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Abstract

Cell motility is closely linked to many important physiological and pathological
events such as the immune response, wound healing, tissue differentiation, embryo-
genesis, inflammation, tumour invasion and metastasis. Understanding the ability
of cells to alter their shape, deform and migrate is of vital importance in many
biological studies.

The rapid development in microscopy and imaging techniques has generated
a huge amount of discrete data on migrating cells in vivo and in vitro. A key
challenge is the use of discrete experimental observations to develop novel methods
and algorithms that track cells and construct continuous trajectories of their motion
as well as characterising key geometric quantities associated with cell migration.
Therefore, in this work using robust numerical tools we focus on proposing and
implementing mathematical methodologies for cell movement and apply them to
model neutrophil cell migration.

We derive and implement a computational framework that encompasses mod-
elling of cell motility and cell tracking based on phase field and optimal control
theory. The cell membrane is represented by an evolving curve and approximated
by a diffuse interface; while the motion of the cell is driven by a force balance acting
normal on the cell membrane. This approach allows us to characterise the locus of
the centroid cell-surface position.

In addition, we describe a surface partial differential equation framework that
can be coupled with the phase-field framework, thereby offering a wholistic approach
for modelling biochemical processes and biomechanics properties associated with cell
migration.
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Chapter 1

Introduction

1.1 General overview

Cell migration is a fundamental process in cell biology and is tightly linked to many

important physiological and pathological events (Le Clainche and Carlier [2008])

such as the immune response (Ridley et al. [2003]), wound healing (Kadirkamanathan

et al. [2012]), tissue differentiation (Xue et al. [2010]), metastasis (Wolf et al. [2003];

Fletcher and Theriot [2004]), embryogenesis, inflammation and tumour invasion

(Bray [2001]). Consequently, failure of cells to migrate, or inappropriate migratory

movements, can result in severe defects or life-threatening scenarios such as defective

wound repair, tumour dissemination or autoimmune diseases (Horwitz and Webb

[2003]). Thus, there is an imperative need of studying the mechanisms that are

linked with these processes.

In addition, experimental advances provide techniques to observe migrating cells

both in vivo and in vitro. Inferring dynamic quantities from this static data is an

important and challenging task that has many applications in unravelling the mech-

anisms related to cell motility. On the other hand, a major focus of current research

is the derivation of mathematical models for cell migration based on physical prin-

ciples (Neilson et al. [2010]; Ziebert et al. [2011]; Neilson et al. [2011a]; Neilson et al.

[2011b]; Elliott et al. [2012]; Shao et al. [2012]; Marth and Voigt [2013]). Croft et al.

[2013] investigated fitting parameters in models for cell motility to experimental

image data sets of migrating cells. The available observations included both the po-

sitions of the cells and the concentrations of cell-resident proteins, which are related
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to cell motility. Despite this, very little research has been focused on incorporating

these mathematical modelling advances into appropriate cell tracking algorithms.

Cell tracking refers to the non-invasive imaging of cells, that have been labelled,

with the aid of fluorescence in vivo microscopy, in an effort to monitor their location

and analyse their behaviour (Maška et al. [2014]). The study of cell migration

and morphology is one of the main areas for biomedical research as through their

understanding it may lead to prevention or even the cure of diseases (Zimmer et al.

[2006]). The main difficulty in that effort emanates from the vast available data as

well as due to the nature of the cells or particles which appear in large numbers and

vary in density (Meijering et al. [2012]). Thus, computational tools are necessary in

order to efficiently analyse the humongous wealth of experimental data available. An

excellent example is the better interpretation of chemotaxis due to advance image

processing algorithms that permit the pseudopod tracking and detection (Xiong and

Iglesias [2010]; Bosgraaf and Van Haastert [2010]). Similar computerised methods

are already being used for cell tracking requiring the synergy of robust algorithms.

We refer the reader to Zimmer et al. [2006], Meijering et al. [2009], Hand et al. [2009],

Xiong and Iglesias [2010] and Meijering et al. [2012] for a literature review comparing

and presenting the main features of the most commonly software packages for cell

tracking that are being used by experimentalists.

In general, cell tracking consists of three main steps (Meijering et al. [2012]):

1. Segmentation: In order to track the cells from static imaging data, the cells

must be first determined and then located. The process during which the

cells in an image are separated from the background is known as segmentation

(Meijering et al. [2009]). The most commonly used methods for cell segment-

ation include thresholding, template matching and deformable models among

others (Miura [2005]; Hand et al. [2009]; Meijering et al. [2009]; Xiong and Ig-

lesias [2010]; Meijering et al. [2012]). In “thresholding” by setting an intensity

threshold value, the image is separated into two regions; regions above this

intensity threshold value are considered as foreground, whereas those below

the predefined value are classified as background (Hand et al. [2009]; Meijering

et al. [2009]). Another type of “thresholding” is the “hysteresis” in which a

dual “thresholding” operation is performed on an image using two threshold
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values (lower and upper) (Henry et al. [2013b]). The “template matching”

method fits predetermined intensity templates to the image data. However,

this technique does not work in cases where the cell-shape changes over the

time (Meijering et al. [2009]; Meijering et al. [2012]). Finally, the use of “de-

formable models” for cell segmentation has gathered, in recent years a huge

amount of interest from theoreticians and experimentalists. The cell mem-

brane is defined either explicitly as a parametric contour model or implicitly

as the zero level set of a scalar function. The latter provides a more powerful

approach that allows for topological changes such as cell division. After the

initialisation of the contour around the object of interest, deformable models

are evolved to minimise a predefined energy functional. This energy functional

incorporates terms related to the image (such as intensity) and the segmented

object (such as shape’s curvature and/or surface area) (Miura [2005]; Zim-

mer et al. [2006]; Meijering et al. [2009]; Tyson et al. [2010]). We refer to

Miura [2005], Hand et al. [2009] and Meijering et al. [2009] for a review and

comparison of the most prevalent methods for cell segmentation.

2. Matching and Linking: The cells segmented in the first step must then be as-

sociated from frame to frame (note this is only relevant in the case of multiple

cell image data sets) such that where possible (in practice cells may disappear

or spontaneously appear in images) there is a one-to-one map that uniquely

associates individual cells from one frame to the next. The simplest and fre-

quently used approach is the technique that identifies the spatially “nearest”

cell in the next frame (Meijering et al. [2009]; Meijering et al. [2012]). In

most of the cases the spatial distance measures the distance between the cell

centroid positions in the successive frames. However, sometimes the “nearest”

may refer to other shape features, apart from the spatial distance. These

features could include the area, orientation, perimeter or the cell’s boundary

curvature (Meijering et al. [2009]; Meijering et al. [2012]). Another technique

besides the “nearest” is the one which predicts the next position using areas

of probability (Reyes-Aldasoro et al. [2008]). Alternatively, some of the tech-

niques employed for the cell segmentation solve the linking problem implicitly.

We refer to Miura [2005] and Hand et al. [2009] for more details related to cell
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association from one frame to the next.

3. Tracking measures: The direct result of applying tracking methodologies is a

sequence of coordinates, indicating the locomotion of the cell at every time

step. Certainly, one of the most exciting outcome is the computation of bio-

logically meaningful quantities derived from the associated segmented static

cells (Meijering et al. [2012]). These dynamic data include measures related

to the motility and the morphology of the moving cells. Parameters that are

associated with the quantification of the cell migration behaviour consist of

the construction of the cell trajectory (mostly the cell centroid), the persist-

ence length, the chemotactic index, the mean squared displacement and the

cell speed (magnitude of the velocity) (Beltman et al. [2009]; Meijering et al.

[2012]; Cheng et al. [2007]). Furthermore, quantities, among others, that meas-

ure the size and the complexity of the cell shape include volume, surface area

and sphericity (Meijering et al. [2012]; Reyes-Aldasoro et al. [2009]).

1.2 Objective of this study

The objective of this thesis is to serve as a useful first step in the development of

whole cell tracking algorithms which track the morphology of whole the cell rather

than particle tracking in which particles such as the cell centroid or cell resident

proteins or (macro-)molecules are tracked (Henry et al. [2013b]). The underlying

model for the cell evolution in the proposed algorithms, is based on physical prin-

ciples, rather than purely geometric considerations, e.g. equidistribution of vertices

(Dormann et al. [2002]; Bosgraaf et al. [2009]). In this setting, one hopes to attain

estimates of motility-related features such as trajectories, velocities, confinement

ratios, etc., which reflect the physics underlying the model.

We stress the fact that the tracking procedure we propose allows us to incorpor-

ate physically important aspects of cell migration by including, for example, volume

conservation in the model for the cell evolution. This is motivated by the observation

that, for many cells, while the surface area of the cell membrane may change signi-

ficantly during migration the volume enclosed by the cell remains roughly constant

(Shao et al. [2010]).
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One feature of the existing cell tracking methods is that the trajectories they gen-

erate are not physical in nature, they are designed rather with the goal of achieving

nice geometric properties. Our approach differs in that we start with a model de-

rived from physical principles and it is this model for the evolution that drives the

tracking algorithm. In this sense the method that we will propose later in this thesis,

is similar in spirit to the parameter identification procedure described in Croft et al.

[2013] as in both studies the goal may be regarded as fitting a mathematical model

to experimental image data sets.

In this thesis we will largely neglect the segmentation step which is associated

with the majority of the cell tracking algorithms. We assume either that we have

segmented image data to work with or that the image data is of sufficient quality that

the contrast between the cell and the background is clear and a simple thresholding

step is sufficient to label the different cells. In the case of segmented image data,

we assume this data consists of closed surfaces (or curves in 2d) that describe the

boundaries of each individual cell.

The novelty and significance of the proposed algorithm lies in the fact that it

is, to our best knowledge, the first study that seeks to bring together research at

the forefront of modelling cell migration with cell tracking. This collaboration uses

aspects associated with the bio-physics of the cells, such as volume conservation

and the resistance of the cell boundary to stretching, and the location of the cell

throughout the movement. We derive and implement a computational framework

that encompasses modelling of cell motility and cell tracking based on phase field

and optimal control theory. The evolution of the cell membrane is modelled as being

governed by volume conserved mean curvature flow with forcing (we refer to (4.5)

for more details).

This evolution law is a simplification of a large class of models that arise in the

modelling of cell motility (Neilson et al. [2010]; Neilson et al. [2011a]; Neilson et al.

[2011b]; Elliott et al. [2012]). The forcing function that enters the evolution law is

the main driver of the directed migration and serving as a control variable for the

cell-surface evolution. The model we present is phenomenological and hence it is

difficult to directly relate this control function to biophysical processes. However,

our numerical findings indicate that one interpretation of this forcing function is



1.2 Objective of this study 6

that it accounts for both protrusive and contractile forces which are associated with

the cell movement.

As we mentioned earlier we formulate this problem within the phase-field frame-

work. The phase-field method is a powerful computational method that can handle

complex topological changes. Phase-field modelling has been used in a broad range

of applications in material science (Steinbach [2009]), fluid dynamics (Anderson

et al. [1998]), biology (Du et al. [2005]) and in solving phase transition problems. In

addition, the phase-field method has been applied to a wide range of applications

related to cell motility (e.g., Ziebert et al. [2011]; Marth and Voigt [2013]). Within

this phase-field formulation, the moving cell membrane Γ(t) is represented by an

evolving thin interfacial layer involving a small parameter ε related to its thickness

(we refer to the introduction of Chapter 4 for more details). The evolution of the cell

membrane can be approximated by a phase-field model which is a driven Allen-Cahn

(Evans et al. [1992]) equation with forcing.

Then, we formulate the cell tracking problem of fitting a mathematical model for

cell motility to the experimental data. This problem can be considered as a partial

differential equation constrained optimal control problem. We define the objective

functional (4.4) which has to be minimised for a space and time control function.

The goal is to drive the cell-surface using the control function, in such way that

the position of the cell membrane at the final time t = T is close as possible to the

desired given position. By adopting an optimal control approach (see §4.2.3) for the

solution of the minimisation problem, we formally derive the first order necessary

conditions ([Tröltzsch, 2010]). The system of the state and adjoint equations is

solved by using the finite element method (Deckelnick et al. [2005]), and the control

variable is computed by a gradient update scheme (we refer to §4.3 for more details

regarding the derivation of the state and adjoint equations which are involved in

this problem and the gradient update scheme).

This study has the intention to recover physically meaningful dynamic data

from static imaging data sets. We hope that this algorithm will spur future studies

into incorporating advances in the modelling of cell migration into cell tracking

algorithms. Such algorithms could be considered as an ad-hoc approach to cell

tracking for recovering trajectories and velocities from discrete image data for both
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experimentalists and theoreticians.

In addition to the above study, this thesis will present a candidate numerical

method to tackle problems that will encompass the modelling of cell motility and cell

tracking. By defining the surface geometry of migrating cells from the cell tracking

algorithm at each time step, we can propose innovative mathematical models for

cell motility. Here, we will introduce the surface finite element method (Dziuk and

Elliott [2007b]), that may allow us to solve efficiently and robustly such problems.

We will apply this methodology to solve partial differential equations, specifically

those of reaction-diffusion type posed on stationary surfaces.

Such equations have been used widely at cell motility studies and take into ac-

count several interacting chemical species, that are associated with the cell motion

and live on the cell membrane. In addition, their solutions have been used to drive

mechanical models of the protrusive and retractive forces exerted on the cell bound-

ary (e.g., Neilson et al. [2010]; Ziebert et al. [2011]; Neilson et al. [2011a]; Neilson

et al. [2011b]; Elliott et al. [2012]). Moreover, these solutions can be coupled within

the evolution law that it has been used to drive the cell tracking algorithm. They

can be considered as an additional force that it is associated with the concentrations

of bulk and/or surface resident chemical species.

1.3 Materials

The use of animal models represent an important tool for the biomedical researchers

in order to investigate the pathological procedures of human diseases and to promote

new therapeutic strategies. An example of this collaboration is the zebrafish Danio

rerio (Lieschke and Currie [2007]). The zebrafish known as Danio rerio, is a small

tropical freshwater fish, named for the five uniform, pigmented, horizontal blue

stripes on the side of its body, all of which extend until the end of its caudal fin (see

Figure 1.1) (Ganguly et al. [2012]; Spence et al. [2008]).

Neutrophil migration as observed in zebrafish larvae has become a popular model

to study cellular inflammatory response. This is mainly due to the transparent

nature of the zebrafish in the developmental stage and the capacity of genetic ma-

nipulation which allows the design of experiments to reproduce in vivo conditions of
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inflammation similar to those that humans may experience (Renshaw et al. [2006];

Henry et al. [2013a]). Regarding the former, with the use of green fluorescent protein

(GFP) experimentalists are able to label neutrophils and track their movements by

video microscopy (Kadirkamanathan et al. [2012]).

Figure 1.1: Adult zebrafish Danio rerio. Figure is taken from the website http:

//en.wikipedia.org/wiki/Zebrafish.

Within the immune system neutrophils, both in humans and animals, play a

vital role as they represent a daily ally against infectious diseases (Reyes-Aldasoro

et al. [2009]). Compared to other migrating cells, one of their main attribute is

the fast response to regions where there is an infection or tissue injury (Elks et al.

[2011]; Holmes et al. [2012]). In addition, neutrophils have the ability to sense

and detect external chemical messengers called “chemoattractants”, and guided by

their chemical cue they migrate towards the area in need (Nathan [2006]). Once

neutrophils come in contact with pathogens they become “activated”. One early

sign of this “activation” could be considered the deformation of their shape, though

this relation is still an open research topic (Reyes-Aldasoro et al. [2009]). As a

result, the importance of understanding neutrophil’s movement and behaviour for

the defence against disease, as well as for the possible harmful outcome in cases of

improper activation becomes obvious (Edwards [2005]; Reyes-Aldasoro et al. [2009]).

In this thesis we are using biological data from neutrophils as observed in zebrafish

Danio rerio larvae. In particular, a tail fin transection (see Figure 1.2) was per-

formed at 3 days post fertilisation and images were captured using an UltraVIEW-

VoX spinning disk confocal microscope (PerkinElmer Life and Analytical Sciences)

(Renshaw et al. [2006]). Following this transection an inflammatory response was

elicited, evoking the migration of neutrophils to the site of injury. We selected eight

http://en.wikipedia.org/wiki/Zebrafish
http://en.wikipedia.org/wiki/Zebrafish
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observations of the migration of a single neutrophil and we are taking cross-sections

of the three-dimensional data, as shown in Figure 1.3. The orientation is such that

tail fin is to the right of the neutrophils. This dataset of neutrophils will be used to

that there was an unusually low number of cell tracks (*20 tracks),
which appeared to be insufficient for driving the estimation
framework (see Figure 2, Fish 10). These data were included in the
analysis for completeness, to avoid introducing unintentional bias
into the data analysis. Taken as an ensemble, the results provide
consistent support for the field inference framework and the
assumptions upon which it was constructed.

The chemoattractant field inference framework was derived
from the assumption that cell velocity was proportional to the
gradient of the field, which is a relationship described in the
Keller-Segel model of chemotaxis [25,26]. The proportionality
model used here may be a simplification of the true complexity of
the neutrophil movement-chemoattractant gradient relationship,
however, this framework could be extended and modified in the
future under modified assumptions, whilst retaining the funda-
mental approach. For instance, the assumption of a linear
relationship between chemottractant gradient and velocity might
benefit from refining at the upper extremes of the gradient range,
where we might expect a nonlinear relationship, such as a
saturation in velocity, to more accurately reflect neutrophil action.
A key aspect of the work presented here is the initial development
of a data-driven inference framework, which builds on relation-
ships expressed through existing biological models, and demon-
strates how observations of cell movement can be used to estimate
the hidden field driving those cell movements.

The near transparency of the zebrafish larva, along with the
ability to use genetic reporters of cell type and function, has led to
the discovery of Hydrogen Peroxide gradients during wound
healing [22]. These gradients are important in recruiting the first
wave of neutrophils, but rapidly decline. It is striking how similar
those gradients are qualitatively to those inferred here. As
technology advances, it will become increasingly important to
know to what degree the observed gradients match the gradient to
which the neutrophils are responding, which we suggest might be
achieved by comparing observations of signalling agents to the

chemoattractant field inferred using the framework proposed here.
In this investigation we have demonstrated that the modelling
framework reflects neutrophil action in vitro. In future experiments,
we hope to test the applicability of these approaches for known
gradients in vivo, which more accurately reflects the complex
environments neutrophils encounter in human disease settings.

We have presented the first step in visualising a static
chemotactic gradient in vivo, and future advances will seek to
address the relative importance of different chemotactic gradients
as they evolve over time. Niethammer et al. [22] also show the
evolution of the hydrogen peroxide gradient over time, and a key
area for extending our work will be timelapse experiments that will
provide analogous insight into the dynamic behaviour of the
inferred chemoattractant field. This will require a description of
the evolution of the spatial field over time using data-driven
spatiotemporal identification techniques that are suitable for
application to linear [34,35] and possibly nonlinear [36–38]
dynamic systems.

Furthermore, our analysis has begun as a two dimensional
system, aided by the properties of the zebrafish fin, but future work
in this system will allow analysis to be extended to three
dimensions. This will be a particularly important advance if this
is to be extended to the emerging field of in vivo inflammation
imaging in mouse [39].

In summary, the results presented here demonstrate the
effectiveness of a novel and simple-to-implement chemoattractant
field inference framework, which enables visualisation of the
inferred field driving neutrophil movements: a quantity that is not
directly measurable.

Methods

Ethics Statement
All animal work was performed according to guidelines and

legislation set out in UK law in the Animals (Scientific Procedures)

Figure 1. Zebrafish experimental setup and neutrophil analysis procedure. A: Zebrafish larva from the transgenic line, Tg(mpx:GFP)i114.
Neutrophils are visualised by excitation of green fluorescent protein, as previously described (Renshaw et al., 2006). The zebrafish were prepared by
transection of the tailfin at the site indicated to elicit an inflammatory response, which caused recruitment of the neutrophils to the site of injury. B:
The chemoattractant field inference framework. Firstly, images of neutrophil recruitment to the zebrafish wound site were acquired by video
microscopy. The neutrophil centroid positions were then obtained from a segmentation and tracking algorithm. Velocities of the neutrophils were
estimated from the neutrophil centroid tracks using a Kalman smoother and lastly, the velocity estimates were used in the inference of the
chemoattractant field.
doi:10.1371/journal.pone.0035182.g001

Data-Driven Inference of the Chemoattractant Field

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e35182

Figure 1.2: Neutrophils as observed in zebrafish Danio rerio larvae are visible by

using green fluorescent protein (GFP). The picture is taken from Kadirkamanathan

et al. [2012].

address the challenging task of validating the proposed cell tracking algorithm. We

will present a mathematical approach for cell tracking, in which we formulate the

neutrophil tracking problem as an inverse problem for fitting a mathematical model

for cell motility to this experimental imaging data. Once the continuous trajectory

of the migrating neutrophil is established, quantitative measures that are related to

the motility and the morphology of the neutrophils will be extracted.
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Figure 1.3: Experimental data representing a discrete set of the locations of the

cell membrane corresponding to the migration of a single neutrophil as observed in

zebrafish Danio rerio larvae (Henry et al. [2013b]).
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1.4 Outline of the thesis

Below we outline the structure of our thesis. In Chapter 2 we formulate and solve

partial differential equations of reaction-diffusion type on stationary surfaces using

the surface finite element method (Dziuk and Elliott [2007b]). Here, we are setting

foundations to couple in the future the cell tracking algorithm to reaction-diffusion

models posed on the cell surface that describe the spatiotemporal behaviour of

chemical species resident on the cell surface. We start by stating preliminaries and

introducing the notation for the surface calculus that will be used throughout this

chapter. Furthermore, in order to demonstrate the applicability and the generality of

the surface finite element method, we present numerical simulations on two different

surfaces: a sphere of radius one and the surface of a neutrophil from the zebrafish

Danio rerio larvae.

In Chapter 3 we employ an interpolation method in order to propose a simple cell

tracking algorithm. By using cubic splines, a series of intermediate cell boundaries

are generated that describe and track the cell evolution. Although there is no

physical evolution law associated with cubic interpolation, nevertheless it is one

way of obtaining continuous trajectories of the cell.

In Chapter 4 we present a mathematical approach for cell tracking, where only

the position of the cell, specifically the cell membrane, at a series of discrete times

is available and no further biological information is given. We derive and implement

a computational framework that encompasses modelling of cell motility and cell

tracking based on phase field and optimal control theory. The cell membrane is

represented by an evolving curve and approximated by a diffuse interface; while

the motion of the cell is driven by a force balance equation. Thus, controlling the

evolution of the interface becomes a standard distributed control problem.

The novelty of the method is that the tracking algorithm is driven by a model

for the motion of the cell, based on physical principles for cell migration. Then we

formulate and solve an inverse problem, which takes the form of a partial differential

equation constrained optimisation problem, for fitting the model to the experimental

observations.

Finally, we present numerical results that validate our methodology. In order to

recover the whole cell morphologies through time, we implement our algorithm using
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synthetic biological data. In addition, we apply the proposed algorithm on multiple

synthetic cell data and discuss some attractive features of our methodology that are

associated with the segmentation and matching problem. The chapter finishes by

discussing some of the limitations of our algorithm and proposing future research

directions.

Chapter 5 contains an application of the optimal control algorithm to experi-

mental data on the migration of neutrophils as observed in zebrafish Danio rerio

larvae. In order to be able to contrast this methodology, we compare the numerical

results with those obtained in Chapter 3, based on cubic interpolation.

The thesis is completed in Chapter 6, where we summarise the main results of our

work. It is in this chapter that we discuss the implications of our work. Furthermore,

we discuss possible research extensions associated with the cell tracking.

1.5 Technical details

The implementation of the numerical schemes in Chapters 2 and 4 were carried

out by using the package of ALBERTA-2.0 (Schmidt and Siebert [2005]). This is a

flexible and efficient finite element toolbox written in C programming language. Its

main feature is the availability of data structures for easy assembly of a discretised

problem. In addition, all the graphics in these chapters were produced using the

visualisation application ParaView (Henderson et al. [2004]).

Matlab version 7.13.0 (R2011b) has been employed for the implementation of the

computational methods that we executed in Chapter 3. Simulations were performed

on a Linux machine with operating system CentOS, with an Intel Xeon at 1.9 GHz

and 2Gb of RAM and on MacBook pro (OS X version 10.9.3), with 2.9 GHz Intel

Core i7 and 8GB RAM.

All the numerical experiments in Chapters 4 and 5 have been performed on the

high performance cluster (HPC) at the University of Sussex. Each of the simulations

was carried out in serial using a single core of the cluster. The HPC cluster currently

consists of 3140 cores with an even mixture of Intel and AMD CPUs. The majority of

the cluster are 64 core AMD nodes with 256GB RAM per node, and a smaller number

of 512GB RAM nodes. The cluster uses the high-performance Lustre clustered-



1.5 Technical details 12

filesystem for I/O, and currently stands at 298TB of storage for research use.



13

Chapter 2

Surface Finite Element Method

2.1 Introduction

In this chapter we introduce the surface finite element method that we will employ

to solve partial differential equations, specifically those of reaction-diffusion type

posed on stationary surfaces. Surface partial differential equations are employed to

model a wide range of applications in fluid mechanics, image processing, cell biology

and material science (Turk [1991]; Tang et al. [2005]; Lefèvre and Mangin [2010]).

For example, in many applications in cell biology it is of vital importance for the

integrated understanding of many cellular biology processes to couple the internal

(bulk) and surface dynamics (Heys et al. [2006]). Furthermore, in many studies for

the modelling of cell motility and chemotaxis, surface partial differential equations

on the cell boundary have been used to describe the biochemistry of the models

account for gradient sensing and polarisation (Neilson et al. [2010]; Neilson et al.

[2011a]; Neilson et al. [2011b]; Elliott et al. [2012]). The motion of the cell boundary

is described by a geometric evolution equation. Thus, by coupling the biochemistry

and the mechanics, robust computational frameworks have been developed for in-

vestigating cell motility.

Although, this thesis is devoted to computational methods for investigating cell

motility, we have focused on the case in which no information regarding the bio-

chemistry of the examined cells is given. In the following chapters, we will describe

a mathematical framework for the cell tracking based on an evolution law for the cell

membrane, that has been recently proposed in the research of cell motility (Neilson
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et al. [2011a]; Neilson et al. [2011b]; Elliott et al. [2012]). This approach can be

applied and generalised to models including more biological aspects. In particular

models for the dynamics of actin and myosin, as well as other motility related spe-

cies within the cell and on the membrane may be included. The evolution law may

be modified to take into account the dependence of the movement of the cell on

these species. In such models partial differential equations on the cell membrane are

necessary. Motivated by this, the aim of this chapter is to provide the foundation

for tackling such problems.

Various numerical methods have been proposed for solving partial differential

equations both on stationary and evolving surfaces. The choice of the numerical

method is strongly linked to the different ways of representing the surface. To this

end, we outline next the main approaches of describing a surface (Deckelnick et al.

[2005]).

Triangulated surfaces. A surface is approximated by a polygonal surface whose

vertices lie on the surface and the calculations are performed on this discrete rep-

resentation. It is clear that refining this polyhedral, the triangulated surface tends

to match up with the surface (see Figure 2.1(a)).

Level set methods. With the level set methods, a surface can be represented im-

plicitly, where we consider the surface as the zero level set of an auxiliary function

(Sethian [1999]; Fedkiw [2003]). One of the main advantages of the level set repres-

entation of a surface is that it is possible to capture topological changes, especially

when the surface is evolving (see Figure 2.1 (b)).

Phase field approach. With the phase field representation we approximate the sur-

face interface by a “diffuse surface” of width O(ε) and the zero level set of the phase

field function ϕε(x, t) : Ω× (0, T )→ R, approximates the surface

Γε(t) = {x ∈ Rn+1| − 1 + cε ≤ ϕε(x, t) ≤ 1− cε},

where Ω is a bounded domain in Rn+1. The phase field function ϕ(x, t) takes values

from −1 to +1 (Deckelnick et al. [2005]). This approach is another example of

an implicit representation of a surface and has the capability to track topological

changes that occur while a surface is evolving (see Figure 2.1 (c)). The bulk values

of the phase field function correspond to the minima of the double well potential.
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Figure 2.1: Description of a curve Γ = {x ∈ R2|(x2
1 + x2

2 + 3x2
1)2 − 32(x2

1 + x2
2) = 0}.

(a) The blue line is a triangulated surface approximation of the curve Γ. (b) Level

set representation of the curve Γ. The black line is the zero level set. (c) A phase

field representation of the curve Γ with ε = 0.1.

We refer to Chapter 4 for more details about the the phase field approach.

Based on the above different descriptions of the surfaces several numerical meth-

ods have been designed for approximating the solution of partial differential equa-

tions on surfaces. The most commonly used numerical methods for the solution

of partial differential equations on surfaces are: the surface finite element method

on triangulated surfaces (Dziuk [1988]; Deckelnick et al. [2005]; Dziuk and Elliott

[2007a]; Dziuk and Elliott [2007b]; Barreira et al. [2011]; Dziuk and Elliott [2013]),

the implicit finite element method where the surface is approximated with a level set

representation (Fedkiw [2003]; Dziuk and Elliott [2008]; Burger [2009]; Dziuk and

Elliott [2010]), the use of phase field methods (Deckelnick et al. [2005]; Deckelnick

et al. [2001]; Rätz and Voigt [2006]; Elliott et al. [2010]), particle methods based

on the level set representation of the surfaces (Hieber and Koumoutsakos [2005];

Bergdorf et al. [2010]), and the closest-point methods (Ruuth and Merriman [2008];
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Macdonald et al. [2013]).

As we mentioned earlier partial differential equations posed on surfaces arise

in a variety of applications such as in developmental biology, where morphogen-

esis constitutes one of its main aspects. Morphogenesis is a phenomenon which

involves the development and formation of pattern and shape in biology and it is

governed by many processes (Murray [2002]). Thus, understanding the mechanisms

underlining the emergence of patterns and shapes is an important task for theoreti-

cians and experimentalists alike. In 1952, Alan Turing proposed that the process

of morphogenesis is a simple mechanism where a reaction between chemical species

(morphogens) and a diffusion through tissues occur (Turing [1952]). Turing showed

that systems which are stable in the absence of diffusion could become unstable in

the presence of diffusion, thereby giving rise to the formation of spatial structures.

This pioneering work of Turing provoked a continuous research effort, concerning

the modelling of the emergence of spatial structures during growth development in

many fields such as ecology, chemistry, developmental biology and physics. Recent

studies have focused on encompassing surface features such as the surface growth,

shape and curvature into the modelling (Crampin et al. [1999]; Madzvamuse [2000];

Plaza et al. [2004]; Barreira et al. [2011]). However, in this chapter we are only

considering stationary surfaces, our numerical simulations conclude that the surface

geometry and the curvature are key factors in the emergence of patterns. Also, we

remark that the surface finite element method has been extended to track problems

on evolving surfaces by Dziuk and Elliott [2007a] with further analysis given by

Dziuk and Elliott [2012], Lubich et al. [2013] and Dziuk and Elliott [2013].

We start this chapter by presenting in Section 2.2 definitions and theorems that

are important in order to establish the method that will follow. Then, in Section

2.3 we describe the standard derivation of reaction-diffusion equations on stationary

surfaces. In Section 2.4 we introduce the model of reaction kinetics that is used for

all the undertaken numerical simulations. The details of the surface finite element

method are presented in Section 2.5. Finally, in Section 2.6 we illustrate the effect-

iveness and applicability of the surface finite element method, performing several

numerical simulations on arbitrary surfaces. For illustrative purposes, we consider

two examples. In the first we take the smooth surface of a sphere with radius one for
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our computations. The second example is inspired by experimental observations of

neutrophils from the zebrafish Danio rerio larvae during the process of wound heal-

ing. The chapter finishes with a discussion of our numerical findings and suggestions

for future work.

2.2 Definitions and formulae

In this section we recall some basic notation and important theorems that are used

throughout this thesis. Also, we introduce some essential definitions and we establish

the notation used later in this chapter. We refer to Dziuk and Elliott [2013]; Dziuk

and Elliott [2007a]; Dziuk and Elliott [2007b]; Deckelnick et al. [2005] and the

references therein, for more details.

We start by summarising appropriate function spaces and their corresponding

norms. Let Ω be an open set in Rn and ξ a continuous real-valued function defined

on Ω. We define by Lp(Ω) the class of the Lebesgue integrable functions defined on

Ω such that

Lp(Ω) :=

{
ξ :

∫
Ω

|ξ(x)|pdx < +∞
}
,

where p is a real number, p ≥ 1. Lp(Ω) is equipped with the norm

||ξ||pLp(Ω) :=

∫
Ω

|ξ(x)|p dx.

When p = +∞ we define the space L∞(Ω) := {ξ : ess supx∈Ω |ξ(x)| < +∞} and the

corresponding norm ||ξ||L∞(Ω) := ess supx∈Ω |ξ(x)|. By

W k
p (Ω) =

{
ξ ∈ Lp(Ω) : Dαξ ∈ Lp(Ω), |a| ≤ k

}
we define the Sobolev space of order k; where k is a non-negative integer and by

Dαξ =

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn

ξ

we denote a multi index notation for partial derivatives (in weak sense) and |α| :=∑n
i=1 αi is the length of α. The Sobolev norm is defined by

||ξ||Wk
p (Ω) :=



(∑
|a|≤k ||Dαξ||pLp(Ω)

) 1
p
, when 1 ≤ p <∞,

∑
|a|≤k ||Dαξ||L∞(Ω), when p =∞.
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Finally, the Hilbert space is defined by

Hk(Ω) := W k
2 (Ω)

and its norm

||ξ||2Hk(Ω) := ||ξ||2L2(Ω) +
k∑
i=1

|ξ|2H1(Ω),

respectively. With |ξ|H1(Ω) := ||Dkξ||L2(Ω) we denote the seminorm of H1(Ω). For

more information about Sobolev spaces, we refer to the fundamental textbook

Adams and Fournier [2003].

Next we state the preliminaries and introduce the calculus notation on surfaces

to be used throughout this chapter. The following definitions can be found in Dziuk

and Elliott [2013].

Definition 1. Let k ∈ N. A subset Γ ⊂ Rn+1 is called a Ck hyper-surface if, for

each point x ∈ Γ, there exists an open set U ⊂ Rn+1 containing x and a function

d ∈ Ck(U) with the property ∇d(x) 6= 0,∀x ∈ U ∩ Γ, such that Γ can be represented

as the zero level-set of the function d

Γ := {x ∈ U : d(x) = 0} . (2.1)

Definition 2. We denote by TxΓ the tangent space to Γ at x ∈ Γ and it is defined

as the n-dimensional subspace of Rn+1 that is orthogonal to ∇d(x),

TxΓ = [∇d(x)]⊥.

Definition 3. A vector ν(x) = (ν1, . . . , νn+1)> ∈ Rn+1 is called a unit normal vector

at x ∈ Γ if ν(x) ⊥ TxΓ and |ν(x)| = 1. Therefore, based on the definition of the

tangent space (Definition 2) we have that the outward normal is given by

ν(x) =
∇d(x)

|∇d(x)|
, (2.2)

whereas the unit inward normal is given by

ν(x) = − ∇d(x)

|∇d(x)|
. (2.3)

Definition 4. Given a function u : Γ → R which is differentiable in an open

neighbourhood of the hyper-surface Γ, the tangential or surface gradient of u, denoted

by ∇Γ, is defined by

∇Γu(x) = ∇u(x)− (∇u(x) · ν(x))ν(x),
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where ∇ denotes the gradient in Rn+1 and x · y denotes the usual scalar product on

Rn+1.

The tangential gradient is the projection of the gradient onto the tangent plane.

Therefore, ∇Γu · ν = 0.

For a vector valued function w = (w1, . . . , wn+1)> ∈ Rn+1 the tangential divergence

is defined by

∇Γ ·w = ∇ ·w −
n+1∑
i=1

(∇wi · ν)νi.

Definition 5. The Laplace – Beltrami operator is defined as the tangential diver-

gence of the tangential gradient

∆Γu(x) = ∇Γ · ∇Γu(x). (2.4)

Definition 6. We define the mean curvature H of Γ with respect to ν(x)

H(x) = ∇Γ · ν(x). (2.5)

Let R an arbitrary portion of Γ. Then, the divergence theorem on a surface Γ is

given by ∫
R
∇R · q ds = −

∫
R
q ·Hν ds+

∫
∂R
q · µ ds, (2.6)

for a vector field q = (q1, . . . , qn+1)> ∈ Rn+1 (Gilbarg and Trudinger [1977]). Here µ

denotes the co-normal vector which is normal to ∂R and tangent to R. The Green’s

identity formula on a surface (integration by parts) reads∫
R
∇Rv · ∇Ru ds = −

∫
R

v∆Ru ds+

∫
∂R
v∇Ru · µ ds, (2.7)

for a scalar function v and q = ∇Ru.

Remark 1. We remark that in (2.6) ds in connection with an integral over R

denotes the n-dimensional surface measure, while ds in connection with an integral

over the ∂R is the (n− 1)-dimensional surface measure.

2.3 Derivation of reaction-diffusion equations on

stationary surfaces

For illustrative purposes, let u(x, t) = (u(x, t), v(x, t))>, with x ∈ Γ and t ∈ [0, T ],

be a vector of real valued functions corresponding to the concentrations of chemical
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species residing on a stationary closed surface Γ. The law of mass conservation can

be formulated for an arbitrary portion R of Γ. From the mass balance conservation

law (Murray [2002]), we have for each chemical concentration, that the rate of

change of the concentration in a region R is equal to the sum of the outward flux of

the chemical species through the boundary and the net reactive production of the

chemicals, within the surface. Hence

d

dt

∫
R
u ds = −

∫
∂R
q · µ ds+

∫
R
f(u) ds, (2.8)

where q is the surface flux through the boundary of R, f(u) = (f1(u), f2(u))> is

the net production rate within the surface and µ the conormal on ∂R. Applying the

divergence theorem on the surface Γ (2.6) we replace the boundary surface integral

with ∫
∂R
q · µ ds =

∫
R
∇Γ · q ds+

∫
R
q · νH ds. (2.9)

We assume that the flux is a tangential vector to R; the components of q normal to

R do not contribute to the flux, i.e. q · ν = 0. Therefore, the last integral vanishes

and equation (2.8) becomes

d

dt

∫
R
u ds = −

∫
R
∇Γ · q ds+

∫
R
f(u) ds. (2.10)

We take q to be the diffusive flux and thus from the Fick’s law (Acheson [1990]),

the flux vector q is proportional to the concentration gradient defined as

q = −D∇Γu, (2.11)

where D = diag(d1, d2) is the diffusion tensor and di, i = 1, 2, are positive constant

diffusion coefficients. Thus equation (2.10) yields

d

dt

∫
R
u ds =

∫
R
∇Γ · (D∇Γu) ds+

∫
R
f(u) ds. (2.12)

Re-arranging equation (2.12) results in∫
R

(ut −D∆Γu− f(u)) ds = 0.

Since R is arbitrary, it follows that the integrand must vanish, i.e.

ut −D∆Γu = f(u). (2.13)
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To complete the derivation of the reaction-diffusion equations we need to pre-

scribe boundary and initial conditions. But since the surface Γ is closed no bound-

ary conditions are needed for the system (2.13). Here we impose initial conditions

u(x, 0) = u0(x), where u0(x) are positive bounded functions.

One form of non-dimensionalisation of system (2.13) can be written as (Murray

[2002]; Madzvamuse et al. [2003]):

ût − D̂∆Γû = γf̂(û), (2.14)

where D̂ = diag(1, d) and γ a positive scaling parameter. Here d = d2

d1
represents

the ratio of the diffusion coefficients. Furthermore, it can be shown that
√
γ is

proportional to the area of the domain and γ measures the relative strength of

interaction of the reaction and diffusion. Doubling the value of γ is equivalent to

doubling the surface length (Murray [2002]). For notational simplicity we will skip

the hats (ˆ) from here on.

Remark 2. In the case that the surface Γ is open, i.e. ∂Γ 6= ∅, if we consider zero

flux boundary conditions (known as homogeneous Neumann boundary conditions) we

obtain identical equations. Homogeneous Neumann boundary conditions are suitable

for biological pattern formation since these enable self-organisation of the biological

process.

2.4 Reaction kinetics

In this chapter we show the robustness and applicability of the surface finite element

method for solving systems of reaction-diffusion equations of the form

ut = D∆Γu+ f(u), (2.15)

on stationary surfaces. For illustrative purposes we implement the methodology

to the well known Schnakenberg or Brusselator model, which is also referred in the

literature as activator-depleted substrate model (Prigogine and Lefever [1968]; Gierer

and Meinhardt [1972]; Schnakenberg [1979]).

This reaction kinetic model is one of the simplest but chemically plausible re-

actions model for two chemical concentrations u = (u, v), and it is given in non-
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dimensional form by

f1(u, v) = γ
(
a− u+ u2v

)
,

f2(u, v) = γ
(
b− u2v

)
,

(2.16)

where a and b are nondimensional positive parameters. The biological interpretation

of this model is that u and v are produced at constant rates γa and γb respectively.

The negative term −γu indicates that u is degraded linearly, the positive nonlinear

term represents the activation of u, whereas the negative nonlinear term represents

the consumption of the chemical v (Schnakenberg [1979]; Murray [2002] ).

Remark 3. The choice of different types of reaction kinetics for f(u) in (2.15)

leads to various reaction-diffusion systems with different characterstics. We refer to

Maini et al. [1997], Madzvamuse [2000], Murray [2002], for a review of the most

commonly used reaction kinetics and their biological meaning.

2.5 Surface finite element method

We apply the surface finite element method to the reaction-diffusion system with

Schnakenberg reaction kinetics ut −∆Γu = f1(u, v)

vt − d∆Γv = f2(u, v),
(2.17)

posed on a stationary surface Γ, where f1(u, v) and f2(u, v) are given in (2.16).

2.5.1 Weak variational form

Let ψ ∈ H1(Γ) and ω ∈ H1(Γ) be arbitrary test functions. Multiplying the first

equation of (2.17) by the test function ψ and integrating over Γ, we obtain∫
Γ

f1(u, v)ψ ds =

∫
Γ

utψ ds−
∫

Γ

ψ∆Γu ds

=

∫
Γ

utψ ds−

(
−
∫

Γ

∇Γu · ∇Γψ ds+

∫
∂Γ

ψ∇Γu · µ ds

)
,

(2.18)

and similarly multiplying the second equation by ω and integrating we get∫
Γ

f2(u, v)ω ds =

∫
Γ

vtω ds− d
∫

Γ

ω∆Γv ds

=

∫
Γ

vtω ds− d

(
−
∫

Γ

∇Γv · ∇Γω ds+

∫
∂Γ

ω∇Γv · µ ds

)
.

(2.19)
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Since the surface Γ is closed, ∂Γ = ∅ hence the last term vanishes on each equation.

Remark 4 (Weak variational form). Given f1(u, v) and f1(u, v) by (2.16) and

the initial data u0 ∈ H1(Γ) and v0 ∈ H1(Γ), find u(x, t) ∈ L2(0, T ;H1(Γ)) ∩

H1(0, T ;L2(Γ)) and v(x, t) ∈ L2(0, T ;H1(Γ)) ∩H1(0, T ;L2(Γ)) such that

∫
Γ

utψ ds+

∫
Γ

∇Γu · ∇Γψ ds =

∫
Γ

f1(u, v)ψ ds,

∫
Γ

vtω ds+ d

∫
Γ

∇Γv · ∇Γω ds =

∫
Γ

f2(u, v)ω ds,

(2.20)

satisfied for almost every t ∈ (0, T ) and for every ψ ∈ H1(Γ) and ω ∈ H1(Γ).

Remark 5. Since H1(Γ) ↪→ Lp(Γ) for p <∞, n = 2 then we have that u2v ∈ L2(Γ)

and hence the left hand side of the equation (2.18) and (2.19) is valid (Evans [2009]).

2.5.2 Space discretisation

We approximate the continuous surface Γ ⊂ Rn+1 by a polyhedral approximation

Γh of Γ, where the nodes {Xj}Nj=1 of Γh lie on Γ. Since the nodes of the polyhedral

approximation Γh sit on Γ, it can be considered as an interpolation of Γ. Let Th be

a triangulation of Γh consisting of closed simplices S:

Γh := Th =
⋃
S∈Th

S. (2.21)

In particular, when n = 1 the elements of Th (polygonal line) are line segments

whereas for n = 2 the elements are triangles. When Γ ⊆ R3, the finite triangulated

surface Th is described by a set of the non-overlapping triangles.

Definition 7. Taking Γh to be a triangulation of a surface Γ embedded in R3, the

mesh size h is defined to be the maximum diameter of the circle inscribed in a triangle

S of the polyhedral approximation.

In order to solve the partial differential equations on a discrete surface Γh, we

define the surface finite element space

Sh := {ψh ∈ C0(Γh) : ψh|S is linear affine for each S ∈ Th}.
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This is a piecewise linear finite element space on Γh and is spanned by the nodal

basis functions {χ1, χ2, . . . , χN} that satisfy the following properties

χj ∈ Sh, and χj(Xi) = δij,

for j = 1, . . . , N .

The semi-discrete weak formulation of (2.20) reads: Find (uh, vh) ∈ L2(0, T ;Sh),

such that
∫

Γh

uh,tψh dsh +

∫
Γh

∇Γh
uh · ∇Γh

ψh dsh =

∫
Γh

f1(uh, vh)ψh dsh,∫
Γh

vh,tωh dsh + d

∫
Γh

∇Γh
vh · ∇Γh

ωh dsh =

∫
Γh

f2(uh, vh)ωh dsh,

(2.22)

for all ψh ∈ Sh and ωh ∈ Sh.

Since (uh, vh) ∈ Sh × Sh and {χi}Ni=1 are the basis of Sh, we can write uh as

a unique representation of the basis vectors and the nodal values of the vector

αu = (α1
u, . . . , α

N
u )T

uh(x, t) =
N∑
i=1

αiu(t)χi(x). (2.23)

Similarly,

vh(x, t) =
N∑
i=1

αiv(t)χi(x), (2.24)

where αv = (α1
v, . . . , α

N
v )T .

Given (2.23) and (2.24) the system (2.22) transforms into

∫
Γh

(
N∑
i=1

αiu,tχi

)
ψh dsh +

∫
Γh

(
N∑
i=1

αiu∇Γh
χi

)
· ∇Γh

ψh dsh =

∫
Γh

f1(uh, vh)ψh dsh,

∫
Γh

(
N∑
i=1

αiv,tχi

)
ωh dsh + d

∫
Γh

(
N∑
i=1

αiv∇Γh
χi

)
· ∇Γh

ωh dsh =

∫
Γh

f2(uh, vh)ωh dsh,

for all ψh, ωh ∈ Sh. Taking ψh = χk and ωh = χk, k = 1, . . . , N , in the previous

equations, the following system of equations in vector form is obtainedMαu,t + Sαu = F 1,

Mαv,t + dSαv = F 2,

(2.25)

where M is the mass matrix whose entries are defined by

(M)ik =

∫
Γh

χjχk dsh, (2.26)
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S is the stiffness matrix with entries

(S)ik =

∫
Γh

∇Γh
χj · ∇Γh

χk dsh (2.27)

and the right hand side describes non-linear vectors whose entries are

(F 1)k =

∫
Γh

f1(uh, vh)χk dsh and (F 2)k =

∫
Γh

f2(uh, vh)χk dsh,

respectively.

2.5.3 Time discretisation

We discretise the time interval [0, T ] into a finite number of uniform sub-intervals

such that

0 = t0 < t1 < . . . < tM = T.

Let τ > 0 be the uniform timestep, i.e. T = Mτ for M ∈ N. We represent by ukh and

vkh the approximate solution at time tk = kτ , i.e. ukh = uh(·, tk) and vkh = vh(·, tk), for

k = 0, . . .M − 1. The time derivative is approximated by the first order backward

Euler scheme

uh,t =
uk+1
h − ukh
τ

and vh,t =
vk+1
h − vkh
τ

. (2.28)

Time-stepping schemes for reaction-diffusion systems on stationary and evolving

domains have been performed by the use of implicit-explicit (IMEX) schemes (Ruuth

[1995]; Madzvamuse [2006]). The main feature of these schemes is that the diffusive

term is treated implicitly whereas an explicit scheme is used for the approximation of

the reaction kinetics. For more details about the different implicit-explicit schemes

we refer to Ruuth [1995] and Madzvamuse [2006].

Here we use a modified first-order semi-implicit backward Euler finite differ-

ence scheme (1-SBEM), where the diffusion term and the linear reaction terms

are treated implicitly while the nonlinear reaction terms are treated semi-implicitly

(Madzvamuse [2006]; Madzvamuse [2007]). The nonlinear term (uk+1
h )2 is linearised

by using a single Picard iteration of the form

(uk+1
h )2 ≈ ukhu

k+1
h (2.29)

and this is due to the assumption that the two successive approximate solutions at

consecutive time steps do not change significantly (Madzvamuse [2006]). Thus, the
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fully discrete system of reaction-diffusion equations (2.22) becomes

(
1

τ
+ γ

)∫
Γh

uk+1
h ψh dsh +

∫
Γh

∇Γh
uk+1
h · ∇Γh

ψh dsh

−γ
∫

Γh

ukhv
k
hu

k+1
h ψh dsh =

1

τ

∫
Γh

unhψh dsh + γa

∫
Γh

ψh dsh,

1

τ

∫
Γh

vk+1
h ωh dsh + d

∫
Γh

∇Γh
vk+1
h · ∇Γh

ωh dsh

+γ

∫
Γh

(uk+1
h )2vk+1

h ωh dsh =
1

τ

∫
Γh

vkhωh dsh + γb

∫
Γh

ωh dsh,

for all (ψh, ωh) ∈ Sh × Sh. Using matrix representation we have
((

1
τ

+ γ
)
M+ S − γK1

)
αk+1
u = 1

τ
Mαku + F 1,(

1
τ
M+ dS + γK2

)
αk+1
v = 1

τ
Mαkv + F 2,

(2.30)

for k = 0, . . . ,M where M is the mass matrix, S the stiffness matrix as defined

before in (2.26) and (2.27), and F 1, F 2 are forcing vectors whose entries are given

by

(F 1)i = γa

∫
Γh

χi dsh, and (F 2)i = γb

∫
Γh

χi dsh.

The matrices K1 and K2 have elements given by

(K1)ij =

∫
Γh

ukhv
k
hχiχj dsh, and (K2)ij =

∫
Γh

(uk+1
h )2χiχj dsh,

and these are associated with the nonlinear reactions. The formulation (2.30) results

in a linear algebraic problem posed in matrix form as (
1
τ

+ γ
)
M+ S − γK1 0

0 1
τ
M+ dS − γK2

 αu
k+1

αv
k+1

 =

 1
τ
Mαu

k + F 1

1
τ
Mαv

k + F 2

 ,

for k = 0, . . . ,M .

Remark 6. Alternatively, (2.22) could be solved using a Newton’s method. Madzvamuse

and Chung [2014] have shown that the Newton method is an alternative method for

treating the nonlinear reaction kinetics. In particular, a single Newton iteration

was shown to be sufficient to the accuracy of the results and could become crucially

important as an aid for large computational savings.
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2.6 Numerical results

This section is devoted to approximating solutions of the reaction-diffusion system

(2.17) with Schnakenberg reaction kinetics on stationary surfaces, in order to il-

lustrate the effectiveness, robustness and applicability of the surface finite element

method.

We choose and keep constant a set of parameter values for a, b and d, under

which patterns are formed. Varying the parameter γ, we examine how it affects

pattern formation. In all our simulations we fix the parameters a = 0.1, b = 0.9 and

the diffusion coefficient d = 10. With these parameter values, it can easily be shown

that system (2.30) admits a homogeneous steady state (1, 0.9). We prescribe initial

conditions as small random perturbations around the uniform homogeneous steady

state of the order ∼ 10−2. In all the simulations the following stopping criteria were

enforced:

||uk+1 − uk||
τ

≤ 10−4 and
||vk+1 − vk||

τ
≤ 10−4. (2.31)

2.6.1 Experimental order of convergence

In this section we show that the approximate solution obtained by the method

described in this chapter converges to an “exact” solution as we refine the mesh

size. Since there is no analytical solution to the reaction-diffusion (2.17) system with

Schnakeberg reaction kinetics, we construct a solution that will satisfy a modified

version of (2.17). In the following example, we consider the surface Γ to be the unit

sphere. Let define

ζ(x, t) = e−2tx1 and ξ(x, t) = e−2tx2

and u(x, t) = ζ(x, t) and v(x, t) = ξ(x, t) be the exact solution of the following

system ut −∆Γu− γ(−u+ u2v) = ζt −∆Γζ − γ(a− ζ + ζ2ξ)

vt − d∆Γv + γu2v = ξt − d∆Γξ + γ(b− ζ2ξ).

(2.32)

Since the surface Γ is closed no boundary conditions are needed and the initial

conditions are defined by

u0(x, 0) = x1 and v0(x, 0) = x2.
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For this experiment we take a = 0.1, b = 0.9, d = 10 and γ = 60. Also, we choose

final time Tf = 10 and a time step τ ≈ h2, where h is the mesh size. Solving the

(2.32) using the finite element scheme on the different triangulations we are able to

calculate the error from the exact solution ζ(x, t) at each time step. Then, the error

between the exact solution ζ(x, t) and the approximate solution (uh, vh) is given by

eu = ||u(x, t)− ζ(x, t)||L2(Γ) and ev = ||v(x, t)− ζ(x, t)||L2(Γ). (2.33)

Let denote by eiu and ei−1
u the two different errors at two different mesh sizes hi and

hi−1, we calculate the experimental order of convergence (eoc) for the u-variable by

(eoc)iu =
log(eiu)− log(ei−1

u )

log(hi)− log(hi−1)
, (2.34)

for i = 1, . . . , 8. Similarly we can define the experimental order of convergence for

the v-variable. In Table 2.1 we report on the convergence results.

Experiment h (mesh size) eu eocu ev eocv

1 1.414214 0.2354 − 0.2934 −

2 1.001031 0.0563 4.129325 0.0740 3.972321

3 0.832729 0.0225 5.010216 0.0306 4.832545

4 0.434275 0.0067 1.869174 0.0094 1.812932

5 0.219448 0.0018 1.932472 0.0026 1.906149

6 0.110015 4.5328·10−4 1.981453 6.4731·10−4 1.989376

7 0.055044 1.1360·10−4 1.996237 1.6170·10−4 2.001031

8 0.036163 4.9200·10−5 1.995358 6.9963·10−5 1.997632

Table 2.1: Experimental order of convergence (eoc) for the example from §2.6.1

2.6.2 Computer simulations on a stationary sphere

For this section, the surface Γ is taken to be a sphere of radius one. The method

requires a triangulation of the initial surface. An initial coarse, or macro, triangu-

lation Γh is constructed by hand using a few grid points on the sphere. This initial

approximation (macro triangulation) of the surface Γ has 8 large elements with 6

vertices sitting on the unit sphere (see Figure 2.2 (a)). This triangulation is then

refined uniformly using the bisection method and the new vertices are projected onto
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the surface of the surface Γ. This process is implemented in ALBERTA (Schmidt

and Siebert [2005]).

In all the following simulations, we present a triangulation Γh of the unit sphere

with 16386 vertices and 32768 elements and select a fixed time step τ = 1 × 10−3.

Figure 2.3 shows the solutions of u and v corresponding to the reaction-diffusion

(2.17) system with Schnakenberg reaction kinetics when γ = 200. Figure 2.4 de-

picts the convergence history for the u and v variable, respectively. We note that

regions with high concentrations of the chemical u correspond to regions of low con-

centrations of the chemical v and vice versa. Also, it can be detected that since the

sphere has constant curvature throughout the surface, the patterns are distributed

uniformly.

Remark 7. Figure 2.4 shows that the numerical method is converging but does

not show the order of convergence. However, we have not dedicated to study error

analysis of such models in this thesis.
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(a) macro triangulation (b) 1 global refinement

(c) 2 global refinements (d) 3 global refinements

(e) 4 global refinements (f) 5 global refinements

Figure 2.2: Successive global refinements. The initial triangulation is refined uni-

formly using the bisection method. This process is implemented in ALBERTA

(Schmidt and Siebert [2005])
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(a) t = 0 (b) t = 0

(c) t = 1 (d) t = 1

(e) t = 4 (f) t = 4

(g) t ≈ 20 (h) t ≈ 20

Figure 2.3: Numerical solutions corresponding to the chemical species u (left

column) and v (right column) of the reaction-diffusion system (2.17) with Schnaken-

berg reaction kinetics, for γ = 200. For parameter and numerical values, see Table

2.2 (Experiment 3). Spots and stripes patterns emerge initially which evolve finally

into stable spot patterns.
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Figure 2.4: The history evolution of the L2 error norm between successive numer-

ical solutions corresponding to the chemical species (a) u and (b) v of the reaction-

diffusion system (2.17) with Schnakenberg reaction kinetics for γ = 200. For para-

meter and numerical values, see Table 2.2 (Experiment 3).
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The effects of γ on pattern generation

In this section, we investigate the effect of varying the parameter γ on the emergence

of patterns. Figures 2.5 and 2.6 display the solutions for the concentrations u and

v of the reaction-diffusion system (2.17) with Schnakenberg reaction kinetics. The

parameters values for the five experiments are given in Table 2.2. We can see in

Figures 2.5 and 2.6, that as the scale factor γ increases, the number of spots increases.

Similar results are reported in Barreira et al. [2011].

Experiment γ Nr. of elements timestep

1 29 32768 1× 10−3

2 60 32768 1× 10−3

3 200 32768 1× 10−3

4 500 32768 1× 10−3

5 800 32768 1× 10−3

Table 2.2: Parameter values used for the solution of the reaction-diffusion system

(2.17) with Schnakenberg reaction kinetics on the unit sphere.
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(a) γ = 29 (b) γ = 29

(c) γ = 60 (d) γ = 60

(e) γ = 200 (f) γ = 200

Figure 2.5: Numerical solutions corresponding to the chemical species u (left

column) and v (right column) of the reaction-diffusion system (2.17) with Schnaken-

berg reaction kinetics, for different values of γ. For parameter and numerical values,

see Table 2.2. As γ increases the number of spots increases.
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(a) γ = 500 (b) γ = 500

(c) γ = 800 (d) γ = 800

Figure 2.6: Numerical solutions corresponding to the chemical species u (left

column) and v (right column) of the reaction-diffusion system (2.17) with Schnaken-

berg reaction kinetics, for different values of γ. For parameter and numerical values,

see Table 2.2. As γ increases the number of spots increases.
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2.6.3 Pattern formation on stationary surfaces of neutro-

phils

The main focus of this section is to illustrate the generality of the surface finite

element method on realistic surfaces, where the surfaces are irregular and complex.

In addition to this we examine the role of the surface geometry on pattern formation.

As the aim of this thesis was motivated by the study and understanding neutrophil

cell migration in vivo, we solve surface partial differential equations on their surfaces

(although they are not evolving). Domain evolution will be considered in future

studies.

Mesh generation

The macro triangulation Γh of each surface of neutrophil (see Figure 2.7) is obtained

by using the marching cube algorithm (Lorensen and Cline [1987]; Marchet [2012]).

The marching cube algorithm is a technique for constructing triangulated surfaces

from 3D medical data. For details about the technique we refer to Lorensen and

Cline [1987] and Marchet [2012].

Figure 2.7: Three – dimensional macro triangulation (Γh) of the stationary surface

of a neutrophil, which is obtained using the marching cube algorithm (Lorensen and

Cline [1987]).

Remark 8 (Triangulated surfaces of the neutrophils). All the triangulated surfaces

that have been used in the following numerical experiments have been generated by

Marchet [2012].
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Computer simulations

The results of the simulations on different surfaces are shown in Figures 2.8-2.10.

In the presentation of the numerical simulations, the chemical concentrations of v

have been omitted as they are 180◦ out of phase with those of u. From the results,

we see a combination of stripe and spot patterns. The surface geometry seems to

play a pivotal role in the formation of patterns. Here, in contrast to the results on

the stationary sphere, the patterns are not distributed uniformly and this may be

due to the surface geometry. It is clear that curvature influences the formation of

patterns with different wavelengths. We observe that the complexity of a surface

geometry (such as the surfaces of the neutrophils) affects the pattern formation.

Experiment γ Nr. of elements timestep Figure

1 200 12352 5×10−3 2.8

2 200 12544 5× 10−3 2.9

3 200 12992 5× 10−3 2.10

Table 2.3: Parameter values used for the solution of the reaction-diffusion system

(2.17) with Schnakenberg reaction kinetics on different stationary surfaces of neut-

rophils.
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 10

(e) t = 88 (f) t = 176

Figure 2.8: Numerical solutions corresponding to the u-chemical species of the

reaction-diffusion system (2.17) on a stationary surface of a neutrophil with 12352

elements. Numerical parameter values are given in Table 2.3 (Experiment 1).
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(a) t = 0 (b) t = 1

(c) t = 10 (d) t = 20

(e) t = 60 (f) t = 154

Figure 2.9: Numerical solutions corresponding to the u-chemical species of the

reaction-diffusion system (2.17) on a stationary surface of a neutrophil with 12544

elements. Stripe and spot patterns are observed. Numerical parameter values are

given in Table 2.3 (Experiment 2).
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(a) t = 0 (b) t = 1

(c) t = 10 (d) t = 30

(e) t = 72 (f) t = 144

Figure 2.10: Numerical solutions corresponding to the u-chemical species of the

reaction-diffusion system (2.17) on a stationary surface of a neutrophil with 12992

elements. Stripe, spot and circular patterns are observed. Numerical parameter

values are given in Table 2.3 (Experiment 3).
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(a) γ = 10 (b) γ = 10 (c) γ = 10

(d) γ = 29 (e) γ = 29 (f) γ = 29

(g) γ = 60 (h) γ = 60 (i) γ = 60

(j) γ = 500 (k) γ = 500 (l) γ = 500

Figure 2.11: Numerical solutions, at the final time of the simulations, correspond-

ing to the u-chemical species of the reaction-diffusion system (2.17) on different

stationary surfaces of neutrophils when the parameter γ is varied.
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2.7 Conclusion

Modelling and simulation of reaction-diffusion systems on arbitrary surfaces is emer-

ging as a very popular research field with a growing number of applications in devel-

opmental biology, cancer research, bio-medical engineering and cell motility (Neilson

et al. [2010]; Neilson et al. [2011a]; Barreira et al. [2011]; Elliott et al. [2012]). In

this chapter we introduced the surface finite element method that allows us to solve

efficiently and robustly reaction-diffusion systems on stationary surfaces. For illus-

trative purposes we used the well-known reaction-diffusion system with Schnaken-

berg reaction kinetics in all of our simulations. Our results strongly support the

following observations:

• By taking a fixed set of parameter values and changing only the surface geo-

metry, we observe the emergence of wide range of patterns; either spots, stripes

or a combination of these. The results of this chapter lead to the observation

that the surface geometry and the curvature play a vital role in pattern form-

ation. Recently, Venkataraman et al. [2011] investigated the formation of

patterns on the skin of the Amago trout, from its early larval stages to its

adulthood and have shown that the curvature of a surface could influence the

pattern mechanism during growth development. Similar observations regard-

ing the role of the curvature are highlighted in Varea et al. [1999], Plaza et al.

[2004], Landsberg and Voigt [2010].

• The results from our numerical simulations confirm that the parameter γ in-

fluences the emergence of pattern complexity.

Demonstrating the performance and applicability of the surface finite element

method provides us with a foundation to tackle the following problems in future

studies:

• The rapid development in cell microscopy has generated a huge amount of

discrete imaging data of migrating cells. This progress can be used to develop

a mathematical and computational framework for describing experimental ob-

servations using the theory of pattern formation on appropriate biological sur-

faces. For example, by proposing mathematical models for cell motility, could
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model the spatiotemporal dynamics associated with cell migration by coup-

ling systems of reaction-diffusion equations on surfaces of evolving cells. This

framework necessitates modelling evolution laws for the cell motion. This

law will incorporate cell/surface features such as shape and curvature, and

will take into account the bio-physics underlying this process. The solutions

of these phenomenological mathematical models will be a step towards the

understanding and the analysis of the mechanisms that govern cell motility.

In the following chapters, we describe a mathematical framework based on

an optimal control approach for cell tracking with no information regarding

the biochemistry of the cells. The proposed method lies in the fact that the

model which drives the tracking procedure is a simplification of recently de-

rived physically motivated models for cell motility. This approach can be

generalised and extended by using mathematical models as described above

which include more biological aspects. Thus, a robust and efficient candidate

numerical method for the solution of such problems would be the surface finite

element method.

• So far the mathematical models that are used in modelling of cell movement

are posed either on the surface (cell membrane) or in the interior of the cell.

The bulk-surface finite element method is introduced recently, by Elliott and

Ranner [2012] with potential applications especially in cell motility. Thus, a

more challenging task for the study of cell motility is to derive new models

that will couple the internal cell dynamics to cell surface dynamics. Therefore

this framework is a stepping stone in this direction.
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Chapter 3

Interpolation method

3.1 Introduction

In this chapter, a general framework based on cubic spline interpolation is presen-

ted to introduce a simple single cell tracking algorithm. In Madzvamuse et al.

[2003] cubic spline interpolation was applied between successive given positions of

the boundary nodes of a deforming shape. Here in a similar way, by using cubic

splines, a series of intermediate cell-surface boundaries are generated that describe

and track the cell surface evolution, from static image data-sets.

In many practical fields such as medicine, physics and engineering the amount

of data obtained through experimental or statistical studies is usually very large

and the use of interpolation methods sometimes becomes necessary to correlate

and analyse these data. In addition, interpolation methods are commonly used in

financial markets (Hagan and West [2006]).

Cubic spline interpolation is broadly used to achieve a smooth continuous func-

tion that passes through a given discrete data set. Cubic splines among other in-

terpolation schemes have attracted the attention of many researchers and they have

become a useful tool in such fields as computer graphics and image processing, where

smoothness is of vital importance in many applications (Miklos [2004]). Further-

more, cubic splines prove to be efficient in medical image processing, for instance,

where the medical image magnification or rotation plays a pivotal role in diagnosis

and treatment (Lehmann et al. [1999]).

The structure of this chapter is as follows: We start by describing in Section 3.2
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the cubic spline interpolation method and deriving the appropriate equations. Then,

in Section 3.3 we introduce our approach to a simple single cell tracking algorithm

based on cubic interpolation and illustrate some of our numerical results applied to

two-dimensional curves of neutrophils as observed in zebrafish Danio rerio larvae.

Finally, in Section 3.4 we present some conclusions of our approach.

3.2 Interpolation methods

Interpolation is a process of estimating a new set of data points from a given set of

discrete data points. The new data points must be within the range of the original

set.

There is a multitude of different interpolation methods (De Boor [1978]; Iwashita

[2013]; Kreyszig [2007]). Linear interpolation is one of the simplest method of inter-

polating given discrete data. This method results in a straight line connecting two

successive original data points and consists of a first order polynomial.

In this chapter, we will instead focus on the cubic spline interpolation. The

main idea of the cubic spline interpolation is to construct smooth curves through a

number of given data points. The interpolant is constructed such that it is smooth

in the sense of having continuous first and second derivatives at each data point.

3.2.1 Cubic spline interpolation

We now describe the procedure of constructing a cubic spline interpolant P (t) =

(x = x(t), y = y(t)) which interpolates a series of points (xi = x(ti), yi = y(ti)) for

i = 1, . . . , n, based on Press et al. [1990]. P (t) is a piecewise polynomial function

that consists of n − 1 cubic polynomials Pk(t) defined on each interval [tk, tk+1],

k = 1, . . . , n − 1. The cubic spline interpolant, Pk(t) is constructed based on the

following conditions

(a) Each piecewise spline passes through all the data points, such that:

Pk(tk+1) = Pk+1(tk+1), (3.1)

where Pk+1(tk+1) indicates the cubic function defined on the interval [tk+1, tk+2].



3.2 Interpolation methods 46

(b) The first derivative with respect to time t should be continuous across the

boundary between any two intervals, such that

P ′k(tk+1) = P ′k+1(tk+1), (3.2)

where P ′(t) is defined by P ′(t) = (x′(t), y′(t)).

(c) The second derivative with respect to time t is continuous for both cubic

functions on either side of a point

P ′′k (tk+1) = P ′′k+1(tk+1), (3.3)

where P ′′(t) is defined by P ′′(t) = (x′′(t), y′′(t)).

For illustrative purposes, let us consider the derivation of Pj(t) at the time interval

[tj, tj+1] for any j = 1, . . . , n− 1. After applying a linear interpolation between the

data point on the interval [tj, tj+1] we have

(x(t), y(t)) = A(t)(xj, yj) +B(t)(xj+1, yj+1), (3.4)

where

A(t) =
tj+1 − t
tj+1 − tj

and B(t) = 1− A(t) =
t− tj
tj+1 − tj

. (3.5)

The second derivative with respect to time t of equation (3.4) is zero within the

time interval and it is undefined at the boundaries. This comes in contrast with the

assumption of the cubic spline interpolation, where the first derivative is smooth

and the second derivative is continuous, both within an interval and its boundaries.

Now, suppose that in addition to the data points (x(tk), y(tk)), the values of the

second derivatives (x′′(tk), y
′′(tk)) for k = 1, . . . , n, are given. In order to have the

desired continuity to the second derivative we can add to the right hand side of

(3.4) a cubic polynomial whose second derivative fluctuates linearly from x′′(tj) to

x′′(tj+1), within each interval [tj, tj+1]. Also, we construct this cubic polynomial to

have zero values at each node tj and tj+1. Then, it can be shown that the interpolant

on the interval [tj, tj+1], can be rewritten as a cubic polynomial with respect time t

as

(x(t), y(t)) = A(t)(xj, yj) +B(t)(xj+1, yj+1) +C(t)(x′′j , y
′′
j ) +D(t)(x′′j+1, y

′′
j+1), (3.6)
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where the coefficients C(t) and D(t) are given by

C(t) =
1

6
(A(t)3−A(t))(tj+1− tj)2 and D(t) =

1

6
(B(t)3−B(t))(tj+1− tj)2 (3.7)

for j = 1, . . . , n− 1.

Using the assumption of continuity of the first derivative across the boundary

between the two intervals [tj−1, tj] and [tj, tj+1], results in the following system of

equations

tj − tj−1

6
(x′′j−1, y

′′
j−1) +

tj+1 − tj−1

3
(x′′j , y

′′
j ) +

tj+1 − tj
6

(x′′j+1, y
′′
j+1)

=
(xj+1, yj+1)− (xj, yj)

tj+1 − tj
− (xj, yj)− (xj−1, yj−1)

tj − tj−1

, (3.8)

for j = 2, . . . , n− 1. This is a tridiagonal system of n− 2 equations for n unknowns(
(x′′(t1), y′′(t1)), (x′′(t2), y′′(t2)), . . . , (x′′(tn), y′′(tn))

)
.

For the calculation of a unique cubic spline, two additional conditions must be

imposed at each end, t1 and tn. A possible choice is the co-called natural spline end

conditions: (x′′(t1), y′′(t1)) = (0, 0),

(x′′(tn), y′′(tn)) = (0, 0).

(3.9)

We take equation (3.6) and combine with boundary conditions (3.9) to give a linear

system of n equations for the n unknowns (x′′(tk), y
′′(tk)) for k = 1, . . . , n. Solving

this tridiagonal system of linear equations, condition (c) is satisfied and substituting

back into the equation (3.6) the cubic spline interpolant is obtained.

3.3 Numerical results

In this section we apply the cubic spline interpolation on a given set of experimental

observations from the neutrophils of zebrafish Danio rerio larvae to generate a series

of intermediate cell positions. The cubic spline interpolation is constructed such that

the point trajectories are smooth (C2). The experimental observations represent the

cell membrane of the neutrophil and each cell membrane of the neutrophil is given

by a discrete sequence of its boundary points. In particular, Γ(tk) := (x(tk),y(tk))

where x(tk) ∈ RM and y(tk) ∈ RM consist of the x and y coordinate of the vertices

from the given set of the boundary points of each cell membrane, for k = 0, . . . , 7
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and in the following experiments we are taking M = 180. Thus, each cell mem-

brane (Γ(tk)) of the neutrophil is a polygonal line, which vertices are the points

(x(tk)i, y(tk)i) ∈ R2, for k = 0, . . . , 7 and i = 1, . . . ,M , and its (undirected) edges

are defined by subsequent vertices, additionally, connecting the last with the first

vertex (see Figure 3.1). In order to apply the cubic spline interpolation we need
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Figure 3.1: Experimental observations representing a discrete set of the locations of

the cell membrane corresponding to the in vivo migration of a single neutrophil as

observed in the zebrafish neutrophils from time t = 0 to time t = 7 (Henry et al.

[2013b]).

to define a mapping of every point through two given successive cell membrane ob-

servations. The point, which will define uniquely the entire mapping between two

successive polygonal lines Γ(tk) and Γ(tk+1), k = 0, . . . , 6, is chosen to be the one

with the maximum of the minimum distances between each point of the first and

second polygonal line, respectively. This can be described by

d(Γk,Γk+1) = max

{
sup
a∈Γk

inf
b∈Γk+1

d(a, b), sup
b∈Γk+1

inf
a∈Γk

d(a, b)

}
, (3.10)

for k = 0, . . . , 6 and a, b points from Γk and Γk+1, respectively. Furthermore, we

assumed that the mapping preserves the connectivity of the node and each polygonal

line has been considered positively (anti-clockwise) oriented.

Then, once the entire mapping is defined we apply the cubic spline interpolation

(3.6) on each subinterval [tk, tk+1], k = 0, . . . , 6 and determine the intermediate val-

ues (x,y) between the given discrete imaging data, from time t = 0 to time t = 7,

every t = 0.002. In Figures 3.2 and 3.3 we illustrate with purple lines some interme-

diate positions of the neutrophil evolution though the biologically observed images.
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Also, in Figure 3.4 we show the trajectories of four points of the cell boundary of

the neutrophil, from time t = 0 to time t = 7.

Based on the numerical findings we are able to compute the area and the centroid

(centre of mass) on each cell through the time of simulation. Also, using the tra-

jectory of the centroids we are able to calculate some measures of cell motility such

as persistence length and speed of the centroid, but these are not reported in this

chapter. Later in this thesis, we will compare and contrast the interpolation method

and the optimal control approach for cell tracking, and it is in that chapter that

some measures will be exhibited (see Chapter 5).
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355 360 365 370 375
100

105

110

115

120

(c) From t = 2 to t = 3.

355 360 365 370 375 380 385
100

105

110

115

(d) From t = 3 to t = 4.

Figure 3.2: Intermediate positions of the locations of the cell membrane of the neut-

rophil through the biologically observed images using cubic spline interpolation. The

purple polygonal line is the computed intermediate position of the cell membrane

locations of the neutrophil at t = tk+1−tk
2

, after the application of the cubic spline

interpolation.
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(a) From t = 4 to t = 5.
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(c) From t = 6 to t = 7.

Figure 3.3: Figure 3.2 continued. Intermediate positions of the locations of the

cell membrane of the neutrophil through the biologically observed images using

cubic spline interpolation. The purple polygonal line is the computed intermediate

position of the cell membrane locations of the neutrophil at t = tk+1−tk
2

, after the

application of the cubic spline interpolation.

3.4 Conclusion

In this chapter we presented a simple single cell tracking algorithm based on the

cubic interpolation. An attractive feature of the interpolation method is that it is

easy to use and can provide intermediate cell positions associated with cell tracking.
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Figure 3.4: Trajectories of four points of the cell boundary of the neutrophil, from

time t = 0 to time t = 7.

However, this method has several issues with low regularity being one of them. In

addition, such method can generate polygonal lines in which remeshing is essential.

Another drawback with the interpolation method as a cell tracking method is that

there is no physical law for the evolution of the cell motion.

Here, we implemented the proposed methodology on real biological data of neut-

rophils as observed in zebrafish Danio rerio larvae. Our approach allows us to make

predictions on the locations of the intermediate cell shapes between the experimental

frames and to construct a continuous trajectory of the cell membrane including the

cell centroid. In addition, usual measures for cell motility can be easily extracted

from this approach, such as confinement ratio, area of the cell and the speed of cell

centroid.

However, this framework could become a useful and easy to implement, com-

putational tool for the experimentalists to track cells and recover trajectories from

discrete image data. Consecutively, it is a simple approach to construct continu-

ous trajectories of the cell centroid, rather than connecting linearly the cell centroids

from the static imaging data. In the following chapter, we will develop an alternative

approach for cell tracking where the cell tracking is based on physical laws.
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Chapter 4

Optimal control

4.1 Introduction

In recent years, the rapid development in microscopy and imaging techniques has

generated a huge amount of data on migrating cells both in vivo and in vitro (Pittet

and Weissleder [2011]). Inferring dynamic quantities from this static data is an

important task that has many applications in biology and related fields. The field of

cell tracking arose from this need and is concerned with the development of methods

to track and analyse dynamic cell shape changes from a series of still images captured

within a time frame.

On the other hand, a major focus of current research is the derivation of math-

ematical models for cell migration based on physical principles, (e.g., Neilson et al.

[2011a]; Neilson et al. [2011b]; Elliott et al. [2012]). Furthermore, such models

appear to show good qualitative and quantitative agreement with experimental ob-

servations of migrating cells. Despite this, very little research has focused on in-

corporating these mathematical modelling advances into appropriate cell tracking

algorithms. Croft et al. [2013] investigated fitting parameters in models for cell

motility to experimental image data sets of migrating cells where observations of

both the position of the cells and the concentrations of cell-resident proteins related

to motility were available.

In this chapter we present a first step towards the development of a framework

for cell tracking based on novel models of cell motility. Specifically, we propose a

cell tracking algorithm which can be thought of as fitting a simplified, yet physically
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meaningful, model for cell migration to experimental observations and data. We

focus on the setting, prevalent in cell tracking problems, where only the position of

the cell at a series of discrete times is available and no further biological information

is given. Here the tracking procedure we propose allows us to incorporate physically

important aspects of cell migration, for example, by including volume constraints

in the model for the evolution. This is motivated by the observation that, for many

cells, while the surface area of the cell membrane may change significantly during

migration the volume enclosed by the cell remains roughly constant (Shao et al.

[2010]).

We present a mathematical model based on physical principles for the cell move-

ment that consists of a geometric evolution equation. We then formulate an inverse

problem, which takes the form of a partial differential equation constrained optim-

isation problem, for fitting the model to the static experimental observations. Our

algorithm is inspired by Haußer et al. [2010] and Haußer et al. [2012], who use an

optimal control approach to describe the shape evolution of nanoscale islands.

We reformulate our model into the phase-field framework, which appears more

suitable for the problem in hand. The phase-field method is a powerful computa-

tional method that can handle complex topological changes. Phase-field modelling

has been used in a broad range of applications in material science (Steinbach [2009]),

fluid dynamics (Anderson et al. [1998]), biology (Du et al. [2005]) and in solving

phase transition problems. In addition, the phase-field method has been applied

to a wide range of applications related to cell motility. For example, Ziebert et al.

[2011] presented a mathematical model within a phase-field approach, where the

cell shape dynamics are coupled to a vector field describing the polarisation of the

actin filament network. In addition, Marth and Voigt [2013] introduced a Helfrich

type model for bending and hydrodynamic interactions of cell membrane to derive

a continuous model within a phase-field approach.

The phase-field approach to interface evolution is related to problems involving

phase transitions. In our problem, an auxiliary field is introduced, that distinguish

the interior of the exterior of the cell (two phases). In this chapter, Ω is a bounded

domain in R2 and Γ(t) is the closed surface represents the moving cell membrane

through Ω. Within this phase-field formulation, the moving cell membrane Γ(t) is
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represented by an evolving thin interfacial layer

Γε(t) = {x ∈ Rn+1| − 1 + cε ≤ ϕε(x, t) ≤ 1− cε}, (4.1)

involving a small parameter ε related to its thickness. In this approach, the surface

is a thin diffuse interfacial layer of width O(ε) across which a phase-field variable

ϕ(x, t) : Ω × (0, T ) → R has a step transition from the bulk values ≈ +1 or ≈ −1

on either side of the interface. The zero level set of the phase-field function ap-

proximates the surface Γ(t). The bulk values of the phase-field function correspond

to the minima of a C2 energy function G(·) : R → R with two equal double wells

(Deckelnick et al. [2005]). An important aspect of this methodology is that does not

require explicit tracking of the moving cell boundary.

In summary, the key novelty of the proposed algorithm lies in the fact that

the model that drives the tracking procedure is a simplification of recently derived

physically motivated models for cell motility. We model the evolution of the cell

membrane as being governed by volume conserved mean curvature flow with forcing,

given byV (x, t) = (−σH(x, t) + η(x, t) + λV (t))ν(x, t) on Γ(t), t ∈ (0, T ],

Γ(0) = Γ0,

(4.2)

where Γ is the closed surface that represents the cell membrane, V is the material

velocity of Γ, σ is the surface tension, H the mean curvature of the surface Γ (see

Definition 6 in §2.2) and λV (t) is a spatially uniform force accounting for volume

conservation. The forcing function η is the main driver of the directed migration

and serving as a control variable for the cell-surface evolution. The equation (4.2)

can be approximated by a phase-field model which is a driven Allen-Cahn equation

with forcing (e.g., Evans et al. [1992])
∂tϕ(x, t) = ∆ϕ(x, t)− 1

ε2
G′(ϕ(x, t))− 1

ε
(cGη(x, t)− λV (t)) in Ω× (0, T ],

∇ϕ · νΩ = 0 on ∂Ω× (0, T ],

ϕ(·, 0) = ϕ0(·) in Ω,

(4.3)

where Ω ⊂ Rd is a bulk domain with normal νΩ that contains Γ, ϕ0 is a diffuse

interface representation of Γ0 and ε > 0 is a small parameter which governs the
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width of the diffuse interface (interfacial thickness). The function G is a double well

potential and cG is scaling constant that depends on the double well potential.

Within this phase-field approach, we formulate the cell tracking problem as a

partial differential equation constrained optimal control problem. We define the

objective functional

J(ϕ, η) =
1

2

∫
Ω

(ϕ(x, T )− ϕobs(x))2 dx+
θ

2

∫ T

0

∫
Ω

η(x, t)2 dx dt, (4.4)

where ϕobs is a diffuse interface representation of the observation Γobs of the cell

position and θ > 0 is a regularisation parameter; which has to be minimised for a

space and time control function η(x, t).

The goal is to drive the cell-surface using the control function η in such way that

the position of the cell membrane at time t = T , is close as possible to Γobs. Then,

by utilising a Lagrangian framework ([Tröltzsch, 2010]), we derive the necessary first

order optimality conditions and solve the system of the state and adjoint problem

by using the finite element method. Finally, a gradient based update of the control

is used.

The significance of this algorithm lies in the fact that it is, to our best knowledge,

the first study that encompasses research at the forefront of modelling cell migration

with cell tracking. Furthermore, this study has the intention to recover physically

meaningful dynamic data from static imaging data sets.

The remainder of this chapter proceeds as follows. In Section 4.2 we introduce

our approach to cell tracking, which may be regarded as fitting a mathematical

model to experimental image data sets. We present the geometric evolution law

model we seek to fit, which is a simplification of recently developed models in the

literature that show good agreement with experiments (Shao et al. [2010]; Ziebert

et al. [2011]; Neilson et al. [2011a]; Neilson et al. [2011b]; Elliott et al. [2012]; Shao

et al. [2012]; Marth and Voigt [2013]). We finish Section 4.2 by formulating the cell

tracking problem as a partial differential equation constrained optimisation problem.

In Section 4.3 we present the finite element method for solving the forward and ad-

joint problems. In addition, we present the update scheme for the control variable.

In Section 4.4 we propose an algorithm for the resolution of the partial differential

equation constrained optimisation problem and we discuss some practical aspects re-

lated to the implementation. In particular we note that the proposed theoretical and
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computational framework can be easily applied directly to multi-cell and raw image

data sets (of sufficient quality) without segmentation. In Section 4.5 we present some

classical numerical examples in order to validate and test our algorithm. In particu-

lar, the proposed numerical algorithm is applied to two-dimensional synthetic single

and multi cell image data sets. Finally, in Section 4.6 we present some conclusions

of our study and discuss future extensions and applications of the work.

4.2 Problem Formulation

4.2.1 Model

As mentioned above in contrast to many of the existing approaches for cell tracking,

the framework we propose is based on fitting a model, derived from physical prin-

ciples, for the motion of the cell to experimental image data. The general class of

models to which our approach is applicable are partial differential equations based

models for the motion, where the movement of the cell membrane is described by a

geometric evolution law.

We model the evolution of the cell membrane as being governed by volume

conserved mean curvature flow with forcing, given byV (x, t) = (−σH(x, t) + η(x, t) + λV (t))ν(x, t) on Γ(t), t ∈ (0, T ],

Γ(0) = Γ0,

(4.5)

where Γ is the closed surface that represents the cell membrane, V is the material

velocity of Γ, σ is the surface tension, H the mean curvature of the surface Γ (see

Definition 6 in Section 2.2) and λV (t) is a spatially uniform force accounting for

volume conservation. Physically, this may be thought of as an interior pressure.

The control function η(x, t) enters the equation of the motion in the form of an

additional driving force which acts normal on the surface. The goal is to drive

the cell-surface evolution using this force in such way that the desired cell shape is

obtained. The forcing function η is the main driver of the directed migration. The

model we present is phenomenological and hence it is difficult to directly relate η

to biophysical processes. However, as positive values of η correspond to protrusive

forces and negative values of η correspond to contractile forces one interpretation
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of the forcing function η is that it accounts for both protrusive forces generated by

polymerisation of actin at the leading edge of the cell and contractile forces generated

by the action of myosin motors at the rear of the cell.

The evolution law (4.5) is a simplification of a large class of models that arise in

the modelling of cell motility which take the following form (Neilson et al. [2010];

Neilson et al. [2011a]; Neilson et al. [2011b]; Elliott et al. [2012])
V (x, t) =

(
g1(H(x, t)) + g2(a(x, t)) + λV (t)

)
ν(x, t) on Γ(t), t ∈ (0, T ],

Γ(0) = Γ0,

(4.6)

where g1 models the dependence of the evolution on geometric quantities, such as

resistance of the membrane to stretching which could be modelled by mean curvature

terms as in (4.5). The function g2 appearing in (4.6) captures the dependence of the

evolution on a vector of bulk and/or surface resident species a(x, t). The surface

resident species a(x, t) could satisfy another partial differential equation such as a

surface reaction-diffusion system∂
•
V a+ a

(
∇Γ(t) · V

)
−D∆Γ(t)a = f(a) on Γ(t), t ∈ (0, T ],

a(·, 0) = a0(·) on Γ(0),

(4.7)

where a = (a1, . . . , ana)T , na is the number of chemical species involved, ai denotes

the density of the ith chemical species,

∂•V a := ∂ta+ V · ∇a, (4.8)

is the material derivative with respect to the velocity V , D is a diagonal matrix of

positive constant diffusion coefficients and f(a) is a vector function coupling non-

linear reactions. In the above, since the surface Γ is closed, no boundary conditions

are required.

Remark 9. The model system (4.7) is an extension of the model (2.13). The only

difference is that (4.7) is posed on an evolving surface while (2.13) is posed on a

stationary surface.

Models of the form (4.6)-(4.7) have been used successfully to model cell motility

in Neilson et al. [2010], Neilson et al. [2011a], Neilson et al. [2011b], Elliott et al.
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[2012] while models coupling evolution laws of the form (4.6) to bulk partial differ-

ential equations (i.e., equations posed in the cell interior) have been considered in

Shao et al. [2012], Marth and Voigt [2013], Ziebert et al. [2011].

Despite its simplicity the evolution law (4.5) may be regarded as a prototype

of more complex models of cell motility of the form (4.6)-(4.7). The geometric

evolution equation (4.6) is often the most challenging component of the model to

solve numerically. Developing an understanding of how to construct cell tracking

algorithms by assuming a geometric evolution law based model for the motion is an

important first step towards developing tracking algorithms based on more realistic

physical models.

In many applications it is also the case that the only information available from

the data is the position of the cell membrane and no adequate model for the bio-

chemistry of the motility related species involved. Without any knowledge of the

relevant biochemistry it is difficult to identify which motility related species should

influence the evolution let alone propose how the evolution depends on their dis-

tribution (i.e., a g2 in (4.6)) or a model for the species dynamics (i.e., an equation

such as (4.7)). Nevertheless, one may still wish to extract dynamic quantities from

static image data sets. Therefore, it may be reasonable to consider the evolution

law (4.5) as a stand alone model for the motion as at least the mechanical aspects

of the membrane evolution are accounted for through a physical model derived from

basic physical principles.

4.2.2 An optimal control approach to cell tracking

The cell tracking approach we consider in this chapter corresponds to the following

problem.

Problem 1 (Cell tracking). Given an initial cell membrane position Γ0 and an

observation of the cell position Γobs, find a space-time distributed forcing η such that

the evolution of the cell membrane, Γ(t), t ∈ [0, T ] satisfies (4.5) with Γ(0) = Γ0 and

Γ(T ) the position of the cell membrane at time t = T , is close to Γobs.

As the volume enclosed by the cell may vary over the images it is inappropriate

to enforce conservation of a constant volume. Instead we enforce, with the help of
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a Lagrange multiplier λ(t), that the volume enclosed by the cell is given by

Ṽ (t) = V 0 +
t

T
(Vobs − V 0),

i.e. that the volume of the cell is a time-dependent linear interpolant of the volumes

of the data.

Problem 1 is an optimal control of a free moving boundary problem, where the

free moving boundary problem is that of forced mean curvature flow and the control

variable is the space time distributed forcing. We wish to exploit this fact and to

this end we consider the phase-field approximation of (4.5), given by the Allen-Cahn

equation with forcing;
∂tϕ(x, t) = ∆ϕ(x, t)− 1

ε2
G′(ϕ(x, t))− 1

ε
(cGη(x, t)− λ(t)) in Ω× (0, T ],

∇ϕ · νΩ = 0 on ∂Ω× (0, T ],

ϕ(·, 0) = ϕ0(·) in Ω,

(4.9)

where Ω ⊂ Rd is a bulk domain with normal νΩ that contains Γ, ϕ0 is a diffuse

interface representation of Γ0 and ε > 0 is a small parameter which governs the

width of the diffuse interface (interfacial thickness). For details on the asymptotic

analysis of (4.9) and the convergence (as ε → 0) to a solution of (4.5) we refer

the reader, for example, to Chen [1992]; Blowey and Elliott [1993]; Bellettini and

Paolini [1996]; Brassel and Bretin [2011] and the references therein. The function G

appearing in (4.9) is a double well potential, for example the quartic potential

G(ϕ) =
1

4

(
ϕ2 − 1

)2
(4.10)

which has minima at ±1. The constant

cG =
1√
2

∫ 1

−1

G(r)1/2 dr (4.11)

appearing in (4.9) is a scaling constant that depends on the double well potential.

Remark 10. The Haussdorff distance could be employed in order to measure and

compare the positions of a computed curve and a given observation (desired position).

However, this methodology gives rise to smoothness issues that do not allow the

formulation of the adjoint problem. For this reason, phase-field framework appears

more suitable for our problem.
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Remark 11 (Choice of the potential). We note that our approach to the optimal

control problem involving the formulation of the adjoint problem appears to require

a smooth potential G (c.f., (4.10)). The formulation of the adjoint problem is to our

best knowledge an open problem for other widely used, but non smooth or unbounded,

potentials such as the obstacle or logarithmic potential.

We enforce the time-dependent volume constraint following the approach of

(Blowey and Elliott [1993]). Specifically our diffuse interface formulation of the

constraint on the enclosed volume is given by a constraint on
∫

Ω
[ϕ(x, t)]+dx, where

[a]+ = max(a, 0). We define the linear interpolant of
∫

Ω
[ϕ(x, t)]+dx of the initial

and target diffuse interface data Mϕ by

Mϕ(t) :=

∫
Ω

[ϕ0]+ +
t

T

(
[ϕobs]+ − [ϕ0]+

)
dx, (4.12)

and determine λ(t) in (4.9) such that

Mϕ(t) =

∫
Ω

[ϕ(x, t)]+dx. (4.13)

We have used λ (rather than λV ) for the Lagrange multiplier in (4.9) to reflect the

fact that our constraint is on
∫

Ω
[ϕ(x, t)]+dx. However, we shall refer to this con-

straint as a volume constraint in order to highlight the physical feature the constraint

is intended to model. We also investigated an alternative approach to enforcing the

volume constraint via penalising deviations from a target volume following Du et al.

[2006]. In all our numerical tests this strategy proved less robust than the volume

constraint proposed above.

Remark 12 (Volume constraint). Here, we have to point out that our diffuse in-

terface formulation of the constraint is actually given by a constraint on the mass

rather than the volume. We define the linear interpolant of the mass of the ini-

tial and target diffuse interface data by Mϕ. This formulation has been taken from

Blowey and Elliott [1993], where this method has been applied for a double obstacle

problem and as ε→ 0 conservation of mass is yields volume conservation.

To formulate the cell tracking problem as a partial differential equation con-

strained optimal control problem we define the objective functional we shall seek to

minimise as follows

J(ϕ, η) =
1

2

∫
Ω

(ϕ(x, T )− ϕobs(x))2 dx+
θ

2

∫ T

0

∫
Ω

η(x, t)2 dx dt, (4.14)
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where ϕobs is a diffuse interface representation of the observation Γobs and θ > 0

is a regularisation parameter. The first term on the right of (4.14) is the so-called

fidelity term that measures the distance between the solution to the model and the

target data and the second term is the regularisation which is necessary to ensure a

well-posed problem (for example see [Tröltzsch, 2010]).

Our optimal control approach to the cell tracking problem may now be stated

as the following minimisation problem.

Problem 2 (Optimal control problem). Given an initial diffuse interface repres-

entation of the cell membrane position ϕ0 and an observation of the cell membrane

position ϕobs, find a space-time distributed forcing η∗ : Ω× [0, T ]→ R such that with

ϕ a solution of (4.9) with initial condition ϕ(·, 0) = ϕ0, the forcing η∗ solves the

minimisation problem

min
η
J(ϕ, η), where J is given by (4.14). (4.15)

Remark 13 (Well-posedness of the problem). The study of the well-posedness of the

optimal control problem 2 is a very challenging mathematical task and it is out of the

scope of this thesis. However, we refer to Blank et al. [2013] where the well-posedness

of similar problems have been studied.

Remark 14 (Local minima). For the optimal control problem 2, there can exist

more than one local minima. In Section 4.5.3 we present a numerical example, to

illustrate the effect that the choice of the initial guess for the control η has on the

solution of the problem.

4.2.3 Optimality conditions

To apply the theory of optimal control of semilinear partial differential equation

for the solution of the tracking problem, we briefly outline the derivation of the

optimality conditions. For further details we refer to Hinze et al. [2009] and Tröltz-

sch [2010]. Introducing the Lagrange multiplier (adjoint state) p, we define the

Lagrangian functional

L(ϕ, η, p) = J(ϕ, η)−
∫ T

0

∫
Ω

(
∂tϕ(x, t)−∆ϕ(x, t)

+
1

ε2
G′(ϕ(x, t)) +

1

ε

(
cGη(x, t)− λ(t)

))
p(x, t) dx dt.

(4.16)
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Requiring stationarity of the Lagrangian with respect to the adjoint state yields

the state equation (4.9) and requiring stationarity of the Lagrangian, at the optimal

control η∗ and associated optimal state ϕ∗, with respect to the state and the control,

yields the (formal) necessary first order optimality conditions (Tröltzsch [2010])

DϕL(ϕ∗, η∗, p)ϕ = 0, ∀ϕ ∈ H1(Ω) : ϕ(x, 0) = 0, (4.17)

DηL(ϕ∗, η∗, p)η = 0, ∀η, (4.18)

where D denotes the functional derivative. The Lagrangian functional, using integ-

ration by parts and the boundary conditions of (4.9), can be calculated explicitly

as

L(ϕ∗, η∗, p) =
1

2

∫
Ω

(ϕ∗ − ϕobs)2 dx+
θ

2

∫ T

0

∫
Ω

η∗2 dx dt−
∫ T

0

∫
Ω

(
p∂tϕ

∗

− p∆ϕ∗ +
1

ε2
pG′(ϕ∗)) +

1

ε

(
cGη

∗ − λ(t)
)
p
)

dx dt

=
1

2

∫
Ω

(ϕ∗ − ϕobs)2 dx+
θ

2

∫ T

0

∫
Ω

η∗2 dx dt−
∫ T

0

∫
Ω

(
p∂tϕ

∗

+∇ϕ∗ · ∇p+
1

ε2
pG′(ϕ∗) +

1

ε

(
cGη

∗ − λ(t)
)
p
)

dx dt

+

∫ T

0

∫
∂Ω

p∇ϕ∗ · νΩ dx dt

=
1

2

∫
Ω

(ϕ∗ − ϕobs)2 dx+
θ

2

∫ T

0

∫
Ω

η∗2 dx dt−
∫ T

0

∫
Ω

(
p∂tϕ

∗

+ ϕ∗∆p+
1

ε2
pG′(ϕ∗) +

1

ε

(
cGη

∗ − λ(t)
)
p
)

dx dt

−
∫ T

0

∫
∂Ω

ϕ∗∇p · νΩ dx dt.

Remark 15. We note that the above calculation is a formal procedure, as the adjoint

state p might not be of sufficient regularity, in general.

Then, we have

DϕL(ϕ∗, η∗, p)ϕ =

∫
Ω

(ϕ∗ − ϕobs)ϕ dx dt−
∫

Ω

[pϕ]T0 dx

−
∫ T

0

∫
Ω

(
− ∂tp−∆p+

1

ε2
G′′(ϕ∗)p

)
ϕ dx dt = 0

−
∫ T

0

∫
∂Ω

ϕ∇p · νΩ dx dt.

Therefore, imposing Neumann boundary conditions for the adjoint state p, i.e. ∇p ·

νΩ = 0, and using the condition ϕ(x, 0) = 0 from (4.17) and pick a ϕ(x, t) with
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support only at the final time T , yields the adjoint problem
∂tp(x, t) = −∆p(x, t) + 1

ε2
G′′(ϕ(x, t))p(x, t) in Ω× (0, T ],

∇p · νΩ = 0 on ∂Ω× (0, T ],

p(x, T ) = ϕ(x, T )− ϕobs(x) in Ω.

(4.19)

Note that equation (4.19) is posed backwards in time and hence is equipped with

terminal conditions.

Similarly, from condition (4.18) together with the Riesz representation theorem

yields the optimality condition (c.f., Tröltzsch [2010])

DηL(ϕ∗, η∗, p)η =

∫ T

0

∫
Ω

(
θη∗ +

cG
ε
p
)
η = 0, (4.20)

and since η can be arbitrarily picked we conclude that

θη∗ +
cG
ε
p = 0. (4.21)

In practice the forward (4.9) and adjoint equations (4.19) must be solved numer-

ically and we employ the finite element method.

4.3 Numerical approximation

The forward (4.9) and adjoint equations (4.19) must be solved numerically. For this

reason, we employ the finite element method to approximate the solutions corres-

ponding to the forward and the adjoint partial differential equations (Deckelnick

et al. [2005]). The basic idea is that for each step of the loop in our algorithm,

we first solve the state equation (4.9) with a given control, then solve the adjoint

equation (4.19) with the computed states and then update the control using the op-

timality condition (4.21). For this initial study we employ a simple gradient based

update of the control (Tröltzsch [2010]).

Below we outline how the numerical scheme is derived for the state (4.9) and

adjoint equations (4.19). In addition, we present the update scheme that is used for

the control function η(x, t).
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4.3.1 Discretisation of the forward equation

We introduce the variational form for the forward problem (4.9) defined as follows.

Find (ϕ, λ) ∈ L2([0, T ];H1(Ω))× L2(0, T ) such that∫
Ω

∂tϕψ dx+

∫
Ω

∇ϕ · ∇ψ dx =
1

ε

∫
Ω

(cGη − λ)ψ dx− 1

ε2

∫
Ω

G′(ϕ)ψ dx, ∀ψ ∈ H1(Ω).

Let T be a decomposition of Ω into simplexes S (for simplicity we assume Ω is a

polygonal domain), i.e. Ω =
⋃
k∈T S. Furthermore, we define h = maxS∈T {diam S}

the maximal diameter of T and the set J to be the set of nodes of T . We define

the finite element space by

V :=
{
ψh ∈ H1(Ω) ∩ C0(Ω) : ψh|k ∈ P1 ∀k ∈ T

}
. (4.22)

In addition let {χj}j∈J to be the standard nodal basis functions of V . Then by ϕj(t)

for j = 1, . . . ,J we denote the coefficients of the basis representation. Thus, for the

discrete solution ϕh ∈ V we have

ϕh(x, t) =
∑
j∈J

ϕj(t)χj(x). (4.23)

For the time discretisation we employ an implicit-explicit method where the

diffusive term is treated implicitly and the nonlinear reaction terms explicitly. For

more details about the implicit-explicit discretisation schemes we refer to and Ascher

et al. [1995] and Madzvamuse [2006]. We discretise the time [0, T ] interval into

a finite number of sub-intervals. Introducing the shorthand for a time discrete

sequence fn := f(tn) and a uniform timestep τ with T = Mτ,M ∈ N, the fully

discrete scheme reads, for n = 0, . . . ,M − 1, given ϕnh, η
n
h ∈ V , find (ϕn+1

h , λn+1) ∈

V × R such that

1

τ

∫
Ω

(ϕn+1
h − ϕnh)ψh dx+

∫
Ω

∇ϕn+1
h · ∇ψh dx

=
1

ε

∫
Ω

(cGη
n
h − λn+1)ψh dx− 1

ε2

∫
Ω

Λh(G′(ϕnh))ψh dx, ∀ψh ∈ V ,

where Λh : C0(Ω)→ V denotes the Lagrange interpolant.

We solve the above problem using the iterative technique introduced and studied

by Blowey and Elliott [1993], that uses a bisection method for the Lagrange mul-

tiplier. In particular we seek an iterative sequence {ϕn+1,l
h , λn+1,l}l≥1 where ϕn+1,l

h
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solves

1

τ

∫
Ω

(ϕn+1,l
h − ϕnh)ψh dx+

∫
Ω

∇ϕn+1,l
h · ∇ψh dx = (4.24)

1

ε

∫
Ω

(cGη
n
h − λn+1,l)ψh dx− 1

ε2

∫
Ω

Λh(G′(ϕnh))ψh dx,

for all ψh ∈ V . We take λn+1,1 = −2ε
τ

+ 1, λn+1,2 = 2ε
τ
−1 and compute {λn+1,l+1}l≥2

from

λn+1,l+1 = λn+1,l +

(
λn+1,l − λn+1,l−1

)(
Mn+1

ϕ −
∫

Ω

[ϕn+1,l
h ]+ dx

)
(∫

Ω

[ϕn+1,l
h ]+ dx−

∫
Ω

[ϕn+1,l−1
h ]+ dx

) ,

where we recall (4.12)

Mn+1
ϕ :=

∫
Ω

[ϕ0
h]+ +

(n+ 1)τ

T

(
[ϕobs]+ − [ϕ0

h]+
)

dx.

We deem this iteration to have converged when |λn+1,l+1 − λn+1,l| < tolλ. Also, we

set l to be an inner iterative loop for the solution of the Lagrange multiplier and the

maximum number of iterations to be lmax = 2000.

Finally, the equation (4.24) can be written in matrix form as

(
1

τ
M+ S

)
Φn+1,l =

(
1

τ
M+K

)
Φn + F , (4.25)

where M and S are the mass and the stiffness matrices, respectively, with entries

(M)ij =

∫
Ω

χiχj dx and (S)ij =

∫
Ω

∇χi · ∇χj dx. (4.26)

The entries of the matrix K and the vector F are defined by

(K)ij = − 1

ε2

∫
Ω

((Φn)2−1)χiχj dx and (F)j =
1

ε
(cGη

n
h−λn+1,l)

∫
Ω

χj dx, (4.27)

respectively.

The discretisation of the forward problem without the volume constraint is

trivial, by taking λ = 0. We eschew the details.
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4.3.2 Discretisation of the adjoint equation

Likewise, for the adjoint problem (4.19) the weak formulation reads: Find ph ∈

L2([0, T ];H1(Ω)) such that∫
Ω

∂tphωh dx = −
∫

Ω

∆phωh dx+
1

ε2

∫
Ω

G′′(ϕh)ωh dx

= −
(∫

Ω

∇ph · ∇ωh dx+

∫
∂Ω

ω∇ph · νΩ dx

)
+

1

ε2

∫
Ω

G′′(ϕ)phωh dx

= −
∫

Ω

∇ph · ∇ωh dx+
1

ε2

∫
Ω

G′′(ϕh)phωh dx, ∀ωh ∈ H1(Ω).

Similarly, to the forward equation, we obtain the following fully discrete approxim-

ation (in matrix form) of the adjoint equation (4.19)(
1

τ
M−W + S

)
P n =

1

τ
MP n+1, (4.28)

where the mass and the stiffness matrices are defined as in (4.26). The matrix W

has entries

Wij =
1

ε2

∫
(3(Φn)2 − 1)χiχj dx.

The values of Φn are the solutions of the forward problem (4.25). Since the adjoint

equation must be solved backward in time, the marching direction in time for the

forward and the adjoint equation is opposite to each other. Therefore, the values of

all the Φn are coupled at all time levels with those of all P n.

The discretisation of the backward problem without the volume constraint is the

same as above, while the parameter λ(t) does not enter the adjoint equation (4.19).

4.3.3 Update scheme for the control variable η(x, t)

We use the optimality conditions to construct an iterative optimisation loop to solve

the optimal control problem, Problem 2. As we mentioned earlier, for this initial

study, we employ a simple gradient based update of the control (Tröltzsch [2010]).

Let k be the iteration number of the optimisation loop. Given ηk and pk+1 we

compute the updated control ηk+1 via steepest descent. That is we choose as an

update direction the negative gradient, the formula for the update of the control is

ηk+1(x, t) = ηk(x, t)− α
(
θηk(x, t) +

cG
ε
pk+1(x, t)

)
, (x, t) ∈ Ω× [0, T ), (4.29)

where α is a step size.
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Remark 16. There are various possible strategies (e.g., bisection method, Armijo’s

rule) in the literature, for the control of the step size α. For simplicity within this

thesis we take a constant step size. We refer to Tröltzsch [2010] for an overview of

such algorithms.

4.4 Cell tracking algorithm, practical considera-

tions and implementation

The termination criteria for the cell tracking algorithm are if either the absolute

value of the objective functional J is less than a given tolerance tolJ or the update

in the control is less than a given tolerance, i.e., if ||α(θηk + cG
ε
p)||L2(Ω×[0,T )) < tolη or

if a maximum number of iterations Kmax is reached or if the change in the solution

through successive time steps is small enough i.e., if ||ϕk+1 − ϕk||L2(Ω×[0,T )) < tolϕ.

Thus, the cell tracking algorithm we propose may now be stated in pseudocode

as follows:

Require: Data: ϕ0
h and (ϕobs)h the initial and target (discrete) diffuse interface

data.

Numerical parameters: T > 0 end-time and M > 0 number of timesteps.

Optimisation parameters: Kmax, θ, α and the tolerances tolJ , tolη, tolϕ, tolλ (see

Table 4.2).

Initial guess for the control: Given (ηh)
0 := (ηih)

0 ∈, i = 0, . . . ,M.

Set k := 0

while
(
||α(θ(ηh)

k + cG
ε
pk+1
h )||

L2(Ω×[0,T ))
> tolη, ||ϕk+1−ϕk||L2(Ω×[0,T )) > tolϕ, J >

tolJ and k < Kmax

)
do

• Solve the state equation (4.24) for {(ϕih)k+1, (λi)k+1}, i = 1, . . . ,M , with

(ηih)
k and initial data (ϕ0

h)
k+1 = ϕ0

h.

• Solve the adjoint equation (4.28) for (pih)
k+1, i = M−1, . . . , 0, with computed

(ϕih)
k+1 and with terminal data (pMh )k+1 = (ϕMh )k+1 − (ϕobs)h.

• Update control (ηih)
k+1 = (ηih)

k − α(θ(ηih)
k + cG

ε
(pih)

k+1) , i = 0, . . . ,M.

• Compute J according to (4.14).
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• k := k + 1.

end while

Remark 17. (Choice of regularisation parameter θ). The value of the regularisation

parameter θ is of vital importance in the optimisation algorithm as it is associated

with the well-posedness of the partial differential equation and the convergence to the

optimal solution. In our case, the parameter value θ was determined by trial-and-

error and the best value chosen is θ = 0.01.

Remark 18. (Choice of step size α). In addition, a crucial step in our algorithm

is the selection of the step size in the steepest descent method that we employ for the

update of the control variable η(x, t). A careful selection of the step size is important

since it affects the convergence of the algorithm (Tröltzsch [2010]). If it is too large

the solution of the algorithm will diverge, whereas if it is too small it will take a long

time to converge. For simplicity in this thesis we take a constant step size. Thus,

by trial-and-error we found that a “good” value is α = 0.01.

Remark 19. As we mentioned earlier, the adjoint equation must be solved backward

in time using the solutions from the forward problem. This procedure makes our

algorithm computationally expensive since it requires high memory usage to maintain

the stored information. Thus, in general, these kind of algorithms in most of the

cases are not possible to be executed in personal computers or laptops but only on

high performance clusters.

Segmentation and image data

An important aspect of any cell tracking algorithm is its ability to extract suitable

data from the experimental image data set. In many cases the experimental image

data set consists of grayscale observations with the intensity (brightness) indicating

whether a point is in the interior or the exterior of a cell, i.e., points inside the

cell appear bright for example and points outside appear dark. For many tracking

algorithms this intensity data is then post processed via a segmentation algorithm

(e.g., active contour methods (Chan and Vese [2001]; Dormann et al. [2002])) to

yield sharp interface representations of the cell membrane.

Assuming a sharp interface representation of the cell membrane is available,

diffuse interface representations may be easily initialised (Croft et al. [2013]). We
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note, however, that the raw intensity data produced by many imaging procedures

may already be close to a diffuse interface representation of the cell. This is typically

the case when the data is relatively free of noise and the contrast between the cell

and the background is high. In this case one may wish to exploit this fact in the

algorithm and work with the raw image data set itself (or a post processed e.g.,

thresholded version), thus circumventing the extra error induced by segmentation.

Observations at multiple points in time

For clarity of exposition we focus on the case of fitting to a single observation. The

approach generalises straightforwardly to multiple observations. The first term in

(4.14) is simply replaced by a sum over the different times. The observations are

taken as the difference between the solution (at the appropriate time) and the target

data.

Multiple cells and matching problems

As mentioned above a major focus of many cell tracking algorithms is to track

multiple cells in the same image and the resolution of the so called matching problem.

Our approach can be applied to multi-cell image data. Here ϕ0 and ϕobs would be

diffuse interface representations of the multi-cell image data set and the diffuse

interfaces would consist of multiple disjoint phases. The next step of the approach

remains unchanged and the matching problem is solved implicitly in the computation

of the optimal control.

There are, however, multiple practical issues which arise in this setting related

to the separation between distinct cells. This affects the choice of ε, and the fact

that the evolution law (4.9) allows changes in the topology of the phases. Related

to the application in cell tracking, this may lead to cell splitting, the annihilation of

a phase (which would correspond to the disappearance of a cell) or the nucleation

of a phase (i.e., the spontaneous appearance of a cell) (Bray [2001]).
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4.5 Numerical examples

4.5.1 Validation of our methodology

In this section a number of experiments are presented which illustrate the validation

of our methodology. In the following experiments we consider a square domain

Ω = [0, 4] × [0, 4] with a triangulation of 8321 degrees of freedom (i.e. number of

nodes).

In order to validate the optimal control algorithm we start by checking initially

the numerical solutions that correspond to the forward problem. A typical bench-

mark problem for an interface which evolves by its mean curvature is the shrinking

circle in R2. Initially, we consider the unit circle that moves according to (4.5).

Taking the control variable η(x, t) = 0 and λV = 0, this leads to the Allen-Cahn

equation 
ε∂tϕ(x, t) = ε∆ϕ(x, t)− 1

ε
G′(ϕ(x, t)) in Ω× (0, T ],

∇ϕ · νΩ = 0 on ∂Ω× (0, T ],

ϕ(x, 0) = x2
1 + x2

2 − 1 in Ω.

(4.30)

The rest of the parameter values used are presented in Table 4.1.

End time (T ) timestep (τ) ε λV

1 1× 10−3 0.1 0

Table 4.1: Parameters used for the forward simulations for the examples with the

shrinking and the stationary circle.

It can be shown (Deckelnick et al. [2005]), that the circle shrinks into a point in

finite time (see Figure 4.5.1). The computed radius of the zero level set at time t

has radius

R(t) =
√
R2

0 − 2t, 0 ≤ t ≤ R2
0

2
,

where R0 is the initial radius (see Figure 4.2). Figure 4.5.1 shows the computed

phase-field representation of the solution of the Allen-Cahn equation (4.30) at dif-

ferent time steps. We clearly observe that the initial circle shrinks to a point after

500 iterations and disappears afterwards.
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(t = 0) (t≈ 0.38)

(t ≈ 0.49 ) (t ≈ 0.99)

Figure 4.1: Evolution by mean curvature of a circle centred at the origin (0, 0) with

initial radius R0 = 1 at different timesteps.

An alternative fundamental manner to validate the part of the proposed al-

gorithm which is associated with the forward problem is to consider the “motion”

of the unit circle to be governed by the equation (4.5) taking λV = 0 and

η(x, t) = H(x, t),

where H(x, t) is the mean curvature of the circle.

In this case it is expected that the circle will remain stationary at the same

position, since V (x, t) = 0 (see Figures 4.3 and 4.4). Then the phase-field model
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Figure 4.2: The radius R(t) =
√
R2

0 − 2t, 0 ≤ t ≤ R2
0

2
of a unit circle that evolves

by its mean curvature (blue line). The computed radius of the zero level-set of the

solution of the Allen-Cahn equation (4.30) (red dotted line).

that approximates the equation of motion V (x, t) = −H(x, t) + η(x, t) reads
ε∂tϕ(x, t) = ε∆ϕ(x, t)− 1

ε
G′(ϕ(x, t))− cGη(x, t) in Ω× (0, T ],

∇ϕ · νΩ = 0 on ∂Ω× (0, T ],

ϕ(x, 0) = x2
1 + x2

2 − 1 in Ω.

(4.31)

where cG is given by the formula (4.11). The rest of the parameter values used are

presented in Table 4.1. Figure 4.3 shows that the initial circle remains stationary.

This evolution is illustrated in Figure 4.4, in which the radius of the zero level-set

of the computed solution remains unchanged.

A more complicated control problem for benchmarking is that of circle expansion.

The initial phase-field function represents a circle centred at the origin (0, 0) with

radius R0 = 1 while the desired circle has radius Rdes = 1.2 with center at the origin

(0, 0). In the state equation (4.9) we set ε = 0.1, and we took a uniform time step

τ = 1 × 10−3 and end-time T = 0.4. The rest of the parameter values used are

presented in Table 4.2.

We start with an abstract value for the control function η(x, t) = 0 for our

simulation. The top row in Figure 4.5 shows the computed phase-field representation

of the circle’s position at different times and the bottom row within the same figure

depicts the values for the corresponding control function in the whole domain Ω.

Figure 4.6(a) shows snapshots of the zero level-sets of the solutions computed
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(t = 0) (t = 1)

Figure 4.3: The phase-field representation of the “motion” of the unit circle that

evolves according to the evolution law V (x, t) = −H(x, t) + η(x, t) and taking

η(x, t) = H(x, t).
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Figure 4.4: The computed radius of the zero contour of the phase-field representa-

tion. We observe that the radius of the level-set of the computed solution remains

unchanged.

with the optimal control at different time steps. Figure 4.6(b) shows the plot of the

objective functional against the number of iterations of the optimisation algorithm.

The stopping criterion for this experiment was the change in the solution, through

successive time steps, which was less than the predefined tolϕ.
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Figure 4.5: Top row: Computed phase-field representation at time t = 0, t = T
2

and

t = T . Bottom row: Corresponding control function at time t = 0, t = T
2

and t = T .

0 100 200 300 400 500 600
10

−3

10
−2

10
−1

10
0

10
1

Iterations

C
o
s
t

(a) (b)

Figure 4.6: (a) Zero level-sets of the solutions computed with the optimal control

for the example with the expanding circle after 0 (red), 340 (blue) and 400 (green)

time steps. (b) The value of the cost functional versus the number of iterations for

the example with the expanding circle.

4.5.2 Application to synthetic image data sets

We now present some numerical examples illustrating the application of the al-

gorithm to synthetic image data sets. For all the simulations that we exhibit in

this section, in the state equation (4.9) we set ε = 0.1, and we take the end-time
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T = 0.05. The end time T corresponds to the nondimensionalised time between

snapshots and could in principle be related to an acquisition time between images

given real biological data. For each of the experiments we set the initial guess for

the control to be constant in space and time (zero for the single cell case and one

for the multi-cell examples). For the approximation of the forward and adjoint par-

tial differential equations we use a triangulation with 8321 degrees of freedom and

select a uniform timestep τ = 1 × 10−4. The same numerical parameters for the

optimisation algorithm were used for all the experiments and are given in Table 4.2.

α θ tolJ tolη tolϕ Kmax tolλ

0.01 0.01 1× 10−4 1× 10−4 5× 10−5 3500 1× 10−2

Table 4.2: Parameter values used for the experiment with the expanding circle in

§4.5.1 and the numerical simulations in §4.5.2.

Application to synthetic data

Here we apply the algorithm to a single synthetic cell data set taken from the Pha-

goSight website http://www.phagosight.org/synData.php. PhagoSight provides

synthetic data sets representing neutrophils as observed in a Zebrafish embryo

(Henry et al. [2013b]). The data for our computations consist of two-dimensional

points on the synthetic cell membrane at a series of times. The initial and target

curves we take as test data for the algorithm are shown in Figure 4.7(a). To ap-

ply the algorithm, based on diffuse interface representations, we define the domain

Ω:=[0, 8]× [0, 6] which is such that both the initial and target curves are contained

in the domain.

We then define a diffuse interface approximation that describes the interior and

the exterior region of the cell membrane following the procedure described in Croft

et al. [2013]. Both are separated from each other by a diffuse interface, which denotes

the cell membrane. We define the bulk domain Ω = Ωext ∪ Γ(t) ∪ Ωint in which the

http://www.phagosight.org/synData.php
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phase-field variable ϕ(x, t) is defined as

ϕ(x, t) =


1 if dΓ(t)(x) > ε,

sin
(
πdΓ(t)(x)

2ε

)
if
∣∣dΓ(t)(x)

∣∣ < ε,

−1 if dΓ(t)(x) < −ε,

(4.32)

where ε denotes the interfacial thickness of the diffuse interface, and dΓ(t)(x) denotes

the Euclidean signed-distance function between x ∈ Ω and the closest point on Γ(t)

(Deckelnick et al. [2005]). The function ϕ(x, t) takes values +1 if the point is located

in the interior of the cell and −1 if it belongs outside of the cell. The cell membrane

Γ(t) is implicitly defined as the zero level set of the ϕ(x, t).

Remark 20. We note that other appropriate functions can be used for the definition

of the phase-field variable ϕ(x, t), e.g. the cosine function.

Figure 4.7 shows the diffuse interface representations of the initial (Figure 4.7(b))

and target data (Figure 4.7(c)), respectively.

In order to investigate the influence of the volume constraint on the computed cell

morphologies we perform two experiments, in the first example we simply consider

the forced Allen-Cahn model for the evolution with no volume constraint and in the

second example we include the volume constraint as described in §4.2. The algorithm

takes 1580 iterations to meet the stopping criteria with no volume constraint and

1740 iterations with the volume constraint, corresponding to CPU times of 27782

and 103024 seconds, respectively.

Figure 4.8 shows the plot of the objective functional against the number of

iterations of the optimisation algorithm with and without the volume constraint. We

observe an initial rapid decay in the objective functional for the case with the volume

constraint whereas in the simulation with no volume constraint there is a gradually

reduction until we approach the minimum. Figure 4.9 shows the zero level-set of

the computed solution using the optimal control at the final time with and without

the volume constraint shaded by the values of the control. The background shading

corresponds to the target data. In both cases the position of the zero level-set of the

computed solution shows good agreement with the target data. Qualitatively, we

observe cells with a clearly defined “front” and “rear”, with the computed control



4.5 Numerical examples 77

2 3 4 5 6
1

2

3

4

5

(a) Initial (red curve) and target (green curve) synthetic

data. The cell centroids are shown together with the tra-

jectory of the linear interpolant of the cell centroids (black

line).

(b) Initial data (ϕ0). (c) Target data (ϕobs).

Figure 4.7: Initial and target data for the example with synthetic data from §4.5.2.

corresponding to protrusive forces at the front and contractive forces at the rear

(Flaherty et al. [2007]; Xue et al. [2010]).

In Figure 4.10 we present the plot of the computed mass Mϕ (see (4.12) for its

definition) of the optimal solution, with the volume constraint. We observe that

the computed mass is the linear interpolant of the data. Figure 4.11 shows the

area enclosed by the zero level-set of the solution of the optimal control with and

without the volume constraint together with the linear interpolant of the areas of



4.5 Numerical examples 78

0 500 1000 1500 2000
10

−2

10
0

10
2

C
o
s
t

Iterations

(a) Without the volume constraint

0 500 1000 1500 2000
10

−2

10
0

10
2

C
o
s
t

Iterations

(b) With the volume constraint

Figure 4.8: Plots of the cost functional versus the number of iterations for the ex-

periments with synthetic data from §4.5.2, with and without the volume constraint.

We observe an initial rapid decrease in the cost for the case with the volume con-

straint whereas in the simulation with no volume constraint is more gradually. Both

followed by a much more steady decrease as we approach the minimum and this is as

expected since the steepest descent algorithm is used for the update of the control.

the data. We see that without the volume constraint the area decreases linearly for

long periods and at the final stages, the area increases exponentially to converge to

the desired area. The algorithm is compensating for mismatching the area during

the evolution process and only at the final stages does the algorithm converge to the

desired shape. However, in the case with the volume constraint we observe that the

area is close to the area generated by the linear interpolant of the data.

In terms of the computed cell morphologies, Figure 4.12 shows snapshots of the

computed cell membranes (zero level-sets) for the two different cases. We clearly

observe that the intermediate snapshot (blue curve) encloses a much smaller area if

the volume constraint is not included in the algorithm. In Figure 4.13 we report on

the trajectory of the centroid (center of mass) of the zero level-set of the computed

solution of the optimal control, with and without the volume constraint. In addition,

in Figure 4.14 we show the maximum and minimum values of the optimal control.

We observe large increase in the maximum and minimum values of the control as

we approach the final time.
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(a) Without the volume constraint (b) With the volume constraint

Figure 4.9: Zero level-set of the solutions (ϕ(x, T )) computed using the approx-

imated optimal control (η∗(x, t)) with and without the volume constraint for the

experiments with synthetic data from §4.5.2. The curve (zero level-set of ϕ(x, T )) is

shaded by the approximated optimal control (η∗(x, T )) and the background by the

target data (ϕobs(x)). The color-bar corresponds to the scale for η∗(x, T ).We see

good agreement between the zero level-set of the data computed with the optimal

control and the target data in both cases.

4.5.3 The influence of the initial guess for the control

Here we apply the algorithm with the volume constraint on the simple example of

a translated circle to illustrate the effect that the choice of the initial guess for the

control η has on the solution of the problem. To apply our algorithm we define the

domain Ω to be [−3, 6] × [−3, 3] with a triangulation of 8321 degrees of freedom.

We selected a uniform timestep τ = 1 × 10−3 and set the interfacial thickness

ε = 0.1. We took the end-time T = 0.8. The remaining numerical parameters for

the optimisation algorithm are as given in Table 4.1. The initial data was taken to be

a smoothed (by running a few steps of the Allen-Cahn solver) version of the function

taking the value 1 inside B1(0, 0) (a circle of radius 1 centred at the origin) and -1

in Ω\B1(0, 0). The target data was taken to be a smoothed (by running a few steps

of the Allen-Cahn solver) version of the function taking the value 1 inside B1(3, 0)

and -1 in Ω\B1(0, 0). Figure 4.15 shows the initial and target diffuse interface data.

To illustrate the effect of the choice of initial guess on the algorithm, we consider
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Figure 4.10: Plot of the computed mass Mϕ for the experiment with synthetic data

from §4.5.2 with the volume constraint. The circle and the diamond correspond to

the mass of the initial and target diffuse interface data, respectively. We observe that

the mass is the linear interpolant of the data. We refer to (4.12) for the definition

of the Mϕ.

two different values for the initial guess, firstly we set η = 0 and secondly we set

η = c ·∇ϕ, where c = (2.5, 0), i.e., in the latter case the initial guess depends on the

solution to the Allen-Cahn equation. In both cases we used the algorithm with the

volume constraints. With the zero initial guess the algorithm took 3262 iterations

to meet the stopping criteria corresponding to a CPU time of 320433 seconds. With

the second choice of initial guess the algorithm took 2056 iterations to meet the

stopping criteria corresponding to a CPU time of 228173 seconds respectively.

Figure 4.16 shows the zero level-set of the computed solution using the optimal

control at the final time. The curve corresponding to the zero level-set is shaded by

the value of the control with the background shading corresponding to the target

data. In both cases the position of the computed curve (zero level-set) with the

optimal control shows good agreement with the target data. Figure 4.17 shows

snapshots of the computed zero level-sets with the two different initial guesses. For

the case with the initial value of η = 0, we observe in Figure 4.17(a) that the interface

remains close to the initial position for most of the time of the simulation, and at the
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Figure 4.11: Plots of the area enclosed by the evolving cell for the experiments with

synthetic data, with and without the volume constraint. The cell shrinks consider-

ably during the evolution without the volume constraint leading to a mismatch in

the target area. Only at the very last moment does the volume increases rapidly

towards the target volume. The area enclosed from the simulation with the volume

constraint is observed to be close to the linear interpolant of the data.

very last moment it shrinks to a point with a new phase nucleated at the position

of the target data corresponding to a change in topology. With the second choice

of initial guess (η = c · ∇ϕ) we observe in Figure 4.17(b) that there is a gradual

motion towards the target position with no changes in topology. Figure 4.18 shows

the area enclosed by the zero level-set of the computed solution with the optimal

control with the two different initial guesses together with the linear interpolant of

the areas of the data. We observe a sharp increase in area towards the end of the

time interval with the zero initial guess as the new phase is nucleated. With the

second choice of initial guess, the area of the computed curve exhibits a good fit to

the linear interpolant of the areas of the data.

Application to multi-cell image synthetic data sets

We now apply the algorithm to the case of multi-cell image data sets. As a proof-

of-concept we consider the simplest possible scenario where we have an initial and
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(a) Without the volume constraint (b) With the volume constraint

Figure 4.12: Zero level-sets of the solutions computed (ϕ(x, t)) with the optimal

control (η∗(x, t)) for the experiments with synthetic data from §4.5.2, with and

without the volume constraint after 0 (red), 350 (blue) and 500 (green) time steps.

We observe that the volume enclosed by the blue curve is significantly smaller than

the volumes enclosed by the red and green curves without the volume constraint

whilst this is not observed if the volume constraint is included.
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Figure 4.13: Trajectory of the centroid of the zero level-sets of the solution with the

optimal control with and without the volume constraint for the experiments with

synthetic data from §4.5.2.
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(a) Minimum value of the optimal control for the al-

gorithm without volume constraints.
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(b) Maximum value of the optimal control for the al-

gorithm without volume constraints.
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(c) Minimum value of the optimal control for the al-

gorithm with volume constraints.
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(d) Maximum value of the optimal control for the al-

gorithm with volume constraints.

Figure 4.14: Minimum and maximum values of the control η with and without the

volume constraint for the example with synthetic data from §4.5.2. We observe a

large increase in the maximum and minimum values of the control, as we approach

the final time of the simulations.
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(a) Initial data (ϕ0). (b) Target data (ϕobs).

Figure 4.15: Initial and target data for the examples of §4.5.3.

(a) With initial guess η = 0 (b) With initial guess η = c · ∇ϕ

Figure 4.16: Zero level-set of the solutions (ϕ(x, T )) computed using the approx-

imated optimal control (η∗(x, t)) for the experiments of §4.5.3. The curve (zero

level-set of ϕ(x, T )) is shaded by the approximated optimal control (η∗(x, T )) and

the background by the target data (ϕobs(x)). The color-bar corresponds to the scale

for η∗(x, T ). We see good agreement between the zero level-set of the data computed

with the optimal control and the target data in both cases.

desired data set both consisting of two cells that are well separated.

For the first experiment we define the initial data and target data as follows.

Defining the domain Ω to be [−2, 8] × [−2, 2] we construct the subdomains Ω1,
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(a) With initial guess η = 0 (b) With initial guess η = c · ∇ϕ

Figure 4.17: Zero level-sets of the solutions computed (ϕ(x, t)) with the optimal

control (η∗(x, t)) for the experiments of §4.5.3 at t = 0 (red), t = 0.2 (black),

t = 0.6 (blue), t = 0.7 (orange), t = 0.789 (pink) and t = 0.8 (green). We observe

the nucleation of a phase and a change in topology with the zero initial guess whilst

there are no evident changes in topology and the zero level-set maintains a fixed

topology in the case of the nonzero initial guess.
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Initial guess for η(x,t)=0

Initial guess for η(x,t)=c ⋅∇φ

Linear Interpolation

Figure 4.18: Area enclosed by the curve for the experiments of §4.5.3. A good fit

to the linear interpolant of the areas is only observed with the nonzero initial guess.

We observe a rapid increase in the area near the end time for the zero initial guess,

this corresponds to the time at which a new phase is nucleated, c.f., Figure 4.17(a).
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Ω2, Ω3 and Ω4 to be the simply connected bounded domains with boundary curves

Γ1,Γ2,Γ3 and Γ4 defined by (the curves Γ1,Γ2 and Γ3 and Γ4 are the zero level-sets

of the diffuse interfaces shown in Figure 4.19(a) and 4.19(b), respectively).

Γ1 :=
{
x ∈ Ω | x2

1 + x2
2 − 0.82 + 0.1 sin(4x1) + 0.1 sin(3x2) = 0

}
,

Γ2 :=

{
x ∈ Ω |

(x1

2
− 2
)2

+ (x2 − 0.6)2 − 0.72 + 0.1 sin

(
5x1

2

)
+ 0.3 sin(2x2) = 0

}
,

Γ3 :=
{
x ∈ Ω | (x1 − 0.4)2 + (x2 − 0.5)2 − 0.82 + 0.1 sin(6x1) + 0.1 sin(7x2) = 0

}
,

Γ4 :=

{
x ∈ Ω |

(x1

2
− 2.5

)2

+ (x2 − 1)2 − 0.72 + 0.1 sin

(
7x1

2

)
+ 0.1 sin(1.5x2) = 0

}
.

We then set the initial and target data to be a smoothed (by running 5 steps of the

Allen-Cahn solver) version of the function

ϕ0 =

1 for x ∈ Ω1 ∪ Ω2,

−1 for x ∈ Ω \ (Ω1 ∪ Ω2) ,

and ϕobs =

1 for x ∈ Ω3 ∪ Ω4,

−1 for x ∈ Ω \ (Ω3 ∪ Ω4) .

Figure 4.19 shows the initial and target diffuse interface data.

As previously, we compare the results of the algorithm with and without the

volume constraint. For this experiment, the algorithm takes 1149 iterations to meet

the stopping criteria with no volume constraint and 3013 iterations with the volume

constraint, corresponding to CPU times of 22132 and 207663 seconds, respectively.

Figure 4.20 shows the plot of the cost functional against the number of iterations

of the optimisation algorithm with and without the volume constraint. Figure 4.21

shows the zero level-set of the computed solution using the optimal control at the

final time with and without the volume constraint shaded by the values of the

control with the background shading corresponding to the target data. The results

are similar to the single cell simulations in the previous example, with an initial

rapid decrease in the cost followed by a subsequent gradual decrease. The cells

(zero level-sets) computed with the optimal control show good agreement with the

target data for both versions of the algorithm and for both cells at the final time as

expected, but not for the intermediate positions.

Figure 4.22 shows the area of the domain in which the computed solution is

positive with and without the volume constraint together for the case of the linear

interpolant of the areas of the data. We observe analogous behaviour to the single
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(a) Initial data (ϕ0).

(b) Target data (ϕobs).

Figure 4.19: Initial and target data for the examples with the multi-cell image data

sets of §4.5.3.

cell. In terms of the computed cell morphologies, Figure 4.23 shows snapshots of

the computed zero level-sets for the two different versions of the algorithm.

We see that in this multi-cell setting the algorithm has implicitly solved the

matching problem by generating two disjoint cells. We observe that the loss of

volume in the case of no volume constraint corresponds to one of the cells in the

intermediate snapshot (blue curve) enclosing a much smaller area.

An example with topological change

It must be noted that, in general our algorithm may generate cells whose topology

is not fixed. In the multi-cell setting it is very easy to generate examples for which

we observe changes in topology in the cell membrane as illustrated by the next

experiment.

Defining the domain Ω to be [−2, 6.3]× [−2.5, 2.5] we construct the subdomains
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Figure 4.20: Cost functional versus the number of iterations for the examples with

the multi-cell image data sets of §4.5.3.

(a) Without the volume constraint (b) With the volume constraint

Figure 4.21: Zero level-set of the solutions (ϕ(x, T )) computed using the approx-

imated optimal control (η∗(x, t)) with and without the volume constraint for the

experiments with the multi-cell image data sets of §4.5.3. The curve (zero level-

set of ϕ(x, T )) is shaded by the approximated optimal control (η∗(x, T )) and the

background by the target data (ϕobs(x)). The color-bar corresponds to the scale for

η∗(x, T ). For both cases, we see good agreement between the zero level-set of the

data computed with the optimal control and the target data.

Ω1, Ω2, Ω3 and Ω4 to be the simply connected bounded domains with boundary

curves Γ1,Γ2,Γ3 and Γ4 defined by (see Figure 4.24)
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Figure 4.22: Plots of the area enclosed by the cell for the experiments for the case

of the multi-cell image data sets of §4.5.3, with and without the volume constraint.

As with the single cell data, the area (now the sum of the areas of the two cells)

shrinks considerably during the evolution without the volume constraint whilst a

better fit to the linear interpolant of the area enclosed by the data is observed with

the volume constraint.

Γ1 :=
{
x ∈ Ω | x2

1 + x2
2 − 0.92 + 0.1 sin(4.5x1) + 0.11 sin(3x2)) = 0

}
,

Γ2 :=

{
x ∈ Ω | (x1 − 5)2 + x2

2 − 0.72 + 0.1 sin

(
5x1

2

)
+ 0.3 sin(2x2) = 0

}
,

Γ3 :=
{
x ∈ Ω | (x1 − 0.35)2 + (x2 − 0.7)2 − 0.82 + 0.1 sin(6x1) + 0.1 sin(7x2) = 0

}
,

Γ4 :=

{
x ∈ Ω | (x1 − 0.3)2 + (x2 − 1.1)2 − 0.72 − 0.1 sin

(
7x1

2

)
+ 0.1 sin(1.5x2) = 0

}
.

We then set the initial and target data to be a smoothed (by running 5 steps of

the Allen-Cahn solver) version of the function

ϕ0 =

1 for x ∈ Ω1 ∪ Ω2,

−1 for x ∈ Ω \ (Ω1 ∪ Ω2) ,

and ϕobs =

1 for x ∈ Ω3 ∪ Ω4,

−1 for x ∈ Ω \ (Ω3 ∪ Ω4) .

Figure 4.24 shows the initial and target diffuse interface data.

Similar to previous experiments, we compare the results of the algorithm with

and without the volume constraint. For this experiment, the algorithm takes 1776



4.5 Numerical examples 90

(a) Without the volume constraint (b) With the volume constraint

Figure 4.23: Zero level-sets of the solutions computed (ϕ(x, t)) with the optimal

control (η∗(x, t)) for the multi-cell image data sets of §4.5.3, with and without the

volume constraint after 0 (red), 350 (blue) and 500 (green) time steps. The volume

enclosed by both cells shrinks during the evolution without the volume constraint

whilst this is not observed if the volume constraint is included. For both cases, with

and without the volume constraint, the implicit solution of the matching problem

in this case generates two disjoint cells which do not change in topology.

iterations to meet the stopping criteria with no volume constraint and 2813 itera-

tions with the volume constraint, corresponding to CPU times of 33290 and 193476

seconds, respectively.

Figure 4.25 shows the plot of the objective functional against the number of

iterations of the optimisation algorithm with and without the volume constraint.

Figure 4.26 shows the zero level-set of the computed solution using the optimal

control at the final time with and without the volume constraint shaded by the

values of the control where the background shading corresponding to the target data.

The results are similar to the previous simulations with an initial rapid decrease in

the cost function followed by a subsequent gradual decrease and good agreement

with the target data for both versions of the algorithm and for both cells. For each

of the versions of the algorithm, both of the computed cells posses a clearly defined

“front” and “rear” of the evolving cell.

Figure 4.27 shows the area of the domain in which the computed solution is

positive with and without the volume constraint together with the linear interpolant

of the areas of the data. Figure 4.28 shows snapshots of the computed zero level-sets
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for the two different versions of the algorithm. Unlike in the previous examples we

see that for this particular choice of initial and target data, the algorithm yields

cells which change in topology with one of the curves shrinking until it disappears

whilst the other curve splits into two disjoint curves. Thus our algorithm generates

trajectories corresponding to the annihilation (via shrinking) of one cell whilst the

other cell splits to form the two cells observed in the image data set.

Remark 21. Biologically this process described above can be explained by the phe-

nomenon of mitosis and apoptosis. The former refers to the cell’s cycle process in

which a cell divides into two or more cells. The latter describes the procedure of

programmed cell death and one of the changes involved include cell shrinkage among

others (Alberts et al. [1994]).

(a) Initial data (ϕ0).

(b) Target data (ϕobs).

Figure 4.24: Initial and target data for the examples with topological change of

§4.5.3.
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Figure 4.25: The value of the cost functional versus the number of iterations for

the examples of §4.5.3 with and without the volume constraint. We observe a

rapid decrease in the cost initially followed by a much more gradual decrease as we

approach the minimum, this is as expected since the steepest descent algorithm is

used for the update of the control.

(a) Without the volume constraint (b) With the volume constraint

Figure 4.26: Zero level-set of the solutions (ϕ(x, T )) computed using the approx-

imated optimal control (η∗(x, t)) with and without the volume constraint for the

experiments with topological change of §4.5.3. The curve (zero level-set of ϕ(x, T ))

is shaded by the approximated optimal control (η∗(x, T )) and the background by the

target data (ϕobs(x)). The color-bar corresponds to the scale for η∗(x, T ). We see

good agreement between the zero level-set of the data computed with the optimal

control and the target data in both cases.
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Figure 4.27: Area enclosed by the cell for the experiments with topological change

of §4.5.3 with and without the volume constraint. As with the single cell data, the

area (now the sum of the areas of the two cells) shrinks considerably during the

evolution without the volume constraint. However, the area enclosed by the cell

with the volume constraint does exhibit a better fit to the linear interpolant of the

areas of the data.

4.5.4 Comments and limitations of the cell tracking algorithm

Like other algorithms (Henry et al. [2013b]), this proposed algorithm for cell track-

ing with the volume constraint has limitations. In Figures 4.11, 4.22 and 4.27 we

observe that the area enclosed by the evolving cells, when it approaches the end

time, increases and does not exhibit a good fit to the linear interpolant of the areas

of the data. Looking at the phase field representation of the computed solution

(Figure 4.29), as shown from the experiment with the synthetic data from §4.5.2,

we see that the two-phase interface is not “well” preserved after 420 time steps.

The values of the phase-field variable ϕ(x, t) are no longer around −1 and +1 but

fluctuates between −0.994 and 1.125. A potential reason for this may be the high

values of the control function η(x, t).

Nevertheless, it is expected to solve this problem by reducing the interfacial

thickness ε and by increasing the number of degrees of freedom (DOFs). However,

this becomes computationally prohibitive regarding the memory requirements of the
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(a) Without the volume constraint (b) With the volume constraint

Figure 4.28: Zero level-sets of the solutions computed (ϕ(x, t)) with the optimal

control (η∗(x, t)) for the experiments with topological change as described in §4.5.3

with and without the volume constraint after 0 (red), 350 (blue) and 500 (green)

time steps. We observe that both with and without the volume constraint, the

implicit solution of the matching problem in our algorithm leads to the annihilation

of one cell (as it shrinks to a point) while the other cell splits with the zero level-set

changing in topology from a single closed curve to two disjoint closed curves.

algorithm. A future area of research that could act as an alternative remedy for this

issue would be to impose constraints on the control function η(x, t).

An additional limitation for the proposed algorithm for cell tracking with the

volume constraint is the time that is required for a simulation. The CPU times for

each of the experiments above is on the order of hours. For all the experiments

the number of iterations required before the stopping criteria is met are similar,

however this leads to simulations with the volume constraint taking longer time

(in terms of CPU time) as those without the volume constraint. This is due to the

iterative nature of the algorithm used to compute the Lagrange multiplier c.f. §4.3.1

which necessitates multiple solves per time step. We note that the CPU times of

the algorithms may be too large for many applications.

Finally, we mention that the current solution procedure based on grids where

a constant mesh connectivity throughout the simulations has been used and serial

solution of the forward and adjoint problems may be improved by combining adapt-
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(a) Phase-field representation

(b) Control function

Figure 4.29: (a): Computed phase-field representation after 0, 420 and 500 time

steps, for the example with the synthetic data from §4.5.2 with the volume con-

straint. (b): Corresponding control function after 0, 420 and 500 time steps. We

observe that the two-phase interface is not well preserved when we approach the

end time (after 420 iterations) and the phase-field variable ϕ(x, t) takes values from

−0.994 to 1.125. A possible reason for this may be the big values of the control

function.

ive finite element grids with a parallel solver for the forward and adjoint problems.

This will make our computations much quicker.

In addition, for this study we employ the steepest descend method to update

(4.29) the control variable η(x, t). One feature of this method is that it is easy to

implement. It must be noted that this method works well in the initial iterations,

but tends to be very slow until it converges to the optimal solution (Wang [2008]).

4.6 Conclusion

In this chapter we presented a first step towards the development of cell tracking al-

gorithms based on physical models for cell migration. The presented algorithm seeks
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to track whole cell morphologies and is applicable to single cell or multi-cell image

data sets. Our approach may be regarded as a model fitting procedure in which a

physically derived model for the evolution of the cell or cells is fitted to experimental

image data sets. The algorithm is based on the theory of optimal control of partial

differential equations and full details of the derivation and implementation of the

algorithm are given. We also present a number of numerical experiments illustrating

the validation and the performance of the algorithm with synthetic representative

single cell and multi-cell image data sets.

The key novelty of our approach is that the model for the evolution of the cell

(or cells), which drives the tracking procedure, is based on a relevant simplification

of existing physically derived models for cell motility that reproduce many experi-

mentally observed aspects of cell migration (e.g. Neilson et al. [2010]; Neilson et al.

[2011a]; Neilson et al. [2011b]; Elliott et al. [2012]). Thus this study is an import-

ant step towards the development of cell tracking algorithms in which the recovered

trajectories are physically meaningful.

One significant advantage of this approach for cell tracking is that the physics

of the model driving the evolution of the cell is reflected in the recovered dynamic

data. Thus it is possible to encode physical features of cell migration into the

tracking procedure. We illustrate this fact by including volume constraints in the

model. Comparing the results of the tracking algorithm with and without volume

constraints, we observe, that in a number of simulations neglecting volume con-

straints leads to physically unrealistic cell morphologies with a significant reduction

of the cell volume in the recovered morphologies whilst this undesirable effect is no

longer evident if volume constraint is included.

We worked with diffuse interface representations of the cell membrane to make

use of the mature theory for the optimal control of semilinear partial differential

equations. One attractive aspect of this approach is that, as we do not require

sharp interface representations of the cell membrane, it may be possible therefore

to work directly with the raw experimental image data set without any need for

segmentation.

Like other algorithms, the proposed cell tracking algorithm has limitations. As

we observed in Figure 4.29, the two-phase interface is not “well” preserved when we
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approach the end time and we presume that a potential reason for this issue may

be the high values of the control function. Thus, a future step for the improvement

of this algorithm is to impose constraints on the control function η(x, t). In addi-

tion, the diffuse interface or phase-field framework that we employ does make the

algorithm computationally intensive as evidenced by the relatively large CPU times

for our experiments and a key area for future work is to investigate improvements in

the computational efficiency of the algorithm. This need is especially evident if one

wishes to track cells in three dimensions. Although our theoretical framework applies

equally to this setting the computational cost becomes prohibitive. Computational

aspects under investigation include

• Spatial and temporal mesh adaptivity which is challenging in this setting as

the solution of the state equation enters the adjoint equation (Haußer et al.

[2010]; Haußer et al. [2012]).

• Alternative update schemes for the control (4.29) to the simple yet robust

gradient based update considered in this chapter. We can consider the second

order optimisation Newton’s method (Snyman [2005]). Second order meth-

ods often converge much more quickly, but they can be challenging in their

implementation under the current framework.

• Parallelisation and the development of fast solvers for the solution of the state

and adjoint equations.

Our initial numerical investigations suggest that with a combination of the tech-

niques outlined above it is possible to efficiently track three-dimensional cell migra-

tion.

As mentioned previously one interpretation of the forcing η∗ is that it accounts

for both protrusive forces generated by polymerisation of actin at the leading edge

of the cell together with contractile forces generated by the action of myosin motors

at the cell rear. Thus, a potential avenue for assessing the plausibility of the cell

tracks computed with our algorithm would be to compare the computed η∗ with

experimental imaging data on the location of polymerised actin and myosin-II on

the cell membrane with the expectation being that regions in which the computed

forcing η∗ is positive would correspond to regions rich in polymerised actin and
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regions in which the computed forcing η∗ is negative would correspond to regions

rich in myosin-II.

There are also many extensions of our approach which are likely to prove useful

in applications. Our algorithm could equally be applied to the identification of

(possibly time-dependent) parameters in models for cell migration (e.g., a spatially

constant forcing or material parameters such as surface tension or bending rigidity),

however, for these cases it is likely that the sharp interface approach proposed in

Croft et al. [2013] will be more efficient. As observed in some of the experiments we

report on, the framework we employ allows changes in topology of the cells. Whilst

this may be desirable for some applications, e.g., tracking cells beyond cell division

or cell fusion, in many biological experiments the topology of the cells does not

change.

The model we propose for the evolution in this chapter is a simplification of

more general physically relevant models in which bulk or surface partial differential

equations for the biochemistry are coupled to a geometric evolution law for the

motion. An important area for future work is the extension of the framework to

this more general setting. We note that the phase-field approach we employ makes

it computationally straightforward to couple the geometric evolution law for the

motion to bulk partial differential equations (posed either within the cell or in the

extra-cellular matrix) (Ziebert et al. [2011]; Shao et al. [2010]; Shao et al. [2012]).

Finally, investigating the performance of the proposed algorithm with real biolo-

gical data for different cell types and in different environments is an important and

worthwhile task. In the next chapter we present the results of the algorithm applied

to the tracking of in vivo neutrophil migration as observed in the zebrafish Danio

rerio larvae.
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Chapter 5

An application of cell tracking

algorithm in neutrophil cell

migration

5.1 Introduction

Biological processes constitute the functional foundation for living organisms. In-

flammation is such a process with which multicellular organisms can defend them-

selves against other competitive microorganisms or tissue injury (Henry et al. [2013b]).

The inflammatory response initiates when a tissue injury is caused by bacteria,

trauma, toxins or any other cause (Andreoli et al. [2010]). Chemicals are released

attracting leukocytes such as monocytes, lymphocytes or neutrophils. The latter

represent the most common immune cells and together with macrophages are the

key elements for a successful immune response (Elks et al. [2011]). Our daily de-

fence against pathogens depends on their action and their quick migrating response

(Reyes-Aldasoro et al. [2009]). In addition, neutrophils are produced to kill bacteria

in cases where macrophages fail to control the initial infection (Elks et al. [2011]).

Their motility is of vital importance and results from a coordination of protru-

sions (pseudopods) and retractions, leading to a deformation of their shape (Yap and

Kamm [2005]; Flaherty et al. [2007]). The production of these pseudopods seems

to be affected by the presence of chemical gradients and is subject to complex mo-

lecular interactions. For all these reasons, it becomes obvious why neutrophils play
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a central role by providing a rapid immune response and therefore it is necessary to

understand their behaviour.

The most common transgenic animal model that has been used in recent years

for the above purpose is the zebrafish Danio rerio larvae. This model presents nu-

merous advantages for their study (Renshaw et al. [2006]; Reyes-Aldasoro et al.

[2009]; Elks et al. [2011]; Najia et al. [2011]; Holmes et al. [2012]; Kadirkamanathan

et al. [2012]; Henry et al. [2013b]). Their immune system includes similar cell types

close to those found in humans (Renshaw et al. [2006]; Henry et al. [2013a]). One

of the main advantages of the zebrafish larvae is their transparency, facilitating the

visualisation of a wide spectrum of processes with the aid of the differential interfer-

ence contrast (DIC) microscopy (Elks et al. [2011]). This attribute combined with

its transgenic nature, make it possible to be labelled with green fluorescent mark-

ers (Tg(mpx:eGFP)i114), and the feasible genetic manipulations classify zebrafish

Danio rerio larvae as a powerful model system (Kadirkamanathan et al. [2012]).

Analytically, zebrafish has the ability to provide in vivo imaging for migrating

cells, such as neutrophils. The use of differential interference contrast microscopy

allows easy visualisation of the cell targets, resulting in quick experimental data.

The induction of inflammation starts with the tail transection of zebrafish Danio

rerio larvae. This action initiates the migration of neutrophils towards the injury

site often modulated by the introduction of the chemoattractants. On contact with

these or with pathogens neutrophils become “activated”. It has been suggested

that the deformation of their shape is considered as an early sign of this activa-

tion, though this relationship between these two features remains to be determined

(Reyes-Aldasoro et al. [2009]). As a result, the importance of understanding neut-

rophil movement and behaviour for their defence against disease, as well as for the

possible harmful outcome in cases of improper activation, it becomes obvious (Ed-

wards [2005]; Reyes-Aldasoro et al. [2009]).

In Reyes-Aldasoro et al. [2009], studies have been attempted to track and perform

a morphological analysis of the deformation of the three-dimensional neutrophil’s

shape during inflammatory process in vivo. A series of measurements have been

proposed in order to relate the activation of the neutrophils and their shape modi-

fication. When neutrophils are activated and move towards the site of the injury
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it has been observed that their volume increases. This has been demonstrated also

in Henry et al. [2013b]. In addition, the volume has been noted to be correlated

with the sphericity of neutrophils, which measures how compact or close they are to

a perfect sphere. Later, Kadirkamanathan et al. [2012] presented a computational

framework for the estimation and visualisation of the chemoattractant field using

imaging data from tracked neutrophils. Their method is based on the assumption

that there is a relationship between neutrophil’s centroid velocity and the chemoat-

tractant gradient.

In this chapter we will present an application of the optimal control algorithm

(which was demonstrated in Chapter 4) to experimental data on the migration of

neutrophils as observed in zebrafish Danio rerio larvae. In order to contrast this

methodology, we compare the numerical results with those obtained in Chapter 3,

where the cubic interpolation method was employed using cubic interpolation. Fi-

nally, a number of meaningful biological measures are calculated and compared,

from both tracking methods. These measurements have been selected to demon-

strate the potential of a morphological of neutrophils. We conclude this chapter by

discussing the numerical results and suggesting possible research work related to the

neutrophil cell tracking.

5.2 Numerical experiments with real biological

data

We present the numerical results illustrating the application of the optimal control

algorithm (we refer to Section 4.4) with volume constraint to real biological data

from neutrophil migration, as observed in the zebrafish Danio rerio larvae. For

all the simulations we report in this chapter, for the forward equation (4.9) we set

ε = 0.1 and we take the end-time to be T = 0.05. For each of the experiments we set

the initial guess for the control function to be zero (constant in time and space). For

the approximation of the forward and the adjoint equations we use a triangulation

with 33025 degrees of freedom and select a uniform time step τ = 1 × 10−4. Also,

we use the same numerical parameters for the optimisation algorithm as for the

experiments in chapter 4. They are given in Table 4.2.
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We consider the initial data for each experiment to be the biological experimental

data as observed at time t = 0, 1, 2, 3, . . . , 6 and the target data to be the neutrophil

position at time t = 2, 3, 4, . . . , 7, respectively (Figure 5.1).
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Figure 5.1: Two-dimensional data of migrating zebrafish neutrophils in vivo from

time t = 0 to time t = 7 (Henry et al. [2013b]).

To apply our algorithm, based on diffuse interface representations, we defined a

mapping from the physical coordinates to the bulk domain Ω = [0, 4]× [0, 4]. This

domain applied to all the experiments contains both the initial and target curves.

The diffuse interface representation of the initial and target data is constructed

according to (4.32). In Figures 5.2 and 5.3 and 5.4, the left and the middle column

show the diffuse interface representations of the initial and target data, respectively.

The right column in Figures 5.2 and 5.3 and 5.4 presents the zero level-set of the

computed solution shaded by the values of the the optimal control at the final time.

The background shading corresponds to the target data. In all the experiments the

position of the zero level-set of the computed solution shows good agreement with

the target data. In addition, we observe for all the experiments, that the computed

control is corresponding to strong contractile forces at the “rear” of the neutrophils

and to strong protrusive forces at the “front” of the neutrophils (Ananthakrishnan

and Ehrlicher [2007]). Figure 5.5 shows the maximum and the minimum values of

the control variable η(x, t) for the experiment 3 from the neutrophil migration, as

observed in zebrafish Danio rerio larvae. We observe large increase in the maximum

and minimum values as we approach the final time. A possible strategy to prevent

this large increase is to impose constraints on the control variable η(x, t), as we
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noted in Section 4.5.4.

(a) Experiment 1.

(b) Experiment 2.

(c) Experiment 3.

Figure 5.2: First and second column: Initial and target data for the experiments

with the real biological data from the zebrafish Danio rerio larvae. Third column:

Zero level-set of the solution using the optimal control. The curve (zero level-

set of ϕ(x, T )) is shaded by the approximated optimal control (η∗(x, T )) and the

background by the target data (ϕobs(x)). We see good agreement between the zero

level-set of the data computed with the optimal control and the target data in all

the cases.
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(a) Experiment 4.

(b) Experiment 5.

(c) Experiment 6.

Figure 5.3: First and second column: Initial and target data for the experiments

with the real biological data from the zebrafish Danio rerio larvae. Third column:

Zero level-set of the solution using the optimal control. The curve (zero level-

set of ϕ(x, T )) is shaded by the approximated optimal control (η∗(x, T )) and the

background by the target data (ϕobs(x)). The color-bar corresponds to the scale for

η∗(x, T ). We see good agreement between the zero level-set of the data computed

with the optimal control and the target data in all the cases.

The performance of the algorithm for each experiment is presented in Table5.1.
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(a) Experiment 7.

Figure 5.4: First and second column: Initial and target data for the experiments

with the real biological data from the zebrafish Danio rerio larvae. Third column:

Zero level-set of the solution using the optimal control. The curve (zero level-

set of ϕ(x, T )) is shaded by the approximated optimal control (η∗(x, T )) and the

background by the target data (ϕobs(x)). The color-bar corresponds to the scale for

η∗(x, T ). We see good agreement between the zero level-set of the data computed

with the optimal control and the target data in all the cases.

Figure 5.6 shows the plots of the objective functional against the number of itera-

tions of the optimisation algorithm, until it reaches the stopping criteria, for each

experiment respectively. The stopping criterion for all the simulations is taken as

the change in the solution, through successive time steps, which was less that the

predefined tolerance tolϕ.
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(b) Maximum value of the optimal control.

Figure 5.5: Minimum and maximum values of the control η(x, t), for the

Experiment3 from the neutrophil migration as observed in zebrafish Danio rerio

larvae.
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Experiment Initial time Final time Iterations CPU time(sec) Figure

1 0 1 1728 426040 5.2(a)

2 1 2 1875 497667 5.2(b)

3 2 3 2153 572398 5.2(c)

4 3 4 2130 565627 5.3(a)

5 4 5 1279 366677 5.3(b)

6 5 6 1033 265849 5.3(c)

7 6 7 2237 594739 5.4(a)

Table 5.1: Performance of the optimal control algorithm with volume constraint

until it reaches the stopping criteria for the experiments with the real biological

data from the zebrafish Danio rerio larvae. The initial and the final time refer to

the time t as presented in Figure 5.1.

5.3 Comparison between the optimal control al-

gorithm and cubic interpolation

To contrast the optimal control approach with a cell tracking method that is purely

geometric in nature (i.e. the trajectories are non-physical), we use the numerical

results that we obtained using cubic spline interpolation from Chapter 3. In this

section, we will calculate and compare a number of meaningful biological measures

that are associated to the study of cell motility, using the data that we extract from

both cell tracking algorithms.

Both cell tracking algorithms, that have been proposed, are able to reconstruct

the whole cell morphology from the static image data-set. With the optimal con-

trol approach the cell membrane is implicitly defined as the zero level-set of the

phase-field variable ϕ(x, t). Whereas with the cubic spline interpolation it is expli-

citly defined. Therefore, the direct result of applying the tracking methodologies is a

sequence of coordinates indicating the locomotion of the cell at every time step. Fig-

ures 5.8 and 5.10 show snapshots of the computed neutrophil intermediate positions

(blue curve).
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Figure 5.6: The value of the cost functional versus the number of iterations for the

experiments with the real biological data from the zebrafish Danio rerio larvae.

In addition, we are able to reconstruct the trajectories of the moving cells. By

plotting the trajectory of the cell centroid (centre of mass) over time, it is possible to

quantitatively analyse its migratory behaviour. The obtained trajectories can help

to identify whether cells show a preference for particular directions (Beltman et al.
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Figure 5.7: First column: Intermediate positions of the locations of the neutrophil

after 0 (red), 350 (blue) and 500 (green) time steps, using cubic spline interpolation.

Right column: Zero level-sets of the solutions computed (ϕ(x, t)) with the optimal

control (η∗(x, t)) for the experiments with the real biological data from the zebrafish

Danio rerio larvae after 0 (red), 350 (blue) and 500 (green) time steps.
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Figure 5.8: First column: Intermediate positions of the locations of the neutrophil

after 0 (red), 350 (blue) and 500 (green) time steps, using cubic spline interpolation.

Right column: Zero level-sets of the solutions computed (ϕ(x, t)) with the optimal

control (η∗(x, t)) for the experiments with the real biological data from the zebrafish

Danio rerio larvae after 0 (red), 350 (blue) and 500 (green) time steps.
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[2009]; Meijering et al. [2012]).

In Figure 5.9 we report on the results of the two tracking algorithms applied to

experimental data. We see that both the cubic spline interpolation algorithm and

the optimal control algorithm generate centroid trajectories that are significantly

smoother than those obtained by linear interpolation of the cell centroids. Fig-

ures 5.10 and 5.11 present the neutrophil centroid trajectories for each experiment

separately.
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Figure 5.9: (a) Experimental data with the trajectory of their centroid. (b) Centroid

trajectories using the optimal control algorithm. (c) Centroid trajectories using the

cubic spline interpolation. (d) Compared trajectories of the centroid from linear

interpolation of the experiments, using the optimal control algorithm and cubic

spline interpolation.
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Figure 5.10: Left column: Two-dimensional experimental data of migrating neut-

rophils from the zebrafish Danio rerio larvae in vivo. The red curve denotes the

initial and the green the target data. The cell centroids are shown together with the

trajectory of the linear interpolant of the cell centroids (black line). Right column:

Trajectories of the cell centroids computed by the optimal control algorithm (blue

line) and the cubic spline interpolation (red line), respectively. The black line indic-

ates the linear interpolant of the cell centroids.
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Figure 5.11: Left column: Two-dimensional experimental data of migrating neut-

rophils from the zebrafish Danio rerio larvae in vivo. The red curve denotes the

initial and the green the target data. The cell centroids are shown together with the

trajectory of the linear interpolant of the cell centroids (black line). Right column:

Trajectories of the cell centroids computed by the optimal control algorithm (blue

line) and the cubic spline interpolation (red line), respectively. The black line indic-

ates the linear interpolant of the cell centroids.

An alternative measure, which indicates the preferred direction of a moving cell,

is to plot the track of each individual cell by starting from the same position and pre-

serve its orientation. If all the possible directions of migration are equally covered,

this indicates that the motion is random (Beltman et al. [2009]). The motivation of
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the significance of such a measure is a qualitative indication of cell movement. For

instance, a chemotactic response should result in the majority of cell trajectories,

which start from the same position, to be in the direction of highest chemoattract-

ant concentration. In Figure 5.12 we plot the neutrophil centroid trajectories, by

shifting their starting position to the beginning of the axes and preserve their orient-

ation. It is observed that during the three first experiments, the neutrophil prefers

a vertical migration. However, during the rest of the experiments, it shows a hori-

zontal migration towards the right side. This finding comes in agreement with the

experiments in vivo, as the chemoattractant concentration is expected to increase

from left to right.
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(b) Cubic spline interpolation

Figure 5.12: Plot of the neutrophil centroid trajectories, by shifting the starting po-

sition to the beginning of the axes and preserve its orientation. We see that during

the three first experiments, the neutrophil prefers a vertical migration whilst later

prefers more or less a preferred directional migration towards the right side. This

finding comes in agreement with the experiments as the chemoattractant concentra-

tion is expected to increase from left to right.

Another qualitative measure, which is closely associated with chemotaxis, is the

confinement ratio (also known as persistence length) and can be easily extracted

from both cell tracking algorithms (Beltman et al. [2009]; Meijering et al. [2012]). It

is defined as the ratio of the displacement of the cell to the total length of travelled

track, and measures the straightness of the cell’s trajectory. The confinement ratio

can fluctuate between zero (the cell is returned to the position where it started)

and one (the cell trajectory is the straight line between the initial to the final cell

position). This occurs because the displacement length is always larger or equal than
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the path length. Figure 5.13 presents the confinement ratio for the experiments from

the neutrophil migration as observed in zebrafish Danio rerio larvae. It is clearly

seen that the confinement ratio is close to 1 (apart from the first experiment).
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Figure 5.13: Confinement ratio. We observe that for all the experiments (except

the first one) that their confinement ratio is close to 1. This indicates that the

trajectories are close to a straight line.

A measure, that can be easily derived from the positions of the cell centroids is

the speed (which is defined as the magnitude of the velocity). For example, Figure

5.14 shows the speed of the neutrophil’s centroid for Experiment 4. We observe an

almost constant centroid speed, using the cubic spline interpolation. However, with

the optimal control algorithm, a sharp spike in the centroid velocity is observed close

to the final time. This increasing centroid speed is unphysical and could be related

to the large variation of the maximum and minimum values of the control η(x, t).

Finally, both proposed algorithms have the capability to compute the area of the

tracked cell. In Figure 5.15 we report on the areas of the computed neutrophils. We

see that in most of the experiments, with the cubic spline interpolation, the area of

the derived neutrophils is close to the linear interpolant. However, using the optimal

control algorithm the computed area does not fit well to the linear interpolant. As

we noted earlier (we refer to Section 4.5.4), this is a limitation of the proposed

algorithm and will be an area for future research and further investigation.
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Figure 5.14: Speed of the neutrophil’s centroid using the optimal control algorithm

and the cubic spline interpolation.

5.4 Conclusion

In this chapter we presented an application of the optimal control algorithm to

experimental data on the migration of neutrophils as observed in zebrafish Danio

rerio larvae. We compared this methodology with the numerical results obtained

from Chapter 3, using cubic spline interpolation. Finally, we computed biological

meaningful measures related to the study of the cell migration which may be useful in

applications. These measurements have been selected to demonstrate the potential

of a morphological analysis of neutrophils.

A possible future research could be concentrated in the relationship of these

measures and the understanding of neutrophil cell migration. In addition, we believe

that the application of optimal control algorithm that we presented in this chapter

could be a useful framework within which it could become possible to investigate

other biological questions, beyond neutrophil cell tracking, such as the inference of

chemotactic field during in vivo chemotaxis (Kadirkamanathan et al. [2012]).
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(c) Experiment 3
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(d) Experiment 4
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(e) Experiment 5
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(f) Experiment 6
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Figure 5.15: Area of the cell. The black line indicates the linear interpolant of the

area of the observations, the blue line the area using the optimal control approach

and the red line the area using the cubic spline interpolation.
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Chapter 6

Conclusions and future work

6.1 Summary

Within this thesis we consider that “tracking” is equivalent to a dynamic recon-

struction of the whole cell data (morphologies) from static image datasets. As in

many cell tracking problems, only the position of the cell at a series of discrete times

is available, and specifically the cell membrane. No further biological information is

given. To this end, we derived a mathematical model for the cell tracking, based on

physical principles for cell migration and then formulated an inverse problem. This

problem takes the form of a partial differential equation constrained optimisation

problem for fitting the model to the experimental observations. We reformulated

our model into the phase-field framework. In order to solve the optimisation prob-

lem we proposed an algorithm based on previous studies on the optimal control of

geometric evolution laws (Haußer et al. [2010]; Haußer et al. [2012]).

The key novelty of this algorithm lies in the fact that the model that drives

the tracking procedure (the forward model) is a simplification of recently derived

physically motivated models for cell motility. Thus, in contrast to the majority

of existing cell tracking algorithms, that consider solely geometric features, our

approach is physically motivated and the physics of the model driving the evolution

of the cell are reflected in the recovered dynamic data.

In addition, to illustrate the efficiency of our cell tracking algorithm, we presen-

ted a number of numerical results for the case of two-dimensional single synthetic

and real imaging data, that were selected from the zebrafish Danio rerio larvae
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neutrophil migration (Henry et al. [2013b]). Also, we demonstrated two examples

with multi-cell image data and discussed the capability of our algorithm to solve

implicitly the linking problem which is associated in the majority of the cell track-

ing algorithms. Furthermore, within this thesis we presented a simple cell tracking

algorithm based on cubic spline interpolation inspired by Madzvamuse et al. [2003],

in which an interpolation method has been applied between the successive given

positions of the boundary nodes of a deforming boundary shape. We used our nu-

merical findings to contrast with those that were obtained with the optimal control

approach. Using the intermediate cell positions from both algorithms, we computed

and discussed biologically meaningful measures which are related to the motility and

the morphology of the moving cells (Beltman et al. [2009]; Meijering et al. [2012]).

Finally, in this thesis we have introduced the surface finite element method in

order to solve reaction-diffusion equations on the stationary surfaces of a sphere and

on those of neutrophils from the zebrafish Danio rerio larvae (Dziuk and Elliott

[2007b]). As one of the applications of the partial differential equations posed on

surfaces is the pattern formation, we conducted a number of computer simulations to

solve a non-linear reaction-diffusion system. For illustrative purposes we considered

the reaction-diffusion system with Schnakenberg reaction kinetics (Prigogine and

Lefever [1968]; Gierer and Meinhardt [1972]; Schnakenberg [1979]). By taking a

fixed set of parameters values and changing the surface geometry, we observed the

emergence of different patterns.

Moreover, surface partial differential equations have been used to develop robust

computational models for investigating cell motility (Neilson et al. [2010]; Ziebert

et al. [2011]; Neilson et al. [2011a]; Neilson et al. [2011b]; Elliott et al. [2012]; Shao

et al. [2012]; Marth and Voigt [2013]; Croft et al. [2013]). Regularly, such equations

are associated to describe the biochemistry of the models. Although in this thesis

we have focused on the case where no information regarding the biochemistry of

the examined cell is available, our proposed optimal control algorithm is applicable

and generalises to models where more biological aspects are included. In particular

models for the dynamics of actin and myosin, as well as other motility related species

within the cell and on the membrane may be included, and the evolution law may

be modified to take into account the dependence of the movement of the cell on
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these species.

6.2 Future work

We can now underline possible directions for the improvement of the current theme

study and future research:

• Like other algorithms, the proposed cell tracking algorithm which is based on

the phase-field and optimal control approach, has limitations. A future step

for the improvement of this algorithm is to impose pointwise constraints on

the control function η(x, t).

• The model we used, which drives the optimal control cell tracking algorithm, is

phenomenological and is difficult to directly relate η to biophysical processes.

However, our numerical findings indicate that as positive values of η corres-

pond to protrusive forces and negative values of η correspond to contractile

forces, one interpretation of the forcing function η is that it accounts for both

protrusive forces generated by polymerisation of actin at the leading edge of

the cell together with contractile forces generated by the action of myosin mo-

tors at the cell rear. Thus, a potential avenue for assessing the plausibility of

the cell tracks computed with our algorithm would be to compare the com-

puted η with experimental imaging data on the location of polymerised actin

and myosin-II on the cell membrane with the expectation being that regions

in which the computed forcing η is positive would correspond to regions rich

in polymerised actin and regions in which the computed forcing η is negative

would correspond to regions rich in myosin-II.

• In addition, the diffuse interface or phase-field framework that we employed

does make the proposed algorithm computationally intensive as evidenced by

the relatively large CPU times for our experiments. A key area for future work

is to investigate improvements in the computational efficiency of the algorithm.

This need is especially evident if one wishes to track cells in 3d, as although

our theoretical framework applies equally to this setting the computational

cost becomes prohibitive.
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• Spatial and temporal adaptivity which is challenging in this setting as the

solution of the state equation enters the adjoint equation (Haußer et al. [2010];

Haußer et al. [2012]).

• We could consider the second order optimisation Newton’s method (e.g. Sny-

man [2005]) as an alternative update scheme for the control variable η(x, t)

(4.29).

• Parallelisation and the development of fast solvers for the solution of the state

and adjoint equations.

• The model we proposed for the evolution of the cell in this thesis is a simpli-

fication of more general physically relevant models in which bulk or surface

partial differential equations for the biochemistry are coupled to a geomet-

ric evolution law for the motion. An important area for future work is the

extension of the framework to this more general setting.

• Finally, we believe that the optimal control approach we presented in this

thesis could be a useful framework with which it could become possible to

investigate other biological questions, beyond cell tracking such as the infer-

ence of chemotactic fields during in vivo chemotaxis (Kadirkamanathan et al.

[2012]).
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