et al., 2013, Psychogios et al., 2011, Wishart et al., 2009, Wishart et al., 2007). With 

recent advancements in analytical chemistry there are a range of analytical platforms that can 

be implemented for metabolomic analysis. The commonly utilized techniques are 

spectroscopic techniques alone such as Nuclear Magnetic Resonance (NMR) and direct 

infusion mass spectrometry (DIMS), or hyphenated techniques incorporating chromatographic 

separation such as Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid 

Chromatography-Mass Spectrometry (LC-MS) While no one analytical platform offers 

complete metabolome analysis (Issaq et al., 2009, Ramautar et al., 2009) a combination is 

deemed complementary, with each technique adding metabolome information that others 

cannot (Wilson et al., 2005, Raterink et al., 2014). 

1.3.1 Detection techniques 

The method utilised for the detection of metabolites plays an important role in the 

metabolomic study. The technique chosen will determine the dynamic range of the analysis 

and the ability to detect and identify metabolite types. Metabolomic analysis is dominated by 

two detection techniques, NMR and mass spectrometry (Zhang et al., 2012a). 

1.3.1.1 NMR 

Many of the initial metabolomics studies were carried out using 1H or 13C NMR (Emwas 

et al., 2013, Nicholson et al., 1999) and this technique is still used extensively today (Kaddurah-

Daouk et al., 2008, Theodoridis et al., 2012). NMR analysis offers a quick non-destructive 

technique for metabolomic analysis with the additional benefit of structural elucidation of 

unknown metabolites (Lenz and Wilson, 2007, Emwas et al., 2013). Indeed structural 

elucidation of unknown metabolites and platform resolution has been significantly improved 

with the introduction of 2D NMR due to the reduction in overlapping peaks. This is achieved by 

collecting a series of 1D spectra and plotting data on a two frequency axis as opposed to one 

(Bingol and Bruschweiler, 2014, Le Guennec et al., 2014). There has been much success in 

NMR-led metabolomics, for example in environmental research (Viant et al., 2003, Samuelsson 

et al., 2006), human health and disease (Fischer et al., 2014, Serkova et al., 2007, Holmes et al., 

2008) and drug discovery (Powers, 2009).  Despite the advantages of structural elucidation 

offered for metabolomic analysis, LC-NMR has thus far not been widely adopted by the 

metabolomics community, possibly as a result of the reduced sensitivity compared to mass 
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spectrometry (Brennan, 2014, Albert, 1995). In addition, most LC runs metabolomics utilize a 

gradient system utilizing protonated solvents, typically water and acetonitrile. This creates 

changes in the solvent spectra over the course of the run meaning a more complex solvent 

suppression methodology is required. Another option would be to use fully deuterated 

solvents which would significantly increase the cost of analysis due to the volume of solvent 

required and the cost of deuterated solvents (Albert, 1995, Exarchou et al., 2005). However, 

NMR or LC-NMR metabolomics analysis suffers from a key limitation; limited sensitivity 

(Fischer et al., 2014, Emwas et al., 2013, Ramautar et al., 2009). However, the lack of 

sensitivity can be alleviated to some extent by using a larger magnetic field instrument, in 

addition to the miniaturisation of the NMR probes (Moco et al., 2007).  

1.3.1.2 Mass spectrometry 

The most commonly used detector in metabolomics analysis is mass spectroscopy 

(Scalbert et al., 2009) and as such a more detailed discussion of the technique is given below. 

Unlike NMR, MS is a destructive analytical platform thus resulting in loss of the sample and 

leaving only fragmentation data for structural elucidation of unknown compounds. The aim of 

mass spectrometry is the measurement of the mass to charge ratio of ions and their 

quantification (Guilhaus, 1995). There is a wide array of techniques available to achieve this 

using different methods of generating ions and different mass analysis techniques.   

1.3.1.2.1 Ionization techniques 

In order for a molecule to enter a mass analyser and be “directed” to the detector it 

must first be converted to a gaseous phase if not already so (de Hoffmann and Stroobart, 

2007). In addition, an electrostatic charge is imparted upon analytes giving them either an 

overall positive or negative charge (de Hoffmann and Stroobart, 2007). The use of reflector 

plates within a mass spectrometer utilize electrostatic repulsion to remove unionized 

molecules and guide the ionized ones to the mass analyser and subsequent detector. A 

number of ionization techniques are available and can be divided into categories in two ways; 

the first using either under high vacuum (electron ionization and chemical ionization) or 

atmospheric pressure (electrospray ionization) induced ionization, the second by influencing 

the amount of fragmentation that occurs during ionization using techniques. Hard ionization 

creates plentiful fragments which can be used to elucidate structural information of the 

molecule; soft ionization techniques limit fragmentation meaning fewer ions are produced for 

a single molecule, which reduces the complexity of mass spectral data (de Hoffmann and 

Stroobart, 2007).  
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1.3.1.2.2 Electron ionization 

Electron ionization (EI) is widely used in the field of GC-MS; electrons are emitted via 

thermic emission from a heated filament (de Hoffmann and Stroobart, 2007). These electrons 

are accelerated, within an electric field, typically to 70eV, between the filament and the source 

where the analytes enter the mass spectrometer (Bleakney, 1929). Interactions between the 

high energy electrons and gaseous analyte induce ionization, and due to the electrons having a 

de Broglie wavelength similar to that of the average bond length in organic molecules, 

fragmentation occurs resulting in a hard ionization technique. As a result of the hard ionization 

there is a high degree of fragmentation, meaning structural elements of the metabolite can be 

elucidated in addition to serving as a method of identification by analysing fragmentation 

patterns with spectral libraries. At its most efficient, only around 1 out of every 1000 

molecules become ionized and thus enter the mass analyser, with negative mode ionization 

being much less efficient (de Hoffmann and Stroobart, 2007).  

1.3.1.2.3 Chemical ionization 

First introduced in 1966 chemical ionization (CI) offers a much less energetic ionization 

process compared to electron ionization, this means that much fewer fragments are produced 

in the process (Munson and Field, 1966). Here gaseous analyte is ionized via collisions with 

ions of a reagent gas such as ammonia. The reagent gas itself is ionized via EI, however, 

collisions between analyte and reagent gas are not very energetic meaning very few fragments 

are formed. This ensures that the molecular ion is easily identifiable and is the only protonated 

ion created in the process. Most fragments will not be protonated and present as a neutral 

mass (Harrison, 1992, de Hoffmann and Stroobart, 2007).   

1.3.1.2.4 Matrix assisted laser desorption ionization (MALDI) 

MALDI is typically used for large biomolecules; as such it has been extensively used in 

the field of proteomics. Analytes are dried to produce a solid matrix which is ablated by a high 

power laser, quickly heating the sample causing localised sublimation allowing the sample to 

enter the gas phase where it is protonated or deprotonated in the hot plume generated by the 

laser ablation. Ions subsequently enter the mass analyser. The soft ionization, and ability to 

produce multiply charged ions whilst not being detrimentally affected by salts and buffer 

solution, makes it ideal for large biomolecules applications such as proteomics, DNA and 

polysaccharides (de Hoffmann and Stroobart, 2007).  MALDI however suffers from a relatively 

high level of noise at m/z values below 500Da due to the sample matrix, effectively making half 

the metabolome problematic to analyse (Glish and Vachet, 2003).  
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1.3.1.2.5 Atmospheric pressure ionization  

The previously discussed ionization methods are ionized analytes under high vacuum; 

however several methods of ionization are available under atmospheric pressure. In addition, 

instead of ionization in the gas phase, analytes can be introduced to the source in an aqueous 

phase. Whereas in EI and CI analytes must be introduced in gas phase, and as such non-volatile 

compounds require derivatization and need to be thermo-stable. MALDI ionization requires 

the analytes to be bound to a solid matrix prior to analysis. The ability to analyse samples in 

liquid form is ideal for biological matrices as they are typically highly aqueous. This also 

eliminates the need for chemical derivatization or the formation of a solid matrix. There are 

several atmospheric pressure ionization techniques including electrospray ionization (ESI) 

atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization 

(APPI) which will be discussed in the upcoming section (de Hoffmann and Stroobart, 2007).   

1.3.1.2.5.1 Electrospray ionization  

Invented in the late 1980s by Fenn, electrospray ionization (ESI) (Yamashita and Fenn, 

1984) has become one of the most widely used ionization techniques for analytical chemists 

(Bruins, 1998). Initially used for large molecule analysis such as proteins and peptides due to its 

soft ionization at atmospheric pressure and ability to form multiply charged ions (Glish and 

Vachet, 2003, de Hoffmann and Stroobart, 2007, Fenn et al., 1989), ESI is now a popular 

method of ionization in metabolomic analysis (Want et al., 2010) Within the ESI source, the 

analyte is dispersed from the ESI probe and forms a Taylor cone due to the pneumatic drive 

from the LC or sample injector. The spray emitted is in the form of charged spherical droplets, 

and the charge is imparted by a large potential difference typically between 3 and 6 kV. The 

droplets undergo an evaporative process known as desolvation with the aid of a desolvation 

gas and a desolvation temperature (circa 300°C) (Figure 1.1). The combination of gas and 

temperature slowly shrinks the droplets by evaporating the mobile phase. Once the droplets 

reach their Rayleigh point the electrostatic charge overcomes the surface tension of the 

droplet dispersing it into smaller droplets in a coulomb explosion (Bruins, 1998, Smith et al., 

1990, Fenn et al., 1989). Each of these droplets undergo further desolvation and coulomb 

explosion cycles before gas phase ions are formed which enter the mass analyser (Glish and 

Vachet, 2003, Juraschek et al., 1999). The efficiency of ionization is dependent upon the initial 

droplet size and this relationship between droplet radius and volume is described by 

Wickremsinhe et al., (Wickremsinhe et al., 2006). The smaller the initial droplet size the 

greater the rate of desolvation and this allows fewer desolvation cycles before an analyte can 

enter the gas phase and subsequently enter the mass analyser. 



25 
 

 

Figure 1.1: Mechanism of electrospray ionization 
(Adapted from: “Biomarkers for NeuroAIDS: The Widening Scope of Metabolomics” 2007) (Pendyala et al., 2007) 

In metabolomics when ESI is used as a hyphenated technique coupled with liquid-

chromatography (LC), the role of mobile phase and additive is an important consideration for 

ionization. The protonation of a base to form a positively charge ion can be encouraged with 

the addition of a proton donor such as an acid to the mobile phase or using methanol as the 

organic solvent. Conversely negative ions are formed following reversal of the electrical 

potential of the capillary and by minimising the amount of acid present in the mobile phase or 

with the addition of basic additive such as ammonium hydroxide which sequesters a proton 

from the acidic molecule leaving a negative charge (Bruins, 1998).   

1.3.1.2.5.1.1 ESI artefacts 

A number of reactions can occur within an ESI source which alters the m/z of the 

analyte. When introduced at a high concentration analytes can form protonated dimers, 

trimers, etc, though these are more common in positive ESI mode. This is due to the greater 

stability of ions generated in positive ESI relative to negative ESI, meaning a greater proportion 

travel to the detector intact to be detected as a dimer/trimer ion (Ding and Anderegg, 1995). 

Other common ESI artefacts are adducts when neutral analytes interact with an ionizing ion 

other than a proton. The most common adduct in positive ESI is with sodium which forms an 

M+Na ion. Other common adducts are with ammonia, water and potassium in positive ESI and 

in negative ESI with formate, acetate and chlorine. The formation of some of these adducts 

can be limited by thoroughly desalting samples prior to analysis (de Hoffmann and Stroobart, 

2007).  
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1.3.1.2.5.2 Atmospheric Pressure Chemical Ionization 

APCI sources are similar to that of the ESI, typically a larger heater is incorporated to 

enable temperatures to reach 600˚C to enable a more rapid desolvation of mobile phase. 

Furthermore the gas phase mobile phase is ionized via corona discharge as in CI. It is the 

interaction between these ions that ionizes the analytes in a similar manner to that of 

chemical ionization but only at atmospheric pressure. In positive ionization a proton is 

transferred from the charged mobile phase to the analytes and vice versa in negative mode (de 

Hoffmann and Stroobart, 2007).  However, due to the greater temperature of the APCI source 

many thermo liable metabolites may be degraded in a metabolomic analysis.  

1.3.1.2.5.3 Atmospheric Pressure Photoionsation 

The APPI source is similar to that of the APCI source and only the corona discharge is 

replaced by a photon source, typically a UV lamp (Robb et al., 2000). The interaction between 

the photons and analyte in gas phase induces ionization either through protonation or 

deprotonation. APPI is of particular use for analytes not ionized by ESI and APCI, and these 

include non-polar compounds such as polyaromatics and conjugated compounds (Lien et al., 

2009, Robb et al., 2000). As with APCI the increased thermal degradation of analytes may 

hinder metabolomic analysis, in addition to having a much reduced ionization efficiency 

relative to APCI and ESI (de Hoffmann and Stroobart, 2007). 

1.3.1.2.6 Mass analysers 

To determine the mass of analytes a mass analyser is required and it is into this that 

ions in the gas phase are directed. The property that is determined by the mass analyser is the 

mass to charge ratio (m/z) of the ion rather than the mass. Due to the different ionization 

techniques and applications utilizing mass spectrometry a number of mass analysers have 

been developed, each with its pros and cons. The sensitivity and mass resolution of mass 

analyzers is continually being improved upon. Mass resolution refers to the precision of the 

mass measurement, low resolution (≤5000) mass spectrometers only provide whole integer 

(nominal) mass. This makes metabolite identification more difficulty as many metabolites will 

have the same nominal mass. An example of this would be creatinine (C6H13NO2) and leucine 

(C4H9N3O2) both common urinary metabolites and both with a nominal mass of 132 Da. A high 

resolution mass analyser will provide a more precise mass measurement, for example a mass 

analyser with >10,000 mass resolution will return mass of 132.0808 and 132.1019 for 

creatinine and leucine respectively thus allowing a accurate molecular formula to be 

determined (Watson, 2013). However, sensitivity and resolution are indirectly proportional, 

and improving one often sacrifices the other so for many MS platforms a compromise must be 
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reached (de Hoffmann and Stroobart, 2007). Mass analysers can be split into several classes, 

and single mass analyser are mass spectrometers made up of one mass analyser such as single 

quadrupole or time of flight. Quadrupole analysers can be added in series in a triple 

quadrupole or used to produce hybrid mass analysers such as a quadrupole time of flight 

(QTOF).  

1.3.1.2.6.1 Quadrupole 

Quadrupole mass analysers compose of 4 parallel hyperbolic rods, of which 2 use radio 

frequency (r.f) rods and 2 use direct current (d.c) rods to isolate selected parent ions based 

upon m/z and propel them the detector (Glish and Vachet, 2003, de Hoffmann and Stroobart, 

2007). Ions falling outside the desired m/z impact the quadrupole rods and fail to reach the 

detector. However, full spectrum scans are possible by continual variation of the d.c property. 

Quadrupole mass analysers are low resolution with only nominal mass accuracy (de Hoffmann 

and Stroobart, 2007) making them a poor choice for metabolomics analysis. 

1.3.1.2.6.2 Triple Quadrupole 

A triple quadrupole is a linear arrangement of 3 quadrupole mass analysers where 

quadrupoles 1 and 3 selectively filter specific ions while quadrupole 2 is operated with only r.f 

and acts as a collision cell to create fragments. These are then focused and directed towards 

quadrupole 3 which selectively filters specific daughter ions. As with the single quadrupole 

instruments mass resolution is poor with only nominal mass accuracy. However, sensitivity is 

improved and the technique is widely used for quantitative analysis using the parent ion and a 

fragment for confirmation of identity in a process known as multiple reaction monitoring 

(MRM) (de Hoffmann and Stroobart, 2007). This analytical platform is particularly useful in 

targeted metabolomics studies where the metabolites of interest are well established and the 

effect of metabolic disruption is being quantified.  

1.3.1.2.6.3 Time of Flight (TOF) 

Time of flight mass spectrometry has been utilized for the best part of 60 years and 

still remains a widely used mass spectrometry technique. The basis behind the time of flight 

mass analyser is that an ion’s velocity in a vacuum is indirectly proportional to its m/z 

(Guilhaus, 1995). This means that the mass can be determined by measuring the time taken for 

an ion to travel a known distance. Unlike the quadrupole mass analysers, a strictly defined 

time period is required meaning ions are pulsed into the mass analyser enabling the time of 

flight to the detector can be measured (Glish and Vachet, 2003, de Hoffmann and Stroobart, 

2007). Linear TOFMS directs ions down a flight tube towards a detector, but this technique has 

a limited resolution of just 5000 (de Hoffmann and Stroobart, 2007). Increased resolution can 
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be achieved using reflectors which reflect ions back towards the inlet of the detector. This 

effectively doubles the drift distance of the ions allowing greater mass resolution and is known 

as “V-mode” due to the shape of the ion flight path (Glish and Vachet, 2003). Additional 

reflectors can be added to create “W-mode” which has even greater resolution. However, as 

with most resolution boosting techniques there is a subsequent drop in sensitivity. The 

implementation of reflectors in TOFMS instruments increase resolution by up to 5 fold making 

them high resolution mass spectrometers (de Hoffmann and Stroobart, 2007) meaning ions of 

similar or same nominal masses can be resolved adding additional information to the sample 

(Chernushevich et al., 2001), which is ideal from a metabolomics standpoint. Due to their 

sensitivity and high degree of mass accuracy, TOFMS has risen to the forefront of 

metabolomics analysis (Theodoridis et al., 2012, Gika et al., 2014). 

1.3.1.2.6.4 Quadrupole Time of Flight (QTOF) 

The QTOF represents a hybrid mass analyser, where the collision cell of a quadrupole 

is combined with the high resolution of a time of flight mass analyser (Chernushevich et al., 

2001). The development of this hybrid analyser closely followed that of the ESI development, 

and as such they are a very common and popular combination which allows both qualitative 

and quantitative analyses to be performed (Chernushevich et al., 2001). When implemented in 

full scan mode, which is the main interest for metabolomics analysis, the quadrupole operates 

with only the r.f component to focus the ion beam before entering to TOF component. The 

quadrupole may also be used as a mass analyser as described earlier and adding this 

application to a TOFMS allows fragments to be analysed at high resolution increasing 

confidence in ion identification which is an important feature in metabolomics analysis. (Want 

et al., 2007, Chernushevich et al., 2001, Moco et al., 2007).  

1.3.1.2.6.5 Ion trap 

Ion trap mass spectrometry was introduced by Paul and Steinwedel in the 1950s. Once 

ionized, ions become trapped by an initial r.f. frequency and a fixed d.c voltage. The means all 

ions within a given m/z range become trapped within the mass analyser; the mass range is 

determined by the r.f voltages applied. The movement of ions depends upon the design of the 

ion trap. Initially ion traps utilised a circular electrode around which the ions travelled and 

these were known as Paul traps. In a 2D trap, ions oscillate up and down a linear four rod 

quadrupole each end of which is capped with a reflector to reflect ions back down the 

quadrupole (March, 1997, de Hoffmann and Stroobart, 2007). Prior to and subsequent to 

ionization, analytes are subjected to continual collision with helium gas to dampen the energy 

of these analytes to further increase control and focussing of ions (March, 1997). Ions are 
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ejected from the ion trap by ramping the r.f. amplitude causing ions of specific m/z ratios to be 

ejected leaving the desired ions to be detected (March, 1997, de Hoffmann and Stroobart, 

2007).  These mass analysers however typically offer good resolution but fail to provide a high 

degree of mass accuracy compared to TOF instruments due to the number of ions present in 

the trap known as the space charge effect, in addition to the gas pressure in the ion trap 

(Schwartz et al., 1991, Zubarev and Makarov, 2013, Gorshkov and Zubarev, 2005). This makes 

the ion trap better suited to targeted analysis (Zubarev and Makarov, 2013). 

 1.3.1.2.6.6 Orbitrap 

The Orbitrap is the latest in mass analyser technology, invented by Makarov in the last 

decade of the 20th century. In an Orbitrap instrument, ions enter from an ESI source and pass 

into a storage quadrupole which works in a similar fashion to a 2D ion trap. In this case all ions 

are expelled into the analyser rather than a select few as this step is required to convert the 

continuous ion production of an ESI into pulsed packages of ions required for Orbitrap analysis 

(Hu et al., 2005). Ions enter the orbitrap via a rapid expulsion from the storage quadrupole, 

creating a very narrow package of ions, much smaller than in other mass analysers. Ions enter 

the Orbitrap at a tangent in a gap between a central spindle shaped electrode and an outer 

electrode. When a voltage is applied between both electrodes, ions are forced towards the 

central electrode while their velocity imparted by injection from the storage trap causes a 

centripetal force, forcing the ions around the central spindle electrode (Zubarev and Makarov, 

2013). The shape of the electrode creates an axial electrostatic field forcing ions toward the 

centre of the trap causing them to oscillate at their harmonic frequencies creating an ion 

current image which is picked up by the outer electrode. This ion current is then amplified and 

translated from analogue to digital data before pre-processing and data acquisition (Hu et al., 

2005, Zubarev and Makarov, 2013, de Hoffmann and Stroobart, 2007). The resolution of 

Orbitrap mass spectrometers exceeds 250,000 and offers a significant improvement over 

TOFMS platforms.  

1.3.1.2.6.7 Fourier transformer-ion cyclotron resonance  

Fourier transformer-ion cyclotron resonance (FT-ICR) mass spectrometry was invented 

by Comisarow and Marshall in 1974 (Marshall et al., 1998). This mass analyser is the highest 

resolution to date with resolution exceeding 1,000,000 (Brown et al., 2005). Here ions are 

trapped in a magnetic trap but are in a constant circular motion. Ions are excited to their 

cyclotron resonance frequency by an orthogonal oscillating electric field  (Marshall, 1985, 

Amster, 1996). These cyclotron resonance frequencies are unique for each m/z and this 

resonance is detected by ion image detectors which are discussed later in this chapter. Due to 
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the fact that the oscillating frequency is a function of the m/z and size of the magnetic field 

applied to the ion, mass resolution is increased by increasing the strength magnetic field, and 

this is typically achieved using superconducting magnets (Brown et al., 2005, Marshall et al., 

1998, Amster, 1996). However to reduce the number of collisions within the mass analyser 

which may have a detrimental effect of resolution a high vacuum is required and a limited 

number of ions in the analyser (de Hoffmann and Stroobart, 2007). FT-ICR has potential in 

metabolomics due to its very high mass resolution and sensitivity, which is increased as the 

ions can be measured over an extended period of time. The very high resolution means many 

masses of the same nominal mass can be resolved, thus reducing the requirement for 

chromatographic separation to some degree (Brown et al., 2005). This makes FT-ICR ideal for 

high through-put analysis using direct infusion analysis which will be further discussed in this 

chapter.  

1.3.1.2.7 Detectors 

Upon leaving the mass analyser, ions need to be detected in order for mass spectra 

data to be collected.  The most commonly used detectors are electron multipliers; here ions hit 

the detector and trigger an electron cascade amplifying the original ion impact. These can be 

further focused and amplified by directing the electron cascade down a channel, triggering 

further electrons to be emitted upon impact with the channel walls. Multichannel plates are 

commonly utilized in TOF and quadrupole; here channels of 10 µm in diameter and several 

millimetres in length are present on the surface of a plate or disk. Once an ion strikes the 

entrance a cascade of electrons are amplified down the channel and directed onto an anode 

for detection of the charge. However there is a significant area on which an ion can strike but 

not produce an electron cascade thus limiting the sensitivity of the detector (Koppenaal et al., 

2005). In addition, these detectors detect only one ion strike at a time per channel, again 

reducing overall sensitivity and causing saturation of the detector. The mass spectrum is 

typically generated using a time-to-digital converter which relates the number of ions detected 

to the intensity of the peak response (de Hoffmann and Stroobart, 2007).  

Trapping instruments typically utilise an image current detector. Despite being 

trapped, ions in orbitraps and ion traps are in constant motion. Within a magnetic field the 

orbit radius and frequency is a property of their m/z. This causes each ion to emit an r.f. signal 

that is unique to the m/z of the ion. These measurements are typically very accurate and 

account for the high mass resolution of these mass analysers (Koppenaal et al., 2005).   
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1.3.1.3 Direct infusion mass spectrometry (DIMS) 

Direct infusion of sample into a mass spectrometer is a very rapid method for 

metabolomics, making it possible to screen 100-1000s of samples per day (Scalbert et al., 

2009, Fuhrer and Zamboni, 2015). A recent development that enables very high resolution and 

increased metabolome coverage, whilst providing accurate mass measurement is selected ion 

monitoring (SIM) stitching. This technique infuses a sample into a high resolution orbitrap or 

fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) where a narrow 

mass window of 30 m/z are released into the mass analyser from a storage quadrupole. A 

series of overlapping SIM windows are subsequently stitched together and has been shown to 

increase the number of metabolites detected while maintaining a high degree of mass 

accuracy (Southam et al., 2007). However, even with SIM stitching DIMS suffers from ion 

suppression due to a lack of chromatographic separation. Ion suppression is a common 

problem in mass spectrometry; this is where a number of analytes enter the source at the 

same time. This is either a result of direct infusion or chromatographic columns eluting 

multiple peaks at the same time; in the later case this is termed co-elution. All analytes 

entering the source compete for ionisation, thus ionisation efficiency for each analyte is 

reduced meaning fewer of their ions are generated and subsequently enter the mass analyser 

to be detected (Annesley, 2003). This means that low abundance metabolites co-eluting with 

high abundance metabolites are not detectable, thus limiting the number of metabolic 

pathways analysed.  

1.3.2 Hyphenated techniques 

 Due to the inherent problems with DIMS caused by a lack of separation many 

metabolomic studies utilize chromatographic separation prior to MS analysis. As with the 

detection method the chromatographic method chosen influences the sensitivity and the class 

of compounds detected (Issaq et al., 2009). To achieve the benefit of chromatographic 

separation mass spectrometers are linked to the chromatographic instrument to create a 

hyphenated platform. The two most commonly utilized in metabolic studies are GC-MS and LC-

MS (Issaq et al., 2009, Lenz and Wilson, 2007, Zhang et al., 2012a). 

1.3.2.1 Gas Chromatography-Mass Spectrometry 

Gas chromatography (GC) is an analytical technique used to separate vaporised 

compounds without thermal degradation of target compounds. Compounds are separated 

using an inert carrier gas such as helium as the mobile phase which flows through a stationary 

phase bonded to a GC column. A typical GC column is a reverse stationary phase allowing non 

polar compounds to elute before polar compounds. The rate of the elution is dependent upon 
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the temperature gradient of the GC, the greater the temperature the greater the rate of 

elution.  GC-MS has proved to be very popular in the field of metabolomics with many studies 

utilizing the technique. This hyphenated technique utilizes chromatographic separation which 

is a vital component of mass spectrometry based metabolomics (Issaq et al., 2008a). GC-MS 

has been proved to be a highly reliable and reproducible technique for metabolomic analysis 

(Issaq et al., 2008a). The ability to selectively fragment ions and the ability to search mass 

spectral libraries make metabolite identification less arduous and much quicker (Scalbert et al., 

2009, Dettmer et al., 2007).  The use of GC-TOFMS opposed to more traditional GC-MS 

increases mass accuracy and therefore confidence in metabolite identification and has been 

used to good effect in a number of metabolomic analyses (Liu et al., 2010, Ma et al., 2011).  

A number of recent advancements have significantly improved GC-MS analysis for 

metabolomics including 2 dimensional GC separation and linkage to high resolution TOFMS 

platforms. In 2D GC separation, metabolites eluted from one column are trapped and released 

via thermal modulation onto a second, typically more polar, column. This has a combined 

effect of increased chromatographic separation, peak capacity and improved signal to noise 

ratios (Hagan et al., 2007).  

For some studies, several features of GC-MS can make it preferential to NMR and 

DIMS analysis as the separation using the GC increases sensitivity and resolution of the 

platform allowing for a broad range of metabolites to be analysed (Scalbert et al., 2009). 

However, whilst GC separation is suitable for a wide range of compounds it is limited to those 

that are volatile or can be made volatile by derivatization (Ramautar et al., 2009, Kaddurah-

Daouk et al., 2008, Dettmer et al., 2007) and to thermo stable compounds due to the high 

temperatures utilised during chromatographic separation (Ramautar et al., 2009). These 

properties limit the analysis to a smaller selection of the metabolome than some of the other 

techniques available. 

1.3.2.2 Liquid Chromatography-Mass Spectrometry 

In recent years LC-MS has risen to the forefront of metabolomics analysis, capable of 

separating a dynamic range of metabolites and linked to high resolution mass spectrometers 

(HRMS) (Dettmer et al., 2007, Gika et al., 2014, Moco et al., 2007). LC-MS offers many 

advantages over NMR, and DIMS including its increased sensitivity, separation and resolution 

(Dettmer et al., 2007). In comparison with GC-MS, separation and detection are independent 

of sample volatility meaning sample derivatization is rarely required, although LC-MS typically 

struggles with non ionizable compounds such as hydrocarbons (Werner et al., 2008). Liquid 
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chromatographic separation of the metabolome allows distinctions between polar, mid polar 

and nonpolar metabolites to be made and reduces ion suppression within an ESI source. 

Metabolomic analysis utilizing LC systems initially utilised high performance liquid 

chromatography (HPLC) platforms (Issaq et al., 2008a, Wilson et al., 2005). These provide 

separation of a wide range of metabolites, HPLC however is limited by factors including: long 

run times, limited back pressure (2000-4000psi) and particle sizes greater than 2µm (Swartz, 

2005, Churchwell et al., 2005). All of these factors impact upon the resolution and peak 

capacity of the chromatographic separation meaning that metabolites are more likely to co-

elute and ion-suppress each other (Gika et al., 2014). To counter this, new column technology 

has been developed using columns with a sub 2µm particle size and reduced internal column 

diameters, and the combined effect of these leads to high back pressures of around 8000-

12000psi (Issaq et al., 2008a). This results in increased resolution, peak capacity and reduced 

run times (Wilson et al., 2005, Ryan et al., 2011, Swartz, 2005, Nguyen et al., 2006). The 

incorporation of these columns and pumps capable of handling the high back pressures led to 

the development of UHPLC platforms (Sterz et al., 2012, Wilson et al., 2005, Swartz, 2005, 

Churchwell et al., 2005).  

To achieve adequate separation and retention of the urinary metabolome several 

column chemistries need to be considered as no single column chemistry is capable of 

encompassing the entire urinary metabolome (Zhang et al., 2012b, Spagou et al., 2011, Gika et 

al., 2008a). As such, the column chemistry that allows for the detection of the greatest number 

of metabolites or a combination of methods to give the broadest range of urinary metabolites 

is required (Theodoridis et al., 2008).  To date reverse phase (RP) column chemistries dominate 

metabolomic analysis (Issaq et al., 2008a, Idborg et al., 2005, Gika et al., 2014) with hydrophilic 

interaction liquid chromatography (HILIC) being reserved for more directed metabolomics of 

polar compounds (Gika et al., 2014).  

The stationary phase of RP columns is non polar, typically utilising trifunctionally-

bonded C18 alkyl chains bound to a silica or hybrid hydrocarbon-silica particle (Neue et al., 

2006). In RPLC the polarity of the mobile phase decreases over the LC gradient (Issaq et al., 

2008a). This enables analytes to separate based upon hydrophobicity as well as interaction 

with any free silanol groups on the column phase. Due to the non polar nature of the 

stationary phase, polar analytes are poorly retained and elute in the solvent front, these 

metabolites include amino acids, nucleotides and small organic acids to name a few (Gika et 

al., 2008a, Zhang et al., 2012b, Cubbon et al., 2007). These polar metabolites are then followed 
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by less polar metabolites such as conjugated pharmaceuticals and steroids, then none polar 

compounds such as unconjugated steroids, phospholipids and fatty acids. 

In order to counter the problems arising from lack of retention of highly polar ionic  

analytes on RPLC, HILIC stationary phases have been used (Cubbon et al., 2007, Gika et al., 

2008a, Spagou et al., 2011). The mechanism by which HILIC  separates these compounds is the 

opposite of the more conventional reversed phase chromatography and is sometimes 

incorrectly referred to as normal phase chromatography (Yoshida, 2004).  While there are 

other well established methods for separation of polar compounds such as ion exchange 

chromatography (IEC), the mobile phases used for HILIC analysis are more compatible with 

electrospray ionization mass spectrometry (ESI-MS) (Boersema et al., 2008). Under HILIC 

conditions the unbound stationary phase particle is polar and the mobile phase increases in 

polarity over the course of the LC gradient (Issaq et al., 2008a). This allows the polar 

compounds to elute with the increasing polarity of the mobile phase, while non polar 

compounds typically elute early on in the run. The theory behind the separation in HILIC 

columns is still debated, however there are two commonly agreed upon methods which are 

thought to complement each other. It has been observed that there is a layer of immobile 

water coating the stationary phase of the HILIC column (Hemstrom and Irgum, 2006), this 

leads to the theory that liquid-liquid extraction of compounds occurs between this water layer 

and the more hydrophobic mobile phase. The second theory is that hydrogen bonding 

between compounds and the water layer allows for this separation. The reality is that it is 

likely a combination of the two theories that explain the mechanism behind HILIC retention 

(Chauve et al., 2010, Novakova and Vlckova, 2009).  

For the analysis of urine a number of studies have been carried out to compare the 

chromatographic properties of both RPLC and HILIC in metabolomic analysis (Cubbon et al., 

2007, Gika et al., 2008a, Spagou et al., 2011, Zhang et al., 2012b). Gika et al., (2008a) and 

Zhang et al., (2012b) demonstrated using principal component analysis (PCA) that there are 

qualitative differences in metabolome coverage between RP and HILIC analysis. While HILIC 

analysis has been shown to improve retention and subsequent detection of polar metabolites, 

the non-polar metabolites suffer from lack of retention and reduced sensitivity. As such, 

reversed phase and HILIC columns are considered complementary and together provide 

greater metabolome coverage than either on its own (Want et al., 2010, Cubbon et al., 2007, 

Spagou et al., 2011).  
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1.3.2.2.1 nanoflow LC-nanospray ESI-TOFMS 

The latest developments LC-MS have led to the miniaturisation of conventional LC-MS 

and the development of nanoLC-nanoESI-MS (nLC-nESI-MS). As the name suggests flow rates 

here are on the nL/min scale and has been defined as LC platforms that deliver flow rates of 

10-1000 nL/min with ESI emitters of between 10 and 150 µm (Chervet et al., 1996). These 

nano scale platforms result in a significant improvement in terms of sensitivity and offer great 

potential to metabolomic researchers looking to encompass as larger a proportion of the 

metabolome as possible. In addition, the very small injection volumes used allow analysis of 

precious and limited samples such as tissue biopsies (Jones et al., 2014a). The nano flow rates 

mean much lower volumes of solvents are required, up to 1000 times less than conventional 

LC (Hernandez-Borges et al., 2007), thus reducing the cost of analysis in addition to reducing 

the environmental impact of metabolomic analysis (Hernandez-Borges et al., 2007). For the 

past several years there has been a call for nLC-nESI-TOFMS to be implemented in 

metabolomics as a method of increasing metabolome coverage particularly of low abundance 

metabolites (Griffiths et al., 2007, Gika et al., 2014, Pendyala et al., 2007, Want et al., 2006, 

Want et al., 2005, Want et al., 2007, Ek et al., 2010). However, very few studies have followed 

up on this. Conversely in the sister -omics field of proteomics, nLC-nESI-MS has risen to the 

forefront of protein analyses (Fischer et al., 2013). 

The source of the increased sensitivity of nLC-nESI-MS platforms is two-fold compared 

to conventional platforms. The initial increase in sensitivity in systems utilizing 

chromatography comes from the increased chromatographic separation, thus reducing co-

elution of compounds and subsequent ion suppression (Schmidt et al., 2003). In addition, due 

to the much smaller flow rate the amount of chromatographic dilution is significantly 

decreased thus allowing metabolites to elute at a greater concentration, leading to improved 

peak intensity (Gama et al., 2013, Fanali et al., 2007). However the main source of the 

increased sensitivity is in the formation of the nano spray ESI. As a result of the low flow rate 

from the nanoflow LC system, the ionization efficiency of ESI is significantly improved. Using 

nanoESI emitters with and internal diameter (id)of 10-150 µm, the spherical droplets formed in 

the ESI plume are 100-1000 fold smaller than the typical 1-2 µm diameter droplets of a 

conventional ESI emitter (Wilm and Mann, 1996).  The process of ESI is an evaporative one, 

due to the significantly smaller plume droplets the volume of emitted droplets is significantly 

decreased relative to conventional ESI. This significantly increases the rate of desolvation of 

said droplets,  and due to this ions are partitioned into the gas phase at a much greater rate 

and thus more enter the mass analyser (Marginean et al., 2008, Marginean et al., 2014, Gangl 
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et al., 2001, Karas et al., 2000). The relationship between initial droplet volume and efficiency 

has been extensively described elsewhere (Juraschek et al., 1999, Wickremsinhe et al., 2006). 

The result of this increased ionization efficiency means that up to 500 times more ions become 

ionized in a nESI source relative to conventional ESI (Wilm and Mann, 1996).   

Each of the 3 major analytical platforms, NMR, LC-MS and GC-MS, used for 

metabolomic research has its advantages and disadvantages, and it is generally accepted they 

complement each other (Wilson et al., 2005) . The use of LC-with high resolution ESI-MS is 

widely utilised in the field of metabolomics however much remains to be done to improve 

current metabolomic analysis, particularly in the case of low abundance urine metabolites.  

1.3.3 Current analytical limitations in urinary metabolomics 

There are significant challenges to overcome to achieve a sensitive and reliable urine 

metabolomics methodology. These include the detection of low abundance metabolites 

(German et al., 2005, Dettmer et al., 2007), such as eicosanoids and estrogens which are 

important signalling molecules in the body and associated with several disease states when 

deregulated. To date these concerns have been muted in favour of speed of analysis, with the 

aim of being able to run more samples in any given time therefore allowing more metabolomic 

studies to be done (Gika et al., 2014). This however has a drawback in that only the most 

abundant metabolites present are analysed, potentially leaving low abundance metabolite 

variation to go undetected, and thus reducing coverage of a potentially important part of the 

urinary metabolome. 

1.4 Analysis of analytical datasets in metabolomics studies 

 The -omic sciences typically generates vast data sets with a large number of variables 

present within samples and the different sample groups.  Multivariate analysis (MVA) is used 

to assess similarities and/or differences between metabolic profiles of different groups and 

indicate which metabolites are driving the discrimination (Issaq et al., 2009). Multivariate 

analysis allows a visual representation of the data, to quickly assess the relationships between 

sample groups. In addition, it allows outliers to be identified quickly and is routinely used as a 

way of ensuring quality control of the acquired data set. Data analysis and metabolite 

identification account for the final steps of a global metabolomic work flow (Figure 1.2). 
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Figure 1.2: Typical work flow of a LC-MS based metabolomic study 

1.4.1 Pre-processing of data sets 

Prior to multivariate analysis, MS data sets require a pre-processing step known as 

binning which provides retention time (Rt), m/z and ion intensity in a process known as peak 

picking and chromatogram deconvolution.  The retention time and m/z are typically combined 

as the primary identity of the variable, while the ion intensity is the measure of ion 

concentration. This pre-processing reduces the complexity of the data from tens or hundreds 

of thousands of ions to a few thousand per batch; each m/z x Rt is picked using criteria 

selected by the user. These criteria include the amount of noise reduction, number of counts 

required to be classed as a peak, the retention time window and the mass window (Liland, 

2011). These data are subsequently organised to give each metabolite and its normalised 

intensity (termed the variables) in columns and individual samples in rows (termed the 

Sample collection and storage 
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LC-MS analysis 

Chromatogram deconvolution and peak picking 
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OPLS-DA analysis highlighting discriminating metabolites 

Identification of discriminating metabolites 
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observations) (Wang et al., 2012b).  Due to the large dynamic range of the metabolome each 

metabolite may be present at concentrations orders of magnitude different from each other. 

This means that abundant metabolites with high variance will skew the analysis of low 

abundance metabolites. To counter this, metabolomic data sets are typically transformed, 

centred and scaled (Liland, 2011, Eriksson et al., 2006). The use of centering centres all 

variance on zero as opposed to the mean intensity. Thus high and low abundance metabolites 

are treated equally with the intensity variation being the focus of the statistical analysis (van 

den Berg et al., 2006). The most common form of scaling is a log transformation which, in 

addition to reducing the impact of very high abundance compounds, typically results in skewed 

data becoming more normally distributed (Liland, 2011, van den Berg et al., 2006). However by 

reducing the impact of high abundance compounds, the baseline noise level is increased 

making the efficiency of peak picking process critical (Liland, 2011). In metabolomic data sets, 

scaling is also used to reduce the effect of varying fold changes between different metabolites. 

This is achieved by dividing the variable by a scaling factor and this results in an increased 

impact of variables with small variation, which typically would go unnoticed as a result of a few 

metabolites with a large degree of variation between sample groups. For metabolomic analysis 

pareto scaling is typically used whereby the mean is subtracted and the square root of the 

standard deviation is used as the scaling factor, and this reduces large fold changes more than 

small fold changes. This means large fold changes are less dominant in the statistical analysis 

(van den Berg et al., 2006, Eriksson et al., 2006, Gika et al., 2008b). 

1.4.2 Unsupervised principal component analysis 

Typically the first statistical analysis performed is a principal component analysis (PCA); 

this is an unsupervised approach. The PCA offers an insight into how the observations are 

related to one another (Eriksson et al., 2006, Liland, 2011).   

 A PCA is constructed in K-dimensional space whereby there are as many dimensions 

as there are variables, with each variable being a 1 co-ordinate axis. Following this each 

observation is plotted in K-dimensional variable space leading to a “swarm” of points. This 

subsequently allows for the calculation of the first principal component which is a straight line 

passing through the average point in K-dimensional space, as such it represents the maximal 

variation in the direction of the data.  A further component, the second principal component, 

is added again passing through the average point orthogonal to the first component and 

accounting for much of the residual variation. The combination of the first and second 

component represents a hyperplane in K-dimensional space, the lowest dimensional 

representation of the multivariate data. The co-ordinate value for each observation is known 
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as “score”, which lends its name to the visualisation of the 1st and 2nd component; the scores 

plot.  The scores plot allows for the observation of variable grouping/clustering (Figure 1.3), 

and to further explore this grouping a loading plot can be constructed which visualises the 

influence the loading variable has on the scores plot (Eriksson et al., 2006). There are usually 

many more than two components that can be fitted to the data set and these should be 

investigated but often are a result of noise and do not offer reliable explanations of variability 

within a dataset (Liland, 2011). 

 

Figure 1.3: A typical PCA scores plot used to understand how sample groups relate to one 

another  
PCA scores plot of male (squares) and female (triangles) rats on high (solid fill) and low (open) dose drug regimes. 
Scores plot indicates significant urinary metabolomic differences between the four samples groups. Figures in 
brackets indicate the amount of variation explained by the model for each component. Adapted from 
(Normalisation strategies for metabonomic analysis of urine samples, 2009) (Warrack et al., 2009) 

1.4.3 Supervised partial least square discriminant analysis (PLS-DA) and orthogonal partial 

least square discriminant analysis (OPLS-DA) 

PCA analysis determines the directionality of the major sources variation in the 

dataset. However, this may be unrelated to the maximum variation between samples groups. 

Supervised analysis using PLS-DA uses knowledge of sample groups to maximise covariance 

explained by latent variables associated with sample group (Eriksson et al., 2006, Liland, 2011). 

This, for example, would maximise separation between different dose groups or disease 

progression, however the first latent variable may not explain the greatest source of variation 

between dose or disease progression groups (Wiklund et al., 2008).  To counter this, pair wise 

OPLSA-DA rotates the dataset to ensure the maximal variation between groups now lie on the 

1st predictive component, and any variation not correlated to groups are found in orthogonal 

components (Wiklund et al., 2008). OPLS-DA can be visualised by constructing an S-scatter 

plot, and this visualises the influences individual variables have on the model. S-plots combine 
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both the covariance and the correlation of each variable on the model, that is to say the 

magnitude and reliability of the effect (Wiklund et al., 2008, Westerhuis et al., 2010). The use 

of S-plot allows individual metabolites driving separation between groups to be highlighted for 

identification and quantification (Figure 1.4). These are highlighted due to their high 

covariance and high correlation, however, those with a high correlation and low covariance 

may still be of interest though should be thoroughly examined to ensure these are not 

artefacts due to noise and analytical variability (Wiklund et al., 2008).  

 

Figure 1.4: Example of S-plot analysis of a transgenic poplar line relative to wild type poplar  
Different sugars are highlighted as the variables driving separation between the two plant lines. Cov= covariance. 
Corr= correlation. Adapted from (Visualization of GC/TOF-MS-Based Metabolomics Data for Identification of 
Biochemically Interesting Compounds Using OPLS Class Models, 2008) (Wiklund et al., 2008) 

The structure of the discriminating metabolites are identified using an array of 

techniques (Figure 1.5) and initial accurate mass measurements allow for an elemental 

composition to be calculated. These data can then be used to search mass spectral databases 

such as the human metabolome database (HMBD) (Wishart et al., 2013), mycompoundID (Li et 

al., 2013a) and Metlin (Tautenhahn et al., 2012a). Many of these databases contain mass 

fragment patterns which can be compared to the unknown metabolite peak. In addition 

authentic standards can be analysed as a final check to ensure retention times match and also 

for generation of fragmentation pattern should they not be available in databases (Moco et al., 

2007, Dunn et al., 2013). 



41 
 

 

Figure 1.5: Schematic for the identification of unknown metabolites 
Adapted from (Metabolomics technologies and metabolite identification, 2007) (Moco et al., 2007) 
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1.5 Urinary metabolomics methodology 

In studies of human health and disease, the use of non-invasive techniques for 

biomarker discovery and subsequent monitoring in patients are desirable to increase patient 

participation, while providing a plentiful supply of urine sample (Want et al., 2010, Ryan et al., 

2011). Urine is already commonly used in clinical laboratories (Delanghe and Speeckaert, 2014) 

meaning collection of urine for metabolomic analysis is of little extra effort for clinicians. The 

urinary metabolome could potentially be used to investigate metabolic consequence of 

disease for the entire body due to it being a major excretory route of water soluble 

metabolites, meaning metabolites from many biochemical pathways are present in urine after 

their formation around the body (Want et al., 2010). Urine is produced in the kidneys and 

requires three major processes; these are filtration, reabsorption and secretion. As blood 

enters the kidney via the afferent arteriole it is filtered by the glomerulus. Here small 

molecules, ions and water pass through the glomerulus, whereas larger blood components 

such as proteins and cells, which are too large to pass through the glomerulus, leave the 

kidney via the efferent arteriole. The glomerular filtrate passes through the proximal 

convoluted tubule where selective reabsorption process occurs. In this region of the kidney 

most of the water is reabsorbed via osmosis. In addition, most mineral salts, glucose, amino 

acids and other metabolites are reabsorbed either by diffusion or active transport into the 

capillaries surrounding the kidney. Further reabsorption of water occurs as the filtrate passes 

through the loop of Henle, prior to passing into the distal convoluted tubule. A similar 

reabsorption procedure occurs here as described in the proximal convoluted tubule only the 

level of water, ions and metabolites reabsorbed is greatly reduced as most of the vital 

components have already been reabsorbed. The secretory process occurs in both convoluted 

tubules, it is by this route that waste products such as creatinine, xenobiotics, urea, hydrogen 

ions and bile acids eliminated into the urine. These molecules pass from the blood across the 

tubule membrane, primarily via active transport, into the glomerular filtrate.  The remaining 

filtrate which now contains the bodies excess water, mineral salts, metabolites and waste 

products passes into the collecting duct. This is subsequently stored in the bladder as urine 

prior to elimination (Pocock and Richards, 2006). The more lipophilic metabolites such as lipids 

and phospholipids are excreted mainly via the faeces. In addition to the endogenously derived 

metabolome, xenobiotics consumed in day to day life such as dietary compounds, 

pharmaceuticals and environmental pollutants are also detected in urine. The presence of 

both endogenous and exogenous metabolites means that urine metabolomics may be 

implemented for disease biomarker discovery (Ganti et al., 2012a, Ganti et al., 2012b, Cheng et 

al., 2012, Ganti and Weiss, 2011, Danielsson et al., 2011, Kim et al., 2011), drug discovery and 
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characterisation (Satheeshkumar et al., 2012, Kaddurah-Daouk et al., 2008, Lindon et al., 

2007), determination of nutritional status (Xie et al., 2013, Goodacre, 2007, Andersen et al., 

2013, Llorach et al., 2012, O'Sullivan et al., 2011, Kussmann et al., 2006) and effects of 

environmental toxicants (Miller, 2007, Morrens et al., 2012). To date over 3000 metabolites 

have been characterised in human urine, and this is considered the minimum number of 

metabolites present, as many low abundance metabolites may yet be discovered (Bouatra et 

al., 2013). Of these 3000, at least 2000 are thought to be exogenous in origin from the diet, 

pharmaceutical intake or through environmental exposures (Bouatra et al., 2013). Given that 

the food metabolome encompasses >25,000 metabolites, it suggests that 3000 urinary 

metabolites is a very conservative estimate (Scalbert et al., 2014).  

1.5.1 Storage and stability of urine samples 

Analysis of urine rarely occurs immediately following collection due to the large 

number of samples collected or the time required to prepare them for analysis. This means 

that suitable sample storage is required to ensure sample degradation does not confound 

metabolomic analysis (Gika et al., 2008b, Alvarez-Sanchez et al., 2010a).  Several studies have 

been performed to quantify the effect of different sample storage solutions (Gika et al., 2008b, 

Pasikanti et al., 2008, Saude and Sykes, 2007, Gika et al., 2007). These studies conclude that 

while long term stability is acceptable at -20°C, storage at -80°C is preferred as these studies 

were limited to 6 months and longer term stability is unknown (Saude and Sykes, 2007, Gika et 

al., 2007, Gika et al., 2008b, Want et al., 2010). Storage at room temperature is described by 

Saude et al., as inadequate for metabolomic analysis, with significant variation seen in the 

stability of a number of metabolites associated with glycolysis (Saude and Sykes, 2007). 

Analytical run time for metabolomics analysis can be from several hours to several days during 

which urine samples should be kept in a refrigerated autosampler at 4°C. Under these 

conditions urine samples deteriorate but at a slower rate than at higher temperatures (Saude 

et al., 2007). Studies indicate that it takes up to 48 hours at 4°C before significant alterations in 

the urinary metabolome can be resolved using PCA analysis and so it is recommended that 

samples be stored for no longer than 48 hours at this temperature (Gika et al., 2008b, Gika et 

al., 2007). In addition, it is clear that a number of freeze thaw cycles are involved with 

metabolomics analysis; samples are usually frozen upon collection, defrosted for sample 

preparation, refrozen before analysis and again defrosted when the time for analysis arrives. 

The impact of such freeze thaw cycles was also investigated by Gika et al., (Gika et al., 2008b, 

Gika et al., 2007), and they reported that no appreciable impact on the urinary metabolome 
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was observed following 9 freeze thaw cycles. However, it is prudent to limit the number of 

freeze thaw cycles to as few as reasonable possible (Scalbert et al., 2009). 

A further complication is bacterial contamination and metabolism of urinary 

metabolites. While the urine itself is sterile in a healthy individual, bacterial contamination is 

introduced from the urethra during urination. It has been shown that freezing samples at -80°C 

is enough to stop the action of bacterial degradation (Scalbert et al., 2009). The effects of 

sodium azide as a bacteriostatic compound for use in urine metabolomics has been 

investigated to help reduce metabolic variation (Snyder and Lichstein, 1940). The use of other 

bacteriostatic/bactericidal compounds such as sodium fluoride also shows promise (Scalbert et 

al., 2009).  

1.5.2 Sample preparation 

Sample preparation for urinary metabolomics is an underappreciated aspect of the 

experimental work yet plays a vital role in the quality, reliability and coverage of the 

metabolomic data set (Alvarez-Sanchez et al., 2010a, Gika et al., 2014, Theodoridis et al., 

2012).  Depending upon the aim and scope of the metabolomic study, different sample 

preparation methods can be implemented. In targeted approaches very selective sample 

preparation can be utilized to increase the sensitivity of the analysis to selected compounds 

(Alvarez-Sanchez et al., 2010b, Fernández-Peralbo and Luque de Castro, 2012). However, in 

global urine metabolomics a non selective sample preparation is required and currently is 

limited to centrifugation to remove solid material or dilution followed by centrifugation (Want 

et al., 2010, Gika et al., 2014). Neat and diluted urine preparations both have merit for 

metabolomic analysis; neat is unmodified and therefore contains the whole metabolome. 

However, when neat urine is analysed by UHPLC-ESI-TOFMS, the sensitivity can be adversely 

affected due to co-elution of peaks and subsequent ion suppression, the high salt content also 

aids the formation of adducts within the ESI source in addition to fouling the LC column and 

the ESI source (Waybright et al., 2006, Alvarez-Sanchez et al., 2010b). By diluting urine samples 

prior to analysis it is possible to reduce this ion-suppression and potentially uncover some 

lower abundance metabolites which were previously hidden by a high abundance co-eluting 

metabolite or urinary salts. However, there is also the possibility that low abundance peaks are 

diluted to below the level of detection of the mass spectrometer. Indeed, this has been 

observed to be the case in human urine metabolomics analysis (Issaq et al., 2008b, Waybright 

et al., 2006) but conversely for rodent urine which is proteinatious in nature  dilution has been 

observed to improve sensitivity (Waybright et al., 2006). 
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Although not yet explored for non targeted urine metabolomic analysis, solid phase 

extraction (SPE) has potential to improve upon current sample preparation methodologies.  

Currently SPE is reserved for either targeted approaches or as a basic sample clean up 

(Fernández-Peralbo and Luque de Castro, 2012). The use of SPE would greatly improve the 

removal of both ion suppressing salts and proteins, in addition to providing the opportunity to 

concentrate urine samples prior to analysis (Alvarez-Sanchez et al., 2010b, Fernández-Peralbo 

and Luque de Castro, 2012). This would enhance detection of low abundance metabolites 

which would not normally be detected using a neat or diluted sample, in addition to increasing 

column lifespan and reducing the fouling of the MS source (Fernández-Peralbo and Luque de 

Castro, 2012).  

1.5.3 Urine metabolome analysis reliability and quality control 

Metabolomic analysis requires a stable analytical platform to enable reliable results to 

be generated without the introduction of bias introduced by the LC-MS system. During an 

analytical run, bias can be introduced due to source fouling causing a drop in sensitivity, 

meaning as analysis progresses analytical sensitivity decreases. In addition, changes in column 

performance throughout metabolomic analysis may cause retention time drift which 

confounds the peak picking process. This can be reduced by careful sample clean up to remove 

salts and proteins and by analysing samples in a randomised order to spread the effect of any 

sensitivity loss across all samples groups (Benton et al., 2012). 

The final stage of any analytical method development prior to metabolomic analysis is 

the assessment of analytical reproducibility. This needs to be tested within day, to ensure 

analysis remains reliable during batch analysis over the course of a day, and between day 

reproducibility to ensure the same results can be obtained on different days (Gika et al., 2007). 

For large scale, multisite metabolomic analysis it also becomes important to assess the intra-

laboratory reproducibility to ensure all laboratories are providing the same analytical output 

(Benton et al., 2012).  

There are several methods for assessing method reproducibility currently in use; these 

include single metabolite/standard or whole metabolome variation using quality controls. In 

addition, the use of quality control samples during a metabolomic batch analysis is widely 

adopted to assess within batch reproducibility. 

A number of studies implement single or multiple internal standards or metabolites to 

assess retention time and signal intensity reproducibility. This is achieved by spiking urine 

samples with known standards and analysing them as analytical replicates. The mean retention 
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times and signal intensities are calculated and reported as a % coefficient of variation (%CV) 

(Benton et al., 2012).  Reproducibility for single ion intensities is generally seen as acceptable 

when %CV for mean peak area in analytical replicates fall below 20% (Benton et al., 2012, 

Spagou et al., 2011), whereas for retention time a %CV of less than 2% is desirable 

(Theodoridis et al., 2012). 

Another more commonly used measure of reproducibility is to calculate mean peak 

areas and %CV for all peaks present in a set of quality control (QC) replicates (Spagou et al., 

2011, Want et al., 2010, Gika et al., 2007). These QCs are typically an aliquot from all samples 

combined to produce a pooled sample. The QC is then  injected at the beginning and end of a 

batch and at random intervals during the analysis of the batch (Theodoridis et al., 2008). In 

these cases, only peaks present in 80% of the QCs “the 80% rule” are utilised, and of these 70% 

ideally should have a %CV for mean peak area of <30% (Gika et al., 2007, Want et al., 2010). In 

addition, PCA analysis of the clustering of QC samples on a scores plot also enables a quick 

visual representation of analytical variability associated with just analytical variance opposed 

to biological and sample preparation variation. 

A further technique to reduce analytical variability in samples batches run is to allow 

the ESI source to condition before the analysis of samples. Typically this is done starting each 

batch with several QC injections, the first few of which will group away from the main QC 

group on a PCA scores plot but slowly track towards the group over the space of several  

injections (Want et al., 2010, Gika et al., 2007). 

1.5.4 Normalisation 

In contrast to other bodily fluids the volume of urine present in each void is not 

physiologically controlled and instead it is dependent upon the individual’s hydration status i.e. 

water consumption (Warrack et al., 2009, Chen et al., 2013b, Veselkov et al., 2011a). The urine 

volume is known to vary by up to 15 fold in a healthy individual and this subsequently leads to 

substantial variation in metabolite concentration (Chen et al., 2013b, Veselkov et al., 2011a). 

Normalisation is a technique to reduce this biological variation and return representative 

values for metabolite concentration independent of urine volume (Veselkov et al., 2011a, Chen 

et al., 2013b, Warrack et al., 2009, Heavner et al., 2006). At present there is no agreed 

accepted method to normalise for urine concentration and a number of techniques exist but 

all have their advantages and their drawbacks. The most commonly cited methods in the 

literature are to normalise to the creatinine concentration, the osmolality, the total mass 

spectrum signal or total usable mass spectrum signal. 
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1.5.4.1 Creatinine normalisation 

The use of creatinine as a normalisation factor has been widely used as a 

normalisation method for either targeted or metabolomic analyses of urine. Creatinine is an 

easily measured either enzymatically or though the colorimetric Jaffe reaction. Creatinine is 

present in human urine produced from the breakdown of creatine phosphate in muscle tissue 

(Warrack et al., 2009, Heavner et al., 2006). It does however make the assumption that 

creatinine excretion is homogenous both between individuals and between samples from a 

single individual. This however is not the case and a combination of factors such as gender, 

diet, and physical activity can result in up to a 5 fold variation in creatinine concentration,  

(Warrack et al., 2009). In addition the health of the individual also plays a role in the urinary 

creatinine concentration (Warrack et al., 2009, Heavner et al., 2006), with increased creatinine 

being used as a hallmark of kidney damage (Levey et al., 2003). Due to its common use in 

metabolomics and clinical laboratories to determine the concentration of urine, urinary 

metabolite concentrations are typically presented relative to the molar concentration of 

urinary creatinine. An example of this is hippuric acid, a common urinary metabolite, has been 

reported to be present at 298.5±276.8 µM of hippuric acid per mM of creatinine (298.5±276.8 

µM/mM creatinine) (Bouatra et al., 2013). 

1.5.4.2 Osmolality normalisation 

This method is widely adopted in urine metabolomics studies as it is a direct measure 

of total dissolved solids in urine and is not subject to temperature and pressure changes 

(Warrack et al., 2009, Boudonck et al., 2009). Measurements are taken by observing the 

freezing point depression of samples relative to pure water. Osmolality normalisation has been 

shown to significantly reduce biological replicate variation in a study investigating metabolic 

responses to high and low doses of a phospholipidotic drug in male and female rats (Warrack 

et al., 2009). 

1.5.4.3 Mass spectral signal normalisation 

Unlike creatinine and osmolality this technique requires no additional measurements 

to be carried out and is achieve purely post data acquisition. Two methods exist for this 

normalisation, the first is mass spectrometer total signal (MSTS) and mass spectrometer total 

useful signal (MSTUS). The first MSTS normalises all mass spectral peak intensities to the sum 

peak intensity for the entire chromatogram, effectively giving all chromatograms a uniform 

sum peak intensity (Ganti and Weiss, 2011). This is becoming increasingly popular along with 

osmolality as a form of normalisation of urine sample data sets (Ganti and Weiss, 2011).  



48 
 

MSTUS on the other hand normalises to the sum peak intensity of peaks that are 

present in all samples in the batch. Following this normalisation technique, the sum intensity 

of these common peaks is the same for each chromatogram as opposed to the total peak 

intensities being equal (Warrack et al., 2009, Mattarucchi and Guillou, 2012).  This eliminates 

the introduction of any bias due to large peaks associated with uncommon peaks such as those 

attribute to pharmaceuticals, diet and other xenobiotics (Mattarucchi and Guillou, 2012). 

1.5.5 Importance of use of urine metabolomics studies in disease to date 

The use of urine characteristics to diagnose or monitor a patient’s health is not new, as 

both Hippocrates and Galen noted the potential of urine as a diagnostic biofluid. Indeed for 

over 6000 years, the colour, smell and taste of urine has been used to diagnose disease such as 

diabetes (Ryan et al., 2011). The use of urine metabolomics in the past 10 years has been used 

to detect metabolite profiles associated with disease (Gika et al., 2014, Mamas et al., 2011) 

and exposure to dietary compounds (Llorach et al., 2012, Wishart, 2008, Xie et al., 2013), 

pharmaceuticals (Lindon et al., 2007, Shockcor and Holmes, 2002) and environmental 

exposure (Johnson et al., 2012b, Rappaport, 2011). In addition to human health, urine from 

experimental animals are often analysed to determine health effects that can be used to infer 

human health outcomes. These experimental animals include disease models, or form part of 

exposure studies to pharmaceuticals or environmental contaminants where human studies are 

not practical. 

1.5.5.1 Clinical studies utilising urine metabolomics 

 The use of metabolomic profiling of control and diseased patients offers and exciting 

prospect for further understanding metabolic responses to disease or biomarker discovery for; 

early diagnosis, assessing treatments, and finding potential targets for new drug therapies. 

Urine metabolomics has been for the most part implemented in research for cancers of the; 

kidney (Ganti and Weiss, 2011, Ganti et al., 2012a, Ganti et al., 2012b), bladder (Issaq et al., 

2008b, Pasikanti et al., 2013, Huang et al., 2013), breast (Serkova et al., 2007, Slupsky et al., 

2010), bowel (Dawiskiba et al., 2014), lung (Yang et al., 2010, Carrola et al., 2011), liver (Wu et 

al., 2009), prostate (Sreekumar et al., 2009), adrenal gland (Arlt et al., 2011) and several 

others. In several of these studies metabolite identification was not carried out as these were 

small pilot studies to demonstrate metabolomics can differentiate between cancer and control 

patients (Kind et al., 2007, Kim et al., 2011, Issaq et al., 2008b). Where metabolites were 

identified they highlighted the same metabolic pathways in all cancer types. The affected 

pathways were amino acid metabolism in particular tryptophan, Krebs cycle metabolites and 

lipid metabolism (Ganti and Weiss, 2011, Issaq et al., 2008b, Slupsky et al., 2010, Peng et al., 
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2014). This is suggestive of changes in energy metabolism within the tumour which utilises 

glycolysis as an energy source thus depleting sources of Krebs cycle metabolites elsewhere in 

the body (Slupsky et al., 2010). However, none of these studies have lead to a unique 

biomarker or set of biomarkers unique to one particular cancer. The same lack of specificity 

while achieving metabolomic differentiation from controls is also observed in a number 

metabolomic studies including neurodegenerative diseases (Gebregiworgis et al., 2013, 

Michell et al., 2008), depression (Zheng et al., 2013), diabetes (Zhao et al., 2010, Connor et al., 

2010), cardiovascular disease (Zhang et al., 2009), hepatitis (Wang et al., 2012b), inflammatory 

diseases (Dawiskiba et al., 2014, Lin et al., 2009), and obesity (Wang et al., 2011). 

Metabolomics research in pharmaceutical development play roles in understanding 

the mechanism of action, progression of treatment and effect of toxicity (Shockcor and 

Holmes, 2002). Urine metabolomics is of particular interest in drug toxicity and overdose 

analysis. It has been demonstrated that different drugs have different metabolic effects in 

their target toxicity organs, for example acetaminophen, methotrexate and carbon 

tetrachloride all affect the liver in different ways. A metabolomic approach to hepatotoxicity in 

mice found each of these drugs induces its own metabolic changes giving each one a unique 

set of biomarkers. In each case, changes in urinary metabolite profiles preceded the increase in 

conventional serum aspartate aminotransferase, alanine aminotransferase and blood urea 

nitrogen levels typically used as markers of hepatotoxicity (Kumar et al., 2012). 

Acetaminophen (paracetamol) accounted for 40% of all liver injuries in the United States of 

America in 2005 (Loo et al., 2012). Due to this fact, acetaminophen toxicity has been widely 

investigated. In these studies, metabolomic analyses of urine revealed that antioxidants such 

as trigonelline, ferulic acid and S-adenosyl-L-methionine levels all decreased after 

acetaminophen exposure indicating oxidative damage (Sun et al., 2008). In addition, 

metabolites from the bile acid, energy and amino acid metabolic pathways were found to be 

deregulated following acetaminophen induced hepatotoxicity (Sun et al., 2012). The kidney is 

another major organ to be damaged due to pharmaceutical intake and several studies have 

investigated pharmaceutical induced nephrotoxicity using a urine metabolomics approach.  

The chemotherapeutic agent cisplatin (Portilla et al., 2006, Wen et al., 2011) and antibiotic 

gentamicin (Sun et al., 2012) have both been investigated in rats for nephrotoxicity and a 

range of biochemical pathways were shown to be disrupted including amino acid and 

catecholamine metabolism. These metabolic changes were again detectable before 

conventional serum tests showed signs of nephrotoxicity.  
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1.6 Human immunodeficiency virus (HIV) 

The HIV lentivirus was first isolated in 1983, and is the cause of acquired 

immunodeficiency (AIDS) which had first been described in 1981. Since then over 60 million 

people have become infected and 25 million have died from the infection (Sharp and Hahn, 

2011). HIV typically presented in previously healthy young men who have sex with men, or 

intravenous drug users. Later investigations identified heterosexual activity, blood transfusions 

and childbirth of HIV infected mothers as routes of infection (Levy, 1993).  Prior to its isolation 

and identification, infection with HIV typically presented with emaciation, an onslaught of 

opportunistic infections and rare carcinomas such as Kaposi’s sarcoma (Sharp and Hahn, 2011). 

When these symptoms are present in a patient they are said to have AIDS as a result of high 

levels of virus present in their blood and very low levels of CD4 positive (CD4+) T-lymphocytes 

at concentrations of <200 cells per µL of blood. This rapid loss of CD4+ cells is caused by a 

combination of factors, of which the main three are; the direct killing of infected cells, 

increased rate of apoptosis of infected cells and the increased immunological response of the 

blood CD8 cytotoxic cells that recognise infected cells (Levy, 1993, Pantaleo et al., 1993a). 

1.6.1 HIV pathogenesis 

Following the primary infection with HIV, the virus rapidly replicates and disseminates 

to the lymphoid organs during seroconversion/acute HIV infection. During the body’s cellular 

and humoral response viral replication is inhibited within weeks of primary infection, leading 

to a chronic and persistent infection for a number of years during clinical latency. This 

subsequently leads to an advanced clinical disease with a very high level of mortality 

frequented by opportunistic infections and cancers (Figure 1.6) (Fauci, 1996, Pantaleo et al., 

1993a).  



51 
 

 

Figure 1.6: Typical progression of HIV infection 
Primary infection is followed by rapid replication and dissemination during which viral load peaks while the CD4 
count reaches a nadir. Following the body’s response clinical latency follows for several years during which HIV 
remains as a chronic infection. Following this, advanced clinical HIV develops during which AIDS presents as severe 
opportunistic infections cancer and eventual death. (Adapted from: Host factors and the pathogenesis of HIV-
induced disease) (Pantaleo et al., 1993a) 

 HIV is a positive sense strand RNA retrovirus and the main cellular targets of HIV are 

CD4 membrane antigen positive cells. These are typically the white blood cells; T lymphocytes 

and monocytes, although glial cells, macrophages and dendritic cells are also infected 

(Haseltine, 1991, Greene, 1991). The viral envelope of the HIV virus contains a number of 

proteins including glycoprotein (gp) 120 and gp41 which are viral proteins and also major 

histocompatibility complexes class I and II which are acquired from host cells during viral 

budding. Within the viral capsid reside the two strands of RNA which contains the 9 HIV genes 

and also within the capsid are the enzymes reverse transcriptase, protease and integrase 

which are utilised in the replicative process (Levy, 1993).    

 HIV enters its target cells via interaction of gp120 with the CD4 receptor for which is 

has a very high affinity, this is facilitated by gp41. Following the fusion of the viral envelope 

with the cell membrane the HIV capsid is released into the cell (Gomez and Hope, 2005). The 

viral RNA and enzymes translocate to the nucleus where the reverse transcriptase transcribes 

the RNA into double stranded DNA. Integrase subsequently integrates the HIV DNA into a host 

chromosome as a provirus (Levy, 1993). Once integrated into the host chromosome the virus 

can remain latent for several years leading to clinical latency. Once the provirus becomes 

activated the host RNA polymerase translates the HIV genome and the messenger RNA is 

transported to the cytoplasm where it is transcribed into HIV proteins and enzymes. Once 
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assembled, the viroid translocates to the cell membrane and buds through the cell membrane 

during which the viroid acquires a membrane coating from the host cell on to which viroid 

proteins are then expressed. The budding and release of virus into the extracellular matrix is 

mediated by the viroid protease (Greene, 1991). 

1.6.2 HIV treatments 

HIV is a chronic condition with no cure yet available, however the viral load and AIDs 

related illness can be suppressed with antiretroviral therapy (ART). There are a number of 

classes of antiretrovirals (ARVs) in use each of which acts via a different mechanism and each 

attacks the virus at different points of its replication cycle. Nucleoside reverse transcriptase 

inhibitors (NRTIs) and non nucleoside reverse transcriptase inhibitors (NNRTIs) both inhibit 

viral reverse transcriptase preventing the formation of viral DNA. The former acts by 

competitively binding with the active site of the reverse transcriptase, while the latter is non 

competitive and inhibits the enzyme via allosteric binding elsewhere on the protein 

(Menéndez-Arias, 2002). Protease inhibitors (PI) limit viral replication via the competitive 

inhibition of HIV protease by binding to the active site (Menéndez-Arias, 2002).  Integrase 

inhibitors (IHI) are used to inhibit the integration of HIV DNA into host cell chromosomes. 

These four classes make up the majority of ARVs in use to date. Current guidelines stipulate 

patients should receive a combination of ART (cART) in order to reduce viral load and 

transmission. The current recommendation is that two NRTIs and a ritonavir-boosted protease 

inhibitor or an NNRTI and integrase inhibitor are used (Williams et al., 2014). Since the 

introduction of antiretroviral therapy patients have experienced a longer life span, and overall 

AIDS defining condition mortality has dropped, whilst age related mortality has risen from 

causes such as cardiovascular disease (Sabin, 2013, Marin et al., 2009, Deeks and Phillips, 

2009).  Due to the extended life time of these patients, they are now exposed to ARVs over a 

prolonged period of time. Many patients report metabolic side affects which are associated 

with ART and these symptoms include insulin resistance, lipidystrophy, hyperlipidemia and 

abdominal obesity (Jain et al., 2001). In addition, more serious side effects are associated with 

particular drugs. Tenofovir, an NRTI, is associated with nephrotoxicity and the primary target 

for toxicity is the renal proximal tubules, and in some patients this can lead to Fanconi 

syndrome (Hall et al., 2011a). The mode of action for tenofovir toxicity is thought to be 

abnormalities in the mitochondria of the renal proximal tubules (Kohler et al., 2009, Hall et al., 

2011a). All ART is associated with hepatotoxicity and in particular in patients co-infected with 

hepatitis, leading to liver cirrhosis and transaminase elevation (Rivero et al., 2007). Atazanavir, 

a protease inhibitor, in particular is associated with increased levels of bilirubin due to the 
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inhibition of uridine 5’-disphospho-glucuronosyltransferase (Pineda et al., 2006). As many 

metabolomic studies have been successful in uncovering the pathways associated with toxicity 

of other pharmaceuticals, it is possible that it may also elucidate mechanisms of cART toxicity 

and underlying metabolic changes associated with long term cART exposure (Sitole et al., 

2013).  

1.6.3 HIV infection and metabolism 

The metabolic effect of HIV infection had been observed by indirect calorimetry in HIV 

positive patients who were shown to expend more energy in a resting state due to the greater 

energy demands of infected cells (Hommes et al., 1990, Hommes et al., 1991, Kosmiski, 2011). 

These patients have also been shown to oxidise fatty acids at an increased rate relative to 

controls (Hommes et al., 1991). The effect of resting energy expenditure however returns to 

normal when the viral load is under control due to anti-retroviral treatment (Kosmiski, 2011). 

In addition, the metabolomic activity in the brain has also been observed to be greater in 

asymptomatic HIV positive patients (Pascal et al., 1991). Metabolomic studies have revealed 

that HIV infection can cause malnutrition due to mitochondrial dysfunction, altered lipid 

protein and carbohydrate metabolism and changes in fat distribution (Sitole et al., 2013).  

Despite being one of the most well researched viruses metabolomic analysis of HIV 

infection has remained very limited. To date metabolomic studies of HIV have focussed mainly 

on blood products such as plasma (Cassol et al., 2013) and serum (Williams et al., 2012, 

Philippeos et al., 2009) or saliva (Ghannoum et al., 2013). Several studies have looked at the 

neurological implications of HIV infection by investigating the cerebrospinal fluid (CSF) 

metabolome (Wikoff et al., 2008, Cassol et al., 2014), and a further study investigated 

metabolomic altercations in CD4 expressing cells of the immune system (Hollenbaugh et al., 

2011). In all these studies metabolic deregulation of amino acid, carbohydrate and lipid 

metabolite pathways was observed as a result of the increased metabolic rate of the HIV 

infected cells. A flaw of several of these studies is that it is not clear if the metabolites 

detected were a result of disease progression as both CD4 count and viral loads were not 

reported, or when they were reported the values exhibited a wide range (Sitole et al., 2013).  

These studies suggest that metabolomic studies of HIV in biofluids are capable of 

detecting metabolite variations as a result of HIV infection and cART intervention. 

Metabolomic analysis of urine may discover new markers of HIV infection and/or confirm that 

those markers detected in other biofluids are also present in urine. This would be 

advantageous as not only is urine a non-invasive biofluid, it is also sterile meaning there is no 
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risk of infection for the researcher. Using more sensitive analytical techniques further markers 

associated with HIV infection may be uncovered which may aid in determining progression of 

the disease and the efficacy of pharmaceutical intervention.   

1.7 Aims and objectives 

Urine is a very complex biological fluid, which offers insight to the body’s endogenous 

metabolic pathways and exposure to xenobiotics making it an ideal matrix for metabolomic 

analysis for disease states. However improvements in sensitivity are needed in order to cover 

less abundant components of the metabolome such as signalling compounds important in 

disease processes.  

The aims of this PhD thesis are 4 fold: 

1. The development of new MS methodologies using nanoUHPLC-nanoESI-TOFMS to 

enhance the overall coverage of the urinary metabolome 

2. To improve urine sample preparation methodology prior to MS analysis 

3. The development of new data handling protocols to eliminate unnecessary 

metabolome variation caused by diet, pharmaceutical intake and normalisation biases 

4. To implement these techniques in a HIV cohort metabolomics study to investigate HIV 

pathogenesis and metabolic consequences of cART intervention. 

The work to meet these aims is detailed in the following 5 chapters: 

 Chapter 2 describes preliminary method development and assessment of nUHPLC-

nESI-TOFMS platform for metabolomic analysis and includes a consideration of: 

 Nanoflow column selection 

 Gains in sensitivity relative to conventional techniques using a standard test 

chemical mixture 

 The reliability of the nUHPLC-nESI-TOFMS platform using urine as a sample 

matrix for metabolomics analysis 

The work presented in this chapter has been written up and published as a application note in 

the Journal of Mass Spectrometry (Chetwynd et al., 2014). 

 Chapter 3 demonstrates the improved coverage of the urinary metabolome utilizing 

new sample preparation methodologies and compares nUHPLC-nESI-TOFMS with a 

conventional UHPLC-ESI-TOFMS platform for urinary metabolomics. The work 

comprises: 
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 The development of SPE methodology and a comparison with the use of 

traditional sample preparation techniques for urine. 

 Metabolomic analysis of urine samples extracted by SPE on nUHPLC-nESI-

TOFMS and conventional UHPLC-ESI-TOFMS to assess gains in metabolomic 

coverage using the nano platform. 

This chapter has been published as a research article in Analytical Chemistry (Chetwynd et al., 

2015) 

 Chapter 4 details a study into a comparison of normalisation techniques for processing 

data sets from test urine samples extracted by SPE and analysed by nUHPLC-nESI-

TOFMS and comprises:  

 An assessment of different normalisation techniques employed prior to or 

post nUHPLC-nESI-TOFMS analyses. 

 The use of a mass exclusion list to remove confounding xenobiotics from data 

sets 

 Chapters 5 and 6 comprise case studies from a HIV cohort utilizing methods developed 

in chapters 2-4. 

 Chapter 7 comprises of a general discussion of the thesis work and examines future 

developments needed in development of data acquisition and processing for urinary 

metabolomics. 
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Chapter 2: Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high 

resolution mass spectrometry for profiling the (xeno)metabolome 

 

2.1 ABSTRACT 

Mass spectrometry profiling techniques are used for analysing metabolites and 

xenobiotics in biofluids, however detection of low abundance compounds using conventional 

MS techniques is poor. To counter this, the use of nanoflow ultra-high-pressure liquid 

chromatography-nanoelectrospray ionization-time-of-flight MS (nUHPLC-nESI-TOFMS), which 

has been used primarily for proteomics, was assessed as an innovative prospect for sensitive 

analysis of small molecules. This study revealed that compared to conventional UHPLC-ESI-

TOFMS, nUHPLC-nESI-TOFMS enhanced instrumental detection limits of a variety of 

metabolites and xenobiotics by between 2 and 2000 fold. In addition, this study demonstrates 

for the first time excellent repeatability and reproducibility for analysis of urine samples using 

nUHPLC-nESI-TOFMS, supporting implementation of this platform as a novel approach for 

high-throughput (xeno)metabolomics. 

2.2 Introduction  

Metabolomic analyses consist of profiling of the many endogenous metabolites 

present in biological matrices (i.e., the metabolome), in order for example, to discover 

potential biomarkers of disease or toxicant exposure (Kell, 2006). In addition, xenobiotics and 

their metabolic by-products can also be analysed in the same samples, and these compounds 

are referred to as the xenometabolome (Al-Salhi et al., 2012, Holmes et al., 2007, Nicholson, 

2006). Analysis of the (xeno)metabolome may increase scientific understanding of the impact 

of toxicants, pharmaceuticals and lifestyle factors on human health (Bonvallot et al., 2014, 

Bouhifd et al., 2013). The use of UHPLC-ESI-TOFMS enables the detection of polar to apolar 

(xeno)metabolites at high mass resolution, and has been extensively used for profiling of small 

organic molecules in sample extracts (Gika et al., 2014, Theodoridis et al., 2012). However, 

using this technique, the detection of very low abundance metabolites such as signalling 

compounds or chemical contaminants is limited as they can suffer from poor ionization 

efficiency or ion suppression from co-eluting metabolites (Gika et al., 2014). As a result, more 

efficient separation and ionization techniques are required to undertake profiling of trace level 

metabolites in sample extracts.  

In recent years, new technological advances have paved the way for nano scale 

chemical analysis in the form of nanoflow UHPLC-nanoESI-MS (nUHPLC-nESI-MS) (Wilm and 

Mann, 1996, Berggren et al., 2002, Gangl et al., 2001, Juraschek et al., 1999, Schmidt et al., 

2003). The key advancement of this technique is the improved sensitivity as a result of using 
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lower flow rates and nanospray emitters (Wilm and Mann, 1996). The mechanisms for 

improved sensitivity as a result of nanospray ionization have been detailed in Chapter 1 

Section 1.3.2.2.1. 

To date, nUHPLC-nESI-MS techniques have been used primarily for proteomic analyses 

(Liu et al., 2008, Emmett and Caprioli, 1994, Shevchenko et al., 1996) and have been for the 

most part overlooked for metabolomics applications (Medina et al., 2013b). The increased 

ionization efficiency of nanoscale systems offers significant improvements for small molecule 

analysis and is now starting to be implemented for some non-targeted applications. However, 

many of the nanoflow systems described use traditional LC setups and split the flow prior to 

entry to the MS. Compared with split flow, direct injection into nanoflow LC could enhance 

sensitivity by reducing sample loss, and should result in more reproducible nanoflow rates into 

the source (Gama et al., 2013). Therefore, the use of direct nanoflow coupled with nESI-MS 

could be advantageous to improve the detection of low levels of many biologically important 

signalling compounds during metabolite profiling of extracts of tissue or biofluids. These 

compounds include, for instance, estrogenic steroids which are poorly ionized by ESI, or 

prostanoids present at pg/mL concentrations in blood plasma and urine (Wishart et al., 2013), 

or some pharmaceuticals and other xenobiotics which can often accumulate as low 

concentrations of complex mixtures in biological samples with potential consequences for 

human health (Melzer et al., 2010, Rochester, 2013, Daughton and Ruhoy, 2008).  

To date, no studies are present that investigate the benefits associated with nUHPLC-

nESI-TOFMS for metabolomics. Of particular importance is the repeatability and reproducibility 

of the peak area and retention time, these properties are essential to the peak picking process 

in the analysis of metabolomic data.  

2.2.1 Study aims 

The aim of this study was to evaluate the detection limits, repeatability and 

reproducibility of a direct nUHPLC-nESI-TOFMS method to perform high throughput 

(xeno)metabolomic analyses. To achieve this, the effects of nano column chemistries and 

porosities on chromatographic separation were investigated using a mix of 78 compounds 

including endogenous metabolites and xenobiotics. The detection limits of the nanoflow-

nanospray platform were then compared to conventional UHPLC-ESI-TOFMS. Finally, spiked 

replicate urine samples were analysed to assess the repeatability and reproducibility of the 

nUHPLC-nESI-TOFMS method for (xeno)metabolomic analyses. 
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2.3 Experimental 

2.3.1 Chemicals 

UHPLC grade solvents were purchased from Fisher Scientific (Walkerburn, Scotland, 

UK). Strata X-AW 60 mg/3ml solid phase extraction (SPE) cartridges were purchased from 

Phenomenex (Macclesfield, U.K). Deuterated compounds were used as internal standards (IS); 

17β-estradiol 2,4,16,16-d4 sodium 3-sulfate (E2-d4-S, >99% D atom), carbamazepine (ring-

d10), venlafaxine (N,N-dimethyl-d6), and diclofenac (phenyl-d4) were purchased from 

Cambridge Isotope Laboratories Inc. (MA, USA). Progesterone-2,2,4,6,6,17R,21,21,21-d9 (P-d9, 

98% D atom) was purchased from CDN isotopes (Quebec, Canada) and prostaglandin E2-d4 (9-

oxo-11α,15S-dihydroxy-prosta-5Z,13E-dien-1-oic-3,3,4,4-d4 acid) was purchased from Cayman 

Chemical Company (MI, USA). All other standards and reagent chemicals were purchased from 

Sigma-Aldrich Company Ltd., Dorset, U.K. 

2.3.2 Standard preparation 

 The test mixture was chosen to include neutral, acid and basic compounds with an 

octanol-water partition coefficient (log Kow) range of -2.51 to 6.3. Log Kow values were 

obtained from ChemSpider (http://www.chemspider.com) or using ACD/LABS V12.0 

(Advanced Chemistry Development, Berks, UK). Details of the 78 metabolites and xenobiotics 

(49 detected in positive ESI and 29 in negative ESI) are given in Table 2.1. A stock solution 

(1 mg/ml) of the mixture was prepared in methanol (MeOH), and subsequently diluted to 

obtain a final concentration of 0.2 µg/ml in 50/50 MeOH/water (v/v) which was used for 

column comparison and analytical limit of detection analysis. These compounds were chosen 

as they represent a range of metabolic pathways or xenobiotics typically present at trace levels 

in the urine. The more common high abundance metabolites were not chosen as current urine 

metabolomic methods offer highly reliable and reproducible methods for their analysis. The 

focus of this study is to develop a methodology ideally suited to low abundance metabolites 

typically not detected in current untargeted metabolomic urine methodologies. 
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Table 2.1: Identity of the 78 standards in the standard mixture, and their molecular formula, log Kow, theoretical ion mass and retention time (Rt) 

Compound Formula Kow Theoretical mass Rt Compound Formula Kow Theoretical mass Rt 

Neurotransmitters     NSAID’s     
Epinephrine C9H13NO3 -0.69 M+H 184.0974 3.01 Diclofenac C14H11Cl2NO2 4.02 M-H 294.0089 21.64 
Dopamine  C8H11NO2 0.38 M+H 154.0868 3.34 Ibuprofen C13H18O2 3.97 M-H 205.1229 22.01 
Serotonin  C10H12N2O 0.79 M+H 177.1028 3.38 Naproxen C14H14O3 3.1 M-H 229.0865 16.30 
Melatonin C13H16N2O2 1.65 M+H 233.1290 9.81 Ketoprofen C16H14O3 3 M+H 256.0865 15.41 
5-Hydroxyindoleacetic acid C10H9NO3 1.01 M+H 192.0661 7.31 Mefenamic acid C15H15NO2 5.12 M+H 242.1181 24.43 
Nucleotides     Sulfasalazine C18H14N4O5S 3.81 M-H 397.0607 12.08 
Cytidine  C9H13N3O5 -2.51 M+H 244.0933 3.38 Indomethacin C19H16ClNO4 4.27 M-H 356.0690 21.85 
Cytosine  C4H5N3O -1.48 M+H 112.0511 3.48 Paracetomol C8H9NO2 0.27 M+H 152.0712 3.41 
Amino acids     Lipid lowering agents     
Histidine  C6H9N3O2 -3.32 M+H 156.0773 3.94 Clofibric acid C10H11ClO3 2.84 M-H 213.0318 15.37 
Tryptophan C11H12N2O2 1.22 M+H 205.0977 3.84 Gemfibrozil C15H22O3 4.3 M-H 249.1491 25.07 
Creatinine  C4H7N3O -1.77 M+H 114.0667 3.36 Bezafibrate C19H20ClNO4 4.25 M+H 362.1159 16.90 
Vitamins     Pravastatin C23H36O7 3.1 M-H 423.2383 11.77 
Nicotinic acid  C6H5NO2 0.69 M+H 124.0399 3.95 Simvastatin C25H38O5 4.68 M+H 419.2797 28.06 
Retinoic acid C20H28O2 6.3 M+H 301.2168 20.52 Antiplatelet     
Folic acid C19H19N7O6 -2.81 M+H 442.1475 6.95 Dipyridamole C24H40N8O4 -1.22 M+H 505.3251 10.77 
Steroids     Clopidogrel C16H16ClNO2S 3.82 M+H 322.0669 22.94 
Cortisol C21H30O5 1.62 M+H 363.2171 10.91 Warfarin C19H16O4 2.23 M-H 307.0970 18.47 
Cortisone C21H28O5 1.81 M+H 361.2015 11.12 SSRI and antipsychotics     
Corticosterone C21H30O4 1.99 M+H 347.2222 12.90 Carbamazepine C15H12N2O 2.25 M+H 237.1028 11.92 
11-ketotestosterone C19H26O3 1.92 M+H 303.1960 11.85 Fluoxetine C17H18F3NO 3.93 M+H 310.1419 14.00 
21-Hydroxypregnenolone C21H32O3 3.75 M+H 333.2430 16.82 Paroxetine C19H20FNO3 3.7 M+H 330.1505 12.26 
17α-Hydroxyprogesterone C21H30O3 3.08 M+H 331.2273 16.83 Sertraline C17H17Cl2N 5.29 M+H 306.0816 14.37 
Androstenedione C19H26O2 2.76 M+H 287.2011 17.62 Venlafaxine C17H27NO2 3.28 M+H 278.2120 9.09 
Progesterone C21H30O2 3.83 M+H 315.2324 23.99 Clozapine C18H19ClN4 3.35 M+H 327.1376 9.64 
Pregnenolone C21H32O2 3.89 M+H 317.2481 23.65 β-Blockers     
Testosterone C19H28O2 3.27 M+H 289.2168 15.77 Metoprolol C15H25NO3 1.63 M+H 268.1913 7.96 
Testosterone glucuronide C25H36O8 2.51 M-H 463.2332 11.50 Propranolol C16H21NO2 2.9 M+H 260.1651 10.00 
Estrone C18H22O2 3.43 M-H 269.1542 17.65 Atenolol C14H22N2O3 0.16 M+H 267.1701 3.31 
Estrone glucuronide C24H30O8 1.58 M-H 445.1863 10.97 Pesticides-fungicides-antibacterial     
Estrone sulfate C18H22O5S 0.95 M-H 349.1110 12.30 Diazinon C12H21N2O3PS 3.81 M+H 305.1089 25.67 
Estradiol C18H24O2 3.94 M-H 271.1699 15.45 Piperonyl butoxide C19H30O5 4.29 M+H 339.2171 23.63 
Estradiol glucuronide C24H32O8 3.18 M-H 447.2019 10.08 Terbutryn C10H19N5S 3.7 M+H 242.1439 15.03 
Eicosanoids     Atrazine C8H14ClN5 2.82 M+H 216.1016 13.17 
Prostaglandin E2 C20H32O5 3.52 M-H 351.2071 14.02 Miconazole C18H14N2OCl4 6.25 M+H 414.9938 20.41 
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Rt were obtained using a HSS-T3 100 Å column  on nUHPLC-nESI-TOFMS with 0.01% formic acid modified water and acetonitrile as mobile phase A and B, respectively, at a flow rate of 700 

nL/min. Log Kow values were obtained from ChemSpider (http://www.chemspider.com) or ACD/LABS V12.0. NSAID refers to non-steroidal anti-inflammatory drugs and SSRI to selective 

serotonin reuptake inhibitors.

Table 2.1 continued          
Prostaglandin B2 C20H30O4 3.4 M-H 333.2066 18.30 Propiconazole C15H17Cl2N3O2 3.72 M+H 342.0776 22.72 
Thromboxane B2 C20H34O6 2.77 M-H 369.2277 12.50 Triclosan C12H7Cl3O2 4.78 M-H 286.9433 27.00 
Fatty acid metabolites     Chlorophene C13H11ClO 4.18 M-H 217.042 23.65 
Arachidonic acid C20H32O2 8.07 M-H 303.2324 32.15 Endocrine disruptors/metabolites     
Sphingosine C18H37NO2 5.53 M+H 300.2903 23.40 Bisphenol A C15H16O2 3.64 M-H 227.1072 15.12 
Bile acids     Butylparaben C11H14O3 3.47 M-H 193.0865 17.38 
Taurocholic acid C26H45NO7S 0.01 M-H 514.2838 11.81 Ethinylestradiol C20H24O2 3.67 M-H 295.1698 17.60 
Cholic acid C24H40O5 3.52 M-H 407.2797 17.09 Ethinylestradiol glucuronide C26H32O8 2.21 M-H 471.2019 11.10 
Deoxycholic acid C24H40O4 3.5 M-H 391.2848 23.30 Ethinylestradiol sulfate C20H24O5S 1.77 M-H 375.1266 12.07 
Food additives     Flame retardants     
Caffeine C8H10N4O2 0.16 M+H 195.0882 7.12 Triphenyl phosphate C18H15O4P 4.59 M+H 327.0786 26.07 
     Tris(2-butoxyethyl)phosphate C18H39O7P 3.75 M+H 399.2512 27.12 
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2.3.3 Construction of in-house nanospray emitters  

Nanospray emitters were prepared in-house using polyetheretherketone (PEEK) tubing 

(100 µm I.D.), cut to a length of 6 cm (Kinesis, St Neots, UK). A fused silica tube, 10 µm I.D. and 

90 µm external diameter (Waters, Manchester, UK),  was cut to 8 cm length  and passed 

through the PEEK tubing. Following construction, emitters were sonicated in HPLC grade 

MeOH for 10 min prior to use. 

2.3.4 nUHPLC-nESI-TOFMS analysis and comparison of column performance 

The nUHPLC-nESI-TOFMS experiments were performed on a Waters nanoAcquity 

UHPLC linked to a Waters Xevo G2 TOFMS, equipped with a nESI source (Waters, Manchester, 

U.K). The Xevo G2 TOFMS was tuned to a mass resolution of 20,000 with a mass spectra range 

of 50-1000 m/z. A capillary voltage of 3.5 kV and cone voltage of 30 V was used in both nESI 

modes, with collision energy of 6 eV and a nitrogen flow of 60 l/hr for the cone and 300 l/hr for 

desolvation.  A leucine enkephalin lockspray standard in 1/1 MeOH/water (v/v) (2 ng/µl) was 

infused at 700 nl/min in both ionization modes. Standard solutions or samples (0.5 μl) were 

loaded directly onto column with a partial loop injection. The sample loop was rinsed 

successively with 1500 μl of acetonitrile (ACN) and water after each injection to avoid sample 

cross-contamination. Three nUHPLC columns were compared: Waters nanoAcquity UHPLC 

Ethylene Bridged Hybrid (BEH) C18 100 µm x 100 mm x 1.7 µm, 300 Å; BEH C18 100 µm x 100 

mm x 1.7 µm, 130 Å; and High Strength Silica (HSS) T3 100 µm x 100 mm x 1.8 µm, 100 Å 

(Waters, Manchester, UK). The chemistries of these columns differ in their back bone; the BEH 

is an ethylene-silica hybrid whereas the HSS is 100% silica. The differences between the C18 

and T3 chemistries is their density within the column, the T3 trifunctional C18 alkyl chains are 

less dense than the C18 making it better suited for polar compounds (Neue et al., 2006). The 

columns were maintained at 25 °C. UHPLC grade water was used as solvent A and ACN as 

solvent B, both modified with 0.01% formic acid (FA). The flow rate was 700 nl/min with a 

gradient of 0-4 min from 10 to 30% B, 4-18 min from 30% to 50% B, 18-30 min from 50 to 

100% B, 30-35 min 100% B, and equilibration to initial conditions in 15 min. For all tested 

conditions, injections were performed in triplicate with each standard at 100 pg on column. 

Retention times and integrated peak areas were generated using QuanLynx MassLynx V4.1 

software. A two-way analysis of variance (ANOVA) with Tukey post hoc analysis was used to 

calculate significant variation in between mean peak areas (n=3) for each of the 78 compounds 

across the three columns tested. ANOVAs were performed using GraphPad Prism V6.0. 
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The column resolution, (R), was calculated using equation 2.1 (Eq 2.1) to quantify 

separation between peaks. 

 

Rtref and Rt2 correspond respectively to the retention time of the reference compound 

and compound 2, and PWref and PW2 the respective widths at half peak height. Column 

resolution was calculated using propranolol in positive mode, and testosterone glucuronide in 

negative) mode as early eluting reference peaks for each resolution calculation. For negative 

mode, standards used for calculations of column resolution were thromboxane B2, taurocholic 

acid, ibuprofen and arachidonic acid. In positive mode, testosterone, androstenedione, 

progesterone and tris(2-butoxyethyl)phosphate were used. These compounds were chosen 

because they elute throughout the entire chromatographic space. 

2.3.5 Comparison of nUHPLC-nESI-TOFMS and UHPLC-ESI-TOFMS detection limits 

The detection limits of the nUHPLC-nESI-TOFMS and conventional UHPLC-ESI-TOFMS 

platforms were compared by assessment of the instrumental limits of detections (IDL) of the 

standard mixture which were calculated for both systems. The IDLs were determined as the 

amount injected on column with a signal to noise ratio (S/N) = 3. The HSS T3 column was used 

to perform the comparison study for the nUHPLC-nESI-TOFMS. The conventional UHPLC 

comprised of a Waters Acquity UHPLC utilizing a UHPLC HSS-T3 column (50 mm x 1 mm x 1.8 

µm), linked to a Micromass Q-TOFMS Ultima (Waters, Manchester, UK). The mobile phase and 

gradients were the same for both platforms (see details above for nUHPLC-nESI-TOFMS) but 

with a flow rate of 0.2 ml/min for UHPLC-ESI-TOFMS. Injection volumes were 5 µl for UHPLC-

ESI-TOFMS analyses. The quantity of each standard injected on each platform ranged from 

0.05 to 2000 pg.  

2.3.6 Extraction of urine samples  

 Urine was collected from a healthy 23 year old male, with written informed consent 

and ethical approval from the University of Sussex Life Sciences and Psychology Ethics 

Committee. A total of 10 midstream first morning voids were collected and stored in 10% 

MeOH at -80 °C. An aliquot from each sample was combined to produce a pooled urine sample 

of 1 ml which was spiked with 500 ng of each deuterated IS and extracted on a Strata X-AW 

SPE cartridge. The SPE cartridge was primed with 1 mL MeOH, washed with 1 mL MeOH before 

loading with the urine samples. The cartridge was subsequently washed with 1 mL water and 

eluted with 1 mL 5% ammonium hydroxide in MeOH followed by 1 mL ethyl acetate. Eluates 
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were combined, dried under vacuum and reconstituted in 500 µl 50/50 MeOH/water. This 

sample preparation is further detailed and analysed in chapter 3. 

2.3.7 Repeatability and reproducibility experiments 

 The intra-day repeatability of the nUHPLC-nESI-TOFMS method for both nESI modes 

was assessed by injecting 10 analytical replicates of the urine samples. The inter-day 

reproducibility was tested by injecting 10 analytical replicates of the composite extracts of 

urine samples on three separate days in both nESI modes. Coefficients of variation (CV) for the 

peak areas and retention times were calculated for each IS to assess the repeatability and 

reproducibility of the nUHPLC-nESI-TOFMS method. The analytical variability of the urine 

(xeno)metabolomes were also assessed based upon the method proposed by Want et.al for 

conventional UHPLC-ESI-TOFMS (Want et al., 2010). The response of each signal was 

normalised to the total ion signal of the sample using Waters MarkerLynx V4.1. The CV of the 

mean normalised response was calculated for all common peaks and the number of signals 

with a CV of less than 30% expressed as a percentage of the total.  

2.4 Results and discussion 

2.4.1 Column comparison 

The effect of the column phase on the chromatography and the analyte response (i.e., 

peak area) of the mixture of 78 compounds were evaluated using three reversed phase 

nanoflow Acquity UHPLC columns with 2 column chemistries and 3 different pore sizes; BEH 

C18 300 and 130 Å, and HSS T3 100 Å. All 3 columns were investigated on the same day, and 

the performance of the MS was assessed by ensuring the signal intensity of the lockmass 

standard, leucine enkephalin, infused into the nESI varied by no more than 10% between 

analytical runs. Mean peak areas were used to assess analyte response, and the retention time 

and column resolution were used as a measure of chromatographic separation. ANOVA of the 

peak areas for each of the 78 compounds revealed that the response of many of the analytes 

was similar between the three column types (Table 2.2). However, from analysis in both nESI 

modes, the response of 33-34 of the standard compounds was significantly higher (p≤0.05) on 

either of the low porosity HSS T3 100 Å or BEH C18 130 Å columns compared with the higher 

porosity BEH-C18 300 Å column. A reduction in pore size increases the surface area of the 

stationary phase and subsequently can increase the retention and the rate of mass transfer 

between mobile and column phases (Motokawa et al., 2002). This may explain the increased 

retention, separation of selected analytes on the lower porosity columns (Table 2.3).  The base 

peak intensity (BPI) chromatogram of the standard mixture analysed in positive nESI mode on 

the three columns is given in Figure 2.1. Analysis of the mixture in negative nESI mode did not 
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result in a clear BPI, and selected ion chromatograms of key standards analysed on the three 

columns is given in Figure 2.2. For these compounds, the additional retention observed for the 

HSS T3 100 Å and BEH C18 130 Å columns enabled compounds to elute in a greater quantity of 

ACN, which owing to its increased volatility relative to water is preferential for increased 

ionization efficiency of the analyte (New and Chan, 2008, Spagou et al., 2011). Hence for some 

analytes, the difference in pore size between the columns may explain the increased peak area 

observed with the low porosity columns. 

Nevertheless, despite the advantages afforded by reduced pore size, the BEH C18 300 

Å conferred a significant increase in mean peak area for some analytes including arachidonic 

acid, sulfalazine, melatonin and deoxycholic acid compared with the HSS T3 100 Å phase. In 

addition chlorophene, estradiol sulfate, estrone sulfate, testosterone glucuronide, estrone 

glucuronide and epinephrine had mean peak areas significantly greater on the BEH C18 300 Å 

compared to the BEH C18 130 Å phase. Many of the analytes showed poor peak shape on the 

lower porosity columns and tailed less on the BEH C18 300 Å. For example the column 

resolution of arachidonic acid was highest on the high porosity BEH column (Table 2.3).  

 Retention of many of the analytes was favoured by the HSS phase compared with the 

BEH phase. The HSS T3 utilizes silanol particles combined with a reduced density of 

trifunctional C18 alkyl chains compared to the BEH C18, therefore HSS T3 preferentially retains 

more polar and mid-polar compounds than the C18 columns (Neue et al., 2006). Additionally, 

the better column resolution observed with HSS may influence analyte responses due to less 

co-elution and subsequently less competition for ionization (Table 2.3). Increased separation 

of compounds in chemical analysis is a fundamental goal in metabolomics as it reduces ion 

suppression in complex mixtures and matrixes, thus increasing the overall performance of the 

system. It is noteworthy that the very polar compounds (i.e., epinephrine, dopamine, 

serotonin, cytidine, cytosine, histidine, nicotinic acid, and acetaminophen) are generally poorly 

retained on reversed phase chemistries and were not retained on any of the columns used  in 

this study and were detected during the first minutes of the chromatogram (i.e. between 2-4 

minutes) (Figure 2.1).  
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Table 2.2: Comparison of the peak areas of 78 (xeno)metabolites between nUHPLC column 

types 

 
 

HSS T3 v
s 

BEH   
C18 

 HSS T3 v
s 

BEH C18  BEH C18 v
s 

BEH C18 

100 Å 300 Å  100 Å  130 Å  130 Å  300 Å 

Number of        
compounds with a 
significantly higher 
peak area 
 

34   4   19   11   33   10 

Fold increase in peak 
area 
 

1.5 – 4.0   1.3 - 1.5   1.5 – 6.0   1.1 - 2.4   1.1 – 6.0   1.2 – 7.0 

Number of 
compounds with no 
significant differences 
in peak area.  

40   48   35 

Samples were profiled in negative nESI and positive nESI modes by nUHPLC-nESI-TOFMS. Mean peak areas of each 
analyte were calculated using 3 analytical replicates and significant differences in peak area between column types 
were determined using ANOVA (p<0.05). 
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Table 2.3: Comparison of mean peak area, retention time, percentage of organic solvent and column resolution between Acquity nUHPLC column types 

  Column PR (+) T2 (+) AN (+) P (+) TBEP (+) T2G (-) TXB2 (-) TCA (-) IBP (-) AA (-) 

Mean peak 

area          (% 

CV) 

 

HSS T3 100 Å 175200 (1)
a
 62899 (1)

a
 57489 (1)

b
 61870 (1)

b
 128058 (2)

b
 6369 (9) 924 (7) 8318 (6)

a
 531 (7)

a
 988 (3)

b
 

C18 130 Å 101830 (1)
c
 53242 (5)

b
 55844 (8)

b
 64218 (12)

b
 216234 (4)

a
 5551 (19) 703 (6) 5710 (2)

c
 338 (3) 168 (16)

c
 

C18 300 Å 114207 (4)
b
 33285 (3)

c
 22427 (1)

c
 23257 (1)

c
 35369 (1)

c
 7177 (10)

a
 758 (11) 7138 (13)

b
 362 (7) 4956 (2)

a
 

Retention 

time  

(% CV) 

HSS T3 100 Å  10.0 (0) 15.8 (0.02) 17.6 (0.02) 23.9 (0.02) 27.3 (0.02) 11.5 (0.2) 12.5 (0.05)
 

13.1 (0.06) 22.01 (0.08) 32.4 (0.06) 

C18 130 Å 9.7 (0.1) 13.8 (0.3) 15.1 (0.2) 20.8 (0.3) 25.8 (0.2) 10.7 (0.06) 11.8 (0.01) 11.5 (0.01) 20.3 (0.04) 31.4 (0.1) 

C18 300 Å 9.8 (0.4) 12.8 (0.05) 14.0 (0.3) 19.4 (0.5) 24.1 (0.3) 10.2 (0.2) 11.2 (0.3)
 

10.7 (0.3) 18.7 (0.4) 30.5 (0.1) 

% organic 

solvent at 

elution 

HSS T3 100 Å 38.4 46.5 49.0 74.8 89.1 40.5 41.9 42.7 66.8 100 

C18 130 Å 38.0 43.7 45.5 61.8 82.8 39.4 40.9 40.5 59.7 100 

C18 300 Å 38.1 42.3 44.0 55.9 75.6 38.7 40.1 39.4 52.9 100 

Column 

resolution (% 

CV) 

HSS T3 100 Å N/A 53 (6) 64 (5) 101 (4) 156 (1) N/A 76 (3) 21 (4) 101 (3) 321 (1) 

C18 130 Å N/A 36 (3) 47 (4) 85 (8) 118 (4) N/A 46 (1) 7 (7) 77 (10) 183 (3) 

C18 300 Å  N/A 24 (10) 33 (20) 79 (8) 133 (13) N/A 66 (12) 9 (19) 102 (5) 382 (3) 

Samples were profiled in negative nESI (-) and positive nESI (+) modes by nUHPLC-nESI-TOFMS. CV: coefficient of variation, PR: propranolol, T2: testosterone, AN: androstenedione, P: 
progesterone, TBEP: tris(2-butoxyethyl)phosphate, T2G: testosterone glucuronide, TXB2: thromboxane B2, TCA: taurocholic acid, IBP: ibuprofen, AA: arachidonic acid. Means were calculated 
from three replicate injections. 

a
 = significantly higher response compared with the two other columns, 

b
 = response significantly higher than 

c
 (p<0.05). The benefits provided by the HSS T3 

100 Å stem from its smaller pore size relative to the 130 Å and 300 Å BEH C18 columns and the reduced density of the trifunctional C18 chemistry of the T3 stationary phase compared to the 
C18 stationary phase.
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Figure 2.1:  Base peak intensity (BPI) chromatograms of a standard mixture of compounds 

analysed by 3 different nUHPLC columns 
100 pg of each compound was injected onto each column and the mixture analysed by nUHPLC-nESI-TOFMS in 
+nESI mode. A standard mixture of 78 compounds was analysed, of which 49 were detected by positive nESI. The 
BPI peaks of representative standards are labelled to illustrate changes in retention on the different column phases. 
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Figure 2.2: Overlaid selected ion chromatograms standards analysed by 3 different nUHPLC 

columns  
100 pg of each compound was injected onto each column and the mixture analysed by nUHPLC-nESI-TOFMS in 
negative nESI mode. A standard mixture of 78 compounds was analysed, of which 29 were detected by -ESI. Due to 
the signal strength not being high enough to give a BPI response the selected ion chromatograms of those 
standards highlighted in Table 2.3 are shown. These were selected ion chromatograms were achieved using a 5 ppm 
mass window of the accurate m/z provided in Table 2.1. The HSS-T3 100 Å column displays superior retention and 
separation characteristics of the standards compared to both BEH C18 columns. 

  



69 
 

2.4.2 Comparison of nUHPLC-nESI-TOFMS to a conventional UHPLC-TOFMS  

The IDLs of the 78 standards injected on the nUHPLC-nESI-TOFMS were compared to 

that of a conventional UHPLC-ESI-TOFMS platform commonly used for metabolomic analysis 

(Al-Salhi et al., 2012). The amount of each of the 78 standards injected on both platforms 

ranged from 0.05 to 2000 pg.  Results showed that the nanoflow-nanospray platform improved 

the detection of all 78 compounds by between 2-2000 times compared to the conventional 

UHPLC-ESI-TOFMS platform (Table 2.4). Furthermore, compounds such as estrone, 17β-

estradiol, ethinylestradiol or bisphenol A, could not be detected at the highest concentrations 

used by conventional UHPLC-ESI-TOFMS platform, whereas the IDL for these compounds was 

between 1 and 25 pg on column for the nano platform. The IDL of glucocorticoids and 

androgenic compounds were between 25 to 50 pg on UHPLC-ESI-TOFMS, while the IDLs for 

these compounds were generally 0.05 pg on the nano platform. Important signalling molecules 

such as eicosanoids, which are present in biological fluids at nM levels, showed increases of 

10-100 fold in IDL on the nano system with IDLs of < 1 pg. Additionally, the IDLs of 

pharmaceuticals such as non-steroidal anti-inflammatory drugs (NSAIDs), selective serotonin 

reuptake inhibitors (SSRIs), statins and β-blockers were improved by 2.5 to 100 fold on 

nUHPLC-nESI-TOFMS. Therefore, the use of this nanoflow-nanospray platform conferred a 

significant advantage in terms of instrumental detection for all chemical classes. Nevertheless, 

it should be noted that two different mass spectrometers were used for this comparison, but it 

can be assumed that improvements in IDLs were for the most part due to the improved 

desolvation, ionization and ion-transfer efficiency of the nUHPLC-nESI. Indeed, we observed 

that IDL of two compounds present in the mixture (i.e., carbamazepine and paracetomol) were 

50 and 250 times greater using the same MS (i.e., the Xevo G2 TOFMS) but with conventional 

UHPLC-ESI platform (Vergeynst et al., 2013) showing the advantage of using a nUHPLC-nESI. 

Improvements made were compound specific and were observed in particular for important 

signalling compounds such as unconjugated steroids which are usually poorly ionized by a 

conventional UHPLC-ESI platform.  
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Table 2.4: Instrumental limits of detection (IDL) of a mixture of 78 compounds injected on a 

nanoflow-nanospray platform (nUHPLC-nESI-TOFMS) and a conventional UHPLC-ESI-TOFMS 

Compound           IDL (pg) 
ESI       nESI 

Compound IDL (pg) 
ESI               nESI 

Neurotransmitters  NSAIDs  

Epinephrine 200 25 Diclofenac 10 0.5 

Dopamine >2000 25 Ibuprofen 400 0.5 

Serotonin 200 0.5 Naproxen 200 25 

Melatonin 25 0.5 Ketoprofen 5 0.05 

5-Hydroxyindoleacetic acid 200 10 Mefenamic acid 5 0.05 

Nucleotides  Sulfasalazine 25 10 

Cytidine 200 50 Indomethacin 25 10 

Cytosine 25 10 Paracetomol 100 0.5 

Amino acids and metabolites  Lipid lowering agents  

Histidine 2000 10 Clofibric acid 5 0.5 

Tryptophan 600 50 Gemfibrozil 5 0.5 

Creatinine 400 10 Bezafibrate 5 0.05 

Vitamins  Pravastatin 5 0.5 

Nicotinic acid 600 1.0 Simvastatin 25 10 

Retinoic acid >2000 10 Heart disease drugs  

Folic acid 2000 25 Dipyridamole 1 0.05 

Steroids  Clopidogrel 5 0.05 

Cortisol 50 0.05 Warfarin 0.5 0.05 

Cortisone 50 0.05 SSRI and antipsychotics  

Corticosterone 25 0.05 Carbamazepine 5 0.05 

11-ketotestosterone 10 0.05 Fluoxetine 25 1.0 

21-Hydroxypregnenolone 100 1 Paroxetine 5 0.05 

17α-Hydroxyprogesterone 50 0.05 Sertraline 50 0.5 

Androstenedione 50 0.05 Venlafaxine 1 0.05 

Progesterone 50 0.05 Clozapine 5 0.5 

Pregnenolone 50 1 β-Blockers  

Testosterone 25 0.05 Metoprolol 1 0.05 

Testosterone glucuronide 5 0.05 Propranolol 5 0.05 

Estrone >2000 10 Atenolol 25 0.5 

Estrone glucuronide 5 0.5 Pesticides-fungicides-
antibacterial 

 

Estrone sulfate 1 0.5 Diazinon 5 0.05 

Estradiol >2000 25 Piperonyl butoxide 1000 10 

Estradiol glucuronide  5 0.5 Terbutryn 1 0.05 

Eicosanoids  Atrazine 5 0.05 

Prostaglandin E2 5 0.5 Miconazole 50 0.05 

Prostaglandin B2  1 0.05 Propiconazole 5 0.05 

Thromboxane B2 5 0.05 Triclosan 50 0.5 



71 
 

Table 2.4 continued     

Fatty acid metabolites  Chlorophene 5 0.05 

Arachidonic acid 1000 0.5 Endocrine 
disruptors/metabolites 

 

Sphingosine 100 0.05 Bisphenol A >2000 10 

Bile acids  Butylparaben 5 0.5 

Taurocholic acid 5 0.05 Ethinylestradiol >2000 100 

Cholic acid 5 0.5 Ethinylestradiol glucuronide 5 0.5 

Taurodeoxycholic acid 5 0.05 Ethinylestradiol sulfate 5 0.5 

Food additives   Flame retardants  

Caffeine 100 1 Triphenyl phosphate 5 0.05 

   Tris(2-butoxyethyl)phosphate 25 0.05 

The same standard mixture was injected on both platforms, the amount injected on column was between 0.05 pg 

and 2000 pg. 

2.4.3 Repeatability and reproducibility of the nUHPLC-nESI-TOFMS method 

The repeatability and reproducibility of the nUHPLC-nESI-TOFMS method was assessed 

using the composite urine samples spiked with deuterated IS and injected 10 times in both 

ionization modes, on 3 consecutive days. The coefficient of variation (CV) was calculated for 

the mean peak area and retention time of the 6 IS (see Table 2.5). The intra-day repeatability 

for peak area was between 2 and 19% for the urine matrix (analysed in both ionization modes). 

Inter-day reproducibility of the peak areas of the IS was also less than 20% which is the 

maximum variability recommended for metabolomics analyses using conventional LC-MS 

platforms such as UHPLC-ESI-TOFMS platforms (Benton et al., 2012). Retention time variability 

was less than CV 0.3%, and lower than a value of  2% recommended for conventional LC-MS 

platforms (Theodoridis et al., 2012). Furthermore, error in mass accuracy of the IS analysed by 

the nano platform across the 3 days was less than 1 ppm in positive nESI mode and less than 2 

ppm  in negative ESI mode.  

Further analyses of the urine (xeno)metabolome itself were performed based on the 

repeatability of the response of the MS signals common to the analytical replicates. These 

analyses revealed that between 82%-90% of signals in urine returned CV values of less than 

30% for signal response (Table 2.5).  These values compare favourably with those 

recommended for metabolomics analyses using conventional LC-MS platforms, where 

maximum CV values of 30% were reported for the responses of the majority of MS features 

detected in urine or plasma samples (Benton et al., 2012, Want et al., 2010, Spagou et al., 

2011). In this study the inter-day reproducibility of the (xeno)metabolome datasets was 

generally lower; with 73% (positive nESI) and 81% (negative nESI) of all signal responses gave a 

CV of < 30%. To date, no recommendations for inter-day variation of the metabolome have 

been reported due to confounding factors on the variability of analytical response such as 

column aging, source fouling and the effect of cleaning (Benton et al., 2012). However, these 
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results indicate that this nanoflow-nanospray platform offers a high degree of stability which is 

necessary for large scale studies of the (xeno)metabolome.  

 

Table 2.5: Intra and inter-day repeatability based on measurements of the response of 

internal standards spiked and variations of the normalised abundance of the features 

detected in all replicates in urine samples analysed by nUHPLC-nESI-TOFMS 

Sample   

Urine 

D1 D2 D3 D1/2/3 

Venlafaxine-d6 (+ESI) 

Mean area 83699 76457 75709 80078 
CV (%) 2 5 2 6 
Mean Rt  9.53 9.49 9.46 9.51 
CV (%) 0.09 0.08 0.12 0.3 

Carbamazepine-d10 
(+ESI) 

Mean area 251578 217009 179895 234293 
CV (%) 5 7 6 10 
Mean Rt  11.93 11.91 11.92 11.92 
CV (%) 0.07 0.05 0.06 0.11 

Progesterone-d9 (+ESI) 

Mean area 110318 98459 119646 104389 
CV (%) 2 10 8 8 
Mean Rt  23.66 23.65 23.66 23.66 
CV (%) 0.05 0.05 0.04 0.04 

Estradiol sulfate-d4 (-ESI) 

Mean area 73243 62479 59983 77742 
CV (%) 10 7 17 18 
Mean Rt  11.06 11.06 11.05 11.06 
CV (%) 0.07 0.05 0.11 0.09 

Prostaglandin E2-d4 (-
ESI) 

Mean area 10519 8619 7354 8739 
CV (%) 19 5 18 20 
Mean Rt  14.06 14.06 14.07 14.06 
CV (%) 0.1 0.06 0.06 0.08 

Diclofenac-d4   (-ESI) 

Mean area 9306 9875 10472 9974 
CV (%) 13 5 8 7 
Mean Rt  21.69 21.7 21.72 21.7 
CV (%) 0.07 0.02 0.06 0.07 

MS signals common to 
all sample replicates 

(+ESI) 

Percentage of MS 
signals with CV < 30%  
Total number of signals 

 
88 

457 

 
90 

482 
 

 
82 

436 

 
73 

348 

MS signals common to 
all sample replicates (–

ESI). 

Percentage of MS 
signals with CV < 30%  
Total number of signals 

83 
590 

82 
605 

82 
633 

81 
444 

Analytical replicates (n=10) were analysed each day for 3 days in (+) positive nESI or (–) negative nESI modes. IS 

repeatability and reproducibility were assessed using the CV of mean peak area and retention time. 

(Xeno)metabolome variations were measured by calculating the CV of the response of MS signals common to the 

analytical replicates. The number of signals with a % CV <30 are expressed as a percentage of total. 

2.5 Conclusion 

 Nanoflow LC systems such as nUHPLC-nESI-TOFMS are routinely used for proteomics 

applications but to date are not generally used for metabolomics because of the high degree of 

repeatability necessary for processing and analysis of the datasets. For these small molecule 

profiling studies, the MS features are generally binned into Rt x m/z values prior to 

multivariate analyses. In past work, variability in nanoLC flow rates and spray emission into the 

nanoESI source have been too high for metabolomics applications. However, using a nUHPLC 
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system and a flow rate of 700 nL/min, this study has shown repeatability and reproducibility 

values comparable to conventional UHPLC-ESI-MS systems. In addition, compared to a 

conventional ESI platform that is typically used for metabolomics, there were between 2 and 

2000 fold increases in IDL with the nano system, which could enable wider coverage of the 

(xeno)metabolome including detection of low abundant or poorly ionized metabolites. The 

choice of nano column phase and porosity can also influence analyte signal and retention, 

although improvements in peak areas using low porosity 100 Å phases can be compound 

dependent. This study reveals that use of a nanospray platform could be invaluable to support 

the rapidly growing field of metabolomics analyses, where the ability to reliably detect low 

abundance metabolites and xenobiotics in biofluids may pave the way for discovery of new 

biomarkers and pathways of disease.  
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Chapter 3: Development of solid phase extraction and nanoflow liquid chromatography-

nanoelectrospray ionization mass spectrometry for improved global urine metabolomics 

 

3.1 Abstract 

Global urine metabolomics is a rapidly expanding field with the potential to discover 

biomarkers of disease and exposure. To date most methods focus on rapid sample 

preparation, using neat or diluted urine, together with high throughput analyses, and are 

poorly suited for detection of low abundance metabolites present in urine samples. In this 

study, novel methods have been developed to analyse urine by nUHPLC-nESI-TOFMS after 

preconcentration by solid phase extraction (SPE), thus enabling significant improvements in 

analytical sensitivity and coverage of the urinary metabolome. In initial work, urine samples 

were extracted by both anion and cation exchange mixed mode polymeric SPE cartridges and 

qualitatively compared with those using conventional sample preparations using UHPLC-ESI-

TOFMS analyses. Compared with neat or diluted urine samples, SPE concentration of urine 

resulted in detection of additional metabolites including bile acids, lipids, pharmaceuticals and 

markers of lifestyle, with little loss of other components of the metabolome. Analyses of SPE 

preparations by nUHPLC-nESI-TOFMS revealed excellent retention time repeatability with <1% 

coefficient of variation (CV) for 96% of analysed peaks. The repeatability of the MS response 

was <30% CV for >79% of MS features in both negative and positive nESI modes. Compared 

with UHPLC-ESI-TOFMS, analysis by the nano-platform enabled detection of signalling 

molecules important in disease processes including sex steroids, glucocorticoids, eicosanoids 

and neurotransmitter metabolites. The significant improvement in sensitivity arising from use 

of nUHPLC-nESI-TOFMS analyses of SPE-concentrated samples represents a step change in 

coverage of the urinary metabolome thereby increasing the potential for biomarker discovery.  

3.2 Introduction 

The aim of global metabolomics is to analyse all metabolites in a given biological 

system, termed the metabolome (Dunn et al., 2011, Dettmer et al., 2007). This technique is 

generally utilized to investigate metabolic variations between metabolomes in case study and 

control groups (Gika et al., 2014). As such, metabolomics has a wide range of applications 

including biomarker discovery of disease (Mamas et al., 2011), toxicant exposure (Al-Salhi et 

al., 2012), assessment of nutritional status (Llorach et al., 2012) and uses in drug discovery 

(Kell, 2006, Lindon et al., 2007). To date >3000 urinary metabolites have been characterised, a 

number that is expected to grow as more sensitive analytical techniques are developed 

(Bouatra et al., 2013). These metabolites are typically <1000 Da, cover a concentration range 
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of 11 orders of magnitude and include endogenous metabolites and those derived from 

exogenous sources such as drugs, contaminants or diet (Bouatra et al., 2013, Johnson et al., 

2012a, Want et al., 2007). Global analysis of this complex mixture of metabolites in urine holds 

great promise for understanding the impacts of lifestyle, environmental stressors and disease 

on human health, and for identifying potential biomarkers of environmental exposure in a 

non-invasive manner (Pujos-Guillot et al., 2013, Zacharias et al., 2013, Cernei et al., 2013).12  

Of the different analytical chemistry techniques that have been used to profile the 

urinary metabolome, the use of high resolution LC-MS is widely recognised to provide the 

most comprehensive analysis allowing detection of non-volatile and semi-volatile polar and 

apolar compounds (Gika et al., 2014, Theodoridis et al., 2012).  However, to date sample 

preparation for LC-MS analyses of urine has received little attention (Theodoridis et al., 2012, 

Alvarez-Sanchez et al., 2010a, Alvarez-Sanchez et al., 2010b, Fernández-Peralbo and Luque de 

Castro, 2012) and many methods focus on rapid sample preparation and high throughput 

analysis instead of increasing the sensitivity for detection of important low abundance 

metabolites (Theodoridis et al., 2012). The sample preparation methods currently most utilised 

in urine metabolomic studies comprise just dilution of urine samples and these methods have 

been described in Chapter 1 Section 1.5.2.    

To detect low abundance metabolites, further sample clean up and pre-concentration 

is required, and could be achieved using solid phase extraction (SPE) (Alvarez-Sanchez et al., 

2010a, Alvarez-Sanchez et al., 2010b, Fernández-Peralbo and Luque de Castro, 2012). Typically 

SPE is a sample preparation method reserved for targeted analysis of selected compounds in 

urine and in global metabolomics studies there are concerns that use of SPE result in losses of 

many metabolites during sample work up (Fernández-Peralbo and Luque de Castro, 2012). This 

is a particular problem with urine which contains complex mixture of compounds from the 

polar amino acids and anionic conjugated metabolites, through to apolar lipids, steroids, bile 

acids and xenobiotics. To counter this, a method was developed in this study utilising one of 

each anion and cation exchange mixed mode polymeric SPE cartridges to sequester ionic, 

neutral and apolar metabolites and remove ion suppressing salts and proteins. Total 

evaporation of the SPE eluent and reconstitution for LC-MS analysis allows for >10 fold pre-

concentration of sample extracts which may lead to improved detection of low abundance 

metabolites using non-targeted LC-MS techniques (Fernández-Peralbo and Luque de Castro, 

2012).  

The study from Chapter 2 has demonstrated that nUHPLC-nESI-TOFMs enables highly sensitive 

analysis compared to conventional LC-ESI-TOFMS and maintains a very high degree of 
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repeatability and reproducibility for peak area and retention times. However, the benefit of 

this technique is yet to be shown in a metabolomic analysis. 

3.2.1 Study aims 

The aim of this study was to develop methods to increase coverage of the urinary 

metabolome including the detection of low abundant signalling metabolites normally present 

in urine. To determine the most suitable sample preparation technique, the metabolomic 

profiles of neat and diluted urine preparations were qualitatively compared with samples 

extracted by SPE using conventional UHPLC-ESI-TOFMS. The metabolomic profiles of SPE 

extracts were subsequently analysed using conventional UHPLC-ESI-TOFMS and nUHPLC-nESI-

TOFMS to investigate improved metabolome coverage due to use of the nanospray platform.  

3.3 Materials and Methods 

3.3.1 Chemicals 

  All HPLC grade solvents were supplied by Rathburn Chemicals Ltd (Walkerburn, UK) 

and UHPLC grade solvents from Fisher Scientific UK (Loughborough, UK). Mixed mode 

polymeric anion (Strata X-AW) and cation exchange (Strata X-C) SPE cartridges (60 mg/3 mL) 

were purchased from Phenomenex Ltd (Macclesfield, U.K). Deuterated progesterone-

2,2,4,6,6,17α,21,21-d9 (CDN Isotopes, Quebec, Canada) and 17β-estradiol 2,4,16,16-d4 

sodium, 3-sulfate (Cambridge Isotope Laboratories Inc, MA, US) were used as internal 

standards (IS). All other chemicals were purchased from Sigma-Aldrich Ltd (Dorset, UK).   

3.3.2 Sample collection 

  Urine samples were collected from two self-reported healthy volunteers (1 male and 1 

female) aged 23 and 24. The volunteers collected first morning voids, mid-flow, over a 10 day 

period. Samples were stored immediately in 10% methanol and transported to the laboratory 

in a cool box and stored at -80 oC. Both subjects provided written, informed consent and the 

study was approved by the University of Sussex Life Sciences and Psychology Ethics 

Committee. 

3.3.3 Sample preparation  

Urine samples were defrosted and vortex mixed. 10 mL aliquots from each first 

morning void were combined to produce a 100 mL pooled male and a pooled female sample of 

neat urine. Three diluted samples were prepared by the addition of HPLC grade water to 

aliquots of the pooled samples to give 25%, 50% and 75% concentrations of the neat urine, 

equivalent to 1: 3, 1: 1 and 3: 1 (urine: water). Urine samples (200 µL) were spiked with the 
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two stable isotope internal standard (IS) (200 ng) and centrifuged at 13000 rpm for 10 

minutes. The resulting supernatant was passed through a Strata Impact Protein Precipitation 2 

mL Filter Plate (Phenomenex Ltd, Macclesfield, U.K) to remove particulates.  

For SPE of samples, aliquots (2 mL) from each of the pooled neat urine samples were 

spiked with IS to give 0.5 ng/µL final concentration and the pH adjusted with formic acid (FA) 

to pH 2. Strata X-AW and Strata X-C cartridges were conditioned with 2 mL methanol and 2 mL 

HPLC water. The Strata X-AW was loaded with 2 mL of the acidified urine; the load that passed 

through was collected and directly loaded onto the Strata X-C cartridge. Both cartridges were 

washed with 2 mL water, each cartridge was eluted separately with 2 mL 5% ammonium 

hydroxide in methanol followed by 2 mL ethyl acetate. The two solvent elutions from each 

cartridge were combined, the solvents removed under vacuum and the extracts reconstituted 

in 200 µL 80:20 water: methanol, giving a 10 fold concentration of the original 2 mL sample. 

For some studies, aliquots of extracts from both the X-AW and X-C SPE cartridges were 

combined to allow analysis of the total SPE preparation.  

Five replicates of neat, diluted and SPE samples were prepared from the pooled male 

and female urine samples using the methods described. Work up blanks were produced and 

consisted of 90% water 10% methanol. All samples were frozen at -80 oC prior to LC-MS 

analysis. 

3.3.4 UHPLC-ESI-TOFMS analysis 

Samples (5 µL) were analysed in both ionization modes in a randomised block design 

using a Waters Acquity UHPLC coupled with a Waters Ultima TOFMS system (Waters Ltd, 

Manchester, UK). The MS system was conditioned using repeated analyses of a quality control 

(QC) sample prior to analysis of the test replicates. Separation was carried out on an Acquity 

BEH C18 column (2.1 x 100 mm, 1.7 µm) at 25oC, with a C18 vanguard (2.1 x 50 mm) column. 

Mobile phase A consisted of water (0.2% FA) and B acetonitrile (0.2% FA). The gradient was 0-1 

min 5% B, 1-5 min 15%  B, 5-18 min 40% B, 18-25 min 100% B, 25-26 min 100% B at a flow rate 

of 0.2 mL/min. Prior to each injection, the column was equilibrated in  initial conditions for 5 

minutes. The mass spectrometer was tuned to a mass resolution of 9000 and mass spectra 

data were collected between 100 to 1000 m/z. A lockmass solution was infused during 

analysis, and comprised sulfadimethoxine in 1:1 v/v methanol: water (plus 0.1% FA for 

acquisition in positive ESI mode). The source temperature and desolvation temperatures were 

100 oC and 250 oC respectively, with a desolvation gas flow of 400 L/h nitrogen. 
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3.3.5 NanoflowUHPLC-nanoESI-TOFMS  

SPE extracts were analysed on a Waters nanoAcquity UHPLC, and 0.5 µL aliquots of 

extract were injected on a Waters UHPLC HSS-T3 nanoAcquity column (100 Å, 1.8 µm, 100 µm 

x 100 mm) maintained at 25 oC. Mobile phase A was water (0.01% FA) and B acetonitrile 

(0.01% FA) at a flow rate of 700 nL/min. Initial conditions were 10% B with a gradient of 0-4 

min to 30% B, 4-18 min 50% B, 18-28 mins 100% B. The column was maintained at 100% B for 

10 minutes to and then re-equilibrated in initial conditions for 15 minutes before the next 

injection. The sample needle was washed in 1.5 mL water and 1.5 mL acetonitrile to eliminate 

carry over in subsequent injections. SPE samples were analysed after conditioning the MS 

system with QC samples. The Waters Xevo G2 with nanospray source was tuned to a mass 

resolution of 20,000 with a mass spectra range of 50-1000 m/z. A capillary voltage of 3.5 kV 

was used in both ESI modes, with collision energy of 10 eV and a flow of 61 L/hr for the cone 

and 300 L/hr for desolvation nitrogen gas.  A leucine enkephalin lockspray standard in 1:1 

methanol:water (2 ng/µL) was infused at 700 nL/min in both ionization modes. Mass 

fragmentation information was obtained by further analysis of selected samples in MSe mode, 

this mode allows rapid voltage ramping to achieve low and high fragmentation data 

concurrently, here a scan at 10 eV was followed by a scan with a ramp of 20 to 30 eV. 

3.3.6 Nanospray emitter construction 

Nanospray emitters were produced in-house and a non conducting sheath was 

constructed from polyetheretherketone (PEEK) tubing (100 µm I.D to a length of 6 cm (Kinesis, 

St Neots, UK). The emitter, a fused silica tube, 10 µm I.D. and 90 µm external diameter 

(Waters, Manchester, UK),  was cut to 8 cm length  and passed through the PEEK tubing. 

Subsequently, all emitters were sonicated in HPLC grade MeOH for 10 min prior to use. 

3.3.7 Quality control (QC) and methodological reproducibility 

QC samples, comprising a composite of the samples under analysis, were injected prior 

to and during each analytical batch to monitor instrumental drift in response and retention 

time data.  Retention time repeatability of the nano platform was determined as the % 

coefficient of variation (CV) of the mean retention time. This was assessed for the 100 most 

abundant metabolites (50 +nESI, 50 -nESI), which eluted across the chromatogram of the 10 

SPE QC samples (Theodoridis et al., 2012). The 100 most abundant peaks were extracted from 

the 10 QC replicates using Waters Quanlynx software. In addition the peak area variability of 

the QC samples was determined using methodology proposed by Want et al. For this, all peaks 

present in at least 80% of the QC samples were integrated and the % CV of mean peak areas 

calculated. The results were compared with the recommended threshold for reliable 
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metabolomic data whereby the % CV for the mean peak area should be <30% for >70% of 

peaks (Want et al., 2010). The repeatability of the SPE methodology was similarly determined 

for metabolome peak areas present in 80% of the samples after UHPLC-ESI-TOFMS analysis for 

each of the 5 male and 5 female SPE replicates. 

3.3.8 Data processing  

The MS datasets were deisotoped, mass spectral peaks deconvoluted, aligned, and the 

datasets binned and normalized to the total spectral area for each sample using Waters 

MarkerLynx software.  The datasets, comprising Rt x m/z bins, were exported to Simca v12.0 

software (Umetrics Ltd, Crewe, UK) for multivariate analyses. All data were log transformed 

and Pareto scaled prior to principal components analysis (PCA) to identify the effect of 

different sample preparation treatments. Further modelling using orthogonal partial least-

squares discriminant analysis (OPLS-DA) was used to investigate metabolite differences 

between any two treatment groups. Discriminatory metabolites (loading variables) between 

treatment groups were detected using an S-plot of the OPLS-DA model which is a plot of 

reliability (correlation) of the loading variables versus their covariance (contribution to the 

model) (Wiklund et al., 2008). Metabolite identities were determined from their accurate 

mass, isotopic fit, and comparison of fragmentation data with authentic standards or with 

Metlin (Tautenhahn et al., 2012a), Human Metabolome Database (Wishart et al., 2007), 

Human Urine Metabolome Database (Bouatra et al., 2013) and MycompoundID (Li et al., 

2013a) databases.  

3.4 Results and discussion 

3.4.1 Effect of sample preparation methodology 

The effect of sample dilution and SPE on the MS profiles of the urine metabolome was 

investigated. Replicate analytical samples prepared from the pooled urine samples from both 

subjects were profiled by UHPLC-TOFMS, and the number of markers (MS features) calculated 

from the binned MS data. The mean number of markers detected in each of the two neat urine 

samples was between 4400 and 5400, and dilutions to ≤50% urine significantly decreased 

marker numbers (ANOVA p<0.01) (Figure 3.1). Compared to neat urine samples, analysis of 

urine extracted by SPE (a combined extract from both X-AW and X-C cartridges) resulted in a 

significant (ANOVA p<0.01) 1.7 fold increase in the number of markers detected in either + or - 

ESI mode.   
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Figure 3.1: Numbers of markers detected using different urine sample preparation methods  
Number of markers are given as mean ±SD (n=5) after removal of workup blank signals which were 305 ±47 (+ESI) 
and 140±9 (-ESI). Letters above histogram indicate significant differences after ANOVA analyses and post hoc 
Tukey’s test. Same letters indicate no significant difference (p≤0.05), different letters mark a significant difference 
compared to neat urine (p≤0.01).  

Qualitative differences in MS profiles between the sample preparations were 

examined by multivariate methods. PCA scores plots of the neat and diluted urine datasets 

revealed clear differences between the sample treatments (Figure 3.2 and 3.3). The first 

component discriminated between the two individuals providing the urine samples and the 

second component differentiated between the sample preparation methods. The close 

grouping of replicates from any one sample preparation method indicated that the 5 analytical 

replicates in the sample groups were very similar in composition to each other. This is further 

supported by the very close grouping of the QC samples, indicating, the MS profiling 

methodology was repeatable. The datasets from neat urine were compared with each of the 

diluted urine preparations in turn using OPLS-DA models (see Figure 3.4A for example). The 

markers that differentiated between the two sample preparations treatments were detected 

using an S-plot. Markers that were either unique to, or were significantly higher, in one of the 

sample preparation groups were detected at the extreme ends of the S-plot (Figure 3.4B). 

Examination of the S-plots revealed that there were 23 metabolites present in neat or 75% 

diluted male or female urine samples which were not detected after dilution to ≤50% urine. 

Metabolites that were unique to the neat urine and absent in samples diluted by 50% 

comprised some conjugated steroids, several bile acids, vitamins, and markers of lifestyle and 

diet such as cotinine and sucralose (Table 3.1). These have reported concentrations in urine of 
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generally < 1 µM/mM creatinine (Bouatra et al., 2013), and have likely been diluted to such a 

degree they can no longer be detected.   

 

Figure 3.2: PCA scores plot of the metabolomic profiles from neat, diluted and QC urine 

sample preparations   
Neat urine from either a male or female subject was diluted with water to give 25%, 50% and 75% urine 
concentrations. An aliquot (5 µL) of each of the 5 replicates was analysed in positive (+ve) ESI by UHPLC-ESI-TOFMS. 

 

Figure 3.3: PCA scores plot of the metabolomic profiles from neat, diluted and QC urine 

sample preparations  
Neat urine from either a male or female subject was diluted with water to give 25%, 50% and 75% urine 
concentrations. An aliquot (5 µL) of each of the 5 replicates was analysed in negative (-ve) ESI by UHPLC-ESI-TOFMS. 
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Figure 3.4: A) OPLS-DA scores plot and B) S-plot analysis of metabolomics profiles from neat 

and diluted (50%) urine sample preparations 
Data shown for 5 replicates of neat and diluted (50%) urine preparations from a male urine sample analysed in 
negative ESI by UHPLC-ESI-TOFMS. A) OPLS-DA model, B) S-plot analysis of loading variables (MS signals).
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Table 3.1: Metabolites unique to neat urine compared with samples diluted to 50% concentration  

Observed m/z Empirical formula Theoretical mass Q-TOF Fragments Identity 

Amino acids and metabolites   
M+H 156.0762 C6H9N3O2 156.0773 110.0685 Histidine 

M-H 245.0930 C13H14N2O3 245.0926 203.0801, 74.0254 N-acetyltryptophan 

M+H 195.0769 C9H10N2O3 195.0770 149.071, 120.045 Aminohippuric acid 

Neurotransmitter/ metabolites   
M-H 182.0822 C9H13NO3 182.0817 166.084 Normetanephrine 

Vitamins     
M+H 377.1456 C17H20N4O6 377.1461 243.0867 Riboflavin (Vitamin B2) 

M-H 297.1128 C18H18O4 297.1127 nd 7C-aglycone1 (a vitamin K metabolite) 

Conjugated androgen    
M-H 479.2279 C25H36O9 479.2281 175.0224, 113.0223 11-Oxo-androsterone glucuronide1 

M-H 467.2641 C25H40O8 467.2645 175.0239, 157.0145, 113.0241 Androstanediol glucuronide1 

Glucocorticoids    
M-H 535.2170 C27H36O11 535.2179 175.0241, 157.0138, 113.0242 Aldosterone glucuronide1 

Bile acids     
M-H 407.2798 C24H40O5 407.2797 343.2623, 289.2140, 251.2000 Cholic acid 

M-H 567.3167 C30H48O10 567.3169 175.0265, 113.0318 Deoxycholic acid glucuronide1 

M-H 624.3390 C32H51NO11 624.3384 175.02298, 113.229 Glycochenodeoxycholic acid glucuronide1 

Diet compounds    

M-H 395.0063 C12H19Cl3O8 395.0067 359.0368 Sucralose 

M-H 297.0979 C14H18O7 297.0974 175.0241,157.0142, 113.0242 Phenylethanol glucuronide1 

M-H 507.2234 C26H36O10 507.2230 nd Unidentified dietary compound1 

Smoking related compounds    
M+H 177.1031 C10H12N2O 177.1028 137.0027 Cotinine 

M+H 179.1177 C10H14N2O 179.1184 nd Nicotine-1'-N-oxide1 

Organic acids ≤10 carbons    

M-H 201.1127 C10H18O4 201.1127 183.1018, 139.1119 Sebacic acid 

M+H 291.1312 C10H18N4O6 291.1305 nd Argininosuccinic acid1 

M-H 187.0973 C9H16O4 187.0970 125.097,97.066, 57.036 Azelaic acid 
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Table 3.1 continued     
M-H 266.0869 C9H17NO8 266.0876 nd Neuraminic acid1 

M+H 146.0929 C5H11N3O2 146.0930 104.0701, 87.0450, 86.1601 Guanidinobutanoic acid 

Organic acids >10 carbons    
M+H 449.2554 C18H36N6O5S 449.2546 nd Glutathionylaminopropylcadaverine1 

     

Metabolite identities confirmed with standards or comparison with
 
fragmentation pattern in databases. 

1
Putative identity based upon accurate mass measurement of molecular ion and a 

knowledge of dietary and pharmaceutical intake in addition to the more common metabolites present in urine to make an informed decision as to the potential identity of metabolites where 

genuine standards or database fragmentation details are not available. nd = metabolite signal too weak for detection of fragments. 
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There were many other markers that were detected in neat urine but not diluted 

preparations. These were identified as dimer, trimer or adduct ions of metabolites. These were 

artefacts of the MS analysis which were present in spectra in addition to the molecular ion of 

the metabolite which was detected in all the diluted preparations. The reduced level of dimers 

and trimers in the diluted samples is likely due to the reduced concentration of highly 

abundant compounds in the ESI source which may be less favourable to their formation.  

Analysis of the other end of the S-plot revealed markers which were at higher relative 

concentrations in the diluted urine samples compared to the neat urine. Examination of the 

datasets confirmed that they were also detected in neat samples too but at lower 

concentrations, possibly due to greater ion suppressive properties of neat urine preparations 

(Waybright et al., 2006). 

A similar comparison between the MS profiles of neat urine and sequential extraction 

with 10 fold concentration of urine by the two mixed mode polymeric cation and anion 

exchange SPE phases, revealed markers unique to each preparation method. To assess the 

repeatability of the SPE methodology, the variability of the mean peak areas in the MS profiles 

of replicate SPE extracts was assessed and compared to that of replicates of neat samples via 

the method proposed by Want et al., (2010). Analysis of replicate neat urine samples by either 

positive or negative ESI modes was highly repeatable and 91-93% of all 3503-4484 peaks 

detected in 80% of the samples gave a mean peak area %CV of <30%. Analysis of replicate SPE 

samples revealed that between 78% and 87% of 6684-9139 peaks returned mean peak areas 

of <30% CV. This indicates that SPE introduces an additional 6-15% of the experimental 

variation compared with direct analyses of urine samples, though the variability still falls well 

within the acceptable range suggested for metabolomics analyses; i.e. >70% of peaks present 

in 80% of samples should have a variability of <30% CV of the mean peak area (Want et al., 

2010). 

Compared to neat urine, SPE concentration of samples from the male or female 

subjects resulted in detection of a further 24 metabolites. These included metabolites of 

pharmaceuticals, diet and lifestyle as well as non-conjugated bile acids, lipid and amino acid 

metabolites (see Table 3.2). Hence, a tenfold concentration and improved sample clean up by 

SPE increased the detection of many other low abundant compounds to a level that can be 

detected and thus monitored for metabolic variance. Bile acids in particular are reported to be 

present at levels of <0.01 µM/mM creatinine in human urine (Bouatra et al., 2013), and are 

known to be indicative of liver toxicity (Kumar et al., 2012). 

Conversely, 12 metabolites were unique to neat urine and not detected in the SPE 

samples. These comprised polar metabolites that were poorly retained on the UHPLC column, 
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eluting between 1.0-3.8 mins. This indicates that they were too hydrophilic to be extracted by 

the SPE phases. For these compounds analyses of neat or diluted urine by HILIC methods 

would be more suitable (Gika et al., 2014). These polar compounds included sugar, purine and 

nucleoside metabolites which were either endogenously derived or products of the diet. Many 

of the additional markers uniquely detected in concentrated SPE samples were due to the 

formation of dimer, trimer or adduct ions supplementary to the molecular ion signal of the 

metabolite which was present in both neat and SPE preparations. These results indicate that 

SPE extraction of urine results in little qualitative loss from the metabolome, and enable the 

removal of salts and concentration of organics from samples necessary for analyses on a 

nanoflow/nanospray MS platform.  
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Table 3.2: Metabolites unique to either SPE or neat urine preparations  

Experimental mass and ion species. Putative 
Structure 

Theoretical mass Fragments Identity 

Metabolites unique to SPE 

Amino acids and metabolites    

M-H 192.0664 C10H11NO3 192.0661 148.0752, 91.0573 Methylhippuric acid
 

M+H 170.0925 C7H11N3O2 170.0930 126.1021, 109.0751, 96.0683 Methyl histidine
 

M+H 295.1292 C14H18N2O5 295.1294 nd Glutamylphenylalanine
1 

Carnitines     

M+H  372.3108 C21H41NO4 372.3114 85.0272 Tetradecanoylcarnitine
 

Neurotransmitter/ metabolites    

M+H 249.1231 C13H16N2O3 249.1239 190.0858 Hydroxymelatonin
 

Vitamins    

M-H 605.3331 C33H50O10 605.3326 175.0238,157.0146, 113.0243 Dihydroxy-oxovitamin D3-glucuronide
1 

Bile acids and metabolites    

M-H 611.3795 C33H56O10 611.3799 175.0242,157.0149, 113.0244 Cholestane-tetrol-glucuronide 

M-H 391.2843 C24H40O4 391.2848 nd Chenodeoxycholic acid 
 

M-H 514.2836 C26H45NO7S 514.2838 124.0071 Taurocholic acid  

M-H 391.2848 C24H40O4 391.2848 327.271, 329.2836, 345.2793, 347.2956 Deoxycholic acid  

M-H 455. 2478 C24H40O6S 455.2478 nd Sulfolithocholic acid
1 

M-H 512.2692 C26H43NO7S 512.2682 nd Unidentified bile acid
1 

Lipid metabolites    

M+H 288.2911 C13H37NO2 288.2903 nd C17 Sphinganine
1 

M+H 542.2999 C24H47NO10S 542.2978 nd Psychosine sulfate
1 
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Table 3.2 continued     

M+H 358.2957 C20H39NO4 358.2963 nd Palmitoyl threonine
1 

Dietary compounds     

M-H 415.1243 C18H24O11 415.1240 nd Hydroxybenzaldehyde-xylosyl-
glucoside

1 

M-H 212.0024 C8H7NO4S 212.0018 132.0455 Indoxylsulfuric acid 
 

M-H 258.9910 C9H8O7S 258.9912 nd Caffeic acid sulfate
1 

Smoking related compounds   

M+H 163.1235 C10H14N2 163.1238 132.0785, 130.0785 Nicotine 
 

M+H 163.1229 C10H14N2 163.1235 146.0951 Anabasine
 

Free pharmaceuticals    

M+H 223.1328 C13H18O3 223.1334 nd Hydroxyibuprofen
1 

M+H 152.0704 C8H9NO2 152.0712 nd Acetaminophen 
 

Conjugated pharmaceuticals   
 

M-H  285.0789 C13H18O5S 285.0797 205.1225, 79.9575 Ibuprofen Sulfate
 

Organic acids ≤10 carbons   
 

M+H 138.0915 C8H11NO 138.0919 121.065, 93.0690, 91.0534 m-Tyramine
 

Metabolites unique to neat urine 

Amino acids/ metabolites 

M-H147.0301 C5H8O5 147.0293 129.0204,101.0261, 85.0322                                                                                                                                                                                    Hydroxyglutamate 

Nucleotides/ metabolites    

M-H 243.0631 C9H12N2O6 243.0630 200.0556 Uridine 

M-H 195.0522 C7H8N4O3 195.0518 nd Dimethyl uric acid 
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Table 3.2 continued     

M+H 183.0521 C6H6N4O3 183.0518 191.9606 Methyl uric acid 

Vitamins     

M-H 135.0302 C4H8O5 135.0293 nd Threnoic acid 

Dietary compounds     

M-H 221.0670 C8H14O7 221.0661 175.0237, 157.0116 Ethyl glucuronide 

M-H 189.0411 C8H14OS2 189.0408 nd Methialdol
1 

M+H 167.0573 C6H6N4O2 167.0569 110.0338 Methylxanthine 

M-H 383.1201 C14H24O12 383.1190 324.0712 Acetyl maltose 

M-H 179.0571 C6H12O6 179.0556 161.0463 Unidentified sugar 

Organic acids ≤10 carbons    

M-H 161.0460 C6H10O5 161.0450 nd Unidentified organic acid 

M-H 191.0195 C6H8O7 191.0192 147.307,129.0195, 111.0088 Citric acid 

     

Metabolite identities were confirmed with standards or Q-TOF fragmentation pattern. 
1
Putative identity based upon accurate mass measurement of molecular ion and a knowledge of dietary 

and pharmaceutical intake in addition to the more common metabolites present in urine to make an informed decision as to the potential identity of metabolites where genuine standards or 

database fragmentation details are not available. nd = metabolite signal too weak for detection of fragments.
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3.4.2 nUHPLC-nESI-TOF system stability  

The variability of retention time for the nano platform was assessed by calculating the 

%CV for the top 100 most abundant metabolites (50 in positive nESI and 50 in negative nESI).  

All of these peaks returned a %CV for retention time variability of less than the 2%, a threshold 

suggested for metabolomics analysis (Theodoridis et al., 2012), (Figure 3.5). Those eluting 

early, typically before 7.5 mins showed the most variability due to the compounds being 

poorly retained and subsequently suffering from poor peak shape.  The poor retention of these 

compounds is a result of the reversed phase stationary phase not being able to retain the 

metabolites on column. However, the peak shapes of early compounds peaks have been 

optimized by reconstituting samples in a high percentage of aqueous solvent, which we have 

observed to greatly improve peak shape compared to high organic solvent (data not shown). 

However, 96% of the peaks gave a %CV for retention time of less than 1%, and 73% of all peaks 

had a %CV of <0.2%, 10 times lower than the recommended threshold. The peaks between 10 

and 15 mins with a %CV of between 0.3-0.6% were sulfated steroid metabolites which are 

observed to tail slightly on this column chemistry. In addition, the variation in peak area for the 

entire metabolome was assessed using the QC samples by calculating %CV for all peaks in the 

metabolome that are present in at least 80% of the samples (Want et al., 2010). This analysis 

revealed that the response of the nano platform was highly repeatable with 81% (+nESI) and 

79% (-ESI) of peaks with a %CV of the mean peak area of <30%.  

 

Figure 3.5:  Retention time repeatability of nUHPLC-nESI-TOFMS analyses  
Retention time variability calculated as %CV from the mean retention time of the 100 most abundant peaks (50 
+nESI and 50 -nESI) present in the 10 QC injections. All values are < 1% for resolved peaks. 
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3.4.3 Comparison of UHPLC-ESI-TOFMS vs nUHPLC-nESI-TOFMS profiling.  

The development of more sensitive high resolution TOF instruments using nanoflow-

nanospray technologies show great promise for small molecule profiling (Chetwynd et al., 

2014, Jones et al., 2014a). A decrease in column diameter and spray volume can result in 

significant improvements in sensitivity due to improved peak resolution, ionization efficiency 

and reduced ion suppression from matrix components (Liu et al., 2012, Gangl et al., 2001). In 

this study, direct comparison of datasets of urine profiles from conventional and nanospray 

platforms was not feasible using multivariate methods due to differences in retention time on 

the UHPLC versus nUHPLC columns. Instead, a comparison of the two platforms to detect 

metabolites discriminating between the male and female samples was performed as a 

surrogate marker for gains in sensitivity on the nano system.  

SPE extracts were injected at 5 µL urine equivalence on each platform. OPLS-DA 

analysis of metabolomic profiles from the replicate SPE extracts of samples from male and 

female subjects was carried out for each MS platform, and metabolites unique for samples 

from either of the two individuals were detected by S-plot analysis. Concentrated SPE sample 

profiling by conventional UHPLC-ESI-TOFMS resulted in the detection of 23 metabolites which 

were exclusive to either the female or male subjects, namely bile acids and markers of diet or 

smoking (see Table 3.3). However, analysis by the nanospray platform resulted in detection of 

a further 19 metabolites unique to either the male or female extracts and these included 

compounds associated with steroid, eicosanoid, lipid signalling pathways, neurotransmitter 

and amino acid metabolism. As a result, the nUHPLC-nESI-TOFMS chromatograms were further 

interrogated for additional metabolites from these pathways, and which were not detected by 

the UHPLC-ESI-TOFMS platform (see Table 3.3).  Unique to analysis by the nano platform 

revealed that products of the lipoxygenase pathway such as leukotriene E4 and 

hydroxyeicosatetraenoic acids (HETEs) were markers in (male) urine. These eicosanoids are 

mediators of inflammation and disease (Singh et al., 2010), however, other similar 

(prostaglandin) metabolites were not detected in the extracts of either male or female urine, 

possibly because markers of non-steroidal anti-inflammatory drugs (NSAIDs) were present in 

urine samples from both subjects indicating exposure to pharmaceuticals which inhibit 

cyclooxygenase activity and prostanoid biosynthesis. Progesterone, free and conjugated 

estrogens were identified by the nano platform as markers in female urine, and further 

interrogation of the chromatograms revealed a number of androgen and glucocorticoid 

metabolites also unique to analysis by the nano platform (see Figure 3.6 for examples and 

Table 3.3 for a full list).  
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Figure 3.6: Examples of profiles of selected signalling metabolites detected in urine by 

nUHPLC-nESI-TOFMS analysis  
Urine samples were profiled by nUHPLC-nESI-TOFMS and compounds identified by comparison to standards and 
fragmentation pattern. Selected ion chromatograms, at a mass resolution window of 2 ppm,  are shown for 
estrogens, HETES, conjugated androgens an glucocorticoids  in –ve ESI mode and progesterone, LTE4, melatonin, 
glucocorticoids and free androgens in +ve ESI mode. Metabolites corresponding to the additional signals in the ion 
chromatograms of progesterone, testosterone, androstenedione and LTE4 were not identified.  

 

Many of these metabolites are typically present at very low levels in urine at 

concentrations between <0.5 nM and 3 nM/mM creatinine and not normally detected using 

current metabolomics methods (Bouatra et al., 2013). Free estrogens are also poorly ionized 

and not detected using the conventional ESI platform even after SPE concentration of urine 

samples. As sex steroids play a role in several cancers, fertility and cardiovascular disease and 

are also potential markers of endocrine disruption, the ability to detect these metabolites 

during metabolomics profiling constitutes an important step forward in understanding their 

role in disease processes (Gouveia et al., 2013). Other signalling metabolites detected by the 

nano platform included the serotonin metabolite methoxytryptamine (Table 3.3), melatonin 

which regulates circadian activity (Blask et al., 2011), and the neurotransmitter dopamine. The 

detection of these additional metabolites that were unique to the nano platform highlights the 

gains in sensitivity and this could be due to a number of factors. In nESI, the increased rate of 

desolvation and ionization efficiency afforded by the fine spray from the nanospray emitter 

enables a greater proportion of molecules entering the source to become ionized and thus 

allowing the detection of low abundance compounds in the sample extract. In addition, 
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compared with conventional UHPLC, stability of retention time on the nanoflow platform was 

achieved with a 20x lower concentration of the acid buffer (FA), and thus this would allow 

more sensitive analysis of acidic or phenolic compounds detected in the -nESI mode. However, 

a maximum injection volume of 0.5 µL was required to ensure acceptable peak shape in the 

nanoflow system and hence pre-concentration of samples by SPE is vital to  allow a large urine 

equivalence to be injected on the nanoflow column in order to increase  detection levels of 

many metabolites  In addition, the more extensive sample cleanup is necessary with the 

nanoflow system in order to remove salts and proteins as even very fine particulates can cause 

blockages of the column or nESI emitter causing poor nanospray stability and fluctuations in 

instrument sensitivity.  
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Table 3.3: Comparison of UHPLC-ESI-TOFMS and nUHPLC-nESI-TOFMS platforms for detection of discriminatory metabolites 

Observed m/z  Structure Theoretical 
mass 

Fragments Unique to male 
/female samples 

Identity 

Discriminatory metabolites of subject detected by UHPLC-ESI-TOFMS   

Neurotransmitter/ metabolites   

M-H 359.0979 C15H20O10 359.0978 175.0230, 113.0224 Female Methoxy-hydroxyphenylglycol 
glucuronide

1 

M-H 263.0231 C9H12O7S 263.0225 183.0682 Male Methoxy hydrophenylglycol 
sulfate 

Bile acids and metabolites   

M-H 391.2843 C24H40O4 391.2848 nd Female Chenodeoxycholic acid
 

M-H 498.2886 C26H45NO6S 498.2889 nd Male Taurodeoxycholic acid
 

Lipid metabolites      

  M+H 542.2975 C24H47NO10S 542.2990 463.092 Female Psychosine sulfate 

Dietary compounds     

M-H 445.1129 C22H22O10 445.1135 nd Female Unidentified glucoside
1 

M+H 304.0930 C16H15O6 304.0947 nd Female Unidentified flavanoid
1 

M+H 401.1791 C19H28O9 401.1812 nd Female Corchoionoside B
1 

M-H 557.0580 C22H22O15S 557.0601 nd Female Unidentified sulfated 
glucoside

1 

M-H 387.1831 C22H28O6 387.1808 nd Female Unidentified dietary sugar
1 

M-H 381.0291 C16H14O9S 381.0280 nd Female Hesperetin sulfate
1 

M-H 477.1040 C22H22O12 477.1033 nd Female Unidentified glucoside
1 

M-H 321.1554 C14H26O8 321.1549 nd Female Butyl hydroxyl butyrate 
glucoside

1 



95 
 

Table 3.3 continued      

M-H 395.0069 C12H19Cl3O8 395.0067 359.0368 Male Sucralose
 

M-H 217.0185 C8H10O5S 217.0171 nd Female Tyrosol sulfate
1 

M-H 571.1451 C28H28O13 571.1452 nd Male Triacetylglycitin
1 

M-H 313.0552 C13H14O9 313.0560 175.0216, 113.0267 Male Salicylate glucuronide
1 

M-H 427.1959 C21H32O9 427.1968 nd Male Taraxacolide glucopyranoside
1 

Smoking related compounds     

M+H 177.1029 C10H12N2O 177.1028 80.049 Female Cotinine
1 

M+H 193.0974 C10H12N2O2 193.0977 143.117 Female Cotinine N-Oxide
 

M+H 163.1238 C10H14N2 163.1235 132.0785, 130.0785 Female Nicotine
 

Organic acids ≤10 carbons    
 

  M-H 211.0607 C10H12O5 211.0606 123.046 Female Unidentified acid
1 

Organic acids >10 carbons    
 

M-H 224.0599 C11H13O5 224.0685 nd Male Unidentified acid
1 

Additional discriminatory metabolites of subject detected by nUHPLC-nESI-TOFMS: 

Amino acids/ metabolites     

M-H165.0547 C9H10O3 165.0552 147.042, 119.0504 Female Phenyllactic acid
 

Neurotransmitter/ metabolites     

M+H 191.1185 C11H14N2O 191.1184 174.092, 159.068 Male 5-Methoxytryptamine
 

Conjugated androgens     

M-H 383.1525 C19H28O6S 383.1528 96.9595, 79.9571 Female Unidentified sulfated androgen 

M-H 467.2641 C25H40O8 467.2645 175.0240, 157.0141, 113.0241 Male Unidentified androgen 
glucuronide

1 
(retention time 

12.89 mins) 
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Table 3.3 continued      

Free estrogens      

M-H 269.1545 C18H22O2 269.1542 221.1563, 145.0656 Female Estrone
 

Conjugated estrogens     

M-H 445.1871 C24H30O8 445.1862 175.0231, 157.1220, 113.0231 Female Estrone glucuronide
 

M-H 477.2133 C25H34O9 477.2125 175.0223, 113.0225 Female Methoxy-estradiol-glucuronide
1 

Progestogens      

M+H 315.2332 C21H30O2 315.2324 nd Female Progesterone
 

M-H 395.1888 C21H32O5S 395.1882 79.9579 Female Pregnenolone sulfate
1 

Eicosanoids     
 

M-H 319.2275 C20H32O3 319.2273 285.2281, 303.2351 Female Unidentified HETE
 

M+H 440.2477 C23H37NO5S 440.2471 319.2250, 189.165 Male Leukotriene E4
 

Lipid metabolites    
 

M+H 282.2790 C18H35NO 282.2797 nd Male Oleamide
1 

Dietary compound    
 

M-H 533.1382 C25H26O13 533.1373 nd Female Unidentified glucoside 

M-H 367.1421 C18H24O8 367.1393 nd Female Unidentified glucoside 

M-H 204.0665 C11H11NO3 204.0661 160.0763,132.0811,130.0652, 
117.07, 103.0546 

Female Cinnamoylglycine 

M+H 261.1231 C14H16N2O3 261.1239 nd Male Maculosin L,L-Cyclo(leucylprolyl)
1 

M-H 359.1141 C19H20O7 359.1131 nd Male Unidentified flavonoid
1 

Organic acids ≤10 carbons    
 

M-H 147.0440 C9H8O2 147.0446 103.0554 Male Cinnamic acid
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Table 3.3 continued     

Organic acids >10 carbons     

M-H 427.1840 C18H28N4O8 427.1829 nd Male Pyridinoline
1 

Additional metabolites detected in both subjects and unique to nUHPLC-nESI-TOFMS: 

Amino acids/ metabolites     

M+H 205.0973 C11H12N2O2 205.0977 188.0625 - Tryptophan 

M+H 225.0884 C10H12N2O4 225.0875 208.0620 - Hydroxykynurenine 

M-H 159.0293 C6H8O5 159.0293 59.014 
- 

Oxoadipic acid
 

M+H 175.0721 C6H10N2O4 175.0719 nd - Formiminoglutamic acid
1
 

M+H 145.1332 C7H16N2O 145.1341 nd - Acetylcadaverine
1
 

M-H 143.0347 C6H8O4 143.0344 nd - Methylglutaconic acid
1
 

M-H 138.0194 C6H5NO3 138.0191 94.0320 - Hydroxypicolinic acid 

Neurotransmitter/ metabolite     

M+H 154.0841 C8H11NO2 154.0868 137.0495, 113.0630 - Dopamine 

M+H 233.1295 C13H16N2O2 233.1290 nd 
- 

Melatonin 

Free androgens    
 

 

M+H 289.2162 C19H28O2 289.2168 nd - Testosterone 

M+H 287.2016 C19H26O2 287.2011 nd 
- 

Androstenedione
 

Conjugated androgens   
 

 

M-H 467.2641 C25H40O8 467.2645 175.0240, 157.0141, 113.0241 
- 

Unidentified androgen 
glucuronide

1
 (retention time 15.53 

mins) 
Conjugated estrogens   

 
 

M-H 447.2021 C24H32O8 447.2019 175.0237, 157.1229, 113.0232 - Estradiol glucuronide 
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Table 3.3 continued      

Glucocorticoids      

M+H 361.2021 C21H28O5 361.2015 326.16, 301.165 - Cortisone 

M+H 331.2278 C21H30O3 331.2273 nd - 11-deoxycorticosterone 

M+H 335.2581 C21H34O3 335.2586 nd - Tetrahydrodeoxycorticosterone 

Bile acid/ metabolites     

M-H 377.2699 C23H38O4 377.2848 nd - Apocholic acid
1
 

M-H 583.3128 C30H48O11 583.3118 407.2796, 175.0234, 157.1230, 
113.0233 

- Cholic acid glucuronide 

Lipid metabolites      

M+H 300.2902 C16H37NO2 300.2903 282.2767 - Sphingosine 

M-H 295.2275 C18H22O3 295.2273 277.2170, 195.1440, 113.0960, 
71.0150 

- 
Hydroxyoctadecadienoic acid

 

M-H 199.0972 C10H16O4 199.0970 nd - Decanoic acid
1
 

M-H 171.1386 C10H20O2 171.1385 68.9971 - Capric acid 

M-H 155.1075 C9H16O2 155.1072 nd 
- 

Hydroxynonenal
1 

M+H 170.0450 C7H7NO4 170.0453 nd - Furoylglycine
1
 

M+H 232.1181 C10H17NO5 232.1185 nd - Suberylglycine 

M+H 158.0813 C7H11NO3 158.0817 nd - Methylcrotonylglycine
1
 

M-H 173.0813 C8H14O4 173.0814 111.0810 - Suberic acid 

Dietary compounds     

M-H 165.0551 C9H10O3 165.0552 121.0655 - Methoxyphenylacetic acid 

M-H 307.0283 C14H12O6S 307.0276 nd - Resveratrol sulfate 
1
 

M-H 391.1230 C20H22O8 391.1393 nd - Resveratrol glucoside
1
 

M-H 403.1028 C20H20O9 403.1029 175.0229, 113.0225 - Resveratrol glucuronide
1
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Compound identities were confirmed by comparison of fragments with databases or standards.  
1
Putative identity based upon accurate mass measurement of molecular ion and a knowledge 

of dietary and pharmaceutical intake in addition to the more common metabolites present in urine to make an informed decision as to the potential identity of metabolites where genuine 
standards or database fragmentation details are not available. nd = metabolite signal too weak for detection of fragments 

Table 3.3 continued      

M-H 155.1437 C10H20O 155.1436 nd - Menthol
1
 

M-H 273.0765 C15H14O5 273.0763 167.0340, 119.0490 - Phloretin 

M-H 253.0505 C15H10O4 253.0501 91.0180 - Daidzein 

M-H 379.1392 C19H24O8 379.1393 nd - Unidentified glucoside
1
 

M+H 295.1300 C14H18N2O5 295.1294 nd - Aspartame
1
 

M-H 297.1130 C18H18O4 297.1127 nd - Enterolactone
1
 

M-H 255.0660 C15H12O4 255.0657 nd - Dihydrodaidzein
1
 

M-H 283.0598 C16H12O5 283.0606 268.0380 - Glycitein 

M-H 271.0612 C15H12O5 271.0606 nd - Dihydrogenistein
1
 

M+H 179.1065 C11H16O2 179.1072 nd - Butylated hydroxyanisole
1
 

M-H 137.0609 C8H10O2 137.0603 119.0501 - Tyrosol 

M-H 301.1550 C18H22O4 301.1440 nd - Enterodiol
1
 

M-H 115.0760 C6H12O2 115.0759 nd - Caproic acid 

M-H 227.1291 C12H20O4 227.1283 183.1380, 165.1280 - Traumatic acid 

Free pharmaceuticals     

M-H 205.1233 C13H18O2 205.1229 161.1330, 154.9740 - Ibuprofen 

M+H 152.1068 C9H13NO 152.1075 134.0961, 117.0695 - Phenylpropanolamine 

Organic acids ≤10 carbons   
  

M+H 188.1760 C9H21N3O 188.1763 171.1490, 117.1020, 100.0750 - Acetylspermidine 
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3.4.4 Comparison of weak anion exchange vs strong cation exchange SPE using nUHPLC-nESI-

TOFMS profiling.  

In the above studies, the SPE methodology used to extract urine samples was a 

combination of two SPE cartridge phases; urine samples were first extracted using X-AW SPE 

which is a mixed mode polymeric and weak anion exchange phase with an affinity for 

hydrophilic, hydrophobic neutral species as well as the strongly anionic compounds present in 

urine. The urine eluate was from the X-AW SPE was then passed through a mixed mode strong 

cation exchange phase (X-C) to extract weak cationic species which would have been poorly 

retained by the X-AW phase.  Compounds were separately eluted from the two SPE phases and 

aliquots of both the extracts combined for MS analyses. In further work, the contribution of 

the X-C SPE phase to the metabolite profiles extracted by X-AW was evaluated. Initial studies 

indicated that after X-AW extraction, an additional extraction by the X-C phase resulted in 

detection of a significant number of markers (features) after nUHPLC-nESI-TOFMS analysis 

(Figure 3.7). The markers extracted by X-AW and the X-C cartridges were qualitatively 

compared using OPLS-DA models and an S-plot analysis of the loading variables. Many of the 

MS signals extracted by X-C were also present at higher concentrations in X-AW extracts. 

However, S-plot analysis revealed that 57 metabolites were unique to the X-C phase and not 

detected at all in X-AW extracts (Table 3.4). These included carnitines which play important 

roles in lipid metabolism, nucleotides, amino acids and nicotine metabolites. Many of these 

metabolites are cationic species containing nitrogen groups which would have been poorly 

retained on the X-AW chemistry due to electrostatic repulsion between the positively charged 

analyte and the X-AW phase.  nUHPLC-nESI-TOFMS analysis of a combined extract from the X-

AW and X-C phases revealed a lower number of markers compared with X-AW extracts alone, 

particularly in –nESI mode (Figure 3.7).  Extracts from individual SPE phases were analysed 

separately by nUHPLC-nESI-TOFMS, and these datasets were also compared with an analysis of 

the combined aliquots of extracts from both SPE phases to determine whether information 

was lost by analysing a combined SPE extract. OPLS-DA modelling of the datasets of extracts 

from combined and individual SPE revealed that 55 metabolites were not detected in the 

combined extracts compared to analysis of the individual SPE phases (Table 3.5). These 

metabolites included amino acids, vitamins, lipids, neurotransmitters, pharmaceuticals and 

short chain organic acids. A likely explanation for their lack of detection in the combined SPE 

extract was due to ion suppression resulting from co-eluting compounds present in either the 

X-AW or X-C extracts. This result indicates that to extract maximum metabolite information 
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from the urine samples, the extracts from the anionic and cationic SPE phases should be 

analysed separately.  

 

 

Figure 3.7: Number of markers detected in profiles of individual SPE preparations compared 

with profiles from combined SPE samples 
 Number of markers in extracts from X-AW and/or X-C SPE phases are given as mean ±SD (n=5) after removal of 
workup blank signals. Graphs A and B markers detected in positive nESI modes and Graphs C and D markers 
detected in negative nESI mode for the male and female samples.  
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Table 3.4: Metabolites markers unique to the strong cation exchange SPE cartridge 

Experimental mass Structure Theoretical mass Q-TOF Fragments Identity 

Amino acids/ metabolites    

M+H 156.0769 C6H9N3O2 156.0773 110.0719 Histidine
 

M+H 195.0769 C9H10N2O3 195.0770 149.071, 120.0450 Aminohippuric acid
 

M-H 192.0664 C10H11NO3 192.0661 148.075, 91.057 Methylhippuric acid
 

M+H 170.9250 C7H11N3O2 170.0930 126.1021, 109.0751, 96.0683 Methyl histidine 

M+H 166.0861 C9H11NO2 166.0868 120.0801 Phenyl alanine
 

M-H 173.0918 C7H12N2O3 173.0926 116.0710, 70.0660 Glycylproline
 

M+H 182.0824 C9H11NO3 182.0817 165.0560 136.0764 Tyrosine
 

M+H 291.1314 C10H18N4O6 291.1305 nd Argininosuccinic acid
1 

M+H 203.1500 C8H18N4O2 203.1508 nd Symmetric dimethylarginine
1 

M+H 295.1292 C14H18N2O5 295.1294 nd Glutamylphenylalanine
1 

M-H 269.0603 C11H14N2O4S 269.0596 nd Hydroxyphenylacetothiohydroximoyl cysteine
1 

M+H 139.0502 C6H6N2O2 139.0508 121.0400 Urocanic acid
 

M+H 118.0860 C5H11NO2 118.0868 101.0600 Aminopentanoic acid
 

M+H 145.1332 C7H16N2O 145.1341 nd N-Acetylcadaverine
1 

M+H 138.0919 C8H11NO 138.0919 121.065, 93.0690, 91.0534 m-Tyramine
 

Carnitines     

M+H 162.1121 C7H15NO3 162.1130  nd Carnitine
 

M+H 232.1549 C11H21NO4 232.1549 173.0808 Butyrlcarnitine
 

M+H 232.1549 C11H21NO4 232.1549 173.0808 Isobutyrlcarnitine
 

M+H 244.1547 C12H21NO4 244.1549 nd Ethylacrylcarnitine
1 
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Table 3.4 continued    

M+H 246.1706 C12H23NO4 246.1705 187.0985 Methylbutyroylcarnitine
 

Neurotransmitter/ metabolites    

M+H 191.1185 C11H14N2O 191.1184 174.092, 159.068 Methoxytryptamine
 

M+H 178.0858 C10H11NO2 178.0868  nd Hydroxytryptophol
1 

M+H 249.1231 C13H16N2O3 249.1239 190.0858 Hydroxymelatonin
 

M+H 285.1924 C13H24N4O3 285.1927 nd Melanostatin
1 

M+H 152.1068 C9H13NO 152.1075 134.0961, 117.0695 Phenylpropanolamine
 

M+H 176.0715 C10H9NO2 176.0712 nd Hydroxyindoleacetaldehyde
1 

Nucleotides/metabolites    

M+H 166.0720 C6H7N5O 166.0729 149.0459 Methylguanine
 

M-H 310.1163 C12H17N5O5 310.1151 nd Dimethylguanosine
1 

M+H 268.1066 C10H13N5O4 268.1046 136.0615 Deoxyguanosine
 

M+H 282.1199 C11H15N5O4 282.1202 136.0620, 119.0350 Methyladenosine
 

M-H 167.0223 C5H4N4O3 167.0205 124.0163 Uric acid
 

Vitamins     

M+H 245.0953 C10H16N2O3S 245.0960 227.0860 Biotin
 

M-H 213.0699 C9H14N2O2S 213.0698 nd Methyl bisnorbiotinyl ketone
1 

M-H 215.0483 C8H12N2O3S 215.0490 nd Bisnorbiotin
1 

M+H 220.1185 C9H17NO5 220.1186 202.1088 Pantothenic acid 

Lipid metabolites   
 

M+H 185.0815 C5H15NO4P 185.0817 nd Phosphorylcholine
1 

Dietary compounds   
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Table 3.4 continued    

M-H 195.0518 C6H12O7 195.0505 129.0197, 75.0090 Gluconic acid
 

M-H 165.0428 C6H6N4O2 165.0413 nd Methylxanthine
1 

M+H 153.0665 C7H8N2O2 153.0664 nd Methyl pyridonecarboxamide
1 

Smoking related compounds   
 

M+H 177.1029 C10H12N2O 177.1028 80.049 Cotinine
 

M+H 193.0974 C10H12N2O2 193.0977 143.117 Cotinine N-Oxide
 

M+H 149.1074 C9H12N2 149.1079 nd Nornicotine
1 

M+H 193.0976 C10H12N2O2 193.0977 nd Hydroxycotinine
1 

M+H 179.1176 C10H14N2O 179.1184 nd Nicotine-N-oxide
1 

M+H 163.1227 C10H14N2 163.1235 146.095 Anabasine
 

Organic acids ≤10 carbons    

M+H 130.0862 C6H11NO2 130.0868 84.0814, 56.0490 Pipecolic acid
 

M-H 138.0194 C6H5NO3 138.0191 94.032 Hydroxypicolinic acid
 

M-H 115.0028 C4H4O4 115.0031 71.0140 Maleic acid
 

M-H 182.0480 C5H13NO4S 182.0487 nd Choline sulfate
1 

M-H 111.0085 C5H4O3 111.0082 67.0190 Furoic acid
 

M+H 175.0721 C6H10N2O4 175.0719 nd Formiminoglutamic acid
1 

M+H 149.0929 C5H11N3O2 146.0930 104.0700, 87.0450, 86.0600 Guanidinobutanoic acid
 

M+H 106.0868 C4H11NO2 106.0868 88.0760 Diethanolamine
 

M+H 144.0668 C4H7N3O 144.0667  nd Creatinine
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Table 3.4 continued   
 

Other    
 

M-H 308.0782 C14H15NO7 308.0770 175.0243, 157.0147, 113.0241 Inodxyl glucuronide
1 

    
 

Metabolite identities were confirmed with standards or Q-TOF fragmentation pattern.
  1

Putative identity based upon accurate mass measurement of the molecular ion and a knowledge of 

dietary and pharmaceutical intake in addition to the more common metabolites present in urine to make an informed decision as to the potential identity of metabolites where genuine 

standards or database fragmentation details are not available.  nd = metabolite signal too weak for detection of fragments. 
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Table 3.5: Metabolites not detected from analysis of combined SPE extracts compared with extracts from X-AW and X-C phases analysed separately  

Experimental mass Structure Theoretical mass Fragments Presence in 
SPE phase  

   Identity 

Amino acid/ metabolites     
M-H 193.0608 C9H10N2O3 193.0613 149.071, 120.045  X-C Aminohippuric acid

 

M-H 192.0664 C10H11NO3 192.0661 148.075, 91.057 X-C Methylhippuric acid
 

M-H 129.0546 C6H10O3 129.0552 nd X-AW Ketoleucine
1 

M+H 295.1292 C14H18N2O5 295.1294 nd X-C Glutamylphenylalanine
1 

M+H 291.1314 C10H18N4O6 291.1305 nd X-C Argininosuccinic acid
1 

M+H 138.0915 C8H11NO 138.0919 121.065, 93.0690, 91.0534 X-C m-Tyramine
 

M+H 304.1296 C15H17N3O4 304.1297 nd Both Indoleacetyl glutamine
1 

M+H 203.1502 C8H18N4O2 203.1508 nd X-C Symmetric dimethylarginine
1 

M+H 118.0861 C5H11NO2 118.0868 101.06 X-C Aminopentanoic acid
 

M+H 241.1296 C10H16N4O3  241.1301 nd Both Homocarnosine
1 

M+H 130.0862 C6H11NO2 130.0868 84.0814, 56.049 X-C Pipecolic acid
 

M+H 146.0823 C6H11NO3 146.0817 nd X-AW Acetamidobutanoic acid
1 

M+H 118.0652 C8H7N 118.0657 91.0554 Both Indole
 

M-H 308.0782 C14H15NO7 308.0770 175.0243, 157.0147, 113.0241 X-C Indoxyl glucuronide
1 

Carnitines      
M+H 218.1399 C10H19NO4 218.1392 159.0628 X-C Propionylcarnitine

 

Neurotransmitter/ metabolites    
M+H 198.1131 C10H15NO3 198.1130 nd X-AW Metanephrine

1 

M+H 285.1924 C13H24N4O3 285.1927 nd X-C Melanostatin
1 

M+H 176.0712 C10H9NO2 176.0712 nd X-C Hydroxyindoleacetaldehyde
1 

M+H 141.0654 C6H8N2O2 141.0664 nd Both Methylimidazoleacetic acid
1 

Vitamins      
M+H168.0665 C8H9NO3 168.0661 150.0548, 127.0119 X-AW Pyridoxal (Vit B6)

 

M+H 184.0610 C8H9NO4 184.0606 166.0507, 148.0397 Both Pyridoxic acid (Vit B6)
 

M+H 245.0953 C10H16N2O3S 245.0960 227.086 X-AW Biotin
 

M-H 215.0483 C8H12N2O3S 215.0490 nd X-C Bisnorbiotin
1 

Lipid metabolites     
M+H 300.2902 C18H37NO2 300.2903 282.2767 X-AW Sphingosine

 

M+H 256.2644 C16H33NO 256.2640 nd Both Palmitic amide
1 

M+H 170.0450 C7H7NO4 170.0453 nd X-C Furoylglycine
1 
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Table 3.5 continued      
M+H 158.0813 C7H11NO3 158.0817 nd X-AW Methylcrotonylglycine

1 

M+H 232.1181 C10H17NO5 232.1185 nd X-AW Suberylglycine
1 

M-H 227.2013 C14H28O2 227.2011 nd Both Myristic acid
1 

M+H 181.0606 C8H8N2O3 181.0613 135.0556 X-AW Nicotinuric acid
 

Dietary compounds     
M+H 138.0555 C7H7NO2 138.0549 94.0661 Both Trigonelline

 

M-H 221.0665 C8H14O7 223.0818 175.0239, 157.0137, 113.0239 X-AW Ethyl glucuronide
1 

M-H 149.0095 C4H6O6 149.0086 103.0034, 87.009, 72.993, 59.015 Both Tartaric acid
 

M-H 133.0138 C4H6O5 133.0137 115.004, 71.0145 Both Malic acid 
Smoking related compounds   
M+H 163.1227 C10H14N2 163.1235 146.095 X-C Anabasine

 

Free pharmaceuticals     
M+H 152.0701 C8H9NO2 152.0712 80.049, 110.061 Both Acetaminophen

 

M-H 152.0350 C7H7NO3 152.0348 nd X-AW Aminosalicylic acid
1 

Conjugated pharmaceuticals   
M+H 328.1043 C14H17NO8 328.1032 175.0243,113.0239, 152.0701 X-AW Acetaminophen Glucuronide

1 

Organic acid ≤10 carbons     
M-H 115.0028 C4H4O4 115.0031 71.014 X-C Maleic acid

 

M+H 168.0302 C7H5NO4 168.0297 nd X-AW Quinolinic acid
1 

M+H 449.2554 C18H36N6O5S 449.2546 nd Both Glutathionylaminopropylcadaverine
1 

M-H 145.0136 C5H6O5 145.0137 101.0241, 57.0354 Both Oxoglutaric acid
 

M-H 147.0303 C5H8O5 147.0293 129.0191, 103.0406, 85.0296, 57.0361 Both Hydroxyglutaric acid
 

M-H 111.0085 C5H4O3 111.0082 67.019 X-C Furoic acid
 

M-H 129.0191 C5H6O4 129.0188 85.03 Both Glutaconic acid
 

M+H 146.1658 C7H19N3 146.1657 nd X-AW Spermidine
1 

M-H 151.0397 C8H8O3 151.0395 107.5 Both Cresotinic acid
 

M+H 114.0659 C4H7N3O 114.0667 nd Both Creatinine 
M+H 106.0868 C4H11NO2 106.0868 88.076 X-C Diethanolamine

 

     
 

Metabolite identities confirmed with standards or comparison of
 
QTOF fragmentation patterns, 

1
Putative identity based upon accurate mass measurement of the molecular ion and a 

knowledge of dietary and pharmaceutical intake in addition to the more common metabolites present in urine to make an informed decision as to the potential identity of metabolites where 

genuine standards or database fragmentation details are not available.  nd= metabolite signal too weak for detection of fragments
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A summary of the additional metabolites detected in this study across a wide range of 

chemical classes for the different sample preparation techniques and the two analytical 

platforms is presented in Table 3.6. It illustrates that by diluting urine samples less metabolites 

are detected, and that the SPE methodology allows the detection of more metabolites than 

the other sample preparation methods. However, analysis by nanoflow-nanospray platform 

using newly developed methodologies for metabolomics, allowed detection of many more 

metabolites and importantly many of which were in additional compound classes, including 

sex steroids, glucocorticoids, eicosanoids and neurotransmitters. Metabolomic analyses 

require high throughput of samples in order to obtain sample sizes needed for robust 

biomarker discovery. Often high throughput approaches result in a compromise in analytical 

sensitivity and subsequent metabolome coverage. The methods developed in this study 

require increased effort in terms of sample processing and analysis but result in significant 

improvements in the detection of very low abundance metabolites in addition to those 

traditionally difficult to ionize. This enables more metabolic pathways to be monitored using a 

single analytical approach which could potentially lead to more in-depth analysis of the role of 

metabolites in disease states, and the identification of biomarkers using non-invasive 

sampling. 
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Table 3.6: Summary of the compound classes detected using the different sample 

preparation methodologies and analytical platforms 
 

The numbers of metabolites shown within each class were detected relative to the preceding sample preparation 
and analytical technique. + = detected/detected at same level as previous preparation/analytical technique; nd = 
none detected; +number=  net increase in metabolites detected; -number= net decrease in metabolites detected. 
Figures compiled from data presented in: 

1
Table 3.1; 

2
Table 3.2; 

3
Table 3.3; 

4
Table 3.5. 

3.5 Conclusion 

This is the first study to introduce solid phase extraction sample preparation and direct 

nUHPLC-nESI-TOFMS to the field of untargeted urine metabolomic analysis and thus enable 

the profiling of low abundance components of the metabolome including signalling molecules 

important in understanding disease processes. The identification of low abundant metabolites 

in complex extracts of urine as part of a general non-targeted profiling methodology provides a 

step change in metabolomics analysis and a significant enhancement of coverage of the 

urinary metabolome 

  

 
 

Conventional UHPLC-ESI-TOFMS nUHPLC-nESI-
TOFMS 

nUHPLC-nESI-
TOFMS 

Compound class Diluted Neat
1 

Combined SPE
2 Combined 

SPE
3 

Individual SPE
4 

Amino acids/ metabolites + +3 +2 +8 +14 
Carnitines + + +1 + +1 
Neurotransmitter/ 
metabolites 

nd +1 +1 +3 +4 

Nucleotides/ metabolites + + -3 +2 +4 
Vitamins + +2 + + +4 
Free androgens nd nd nd +2 + 
Conjugated androgens + +2 + +3 + 
Free estrogens nd nd nd +1 + 
Conjugates estrogens nd nd nd +3 + 
Progestogens nd nd nd +2 + 
Glucocorticoids + +1 + +3 + 
Eicosanoids nd nd nd +2 + 
Bile acids and 
metabolites 

+ +3 +6 +2 + 

Lipid metabolites + + +3 +10 +7 
Dietary compounds + +3 -2 +23 +4 
Smoking related 
compounds 

+ +2 +2 + +1 

Free pharmaceuticals + + +2 +2 +2 
Conjugated 
pharmaceuticals 

+ + +1 + +1 

Organic acid ≤10 carbons + +5 -1 +2 +11 
Organic acid >10 carbons nd +1 + +1 + 
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Chapter 4: A study on the effect of different normalisation methods for the correction of 

variability in urine concentration 

4.1 Abstract  

  The normalisation of urine metabolomics data is of particular importance due to the 

large variation in urine concentration between voids. This differential dilution of urine may 

prevent, or lead to, incorrect associations between metabolite profiles and disease cases. To 

date, many studies normalise metabolomics data sets following LC-MS analysis and this limits 

normalisation to metabolites with a concentration that falls within the dynamic range of the 

mass spectrometer. The metabolites lost through dilution in the more dilute samples or 

saturate the detector in more concentrated samples are poorly normalised if at all. This effect 

was noted in the current study when post-analysis normalisation to creatinine, osmolality and 

mass spectrum total signal (MSTS) were investigated. To counter this, a pre-analysis 

normalisation method using osmolality was developed whereby samples were dried down 

following SPE extraction and reconstituted in a volume to give equal osmolality for all samples 

prior to LC-MS analysis. This resulted in improved scores plot clustering and increased the total 

number of common peaks and mean peak area repeatability of these peaks between dilution 

factors within individuals. Further improvements were observed when the pre-analysis 

normalisation to osmolality was combined with a post-analysis mass spectrum total useful 

signal (MSTUS) normalisation. Future adoption of such normalisation methods may aid the 

discovery of metabolite discrepancies associated with disease rather than differential urine 

dilution. Further work investigated the effect of identified xenobiotics in urine samples on the 

discrimination between individual subjects. This revealed that in these healthy patients, the 

detected xenobiotics had a minimal effect on discrimination between subjects compared to 

that of fluctuations of endogenously derived metabolites.  

4.2 Introduction 

As with any field of study, the presence of bias threatens to undermine the analysis of 

data and its subsequent interpretation. Within the field of urinary metabolomics this is no 

different; in fact due to the nature of urine there is a unique set of confounding factors. One of 

the two factors with the most potential to skew statistical analysis is varying urine 

concentration, and this has been extensively discussed in the literature with no consensus on 

the optimal normalisation approach (Warrack et al., 2009, Chen et al., 2013b, Veselkov et al., 

2011a, Heavner et al., 2006, Mattarucchi and Guillou, 2012, Mattarucchi and Guillou, 2011, 

Jacob et al., 2014b, Edmands et al., 2014). The other is the presence of xenobiotics, either 

from the diet or pharmaceutical intake, and these have the potential to mask variation in the 
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endogenous metabolome (Walsh et al., 2006, Fernández-Peralbo and Luque de Castro, 2012, 

Lenz et al., 2004).  

A major factor contributing to metabolome variation is urine concentration. Unlike 

most other biofluids, the volume of urine is not physiologically controlled. Instead it is directly 

linked to the individual’s hydration status, primarily through water consumption (Warrack et 

al., 2009, Chen et al., 2013b, Veselkov et al., 2011a). As such, urine volume has been observed 

to vary by up to 15 fold under normal healthy physiological conditions, thus resulting in a large 

variation of metabolite concentration through dilution/concentration (Chen et al., 2013b, 

Veselkov et al., 2011a). To counter this, the normalisation of urine metabolite abundance is 

required to minimise the effect of metabolite dilution/concentration as a result of variable 

urine volume (Heavner et al., 2006, Warrack et al., 2009, Chen et al., 2013b, Veselkov et al., 

2011a).  

There are two stages in the experimental process where normalisation can be 

performed, pre- and post-analysis. Pre-acquisition normalisation acts as a preventative 

normalisation method, whereas post-analysis normalisation has been referred to as curative 

technique (Edmands et al., 2014).  To date, the majority of normalisation techniques have 

focussed on the curative methods and require the acquired peak intensities to be divided by a 

normalisation factor.  

4.2.1 Post-acquisition normalisation methods 

Until recently, post-acquisition normalisation dominated urine metabolomic studies. In 

these studies the peak area for each metabolite in a chromatogram was divided by a 

normalisation factor such as; urine creatinine (Heavner et al., 2006), specific gravity (Heavner 

et al., 2006), osmolality (Boudonck et al., 2009), urine volume (Godzien et al., 2013) and 

several purely mathematical methodologies (Veselkov et al., 2011a). 

Many initial urine metabolomics studies used a clinical measurement of urine 

concentration, urinary creatinine, to normalise peak intensities. Creatinine is a normal 

endogenous metabolite present in human urine and is a by-product of the breakdown of 

creatine phosphate in muscle tissue. Creatinine has been extensively used as a surrogate 

marker of urine concentration, and is still used to standardise concentrations of individual 

metabolites in urine (Warrack et al., 2009, Heavner et al., 2006, Hayashi et al., 2011, Saude et 

al., 2007, Bouatra et al., 2013, Zamora-Ros et al., 2011, Sterz et al., 2012, Schnackenberg et al., 

2012, Ganti et al., 2012a). This normalisation methodology makes the assumption that 

creatinine excretion is constant for each individual. However, creatinine concentrations have 



112 
 

been observed to vary by up to 5 fold as a result of a number of factors including diet, activity, 

gender and health (Warrack et al., 2009, Heavner et al., 2006). In addition, a urine 

metabolomic study of male and female rats on different dosing regimens by Warrack et al., 

(2009) demonstrated that post-analysis normalisation to creatinine still discriminated based on 

sample dilution in the same manner to that of a non-normalised data set. 

Due to the disparity in individual urine volumes between voids it has been suggested 

that the total volume of the void may be used as a normalisation technique (Godzien et al., 

2013). However, using this approach Warrack et al., (2009) was only able to discriminate 

between two different dose groups (high and low), but not between male and female samples. 

Furthermore, in a later study normalisation to urine volume performed worse than post-

analysis normalisation to specific gravity, however no explanation for this was provided 

(Edmands et al., 2014). 

As an alternative approach, osmolality has come to the forefront of normalisation and 

is considered the gold standard for determining urine concentration (Chadha et al., 2001). The 

osmolality of urine is typically ascertained by freezing point depression (Chadha et al., 2001) 

and is as a measure of endogenous metabolic excretion (Warrack et al., 2009). Unlike other 

methods such as creatinine and specific gravity, osmolality is not affected by proteinuric 

samples or the presence of other high molecular weight compounds such as contrast agent 

(Chadha et al., 2001). Indeed Warrack et al., (2009) demonstrated osmolality normalisation to 

be capable of discriminating between treatment groups and gender, in addition to reducing 

variation in biological replicates. As such, osmolality normalisation has been adopted for a 

number of recent urine metabolomics studies (Boudonck et al., 2009, Warrack et al., 2009, Kim 

et al., 2011, Wittmann et al., 2014). 

The use of specific gravity has also become a common method to determine urine 

concentration. Specific gravity is the ratio between the density of urine and pure water. It can 

be measured using refractometry, gravitometry or reagent strips (Chadha et al., 2001, 

Edmands et al., 2014). The specific gravity of urine may then be used as a normalisation factor 

for metabolomic analysis. However, specific gravity measurements may be skewed due to 

protein and other high molecular weight compounds such as contrast agents. These 

compounds disproportionately affect both refractometry and gravitometry measurements 

(Chadha et al., 2001). Despite this, specific gravity normalisation has been used successfully in 

urine metabolomics when measured using refractometry (Heavner et al., 2006, Jacob et al., 

2014b, Edmands et al., 2014, Jacob et al., 2014a). While osmolality is considered the gold 
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standard for determining urine concentration, a strong positive linear relationship between 

osmolality and specific gravity has been observed, suggesting that both measurements can be 

used interchangeably to determine urine concentration (Chadha et al., 2001).  

4.2.2 Mathematical post acquisition normalisation 

So far the methods discussed have relied on various properties of urine and using 

these values to normalise the dataset. There are however, several mathematical post-

analytical techniques which are widely implemented for the normalisation of urine 

metabolomic data. The two most commonly utilised are mass spectrum total useful signal 

(MSTUS) and mass spectrum total signal (MSTS). MSTUS calculates the sum peak intensity of 

metabolites within a chromatogram which are common to all samples, and uses this as a 

normalisation factor (Warrack et al., 2009, Mattarucchi and Guillou, 2012). All peak intensities 

within a chromatogram are subsequently divided by the chromatograms MSTUS normalisation 

factor. This means that the sum peak intensity for all common peaks regardless of the sample 

are equalised. The more of the common factors detected, then the more representative the 

normalisation factor is (Mattarucchi and Guillou, 2012). Confounding factors such as 

pharmaceuticals and dietary factors which are not suitable for calculation of a normalisation 

factor are unlikely to be present in all individuals and thus will not be utilised (Warrack et al., 

2009). Warrack et al., (2009) found MSTUS to normalise urine metabolomic data to the same 

extent as osmolality, resulting in the differentiation between dose groups and gender in 

addition to reducing variation between biological replicates. The equation for MSTUS is given 

below in Eq 4.1.  

 

Eq.4.1 Calculation for MSTUS.  

(Common peaks refer to peaks common to all samples in the study dataset). 

MSTS differs from MSTUS in that it uses the sum peak intensity for all peaks within a 

chromatogram as the sample normalisation factor, and this means that after normalisation the 

sum peak intensity of all chromatograms will be equal (Ganti and Weiss, 2011). This 

methodology is built into several software packages used for chromatogram peak picking and 

deconvolution such as Waters MarkerLynx and Waters Progenesis (Waters, Manchester, UK) 

and is an extensively utilized form of normalisation (Ganti and Weiss, 2011, Kind et al., 2007, 

Beger et al., 2008, Manna et al., 2011, Banday et al., 2011, Zhang et al., 2010). The equation 

(Eq. 4.2) below shows the calculation for MSTS normalisation. 
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Eq.4.2 Calculation for MSTS 

Other mathematical normalisation methods have been investigated by Vesselkov et 

al., (2011a). Here four normalisation methods were analysed; MSTS, peak area median fold 

change, locally weighted scatter plot smoothing and quantile normalisations. The MSTS 

methodology was the same as described previously. Peak area median fold change normalises 

the log fold changes in peak intensities between samples. Once normalised the median log fold 

change is close to zero. Quantile normalisation ensures that all samples in the batch have an 

identical peak intensity distribution (Mar et al., 2009). This method may potentially be skewed 

by very high intensity peaks which vary between samples, or are not present in all samples. 

These confounding metabolites could include pharmaceuticals, making this normalisation 

technique undesirable in clinical studies. Locally weighted scatter plot smoothing forces the 

local median peak intensity fold change to be zero. This method is peak intensity dependent 

and assumes that different scaling factors are required for different peak intensity ranges 

(Veselkov et al., 2011a). In this study, all methods performed well for correcting for serially 

diluted urine samples. However, normalisation to median fold change was found to be 

preferential in the presence of biological variation (Veselkov et al., 2011a). These methods 

however, are not as widespread as some of the other previously described methods and they 

also require knowledge of R and use of command line programming methods. 

The limiting factor with these correctional normalisation methodologies is that they 

are applied following LC-MS analysis. This means normalisation is poor for metabolites that do 

not follow a linear dilution pattern. These include low abundance metabolites that are diluted 

below the limit of detection in more hydrated samples, or concentrated metabolites that 

exceed the dynamic range of the mass spectrometer thus leading to detector saturation (Chen 

et al., 2013b, Mattarucchi and Guillou, 2011).  

4.2.3 Pre-acquisition normalisation methods 

To avoid problems that arise due to non-linear responses of the mass spectrometer, or 

concentration-dependent formation of artefacts such as dimer and adducts, the injection 

volume or urine concentration can be normalised to a physical property of urine prior to LC-

MS analysis as a preventative normalisation method.  
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4.2.3.1 Injection volume correction 

One method to correct for urine concentration prior to analysis is to vary the injection 

volume according to urine concentration. One such study has investigated this methodology 

by adjusting the injection volume to reflect urine creatinine levels (Chen et al., 2013b). This 

method offered improved normalisation for serially diluted rat urine when compared to post-

analysis normalisation to either creatinine concentration, mass spectral creatinine peak area, 

MSTS or MSTUS. Further improvement on this pre-analysis normalisation was observed with 

the addition of a post-analysis MSTUS normalisation, which reduced variation in mass 

spectrometer response (Chen et al., 2013b). Nonetheless, this technique may suffer from 

differing chromatographic dilution due to varying sample injection volumes. This allows 

compounds to elute from the analytical column at different concentrations between samples. 

This effect will be magnified on nLC platforms where injections are into flow rates of 

<1000nl/min.  

4.2.3.2 Urine concentration correction by dilution  

The undesirable chromatographic dilution caused by varying injection volume can be 

avoided by equalising urine concentration prior to sample injection. This can be achieved by 

diluting or concentrating urine samples to give a uniform urine concentration. Using 

techniques that achieve this will allow equal concentrations of urine to be analysed by LC-MS. 

In one study by Jacob et al., (2014b), the effect of pre-analysis freeze drying, and 

normalisation to specific gravity and post-analysis MSTUS normalisation techniques were 

investigated. The freeze dried urine samples were reconstituted in a volume reflecting the 

dried weight of urine (30mg/mL), to ensure the same weight of urine was analysed. Whereas, 

those samples normalised to specific gravity were diluted down to the urine with the lowest 

specific gravity. In this study, it was found that the specific gravity and MSTUS methodologies 

performed in a similar manner, and both improved differentiation between sample groups 

compared to the freeze drying normalised samples. This is potentially due to metabolites being 

lost during the freeze drying process and residual protein and salt levels skewing the dry 

weight of urine. A further advantage of both MSTUS and specific gravity normalisation is that it 

greatly increases sample through-put compared with the time consuming freeze drying 

process (Jacob et al., 2014b). The use of specific gravity pre-analysis normalisation has 

subsequently been adopted for future studies by Jacob et al. (Jacob et al., 2015, Jacob et al., 

2014a). 



116 
 

A further study investigating specific gravity normalisation quantified the differences 

between pre- and post-analysis normalisation. Compared to non-normalised data sets, post-

analysis normalisation to specific gravity led to a 2.3 fold increase in discriminant MS markers 

(Edmands et al., 2014). This difference was increased to 4.2 fold by pre-analysis normalisation 

via the reconstitution of samples in a specific gravity scaled volume (Edmands et al., 2014). 

This result confirms that normalising urine concentration prior to LC-MS analysis results in a 

more comprehensive normalisation method compared to post-analysis normalisation 

methods. 

In 2012, Mattarucchi and Guillou demonstrated a novel pre-normalisation method 

using MSTUS which significantly improved the normalisation of urine samples. This 

methodology however requires samples to be analysed twice. Once to estimate the urine 

concentration using MSTUS and then again to analyse the MSTUS pre-normalised urine 

samples. This however, significantly increased the quantity of sample volume consumed and 

the time taken for analysis (Mattarucchi and Guillou, 2012).  However, interestingly MSTUS 

normalisation factors and osmolality revealed a direct linear relationship, which suggests that 

that MSTUS, specific gravity or urine osmolality may be used interchangeably (Warrack et al., 

2009). 

4.2.4 Xenobiotic effect 

Due to urine being one of the major routes of excretion of xenobiotics and their 

metabolites, they can be found in high abundance in urine (Holmes et al., 2007, Johnson et al., 

2012a). Xenobiotics can be detected as unchanged parent molecules or a range of different 

metabolites derived from phase 1 and/or phase 2 metabolism in tissues, including the liver, 

and in some cases further metabolism by the gut microflora (Kell and Goodacre, 2014, Medina 

et al., 2013a). There have been a number of studies investigating large cohorts where cultural 

differences can be elucidated based upon dietary metabolites (Lenz et al., 2004, Holmes et al., 

2008). Indeed in one study, a sample was noted as an outlier due to the individual being on the 

Atkins diet and thus displayed unusually high levels of taurine, while others were shown to 

differ due to their pharmaceutical intake (Lenz et al., 2004). In an investigation into acute 

kidney injury (AKI) as a result of cardiothoracic surgery, one of the discriminating metabolites 

identified was a pharmaceutical administered to the patients, rather than a underlying 

endogenous metabolite (Zacharias et al., 2013). The differences in pharmaceutical intake in 

clinical metabolomic studies are potentially a large source of discrimination between patient 

populations which may mask under lying metabolomic variation due to disease. It is estimated 

that there are over 25,000 dietary metabolites which may consumed in an individual’s diet, 
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and potentially excreted in the urine (Scalbert et al., 2014). This is of particular concern to the 

discovery of biomarkers of disease or toxicity, as dietary differences may enhance the 

metabolomics variability of samples and thus hinder the discovery of relevant biomarkers. 

These issues have been highlighted as a potential issue in urinary metabolomics, but as yet has 

received little attention (Fernández-Peralbo and Luque de Castro, 2012). 

In animal studies it is relatively simple to control the exposure to xenobiotics by 

controlling the diet and other sources of xenobiotics such as pharmaceuticals. However, in 

human clinical trials this is not possible and is potentially unethical (Gu et al., 2007, Lenz et al., 

2004). It has been demonstrated in rats that changing diets at 24 hour intervals leads to 

significant changes in the urinary metabolome (Gu et al., 2007). Two human studies reduced 

the variation in urinary metabolome profiles by implementing a standardised diet either on the 

day prior to, or on the day of, urine collection (Walsh et al., 2006), (Lenz et al., 2003). However, 

this is not feasible for clinical metabolomic studies and would not exclude for pharmaceutical 

intake.  

4.2.5. Study aims 

The aim of this study was to establish the most appropriate method for the 

normalisation of human urine concentration. To achieve this, 5 urine samples each with 3 

dilutions were analysed using LC-MS. The acquired dataset were initially normalised by post-

analysis to the MSTS, or to creatinine or osmolality concentrations. Subsequent analysis used 

pre-analysis normalisation to osmolality, where all samples were diluted down to the 

osmolality of the most dilute sample. This ensured all urine samples had the same osmolality 

prior to analysis. Osmolality was chosen for the pre-analysis normalisation technique due to its 

direct proportional relationship to specific gravity which has already been shown to be a 

robust pre-normalisation method. In addition, the measurement of urine osmolality is a 

standard test in a clinical laboratory thus making it ideal for clinical case studies. Once the 

optimal normalisation methodology was determined, the effect of excluding detected 

xenobiotics on the classification of sample datasets was investigated. 

4.3 Materials and methods 

4.3.1 Chemicals 

HPLC grade solvents were purchased from Rathburn Chemicals Ltd (Walkerburn, 

Scotland, UK) and UHPLC grade solvents from Fisher Scientific UK (Loughborough, UK). Strata 

X-AW 60 mg/3ml solid phase extraction (SPE) cartridges were purchased from Phenomenex 

(Macclesfield, U.K). Deuterated internal standards (IS); 17β-estradiol 2,4,16,16-d4 sodium 3-
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sulfate (E2-d4-S, >99% D atom), carbamazepine (ring-d10), venlafaxine (N,N-dimethyl-d6), and 

diclofenac (phenyl-d4) were purchased from Cambridge Isotope Laboratories Inc. (MA, USA). 

Progesterone-2,2,4,6,6,17R,21,21,21-d9 (P-d9, 98% D atom) was purchased from CDN isotopes 

(Quebec, Canada) and prostaglandin E2-d4 (9-oxo-11α,15S-dihydroxy-prosta-5Z,13E-dien-1-

oic-3,3,4,4-d4 acid) was purchased from Cayman Chemical Company (MI, USA). All other 

standards and reagents were purchased from Sigma-Aldrich Company Ltd., Dorset, U.K. All 

solvents used were HPLC grade with >99% purity. 

4.3.2 Sample collection 

Urine samples were collected from overnight fasting male patients in an HIV clinic at 

Brighton and Sussex University Hospital. The samples chosen were from HIV/hepatitis negative 

patients and were immediately frozen at -80 °C. All patients provided written, informed 

consent to the NHS Research Ethics Committee (NREC 09/H1107/101). 

4.3.3 Sample preparation 

Urine samples were defrosted and vortex mixed. Aliquots of 1.5 mL from 5 HIV 

negative individuals were taken. This aliquot was used to produce neat, 1 in 2 and 1 in 5 

dilutions using water to give a 700 µL sample at each concentration. Samples were spiked with 

0.5 ng/µL IS and centrifuged at 13000 rpm for 10 minutes. The resulting supernatants were 

adjusted to pH 2 with formic acid and extracted using mixed mode weak anion exchange and 

strong cation exchange solid phase extraction cartridges. Due to only 1.5 mL of each sample 

being available it was only possible to extract each dilution once. Strata X-AW and X-C 

cartridges were stacked with the X-AW above the X-C, both were conditioned with 1 mL 

methanol and 1 mL water. The X-AW cartridge was loaded with 1 mL of the acidified urine and 

washed with 1 mL water. Extracts were eluted with 1 mL 5% ammonium hydroxide in 

methanol followed by 1 mL ethyl acetate. The two solvent elutions were combined, the 

solvents removed under vacuum and the extracts reconstituted in 70 µL of 90: 10 water: 

methanol. Each 70 µL sample was split into two 35 µL aliquots. One of the 35 µL aliquots of 

each sample was diluted down to reflect a uniform (pre-SPE) osmolality of 44.5 mOsm, which 

is the lowest osmolality concentration measured in pre-extracted samples (that of the 1 in 5 

dilution of individual sample number 440).  Aliquot dilution was achieved using water spiked 

with 0.5 ng/µL IS thus ensuring the concentration of internal standard was uniform in all 

samples and for these samples this ensured that the same amount of urine (in terms of 

osmolality) was injected on column in every analysis. All samples were frozen at -80 oC prior to 

nLC-nESI-TOFMS analysis. In order to have enough data for analysis each dilution was injected 

3 times as a LC-MS replicate. 
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Quality control samples (QC) were made up of 100 µL aliquots of each urine sample to 

give 500 µL of pooled urine. This was extracted using the SPE methodology described and 

reconstituted in 50 µL to give a 2 fold rather than a 10 fold concentration to reduce source 

fouling. A QC was injected 3 times before each batch and after every 10th sample within 

batches to assess MS performance throughout the run.  

4.3.4 nUHPLC-nESI-TOFMS analysis 

Samples (0.5 µL) were injected in triplicate in random order onto a Waters 

nanoAcquity and separated using a Waters nanoAcquity HSS-T3 (100mm x 100 µm x 2.8 µm, 

100 Å) column. Chromatographic separation was carried out at 700 nL/min using UHPLC grade 

water and acetonitrile as mobile phases A and B respectively, both modified with 0.01% formic 

acid. A gradient elution was used: 0 min 10% B, 4 min 30% B, 18 min 50%B, 30 min 100%B, 

100% B maintained for 10 min then equilibrated in initial conditions for a further 15 min. 

Metabolites were detected in positive ESI using a Waters Xevo G2 TOFMS equipped with a 

nano ESI source. The TOFMS was tuned to a mass resolution of 20,000. 

4.3.5 Data analysis 

The MS datasets were deisotoped, mass spectral peaks deconvoluted, aligned, and the 

datasets binned using Waters MarkerLynx software.  Extracted markers were exported to 

Simca v13.0 (Umetrics Ltd, Crewe, UK) for multivariate analyses. All data were log transformed 

and Pareto scaled prior to principal components analysis (PCA) to identify the effect of 

different normalisation methods. Further modelling using orthogonal partial least-squares 

discriminant analysis (OPLS-DA) was used to investigate metabolite differences between 

individuals (Wiklund et al., 2008). Metabolite identities were determined from their accurate 

mass, isotopic fit, and comparison of fragmentation data with authentic standards or with 

Metlin (Tautenhahn et al., 2012a), Human Metabolome Database (Wishart et al., 2007), 

Human Urine Metabolome Database (Bouatra et al., 2013) and MycompoundID (Li et al., 

2013a) databases.  

4.3.6 Quality control and reproducibility 

The quality of metabolomic analyses was assessed using the method proposed by 

Want et al., whereby the coefficient of variation was calculated for the mean peak area of 

peaks present in 80% of the QC samples. Reliable metabolomic analysis is achieved when the 

%CV falls below 30% for more than 70% of peaks present in at least 80% of QC samples (Want 

et al., 2010). This procedure was also carried out to determine the effect of normalisation on 
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metabolite mean peak area reproducibility. In this instance, the coefficient of variation for 

mean peak area was calculated for peaks common to all of the individual samples.  

4.3.7 Normalisation methodology 

4.3.7.1 MSTS 

Normalisation to mass spectrum total signal was performed using Microsoft Excel 

where all peaks within a chromatogram are normalised to give equal sum peaks areas for all 

samples see previous Eq. 4.2). 

4.3.7.2 MSTUS 

This normalisation factor was calculated by summing the peak areas for markers 

common to all samples (see Eq. 4.1) using Microsoft Excel. As a result, each sample had its own 

normalisation factor based only upon the total intensities of peaks which are also common to 

all other samples, thus eliminating any bias as a result of xenobiotic and random background 

noise. All peaks areas within a chromatogram were subsequently divided by the sample 

MSTUS normalisation factor.  

4.3.7.3 Creatinine and osmolality 

Creatinine levels were determined at Brighton and Sussex University Hospital via the 

colorimetric Jaffe reaction (Heinegård and Tiderström, 1973, Husdan and Rapoport, 1968).  

Osmolality of urine samples were determined by freezing point depression using an 

Osmometer Model 3320 (Advanced Instruments Inc.). The peak area of each detected ion was 

divided by that of the sample creatinine or osmolality measurement using Excel software.  

4.3.7.4 Pre-analysis normalisation to osmolality 

The choice of osmolality for the pre-analysis normalisation for urine concentration was 

due to osmolality having a strong positive correlation to specific gravity which has already 

been successfully used for urine pre-analysis normalisation (Jacob et al., 2014b, Edmands et 

al., 2014). In addition, osmolality is a standard test for urine in a clinical laboratory making it 

ideal for medical metabolomic studies as no additional measurement outside of normal clinical 

practice is required. As described in the above section, aliquots of SPE extracted samples were 

reconstituted in a volume to reflect a constant pre-extraction osmolality value of 44.5 mOsm 

based on the osmolality measurement of the 1 in 5 dilution of samples 440 prior to SPE. This 

dilution was achieved using HPLC grade water spiked with 0.5 ng/µL IS to ensure uniform 

concentration of IS throughout the analysis. This allowed the same injection volume of 0.5 µL 

to be used for each samples thus eliminating the effect of non-linear dilution. Data from these 
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analyses were assessed as pre-analysis osmolality adjusted urine concentration, and in 

addition were also combined with post-analysis MSTS or MSTUS normalisation strategies. 

4.3.9 Mass exclusion of xenobiotics 

Once the optimal normalisation method had been determined, xenobiotics 

discriminating between individual subjects were identified and excluded from multivariate 

analysis. Once excluded, PCA analysis was performed to determine whether removal of 

xenobiotics from metabolomics data sets resulted in less variation between the urinary 

metabolomes of different individuals.  

4.4 Results and discussion 

4.4.1 nUHPLC-nESI-TOFMS reproducibility 

The reproducibility of the LC-MS metabolomic analysis was assessed from the analysis 

of the 6 QC samples within the batch analysis by calculating the %CV for mean peak area for 

peaks present in 80% (5 of 6) of the QC samples. This revealed that the %CV of mean peak area 

of 74% of peaks present in 80% of QC samples was below 30%. This degree of variation is 

within the suggested minimum limit of 70% of peaks present in 80% of samples returning a 

%CV of peak area of less than 30% (Want et al., 2010).  

A further test of analytical reproducibility is a visual analysis of the PCA scores plot 

containing the QC samples. In reproducible datasets the QC group will cluster together, and 

any analytical variability arising from source fouling of the MS or LC retention time shift will 

disperse the QC data points on the score plot. The non-normalised data set including the QC 

samples are presented in Figure 4.1. Here the QC samples are quite disperse, reflecting some 

variation in LC-MS analysis. However typically a scores plot analysis is undertaken only 

following a normalisation methodology. An additional scores plot in Figure 4.2 where the data 

set is normalised post-analysis to MSTS illustrates very good grouping of the QC as well as the 

three  analytical replicates of each urine dilution. This suggests that the dataset is highly 

reproducible and that MSTS normalisation corrects for small drifts in mass spectral signal.   
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Figure 4.1: PCA scores plot analysis of the non-normalised data set of diluted urine and 

quality control samples  
Legend shows samples coloured according to 5 different individuals. Sample dilution factor (100% no dilution, 20% 1 

in 5 dilution, 50% 1 in 2 dilution) given on PCA plot. QC= quality control samples. 

 

 

Figure 4.2: PCA scores plot analysis of data set from Figure 4.1 normalised post-analysis to 

MSTS  
Legend shows samples coloured according to 5 different individuals. Sample dilution factor (100% no dilution, 20% 1 

in 5 dilution, 50% 1 in 2 dilution) given on PCA plot. QC= quality control samples. 
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4.4.2 Urinary creatine and osmolality values 

The concentrations of creatinine and osmolality measured in the samples for the 5 

individuals are presented in Table 4.1. The osmolality values in the sample set varied from 44 

to 1045 mOsm and reflected the range of values potentially present in a study population (see 

for example Table 6.1, Chapter 6).  The creatinine and osmolality concentrations were used to 

normalise sample data sets in the following studies.  

Table 4.1: Urinary creatinine concentrations and osmolality measurements 

  Osmolality (mOsm) Creatinine (mM) 

Sample Neat 1in2 1in5 Neat 1in2* 1in5* 

301 1045.5 532.7 228.3 19.2 9.6 3.8 

433 908.0 460.5 182.3 35.1 17.6 7.0 

437 691.5 345.5 141.5 7.4 3.7 1.5 

440 212.5 106.5 44.5 4.7 2.4 0.9 

442 614.3 311.5 121.5 10.7 5.4 2.1 

*Creatinine concentrations for 1 in 2 and 1 in 5 dilutions were calculated  from values measured in neat 

urine samples. 

4.4.3 Normalisation of urine samples  

As a result of the QC samples grouping separately from the samples of interest it was 

difficult to ascertain the effect of each normalisation technique on the remaining sample data 

set. As such, all further scores plots for the assessment of normalisation techniques have 

excluded the QC samples. 

4.4.3.1 The effect of no post-analysis normalisation 

The non-normalised data set is shown as a PCA scores plots in Figure 4.3. Here samples 

cluster on the scores plot as a result of dilution factor rather than by individual. This highlights 

the need for a normalisation methodology that corrects for urine dilution.  Using a data set 

such as this would greatly hinder the identification of discriminating factors between 

individuals because the differential dilution of the urine drives the discrimination. 

4.4.3.2 The effect of post-analysis normalisation to MSTS 

The use of MSTS is a normalisation technique built into several software packages such 

as Waters MarkerLynx and Waters Progenesis and as such it has become a default 

normalisation method for many studies (Ganti and Weiss, 2011, Kind et al., 2007, Beger et al., 

2008, Manna et al., 2011, Banday et al., 2011, Zhang et al., 2010). The PCA scores plot in Figure 

4.4 highlights the problem faced with differential urine concentrations. Here discrimination is 

clearly driven by the concentration of urine on column with the 20%, 50% and 100% urine 
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concentrations clearly separated with minimal inter-individual discrimination. This is possibly a 

result of the signal of some ions being too low to be detected in the extracts of diluted samples 

thus influencing clustering on the PCA scores plot. Conversely, extracts of more concentrated 

neat samples may contain a greater proportion of adducts and di- or tri-mers in the sample 

data set resulting in these samples occupying a different chemical space to the diluted samples 

on the PCA scores plot. 

4.4.3.3 The effect of post-analysis normalisation to MSTUS 

The use of normalisation to MSTUS requires a subset of MS signals common to all 

samples in the dataset. As <5% of peaks were found to be common to all samples, which is 

likely due to the range of sample dilutions, then this technique could not be used for post- 

analysis normalisation of samples.  

4.4.3.4 The effect of post-analysis normalisation to creatinine 

The results of post-analysis normalisation to creatinine are displayed in the scores plot 

of Figure 4.5. Compared to the non-normalised data set, the sample grouping is very similar 

and driven by urine dilution. The data indicate creatinine concentration is a poor surrogate for 

measuring urine concentration of samples, possibly due to some of the reasons given 

previously (section 4.2.1) as its concentrations can vary markedly with diet and health. It also 

cannot correct for changes in detection limits due to loading of different urine concentrations 

on the LC-MS. 

4.4.3.5 The effect of post-analysis normalisation to osmolality 

The osmolality normalised scores plot in Figure 4.6 appears similar to that of the 

creatinine and the non-normalised data set. Discrimination is again driven by urine 

concentration but to a lesser extent than that seen in the MSTS normalisation method. There 

is no evidence that the use of osmolality post-analysis normalisation has improved either inter- 

or intra-individual clustering on the scores plot. Improvements in one or both of these factors 

would have suggested an improvement in the normalisation for urine concentration. 
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Figure 4.3: PCA analysis of the data set following LC-MS analysis of serially diluted urine 

samples without any normalisation 
Legend shows samples coloured according to 5 different individuals. Sample dilution factor (100% no dilution, 20% 1 

in 5 dilution, 50% 1 in 2 dilution) given on PCA plot.  Without a correction for urine dilution multivariate analysis 

discriminates samples by dilution instead of discreetly grouping sample from the same individual. 

 

Figure 4.4: The effect of post-analysis normalisation to MSTS following LC-MS analysis of 

serially diluted urine samples 
 Legend as Figure 4.3. The scores plot discriminates based solely upon sample dilution factor with no inter-individual 

discrimination. The more concentrated samples are discriminated from the dilute samples by the first component. 
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Figure 4.5: PCA scores plot of post-analysis normalisation to urinary creatinine concentration 

following LC-MS analysis  
Legend as Figure 4.3. The scores plot is similar to that of the non-normalised data set. Discrimination is driven by 

the dilution factor of the urine rather than by each individual. 

 

Figure 4.6: PCA scores plot of post-analysis normalisation to urinary osmolality following LC-

MS analysis  
Legend as Figure 4.3. The post-analysis normalisation is driven by the dilution factor of the urine sample. There is no 
indication of improvements in intra- or inter-individual clustering compared with no normalisation of the data set. 
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4.4.4 Pre-analysis normalisation 

The results of the post-analysis normalisation methods highlight an important factor 

often over looked in urine normalisation in metabolomics. The majority of studies dilute their 

samples in water to eliminate the effect of detector saturation. This however, will exacerbate 

the loss of low abundance metabolites. The loss of compounds close to the limit of detection 

cannot be corrected for by post-analysis normalisation, and this leads to zero values which 

confound multivariate analysis (Mattarucchi and Guillou, 2012). Some groups resolve this 

problem with zero value data by adding an offset to their data prior to analysis (Veselkov et al., 

2011b, Veselkov et al., 2011a) but despite this, low abundance metabolites just below the limit 

of detection in more dilute urine are not corrected for. Instead a method to inject the same 

amount of urine on column is needed. Despite there being very little visual difference in 

clustering on the scores plots for either post-analysis normalisation to creatinine or osmolality, 

osmolality was chosen as the pre-analysis normalisation factor. This is due to the reported 

effects of diet, gender, exercise  and health on variations in creatinine concentration (Warrack 

et al., 2009) and the fact that osmolality is now considered the gold standard for 

determination of urine concentration. It also has a strong positive correlation to specific 

gravity which has been successfully implemented as a pre-analysis normalisation technique 

(Edmands et al., 2014, Jacob et al., 2014b). Osmolality was preferred to a MSTS or MSTUS pre-

analysis normalisation technique as it allows a more high-throughput analysis without the 

need to analyse samples twice. As such, all urine samples were reconstituted in a volume to 

give an estimated concentration of 445 mOsm after SPE.  

4.4.4.1 The effect of pre-analysis normalisation to osmolality 

The analysis of osmolality-adjusted urine improved the within individual sample 

clustering on PCA scores plots (Figure 4.7). This is potentially a result of analysing the same 

amount of urine for every sample thus eliminating or at least equalising the effect of detector 

saturation or non-liner dilution effects on LC-MS analysis (Edmands et al., 2014, Chen et al., 

2013b, Jacob et al., 2014b, Mattarucchi and Guillou, 2012). In addition, in some subjects 

discrimination on the scores plot was driven by the individual and not the dilution factor. It 

may be possible to further improve individual clustering with an additional post-analysis 

normalisation to reduce variability of the LC-MS analysis. The effect of MSTS has already been 

observed for reducing LC-MS variation and could potentially have the same result following a 

pre-analysis normalisation to osmolality. Furthermore, the addition of a post-analysis MSTUS 

normalisation has been shown elsewhere to improve upon pre-normalisation factors (Chen et 

al., 2013b). 
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4.4.4.2 The effect of pre-analysis normalisation to osmolality plus post-analysis 

normalisation to MSTS or MSTUS 

As previously mentioned, an additional post-analysis normalisation to reduce the 

effect of LC-MS variation may further improve the quality of the metabolomic data set. Due to 

their wide spread use both MSTS and MSTUS methods were investigated; score plots for these 

analysis are presented in Figures 4.8 and 4.9 respectively. The additional MSTS normalisation 

appears to have improved some of the grouping for individuals. However, individual 440 is still 

relatively dispersed compared to the other individuals and clusters according to dilution. This 

grouping however is further improved when MSTUS is implemented instead of the MSTS. Here 

all individuals tend to cluster with the effect of dilution now being greatly reduced though not 

completely eliminated. It was possible that the remaining discrimination as a result of dilution 

could be caused by different loading of the urine concentrations onto the SPE cartridge during 

the sample preparation step, resulting in differences in extraction efficiency of some 

components of the metabolome.  

Figure 4.7: PCA scores plot of pre- analysis normalisation to osmolality prior to LC-MS 

analysis of serially diluted urine samples  
Legend as Figure 4.3. The preventative normalisation to osmolality improves discrimination between individuals, 

with less variation within samples from the same individual.  
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Figure 4.8: PCA scores plot of pre-analysis normalisation to osmolality followed by an 

additional post-analysis MSTS normalisation of serially diluted urine samples analysed by LC-

MS 
Legend as Figure 4.3. The addition of a further normalisation to MSTS post-analysis has improved intra-individual 

clustering on the scores plot with samples.  

 

Figure 4.9: PCA scores plot of pre-analysis normalisation to osmolality followed by an 

additional post-analysis MSTUS normalisation of serially diluted urine samples analysed by 

LC-MS  
Legend as Figure 4.3. In comparison to the pre-analysis to osmolality alone, grouping by individuals is more evident 

with less intra-individual variation of samples.  
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4.4.5 Quantitative analysis of normalisation methods 

An additional method to determine the effect of differing normalisation techniques is 

to assess the mean peak area repeatability of metabolome (Jacob et al., 2014b). Using a 

slightly modified version of the method proposed by Want et al., (2010), the mean peak areas 

for peaks present in 100% of samples for each individual were determined and their %CV 

calculated. This analysis determines the total number of ions common to all dilutions of an 

individual and their respective mean peak area variation. An improved normalisation of the 

data set should result in an increase in common peaks detected and a greater percentage of 

these peaks will have a %CV <30%. These data are presented in Tables 4.2 and 4.3 respectively. 

These figures were only calculated for the non-normalised and post-analysis normalisation 

data sets only. This is because ≤6% of peaks were common within individuals in the non-

normalised data set of which none have %CV of mean peak area below 30%. This helps to 

explain the poor post-analysis normalisation data sets because no post-analysis normalisation 

can correct for the loss of metabolites.  

Table 4.2: The effect of normalisation on the number of peaks detected that were common 

to all samples 

 Number of common peaks in 
each sample 

Normalisation method  301 433 437 440 442 

Non-normalised 18 130 159 55 129 

Pre-analysis to osmolality 557 546 598 641 614 

 

Table 4.3: The effect of normalisation methodologies on mean peak area reproducibility 

Normalisation method Sample 

301 433 437 440 442 

Non-normalised 0% 0% 0% 0% 0% 

Pre-osmolality 60% 20% 28% 26% 49% 

Pre-osmolality + MSTS 66% 24% 18% 44% 56% 

Pre-osmolality + MSTUS 65% 26% 25% 45% 57% 

The percentages expressed are the percent of peaks common to each sample with a %CV of less than 30% 

The use of pre-analysis normalisation to osmolality increased the number of 

commonly detected peaks by up to 31 fold, of which 20 to 60% returned a %CV for mean peak 

area below 30%. In contrast, none of the common peaks detected in the non-normalised data 

set had a mean peak area CV of <30%. These values reflect the improvements in clustering of 

samples from the same individual that were observed in the PCA scores plots using pre-

analysis normalisation to osmolality method. The addition of a post-analysis MSTS or MSTUS 

normalisation to reduce variation in the LC-MS analysis generally increased the percentage of 
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peaks with  a mean peak area %CV of <30% by a further 4 and 19% depending on the sample 

source (the sample from individual 437 being the exception). These data suggest that pre-

analysis normalisation to osmolality with an additional post-analysis normalisation to MSTUS 

or MSTS offers an improved score plot clustering reducing variation associated with sample 

dilution in addition to providing a more repeatable metabolomic analysis. This methodology 

offers the best normalisation technique of those tested in this study, however some 

discrimination still remains as a result of urine dilution factor. This may be due to loading SPE 

cartridges with different urine concentrations. By diluting urine samples to equalise osmolality 

prior to SPE, further improvements in scores plot scattering may have been observed. An 

additional consideration is that in this study urine samples were diluted down to the lowest 

measured osmolality. This means that only the most dilute urine samples were analysed 

meaning that small variations in peak intensity have a greater impact on repeatability. There is 

also the added risk that important low abundance metabolites such as eicosanoids and 

unconjugated sex steroids were not detected as these dilutions. To counter this, future studies 

may benefit from reconstituting samples to a common osmolality chosen in the middle of the 

normal urine osmolality range of a population in order to reduce the risk of non-detection of 

low abundant metabolites. 

4.4.6 Mass exclusion of xenobiotics 

The effect of xenobiotics on multivariate analysis was investigated using OPLS-DA 

analysis to compare samples from individuals which clustered apart in the PCA model, i.e. 

individuals  433 and 437, and 433 and 440. Samples from these subjects were clearly separated 

on the PCA scores plot (Figure 4.9). Visualisation of discriminating chemicals between 

individuals 433 and 447 using an S-plot (see Figure 4.10) enabled the identification of 3 

xenobiotics and 6 endogenous metabolites in which concentrations were markedly higher in 

individual 447 compared to 443 (see Table 4.4). The signal intensity plots for three of the 

compounds indicated that they were xenobiotics as they were clearly present in individual 437 

but not detected at all in individual 433 (see Figure 4.11 for example). These compounds were 

identified as Ranitidine (a histamine H2-receptor antagonist), a metabolite of acetaminophen, 

and a dietary polyphenol. The remaining 6 markers of individual 437 were endogenously 

derived metabolites, identified as carnitines and were also present at a lower concentration in 

individual 433 (see Figure 4.12 for example). Following the exclusion of the three xenobiotics a 

new PCA scores plot was constructed (Figure 4.13), which shows little change from the initial 

scores plot in Figure 4.9. This suggests that the discrimination seen on the PCA scores plot 

between individuals 433 and 437 was not driven solely by xenobiotics. To determine if this is 

http://en.wikipedia.org/wiki/Histamine
http://en.wikipedia.org/wiki/H2-receptor_antagonist
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due to the 6 endogenous metabolites found to be driving separation these were also excluded 

(see Figure 4.14). The removal of all 9 (xeno)metabolites resulted in a redistribution of scores 

on the scores plot. Individual 437 has begun to group with that of 301 suggesting their 

metabolite profiles are more similar following the exclusion of the 9 (xeno)metabolites. 

Despite the exclusion of these (xeno)metabolites some discrimination remains between 

individuals 433 and 437. Further work examining discriminating compounds between 

individuals 433 and 440 revealed that they comprised over 40 compounds which were all 

endogenously derived metabolites. The data suggest that for the samples from these 5 

individuals, that many metabolites are driving clustering of samples on the PCA model rather 

than a few xenobiotic compounds. However, the exclusion of xenobiotics in a clinical case 

study may have a much more significant effect on sample clustering in a PCA model, as  

patients may have been treated with high doses of a variety of pharmaceuticals related to 

their condition, e.g. in antiretroviral medication. 

 

Figure 4.10: OPLS-DA S-plot analysis of discriminating metabolites between individuals 433 

and 437  
Metabolites found to be driving discrimination are labelled and removed from the PCA model. 

 

 

 

 



133 
 

Table 4.4: (Xeno)metabolites highlighted by OPLS-DA S-plot as discriminating between 

individuals 433 and 437  

Experimental 

mass 

Formula Actual 

mass 

Fragments Identity 

315.149 C13H22N4O3S 315.1491 176.0502 Ranitidine 

271.076 C11H14N2O4S 271.0753 167.0575 Acetaminophen mercapturate 

457.222 C26H32O7 457.2226 None Unidentified polyphenol 

304.212 C15H29NO5 304.212 85.0299 Unidentified carnitine 

330.264 C18H35NO4 330.2644 85.029 Unidentified carnitine 

300.218 C16H29NO4 300.2175 85.0297 Unidentified carnitine 

356.243 C19H33NO5 356.2437 85.0296 Unidentified carnitine 

308.186 C17H26NO4 308.1862 85.03 Unidentified carnitine 

319.166 C17H22N2O2 319.1658 None Unidentified metabolite 

Concentrations of identified compounds were markedly higher in urine of 437 compared to 433.  

 

Figure 4.11: Signal intensity of acetaminophen mercapturate in samples 433 and 437  
Acetaminophen mercapturate is present only in the urine sample of individual 437 thus driving some of the 
discrimination between the two individuals. 
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Figure 4.12: Signal intensity of an unidentified carnitine in samples 433 and 437  
The unidentified carnitine is present in both individuals suggesting it is an endogenous metabolite. The elevated 

concentration in individual 437 drives some of the discrimination between sample groups. 

 

 

Figure 4.13: Score plot analysis following the exclusion of the 3 identified xenobiotic markers  
The effect of xenobiotic exclusion on the PCA scores plot has been minimal compared to the final scores plot from 

the normalisation section (Figure 4.9). This suggests that endogenous metabolite variation is driving the 

discrimination between individuals. 
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Figure 4.14: Score plot analysis following the exclusion of all 10 identified (xeno)metabolites  
Following the exclusion of the identified (xeno)metabolites a significant shift in clustering of scores is observed. 
However, discrimination between some individuals remains, suggesting other metabolites still drive discrimination 
between individuals. 

4.5 Conclusion 

The normalisation method developed in this study offers a potential improvement for 

the correction of urine concentration. While many previous studies have focussed on post-

analysis normalisation, this study compared these methods to a pre-analysis normalisation 

strategy. The implementation of post-analysis normalisation was unable to correct for serially 

diluted urine samples. This in part was likely due to metabolites being lost through dilution. 

The use of a pre-analysis normalisation to osmolality ensures all samples are of equal 

osmolality prior to LC-MS analysis. This improved individual grouping on a PCA scores plot in 

addition to increasing the number of common peaks detected. The repeatability of these 

common peaks was further improved with the addition of a post-analysis MSTS or MSTUS 

normalisation, which corrected for peak area variation as a result of any LC-MS variability. This 

normalisation method is also advantageous as no further analyses other than an osmolality 

reading are required. This proposed method therefore offers a quick and simple normalisation 

methodology for urine metabolomics. Further work revealed that the impact of xenobiotics on 

the metabolome of healthy individuals was demonstrated to have a minimal effect on the 

discrimination of samples between individuals after PCA modelling of the data set and the 

main driving force of discrimination was found to be numerous endogenous metabolites. 

However, removal of drug derived xenobiotics maybe more important  in a clinical case study, 
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where the pharmaceutical impact on the metabolome a more important factor to take into 

consideration during multivariate analyses of the data set.  
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Chapter 5: A case study investigating the effect of HIV status on metabolomic profiles of 

urine 

Abstract 

The world is currently in the midst of a worldwide epidemic of HIV with at least 60 million 

people having been infected with the virus and 25 million dying as a result. Despite this, HIV 

infection has been for the most part passed over by metabolomic researchers, despite the 

opportunity to increase the understanding of the mode of action and effects of retroviral 

infection.  The few studies that have been carried out to investigate the effects of HIV infection 

on the metabolome have for the most part investigated saliva, blood products and CSF and 

have typically involved a treatment option. To date, no urine metabolomic study has been 

performed using LC-MS or other metabolite profiling techniques. Using newly developed 

sample preparation and LC-MS analytical methodologies, this study investigated the 

metabolomes associated with three HIV statuses; HIV negative, acute HIV and chronic HIV 

infections. These new techniques however were unable to detect any discriminating 

metabolites associated with HIV status or viral load. This result was potentially a result of the 

effect of HIV on the patients being minimal, as none of the patients reached threshold levels of 

CD4 count (a marker of T-helper lymphocyte cell numbers) to require antiretroviral therapy 

(ART) at the time of the study. This would suggest that urine metabolomics for early detection 

or qualitative analysis of early HIV infection is unsuitable and that other matrices such as blood 

products maybe a better option despite the inherent risk of infection from HIV retrovirus 

present in the plasma or serum samples. 

5.1 Introduction 

The Human Immunodeficiency Virus (HIV) is a current worldwide epidemic with an estimated 

60 million people having been infected and 25 million dying as a result (Sharp and Hahn, 2011). 

The vast majority of cases are due to HIV-1 infection, which is the most widespread and 

contagious of the two HIV viruses (HIV-1 and HIV-2). Both are zoonotic viruses related to 

simian immunodeficiency viruses (SIV) which crossed the species border from various primate 

species in sub-Saharan Africa (Hahn et al., 2000, Sharp and Hahn, 2011, Faria et al., 2014). The 

HIV virus decimates the immune system of its hosts via its infection of primarily CD4 positive 

(CD4+) cells of the immune system (Levy, 1993, Pantaleo et al., 1993a). This leads to 

opportunistic infections and malignancies such as Kaposi’s sarcoma (Sharp and Hahn, 2011). 

These symptoms are typically associated with acquired immunodeficiency (AIDS) as a result of 

HIV infection and occur when CD4+ lymphocyte cell counts are <200 cells per µL of blood 

(Pantaleo et al., 1993a, Pantaleo et al., 1993b). 
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HIV pathogenesis has distinct phases, and upon initial infection patients often experience flu 

like symptoms which is a result of a dramatic drop in immune function due to loss of CD4+ 

lymphocytes and peak HIV viral load. This occurs while the patient is undergoing HIV 

seroconversion and is often referred to as acute HIV infection. After several weeks the host 

immune system recovers, although never to its previous functionality. However, despite this 

the immune system is still capable of limiting the replication and spread of the HIV virus and 

the patient enters a period of clinical latency. During this period, which can last for several 

years, patients are typically asymptomatic and may not be aware of their HIV status.  Once the 

virus overcomes the host immune system and the CD4+ counts drop to <200 cells per µL of 

blood, then aggressive treatment with antiretroviral pharmaceuticals ensues. Eventually 

advanced clinical HIV infection sets in which is characterised by frequent AIDS related 

opportunistic infections and cancers, and has a very high level of mortality (Pantaleo et al., 

1993a, Pantaleo et al., 1993b, Fauci, 1996). 

Despite the worldwide spread of HIV and the number of individuals living with the disease, 

very few metabolomic studies of HIV infection have been carried out. Those that have 

investigated HIV infection have analysed the plasma, serum, saliva, cerebrospinal fluid (CSF), 

cell lines and bronchoalveolar lavage metabolomes (Cassol et al., 2014, Philippeos et al., 2009, 

Hollenbaugh et al., 2011, Wikoff et al., 2008, Ghannoum et al., 2013, Sitole et al., 2013, 

Williams et al., 2012, Cribbs et al., 2014). To date, the majority of these studies have been on 

patients taking some form of ART thus making it difficult to differentiate between the 

metabolomic effects of HIV status and ART intervention. However, one study that used GC-MS 

analyses to investigate the serum metabolomes of ART naïve HIV positive and negative 

patients, revealed that a number of disrupted metabolomic pathways were observed. The 

metabolite profiles of HIV positive patients revealed dysfunction of the mitochondrial system 

with disruption of concentrations of a number of Krebs cycle organic acids indicating that the 

respiratory chain in the mitochondria is disturbed. In addition, markers of oxidative stress and 

disrupted lipid profiles were also elevated in HIV positive patients and this may be a result of 

an inflammatory response to infection (Williams et al., 2012). An investigation of the effects of 

HIV infection on the CSF metabolome by Cassol et al., (2014) detected markers of glial 

activation and disruption to neurotransmitters, ketone bodies, carnitines and amino acids 

regardless of cART (combined ART medication) status when compared to cART naïve HIV 

negative patients. These markers were strongly correlated to plasma protein indicators of 

inflammation, including interleukins and interferons. Similar findings were also found in a 

metabolomic analysis CSF from macaques infected with the primate analogue of HIV, i.e. SIV. 



139 
 

In addition, a number of carnitines were also found to be disrupted in the samples from SIV 

infected macaques suggesting lipid metabolism had been disrupted possibly as a result of 

mitochondrial dysfunction (Wikoff et al., 2008). A targeted metabolomics approach using LC-

MSMS investigated the metabolic consequences of HIV infected CD4+ T-cells and a 

macrophage cell line that is a model for the effect of HIV infection. Interestingly both cells 

types reacted differently, with glycolysis being increased in the HIV positive CD4+ T-cells and 

reduced in the macrophages. In addition, the T-cells increased the production of ribose via an 

oxidative pentose phosphate pathway (Hollenbaugh et al., 2011). 

Perhaps surprisingly, to date there have been no urine metabolomic studies of HIV infection. 

Urine would offer a non-invasive method for metabolomics and has the additional benefit of a 

minimal risk of HIV infection for the researchers. The aforementioned studies suggest that 

there are metabolomic consequences of HIV infection that can be detected using a 

metabolomics approach. The use of improved sample preparation and more sensitive nLC-

nESI-MS may aid the discovery of metabolite variation in urine samples. This may include small 

molecule markers of inflammation such as eicosanoids to compliment the current protein 

markers of inflammation in plasma (Kamat et al., 2012, Malherbe et al., 2014). Furthermore, 

no metabolomic study has yet investigated the differences between acute and chronic HIV 

infection. As such, it is not known how the metabolic response to HIV changes over the course 

of HIV infection. 

5.1.1 Study aims 

This study aims to characterise any changes in the urinary metabolome as a consequence of 

HIV infection. Urine samples from cART naïve HIV negative patients will be analysed in addition 

to those from cART naïve patients with acute and chronic HIV infection. Using newly 

developed SPE sample preparation techniques and nUHPLC-nESI-TOFMS  methodologies, low 

as well as high abundance metabolites will be profiled  and analysed for metabolomic 

disruption as a result of HIV infection (Chetwynd et al., 2014, Chetwynd et al., 2015). 

5.2 Materials and methods 

5.2.1 Materials and chemicals 

HPLC grade solvents were purchased from Rathburn Chemicals Ltd (Walkerburn, Scotland, UK) 

and UHPLC grade solvents from Fisher Scientific UK (Loughborough, UK). Strata X-AW and X-C 

60 mg/3ml solid phase extraction (SPE) cartridges were purchased from Phenomenex 

(Macclesfield, U.K). Deuterated compounds were used as internal standards (IS); 17β-estradiol 

2,4,16,16-d4 sodium 3-sulfate (E2-d4-S, >99% D atom), carbamazepine (ring-d10), venlafaxine 
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(N,N-dimethyl-d6), and diclofenac (phenyl-d4) were purchased from Cambridge Isotope 

Laboratories Inc. (MA, USA). Progesterone-2,2,4,6,6,17R,21,21,21-d9 (P-d9, 98% D atom) was 

purchased from CDN isotopes (Quebec, Canada) and prostaglandin E2-d4 (9-oxo-11α,15S-

dihydroxy-prosta-5Z,13E-dien-1-oic-3,3,4,4-d4 acid) were purchased from Cayman Chemical 

Company (MI, USA). All other standards and reagent chemicals were purchased from Sigma-

Aldrich Company Ltd., Dorset, U.K. 

5.2.2 Sample collection 

Urine samples were collected by Brighton and Hove University Hospital (BSUH) from 451 male 

patients from a HIV clinic. All patients gave written informed consent and ethical approval was 

given by the NHS Research Ethics Committee (NREC 09/H1107/101). All samples were 

immediately frozen at -80 °C prior to sample preparation. For this study 54 urine samples were 

available for analysis from the available cART naïve patients and these comprised 13 HIV 

negative, 15 acute HIV and 26 chronic HIV samples. Samples were classified as from acute and 

chronically infected patients as explained below in section 5.3.1. All samples were from 

patients not receiving medication for HIV, all of whom tested negative for hepatitis B and C. 

Patients were matched for ages and ethnicity, and Table 1 contains details of mean CD4 and 

viral counts for the patient groups in addition to several other urine chemistries.  

5.2.3 Sample preparation 

Urine sample osmolality was measured at BSUH pathology department using a Model 3320 

osmometer (Advanced Instruments Inc.) Samples were then stored in 10% methanol and 

transported to the University of Sussex for metabolomic analysis. Urine samples were 

defrosted, vortex mixed and centrifuged at 13000 rpm for 10 minutes. Samples were adjusted 

to pH 2 using formic acid and then spiked with 0.5 ng/µL IS. Samples were extracted using a 

Strata X-AW stacked on top of a Strata X-C solid phase extraction cartridge which was primed 

with 1 mL methanol, washed with 1 mL water, and then loaded with 0.5 mL acidified sample 

before a further 1 mL water wash. Samples were eluted with 1 mL 5% ammonium hydroxide in 

methanol and a further 1 mL ethyl acetate. Eluents were dried to dryness before 

reconstitution in 90:10 H2O: MeOH, and the volume for reconstitution were adjusted to 

ensure all samples had the same calculated osmolality concentration of 1360 mOsm. This 

concentration was chosen based upon 2 x the mean osmolality of all 54 samples measured 

prior to SPE. Extracted samples were stored at -80 °C prior to analysis. 
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5.2.4 nUHPLC-nESI-TOFMS  

Aliquots of 0.5 µL were injected onto a Waters nanoAcquity UHPLC and separated using a 

Waters nanoAcquity HSS-T3 (100mm x 100 µm x 2.8 µm, 100 Å) column. Chromatographic 

separation was carried out at 700 nL/min using UHPLC grade water and acetonitrile as mobile 

phases A and B respectively, both modified with 0.01% formic acid. A gradient elution was 

used: 0mins 10% B, 4mins 30% B, 18mins 50% B, 30mins 100% B, 100% B maintained for 10 

minutes then equilibrated in initial conditions for a further 15 mins. Metabolites were 

detected in positive and negative nESI mode using a Waters Xevo G2 TOFMS tuned to a mass 

resolution of 20,000 and equipped with a nano ESI source with a homemade fused silica 

emitter as described in chapter 2 (Chetwynd et al., 2014, Chetwynd et al., 2015). 

5.2.5 Quality control 

Prior to the analysis of samples in either ionization mode, 5 QC injections were run to 

condition the ESI source. To determine the repeatability and reliability of the analysis, QC 

samples were injected every 10 samples. These were then assessed for metabolome peak 

areas repeatability by calculating the %CV for all peaks present in 80% of QC samples. High 

quality metabolomic data is determined when 70% of peaks having a mean peak areas of <30% 

(Want et al., 2010). 

5.2.6 Data and statistical analysis 

Chromatograms were peak picked and deconvoluted using Waters MarkerLynx software and a 

MSTS normalisation applied to correct for MS variation. All data were exported for 

multivariate analysis in Umetrics Simca 13.0 where it was log transformed and Pareto scaled. 

Principal component scores plots were constructed for both ionization modes, with any 

discriminating markers being determined using S-plot analysis of the OPLS-DA models. 

Statistical analysis of patient blood and urine biochemistry was carried out using GraphPad 

Prism version 6.00 for Windows, GraphPad Software, San Diego California USA, 

www.graphpad.com. Data from patient groups were tested for normality using the D’Agostino-

Pearson omnibus K2 test. Metabolites that were normally distributed were then tested for 

significance at P<0.01 using a one-way ANOVA with a Holm-Sidak multiple comparison test to 

determine p-values. Non-normally distributed data were tested using the Kruskal-Wallis 

ANOVA with a Dunn’s multiple comparison test to determine p-values. 
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5.3 Results and discussion 

5.3.1 Blood and urine biochemistry 

Samples from HIV positive patients were grouped as acute (seroconverters) or chronic 

infection at the time of donation, based on the Recent Infection Testing Algorithm (RITA) 

which was carried out at Brighton and Sussex University Hospital. Here the concentrations of 

various HIV antibodies are used to predict the time elapsed since infection and HIV status. The 

antibodies used in the determination of RITA scores include immunoglobulin M (IgM) and IgG. 

IgM is the first antibody to react to a foreign antigen and typically peaks within 2 weeks of HIV 

infection after which levels drop to initial concentrations, after which IgG levels begin to 

increase and remain increased during chronic HIV (Murphy and Parry, 2008). RITA uses set cut-

off points for these antibody levels to determine HIV acute/chronic status. However, due to 

inter-individual variation, RITA only offers a rough guide as to when an individual became 

infected. As such recent infection/acute HIV can be defined for up to 6 months following the 

initial infection (Murphy and Parry, 2008, Sane et al., 2014).  

All samples were from males who were matched for age, urine osmolality and creatinine, urine 

protein creatinine ratio (UPCR) and cART status. The data sets for each parameter were tested 

for normality using D’Agostino-Pearson omnibus K2 test and then for significance (p<0.05) 

using one-way ANOVA or for non-normally distributed data a Kruskal-Wallis test.  None of the 

measured parameters varied significantly (p>0.05) between the sample groups (Table 5.1). The 

UPCR is a marker of kidney function with values of >30 indicating impaired kidney function. All 

of the patients in the sample groups had a UPCR <30. Urine creatinine is used widely as a 

marker of urine concentration as discussed in Chapter 4, and elevated levels may also be used 

as an indicator of kidney malfunction. No significant differences were observed between 

sample groups for either UPCR or urine creatinine indicating there were no changes in kidney 

function as a result of HIV infection.  

The CD4 count and viral load were tested for significance using a two-tailed t-test and showed 

no significant difference in concentrations between acute and chronic patient groups. All but 

one patient in the acute HIV group have CD4+ cell counts exceeding 200 x106 cells/mm3 and 

this meant that the HIV infection has not yet reached a point where antiretrovirals are 

required to suppress the virus. However, CD4 levels were not determined for the HIV negative 

patient group, but generally in the male population concentrations are 840±285 cells 

x106/mm3 (Bofill et al., 1992). This indicated that CD4+ levels in the cART experienced groups 
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maybe suppressed compared to a healthy male population, although not to a level requiring 

antiretroviral therapy.  

The viral load was not measured the HIV negative group as they are not expected to have 

copies of the HIV due to their negative HIV test result, however it was expected to be below 40 

RNA copies/mL plasma which is the LOD of the detection method. This would indicate that 

there was indeed a clear significant increase in viral loads between the HIV negative and 

positive patient groups. However, it might have been expected that the viral load would have 

been significantly greater in patients with acute HIV infections as this stage of HIV infection is 

characterised by peak viral loads and is also referred to as the seroconverion phase (Pantaleo 

et al., 1993a, Pantaleo et al., 1993b, Fauci, 1996).  

Table 5.1: Blood and urine biochemistry of samples from control, acute and chronic HIV 

patient groups 

  HIV -ve Acute HIV  Chronic HIV 

n 13 15 26 

Age 34±8 34±8 37±10 

CD4 count (cellsx106/mm3) nd 546±201 507±175 

Viral load (RNA copies/mL plasma) nd 782676±2287956 26711±50205 

Osmolality (mOsm) 735±241 659±283 644±281 

Creatinine (µmol/L) 14.4±8.9 11±4.5 13±7.7 

UPCR 6.7±1.2 8±2.9 10±4.6 

cART status naïve naïve naïve 

Values are mean ± standard deviation (SD). nd = not determined 

5.3.2 Repeatability of nUHPLC-nESI-TOFMS analyses  

The peak area repeatability of 5 QC samples was assessed using the method proposed by Want 

et al., (2010) by calculating the number of peaks present in 80% of the QCs with a %CV of less 

than 30%. In this study between 70% in negative nESI and 78% in positive nESI of peaks 

returned a CV of less than 30% thus falling within the acceptable criteria for metabolomics 

analysis (Want et al., 2010). These values indicate that this metabolomic study is repeatable 

and thus returned reliable results for further analysis of the data. 

5.3.3 Metabolomic analysis of HIV status 

The base peak intensity (BPI) chromatograms of a QC sample analysed in positive and negative 

nESI modes are shown in Figures 5.1 and 5.2 respectively, and several of the most abundant 

peaks are labelled with the putative identity of the metabolite. Some of these highlighted 
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peaks cover an important range of metabolite classes such as androgen and mineralocorticoid 

conjugates (in negative nESI mode) and carnitines (in positive nESI) which play a role in the 

transport and β-oxidation of fatty acids in the mitochondria. The detection of tryptophan 

shown in the BPI of Figure 5.1 is of interest due to the previous method development work 

detailed in Chapter 3 which revealed that analysis by the nano scale platform was crucial for its 

detection in urine extracts. In addition, examples of selected ion chromatograms of a number 

of metabolites are also shown that further highlight the sensitivity of this analysis (Figures 5.3 

and 5.4). Both testosterone and androstenedione were detected in the urine extracts (Figure 

5.3) and these metabolites were previously only detected in extracts after analysis by the 

nanoflow nanospray platform rather than the ESI platform (Chapter 3). Similarly the detection 

of the stress response steroid cortisone, which requires nanoflow-nanospray analysis for 

detection in urine (Chapter 3), was detected alongside cortisol in urine extracts (Figure 5.4) 

The ability to detect these metabolites is a strong indication that this analysis was highly 

sensitive and benefited from the improved sample preparation and analytical methodologies 

developed in Chapters 2 and 3. 
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Figure 5.1: Positive nESI BPI chromatogram of the LC-MS analysis of a QC sample of urine 

extracts 
Selected peaks are labelled with the putative metabolite identities; 1) unretained polar metabolites including 
creatinine and tryptophan, 2) unidentified carnitines, 3) octanoylcarnitine, 4) dimethylheptanoyl carnitine, 5) 
indolepropionic acid, 6) C17 sphinganine. All carnitine peaks were confirmed from the presence of m/z 85.027 and 
m/z 60.083 in MS

e
 data files which are fragment ions common to all carnitine metabolites. 

 

Figure 5.2: Negative nESI BPI chromatogram of the LC-MS analysis of a QC sample of urine 

extracts 
Selected peaks are labelled with putative metabolite identities; 1) unretained polar metabolites including 
indoxylsulfuric acid, 2) tetrahydroaldosterone glucuronide, 3) testosterone glucuronide, 4) unidentified metabolite 
5) androsterone and dihydrotestosterone sulfates, 6) androsterone and dihydrotestosterone glucuronide (unknown 
elution order). 
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Figure 5.3: Overlaid selected ion chromatograms of unconjugated testosterone and 

androstenedione detected in urine extracts  
The detection of unconjugated testosterone and androstenedione has previously been shown to require nanoflow-

nanospray analysis (Chapter 3). Here peaks were detected at m/z M+H 289.2168 for testosterone and M+H 

287.2011 for androstenedione both within a 5 ppm mass window. The two large peaks eluting between 11 and 12 

mins are likely a result of fragmentation of glucuronide conjugates of similar androgen structures.  Both metabolite 

identities were confirmed by retention time comparison to genuine standards and fragmentation patterns 

(testosterone 271.2054, 253.1932 and 97.0634). 

 

Figure 5.4: Overlaid selected ion chromatograms of unconjugated cortisol and cortisone 

detected in urine extracts  
Peaks were detected at m/z M+H 363.2171 for cortisol and M+H 361.2015 for cortisone both within a 5 ppm mass 

window. The two large peaks eluting between 9.5 and 10.5 mins are likely a result of fragmentation of conjugates of 

similar steroid structures. Both metabolite identities were confirmed by retention time comparison to genuine 

standards and fragmentation patterns (cortisol 267.1710) (cortisone 163.1132 and 121.074). 
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The metabolomic profiles of urine extracts obtained from HIV negative, acute and chronic HIV 

patients were compared using multivariate statistics. The PCA scores plots generated from the 

positive and negative ESI data are given in Figures 5.5 and 5.6 respectively. In both ionization 

modes the models are poor with only between 11.8% and 12.3% of variation explained by the 

first two components of the scores plot. Neither of the sample groups displays discrimination 

on the PCA scores plot, and when the data was analysed in a supervised PLS-DA model, the 

descriptive statistics were poor and require a forced first two components. The observed 

variation between the samples appeared to be due to inter-individual variations as opposed to 

HIV status.  

 

Figure 5.5: PCA scores plot of the effect of HIV status on the urinary metabolome analysed 

by LC-MS in positive ESI mode  
No discrimination was discerned between sample groups suggesting that no significant variation in the urinary 

metabolome as a result of HIV infection was detected. 
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Figure 5.6: PCA scores plot of the effect of HIV status on the urinary metabolome analysed 

by LC-MS in negative ESI mode 
No discrimination was discerned between sample groups suggesting that no significant variation in the urinary 

metabolome as a result of HIV infection was detected. 

An additional consideration is that the viral load within the samples grouped as either acute or 

chronic stages of HIV infection varied significantly (Table 5.1). To examine the effect of viral 

load on urinary metabolite profiles, the data sets from the acute and chronic HIV groups were 

combined and the data remodelled by stratifying the groups by viral load. In addition to the 13 

HIV negative samples, 9 samples were defined as high viral load of between 49,000x106 and 

2x106 HIV RNA copies/mL plasma, and 15 samples with a low viral load of between 100 and 

5000 HIV RNA copies/mL plasma. The viral load of plasma from HIV negative patients was not 

determined however it was likely to be less than 40 RNA copies/ mL plasma which was the 

limit of detection of the method (Wang et al., 2010a, Cobb et al., 2011)Modelling of these 

sample groups using the negative nESI data set proved to be impossible for either 

unsupervised PCA or supervised PLS-DA as these models required forcing of the first 

component. In positive nESI a model was successfully constructed however no discrimination 

between sample groups was evident. A forced PCA scores plot model for the negative nESI 

data where two components were fitted to the dataset and an unforced positive nESI PCA 

scores plot are shown in Figures 5.7 and 5.8 respectively. 
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Figure 5.7: PCA scores plot of the effect of HIV viral load on the urinary metabolome 

analysed by LC-MS in negative ESI mode 
No discrimination between sample groups was discerned suggesting no significant variation in the urinary 

metabolome of patients was detected that was associated with their viral load. 

 

Figure 5.8: PCA scores plot of the effect of HIV viral load on the urinary metabolome 

analysed by LC-MS in positive ESI mode  
No discrimination between sample groups was discerned suggesting no significant variation in the urinary 

metabolome was detected that was associated with patient viral load. 
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The lack of discrimination between sample groups, defined either by acute/chronic HIV 

infection or by viral load, may be due to the early stages of HIV infection. All but one HIV 

patient (in the acute HIV group) had a CD4+ count greater than 200 cells/mm3. This meant that 

no patients in this study required antiretroviral therapy at this point of their HIV progression as 

the virus had not yet disrupted immune function to the extent of requiring pharmaceutical 

intervention. The patient with the low CD4+ count may subsequently require cART 

intervention however at the time of sample collection they were cART naïve. New guidelines 

that suggest treatment should commence once the CD4+ cell count drops to 350x106 cells/ 

mm3, this would increase the number of patients that may go on to be prescribed cART in this 

study to 6 (2 patients from the acute and 4 chronic group) (Williams et al., 2014). The previous 

metabolomic studies on samples from cART naïve HIV patients had investigated either blood 

products, which contain the HIV retrovirus (Williams et al., 2012) or investigated neuroAIDs, an 

advanced condition associated with HIV in the CSF (Cassol et al., 2014, Hollenbaugh et al., 

2011). In these cases the effect of HIV infection on the metabolome is likely to be more 

profound due to the blood products carrying the virus itself or the more advanced stage of HIV 

infection in the patients. To the author’s knowledge this is the first LC-MS metabolomic 

analysis of the urinary metabolome of individuals with HIV, and indicates that analysis of this 

biofluid may not be as informative as blood samples in determining the wider effects of HIV on 

metabolite profiles.  

This study aimed to analyse the profiles of low abundance alongside high abundance 

metabolites in the urine and which are potentially affected as a result of HIV infection. As HIV 

is an inflammatory disease (Deeks, 2011, Hunt, 2012), then profiles of small molecule markers 

of inflammation such as the eicosanoids maybe expected to be disrupted in the plasma and 

therefore in the urine. Several protein inflammatory markers are known to be increased in 

patients with HIV such as pro-inflammatory cytokines, interleukins, tumour necrosis factors 

and C-reactive protein (Decrion et al., 2005, Hunt, 2012). Many studies have reported on 

disrupted eicosanoid levels during HIV infection. This disruption includes increased synthesis of 

PGE2 and PGB2 in infected monocytes (Foley et al., 1992, Conant et al., 1998, Ramis et al., 

1991). Enhanced CSF concentrations of prostaglandin F2α, prostaglandin D2, leukotriene B4 

and thromboxane B2 have been observed as a result of advanced HIV infection (Adamson et 

al., 1996, Griffin et al., 1994, Froldi et al., 1992). In addition, urinary concentrations of 

prostaglandin E2 metabolites and 8-iso-prostaglandin F2α were increased in HIV infected 

women compared to HIV negative (Fitzgerald et al., 2012, Boger et al., 2012). In plasma, F2-

isoprostane concentrations been observed to decrease when patients are receiving 
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antiretroviral therapy (Hulgan et al., 2003). These studies indicate that eicosanoid 

concentrations in several biofluids and cells are known to be disrupted as a result of HIV 

infection. However, in this study multivariate analysis of the LC-MS data sets did not reveal any 

disruption of eicosanoid metabolites including prostaglandins in the urine extracts. The poor 

detection of eicosanoids was possibly as a result of the detection of non-steroidal anti 

inflammatory drugs (NSAIDs) in the urine which is discussed below. Despite this, a manual 

search chromatograms of urine extracts from some of the patients not taking NSAIDs did 

return potential eicosanoid peaks. These potential eicosanoids included tetranor PGE-M (m/z 

327.144), 11-dehydrothromboxane B2 and a glucuronide conjugate (m/z 367.200 and 543.244 

respectively), 20-hydroxyleukotriene B4 and a glucuronide conjugate (m/z 351.217 and 

527.249 respectively). However, these peaks were very low abundance and it was not possible 

to confirm the identities through fragmentation patterns. Further targeted analysis would be 

required to ascertain the identities of these peaks. 

During urine collection, only one patient reported consuming an NSAID, however many urine 

samples from individuals who did not report taking NSAIDS were found to contain NSAIDs. The 

parent NSAIDs that were detected included paracetamol, ibuprofen and naproxen all of which 

were confirmed by comparison of retention times and fragmentation patterns with genuine 

standards (Table 5.2). Exposure of patients to these pharmaceuticals would reduce the 

chances of detecting any variation in eicosanoid levels as a result of HIV infection. This is due 

to the action of NSAIDs which inhibit the enzymes cyclooxygenase 1 and 2 (also termed PGH 

synthase 1 and 2) which are responsible for production of eicosanoids (Hawkey, 1999, 

Chandrasekharan et al., 2002).  Analysis of the chromatograms for all patients revealed that 

urine extracts from 44 (12 HIV negative, 12 acute HIV and 20 chronic HIV infections) of the 54 

patients contained the parent compounds of ibuprofen and an additional patient in the 

chronic infection group contained naproxen and another contained paracetamol (acute 

infection group) un-metabolised parent compounds. The fact that most patients did not report 

taking NSAID suggests that they do not consider common painkillers to be pharmaceuticals. 

This may be a result of the common misconception that non-prescription over the counter 

drugs are safer than those requiring a prescription (Wilcox et al., 2005). In addition, patient 

recall for prescription pharmaceutical has been reported to be a poor indicator of actual 

pharmaceutical intake (West et al., 1995). This phenomenon is magnified when reported 

intake of different pharmaceutical classes is investigated, with self-reported prescription 

painkiller use being the least accurate (Skurtveit et al., 2008). This disparity between actual 

and reported pharmaceutical intake is also likely to be true of non-prescription pharmaceutical 
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use. The under reporting of drug use complicates metabolomic and epidemiological studies 

where additional intake of unreported drugs may influence the outcome of the study. Ideally 

reported drug use would be accurate so that patients could be stratified by pharmaceutical 

intake. This would not only improve the quality of the results for the disease state being 

studied but also provide additional information on the impact of commonly consumed 

pharmaceuticals and their mixtures on the disease state. 

Table 5.2: Details of NSAIDs that were detected in the urine of study groups 

NSAID Exp. Mass Thr. Mass Formula Fragments 

Ibuprofen M-H 205.1225 M-H 205.1229 C13H18O2 161.916 

Naproxen M-H 229.0859 M-H 229.0865 C14H14O3 185.0966, 170.0731, 169.0651 

Paracetamol M+H 152.0716 M+H 152.0712 C8H9NO2 150.0991 110.0699 
Exp. = experimental, Thr. = theoretical. All metabolite identities were confirmed by comparing fragmentation 

patterns and retention times to that of pure standards. 

A further co-morbidity with men infected with HIV is hypogonadism leading to erectile 

dysfunction. This has been demonstrated to be due to a result of reduced serum testosterone 

levels (Rabkin et al., 1997, Crum-Cianflone et al., 2007, Crum et al., 2005). Despite the 

detection of a number of androgen metabolites including testosterone in the urine extracts 

(see Figure 5.2 and 5.3) no differences in androgen profiles were detected between subject 

groups. However, hypogonadism and reduced serum androgen concentrations are associated 

with low CD4+ counts , advanced HIV infection and age (Wagner et al., 1995). This suggests 

that these symptoms had not yet presented themselves in these patients due to their 

relatively healthy CD4+ count. The fact that all these patients are cART naïve regardless of HIV 

status suggest that the effect of the retrovirus on the body is still in its latent stage or that the 

effects of the large viral load present in the blood of some patients are not yet reflected in the 

urinary metabolome. 

5.4 Conclusion 

This was the first study into the effect of HIV status on the urinary metabolome using LC-MS. 

Despite the use of new sample preparation and analytical methods designed to detect 

variability in even low abundance metabolites, no significant differences were detected 

between sample groups. However, analysis of the urine revealed that most of the patients in 

the sample groups were taking NSAID medication which may have masked some potential 

discriminating metabolites which are markers of the inflammatory response. A further 

explanation is that the patients had not suffered significant metabolic changes in the urine as a 

result of their HIV status or viral load. This is supported by the fact that none of the patients 

had begun receiving antiretroviral therapy and that their CD4+ cell count exceeded 200 cells/ 



153 
 

mm3. These results may also indicate that any changes that are present in the body are not 

reflected in the urine and that metabolomic analysis of blood products such as plasma or 

serum are more suited to investigating the effects of HIV infection in patients with recently 

acquired HIV infection. The use of urine metabolomics may be better suited for later stage HIV 

infection or metabolomic analysis of cART intervention. 
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Chapter 6: The metabolomic consequences of cART treatment in HIV positive patients 

6.1 Abstract 

Since the introduction of antiretroviral therapy (ART) the mortality associated with HIV/AIDS 

has significantly dropped. As a result the number of people living with HIV has risen and these 

people are on ART for longer, as life expectancy increases with each successive generation of 

ART drugs.  As such, the side effects of these drugs are becoming more significant due to their 

effect on health and quality of life. Several of these drugs have been associated with kidney 

damage, liver failure, dyslipidemia and insulin resistance. The use of a urine metabolomics 

approach using newly developed analytical methodologies offers the potential to study 

metabolomic consequences of combined anti-retroviral therapy (cART). In this study, the 

metabolomic effects of two cART regimes were compared to cART naïve patients. This was the 

first non-targeted metabolomic study of human urine to detail the extensive metabolism of 3 

protease inhibitors; atazanavir, darunavir and ritonavir. This may lead to further investigations 

into links between pharmacogenetics and metabolomics potentially leading to an improved 

provision of personalised healthcare. Statistically significant variation in endogenous markers 

associated with bile acid profiles and fatty acid metabolism were also uncovered. These 

markers offer a potential explanation for the poor lipid profiles associated with the use of 

protease inhibitors. In addition, a known marker of immune deficiency in urine was found to 

be significantly lowered in patients receiving treatment suggesting that the cART intervention 

is efficacious. The use of urine metabolomic profiling allows for the identification of markers  

of cART intervention allowing the efficacy, compliance and side effects of pharmaceutical 

intervention to be investigated, in addition to investigating the metabolism of the cART drugs 

themselves. 

6.2 Introduction 

Ever since the discovery of the HIV retrovirus in 1983, many pharmaceutical strategies have 

been taken to treat those afflicted. This has led to the development of >25 different anti-

retroviral drugs spanning 8 drug classes (Deeks and Phillips, 2009). This development of anti-

retroviral drugs has significantly reduced the mortality and incidence of AIDS related 

conditions. In addition, a significant drop in opportunistic infections in HIV patients has been 

observed (Deeks and Phillips, 2009, Levy, 1993). Despite these advances, combined 

antiretroviral therapy (cART) intervention never fully restores health. However many 

individuals infected with HIV now die as a result of conditions previously thought to be non-

HIV related such as cardiovascular disease, cancer and kidney or liver failure. These conditions 
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are usually associated with the normal healthy aging process, which has been shown to occur 

at an advanced rate in HIV patients compared to healthy individuals (Deeks and Phillips, 2009).   

The near normal life span of relatively good health comes at a cost which are the side effects 

of cART medication, and this has become an important issue to contend with due to its effects 

on patient health and quality of life. The current recommendation for cART therapy is two 

nucleoside reverse transcriptase inhibitors (NRTI) and a protease inhibitor (PI). This is typically 

co-prescribed with another protease inhibitor, ritonavir, to boost the bioavailability of the 

other PI (Williams et al., 2014, Hill et al., 2009, Wood and Flexner, 1998, Zeldin and Petruschke, 

2004). All cART drug classes have different associated side effects, some of which are more 

serious than others. Prior to the introduction of cART, the major cause of nephropathy was as 

result of the HIV infection itself (Hall et al., 2011a). However, currently the leading cause of 

nephropathy in HIV patients is a result of tenofovir, a commonly prescribed NRTI. The site of 

tenofovir toxicity is the mitochondria located on the baso-lateral membrane of the proximal 

tubule cells of the kidney (Hall et al., 2011a, Kohler et al., 2009). Another drug class, the PIs, 

are commonly co-prescribed with NRTIs as part of a cART regime. These are widely associated 

with non-HIV associated complications such as dyslipidemia, abnormal fat distribution, 

diarrhoea, increased inflammation markers and insulin resistance (Tomaka et al., 2009, Aberg 

et al., 2012, Wood and Flexner, 1998). Due to the rapid metabolism of PIs by cytochrome P450 

3A4, patients take two protease inhibitors. One, ritonavir, is taken as a cytochrome P450 3A4 

inhibitor and has been demonstrated to increase the bioavailability of the other PI 

pharmaceutical by up to 350% (Wood and Flexner, 1998, Hill et al., 2009, Hsu et al., 1997). This 

inhibition has no effect on other cART classes such as NRTIs which are metabolised by other 

enzymes (Hsu et al., 1997). Ritonavir itself is associated with all of the aforementioned PI side-

effects. In addition to ritonavir, a further PI is prescribed and two of these possibilities are 

darunavir and atazanavir. These latter two drugs were introduced at least 7 years after 

ritonavir and have fewer side effects associated with them. Both of these drugs have improved 

lipid profiles compared to older PIs when tested on cART naïve HIV positive or negative 

patients (Aberg et al., 2012). Atazanavir and darunavir are typically prescribed when patients 

suffer from significant side effects such as dyslipidemia when on other older PI medications 

(Tomaka et al., 2009). However, atazanavir intake is also associated with hyperbilirubinemia, 

which whilst usually asymptomatic may lead to jaundice and in rare cases Gilbert’s syndrome 

where high levels of bilirubin build up in the blood. This is due to the atazanavir mediated 

inhibition of uridine 5’-disphospho-glucuronosyltranferase which is used to conjugate bilirubin 

with glucuronic acid to facilitate its excretion (Rekid et al., 2011, Zhang et al., 2005). However, 
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these symptoms resolve themselves when atazanavir is replaced with another PI such as 

darunavir (Aberg et al., 2012, Tomaka et al., 2009). 

The use of a non invasive urine metabolomics approach may help to further elucidate 

mechanisms of action and toxicity associated with cART intervention (Sitole et al., 2013). To 

date, few studies have investigated the effect of HIV infection or the effect of cART 

intervention on the metabolome. One study analysed the plasma metabolomes of healthy 

controls compared to patients with advanced HIV that were receiving antiretroviral therapy 

incorporating PIs, and some of whom were also co-infected with hepatitis C (HCV) (Cassol et 

al., 2013). All HIV positive patients had increased concentrations of bile acids, amino acids, 

nucleotide metabolites and decreased plasma concentrations of sulfated androgens, 

eicosanoids and poly unsaturated fatty acids (PUFAs). These disrupted metabolite 

concentrations were detected regardless of the patients HCV status, implying the effect of HCV 

is masked by the metabolomic effect of HIV and cART. Many of these metabolites such as the 

bile acids, PUFAs and androgens act as ligands for nuclear receptors and thus impact upon 

gene expression, and the genes affected by these ligands mostly relate to fatty acid 

metabolism and inflammation. In addition, increased bile acid concentrations in plasma were 

found to be proportional to the degree of hepatic fibrosis despite there being no significant 

difference in bile acid profiles between HCV and non HCV patients. Mitochondrial 

dysfunctions, as possible side effect of tenofovir medication, were also correlated to the 

disruption in carnitine metabolism (Cassol et al., 2013). A further study investigated the oral 

cavity metabolome of patients on cART and compared it to the metabolome of cART naïve HIV 

positive patients. Here carnitines were again found to discriminate between the two 

populations in addition to several amino acids, nucleotides and dipeptides. The amino acid and 

nucleotide disruption was attributed to opportunistic infection of the oral cavity as a result of 

HIV infection. However, a 0.71 fold increase in glycyltyrosine and a 3.89 fold decrease in 

leucylisoleucine polypeptide concentrations were unexplained. An increased phenylalanine: 

tyrosine ratio was found to be a good indicator of an impaired immune system and potentially 

linked to viral replication as it was suppressed in cART experienced patients who had reduced 

viral loads. This ratio was suggested as a mechanism to assess cART compliance in HIV positive 

patients (Ghannoum et al., 2013).  

6.2.1 Study aims. 

To date, no LC-MS metabolomic study of cART intervention has been undertaken using urine 

despite urine metabolomics offering an insight into the metabolism of pharmaceuticals and 

their effect on the metabolome (Kell, 2006).  



157 
 

This study aims to investigate the effect of two cART regimes on the urinary metabolome when 

compared to cART naïve patients. All cART patients took the same NRTI combination of 

tenofovir, emtricitabine and PI booster ritonavir. The two cART treatment groups were split by 

the nature of the second PI which was either darunavir or atazanavir.  

6.3 Materials and methods 

6.3.1 Materials and chemicals 

HPLC grade solvents were purchased from Rathburn Chemicals Ltd (Walkerburn, Scotland, UK) 

and UHPLC grade solvents from Fisher Scientific UK (Loughborough, UK). Strata X-AW and X-C 

60 mg/3ml solid phase extraction (SPE) cartridges were purchased from Phenomenex 

(Macclesfield, U.K). Deuterated compounds were used as internal standards (IS); 17β-estradiol 

2,4,16,16-d4 sodium 3-sulfate (E2-d4-S, >99% D atom), carbamazepine (ring-d10), venlafaxine 

(N,N-dimethyl-d6), and diclofenac (phenyl-d4) were purchased from Cambridge Isotope 

Laboratories Inc. (MA, USA). Progesterone-2,2,4,6,6,17R,21,21,21-d9 (P-d9, 98% D atom) was 

purchased from CDN isotopes (Quebec, Canada) and prostaglandin E2-d4 (9-oxo-11α,15S-

dihydroxy-prosta-5Z,13E-dien-1-oic-3,3,4,4-d4 acid) were purchased from Cayman Chemical 

Company (MI, USA). All other standards and reagent chemicals were purchased from Sigma-

Aldrich Company Ltd., Dorset, U.K. 

6.3.2 Sample collection 

Urine samples were collected by Brighton and Sussex University Hospital from 451 male 

patients in a HIV clinic. All patients gave written informed consent and ethical approval was 

given by the NHS Research Ethics Committee (NREC 09/H1107/101). Samples were 

immediately frozen at -80 °C after collection prior to sample preparation. For this study, 89 

samples were analysed, 30 HIV positive patients with the protease inhibitor darunavir, 20 HIV 

positive patients prescribed atazanavir, 26 cART naïve HIV positive patients and 13 cART naïve 

HIV negative patients. All cART patients were also taking the same NRTI combination of 

tenofovir, emtricitabine and PI booster ritonavir. The remaining 362 patients were taking a 

wide range of ARTs or also suffered from conditions such as hepatitis, a known cause of liver 

damage and so were not included in this study. The characteristics of the pharmaceuticals 

used in cART are given in Table 6.1 and their structures in Figure 6.1. Ritonavir is taken as a PI 

booster, as the bioavailability of other PIs such as atazanavir (measured as its 

pharmacokinetics in blood plasma) increased by 3 fold when co-prescribed with ritonavir (Le 

Tiec et al., 2005). Likewise the bioavailability of darunavir is increased from 37% to 82% when 

boosted with ritonavir (Rittweger, 2007). 
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Figure 6.1: Structure and formula for each cART in the study     
 PIs A) Atazanavir, B) Darunavir, C) Ritonavir, and NRTIs D) Tenofovir, E) Emtricitabine 

Table 6.1: Characteristics of NRTI and PI pharmaceuticals used in the study  

Antiretroviral Drug 
class 

Year 
approved 

LogKo/w Water 
solubility 
(mg/mL) 

Dose 
(mg) 

Half 
life 

(hrs) 

% urine 
excretion 

Take 
with 

food? 

Tenofovir NRTI 2001 -1.71 13.4 1x 300 17 80 Yes 

Emtricitabine NRTI 2003 -0.41 112 1x 200 10 86 N/A 

Ritonavir PI 1996 5.28 0.1 1x 100* 3-5 11 Yes 

Atazanavir PI 2003 5.2 4-5 1x 300 6.5 13 Yes 

Darunavir PI 2006 3.94 0.2 1x 600 15 14 Yes 
 

       *When taken with darunavir, a 2 x 100mg or 1 x 200 mg dose is required for PI boosting. Emtricitabine can be taken with 
or without food with no adverse effect in efficacy or side effects. 

       

        

        6.3.3 Sample preparation 

Urine sample osmolality was measured in the BSUH pathology department using a Model 3320 

osmometer (Advanced Instruments Inc., Massachusetts, U.S.A). Samples were then stored in 

10% methanol and transported to the University of Sussex for metabolomic analysis. Urine 

samples were defrosted, vortex mixed and centrifuged at 13000 rpm for 10 minutes. Samples 

were adjusted to pH 2 using formic acid and then spiked with 0.5 ng/µL of IS. Samples were 

extracted using a Strata X-AW stacked on top of a Strata X-C solid phase extraction cartridge 

which was primed with 1 mL methanol, washed with 1 mL water, and then loaded with 0.5 mL 

acidified sample before a further 1 mL wash of water. Samples were eluted with 1 mL 5% 

ammonium hydroxide in methanol and a further 1 mL ethyl acetate. Eluents were dried to 

dryness before reconstitution in 90:10 H2O: MeOH. As described in chapter 5 the volume for 
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reconstitution of each sample was calculated to give an osmolality of 1360 mOsm calculated 

from pre-extraction readings. Extracted samples were stored at -80 °C prior to analysis. All 

solvents used were HPLC grade with >99% purity. A QC sample was prepared by combining 2 

µL aliquots from all reconstituted urine samples. 

6.3.4 nUHPLC-nESI-TOFMS  

Aliquots of 0.5 µL were injected onto a Waters nanoAcquity UHPLC and separated using a 

Waters nanoAcquity HSS-T3 (100mm x 100 µm x 2.8 µm, 100 Å) column. Chromatographic 

separation was carried out at 700 nL/min using UHPLC grade water and acetonitrile as mobile 

phases A and B respectively, both modified with 0.01% formic acid. A gradient elution was 

used: 0mins 10% B, 4mins 30% B, 18mins 50% B, 30mins 100% B, 100% B maintained for 10 

minutes then equilibrated in initial conditions for a further 15 mins. Metabolites were 

detected in positive ESI using a Waters Xevo G2 TOFMS tuned to a mass resolution of 20,000 

and equipped with a nano ESI source with a homemade fused silica emitter as described in 

recent studies (Chetwynd et al., 2014, Chetwynd et al., 2015). 

6.3.5 Quality control 

Prior to the analysis of samples in either ionization mode, 5 QC injections were run to 

condition the ESI source. To determine the repeatability and reliability of the analysis, QC 

samples were injected every 10 samples. These were then assessed for metabolome peak 

areas reproducibility by calculating the %CV for all peaks present in 80% of QC samples. High 

quality metabolomic data is determined when the CV of the mean peak area for more than 

70% of peaks is <30% (Want et al., 2010). 

6.3.6 Data and statistical analysis 

The MS datasets were deisotoped, mass spectral peaks deconvoluted, aligned, and the 

datasets binned and normalized to the total spectral area for each sample using Waters 

MarkerLynx software. The decision to use MSTS was taken due to only a small proportion of 

peaks being common to all chromatograms making the use of MSTUS normalisation 

undesirable. The datasets, comprising RT x m/z bins, were exported to Simca v13.0 software 

(Umetrics Ltd, Crewe, UK) for multivariate analyses. All data were log transformed and Pareto 

scaled prior to principal components analysis (PCA) to identify the effect of cART intervention. 

Further modelling using orthogonal partial least-squares discriminant analysis (OPLS-DA) was 

used to investigate metabolite differences between any two treatment groups. Discriminatory 

metabolites (loading variables) between treatment groups were detected using an S-plot of 

the OPLS-DA model which is a plot of reliability (correlation) of the loading variables versus 

their covariance (contribution to the model) (Wiklund et al., 2008).  
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Further statistical analysis was carried out using GraphPad Prism version 6.00 for Windows, 

GraphPad Software, San Diego California USA, www.graphpad.com. The normalised mass 

intensities for discriminatory metabolites highlighted by S-plot analysis were tested for normal 

distribution of the data set and were then tested for significance at P<0.01 using a one-way 

ANOVA with a Holm-Sidak multiple comparison test to determine p-values. Non-normally 

distributed data were tested using the Kruskal-Wallis ANOVA with a Dunn’s multiple 

comparison test to determine p-values. Statistically significant metabolites were tested for 

their predictability using Receiver-Operator Characteristic (ROC) to plot the false positive rate 

against the true positive rate and the area under the curve was calculated to give the 

probability of a positive result being a true positive. 

Metabolite identities were determined from their accurate mass, isotopic fit, and comparison 

of fragmentation data with authentic standards or with Metlin (Tautenhahn et al., 2012a), 

Human Metabolome Database (Wishart et al., 2007), Human Urine Metabolome Database 

(Bouatra et al., 2013) and MycompoundID (Li et al., 2013a) databases.  

6.4 Results and discussion 

6.4.1 Patient data 

All patients in the cART groups took the two NRTIs tenofovir and emtricitabine, and the 

ritonavir protease inhibitor, as well as either one of the two additional PIs which were either 

atazanavir or darunavir. These patients all exhibited good viremic control with their viral loads 

below the limit of detection of 40 RNA copies/ml plasma (Table 6.2). HIV negative patients did 

not have CD4 counts or viral loads determined as they are not expected to have the HIV virus 

present due to their negative HIV test, thus their CD4 counts are expected to be unaltered and 

around the average for a healthy male of 840±285 cells x106/mm3 (Bofill et al., 1992).  

Each parameter was tested for normality using the D’Agostino -Pearson omnibus K2 test, non-

normally distributed datasets were then tested for significance (p<0.05) using one-way ANOVA 

and Dunns multi comparison test. The normally distributed dataset for creatinine and 

osmolality were tested for significance using a parametric one-way ANOVA with Holm-Sidak 

multiple comparison test.  

Patients in the cART experience groups were significantly older than both cART naïve groups, 

this is potentially due to these patients having been infected with HIV for a longer period of 

time and as such their HIV condition now requires cART intervention. The viral loads of the 

cART naïve patients are significantly higher than all other groups due to the fact they are 

untreated. In addition the urine protein creatine ratio (UPCR) is significantly increased in cART 

http://www.graphpad.com/


161 
 

experienced patients relative to the HIV negative patients; further to this the patients in the 

atazanavir group have a significantly greater UPCR relative to the patients in the cART naïve 

HIV positive group. The UPCR measure is an indication of kidney function and a value of >30 

indicates that kidney damage may have occurred. While the values in this study are not 

indicative of poor kidney function, it may reflect the HIV or drug associated nephropathy was 

beginning to manifest sub-clinically in these HIV positive patient groups. The urinary osmolality 

and creatinine levels were not significantly different between any of the sample groups. 

Atazanavir is well documented to cause subclinical hyperbilirubinemia (Rekid et al., 2011), in 

this study plasma concentrations of bilirubin in the atazanavir group were significantly (p<0.05) 

greater than the other 3 sample groups. 

Table 6.2: Blood and urine biochemistry of samples from cART naïve HIV positive and 

negative patient groups in addition to cART experiences patient groups 

  HIV -ve HIV +ve Atazanavir in 
cART mix 

Darunavir in 
cART mix. 

n 13 26 20 30 

Age 34±8 37±10 46±6.7* 48±7.5* 

CD4 count (cells 
x106/mm3) 

nd 507±175 608±267 529±187 

Viral load (RNA copies/mL 
plasma) 

nd 26711±50205+ 40±0 40±0 

Osmolality (mOsm) 735±241 644±281 700±178 577±259 

Creatinine (µmol/L) 14.4±8.9 13±7.7 13±4.7 12±8 

UPCR 6.7±1.2 10±4.6 14.5±8.33-# 14±7- 

Plasma bilirubin (µmol/L) 12.4±3.1 7.9±2.7 32.5±15.4~ 7.4±2.9 

cART status naïve naïve cART positive cART positive 

Values are mean ± standard deviations. * Significantly older than cART naïve groups, 
+
significantly greater viral load 

compared the rest of the patient population. 
- 

UPCR levels are significantly greater for both cART experienced 

groups compared to HIV negative patients. 
#
The atazanavir cART group has a significantly greater UPCR relative to 

the cART naïve HIV positive group. 
~
Plasma bilirubin concentrations in the atazanavir group were significantly 

greater than all other groups.  In all cases significance is defined by a p-value <0.05. nd= these values were not 

determined in HIV negative patients 

6.4.2 Repeatability of the nUHPLC-nESI-TOFMS metabolomic analyses of the QC samples.  

Using the criteria in previous chapters, the repeatability of metabolome peak area was 

calculated by determining the percentage of peaks common to 80% of the QC samples and 

which had a mean peak area CV <30% (Want et al., 2010). In this study between 68% (in 

negative nESI mode) and 75% (in positive nESI mode) of these peaks have a CV <30% which is 

acceptable with the repeatability of the negative ESI data set being slightly lower than the  

positive ESI data set.  
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6.4.3 Metabolomic analysis of the effect of cART treatment. 

The urine metabolomic profiles of individuals taking the two cART regimes were compared to 

HIV positive and negative cART naïve patients. The scores plots for these data in positive and 

negative ESI are shown in Figures 6.2 and 6.3 respectively, both display tight grouping of the 

QC samples further supporting the high quality nature of the metabolomic analysis. As with 

the previous study in Chapter 5 there was no discrimination detected between the 

metabolomics profiles of urine from cART naïve HIV positive and negative patients. However, 

patients on cART regimes containing either atazanavir or darunavir clustered separately and 

away from the cART naïve patients. In positive ESI, the two treatment groups are separated 

from the cART naïve groups on the first component and from each other on the second 

component. However, in negative ESI discrimination is only observed on the first component, 

which suggests that the two nESI modes are detecting different metabolomics profiles 

associated with the two types of cART intervention. 

 

Figure 6.2: PCA scores plot analysis of HIV status and cART intervention in positive ionization 

mode  
The four patient groups are given in the legend, and patients on the two cART medications also received NRTIs 
tenofovir and emtricitabine, and the ritonavir protease inhibitor.  No discrimination was detected between the HIV 
positive and negative patients. However, both cART groups discriminate from the cART naïve patients on the first 
component and cART groups cluster separately from each other on the second component.   
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Figure 6.3: PCA scores plot analysis of HIV status and cART intervention in negative 

ionization mode  
The four patient groups are given in the legend. No discrimination was observed between the HIV positive and 
negative patients. However, both cART groups discriminate from the cART naïve patients on the first component 
and cART groups cluster separately from each other also on the first component. 

In order to identify discriminating markers between cART with cART naïve patients, S-plots 

from OPLS-DA models were constructed for Atazanavir versus cART naïve HIV positive patients 

and for Darunavir versus cART naïve HIV positive patients (see example Figures 6.4 and 6.5 

respectively for positive nESI mode data sets). The majority of the discrimination observed in 

the PCA scores plots is driven by ions associated with the cART drugs and their metabolites. 

This is evident from the large amount of markers present at the top right of both S-plots which 

are markers of darunavir, atazanavir, ritonavir or their metabolites. In total > 70 ions were 

positively identified as either the parent compounds, metabolites of cART or their associated 

fragments all of which are detailed in Table 6.3.  The identified metabolites given in Table 6.3, 

are supported by significant fragmentation patterns which were compared to reported 

fragments of genuine standards in rodent urine and human blood product and hepatocytes 

studies (Lin et al., 2013, ter Heine et al., 2009, Vermeir et al., 2009, Zheng et al., 2014). Unlike 

the PIs, only parent compounds for NRTIs tenofovir or emtricitabine were detected. This is due 

to the minimal metabolism these drugs experience in the body, and the majority of the drug is 

excreted as the parent compound (Kearney et al., 2004, Gallant and Deresinski, 2003). All but 

one of these compounds, Darunavir M4, are highly prevalent in the positive mode dataset, and 

as such only S-plots from the positive nESI mode are shown. This is the first time these 

metabolites have been reported in a human urine metabolomic study. The table does not 
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include any of the significant number of adducts of the molecular ions also identified from the 

S-plot analysis; some of these are however labelled in Figures 6.4 and 6.5. When adducts and 

dimers are taken into account there are >100 ions associated with the 3 PIs taken in this study.  

The ability to detect these metabolites of the 3 PI drugs highlights the sensitivity of the nLC-

nESI-TOFMS and SPE sample preparation technique, as less than 20% of the total parent 

compound and its metabolites are excreted via the urine (see Table 6.1) (Rittweger, 2007, Le 

Tiec et al., 2005, Vermeir et al., 2009). The main route of excretion for these compounds is via 

biliary excretion (Rittweger, 2007, Le Tiec et al., 2005). By using conventional sample 

preparation and LC-MS analysis, several of these metabolites such as ritonavir metabolites M1 

and M2 were unlikely to have been detected. The ability to detect the parent drug and a wide 

range of its metabolites suggest that in future studies, links between pharmacogenetics, the 

role of genetics in an individual’s drug response, and metabolomics effects could be 

investigated. This may lead to a more personalised approach to pharmaceutical interventions 

for a wide range of conditions where individual variation in the extent of drug metabolism and 

persistence may lead to different treatment options being implemented (Song et al., 2012, 

Trupp et al., 2012, Agúndez et al., 2009). 

In addition to investigating the metabolism and/or the effect of pharmaceuticals on the urinary 

metabolome, it is also possible to identify any individuals who either have not taken the 

medication, or are particularly high metabolisers. Indeed, this is evident in patient 284 from 

the darunavir group where neither darunavir nor any of its metabolites or other cART drugs 

were detected in their urine sample (Figure 6.6). The BPI chromatograms of patient 284 and 

302 (Figure 6.7) clearly show that both darunavir and ritonavir are not present in the urine 

sample of patient 284. The fact that no other cART drug or metabolites are detected makes it 

unlikely that the patient took their medication prior to providing the urine sample.  

The metabolites detected at the other end of the OPLS-DA S-plots such as the highlighted 

carnitine suggest that cART intervention has led to changes in the endogenous metabolome. 

These findings are detailed and their biological implications are discussed in the following 

section.  
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Figure 6.4: OPLS-DA S-plot analysis for patients taking atazanavir therapy compared to cART 

naive HIV positive patients 
Samples were analysed in positive nESI mode. Many of the main discriminating markers are metabolites of the cART 
therapy. Many metabolites have only been described in non-primate species or cell lines prior to this study.  

 

 

Figure 6.5: OPLS-DA S-plot analysis for patients taking darunavir therapy compared to cART 

naive HIV positive patients  
Samples were analysed in positive ESI mode. Many of the main discriminating markers are metabolites of the cART 
therapy.  
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Table 6.3: Detailed identity of cART and related metabolites identified by comparison of cART patient metabolomes with that of cART naive patients 

Metabolite Metabolite ID Rt Exp. mass Thr. mass Formula Fragments 

Ritonavir Parent compound 24.09 721.3186 721.3191 C37H48N6O5S2
  551.2606, 533.2429, 426.1936, 296.1448, 268.1936, 

197.0763, 167.086 
Ritonavir M1 Hydroxylation 17.96 737.3163 737.3155 C37H48N6O6S2 719.3021, 426.1872, 312.1411, 284.1420 
Ritonavir M2 Deacylation 17.28 580.3333 580.3321 C32H45N5O3S 410.2411, 295.1519, 285.1958, 268.162, 250.1606, 171.1004 
Darunavir Parent compound 18.41 548.2439 548.2430 C27H37N3O7S

  392.2005, 241.1039, 202.1623, 156.0143, 113.0626 
Darunavir M1  Carbamate hydrolysis 12.00 392.2014 392.2008 C20H29N3O3S  241.1021, 156.0147 
Darunavir M2 Carbamate hydrolysis 

and hydroxylation 
10.09 408.1971 408.1957 C20H29N3O4S  390.1872, 156.0143 

Darunavir M3 Glucuronide of M2 9.67 584.2279 584.2278 C26H37N3O10S  348.0390, 257.0811, 172.0091 
Darunavir M4 Glucuronide of parent 14.11 722.2585* 722.2595* C33H45N3O13S 175.0238, 157.0137, 113.0239 
Atazanavir Parent compound 19.43 705.3964 705.3976 C38H52N6O7

  534.3081, 335.1984, 168.034, 144.1045, 120.0834 
Atazanavir M1 Deacylation 14.49 538.3255 538.3241 C26H43N5O7 367.2264 
Atazanavir M2 Carbamate hydrolysis 12.59 647.3929 647.3921 C36H50N6O5 534.3082, 192.1040, 168.0835 
Atazanavir M3 Carbamate hydrolysis 13.06 647.3912 647.3921 C36H50N6O5 534.3082, 335.1956 168.0835 
Atazanavir M4 Hydroxylation 15.41 721.3910 721.3925 C38H52N6O8 534.3086, 351.1931, 168.0836 
Atazanavir M5 Keto metabolite 21.18 719.3770 719.3768 C38H50N6O8 701.3637, 530.2915, 363.1786, 197.0829, 168.0824 
Tenofovir Parent compound 5.27 288.0884 288.0862 C9H14N5O4P 176.0958, 159.0730 
Emtricitabine Parent compound 5.16 248.0522 248.0505 C8H10FN3O3S 130.0507, 114.0944 
*Refers to m/z of M-H ion, all other ions reported are M+H. RT refers to retention time and Exp. And Thr. mass to experimental and theoretical masses respectively. Details of fragmentation 

and order of the relative retention time for ritonavir metabolites, atazanavir metabolites and darunavir metabolites were acquired from pharmacokinetic studies in mice and human blood 

products and hepatocytes (Vermeir et al., 2009, Lin et al., 2013, ter Heine et al., 2009, Zheng et al., 2014) 
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Figure 6.6: Loadings plot for darunavir parent compound  
It is evident that one individual (red circle) did not take any cART medication on the day of providing the urine 
sample. The same pattern is present for metabolites of darunavir or any other cART pharmaceutical they were 
prescribed. 

 

 

Figure 6.7: Positive ESI BPI chromatogram of urine extracts obtained from patients 302 and 

284 with darunavir and ritonavir peaks highlighted in patient 302 
The missing peaks corresponding to both darunavir and ritonavir in patient 284 compared to 302 clearly indicate 
that the cART interventions were not taken in patient 284. 
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6.4.4 Effect of cART intervention on the endogenously derived metabolome 

Following the exclusion of >100 ions associated with the PIs and their metabolites, including 

fragment, adduct and dimer ions the extreme end of the S-plots were still dominated with 

more ions associated with cART drugs. Many of these proved to be additional nESI artefacts of 

the drug molecules such as further adducts, dimers and trimers. Many more were unidentified 

but shared a common peak shape and retention time with the identified parent compound or 

their metabolites. This suggests that other less common adducts or fragments were formed 

which had not been previously reported in the literature. Due to the high abundance of 

metabolites associated with cART therapy, further analysis concentrated at the other end of 

the S-plots, i.e. mainly on metabolites that have been decreased due to cART intervention. 

These metabolite identities have been given in Table 6.4. and their mean normalised peak 

areas in the patient groups are shown in Table 6.5. Using the D’Agostino-Pearson omnibus K2 

test for normality, these metabolite were found to be non-normally distributed and as such a 

non-parametric Kruskal-Wallis one-way ANOVA was carried out to determine p-values. 

Discriminating metabolites were only considered significant with a p-value of 0.01 or lower 

rather than the more commonly utilised p-value of 0.05 to reduce the incidence of type 1 and 

2 statistical errors (false positive and negative respectively). To determine the predictability of 

these discriminating markers, Receiver-Operator Characteristic (ROC) curves were constructed 

using Prism Graphpad software. ROC curves plot the false positive rate (specificity) against the 

true positive rate (sensitivity), and the area under the curve (AUC) is the probability that the 

obtained result is a true result (Broadhurst and Kell, 2006, Seli et al., 2011, Chen et al., 2013a). 

If the AUC is 0.5, the lowest possible value, there is no significant variation in distribution 

between the case sample and control e.g. between cART naïve and atazanvir or darunavir 

groups. The closer the AUC is to 1 the greater the predictability of the variable, and this is also 

reflected in a steep gradient of the ROC curve. In metabolomics an ROC >0.8 is considered to 

be good and >0.9 excellent (Broadhurst and Kell, 2006). All the AUC curves for the 11 

discriminating markers are included in Table 6.4 with Figures 6.8a and 6.8b showing example 

ROC curves for 5-deoxy-5(methylthio)adenosine in the cART naïve HIV positive patients versus 

the darunavir group and pregnenolone sulfate in the cART naïve HIV positive versus the 

atazanavir group respectively. 
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Figure 6.8: a) ROC curve for 5-deoxy-5(methylthio)adenosine  in cART naive HIV positive 

patients against darunavir patients and b) ROC curve of pregnenolone sulfate for cART naive 

HIV positive versus atazanavir intervention groups  
Both ROC curves and AUCs offer good predictability for these markers between treatment group and cART naïve 
HIV positive groups. 

All ROC AUC values for markers down-regulated in either cART treatment are above 0.8, other 

than cholic acid for darunavir vs cART naïve HIV positive combination, suggesting the 

predictability is good. The one marker, tetra-peptide, which was detected as up-regulated in 

the cART groups was just above 0.75 suggesting that for this marker the predictability was 

lower than for the down-regulated markers.  

Due to the post analysis normalisation in this study being to MSTS rather than MSTUS there is 

concern that the highly abundant metabolites of the cART drugs skew the normalisation in the 

data sets from cART patient groups and thus artificially suppress endogenous metabolites. 

However, this is unlikely to be the case in the negative nESI data set due to these drugs being 

ionized mainly in positive ESI, and here > 100 ions associated with the cART drugs were 

removed and the data re-normalised. In addition, statistical analysis of the non-normalised 

data sets was carried out and resulted in the same p-values (all < 0.01) for the identified 

discriminatory metabolites as that of the normalised dataset. This indicates that any effect of 

the normalisation method on the detection of discriminatory metabolites was minimal.   

Several of the discriminating metabolites identified in this study are of the same compound 

classes identified in a recent plasma metabolomic analysis of cART intervention (Cassol et al., 

2013). In the Cassol et al., (2013) study, the plasma concentrations of taurocholic acid, 

taurodeoxycholic acid and glycocholic acid were increased in addition to acylcarnitines. In 

addition, a targeted profiling of bile acid concentrations in urine of HIV positive patients taking 

PIs, versus HIV negative patients found lithocholic acid and taurocholic acid levels to be 

significantly increased in the plasma of the HIV positive patients (McRae et al., 2010). 

However, concentrations of other bile acids, chenodeoxycholic acid, deoxycholic acid, colic 
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acid and ursodeoxycholic acid were not disrupted in either patient group (McRae et al., 2010). 

It was suggested that increases in bile acid concentrations may be a result of increase plasma 

cholesterol, a bile acid precursor, however no such correlation was found (McRae et al., 2010). 

A further suggested mechanism for increased bile acid levels in the plasma is the inhibitions of 

bile acid transport into and out of hepatocytes. The uptake of bile acids from the blood into 

hepatocytes is controlled by membrane transporters. These membrane transporters are 

known as organic anion transporting polypeptides (OATP). OATPs are typically required for the 

uptake of xenobiotics which undergo phase 1 and 2 metabolism within the hepatocytes 

(Kalliokoski and Niemi, 2009). However, these transporters also have a number of endogenous 

ligands such as both free and conjugated bile acids (Kalliokoski and Niemi, 2009). Two OATP 

subtypes, OATP2B1 and OATP1B1, are known to be inhibited by PIs including atazanavir, 

darunavir and ritonavir, although the latter has the greater inhibitory effect of the three 

(Annaert et al., 2010, Griffin et al., 2011). A reduced uptake of bile acids from the plasma as a 

result of PI-mediated OATP inhibition would result in increased plasma bile acid 

concentrations.  In addition, apical membrane transporters which export bile acids from the 

hepatocytes into the bile are also inhibited by PI (McRae et al., 2006). A number of PIs 

including ritonavir have also been found to inhibit the Bile Salt Export Pump (BSEP) also known 

as ATP binding cassette transporter B11 (ABCB11). ABCB11 which facilitates the export of both 

free and conjugated bile acids into the bile (Griffin et al., 2013, Morgan et al., 2010, McRae et 

al., 2006). Reduced export of bile acids into the bile and build up in the hepatocytes is a cause 

of hepatotoxicity due to the toxicity of bile acids (Morgan et al., 2010). The inability to excrete 

bile acids from hepatocytes may result in an increased plasma concentration, or the 

hepatotoxicity may lead to bile acids leaking from damaged hepatocytes back into the blood. 

In the current study bile acid profiles were also found the have been disrupted as a result of PI 

containing cART intervention (Table 6.4, 6.5). However, unlike the previously discussed reports 

this work discovered that several bile acids had decreased urinary concentrations. In total 7 

free and conjugated bile acids and 1 bile alcohol were detected in urine extracts (Table 6.6). 

These encompass the primary bile acids, cholic acid, taurocholic acid, glycocholic acid and 

glycochendeoxycholic acid. The primary bile acid taurochendeoxycholic acid was not detected 

in these samples. In addition, secondary bile acids, which are a result of C7 dehydroxylation by 

gut microflora (Lefebvre et al., 2009), were detected and these included deoxycholic acid and 

its taurine conjugate taurodeoxycholic acid. The other major bile acid formed via microbial 

metabolism, lithocholic acid, was not detected. The metabolic pathway of bile acid synthesis is 

shown in Figure 6.9. Of the detected bile acids only cholic acid (p<0.01), its glucuronide 
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conjugate (p<0.0001) and glycocholic acid (p<0.0001) decreased significantly in the cART 

treatment groups. Furthermore norcholestanehexol glucuronide was also found to be 

significantly lower (p<0.0001) in the cART treatment group. This bile alcohol is a minor 

metabolic end point of cholesterol metabolism and its disruption may reflect the changes in 

the other bile acid profiles. While the changes in bile acid profiles are different to the findings 

of Cassol et al., (2013) and McRae (2010), the fact that the carnitine metabolite was correlated 

to the bile acid disruption as it was in the Cassol study implies that fatty acid β oxidation has 

been disrupted too.  This is a potential result of the bile acids themselves being nuclear 

receptor ligands for receptors such as Peroxisome Proliferator-Activated Receptors, Farnesoid 

X Receptors, Constitutive Androstane Receptors and Pregnane X Receptors which regulate lipid 

metabolism in addition to inflammation and the innate immune response (Cassol et al., 2013, 

Chiang, 2009). In cases of hepatotoxicity, increased plasma bile acid concentrations are usually 

reflected in the urine (Bathena et al., 2015b, Bathena et al., 2015a). Hence, it was unlikely that 

the decreased concentrations of certain bile acids observed in the cART exposed patients in 

the current study were a result of hepatotoxicity. Instead the role of bile acid transporters such 

as the OATPs and ABCs could be implicated in the decreased urinary bile acid profiles. It is 

known that these receptors are also present in the kidney (Aleksunes et al., 2008, Huls et al., 

2006). This suggests that they may be involved in the excretion of bile acids into the urine, and 

thus if they are inhibited by PIs it is possible for bile acid concentrations to be decreased in the 

urine.  However, in the current study only a subset of bile acids detected in the urine extracts 

were disrupted in cART exposed patients which implies that these transporters may have 

different affinities for the various bile acids. However, it is also noteworthy that the disrupted 

bile acids in this study were cholic acid or its metabolites, whereas concentrations of 

chenodeoxycholic acid and its metabolites were not observed to vary between patient groups. 

These bile acids can be formed by different metabolic pathways (Figure 6.9). Chendeoxycholic 

acid can be produced via an alternative pathway (Figure 6.10) where it does not rely of CYP7A1 

or CYP8B1 enzyme activities. The classical pathway which is the only route for cholic acid 

production is limited to the liver whereas the alternative pathway for chendeoxycholic acid can 

occur in the mitochondria of most tissues in the body and may contribute a large proportion of 

formation of this bile acid (Chiang, 2009). As such, any disruption to CYP7A1 and CYP8B1 will 

adversely affect cholic acid metabolism whereas chenodeoxcycholic acid metabolism may be 

affected to a lesser extent. So an alternate hypothesis to explain the decreased concentrations 

of cholic acid metabolites in urine extracts of samples from cART patients maybe the inhibition 

of selected CYP enzymes crucial to cholic acid biosynthesis. 
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Interestingly the fold decreases in bile acid concentrations are much greater (up to 10 times) in 

the atazanavir group than for darunavir group (Table 6.5). The cause of this is not clear and has 

not been previously reported as no other metabolomic study has directly compared two 

different PIs. However, the difference in fold change of cholic acid glucuronide between the 

two cART regimes may in part be explained by the inhibition of uridine 5’-disphospho-

glucuronosyltransferases which atazanavir is known to inhibit  whereas no such inhibition has 

been observed for darunavir (Zhang et al., 2005, Martinez et al., 2014). Inhibition of this class 

of enzyme prevents the glucuronidation of metabolites and may explain the decreased 

concentration of the glucuronide conjugate with atazanavir medication. Interestingly using 

conventional sample preparation techniques and UHPLC-ESI TOFMS analyses, cholic acid 

glucuronide would not have been detected in urine samples in this study (see Chapter 3).   

In the Cassol et al., (2013) study, plasma concentrations of pregnenolone, androsterone and 

dehydroepiandrosterone sulfates were found to be significantly decreased in the cART patients 

relative to the healthy controls. While in this study only pregnenolone was detected as being 

significantly decreased (P<0.01) in cART patients, androsterone sulfate levels were also 

typically lowered in cART groups. However the decrease in concentrations were not significant 

and this was  possibly due to the fact that it appeared to co-elute with an additional androgen 

sulfate making the peak picking process more complex. Interestingly, the HIV negative patients 

had the highest level of pregnenolone sulfate and although it was not significantly greater than 

the cART naïve HIV positive patients it does correlate with the findings of Cassol et al., (2013). 

In the 2013 study, the levels of steroid sulfates were found to be inversely proportional to that 

of interferon and interleukin plasma protein markers of pathogen infection. It was found that 

interferon down regulates sterol synthesis thus offering a potential explanation for the down 

regulated steroid sulfates (Cassol et al., 2013). Further work using targeted LC-MSMS analyses 

to quantify steroid profiles in urine extracts is necessary to determine how profiles of these 

metabolites change in response to viral load and cART medication.   

In the current study a nucleoside, 5-deoxy-5(methylthio)adenosine, was elevated in the cART 

naïve HIV positive patients (Table 6.4). This metabolite has previously been detected, using 

targeted approaches, at elevated levels in the urine of immunocompromised children (Mills 

and Mills, 1985, Mills et al., 1985). This variation may be a result of its role in the regulation of 

apoptosis through the inhibition of protein carboxymethyltransferase which is involved in 

protein methylation, which in turn can modulate cell signalling and protein expression, 

although the exact mechanism behind its role in apoptosis is still unclear (Avila et al., 2004, Lee 

and Cho, 1998). This role in apoptosis is particularly relevant in HIV as a major cause of CD4+ 
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cell loss is due to an increased rate of apoptosis (Levy, 1993, Pantaleo et al., 1993a). In 

addition, 5-deoxy-5(methylthio)adenosine is involved in the activation of lymphocytes and 

thus may also be elevated as part of the immune response to HIV infection (Avila et al., 2004). 

This is supported by the fact that in this study the highest concentration of 5-deoxy-

5(methylthio)adenosine was detected in the cART naïve HIV positive patients (Table 6.5). 

However, differences in detected 5-deoxy-5(methylthio)adenosine concentrations between 

cART naïve HIV negative and HIV positive patients were not significant. Despite this, it suggests 

that 5-deoxy-5(methylthio)adenosine may be a marker of a compromised immune system. The 

significant reduction in urinary concentration of 5-deoxy-5(methylthio)adenosine, could be an 

indication of the efficacy of cART intervention in these patients as all of them show good 

viremic control (Table 6.2). Further investigation of 5-deoxy-5(methylthio)adenosine is 

required due it potentially providing a robust urinary marker of immune function and cART 

efficacy. 

The link between the dipeptide and tetrapeptide markers and HIV/cART patients is not clear, 

although decreased urinary concentrations of leucine-proline has been observed in both urine 

and plasma of rat models of atherosclerosis. Atherosclerosis, like HIV, is a long term 

inflammatory condition linked to disrupted lipid metabolism (Zhang et al., 2009) and in the 

current study, levels of leucine-proline decreased in urine of cART patients which also showed 

disruptions in lipid (carnitine and bile acid) metabolism.  In addition, urinary metabolomic 

approaches have been shown that leucine-proline to be increased in patients with colorectal 

cancer and bladder cancer (Wang et al., 2010b, Huang et al., 2011). In the colorectal cancer 

study this increase was linked to a possible increased rate of protein catabolism (Wang et al., 

2010b). This raises the question as to whether there has been changes in protein catabolism in 

cART experienced patients which my account for the lowered levels of leucine-proline in their 

urine. 

In the current study a tetrapeptide was found to be increased in the cART groups, however the 

link between cART treatment and tetrapeptide levels is unclear and requires further 

investigation. These findings indicate that small peptides may play a significant role in cART 

mediated effects on metabolomic  profiles which to date is under appreciated. Future peptide 

orientated investigations may further elucidate mechanisms of HIV infection and treatment. 

Despite the significantly increase plasma bilirubin levels (Table 6.1) no markers associated with 

bilirubin or any of its metabolites, bilirubin sulfate, urobilin and urobilinogen were detected in 

this study. Increased urine levels may have been expected given the increased plasma 
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concentrations of bilirubin. However, this is possible a result of haem metabolite excretion 

being primarily via the faeces (circa. 95%) meaning urinary concentrations may be too low to 

detect (Berk et al., 1969).  

It should be recognised that the identities of these discriminating metabolites are putative 

based upon accurate mass measurement, isotope fit and comparison of fragmentation to 

MSMS databases and genuine standards (bile acids) where possible. Further targeted analysis 

is required for metabolite identity confirmation using multiple reaction monitoring (MRM) by 

comparing genuine standards to the urine metabolites (Dunn et al., 2013, Sumner et al., 2007). 

In addition, MRM would enable a quantitative analysis of these metabolite concentrations. 
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Table 6.4: Putative identification of significantly (p<0.01) discriminating markers between cART naive and cART positive HIV patients 

ROC atz vs 
HIV +ve (fold 

change) 

ROC drn vs 
HIV +ve (fold 

change) 

Rt Exp. 
mass 

Thr. 
Mass 

Formula of ion Putative identification Fragments 

Decreased in cART patients 

Positive ESI 

0.8120 (-3.6) 0.8400 (-4.2) 20.91 304.287 304.2852 C17H37NO3 Unidentified metabolite* none detected 

0.9280 (-2.4) 0.8748 (-2.1) 12.57 247.167 247.1658 C11H20N2O3 (+H2O) Leucine-proline +H2O 229.1551, 183.1473 

0.8880 (-10.3) 0.8400 (-5.5) 5.41 298.099 298.0974 C11H15N5O3S 5-deoxy-5(methylthio)adenosine 136.066, 145.031, 119.038 

0.8780 (-8.8) 0.8443 (-3.5) 13.19 302.2342 302.2331 C16H31NO4 2,6 dimethylheptanoylcarnitine 85.0302, 243.1611 

Negative ESI 

0.9630 (-34.4) 0.9090 (-10.2) 13.87 583.3124 583.3124 C30H48O11 Cholic acid glucuronide+ 343.2650, 175.0248, 157.1234 

0.8019 (-5.4) 0.7500(-3.6) 18.60 407.2792 407.2797 C24H40O5 Cholic acid 345.2794, 343.2629, 327.2643 

0.9370 (-30.1) 0.8645 (-3.6) 12.54 464.3014 464.3012 C26H43NO6 Glycocholic acid* 402.2981, 400.2866, 384.292 

0.9800 (-3.3) 0.9510 (-2.9) 12.32 629.3533 629.3537 C32H54O12 Norcholestanehexol glucuronide* 175.0237, 113.024 

0.8070 (-2.5) 0.8019 (-2.4) 16.57 397.2051 397.2049 C21H34O5S Pregnenolone sulfate None detected 

0.8310 (-3.6) 0.8600 (-4.2) 9.92 319.644 Unknown Unknown Unidentified metabolite None detected 

Increased in cART patients     

Negative ESI     

0.7540 (+15.3) 0.7548 (+7.4) 12.48 539.2694 539.2690 C21H34N10O7 Gln Arg His Thr tetrapeptide None detected 

atz: atazanavir, drn: darunavir, Exp.mass: experimental mass, Thr. Mass: theoretical mass. * metabolites also significantly higher (p<0.01) in HIV negative group versus both cART groups, 
+
 

metabolites also significantly greater in HIV negative group versus Atazanavir group.  
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Table 6.5: Normalised mean areas of discriminating endogenous metabolites 

Putative metabolite identity Mean ± standard deviation of normalised metabolite concentration  

 cART naïve HIV -ve cART naïve HIV +ve Atazanavir Darunavir 

Leucine-proline +H2O  23.4±8.7 24.5±11.6 10.2±4.6 11.6±6.0 

5-deoxy-5(methylthio)adenosine  5.1±5.5 8.4±7.0 0.8±0.5 1.5±1.8 

2,6 dimethylheptanoylcarnitine  514.4±711.7 277.9±322.6 31.8±41.8 78.6±183.2 

Cholic acid glucuronide  4.4±5.9 10.8±11.9 0.3±0.3 1.1±2.4 

Cholic acid  2.1±4.1 5.4±9.4 1.0±1.9 1.5±2.6 

Glycocholic acid  6.3±6.9 6.4±3.7 0.2±0.1 1.8±5.6 

Norcholestanehexol glucuronide  7.0±6.9 8.4±3.6 2.5±0.9 2.9±3.4 

Pregnenolone sulfate  0.7±0.7 0.9±0.6 0.4±0.1 0.4±0.1 

Unidentified metabolite  8.3±13.6 11.8±8.7 0.7±0.5 0.7±1.2 

Gln Arg His Thr tetrapeptide  0.3±0.3 0.3±0.2 3.9±8.7 1.9±3.1 
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Table 6.6: Detailed summary of bile acids detected in the urine of cART naïve and experience patients 

Bile acid Rt Exp. 
Mass 

Thr 
Mass. 

Formula Fragments HIV +ve vs 
atazanavir 

HIV +ve vs 
darunavir 

Cholic acid 18.6 407.2792 407.2797 C24H40O5 345.2794, 343.2629, 327.2643 p<0.01 p<0.01 

Cholic acid glucuronide 13.87 583.3124 583.3124 C30H48O11 343.2650, 175.0248, 157.1234 p<0.0001 p<0.0001 

Taurocholic acid 12.83 514.2823 514.2838 C26H45NO7S 124.0067, 106.9804 ns ns 

Glycocholic acid 12.54 464.3014 464.3012 C26H43NO6 402.2981, 400.2866, 384.292 p<0.0001 p<0.0001 

Deoxycholic acid 24.38 391.2832 391.2848 C24H40O4 345.2771, 343.2621 ns ns 

Taurodeoxycholic acid 16.62 498.2867 498.2889 C26H45NO6S 124.0067, 106.9807 ns ns 

Glycochenodeoxycholic acid 16.6 448.3055 448.3063 C26H43NO5 nd ns ns 

Norcholestanehexol glucuronide  12.32 629.3533 629.3537 C32H54O12 175.0237, 113.024 p<0.0001 p<0.0001 

Exp. Mass = experimental mass, Thr Mass = theoretical mass, HIV +ve refers to patients with HIV who are cART naïve, ns = p>0.05. nd = metabolite signal too weak for detection of fragments 
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Figure 6.9: Bile acid metabolomic pathway from cholesterol 
The discriminating metabolites of the bile acid pathway detected in this study were from the cholic acid portion of 
this metabolic pathway. (Adapted from “Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation” 2009) 
(Lefebvre et al., 2009) 
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Figure 6.10:  Classical and alternative metabolic pathways for the production of primary bile 

acids 
Metabolic disruption to CYP7A1 or CYP8B1 are likely to have a significant effect on the production of cholic acid and 
its derivatives where as chenodeoxycholic acid production will be affected to a lesser extent. (Adapted from: “Bile 
acids: regulation and synthesis” 2009) (Chiang, 2009) 
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6.5 Conclusion 

The use of newly developed sample preparation and analytical methodologies for 

metabolomic analysis of urine has allowed for the first urinary LC-MS metabolomic approach 

to investigate the metabolomic consequences of cART therapy in HIV positive patients. The 

current study is also the first to detail the extensive metabolism of PIs in human urine and to 

detect these metabolites using a non-targeted approach. The ability to detect a wide array of 

pharmaceutical metabolites in urine extracts of patients opens up the possibility to investigate 

any differences in drug metabolism for example between high metabolisers and low 

metabolisers with potential use for future personalised medication. In addition, in this study it 

allowed confirmation of patients into cART naïve and cART experienced groups. Furthermore, 

an array of endogenous metabolites was found to distinguish between cART naïve and cART 

experienced HIV positive patients. These included bile acids which are ligands of several 

nuclear receptors and aid in the regulation of lipid metabolism, inflammation and immune 

function. However, unlike previous studies where bile acid concentration in plasma has been 

observed to increase, in this study selected urinary bile acids were found to decrease in 

concentration. This is potentially a result of PI inhibition of bile acid transporters and requires 

further investigation to determine if this is indeed the case.  Concentrations of a carnitine 

metabolite were also decreased in urine of cART experienced patients indicating disruption of 

mitochondrial lipid β-oxidation. These metabolite changes are the converse of those previously 

observed in other studies of the effect of cART intervention on the plasma metabolome and 

warrant further investigation of both matrices to elucidate the metabolomic causes of this 

disparity. In addition, two further metabolites, leucine-proline and 5-deoxy-

5(methylthio)adenosine were found to be reduced in patients receiving cART intervention. This 

is the first occasion that either have been associated with HIV cART intervention, although 5-

deoxy-5(methylthio)adenosine has previously been reported to be elevated in 

immunocompromised children. The mechanisms behind both of these metabolites require 

additional studies to quantify and understand the role they have in HIV infection. The fact that 

two peptide markers were found to discriminate between sample groups implies that a future 

peptidomic approach may reveal further markers of HIV cART intervention. The finding of this 

study indicate that the use of the new analytical methods for method development and LC-MS 

analysis enable a sensitive approach for allowing a non-invasive analysis of cART therapy using 

metabolomics analyses of urine extracts.  
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Chapter 7: General discussion 

7.1 Introduction 

To date, the field of metabolomics has been limited to the analysis of only the most 

abundant metabolites in the metabolome. This focus on the most abundant metabolites in 

itself has led to significant advances in our knowledge of disease and is currently making 

changes to patient quality of life and treatment. On example of this is the development of the 

so called ‘intelligent knife’, where the smoke plume from a cauterising scalpel is analysed using 

online mass spectrometry. The enables surgeons to identify cancerous tissues during surgery 

ensuring the entire tumour is removed (Balog et al., 2013). However, low abundance 

metabolites are not required in this analysis and like many metabolomics studies these 

metabolites are not detected. This is both a result of neglected sample preparation techniques 

and the use of less sensitive analytical platforms. In addition, urinary metabolomics suffers 

from a unique problem posed by variable concentration within and between individuals.  

This thesis begins to offer solutions to these issues by introducing SPE sample 

preparation methodologies to ensure thorough sample clean up and pre-concentration prior 

to analysis. In addition, new nanoflow-nanospray LC-MS technologies were investigated as a 

source of highly reproducible and sensitive analyses for metabolomic studies. Furthermore, a 

novel normalisation methodology was investigated using the pre-analysis correction of urine 

concentration according to sample osmolality to minimise the detrimental effect of urine 

concentration and a post-analysis MS signal normalisation to reduce fluctuations in LC-MS 

performance prior to multivariate statistical analyses. As a result of this work, the first LC-MS 

urine metabolomic analysis of HIV patients was carried out investigating the metabolomic 

consequences of HIV infection. This analysis proved to be highly sensitive and capable of 

detecting metabolites that would not normally have been detected during metabolomic 

analysis without the newly developed SPE sample preparation techniques and nanoflow-

nanospray analysis methodologies. Despite this sensitive analysis it was not possible to 

ascertain any discriminating metabolites between groups of HIV negative, acute or chronic HIV 

infection groups. However, a likely cause of this is that NSAIDs were detected in the majority 

of patients meaning that any inflammatory markers would have been suppressed. This 

highlights the importance of obtaining an accurate patient history prior to metabolomic 

analysis to ensure patient samples can be stratified by pharmaceutical intake to avoid 

confounding the analysis. In addition, the patients in this study were in the early stages of HIV 

infection before antiretroviral therapy was required suggesting any metabolic effects of 
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infection may be too subtle to be detected in the urine and that an analysis of the plasma may 

be better suited for metabolomic analysis of early HIV infection.  

A second study investigated more advanced HIV infection and the consequences of 

two cART intervention regimes on the urinary metabolome compared with cART naïve HIV 

positive and negative groups. Here the cART intervention groups contained three common 

pharmaceuticals, the NRTIs tenofovir and emtricitabine and the PI ritonavir. The two groups 

contained different additional PIs, one group contained darunavir and the other atazanavir. 

Analysis of the urine metabolomic profiles of these patients highlighted that the cART 

intervention significantly altered the biochemical nature of urine. Cholic acid and several of its 

metabolites were discovered to be down regulated in the urine and the proposed mechanisms 

for this was disruption to the classical bile acid synthesis pathways or inhibition of bile acid 

transporters in the kidney. This was the first work to report a reduced concentration of bile 

acids in the urine of patients receiving cART. This opens up further opportunities to enhance 

our understanding of cART interventions on bile acid metabolism and elimination as previous 

plasma studies indicated that bile acid levels increased in cART experienced patients (McRae et 

al., 2010, Cassol et al., 2013).  Furthermore, 5-deoxy-5(methylthio)adenosine was detected for 

the first time as a marker of cART intervention in HIV patients. This metabolite is strongly 

linked to roles in apoptosis and immune function and may prove to be a strong marker of cART 

efficacy as urinary concentrations dropped dramatically with cART intervention. This study also 

highlighted for the first time a potential role of small di- and tetrapeptides in HIV infection and 

therapy, although further studies are required to elucidate these functions. In addition to 

endogenous metabolites, the metabolism of cART drugs was a large driver of discrimination 

between sample groups. This was the first time the extensive metabolism of protease 

inhibitors was determined using a metabolomics approach.   

Despite the advances presented in this thesis, significant challenges still exist in 

metabolomic analysis, and these may be addressed using either new or more commonly 

available techniques that have been introduced in the last few years. These are discussed in 

this chapter in addition to offering potential future metabolomic applications of these new 

sensitive techniques. 

 7.2 Sample preparation  

As previously discussed in this thesis, sample preparation is frequently overlooked in 

favour of rapid methodologies allowing for high throughput analysis (Fernández-Peralbo and 

Luque de Castro, 2012, Alvarez-Sanchez et al., 2010b, Alvarez-Sanchez et al., 2010a). This 
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thesis introduced both mixed mode anion and mixed mode cation exchange SPE, with a pre-

concentration step. The use of this methodology proved to significantly increase the number 

of metabolites detected (Chapter 3). However, this methodology required two cartridges and 

was completed off-line making it a time consuming process. Recently Phenomenex 

(Macclesfield, U.K) have developed a single cartridge with reversed phase, cationic and anion 

exchange stationary phase thus halving the cost, solvent use and sample prep time (Boisvert et 

al., 2012). A further option is the use of on-line SPE, this technique has been used in some 

platforms for several years, but is becoming more common with nano scale platforms in the 

form of column trapping which is often used in proteomic analysis (Koppen et al., 2014, 

Rogeberg et al., 2014).  

Online-SPE/ column trapping is an automated sample preparation method which 

offers significantly reduced sample preparation times, solvent usage and potential user error 

(Rogeberg et al., 2014, Anumol and Snyder, 2015, Koppen et al., 2014). In addition, the solvent 

evaporation stage is eliminated, and this not only reduces the time taken but eliminates the 

potential sample loss during this process (Anumol and Snyder, 2015). The addition of online 

SPE/trapping has been shown to have no negative connotations on mean peak area 

repeatability or reproducibility (Anumol and Snyder, 2015) or retention time stability 

(Rogeberg et al., 2014). Although reversed phase trapping and analytical columns are currently 

the only available options for the current work on the Waters nanoAcquity platform, other 

groups have investigated various combinations of HILIC, mixed mode and reversed phase 

chemistries for optimised sample clean up, pre-concentration and chromatography (Rogeberg 

et al., 2014). In contrast to conventional SPE cartridges which are single use only, online-SPE 

and trapping columns may be used hundreds of times as they are washable, thus significantly 

reducing the cost and environmental impact of sample preparation (Anumol and Snyder, 

2015). 

While much of the column trapping used in nLC-nESI-MS allows low abundance 

proteins to be concentrated and desalted prior to proteomic analysis (van de Meent and de 

Jong, 2011, Wang et al., 2007), several studies have recently demonstrated its applicability to 

small molecule analysis (Berlioz-Barbier et al., 2015, Berlioz-Barbier et al., 2014). In these 

studies column trapping was utilised in the analysis of pharmaceutical contaminants in waste 

water effluents and mussels. A column trapping methodology was also successfully utilised in a 

global metabolomic analysis investigating the role of polyphenolic compounds present in olive 

oil on apoptosis in colon cancer, (Fernández-Arroyo et al., 2012). 
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The incorporation of an automated online sample preparation method would 

significantly reduce the time taken to prepare samples for metabolomic analysis. In addition, 

by automating the process a more reliable robust analysis could be achieved as fewer work up 

errors are likely to affect the analytical outcome.   

7.3 Analytical platforms 

7.3.1 Liquid Chromatography 

One of the problems encountered in this thesis is the retention of polar metabolites on 

the nano flow columns. Although much work has been carried out by others in an attempt to 

solve this problem using HILIC, or aqueous normal phase chemistries, these techniques still 

require an additional LC-MS run to analyse polar compounds (Zhang et al., 2012b, Spagou et 

al., 2011, Gika et al., 2008a). A further problem, despite the use of nano flow rates, is that of 

ion suppression as a result of co-elution of compounds from the analytical column. 

One potential solution to this is to incorporate a two-dimensional LC (2D LC) 

separation prior to MS analysis. 2D LC is known to greatly improve chromatographic 

resolution, in turn reducing ion suppression, which subsequently increases the signal to noise 

ratio (Chalcraft and McCarry, 2013, Li et al., 2013b, Genta-Jouve et al., 2014). There are a 

number of techniques to generate a 2D LC-MS method; one is to use two columns of the same 

chemistry, while the other is an orthogonal separation where two different chemistries are 

incorporated (Chalcraft and McCarry, 2013, Jandera, 2012). In both cases both separations 

occur in series, while in the latter, separation is driven by the differing chemical properties of 

the analyte interact with two stationary phases (Lu et al., 2008). There are also a number of 

ways in which the eluent from the first column is introduced to the second. Either they run 

straight into each other, or fractions are collected online by filling a second sample loop with 

the eluent of the first column, which is subsequently injected onto the second column. In 

addition, the 2D separation may be achieved offline, where the fractions from one LC run are 

saved prior to the second dimension LC analysis (Yin and Xu, 2014, Jandera, 2012). In a 

comprehensive 2D LC system, all fractions collected from the first column are subsequently 

analysed by the second column. However, in a process known as “heart cutting”, only selected 

fractions are analysed again, with the remaining being directed to waste (Jandera, 2012, Yin 

and Xu, 2014).  In non-targeted metabolomics, “heart cutting” 2D LC would be detrimental to 

the extensive coverage required for the metabolome.   

To date, 2D LC has not been widely adopted in the field of metabolomics. One study of 

the urinary profile of lung cancer patients utilised online 2D LC-MS with both HILIC and RP 
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column chemistries. This study identified 17 discriminating metabolites encompassing amino 

acids, bile acids, peptides and organic acids which covered a wide range of polarities, thereby 

justifying the use of both column chemistries (Yang et al., 2010). A further study by Edwards et 

al., (2007) employed an offline 2D LC-MS platform where the first dimensional separation was 

achieved using a cation exchange column. Due to incompatibilities with reversed phase 

chemistry, the eluent from the first column was collected into 6 fractions, which were dried 

and reconstituted prior to the second dimensional analysis on a RP column. Compared to 

conventional 1D RP separation the addition of a second dimension increased the number of 

metabolites detected by 44%, however the incorporation of an evaporation and reconstitution 

step significantly increased analysis time (Edwards et al., 2007). In a further metabolomic 

analysis of human urine, the use of 2D LC-MS enabled 2.5 fold more metabolites to be 

analysed compared to a single LC-MS analysis. This, as with the Edwards et al (2007) 

methodology, utilised an offline 2D LC-MS. However in both runs the same column chemistry 

was utilised, but instead the polarity of the metabolites were altered using a derivatization 

step following the 1st LC run. Here metabolites were derivatized using 12C-13C dansylation thus 

changing the retention characteristics of each metabolite. This step alone however took 90 

minutes and thus adds a significant amount of time to metabolomic analysis (Guo et al., 2011). 

7.3.2 Mass Spectrometry 

The use of nanoflow and nano spray platforms undoubtedly increases sensitivity to 

low abundance metabolites in the metabolome. This is highlighted in the detection of low 

abundance metabolites in the HIV studies reported in Chapters 5 and 6. However, one major 

bottleneck in metabolomics is structural elucidation and metabolite identification (Paglia et al., 

2014). With more sensitive platforms structural elucidation using NMR is no longer an option, 

due to the low abundance of such metabolites (Lanucara et al., 2014). A further issue with 

nanoflow platforms is the relatively long run times (circa 1 hr), and in many cases high 

throughput analysis is preferred to a more sensitive analysis (May et al., 2015). Although not a 

new technology, ion mobility (IM) mass spectrometry offers a potential solution to these 

issues. Ion mobility offers a third dimension in LC-MS separation, by incorporating a drift cell 

between the ionization step and the entry to the mass analyser. Ion mobility separates ions 

based upon their collisional cross section (CCS) (Paglia et al., 2014). Here ions are passed into a 

drift chamber which is filled with an inert drift gas, such as helium or nitrogen, and a weak 

uniform electric field is applied (Ibrahim et al., Zhou et al., 2014, Shrestha and Vertes, 2014). 

The electric field is utilized to drag the ions through the drift chamber and the time taken for 

an ion to pass through the drift chamber is directly proportional to the number of collisions 
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with the inert gas, which in turn is a direct result of its surface area. This allows IM to separate 

ions based upon their size and shape before entering a mass analyzer, which then separates 

ions based upon their mass to charge ratio (Kanu et al., 2008, Zhou et al., 2014, Lanucara et al., 

2014, Fenn et al., 2009, Shrestha and Vertes, 2014, Paglia et al., 2014). Separation on CCS 

allows isobaric, chiral and isomeric ions to be separated within the flow chamber very quickly, 

and much faster than using a conventional LC methodology (Kanu et al., 2008). In addition, IM 

can clearly distinguish between chemical classes as they tend to group together in ‘drift time’ 

due to their similar molecular structure. For example amino acids, lipids and polypeptides 

group in distinct groups in drift time (Kanu et al., 2008, May et al., 2015, Fenn et al., 2009, 

Shrestha and Vertes, 2014).  This may help to at least classify the compound class of an 

unknown metabolite. IM-MS has also been shown to increase the signal to noise ratio by 

removing unwanted matrix components and reducing noise, which in turn improves the limit 

of detection of the metabolomic analysis (Fenn et al., 2009, Lanucara et al., 2014, Kanu et al., 

2012). The increased separation afforded by IM-MS allows for improved separation when 

using a shorter LC run time thus allowing for a more high-throughput metabolomic analysis 

(Lanucara et al., 2014). These attributes of increased structural elucidation, separation of 

isobaric compounds and improved limits of detections make LC-IM-MS ideal for the analysis of 

complex matrices such as metabolomics (Kanu et al., 2008). However, to date very few 

metabolomic analysis has been completed using this methodology. A study by Paglia et al., 

(2014) investigated the metabolomic profiles of plasma, urine, red blood cells and platelets in 

3 different laboratories and demonstrated that LC-IM-MS is highly reproducible, both within 

and between laboratories (Paglia et al., 2014). Given the benefits of IM it seems likely that it 

will soon be incorporated into future metabolomic studies to not only increase confidence in 

metabolite identity, but to provide an increase in sensitivity and potentially reduce analytical 

run times. 

7.4 Data Analysis 

One the main rate-limiting steps in metabolomics is the data analysis and metabolite 

identification (Cui et al., 2008, Creek et al., 2014). This is a problem that is more exaggerated 

with ever more sensitive methods, as not only are there more peaks but the background noise 

is also greater. In order to accurately analyse metabolomic workflows, software capable of 

determining metabolite peaks from noise and MS artefacts are required (Want and Masson, 

2011). Ideally, a single peak would correspond to a single ion, however this is very rarely the 

case due to co-elution, adducts, fragments and dimers/trimers formation, meaning multiple 

ions are detected for a single peak (Want and Masson, 2011, Katajamaa and Orešič, 2007). In 
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addition, some peaks are hidden within the noise while others are false peaks generated as a 

result of noise. This is a particular challenge for the very low abundance metabolites (Yu et al., 

2013).  

The process of peak picking has several stages before the final peak list is produced. 

Each software has a unique combination of algorithms for each stage, thus meaning each 

software package performs differently. The first step is to correct for variation in the baseline, 

caused by variation in column temperature, build up of contaminants, or mobile phase 

interference. Following this, a noise reduction step is utilised and this reduces the effect of 

solvent impurities (Want and Masson, 2011) and, for nanoESI platforms, atmospheric 

impurities such as oil vapour from the vacuum pumps (Schlosser and Volkmer‐Engert, 2003).  

Next the chromatogram is smoothed, improving peak shape making them easier to detect. 

Following this the chromatogram is deconvoluted, whereby the ions associated with each peak 

is given an m/z x Rt value. Some software packages such as the firmware Progenesis, or 

freeware such as XCMS (Smith et al., 2006) and MzMine (Pluskal et al., 2010) are capable of 

applying multiple ions to a single metabolite (i.e. fragments), whereas others give multiple m/z 

x Rt values for a single compound (Want and Masson, 2011, Katajamaa and Oresic, 2005). 

Correction for retention time drift due to column aging, matrix effects and temperature 

variation is also usually required. This can be achieved in one of two ways, either the whole 

chromatographic profile is shifted to align a single peak such as an internal standard (Want and 

Masson, 2011), or alternatively a non-linear retention time alignment can be applied where by 

multiple matching metabolites between chromatograms are used to align retention times, 

thus providing a more dynamic correction (Want and Masson, 2011, Qi et al., 2012, Zhang et 

al., 2014, Tautenhahn et al., 2012b, Smith et al., 2006). The final step of the process is to 

integrate the peaks allowing a relative abundance to be determined (Want and Masson, 2011). 

A number of studies have compared different peak picking software packages in an 

attempt to find the ideal package. One study, investigating uterine cervix cancer compared a 

firmware Markerview (Sciex, Warrington, UK) with two freeware packages; MZmine and XCMS 

(Chen et al., 2013a). Analysing QC samples, each software package detected a different 

number of peaks; XCMS 1651, MZmine 994 and Markerview 2516. This is a result of different 

packages utilising different peak picking algorithms, and the main problem between the 

packages arose with low abundance metabolites being confused with background noise. Peaks 

with an intensity of >104 counts were generally agreed between packages and the raw data 

(Chen et al., 2013a). When control samples were compared to the uterine cervix cancerous 

samples, a total of 14 discriminating markers were detected and identified across the 
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packages, however only 2 of these markers were common between all the packages (Chen et 

al., 2013a). In 2014 Coble et al., investigated XCMS (the most cited peak picking software), 

MZmine and Metalign (Lommen and Kools, 2012). In line with the findings of Chen et al., 

(2013), a disparity in the numbers of peaks detected was found between different software 

packages. In total Mzmine detected 38082, Metalign 5107 and XCMS 6204;  this study also 

investigated the percentage of which were false peaks of which 84.7%, 87.2% and 51.8% were 

incorrectly picked as peaks respectively. In terms of missing peaks, only XCMS did not miss 

peaks, thus along with the lowest proportion of false peaks, XCMS was determined to be the 

preferred package on this occasion (Coble and Fraga, 2014). In a more recent analysis 

Peakview (Sciex, Warrington, UK), Markerview, Metabolitepilot (Sciex, Warrington, UK) and 

XCMS were compared using bile and urine MS data and a mixture of 84 standards (Rafiei and 

Sleno, 2015). Neither of the packages were able to peak pick all 84 standards, and in order of 

the number of standards detected, the packages ranked Markerview, Peakview then jointly 

XCMS and Metabolitepilot. As with the previous study, a large disparity was noted for the total 

number of peaks detected for the combined profiles of bile and urine. These totals were 

11553, 11708, 2015 and 9879 for Markerview, XCMS, Peakview and Metabolitepilot 

respectively (Rafiei and Sleno, 2015). It is, however, important to remember that detecting the 

most number of peaks in itself is not a marker of the quality of peak picking, as this may well 

be influenced by factors such as background noise. While the quality of the peak picking was 

not discussed it was noted that XCMS and Markerview provided the quickest peak picking 

process. However, Peakview and Metabolitepilot allowed for a visual analysis of the extracted 

ion chromatogram for all peaks detected. Finally both Markerview and XCMS have the ability 

to detect and remove isotopes meaning fewer ions are peak picked for the same compound 

(Rafiei and Sleno, 2015).   

An additional benefit of XCMS is that the data output can be imported to an excel 

macro named IDEOM which can be used to reduce the impact of peak shoulders, 

irreproducible peaks, adducts, dimers/trimers, noise and fragments. The developers of IDEOM 

claim that these features account for up to 80% of all peaks picked. The remaining peaks may 

then be compared to either a built-in database or the users own library of standards with 

retention time data to aid in the identification of metabolites (Creek et al., 2012). However, 

XCMS online has a limited capacity of 3GB per user initially which is far too small for data files 

derived from a nanoESI platform even following the data compression required for XCMS 

upload. The offline version to date only allows for a pair ways analysis, limiting analysis to a 
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control versus a single case group. In addition, offline XCMS requires additional expertise from 

the researcher in the R programming language.  

What is clear from these studies, is that so far no single peak picking software can be 

relied upon for accurate peak picking, and any resulting discriminating peaks require extensive 

manual examination and follow up to assess the veracity of the result (Coble and Fraga, 2014, 

Chen et al., 2013a). However, a new software package named Progenesis (formerly 

Transomics) which has found success in proteomics, offers an improved peak picking process 

for metabolomics. As with XCMS a non-linear peak alignment algorithm is included, but is also 

available for manual user alignment (Qi et al., 2012, Zhang et al., 2014). Peak picking is 

achieved using a reference map of all detected peaks which is compared to each 

chromatogram, and uses a wavelet based peak picking with isotope matching to determine a 

peaks presence or absence in the chromatogram. This allows for overlapping peaks to be 

differentiated (Kuharev et al., 2015, Nahnsen et al., 2013). Progenesis also identifies and 

removes adducts, and can be used to investigate only metabolites with a pre-defined 

significant difference between sample classes. In addition, Progenesis has a built-in database 

for metabolite identification, based on accurate mass measurement, and the ability to utilise 

online databases. In a recent update, MSe data can be used for metabolite identification using 

additional fragmentation data thus adding a more reliable form of metabolite identification 

where fragmentation data is available in databases. 

Even with these recent developments it is clear that more needs to be done to 

improve metabolomic peak picking. With the high standards set for retention time and mean 

peak area repeatability, it appears that this may be lost during the peak picking process. 

Once peaks have been successfully picked, discriminating metabolites then need to be 

identified. Typically this can be done by searching databases such as Metlin (Tautenhahn et al., 

2012a), HMDB (Wishart et al., 2013) and MyCompoundID (Li et al., 2013a). However, many 

compounds are isobaric, and thus these searches may return many compounds of the same 

mass. Confidence can be increased in metabolite identification by comparison of 

fragmentation data to pure standards, or MSMS data provided in databases (Tautenhahn et 

al., 2012a, Creek et al., 2014). Currently the human metabolome database contains very 

limited MSMS data, however it provides detailed biological importance of each metabolite and 

predicted concentrations in biofluids (Wishart et al., 2013). Metlin however is another freely 

available mass spectral database aimed at metabolomic researchers, and containing over 

10,000 MSMS mass spectra, and some with 4 different collision energies (Tautenhahn et al., 
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2012a). However, both databases contain only a small fraction of the metabolites present in 

the human metabolome, and as such both need to be expanded. MycompoundID has the 

additional functionality of identifying compounds based upon fragments and adducts and links 

to HMDB (Li et al., 2013a). The gold standard for metabolite identification is the comparison of 

accurate mass, retention times and fragmentation patterns against a pure standard (Creek et 

al., 2014). This can now be further improved upon for the identification of structural and chiral 

isomers with the use of ion mobility mass spectrometry. 

Once reliable peak picking software and more expansive metabolite databases have 

been developed, metabolomic workflows would be significantly quicker. In addition the more 

accurate peak picking process and MSMS metabolite identification would provide a more 

reliable metabolomic analysis. 

7.5 Future metabolomic studies 

There are still several areas in which urinary metabolomics have been underutilised 

and could provide valuable insight. In medical research, various pathologies of the kidney are a 

significant burden on healthcare, with over 10% of adults developing chronic kidney disease 

(Levey et al., 2003, El Nahas and Bello, 2005) and 5-7% of hospitalized patients developing 

kidney disease as result of kidney injury (Chertow et al., 2005). To date, much of the 

metabolomics research carried out on the kidney has been related to kidney cancers (Huang et 

al., 2013, Ganti et al., 2012a, Ganti et al., 2012b, Ganti and Weiss, 2011, Kim et al., 2011). 

These studies have so far only identified disrupted amino acid and carbohydrate metabolism, 

and offer a non-specific method for detecting kidney cancer (Weiss and Kim, 2012). Other than 

cancer, kidney pathology of particular interest is acute kidney injury (AKI) as a result of surgical 

intervention of which two examples stand out; contrast-induced AKI and AKI following cardiac 

surgery (Solomon and Dauerman, 2010, Rosner and Okusa, 2006). In the case of contrast-

induced AKI, contrast solution is administered to patients undergoing angiography and causes 

kidney injury in up to 25% of angiography patients (Solomon and Dauerman, 2010, Seeliger et 

al., 2012). Another significant cause of AKI is during coronary artery bypass surgery, during 

which the kidney suffers from hypoperfusion-induced AKI. This occurs in between 5 and 30% of 

patients at a cost of >$20,000 each in the U.S.A (Dasta et al., 2008, Chertow et al., 2005, 

Rosner and Okusa, 2006). In both examples the AKI occurs at the time of surgery, however 

current methods to diagnose AKI, namely elevated serum creatinine, take several days to 

become apparent during which the patient has lost significant kidney function (Seeliger et al., 

2012, Solomon and Dauerman, 2010, Weiss and Kim, 2012, de Geus et al., 2012). To counter 

this, an earlier indication of AKI is required to ensure patients receive rapid treatment to avoid 
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permanent kidney damage, dialysis and mortality (Chertow et al., 2005, de Geus et al., 2012). 

To date proteomics has identified several protein markers indicative of AKI, however these 

have proven to be both expensive and unreliable (de Geus et al., 2012). Ideally patients at risk 

of AKI could be indentified prior to surgery to allow immediate intervention to protect the 

kidney. To do this large scale sensitive metabolomic studies of these patients are required to 

identify potential predictive biomarkers of AKI. 

In addition to direct medical research, the use of highly sensitive metabolomic analysis 

offer significant improvements in the field of exposomics. The exposome is the life time 

exposure of an organism from conception to death and how these exposures may impact upon 

health and disease (Rappaport, 2011, Wild, 2012). These exposures come from personal care 

products (Jiménez-Díaz et al., 2014), pharmaceuticals (Bouhifd et al., 2013, Loo et al., 2012), 

smoking (Jones et al., 2014b, Helen et al., 2012), pollution (Schroijen et al., 2008), plastics 

(Hogberg et al., 2008, Jonsson et al., 2005) to name a few and these can be detected in tissues 

and fluids from amniotic fluid and placenta (Vela-Soria et al., 2011, Jensen et al., 2015, Edlow 

et al., 2012) to urine and blood in adults (Chen et al., 2014, Johnson et al., 2012b, Ye et al., 

2011, Schroijen et al., 2008). Due to the vast number and sources of exposure, it is unrealistic 

to target each chemical contaminant singly, and this makes an omic approach ideal (Wild, 

2012). While exposomics is a relatively new field, several metabolomic approaches have been 

implemented to assess the exposure and its impact upon the organism (Jamin et al., 2014, Al-

Salhi et al., 2012). Using a similar SPE methodology to the one developed within this thesis a 

plasma exposomic approach has been performed on fish plasma and uncovered compounds 

that were not detectable using previous sample preparations and analytical methods (David et 

al., 2014). These included low abundance chemical contaminants and their metabolites that 

were not detected using traditional solvent plasma sample preparation techniques and a 

conventional UHPLC-ESI-TOF MS analytical platform.  

7.6 Concluding remarks 

The work presented in this thesis offer a potential solution to increase the sensitivity and 

detection of low abundance metabolites in the urinary metabolome. These methods were 

applied to the first urine metabolomic analysis of HIV infection and cART intervention. The use 

of the newly developed sample preparation techniques and analytical methodologies enabled 

the detection of novel markers of HIV cART intervention and opened up new areas to 

investigate and further improve our understanding of HIV pathogenesis and treatment. These 

studies highlighted the role metabolomics has to offer in medical metabolomic analysis. In a 
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discovery-based field, the increased use of more sensitive analytical approaches is an exciting 

prospect as it has the potential to uncover more subtle changes to the metabolome further 

increasing our understanding of the biochemistry underlying disease or exposure.  
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