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SUMMARY

The explicit use of networks in modelling stochastic processes such as epidemic dy-

namics has revolutionised research into understanding the impact of contact pattern

properties, such as degree heterogeneity, preferential mixing, clustering, weighted and

dynamic linkages, on how epidemics invade, spread and how to best control them. In

this thesis, I worked on mean-field approximations of stochastic processes on networks

with particular focus on weighted and dynamic networks. I mostly used low dimensional

ordinary differential equation (ODE) models and explicit network-based stochastic sim-

ulations to model and analyse how epidemics become established and spread in weighted

and dynamic networks.

I begin with a paper presenting the susceptible-infected-susceptible/recovered (SIS,

SIR) epidemic models on static weighted networks with different link weight distribu-

tions. This work extends the pairwise model paradigm to weighted networks and gives

excellent agreement with simulations. The basic reproductive ratio, R0, is formulated

for SIR dynamics. The effects of link weight distribution on R0 and on the spread of

the disease are investigated in detail. This work is followed by a second paper, which

considers weighted networks in which the nodal degree and weights are not indepen-

dent. Moreover, two approximate models are explored: (i) the pairwise model and (ii)

the edge-based compartmental model. These are used to derive important epidemic

descriptors, including early growth rate, final epidemic size, basic reproductive ratio

and epidemic dynamics. Whilst the first two papers concentrate on static networks,

the third paper focuses on dynamic networks, where links can be activated and/or

deleted and this process can evolve together with the epidemic dynamics. We consider

an adaptive network with a link rewiring process constrained by spatial proximity. This

model couples SIS dynamics with that of the network and it investigates the impact of
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rewiring on the network structure and disease die-out induced by the rewiring process.

The fourth paper shows that the generalised master equations approach works well for

networks with low degree heterogeneity but it fails to capture networks with modest

or high degree heterogeneity. In particular, we show that a recently proposed general-

isation performs poorly, except for networks with low heterogeneity and high average

degree.



v

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr

Istvan Kiss, for his continuous guidance, support, and encouragement for my study and

research. He is an exemplary supervisor. I have come to understand the true definition

of a professional supervisor through his expansive knowledge, enthusiasm, patience, and

timely wisdom over the past four years. Without these, this thesis would not exist.

I would like to thank Konstantin Blyuss, Ken T.D. Eames, Joel C. Miller, and Luc

Berthouze, all of whom I have had the privilege to collaborate with.

The Ministry of Science and Technology of the Royal Thai Government, Thailand

and my home affiliation, King Mongkut’s University of Technology Thonburi, Thailand

have kindly provided the financial support that enabled me to not only to undertake

doctoral research, but also expand my knowledge and research horizon in the process.

I have been fortunate to come to know a great many of local, international and

Thai doctoral students. Their geniality, companionship, and succour have greatly con-

tributed to the comforting atmosphere that allowed me to live and work unrelentingly

during the years leading up to the completion of my thesis.

Most importantly, I would like to thank my family - - - that is to say, my parents,

sister, and brother - - - for their unconditional love and encouragement during the

course of my study far away from home and their embrace.

Last but absolutely not least, I would like to thank my husband and son, who have

always been there beside me. My studies would not have been as pleasurable without

their close presence, fresh smiles, big hugs, and pure love.



vi

List of publications and author contributions

1. A Class of Pairwise Models for Epidemic Dynamics on Weighted

Networks

P. Rattana, K.B. Blyuss, K.T.D. Eames and I.Z. Kiss (2013).

Bulletin of Mathematical Biology, Vol. 75, Issue 3, pp. 466-490. ISSN 1522-9602.

• P. Rattana conceived the overall goals of the study and the analysis, derived the

pairwise equations, derived R0 and the maximum R0 value calculations, imple-

mented the numerical solution of the ODEs, performed all relevant simulations

and wrote the first draft of the paper and carried out subsequent revisions.

• K.B. Blyuss conceived the overall goals of the study and the analysis, checked

some of the calculations using Maple and contributed to writing/revising the

paper.

• K.T.D. Eames conceived the overall goals of the study and the analysis and con-

tributed to revising the paper.

• I.Z. Kiss conceived the overall goals of the study and the analysis, derived the next

generation R0 calculations, helped derive the maximum R0 values, contributed to

writing/revising the paper and closely supervised the work of P. Rattana.

2. Pairwise and Edge-based Models of Epidemic Dynamics on Correlated

Weighted Networks

P. Rattana, J.C. Miller and I.Z. Kiss (2014).

Mathematical Modelling of Natural Phenomena, Vol. 9, Issue 2, pp. 58-81.

• P. Rattana conceived the overall goals of the study and the analysis, derived the

pairwise models, derived R0, carried out the early growth rate and final epidemic

size calculations, implemented the numerical solution of the ODEs, performed

all relevant simulations and wrote the first draft of the paper and carried out

subsequent revisions.

• J.C. Miller derived and proved the edge-based models and wrote some of the

paper.



vii

• I.Z. Kiss conceived the overall goals of the study and the analysis, derived the

average weight and the comparison of R0 values, contributed to writing/revising

the paper and closely supervised the work of P. Rattana.

3. The impact of constrained rewiring on network structure and node

dynamics

P. Rattana, L. Berthouze and I.Z. Kiss (2014).

Physical review E, Vol. 90, Issue 2, pp. 052806

• P. Rattana conceived the overall goals of the study and the analysis, derived the

degree distribution of networks, helped derive clustering calculations, wrote most

of the paper and performed all relevant simulations.

• L. Berthouze conceived the overall goals of the study and the analysis.

• I.Z. Kiss conceived the overall goals of the study and the analysis, derived cluster-

ing calculations, wrote some of the paper and supervised the work of P. Rattana.

4. Comment on “A BINOMIAL MOMENT APPROXIMATION

SCHEME FOR EPIDEMIC SPREADING IN NETWORKS” in U.P.B.

Sci. Bull., Series A, Vol. 76, Iss. 2, 2014

I.Z. Kiss and P. Rattana (2014).

Accepted for publication in U.P.B. Sci. Bull., Series A (July 2014),

• P. Rattana conceived the overall goal of the study, performed all simulations and

tests, and wrote the first draft and carried out subsequent revision and editing.

• I.Z. Kiss conceived the overall goals of the study and the analysis, contributed to

writing/revision and supervised the work of P. Rattana.



viii

Contents

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of publications and author contributions . . . . . . . . . . . . . . . . . . vi

1 Introduction 1

1.1 Mathematical epidemiology background . . . . . . . . . . . . . . . . . . 1

1.2 Overview of networks, stochastic simulations and model types used in

network epidemics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Networks and stochastic simulation . . . . . . . . . . . . . . . . 3

1.2.2 Exact models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Classic compartmental models . . . . . . . . . . . . . . . . . . . 14

1.2.4 Pairwise models . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.5 Edge-based compartmental model . . . . . . . . . . . . . . . . . 20

1.2.6 Dynamic networks . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Paper 1: A Class of Pairwise Models for Epidemic Dynamics on

Weighted Networks 28

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Model derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Network construction and simulation . . . . . . . . . . . . . . . 31

2.3.2 Pairwise Equations and Closure Relations . . . . . . . . . . . . 34

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Threshold Dynamics for the SIR Model - the Network Perspective 37

2.4.2 R0-like Threshold for the SIR Model - a Pairwise Model Perspective 40



ix

2.4.3 The Performance of Pairwise Models and the Impact of Weight

Distributions on the Dynamics of Epidemics . . . . . . . . . . . 43

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.1 Appendix A - Reducing the weighted pairwise models to the un-

weighted equivalents . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.2 Appendix B - Proof of Theorem 1 . . . . . . . . . . . . . . . . . 51

2.6.3 Appendix C - Proof of Theorem 2 . . . . . . . . . . . . . . . . . 52

2.6.4 Appendix D - The R0-like threshold R . . . . . . . . . . . . . . 53

3 Paper 2: Pairwise and Edge-based Models of Epidemic Dynamics on

Correlated Weighted Networks 57

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Model Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Network construction and simulation . . . . . . . . . . . . . . . 60

3.3.2 Approximate ODE models . . . . . . . . . . . . . . . . . . . . . 62

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 Epidemic threshold and final epidemic size . . . . . . . . . . . . 72

3.4.2 Numerical analysis of pairwise- and edge-based models . . . . . 81

3.4.3 The principle of formally proving model equivalence . . . . . . . 83

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6.1 Appendix A: Proof of Rdd
0 ≤ Rrw

0 . . . . . . . . . . . . . . . . . 88

3.6.2 Appendix B : Proof of the invariance of the final size and R0 relation 89

4 Paper 3: Impact of constrained rewiring on network structure and

node dynamics 91

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Adaptive network model with locally-constrained rewiring . . . . . . . 94

4.3.1 Rewiring at random within local areas and impact of the local

area radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.2 Computing clustering . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.3 Rewiring within local areas with SI labelling . . . . . . . . . . . 107



x

4.4 SIS models with constrained rewiring . . . . . . . . . . . . . . . . . . 112

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Paper 4: Comment on “A BINOMIAL MOMENT APPROXIMA-

TION SCHEME FOR EPIDEMIC SPREADING IN NETWORKS”

in U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 2, 2014 119

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Testing Shang’s generalisation . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.1 Full versus reduced/closed ODEs . . . . . . . . . . . . . . . . . 124

5.3.2 Comparison of Shang’s generalisation to simulation . . . . . . . 125

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.1 Appendix A: Compact pairwise model . . . . . . . . . . . . . . 130

5.5.2 Appendix B: Effective degree model . . . . . . . . . . . . . . . . 130

6 Discussion 132

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



1

Chapter 1

Introduction

1.1 Mathematical epidemiology background

Throughout history, we have learned a great deal about infectious diseases and the

catastrophic impact they can have. In past times, the focus was on understanding how

people became infected and how to treat infected people with appropriate medicines.

Attempts to prevent disease spread were based solely on experience and intuition. One

of the most disastrous epidemics in historical times is the plague epidemic. Over half

of the Roman Empire’s population died from plague in AD 161-180. Various sources

refer to the physician Galen, who wrote detailed accounts of the signs, symptoms and

treatments of the plague which became invaluable in successive years [71, 97]. These

techniques were still useful in the middle of the 14th century, when more than thirty

percent of the European population perished during an outbreak of the Black Death

epidemic, another type of plague [107].

Another famous example of rapid disease spread was the smallpox epidemic in the

16th century. In 1518, smallpox was present in the island of Hispaniola and it quickly

spread to Cuba and Aztec Mexico. In 1519, approximately thirty percent of Indians

on Hispanola had died from smallpox and it had spread to Puerto Rico where it killed

over half of the native population in a few months [51]. By 1530, between 3.5 and 15

million out of 25 to 30 million of the Aztec population succumbed to smallpox in less

than 6 months [83].

With modern-day advances, preventing disease spread has been made possible by

the development of vaccines, a greater understanding of microorganisms, and increas-

ing knowledge in the fields of biology and epidemiology. Further advances have been



2

made due to the emergence of high power computing techniques and a greater wealth

of knowledge in modelling techniques proposed by researchers from disciplines such as

mathematics, physics and computer science. Examples of research published on epi-

demics include diseases such as Influenza [49, 80], Foot and Mouth disease [61, 92] and

HIV [1, 98]. There have also been many mathematical models proposed to investigate

the spread and control of infectious diseases, such as Bernoulli’s model, the well-known

mathematical model of a smallpox epidemic proposed by Daniel Bernoulli in 1760 [28]

and the system of differential equations modelling a deterministic general epidemic

proposed by Kermack and McKendrick in 1927 [62], see also Anderson and May [3].

In this thesis, we consider mathematical modelling and analysis aspects of the spread

of disease on networks. This is done to gain better understanding of how various

network properties impact on epidemic dynamics including outbreak threshold, early

growth rate, final epidemic size or endemic prevalence. A network is normally used to

encode connections or links between individuals and it allows for a higher resolution

in describing contact when compared to classic compartmental models, where usually

one assumes that everyone mixes with everyone else. In this introductory section we

will (i) introduce networks together with network properties or metrics used to describe

these, (ii) outline the main mathematical network-based models and (iii) give a detailed

overview of the research presented in this thesis.

1.2 Overview of networks, stochastic simulations

and model types used in network epidemics

While many early models concentrated on compartmental ordinary differential equa-

tion models [3, 26, 60], the last 15 to 20 years have seen the refinement of these models

by the inclusion of explicit contact structures via graphs or networks. This has rev-

olusionised and revitalised the field of mathematical epidemiology and has lead to a

number of modelling techniques on networks [33, 45, 58, 59, 70]. Below, we provide

an introduction to the concept of networks, and discuss their main characteristics and

metrics, as well as touch on the impact of various network properties on disease spread.

This is complemented by a description of how Markovian SIS and SIR epidemics can

be simulated on networks using the Gillespie algorithm [42, 43]. In fact, we start with

networks since even the most basic or classical models operate on some assumptions

about the contact structure, e.g., models may assume either fully mixed populations
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or dynamic contacts, which in terms of networks translates to either a fully connected

network or a network where links switch at a very fast rate between different node pairs.

The introductory section on networks is followed by a review of some of the mainstream

model types, starting from exact and classical mean-field to dynamic network models.

Moreover, across the introduction we highlight where and how we (i) generalised mod-

els, (ii) provided new insight into the impact of network properties on epidemics or (iii)

developed new and more realistic models.

1.2.1 Networks and stochastic simulation

Before we discuss a range of models, let us introduce the concept of networks, since all

models can be viewed from this perspective.

Definition and properties

A network can be defined as G = {V,E}, where V is a set of vertices/nodes and E is

a set of edges/links connecting pairs of vertices. Each edge contained in E corresponds

to a pair (u,w) where u,w ∈ V . If (u,w) 6= (w, u) the graph is a directed graph, and

if (u,w) = (w, u) for all u,w ∈ V , the graph is undirected. A visual representation of

networks is given in Fig. 1.1, where nodes are represented by circles, while links can be

undirected (with no arrows present) or directed (with arrows present). For example, a

directed graph with three nodes V = {1, 2, 3} and edges E = {(1, 2), (2, 3), (3, 2)} can

be seen in Fig. 1.1(a). Figure 1.1(c) depicts a complete and undirected graph with four

nodes V = {1, 2, 3, 4} and edges E = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, and we

acknowledge that these edges apply in both directions.

A more useful or practical definition is to think of the network in terms of an

adjacency matrix, where the entries describe which pairs of nodes in the network share

a connection. A network with N nodes is described by an N × N adjacency matrix,

G = [gij] where i, j ∈ 1, 2, . . . , N , and where

gij =

1 if there is a connection going from node i to node j,

0 otherwise.

In our case, it is assumed that networks have no self connections, hence gii = 0 for all

i ∈ 1, 2, . . . , N , and the network is undirected, i.e. gij = gji for all i, j ∈ 1, 2, . . . , N .

However, we note that using the adjacency matrix definition to describe a network

also allows one to account for directed and weighted networks by simply using the
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1 2 3

(a)

3

1

4

2

(b)

1 2

4 3

(c)

Figure 1.1: Examples of networks (a) a directed network, (b) an undirected network,

(c) a complete and undirected network containing four nodes.

appropriate values for the entries of G. In this thesis we are concerned with undirected

networks; henceforth we will focus solely on these network types. Now we turn our

attention to properties of the network. The degree of a node, defined as the number of

links that it participates in, is an important indicator of the risk of this node becoming

infected. Mathematically, the degree of a node i can be defined as ki =
∑

j gij, for all

i = 1, 2, . . . , N . The average degree of a network can be computed as 〈k〉 =
∑

ij gij/N .

The degree distribution, P (k), gives the probability that a randomly chosen node

will have degree k. Figure 1.2 depicts two different examples of degree distributions

on networks with N = 1000 nodes. From a disease transmission viewpoint, the degree

distribution is one of the most important characteristics of a network, as it can describe

many features of a population’s contact structure, such as the prevalence of high-degree

nodes, and the extent of homogeneity or heterogeneity across the degrees. Typically,

and especially if the network is mixed at random, meaning that the probability of two

nodes being connected is proportional to their degrees, highly connected nodes tend to

connect to other highly connected nodes and once infection has hit such a node, it is

likely that other highly connected nodes will soon follow. Also, the more nodes with

higher degrees a network has, the higher the level of infection in the network. For exam-

ple, in [3, 48, 73, 90, 91] it has been shown that highly heterogenous networks (i.e. P (k)

has high variance V ar(X) = E(X2) − E2(X)) are more prone to disease transmission

and will experience faster initial spread of infection, even for small transmission rates.

It has also been shown that the initial growth of infection is inversely proportional to
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the second moment of the degree distribution. In addition, it is useful to compute the

moments of the degree distribution, 〈kn〉 =
∑

k k
nP (k); the average degree is equivalent

to the first moment, 〈k〉 =
∑

k kP (k).
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Figure 1.2: Examples of degree distributions of networks with N = 1000: random

network (left panel) and truncated power law distribution network (right panel). The

top histograms are on a linear scale, while the bottom graphs depict the same data on

a log scale.

Another important network property is clustering, which represents the propensity

that neighbours of the same node are also connected. This property can be captured via

the clustering coefficient, C. The clustering coefficient can be computed by counting the

total number of triangles contained in the network, and dividing this by the number of

connected triples of nodes, open or closed, in the network. For example, the clustering

coefficient of the network depicted in Fig. 1.1(b) is 6/10=0.6. When the network is

large, the clustering coefficient can simply be calculated using the adjacency matrix G

[58]

C =
number of triangles

number of triples
=

trace(G3)

‖G2‖ − trace(G2)
,
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Figure 1.3: A weighted network where the weight of the links are equal to the distance

between nodes.

where ‖G‖ =
∑

ij gij. Obviously, for larger networks where this may not be feasible

to compute, one can simply investigate each node and its neighbourhood to work out

clustering. It is important to note that two networks with identical clustering coefficient

and degree distribution can be comprised of completely different building blocks, such

as triangles, two triangles with a common edge or fully connected motifs such as squares,

pentagons or hexagons. This is important since despite clustering being the same, the

outcome of the spread of infection can be non-negligibly different on such networks

[32, 58, 102, 109].

A simple network can be modified by the addition of link weights [6, 8, 110]. Weights

can encode many network properties, such as the spatial distance between nodes or the

contact frequency between nodes. The value of the distance between nodes i and j, wij,

is allocated to each link, as shown in Fig. 1.3. In addition to this, the weighted adjacency

matrix may be additionally considered as a new set of topological measures of the

contact network characteristics. An important element of this extension is the relation

between weights and their distribution and how these impact on disease transmission.

[16, 21, 22, 25, 34].

In this thesis, we first consider weighted networks and see these as a more refined

model when compared to models defined on unweighted networks. While the analysis

is simpler on unweighted networks, many examples suggest that not all links are equal

and can reflect true processes that make the interactions uneven, e.g. household or

local versus global links. In Chapter 2, we consider models on undirected, homogeneous
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networks. Different weights wij are associated with the strength of links, and we encode

all of this information within a weights matrix W . We consider two different methods

of allocating weights to network links, namely random and fixed allocation, and we

experiment with various distributions of link weights. In Chapter 3, we extend the

weighted networks model to undirected, heterogeneous networks. This time, the weights

of links can be related to the degree of the nodes they connect. In particular, the weight

ŵij is associated with a link between two nodes having degree i and j, respectively. In

other words, weights and nodal degrees are not independent; weights are a function of

i and j.

Generating networks

In the previous section, we discussed how all network properties, such as average de-

gree, degree distribution and clustering coefficient, can be computed from an adjacency

matrix G. In this section, we describe a method for generating networks, and creating

the associated adjacency matrix G.

We first discuss a method which will generate the most basic network, namely a

classical random network or Erdős-Rényi network [36]. The algorithm starts with N

nodes, and an empty graph, i.e, G = [gij] = 0 for all i, j ∈ 1, 2, . . . , N . Then, a graph is

constructed by connecting nodes randomly. This is done by considering each possible

edge and activating it with probability p or discarding it otherwise. It is worth noting

that each link is considered uniquely, and we consider an undirected network. Using

this algorithm, the resulting network has average degree 〈k〉 = p(N − 1). Since a node

has N − 1 potential neighbours, the probability that k of these will be connected to it

is simply

P (k) =

(
N − 1

k

)
pk(1− p)N−1−k.

The degree distribution of such a network of large is well described by a Poisson distri-

bution P (k) = 〈k〉k e−〈k〉
k!

as N →∞.

Next, we discuss the configuration model; a simple and widely used method which

constructs a network with a given degree distribution. We select a degree for each

node from the degree distribution, and create a dynamic list containing the node label

i, repeated as many times as the degree of that node. For example, if we desire to

construct a network with N nodes as in Fig. 1.4, the given degree of node 1 is k1 = 4,

k2 = 2, k3 = 6,..., kN−1 = 3 and kN = 3. So, the dynamic list can be created to yield
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1 1 1 1 2 2 3 3 3 3 3 3 ... N − 1 N − 1 N − 1 N N N

12

3

4

5

N − 1

N

...

......

Figure 1.4: The example of a network with N nodes.

Each element in the list denotes one half of an edge, also called a stub. We choose

two stubs from the list at random and connect the associated nodes, before removing the

two stubs from the list. When a link between two nodes is created, we set gij = gji = 1.

The process is continued until the dynamic list is empty. Clearly, this process needs

to deal with the occurrence of double links and self loops. However, we know that

the number of such events is approximately 1/N . As the network size increases, the

probability of double links and self loops occurring tends towards zero, provided that

the average degree is finite. We note that we also need to impose conditions, such as

the sums of all degrees must be even. The algorithm can stall, in which case it can

no longer successfully allocate any further links. When this occurs, the degrees of all

nodes are reallocated and the process is restarted.

Another approach to generate networks could be to account for more details or

properties of the nodes. In many cases, nodes are embedded in a 2D space or higher

dimensions. Generating networks based on the nodes’ spatial proximity leads to random

geometric graphs [93]. This is a specific approach which we used in the context of

dynamic networks, as shown in Chapter 4. Here, nodes are placed randomly on a

square of size L with periodic boundary conditions. Connectivity is determined based

on spatial proximity; if a node is within a certain radius of the target node, they are

said to be in the same local area, and can become connected during a rewiring process,
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whereby one existing link is removed and a new link is generated simultaneously. The

connectivity of the network can be calculated by using an extra matrix to store the

node locations. This matrix can be used to compute the distance between nodes and

to determine which nodes are in the same local area. Throughout this thesis, we use

various techniques to generate our networks.

Epidemic dynamics

In this part, we describe the basic model ingredients of a stochastic epidemic model on

networks. We assume that individuals are represented by nodes in the network and the

contact pattern amongst these is coded by the links of the network. Births and deaths

are ignored and only fixed-size populations are considered. Epidemic transmission on

networks needs a classification of individuals according to their status from a disease

view point. For all cases considered in this thesis it is enough to consider the following

states: susceptible S, infected and infectious I, and recovered/immune/removed R.

This results in all nodes being labeled according to the dynamics, and the dynamics

itself describes the rates of change of these labels on the nodes.

In order to understand and describe the spread of infectious diseases across net-

works, we focus on the two most common and widely used epidemic models, namely

Susceptible-Infectious-Susceptible (SIS) and Susceptible-Infectious-Recovered (SIR)

models. The first model, SIS, represents epidemics where individuals simply alternate

between two possible states S and I. Namely, susceptible individuals can be infected

by their neighbours, and will remain in the infectious state until they recover. Once

the individual recovers, they return to the susceptible state and are ready to catch the

disease again. Therefore, the cycle S → I → S, can be observed many times for various

nodes. This model is a good representation of diseases where treatment is possible but

being infected does not result in immunity. For example, sexually transmitted infections

such as chlamydia or gonorrhoea [40, 48] can be modelled in this way.

On the contrary, SIR represents diseases where after being infected, individuals

move into a recovered state. After a node has been infected and his/her infectious period

has elapsed, it plays no further role and remains in the recovered state permanently.

The recovered state can be used to represent individuals who have died as a result of the

disease, individuals who have developed lifelong immunity to the disease, or individuals

who have been removed from the process and are therefore isolated from the rest of

the population. Therefore, in this model, the transition I → S of the SIS process
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Figure 1.5: A susceptible individual can be infected by an infected neighbour at rate

τ . An infected individual recovers with rate γ, independently of the state or number

of his/her contacts. After recovering, for the SIS model, infected individuals become

susceptible, but for the SIR model, recovery results in immunity. After recovery,

individuals play no further role in the dynamics.

changes to I → R. The SIR process can be used to model diseases such as measles or

chickenpox [15, 68].

Hence, both epidemics are driven by two events: (a) infection and (b) recovery, see

Fig. 1.5. The rate of transmission from an infected to susceptible individual is assumed

to be constant, denoted by τ , and it assumed to happen according to a Poisson process

with this rate. An infected individual recovers independently of the network and the

state of its contacts, and this is also modelled as a Poisson process at rate γ. All these

events are considered to be independent and thus a susceptible node with k infectious

contacts, becomes infected according to a Poisson process at rate kτ , as given by the

theory of pooled Poisson processes [87]. As a result of assuming Poisson processes,

it follows that time to infection and time to recovery are exponentially distributed.

This may not be realistic and can be changed but model formulation and analytical

tractability will be much more difficult [15, 68].

Stochastic simulation

Such a stochastic process can be rigorously simulated by keeping track of all possible

events in the network and the rate at which these happen. An efficient method for

implementing a stochastic simulation is given by the well-known Gillespie algorithm

[42, 43]. This algorithm is based on two simple steps: (a) working out the rate of all

events and computing the overall rate of a change occurring, followed by (b) selecting

the event to happen at random, but proportionally to the events’ rates relative to each
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other. Firstly, the total rate of all possible transitions, denoted by T , is calculated

from the current status of all individuals across the whole network. This is done by

determining the rate of infection for all susceptible nodes and the rate of recovery for all

infectious nodes. Let the rates of these events be denoted by ri where i = 1, 2, 3, ..., N .

For example, rate r1 describes the speed or timescale of node number 1 changing its

state. The infection of a susceptible node depends on how many infected neighbours it

has, but the recovery rate of an infected node is independent of the network and status

of neighbours. For example, in Fig. 1.6 we illustrate a possible situation with some

transition rates being computed. Node 1 has 2 infected neighbours, so r1 = 2τ , and

the 3 infected neighbours of node 3 yield r3 = 3τ . While all infected nodes, e.g. nodes

2, 5 and N have r2 = r5 = rN = γ. Therefore, T =
∑N

i=1 ri, and the time to the next

event, tnext, is chosen from an exponential distribution with rate T . This can be chosen

by computing

tnext =
− ln(u)

T
,

where u ∼ U(0, 1) .

12

3

4

5

N − 1

N

...

......

susceptible node

infected node

2τ γ 3τ τ γ ... 2τ γ

r1 r2 r3 r4 r5 ... rN−1 rN

Figure 1.6: Illustrating the relation between the network, status of nodes and events

rate vector used by the Gillespie algorithm.
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Next, a single event is chosen at random but proportionally to its rate. This can be

done by computing Ti =
∑i

j=1 rj, for all i = 1, 2, 3, ..., N . Then, the associated event

occurs at node i, where i is the smallest integer satisfying Ti ≥ T ×u. Once the time to

next event and the event itself has been found, necessary rate updates are performed,

and the process begins again. The Gillespie algorithm is efficient since following a

new event rates only need to be checked and recomputed in the neighbourhood of the

node where the change has happened and there is a simple one-to-one correspondence

between the node number and events. The process is continued until a time specified by

the user or until an absorbing state has been reached. It is worth noting that the times

in each individual realisation are at un-even time points and care has to be taken when

averaging between different simulations (see the right panel of Fig. 1.7). In Fig. 1.7,

we chose values for the transmission and recovery rates which were likely to lead to an

epidemic and we selected simulation which did not die out.

We now present the main mathematical models that can be used to capture either

the true probabilities of various states arising in time or mean-field models that are

capable of capturing the topology of the network and disease dynamics and typically

give rise to results that are in good agreement with the expected values resulting from

multiple realisations of the simulations. In fact the models presented below form part

of the current tool kit used by researchers focusing on modelling stochastic process on

networks [24, 59, 89].

1.2.2 Exact models

We first discuss a common approach to describe SIS disease dynamics on a fully con-

nected network with N nodes, given by the Kolmogorov forward equations or master

equations [56, 57, 87]. The model describes the probability of the population being in

all possible states at time t. The system states are given by {S, I}N , where S and I

are susceptible and infected states, respectively. However, the state space containing

2N elements can be reduced to a state space of size (N + 1) by noting that only the

number of infectious nodes matters and not their position, due to the network being

fully connected. Hence, the resulting Kolmogorov equations can be written as

ṗn(t) = an−1pn−1(t)− (an + cn)pn(t) + cn+1pn+1(t), (KE)

where pn(t) is the probability that the system has n infectious nodes at time t ≥ 0,

with n = 0, 1, 2, . . . , N , an is the birth or infection rate at which the system moves from
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Figure 1.7: The plots show the prevalence of infection for SIS (the top panel) and SIR

(the bottom panel) dynamics from the network with N = 1000, γ = 1, τ = 0.5, and

10 initial nodes at t = 0 are infected. For the right panel, the markers (?) correspond

to the data based on the Gillespie simulation from the left panel, and the markers (·)
correspond to the interpolate data.
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state n to n+1, cn is the death or recovery rate at which the system moves from state n

to n−1 and a−1 = cN+1 = 0. Solving these master equations leads to an exact solution

of the SIS dynamics on fully connected networks. However, this approach is limited

as fully connected networks are not often encountered in real situations. For a fully

connected network, ak = τk(N −k) and ck = γk. As expected, k(N −k) represents the

number of edges between infected and susceptible individuals when k infectious nodes

are present. The master equations can be written down in general for any network but

the system will be 2N -dimensional and thus unfeasible to work with, even for small

networks.

Kiss & Simon [66] have shown that the master equations can be reduced to a low

dimensional approximation model, with fewer than (N + 1) equations. By making the

assumption that the number of infected individuals is binomially distributed and using

an a priori binomial distribution, the Kolmogorov equations can be presented in the

form of two differential equations.

The major challenge however, is to find a correct functional form for the infection

rates ak for any network in general. Based on the random mixing argument, Kiss and

Simon [66] have also shown that for homogeneous random networks, ak can be written

as

ak = τ(N − k)〈k〉 k

N − 1
,

where 〈k〉 is the average degree of nodes. This model works well for SIS dynamics on

fully connected networks and for networks with low degree heterogeneity. Furthermore,

Shang [104] claims to generalise this approach of Kiss and Simon [66]. Shang proposed

that ak in general could be written as

ak =
τk(N − k)〈k2〉
〈k〉(N − 1)

,

where the network is given in terms of the degree distribution P (k), k = 0, 1, 2, . . . , N ,

with 〈k〉 =
∑
kP (k) and 〈k2〉 =

∑
k2P (k). However, our tests, as shown in Chapter

5, show that this proposed generalisation performs poorly for all networks proposed by

Shang [104], except for heterogenous networks with relatively high average degree.

1.2.3 Classic compartmental models

Classic compartmental models are mathematical models which are based on the ho-

mogeneous random mixing assumption, where it is assumed that every individual in

the system is connected to every other individual, or links between individuals change
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or rewire at an infinitely fast rate. An early and well-known model of this type was

proposed by Kermack and McKendrick [62], and more recently, the more mainstream

models were summarised by Anderson & May, Diekmann & Heesterbeek and Keeling &

Rohani [3, 26, 60]. Compartmental models focus on evolution equations for the number

of individuals in the various possible states, e.g. susceptible, S(t), infected, I(t), and/or

recovered, R(t). This results in a compartmentalisation of the population depending

on disease state of individuals. The infection and recovery process then dictates the

explicit form of the differential equations for the various classes. The two fundamen-

tal compartmental epidemic models, given as sets of ordinary differential equations

(ODEs), are as follows:

the Susceptible-Infectious-Recovered model, or the SIR model

dS

dt
= −βI S

N
,

dI

dt
= βI

S

N
− γI,

dR

dt
= γI,

(1.1)

the Susceptible-Infectious-Susceptible model, or the SIS model

dS

dt
= γI − βI S

N
,

dI

dt
= βI

S

N
− γI.

(1.2)

In both the SIR and SIS models, it is assumed that no births or deaths occur

in the population; γ is the rate at which an infected individual recovers, and β is the

rate at which an individual makes contact with random members of the population. A

typical output from these models is shown in Fig. 1.9. The models above are frequency

dependent and tell us that during a unit time, only a proportion S/N of the βI infectious

contacts are made with susceptible nodes. Such models can be analysed using classic

tools from dynamical systems and bifurcation theory which often involves finding steady

states and their stability. Using such approaches, it is well known that for the SIR-type

epidemics the following statements hold:

• For t close to zero, the number of infected individuals is I(t) ≈ I(0)e(β
S(0)
N
−γ)t.

This is calculated by integrating
dI

dt
, Eq. (1.1), and assuming that the number
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S(t) I(t)(a) SIS model

S(t) I(t) R(t)(b) SIR model

Figure 1.8: Compartmental model for SIS and SIR dynamics.

of susceptible and infectious individuals when t is close to zero are equal to the

initial conditions for the number of susceptible and infectious individuals, given

by S(0) and I(0), respectively.

• The basic reproductive number is given by R0 =
β

γ
, which describes the average

number of secondary infections produced by a single infectious individual in an

otherwise susceptible population [3, 27]. This results from stability analysis of

the disease free steady state or by more biologically relevant arguments.

• The final epidemic size, satisfies R(∞) = 1− S(∞) = 1− e−R0R(∞), where

I(∞) = 0.

0 t

I(t)

time

SIS epidemic

SIR epidemic

Figure 1.9: The evolution of disease prevalence during an outbreak.
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Whilst compartmental models are simply used to analyse and calculate epidemiolog-

ical details for understanding the epidemics of infectious diseases, they are formulated

under the assumption of homogeneous random mixing of the population. This means

that every individual has the same probability of coming into contact with another indi-

vidual. In other words, each susceptible individual is infected by infectious individuals

in the population with the same probability. However, in reality contact between indi-

viduals is more sophisticated or complex [58, 82, 86, 99] and this will affect the spread

of the diseases. Such aspects are difficult to account for and extensions are needed.

1.2.4 Pairwise models

In order to account for more realistic and complex contact patterns, more sophisticated

epidemic models on networks have been developed [24, 30, 33, 34, 45, 59, 70, 72].

We will now discuss pairwise models, which are well known epidemic models on

networks with both SIS and SIR dynamics [32, 33, 47, 54, 53, 58, 105]. Pairwise models

successfully interpolate between classic compartmental ODE models and full individual-

based stochastic network simulations with the added advantage of high transparency

and a good degree of analytical tractability. The aim of this approach is to take into

account more details of the network structure by considering not only nodes in the

network but also separately accounting for edges. This is natural as the status of the

node depends on the links to its neighbours.

Let us introduce some notations which are commonly used in classic pairwise models

for a network with N nodes. First, for all nodes i ∈ N , Ai represents the following

logical statement: if node i is in state A then Ai = 1, otherwise Ai = 0. The notation

[A] represents the number of nodes across the whole network in state A, so [A] =
∑

iAi.

Next, a pair of type A − B describes the connection between a node in state A and a

node in state B. Thus, [AB] =
∑

i,j AiBjGij denotes the number of A−B pairs across

the whole network, where G is the adjacency matrix of the network, and where AiBjGij

is the logical statement that node i is in state A and node j is in state B and there is a

link between node i and node j, and [AB] = [BA]. We note that [AA] is equal to twice

the number of uniquely counted edges with nodes at both ends in state A. A triple of

type A−B −C denotes a group of three connected nodes, where the centre node is in

state B and it is connected to a node in state A and a node in state C. The logical

statement still holds true for a triple; [ABC] =
∑

i,j,k AiBjCkGijGjk.

As discussed previously, our studies are focused on SIS and SIR dynamics. So,
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in line with the above, A,B,C ∈ {S, I, R}. We now reflect on how nodes, pairs and

triples are related. For example, the expected number of infectious nodes, [I], increases

proportional to the expected number of S − I links, [SI], with proportionality rate τ .

Similarly, [SI] decrease due to within pair infection of the S node or the recovery of

the I node. Equally, [SI] decrease due to infection of the S node by a node outside

the pair, and this is captured by the −τ [ISI] term. In the same way, S − S links can

be destroyed by infection from outside the pair and this is proportional to −τ [SSI],

and this provides a positive contribution to the SI class, since S − S − I turns into

S − I − I. With careful bookkeeping and taking into account these hierarchies, the

pairwise models for the SIR [58] and SIS dynamics for homogenous networks are:

˙[S] = −τ [SI],

˙[I] = τ [SI]− γ[I],

˙[R] = γ[I],

[ ˙SS] = −2τ [SSI],

[ṠI] = τ([SSI]− [ISI]− [SI])− γ[SI],

[ ˙SR] = −τ [ISR] + γ[SI],

[ ˙II] = 2τ([ISI] + [SI])− 2γ[II],

[ ˙IR] = τ [ISR] + γ([II]− [IR]),

[ṘR] = γ[IR],

and

˙[S] = γ[I]− τ [SI],
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˙[I] = τ [SI]− γ[I],

[ṠI] = γ([II]− [SI]) + τ([SSI]− [ISI]− [SI]),

[ ˙II] = −2γ[II] + 2τ([ISI] + [SI]),

[ ˙SS] = 2γ[SI]− 2τ [SSI],

where τ is the rate of disease transmission across an edge between an infected and a

susceptible individual, and infected individuals recover independently of each other at

rate γ. The following conservation relations hold: [S] + [I] + [R] = N and [S] + [I] =

N . Moreover, we have that [SS] + 2[SI] + [II] + 2[SR] + 2[IR] + [RR] = 〈k〉N and

[SS] + 2[SI] + [II] = 〈k〉N , where 〈k〉 is the average degree. By specifying the initial

conditions we in fact feed information about the network to the ODE model.

Both systems are not closed, as equations for the pairs require knowledge of triples,

and thus, equations for triples are needed. This dependency on higher-order moments

can be broken via approximating triples in terms of singles and pairs [58]. The agree-

ment of the results from the closed system with simulation results depends on how

well the closure captures essential features of network structure. A classic closure for a

homogeneous network is given by

[ABC] ≈ 〈k〉 − 1

〈k〉
[AB][BC]

[B]
,

where 〈k〉 is the average degree. Moreover, under the assumption that a connection

between the node in state A and the node in state C may be present, a different closure

may be more appropriate. This can take the following form

[ABC] ≈ 〈k〉 − 1

〈k〉
[AB][BC]

[B]
((1− φ) + φCAC),

where φ is the clustering coefficient, and CAC = N [AC]/〈k〉[A][C] is the correlation

between nodes in A and C, respectively.

When looking at the basic reproductive number R0 in an SIR pairwise model, any

R0 > 1 means that the disease is expected to spread within the population, while

R0 < 1 will lead to the extinction of the disease. We consider the condition under the
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initial growth rate ˙[I] > 0, so we have

τ [SI]

γ[I]
> 1.

Thus, Keeling [58] proposed that R0 should depend on the correlation between sus-

ceptible and infected individuals which is CSI = N [SI]/〈k〉[S][I] , and it was also

shown that if the network has susceptible-infective correlation, ignoring clustering,

R0 = ((〈k〉 − 2)τ)/γ, and R0 = 〈k〉τ/γ if susceptible and infected individuals are

uncorrelated and thus we are lead back to the compartmental model.

Eames & Kelling [59] extended this approach to networks with heterogeneous degree

distributions, where [Ak] is the expected number of nodes in state A with degree k. The

system of equations remains challenging for both SIR and SIS dynamics. For example,

the expected number of S − I pairs in an SIS model is given by:

[ ˙SkIl] = τ
∑
m

([SkSlIm]− [ImSkIl])− τ [SkIl]− γ[SkIl] + γ[IkIl],

with the closure,

[AlBmCn] ≈ m− 1

m

[AlBm][BmCn]

[Bm]
.

In this thesis, pairwise models are studied in Chapters 2 and 3. We develop new

pairwise models for both SIS and SIR dynamics on weighted networks and explore

how pairwise models perform. We also investigate how R0−like thresholds for the SIR

epidemic models depend on the weights and their distribution.

1.2.5 Edge-based compartmental model

Another technique which models SIR dynamics on a random network with arbitrary

degree distribution is an edge-based compartmental model [76, 78, 79]. This approach

uses the probability generating function of the degree distribution, P (k), and it focuses

on working out the probability at time t that a random node has not yet been infected

by any of its neighbours. Then, the dynamics of the number of susceptible individuals

in the network can be explored.

Here, we consider the edge-based compartmental model on a network generated by

the configuration model. A random target node, denoted by u, is considered before

the model can be formulated. P (k) is the probability that u has degree k. Let θ(t)

be the probability that u has not yet been infected by its neighbours at time t, and

θ = φS +φI +φR where φx is the probability that a neighbour of u is in state x at time



21

t, and has not transmitted infection to u. Then, the probability that u with degree k is

still susceptible at time t is θ(t)k. Thus, the number of susceptible nodes in a network

at time t can be calculated as

S(t) =
∑
k

P (k)θ(t)k = ψ(θ(t)).

Note that
∑

k P (k)θ(t)k is the probability generating function (PGF) [111] of the

degree distribution.

φS φI φR

1 − θ

γφI

τφI

Figure 1.10: Flow diagram of SIR edge-based compartmental model for a configuration

network.

Now, we consider the dynamics of the epidemic, and of the function θ. Let τ be the

rate of disease transmission across an edge. From Fig. 1.10 it follow immediately that

θ̇(t) = −τφI(t), or in other words, the probability that an infectious node has not yet

transmitted decays at rate τ . Similarly, φ̇R(t) = γφI(t) which accounts for the recovery

of an I neighbour of the test node. The two equations above can be combined to give

φ̇R = −γ
τ
θ̇.

Integrating the above from zero to t yields

φR =
γ

τ
(1− θ(t)).

We also note that θ(t0) = 1 and φI = θ − φS − φR.

Next, we need to calculate φS, where φS denotes the probability that a neighbour of u

is susceptible. Let 〈k〉 be the average nodal degree of the network. The probability that

a random neighbour of u has degree k is kP (k)/〈k〉 [19], and at time t, this random
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neighbour is susceptible with probability θ(t)k−1, as it has k − 1 other connections.

Therefore,

φS =

∑
k kP (k)θk−1

〈k〉
.

Using the first derivative of the PGF and
∑

k kP (k) = 〈k〉, we have

φS =
ψ′(θ)

ψ′(1)
.

Thus, taking all of the above into account, an SIR edge-based compartmental

model [78] is given by

θ̇ = −τθ + τ
ψ′(θ)

ψ′(1)
+ γ(1− θ),

Ṙ = γI, S = ψ(θ), I = 1− S −R.

The system of equations above means the model is suitable for analysing important

epidemic descriptors, such as the early growth rate and final epidemic size. For example,

finding the expected final size, R(∞), which is equivalent with I = 0, we need to find

the solution of

R(∞) = 1− S(∞) = 1− ψ(θ(∞)),

where θ(∞) is the solution of θ̇ = 0. Using this framework, we develop more complex

SIR edge-based compartmental models for weighted networks, as shown in Chapter

3. We also derive analytic calculations of epidemic descriptors and show that this

modelling approach agrees well with results from stochastic simulations and pairwise

models.

1.2.6 Dynamic networks

In the previous section, we focused on static networks. In a static network, the set of

nodes and edges is fixed and does not change over time. This also means that network

properties such as the average degree, degree distribution and clustering coefficient

remain the same over time. A dynamic network is such that its structure and properties

can change over time. For example, links may be added, deleted or rewired. Due to the

changes or evolution of the network structure, network properties of a dynamic network

will also be changing over time.

From a disease transmission viewpoint, topological properties of nodes and edges

can be exploited in order to minimise the impact of epidemics. More recently,
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many epidemic studies concentrated on dynamic and time evolving network mod-

els [44, 45, 46, 101, 103, 106]. It is widely accepted that during an epidemic, the

risk of becoming infected leads to social distancing, with individuals either losing links

or simply rewiring [18, 38, 45, 47].

The original model which combines dynamics of the network structure with dynam-

ics on the network in the form of a simple SIS model was proposed by Gross et al. [45].

The epidemic dynamics is specified in terms of infection and recovery events. The rate

of transmission across an SI link is denoted by τ . Infected individuals recover indepen-

dently of each other at rate γ. The network dynamics are specified in terms of rewiring

events which affect S − I links. This is usually implemented by susceptible individu-

als breaking high risk contacts and rewiring to other susceptible individuals chosen at

random, as depicted in Fig. 1.11. Here, an S − I link is broken with a rate w and the

susceptible individual rewires to another randomly chosen susceptible individual in the

network.
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Figure 1.11: An example of a dynamic network where a contact between a suscepti-

ble individual and an infectious individual is broken and rewiring occurs between the

susceptible individual and another susceptible individual chosen at random from the

network.

Following the notations and counting procedures of pair approximation models for

SIS dynamics, the original adaptive model can be described by

˙[S] = γ[I]− τ [SI],

˙[I] = τ [SI]− γ[I],
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[ṠI] = γ([II]− [SI]) + τ([SSI]− [ISI]− [SI])− w[SI],

[ ˙II] = −2γ[II] + 2τ([ISI] + [SI]),

[ ˙SS] = 2(γ + w)[SI]− 2τ [SSI],

where a closure approximation, i.e. [ABC] ≈ [AB][BC]

[B]
, is used to close the

model [45, 58]. In the above system of equations, the term describing the destruc-

tion of S − I links, denoted by w[SI], is included in the equations describing the rate

of change of the expected number of S − S links, and thus describes the instantaneous

reconnection/rewiring process. The analysis of this model shows that link rewiring,

if high enough, can curtail an epidemic and the model displays a richer spectrum of

behaviour including oscillations and bi-stability.

To study the effects of adaptive networks in more depth, various rewiring mech-

anisms have been explored with a range of assumptions. For example, a study by

Risau-Gusman & Zanette [101] presents an SIS model where susceptible nodes recon-

nect to any node chosen at random, regardless of its state. Furthermore, infected nodes

which have links with susceptible nodes broken may also rewire to a new node using

the same mechanism. Kiss et al. [63] propose a model in which the connections between

nodes are destroyed and rewired depending on the pair type, i.e. S − I, S − S and

I − I, with an associated rate of activation and deletion. Again, both adaptive models

described here are derived using the pairwise model framework.

In Chapter 4, we investigate an SIS epidemic spreading on adaptive networks. We

make the assumption that susceptible nodes break links with infected nodes indepen-

dently of distance, and reconnect at random to susceptible nodes available within a

given radius. Nodes are placed at random on a square of size L × L with periodic

boundary conditions. We then investigate the impact of rewiring on characteristics of

the epidemic and on the network properties, such as degree distribution and clustering

coefficient.
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1.3 Thesis overview

This thesis is based on four published research papers (3 published and one accepted for

publication) focusing on developing epidemic models on networks. Each chapter, apart

from the Introduction, corresponds to one of these papers. The thesis is concluded with

a discussion of the findings and how this work can be extended for future research in

the field of epidemics on networks.

In Chapter 2, we begin by looking at both SIS and SIR disease dynamics on

weighted networks. We illustrate how two different methods for choosing link weights

can be formulated to model infectious disease spread on networks; (i) random weight

distribution and (ii) deterministic weight distribution. We manage to successfully ex-

tend the classic pairwise model to weighted networks. We show that our weighted

pairwise ODEs for both SIS and SIR epidemics reduce to the original pairwise models

under appropriate conditions. A fundamental quantity for epidemic models is the basic

reproductive ratio R0. This is considered both based on the individual or network per-

spective by using the next generation matrix approach [5] and investigating the R0-like

quantity from the pairwise model by using the approaches proposed by Keeling [58] and

Eames [32]. We show that (i) for both network models R0 is maximised if all weights

are equal, and (ii) when the two models are “equally-matched”, the networks with a

random weight distribution give rise to a higher R0 value. We illustrate the accuracy

of the pairwise approximation models compared to simulations for both SIS and SIR

disease dynamics using a variety of different weight distributions.We also explain how

disagreements can arise in extreme scenarios of weight distributions.

In Chapter 3, we build on the work in Chapter 2 and consider epidemic dynamics

on heterogenous weighted networks. This time, we focus on heterogeneous networks

where link weights and node degree are not independent. We construct two network

types which depend on how link/edge weights are assigned; (i) network with randomly-

distributed edge weights and (ii) network with degree-dependent weights. We develop

and analyse the pairwise and edge-based compartmental (EBCM) models, as well as

simulation, for SIR-type dynamics to investigate the impact of different weight distri-

butions and of correlation between link weight and degree for both networks. We show

that the pairwise, EBCM and simulation demonstrate excellent agreement in describing

the evolution of the disease for both networks and for different weight functions. Fur-

thermore, we employ the edge-base modelling approach to derive important epidemic

descriptors, such as early growth rate and final epidemic size, and the results are in ex-
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cellent agreement with simulations. We also present an analytical calculation of R0 for

both models and discuss the implication of random and correlated weight distributions

on this as well as on the time evolution and final outcome of epidemics. Finally, we

illustrate that the two seemingly different modelling approaches, the pairwise and the

EBCM models, operate on similar assumptions and it is possible to formally link the

two.

In Chapter 4, we consider a coupled model of disease and network dynamics. We

consider an SIS-type dynamics on an adaptive spatial network with a link or contact

rewiring process constrained by spatial proximity. We use two different initial starting

networks (i) homogeneous and (ii) heterogeneous Erdős-Rényi networks, where nodes

are placed at random on a square of size L×L with periodic boundary conditions, and

we define the local area in terms of circles of certain radii around nodes. We assume

that susceptible nodes break links with infected nodes independently of distance, and

reconnect at random to susceptible nodes available within a given radius. By system-

atically manipulating this radius we investigate the impact of rewiring on the structure

of the network and characteristics of the epidemic. We adopt a step-by-step approach

whereby we first study the impact of rewiring on the network structure in the absence

of an epidemic. In this step, the average degree distribution and clustering of both

networks at the end of the simulation, or when a steady state has been reached, are

explained. We provide both analytic and semi-analytic formulas for the value of clus-

tering achieved in the network. Then, with nodes assigned a disease status but still

without disease dynamics, we derive the degree distribution formulas for both networks

at time t to explore the impact of the rewiring dynamics, and we show that average

degree distributions for susceptible and infectious nodes for both homogeneous and

heterogeneous initial network structures display excellent agreement with simulations.

Finally we run network and epidemic dynamics simultaneously, and we describe poten-

tial outcomes based on the values of the radius. Our results also show that the rewiring

radius and the network’s initial structure have a pronounced effect on final outcome of

the epidemic, with increasingly large rewiring radiuses yielding smaller final endemic

equilibria.

In Chapter 5, we take the opportunity to look at mean-field models for the study

of SIS type dynamics on networks with heterogenous degree distributions, such as

bimodal and truncated power law degree distributions. This paper presents the well-

known pairwise [54] and effective degree models [70], and highlights a binomial moment
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approximation proposed by Shang in [104]. We show that the pairwise and effective

degree models display good agreement with simulations but Shang’s model does not.

The proposed generalisation performs poorly for all networks proposed by Shang, except

for heterogenous networks with relatively high average degree. While the binomial

closure gives good results, in that the solution of the full Kolmogorov equations, with the

newly proposed infectious rates, agrees well with the closed system, the agreement with

simulation is extremely poor. This disagreement invalidates Shang’s generalisation and

shows that the newly proposed infectious rates do not reflect the true stochastic process

unfolding on the network. We conclude that the generalisation proposed by Shang [104]

is incorrect and that Shang’s simulation method and the excellent agreement with the

ODE models is based on flawed or incorrectly implemented simulations.
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2.1 Abstract

In this paper, we study the SIS (susceptible-infected-susceptible) and SIR (susceptible-

infected-removed) epidemic models on undirected, weighted networks by deriving

pairwise-type approximate models coupled with individual-based network simulation.

Two different types of theoretical/synthetic weighted network models are considered.

Both start from non-weighted networks with fixed topology followed by the allocation

of link weights in either (i) random or (ii) fixed/deterministic way. The pairwise mod-

els are formulated for a general discrete distribution of weights, and these models are

then used in conjunction with stochastic network simulations to evaluate the impact

of different weight distributions on epidemic thresholds and dynamics in general. For

the SIR model, the basic reproductive ratio R0 is computed, and we show that (i)

for both network models R0 is maximised if all weights are equal, and (ii) when the

two models are “equally-matched”, the networks with a random weight distribution

give rise to a higher R0 value. The models with different weight distributions are also

used to explore the agreement between the pairwise and simulation models for different

parameter combinations.

2.2 Introduction

Conventional models of epidemic spread consider a host population of identical indi-

viduals, each interacting in the same way with each of the others (see [3, 26, 60] and

references therein). At the same time, in order to develop more realistic mathematical

models for the spread of infectious diseases, it is important to obtain the best possible

representation of the transmission mechanism. To achieve this, more recent models have

included some of the many complexities that have been observed in mixing patterns.

One such approach consists of splitting the population into a set of different subgroups,

each with different social behaviours. Even more detail is included within network

models that allow differences between individuals to be included. In such models, each

individual is represented as a node, and interactions that could permit the transmission

of infection appear as edges linking nodes. The last decade has seen a substantial in-

crease in research into how infectious diseases spread over large networks of connected

nodes [59, 86], where the networks themselves can represent either small social contact

networks [82] or larger scale travel networks [24, 30], including global aviation networks

[90, 91]. Importantly, the characteristics of the network, such as the average degree
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and the node degree distribution, have a profound effect on the dynamics of infectious

disease spread, and hence significant efforts are made to capture properties of realistic

contact networks.

One of the common simplifying assumptions of network models is that all links

are equally capable of transmitting infection [14, 37, 59, 99]. However, in reality, this

is often not the case. Some links will be more likely to transmit infection than oth-

ers due to closer contacts (e.g. within households [11]) or long-duration interactions

[35, 96, 99, 100]. To account for this heterogeneity in properties of social interactions,

network models can be adapted, resulting in weighted contact networks, where connec-

tions between different nodes have different weights. These weights may be associated

with the duration, proximity, or social setting of the interaction, and the key point is

that they are expected to be correlated with the risk of disease transmission. The precise

relationship between the properties of an interaction and its riskiness is hugely complex;

here, we will consider a“weight” that is directly proportional to the transmission rate

along a link.

A substantial amount of work has been done on the analysis of weighted networks

[6, 7, 8, 69] and scale-free networks with different weight distributions [110]. In an

epidemiological context, Britton et al. [16] have derived an expression for the basic

reproductive ratio in weighted networks with generic distributions of node degree and

link weight, and Deijfen [25] has performed a similar analysis to study vaccination in

such networks. In terms of practical epidemiological applications, weighted networks

have already been effectively used to study control of global pandemics [21, 22, 34] and

the spread of animal disease due to cattle movement between farms [41]. Eames et al.

[34] have considered an SIR model on an undirected weighted network, where rather

than using a theoretical formalism to generate an idealised network, the authors have

used social mixing data obtained from questionnaires completed by members of a peer

group [96] to construct a realistic weighted network. Having analysed the dynamics of

epidemic spread in such a network, they showed how information about node-specific

infection risk can be used to develop targeted preventative vaccination strategies. Yang

et al. [112] have shown that disease prevalence can be maximized when the edge

weights are chosen to be inversely proportional to the degrees of nodes that they link to

but, in this case, the transmissibility was not directly proportional to the weights, and

weights were also asymmetric. Yang and Zhou [113] have considered SIS epidemics

on homogeneous networks with uniform and power law edge weight distributions and
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shown how to derive a mean-field description for such models. Furthermore, their

simulation results show that the more homogeneous weight distribution leads to higher

epidemic prevalence.

In this paper, we consider the dynamics of an infectious disease spreading on

weighted networks with different weight distributions. Since we are primarily con-

cerned with the effects of weight distribution on the disease dynamics, the connection

matrix will be assumed to be symmetric, representing the situation when the weights

can be different for different network edges, but for a given edge the weight is the

same irrespective of the direction of infection. From an epidemiological perspective,

we consider both the case when the disease confers permanent immunity (represented

by an SIR model), and the case when the immunity is short-lived, and upon recovery

individuals become susceptible once again (SIS model). For both of these cases, we

derive the corresponding ODE-based pairwise models and their closure approximations.

Numerical simulations of both the epidemic spread on the network and the pairwise

approximations are performed.

The outline of this paper is as follows. In the next section, the construction of specific

weighted networks to be used for the analysis of epidemic dynamics is discussed. This

is complemented by the derivation of corresponding pairwise models and their closure

approximations. Section 3 contains the derivation of the basic reproductive ratio R0

for the SIR model with different weight distributions, as well as numerical simulations

of both stochastic network models and their pairwise ODE counterparts. The paper

concludes in Section 4 with discussion of results and possible further extensions of this

work.

2.3 Model derivation

2.3.1 Network construction and simulation

There are two conceptually different approaches to constructing weighted networks for

modelling infectious disease spread. In the first approach, there is a seed or a primitive

motif, and the network is then grown or evolved from this initial seed according to

some specific rules. In this method, the topology of the network is co-evolving with the

distribution of weights on the edges [7, 8, 9, 69, 112]. Another approach is to consider

a weighted network as a superposition of an un-weighted network with a distribution of

weights across edges which could be independent of the original network, or it may be



32

correlated with node metrics, such as their degree [16, 25, 39]. In this paper, we use the

second approach in order to investigate the particular role played by the distribution of

weights across edges, rather than network topology, in the dynamics of epidemic spread.

Besides computational efficiency, this will allow us to make some analytical headway in

deriving and analysing low-dimensional pairwise models.

Here, we consider two different methods of assigning weights to network links: a

network in which weights are assigned to links at random, and a network in which each

node has the same distribution of weighted links connected to it. In reality, there is

likely to be a great deal more structure to interaction weights, but in the absence of

precise data and also for the purposes of developing models that allow one to explore a

number of different assumptions, we make these simplifying approximations.

Random Weight Distribution

First, we consider a simple model of an undirected weighted network with N nodes

where the weights of the links can take values wi with probability pi, where i =

1, 2, . . . ,M . The underlying degree distribution of the corresponding un-weighted net-

work can be chosen to be of the more basic forms, e.g. homogeneous random or Erdős-

Rényi-type random networks.

The generation of such networks is straightforward, and weights can be assigned

during link creation in the un-weighted network. For example, upon using the config-

uration model for generating un-weighted networks, each new link will have a weight

assigned to it based on the chosen weight distribution. This means that in a homoge-

neous random network with each node having k links, the distribution of link weights

of different types will be multi-nomial, and it is given by

P (nw1 , nw2 , . . . , nwM
) =

k!

nw1 !nw2 ! . . . nwM
!
pn1
1 p

n2
2 . . . pnM

M , (2.1)

where, nw1+nw2+· · ·+nwM
= k and P (nw1 , nw2 , . . . , nwM

) stands for the probability of a

node having nw1 , nw2 , . . . , nwM
links with weights w1, w2, . . . , wM , respectively. While

the above expression is applicable in the most general set-up, it is worth considering

the case of weights of only two types, where the distribution of link weights for a

homogenous random network becomes binomial

P (nw1 , nw2 = k − nw1) =

(
k

nw1

)
pn1
1 (1− p1)k−n1 , (2.2)
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where p1 + p2 = 1 and nw1 + nw2 = k. The average link weight in the model above can

be easily found as

wrandomav =
M∑
i=1

piwi,

which for the case of weights of two types w1 and w2 reduces to

w(2r)
av = p1w1 + p2w2 = p1w1 + (1− p1)w2.

Fixed Deterministic Weight Distribution

As a second example, we consider a network, in which each node has ki links with

weight wi (i = 1, 2, . . . ,M), where k1 + k2 + · · · + kM = k. The different weights here

could be interpreted as being associated with different types of social interaction: e.g.

home, workplace, and leisure contacts, or physical and non-physical interactions. In

this model, all individuals are identical in terms of their connections, not only having

the same number of links (as in the model above), but also having the same set of

weights. The average weight in such a model is given by

wfixedav =
M∑
i=1

piwi, pi =
ki
k
,

where pi is the fraction of links of type i for each node. In the case of links of two types

with weights w1 and w2, the average weight becomes

w(2f)
av = p1w1 + p2w2 =

k1
k
w1 +

k2
k
w2 =

k1
k
w1 +

k − k1
k

w2.

Simulation of Epidemic Dynamics

In this study, the simple SIS and SIR epidemic models are considered. The epidemic

dynamics are specified in terms of infection and recovery events. The rate of trans-

mission across an un-weighted edge between an infected and susceptible individual is

denoted by τ . This will then be adjusted by the weight of the link which is assumed to

be directly proportional to the strength of the transmission along that link. Infected in-

dividuals recover independently of each other at rate γ. The simulation is implemented

using the Gillespie algorithm [43] with inter-event times distributed exponentially with

a rate given by the total rate of change in the network, with the single event to be

implemented at each step being chosen at random and proportionally to its rate. All

simulations start with most nodes being susceptible and with a few infected nodes

chosen at random.
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2.3.2 Pairwise Equations and Closure Relations

In this section, we extend the classic pairwise model for un-weighted networks [58, 94] to

the case of weighted graphs withM different link-weight types. Pairwise models success-

fully interpolate between classic compartmental ODE models and full individual-based

network simulations with the added advantage of high transparency and a good degree

of analytical tractability. These qualities make them an ideal tool for studying dynam-

ical processes on networks [32, 47, 54, 58], and they can be used on their own and/or

in parallel with simulation. The original versions of the pairwise models have been suc-

cessfully extended to networks with heterogenous degree distribution [33], asymmetric

networks [105] and situations where transmission happens across different/combined

routes [32, 47] as well as when taking into consideration network motifs of higher order

than pairs and triangles [52]. The extension that we propose is based on the previously

established precise counting procedure at the level of individuals, pairs, and triples, as

well as on a careful and systematic account of all possible transitions needed to de-

rive the full set of evolution equations for singles and pairs. These obviously involve

the precise dependency of lower order moments on higher order ones, e.g. the rate of

change of the expected number of susceptible nodes is proportional to the expected

number of links between a susceptible and infected node. We extend the previously

well-established notation [58] to account for the added level of complexity due to differ-

ent link weights. In line with this, the number of singles remains unchanged, with [A]

denoting the number of nodes across the whole network in state A. Pairs of type A−B,

[AB], are now broken down depending on link weights, i.e. [AB]i represents the number

of links of type A− B with the link having weight wi, where as before i = 1, 2, . . . ,M

and A,B ∈ {S, I, R} if an SIR dynamics is used. As before, links are doubly counted

(e.g. in both directions), and thus the following relations hold: [AB]m = [BA]m and

[AA]m is equal to twice the number of uniquely counted links of weight wm with nodes

at both ends in state A. From this extension, it follows that
∑M

i=1[AB]i = [AB]. The

same convention holds at the level of triples where [ABC]mn stands for the expected

number of triples where a node in state B connects nodes in state A and C via links of

weight wm and wn, respectively. The weight of the link impacts on the rate of trans-

mission across the link, and this is achieved by using a link-specific transmission rate

equal to τwi, where i = 1, 2, . . . ,M . In line with the above, we construct two pairwise

models, one for SIS and one for SIR dynamics.
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The pairwise model for the SIS dynamics can be written in the form:

[Ṡ] = γ[I]− τ
∑M

n=1wn[SI]n,

[İ] = τ
∑M

n=1wn[SI]n − γ[I],

[ṠI]m = γ([II]m − [SI]m) + τ
∑M

n=1wn([SSI]mn − [ISI]nm)− τwm[SI]m,

[ ˙II]m = −2γ[II]m + 2τ
∑M

n=1wn[ISI]nm + 2τwm[SI]m,

[ ˙SS]m = 2γ[SI]m − 2τ
∑M

n=1wn[SSI]mn,

(2.3)

where m = 1, 2, 3, ...,M and infected individuals recover at rate γ. When recovered in-

dividuals have life-long immunity, we have the following system of equations describing

the dynamics of a pairwise SIR model:

˙[S] = −τ
∑M

n=1wn[SI]n,

˙[I] = τ
∑M

n=1wn[SI]n − γ[I],

˙[R] = γ[I],

[ ˙SS]m = −2τ
∑M

n=1wn[SSI]mn,

[ṠI]m = τ
∑M

n=1wn([SSI]mn − [ISI]nm)− τwm[SI]m − γ[SI]m,

[ ˙SR]m = −τ
∑M

n=1wn[ISR]nm + γ[SI]m,

[ ˙II]m = 2τ
∑M

n=1wn[ISI]nm + 2τwm[SI]m − 2γ[II]m,

[ ˙IR]m = τ
∑M

n=1wn[ISR]nm + γ([II]m − [IR]m),

[ṘR]m = γ[IR]m,

(2.4)

where again m = 1, 2, 3, ...,M with the same notation as above. As a check and

reference to previous pairwise models, in Appendix A we show how systems (2.3) and

(2.4) reduce to the standard un-weighted pairwise SIS and SIR model [58] when all

weights are equal to each other, w1 = w2 = · · · = wM = W .
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The above systems (i.e. Eqs. (2.3) and (2.4)) are not closed, as equations for the

pairs require knowledge of triples, and thus, equations for triples are needed. This

dependency on higher-order moments can be curtailed by closing the equations via

approximating triples in terms of singles and pairs [58]. For both systems, the agreement

with simulation will heavily depend on the precise distribution of weights across the

links, the network topology, and the type of closures that will be used to capture

essential features of network structure and the weight distribution. A natural extension

of the classic closure is given by

[ABC]mn =
k − 1

k

[AB]m[BC]n
[B]

, (2.5)

where k is the number of links per node for a homogeneous network, or the average

nodal degree for networks with other than homogenous degree distributions. However,

even for the simplest case of homogeneous random networks with two weights (i.e. w1

and w2), the average degree is split according to weight. Namely, the average number of

links of weight w1 across the whole network is k1 = p1k ≤ k, and similarly, the average

number of links of weight w2 is k2 = (1− p1)k ≤ k, where k = k1 + k2. Attempting to

better capture the additional network structure generated by the weights, the closure

relation above can be recast to give the following, potentially more accurate, closures

[ABC]11 = [AB]1(k1 − 1)
[BC]1
k1[B]

=
k1 − 1

k1

[AB]1[BC]1
[B]

,

[ABC]12 = [AB]1k2
[BC]2
k2[B]

=
[AB]1[BC]2

[B]
,

[ABC]21 = [AB]2k1
[BC]1
k1[B]

=
[AB]2[BC]1

[B]
,

[ABC]22 = [AB]2(k2 − 1)
[BC]2
k2[B]

=
k2 − 1

k2

[AB]2[BC]2
[B]

,

(2.6)

where, as in Eq. (2.5), the form of the closure can be derived by considering the central

individual in the triple, B. The first pair of the triple ([AB]i) effectively “uses up” one

of B’s links of weight wi. For triples of the form [ABC]11, the presence of the pair [AB]1

means that B has (k1 − 1) remaining links of weight w1 that could potentially connect

to C. For triples of the form [ABC]12, however, B has k2 weight w2 links that could

potentially connect to C. Furthermore, expressions such as [BC]i
ki[B]

denote the fraction of

B’s edges of weight wi that connect to an individual of type C. The specific choice of
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closure will depend on the structure of the network and, especially, on how the weights

are distributed. For example, for the case of the homogeneous random networks with

links allocated randomly, both closures offer a viable option. For the case of a network

where each node has a fixed pre-allocated number of links with different weights, e.g.

k1 and k2 links with weights w1 and w2, respectively, the second closure (2.6) offers the

more natural/intuitive avenue toward closing the system and obtaining good agreement

with network simulation.

2.4 Results

In this section, we present analytical and numerical results for weighted networks and

pairwise representations of SIS and SIR models in the case of two different link-weight

types (i.e. w1 and w2).

2.4.1 Threshold Dynamics for the SIR Model - the Network

Perspective

The basic reproductive ratio, R0 (the average number of secondary cases produced

by a typical index case in an otherwise susceptible population), is one of the most

fundamental quantities in epidemiology [3, 27]. Besides informing us on whether a

particular disease will spread in a population, as well as quantifying the severity of

an epidemic outbreak, it can be also used to calculate a number of other important

quantities that have good intuitive interpretation. In what follows, we will compute

R0 and R0-like quantities and will discuss their relation to each other, and also issues

around these being model-dependent. First, we compute R0 from an individual-based

or network perspective by employing the next generation matrix approach as used

in the context of models with multiple transmission routes, such as household models [5].

Random Weight Distribution: First, we derive an expression for R0 when the underlying

network is homogeneous, and the weights of the links are assigned at random according

to a prescribed weight distribution. In the spirit of the proposed approach, the next

generation matrix can be easily computed to yield

NGM = (aij)i,j=1,2 =

∣∣∣∣∣ (k − 1)p1r1 (k − 1)p1r1

(k − 1)p2r2 (k − 1)p2r2

∣∣∣∣∣ ,
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where

r1 =
τw1

τw1 + γ
, r2 =

τw2

τw2 + γ

represent the probability of transmission from an infected to a susceptible across a link

of weight w1 and w2, respectively. Here, the entry aij stands for the average number

of infections produced via links of type i (i.e. with weight wi) by a typical infectious

node who itself has been infected across a link of type j (i.e. with weight wj). Using

the fact that p2 = 1 − p1, the basic reproductive ratio can be found from the leading

eigenvalue of the NGM matrix as follows:

R1
0 = (k − 1)(p1r1 + (1− p1)r2). (2.7)

In fact, the expression for R0 can be generalised to more than two weights to give

R0 = (k − 1)
∑M

i=1 piri, where wm has frequency given by pm with the constraint that∑M
i=1 pi = 1. It is straightforward to show that upon assuming uniform weight distri-

bution wi = W for i = 1, 2, . . . ,M , the basic reproduction number on a homogeneous

graph reduces to R0 = (k − 1)r as expected, where r = τW/(τW + γ).

Deterministic Weight Distribution: The case when the number of links with given

weights for each node is fixed can be captured with the same approach, and the next

generation matrix can be constructed as follows:

NGM =

∣∣∣∣∣ (k1 − 1)r1 k1r1

k2r2 (k2 − 1)r2

∣∣∣∣∣ .
As before, the leading eigenvalue of the NGM matrix yields the basic reproductive

ratio:

R2
0 =

(k1 − 1)r1 + (k2 − 1)r2 +
√

[(k1 − 1)r1 − (k2 − 1)r2]2 + 4k1k2r1r2
2

. (2.8)

It is worth noting that the calculations above are a direct result of a branching

process approximation of the pure transmission process which differentiates between

individuals depending on whether they were infected via a link of weight w1 or w2,

with an obvious generalisation to more than two weights. This separation used in the

branching process leads to the offspring or next generation matrix of the branching

process [5]. Using the two expressions for the basic reproductive ratio, it is possible to

prove the following result.
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Theorem 1. Given the setup for the fixed weight distribution and using p1 = k1/k,

p2 = k2/k and k1 + k2 = k, if 1 ≤ k1 ≤ k− 1 (which implies that 1 ≤ k2 ≤ k− 1), then

R2
0 ≤ R1

0.

The proof of this result is sketched out in Appendix B. This Theorem effectively

states that provided each node has at least one link of type 1 and one link of type 2,

then independently of disease parameters, it follows that the basic reproductive ratio

as computed from Eq. (2.7) always exceeds or is equal to an equivalent R0 computed

from Eq. (2.8).

It is worth noting that both R0 values reduce to

R1
0 = R2

0 = R0 = (k − 1)r =
(k − 1)τW

τW + γ
, (2.9)

if one assumes that weights are equal, i.e. w1 = w2 = W . As one would expect, the first

good indicator of the impact of weights on the epidemic dynamics will be the average

weight. Hence, it is worth considering the problem of maximising the values R0 under

assumption of a fixed average weight:

p1w1 + p2w2 = W. (2.10)

Under this constraint, the following statement holds.

Theorem 2. For weights constrained by p1w1+p2w2 = W (or (k1/k)w1+(k2/k)w2 = W

for a fixed weights distribution), R1
0 and R2

0 attain their maxima when w1 = w2 = W ,

and the maximum values for both is R0 = (k − 1)r =
(k − 1)τW

τW + γ
.

The proof of this result is presented in Appendix C.

The above results suggest that for the same average link weight and when the one-to-

one correspondence between p1 and k1/k, and p2 and k2/k holds, the basic reproductive

ratio is higher on networks with random weight distribution than on networks with a

fixed weight distribution. This, however, does not preclude the possibility of having a

network with random weight distribution with smaller average weight exhibiting an R0

value that is bigger than theR0 value corresponding to a network where weights are fixed

and the average weight is higher. The direct implication is that it is not sufficient to

know just the average link weight in order to draw conclusions about possible epidemic

outbreaks on weighted networks; rather one has to know the precise weight distribution

that provides a given average weight.
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Figure 2.1 shows how the basic reproductive ratio changes with the transmission

rate τ for different weight distributions. When links on a homogeneous network are

distributed at random (upper panel), the increase in the magnitude of one specific link

weight (e.g. w1) accompanied by a decrease in its frequency leads to smaller R0 values.

This is to be expected since the contribution of the different link types in this case

is kept constant (p1w1 = p2w2 = 0.5) and this implies that the overall weight of the

network links accumulates in a small number of highly weighted links with most links

displaying small weights and thus making transmission less likely. The statement above

is more rigorously underpinned by the results of Theorem 1 and 2, which clearly show

that equal or more homogeneous weights lead to higher values of the basic reproductive

ratio. For the case of fixed weight distribution (lower panel), the changes in the value

of R0 are investigated in terms of varying the weights, so that the overall weight in the

network remains constant. This is constrained by fixing values of p1 and p2 and, in

this case, the highest values are obtained for higher values of w1. The flexibility here

is reduced due to p1 and p2 being fixed, and a different link breakdown may lead to

different outcomes. The top continuous line in Fig. 2.1 (upper panel) corresponds to

the maximum R0 value achievable for both models if the p1w1 + p2w2 = 1 constraint is

fulfilled.

2.4.2 R0-like Threshold for the SIR Model - a Pairwise Model

Perspective

To compute the value of R0-like quantity from the pairwise model, we use the approach

suggested by Keeling [58], which utilises the local spatial/network structure and cor-

rectly accounts for correlations between susceptible and infectious nodes early on in the

epidemics. This can be achieved by looking at the early behaviour of [SI]1/[I] = λ1

and [SI]2/[I] = λ2 when considering links of only two different weights. In line with

Eames [32], we start from the evolution equation of [I]

˙[I] = (τw1[SI]1/[I] + τw2[SI]2/[I]− γ)[I],

where from the growth rate τw1λ1+τw2λ2−γ it is easy to define the threshold quantity

R as follows:

R =
τw1λ1 + τw2λ2

γ
. (2.11)
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Figure 2.1: Basic reproductive ratio R0 for random (upper) and deterministic (lower)

weight distributions with different weight and weight frequency combinations, but with

p1w1 + p2w2 = 1. Upper panel: the case of homogenous networks with weights assigned

at random considers the situation where the contribution of the two different weight

types is equal (p1w1 = p2w2 = 0.5) but with weight w1 increasing and its frequency

decreasing (top to bottom with (p1, w1) = {(0.5, 1), (0.2, 2.5), (0.05, 10)}). Increasing

the magnitude of weights, but reducing their frequency leads to smaller R0 values.

Lower panel: the case of homogeneous networks with fixed number of links of type

w1 and w2 illustrates the situation where w1 increases while p1 = k1/k = 1/3 and

p2 = (k − k1)/k = 2/3 remain fixed (bottom to top with w1 = {0.1, 0.5, 1.4}). Here

the opposite tendency is observed with increasing weights leading to higher R0 values.

Finally, for the randomly distributed weights case, setting p1 = 1/3, w1 = 1.4 and

observing p1w1 + p2w2 = 1, we obtain R0 (?) values which compare almost directly to

the fixed-weights case (top continuous line). Other parameters are set to k = 6, k1 = 2

and γ = 1.
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For the classic closure (2.5), one can compute the early quasi-equilibria for λ1 and λ2

directly from the pairwise equations as follows:

λ1 =
γ(k − 1)p1R

τw1 + γR
and λ2 =

γ(k − 1)(1− p1)R
τw2 + γR

.

Substituting these into Eq. (2.11) and solving for R yields

R =
R1 +R2 +

√
(R1 +R2)2 + 4R1R2Q

2
, (2.12)

where

R1 =
τw1[(k − 1)p1 − 1]

γ
, R2 =

τw2[(k − 1)p2 − 1]

γ
,

Q =
k − 2

[(k − 1)p1 − 1][(k − 1)p2 − 1]
,

with details of all calculations presented in Appendix D. We note that R > 1 will

result in an epidemic, while R < 1 will lead to the extinction of the disease. It is

straightforward to show that for equal weights, say W , the expression above reduces to

R = τW (k − 2)/γ which is in line with R0 value in [58] for un-clustered, homogeneous

networks. Under the assumption of a fixed total weight W , one can show that similarly

to the network-based basic reproductive ratio, R achieves its maximum when w1 =

w2 = W .

In a similar way, for the modified closure (2.6), we can use the same methodology

to derive the threshold quantity as

R =
R1 +R2 +

√
(R1 +R2)2 + 4R1R2(Q− 1)

2
, (2.13)

where

R1 =
τw1(k1 − 2)

γ
, R2 =

τw2(k2 − 2)

γ
, Q =

k1k2
(k1 − 2)(k2 − 2)

.

For this closure once again, R > 1 results in an epidemic, while for R < 1, the disease

dies out. Details of these calculations are shown in Appendix D. It is noteworthy that

one can derive expressions (2.12) and (2.13) by considering the leading eigenvalue based

on the linear stability analysis of the disease-free steady state of system (2.4) with the

corresponding pairwise closures given in Eqs. (2.5) and (2.6).

Finally, we note that this seemingly R0-lookalike, R = τW (k − 2)/γ for the equal

weights case w1 = w2 = W is a multiple of (k − 2) as opposed to (k − 1) as is the case

for the R0 derived based on the individual-based perspective, where, for equal weights,
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R1
0 = R2

0 = τW (k − 1)/(τW + γ). This highlights the importance, in models that are

based on an underlying network of population interactions, of the way in which an R0-

like quantity is defined. In simple mass-action-type models the same value is derived

irrespective of whether R0 is thought of as the number of new cases from generation-

to-generation (the NGM method), or as the growth rate of the epidemic scaled by the

infectious period. In a network model, the two approaches have the same threshold

behaviour, but the clusters of infection that appear within the network mean that they

produce different values away from the threshold. It is important therefore to be clear

about what we mean by “R0” in a pair-approximation model. It is also important when

using empirically-derived R0 values to inform pairwise models to be clear about how

these values were estimated from epidemiological data, and to consider which is the

most appropriate way to incorporate the information into the model.

2.4.3 The Performance of Pairwise Models and the Impact of

Weight Distributions on the Dynamics of Epidemics

To evaluate the accuracy of the pairwise approximation models, we will now compare

numerical solutions of models (2.3) and (2.4) (with closures given by Eq. (2.5) and

Eq. (2.6) for random and deterministic weight distributions, respectively) to results

obtained from the corresponding network simulation. The discussion around the com-

parison of the two models is interlinked with the discussion of the impact of different

weight distributions/patterns on the overall epidemic dynamics. We begin our numeri-

cal investigation by considering weight distributions with moderate heterogeneity. This

is illustrated in Fig. 2.2, where excellent agreement between simulation and pairwise

models is obtained. The agreement remains valid for both SIS and SIR dynamics, and

networks with higher average link weight lead to higher prevalence levels at equilibrium

for SIS and higher infectiousness peaks for SIR.

Next, we explore the impact of weight distribution under the condition that the

average weight remains constant (i.e. p1w1 +p2w2 = 1, where without loss of generality

the average weight has been chosen to be equal to 1). First, we keep the proportion of

edges of type one (i.e. with weight w1) fixed and change the weight itself by gradually

increasing its magnitude. Due to the constraint on the average weight and the condition

p2 = 1 − p1, the other descriptors of the weight distribution follow. Figure 2.3 shows

that concentrating a large portion of the total weight on a few links leads to smaller

epidemics, since the majority of links are low-weight and thus have a small potential to
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Figure 2.2: The infection prevalence (I/N) from the pairwise and simulation models

for homogeneous random networks with random weight distribution (ODE: solid line,

simulation: dashed line and (o)). All nodes have degree k = 5 with N = 1000, I0 =

0.05N , γ = 1 and τ = 1. From top to bottom, the parameter values are: w1 = 5, p1 =

0.2, w2 = 1.25, p2 = 0.8 (top), and w1 = 0.5, p1 = 0.5, w2 = 1.5, p2 = 0.5 (bottom). The

left and right panels represent the SIS and SIR dynamics, respectively.

transmit the disease. This effect is exacerbated for the highest value of w1; in this case,

95% of the links are of weight w2 = (1−p1w1)/(1−p1) = 0.5/0.95 leading to epidemics

of smallest impact (Fig. 2.3(a)) and smallest size of outbreak (Fig. 2.3(b)).

While the previous setup kept the frequency of links constant while changing the

weights, one can also investigate the impact of keeping at least one of the weights

constant (e.g. the larger one) and changing its frequency. To ensure a meaningful

comparison, here we also require that the average link weight over the whole network

is kept constant. When such highly weighted links are rare, the system approaches the

non-weighted network limit where the transmission rate is simply scaled by w2 (the

most abundant link type). As Fig. 2.4 shows, in this case, the agreement is excellent,

and as the frequency of the highly weighted edges/links increases, disease transmission

is less severe.

Regarding the comparison of the pairwise and simulation models, we note that while

the agreement is generally good for a large part of the disease and weight parameter

space, the more extreme scenarios of weight distribution result in poorer agreement.

This is illustrated in both Figs. 2.3 and 2.4 (see bottom curves), with the worst agree-

ment for the SIS dynamics. The insets in Fig. 2.3 show that increasing the average

connectivity improves the agreement. However, the cause of disagreement is due to a

more subtle effect driven also by the weight distribution. For example, in Fig. 2.4, the
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Figure 2.3: The infection prevalence (I/N) from the pairwise and simulation models for

homogenous networks with random weight distribution (ODE: solid line, simulation:

dashed line and (o)). All numerical tests use N = 1000, I0 = 0.05N , k = 5, γ =

1, τ = 1 and p1 = 0.05 (p2 = 1 − p1 = 0.95). From top to bottom, w1 = 2.5, 5, 10,

w2 = 0.875/0.95, 0.75/0.95, 0.5/0.95. The weight distributions are chosen such that the

average link weight, p1w1 +p2w2 = 1, remains constant. Insets of (a) and (b): the same

parameter values as for the lowest prevalence plots but, with k = 10 and τ = 0.5. The

left and right panel represent the SIS and SIR dynamics, respectively.
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Figure 2.4: The infection prevalence (I/N) from the pairwise and simulation model

for homogenous networks with random weight distribution (ODE: solid line, simula-

tion: dashed line and (o)). All numerical tests use N = 1000, I0 = 0.05N , k = 10,

γ = 1, τ = 0.5 and w1 = 10. From top to bottom, P (w1) = 0.01, 0.05, 0.09,

w2 = 0.9/0.99, 0.5/0.95, 0.1/0.91. Here, also p2 = 1− p1 and p1w1 + p2w2 = 1. The left

and right panels represent the SIS and SIR dynamics, respectively.
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average degree in the network is 10, higher then used previously and equal to that in

the insets from Fig. 2.3, but despite this, the agreement is still poor.

The two different weighted network models are compared in Fig. 2.5. This is done

by using the same link weights and setting p1 = k1/k and p2 = k2/k. Epidemics on

networks with random weight distributions grow faster and, given the same time scales

of the epidemic, this is in line with results derived in Theorem 1 and 2 and findings

concerning the growth rates. The difference is less marked for larger values of τ where

a significant proportion of the nodes becomes infected.
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Figure 2.5: The infection prevalence (I/N) based on random (model 1) and fixed

(model 2) weight distribution (ODE: black (1) and blue (2) solid line, simulation results:

same as ODE but dashed lines, and (◦) and (∗)). All numerical tests use N = 1000,

I0 = 0.05N , k = 10, k1 = 2, k2 = 8, p1 = k1/k, p2 = k2/k, w1 = 10, w2 = 1.25 and

γ = 1. The rate of infection τ = 0.5 (top) and τ = 0.1 (bottom). The left and right

panels represent the SIS and SIR dynamics, respectively.

In Fig. 2.6, the link weight composition is altered by decreasing the proportion of

highly-weighted links. As expected, the reduced average link weight across the network

leads to smaller epidemics while keeping the excellent agreement between simulation

and pairwise model results.

2.5 Discussion

The present study has explored the impact of weight heterogeneity and highlighted that

the added heterogeneity of link weights does not manifest itself in the same way as most

other heterogeneities in epidemic models on networks. Usually, heterogeneities lead to

an increase in R0 but potentially to a fall in the final epidemic size [65]. However,
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Figure 2.6: The infection prevalence (I/N) for a fixed weight distribution (ODE: solid

lines, simulation results: dashed lines and (o)). All numerical tests use N = 1000,

I0 = 0.05N , k = 6, γ = 1, τ = 1 and w1 = 1.4, w2 = 0.8. From top to bottom:

k1 = 5, 4, 3, 2, 1 and k2 = k− k1. The left and right panels represent the SIS and SIR

dynamics, respectively.

for weighted networks the concentration of infectiousness on fewer target links, and

thus target individuals, leads to a fall in R0 for both homogeneous random and fixed

weight distribution models. Increased heterogeneity in weights accentuates the locality

of contact and is taking the model further from the mass-action type models. Infection

is concentrated along a smaller number of links, which results in wasted infectivity and

lower R0. This is in line with similar results [16, 17, 113], where different modelling

approaches have been used to capture epidemics on weighted networks.

The models proposed in this paper are simple mechanistic models with basic weight

distributions, but despite their simplicity they provide a good basis for analysing dis-

ease dynamics on weighted networks in a rigorous and systematic way. The modified

pairwise models have performed well, and provide a good approximation to direct sim-

ulation. As expected, the agreement with simulations typically breaks down at or close

to the threshold but, away from it, pairwise models provide a good counterpart or al-

ternative to simulation. Disagreement only appears for extreme weight distributions,

and we hypothesise that this is mainly due to the network becoming more modular

with islands of nodes connected by links of low weight being bridged together by highly

weighted links. A good analogy to this is provided by considering the case of a pair-

wise model on un-weighted networks specified in terms of two network metrics, node

number N and average number of links k. The validity of the pairwise model relies on

the network being connected up at random, or according to the configuration model.
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This can be easily broken by creating two sub-networks of equal size both exhibiting

the same average connectivity. Simulations on such type of networks will not agree

with the pairwise model, highlighting that the network generating algorithm can push

the network out of the set of ‘acceptable’ networks. We expect that this or a similar

argument can more precisely explain why the agreement breaks down for significant

link-weight heterogeneity.

The usefulness of pairwise models is illustrated in Fig. 2.7, where the I/N values

are plotted for a range of τ values and for different weight distributions. Here, the

equilibrium value has been computed by finding the steady state directly from the

ODEs (2.3) by finding numerically the steady state solution of a set on non-linear

equations (i.e. ˙[A] = 0 and ˙[AB] = 0). To test the validity, the long term solution

of the ODE is plotted along with results based on simulation. The agreement away

from the threshold is excellent and illustrates clearly the impact of different weight

distributions on the magnitude of the endemic threshold.
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Figure 2.7: Endemic steady state from the SIS model on networks with random weight

distribution. The continuous lines correspond to the steady state computed numerically

by setting all evolution equations in the pairwise system to zero. These are comple-

mented by finding the endemic steady state through direct integration of the ODE

system for a long-enough time (◦), as well as direct simulation (∗). The first marker

corresponds to τ = 0.3 followed by τ = 0.5, 1.0, . . . , 3.0. All results are based on: k = 5,

γ = 1 and w1 = 10, w2 = 1. From top to bottom : p1 = 0.9, 0.5, 0.1, 0.01 and p2 = 1−p1.

The models proposed here can be extended in a number of different ways. One po-

tential avenue for further research is the analysis of correlations between link weight and

node degree. This direction has been explored in the context of classic compartmental
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mean-field models based on node degree [55, 88]. Given that pairwise models extend

to heterogeneous networks, such avenues can be further explored to include different

types of correlations or other network-dependent weight distributions. While this is a

viable direction, it is expected that the extra complexity will make the pairwise mod-

els more difficult to analyse and disagreement between pairwise and simulation models

more likely. Another theoretically interesting and practically important aspect is the

consideration of different types of time delays, representing latency or temporary im-

munity [13], and the analysis of their effects on the dynamics of epidemics on weighted

networks. The methodology presented in this paper can be of wider relevance to phe-

nomena that take place simultaneously on more that one type of network. Examples

of such systems include the co-circulation of two different diseases in the same popula-

tion [12], the spread of the same disease but via different routes [65], or the spread of

epidemics concurrently with information about the disease [47, 64]. These areas offer

other important avenues for further extensions.
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2.6 Appendices

2.6.1 Appendix A - Reducing the weighted pairwise models

to the un-weighted equivalents

We start from the system

˙[S] = γ[I]− τ
∑M

n=1wn[SI]n,

˙[I] = τ
∑M

n=1wn[SI]n − γ[I],

[ṠI]m = γ([II]m − [SI]m) + τ
∑M

n=1wn([SSI]mn − [ISI]nm)− τwm[SI]m,

[ ˙II]m = −2γ[II]m + 2τ
∑M

n=1wn[ISI]nm + 2τwm[SI]m,

[ ˙SS]m = 2γ[SI]m − 2τ
∑M

n=1wn[SSI]mn,

where m = 1, 2, . . . ,M . To close this system of equations at the level of pairs, we use

the approximations

[ABC]mn =
k − 1

k

[AB]m[BC]n
[B]

.

To reduce these equations to the standard pairwise model for un-weighted networks

we use the fact that
∑M

m=1 [AB]m = [AB] for A,B ∈ {S, I} and aim to derive the

evolution equation for [AB]. Assuming that all weights are equal to some W , the

following relations hold:

˙[SI] =
M∑
m=1

˙[SI]m

=
M∑
m=1

(
γ([II]m − [SI]m) + τ

M∑
n=1

wn([SSI]mn − [ISI]nm)− τwm[SI]m

)

= γ([II]− [SI])− τW [SI] + τW

M∑
m=1

M∑
n=1

([SSI]mn − [ISI]nm),

where the summations of the triples can be resolved as follows:

M∑
m=1

M∑
n=1

[SSI]mn =
k − 1

k

M∑
m=1

[SS]m

M∑
n=1

[SI]n
[S]
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=
k − 1

k

[SS][SI]

[S]
= [SSI].

Using the same argument for all other triples, the pairwise model for weighted networks

with all weights being equal (without loss of generality W = 1) reduces to the classic

pairwise model, that is

˙[S] = γ[I]− τ [SI],

˙[I] = τ [SI]− γ[I],

∑M
m=1 [ṠI] = [ṠI] = γ([II]− [SI]) + τ [SSI]− [ISI]− [SI],

∑M
m=1 [ ˙II] = [ ˙II] = −2γ[II] + 2τ([ISI] + [SI]),

∑M
m=1 [ ˙SS] = [ ˙SS] = 2γ[SI]− 2τ [SSI].

A similar argument holds for the pairwise model on weighted networks with SIR dy-

namics.

2.6.2 Appendix B - Proof of Theorem 1

We illustrate the main steps needed to complete the proof of Theorem 1. This revolves

around starting from the inequality itself and showing via a series of algebraic manipu-

lations that it is equivalent to a simpler inequality that holds trivially. Upon using that

p1k = k1, p2k = k2 and p2 + p1 = 1, the original inequality can be rearranged to give√
[(k1 − 1)r1 − (k2 − 1)r2]2 + 4k1k2r1r2 ≤ (k1 − 1)r1 + (k2 − 1)r2 + 2r1p2 + 2r2p1.

Based on the assumptions of the theorem, the right-hand side is positive, and thus

this inequality is equivalent to the one where both the left- and right-hand sides are

squared. Combined with the fact that p2 = 1− p1, after a series of simplifications and

factorizations this inequality can be recast as

4p1(1− p1)(r21 + r22) + 8kp1(1− p1)r1r2 ≤ 4kp1(1− p1)(r21 + r22) + 8p1(1− p1)r1r2,

which can be further simplified to

4p1(1− p1)(r1 − r2)2(k − 1) ≥ 0,
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which holds trivially and thus completes the proof. We note that in the strictest

mathematical sense the condition of the theorem should be (k1 − 1)r1 + (k2 − 1)r2 +

2r1p2 + 2r2p1 ≥ 0. This holds if the current assumptions are observed since these are

stronger but follow from a practical reasoning whereby for the network with fixed weight

distribution, a node should have at least one link with every possible weight type.

2.6.3 Appendix C - Proof of Theorem 2

First, we show that R1
0 is maximised when w1 = w2 = W . R1

0 can be rewritten to give

R1
0 = (k − 1)

(
p1

τw1

τw1 + γ
+ (1− p1)

τw2

τw2 + γ

)
.

Maximising this given the constraint w1p1 + w2(1 − p1) = W can be achieved by

considering R1
0 as a function of the two weights and incorporating the constraint into

it via the Lagrange multiplier method. Hence, we define a new function f(w1, w2, λ) as

follows:

f(w1, w2, λ) = (k − 1)

(
p1

τw1

τw1 + γ
+ (1− p1)

τw2

τw2 + γ

)

+λ(w1p1 + w2(1− p1)−W ).

Finding the extrema of this function leads to a system of three equations

∂f

∂w1

=
(k − 1)p1τγ

(τw1 + γ)2
+ λp1 = 0,

∂f

∂w2

=
(k − 1)(1− p1)τγ

(τw2 + γ)2
+ λ(1− p1) = 0,

∂f

∂λ
= w1p1 + w2(1− p1)−W = 0.

Expressing λ from the first two equations and equating these two expressions yields

(k − 1)τγ

(τw1 + γ)2
=

(k − 1)τγ

(τw2 + γ)2
.

Therefore,

w1 = w2 = W,

and it is straightforward to confirm that this is a maximum.
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Performing the same analysis for R2
0 is possible but it is more tedious. Instead, we

propose a more elegant argument to show that R2
0 under the constraint of constant

total link weight achieves its maximum when w1 = w2 = W . The argument starts

by considering R2
0 when w1 = w2 = W . In this case, and using that r2 = r1 = r =

τW/(τW + γ) we can write:

R2∗
0 =

(k1 − 1)r1 + (k2 − 1)r2 +
√

[(k1 − 1)r1 − (k2 − 1)r2]2 + 4k1k2r1r2
2

=
r(k1 + k2 − 2) +

√
r2[(k1 − 1)− (k2 − 1)]2 + 4r2k1k2

2

=
r(k1 + k2 − 2) + r

√
(k1 + k2)2

2

=
r(2k1 + 2k2 − 2)

2
= r(k1 + k2 − 1) = (k − 1)r.

However, it is known from Theorem 1 that R2
0 ≤ R1

0, and we have previously shown

that R1
0 under the present constraint achieves its maximum when w1 = w2 = W , and

its maximum is equal to (k − 1)r. All the above can be written as

R2
0 ≤ R1

0 ≤ (k − 1)r.

Now taking into consideration that R2∗
0 = (k− 1)r, the inequality above can be written

as

R2
0 ≤ R1

0 ≤ (k − 1)r = R2∗
0 ,

and this concludes the proof.

2.6.4 Appendix D - The R0-like threshold R

Let us start from the evolution equation for [I](t),

˙[I] = τ(w1[SI]1 + w2[SI]2)− γ[I]

=

[
τw1

(
[SI]1
[I]

)
+ τw2

(
[SI]2
[I]

)
− γ
]

[I]

= (τw1λ1 + τw2λ2 − γ)[I],

where λ1 = [SI]1
[I]

and λ2 = [SI]2
[I]

, and let R be defined as

R =
τw1λ1 + τw2λ2

γ
. (2.14)
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Following the method outlined by Keeling [58] and Eames [32], we calculate the early

quasi-equilibrium values of λ1,2 as follows:

λ̇1 = 0⇔ ˙[SI]1[I] = ˙[I][SI]1,

λ̇2 = 0⇔ ˙[SI]2[I] = ˙[I][SI]2.

Upon using the pairwise equations and the closure, consider [ṠI]1[I] = [İ][SI]1:

[ṠI]1[I] = (τw1[SSI]11 + τw2[SSI]12 − τw1[ISI]11

−τw2[ISI]21 − τw1[SI]1 − γ[SI]1)[I]

= (τw1[SI]1 + τw2[SI]2 − γ[I])[SI]1. (2.15)

Using the classical closure

[ABC]12 =
k − 1

k

[AB]1[BC]2
[B]

,

[ABC]21 =
k − 1

k

[AB]2[BC]1
[B]

,

and making the substitution : [SI]1 = λ1[I] , [SI]2 = λ2[I], [I] � 1, [S] ≈ N ,

[SS]1 ≈ kNp1, [SS]2 ≈ kN(1− p1) together with γR = τw1λ1 + τw2λ2, we have

(τw1λ1 + τw2λ2)kp1 − (τw1λ1 + τw2λ2)p1 − (τw1λ1 + τw2λ2)λ1 − τw1λ1 = 0,

which can be solved for λ1 to give

λ1 =
γ(k − 1)p1R

τw1 + γR
.

Similarly, λ2 can be found as

λ2 =
γ(k − 1)(1− p1)R

τw2 + γR
.

Substituting the expressions for λ1,2 into the original equation for R yields

R =
A+B +

√
(A+B)2 + 4τ 2w1w2(k − 2)

2γ
,

where A = τw1[(k − 1)p1 − 1] and B = τw2[(k − 1)p2 − 1]. If we define

R1 =
τw1[(k − 1)p1 − 1]

γ
, and R2 =

τw2[(k − 1)p2 − 1]

γ
,
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the expression simplifies to

R =
R1 +R2 +

√
(R1 +R2)2 + 4R1R2Q

2
,

where Q =
(k − 2)

[(k − 1)p1 − 1][(k − 1)p2 − 1]
.

Substituting the modified closure

[ABC]11 =
k1 − 1

k1

[AB]1[BC]1
[B]

,

[ABC]12 =
[AB]1[BC]2

[B]
,

[ABC]21 =
[AB]2[BC]1

[B]
,

[ABC]22 =
k2 − 1

k2

[AB]2[BC]2
[B]

,

into Eq. (2.15) and making further substitution : [SI]1 = λ1[I], [SI]2 = λ2[I], [I]� 1,

[S] ≈ N , [SS]1 ≈ k1N , [SS]2 ≈ k2N , we have

(τw1λ1 + τw2λ2)k1 − (τw1λ1 + τw2λ2)λ1 − 2τw1λ1 = 0 =⇒ λ1 =
γk1R

2τw1 + γR
.

Similarly, the equation [ṠI]2[I] = [İ][SI]2 yields

λ2 =
γk2R

2τw2 + γR
.

Substituting these expressions for λ1,2 into Eq. (2.14), we have

R =
τ(w1k1 + w2k2)− 2τ(w1 + w2)

2γ

+

√
[2τ(w1 + w2)− τ(w1k1 + w2k2)]

2 + 8τ 2w1w2(k1 + k2 − 2)

2γ
.

If we define

R1 =
τw1(k1 − 2)

γ
, R2 =

τw2(k2 − 2)

γ
,
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the above expression for R simplifies to

R =
R1 +R2 +

√
(R1 +R2)2 + 4R1R2(Q− 1)

2

where Q =
k1k2

(k1 − 2)(k2 − 2)
.
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3.1 Abstract

In this paper we explore the potential of the pairwise-type modelling approach to be ex-

tended to weighted networks where nodal degree and weights are not independent. As a

baseline or null model for weighted networks, we consider undirected, heterogenous net-

works where edge weights are randomly distributed. We show that the pairwise model

successfully captures the extra complexity of the network, but does this at the cost of

limited analytical tractability due the high number of equations. To circumvent this

problem, we employ the edge-based modelling approach to derive models corresponding

to two different cases, namely for degree-dependent and randomly distributed weights.

These models are more amenable to compute important epidemic descriptors, such as

early growth rate and final epidemic size, and produce similarly excellent agreement

with simulation. Using a branching process approach we compute the basic reproduc-

tive ratio for both models and discuss the implication of random and correlated weight

distributions on this as well as on the time evolution and final outcome of epidemics.

Finally, we illustrate that the two seemingly different modelling approaches, pairwise

and edge-based, operate on similar assumptions and it is possible to formally link the

two.

3.2 Introduction

The study of epidemic spread through contact networks has significantly improved our

understanding of how the structure of interactions influences the spread of an infectious

disease. One of the most recognised facts is that individuals with more contacts tend

to become infected sooner and then spread the disease more quickly than others. Thus,

for a given average degree, epidemics tend to spread faster if the population has a more

heterogeneous degree distribution.

A number of models have been introduced to study the spread of an SIR

(susceptible-infectious-recovered) infectious disease through a class of random networks

known as configuration model networks [81]. The earliest models [86] were restricted to

final size calculations, predicting how the total number infected depends on the trans-

mission probability. More recently, models have been introduced which attempt to

predict the dynamics of an epidemic, with varying levels of success and degrees of com-

plexity. There are now several models available which can predict with high accuracy

the population-scale dynamics of an SIR epidemic spreading through a configuration
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model network [33, 58, 70, 72, 78].

However, these analyses assume that all interactions have the same strength. In fact

some connections are expected to transmit infection quicker than others as a result of

the closeness of interaction of the individuals. By itself, a heterogeneous distribution

of contact weights would affect the dynamics of an epidemic. However, we further

expect that an individual’s contact-weights are likely to have some dependence on the

degree of the nodes that the edges/links connect. Previous studies have considered

and analysed different scenarios of weighted networks based on theoretical/synthetic

network models [16, 25, 75, 95], as well as empirical networks reconstructed from real

data (e.g. social mixing data [34] and cattle movements between farms [41]). These

studies have typically focused on specific models that either gave information about (a)

threshold quantities and final epidemic size, (b) mean-field type models for describing

the time evolution of infection or (c) simulation. Here, we will aim to cover as many of

these aspects as possible in one single body of work.

In this paper we develop and analyse models which allow us to incorporate edge-

weights into the epidemic dynamics and we explore this via pairwise and edge-based

compartmental models, as well as simulation. In particular, we focus on weighted

networks where link or edge weights and node degree are not independent, see for

example [55, 88]. The aim of this study is twofold. First, we explore the flexibility of the

pairwise and edge-based compartmental modelling frameworks to account for this added

level of complexity, and second, to gain better understanding on the precise impact of

different weight distributions and of correlations between link-weight and degree on

epidemic threshold, growth rate and epidemic dynamics. The paper is organised as

follows. Section 2 is dedicated to model derivation starting with network construction

and edge-weight distribution, including some null models, such as where link-weights

are randomly distributed and where all link weights are equal to some predetermined

average. In this same section, we derive and present the pairwise and edge-based models

for random and degree-dependent weights cases. Section 3 is dedicated to results, and

it is divided into analytic, numeric and model comparison parts. Finally, in section 4,

we provide further aspects for discussion and future directions.
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3.3 Model Derivation

The models are built in a bottom up approach. We first describe the construction of

the networks we study and how their edge-weights are assigned. We then describe the

disease dynamics and simulation model. We conclude this section with the formulation

and derivation of the pairwise and edge-based compartmental models for two distinct

classes of weighted networks.

3.3.1 Network construction and simulation

Our focus here is the construction of our model networks and the simulation of an

epidemic through those networks. Our model networks use the configuration model

framework [81] with each edge assigned one of M possible weights. The two network

types we consider differ in how those weights are assigned to edges. We make standard

assumptions about the disease spread, but we let the rate of transmission along an edge

depend on its weight.

Networks with randomly-distributed edge weights

In this case a two step approach is used to generate networks with randomly-distributed

edge weights. First, a network of N nodes with prescribed degree distribution P (k) is

generated according to the configuration model. This procedure leads to an undirected

un-weighted network where edge weights can be now assigned at random according

to a specified weight distribution Q(w). If Q(w) is defined across weights wi, where

Q(wi) = qi and i = 1, 2, . . . ,M , then in a homogenous random network (i.e. all nodes

have degree k), the distribution of edge-weights of various types is multi-nomial with

parameters k - number of trials and qi - the probability of a link being of weight wi with

i = 1, 2, . . . ,M . The average weight in the network is given by 〈w〉random =
∑M

i=1 qiwi.

While this is a good baseline model it is unlikely that this scenario would be a true

representation of social interactions. For example, different weights could be interpreted

as representing different social interactions (e.g. household, workplace and casual) and

this could suggest a model where each individual has a certain number of links of

different weights. Ignoring degree heterogeneity and considering individuals to be equal

can result in a weighted network with fixed edge-weights, e.g. each node has k links

with k1 being of household type and with k2 = k−k1 being of workplace type and thus

of different weights, say w1 and w2 [95].
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Degree-dependent weighted networks

While many different edge-weight allocation scenarios are possible, we opt to investigate

the case where edge weights and node degrees are not independent. This is in contrast

with the random edge weights case, where the network topology and the edge weight

distribution and allocation are totally uncoupled. In particular, we wish to investigate

an intuitively plausible idea which suggests that the weight or ‘strength’ of a link is

negatively correlated to node-degree since individuals with many contacts are likely to

afford a limited time commitment per link, and thus less of an opportunity for the

disease to transmit [55, 88]. In line with these studies, we propose a weighted network

model where the link-weight between two nodes of degree i and j, respectively, is given

by w(i, j) = wij with some functional form such that link-weight decreases as the degrees

of nodes that it connects increase. Generating such a network is straightforward and it

requires that first a configuration network with given degree distribution (i.e. P (k)) is

created. This is followed by allocating weights to all links based on the degrees of the

end nodes and according some pre-specified function w(i, j), where i, j = kmin, . . . , kmax

with kmin and kmax being the minimal and maximal nodal degree in the network. In this

case, the distribution of weights is such that Q(W = w(i, j)) = NP (i)i jP (j)
〈k〉 /(〈k〉N/2) =

2ijP (i)P (j)
〈k〉2 and Q(W = w(i, i)) = NP (i)i iP (i)

〈k〉 /(〈k〉N) = i2P 2(i)
〈k〉2 , where W is the random

variable corresponding to link-weights. Furthermore, discarding information about the

degree of the nodes for a link and simply assigning a random variable W according to

the distribution Q provides another way to allocate weights of different type. This setup

makes it possible to construct at least two possible null-model-type weighted networks:

(i.) the first is a network that has the same topology and weight distribution but,

with weights allocated at random (i.e. ignoring degree-weight correlations) as

prescribed by the random variable W and its distribution Q, and

(ii.) the second is simply a weighted network where all link-weights are equal to the

average weight computed as

〈w〉dd =

∑kmax

i=kmin
NP (i)i iP (i)

〈k〉 wii + 2
∑kmax−1

i=kmin

∑kmax

j=i+1NP (i)i jP (j)
〈k〉 wij

〈k〉N
,

where NP (i)i jP (j)
〈k〉 = ijNP (i)P (j)

〈k〉 stands for the actual expected number of links

between nodes of degree i and j, and 〈k〉 =
∑
kP (k) is the average nodal degree.

These two null models will be used as baseline models for comparison when looking

to determine the effect of degree-dependent weights on epidemic dynamics and other
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important indicators, such as R0 and final epidemic size.

Epidemic model and simulation

In this paper, the simple SIR (susceptible-infective-recovered) epidemic model is con-

sidered. Disease transmission is specified in terms of infection and recovery events. The

rate of transmission over an edge of weight 1 is denoted by τ and this is adjusted by

the edge weight by assuming that transmission is directly proportional to it, i.e. rate

of transmission across an edge of weight w is τw. Infected individuals recover inde-

pendently of each other at rate γ. The simulation is implemented using the Gillespie

algorithm [43] with exponentially distributed (rate given by the total rate of change

in the system) inter-event times, with the single event to be implemented at each step

being chosen at random and proportionally to its rate. All simulations start with a few

infected nodes chosen at random with the remaining nodes being susceptible.

3.3.2 Approximate ODE models

Markovian processes on networks, being disease, rumour, information, innovation trans-

mission or firing neurones result in an exact mathematical description in terms of Kol-

mogorov/master equations. Their high dimensionality, even for small networks, renders

them difficult to use and often these can only be used to ascertain results of a theo-

retical nature but may offer less insight for specific applications. Notably, for highly

symmetric or regular networks, the exact equations can be used directly and this is an

area that has been well exploited and has been used to provide and illustrate linkages

between stochastic and approximate ODE models. However, for more general networks,

the drawback of the exact model remains. This has led to the development of a num-

ber of approaches and models that do an excellent job in approximating results from

explicit simulations on networks which correspond to what would be regarded as the

exact model. Examples include: (a) pairwise models [33, 58, 94, 105], (b) edge-based

compartmental models and in general approaches that require the use of probability

generating functions [78], (c) effective degree models [70, 72], and other variations or

combinations based around these. In this paper, we will concentrate on pairwise and

edge-based compartmental models and will assess their flexibility and performance in

accounting and approximating epidemic dynamics unfolding on two main classes of

weighted networks.
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Pairwise models

The model extension that we propose is partly covered in Rattana et al. [95]. However,

here we extend this from homogenous to heterogeneous networks with random weights

as well as to the case where edge weights and node degree are not independent. Before

writing down the two models, we refresh the notation and counting procedures. In line

with the notation used for pairwise models, the number of singles remains unchanged,

with [Ak] denoting the number of nodes across the whole network which have degree k

and are in state A. Pairs of type Ak −Bk′ , [AkBk′ ], are now further divided depending

on edge weights, i.e. [AkBk′ ]i represents the number of links of type Ak −Bk′ with the

edge having weight wi, where as before i = 1, 2, . . . ,M and A,B ∈ {S, I, R}. Edges

are doubly counted (e.g. in both directions) and thus the following relations hold:

[AkBk′ ]m = [Bk′Ak]m and [AkAk]m is equal to twice the number of uniquely counted

links of weight wm with nodes at both ends in state A and having degree k. From this

extension it follows that
∑M

i=1[AkBk′ ]i = [AkBk′ ]. The same convention holds at the

level of triples where [AkBk′Cq]mn stands for the expected number of triples where a

node in state B and of degree k′ connects a node in state A and of degree k and a node

in state C and of degree q via links of weight wm and wn, respectively. The weight of

the edge impacts on the rate of transmission across that edge, and this is achieved by

using a link-specific transmission rate equal to τwi, where i = 1, 2, . . . ,M . In line with

the above, we construct two pairwise models, one for randomly distributed weights

across edges and one for the case where edge weights and node degrees are correlated.
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Figure 3.1: Flow diagram showing the evolution of pairs in the random weight case. The

only pairs which have the potential to eventually transmit are the [SS], [SI] and [IS]

pairs, and hence, these need to be tracked. Solid and dashed arrows denote transmission

within and from outside the pairs, respectively. We are able to find a closed system of

equations which does not require calculating the other terms.
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Evolution equations for SIR dynamics on heterogenous networks with

random weights

˙[Sk] = −τ
∑M

n=1wn[SkI]n,

˙[I] = τ
∑

k

∑M
n=1wn[SkI]n − γ[I],

˙[SkSk′ ]m = −τ
∑M

n=1wn ([SkSk′I]mn + [Sk′SkI]mn) ,

˙[SkI]m = τ
(∑

k′
∑M

n=1wn[SkSk′I]mn −
∑M

n=1wn[ISkI]nm − wm[SkI]m

)
− γ[SkI]m,

(3.1)

where k, k′ ∈ {kmin, kmin + 1, . . . , kmax} and m = 1, 2, 3, ...,M . Here, kmin and kmax

stands for the smallest and largest nodal degree in the network. We further note

that the system above stems from a reduction applied to a fuller version, see flow

diagram in Fig. 3.1, where evolution equations for all [Ik] classes are given (i.e. ˙[Ik] =

τ
∑kmax

l=kmin

∑M
n=1wn[SkIl]n − γ[Ik]). Summing this for k = kmin, kmin + 1, . . . , kmax gives

the evolution equations for [I], as shown above. A similar notational procedure has

been applied at the level of triples where in general [AkBk′I]mn =
∑kmax

q=kmin
[AkBk′Iq]mn.

The above system of Eq. (3.1) is not closed. Singles depend on pairs, and pairs

depend on triples. Thus equations for triples are needed. This dependency on higher-

order moments can be broken via approximating triples in terms of singles and pairs

[58]. The agreement of the results from the closed system with simulation depends

on how well the closure captures essential features of network structure and the edge

weight distribution. Following Eames [33], the following closure is applied,

[AmBnI] =
n− 1

n

[AmBn][BnI]

[Bn]
or [AmBnCp] =

n− 1

n

[AmBn][BnCp]

[Bn]
. (3.2)

It is worth noting that the equations only rely on triples for which the central individual

is susceptible. Thus individuals at the “ends” of a triple cannot affect one another’s

status through the central node until after they no longer affect the equations at the

pair level.
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Figure 3.2: Flow diagram showing the evolution of pairs in the degree-dependent weight

case. The only pairs which have the potential to eventually transmit are the [SS], [SI]

and [IS] pairs, and hence, these need to be tracked. Solid and dashed arrows denote

transmission within and from outside the pairs, respectively. Again we are able to find a

closed system of equations which only requires the [SS], [SI], and [IS] terms.
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Evolution equations for SIR dynamics on networks with degree-dependent

weights

The focus now shifts to the case where we wish to incorporate some general correlation

between edge weights and nodal degree. This is done by assuming that transmission

between a susceptible node of degree k and an infected node of degree q happens at

rate τwkq, where wkq = w(k, q) can accommodate various dependencies of edge weight

on nodal degree. The pairwise equations follow in the same way as before and are given

by

˙[Sk] = −τ
∑

q wkq[SkIq],

˙[Ik] = τ
∑

q wkq[SkIq]− γ[Ik],

˙[SkSk′ ] = −τ
∑

q(wk′q[SkSk′Iq] + wkq[Sk′SkIq]),

˙[SkIk′ ] = τ
∑

q(wk′q[SkSk′Iq]− wkq[Ik′SkIq])− τwkk′ [SkIk′ ]− γ[SkIk′ ],

(3.3)

where as before k, k′, q ∈ {kmin, kmin + 1, . . . , kmax} and with wxy yet unspecified. A

corresponding flow diagram is given in Fig. 3.2. This system is closed in the same way

as before using Eq. (3.2).

Edge-based compartmental models for weighted networks

We follow the derivation of Edge-based compartmental models (EBCM) of [76, 78, 79].

We assume that the population is connected according to the configuration model.

We assume that the population-scale measures of infection (number infected, etc) are

behaving deterministically. A consequence of this assumption is that if we choose a

random individual u, the random event of whether u is or is not infected cannot have

any impact on the population scale. So if we alter a single individual u so that u can

become infected but cannot transmit to its partners, this can have no population-scale

impact.

We define a test individual as follows: u is a test individual if u is randomly selected

from the population and prevented from transmitting to its neighbours. Because

the dynamics are deterministic and u is selected randomly, the probability u is in a

given state equals the proportion of the population in that state. So to calculate the

proportion infected, we can simply calculate the probability u is infected. This depends
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on the probabilities that the partners of u are infected. Because we have prevented u

from causing any infections, the status of each partner of u is independent of any other

partner, which will simplify our calculations without altering the time of first infection

of u. This is closely related to the observation for the pairwise equations that the

triples only appear in the pair equations if the central individual is still susceptible.

EBCM Evolution equations for SIR dynamics on heterogeneous networks

with random weights

As before, let us assume that there is a weight distribution Q(w) assigned to the edges.

We assume that the transmission rate for an edge with a given w is simply τw for some

parameter τ . We further assume that; (a) infected individuals recover at rate γ, which

is independent of how they were infected and that (b) at the initial time t = t0, the

probability an individual of degree k is susceptible is S(k, t0).

Let us now consider a test individual u, and let v be a random neighbour of u. Let

θ be the probability that v has not transmitted to u given that at time t0 v had not

yet transmitted to u. Then trivially, θ =
∑

wQ(w)θw where θw is the probability a

neighbour along a weight w edge has not transmitted to u given that it had not yet

transmitted at time t0. Note that θ(t0) = 1. These probabilities are not affected by the

degree of u, so the probability u is susceptible is

S(t) =
∑
k

P (k)S(k, t0)θ
k = ψ(θ).

Once we know S(t), we can find the probability that u is infected or recovered simply

by noting that Ṙ = γI and I = 1− S −R.

To complete the system, all the θw need to specified. Assuming that the edge

connecting v to u has weight w, we define φS,w to be the probability that v is still

susceptible. We define φI,w to be the probability v is infected but has not transmitted

to u. We define φR,w to be the probability v has recovered and did not transmit to u.

Then θw = φS,w + φI,w + φR,w and 1− θw is the probability transmission has occurred

(given that it had not occurred prior to t0). Note however, that φS,w is independent of

w because the weight of the edge from u to v does not influence the probability v has

become infected. So we can treat φS,w as simply φS.

To find φS(t), we assume its initial value φS(t0) is known. We need to find the

probability that v has degree k given that it was chosen as a neighbour of u and was

susceptible at time t0. To do this, we count all edges belonging to susceptible nodes of
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θ

φS = φS(t0)
ψ′(θ)
ψ′(1)

φI,w φR,w

1 − θw

γφI,w

τwφI,w

Figure 3.3: Flow diagram for EBCM model of random weight case. The large, shaded

box contains all compartments, where transmission has not yet occurred.

degree k at time t0 and divide by the number of all edges belonging to susceptible nodes

at time t0. This yields kP (k)S(k, t0)N/
∑

k′ k
′P (k′)S(k′, t0)N = kP (k)S(k, t0)/ψ

′(1).

The probability that v is still susceptible if it started susceptible and has degree k is

θk−1. So φS(t) = φS(t0)ψ
′(θ)/ψ′(1). Note that this is independent of w.

We can find φR,w(t) in terms of θw. We assume that its initial value φR,w(t0) is known.

By definition, θw(t0) = 1. An infected neighbor along a weight-w edge transmits at rate

τw and recovers at rate γ. Thus it moves from being counted towards φI,w to being

counted towards φR,w at rate γ and to being counted towards 1− θw at rate τw. Thus

the rate of increase of φR,w is γ/τw times the rate of increase of 1 − θw. Using this

argument, we conclude that

φR,w =
γ

τw
(1− θw) + φR,w(t0).

The arguments above are summarised in Fig. 3.3.

Then, since φS + φI,w + φR,w = θw and we know φS and φR,w, we can compute φI,w.

Summarising the findings above leads to

θ̇w = −τwφI,w

= −τw
(
θw − φS(0)

ψ′(θ)

ψ′(1)
− γ(1− θw)

τw
− φR,w(0)

)
.

So we end up with the system

θ̇w = −τwθw + τwφS(0)
ψ′(θ)

ψ′(1)
+ γ(1− θw) + τwφR,w(t0), (3.4)

θ =
∑
w

Q(w)θw, (3.5)
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where as for the pairwise model w ∈ {w1, w2, . . . , wM}. The initial conditions on φS,w(t0)

and φR,w(t0) depend on how the epidemic is initialized. We have θw(t0) = 1. Noting

that in ψ′(θ) it is θ, not θw, and combining the above with

S = ψ(θ) , I = 1− S −R , Ṙ = γI,

completes the system.

In general starting by randomly selecting a proportion ρ of individuals yields

S(k, t0) = φS(t0) = 1− ρ and φR,w(t0) = R(t0) = 0. If instead the disease starts with a

very small number and set t0 when enough infections are present to be deterministic,

then the initial conditions are different, and depend on the state of the population at

this initial time [76]. In particular S(k, t0) may depend on k and not match exactly

with φS(t0).

EBCM evolution equations for SIR dynamics on networks with degree-

dependent weights

The focus now shifts to the case when across each edge there is a weight wkk′ = w(k, k′)

which depends on the degrees k and k′ of the neighbouring nodes. Transmission hap-

pens at rate τwkk′ . We define θk to be the probability a neighbour of a degree k test

node has not transmitted to it (given that it had not at time t0). Due to this being k

dependent, the expression for ψ(θ) will be more complicated compared to the random

weights case. Instead, the probability the test node is susceptible is

S(t) =
∑
k

P (k)S(k, t0)θ
k
k = ψ(θkmin

, θkmin+1, . . . , θkmax).

Assume the neighbor v has degree k′. We define θk,k′ to be the probability that v has

not transmitted given that it has degree k′, u has degree k, and v had not transmitted

to u by time t0. Then v is in the same states as before with probabilities φS,k,k′(t),

φI,k,k′(t), and φR,k,k′(t). We find φS,k,k′(t) = φS,k,k′(t0)θ
k′−1
k′ . We find that φR,k,k′ =

γ(1− θk,k′)/τwkk′ + φR,k,k′(t0). The picture underlying this process of thought is given

in Fig. 3.4.

The final equations are

θ̇k,k′ = −τwkk′θk,k′ + τwkk′φS,k,k′(t0)θ
k′−1
k′ + γ(1− θk,k′) + τwkk′φR,k,k′(t0), (3.6)

θk =
∑
k′

Pn(k, k′)θk,k′ (3.7)

Ṙ = γI , I = 1− S −R , S =
∑
k

P (k)S(k, t0)θ
k
k , (3.8)



71

θk,k′

φS,k,k′ =

φS,k,k′(t0)θ
k′−1
k′

φI,k,k′ φR,k,k′

1 − θk,k′

γφI,k,k′

τwkk′φI,k,k′

Figure 3.4: Flow diagram for the EBCM model with weights dependent on degree. The

large, shaded box contains all compartments, where transmission has not yet occurred.

where Pn(k, k′) is the probability the neighbour of u has degree k′ given that it hadn’t

transmitted to u by time t0.

As before if we start by randomly selecting a proportion ρ of individuals at time

t0, we have S(k, t0) = φS,k,k′(t0) = 1 − ρ, and φR,k,k′(t0) = R(t0) = 0. In this case

we get Pn(k, k′) = k′P (k′)/
∑

k′′ k
′′P (k′′). Hence, if the initial infected proportion is a

randomly chosen proportion ρ, then the initial conditions are:

R(t0) = 0,

φR,k,k′(t0) = 0,

S(k, t0) = 1− ρ,

φS,k,k′(t0) = 1− ρ,

θk,k′(t0) = 1,

and

Pn(k, k′) =
k′P (k′)

〈k〉
.

If the disease has been spreading for some time, the considerations above will not

hold. In many cases, Pn(k, k′) can be calculated rather than taken as an ‘initial condi-

tion’. If the infection has been spreading for some time before t0, then the probability

a neighbour has transmitted to u before t0 depends on the degree of the neighbour.

Since we define θ to be conditional on transmission to u never happening prior to t0,

this needs to be corrected for, and thus Pn(k, k′) will be different.
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3.4 Results

In this section we present analytical and numerical results from network simulations,

pairwise and edge-based representations of SIR dynamics. To compute the early growth

rate and final epidemic size, we first write out the edge-based system for the special case

of a heterogeneous network with low (degree l with probability P (l)) and high (degree

h with probability P (h)) degree. This automatically induces three weights w1 = wll,

w2 = wlh = whl and w3 = whh. Moreover, for the degree-dependent weighted network,

the distribution of weights is given by: q1 = qll = l2P 2(l)
〈k〉2 , q2 = qlh = qhl = 2lhP (l)P (h)

〈k〉2

and q3 = qhh = h2P 2(h)
〈k〉2 , where 〈k〉 = lP (l) + hP (h) is the average nodal degree, and q2

stands for the proportion of uniquely counted links between l and h nodes.

3.4.1 Epidemic threshold and final epidemic size

While pairwise models can be used to compute R0 [58] and early growth rate [95], this

is only practical for special cases where the number of equations remains relatively low.

Such calculations are possible for homogenous un-weighted networks [58] and even for

homogenous networks with two different edge weight types [32, 95]. In general and as

we show, the edge-based compartmental models are more amenable to such analysis

due to their smaller dimensionality, see Table 3.1.

Table 3.1: System complexity in terms of the number of differential equations needed

to fully describe the epidemic dynamics. As before, M is the number of different weight

types and K is the number of different nodal degrees, e.g. K = kmax−kmin+1 provided

that nodes of any degree between minimum and maximum degree exist.

Type of weighted network Pairwise model Edge-based model

full system: 2K + K(K+1)
2 M +K2M

randomly distributed weights
reduced-system : K + 1 + K(K+1)

2 M +KM
M + 1

degree-dependent weights 2K + K(K+1)
2 +K2 K2 + 1

Random edge weight distribution for heterogeneous networks

The three weights system leads to working with θw1 , θw2 and θw3 , where Q(w1) =

q1, Q(w2) = q2 and Q(w3) = 1 − q1 − q2 = q3. Based on Eq. (3.4), the evolution
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equations for these are,

θ̇w1 = −τw1θw1 + (1− ρ)τw1

ψ′θw1
(θ)

ψ′θw1
(1)

+ γ(1− θw1), (3.9)

θ̇w2 = −τw2θw2 + (1− ρ)τw2

ψ′θw2
(θ)

ψ′θw2
(1)

+ γ(1− θw2), (3.10)

θ̇w3 = −τw3θw3 + (1− ρ)τw3

ψ′θw3
(θ)

ψ′θw3
(1)

+ γ(1− θw3). (3.11)

For a heterogenous network with N nodes where a node has degree l (e.g. low degree)

with probability P (l) or degree h (e.g. high degree) with probability P (h) = 1− P (l),

the proportion of susceptibles at time t (based on Eq. (3.5)) is given by

S(t) = (1− ρ)(P (l)θl + P (h)θh) = ψ(θ),

where θ = q1θw1 + q2θw2 + q3θw3 .

Early growth rate

To compute the early growth rate, the assumption of an infinitesimally small initial

infection must hold. Hence, to satisfy this requirement, we modify Eqs. (3.9-3.11) by

taking (1− ρ)→ 1. This gives

θ̇w1 = −τw1θw1 + τw1

[
Pe(l)θ

l−1 + Pe(h)θh−1
]

+ γ(1− θw1),

θ̇w2 = −τw2θw2 + τw2

[
Pe(l)θ

l−1 + Pe(h)θh−1
]

+ γ(1− θw2),

θ̇w3 = −τw3θw3 + τw3

[
Pe(l)θ

l−1 + Pe(h)θh−1
]

+ γ(1− θw3),

where Pe(l) = lP (l)/〈k〉, Pe(h) = hP (h)/〈k〉 and 〈k〉 = lP (l) + hP (h). Here, Pe(k)

represents the probability of finding a node of degree k when picking an edge at random

and considering either of the nodes at its ends. We set θw1 = 1 + ε1, θw2 = 1 + ε2 and

θw3 = 1 + ε3. We linearise about the equilibrium and have the matrix equation
ε̇1

ε̇2

ε̇3

 =


−τw1 + τw1q1ζ − γ τw1q2ζ τw1q3ζ

τw2q1ζ −τw2 + τw2q2ζ − γ τw2q3ζ

τw3q1ζ τw3q2ζ −τw3 + τw3q3ζ − γ




ε1

ε2

ε3

 ,

where

ζ = (l − 1)Pe(l) + (h− 1)Pe(h).

Thus, the eigenvalues are the solutions of a 3rd order equation given by λ3 + a1λ
2 +

a2λ+ a3 = 0, where

a1 = u1 + u2 + u3 − v1 − v2 − v3,
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a2 = u1u2 + u1u3 + u2u3 − u1(v2 + v3)− u2(v1 + v3)− u3(v1 + v2),

a3 = u1u2u3 − u1u2v3 − u1u3v2 − u2u3v1,

where, ui-s and vi-s are given by

ui = τwi + γ , vi = τwiqiζ for i = 1, 2, 3.

By considering the case of λ = 0, the critical point for change of stability, the third

order equation yields a3 = 0. This means that at the point at which the eigenvalue

changes sign a3 = 0, and this gives a relation between the system parameters which

determines the threshold condition.

The basic reproduction number - R0

The basic reproduction number R0 can be computed in two different ways. First, by

using an individual-level view and average across nodes of different degrees that have

become infected from the very initial index case. By doing this, we average the expected

number of infections in the second generation. This approach yields,

Rrw
0 = (l − 1)Pe(l)(q1r1 + q2r2 + q3r3) + (h− 1)Pe(h)(q1r1 + q2r2 + q3r3),

where

ri =
τwi

τwi + γ
for i = 1, 2, 3.

A more rigorous and widely applicable approach is to compute R0 as the lead-

ing eigenvalue of the next generation matrix (NGM). In this case, we can consider

the epidemic in terms of an embedded multi-type branching process [5, 4], where the

NGM = (mij)i,j=1,2,...,Nt (Nt - number of different types) consists of entries giving the

expected number of offsprings of type i produced by a single individual of type i. Once,

the different types have been defined, then NGM can be constructed, and R0 will be

equivalent to the leading eigenvalue of the NGM. In this case, we have individuals of

two different types (individuals of low and high degree) and the NGM is given by,

NGM =


(l − 1)Pe(l)(q1r1 + q2r2 + q3r3) (h− 1)Pe(l)(q1r1 + q2r2 + q3r3)

(l − 1)Pe(h)(q1r1 + q2r2 + q3r3) (h− 1)Pe(h)(q1r1 + q2r2 + q3r3)

 ,
where, for example (h − 1)Pe(l)(q1r1 + q2r2 + q3r3) stands for the expected number

of individuals of low degree infected by a typical infected individual with high degree.
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Hence,

Rrw
0 =

(
(l − 1)Pe(l) + (h− 1)Pe(h)

)
(q1r1 + q2r2 + q3r3), (3.12)

and this is identical to the previously computed value. A further consistency check

of our calculations can be performed. Namely, the relation Rrw
0 = 1 ⇔ λ = 0 should

hold. Indeed, using condition a3 = 0 leads to Rrw
0 = 1.

Final epidemic size

To compute the final epidemic size, we need to return to the original equations that

account for the initial conditions as given by Eqs. (3.9-3.11). By setting the derivatives

to zero, it is possible to find asymptotic values of θw1 , θw2 and θw3 , i.e. θw1(∞), θw2(∞)

and θw3(∞). Once these values are know the final epidemic size is given by R(∞) =

1−ψ(θw1(∞), θw2(∞), θw3(∞)), where θw1(∞), θw2(∞) and θw3(∞) are the solutions of

the following system,

θw1(∞) =
γ + (1− ρ)τw1

[
Pe(l) (θ(∞))l−1 + Pe(h) (θ(∞))h−1

]
τw1 + γ

, (3.13)

θw2(∞) =
γ + (1− ρ)τw2

[
Pe(l) (θ(∞))l−1 + Pe(h) (θ(∞))h−1

]
τw2 + γ

, (3.14)

θw3(∞) =
γ + (1− ρ)τw3

[
Pe(l) (θ(∞))l−1 + Pe(h) (θ(∞))h−1

]
τw3 + γ

, (3.15)

where θ(∞) = q1θw1(∞) + q2θw2(∞) + q3θw3(∞). By treating the above as a fixed point

problem, it can be shown that a numerical recursion will converge quickly to the true

solution and we compare these simulation results in the numerical analysis part.

Degree-dependent weights

For the same simplified scenario with a network with bimodal degree distribution and

weights that correlate with node-degree, Eqs. (3.6-3.8) yield

θ̇ll = −τwllθll + (1− ρ)τwllθ
l−1
l + γ(1− θll), (3.16)

θ̇lh = −τwlhθlh + (1− ρ)τwlhθ
h−1
h + γ(1− θlh), (3.17)

θ̇hl = −τwhlθhl + (1− ρ)τwhlθ
l−1
l + γ(1− θhl), (3.18)

θ̇hh = −τwhhθhh + (1− ρ)τwhhθ
h−1
h + γ(1− θhh). (3.19)
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According to the model derivation θl and θh can be found as

θl = Pn(l, l)θll + Pn(l, h)θlh,

θh = Pn(h, l)θhl + Pn(h, h)θhh,

with Pn(k, k′) = k′P (k′)/〈k〉. This complemented by

S(t) = (1− ρ)(P (l)θll + P (h)θhh),

gives the full system.

Early growth rate

As before, we note that for the correct calculation of the early growth rate, Eqs. (3.16-

3.19) must be used with (1−ρ)→ 1. By setting θll = 1+ε1, θlh = 1+ε2, θhl = 1+ε3 and

θhh = 1 + ε4, and linearising around the disease-free steady state leads to the following

Jacobian,

J =



−τw1 + v1 − γ τw1(l − 1)Pn(l, h) 0 0

0 −τw2 − γ τw2(h− 1)Pn(h, l) τw2(h− 1)Pn(h, h)

τw2(l − 1)Pn(l, l) τw2(l − 1)Pn(l, h) −τw2 − γ 0

0 0 τw3(h− 1)Pn(h, l) −τw3 + v2 − γ


,

where

v1 = τw1(l − 1)Pn(l, l) , v2 = τw3(h− 1)Pn(h, h).

The eigenvalues will be the solution of det(J − λI) = 0, where I is the identity

matrix. Thus, the eigenvalues are the solutions of a 4th order equation given by λ4 +

a1λ
3 + a2λ

2 + a3λ+ a4 = 0, where

a1 = u1(1−R1) + 2u2 + u3(1−R2),

a2 = 2u2

(
u1(1−R1) + u3(1−R2)

)
+ u22 + u1u3(1−R1)(1−R2)− v3,

a3 = 2u1u2u3(1−R1)(1−R2) + u22 (u1(1−R1) + u3(1−R2))− v3 (u1 + u3(1−R2))− v2v3,

a4 = u1u
2
2u3(1−R1)(1−R2)− u1u3v3(1−R2)− u1v2v3,

where

R1 = (l − 1)Pn(l, l)r1, R2 = (h− 1)Pn(h, h)r3, v3 = (τw2)
2(l−1)Pn(h, l)(h−1)Pn(l, h),
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and where ui-s are given by

ui = τwi + γ for i = 1, 2, 3.

By considering the case of λ = 0, the critical point for change of stability, the fourth

order equation yields a4 = 0. This means that at the point at which the eigenvalue

changes sign a4 = 0, and this gives a threshold condition. As expected, it can be shown

that a4 = 0 is equivalent to Rdd
0 = 1 (below). This confirms that the calculations are

consistent.

The basic reproduction number - R0

In this case, we calculate R0 only by using the next generation matrix approach, and

R0 is the leading eigenvalue of the next generation matrix. Before writing down the

NGM we need to specify the choice of individual types, and then the entries of the

NGM = (mij)i,j=1,2,...,Nt . For this case, the types will be depend solely on the degree

of the nodes, and thus, the NGM is given by,

NGM =


(l − 1)Pe(l)r1 (h− 1)Pe(l)r2

(l − 1)Pe(h)r2 (h− 1)Pe(h)r3

 .
For example, the expected number of low degree individuals produced by a single high

degree individual h, is given by (h − 1)Pe(l)r2. The leading eigenvalue of the above

matrix, and thus R0 is given by

Rdd
0 =

R1 +R2 +
√

(R1 −R2)2 + 4F

2
,

where

R1 = (l − 1)Pe(l)r1, R2 = (h− 1)Pe(h)r3,

and

F = (l − 1)Pe(l)(h− 1)Pe(h)r22.

Final epidemic size

Using the same approach as before and taking into account the initial condition in

terms of ρ, the final epidemic size is given by R(∞) = 1 − ψ(θl(∞), θh(∞)) where

θll(∞), θlh(∞), θhl(∞) and θhh(∞) are the solutions of the following system,

θll(∞) =
γ + (1− ρ)τwllθ

l−1
l (∞)

τwll + γ
, (3.20)
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θlh(∞) =
γ + (1− ρ)τwlhθ

h−1
h (∞)

τwlh + γ
, (3.21)

θhl(∞) =
γ + (1− ρ)τwhlθ

l−1
l (∞)

τwhl + γ
, (3.22)

θhh(∞) =
γ + (1− ρ)τwhhθ

h−1
h (∞)

τwhh + γ
. (3.23)

Comparison of R0 and final epidemic size

Based on the analytic and semi-analytic calculations above, we provide a few exam-

ples where R0 and the final epidemic size (Fig. 3.5) are compared for networks with

heterogenous degree and weight distributions. Namely, as indicated in section 3.3.1,

we start from networks with degree-dependent weights and compare R0 and final epi-

demic size corresponding to this against those from networks with the same topology

and same weight distribution but with weights assigned at random, and weighted net-

works where all weights are equal to the average weight from the original network,

〈w〉dd = q1w1 + q2w2 + q3w3. Fig. 3.5 (top panel) shows clearly that R0 is maximised

when all weights are equal, and that networks with randomly distributed weights allow

for a larger R0 value compared to the case of networks where degrees and weights are

inversely correlated. This observation can be made rigorous. We start by noting that

R0 for the case of equal weights, based on Eq. (3.12), is given by,

Rav
0 = ((l − 1)Pe(l) + (h− 1)Pe(h))

τ〈w〉dd
τ〈w〉dd + γ

. (3.24)

Similarly, based on Eq. (3.12), the basic reproduction ratio is given by

Rrw
0 = ((l − 1)Pe(l) + (h− 1)Pe(h))

(
q1

τw1

τw1 + γ
+ q2

τw2

τw2 + γ
+ q3

τw3

τw3 + γ

)
.

First, we want to show that Rrw
0 ≤ Rav

0 . Noting that ϕ(w) = τw
τw+γ

is a concave

function on w ∈ [0,∞), as ϕ
′′
< 0, then using Jensen’s inequality under the condition

q1 + q2 + q3 = 1, yields

q1ϕ(w1) + q2ϕ(w2) + q3ϕ(w3) ≤ ϕ(q1w1 + q2w2 + q3w3),

q1
τw1

τw1 + γ
+ q2

τw2

τw2 + γ
+ q3

τw3

τw3 + γ
≤ τ(q1w1 + q2w2 + q3w3)

τ(q1w1 + q2w2 + q3w3) + γ
.

Hence, we can conclude that Rrw
0 ≤ Rav

0 , with equality when all weights are equal.

Moreover, it is easy to see that when w1 = w2 = w3 = w, we have

Rrw
0 = Rav

0 = ((l − 1)Pe(l) + (h− 1)Pe(h))
τw

τw + γ
.
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In Appendix A, we also provide a rigorous proof for the observation that Rdd
0 ≤ Rrw

0 .

Hence the following inequality holds

Rdd
0 ≤ Rrw

0 ≤ Rav
0 . (3.25)

We note that while the proof of Rrw
0 ≤ Rav

0 does not rely on the negative correlation

between degree and weight, the proof of the second inequality, Rdd
0 ≤ Rrw

0 , makes use

of this information. The final epidemic size can be computed semi-analytically using

the approach developed in the context of edge-based modelling. Namely, we use Eqs.

(3.13 - 3.15) for the randomly-distributed and fixed weights case, and Eqs. (3.20 -

3.23) for the degree-dependent weighted network case. In both situations, we treat the

equations as maps which we then numerically iterate to find their fixed points. The

final epidemic size plots (see the bottom panel of Fig. 3.5) show that for the same R0

value, the final epidemic size is largest on the original network with degree-dependent

weights. This is a direct consequence of the relation between the R0 values on the

different networks, see Eq. (3.25). Namely, with all parameters being equal, R0 is

smallest on the original network. Hence, considering a fixed value of R0(= Rconst
0 )

across the different networks requires a larger value of τ on the original network

compared to the randomly distributed and fixed weights cases. This higher value

is required to compensate for the negative correlation between degree and weights,

which means that τ has to be disproportionately large to compensate for the smallest

possible weights between highly connected nodes. This increase in τ has an automatic

knock on effect of also improving transmission between poorly connected nodes with

an overall increase in final epidemic size. It is worth noting the complete reversion

of order between the top and bottom panel of Fig. 3.5. The same figure shows that

the random and uniform average weight cases lead to an identical functional relation

between final epidemic size and R0. In Appendix B, we provide a simple, formal proof

for this observation.

Final epidemic size comparisons

To explore the potential of the various models to capture the final epidemic size, we

compare outputs from the semi-analytic approach with long-time results from simula-

tions and the long-time solution of the pairwise model. To stress test the robustness

of the model, we use two additional weight functions, namely wij = 1/(i + j)1/2 and

wij = 1/ ln(i + j). Numerical results presented in Fig. 3.6 exhibit excellent agreement

across all models and for the three different weight functions. As opposed to Fig. 3.5,
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Figure 3.5: Basic reproductive ratio R0 and final epidemic size for heterogeneous

weighted networks. The parameters values are ρ = 0.0001, P (l) = 0.8, P (h) = 1−P (l),

l = 3, h = 13 and γ = 1. Degree-dependent weighted networks (black line and

(+)), networks with random weight distribution (red line and (?)), and networks with

all weights equal (blue line and (◦)). All networks have the same average weight

〈w〉dd = q1wll + q2wlh + q3whh, where the weight function is wij = 1/(i× j)1/2.
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here we use a higher number of initially infected nodes (I0 = 50 out of N = 1000) to

avoid early stochastic extinction in simulations. The plots in Fig. 3.6 show a similar

trend with that observed in Fig. 3.5 (see middle panel).

A notable feature is the changeover in the size of the final epidemic size from being

larger on networks with randomly distributed weights (for smaller values of τ) to the epi-

demic affecting a higher fraction of the population on networks with degree-dependent

weights (for larger τ values). Intuitively this can be explained as follows. For degree-

dependent weights, the transmissibility amongst, from or to highly connected nodes

is penalised by small edge weights, with the smallest weights on high-to-high nodes

connections. However, nodes that are less well connected can receive and transmit the

infection more readily. We now discuss separately the cases of small and large τ :

1. For small values of τ , the random redistribution of weights will lead to links

between, from or to highly connected nodes to be more likely to transmit, and this

will lead to a larger final epidemic size. Transmission between poorly connected

nodes will suffer but, infection involving highly connected nodes dominates for

small values of τ .

2. As the value of τ increases the effect of small weights is less significant (i.e. trans-

mission rate is the product of weight and the value of τ). Thus, disease spreads

more readily across the whole network. However, redistributing links at random

will improve an already appropriate transmission between highly-connected nodes

(i.e. edge weights will always be greater or equal than for the degree-dependent

weight case) but, at the expense of seeing smaller weights between less well con-

nected nodes that are more abundant in the network.

The arguments above are confirmed by numerical simulations (not shown here), whereby

the number of poorly connected, susceptible nodes at large times is greater in the case

of random weights. All the effects above become less marked for the two additional

weight functions. This is due to the two additional weight functions giving rise to

higher edge weights, and thus a more efficient transmission with the epidemic affecting

a large proportion of the network.

3.4.2 Numerical analysis of pairwise- and edge-based models

The numerical analysis part focuses around comparisons between the ‘original’ degree-

dependent weighted networks and the two null models. Namely, we consider the network
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Figure 3.6: Final epidemic size for heterogeneous weighted networks with different
weight functions: wij = 1/ ln(i + j) (blue), wij = 1/(i + j)1/2 (green) and wij =
1/(i × j)1/2 (black) (or top to bottom in each figure). The dash lines correspond to
R(∞) = 1 − ψ(θ(∞)) with ρ = 0.05 (equivalent to I0 = 50 out of N = 1000 in
simulations) , ψ(θ(∞)) corresponds to Eqs. (3.13-3.15) and Eqs. (3.20-3.23) from
top to middle panel, respectively. The markers correspond to τ = 0.5, 1.0, ..., 4 for
simulation (◦), pairwise (�) and edge-based (•). All numerical tests use N = 1000,
P (l) = 0.8, P (h) = 1 − P (l), I0 = 50, l = 3, h = 13 and γ = 1, and simulations are
averaged over 50 different network realisations and 50 simulations on each of these. The
top and middle panel represent degree-dependent networks and networks with random
weight distribution but with the same average weight as in the degree-dependent case
〈w〉dd = q1wll+q2wlh+q3whh, respectively. The bottom panel is simply the superposition
of the top and middle panel, with continuous and dashed lines for degree-dependent
and random weights, respectively.
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with the same weight distribution but with the weights distributed at random, and

the case of all weights equal to the average weight. For all cases we use a network

where nodes can be of either a low or high degree, i.e. degrees of two types only. In

Fig. 3.7, we present time evolution plots for the prevalence. There are several important

observations that can be made. Firstly, the agreement between the pairwise, edge-based

and simulation model is excellent for different parameter values and weight function

combinations. Secondly, the distribution of weights has a significant impact on the

time evolution of the epidemic with the homogenous/equal link-weight case giving rise

to the fastest growing epidemic (see top panel of Fig. 3.7 for the strongest effect). The

difference between the randomly distributed and equal weights cases is not significant,

and both lead to fast epidemics compared to the original network model, where the

epidemic is slower but lasts longer. All the features above become less pronounced if

either the transmission rate, τ , increases (see the bottom panel of Fig. 3.7) or if the

weights are of different magnitude. Both wij = 1/(i+j)1/2 and wij = 1/ ln(i+j) produce

weights that have higher values when compared to the original wij = 1/(i× j)1/2 case.

This explains the smaller differences in the middle and bottom panel of Fig. 3.7.

The marked difference in the time evolution of the epidemics can be explained

intuitively by noting that on networks with degree-dependent weights, and especially

when weights and degrees are inversely correlated, the important role played by highly

connected nodes is negated by small link weights which makes transmission less likely.

The slow initial growth in prevalence shows that the epidemic is ‘struggling’ to infect

the highly connected nodes of the network, where link weights are the lowest. The

transmission process is mainly capturing nodes that are less well connected with this

process being favoured by larger link-weights. This effect fades away as the value of τ

increases.

3.4.3 The principle of formally proving model equivalence

Our numerical results show remarkable agreement between the pairwise and the EBCM

models, see Figs. 3.5-3.7. A careful analysis (is in a separate publication [77]) shows that

while the two models appear to make different assumptions, they are in fact equivalent.

We will give some insight into why this occurs. The central observation is that with

both models, we will show that when considering two neighbours u and v, in our

calculation of whether v has infected u it is rigorously possible to ignore whether any

other neighbours have previously infected u.
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Figure 3.7: The infection prevalence (I/N) from heterogeneous weighted networks
(simulation: dashed line, pairwise: (◦), and edge-based: (?)). All numerical tests
use N = 1000, P (l) = 0.8, P (h) = 1 − P (l), I0 = 50, l = 3, h = 13, γ = 1,
and simulations are averaged over 50 different network realisations and 50 simulations
on each of these. Degree-dependent weighted networks (black), networks with ran-
domly distributed weights (red) and networks with equal weights (blue). All networks
have the same average weight 〈w〉dd = q1wll + q2wlh + q3whh. From top to bottom:
wij = 1/(i × j)1/2, wij = 1/(i + j)1/2 and wij = 1/ ln(i + j), and left and right with
τ = 2 and τ = 4, respectively.
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The EBCM approach proceeds by starting with the initial problem of calculating

the proportion of the population that is in each state. By assuming that the population-

scale dynamics are deterministic, we can conclude that this must equal the probability

that a random individual is in each state. So we transition to the equivalent problem of

choosing a random individual u and calculating its probability of being in a given state.

We seek to calculate the probability that a random neighbor v of u has transmitted

infection to u. This is complicated by the fact that u might first transmit to v. However,

we note that preventing u from transmitting to v after infection of u does not alter

the probability that u is susceptible, infected, or recovered. Thus we find another

equivalent problem: to calculate the probability that u is in each state given that it is

prevented from transmitting to its partners. This sequence of arguments means that

as we calculate whether v has transmitted to u, we can ignore whether or not another

neighbor has already transmitted to u.

In the pairwise model, we look at the equations for the rates of change of [SkSk′ ],

[SkIk′ ], and [SkRk′ ] in Eq. (3.3). In each equation, there is a term on the right hand

side which represents infection of the Sk individual by a partner other than the k′ indi-

vidual. After substituting our closure relation, each of these terms looks like −[SkSk′ ]f ,

−[SkIk′ ]f , and −[SkRk′ ]f where

f = −τ k − 1

k

wkq
∑

q[IqSk]

[Sk]
=
k − 1

k

˙[Sk]

[Sk]
.

So each of equations is of the form ẋ = −xf + y where the y terms represent other

effects. By moving the xf term to the left hand side, we can use an integrating factor

which yields a differential equation for the new variable xeF where Ḟ = f . The y terms

remain in the equation, multiplied by eF , but the term that represented infection of

the Sk individual by a partner other than the k′ individual has been eliminated. If we

follow this change of variables and perform a few more simplifications, it is possible to

arrive at the EBCM equations.

3.5 Discussion

In this paper we have shown that the pairwise and edge-based compartmental models

can be successfully extended to specific cases of weighted networks and studied the

non-trivial case of non-independence between weights and nodal degrees. In particular,

we assumed that the link weight is inversely proportional to the degrees of the nodes
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that it connects. This model has been compared to two null models where for both

the network topology remains the same and only the distribution of weights changes.

First, we considered the case when the original weights are ‘lifted off’ the edges and

redistributed at random, thus making weights and nodal degrees independent, and

secondly, the networks with all weights equal has been considered.

The results show that the negative correlation between weights and nodal degrees

can negate the important role played by highly connected nodes in standard epidemic

models on non-weighted graphs, and that weight heterogeneity but with the same overall

average or total weight, reduce the value of R0. The relation between final epidemic

size and R0, as expected, is determined by the model structure and, in this case, the

same R0 value leads to the biggest final epidemic size on degree-dependent weighted

networks.

An important by-product of our analysis is the issue around model equivalence. This

aspect emerged from the numerical evaluation and comparison of pairwise, edge-based

and simulation models. The excellent agreement between all three, but especially, the

agreement between pairwise and the edge-based model leads us to consider whether

the two models are indeed equivalent. While, here we only present the basic idea of

a formal proof, in [77] we will present detailed arguments to show the relationship

between these models and other models for SIR epidemics on networks. We believe

that in a model ‘rich’ environment, this part of our study and future work, as well as of

others in the community [54], are important in trying to reconcile as much as possible

different modelling approaches and to identify model hierarchies, as well as to pinpoint

model efficiencies in terms of generating analytical or semi-analytical results.
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3.6 Appendices

3.6.1 Appendix A: Proof of Rdd
0 ≤ Rrw

0

We wish to provide a formal proof that Rdd
0 ≤ Rrw

0 . This amounts to showing that

Rdd
0 =

R1 +R2 +
√

(R1 −R2)2 + 4F

2

≤ ((l − 1)Pe(l) + (h− 1)Pe(h)) (q1r1 + q2r2 + q3r3)

= Rrw
0 .

We introduce the following notation: x = Pe(h), y = Pe(l). Then y = 1− x (with both

x, y ∈ [0, 1]) and

q1 = y2, q2 = 2xy, q3 = x2, a = (h− 1)xr3, b = (l − 1)yr1, d = 1− r22
r1r3

.

We will make use of the following straightforward inequalities:

1. r3 ≤ r2 ≤ r1,

2. d ≤ 0↔ r1r3 ≤ r22,

3. (h− 1)r3 ≥ (l − 1)r1.

We also note that r3 ≤ r2 implies that (h− 1)r2 ≥ (h− 1)r3 ≥ (l− 1)r1. These can be

simply checked and formally proven by plugging in the corresponding expressions and

performing some standard algebraic manipulation to reach some equivalent inequalities

that trivially hold.

The l.h.s. of the inequality is the positive root of the quadratic polynomial

λ2 − λ(a+ b) + abd = 0,

where abd ≤ 0, since d is negative while a and b are positive. Hence, the roots of this

polynomial are denoted by λ2 < 0 < λ1. Then the following has to be proved,

λ1 ≤ [(h− 1)x+ (l − 1)y](x2r3 + 2xyr2 + y2r1).

First we give an upper estimate of λ1. Using the formula for λ1 and the inequality
√

1 + x ≤ 1 + x/2, one obtains

λ1 =
a+ b+

√
(a+ b)2 − 4abd

2
=
a+ b+ (a+ b)

√
1− 4abd/(a+ b)2

2
≤ a+ b− abd

a+ b
.



89

It is also easy to show that a + b ≥ (l − 1)r1. This can be done by considering

a+ b = (h−1)r3x+ (l−1)(1−x)r1 = [(h−1)r3− (l−1)r1]x+ (l−1)r1 as a function of

x. Due to (h − 1)r3 ≥ (l − 1)r1, the function above is monotone increasing, and since

x ∈ [0, 1], the function will attain its minimum at x = 0, and the minimum is (l− 1)r1.

Using this in the inequality for λ1 yields

λ1 ≤ a+ b− abd

a+ b
≤ a+ b− abd

(l − 1)r1
.

Thus it is enough to prove that

a+ b− abd

(l − 1)r1
≤ [(h− 1)x+ (l − 1)y](x2r3 + 2xyr2 + y2r1).

Let the difference of the l.h.s and the r.h.s be

f(x) = [(h−1)x+(l−1)y](x2r3 +2xyr2 +y2r1)− (h−1)xr3− (l−1)yr1 +d(h−1)r3xy.

Then it is enough to prove that for all x ∈ [0, 1] we have f(x) ≥ 0. Since y = 1 − x,

it is easy to see that f(x) is a cubic polynomial and f(0) = 0, f(1) = 0. Hence, it is

enough to prove that f ′(0) > 0 and f ′(1) < 0. Simple algebra shows that

r1f
′(0) = (r1 − r2){r1(h− l) + [(h− 1)r2 − (l − 1)r1]} ≥ 0,

based on that r1 ≥ r2, l ≤ h and (h − 1)r2 ≥ (l − 1)r1. The inequality f ′(1) develops

as follows,

r1f
′(1) = (l − 1)r1(r1 − r3) + (h− 1)(r22 − 2r2r1 + r1r3)

≤ (h− 1)r3(r1 − r3) + (h− 1)(r22 − 2r2r1 + r1r3),

and this can be rearranged to give

r1f
′(1) ≤ (h− 1)(r2 − r3)(r2 + r3 − 2r1) ≤ 0,

since r3 ≤ r2 ≤ r1. Thus the original inequality holds.

3.6.2 Appendix B : Proof of the invariance of the final size

and R0 relation

First, let us consider the final epidemic size corresponding to networks with random

weight distribution

Rrw(∞) = 1− (1− ρ)(P (l)θlrw(∞) + P (h)θhrw(∞)), (3.26)
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where θrw(∞) = q1θw1(∞) + q2θw2(∞) + q3θw3(∞). Substituting Eqs. (3.13-3.15) into

θrw(∞) and using Eq. (3.12), we have

θrw(∞) = q1
γ + (1− ρ)τrw w1

[
Pe(l)θ

l−1
rw (∞) + Pe(h)θh−1rw (∞)

]
τrww1 + γ

+ q2
γ + (1− ρ)τrww2

[
Pe(l)θ

l−1
rw (∞) + Pe(h)θh−1rw (∞)

]
τrww2 + γ

+ q3
γ + (1− ρ)τrww3

[
Pe(l)θ

l−1
rw (∞) + Pe(h)θh−1rw (∞)

]
τrww3 + γ

=
ζ −Rrw

0

ζ
+
Rrw

0

ζ
(1− ρ)

[
Pe(l)θ

l−1
rw (∞) + Pe(h)θh−1rw (∞)

]
. (3.27)

Next, the final epidemic size corresponding to networks with all weights equal to the

average weight is

Rav(∞) = 1− (1− ρ)(P (l)θlav(∞) + P (h)θhav(∞)). (3.28)

Similarly, based on Eqs. (3.4-3.5) and Eq. (3.24), and using that the average weight

wav = 〈w〉dd = q1w1 + q2w2 + q3w3, θav(∞) can be writhen as,

θav(∞) =
γ + (1− ρ)τav(q1w1 + q2w2 + q3w3)

[
Pe(l)θ

l−1
av (∞) + Pe(h)θh−1av (∞)

]
τav(q1w1 + q2w2 + q3w3) + γ

=
ζ −Rav

0

ζ
+
Rav

0

ζ
(1− ρ)

[
Pe(l)θ

l−1
av (∞) + Pe(h)θh−1av (∞)

]
. (3.29)

Now, we start by assuming that Rrw(∞) = Rav(∞), then Eqs. (3.26) & (3.28) leads

to

θrw(∞) = θav(∞) = θ (3.30)

due to the function f(x) = axl + bxh being strictly monotonically increasing on our

domain of interest x ∈ [0, 1], and beyond. Using Eq. (3.30) and Eqs. (3.27) & (3.29)

yields

ζ −Rav0
ζ

+
Rav0
ζ

(1− ρ)
[
Pe(l)θ

l−1 + Pe(h)θ
h−1
]
=
ζ −Rrw0

ζ
+
Rrw0
ζ

(1− ρ)
[
Pe(l)θ

l−1 + Pe(h)θ
h−1
]
,

(Rav
0 −Rrw

0 )
(
1− (1− ρ)

[
Pe(l)θ

l−1 + Pe(h)θh−1
])

= 0,

Rav
0 = Rrw

0 .
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4.1 Abstract

In this paper, we study an adaptive spatial network. We consider a susceptible-infected-

susceptible (SIS) epidemic on the network, with a link or contact rewiring process con-

strained by spatial proximity. In particular, we assume that susceptible nodes break

links with infected nodes independently of distance and reconnect at random to suscep-

tible nodes available within a given radius. By systematically manipulating this radius

we investigate the impact of rewiring on the structure of the network and characteristics

of the epidemic. We adopt a step-by-step approach whereby we first study the impact

of rewiring on the network structure in the absence of an epidemic, then with nodes

assigned a disease status but without disease dynamics, and finally running network

and epidemic dynamics simultaneously. In the case of no labelling and no epidemic

dynamics, we provide both analytic and semi-analytic formulas for the value of clus-

tering achieved in the network. Our results also show that the rewiring radius and the

network’s initial structure have a pronounced effect on the endemic equilibrium, with

increasingly large rewiring radiuses yielding smaller disease prevalence.

4.2 Introduction

The spread of infectious diseases on social networks and theoretical contact structures

mimicking these has been the subject of much research [24, 29, 59, 82]. In general, most

work in this area is aimed at understanding the impact of different network properties on

how diseases invade and spread and how to best control them. Topological properties

of nodes and edges can be exploited in order to minimise the impact of epidemics.

For example, it is well known that isolating or immunising highly connected nodes or

cutting edges or links with high betweenness centrality is far more efficient than selecting

nodes and edges at random [2, 50]. When global information is scarce, acquaintance

immunisation [20] provides an effective way to significantly reduce the spread of an

epidemic. More recently, dynamic and time-evolving network models motivated by

real data or simple empirical observations [44, 45, 46, 67, 101, 103, 106] have offered a

different modelling perspective with important implications for how and when epidemics

can spread or can be effectively controlled. It is widely accepted that during an epidemic

the risk of becoming infected leads to social distancing with individuals either losing

links or simply rewiring [18, 38, 45, 47]. Such action can in fact be seen as an emerging

control strategy. In simple dynamic network models, contacts between susceptible and
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infectious individuals can be broken, and new ones be established. This is usually

implemented by susceptible individuals breaking high-risk contacts and rewiring to

exclusively susceptible individuals or in a random way, or through random link addition

and deletion [63]. It has been shown that this adaptive mechanism has a strong impact

on both epidemic dynamics and network structure.

Another major development is the consideration of spatial or geometric net-

works [10], where nodes are embedded in space. This is especially the case for real net-

works where geographical or spatial location is key. For example, mobile phone, power

grid, social contacts and neuronal networks are all embedded in space with location and

proximity being a key component to how contacts are realised. This feature gives spe-

cial properties to the network and allows to distinguish between nodes based on spatial

proximity. For example, Dybiec et al. [31] proposed a modified susceptible-infected-

recovered (SIR) model using a local control strategy where nodes are distributed on

a one-dimensional ring, two-dimensional regular lattice, and scale-free network. While

infection could spread on the whole network, including shortcuts, control could only

act over a ‘control network’ composed of mainly local links but with neighbourhoods

of varying size, e.g. including local neighbours one, two, or more links away. They

presented simulation results showing how the effectiveness of the local control strategy

depends on neighbourhood size, and they explored this relationship for a variety of

infection rates.

In order to make rewiring more realistic, it is possible to combine dynamic or adap-

tive networks with a spatial component, where nodes are given specific locations [85],

such that the rewiring may take these locations into account when identifying candi-

date nodes for rewiring. For example, Yu-Rong et al. [114] considered a network with

a spatial component, where the rewiring strategy was such that when an SI link is

cut, the S individual will reconnect, with some probability p, to random individuals

irrespective of distance, and to close-by or neighbouring individuals with probability

1−p. It was found that a higher value of the rewiring rate led to a lower final epidemic

size whereas a smaller value of probability p resulted in a slower epidemic spread.

In this study, we investigate an susceptible-infected-susceptible (SIS) epidemic

spreading on adaptive networks. Any susceptible node can avoid contact with infected

nodes by cutting its links to infectious nodes and by rewiring them to other susceptible

nodes. However, we make the assumption that individuals may not be able to avoid

connecting to individuals who are in the same community (e.g., social circles such as
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family, friends, or workplace acquaintances). That is, while the network is rewired

adaptively, the rewiring is restricted to susceptibles who are in the same ‘local’ (to be

defined later) area. The use of a square domain with periodic boundaries gives rise to

a natural distance between nodes and this is used to determine the local area around

nodes.

Since we anticipate that the size of local areas or neighborhoods will affect the

rewiring, we carry out systematic numerical investigations of adaptive networks where

rewiring is locally constrained. We adopt a step-by-step approach whereby we first

study the impact of rewiring on the network structure in the absence of an epidemic,

then with nodes assigned a disease status but without disease dynamics, and finally

running network and epidemic dynamics simultaneously. In the case of no labelling

and no epidemic dynamics, we provide both analytic and semianalytic formulas for the

value of clustering achieved in the network in relation to the size of the local area.

The paper is structured as follows. In Sec. 4.3, we describe the construction of

spatial networks to which constrained rewiring is applied, as well as the algorithm

by which edges for rewiring are selected. We also present the impact of rewiring on

degree distribution and clustering when rewiring operates in the absence of an epidemic

(Secs. 4.3.1-4.3.2, respectively) and when the nodes are labelled (Sec. 4.3.3). Section 4.4

describes the epidemic model with constrained rewiring, as well as numerical simulations

of both homogeneous and heterogeneous networks. In Sec. 4.5 we conclude the paper

with a discussion of our results and possible further extensions of our work.

4.3 Adaptive network model with locally-

constrained rewiring

In this section, the simplest adaptive network model with constrained rewiring is pre-

sented. Node placement and network construction are described by the following simple

rules:

(a) N nodes are placed uniformly at random on a square S = [0, X] × [0, Y ], such

that each node i will have coordinates 0 ≤ xi ≤ X and 0 ≤ yi ≤ Y , respectively, and

∀i = 1, 2, . . . , N .

(b) Local area of radius R: If the Euclidian distance between nodes i and j is less than

or equal to R, nodes i and j are said to be in the same local area and can become

connected during the rewiring process.
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All results in this paper are derived by considering S = [0,
√
N ]× [0,

√
N ], and in-

ternodal distances are calculated using periodic boundary conditions. With this choice,

the density of nodes is exactly one node per unit area. Moreover, if the radius of the

local area is R, then the circle, on average, will hold n = πR2 nodes. Or if one wishes

to control the expected number of nodes in a local area, then the radius is given by

R =
√
n/π. Obviously, if R ≥

√
2N/2, the effect of spatial constraint is nonexistent as

each node i has N − 1 potential neighbours to connect to. In what follows we will use

either n, the expected number of nodes in a local area, or R, the radius of that area,

as the control parameter of the rewiring process.

4.3.1 Rewiring at random within local areas and impact of the

local area radius

We now investigate how changing the radius, which defines the local area for rewiring,

affects the network structure. Here, in order to gain a better understanding of the

rewiring algorithm, we study the network dynamics alone, in the absence of any dy-

namics of the nodes and without labelling nodes. Starting from the original idea of

cutting a link between a susceptible node S and an infectious node I, and rewiring

the susceptible to another S node randomly chosen among the set of all susceptible

nodes [45], we consider two scenarios for implementing locally constrained rewiring.

Specifically, we explore two different edge selection mechanisms:

(1) Link-based selection: a SI link is chosen at random (with equal probability), after

which, the susceptible node S in the link is rewired to a randomly chosen available

susceptible node S.

(2) Node-based selection: a susceptible node S is chosen at random and, if connected

to an infectious node I, is rewired to a randomly chosen available susceptible S.

Unlike the node-based selection mechanism, the link-based selection mechanism

favours highly connected nodes and therefore these two selection mechanisms have the

potential to lead to networks with different properties. Note that, in both cases, once

a prospective link or node has been identified, rewiring happens according to the local

constraint, that is, rewiring happens only if at least one susceptible node S is available

in the local area. Otherwise, rewiring is not performed. The total number of edges

is kept constant throughout the simulations, and rewiring is not allowed if it leads to

self-connections or multiple connections.

To begin to consider the impact of the network dynamics and show how it depends on
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the choice of selection algorithm and size of local area, we consider two different starting

conditions: (a) homogeneous and (b) heterogeneous Erdős-Rényi networks with average

connectivity 〈k〉 = 10. Then, when R =
√

2N/2 or n = N , the network will be in the

situation where 〈k〉 � n, whereas when R =
√

6/π, we will have 〈k〉 > n. In one

simulation step, only two outcomes are possible: the rewiring is successful (one link has

been cut and a new ‘local’ link has been created) or the rewiring fails, as there are no

suitable nodes in the local area. The latter tends to be more likely when the number

of nodes in the local area is close to, or smaller than, the average connectivity, as this

means that after a few successful steps, new links would lead to multiple or repeat

connections, which are not allowed. The simulations or rewiring steps are performed

until network characteristics such as degree distribution and clustering have stabilised.

Fig. 4.1 shows the average or expected degree distribution at steady state for both

link-based and node-based selection methods. The good agreement between simulation

and binomial distribution, when R =
√

2N/2, confirms that the degree distribution has

not changed for the random network, but has changed significantly for homogeneous

network with both selection methods leading to a heterogeneous network.

Starting from homogeneous and heterogeneous networks leads to different outcomes,

with the difference most pronounced at the peak of the degree distribution when R =√
6/π. Namely, the peak of the degree distribution when using link-based selection is

higher than that obtained when using node-based selection, and the peak when starting

from heterogeneous networks is less than that starting from homogeneous network.

These differences can be explained as follows.

For small local areas, where the average number of nodes is smaller than the average

degree or connectivity, the rewiring will not be able to rewire all original links such

that the final, stable distribution remains relatively close to the original or starting

distribution. Hence, starting with a homogenous network with distribution p(k) =

δ(k − 〈k〉), i.e. p(〈k〉) = 1, will lead to a network with a distribution that will maintain

a high peak around 〈k〉. The heterogenous network has a much lower peak to start

with, namely p(〈k〉) =
(
N−1
〈k〉

)
p〈k〉(1 − p)N−1−〈k〉, where p = 〈k〉/(N − 1), and thus

further limited rewiring will flatten the distribution further.

A similar explanation holds for the difference in the peak when the starting network

is the same but the selection method differs. This is a result of the selection algorithm,

and we will consider the case when the starting network is homogenous. Some nodes

with connectivity higher than k will emerge quickly and these will be favourably picked
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Figure 4.1: The average degree distribution at the end of simulations starting from

homogeneous (top) and heterogeneous (bottom) networks compared with the binomial

distribution X ∼ B(N − 1, 〈k〉/(N − 1)) (black circles, corresponding to an Erdős-

Rényi random network with N nodes and connectivity 〈k〉). The left and right panels

correspond to link- and node-based selection, respectively. The plots show the average

of 100 simulations with R =
√

2N/2 (red solid line) and R =
√

6/π (blue dashed line),

with N = 100 and 〈k〉 = 10.

for rewiring when the link-based algorithm is used. However, this will only lead to

conserving the nodes’ degree, and rewiring will only lead to an increase in the maximal

degree in the network if the target of the rewiring is itself one of the already highly

connected nodes. This becomes very limiting and leads to little growth in degree, and

thus to limited flattening of the distribution or decrease in its peak. This is exacerbated

when the rewiring is limited by fewer available nodes than the average connectivity.

The size of the local area has a significant effect on the number of nodes in the

area. If we consider small values of R, such as R =
√

6/π and 〈k〉 > n, then a typical

node will connect to almost all nodes within the local area during the rewiring process.

In other words, while the rewiring process is happening, the small number of nodes in
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the area will become well connected and will lead to the formation of triangles, and

thus increasing levels of clustering. In the extreme case with only three nodes in the

local area, a triangle will quickly form. When the average connectivity is similar to the

number of nodes in a local area, the rewiring process will create a significant number of

closed loops of length 3, which will have a significant impact on the spread of a disease.

To quantify this effect in a more rigorous way, we measure clustering in the network for

local areas of different sizes as well as its evolution in time. Clustering can simply be

calculated as the ratio of the number of triangles to connected triples, open or closed.

This can be computed by simple operations on the adjacency matrix of the network as

follows:

C =
Ntriangles

Ntriples

=
trace(G3)

‖G2‖ − trace(G2)
,

where G = (gij)i,j=1,2,...N ∈ {0, 1}N
2

and gij = 1 if there is a connection between node i

and node j and gij = 0 otherwise.
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Figure 4.2: Evolution of clustering during rewiring, starting from homogeneous (left)

and heterogeneous (right) networks. The plots show the average of 100 simulations

with R =
√

6/π,
√

10/π,
√

20/π,
√

30/π and R =
√

2N/2 (green (a), blue (b), black

(c), purple (d) and red (e) lines, respectively), where the solid and dotted (?) lines

correspond to link- and node-based selection, with N = 100 and 〈k〉 = 10.

Fig. 4.2 shows the evolution of clustering during rewiring for a range of radii R, and

with both selection methods, as above. As expected, smaller values of R, but such that

〈k〉 � n still holds, lead to higher levels of clustering. However, when R is such that

〈k〉 � n, clustering decreases as rewiring will be limited by the low number of potential

targets for rewiring in local areas. This means that many long-range links from the

original network will be conserved, and thus clustering is pushed to smaller values. Both
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selection methods produce similar results in both clustering and preferential mixing for

a variety of R values, with both homogeneous and heterogeneous starting networks.

It is observed that across all values of radius R, given enough time, clustering

stabilises. This begs the question of how the rewiring process operates throughout

the simulation, especially for large R. In Fig. 4.3, we examine how the the number

of successful rewiring events depends on the simulation step when using node-based

selection for both homogeneous and heterogeneous networks. As expected, with a small

value of R, the rewiring process evolves quickly to a stable equilibrium, whereas, for a

large value of R, it continues throughout the simulation. Interestingly, for large values

of R, even when there are still prospective links or nodes to be rewired, clustering of

the network is no longer affected (see Fig. 4.2 and Fig. 4.3 where R =
√

20/π,
√

30/π).

Intuitively, this can be explained as follows. Since there are many available target

nodes to rewire to in a local area, a node, with say k contacts, proceeds to randomly

connect to k nodes within its local area. If the local area is not extremely large, and for

relatively dense networks, this process will lead to an initial increase in clustering. Since

the area holds more candidates for rewiring than the number of neighbours a node has,

link rewiring will continue and other nodes from the same area will be chosen. However,

this will lead to no significant further increase in clustering, except small movements

around the equilibrium value.
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Figure 4.3: Evolution of the rewiring process, starting from homogeneous (left) and

heterogeneous (right) networks with node-based selection. The plots show the average

of 100 simulations with R =
√

6/π,
√

10/π,
√

20/π,
√

30/π and R =
√

2N/2 (green

(a), blue (b), black (c, o), purple (c, 2) and red (c, ?) lines, respectively), with N =

100 and 〈k〉 = 10.



100

4.3.2 Computing clustering

A. n� 〈k〉: small areas but high degree

We aim to derive an analytical approximation for clustering by concentrating on the

case when, on average, the number of nodes in a circle of radius R is less than the

average degree in the network. In addition, we consider the situation when all possible

links have been rewired. Due to having limited options for rewiring locally, we can

assume that at the end of the rewiring process almost all local connections have been

realised. We will focus on a typical node and its neighbours within distance R and

beyond, noting that two nodes within a circle of radius R are not necessarily at a

distance of less than R from each other.

Let us introduce some notation. Let B be the number of nodes within a radius

R from a given node, and not including the node at the centre. B itself is a random

variable. Let k be the degree of the node at the centre of the circle (k is therefore

also a random variable). To compute the clustering of the central node we seek to

establish the number of links between the neighbours of the node. We break this down

into links between neighbours who are within the circle, links between internal and

external neighbours, and finally links between nodes that are exclusively outside the

circle. Counting multiplicatively, the total number of possible triangles is:

B(B − 1) + 2B(k −B) + (k −B)(k −B − 1) = k(k − 1).

We now set out to find the probability of connections existing between the three

different types of edges. First, we work out the probability of two interior nodes being

connected. This can be done by considering a circle of radius R and then an arbitrary

point within it. The probability that the second node will be within distance R from

the initial node will be proportional to the overlap area Aoverlap between the original

circle and the circle of radius R centred around the first random point. Hence, the

probability that the distance between the two random points within the circle is less

then R is simply

P (d < R) =
Aoverlap
πR2

.

To determine Aoverlap, we first work out the density function for the distance of the

first point from the centre. However, when placing nodes at random in a circle, the

uniform random number has to be scaled with the
√
· function. Effectively, a good or

valid random choice for the distance from the centre is not a uniform random number

in (0,1), X, times R but
√
X(0, 1)R. This means that the density function for the
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distance from the centre of a randomly and uniformly placed node is ρ(r) = 2r
R2 . This

integrates to 1 for r going from 0 to R. Knowing the distance r between the two points,

we average the well known area for the intersection of two circle of radii R and with

distance r between their centres, that is,

Aoverlap(r, R) = 2R2 cos−1(
r

2R
)− 1

2
r
√

4R2 − r2.

Hence, the probability that two nodes within a circle of radius R are less than R

apart is given by

q =
1

πR2

∫ R

0

Aoverlap(r, R)
2r

R2
dr, (4.1)

and the number of triangles that are forming between interior nodes is B(B − 1)q.

We now focus on the probability of links existing between the remaining non-

connected interior-interior nodes (of which there are B(B−1)(1−q)), as well as between

interior-exterior (i.e. 2B(k−B)) and exterior-exterior (i.e. (k−B)(k−B− 1)) nodes.

In general, we can state that if the distance between two nodes is less than R then at the

end of the simulation they will have formed a link. The probability that the distance

between two randomly placed nodes is less than R is the ratio between the area of the

circle or local area with respect to the total area. Thus, with probability πR2

N
, two nodes

are less than R apart and are connected with probability 1. With probability 1− πR2

N
,

these nodes will be more than R away and therefore will be connected by the long-range

links that remain at the end of the rewiring process. However, the average number of

such links is (k −B)N with short-range links accounting for BN . Thus assuming that

long-range links are distributed at random across all possible long-range pairs, we get

that the probability of such a link existing is

plr =
(k −B)N

N(N − 1)(1− πR2

N
)
.

Hence, a random pair of nodes forms a link with probability

πR2

N
+ (1− πR2

N
)plr =

k + 1

N − 1
− B + 1

N(N − 1)
∼ k + 1

N − 1
,

since B+1
N(N−1) is likely to be small. However, surprisingly, this value is very close to what

is the initial probability of a link existing when the network is connected up according

to the Erdős Rényi model. In this case, the probability of a link existing is k
N−1 which is

also the measure of clustering for the initial network since all links are placed at random

and thus where a node has two neighbours, the probability of them being connected is
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C = k
N−1 . However, at the end of the rewiring process we get that clustering should be

well approximated by

CL =
B(B − 1)q + plrB(B − 1)(1− q)

k(k − 1)

+
( k+1
N−1 −

B+1
N(N−1)) [2B(k −B)]

k(k − 1)

+
( k+1
N−1 −

B+1
N(N−1)) [(k −B)(k −B − 1)]

k(k − 1)
. (4.2)

We expect that when clustering is high, the B(B − 1)q term dominates. We can

also suggest a simpler formula for C, namely, one that assumes that almost all interior

neighbours of a central node will become connected and the contribution from other pair

types towards clustering is small. On the one hand, this overestimates clustering when

looking at connections between interior nodes, as these could be apart by more than

distance R. On the other hand, it underestimates clustering as some interior-exterior

and exterior-exterior nodes could still be connected. This formula gives

Ca =
B(B − 1)

k(k − 1)
.

Both formulas above work on average or expected values. As noted previously, k

and B can be treated as random variable with some distribution. An analytic or semi-

analytic expression for these would make it possible to numerically evaluate our two

approximations and compare them to clustering measured from simulations.

B. n� 〈k〉: large areas but low degree

Let us use the same definition of B and k as in the previous section, but here B > k.

Our analysis will focus on a typical node out of the k nodes in the area. Since the

probability of two nodes within a circle of radius R being connected is q and there are

B − 1 nodes in total available to form links, clustering should be approximated by

CR = q
k − 1

B − 1
. (4.3)

This formula works on the assumption that the centre node forms triangles only within

its local area since B > k.

Both Eq. (4.2) and Eq. (4.3) are shown in Fig. 4.4. Here, we present only the case

of homogeneous networks with node-based selection, due to the two rewiring methods
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Figure 4.4: Clustering at the end of simulations starting from homogeneous networks

with node-based selection. Simulation results (red ?) are compared with analytic for-

mulas (Eq. (4.2) (black dotted) and Eq. (4.3) (blue dashed)), with k = 〈k〉. In the

left panel we use the formulas with average (B, k) values. In the right panel we use

(B, k)’s joint distribution computed from simulation. The plots show the average of

100 simulations with N = 100 and 〈k〉 = 10.

giving very similar clustering values; see Fig. 4.2. The left panel of Fig. 4.4 uses average

(B, k) values such that all centre nodes have B nodes within a radius R and have degree

k. However, this is an approximation since in reality B and k are random parameters

and have a joint distribution. When accounting for this heterogeneity by computing

the joint parameter distribution from simulation, the agreement significantly improves

as shown in the right panel of Fig. 4.4. Here, we randomly choose 5% of N nodes to be

centre nodes and count the true values of B and k to compute the clustering.

While the analytic formulas for the clustering values are derived for the limiting

cases of n � 〈k〉 and n � 〈k〉, a close examination of Fig. 4.4 reveals that agreement

with simulation is maintained close to the n ' 〈k〉 regime. Moreover, the same figure

shows that the maximum value of clustering is achieved for n ∼ 〈k〉. By using this

value in the analytic formulas, i.e., B = n − 1 = 〈k〉 − 1, and by neglecting the small

terms leads to

CL = q

(
1− 1

〈k〉

)
and CR = q

(
1 +

1

〈k〉 − 2

)
,

which shows that clustering will be dominated by the probability q that two nodes

within a circle of radius R are less than a distance R apart. The value of q is independent

of R and it is q ∼ 0.587, as confirmed by our figure. While, CL underestimates and

CR overestimates clustering at n = 〈k〉, it is worth noting that using n = 〈k〉 + 1 or
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B = 〈k〉 in both formulas, i.e., Eq. (4.2) and Eq. (4.3), we get

CL = CR = q.

Hence, we can conclude that clustering can be maximised if the expected number of

nodes in the local area is very close or identical to the expected degree of a node. Such

a setup will ensure that all potential neighbours can be drawn from inside a local area,

and clustering will be dominated by the probability q that two nodes within a circle of

radius R are less than a distance R apart.

For large n, n → N , the reasoning that led to working out q breaks down, since

for large R values almost all nodes are in the same unique area. This effectively means

that q → 1 and thus CR → 〈k〉−1
N−2 '

〈k〉−1
N−1 (for large N), which is the value of clustering

in a random network.
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Figure 4.5: Distribution of distance between i and j if g(i, j) = 1 and distribution of

path length at the end of simulations starting from homogeneous networks with node-

based selection. The plots show the average of 100 simulations for n = 7 (top) and

n = 18 (bottom) with N = 100 and 〈k〉 = 10.

From Fig. 4.4, we note that networks with the same level of clustering can be gen-
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erated with both n� 〈k〉 and n� 〈k〉. This begs the interesting question of whether

structural differences exist in these networks. We examined a number of network char-

acteristics, including path length distribution and distribution of true link lengths.

Fig. 4.5 shows the distribution of distance for all links as well as the distribution of

path length, for n = 7 and n = 18. As expected, with a large value of n, the rewiring

will be able to rewire all links. Thus, the final network has all its links with length less

than or equal to the value of R (see distribution of distance in Fig. 4.5 when n = 18).

The final networks show a slight difference in mean path length, L(n = 7) ≈ 4.33 and

L(n = 18) ≈ 4.26, even though their distributions of distance are significantly different.

To further highlight the different network structures, Fig. 4.6 shows the small-worldness

index of each final network as a function of n. This index is obtained by computing

the ratio of C/L divided by the ratio of Cr/Lr where Cr and Lr are the clustering and

mean path length respectively of the equivalent randomised network.
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Figure 4.6: The small-worldness index (C/L)/(Cr/Lr) at the end of simulations starting

from homogeneous networks with node-based selection. The plots show the average of

100 simulations with N = 100 and 〈k〉 = 10.

C. Comparisons to random geometric networks

In this section, we focus on properties of networks after rewiring has finished and in

the particular case of n being close to 〈k〉. Assuming that all links can be rewired

locally, all edges will have length of at most R. It is apparent that this description

is closely related to that of random geometric graphs (RGGs) [23, 93]. Hence, it is

worth considering how closely the two are related or whether these can be considered

equivalent for some appropriately chosen parameter values.
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Let us give a brief introduction to RGGs. A two-dimensional random geometric

graph can be constructed by placing N nodes at random on the unit square, and

assuming that each node is the centre of a circle of radius d. Nodes whose circles

intersect or at least touch become connected [23, 10]. Thus, the probability p that two

randomly chosen nodes are connected is equal to

p = πD2,

where D = 2d. The average degree of a RGG is 〈k〉 ' pN , and its degree distribution

is binomial,

P (k) =

(
N − 1

k

)
pk(1− p)N−1−k, (4.4)

and well described by the Poisson distribution when N is large. The clustering coeffi-

cient of a RGG is

CRGG =
2

D2

∫ D

0

ρ(x)xdx,

where ρ(x) is the overlap area of two circles of radius D with distance x between their

centres. Following [23], clustering is calculated as follows:

CRGG =
2

D2

∫ D

0

x
(θ(x)− sin θ(x))

π
dx = 1− 3

√
3

4π
' 0.587, (4.5)

where θ(x) = 2cos−1(x/2D).

Here, in the case of our dynamic networks, N nodes are randomly placed on an area

given by S = [0,
√
N ]× [0,

√
N ]. This is followed by a rewiring that allows connections

only to nodes that are at most a distance R away. Hence, d = R/2 and D = R.

If we were to follow the RGG rules, then the probability of two random nodes being

connected would be p = πR2
√
N
√
N

. If these nodes were then to be connected according

to the RGG convention, ignoring the dynamic network, the average degree would be

〈k〉 = p(N − 1) ' pN . Thus to achieve a desired average degree, as in our starting

network, one needs to set R according to

R =

√
〈k〉
π
,

which for our specific case of 〈k〉 = 10 gives R =
√

10
π

.

From the above conditions, we expect that the stabilised dynamic network, when

R =
√

10/π or n = 10, is equivalent to a RGG network. We also note that in this

case, when n is close to 〈k〉, the rewiring will almost surely be completed successfully,



107

i.e., all edges at the end of rewiring will be at most of length R. Fig. 4.7 shows

the expected degree distribution at steady state for both link-based and node-based

selection methods. As expected, we obtain excellent agreement between the degree

distribution of the simulated networks and binomial distributions, when p = πR2/N .

This confirms that our final networks lead to the same degree distribution as that of

RGG networks.

In order to explore the agreement between our and random geometric networks, we

also consider the clustering value. In Sec.B, we have shown that when n = 〈k〉 then

clustering is equal to q. To find the value of q, we use the overlap area between two

circles of radius R and with distance r between their centers. This is given by Aoverlap =

2R2 cos−1( r
2R

) − 1
2
r
√

4R2 − r2 or Aoverlap = R2(θ − sin θ), where θ(r) = 2cos−1(r/2R).

Substituting the latter into Eq. (4.1) yields

q =
1

πR2

∫ R

0

R2(θ − sin θ)
2r

R2
dr =

2

πR2

∫ R

0

r(θ − sin θ)dr. (4.6)

This shows that the clustering values in the final rewired and RGG networks are iden-

tical, i.e., Eq. (4.6) is equivalent to Eq. (4.5). This is also confirmed from simulation

results which yield Cn=10 = 0.587 = CRGG. While this confirms our results, we point

out that RGGs appears only as a special ‘limit’ of the proposed dynamic network model,

namely when n = 〈k〉.

4.3.3 Rewiring within local areas with SI labelling

To get closer to the full model (i.e., coupled epidemic dynamics and rewiring) and to

gain more insights into the properties of the adaptive network, we now consider the

scenario in which each node is assigned a disease status. Using the analogy of simple

epidemic models, such as the SIS model, nodes are labelled at random as susceptible,

S nodes, with probability ps, and infected, I nodes, with probability pi = 1 − ps.

We consider the network when the rewiring mechanism makes use of node labels, but

without the full epidemic dynamics. This means that while the numbers of S and I

are constant, the number of each type of links changes depending on type; namely,

the number of SI decreases, the number of SS links increases and the number of II

remains constant, thus changing the structure of the network. Provided that S0 = psN

and I0 = (1 − ps)N , the initial link counts for SS, II and SI links are S2
0〈k〉/2N ,

I20 〈k〉/2N and S0I0〈k〉/N , respectively, where each link is uniquely counted. When one

of the SI links is cut and a new SS link is formed, it is obvious that the total number of
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Figure 4.7: The average degree distribution at the end of simulations starting from

homogeneous (top, dashed line) and heterogeneous (bottom, solid line) networks with

N = 100, 〈k〉 = 10 and R =
√

10/π, compared with Eq. (4.4) (?) where p = πR2/N .

The left and right panels correspond to link- and node-based selection, respectively.

The plots show the average of 100 simulations.

SS links increases relative to the (decreasing) number of SI links, and therefore, most

S nodes in the network will evolve higher degrees.

This adaptive rewiring rule can lead to the network dividing into two sub-networks:

one containing only S nodes and SS connections, and the other I nodes with II con-

nections. Of course, this is not unique to the introduction of local rewiring constraints,

i.e., R <
√

2N/2. Further, it should be noted that it is possible that not all SI links

are cut. This can happen when there is a very small number of S nodes compared to

a large number of I nodes or when the local neighbourhood or radius is very small. In

this case, not all SI links can be cut since reconnection would lead to multiple links,

which we do not allow.

To simplify the dynamics of the adaptive network, we start with S0 = 80% of N

and I0 = 20% of N , and we allocate node labels at random. As previously, an SI link
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is chosen at random, and the S node within this link reconnects to another S node

in its local area, provided that such a node exists. Otherwise, the rewiring step is

abandoned and a new SI link is selected. The simulation or rewiring is complete when

either all SI links have been rewired or the remaining links cannot be rewired due to

a lack of available S nodes in the local areas.

Impact of rewiring on the degree distribution of the network

To explore the impact of the rewiring dynamics (whereby only SS links can be formed)

on network degree, we consider changes in degree distribution when starting with either

homogeneous or heterogeneous networks.

(a) Heterogeneous networks:

When starting from a heterogeneous network at time t = 0, the network has a degree

distribution given by the binomial distribution, namely, p(k) =
(
N−1
k

)
pk(1 − p)N−1−k,

where p = 〈k〉/(N − 1), and the average degree of both susceptible and infected nodes

is equal to 〈k〉. We assume that the degree distribution of S and I nodes remain

random throughout the simulation, and is binomial. First, let us consider the degree

distribution of S nodes. We start by calculating the average degree of S nodes at time

t. Let us define ∆kS(t) as the rate of change of the average degree of S nodes, and

assume that ∆kS(t) depends on the number of SI links that are being cut at time t.

Since the average degree of S nodes at the end of the simulations (when all SI links

have been cut) is given by (1 + i0)〈k〉 [45], where i0 = I0/N , ∆kS(t) can be computed

as

∆kS(t) =
[
(1 + i0)〈k〉 − 〈k〉

] [SI]cut(t)

[SI]0
= i0〈k〉

[SI]cut(t)

[SI]0
,

where [SI]0 is the initial number of SI links and [SI]cut(t) is the total number of SI

links that have been cut up to time t. Then, as we know that all S nodes have degree

〈k〉 at t = 0, and the degree can only increase by ∆kS due to the rewiring process, we

can calculate the average degree of a S node as

〈kS〉(t) = 〈k〉+ ∆kS(t)

= 〈k〉+ i0〈k〉
[SI]cut(t)

[SI]0

=
[
1 + i0

[SI]cut(t)

[SI]0

]
〈k〉.

Therefore, the degree distribution of a susceptible node can be written as

P (S = a)t =

(
N − 1

a

)
paS(1− pS)N−1−a, (4.7)
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where a = 0, 1, 2, ..., N − 1 and pS = 〈kS〉(t)
N−1 .

We can use the same methodology to derive ∆kI(t), the average degree, and the

degree distribution of I nodes. However, the degree of I nodes can only decrease by

∆kI and using the average degree of I nodes, i0〈k〉, when all SI links have been cut [45],

we get

〈kI〉(t) = 〈k〉 −∆kI(t)

= 〈k〉 −
[
〈k〉 − i0〈k〉

] [SI]cut(t)

[SI]0

= 〈k〉 − s0〈k〉
[SI]cut(t)

[SI]0

=
[
1− s0

[SI]cut(t)

[SI]0

]
〈k〉.

Therefore, the degree distribution of an infected node can be written as

P (I = a)t =

(
N − 1

a

)
paI(1− pI)N−1−a, (4.8)

where a = 0, 1, 2, ..., N − 1 and pI = 〈kI〉(t)
N−1 .

(b) Homogeneous networks:

We now focus on homogeneous networks for which the degree distribution of the

network at time t = 0 is p(k) = 1, and the average degree of both susceptible and

infected nodes is equal to k. Since we apply a random rewiring process, we assume that

the network will evolve towards a random network with a binomial distribution, for

both S and I nodes. As before, we assume that the average degree of S nodes increases

by ∆kS, and the average degree of I nodes decreases by ∆kI , which depends on how

many SI links are cut. In the case of S nodes, all S nodes start with exactly k links

and their degree will increase to k+ 1, k+ 2, k+ 3, ..., k+S0− 1. Similarly, all I nodes

start with k links and their degree will be decreased to k− 1, k− 2, k− 3, ..., 0. So we

have

∆kS(t) = i0k
[SI]cut(t)

[SI]0
,

and the degree distribution of a susceptible node can be written as

P (S = a)t =

(
S0 − 1

a

)
paS(1− pS)S0−1−a, (4.9)

where a = 0, 1, 2, ..., S0 − 1, 〈kS〉(0) = k, 〈kS〉(t) = ∆kS(t) and pS = 〈kS〉(t)
S0−1 .
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In the case of I nodes, using the same approach as for heterogeneous networks yields

〈kI〉(t) = k −∆kI(t) =
[
1− s0

[SI]cut(t)

[SI]0

]
k,

and, therefore, the degree distribution of an infected node can be written as

P (I = a)t =

(
k

a

)
paI(1− pI)k−kI , a = 0, 1, 2, ..., k, (4.10)

where pI = 〈kI〉(t)
k

.

Starting with the no-constraint scenario, R =
√

2N/2, Fig. 4.8 (left panel) confirms

that the network has split into two disconnected networks, where the mean degrees

of susceptible and infected nodes at the end of the simulations are given by 〈kS〉 =

(1 + i0)〈k〉 and 〈kI〉 = i0〈k〉 where s0 + i0 = 1. This is true when starting from either

homogeneous or heterogeneous networks. As expected, the degree of S nodes can only

increase, while the degree of I nodes strictly decreases. Starting with a homogeneous

network, there is no S node with a degree less than 〈k〉, and the maximum degree

of I nodes is at most 〈k〉 because all nodes have the same initial degree k. For both

homogeneous and heterogeneous networks, there are disconnected I nodes at the end

of the simulation, but, as discussed previously, this may result from the fact that 〈k〉 is

not very high.

For small local areas, e.g., R =
√

6/π, where the average number of nodes in a local

area is smaller than the average degree, the rewiring is restricted by the limited number

of available S nodes. Therefore, the network evolves quickly to a stable equilibrium.

This is clearly shown in Fig. 4.9 in which the evolution of clustering for R =
√

6/π

stops (due to all rewiring being complete) before that of other (larger) radii R.

These results are not solely dependent on the spatial constraint, but also on the

number of initial SI links. Fig. 4.10 shows the clustering at the end of the simulations

for a range of radii R and I0 values. Starting with either homogeneous or heterogeneous

networks produces similar results in clustering for a variety of R and I0 values. As

expected, the maximum clustering values for all sets of parameters n and I0 are not

higher than the maximum clustering value for networks with no node labelling, obtained

previously (see Fig 4.4). A small number of initial S nodes leads to a small number of

successful rewiring events (see Fig. 4.10 where I0 = 80). This means that a larger value

of R is needed in order to find available S nodes before cutting SI links, and therefore,

we find that clustering increases as the value of R grows larger.
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Figure 4.8: Average degree distribution of all S (blue solid line) and I (red dashed

line) nodes at the end of simulations, when starting from homogeneous (top) and het-

erogeneous (bottom) networks with node-based selection. The plots correspond to the

average of 1000 simulations with N = 100, I0 = 20, S0 = N − I0, and 〈k〉 = 10. In

the left panel, R =
√

2N/2. In the right panel, R =
√

6/π. The blue and red (?)

markers correspond to Eq. 4.9 and Eq. 4.10, respectively. The blue and red (◦) markers

correspond to Eq. 4.7 and Eq. 4.8, respectively. We note that our analytic derivation

needs the number of SI links that have been cut by the end of the rewiring process.

This is taken from the simulation.

4.4 SIS models with constrained rewiring

In the previous section, we showed that the spatially constrained rewiring plays an

essential role in determining network structure in the absence of any node dynamics.

In this section, we extend this work by combining the dynamics of the network with

the dynamics on the network in the form of the simple SIS model. The simulations

are carried out on both homogeneous and heterogeneous networks, with a fixed size of

N nodes and average degree of 〈k〉 links per node. The epidemic dynamics is specified

in terms of infection and recovery events. The rate of transmission across an SI link is
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Figure 4.9: Evolution of clustering during rewiring, starting from homogeneous (left)

and heterogeneous (right) networks. The plots correspond to the average of 1000 simu-

lations with N = 100, I0 = 20, S0 = N − I0, and 〈k〉 = 10. Data for R values of
√

6/π,√
10/π,

√
20/π,

√
30/π and

√
2N/2 are shown in green (a), blue (b), black (c), purple

(d) and red (e), respectively.
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Figure 4.10: Final value of clustering when starting from homogeneous (left) and het-

erogeneous (right) networks. The plots correspond to the average of 1000 simulations

with N = 100, and 〈k〉 = 10. Data are shown for I0 = 20 (black dotted line), I0 = 50

(blue dashed line), I0 = 80 (red solid line) with S0 = N − I0.
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denoted by τ . Infected individuals recover independently of each other at rate γ. The

network dynamics is specified in terms of rewiring events which affect SI links. Here,

we make the assumption that the rewiring of an SI link depends on the number of

susceptible nodes available for rewiring in the local neighbourhood of the S node that

wishes to break its link to an I node and rewire to a susceptible one. It is natural to

assume that the rewiring rate is proportional to the number of available S nodes that

can accept new connections. For all SI links, this is achieved by using a rewiring rate

equal to hw, where h is the number of available susceptible nodes within S’s local area.

We also assume that all processes are independent Poisson processes.

Simulations rely on synchronous updating with a small time step ∆t, which guar-

antees that at most one event happens per iteration. Only three different types of

event are possible during one time step ∆t: (a) infection of a susceptible S node can

occur with probability 1− exp(−kτ∆t), where k is the number of I neighbours, (b) an

infectious I node can recover with probability 1 − exp(−γ∆t), and (c) a SI link can

be rewired with probability 1 − exp(−hw∆t), as long as h > 0. This guarantees that

rewiring only happens if viable candidates for rewiring exist and that the number of

links in the network is constant throughout the simulation.

Given that the main focus of our study is the role of the spatially constrained

rewiring, we will investigate the impact of the R (or n) values on whether epidemics die

out and/or the endemic state becomes established. Specifically, we use the following

definition to characterise the impact of the expected number of nodes in a local area or

size of local area:

Definition 1. n∗ is the critical value of the expected number of nodes in a circle-like

local area such that any greater value of n leads to disease extinction before a time T ,

or the end of the simulation, whichever comes first.

The time evolution of infection on adaptive networks with constrained rewiring is

shown in Fig. 4.11. Here, all simulations use the following parameter values: N = 100,

〈k〉 = 10, γ = 1 and final simulation time T = 100. Simulations are started with

infectious nodes chosen at random. The controlling effect of the local area radius R

or expected number of nodes in a local area n is clear to see. As expected, with a

small value of n, the network dynamics does not play a significant role in the control

of epidemic spread for either homogeneous or heterogeneous networks. The small value

of n affects the network dynamics in that the rewiring process can only happen briefly

at the outset of the simulation and then stops while the epidemic dynamics continues
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throughout the simulation.

Larger values of n, however, creates ideal conditions for rewiring and this can con-

tinue throughout the simulation, resulting in breaking many SI links. This scenario

leads to a slowing down of the spread of the epidemic and a reduced infection preva-

lence. This is confirmed by Fig. 4.11, which shows small levels of infection prevalence

for n = 15 and n = 20. The same figure also shows smaller and smaller endemic lev-

els when the rewiring radius passes through the critical expected number n∗, namely,

n∗ = 26 for homogeneous networks and n∗ = 29 for heterogeneous networks.

To further understand the relationship between the critical value n∗ and the dis-

ease parameters, we systematically varied the infectious and rewiring rates (with fixed

recovery rate) and recorded the corresponding critical n∗ value. Fig. 4.12 shows the

resulting surface for both homogeneous and heterogeneous networks, where τ varies

from 0.15 to 3.5 in steps of 0.05 and w varies from 0.05 to 0.35 in steps of 0.05.
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Figure 4.11: Infection prevalence (I/N) starting from homogeneous (left) and hetero-

geneous (right) networks. The plots correspond the average of 200 simulations with N

= 100, I0 = 20, S0 = N − I0, 〈k〉 = 10, γ = 1, τ = 0.25, w = 0.2. Data are shown

for n values of 5 (green - a), 10 (blue - b), 15 (black - c), 20 (purple - d), critical value

n∗ = 26 for homogeneous network and n = 27 (red - e and pink - f, left panel), and

critical value n∗ = 29 and n = 30 (red - e and pink - f, right panel).

Increasing values of n increase the rewiring rate hw, since h will be higher due to

more targets for the rewiring being available. This in turn leads to an active rewiring

process which results in an overall decrease in the endemic equilibrium or in the extinc-

tion of the epidemic.

It is found that when n is large, the starting configuration of the network affects the

endemic equilibrium in so far as starting with a homogeneous network leads to a smaller
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Figure 4.12: Critical n as a function of τ and w, starting from homogeneous (left) and

heterogeneous (right) networks, and with N = 100, I0 = 20, S0 = N − I0, 〈k〉 = 10 and

γ = 1.

epidemic, at a given n, than when starting with a heterogeneous network. Typically, the

critical n∗ is higher for heterogeneous networks, meaning that rewiring needs to be less

constrained in order to curtail the epidemic. In general, for all n values, the epidemic

will spread faster on heterogenous networks early on in the epidemic, when the link

rewiring is still limited. However, as the networks are rewired, this effect is weakened

as the homogenous network will become more heterogenous and will become more

similar to the networks started with heterogenous degree distributions. Nevertheless,

the critical threshold differs between homogenous and heterogenous networks, which

may reflect a buildup of structural correlations or differences which may differentially

affect the endemic prevalence.

In Fig. 4.13, we present the final clustering value for a range of radii R for both the

full model and the model with no epidemic or labelling. The simulation results show

that the impact of changing the radius on network structure is similar in both cases.

Specifically, high values of n, but with 〈k〉 � n (the region to the left of the vertical

line), result in higher levels of clustering, whereas when n is such that 〈k〉 � n (see

the region to the right of the vertical line), clustering decreases, irrespective of which

network is used. It is worth noting that the analysis of the dynamic network model

alone, without labelling or epidemic, gives a clear insight into how the structure of the

network changes. Observations from this analysis still hold in the full model, but as

expected, the clustering of networks in the full model is less than in the network-only

model since labelling reduces the number of nodes that can be used when rewiring.

Higher clustering values in the full model are due to the epidemics dying out quickly
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with no further rewiring, and thus with the network displaying a clustering value that

is close to the values observed in the starting network. For the network-only model or

for full-blown epidemics, however, the network will be fully randomised.
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Figure 4.13: Final value of clustering starting from homogeneous (left) and hetero-

geneous (right) networks with N = 100 and 〈k〉 = 10. The dashed line shows the

clustering in a network without any dynamics of the nodes and without node labelling.

The dotted line denotes the clustering when the full model, couple epidemic dynamics

and rewiring, is considered, with I0 = 20, S0 = N − I0, γ = 1, τ = 0.25 and w = 0.2.

4.5 Discussion

The present study explored the effect of spatially constrained rewiring on an SIS epi-

demic unfolding on an adaptive network. Specifically, the dynamics of the network was

achieved by breaking links and reconnecting to nodes within a local area. A step-by-

step approach was taken in which the network dynamics was studied first in the absence

of disease dynamics, then with node labelling but no dynamics, and finally with both

network and node dynamics. Two different starting networks were used and analysed.

In all models, a range of radii R, giving circular neighbourhoods, within which to rewire,

was considered and shown to provide the means to control epidemic outbreaks. Spa-

tially limited rewiring provides a more realistic mechanism than choosing partners to

rewire to from the entire population. It is highly likely that in most situations, rewiring

will be limited to a small subpopulations or set of individuals.

Our study provided a detailed analysis of the impact of constrained rewiring on the

structure of the network. In particular, we were able to give analytic and semianalytic

results for degree distribution and clustering. These showed excellent agreement with
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simulations, and we have revealed that it is possible to generate networks with the same

mean path length and the same clustering but significantly different distribution of real

link lengths. This comes in support to the findings of [102] that networks with the same

clustering can have substantially different higher-order network structure. This needs

further investigation, possibly using more complex node dynamics to reveal how subtle

differences in the network structure may impact on the outcome of dynamical processes

supported by the network.

Further results provided analytical formulas for the degree distributions of suscep-

tible and infected nodes which again showed good agreement with simulation results.

These also confirmed that starting from a heterogeneous network, and when R is equal

to
√

2N/2 or in the absence of spatial constraints for rewiring, the average degree of S

and I nodes are (1 + i0)〈k〉 and i0〈k〉, respectively, which is in line with [45].

Finally, we have shown that even constrained rewiring can serve as a potent control

measure. We highlighted that the expected number n in a typical local area is a key

parameter which influences the network dynamics and can determine whether disease

dies out or becomes endemic. Extensions to the methodology presented in this paper

include considering other forms of constrained rewiring, e.g., network models where

locality is not just defined in terms of spatial distance but possibly some more abstract

or general metric, and understanding how this impacts network structure and processes,

other than epidemics, taking place on the network.
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5.1 Abstract

In this short comment we report on our test of the generalisation proposed by Shang

in [104]. Shang in [104] claims to generalise previous results developed by Kiss and

Simon in [66] and Nagy, Kiss and Simon in [84]. However, our tests show that the

proposed generalisation performs poorly for all networks proposed by Shang, except

for heterogenous networks with high average degree. While the binomial closure gives

good results, in that the solution of the Kolmogorov equations, with the newly proposed

rates, agrees well with the closed system, the agreement with simulation is extremely

poor.

5.2 Introduction

Kiss and Simon in [66] considered the susceptible-infected-suceptible (SIS) dynamics

on a fully connected network with N nodes. The model was formulated in terms of the

master equation given by

ṗk(t) = ak−1pk−1(t)− (ak + ck)pk(t) + ck+1pk+1(t), (KE)

where pk(t) is the probability that there are k infectious nodes at time t ≥ 0, with

k = 0, 1, 2, . . . , N . Furthermore, the rates of infection, ak, and rates or recoveries, ck

are given by

ak = τk(N − k), ck = γk for k = 0, 1, . . . , N with a−1 = cN+1 = 0.

All infection and recovery processes are modelled as independent Poisson processes. The

infection rates encode all the information about the network, and the rate of recovery is

simply a rate corresponding to pooled Poisson processes. Kiss and Simon in [66] show

that rather than solving this full system, it is possible to derive a low-dimensional ODE

based on the assumption that the number of infectious nodes is binomially distributed.

Namely, it is assumed that pk(t) is distributed binomially, i.e. B(n, p), where n and p

depend on time.

More precisely, the low-dimensional ODE is formulated for the first moment of the

distribution, and this will also involve the second moment and the third. However,

due to the assumption that pk(t) is binomially distributed, it is possible to express the

third moment in terms of the first and second. This then yields an ODE system with
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2 equations only. We briefly focus on deriving equations for the moment. Namely, for

yj(t) =
N∑
k=0

(
k

N

)j
pk(t) or Yj(t) =

N∑
k=0

kjpk(t), (5.1)

where N jyj = Yj with j = 1, 2, . . .. Deriving evolution equations for these is straightfor-

ward. For example, the derivative of the first moment, and in a similar way for all other

moments, can be given in function of higher-order moments upon using the Kolmogorov

equations, Eq. (KE). The derivation for the first moment is outlined below,

Ẏ1(t) =
N∑
k=0

kṗk =
N∑
k=0

k(ak−1pk−1 − (ak + ck)pk + ck+1pk+1)

=
N∑
k=0

(kak−1pk−1 − kakpk − kckpk + kck+1pk+1).

By changing the indices of the summation, plugging in the corresponding expressions

for the transition rates ak and ck, and taking into account that a−1 = cN+1 = 0 the

following expression holds,

Ẏ1(t) =
N∑
k=0

(τ(k + k2)(N − k)− τk2(N − k)− k2γ + (k2 − k)γ)pk.

Based on our notations, see Eq. (5.1), the equation above reduces to

Ẏ1(t) = τNY1 − τY2 − γY1. (5.2)

We emphasise that this was possible due to the special form of the ak coefficients, namely

that these are quadratic polynomials in k. Using a similar procedure, the equation for

the second moment Y2 can be easily computed and is given by

Ẏ2 = 2(τN − γ)Y2 − 2τY3 + (τN + γ)Y1 − τY2. (5.3)

Equations (5.2) & (5.3) can be recast in terms of the density dependent moments yjs

to give

ẏ1 = (τN − γ)y1 − τNy2, (5.4)

ẏ2 = 2(τN − γ)y2 − 2τNy3 +
1

N
((τN + γ)y1 − τNy2) . (5.5)

The above equations are not closed or self-contained since the second moment depends

on the third and an equation for this is also needed. It is easy to see that this depen-

dence of the moments on higher moments leads to an infinite but countable number of
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equations. Hence, a closure is needed and below we show that it is possible to express

Y3 as a function of Y1 and Y2. The first three moments of the binomial distribution can

be specified easily in terms of the two parameters and are as follows,

Y1 = np (5.6)

Y2 = np+ n(n− 1)p2 (5.7)

Y3 = np+ 3n(n− 1)p2 + n(n− 1)(n− 2)p3. (5.8)

Using Eqs. (5.6) & (5.7), n and p can be expressed in term of Y1 and Y2 as follows,

p = 1 + Y1 −
Y2
Y1
, n =

Y 2
1

Y1 + Y 2
1 − Y2

. (5.9)

Plugging the expressions for p and n, Eq. (5.9), into Eq. (5.8), the closure for the third

moment is found to be

Y3 =
2Y 2

2

Y1
− Y2 − Y1(Y2 − Y1).

This relation defines the new closure, and in terms of the density dependent moments

this is equivalent to

y3 =
2y22
y1
− y1y2 +

1

N
(y21 − y2).

Using the equation for the first moment, Eq. (5.4), the closure at the level of second

moment yields the following approximate equation

ẋ1 = (τN − γ)x1 − τNx21.

Using the equations for the first two moments, Eqs. (5.4) & (5.5), and the closure at

the level of the third moment yields

ẋ1 = (τN − γ)x1 − τNx2,

ẋ2 = 2(τN − γ)x2 − 2τNx3 +
((
τ +

γ

N

)
x1 − τx2

)
,

where

x3 =
2x22
x1
− x1x2 +

1

N
(x21 − x2).

Hence, we have derived two approximate system, with the first and second closed at

the level of the second and third moment, respectively. It is in general true that the

higher the moment at which the closure the more likely that the resulting approximate

model performs well. We note that we used x instead of y to highlight that the closed

systems, define in term of x, are only an approximation to the exact system given in

terms of y.
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The major challenge is generalising this to arbitrary networks is in finding a correct

functional form for the infection rates ak for any network in general. Kiss and Simon

[66] have shown that for homogenous random networks and based on the random mixing

argument ak can be written as

ak = τ(N − k)〈k〉 k

N − 1
,

where it is assumed that infectious nodes are distributed at random around susceptible

nodes. Our numerical experiments also show that such a formula also performs well

for Erdős-Rényi random networks. For other graphs no such immediate or intuitive

formula exists.

Shang in [104] proposed that ak in general could be written as

ak =
τk(N − k)〈k2〉
〈k〉(N − 1)

, ck = γk for k = 0, 1, . . . , N with a−1 = cN+1 = 0,

(5.10)

where the network is given in terms of a degree distribution with P (k) denoting the

probability that a randomly chosen node has degree k, with k = 0, 1, 2, . . . , N − 1 for a

network of size N . Moreover 〈k〉 =
∑
kP (k) and 〈k2〉 =

∑
k2P (k). While there is no

explicit explanation for this, we can heuristically explain how such a formula could be

arrived at. A newly infected node, under the assumption of random mixing will have

degree l with probability lP (l)/〈k〉. Hence, such a node has l onward connections and

one such links leads to a susceptible node with probability (N − k)/(N − 1). Putting

this together for a single node and averaging across all degrees gives∑
l

lP (l)

〈k〉
× l × N − k

N − 1
,

and upon multiplying this with k, the number of infectious nodes, yields

ak =
τk(N − k)〈k2〉
〈k〉(N − 1)

.

Shang then used the same procedure as above to derive a set of 2 ODEs for these

potentially more general infection term. His closed system yields

ẋ1(t) =

(
τ〈k2〉N
〈k〉(N − 1)

− γ
)
x1 −

τ〈k2〉N
〈k〉(N − 1)

x2, (5.11)

ẋ2(t) =

(
τ〈k2〉(2N − 1)

〈k〉(N − 1)
− 2γ

)
x2 −

2τ〈k2〉N
〈k〉(N − 1)

x3

+

(
τ〈k2〉

〈k〉(N − 1)
+
γ

N

)
x1, (5.12)
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where the same closure applies, namely

x3 =
2x22
x1
− x1x2 +

1

N
(x21 − x2).

5.3 Testing Shang’s generalisation

To carry out our tests we used the same networks and parameters as given in Shang’s

paper [104]. We note that some of these choices are not natural, as the proposed network

has a very low average degree, which in general makes it very difficult to obtain good

mean-field like approximation for stochastic processes unfolding on sparse networks.

Table 5.1: Network models with degrees in the range 1 ≤ k ≤ 20 for the truncated

power laws and k ∈ {0, 1, 2, . . .} for the networks with Poisson degree distributions.

Network Degree distribution 〈k〉 〈k2〉

Homogenous/regular P (4) = 1 4 16

Bimodal P (2) = P (4) = 0.5 3 10

Poisson P (k) = 〈k〉k e−〈k〉
k!

10 110

Truncated power law (a) P (k) = 0.673k−2e−k/30 2.0406 9.6613

Truncated power law (b) P (20− k) = 0.673k−2e−k/30 17.9635 328.1197

5.3.1 Full versus reduced/closed ODEs

Here we show that solving the master equations, Eq. (KE), directly with the more

general infection term, Eq. (5.10), gives good agreement with the solution of the

closed/reduced system, Eqs. (5.11-5.12). In Fig. 5.1, we show that for a range of

parameter values the agreement is excellent, and in line with what Shang found in

[104], which simply means that the assumption of a binomial distribution for the num-

ber of infected individuals at a given time is a valid approximation. However, it does

neither confirm nor invalidates the appropriateness of the choice of the new infection

rate ak, as proposed by Shang in [104]. Their appropriateness is tested via comparing

the output from the master and / or reduced equations to the average of stochastic

simulations and this is what we test next.
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Figure 5.1: Time evolution of the fraction infected (I/N) based on networks with

N = 1000 nodes, I0 = 10 initial infectious nodes chosen at random, γ = 1 and τ = 1.6.

Continuous lines represent the solution of the full equations, see Eq. (KE), while the

solution of reduced model is given by Eqs. (5.11-5.12) for (2) - homogeneous distribu-

tion P (4) = 1, (◦) - bimodal distribution P (2) = P (4) = 0.5 , (�) - Poisson distribution

with 〈k〉 = 10, and (.) - truncated power law distribution P (k) = 0.673k−2 exp(−k/30)

for 1 ≤ k ≤ 20. For all cases there is excellent agreement between the full and reduced

equations.

5.3.2 Comparison of Shang’s generalisation to simulation

We first generate networks with the prescribed degree distribution by using the config-

uration method. This is followed by implementing the epidemic as a continuous-time

Markov Chain on these networks. This is done by using a Gillespie-type approach

[42, 43]. In this case, inter event times are chosen from an exponential distribution

with a rate given by the sum of the rates of all possible events, followed by the choice

of an event at random but proportionally to its rate.

We now move on to the crucial comparison of output based on the closed system

to results from explicit stochastic network simulations. First, we validate our own

simulations for the range of networks suggested by Shang in [104], see Table 5.1 for

a summary. We use the pairwise [54], see Appendix 5.5.1, and effective-degree models

[70], see Appendix 5.5.2, and as shown in Figs. 5.2 and 5.3, the agreement with our

simulations is excellent. As pointed out before, the small disagreements are due to

the very small average degree of the networks used in [104]. A small average degree

is well-known to make the approximation with mean-field type models difficult. The
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Figure 5.2: Time evolution of the fraction infected (I/N) based on networks with

N = 1000 nodes, I0 = 10 initial infectious nodes chosen at random, γ = 1 and

τ = 1.6. Simulations are averaged over 20 different network realisations and 20 simu-

lations on each of these: homogeneous distribution P (4) = 1 (2), bimodal distribution

P (2) = P (4) = 0.5 (◦), Poisson distribution with 〈k〉 = 10 (�) and truncated power law

distribution P (k) = 0.673k−2 exp(−k/30) for 1 ≤ k ≤ 20 (.) (simulation: black dashed

line, effective degree model: green line, compact pairwise model: blue line). We note

that the effective degree model has not been implemented for networks with Poisson

distribution due to the degrees being theoretically unbounded.

same figures show that the agreement improves as the average degree increases, see

the case of networks with homogeneous and heterogeneous degree distributions with

〈k〉 = k = 4 and 〈k〉 = 10, respectively.

In Figs. 5.4 and 5.5, we plot the prevalence based on Shang’s closed model, Eqs.

(5.11-5.12), versus that from simulations. These plots show clearly that the agreement

is poor, except for heterogenous networks with relatively large average degree and for

networks with the inverted truncated power law distribution with very high degree as

shown in Fig. 5.5. Our tests significantly differ from Shang’s results and we infer that

Shang’s simulation method, which is not described in [104], is flawed or incorrectly

implemented. We point out that the results concerning the full master equation and its

reduction are correct and we were able to reproduce these. However, this alone neither

leads to nor guarantees agreement with results based on simulations. In all our tests,

and in line with Shang’s work, we also attempted to time shift the prevalence, see the

right panel in Fig. 5.4, but this did not lead to better agreement. Moreover, a close

visual inspection shows clearly that there are fundamental differences between Shang’s
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Figure 5.3: Time evolution of the fraction infected (I/N) based on networks with N =

1000 nodes, I0 = 10 initial infectious nodes chosen at random, γ = 1 and τ = 1.6. The

networks have truncated power law distribution P (k) = 0.673k−2 exp(−k/30) for 1 ≤
k ≤ 20 (.) and degree inverted distribution (/), i.e. P (20− k) = 0.673k−2 exp(−k/30).

Simulations are averaged over 20 different network realisations and 20 simulations on

each of these (simulation: black dashed line, effective degree model: gree line, compact

pairwise model: blue line).

closed model and simulation results and that no amount of time shifting will lead to

a better agreement. For example, the equilibrium prevalence is very different and this

again is in stark disagreement with Shang’s results.

5.4 Discussion

It is our view that identifying general infectious terms ak remains a major challenge

as this is highly dependent on the structure of the network, parameters of the disease

dynamics, and more importantly on the correlations that build up during the spreading

process. It is unfortunate that this generalisation does not work and, as we showed

in [84], it is possible to try and derive semi-analytical or numerical approximations for

the infection rates. We conclude that Shang’s simulation method is flawed and that

Shang’s generalisation is not valid. We look forward to any clarifications.
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Figure 5.4: Time evolution of the fraction infected (I/N) based on networks with

N = 1000 nodes, I0 = 10 initial infectious nodes chosen at random, γ = 1 and

τ = 1.6. Simulations are averaged over 20 different network realisations and 20 simu-

lations on each of these: homogeneous distribution P (4) = 1 (2), bimodal distribution

P (2) = P (4) = 0.5 (◦), Poisson distribution with 〈k〉 = 10 (�) and truncated power

law distribution P (k) = 0.673k−2 exp(−k/30) for 1 ≤ k ≤ 20 (.). Simulations are black

dashed lines and results based on Shang’s model, see Eqs. (5.11-5.12), are given by the

red lines.



129

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Iteration time
I/

N

Figure 5.5: Time evolution of the fraction infected (I/N) based on networks with N =

1000 nodes, I0 = 10 initial infectious nodes chosen at random, γ = 1 and τ = 1.6. The

networks have truncated power law distribution P (k) = 0.673k−2 exp(−k/30) for 1 ≤
k ≤ 20 (.) and degree inverted distribution (/), i.e. P (20− k) = 0.673k−2 exp(−k/30).

Simulations are averaged over 20 different network realisations and 20 simulations on

each of these. Simulations are black dashed lines and results based on Shang’s model,

see Eqs. (5.11-5.12), are given by red lines.
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5.5 Appendices

5.5.1 Appendix A: Compact pairwise model

House and Keeling [54] have successfully extended the general pairwise model of Eames

and Kelling [33] to heterogeneous networks and for both SIR and SIS models. The

reduced/compact pairwise SIS model is given by:

[Ṡk] = γ([k]− [Sk])− τ [SI]
k[Sk]∑
l l[Sl]

,

[ṠI] = τ [SI]
(∑

k

k[Sk]− 2[SI]
)∑

l l(l − 1)[Sl]

(
∑

mm[Sm])2
− (τ + γ)[SI]

+γ
(∑

k

k([k]− [Sk])− [SI]
)
,

where [k] is the number of nodes of degree k. This system results from the standard

pairwise model of Eames and Kelling [33] by using the following more compact closure

[AkB] ≈ [AB]
k[Ak]∑
l l[Al]

.

We note that [Ak] stands for the expected number of nodes of degree k across the whole

network in state A, [AkB] =
∑

l[AkBl], where [AkBl] represents the number of links of

type A−B when A has degree k and B has degree l. τ is the transmission rate and γ

is the recovery rate.

5.5.2 Appendix B: Effective degree model

Lindquist et al. [70] formulated the SIS mean-field model base on the effective degree

approach. This model is based on keeping track of the expected number of susceptible

and infected nodes with all possible neighbourhood combinations, Ssi and Isi, respec-

tively. Ssi represents the expected number of susceptible nodes that have s connections

to other susceptible nodes and i connections to infected nodes, with similar argument

for Isi.

Accounting for all possible transitions, the equations as formulated by Lindquist et
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al. [70] are:

Śsi = −τiSsi + γIsi + γ
[
(i+ 1)Ss−1,i+1 − iSsi

]

+

∑M
k=1

∑
j+l=k τjlSjl∑M

k=1

∑
j+l=k jSjl

[
(s+ 1)Ss+1,i−1 − sSsi

]
,

Ísi = τiSsi − γIsi + γ
[
(i+ 1)Is−1,i+1 − iIsi

]

+

∑M
k=1

∑
j+l=k τ l

2Sjl∑M
k=1

∑
j+l=k jIjl

[
(s+ 1)Is+1,i−1 − sIsi

]
,

for {(s, i) : s ≥ 0, i ≥ 0, s + i ≤ M}, where M is the maximum node degree in the

network.



132

Chapter 6

Discussion

This thesis presented work from the discipline of mathematical epidemiology and fo-

cused on modelling the spread of disease on networks, specifically for weighted and

dynamic networks. In this final chapter, we conclude with a discussion of some of the

results and present further extensions or future research ideas, as and when appropriate.

In Chapter 2, with the research paper titled “A Class of Pairwise Models for Epi-

demic Dynamics on Weighted Networks”, we focused mainly on SIS and SIR epidemic

models. These processes were run on weighted networks using pairwise approximation

models [58, 94] and comparisons were made against individual-based network simula-

tions. To evaluate the impact of different weight distributions on epidemic thresholds

and dynamics, we investigated a simple weighted model where edges have random

weights on an undirected, homogeneous network. For the SIR model, the basic re-

productive ratio R0 is derived based on both the network and pairwise models, by

using the next generation matrix approach [5] and by using the approach introduced

by Keeling [58] and Eames [32], respectively. The result of the study has shown an

excellent agreement between simulation and pairwise models. The agreement remains

valid for both SIS and SIR dynamics. Disagreement only occurs for extreme weight

distributions, and we hypothesise that this is mainly due to the network becoming

more modular with islands of nodes connected by links of low weight being bridged

together by highly-weighted links. An analysis of R0 for different weight distributions

has illustrated that more heterogeneity across the weights leads to lower R0, where

average weight is constant. Further extensions of this study may consider the anal-

ysis of correlations between link weight and node degree. This direction has already

been explored in the context of classic compartmental mean-field models based on node

degree [55, 88]. Given that pairwise models extend to heterogeneous networks, such
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an avenue can be further explored to include different types of correlations or other

network-dependent weight distributions. Another theoretically interesting and practi-

cally important aspect is the consideration of different types of time delays, representing

latency or temporary immunity [13], and the analysis of their effects on the dynamics

of epidemics on weighted networks.

The simplest extensions to the distribution of weights are considered in Chapter 3

with the research paper titled “Pairwise and Edge-based Models of Epidemic Dynam-

ics on Correlated Weighted Networks”. Namely, we looked at SIR disease dynamics

on heterogeneous weighted networks where the weights are randomly distributed and

dependent on nodal degree, revealing the impact of different weight distributions and

the correlations between link-weight and degree on epidemic dynamics. Our pairwise

model in Chapter 3 [95] and edge-based compartmental model [78, 79], as well as sim-

ulations, are simultaneously developed and analysed. In this work, we assume that the

link weight is inversely proportional to the degrees of the nodes that it connects. This

model has been compared to two null models where for both the network topology re-

mains the same and only the distribution of the weights changes. First, we considered

the case where the original weights are ‘lifted off’ the edges and redistributed at ran-

dom, thus making weights and nodal degrees independent, and secondly, we considered

networks with all weights equal. The numerical results describing the evolution of the

disease show remarkable agreement between the pairwise, edge-based compartmental

and simulation models for all cases considered. The results show that the negative

correlation between weights and nodal degrees can negate the important role played

by highly connected nodes in standard epidemic models on non-weighted graphs, and

that weight heterogeneity but with the same overall average or total weight, reduces the

value of R0. We furthermore measured the early growth rate, final epidemic size and R0.

The relation between final epidemic size and R0 is determined by the model structure

and, in our case study, the same R0 value leads to the biggest final epidemic size on

degree-dependent weighted networks. Finally, we illustrate that two seemingly different

modelling approaches, namely the pairwise and the edge-based compartmental models,

operate on similar assumptions and it is possible to formally link the two. Future work

may now focus [77] on presenting detailed arguments to show the relationship between

these models and other models for SIR epidemics on networks. We believe that in a

model ‘rich’ environment, this part of our study and future work, as well as of others

in the community [54], are important in trying to reconcile as many different modelling



134

approaches as possible and to identify model hierarchies, as well as to pinpoint model

efficiencies in terms of generating analytical or semi-analytical results. Our work on

the edge-based compartmental model focuses purely on SIR dynamics, since there is

no equivalent for SIS dynamics yet. Future work should therefore aim at testing if

edge-based compartmental models can be extended to SIS dynamics. If this turns out

to be possible, it may lead to a model which is more amenable to deriving rigorous

analytical results.

The papers associated with Chapters 2 and 3 focus on weighted and static networks.

This led us to the interesting problem of increasing model realism by considering dy-

namic networks, where links change over time. In Chapter 4 with the research paper

titled “Impact of constrained rewiring on network structure and node dynamics”, we

consider epidemic dynamics on dynamic networks. We explore the effect of spatially

constrained rewiring on an SIS epidemic unfolding on an adaptive network. Specifi-

cally, the dynamics of the network is achieved by the assumption that susceptible nodes

break links with infected nodes independently of distance, and reconnect at random to

susceptible nodes available within a given radius R. Here, we assumed that nodes are

placed at random on a square of length L with periodic boundary conditions and unit

density. Two different starting networks were used and analysed, namely homogeneous

and heterogeneous Erdős-Rényi networks. Following Gross et al. [45] a step-by-step

approach is taken to investigate the dynamics of the network structure and disease dy-

namics on the network itself. We began by studying network dynamics in the absence

of disease dynamics, followed by looking at the dynamics where there is dependence on

individual statuses but these statuses do not change over time, and finally we study

a coupling of both network dynamics and disease dynamics. In all models, a range

of radii R, giving circular neighbourhoods within which to rewire, is considered and

shown to provide the means to control epidemic outbreaks. We are able to give an-

alytic and semi-analytic formulas for the value of clustering achieved in the network.

These showed excellent agreement with simulations and we have revealed that it is

possible to generate networks with the same mean path length and the same clustering

but significantly different distribution of real link lengths. This needs further investi-

gation, possibly using more complex node dynamics to reveal how subtle differences in

the network structure may impact on the outcome of dynamical processes supported by

the network. Further results provided analytical formulas for the degree distributions

of susceptible and infected nodes which again showed good agreement with simulation
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results. We were also able to show that the resulting networks, in certain regimes, are

equivalent to the well-known random geometric graphs. Finally, we have shown that

even constrained rewiring can serve as a potent control measure. We highlighted that

the expected number of nodes in a typical local area is a key parameter which influ-

ences the network dynamics and can determine whether a disease dies out or becomes

endemic. Extensions to the methodology presented in this study include considering

other forms of constrained rewiring, e.g., network models where locality is not just

defined in terms of spatial distance but possibly some more abstract, general metric,

or community, and understanding how this impacts on the emerging network structure

and epidemic or processes other than epidemics. Moreover, future work should consider

the rewiring process on various networks, such as scale-free networks which are closer

to the degree distributions resulting from some more realistic networks.

In Chapter 5, with the research paper titled “Comment on “A BINOMIAL

MOMENT APPROXIMATION SCHEME FOR EPIDEMIC SPREADING IN NET-

WORKS” in U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 2, 2014 ”, we provide an extensive

test and comment on a generalisation proposed by Shang in [104]. Shang presented

a binomial moment approximation model for the study of SIS dynamics on networks

with a variety of degree distributions, and it was claimed that numerical results were

a good approximation for epidemics spreading on a range of configuration model net-

works [104]. However, our tests show that the proposed generalisation performs poorly

for all networks proposed by Shang, except for heterogenous networks with high average

degree. To support this statement, we also validated our simulation results by using the

well-known pairwise [54] and effective degree models [70]. We conclude that Shang’s

simulation method is flawed and that Shang’s generalisation is not valid.

Although both SIS and SIR dynamics are studied in this thesis, any future research

should be based around understanding how the SIS dynamics can be best approximated

using mean-field type models. Whilst these issues are well understood for an SIR epi-

demic, there remain many open questions for SIS disease dynamics. A potential good

start could be to compare the performance of models such as (i) the compact pairwise

model [54, 108], (ii) the effective degree model [70], (iii) the individual-based model

proposed by Mieghem et al. [74], and (iv) the edge-based compartmental model [78]

in approximating results based on individual-based stochastic network simulations. By

investigating all these candidate models and quantifying their agreement with simula-

tions, we could gain a better understanding of when and how disagreements arise and,
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this in turn, may for example help to understand whether edge-based compartmental

models can be extended to SIS dynamics. Further important extensions can be made

for dynamic networks, where oscillations predicted by mean-field models are notori-

ously difficult to match by simulations. This is mainly due to the fact that the average

of many individual-based stochastic network simulations can mask the true oscillatory

behaviour. However, as shown in this thesis, model extensions have to be made with

caution, as accounting for more complexity usually results in more complicated models

which are more difficult to analyse. This can in turn then mask and preclude a deeper

understanding.
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