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Summary

Ultrawideband (UWB) technology has received considerable attention in recent years
as it is regarded to be able to revolutionise a wide range of applications. UWB imaging for
breast cancer detection is particularly promising due to its appealing capabilities and advan-
tages over existing techniques, which can serve as an early-stage screening tool, thereby
saving millions of lives. Although a lot of progress has been made, several challenges still
need to be overcome before it can be applied in practice. These challenges include accurate
signal propagation modelling and breast phantom construction, artefact resistant imaging
algorithms in realistic breast models, and low-complexity implementations. Under this
context, novel solutions are proposed in this thesis to address these key bottlenecks.

The thesis first proposes a versatile electromagnetic computational engine (VECE) for
simulating the interaction between UWB signals and breast tissues. VECE provides the
first implementation of its kind combining auxiliary differential equations (ADE) and con-
volutional perfectly matched layer (CPML) for describing Debye dispersive medium, and
truncating computational domain, respectively. High accuracy and improved computational
and memory storage efficiency are offered by VECE, which are validated via extensive
analysis and simulations. VECE integrates the state-of-the-art realistic breast phantoms,
enabling the modelling of signal propagation and evaluation of imaging algorithms.

To mitigate the severe interference of artefacts in UWB breast cancer imaging, a robust
and artefact resistant (RAR) algorithm based on neighbourhood pairwise correlation is
proposed. RAR is fully investigated and evaluated in a variety of scenarios, and compared
with four well-known algorithms. It has been shown to achieve improved tumour detection
and robust artefact resistance over its counterparts in most cases, while maintaining high
computational efficiency. Simulated tumours in both homogeneous and heterogeneous
breast phantoms with mild to moderate densities, combined with an entropy-based artefact
removal algorithm, are successfully identified and localised.

To further improve the performance of algorithms, diverse and dynamic correlation
weighting factors are investigated. Two new algorithms, local coherence exploration
(LCE) and dynamic neighbourhood pairwise correlation (DNPC), are presented, which
offer improved clutter suppression and image resolution. Moreover, a multiple spatial
diversity (MSD) algorithm, which explores and exploits the richness of signals among
different transmitter and receiver pairs, is proposed. It is shown to achieve enhanced
tumour detection even in severely dense breasts.

Finally, two accelerated image reconstruction mechanisms referred to as redundancy
elimination (RE) and annulus predication (AP) are proposed. RE removes a huge number
of repetitive operations, whereas AP employs a novel annulus prediction to calculate
millions of time delays in a highly efficient batch mode. Their efficacy is demonstrated
by extensive analysis and simulations. Compared with the non-accelerated method, RE
increases the computation speed by two-fold without any performance loss, whereas AP
can be 45 times faster with negligible performance degradation.
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Chapter 1

Introduction

1.1 Background and Motivations

Ultrawideband (UWB) radio technology received considerable attention in recent years due

to its desirable characteristics, such as high-bandwidth communication, precise localisation,

and strong penetrating capabilities. Along with its low system cost, low power consumption,

and non-ionising features, UWB is poised to revolutionise a broad range of applications.

Different UWB applications in both military and civilian areas have been developed.

In military area, two of the most popular ones are through-wall imaging (TWI) [1–3] and

weapon detection [4]. In civilian area, UWB-based intelligent transport system (ITS) [5, 6],

location of resource and asset [7–9], and indoor robot navigation [10, 11] have been

investigated. Besides, the advantage of UWB being a physical layer mechanism in wireless

personal area network (WPAN) [12–14] and wireless body area network (WBAN) [15–18]

for short-range connectivity has been brought to the forefront.

UWB also holds a great promise for biomedical applications, and these include tracking

of cardiac and respiratory motions [19], and high-speed data transmission for different

recording systems [18, 20, 21]. Another applied category of UWB is the sensing and

imaging [22, 23]. The imaging of biological systems such as human body enables the

detection of various abnormalities [24], including unusual patterns, internal injuries, or

even cancers. It has long been acknowledged that cancer imposes a great threat to human
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health due to its complex pathology and adaptation to treatments [25], early detection is

thus critical.

Among different cancers, breast cancer is the most common one among females [26],

and one of the leading causes of death worldwide [27]. Although less common, detected in-

cidences of breast cancer among males have been increasing recently [28]. Early diagnosis

of breast cancer is one of the most challenging and important aspects for the management

of the disease, as it may be possible to detect the cancer before it spreads [29]. Three

common screening methods for breast cancer currently used are X-ray mammography [30],

Ultrasound (US) [31], and magnetic resonance imaging (MRI) [32]. US is less popular than

X-ray mammography because it has a higher rate of false-positive examination results [33],

and MRI is usually recommended to be used in conjunction with mammography [34].

In spite of the many merits of mammography, its deficiencies are evident: low sensitiv-

ity [35], high false alarm rate [36], and radiation exposure from X-rays, which brings with

it a potential threat of increasing the cancer risk [36, 37]. The shortcomings of existing

approaches constitute a motivation for better alternatives.

UWB imaging is regarded as one of the most promising alternatives for breast cancer

detection, and has attracted significant research interests [24, 38–52]. In spite of many

advancements of UWB breast cancer imaging, several serious challenges still exist. One

of the key issues is the construction of anatomically realistic breast models [53]. To

validate the effectiveness of imaging techniques, rigorous models are needed, which

should incorporate various attributes of the breast, including geometrical properties, spatial

distribution of different constituent tissues, and dispersive property. The propagation of

UWB signal and its interaction with breast tissues should also be accurately modelled,

which discloses the fundamental principle of breast cancer detection. Another challenge

is image formation algorithm [39, 45–52]. The image formation algorithm is expected

to provide clear tumour identification, accurate positioning, and robust performance in a

range of realistic scenarios. Last but not least, accelerated image reconstruction schemes

are needed for obtaining results in a timely manner. For medical imaging which has a

high requirement of resolution, computationally efficient strategies become particularly
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desirable. Therefore, innovative techniques are required to address these key bottlenecks

before the UWB breast cancer imaging can be applied in practice.

1.2 Research Aims and Objectives

The main objective of this thesis is to investigate and develop more effective and efficient

imaging algorithms for UWB breast cancer detection, thereby bridging the gap between

theory and practical application. To this end, the following objectives are defined:

• Investigate state-of-the-art techniques to construct accurate numerical breast models.

• Examine breast tissue response interacting with varied UWB signals.

• Simulate and model UWB signal and its propagation within breast tissues.

• Study multiple antenna propagation and its impact on signal acquisition.

• Design and develop robust UWB imaging algorithms for breast cancer detection.

• Explore low-complexity implementation mechanism for fast image reconstruction.

All of the above are based on the investigation and evaluation of existing research

works. Systematic tests and extensive comparisons under a variety of realistic scenarios

are carried out to validate the effectiveness of proposals.

1.3 Original Contributions

This thesis proposes solutions to further three aspects of UWB breast cancer detection,

including accurate propagation modelling and simulation of UWB signal interacting with

breast tissues, novel imaging algorithms with superior robustness, and accelerated image

reconstruction schemes. The main contributions are summarised below.

1. In Chapter 3, 3-D propagation modelling of UWB signal and its interaction with

tumour-free and tumour-bearing breast phantoms are investigated. A versatile elec-

tromagnetic computational engine (VECE) is proposed, which enables the character-

isation of the impacts of UWB radiation and the capturing of valuable bioelectro-

magnetic information such as tumour response. To implement VECE in a accurate

and efficient way, different techniques for modelling computational electrodynamics,
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dispersive media, and absorbing boundary conditions are analysed and compared.

The efficacy and accuracy of VECE are validated through comparisons with both

analytical and simulated results across a range of appropriate metrics, which are in

close agreement. Combined with MRI-derived 3-D breast phantoms, the interaction

between non-ionising UWB pulses and breast tissues are simulated under different

scenarios. Substantial results demonstrate the practicability of VECE to facilitate

the development of diagnostic and therapeutic technologies for breast cancer, and

great potential for related bio-imaging applications.

2. In Chapter 4, to overcome the vulnerability to artefacts of existing algorithms for

UWB breast tumour imaging, a novel robust and artefact resistant (RAR) algorithm

is proposed. Extensive analysis and simulations using backscattered signals received

from 3-D anatomically realistic numerical breast models are conducted to validate

the performance of RAR. The effectiveness of RAR is demonstrated under various

scenarios, including different tumour positions in both homogeneous and hetero-

geneous breast phantoms with low to medium densities. For completeness, both

ideal and practical artefact removal methods are considered. RAR is compared with

four well-known algorithms, and it has been shown that RAR is able to overcome

the adverse effect from both the early-stage artefact from skin-fat reflections, and

the late-stage clutter from fibro-glandular tissues. Besides significantly improved

performance, results also prove that RAR maintains a high computational efficiency

as its comparisons, proving its strong potential for breast cancer screening.

3. In Chapter 5, to further improve tumour detectability in severely dense breasts,

three new algorithms referred to as local coherence exploration (LCE), dynamic

neighbourhood pairwise correlation (DNPC), and multiple spatial diversity (MSD)

are proposed. Building upon the RAR algorithm, LCE and DNPC are designed

via the exploration of diverse and dynamic correlation weighting factors, whereas

MSD takes the advantage of multiple diversity of signals received from different

transmitter and receiver pairs. Simulations in different challenging scenarios verify

the effectiveness of these three algorithms. Their performance is also compared with
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RAR, and further improved clutter rejection and image resolution are observed even

in heterogeneously dense breasts.

4. In Chapter 6, to reduce the running time of UWB breast cancer detection, two

accelerated image reconstruction mechanisms, namely, redundancy elimination

(RE) and annulus prediction (AP) are proposed. The comparison between the

proposed and conventional non-optimised methods is performed. Extensive analysis

and simulations demonstrate that both RE and AP outperform the non-accelerated

method with faster computation speed in all scenarios considered. In comparison

to the non-accelerated method, RE can be twice faster with zero performance loss,

whereas AP offers a 45 times speedup at the cost of graceful performance degradation.

These two schemes can be applied in all UWB data-independent breast imaging

algorithms in a straightforward way, which provides a valuable trade-off between

imaging performance and reconstruction time.

1.4 Outline of the Thesis

The thesis is divided into seven chapters and organised as follows. Chapter 1 presents

the background, motivations, and main objectives of this research project, the original

contributions are also summarised.

In Chapter 2, related background of UWB technology, with focus on its imaging

application for breast cancer detection is presented. The fundamentals of UWB are firstly

introduced, followed by its characteristics and corresponding applications in three different

fields, including data transmission, localisation, and imaging. Furthermore, the background

of UWB breast cancer imaging is reviewed, which covers its significance, principle, and

advantages. Lastly, the state-of-the-art technical advances and challenges in this area are

introduced.

In Chapter 3, a versatile electromagnetic computation engine (VECE) for simulating

UWB signal propagation within breast tissues is proposed. Specific literature review of

related modelling and simulation work is firstly provided. Then the principle, design, and

implementation of VECE are introduced. The efficacy of VECE is validated through both
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theoretical analysis, simulations, and comparisons. The applicability of VECE is proved

by extensive simulation results. Aside from the visualisation of breast phantoms and signal

propagation, the capture of tumour response under varied scenarios are also simulated and

analysed. Further potential applications of VECE are introduced in the last section of this

chapter.

In Chapter 4, a robust and artefact resistant (RAR) algorithm for UWB breast cancer

detection is proposed. Literature review on UWB imaging algorithms for breast cancer

detection is first presented. Furthermore, related details of imaging system including

signal parameter, antenna configuration, and medium compositions of breast models are

provided. Then the rational and procedures of RAR are introduced. The robustness of

RAR is verified through simulations and comparisons with four well-known algorithms

over a wide range of scenarios, and related imaging results are discussed. Finally, the

performance and complexity of RAR and comparative algorithms are analysed.

In Chapter 5, to further enhance tumour detection in severely dense breast, three new

algorithms are proposed. Base on RAR, the diverse and dynamic weighting factor are

firstly investigated, and two algorithms referred to as local coherence exploration (LCE)

and dynamic neighbourhood pairwise correlation (DNPC) are presented. Then the multiple

spatial diversity (MSD) algorithm, which utilises the richness possessed by multistatic

signals, is introduced. The rational and procedures of these algorithms are presented, and

their efficacy are examined in different scenarios. The performance of LCE, DNPC, and

MSD is also cross-compared with RAR, which is accompanied with the discussion of their

results. The difference of proposed algorithms, along with their strengths for different

application scenarios are pointed out.

In Chapter 6, to speedup the process of breast tumour detection, two accelerated image

reconstruction mechanisms called redundancy elimination (RE) and annulus prediction

(AP) are proposed. Literature on existing fast imaging techniques is firstly reviewed.

The complexity bottleneck of imaging algorithms is analysed, based on which the RE is

developed. Detailed procedures of RE are then introduced, whose efficacy is validated

in different scenarios. The rational and particulars of AP for fast computation is then
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presented. Unlike RE which eliminates a huge number of redundant operations, AP utilises

a novel annulus prediction to calculate the time delays of millions of pixels in a highly

efficient manner. To verify the effectiveness of AP, extensive analysis and simulations

are conducted. Besides examining different sizes of the imaging region, AP is also tested

in scenarios combining two imaging algorithms. Both RE and AP are compared with its

non-optimised counterpart, and results indicate that a valuable trade-off between imaging

acceleration and performance loss is achieved.

In Chapter 7, the main achievements of the thesis are summarised, and possible areas

and topics for future work are identified.



Chapter 2

Background of Ultrawideband (UWB)

and Literature Review on UWB Breast

Cancer Imaging

2.1 Introduction

This chapter provides the background of Ultrawideband (UWB) technology, with focus on

its application for early-stage breast cancer imaging. Literature review on the UWB breast

cancer imaging is given, and more specific literature review on technical challenges are

presented in following contribution chapters.

The chapter is organised as follows. The fundamentals of UWB technology are given

in Section 2.2, which includes its signal definition and system regulations. Section 2.3 is

dedicated for the characteristics of UWB and corresponding applications. This includes

high-speed data transmission, accurate localisation, and high-resolution imaging. Literature

review on UWB imaging for early breast cancer detection is detailed in Section 2.4. It starts

with the background of breast cancer, then the deficiencies of existing screening techniques

for this disease are pointed out. Furthermore, the principles and advantages of UWB

imaging for breast cancer screening are introduced. In Section 2.5, the state-of-the-art

advances and existing technical challenges of UWB breast imaging system are identified,



9

which constitute the motivation and objectives of this thesis. Finally, chapter conclusions

are summarised in Section 2.6.

2.2 UWB Fundamentals

2.2.1 Signal Definition

UWB is a radio technology which uses pulses to transmit high-bandwidth information at a

low power level. The United States (U.S.) Federal Communication Commission (FCC)

defined UWB operation in February 2002 with the following terms [54]:

• Bandwidth (BW ) is the frequency range constrained by points that 10 dB below the

peak radiated emission (see Fig. 2.1). BW is calculated based on (2.1), where fH

and fL are the upper and lower frequencies, respectively.

BW = fH − fL. (2.1)

Fig. 2.1 Radiated spectral power density versus frequency in UWB definition.

• Centre frequency ( fC) is an arithmetic average of fH and fL, according to (2.2).

fC =
1
2
(

fH + fL
)
. (2.2)
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• Fractional bandwidth (bw) is defined as the ratio of UWB bandwidth BW to the

centre frequency fC, which can be calculated through (2.3).

bw =
BW
fC

= 2
fH − fL

fH + fL
. (2.3)

• UWB signal has a fractional bandwidth bw equal or larger than 20%, or absolute

bandwidth BW greater than 500 MHz. Radiators which are able to transmit such

signals are regarded as UWB transmitters. Fig. 2.2 illustrates the comparison

between narrowband and UWB signals in both time and frequency domains. Unlike

conventional narrow-band signals [see Fig. 2.2(a)], UWB signal is impulse-like [see

Fig. 2.2(b)]. Observing Fig. 2.2(c) and (d), the energy of UWB pulse is distributed

across a broad range of frequency, thus its powder density is much lower in order of

magnitude than a narrow-band signal.

Fig. 2.2 Narrowband and UWB signals in time and frequency domains. (a) Narrowband
signal in time domain. (b) UWB signal in time domain. (c) Narrowband signal in frequency
domain. (d) UWB signal in frequency domain.

2.2.2 System Regulations

To protect existing radio services and avoid possible interference, the FCC authorised

unlicensed use of spectrum for UWB devices. UWB devices have been classified into

three categories: communication, imaging, and vehicular radar [55]. For each category, the

authorised frequency range varies. For example, for wall imaging systems, they must be



11

operated below 960 MHz or in the frequency band 3.1 to 10.6 GHz, whereas the regulation

for vehicular radar systems is in the range of 22 to 29 GHz. More details regarding

authorised frequency range of UWB systems are provided in [54].

Besides frequency spectrum, the emission limit of UWB device is also applied, which

is measured by equivalent isotropically radiated power (EIRP) or, alternatively, effective

isotropically radiated power. The EIRP is defined as the product of the transmitter power

output and the antenna gain in a given direction [56]. The transmission power output is the

amount of power of radio frequency energy that a transmitter produces at its output. As for

transmitting antenan, the antenna gain describes how well the antenna converts input power

(transmitter power output) into radio waves. Depending on different application scenarios,

the EIRP of UWB devices has been restricted, which are summarised in Table. 2.1.

Table 2.1 Emission limits for UWB devices in each operational frequency band [55].

According to Table 2.1, UWB communication systems have low average transmission

power. With such low emission power, together with the discontinuous transmission [see

Fig. 2.2(b)], UWB communication systems therefore have low probability of intercept and

low probability of detection, making it suitable for secure and military applications [1]. The

low transmit power also makes UWB an alternative physical layer mechanism for Institute

of Electrical and Electronics Engineers (IEEE) 802.15 .15 wireless personal area network

(WPAN) for short-range connectivity [12]. Aside from low power consumption, UWB

also possesses merits such as high-bandwidth data communication and high-precision

positioning. Therefore, besides serving military, UWB is also an ideal candidate for

numerous civilian and medical applications, and these are introduced in the next section.
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2.3 UWB Features and Related Applications

This section presents the features of UWB systems and corresponding applications, which

include high-speed data transmission, precise localisation, and high-resolution imaging.

2.3.1 High-speed Data Transmission

Based on Shannon’s formula [57] for the maximum capacity of information transmission,

high data rate can be offered by UWB. For example, the multiband OFDM (orthogonal

frequency-division multiplexing) alliance partitions the spectrum from 3 to 10 GHz into

528-MHz band and uses OFDM in each band to transmit data, with which the data rate can

be as high as 480 Mb/s (see[58], Table 4.1). However, to achieve this as well as to make a

trade-off between system performance and complexity, different UWB signal modulation

schemes should be employed (see [59] and [60] and references therein).

The high-speed data transmission offers UWB an advantageous potential to support a

variety of low-cost, low-power, short-range, and high-speed multimedia transport applica-

tions. UWB is a promising data transmission technique for WPAN, also known as in-home

networks. In such a network, the real-time exchange of high-volume data, including

message, audio, and video, between different file storage systems is critical. UWB is

deemed as a promising physical layer alternative for WPAN because of its high-rate data

transmission and high power efficiency [12, 13]. One of the applications is the wireless

universal serial bus (USB) [14]. The wireless USB enables the transferring of data among

devices, such as personal computers (PCs), digital television sets, digital cameras, video

cassette recorders (VCRs), and portable media players.

Moreover, the gathering and exchanging data capability of UWB is highly desirable in

sensor networks. The number of nodes, either static or mobile, in a sensor network can

be huge; thus, to disseminate a wealth of sensory data in time can be difficult. Energy is

normally restricted in sensor networks due to the nature of small-sized sensing devices and

the difficulties of recharging their batteries. Thus, the low energy consumption of UWB

communication becomes particularly attractive in such a network. Also because of the

low transmission power and posing no harm to biological systems, UWB is popular in
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WBAN [15], which enables reliable high-rate data communications on, near, and around

the human body between sensors and the wearable centre [16, 17]. The integrated system

structure of UWB with small-sized antenna is suitable for implanted medical devices as

well. [18] evaluated the capacity of UWB wireless channel for neural recording systems.

In [18], implanted sensors are deployed on the brain to capture neural responses. It was

found that in a neural recoding system with multi-channels, the requirement of data rate

was in excess of 100 Mb/s, which explains the necessity of UWB for this type of application

thanks to its high-speed data transmission.

The feasibility of UWB for data communication in OR is also studied. [20] claimed

that even in a dense multipath environment, UWB still showed strong robustness and had a

great potential for applications such as wireless tracking for surgical navigation, and high

data rate wireless telemetry of critical bio-signals (e.g. blood pressure, body temperature,

etc.). A more advanced wireless communication system used in OR is presented in [21],

which integrated the input, output, display, and control units.

It has been shown that the high-speed data transmission of UWB can serve various

applications, from WPAN to WBAN, from civilian to medical fields. Another feature

of UWB is localisation, which was initially used for military applications, and this is

introduced in the next section.

2.3.2 Precise Localisation

Compared with conventional proximity and motion sensors, UWB-based sensing has the

potential to offer an improved resolution [13]. Studies show that the positioning accuracy

can be enhanced with increased signal bandwidth [61], considering the high-bandwidth

signals (typically larger than 1 GHz) used in UWB systems, high-precision localisation

can be obtained. Relying on the high ranging accuracy and object differentiation capability,

different UWB sensing applications have been developed.

In [10] and [11], the indoor environment reconstruction based on UWB localisation

is introduced. This application can be used to enable a navigating robot to sense its

surroundings and concurrently to build up a map while navigating. The UWB localisation
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for navigation is particularly useful in optically blurry scenarios, such as dark smog in

disaster areas, where the camera-based vision system can barely work or suffer serious

performance degradation.

UWB’s positioning capability can also be applied in ITS. ITS aims to avoid or reduce

traffic collisions, thereby realising a safe driving environment. For example, [5] presented

a system scheme which integrated both UWB radar and data communication modules on

one board. In this scheme, the distance between antenna transmitter and target vehicle

is calculated according to propagation velocity and round trip time. With the aid of the

extra communication module, an improvement of ranging precision was achieved. To

avoid performance degradation of inter-vehicle communication, a successive interference

cancellation technique was proposed in [6], which improved both the detection rate of

signal and the bit error rate (BER) performance.

In industry, UWB positioning is mainly used for source tracking and asset locating.

The tracking of resources such as people or equipment is necessary for safety. To this

end, studies regarding different aspects of such tracking systems have been performed. [7]

evaluated the performance of a commercially-available UWB tracking system. In [7], a

static model for estimating position error as a function of receiver position is developed,

which can be used as a guideline for practitioners. Another performance evaluation in

more harsh environment was reported in [8]. In this study, a real-world construction setting

combining field trials proved that a commercially-available UWB system is capable of

proving sufficiently accurate real-time location data of construction resources, thereby

assisting safe and efficient management of job sites. [9] optimised both monopole and

dipole UWB antennas for asset tag location systems. This research proved that the time

domain performance of antenna can be optimised based on the selected input pulse, whereas

the improved frequency domain performance of antenna can be achieved by refining its

geometry through genetic algorithms.
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2.3.3 High-resolution Imaging

UWB imaging systems aim to sense and “see” the objects in a structure, which can be

classified as ground penetrating radar (GPR), wall imaging, through-wall imaging (TWI),

and biomedical imaging. The wide frequency range of UWB (3.1 to 10.6 GHz) ensures

both through-the-interface penetrating capability and high resolution [62, 63].

The main electromagnetic (EM) properties of materials include permittivity and con-

ductivity. The value of permittivity is related to the molecule’s dipole moment per volume,

whereas conductivity is associated with the free path length and speed of the electrons

inside the material [64]. Depending on the EM properties of materials, their response

(i.e. reflection, transmission, and absorption) to EM waves varies. Along the propagation

path of EM wave, the inclusion of anomaly with different property compared with its

surrounding can generate reflections. This reflected signals carry the information of the

anomaly and can be captured by receiver antennas. Based on such reflected signals and

combining appropriate algorithms, the construction of an image profile of the object under

illumination can thus be achieved.

The advantages of UWB imaging including non-ionising radiation and low cost make

it desired for surveillance systems, which can detect concealed weapons and plastic explo-

sives [4]. These systems are normally deployed at major transportation hubs to enhance

safety. By integrating with digital beamforming, such a system is capable of delivering

high-resolution images in quasi-real time manner [65]. Another typical application of

UWB is the TWI [2]. TWI is widely used in many areas, such as searching for alive people

during earthquake’s rescue operations, mine detection, and identifying and tracking of

terrorist activities behind the wall [3].

UWB imaging also holds great potential for a variety of medical applications. Research

demonstrated the feasibility of using UWB sensors to detect internal injuries of tissues,

and non-contact imaging of human body [19]. Serving as a sensitive detector to identify

possible abnormalities, UWB is able to image different human organs, such as brain [66],

bone [67], and breast [39]. It was also used to detect myocardial ischemia and infarction
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as introduced in [68–70]. As one of the most promising applications, UWB breast cancer

imaging is elaborated in the next section.

2.4 Literature Review on UWB Imaging for Breast Can-

cer Detection

2.4.1 Significance

Breast cancer is the most common cancer among females [26], and one of the leading

causes of death worldwide [27]. In United Kingdom (U.K.), it has been the most frequent

cancer since 1997 in women, accounting 31% of new cases of cancer, and is the leading

cause of deaths for women aged 34 to 54. Although less common in males, detected

occurrence rate of breast cancer among males have been increasing recently [28]. This

situation does not exist solely in U.K.. Each year in U.S. alone, approximately 182,000

female breast cancer cases are diagnosed [71]. Similar statistics of breast cancer in

Canada [72] and Singapore [73] further confirmed the severity of this disease.

Early diagnosis of breast cancer is one of the most challenging and important aspects

for the management of the disease, as it can detect the cancer when it is most likely to be

treated or controlled [29]. Specifically, the 5-year survival rate of breast cancer patients in

Stage 0 (earliest) and Stage IV (most serious) is 93% and 15%, respectively [74]. If we

take U.K.’s statistic as an example, benefiting from the NHS (National Health Service)

Breast Screening Programme (NHSBSP) launched in England, the International Agency

for Research on Cancer (IARC) concluded that there was a 25% reduction in mortality

in the trials of mammographic screening, and an estimated 1,400 lives were saved by

NHSBSP each year in England [75].

2.4.2 Deficiencies of Existing Techniques

Three common screening methods for breast cancer currently used are Ultrasound (US) [31],

magnetic resonance imaging (MRI) [32], and X-ray mammography [30]. The inherit lim-
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itations of US and MRI make them less popular than mammography. US is unable to

detect the early breast tumour with calcifications, since calcifications are invisible on US

scans. Besides, poor image resolution and high rate of false-positive examination results

of US further confine its practicability. As for MRI, its high cost makes it difficult to act

as a screening tool with wide coverage. Additionally, MRI is unsuitable for patients with

implanted devices. This is because MRI machines will interact with magnetic objects and

can be damaged because of this interaction. Therefore, MRI is usually recommended to be

used in conjunction with mammography [34].

Mammography is currently the standard modality for breast cancer screening. It

uses low-energy X-rays to examine human breast and identifies the tumour based on the

detection of characteristic masses and/or microcalcifications. The microcalcification can

be distinguished due to its greater attenuation property compared with that of normal soft

tissues [76]. Despite the merits of mammography, its deficiencies are evident. Firstly, the

mammography has a low sensitivity in terms of accurate tumour detection [35, 77]. It

might fail to detect malignant tumours and either false-negative or false-positive results can

appear. False-negative results render the delay in treatment and give patients a sense of false

security. False-positive results can be obtained when radiologists identify mammograms

are abnormal but no actual tumour is present, resulting in unnecessary anxiety. Furthermore,

the radiation exposure from mammography brings a potential threat of increasing cancer

risk [37]. Although the amount of radiation exposure is low and under stringent federal

regulation, repeatable screening could induce cancer. Based on the statistics in [78],

86 cancers and 11 deaths were predicted to happen out of 100,000 women who were

screened annually from age 45 to 55 years and biennially thereafter to age 74 years, due to

the radiation-induced breast cancer. Moreover, painful breast compression [79] and the

variability of results interpretation [80, 81] in mammography also cause concerns.

2.4.3 Principle of UWB Breast Tumour Detection

The limitations of existing breast cancer screening methods constitute a motivation for

better options. In the last few decades, different modalities of microwave imaging for
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breast cancer detection, including passive, hybrid, and active approaches, have attracted

considerable attention. The passive microwave imaging techniques seek to identify tumours

based on the temperature differences between normal and cancerous breast tissues with

the aid of radiometers [82, 83]. Hybrid approaches differentiate biological tissues by the

acoustic waves radiated from thermoelastic expansion when tissues are under microwave

illumination [84]. The active detection methods distinguish normal and malignant breast

tissues based on the difference of their dielectric properties. The large dielectric property

of malignant tumour leads to greater microwave scattering cross sections than that from

normal tissues of comparable geometry with low dielectric property [85].

The passive microwave radiometry was not considered promising as stated in [86]

and [87], whereas active microwave imaging has been continuously developed. Based

on the reconstruction technique used, the active microwave imaging can be categorised

into quantitative and qualitative methods. In quantitative techniques, based on the mea-

sured scattered field data, the unknown spatial distribution of dielectric constant and/or

conductivity within an imaged object are iteratively calculated, and typically ill-posed,

undetermined system of linear or nonlinear equations are solved [88]. To solve this, direct

matrix inversion is needed, which can be computationally expensive especially when the

size of problem is large. Iterative solvers are proposed to replace the direct inversion,

thus quantitative imaging techniques are also referred to as forward iterative methods [89].

Another type of active microwave imaging is based on qualitative methods. In this tech-

nique, the qualitative profile of the hidden object is established through certain algorithms,

such as time reversal, phase compensation, and back-migration. This imaging technique

aims to identify the presence and location of strong scatterers or abnormalities, rather than

quantitatively computing the distribution of dielectric properties, thus high computational

efficiency in terms of processing time can be ensured.

As an active microwaving imaging technique, UWB breast cancer imaging is based on

two fundamental aspects: physiological and technological. First, the dielectric contrast

between malignant tumour and normal breast tissues under UWB frequency spectrum

enables the differentiation. Research revealed that malignant tumours have the largest
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microwave scattering cross sections among all breast tissues with comparable size, which is

primarily determined by their varied water content. Malignant breast tumour tissue contains

a higher number of water molecules than normal breast tissues [85]. Due to the polarity

of water molecules, tissues with varied amounts of water molecules react microwave

differently, rendering different levels of absorption and reflection ([90], Ch. 3, pp. 93).

Therefore, tumour identification could be achieved by extracting their distinct microwave

responses. Secondly, the attenuation of UWB signal in normal breast tissue is less than

4dB/cm up to 10 GHz, which permits the penetration depth up to 5 cm [85, 91, 92]. The

depth of non-lactating, typical normal human breast is about 5 cm [93, 94], which allows

UWB to cover the vast majority of tumours with decent sensitivity and dynamic range.

These two reasons form the foundation of UWB breast imaging for tumour identification.

2.4.4 Advantages of UWB Breast Tumour Detection

As a promising complement for X-ray mammography, UWB breast imaging has several

advantages. First, UWB can potentially offer an earlier tumour detection than mammog-

raphy. UWB imaging distinguishes normal and cancerous tissues based on the dielectric

contrast, whereas radiology density is used to discern different tissues by X-ray. Since the

dielectric contrast of 2:1 is much higher than the few percent difference in radiographic

density exploited in X-ray [41], improved sensitivity is expected in UWB breast imaging.

UWB identifies tumour based on its high-water content [85] which is an early growth

stage, whereas the detection of microcalcification used in mammogram scan is at an ageing

stage [76]. Thus an earlier identification by UWB than mammography could be achieved,

thereby offering a higher cure probability.

UWB imaging is a safe modality due to its non-ionising nature, in which the maximum

radiated power spectral density of -41.3 dBm/MHz used is much lower than that from a

mobile phone (see [95], Ch. 1.2.2.1). Furthermore, it is more comfortable than mammogra-

phy. Unlike mammography [79], there is no breast compression needed in UWB imaging

as the breast is illuminated with microwave signals radiated from antennas. The safety and
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comfort enable the adoption of this technology for both frequent screening at early stage,

and frequent monitoring of disease progression and response to therapy at later phases.

Equally important is that UWB imaging system can be economical. X-ray computed

tomography (CT) can cost several hundred thousand to over million dollars. In comparison,

the UWB sensor prototype developed at Lawrence Livermore National Laboratory (LLNL)

costs only hundreds of dollars to manufacture [19]. Also due to the relatively simple

system components, UWB imaging could be implemented as a hand-held device [19]. The

low cost and portability permit a wide availability, making the serving for both personal

healthcare and the in-field use by first responders feasible.

2.5 Technical Advances and Challenges of UWB Breast

Cancer Imaging

Although numerous work has been conducted to advance the performance of UWB breast

cancer imaging, several challenges still remain in the following areas.

2.5.1 Numerical Breast Phantom

To develop a system, modelling and simulation have been proved as one of the most

effective ways to test hypotheses, thereby saving a significant amount of time and cost. As

for microwave imaging for breast cancer detection, the interaction between breast tissues

and EM waves is the first problem need to be addressed, which involves the construction

of breast phantoms, and signal propagation modelling.

Reliable simulation results are based on accurate modelling. Realistic models should

incorporate various attributes of the breast, including geometrical properties, spatial distri-

bution of different tissues, and dispersive property. The fidelity of numerical breast model

is mainly determined by the following factors.

• Model Dimension

A numerical breast model is the basis of computational electromagnetics for mi-

crowave imaging. One of the most essential model measurements is the dimension.
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The breast model can be either two-dimensional (2-D) or 3-D. The 2-D breast model

was used as a benchmark in the seminal study in [85], which assumed that the

structure being modelled extends to infinity in z-direction with no change in shape

or position of its transverse cross section [53]. 2-D models can be used to analyse

certain scenarios when the incident wave is uniform in z-direction, then all partial

derivatives of the field components (e.g. electric field, magnetic field, etc.) with

respect to z equal zero. However, this does not conform to practical imaging situation.

Accordingly, 3-D breast models have been employed in studies such as [96] and the

subsequent ones.

• Geometrical Property

Geometry explains the relation of points, lines, surfaces, and volumes of an object.

The geometry of an object directly affects the characteristics of the scattered fields

when it interacts with microwave signals, which comprises the foundation of inverse

scattering techniques for non-invasive imaging [97]. Based on related strategies such

as contour parametrisation, the profile of the object-under-test can be established.

Thus, quasi-human-breast shape is optimum for modelling and simulation. However,

despite many studies employed 3-D models, the geometrical property of breast has

been seriously neglected. For example, rectangular blocks were used to represent the

breast in [50, 96] and [51]. This cuboid-shaped breast model might be suitable for

performance comparison of imaging algorithms; however, realistically shaped breast

models should be constructed for further verification, considering the importance of

model geometry.

• Tissue Composition

In biology, tissue is the basic cellular organizational level intermediate between

cells and an organ [98]. Organs such as breast can then be formed by the functional

grouping of multiple tissues. Exactly mimicking the physiological property of all

breast tissues can be extremely challenging. Therefore, three major aspects including

structural heterogeneity, dispersive property, and density classifications of breast

models are considered, which properly represent the composition of breast tissues.
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The sparse breast model composed of two types of homogeneous tissues, including

normal and malignant tissues, were used in [50, 51, 85, 96]. To capture the structural

heterogeneity of normal breast tissue, the dielectric property was varied by ±10%

around the selected mean value in [99], which was in line with the data from [100]

and [101]. Further advance in terms of incorporating the dispersive property of breast

tissues into the modelling was offered by [50]. This incorporation is pivotal because

it enables the acquisition of backscattered signals from dispersive breast tissues

rather than over-simplified nondispersive tissues, which is much more realistic. A

series of advanced numerical breast phantoms with much improved accuracy were

introduced in [102]. Besides heterogeneous structures and varied tissue types, the

density classification was also considered. Derived from MRI-based data, the breast

phantoms developed in [102] were both dielectrically and anatomically accurate.

• Tumour Modelling

To aid the development of breast tumour detection approaches, varied tumour models

are necessary to simulate different scenarios. In the database introduced in [103],

tumours with different sizes are described. The size of tumour determines the mag-

nitude of backscattered signals, which is critical for energy-based techniques to

identify the existence and location of the tumour. Apart from size, the shape of

tumour can be regular or irregular. Depending on the property of tumour, which

can be either benign or malignant, different appearances and growing patterns have

been observed. Benign tumours are usually compact and roughly elliptical, whereas

malignant tumours show irregular appearance and have a blurry periphery. This dis-

tinct morphological appearance can be potentially useful for discrimination between

benign and malignant anomalies [104, 105], which also indicates the importance of

modelling tumours with different forms. The third aspect of tumour modelling is

the position. Depending on the position of tumour, there can be ductal carcinomas

which start at fibro-glandular regions [106] and the others which start from fatty

tissue regions. Accordingly, various cases should be taken into account for complete

examination of imaging techniques.
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2.5.2 Modelling of Signal Propagation

To numerically explore microwave signal propagation within breast tissue, Maxwell’s equa-

tions are needed to be solved as they state the fundamentals of electricity and magnetism.

The major techniques to model computational electromagnetics include finite-difference

time-domain (FDTD) [107], transmission line matrix (TLM) [108], finite element method

(FEM) [109], finite-difference frequency-domain (FDFD) [110], method of moments

(MoM) [111], and fast multipole method (FMM) [112]. Based on the way of solving

Maxwell’s equations in its differential or integral form, these methods can be classified

into two categories as shown in Fig. 2.3.

Fig. 2.3 Numerical techniques for solving Maxwell’s equations.

• Finite-difference Time-domain (FDTD)

FDTD is a time domain method that discretizes the Maxwell’s curl equations using

central-difference approximations to the space and time derivatives [107]. In this

method, electric-field and magnetic-field vector components in a volume of space

can be solved at alternate time steps. The process is repeated until the desired elec-

tromagnetic field is fully evolved. Since the FDTD technique allows the assignment

of material property at all points within the computational domain, it enables the

modelling of a variety of dielectric and magnetic materials. Additionally, FDTD

is very suitable for transient analysis problems. Due to its time-domain basis, the
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solutions of FDTD can cover a wide range of frequency with a single run, and treat

linear and non-linear material problems in a natural way [113].

• Transmission Line Matrix (TLM)

TLM is also a space and time discretizing method. It replaces the field problem by

equivalent network, which is based on Huygen’s model of wave propagation [108].

An analogous equivalence between the voltages and currents of transmission lines

and electromagnetic fields is achieved through mapping the transmission line equa-

tions and the Maxwell’s equations [114]. TLM analyses complicated structures with

great flexibility because it incorporates the properties of EM fields, the material

media, and their interaction with boundaries. However, this versatility is at the

expense of extra memory requirement. Depending on the selected resolution of the

mesh, large memory storage might be needed.

• Finite Element Method (FEM)

FEM aims at finding approximate solutions for partial differential equations through

dividing a large domain into subdomains. Each subdomain is called a finite element,

and a set of element equations is used to represent the original problem. The

recombination of all sets of element equations is required for final calculation. One

advantage of FEM is its flexibility to analyse problems with complicated domains,

such that each domain can be assigned with a varied resolution. However, this

method is not well suited for modelling many electromagnetic interference problems,

which is illustrated in [115].

• Finite-difference Frequency-domain (FDFD)

FDFD has many similarities to FDTD, except it is a frequency-domain method.

FDFD solves the Maxwell’s equations in its time harmonic form, based on the

finite-difference approximations of derivative operators. Although FDFD and FDTD

share the same discretization constraints, their capabilities are different. FDFD

has a preferable adaptability in defining composite structures (shape and type) in

each defined sub-regions and extra memory saving than FDTD [116]; however, it is

considerably more computational extensive for large-scale problems [117].
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• Method of Moments (MoM)

MoM is capable of solving the integral form of Maxwell’s equations. This is

accomplished by decomposing them into a system of linear equations, and the

structure is discretized with planar and/or curvilinear triangular elements [118]. A

matrix representation can then be established based on the number of segments. The

distribution of problem structure can be calculated with different input parameters,

such as near fields, far fields, and impedance. MoM is highly efficient when perfectly

conducting wire scatterers are the types of problem, but limited for the analysis of

complex heterogeneous geometries [115].

• Fast Multipole Method (FMM)

FMM is a technique that was originally proposed to accelerate the computation of

classical boundary value problems [119]. Later on, this method has been extended

to solve acoustic and electromagnetic scattering problems [120]. FMM offers both

reduced memory storage and computational complexity, thus it can expand the area

of applying modelling techniques such as MoM to far greater problems which were

previously impossible.

Since biological tissue in nature is frequency-dependent (also referred to as dispersion)

when it interacts with EM waves [121], it is thus important to incorporate this for precise

modelling. Different models for describing the dispersion of medium include Drude,

Debye, and Lorentz [122], and Cole-Cole [123]. Another aspect for propagation modelling

is the termination of computational domain by absorbing boundary conditions (ABCs).

ABCs are needed for delimiting the area of interest for affordable computational burden

and various proposals have emerged, and these include Mur’s [124], Liao’s [125], perfectly

matched layer (PML) [126] and its variants include uniaxial perfectly matched layer

(UPML) [127] and convolutional perfectly matched layer (CPML) [128].

Based on the review of these techniques, it is noted that each one has its capabilities,

advantages, and limitations. Additionally, the propagation modelling of microwave signal

within biological tissues can be highly complex. This is because it involves a large number

of solving of differential/integral equations, which is known as the cruelty of computational
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complexity in computer science. Therefore, depending on a particular task, it is of crucial

importance to choose proper techniques and consider the combination of them as a whole

to ensure the efficacy, accuracy, and computational and storage efficiency.

2.5.3 Image Reconstruction Algorithm

Another vital aspect of UWB imaging system is the imaging algorithm (also called image

formation algorithm, or image reconstruction algorithm) due to its decisive significance

to system output. As mentioned in Section 2.4.3, UWB imaging can be classified as

quantitative and qualitative methods. Specifically, quantitative methods aim to recover

the entire dielectric property profile of the breast, which is also called microwave to-

mography [129–131], whereas qualitative algorithms intend to identify and localise the

abnormalities within normal tissues.

Qualitative UWB imaging techniques can be classified into two categories: data-

dependent and data-independent. Data-dependent algorithms attempt to estimate the prop-

agation channel based on the signals reflected from the object of interest (OI) [46, 48, 132–

143], whereas data-independent methods employ an assumed channel model to compensate

for path-dependent propagation effect [39, 41, 45, 50–52, 85, 144–147]. Data-dependent

imaging algorithms account for some uncertainties during pre-processing steps, such as

errors in amplitude compensation or non-ideal time delays, thus theoretically they can

construct high-resolution images and offer stong interference rejection. However, this

advantage relies on the assumed priori information that the array steering vector corre-

sponding to the signal of interest (SOI) is accurately known. When this priori information is

imprecise (as is often the case in practice), the performance of data-dependent methods may

become worse than that of their data-independent counterparts [148]. Data-independent

algorithms are free from this priori information and normally have a much more higher

computational efficiency than data-dependent methods, but their interference rejection

capability needs to be further enhanced.
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Although many image reconstruction algorithms have been proposed, they have some

shortages and limitations, which may seriously affect the applicability in realistic condi-

tions, and these can be summarised as follows.

• Over-simplistic Imaging Scenario

Some imaging algorithms were only examined in 2-D breast models [147]. Although

encouraging results were obtained, their effectiveness in practical 3-D cases is ar-

guable and further evaluation could be necessary. This is because in a 2-D modelling

of computational electromagnetic, the third dimension is assumed to be infinitely

long and all intensities (e.g. electric field, magnetic field, etc.) are invariant [46].

Therefore, the modelled tumour which has infinite dimension along the third axis

can produce much more stronger backscattered signals. But these assumptions

are invalid in 3-D imaging cases, thus the imaging algorithms may suffer severe

performance reduction or totally fail. Furthermore, the breast models used for testing

algorithms are over-simplistic. In many literature [50, 51, 146, 147, 149], only

homogeneous breast models with few types of tissues were employed to validate

the efficacy of proposed algorithms. Despite the promising results presented, it

is essential to consider a broader range of more realistic scenarios. For example,

it is acknowledged that the heterogeneously dense breast tissues would not only

complicate the estimation of propagation channels, but also result in serious signal

attenuation [52]. All of these can make the identification of small tumours much

more challenging.

• Limited Detectability of Multiple Scatterers

A range of imaging algorithms show decent tumour detection based on the significant

dielectric contrast between adipose and malignant tissues, which represents the

scenarios of mostly sparse breasts. However, the study in [150] pointed out that

the dielectric contrast between fibro-glandular and malignant tissues is much less

pronounced, making the detection of tumours in breasts with high-portion glandular

tissues much more difficult. On one hand, the comparable dielectric property between

tumour and glandular tissues raises a new sensitivity challenge for algorithm. In such
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cases, the scattering from the tumour can easily get obscured by the scattering from

glandular tissues. On the other hand, the presence of glandular tissues introduces

significant amount of attenuation and dispersion, which can further complicate the

estimation of propagation channels. Hence, it is necessary to develop effective

techniques for tumour detection even in dense breasts.

• Vulnerability to Artefact Signals

Another important aspect of UWB breast imaging is the removal of artefact sig-

nals [151]. The early-stage artefact is composed of incident signals, skin-fat reflec-

tion signals, and possible antenna reverberations. The artefact is typically orders

of magnitude greater than desired tumour response which is the reflected signals

from the tumour. Therefore, if the artefact cannot be removed, it could easily

mask the tumour response and lead to the failure of imaging algorithms. Serving

as a benchmark for performance analysis, the idealised artefact removal method

is applied in many studies [39, 40, 50, 51, 152], in which the priori information

obtained from tumour-free breast models is required. However, this ideal artefact

removal is infeasible in practice, and a series of more practical solutions have been

proposed [2, 40, 45, 145, 153–157]. These practical artefact removal methods em-

ploy adaptive or non-adaptive signal filtering techniques in either time or frequency

domain, which can remove the majority of artefact. However, even the most ad-

vanced method is unable to perfectly remove all artefact signals. Thus, the imaging

algorithm with high artefact resistance is particularly desired.

• Algorithm Complexity

Besides robustness, the complexity of algorithm is of same importance as this directly

determines the processing time of image reconstruction. This is especially prominent

for constructing 3-D medical images that normally have a high requirement of

resolution, which can be millions of pixels. This is because high resolution is a key

for better understanding of the results, which can effectively remove the ambiguity

of image interpretation [158]. Thus, enhancing the computational efficiency of

imaging algorithms becomes critical. But most if not all existing studies only take
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the effectiveness of algorithm into account, while improving their efficiency is not

receiving enough attention it deserves.

2.5.4 Physical Breast Phantom and Antenna Design

Before applying an imaging system in clinical trial, the validation based on experimental

test-bed is indispensable for reducing possible risks and unnecessary costs. Towards this

end, physical breast phantoms and antennas are required.

To fabricate realistic physical breast phantom, tissue-mimicking materials with proper

dielectric properties are used to represent different breast tissues, such as skin, fat, fibro-

glandular, and tumour [159]. Additionally, the breast phantom should exhibit dispersive

property and varied density classifications [160]. For example, the breast phantom based

on 3-D printing was introduced in [161], which permits the preciseness of both exterior and

interior breast structure and dielectric profile. The stability study of breast phantom over

time and temperature, as well as their reproducibility for a given structure was performed

in [162]. This study also suggested alternative materials which present similar dispersive

property but with easier production and more flexible parameter settings.

Many efforts have also been addressed to design compact antennas for collecting

signals from physical breast phantoms. Resistively loaded bowtie and dipole antenna

were firstly introduced [163, 164], and the optimised Vee dipole with improved broadband

behaviour was proposed in [165]. Unlike most antennas which are designed to observe co-

polarised reflections from the target, target sensing with cross-polarised reflections using a

bowtie antenna was explored in [166]. A modified prototype for resistively loaded bowtie

antenna through modelling and genetic optimisation was presented in [38], the feasibility

of which was validated by both simulated and measured results, achieving close agreement.

A compact double-layer on-body matched bowtie antenna was presented in [167], which

showed reduced size and fine range resolution. A hemispherical real-aperture antenna

array was put forward in [42], and experimental results demonstrated the detection of small

tumours with 4 mm and 6 mm in diameter in breast phantom.
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As herein introduced, various breast phantoms and antennas have been designed,

proposed, and optimised. However, few of them provided the experimental results which

are based on both sufficiently accurate breast phantoms and effective antenna fabrications,

therefore, further theoretical research and experimental validation are necessary.

2.6 Conclusion

This chapter introduces the background of UWB technology, and reviews the development

of UWB imaging for breast cancer detection (more specific literature reviews are presented

in following contribution chapters also). It starts with the overview of UWB, its funda-

mentals and a wide range of applications are introduced. Then UWB imaging for breast

tumour identification is presented in detail, which is regarded as one of the most promising

alternatives for breast cancer screening. The importance, principle, and advantages of

UWB imaging for breast cancer detection are described. This is followed by a review

of up-to-date advances and existing technical challenges, namely numerical breast phan-

tom construction, signal propagation modelling, image reconstruction algorithm, physical

breast phantom and antenna design.

This chapter identifies existing limitations and challenges which have fundamental

impacts on the performance of UWB breast imaging system, upon which our contributions

in Chapter 3 to 6 of this thesis are built.



Chapter 3

Propagation Modelling and Simulation

of UWB Signals for Breast Tumour

Detection

3.1 Introduction

To develop imaging algorithms and evaluate their effectiveness, accurate propagation

modelling of UWB signals within realistic breast phantoms is critical. To this end, a new

versatile electromagnetic computation engine (VECE) is proposed.

Based on the finite-difference time-domain (FDTD) technique, VECE provides the

first implementation of its kind which combines auxiliary differential equations (ADE)

and convolutional perfectly matched layer (CPML) for describing the Debye dispersive

medium, and truncating the computational domain, respectively. The unique combination

of ADE and CPML results in high accuracy, and improved computational and memory

storage efficiency. Furthermore, realistic breast phantoms based on the state-of-the-art

MRI-derived repository have been integrated, which enables the simulation of breast tissue

response under microwave exposure conditions. The accuracy of VECE is validated via

extensive simulations and comparisons, achieving excellent agreement across a range

of appropriate metrics. VECE is capable of simulating a broad range of breast imaging



32

scenarios, such as varied input signals, breast models, tumour positions, and antenna

configurations. These results show its strong practicability to facilitate the development of

diagnostic and therapeutic technologies for breast cancer, and great potential for related

bio-imaging applications.

The remainder of this chapter is organised as follows. Section 3.2 reviews existing

numerical modelling techniques, boundary conditions, and different ways of integrating

these techniques. Section 3.3 formulates the ADE-FDTD analysis for electromagnetic

propagation in 3-D Debye dispersive medium. Section 3.4 introduces the theory of CPML

boundary conditions which are used to truncate the FDTD lattices. Section 3.5 presents

the design and implementation of VECE. Section 3.6 validates the effectiveness and

accuracy of VECE through simulations and comparisons with the results obtained from

Remcom’s XFDTD commercial software [168]. Besides, the computational efficiency of

VECE is discussed. Section 3.7 presents the visualisation of 3-D breast models and signal

propagation. Simulation results for breast tumour detection under different scenarios are

provided in Section 3.8. Section 3.9 introduces further potential application areas of VECE

and concluding remarks are drawn in Section 3.10.

3.2 Literature Review

To simulate UWB imaging for breast cancer detection, two imperative aspects are the

construction of breast phantoms, and the modelling of UWB signal propagation within

breast tissues. The breast model should represent the dielectric properties of constituent

tissues, and the highly correlated distribution of these tissues. The propagation modelling

and simulation, on the other hand, should be effective, computationally efficient, and

flexible for various scenarios. Building upon the state-of-the-art numerical breast phantoms

established in UWCEM repository [103, 169, 170], this chapter mainly focuses on the

propagation modelling of signals. To achieve this, three aspects need to be considered:

numerical analysis techniques for computational electromagnetics, dispersive models to

represent the biological entities, and absorbing boundary conditions (ABC) to attenuate

the outgoing radiation. To implement each aspect above-mentioned, there are more options
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than one. Therefore, appropriate selection and combination of these components can affect

the efficacy and efficiency of the computation as a whole.

Several techniques are used for computational electrodynamics, including FEM [109],

MOM [111], FIT [171], and FDTD [107]. Among these approaches, FDTD has been a

preferred choice by virtue of its accuracy, robustness, and the capability to model a wide

diversity of exposure conditions for anisotropic, non-linear, and dispersive media [172].

Rigorous models for describing the dispersion of medium include Drude, Debye, and

Lorentz [122], whereas the Cole-Cole which is an empirical model also attracted noticeable

interest in recent years [123]. Several approaches allow FDTD to incorporate frequency-

dependent dielectric media include recursive convolution (RC) [173–175], trapezoidal

recursive convolution (TRC) [176], piecewise-linear recursive convolution (PLRC) [177],

Z-transform [178], and auxiliary differential equation (ADE) [179] [53].

The third aspect involves the termination of the computational domain by ABC and the

necessity is twofold. First, the structure of interest should be enclosed in a limited area

for the consideration of affordable computational burden. Second, boundary conditions

are needed to truncate the mesh in a reflectionless way, which allows the analysis of elec-

tromagnetic interaction within the region of interest. Various ABCs have been developed,

among which PML [126] and its variants include UPML [127] and CPML [128] have

proven to be the most robust and efficient approaches for FDTD terminations [180].

FDTD with different dispersive models and ABCs have been investigated. In [181], the

addition of CPML to 3-D FDTD simulations with dielectric and conducting objects was

presented. [182] implemented a Cole-Cole model for biological tissues, which was delim-

ited by the first-order Mur absorbing boundary. The analysis and implementation of FDTD

for Debye dispersive media through PLRC with CPML boundary were provided in [172]

and [183]. The simulation adopting Lorentz-Drude (LD) model in conjunction with ADE

technique was introduced in [122] and [184], in which Mur and CPML boundary condi-

tions were used, respectively. [185] presented the implementation of Drude-critical point

(DCP) model for describing dispersive media through both PLRC and ADE approaches,

and comparative analysis was elaborated.
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Depending on selected techniques to implement different components of FDTD com-

putation, the effectiveness and efficiency of the outcome can be vastly different. FDTD

calculation can be computationally expensive with significant run-times, especially when

accurate results of 3-D dispersive models are involoved. Despite the noticeable speedup

offered by hardware accelerator approaches [172, 181, 184, 186, 187], the inherent com-

plex computations still exist. The complexity mainly stems from two aspects: the way

of simulating dispersion of host medium, and the selection of boundary conditions. The

major two techniques which incorporate dispersion into FDTD are PLRC and ADE. ADE

methods have the same second-order accuracy as PLRC. However, the time domain basis

of ADE makes it particularly attractive for modelling arbitrary nonlinear dispersive media.

Existing literature also demonstrated that the usage of ADE resulted in reduced computa-

tional amount compared to PLRC. This is because ADE does not involve complex-number

arithmetic, thus it requires relatively fewer floating-point operations as compared to PLRC

[185] [188]. Furthermore, ADE requires an equal or smaller number of unknowns to be

stored, thereby reducing memory storage requirement and related processing time ([53],

Ch. 9, pp. 361). Another concern is the selection of boundary conditions. For general

media, the number of unknowns required for CPML is identical to PML and UPML [180].

To terminate a specific type of medium, such as isotropic, homogeneous, inhomogeneous,

lossy, dispersive, anisotropic, and linear, unlike PML and UPML, CPML has exceptional

flexibility since it does not require any further deformations. Moreover, CPML is highly

absorptive for both propagating and evanescent waves, resulting in a significant memory

saving [172]. The effective absorption of evanescent waves allows CPML layers to be

placed fairly close to the host medium, whereas for PML and UPML, a sufficiently large

distance is essential such that the evanescent waves have adequately decayed. Studies

showed that this improvement of CPML has led to a four-fold reduction in memory

space [189], which makes it a superior absorbing boundary for the analysis of complex

geometries such as biological tissues.

The best attributes of ADE and CPML in terms of efficacy, computational efficiency,

and memory saving over their counterparts are simultaneously integrated in the proposed
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VECE. Computations were performed with low-complexity implementations on the high

performance computing (HPC) Apollo Cluster (304 GB RAM) at University of Sussex.

VECE is the first implementation of 3-D ADE-FDTD for modelling Debye dispersive

media with CPML absorbing boundary, allowing for measuring and quantifying the

biological effects arise from electromagnetic field radiation.

3.3 Auxiliary Differential Equation

In this section, the incorporation of Debye model to FDTD algorithm through ADE

technique, describing the dispersion of main simulation area, is presented.

Starting by defining the permittivity ε(ω) of Debye model in frequency domain, which

is expressed as ([53], Ch. 7, pp. 311)

ε(ω) = ε∞ +
P

∑
p=1

∆εp

1+ jωτp
− j

σ

ωε0
(3.1)

where ω is angular frequency, ε∞ is the permittivity at infinite frequency, ∆εp = εs,p −

ε∞,p is the change in permittivity due to the pth dispersive pole of P, εs,p and ε∞,p are

corresponding static permittivity and the permittivity at infinite frequency, respectively. τp

is the relaxation time of the pth pole, σ is conductivity, ε0 is free-space permittivity, and

j =
√
−1. Ampere’s law in frequency domain can be expressed as

∇× H̃ = jωD̃ (3.2)

where

D̃ = ε0ε(ω)Ẽ (3.3)

where ∇ is curl operator, H is magnetic field, E is electric field, D is electric flux density,

and H̃, Ẽ, D̃ are their corresponding Fourier transforms. Any function u (e.g. H, E, D,

etc.) at a discrete point (i, j, k) of a 3-D space and at a discrete time n is denoted as

u(i∆x, j∆y,k∆z,n∆t) = u|ni, j,k (3.4)
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where i, j, k, n are integers, ∆t is the time increment, and ∆x, ∆y, ∆z are the space

increments in x, y, and z coordinate directions, respectively.

By substituting (3.1) and (3.3) in (3.2), the following expression is obtained as

∇× H̃ = ε0ε∞ jωẼ +σ Ẽ +
P

∑
p=1

J̃p (3.5)

where J̃p is the polarization current density with the pth dispersive pole given by

J̃p = ε0∆εp
( jω

1+ jωτp

)
Ẽ. (3.6)

Multiplying both sides of (3.6) by (1+ jωτp), which yields

J̃p + jωτpJ̃p = ε0∆εp jωẼ. (3.7)

Exploiting the differentiation theorem for the Fourier transform ([53], Ch. 7, pp. 362), the

inverse Fourier transformation of each term of (3.7) is performed, which gives

Jp + τp
∂Jp

∂ t
= ε0∆εp

∂E
∂ t

. (3.8)

To implement (3.8) in FDTD, the semi-implicit scheme is adopted ([53], Ch. 7, pp.

362). In this strategy, the yet-to-computed field component at time-step n+1 is obtained

based on a known field at time-step n, thereby creating an updating formula. Rewriting (3.8)

in finite-difference expression, which centred at time-step n+1/2 and can be expressed as

(Jn+1
p + Jn

p

2
)
+ τp

(Jn+1
p − Jn

p

∆t

)
= ε0∆εp

(En+1 −En

∆t

)
. (3.9)

Solving (3.9) for Jn+1
p , we obtain

Jn+1
p = kpJn

p +βp
(En+1 −En

∆t

)
(3.10)
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where

kp =
1−∆t/2τp

1+∆t/2τp
βp =

ε0∆εp∆t/τp

1+∆t/2τp
(3.11)

To calculate En+1, Jn+1/2
p is required, which can be obtained from (3.10) as

Jn+1/2
p =

1
2
(
Jn+1

p + Jn
p
)
=

1
2
(
1+ kp

)
Jn

p +βp
(En+1 −En

∆t

)
. (3.12)

Similarly, we use semi-implicit scheme at time-step n+1/2 for the time-domain form of

(3.5)

∇×Hn+1/2 = ε0ε∞

(En+1 −En

∆t

)
+σ

(En+1 +En

2
)
+ Jn+1/2

p . (3.13)

The explicit time-marching relation for E is solved as

En+1 =CaEn +Cb

[
∇×Hn+1/2 − 1

2

P

∑
p=1

(
1+ kp

)
Jn

p

]
(3.14)

where Ca and Cb are auxiliary coefficients. Therefore, based on (3.14), the E-fields in x

coordinate direction (Ex) with ADE for Debye medium can be obtained as

Ex|n+1/2
i+1/2, j,k

= Ca|i+1/2, j,kEx|n−1/2
i+1/2, j,k +Cb|i+1/2, j,k

[
Hz|ni+1/2, j+1/2,k −Hz|ni+1/2, j−1/2,k

∆y

−
Hy|ni+1/2, j,k+1/2 −Hy|ni+1/2, j,k−1/2

∆z
− 1

2
(
1+ kp

)
Jpx |

n−1/2
i+1/2, j,k

] (3.15)

where

Ca|i+1/2, j,k =
(
1−

σi+1/2, j,k∆t
2εi+1/2, j,k

)
/
(
1+

σi+1/2, j,k∆t
2εi+1/2, j,k

)
Cb|i+1/2, j,k =

( ∆t
εi+1/2, j,k

)
/
(
1+

σi+1/2, j,k∆t
2εi+1/2, j,k

)
.

(3.16)

Based on the formulations above-presented, it can be seen that modelling Debye medium

with ADE-FDTD algorithm is a three-step fully explicit procedure. Starting with stored
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fields include En, Jn
p, and Hn+1/2, the new En+1 is first calculated through (3.14). Then

Jn+1
p can be obtained based on Jn

p and the just-computed En+1 according to (3.10). Lastly,

Hn+3/2 can be calculated from known Hn+1/2 and En+1 in a usual manner from the Yee

cell realisation of Faraday’s law [107], and the complete cycle starts again. It is noted that

to model Debye medium through ADE technique, only P additional real variables related

to polarisation current are required for each E component, which ensures a minimum extra

computation cost.

3.4 Convolutional Perfectly Matched Layers

This section introduces the formulations of boundary conditions using CPML, which

effectively truncate the main computational area of interest.

The tensor coefficient sw (w indicates the axis direction, which can be x, y, or z) used

in CPML is modified as follows ([53], Ch. 7, pp. 296)

sw = kw +
σw

αw + jωε0
(3.17)

where kw is a constructed nonunity real part, and σw is conductivity. Compared with

the original form of sw used in PML, the new term αw is added to shift the pole off the

origin into the upper-half complex plane, and this addition has been proven beneficial for

reducing strong reflections at low frequencies [189, 190]. Additionally, with the purpose

of absorbing both propagating and evanescent waves, spatial scaling is applied for αw,

such that it has a larger value at the truncation interface and decays to zero within CPML

regions. sw has been referred to as the complex frequency-shift (CFS) tensor coefficient of

CPML. Denoting F−1 as the inverse Fourier transform operator, and define the following

relation

sw = F−1

[
1

sw(ω)

]
=

δ (t)
kw

−ζw(t) (3.18)

where

ζw(t) =
σw

ε0k2
w

e−
(

σw
ε0kw + aw

ε0

)
tu(t) (3.19)
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where u(t) is the unit step function, and δ (t) is the unit impulse function. Based

on Berenger’s PML theory [189], the Ampere’s law in frequency domain in complex-

coordinate stretched space are expressed as

∇× H̃ = x̂
( 1

sy

∂ H̃z

∂y
− 1

sz

∂ H̃y

∂ z

)
+ ŷ

( 1
sz

∂ H̃x

∂ z
− 1

sx

∂ H̃z

∂x

)
+ ẑ

( 1
sx

∂ H̃y

∂x
− 1

sy

∂ H̃x

∂y

)
(3.20)

where the over-hat x̂, ŷ, and ẑ denotes a phasor quantity. To obtain the time domain

counterpart of (3.20), combining inverse Fourier transform and the reciprocal of tensor

coefficient 1
sw

(w = x, y, z), which can yield ([53], Ch. 7, pp. 303)

∇×H =
∂D
∂ t

= x̂
(
sy ∗

∂Hz

∂y
− sz ∗

∂Hy

∂ z

)
+ ŷ

(
sz ∗

∂Hx

∂ z
− sx ∗

∂Hz

∂x

)
+ẑ

(
sx ∗

∂Hy

∂x
− sy ∗

∂Hx

∂y

) (3.21)

where “∗” denotes the convolution. Noted that the right-hand side of (3.21) is independent

of medium type since it only applies to the field intensities, which explains the capability

of CPML for accommodating and truncating various host media. Expanding (3.21) by

replacing sw (w = x, y, z) in a more concise way

∇×H =
∂D
∂ t

= x̂
( 1

ky

∂Hz

∂y
− 1

kz

∂Hy

∂ z
+ζy ∗

∂Hz

∂y
−ζz ∗

∂Hy

∂ z

)
+ ŷ

( 1
kz

∂Hx

∂ z
− 1

kx

∂Hz

∂x
+ζz ∗

∂Hx

∂ z
−ζx ∗

∂Hz

∂x

)
+ ẑ

( 1
kx

∂Hy

∂x
− 1

ky

∂Hx

∂y
+ζx ∗

∂Hy

∂x
−ζy ∗

∂Hx

∂y

)
.

(3.22)

Transforming (3.5) from frequency domain to time domain for a single-pole Debye model

[see (3.1) with P = 1], we obtain

∇×H = ε0ε∞

∂E
∂ t

+σE + Jp. (3.23)



40

Connecting the right-hand sides of (3.23) and (3.22), and taking the x-projection as an

example

ε0ε∞

∂Ex

∂ t
+σEx + Jpx =

1
ky

∂Hz

∂y
− 1

kz

∂Hy

∂ z
+ζy ∗

∂Hz

∂y
−ζz ∗

∂Hy

∂ z
. (3.24)

To derive explicit updates for E-fields in x coordinate direction (Ex) from (3.24) in a

computationally affordable manner, as well as for obtaining a time-marching equation, the

recursive-convolution (RC) [174] technique is used. By using RC and the discrete time

and space approximation employed in standard Yee scheme [107], Ex is obtained as

Ex|n+1/2
i+1/2, j,k

= Ca|i+1/2, j,kEx|n−1/2
i+1/2, j,k +Cb|i+1/2, j,k

[
Hz|ni+1/2, j+1/2,k −Hz|ni+1/2, j−1/2,k

ky j∆y

−
Hy|ni+1/2, j,k+1/2 −Hy|ni+1/2, j,k−1/2

kzk∆z
+ψEx,y |ni+1/2, j,k −ψEx,z|ni+1/2, j,k

− 1
2
(
1+ kp

)
Jpx |

n−1/2
i+1/2, j,k

]
(3.25)

where

Ca|i+1/2, j,k =
(
1−

σi+1/2, j,k∆t
2εi+1/2, j,k

)
/
(
1+

σi+1/2, j,k∆t
2εi+1/2, j,k

)
Cb|i+1/2, j,k =

( ∆t
εi+1/2, j,k

)
/
(
1+

σi+1/2, j,k∆t
2εi+1/2, j,k

) (3.26)

and

ψEx,y |ni+1/2, j,k = by jψEx,y|n−1
i+1/2, j,k + cy j

(Hz|ni+1/2, j+1/2,k −Hz|ni+1/2, j−1/2,k

∆y

)
ψEx,z|ni+1/2, j,k = bzkψEx,z|n−1

i+1/2, j,k + czk

(Hy|ni+1/2, j,k+1/2 −Hy|ni+1/2, j,k−1/2

∆z

) (3.27)

where

bv = e−
(

σv
ε0kv +

av
ε0

)
∆t cv =

σv

σvkv + k2
vαv

(
bv −1

)
(v = xi,y j,zk). (3.28)
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Jpx is updated following (3.10), which is the same as in main area. The ψ-arrays in (3.27)

are called convolutional related coefficients. bv and cv are tensor related coefficients, which

can be computed through (3.28) with scaled tensor parameters ky, σy, and αy defined

in (3.17). Comparing (3.15) and (3.25), it is noted that the update for modelling Debye

dispersive medium in main area with ADE and in boundary regions with CPML are

identical, only with the exception of the additional coefficient kw at the denominator of

H update in (3.25), and the convolutional terms ψ-arrays in (3.25). This signifies that the

iteration within the whole domain, including both main area and boundary regions, can be

updated synchronously, thereby saving memory storage and improving efficiency.

For completeness, the update equations of Ey,Ez,Hx,Hy, and Hz using CPML to

truncate the main area with Debye medium are deduced as follows. Corresponding updates

in main area through ADE technique can be obtained in a straightforward way since there

is only minor difference as explained above.

Ey|n+1/2
i, j+1/2,k

= Ca|i, j+1/2,kEy|n−1/2
i, j+1/2,k +Cb|i, j+1/2,k

[
Hx|ni, j+1/2,k+1/2 −Hx|ni, j+1/2,k−1/2

kzk∆z

−
Hz|ni+1/2, j+1/2,k −Hz|ni−1/2, j+1/2,k

kxi∆x
+ψEy,z|ni, j+1/2,k −ψEy,x |ni, j+1/2,k

− 1
2
(
1+ kp

)
Jpy |

n−1/2
i, j+1/2,k

]
(3.29)

where Jpy can be calculated through (3.10), and

ψEy,z|ni, j+1/2,k = bzkψEy,z|n−1
i, j+1/2,k + czk

(Hx|ni, j+1/2,k+1/2 −Hx|ni, j+1/2,k−1/2

∆z

)
ψEy,x |ni, j+1/2,k = bxiψEy,x |n−1

i, j+1/2,k + cxi

(Hz|ni+1/2, j+1/2,k −Hz|ni−1/2, j+1/2,k

∆x

)
.

(3.30)
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and

Ez|n+1/2
i, j,k+1/2

= Ca|i, j,k+1/2Ez|n−1/2
i, j,k+1/2 +Cb|i, j,k+1/2

[
Hy|ni+1/2, j,k+1/2 −Hy|ni−1/2, j,k+1/2

kxi∆x

−
Hx|ni, j+1/2,k+1/2 −Hx|ni, j−1/2,k+1/2

ky j∆y
+ψEz,x |ni, j,k+1/2 −ψEz,y|ni, j,k+1/2

− 1
2
(
1+ kp

)
Jpz|

n−1/2
i, j,k+1/2

]
(3.31)

where Jpz can be calculated through (3.10), and

ψEz,x |ni, j,k+1/2 = bxiψEz,x |n−1
i, j,k+1/2 + cxi

(Hy|ni+1/2, j,k+1/2 −Hy|ni−1/2, j,k+1/2

∆x

)
ψEz,y |ni, j,k+1/2 = by jψEz,y|n−1

i, j,k+1/2 + cy j

(Hx|ni, j+1/2,k+1/2 −Hx|ni, j−1/2,k+1/2

∆y

)
.

(3.32)

Corresponding updates for H-fields could be obtained through the same procedure as for

E-fields, except no polarisation current is involved, and they are obtained as

Hx|n+1
i, j+1/2,k+1/2

=Hx|ni, j+1/2,k+1/2 +
∆t
µ0

[
Ey|n+1/2

i, j+1/2,k+1 −Ey|n+1/2
i, j+1/2,k

kzk∆z

−
Ez|n+1/2

i, j+1,k+1/2 −Ez|n+1/2
i, j,k+1/2

ky j∆y
+ψHx,z|

n+1/2
i, j+1/2,k+1/2 −ψHx,y|

n+1/2
i, j+1/2,k+1/2

] (3.33)

where µ0 is free space permeability, and

ψHx,z|
n+1/2
i, j+1/2,k+1/2 = bzk+1/2ψHx,z |

n−1/2
i, j+1/2,k+1/2 + czk+1/2(

Ey|n+1/2
i, j+1/2,k+1 −Ey|n+1/2

i, j+1/2,k

∆z
)

ψHx,y|
n+1/2
i, j+1/2,k+1/2 = by j+1/2ψHx,y|

n−1/2
i, j+1/2,k+1/2 + cy j+1/2(

Ez|n+1/2
i, j+1,k+1/2 −Ez|n+1/2

i, j,k+1/2

∆y
)

(3.34)
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where by j and cy j can be calculated through (3.28). Hy and Hz can be derived by permuting

(i, j, k) and (x, y, z) as follows

Hy|n+1
i+1/2, j,k+1/2

=Hy|ni+1/2, j,k+1/2 +
∆t
µ0

[
Ez|n+1/2

i+1, j,k+1/2 −Ez|n+1/2
i, j,k+1/2

kxi∆x

−
Ex|n+1/2

i+1/2, j,k+1 −Ex|n+1/2
i+1/2, j,k

kzk∆z
+ψHy,x |

n+1/2
i+1/2, j,k+1/2 −ψHy,z|

n+1/2
i+1/2, j,k+1/2

] (3.35)

where

ψHy,x |
n+1/2
i+1/2, j,k+1/2 = bxi+1/2ψHy,x |

n−1/2
i+1/2, j,k+1/2 + cxi+1/2(

Ez|n+1/2
i+1, j,k+1/2 −Ez|n+1/2

i, j,k+1/2

∆x
)

ψHy,z|
n+1/2
i+1/2, j,k+1/2 = bzk+1/2ψHy,z|

n−1/2
i+1/2, j,k+1/2 + czk+1/2(

Ex|n+1/2
i+1/2, j,k+1 −Ex|n+1/2

i+1/2, j,k

∆z
).

(3.36)

and

Hz|n+1
i+1/2, j+1/2,k

=Hz|ni+1/2, j+1/2,k +
∆t
µ0

[
Ex|n+1/2

i+1/2, j+1,k −Ex|n+1/2
i+1/2, j,k

ky j∆y

−
Ey|n+1/2

i+1, j+1/2,k −Ey|n+1/2
i, j+1/2,k

kxi∆x
+ψHz,y |

n+1/2
i+1/2, j+1/2,k −ψHz,x |

n+1/2
i+1/2, j+1/2,k

] (3.37)

where

ψHz,y |
n+1/2
i+1/2, j+1/2,k = by j+1/2ψHz,y|

n−1/2
i+1/2, j+1/2,k + cy j+1/2(

Ex|n+1/2
i+1/2, j+1,k −Ex|n+1/2

i+1/2, j,k

∆y
)

ψHz,x |
n+1/2
i+1/2, j+1/2,k = bxi+1/2ψHz,x |

n−1/2
i+1/2, j+1/2,k + cxi+1/2(

Ey|n+1/2
i+1, j+1/2,k −Ey|n+1/2

i, j+1/2,k

∆x
).

(3.38)
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3.5 Design and Implementation

This section introduces the design and implementation of VECE. For efficient execution

and flexible scalability, the engine is divided into four modules: environment setting,

memory initialisation, kernel iteration, and field output. The schematic flowchart of VECE

is presented in Fig. 3.1.

Fig. 3.1 Schematic flowchart of VECE.

3.5.1 Environment Setting

The environment parameters which should be preset include basic constants, user-defined

medium mesh files, input source excitation, and FDTD simulation constraints.

The basic constants are free space related parameters, including the speed of light c0,

permittivity ε0, permeability µ0, and conductivity σ0. For scalability, VECE accepts user-

defined medium mesh files. VECE reads these files into a data structure, then it deduces

relevant intermediate data from the geometry to prepare the construction of elemental

matrices. For consistency and compatibility, imported files are transformed into a “.txt”

format, and modifications of data structure are made where necessary.

VECE supports various input source excitations such as sinusoidal, modulated Gaussian

pulse, and differentiated Gaussian pulse. Specifically, initial amplitude, initial time delay,
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and frequency can be adjusted to suit specific environments. Furthermore, the position and

number of source excitations are adjustable for simulating multi-antenna scenarios.

FDTD constraints include the size of entire simulation space (imax, jmax, kmax), the

thickness of absorbing boundary (n_xcpml, n_ycpml, n_zcpml), cell size (dx, dy, dz),

time step size (dt), and the maximum time steps (tsteps). Based on the size of imported

models, VECE calculates an appropriate dimension for the entire simulation area, which

is capable of containing user-defined models, and ensuring a minimum occupation of

computation resources. Moreover, according to the selected type of source excitation, cell

size and time step are computed based on the Courant-Friedrichs-Lewy (CFL) stability

condition to make numerical dispersion error negligible [53]. These variables can be set in

a step-by-step manner as follows:

1. Set basic constants (c0, ε0, µ0, σ0).

2. Load medium mesh files.

3. Set source excitation.

4. Calculate FDTD constraints (e.g., imax, dx, etc.).

3.5.2 Memory Initialisation

The memory initialisation of variables includes two parts: main computational area and

CPML boundary regions. To implement ADE-FDTD in main area, VECE allocates and

initialises the global memory and creates six 3-D arrays for Ex, Ey, Ez, Hx, Hy, and Hz field

components, three 3-D arrays for polarisation current Jpx , Jpy , and Jpz , four 3-D arrays for

auxiliary medium-dependent coefficients, including kp, βp used in (3.11), and Ca, Cb used

in (3.16). In order to update field components within each CPML region, corresponding

convolutional coefficients expressed as ψ-arrays [last two items in (3.25)] are needed,

and there are two parts involved: convolutional related coefficients and tensor related

coefficients [in (3.27)].
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3.5.2.1 Convolutional related coefficients

The convolution coefficients noted as ψ-arrays contained in (3.25) are discrete unknowns

stored only in CPML regions. For each field component, four auxiliary coefficients are

needed. Firstly, ψ-arrays are needed for corresponding normal interface boundaries, which

include both sides of the CPML region. For example, for field component Ex, it requires

ψEx,y and ψEx,z which represents the unknowns of ψEx with y-normal and z-normal interface

boundaries, respectively, and they are 3-D arrays corresponding to each 3-D boundary

space. Secondly, for each ψEx,y and ψEx,z , their subcomponents include ψEx,y1 and ψEx,y2 ,

ψEx,z1 and ψEx,z2 , which represent the bottom and top 3-D CPML regions, respectively.

Therefore, for Ex, four coefficients are needed: ψEx,y1 , ψEx,y2 , ψEx,z1 , and ψEx,z2 . This applies

for the other five field components (Ey, Ez, Hx, Hy, Hz) as well, thus twenty-four 3-D arrays

are needed for all CPML regions.

3.5.2.2 Tensor related coefficients

To calculate each ψ-array, two tensor related coefficients b and c are needed as shown in

(3.27). The discrete coefficients b and c are only non-zero with its corresponding normal

interface boundaries, thus they are 2-D arrays. As shown in (3.27), for ψEx,y , only by and cy

are needed (i.e. bz or cz is not needed). Coefficients b and c are computed using (3.28), with

the scaled tensor coefficients kw, σw, and αw, where w = xi, y j, zk. Therefore, for each field

component such as Ex, ten tensor related parameters are needed, five among which are bEx1 ,

cEx1 , kEx1 , σEx1 and αEx1 , whereas the other five are bEx2 , cEx2 , kEx2 , σEx2 and αEx2 , which

are for the other side of CPML region. Thus, there are sixty tensor related coefficients

for all six field components, which all require memory allocation and initialisation before

computation. This can be carried out in the following steps.

1. Allocate six 3-D arrays for field components (Ex, Ey, Ez, Hx, Hy, Hz).

2. Allocate three 3-D arrays for polarisation current (Jpx , Jpy , Jpz).

3. Allocate four 3-D arrays for auxiliary medium-dependent coefficients used in main

area (kp, βp, Ca, Cb).
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4. Allocate twenty-four 3-D arrays for convolutional coefficients used in CPML regions

(e.g., ψEx,y1 , etc.).

5. Allocate sixty 2-D arrays for tensor related coefficients used in CPML regions (e.g.,

bEx1 , cEx1 , kEx1 , etc.)

3.5.3 Kernel Iteration

To improve computational efficiency, iterative coefficients such as Ca and Cb that are related

to host medium are all precomputed prior to kernel iteration in VECE. This can extensively

reduce the overall running time, especially considering the millions of unknowns associated

with precise 3-D models. Each field component is updated in both main area and CPML

boundary regions. In boundary regions, field components are updated for each side (top,

bottom, left, right, front, back), along x, y, and z directions, respectively. To implement

kernel iteration within each time step n, H and E are sequentially updated as follows.

Calculate H-fields in a step-by-step way:

1. H-fields in main area.

2. H-fields in boundary regions.

Calculate E-fields in a step-by-step way (corresponding to Pseudocode 3.1):

1. Update overlapped E-fields in both main area and boundary regions.

2. Update overlapped Jp in both main area and boundary regions.

3. Update separate E-fields in boundary regions only.

4. Add source excitation.

5. Store calculated variables at current time step.

Considering kernel iteration as the core computing process and for further clarification,

a pseudocode segment illustrating the update of Ez within one time step n is presented

in Pseudocode 3.1. The electric field E instead of magnetic field H is selected since it is

more representative. Besides normal Yee formulations for E and H, additional polarisation

current update is exclusively included in the iteration of E. Ez is selected since it is the

variable that includes the calculation of source excitation. The update of its counterparts

(Ex,Ey) could be implemented in a same way except the inclusion of source excitation.
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In Pseudocode 3.1, the five steps are numbered from 1 to 5. (i, j,k) are indices for

each 3-D array, which are limited by (imax, jmax,kmax) in the entire simulation area that

comprises main area and boundary regions, and by (n_xcpml,n_ycpml,n_zcpml) within

boundary regions. Ca and Cb in Step 1 are medium-related auxiliary coefficients. For

Debye medium, these two coefficients are computed with parameters ε∞, εs, and τ through

(3.16). den_Ex is the denominator of a variant of (3.25) for updating Ez, and it equals

1/(kxi∆x). Ez(i, j,k) and Jpz(i, j,k) are the Ez and Jpz at position (i, j,k) at current time

step, whereas their counterparts at the previous time step at the same position are indicated

by Ez_prev(i, j,k) and Jpz_prev(i, j,k), respectively. Step 2 is the update of Jpz in both main

area and boundary regions. In Step 3, the update for Ez and Jpz in boundary regions only

are presented. It is worth mentioning that due to the partial update of Ez in boundary

regions, Jpz would be affected by this update. Thus Jpz need to be updated through (3.10),

corresponding to the third and sixth lines in Step 3. Observing Step 4, a dipole was used

as a hard source excitation at position (isrc, jsrc,ksrc), and source(n) is the excitation

waveform in discrete form. The pseudocode corresponds well with previous analysis, and

this step-wise structure ensures VECE’s readability while maintaining FDTD’s simplicity.

3.5.4 Field Output

The last module of VECE transfers stored variables out of memory onto disk, allowing for

the displaying, analysis, and calculations, and this can be done as follows.

1. Select the field components for export.

2. Name output files and specify storage locations.

3.6 Validation Study

This section validates the effectiveness and accuracy of VECE. Firstly its accuracy is

demonstrated by analysing the results in both time and frequency domains across a range

of appropriate assessment criteria. Furthermore, the results are compared with their
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Pseudocode 3.1 Calculate E-fields in z coordinate direction Ez within one time step n
1: Update overlapped Ez in both main area and boundary regions [Equ. (3.31)]

Ez(i, j,k) =Ca(i, j,k)Ez(i, j,k)+Cb(i, j,k)
{
[Hy(i, j,k)−Hy(i−1, j,k)]den_Ex(i)

+[Hx(i, j−1,k)−Hx(i, j,k)]den_Ey( j)−0.5[1+ kp(i, j,k)]Jpz_prev(i, j,k)
}

2: Update overlapped Jpz in both main area and boundary regions [Equ. (3.10)]
Jpz(i, j,k) = kp(i, j,k)Jpz_prev(i, j,k)+βp(i, j,k)[Ez(i, j,k)−Ez_prev(i, j,k)]/dt

3: Update separate Ez in boundary regions only [two convolutional items in Equ. (3.31)]
/* Partial update along x axis */
ψEz,x(i, j,k) = bEx(i)ψEz,x(i, j,k)+cEx(i)[Hy(i, j,k)−Hy(i−1, j,k)]/dx [Equ. (3.32)]
Ez(i, j,k) = Ez(i, j,k)+Cb(i, j,k)ψEz,x(i, j,k)
Jpz(i, j,k) = kp(i, j,k)Jpz_prev(i, j,k)+βp(i, j,k)[Ez(i, j,k)−Ez_prev(i, j,k)]/dt

/* Partial update along y axis */
ψEz,y(i, j,k) = bEy(i)ψEz,y(i, j,k)+cEy(i)[Hx(i, j−1,k)−Hx(i, j,k)]/dy [Equ. (3.32)]
Ez(i, j,k) = Ez(i, j,k)+Cb(i, j,k)ψEz,y(i, j,k)
Jpz(i, j,k) = kp(i, j,k)Jpz_prev(i, j,k)+βp(i, j,k)[Ez(i, j,k)−Ez_prev(i, j,k)]/dt

4: Add source excitation
Ez(isrc, jsrc,ksrc) = source(n)

5: Store calculated variables at current time step
Ez_prev(:, :, :) = Ez(:, :, :)
Jpz_prev(:, :, :) = Jpz(:, :, :)

counterparts obtained from Remcom’s XFDTD software package. The computational

efficiency of VECE is analysed in the last subsection.

3.6.1 Measurements and Evaluation

To completely evaluate the accuracy of VECE, the output results are verified by three

different metrics: convergence, relative reflection error, and dispersion.

3.6.1.1 Convergence

The propagation of an UWB pulse within 3-D FDTD lattice which hosts a Debye dispersive

medium is simulated. The host medium is selected as fatty-median tissue [102], with a

single-pole Debye parameters of ε∞ = 3.11, σs = 0.05, τ1 = 13.00 (ps), and εs1 = 4.71. The
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modulated Gaussian pulse (MGP) (see Fig. 3.2) is used as the excitation given by

G(t) = sin
[
ωc

(
t −b

)]
e−

(
t−b

c

)2

(3.39)

where ωc = 2π fc is the centre angular frequency with centre frequency fc = 6.85 GHz, the

centre position of the Gaussian envelope b = 375 (ps), and c = 80.2 (ps) is the standard

deviation which controls the width of Gaussian envelope. MGP is selected since it is

considered to present better spectral control in practical use [191]. The input pulse width

is 0.56 (ns), which has a full-width at half maximum (FWHM) bandwidth of 6.6 GHz.

To discretize FDTD problem space, a rule of thumb to select the grid size is to keep it

below one-tenth of the wavelength to make numerical dispersion error negligible [53].

Considering the broadband feature of input pulse, the permittivity of medium at fc of 6.85

GHz is used to represent the entire frequency range, obtaining the wavelength is 21 mm.

Thus, one-tenth of wavelength equals 2.1 mm. A smaller grid size of ∆x = ∆y = ∆z = 1 mm

is employed for obtaining more accurate results. The time step ∆t is determined by the

CFL stability condition ([53], Ch. 4, pp. 154, Equ. 4.98), which equals 1.91 (ps) in this

study.

(a) MGP waveform (b) Spectrum of MGP

Fig. 3.2 Modulated Gaussian pulse (MGP) used as source excitation in FDTD simulations.
(a) MGP waveform in time domain. (b) Spectrum of MGP.

The overall simulated FDTD space utilising a global coordinate system has a size

of 49 mm × 124 mm × 24 mm [see Fig. 3.3(a)]. A 3-D space filled with fat-median

medium [see Fig. 3.3(b)], which has a size of 29 mm × 104 mm × 4 mm, is simulated.

The property parameters of fat-median is based on the study performed in [102]. Ten-layer

CPML absorbing boundary conditions are placed around the volume of interest to attenuate
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(a) Overall FDTD simulation space (b) Main simulation area

Fig. 3.3 Three-dimensional FDTD simulation space. (a) Overall FDTD simulation space
comprising main area and CPML boundary regions. The six surfaces of the main area are
surrounded by corresponding 3-D boundary regions (top, bottom, front, back, left, and
right). (b) Enlargement of main area, which is with fat-median medium and exposed to
a z-polarised electric field. Ten-layer CPML absorbing walls are placed around the main
area along each direction. The coordinate of the left-bottom point is (x, y, z) = (10, 10, 10),
and coordinates of the source excitation and probing point are (x, y, z) = (26, 64, 13) and
(38, 12, 14), respectively.

outgoing radiation. A z-polarised voltage source excitation is placed at (x,y,z) = (26, 64,

13), whereas a probing point is placed at (x,y,z) = (38, 12, 14). The probing point is very

close to the lower right corner of the main area at (x,y,z) = (39, 10, 10) and the utility of this

arrangement is twofold. First, the propagated signal received at this position can be used

for observing its convergence and calculating the reflection error, thereby validating the

correctness of CPML boundary. Second, the output results can be used for validating the

propagation delay via the comparison with its theoretical counterparts. The time-stepping

runs over 1500 iterations, well past the steady-state response. The z-component of electric

field are recorded and plotted as the solid curve in Fig. 3.4, in which one can observe that

no late-time reflection from boundary occurred and excellent convergence was achieved.

Besides CPML boundary’s absorbing performance, the propagation delay of results

produced by VECE is validated by comparing with theoretical results. The distance D

is calculated based on the coordinates of source (26,64,13) and probing point (38,12,14),

which is 53.4 mm. The propagation speed is calculated under the assumption that the

medium has a constant relative permittivity at the centre frequency fc of input pulse. The

relative permittivity at fc is chosen since it represents the majority of medium’s permittivity

across the whole frequency range. Related single-pole Debye parameters of fat-median

medium can be found in [102], and the constant relative permittivity εr at fc of 6.85 GHz
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Fig. 3.4 Ez field at probing point offered by VECE, based on the model shown in Fig. 3.3.
The amplitude of z-component of electric field (Ez) received at probing point. Solid
and dash-dotted curves are the results at probing points in a small and larger reference
simulation space, respectively.

is 4.34, which can be calculated through equation (3.1). Therefore, the propagation time

pt equals 0.37 (ns) can be calculated as [192]

pt = D/v = D/(c0/
√

εr) (3.40)

where v is the propagation velocity in fat-median medium, and c0 is the speed of light. By

comparing the occurrence time of received pulse in Fig. 3.4 with the input pulse in Fig.

3.2(a), the time delay of the results offered by VECE is 0.38 (ns). Only a negligible relative

error of 2.7% is observed, which could be caused by dispersion during propagation, and

this indicates a very good agreement with the theoretical results.

3.6.1.2 Relative Reflection Error

To verify relative reflection error, the solution at a reference point Ere f |ni, j,k with location

(i, j,k) and at time step n is obtained using a larger simulation space equals 200 mm × 200

mm × 200 mm. In the larger reference space, an identical voltage and probing point which

has the same position relative to source as in the small grid (see Fig. 3.3) are employed.

The reference space is sufficiently large so that there are no reflections from its outer

boundaries during the time-stepping span. This allows a relative error to be defined as
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Fig. 3.5 Relative reflection error calculated according to (3.41) and measured in decibel,
based on the model shown in Fig. 3.3.

([53], Ch. 7, pp. 314)

Rel.error|ni, j,k = | E|ni, j,k −Ere f |ni, j,k | / | Ere f max|ni, j,k | (3.41)

where Ere f max|ni, j,k is the maximum amplitude of the reference field as observed during

the time-stepping span of interest. The output at reference point is plotted as dash-dotted

line in Fig. 3.4, an almost perfect overlap with the result at the probing point of the

small simulation space (solid line) is observed. Corresponding relative reflection error is

calculated through (3.41) and plotted in Fig. 3.5. A quantitative analysis showed that the

maximum relative reflection error is 0.002 (-53 dB). This is indeed an exceptionally low

relative error level in comparison to the result of UPML with 0.02 (-30 dB) (see [53], Ch.

7, pp. 319, Fig. 7.7), of which an improvement of accuracy up to one full digit is achieved.

This proves VECE’s accuracy, which is highly desirable in numerical simulations.

3.6.1.3 Dispersion

To validate the efficacy of VECE to characterise medium’s dispersion, two different types

of dispersive media (fat-median and fat-high), and input MGP with two centre frequencies

(6.85 and 3.0 GHz) are employed. For completeness, three different scenarios (S1 to S3)

are considered. In S1, the propagation of pulse with fc of 6.85 GHz in non-dispersive
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(a) In non-dispersive medium (b) In dispersive medium

(c) Input pulse with different fc (d) Envelope of pulses in (c)

Fig. 3.6 Results offered by VECE in different scenarios, signals are represented by Ez at
probing points. (a) Propagated pulses in non-disperisve medium (dotted) and in dispersive
fat-median medium (solid), both using the input pulse shown in Fig. 3.2 with fc = 6.85
GHz. (b) Solid and the dotted curves represent the propagated pulses in fat-median and
fat-high medium, respectively, both using the same input pulse as in (a). (c) Propagated
pulses in the same fat-median dispersive medium, using input pulses with fc of 6.85 GHz
and 3.0 GHz, respectively. (d) Envelope of signals shown in (c).

and disperisve media is compared. The dispersive medium is selected as fat-median

tissue [102], whereas the non-dispersive medium has relative permittivity εr = 4.33 and

conductivity σ0 = 0.50 S/m. As shown in Fig. 3.6(a), compared with the non-dispersive

case (dotted), obvious broadening effect is noted in the dispersive case (solid). In non-

dispersive medium, all frequency components propagate at a same speed. In dispersive

medium, however, each frequency component has its own phase velocity, the propagated

pulse which contains all overlapping frequency components is therefore has a broadened

pulse duration. Specifically, although the pulse has a fc of 6.85 GHz, the components

of higher or lower frequency than 6.85 GHz can propagate faster or slower, depending

on the medium property. The dispersive effect is critical for breast imaging and there

are two reasons. First, the dispersion can affect the amplitude of signals and thus reduce

the contrast between tumour and non-tumour responses. Second, dispersion can result in
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signal shape distortion. Both effects can make the detection of tumour more difficult, and

the importance of incorporating dispersion was also emphasised in [193].

In S2, the same pulse with fc of 6.85 GHz propagating in different media (fat-median

and fat-high) is considered. Observing Fig. 3.6(b), stronger attenuation and larger time

delay are observed when the pulse propagated in the denser fat-high tissue (dotted line). In

comparison, the received pulse in fat-median tissue indicated by the solid line appeared

earlier and had a much higher amplitude.

In S3, the same medium type with sources of different fc are considered. As shown

in Fig. 3.6(c), for the same dispersive fat-median medium, the behavior of signals with

different fc varies. After same iterations, the high-frequency pulse with fc of 6.85 GHz

attenuated more than the pulse with fc of 3.0 GHz. This is shown by the obvious amplitude

difference, which proves that the high-frequency components are more readily absorbed,

leading to a larger attenuation. On the other hand, the different propagation velocity of

these two pulses indicated by their envelopes could be observed in Fig. 3.6(d). It is noted

that the pulse with fc of 6.85 GHz (solid) appeared earlier than the pulse with fc of 3 GHz

(dotted). This is because the permittivity of fat-median tissue is a decreasing function of

frequency (see [50], Fig. 3), thus the same medium exhibits a larger permittivity for the

lower frequency components than that for the higher frequency components. According

to (3.40), the pulse with a smaller fc of 3.0 GHz has a larger propagation time delay and

appeared late [see Fig. 3.6(d)]. The different propagation velocities of various frequency

components expand the composite pulse envelope, and generate the broadening effect.

Correspondingly, the propagated pulses in frequency domain would have a smaller centre

frequency than that of the input pulse. Specifically, comparing the input pulse [see

Fig. 3.2(a)] with the propagated pulse [see Fig. 3.6(c), fc = 6.85 GHz], the FWHM of

signal envelope increased from 0.14 (ns) to 0.25 (ns), whereas the fc decreased from 6.85

to 4.0 GHz.

These scenarios illustrate the dispersive characteristics of single-layer biological tissues,

and the combination of two and more tissues are investigated in the following sections.
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3.6.2 Comparative Verification

In addition to analytical validation, the accuracy of VECE is further verified through

comparing with the results produced by XFDTD 7.0 [168]. XFDTD is selected because it

employs the same FDTD algorithm and is a widely acknowledged 3-D electromagnetic

simulation software [172, 183].

Based on model shown in Fig. 3.7(a) and settings of Fig. 3.3, the results offered by

VECE and XFDTD is compared. The only difference for these two engines is the different

selection of absorbing boundary. In VECE, a ten-layer CPML is employed, whereas

XFDTD utilised a ten-layer PML. PML is chosen in XFDTD since it does not offer CPML,

and PML is the one most similar to CPML. Observing the normalised results in Fig. 3.7(b),

it is noted that close agreement is achieved. The correlation coefficient between these two

propagated pulses is 0.96, which demonstrates the high accuracy of VECE. Noted that

the results of VECE outperform the one obtained from XFDTD by an improved boundary

absorbing capability. Obvious fluctuation due to the reflection from boundary is observed

in the XFDTD results within 1.0 (ns) to 1.5 (ns), whereas almost perfect absorbing is

offered by VECE. This proves the superiority of CPML over PML in terms of effective

absorption of propagating waves, which is similar to the observation made in [53]. The

slight amplitude difference between these two propagated pulses is due to the different

antenna modelling methods in VECE and XFDTD. In VECE, antenna is modelled as point

source, whereas antennas with physical dimensions are employed in XFDTD.

To demonstrate VECE’s accuracy in frequency domain, the reflection coefficient at

the interface of two media are computed, as it is generally done [172] [183] [194]. The

two media employed are fat-median and malignant breast tumour tissue as shown in Fig.

3.7(b). To model the frequency dependence of tumour tissue, Debye parameters of ε∞

= 7.00, σs = 0.15, τ1 = 7 (ps), and εs1 = 54.00 are used [102]. During computation, the

same spatial discretization of ∆x = ∆y = ∆z = 1 mm and ∆t = 1.91 (ps) for both tools was

chosen and the simulation was performed for 1500 time steps, achieving the steady-state

condition. Results are recorded at the cell location (x, y, z) = (250, 25, 25), which is at the

fat-tumour boundary. The incident field is subtracted from the total field for obtaining the
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(a) Main simulation area (b) Results by VECE and XFDTD

(c) Simulation space with two media (d) Reflection coefficient

Fig. 3.7 Comparison of results produced by VECE and XFDTD. (a) Main simulation area.
(b) Results by VECE and XFDTD based on model shown in (a) and settings of Fig. 3.3. (c)
Simulation space with the combination of two dispersive media: fat-median and tumour.
(d) Reflection coefficient frequency response calculated by VECE and XFDTD based on
model shown in (c).

reflected field due to the material discontinuity. The reflection coefficient versus frequency

is then calculated by normalising the Fourier transform of the reflected field divided by the

Fourier transform of the incident pulse. Fig. 3.7(c) presents the results of VECE along with

the comparison to the result obtained from XFDTD. It can be seen that a close agreement

is achieved, which is indicated by the correlation coefficient of 0.99 between those two

curves.

3.6.3 Computational Efficiency

Besides accuracy, the efficiency of VECE is achieved through three aspects, smaller number

of arithmetic operations, less occupation of memory storage, and synchronous iteration in

both main area and boundary regions.

Firstly, the reduced computational amount is achieved by ADE compared with its coun-

terparts. Compared with PLRC, which is another widely used technique in FDTD for inte-

grating the dipsersive property of materials, ADE requires relatively fewer floating-point
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operations since there is no complex-number arithmetic involved [185] [188]. Secondly,

the reduced storage of memory is achieved by both ADE and CPML techniques compared

with their counterparts. Studies showed that an equal or smaller number of unknowns need

to be stored in ADE than PLRC ( [53], Ch. 9, pp. 361). As for CPML, since it is highly

absorptive for both propagating and evanescent waves, CPML layers can be placed fairly

close to the main simulation area. Study proved that this advantage of CPML led to a

four-fold reduction in memory space occupation [189]. Therefore, the reduced number of

unknowns need to be stored in both ADE and CPML over their counterparts contribute the

memory saving and related reduction of processing time. Thirdly, the partial synchronous

iteration in both main area and in boundary regions realised in VECE reduces the execution

time. Comparing Equ. (3.15) and Equ. (3.25), which are the update for modelling Debye

medium in main area by ADE and in boundary regions by CPML, the first two terms for

these two equations are exactly the same, only with an additional coefficient kw at the

denominator of H update in (3.25). By pre-defining the denominator array for H update

in main area and boundary regions in a proper way, the update for these two overlapped

calculations can be accomplished in an uniform way throughout entire problem space,

which is shown in Step 1 and 2 of Pseudocode 3.1. Considering the huge quantities of

calculations involved, this is non-trivial and can save considerable computation resources.

3.7 Visualisation of Breast Model and Signal Propaga-

tion

In this section, the process of integrating and visualising 3-D realistic breast models

through VECE is firstly presented. Then flexible setups for simulating clinical imaging

scenarios are introduced. The propagation of UWB signal within breast tissues is also

studied.
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(a) Breast model by VECE (b) Breast tissue types

Fig. 3.8 Three-dimensional breast model and tissue compositions. (a) Breast model pro-
duced by VECE with raw data provided by UWCEM repository (breast ID = 071904). The
categorised tissue types are represented by different values: fat-high(3.1), fat-median(3.2),
fat-low(3.3), fibro-glandular (FG)-high(1.1), FG-median(1.2), FG-low(1.3), and skin(-2).
(b) Breast tissue types and assumed parameters for a single-pole Debye model [102].

3.7.1 Breast Model Construction

For effective simulation and evaluation of imaging algorithms, high-fidelity numerical

breast models are critical. In addition to dispersion, appropriate geometrical property, het-

erogeneity, and spatial distribution of different constituent tissues of breast are all expected

to be incorporated. As shown in Fig. 3.8, to capture the physiological heterogeneity of

breast, seven specific tissue categories are used, which are defined as: fat-high, fat-median,

fat-low, transitional, fibro-glandular (FG)-high, FG-median, and FG-low. The Debye

parameters for each tissue type inside the breast, along with those for skin and tumour, are

presented in Fig. 3.8(b). Further details regarding the development of these breast tissues

are available in [102].

The collection of breast phantoms offered by UWCEM database [169] is created in

a representative sense. It captures the structural heterogeneity and dispersive dielectric

properties of normal breast tissue, which ensures the phantom data is both anatomically

and dielectrically accurate. Combining the raw ASCII files provided by this database,

VECE can develop and visualise the 3-D breast models as shown in Fig. 3.8(a). After

loading model files, VECE calculates the size of problem space according to the imported

model. This size is determined by several factors. First it should be large enough to

accommodate the entire model. Also a proper space between the model and boundary area
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is needed for placing source excitations and probing points. The size, on the other hand,

should be tailored to avoid redundant space. This is because even only a small increase

of grid number along one dimension can cause huge extra computational cost, due to the

millions of voxels of 3-D models. For example, the breast model shown in Fig. 3.8(a)

is composed of 8,678,670 cubic voxels, which has a dimension of x× y× z = 195 (mm)

× 238 (mm) × 187 (mm). If the x dimension increases from 195 to 205, the total voxel

number would be 9,123,730, resulting in an extra 445,060 unknowns, which is a much

more heavier computational burden. The visualisation can not only be used to observe and

modify model, but also facilitates the positioning of excitation sources for simulations.

3.7.2 Breast Medium Types

(a) MT A (b) MT B (c) MT C

(d) MT D (e) MT E (f) MT F

Fig. 3.9 Breast medium type (MT) represented by relative permittivity at 6.85 GHz. A
tumour with 10 mm diameter is constructed as a sphere. The 2-D slices are taken at the x
cross-sections of Fig. 3.8(a). (a) to (f) represent the six breast medium types, and details
are described below.

To simulate various scenarios, VECE offers a flexible configuration of the imaging

system. Derived from UWCEM repository, six breast medium types (MT) with different

structures and radiographic density classifications are considered, which are shown in
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Fig. 3.9. Tumours might have irregular shapes, but they are constructed as spheres with

varied diameters in this study, which simulates different strengths of backscattered tumour

response. Further reading about tumour modelling can be found in [103]. The density of

breast is based on the definition of American College of Radiology (ACR) [195]. Details of

these phantoms, including ACR type, Breast ID in UWCEM repository, and characteristics

are listed as follows.

1. MT A: ACR-I-ID-071904, homogenous breast composed of fatty-median tissue only,

all other tissues are replaced by the fatty-median tissue.

2. MT B: ACR-I-ID-071904, heterogeneous breast composed of three types of fatty

tissues, all glandular tissues are replaced by the fatty-median tissue.

3. MT C: ACR-I-ID-071904, full heterogeneous breast composed of three types of

fatty, and three types of glandular tissues with a percentage less than 25%.

4. MT D: ACR-II-ID-010204, full heterogeneous breast contain glandular tissues with

a percentage ranging between 25% and 50%.

5. MT E: ACR-III-ID-070604PA2, full heterogeneous breast contain glandular tissues

with a percentage ranging between 50% and 75%.

6. MT F: ACR-IV-ID-012304, full heterogeneous breast contain glandular tissues with

a percentage over 75%.

3.7.3 Simulation Setup Variations

Studies showed that suitably-designed pulses may improve the imaging performance [196].

Therefore, varied pulses as shown in Fig. 3.10 are considered in VECE. Different input

pulses could be set include sinusoidal, differentiated Gaussian, and modulated Gaussian.

In this study, the modulated Gaussian pulse (MGP) is selected due to its better spectral

control in practical use [191]. For MGP, besides centre frequency, pulse shape, pulse width,

and pulse position are all able to be altered to suit specific simulation purpose.
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(a) Pulses with varied fc (b) Pulses with varied c

Fig. 3.10 Variations of input pulses for UWB breast tumour detection. (a) Pulses with
varied centre frequency fc. (b) Pulses with shapes controlled by standard deviation c used
in Equ. (3.39).

(a) Breast with cylindrical antenna array (b) Breast with hemispherical antenna array

Fig. 3.11 Alternative antenna arrays for UWB breast tumour detection. The small solid
dots around the breast model show antenna positions to create the array. (a) Breast model
and cylindrical antenna array. (b) Breast model and hemispherical antenna array.

In addition to breast model and input signal, another important aspect of UWB imag-

ing system is the antenna configuration. Three commonly used types are planar [197],

cylindrical [197], and hemispherical [42], the latter two are shown in Fig. 3.11. In a

cylindrical antenna array [see Fig. 3.11(a)], two concentric rings of antennas are placed

around the breast model, which are indicated by the solid dots. As for a hemispherical

type [see Fig. 3.11(b)], four antenna rings with varied radiuses compromise the array. In

the hemispherical array, in order to closely accommodate the breast, the further away the

antenna ring from the chest wall, the smaller its radius is. For each type of antenna array,
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depending on an applied scenario, the data collection can be realised through monostatic

or multistatic to achieve the compromise between performance and complexity.

3.7.4 Visualisation of Signal Propagation

To clearly illustrate the interaction between UWB pulses and breast tissue, Fig. 3.12

illustrates the propagation of an UWB pulse within a breast at different instants of time.

The 2-D cross-section with z = 85 mm, and a relatively sparse breast model with MT

B is selected for clear observation of radiation pattern. As shown in Fig. 3.12(a), the

patient is assumed lying in a prone position. The dielectric properties of tissue distribution

are obtained at 6.85 GHz. The excitation of MGP with fc = 6.85 GHz is employed.

Fig. 3.12(b) is the Ez field at time step of 120, in which the source is excited and initiates

the radiation process. Strong reflection was generated at the skin-fat interface due to

material discontinuity as shown in Fig. 3.12(c), in which a clear skin contour can be

observed. During propagation, another strong scatterer the pulse encountered was the

tumour. This is because tumour tissue has the largest permittivity among all comparably

sized heterogeneous tissues under microwave frequencies, which is the physiological basis

for microwave breast tumour detection. This is reflected in Fig. 3.12(d), an obvious

backscattering occurred around tumour position of (x, y) = (78, 95) (mm). It is worth

mentioning that in spite of attenuation during propagation, the backscattered signals
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(a) Breast model and antenna
(b) Time step = 120

(c) Time step = 580 (d) Time step = 800

(e) Time step = 1240 (f) Time step = 2500

Fig. 3.12 Radiation pattern visualisation between UWB pulse and breast model. (a)
Breast model with tumour represented by the circle at (x, y) = (78, 95) (mm) and antenna
(transceiver) represented by the square at (75, 60) (mm). 2-D cross-section of breast phan-
tom with MT B represented by relative permittivity at 6.85 GHz. (b)-(f) are the radiation
patterns at different time steps along the propagation of pulse, which are represented by
the electric field Ez in 10log10 logarithmic scale. (b) Time step = 120, pulse around source
excitation. (c) Time step = 580, pulse around skin-fat interface. (d) Time step = 800, pulse
around fat-tumour interface. (e) Time step = 1240, produce backscattered tumour response.
(f) Time step = 2500, approaching steady-state.

resulted from the tumour could still have relatively larger amplitude than that from other

tissues [see Fig. 3.12(e)]. Therefore, this backscattering could be collected and utilised for

the sensing, identification, and localisation of tumours. A steady-state approached in Fig.

3.12(f), which is indicated by the small order of magnitude.
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3.8 Simulation Results

To comprehensively simulate the interaction between UWB pulses and breasts with varied

medium compositions, eight scenarios are considered and cross-compared.

To display simulation results in a compact way, each row represents a scenario (see

Fig. 3.13). Within each row, the first column represents the selected input pulse. The second

column illustrates the breast model and the antenna position. The antenna is represented

by a square, which acts as both transmitter (excitation source) and receiver (probing point),

unless otherwise stated. In VECE, the grid which is next to the excitation source grid is

employed as the probing point to simulate such transceiver structure. The modelling of

antenna as a point source is used in this study, i.e., it makes no distinction between various

parts of the antenna such as feed region and the rest of the antenna structure. Depending

on the level of discretization required, to accurately model the actual geometry in the feed

region may be impractical, thus using a relatively simple model is often the case in FDTD

analysis of an antenna, which can save significant computational resources [198]. Based on

the input pulse and breast model, received pulses are plotted in the third column. Received

pulses from both tumour-bearing and tumour-free breast models are plotted in the third

column. The received pulse for the case without tumour employed the same breast model

as shown in the second column, except there is no tumour present.

The acquisition of backscattered signals can be implemented by monostatic or mul-

tistatic method. In the monostatic approach, each element in antenna array transmits

the pulse and receives backscattered signals from the breast model sequentially. In the

multistatic method, each element in the antenna array takes a turn to transmit and the

backscattered signals are recorded at all elements. The settings in the eight simulation

scenarios are summarised in Table 3.1.
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Table 3.1 Setting parameters in eight scenarios (S1 to S8). Input modulated Gaussian
pulse with varied centre frequency ( fc) and standard deviation (c), breast models with
different medium types (MT), different transmitter positions, and signal collection methods
(monostatic or multistatic) are considered and compared.

Input signal Breast Model Transmitter Position Signal Collection
fc (GHz) c (ps)

S1 6.85 80.2 MT B (x,y) = (80,60)(mm) Monostatic
S2 6.85 80.2 MT D (x,y) = (80,60)(mm) Monostatic
S3 3.00 80.2 MT D (x,y) = (80,60)(mm) Monostatic
S4 10.0 80.2 MT D (x,y) = (80,60)(mm) Monostatic
S5 6.85 50.0 MT D (x,y) = (80,60)(mm) Monostatic
S6 6.85 120 MT D (x,y) = (80,60)(mm) Monostatic
S7 6.85 80.2 MT D (x,y) = (50,125)(mm) Monostatic
S8 6.85 120 MT D (x,y) = (80,155)(mm) Multistatic

3.8.1 Varied Breast Models

S1: (a) Input signal (b) Breast model with MT B (c) Received signals

S2: (d) Input signal (e) Breast model with MT D (f) Received signals

Fig. 3.13 Simulation results in S1 and S2 (setting details are introduced in Table 3.1), the
breast models with MT B and D are used, respectively.

In S1 and S2, the input pulse described in Equ. (3.39) with fc = 6.85 GHz and c = 80.2 ps

is used [see Fig. 3.13(a) and (d)]. In S1, a breast model with MT B is used, whereas S2

selected a breast model with MT D. Observing Fig. 3.13(c), it is noticed that when there is

tumour in breast [see Fig. 3.13(b)], the backscattered signal (solid) has an obvious peak

around 1.2 (ns), compared with the no tumour case. This is due to the distinct dielectric
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contrast between tumour and fatty tissues, a much higher dielectric property of cancerous

tissue results in a stronger reflection, which is indicated by the higher signal amplitude.

In UWB breast imaging, the tumour response contained in received signals is the key

data. Combining certain algorithms, this data could offer particularly useful information

such as the existence, location, and size of tumours. Therefore, the effective tumour

response (ETR) contained in raw received signals can be viewed as a crucial indicator.

ETR is defined as the ratio between the maximum power of backscattered signals from

tumour-bearing and tumour-free breasts within a time interval of interest [193], which can

be calculated as

ET R = 10 · lg(Pmax_with_tumour/Pmax_tumour_ f ree) (3.42)

where Pmax_with_tumour is the maximum power of backscattered signal from a tumour-

bearing breast model, whereas Pmax_tumour_ f ree is the maximum power of backscattered

signal from a tumour-free breast model. Higher ETR indicates higher quality of signal,

which also indicates a higher chance of distinguishing tumour response from clutter signals.

For S1, observing the received signals in Fig. 3.13(c), assuming the ideal tumour

response is within 0.8 (ns) and 1.6 (ns), the maximum absolute amplitudes for signal

received from breast model with tumour and without tumour are 2.3e-5 and 8.1e-6 (V/m),

respectively. Thus the Pmax_with_tumour and Pmax_tumour_ f ree is 5.3e-10 and 6.6e-11 (W ),

respectively, and the ETR is obtained as 20.8 dB according to (3.42), which is a very large

value. In S2, however, this value significantly reduced to 1.2 dB. This indicates that for

denser breasts, the received tumour response is much more weaker than that from sparse

breasts, due to the increased heterogeneity. Unlike MT B, the breast model with MT D

used in S2 contains a higher portion of fibro-glandular tissues that can also generate strong

reflections. This poses a serious challenge for the extraction of tumour response, due to the

much smaller dielectric contrast between glandular and cancerous tissues, in comparison

to the difference between fatty and cancerous tissues.
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3.8.2 Signals with Varied Centre Frequencies

S2: (a) Input signal (b) Breast model with MT D (c) Received signals

S3: (d) Input signal (e) Breast model with MT D (f) Received signals

S4: (g) Input signal (h) Breast model with MT D (i) Receives signals

Fig. 3.14 Simulation results in S2, S3, and S4 (setting details are introduced in Table 3.1),
the input signal with fc of 6.85, 3.0, and 10.0 GHz are used, respectively.

To investigate the effect on tumour response from different signal frequencies, in S3 and

S4, the pulses with different centre frequencies fc than S2 are used. Considering UWB’s

frequency range regulated by Federal Communications Commission (FCC) is from 3.1

GHz to 10.6 GHz [19], in S3 and S4, fc with 3.0 GHz and fc with 10.0 GHz are employed,

respectively. Observing the output of S3 [see Fig. 3.14(f)] and S4 [see Fig. 3.14(i)], signal

shapes are different from that of S2. On the other hand, the ETR of S3 and 4 are 0.13 dB

and 0.95 dB, respectively. It is noted that a lower frequency in S3 results in a smaller ETR

of 0.13 dB, whereas in S2 and S4 with higher frequency, this value increased to 1.2 dB

and 0.95 dB, respectively. This implies that a sufficiently high frequency is necessary to

differentiate tumour and non-tumour responses.
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3.8.3 Signals with Varied Pulse Widths

S2: (a) Input signal (b) Breast model with MT D (c) Received signals

S5: (d) Input signal (e) Breast model with MT D (f) Received signals

S6: (g) Input signal (h) Breast model with MT D (i) Received signals

Fig. 3.15 Simulation results in S2, S5, and S6 (setting details are introduced in Table 3.1).
In S2, S5, and S6, the input signal with c of 80.2, 50, and 120 ps are used, respectively.

In S5 and S6, input pulses with different pulse widths controlled by the standard deviation

c [see Equ. (3.39)] are considered. To preserve tumour response and reduce clutter signals,

a time window which is comparable to input pulse width is employed in many tumour

detection techniques [50], thus the effect on tumour response resulted from pulse width

should be taken into account. Comparing Fig. 3.15(f) and (i) with Fig. 3.15(c), noted that

the backscattered signals vary. The ETR of S2 is 1.2 dB, and this value decreased to 0.6 and

0.01 dB in S5 and S6, respectively. The pulse with a larger width (S6) obviously caused a

serious decrease of effective tumour response, which is mainly due to the overlapping of

backscattered signals from closely spaced heterogeneous tissues.
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3.8.4 Signal Acquisition with Monostatic Method

S2: (a) Input signal (b) Breast model with MT D (c) Received signals

S7: (d) Input signal (e) Breast model with MT D (f) Received signals

Fig. 3.16 Simulation results in S2 and S7 (setting details are introduced in Table 3.1),
transceiver (acts as both transmitter and receiver) at (x,y) = (80,60) and (125,50) are used,
respectively.

The only difference in S7 [see Fig. 3.16(d)-(f)] compared with S2 is the antenna position.

Due to the unknown distribution of heterogeneous tissues within breast, the useful tumour

response received at different antennas varies. In S2, ETR is 1.2 dB, and this value

reduced to 0.78 dB in S7. In spite of the same input pulse and selected breast model,

it is noticed that the tumour response intensity can still be different, depending on the

antenna-tumour distance and the medium composition of propagation channels. This

reminds us that combining the collected signals from different propagation paths can be

helpful to effectively extract tumour response, which also explains the necessity of using

antenna array instead of one single antenna.
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(a) Tumour response received at antenna 1 (b) Tumour response received at antenna 2

(c) Tumour response received at antenna 3 (d) Tumour response received at antenna 4

(e) Tumour response received at antenna 5 (f) Tumour response received at antenna 6

(g) Tumour response received at antenna 7 (h) Tumour response received at antenna 8

Fig. 3.17 Ideal tumour response received at different antennas. The antenna array shown
in Fig. 3.11(a) is used, and monostatic data acquisition is employed. The antennas in
Fig. 3.11(a) are numbered as follows: the outer ring of antennas is at x = 80 mm (antennas
1 to 24), and the inner ring (antennas 25 to 48) is at x = 130 mm, in which the position of
both rings are related to the chest wall. The same yz plane coordinates for both rings of
antennas are: (39, 101), (50, 120), (63, 140), (82, 153), (100, 158), (116, 159), (131, 158),
(147, 154), (162, 145), (174, 132), (185, 116), (192, 97), (189, 74), (178, 56), (166, 47),
(152, 39), (135, 34), (119, 32), (103, 31), (84, 38), (71, 44), (59, 55), (43, 69), and (37, 83).
The ideal tumour response received at antennas 1 to 8 are displayed in (a)-(h).
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However, all the scenarios above-presented are from only one antenna, and this can be

easily repeated for each element in an antenna array such as the one shown in Fig. 3.11(a),

then array signals can be obtained as displayed in Fig. 3.17. It is noted that useful tumour

response from different propagation paths vary considerably. Specifically, the arising time

of tumour response from different antennas is different, indicating a distinct propagation

time delay which is determined by the distance between tumour and each antenna. In

addition, the amplitude of tumour response differs, and this can be affected by varied

distances, and propagation channels with different compositions.

3.8.5 Signal Acquisition with Multistatic Method

(a) Input signal at T1 (b) Breast model and antennas (c) Tumour response at R1

(d) Tumour response at R2 (e) Tumour response at R3 (f) Tumour response at R4

Fig. 3.18 Simulation setting and results of S8, signals are collected via multistatic method.
Transmitter 1 (T1) and receiver 1 (R1) are both at (x,y) = (80,155) (mm), whereas receivers
2 to 4 (R2 to R4) are at (x,y) = (125,165), (65,140), and (50,70) (mm), respectively. Ideal
tumour response received at R1 to R4 are shown in (c) to (f).

In S8, multistatic signal acquisition is used. In this method, each element in the antenna

array takes a turn to transmit and the backscattered signals are recorded simultaneously

at all antennas. Compared with monostatic method, multistatic can cause extra hardware

cost and algorithm complexity, but it is able to gather multiple signals that propagate

via different routes, accruing more information about the tumour. Since the propagation

path between each transmitter and receiver pair varies in multistatic, to fairly evaluate
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the received tumour response of each propagation channel, the ideal artefact removal

method [50] is used.

As shown in Fig. 3.18(b), antenna 1 acted as both transmitter and receiver, whereas

antennas 2 to 4 were used as receivers only. Specifically, transmitter 1 (T1) is the only

excitation, and receivers 1 to 4 (R1 to R4) received backscattered signals at the same time.

Observing and comparing the peak of the ideal tumour responses received at different

receivers [see Figs. 3.18(c)-(f)], noted that the strongest backscattering from tumour is

achieved at R1, which has a peak amplitude of 1.3e-4. When receivers are far away from

transmitter, the received tumour reflection can be an order of magnitude smaller, which are

the cases for R2 and R4 with the order of magnitude of 1e-5. Depending on propagation

channel, the strength of these reflections varies. R2 and R4 have a similar distance from

T1, due to the sparse medium between tumour and R4, slightly higher amplitude of signals

with 4e-5 is obtained, in comparison to that of 2.5e-5 at R2. It is noted that the tumour

response received at R3 is almost as strong as that at R1. This is because R3 is closer

to T1, plus less attenuation is expected for the propagation path from tumour to R3 than

to R1, because of the different tissue compositions and distributions of each path. The

result of R3 explains the potential advantage of multistatic method over its monostatic

counterpart. This implies that extra useful tumour information could be collected via

multistatic, thereby improving the performance of tumour detection algorithms.

Based on the eight different scenarios, it is clear that collected tumour response can vary

significantly, depending on input pulse, breast type, antenna position and signal acquisition

method. However, these collected signals can hardly be used for tumour detection directly.

But with the aid of certain imaging algorithms such as the one introduced in [42], tumour

response can be effectively combined and extracted, thereby reconstructing a much more

meaningful image indicating the existence and location of tumours. The ultimate tumour

detection may largely depends on applied imaging algorithms and related configurations,

and this will be investigated in succeeding chapters.
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3.9 Further Applications

Considering the flexibility of VECE, besides breast cancer detection, VECE is potentially

able to provide useful data for a wider diversity of bioelectromagnetic applications. For

example, similar setting as used in Fig. 3.12 could be employed for dose absorbing calcu-

lation, which is particularly useful for establishing dose-response curves for nanosecond

electromagnetic pulses [199], thereby determining the dosimetry for clinical efficacy and

safety. Furthermore, through monitoring the small adjustment in dielectric properties

caused by minor alterations of perfusion and internal pressure, the onset of ischemia of

tissues could be detected [200]. Moreover, similar measurements could facilitate the devel-

opment of biocompatible contrast agents that enhance the performance of diagnostic and

therapeutic microwave breast imaging [201], and the development of microwave thermal

therapies for brain tumours [202].

3.10 Conclusion

This chapter presented a new computational engine VECE, which enables the 3-D propa-

gation modelling and simulation of UWB signals for breast cancer detection.

The novel implementation combining ADE and CPML, which is adopted for describing

the dispersive medium and truncating the computational domain, respectively, is concur-

rently achieved in VECE. The ADE approach is adopted for integrating medium dispersion

into FDTD, which has the great advantage in reducing computational complexity and

memory storage requirement. The CPML, as a very robust absorbing boundary condition,

significantly reduces the late-time reflections and offers improved efficiency and highly

desirable flexibility for terminating the host medium. The efficacy and accuracy of VECE

are validated in both time and frequency domain across a variety of assessment criteria.

The results generated by VECE are in great agreement with the simulations results offered

by commercial software.

The versatility of VECE is demonstrated through the modelling of UWB signal and

its interaction with realistic breast phantoms, which simulated various breast imaging
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scenarios for tumour detection. It is demonstrated that the tumour response is much

more pronounced from relatively sparse breasts than that from heterogeneously dense

breasts. The frequency of input signals will not cause significant effect on the strength of

effective tumour response. Simulation results showed the clear practicability of VECE for

facilitating the development of detecting techniques for breast cancer, and great potential

for other bio-sensing and imaging applications.

It is revealed that received signals at distributed antennas contained vastly different

tumour responses, due to the unknown heterogeneity within the breast, which indicated

the importance of combining of signals from different propagation paths. Based on the

collected tumour response and combined with certain algorithms, an image which shows

the existence and location of tumour can be obtained. These images can not only be used

for identifying tumour at its very early stage, monitoring it in subsequent growth stage, but

also facilitate developing therapeutic techniques, which are of critical value, and related

algorithms for forming such images is studied in subsequent chapters.



Chapter 4

A Robust and Artefact Resistant (RAR)

Algorithm of UWB Imaging System for

Breast Cancer Detection

4.1 Introduction

In this chapter, a novel robust and artefact resistant (RAR) imaging algorithm for early

breast cancer detection is proposed. The chapter is organised as follows: in Section 4.2,

the literature regarding UWB imaging algorithms for breast cancer detection are reviewed.

In Section 4.3, configuration of the imaging system is introduced. Section 4.4 presents

the proposed RAR algorithm for image reconstruction. The implementation of RAR is

introduced in Section 4.5. Assessment criteria and simulation results of imaging algorithms

under different scenarios are presented in Section 4.6. The robustness and complexity

analysis of algorithm are provided in Section 4.7 and 4.8, respectively. Finally, Section 4.9

concludes this chapter.

4.2 Literature Review on UWB Breast Imaging Algorithms

In the last few decades, different modalities of microwave imaging for breast cancer

detection, including passive, hybrid, and active approaches, have attracted considerable
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attention. The passive microwave imaging techniques seek to identify tumours based on

the temperature differences between normal and cancerous breast tissues with the aid of

radiometers [82, 83]. Hybrid approaches differentiate biological tissues by the distinctive

acoustic waves radiated from thermoelastic expansion when tissues are under microwave

illumination [84]. The active detection methods distinguish normal and malignant breast

tissues based on the contrast of dielectric properties at microwave frequencies [85]. Based

on the reconstruction technique used, active detection methods can be categorised into

microwave tomography and UWB radar-based imaging. In microwave tomography, the

spatial distributions of dielectric constant and/or conductivity within the breast are itera-

tively calculated; thus, nonlinear inverse scattering problems are involved. More details on

tomographic imaging can be found in [129, 203]. UWB radar-based methods, on the other

hand, aim to detect and localise strong scatterers such as tumours, instead of quantitatively

computing the distribution of dielectric properties.

UWB imaging systems face several challenges for breast cancer detection, two of them

is the antenna design, and the construction of realistic breast models. Another difficult

challenge is image formation algorithm. The image formation algorithms are expected

to provide superior identification ability, accurate positioning, strong robustness, and fast

computation speed.

A variety of image formation algorithms have been proposed over the last decade. Hag-

ness et al. [39, 45] first proposed the confocal microwave imaging (CMI) technique which

adopted delay-and-sum (DAS) beamforming algorithm. Research on beamforming algo-

rithms for CMI has evolved into two branches: data-dependent and data-independent. Some

promising data-dependent beamforming algorithms that have been considered are multi-

static adaptive microwave imaging (MAMI) [46], multi-input multi-output (MIMO) [47],

and time-reversal multiple signal classification (TR-MUSIC) [48, 49]. Data-dependent

algorithms can reconstruct high-resolution images when the array steering vector corre-

sponding to the signal of interest (SOI) is accurately known, which is difficult in realistic

imaging scenarios. In contrast, data-independent beamformers are free from this prior infor-

mation and have been continuously developed. A number of data-independent algorithms
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are proposed in recent years, including delay-multiply-and-sum (DMAS) [50], modified-

weighted-delay-and-sum (MWDAS) [51], and filtered delay-and-sum (FDAS) [52]. Com-

pared with the classical DAS algorithm, improved performance of clutter rejection is

offered by DMAS and MWDAS. FDAS shows its capability of detecting multiple scat-

terers in dense breasts, where the presence of fibro-glandular tissue is considered. It is

recognised that the increased heterogeneity of normal breasts introduced by glandular

tissues constitutes a big challenge for tumour detection. There are two reasons for this:

first, although there is a large dielectric contrast between adipose and cancerous tissues,

the difference between glandular and cancerous tissues is much less pronounced. Also the

glandular tissue introduces a significant amount of attenuation and dispersion in backscat-

tered signals, making it more difficult to detect any small tumours present. Despite the

strengths of these algorithms, all of them are only examined in scenarios assuming an

ideal artefact removal method is applied. However, this assumption is oversimplified and

infeasible in a real set-up. Because the artefact is typically several orders of magnitude

greater than the reflections from tumours within the breast, even a very small amount of

residual artefact can easily mask the desired tumour response, which may result in the

failure of existing algorithms to identify any tumours present.

In this study, focus is placed on data-independent algorithms due to its indepen-

dence of priori knowledge, strong robustness, and computational efficiency. Existing

data-independent UWB breast imaging algorithms are firstly examined and evaluated.

Simulation results showed that although these methods show satisfactory tumour detection

capabilities with an idealised artefact removal method, their performance suffer significant

deterioration or completely fail when the early-stage artefact, including incident signals

and skin-fat interface reflections, cannot be perfectly removed.

Accordingly, a new robust and artefact resistant (RAR) image formation algorithm is

proposed. Extensive simulations and analyses using backscattered signals received from 3-

D anatomically realistic MRI-derived numerical breast models were conducted to validate

the performance of the proposed algorithm. Results showed that RAR offered superior

tumour identification, accurate localisation, and strong artefact resistance over existing
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data-independent algorithms. The robustness of RAR was demonstrated under various

scenarios: homogenous and heterogeneous breast structures, varied density classifications,

tumour sizes and positions, and in cases considering both ideal and practical artefact

removal methods.

4.3 Backscattered Signal Acquisition

4.3.1 Breast Model

Realistic models are expected to incorporate various attributes of the breast, including

geometrical properties, spatial distribution of different constituent tissues, and the disper-

sive property. Based on the proposed computational engine VECE introduced in Chapter

3, 3-D anatomically accurate FDTD-based breast models are developed and employed,

and the raw data is obtained from UWCEM MRI breast phantoms repository [169]. In

addition to skin layer and malignant tumour, the breast model is composed of three types

of fatty tissues and three types of fibro-glandular tissues. The dielectric properties of skin,

adipose, and fibro-glandular tissue used in the model are based on studies in [102, 150],

whereas those representing malignant tumours are obtained from Bond et al. [40, 152]. The

dispersive nature of tissues is incorporated into the FDTD model using the time-domain

auxiliary differential equation (ADE) ( [53], Ch. 9, pp. 311) for a single-pole Debye model.

In the single-pole Debye model, the dielectric spectrum of a tissue sample is characterised

by different dispersive regions or ‘poles’ at a range of frequencies. In each dispersive

region there is a relaxation time, which describes the time needed for electron polarisation

to relax towards a new equilibrium when there is an applied electric field. The relaxation

time is regarded as a constant in the simplest form. The dispersion in frequency domain

through Debye model can be described as [188]:

εr(ω) = ε∞ +
εs1 − ε∞

1+ jωτ1
− j

σs

ωε0
(4.1)
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where εr(ω) is calculated relative permittivity at a certain angular frequency ω (in radians

per second), ω = 2π f , f (in Hz) is the frequency of input UWB pulse, ε∞ is the permittivity

at infinite frequency, σs is static conductivity (in siemens per second), ε0 is free-space

permittivity (8.854 pF/m), εs1 is the permittivity at static frequency of the dispersive

pole, j =
√
−1, and τ1 is the relaxation time of the dispersive pole (in picoseconds). Debye

parameters for each tissue type [102] are summarised in Table 4.1.

Table 4.1 Tissue parameters (3-10 GHz) assumed for a single-pole Debye model [102].

ε∞ εs1 τ1(ps) σs(S/m)

Fat-High 3.9870 7.5318 13.0000 0.0803
Fat-Median 3.1161 4.7077 13.0000 0.0496
Fat-Low 2.8480 3.9521 13.0000 0.2514
Fibro-glandular High 14.2770 54.7922 13.0000 0.6381
Fibro-glandular Median 13.8053 49.3510 13.0000 0.7384
Fibro-glandular Low 12.8485 37.4915 13.0000 0.2514
Skin 15.9300 39.7600 13.0000 0.8310
Malignant Tumour 20.2800 45.0500 13.0000 1.3000

Fig. 4.1 illustrates the 3-D breast phantom and antenna configuration used in simulation.

To focus on breast tissue response and avoid possible interference, the chest wall is not

included as assumed in [49] and [52]. Two concentric rings of antennas are positioned

around the skin layer, which has a thickness of 1.5 mm, with a 10 mm spacing to the

skin surface. Each antenna is modelled as a point source with horizontal polarisations

(x-directed). The outer ring of antennas is at x = 80 mm (antennas 1 to 24), and the inner

ring (antennas 25 to 48) is at x = 130 mm, in which the position of both rings are related to

the chest wall. The same yz plane coordinates for both rings of antennas are: (39, 101),

(50, 120), (63, 140), (82, 153), (100, 158), (116, 159), (131, 158), (147, 154), (162, 145),

(174, 132), (185, 116), (192, 97), (189, 74), (178, 56), (166, 47), (152, 39), (135, 34), (119,

32), (103, 31), (84, 38), (71, 44), (59, 55), (43, 69), and (37, 83).
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Fig. 4.1 Three-dimensional FDTD breast model with two concentric rings of 24 antennas
(indicated by solid dots) surrounding the breast. The categorised tissue types are repre-
sented by different values: fat-high(3.1), fat-median(3.2), fat-low(3.3), fibro-glandular
(FG)-high(1.1), FG-median(1.2), FG-low(1.3), and skin(-2).

(a) MT A (b) MT B (c) MT C

(d) MT D (e) MT E (f) MT F

Fig. 4.2 Breast medium type (MT) represented by relative permittivity at 6.85 GHz [169].
A tumour with 10 mm diameter is constructed as a sphere. The 2-D slices are taken at
the x = 95 cross-sections of Fig. 4.1. (a) to (f) represent the six breast medium types, and
details are described below.

For completeness, six breast medium types (MT) with various structures and radio-

graphic density classifications are used to evaluate the proposed algorithm. Medium types
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are selected from UWCEM database [169] and are shown in Fig. 4.2. The density follows

the definition of the American College of Radiology (ACR) [195] and details of each MT is

described as follows (ACR type, Breast ID in UWCEM repository, characteristics): 1) MT

A: ACR-I-ID-071904, homogeneous breasts composed of fatty-median tissue only, all other

tissues are replaced by fatty-median tissues; 2) MT B: ACR-I-ID-071904, heterogeneous

breasts composed of three types of fatty tissues, all fibro-glandular tissues are replaced by

fatty-median tissues; 3) MT C: ACR-I-ID-071904, full heterogeneous breasts composed of

three types of fatty, and three types of fibro-glandular tissues with a percentage less than

25%; 4) MT D: ACR-II-ID-010204, full heterogeneous breasts contain glandular tissues

with a percentage ranging between 25% and 50%; 5) MT E: ACR-III-ID-070604PA2,

full heterogeneous breasts contain glandular tissues with a percentage ranging between

50% and 75%; 6) MT F: ACR-IV-ID-012304, full heterogeneous breasts contain glandular

tissues with a percentage over 75%.

Although tumours have irregular shapes, for this study they are constructed as spheres

with varied radiuses, which can simulate different strengths of backscattered tumour

response. Without losing generality, the tumour is placed at three different positions: 1)

close to the centre of the outer ring; 2) at the centre between the two antenna rings; and 3)

off-centre between the two antenna rings. Position 1 at (x,y,z) = (80, 119, 94) represents

tumour locations on different x cross-sections and are close to one of the antenna rings.

Position 2 at (x,y,z) = (95, 119, 94) is representative for those which are between two

antenna rings and centre at the yz plane with different x cross-sections, whereas those

off-centre at the yz plane with different x cross-sections and close to the skin surface are

represented by Position 3 at (x,y,z) = (95, 99, 112). In addition, since a high proportion of

breast cancers are invasive ductal carcinomas, which start at fibro-glandular regions [106],

tumours which are located within fatty and glandular tissues are both considered. To

mitigate the strong reflections from the skin-fat interface, the model and antenna array are

considered to be positioned inside an immersive liquid with the same permittivity as that of

fat-median tissue at the centre frequency of the input pulse, as it is generally done [50, 51].
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(a) MGP waveform (b) Spectrum of MGP

Fig. 4.3 Modulated Gaussian pulse (MGP) used as source excitation in FDTD simulations.
(a) MGP waveform in time domain. (b) Spectrum of MGP.

4.3.2 Simulated Model Setup

The antenna is excited with a modulated Gaussian pulse (MGP) (see Fig. 4.3), which is

given by

G(t) = sin
[
ωc

(
t −b

)]
e−

(
t−b

c

)2

(4.2)

where ωc = 2π fc is the centre angular frequency with centre frequency fc = 6.85 GHz, the

centre position of Gaussian envelope b = 0.375 (ns), and c = 0.0802 (ns) is the standard

deviation which controls the width of Gaussian envelope. MGP is selected since it is

considered to present better spectral control in practical use [191]. The input pulse width

is 0.56 (ns), which has a full-width at half maximum (FWHM) bandwidth of 6.6 GHz.

The acquisition of backscattered signals can be implemented by monostatic or multistatic

method. In the monostatic approach, each antenna is used to transmit the pulse and receive

the backscattered signal from the breast model sequentially. In the multistatic method, each

antenna takes a turn to transmit and the backscattered signals are recorded at all antennas.

Despite the advantage of multistatic approach in terms of capturing more information

about the target, its disadvantages are obvious, such as additional hardware cost and high

algorithm complexity. Monostatic method is employed for signal acquisition in this study.

To discretize FDTD problem space, a rule of thumb to select grid size is to keep it

below one-tenth of wavelength, with the purpose of making numerical dispersion error

negligible [204]. Assuming the breast is mainly composed of fatty-median tissue, and

using the centre frequency of input pulse as a baseline, obtaining the wavelength is 21
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mm, thus one-tenth of wavelength is 2.1 mm. A smaller grid size of ∆x = ∆y = ∆z = 1 mm

is employed for capturing the response from small sized tumours and adapting possible

smaller wavelengths in dense breasts. The time step represented by ∆t is determined by

the Courant-Friedrichs-Lewy (CFL) stability condition ([53], Ch. 4, pp. 154, Equ. 4.98),

which equals 1.91 (ps). Ten-layer convolutional perfectly matched layer (CPML) [128]

absorbing boundary conditions are placed around the computational domain to attenuate

outgoing radiation.

4.4 Breast Cancer Detection with RAR

4.4.1 Pre-processing for Artefact Removal

Recorded backscattered signals consist of two parts: the early-stage and the late-stage.

The majority of early-stage parts consist of incident signals and strong reflections from

skin-fat interface, whereas the late-stage parts include tumour response, fibro-glandular

tissue response, fatty tissue response, and the multi-reflections between these tissues.

Tumour, fibro-glandular, and fatty responses refer to the signals directly reflected from

these tissues. For identification purpose, only tumour response is needed, thus all other

signals are regarded as interferences, which can be categorised as the early-stage artefact

and the late-stage clutter. The late-stage clutter mainly includes fibro-glandular and fatty

tissues responses, which are mixed with tumour response and should be suppressed for

tumour detection. The early-stage artefact, which includes incident signals and skin-fat

reflections, can be several orders of magnitude greater than the desired tumour response,

and there are two reasons. Firstly, the skin layer is the first strong scatterer that the EM

wave encounters when it still has large magnitude, thus the backscattering is stronger than

later-time response. Secondly, skin has larger permittivity than fatty tissue and comparable

permittivity as tumour tissue (see Table 4.1). Thus even with the same incident EM wave,

the backscattering from the skin layer can be very strong. Therefore, these artefact signals

must be removed before applying any image reconstruction algorithms.



85

Ideal removal of the early-stage artefact is realised with the aid of a priori information

generated from a tumour-free breast model. The ideal tumour response from the ith

transceiver in a discrete form denoted as Si(n) can be obtained by

Si(n) = Si_with_tumour(n)−Si_tumour_ f ree(n) (4.3)

where n = 1,2, ...,K, and K is the number of signal sampling points, Si_with_tumour(n) is the

backscattered signal received at the ith transceiver from the breast model with tumour, and

Si_tumour_ f ree(n) represents the backscattered signal received at the same transceiver from

a breast model which is exactly the same as the previous one except that there is no tumour

present. Si_with_tumour(n) is composed of early-stage artefact, tumour response, glandular

tissue response, fatty tissue response, and the multi-reflections between heterogeneous

tissues, whereas Si_tumour_ f ree(n) comprises similar level of early-stage artefact, glandular

tissue response, fatty tissues response, and multi-reflections between these tissues, thus

Si(n) is the signal dominated by tumour response. This method not only removes the

early-stage artefact, but also the glandular tissue response, fatty tissue response, and the

multi-reflections between tissues. This is not feasible in practice; however, it could serve

as a useful benchmark of the best performance of algorithm possible and clearly illustrate

the effect of heterogeneity on imaging results.

A number of more practical artefact removal algorithms have been developed, these can

be classified as adaptive and non-adaptive techniques. Adaptive methods include Wiener

filter [40], recursive least squares (RLS) filter [153], and singular value decomposition

(SVD) [2], whereas some other promising techniques that have been considered are average

subtraction [45], rotation subtraction [145], frequency domain pole splitting [154], and

entropy-based time window [155]. Robustness to local variations of skin thickness and

differences in the antenna-skin distance is observed in adaptive filtering methods; however,

varied levels of distortion to tumour response is introduced. Considering both the capability

of preserving tumour response and the effectiveness of removing artefact, the best results

are offered by Wiener filter and entropy-based time window methods [151].
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The performance of image reconstruction algorithms closely depends on the outcome

of artefact removal. When the artefact cannot be effectively removed, the residual artefact

could easily mask the useful tumour response. For completeness and fairness, it is thus

essential to evaluate imaging algorithm in cases with both ideal and practical artefact

removal, under the same conditions.

4.4.2 Algorithm Rationale

The block diagram depicted in Fig. 4.4 shows the RAR algorithm to reconstruct the

intensity value of each pixel in the breast model. Let l represent the lth location of a pixel

within the imaging region of a constructed image L. For each location, RAR explores

and exploits the cross-correlation of time-shifted signals. To time-shift each signal, an

estimated average velocity for all propagation channels, between transmitter to scatterer

and back to receiver, is assumed to be sufficiently close to the actual speed and could well

represent the characteristics of propagation channels. Considering the larger dielectric

property of tumour than other comparably sized tissues, tumour response is the dominant

part of received signals within a certain time widow, in most if not all cases. Thus, after

being time-shifted, signals received at neighbouring antenna pairs should have a higher

correlation between tumour responses resulted from the same strong scatterer, compared

with those signals from other heterogeneous breast tissues. The enhancement of tumour

detection is achieved by rewarding this correlation. To calculate the intensity value of l,

three steps are involved.

Step 1: Each pre-processed Si(n) is time-shifted based on the corresponding round-

trip time delay at a location l. The time-shifted signals are expressed as Si(n + τil),

where n = 1,2, . . . ,K, and τil is the round-trip travel time from the ith transceiver to a

specific location l within the imaging region. Propagation distance is calculated based on

relevant space coordinates in the constructed model. The propagation speed of signal is

calculated under the assumption that each traversed medium, including immersive liquid,

skin layer, and underlying breast tissue, has a constant relative permittivity at the centre

frequency of the input pulse. The relative permittivity at centre frequency is chosen since
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Fig. 4.4 Block diagram illustrating the RAR algorithm used to calculate the intensity of
the lth pixel Il in imaging region indicated by the mesh area.

it represents the majority of tissues’ permittivity across the frequency range of input pulse.

The average dielectric property of underlying breast tissue is assumed to be established

through an appropriate patient-specific dielectric property estimation algorithm such as the

one developed by Winters et al. [205].

Prior to further processing, a time window truncation for each time-shifted signal is

applied. The utility of time window truncation is twofold. First, it only preserves the

desired tumour response. Second, it reduces the algorithm complexity since only truncated

signals are needed in the following steps. The time window is represented as Wα , where

Wα = α∆t. α is an integer value and ∆t is the time step used in FDTD, which equals 1.91

(ps) as explained previously. W294 which represents a length 294∆t = 562 (ps), equals to

the input pulse is used as a default time window, unless otherwise specified. The selection

of this window length is because backscattered signals from dispersive biological tissue

are a distorted version of the excitation pulse as frequency-dependent tissues broaden the

duration of input pulse. Studies showed that this broadening effect is directly proportional

to tumour size [40]. The aim of this research is to detect early-stage breast cancer when

tumour is small, thus a short-length time window, which is comparable to the input pulse

width, is selected. Larger or smaller time windows could result in either high clutter
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or tumour location bias. Thus, the time-shifted signal after truncation with Wα can be

represented as Si(n+ τil), where n = 1,2, . . . ,α .

Let A be the number of antennas. After artefact removal, A sets of signals containing

tumour response are collected in a monostatic way as explained in Ch. 4.3.2. Thus, for

every single location l, there are A sets of time delays corresponding to each transceiver.

Let Suml(n)(n = 1,2, . . . ,α) denote the sum of all time-shifted signals at the lth location

given by

Suml(n) =
A

∑
i=1

Si(n+ τil). (4.4)

Step 2: To enhance tumour response and suppress the adverse effect resulted from

both early-stage artefact and late-stage clutter, a weight factor w fl for the lth location

is introduced. The Pearson’s correlation coefficient ri, j_l between neighbouring pair of

time-shifted signals is calculated as

ri, j_l =
∑

α
n=1 Xi(n)X j(n)√

∑
α
n=1[Xi(n)]2 ∑

α
n=1[X j(n)]2

(4.5)

where Xi(n) = Si(n+ τil) and X j(n) = S j(n+ τ jl) with j = i+ 1 (or j = i− 1), are the

time-shifted signals at location l from the ith and (i+1)th transceiver, respectively. Corre-

lation coefficient ri, j_l measures the degree of coherence between time-shifted signals of

neighbouring antenna pairs. High positive correlation between shifted signals received at

neighbouring antenna pairs is expected at tumour locations, considering all time-shifted

signals are a broadened version of the same input pulse, after reflection from the same

strong scatterer. Based on (4.5), the neighbourhood pairwise correlation coefficients vector

Pl composed of (A−1) elements for l is obtained (the first and the last antenna are excluded

since they are far away from each other, all the neighbouring antenna pairs between them

are considered), where A is the total number of antenna. Thus, Pl can be expressed as

Pl = [r12_l r23_l ... r(A−1)A_l]. (4.6)
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Considering ri, j_l is in the range of [-1, 1], all coefficients are linearly normalised to

the range of [0, 1], avoiding negative coefficients generating a high weight

Pl_Nor =
(Pl +1)

2
. (4.7)

Let Pl_Sort be the sorted Pl_Nor in a descending order and Ri_l be the sorted coefficients,

i = 1,2, . . . ,(A−1). Therefore,

Pl_Sort = [R1_l R2_l ... R(A−1)_l] (4.8)

where R1_l > R2_l > ... > R(A−1)_l . The associated weighting factor for the lth location

w fl is introduced as

w fl =
i=A−1

2

∏
i=1

Ri_l (4.9)

which is the product of the first half elements of the sorted correlation coefficients vec-

tor Pl_Sort . The neighbourhood pairwise correlation ensures that the correlation between

two antennas for each location is measuring the reflection from the same scatterer, because

of the short distance between two neighbouring antennas. The distance between neighbour-

ing antenna of 20 ± 5 mm is used, which offers a trade-off between effective performance

and algorithm complexity. If this distance is too small, more antennas will be needed to

accommodate the entire breast model (see Fig. 4.1). Accordingly, more signals will needed

to be processed, increasing algorithm complexity as a result. If this distance is too large,

the signals received at neighbouring antennas might be dominated by the backscattering

from different scatterers in heterogeneous dense breast, which could suppress the efficacy

of pairwise neighbourhood correlation measurement.

Considering the useful tumour response contained in signals from different propagation

channels varies, depending on tumour locations, skin thickness variations, differences in

antenna-skin distances, and interfering response from other tissues, the selective multipli-

cation of the maximum half coefficients is used. This mechanism implements an adaptive

combination of antenna pairs, which guarantees the introduced weight can focus on those
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strongest scatterers, regardless of their positions. Considering malignant tumours’s higher

scattering cross-sections relative to comparably sized heterogeneity in normal breast tis-

sue [40], w fl adaptively rewards potential tumour locations with a high weighted value,

thereby enhancing tumour identification in most if not all cases.

Step 3: The last step calculates the intensity for the lth location. Although the maxima

of coherent addition of time-shifted signals may no longer exactly correspond to tumour

location in dense breast, the sum still has a relatively high value at tumour locations, since

signals from some, if not all antennas, are still able to add coherently. The constructed

signal Cl(n) in RAR is therefore

Cl(n) = w fl ·Suml(n). (4.10)

Let Il denote the intensity of location l within a desired imaging area, and it is given by

Il =
α

∑
n=1

[Cl(n)]2. (4.11)

The procedure is repeated for every location within imaging region as shown in

Fig. 4.4, and L loops in total are required. The distribution of intensity at each location Il is

displayed as an image. The pairwise correlation in the proposed RAR algorithm measures

the backscattered energy intensity from scatterers at each location. The combination of

neighbouring antennas ensures that the strong reflection received at each neighbourhood

antenna pair is from the same strong scatterer, considering possible multi-scatterer cases.

The maximum combining of correlation coefficients implements an adaptive selection of

neighbourhood paired antennas, only those that have high correlation can contribute to the

weight factor, yielding a flexible beamforming. The efficacy and robustness of RAR are

demonstrated under a variety of challenging scenarios, where non-perfect artefact removal

and in breasts with varied levels of fibro-glandular tissues are considered, and these are

presented in the following sections.
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4.5 Software Environment and Implementation

4.5.1 Software Environment

RAR is implemented in Matlab R2014a on a PC with Intel (R) Core (TM) 2 Duo CPU

E7500 2.93 GHz (2 CPUS). As a widely used high-level scientific computing language,

Matlab enables a range of matrix and vector computations with great flexibility. Additional

convenience is offered by its integrated visualised development environment. In the

simulation, 48 signals with 1500 sampling points in each signal are processed, where a

time window length α of 294 is employed. Thus, A = 48, K = 1500, and α = 294. The

pseudocode as well as Matlab code for implementing RAR are given in next subsection.

4.5.2 Implementation

Three modules are involved in RAR’s implementation, including environment initialisation,

pre-processing for artefact removal, and kernel calculation of pixel intensity for forming

imaging matrix. This is illustrated in Pseudocode 4.2 and Matlab code in Fig. 4.5 and

Appendix A, and details are explained as follows.

Module 1: Environment initialisation. In this module, the time delay of all antenna-

pixel pairs are computed, which is used for time-shifting signals. To this end, antenna

coordinates, estimated average dielectric property of breast, and the limit of desired

imaging region are needed. The antenna coordinate is stored in variable ant_pos_cor, and

there are 48 antennas in total. The average dielectric property of breast εr_ave is estimated

by an appropriate patient-specific dielectric property estimation algorithm such as the one

developed by Winters et al. [205]. The desired imaging area is composed of L pixels, and

the intensity of each pixel will be computed. The time delay τil between each antenna and

pixel is calculated based on their space coordinates and the estimated propagation velocity

with the breast. The Matlab code of this module is displayed in Fig. 4.5(a).

Module 2: Pre-processing for artefact removal. This module loads the collected signals

Si_raw(n) and applies certain method to remove the early-stage artefact. The artefact can

be removed through the ideal method [see Equ. (4.3)] or more practical algorithms as
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Pseudocode 4.2 Calculate the intensity of pixel Il (l=1,2,...,L) with RAR
1: Module 1: Environment initialisation

2: Set ant_cor_mat % Antenna coordinate matrix
3: Calculate εr_ave % Estimate average permittivity of breast
4: Set L % Number of pixels of desired imaging area
5: Calculate τil % Time delay of all antenna-pixel pairs

6: Module 2: Pre-processing for artefact removal

7: Obtain Si_raw(n), where n= 1, ...,K % Load A sets of collected signals
8: Obtain Si(n), where n = 1, ...,K% Obtain A sets of artefact-removed signals

9: Module 3: Kernel calculation of pixel intensity for forming imaging matrix

10: Obtain Si(n+τil), where n= 1, . . . ,α % Time-shifting and windowing of signals
11: for l = 1 to L do % lth pixel of L
12: for i = 1 to A do % ith signal of A
13: ri, j_l = corr[Xi(n),X j(n)]% Pairwise correlation coefficient (4.5)
14: Pl(i) = ri, j_l % Coefficient vector (5.11)
15: end for i % End of iteration of signal
16: Pl_Nor = (Pl +1)/2 % Normalised vector (4.7)
17: Pl_Sort = [R1l R2l ... R(A−1)_l]% Sorted vector (5.15)

18: w fl = ∏
i=A−1

2
i=1 Ri_l % Weight factor at l (5.16)

19: Suml(n) = ∑
A
i=1 Si(n+ τil)% Sum of time-shifted signals (4.4)

20: Cl(n) = w fl ·Suml(n) % Weighted sum of shifted signals (5.17)
21: Il = ∑

α
n=1[Cl(n)]2 % Intensity at l (5.18)

22: end for l % End of iteration of pixels
23: Store: I1, I2, ..., IL % Store intensity of all pixels

introduced in [151]. The artefact-removed signals are denoted as Si(n), where i = 1, ...,A.

The Matlab code of this module is displayed in Fig. 4.5(b), and the entropy-based artefact

removal [155] is used in the example provided.

Module 3: Calculate and store pixel intensity for forming imaging matrix. This module

calculates the intensity of each pixel within the imaging area. Firstly, signals are time-

shifted for phase compensation. The time-shifted signal is then truncated by time window

Wα , obtaining Si(n+ τil), where n = 1, . . . ,α . The correlation of time-shifted signals for

neighbourhood pairwise antennas is calculated through (4.5), which is shown in line 13 of

the pseudocode. The coefficient vector Pl(i) is then be normalised and sorted for maximum

combining. The product of half number of those highest correlation coefficients is used as

the weight factor w fl (line 18). Based on the weighted sum of time-shifted signals (line 20



93

of pseudocode), the intensity of pixel Il is calculated through (5.18). In the last step (line

23), the intensity of each pixel Il is stored for further analysis, and corresponding Matlab

code for this module is shown in Fig. 4.5(c).

(a) Environment initialisation

(b) Pre-processing for artefact removal

(c) Calculate and store pixel intensity

Fig. 4.5 Matlab Code for implementing RAR. (a) Environment initialisation. (b) Pre-
processing for artefact removal. (c) Calculate pixel intensity for forming imaging matrix.
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4.6 Imaging Results and Discussion of RAR and Compar-

isons

In this section, algorithm performance is analysed in depth. The superiority of RAR is

demonstrated via comparisons with four techniques, including DAS, DMAS, MWDAS,

and FDAS. For completeness, all algorithms were evaluated in breast models with varied

structures, density classifications, and tumour positions.

Serving as benchmark of best algorithm performance, the ideal artefact removal (see

Fig. 4.6) for obtaining clear tumour response was applied. Noted that the tumour response

indicated by the dotted box in Fig. 4.6(c), which exists in later time, is totally obscured

in received signals in Fig. 4.6(a). This is due to its small order of magnitude, especially

compared with that of incident signals and skin reflections appear earlier. The small

order of magnitude for tumour response peak with 1e-5 is a relative value (rather than

absolute value) compared to the input signal peak of an order magnitude of 1, obtaining

the peak energy ratio of tumour response with -100 dB (input signal magnitude is used

as a reference point). The magnitude of tumour response can be affected by various

factors such as input signal magnitude, breast density, transmitting and receiving antenna

position, and tumour size and position. To ensure such weak tumour response can be

effectively captured, increase transmitting power (under regulated power limit) and/or

improve receiver sensitivity should be considered in practice.

(a) From tumour-bearing breast (b) From tumour-free breast (c) Tumour Response

Fig. 4.6 Illustration of ideal artefact removal. (a) Signal recorded at antenna 4 of Fig. 4.1.
A tumour with a 10 mm diameter is placed at (x,y,z) = (95, 99, 112). (b) Signal recorded
at antenna 4 from a tumour-free reference breast model. (c) Pure tumour response obtained
by subtracting (b) from (a).
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All constructed images were normalised to the maximum intensity value of the 3-D

volume, and same datasets were applied for all algorithms. To assess algorithm perfor-

mance, two quantitative metrics were applied, which are signal-to-clutter ratio (SCR) and

signal-to-mean ratio (SMR) [50]. SCR was defined as the ratio of the maximum tumour

response to the maximum clutter response in a same image, whereas SMR was defined as

the ratio of the mean tumour response to the mean response of the whole image. The maxi-

mum or mean tumour response was assumed to be the peak or average energy of an area

defined by twice the physical extent of the tumour [50], whereas the clutter response was

those outside this area. SCR defines the difference between tumour and clutter response,

whereas SMR indicates the image contrast between tumour and non-tumour areas.

Fig. 4.7 (a) 2-D slice of breast model with MT A. (b)–(f) Results of imaging algorithms
with ideal artefact removal. Tumour’s actual position is indicated by dotted circles.

Fig. 4.7 presents the constructed images produced by the five techniques, representing

a distribution of energy resulted from each voxel within the breast model. The peak of

this image is usually regarded as the tumour, which has the strongest reflection among

all heterogeneous breast tissues with a comparable size [40]. It can be seen that the

embedded 10 mm diameter tumour is clearly identified and accurately localised by all

approaches. However, the clutter rejection capability of these techniques varies due to the
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different weighting mechanisms employed. Specifically, the image constructed by DAS

[see Fig. 4.7(b)] is filled with the strongest level of clutter, which is indicated by the smallest

SCR of 7.0 dB (see Table 4.2). This shows its limited capability for discriminating against

clutter since it does not account for any dispersive propagation effect. The result of FDAS

[see Fig. 4.7(e)] is slightly cleaner than that of DAS, which validates the effectiveness

of the filtering process, but its performance is still inferior to the other three algorithms.

It is observed that DMAS, MWDAS, and the proposed RAR algorithm provided almost

clutter-free images [see Fig. 4.7(c), (d), and (f)]. Assuming perfect tumour response could

be captured, the cross multiplying of weighted tumour response from all channels in

MWDAS forms particularly high weights [see Fig. 4.7(d)], which achieved the strongest

clutter rejection with a SCR of 415.6 dB in this case.

4.6.1 Breast of Medium Type A and B with Ideal Artefact Removal

Fig. 4.8 (a) 2-D slice of breast model with MT B. (b)–(f) Results of imaging algorithms
with ideal artefact removal. Tumour’s actual position is indicated by dotted circles.

Imaging results presented in Fig. 4.8 employs the same ideal artefact removal method as in

Fig.4.7, but the breast medium type is changed from homogeneous fatty to heterogeneous

fatty [see Fig. 4.8(a)], in which three different types of adipose tissues, fatty-low, fatty-
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Table 4.2 SCR and SMR of algorithms in different scenarios. "Ave" abbreviates for
average, which is the arithmetic mean of SCR and SMR values in ten different scenarios.
Best results of each case are highlighted in Bold.

Fig. 4.7 Fig. 4.8 Fig. 4.10 Fig. 4.11 Fig. 4.12

SCR(dB)

(b)DAS 7.0 5.0 -11.9 -2.3 -3.6
(c)DMAS 14.9 10.8 -25.9 -4.6 -5.6
(d)MWDAS 415.6 403.3 -728.1 -78.5 -107.5
(e)FDAS 11.4 6.8 -17.9 1.3 -4.2
(f)RAR 14.0 8.5 5.3 4.8 4.0

SMR(dB)

(b)DAS 17.2 17.0 -1.9 7.6 7.0
(c)DMAS 20.8 20.3 -12.4 7.3 7.1
(d)MWDAS 21.1 21.1 -705.3 -56.5 -90.0
(e)FDAS 17.2 16.5 -2.9 11.6 9.0
(f)RAR 21.0 20.7 20.1 17.1 14.3

Fig. 4.13 Fig. 4.14 Fig. 4.15 Fig. 4.16 Fig. 4.17 Ave

SCR(dB)

(b)DAS -6.5 -1.8 -2.5 -0.7 -2.8 -2.0
(c)DMAS -12.3 -0.5 -4.6 -2.45 -5.3 -3.5
(d)MWDAS -306.5 -40.1 -87.2 -17.9 -129.5 -67.6
(e)FDAS -11.9 0.1 -1.6 -0.3 -0.5 -1.7
(f)RAR 3.9 0.5 0.1 0.05 -0.3 4.1

SMR(dB)

(b)DAS 2.6 9.5 7.0 9.1 5.6 8.1
(c)DMAS -3.1 11.1 6.6 11.1 5.5 7.4
(d)MWDAS -285.3 -61.8 -65.0 -3.3 -114.1 -133.9
(e)FDAS 1.1 10.7 9.2 11.0 8.3 9.2
(f)RAR 18.2 11.4 16.0 17.3 9.2 16.5

median, and fatty-high are included. With increased heterogeneity, more dispersion

of received signals is expected, due to the increased propagation behaviour difference

of frequency components among various tissues. Furthermore, the estimated average

propagation velocity might not as well represent the actual speed as in the homogeneous

case, leading to a mismatch between estimated and the actual propagation time delay. This

is reflected by the results. Compared with Fig. 4.7(b) and Fig. 4.8(b), which are both the

results of DAS, more clutter outside the circle is observed, corresponding to a 2.0 dB

decrease of SCR. The same trend applies for all the algorithms considered. Although with
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a slight degradation in terms of clutter suppression, the embedded tumour is noticeably

recognised and accurately localised in all images constructed by the five techniques. This

also indicates certain fault tolerance of these algorithms for inaccurate propagation time

delay estimation.

4.6.2 Breast of Medium Type B with Entropy Artefact Removal

Previous results show that all algorithms present decent tumour identification and local-

isation capabilities, regardless of homogeneous or heterogeneous breasts, assuming the

tumour response could be ideally extracted. However, perfect artefact removal is unlikely

in practical situations, it is thus critical to test algorithm performance in scenarios applying

more realistic artefact removal methods. In this section, combining one of the most effec-

tive practical artefact removal methods, the performance of imaging algorithms are tested

in mildly, moderately, and severely dense breast models, respectively.

The artefact is a mixed signal composed of incident signals and skin-fat interface

reflections, thus pure tumour response can be difficult to recover. Even the state-of-the-art

artefact removal algorithm is unable to completely remove this interference. However,

desired tumour response could be easily obscured by the artefact, which has a much higher

order of magnitude, especially when tumour has a relatively small size. All these poses a

great challenge to imaging algorithms.

Based on the latest review study provided in [151], which evaluated seven different

artefact removal methods, the best two are the Wiener Filter [40] and entropy-based window

truncation [155]. The correlation measurement between recovered tumour response by

these two techniques and perfect tumour response are 0.66 and 0.60 (ranging from 0 to 1),

respectively. In Wiener Filters, the artefact in each propagation channel is estimated as

a filtered combination of the signals from all other channels, then the estimated artefact

is subtracted from the signal received at the chosen channel. Wiener Filter can remove

most of artefact signals. However, this method requires the prior knowledge of the time

interval in which only artefact is included. Moreover, distortion is introduced to tumour

response, which might result in tumour location bias. By contrast, the entropy-based
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method introduces zero distortion to tumour response, has higher computational efficiency,

and does not require any prior information. Hence, given both efficacy and efficiency, the

entropy-based artefact removal method is chosen as for the following study as in [206, 207]

(a) For signal received at antenna 4 (b) For signal received at antenna 16

(c) For signal received at antenna 33 (d) For signal received at antenna 46

Fig. 4.9 (a)-(d) represent the pre-processed signals received at antenna 4, 16, 33, and 46
as numbered in Fig. 4.1, exemplifying the performance difference between artefact removal
methods. The solid and dotted curves are the results based on ideal and entropy-based
method for artefact removal, respectively. The circle indicates where tumour response is
expected to appear. A tumour with 10 mm diameter is placed at (x,y,z) = (95, 99, 112) of
the model shown in Fig. 4.1.

Fig. 4.9 illustrates the entropy-based time window truncation for artefact removal. The

ideal tumour response at antenna 4 is shown as the solid curve in Fig. 4.9(a). Comparing

the actually received signal [see Fig. 4.6(a)] with the entropy-truncated signal shown as

the dotted curve in Fig. 4.9(a), it is noted that this method removes the majority of the

early-stage artefact composed of incident signals and skin-fat reflections, which have

several higher orders of magnitude than the tumour response. As shown in Fig. 4.6(a), the

tumour response that has an order of magnitude of 1e-5 is completely overwhelmed. This

effectiveness can also be noticed at antenna 16 [see Fig. 4.9(b)], where almost all artefact is

removed and no obvious distortion is imported, compared with the ideal tumour response
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within the time period of 1.0 to 1.5 (ns). However, for antenna 33 and 46 [see Fig. 4.9(c)

and (d)], there is still a large amount of residual artefact with high amplitude. This is

because one truncation time window with the same length is used for the signals received

at all antennas [155]. Hence, depending on the tumour-antenna distance, truncated signals

of different antennas could contain varied percentages of useful tumour response versus

residual artefact, which could potentially lead to location bias in constructed images.

Fig. 4.10 (a) 2-D slice of breast model with MT B. (b)–(f) Results of imaging algorithms
with entropy artefact removal. Tumour’s actual position is indicated by dotted circles.

Fig. 4.10 displays the imaging results where using the same MT B as in Fig. 4.8. How-

ever, instead of using ideal artefact removal, entropy-based method is applied. Compared

with Fig. 4.8, it is noticed that the performance of DAS, DMAS, MWDAS, and FDAS

suffers significantly. The result of DAS [see Fig. 4.10(b)] is seriously unrecognisable, only

an area with high intensity is observed. However, none of these high-intensity positions

reveal the actual tumour location, which is indicated by the dotted circle. Although the

results of DMAS, MWDAS, and FDAS [see Fig. 4.10(c)-(e)] only show limited focused

areas, the peaks of these images are all far away from the actual tumour position. In

contrast, the tumour is conspicuously shown at correct location in the image constructed

by RAR [see Fig. 4.10(f)]. This demonstrates the robust performance of RAR even if the
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artefact cannot be removed faultlessly. Specifically, the SCR of DAS, DMAS, MWDAS,

FDAS, and RAR are -11.9, -25.9, -728.1, -17.9, and 5.3 dB, respectively. The positive

SCR of RAR signifies that it is the only algorithm reveals the tumour with correct location,

which illustrates its clear advantage of excellent artefact resistance. These results also

prove that the effective artefact removal is vital for producing useful imaging results, even

for breasts with relatively low heterogeneity.

The reason behind RAR’s robustness lies in the fact that except RAR, all other algo-

rithms simply exploit the amplitude information of time-shifted signals, expecting that the

maximum coherent addition or multiplication could occur at tumour locations. According

to previous results, this is indeed the case when tumour response can be perfectly extracted,

and all algorithms can perform well. Nevertheless, when artefact cannot be removed

effectively, it is very likely that at some non-tumour positions, only the artefact from

one propagation channel can be greater than the coherent sum of tumour responses from

all other channels, due to the different orders of magnitude between artefact and tumour

response. For RAR, in addition to utilising coherent addition of tumour response from

various propagation channels, it also explores the phase coherence between signals.

The introduced adaptive weight control mechanism of RAR ensures its robustness on

two aspects. First, the neighbourhood pairwise correlation between all antennas measures

the average coherence, which is less likely to be distorted by one or two artefact signals

with abnormally large amplitude. This is because phase coherence is independent of signal

amplitude, only the linear relationship between signal shapes affects correlation coefficients.

Second, the maximum combining of pairwise correlation coefficients adaptively focuses

on those position with large scattered energy. Considering the relatively high magnitude of

scattered energy from tumours over other tissues, this maintains the capability of RAR in

terms of localising tumours in most if not all cases with a much higher chance.

4.6.3 Breast of Medium Type C with Entropy Artefact Removal

Aside from artefact, it is agreed that fibro-glandular tissue forms another challenge for

tumour detection. This is not only due to the substantial amount of attenuation and
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dispersion to received signals introduced by glandular tissue, but also the small dielectric

contrast between cancerous and glandular tissue could easily result in misidentification of

glandular tissues as tumours. Thus, it is important to evaluate algorithm performance in

such cases.

Fig. 4.11 (a) 2-D slice of breast model with MT C. (b)–(f) Results of imaging algorithms
with ideal artefact removal. Tumour’s actual position is indicated by dotted circles.

To independently assess algorithm performance for breast models with glandular

tissues, the first case considered is assuming that the early-stage artefact is perfectly

removed. Results shown in Fig. 4.11 are based on the collected signals from breast with

MT C, where the same artefact removal used in [52] was applied, assuming the majority of

early-stage artefact has been effectively removed. Results revealed that the presence of

glandular tissue can seriously deteriorate the performance of algorithm, even assuming

the early-stage artefact is perfectly removed. Compare Figs. 4.11(b) with Fig. 4.8(b),

both using ideal artefact removal, it is observed that DAS failed to correctly localise the

tumour in Fig. 4.11(b), where the presence of glandular tissues is considered. Although

the actual tumour position indicated by the circle has a relatively high value, the peak

of image no longer corresponds to tumour’s position, which was the case in Fig. 4.8(b).

This indicates limited detectability of DAS of separating the scattering from glandular
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tissues and the scattering from the tumour. After combining signals from all propagation

channels, the multi-reflections between tumour and glandular tissues could generate a

higher intensity than those reflections from tumour or glandular tissues individually, which

is indicated by the highest peak at bottom right of Fig. 4.11(b). Similar erroneous tumour

locations are also offered by DMAS and MWDAS algorithms [see Fig. 4.11(c) and (d)].

Neither of them identified the tumour with correct location, indicating their vulnerability

to the interference caused by glandular tissues. Despite clutter, the result of FDAS [see

Fig. 4.11(e)] revealed the tumour correctly, which shows its advantage over DAS, DMAS,

and MWDAS. This confirms the efficacy of compensating attenuation and dispersion

provided by the filtering process used in FDAS. The result is consistent with its original

presentation [52], whereas the slight difference is due to different percentages of glandular

tissues contained in the breast models used. However, the best imaging result is provided

by RAR [see Fig. 4.11(f)], which not only pinpoints the tumour accurately, but also

provides the best clutter rejection. RAR ensures that high weights measured by correlation

coefficients are obtained at tumour positions. After time-shifting signals at neighbouring

antenna pairs for tumour and non-tumour positions, high correlation is obtained between

tumour responses which resulted from the same strong scatterer, whereas low correlation

is expected for those signals from other heterogeneous breast tissues. Thus, signals with

high weights at tumour position generate larger intensities after being combined, thereby

discriminating tumour response against glandular response. Comparing the results offered

by FDAS and RAR [see Fig. 4.11(e) and (f)], although both identified the tumour, the

clutter suppression capability varies considerably, and an improvement of SCR with 3.5

dB is offered by RAR. This is non-trivial, because the much more cleaner image offered

by RAR can remarkably reduce the uncertainty of the existence of multi-tumours that are

located near this region, which is greatly desirable in practice.

Undoubtedly, it is unrealistic to assume the early-stage artefact could be ideally re-

moved, especially considering the enormous impact of artefact, which has been confirmed

in the results displayed in Fig. 4.10. Therefore, combining entropy-based artefact removal

method, the performance of algorithm for breasts with MT C is investigated and results
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Fig. 4.12 (a) 2-D slice of breast model with MT C and a tumour away from glandular
tissues. (b)–(f) Results of imaging algorithms with entropy artefact removal. Tumour’s
actual position is indicated by dotted circles.

are shown in Fig. 4.12. It is noticed that in this challenging scenario, RAR is the only

algorithm reveals the tumour with correct location [see Fig. 4.12(f)], whereas with other

four techniques, the tumour is either unidentifiable or with wrong estimated locations [see

Fig. 4.12(b)-(e)]. Similar to results shown in Fig. 4.10, when the early-stage artefact cannot

be effectively removed, the late-stage signals no matter tumour or glandular tissue response

is totally masked by residual artefact, due to the vast difference of order of magnitudes.

Even the filtering process introduced in FDAS is unable to be immune to this interference.

This can be clearly illustrated by comparing Fig. 4.11(e) and Fig. 4.12(e), where ideal

and entropy-based artefact removal methods are applied, respectively. These results once

again confirm RAR’s superiority over the other methods in terms of both strong artefact

resistance and high detectability of distinguishing the scattering from tumour and from

glandular tissues.

Since a high percentage of breast cancers are invasive ductal carcinomas, which start at

fibro-glandular regions [106], it is worth testing algorithms in cases with tumours that are

very close to or grow from glandular tissues. Fig. 4.13 shows a tumour located very close

to glandular tissues. In the analysis of this case, the backscattered response from tumour
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Fig. 4.13 (a) 2-D slice of breast model with MT C and a tumour close to glandular tissue.
(b)–(f) Results of imaging algorithms with entropy artefact removal. Tumour’s actual
position is indicated by dotted circles.

and glandular tissue could easily overlap due to the small spacing, raising a challenge

about the specificity of algorithms. Encouragingly, RAR is still able to localise the tumour

correctly [see Fig. 4.13(f)], but with a decrease of SCR from 4.0 to 3.9 dB with respect to

Fig. 4.12(f). The other four algorithms failed to do so, proving the efficacy of RAR for

ductal carcinoma.

4.6.4 Breast of Medium Type D with Entropy Artefact Removal

So far, breasts with both homogeneous and heterogeneous structures and tumours at

different positions have been considered. The breast models employed before are mildly

dense, in which the fibro-glandular tissue is less than 25%. It should be considered that a

high portion of fibro-glandular tissues could noticeably increase the density of breast and

result in further signal attenuation. Therefore, for comprehensive analysis, moderately and

severely dense breasts are used to test algorithms in following scenarios.

In Fig. 4.14, the breast model with MT D is employed. Although the percentage

of glandular tissue for this type is normally between 25%-50%, which belongs to a

moderately dense category, the randomly scattered glandular tissues could seriously reduce
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Fig. 4.14 (a) 2-D slice of breast model with MT D and an off-centre tumour. (b)–(f)
Results of imaging algorithms with entropy artefact removal. Tumour’s actual position is
indicated by dotted circles.

the homogeneity of propagation channels and make the detection of tumour much more

difficult. Based on the results shown in Fig. 4.14, it is clear that RAR is again the

only method that correctly identified the tumour. However, strong scattered clutters are

generated. Specifically, comparing Fig. 4.13(f) with Fig. 4.14(f), the SCR of RAR results

Fig. 4.15 (a) 2-D slice of breast model with MT D and an centre tumour close to glandular
tissues. (b)–(f) Results of imaging algorithms with entropy artefact removal. Tumour’s
actual position is indicated by dotted circles.
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dramatically decreased from 3.9 to 0.5 dB. This indicates that the increased glandular

tissues not only cause the change of breast density and corresponding signal attenuation,

it could also complicate the propagation channels, making the identification of strong

scatterers such as tumours more difficult to be achieved.

The results shown in Fig. 4.15 employed the same breast model, but the tumour is

moved within the scattered glandular tissues to simulate the invasive ductal carcinoma.

In comparison to the results obtained in Fig. 4.14, the performance of algorithms in the

scenario of Fig. 4.15 further degraded due to the further reduced uniformity of assumed

propagation channel. Encouragingly, the proposed RAR algorithm in this case still kept

its edge with a positive SCR of 0.1 dB (see Table 4.2), indicating its robustness to certain

deviation between the assumed uniform propagation channel and the actual one.

4.6.5 Breast of Medium Type E and F with Entropy Artefact Re-

moval

For completeness, the performance of algorithm in very dense breasts with MT E and F

is also investigated. In Fig. 4.16, a tumour in breast model with MT E, which includes

fibro-glandular tissues with percentage ranging from 50% to 75% is considered. It is noted

that the result offered by RAR algorithm in Fig. 4.16(f) is the one with the highest SCR of

0.05 dB, whereas all others have a negative SCR, corresponding to poorer performance.

Although the peak in the result of RAR does not exactly correspond to the actual tumour

position indicated by the dotted circle, a relatively high intensity within the circle is

observed. Also the peak generated by RAR is close to the actual tumour position, and this

explains why RAR has a positive SCR value. However, when the breast model with MT F

is considered (see Fig. 4.17), all algorithms failed, and none of them were able to provide

images with discernible and correct tumour position. For both scenarios considered in

Fig. 4.16 and Fig. 4.17, tumours located within fatty tissues instead of within glandular

tissues are also tested. The results obtained were similar, which indicated the limited

detectability of these algorithms for severely dense breasts.
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Fig. 4.16 (a) 2-D slice of breast model with MT E and a tumour in glandular tissues.
(b)–(f) Results of imaging algorithms with entropy artefact removal. Tumour’s actual
position is indicated by dotted circles.

Fig. 4.17 (a) 2-D slice of breast model with MT F and a tumour in glandular tissues.
(b)–(f) Results of imaging algorithms with entropy artefact removal. Tumour’s actual
position is indicated by dotted circles.
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The poor performance of algorithm for severely dense breasts with MT E and F is

mainly due to the following three reasons. 1) Dense breasts could considerably attenuate

the propagated signals, resulting in very weak tumour response contained in backscattered

signals. 2) The reflected energy from other scatterers such as glandular tissues might be

equivalent or even larger than that from tumours, depending on the variability in adipose

versus glandular tissue compositions. 3) For almost fully dielectrically heterogeneous

ACR-III and ACR-IV breasts, the assumed uniform propagation channel would not be

able to represent the actual one, and fatal inaccuracy of time delay estimation could occur,

leading to incorrect localisation. Specifically, when the percentage of fibro-glandular tissue

is higher than a certain threshold, the average estimated time delay of propagation path

might be far from the actual one. The following solutions which could potentially alleviate

these three problems are outlined. 1) Employ multistatic instead of monostatic acquisition

to collect more useful backscattered signals from the tumour. 2) Enhance the contrast

between tumour and its surrounding tissues through increasing the relative permittivity of

tumour, such as using the contrast agent described in [106]. 3) Improve the accuracy of

individual propagation channel estimation. These solutions will be considered in following

studies.

The imaging with RAR from different view angles is also tested for completeness. The

scenario considered in Fig. 4.12 with a tumour at (x,y,z) = (95, 99, 112) is selected as an

example. On one hand, images are reconstructed at different x planes, where x = 85 mm,

95 mm, and 105 mm are selected. Fig. 4.18 shows the constructed images at different x

planes, where x = 85 mm, 95 mm, and 105 mm are selected. This result illustrates that

the largest intensity occurs on the plane of x = 95 mm, corresponding to the actual tumour

position, which proves that RAR is able to accurately identify the plane which bears the

tumour. On the other hand, the imaging results of y and z cross-sections by RAR are

displayed in Fig. 4.19, where y = 99 mm and z = 112 mm are chosen, respectively. It is

observed that the reconstructed images clearly identify the tumour in both cases, with

accurate positioning and strong clutter suppression.
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(a) x = 85 (b) x = 95 (c) x = 105

Fig. 4.18 Imaging results by RAR with entropy-based artefact removal for breast models
with MT C on different x planes. (a) x = 85. (b) x = 95. (c) x = 105. Tumour position is
(x,y,z) = (95, 99, 112). Tumour’s actual position is indicated by the dotted circle.

Fig. 4.19 Imaging results by RAR with entropy artefact removal for breast model with
MT C from different view angles. (a) 2-D slice at y = 99 mm. (b) Imaging results. (c) 2-D
slice at z = 112 mm. (d) Imaging results. Tumour’s actual position is indicated by dotted
circles.

4.7 Robustness Analysis of RAR and Comparisons

SCR and SMR statistics of algorithms are summarised in Table 4.2. Based on the calculated

average in ten different scenarios, the proposed RAR algorithm achieves the highest SCR

of 4.1 dB and SMR of 16.5 dB, respectively, indicating its excellent performance and

strong robustness. It should be noted that RAR is the only algorithm which provided a
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positive SCR in results shown in Fig. 4.12, Fig. 4.13, Fig. 4.15, and Fig. 4.16, proving

its distinct advantage. On the other hand, MWDAS has the smallest SCR and SMR on

average. In spite of its excellent clutter rejection with ideal artefact removal (see Figs. 4.7

and 4.8), this efficacy suffer significantly even with a small portion of residual artefact,

indicating its limitation in more practical scenarios.

The second best technique is FDAS, although it is sensitive to artefact, results show

that the filtering is beneficial since in most cases it outperforms the original DAS algorithm

and achieves the second high SCR of -1.7 dB and SMR of 9.2 dB. Comparing DMAS

with DAS, results revealed that the pure coherence-based algorithm DMAS is not always

superior to DAS. In scenarios assuming the early-stage artefact could be perfectly removed,

DMAS outperformed DAS without question (see Figs. 4.7 and 4.8), however, in scenarios

which considered dense breasts and non-perfect artefact removal, DAS showed more

robustness than DMAS. This is because the pair multiplication used in DMAS could

lead to erroneous peaks in more complex medium which has less coherence among all

propagation channels.

The performance of RAR with respect to tumour size was also studied. Combining

entropy-based artefact removal, in breasts with MT A and B, tumours as small as 5 mm

in diameter were successfully identified. However, in more dielectrically heterogeneous

breasts with MT C, when the tumour size is less than 7 mm in diameter, the imaging results

were quite blurry, which can hardly be used to identify the tumour. As for MT D, the

smallest tumour that were successfully detected were with 10 mm diameter as shown in

Figs. 4.14 and 4.15.

Additionally, the sensitivity of RAR to the error of average dielectric permittivity

estimation is examined. Coupled with the entropy-based artefact removal, in mostly fatty

breasts such as MT A and B, even when the relative error is up to 30%, only a minor

reduction of SCR is observed. However, for fully heterogeneous breasts with low to

medium density such as MT C and D, when the relative error is over 5%, the resulted

images can rarely localise the tumour precisely. This reinforces the need to have an

accurate average dielectric permittivity estimation. In this study, the collected signals are
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assumed to be noiseless; in practice, however, possible measurement errors and noise need

to be considered.

4.8 Complexity Analysis of RAR and Comparisons

Besides robustness, computational complexity of image formation algorithms is of great

importance, especially considering the intensive computation for imaging high-resolution

3-D breast models.

In this section, the time complexity of algorithm is analysed. As described before,

A sets of tumour response are collected in monostatic case; thus, A signals are needed

to be processed. Let K refer to the signal sampling points and α be the window length,

which is smaller than K. Both K and α are much larger than A, which determine the

number of calculations for raw signals and truncated signals, respectively. The number of

arithmetic operations (without distinguishing between addition and multiplication) required

to calculate each pixel intensity is analysed. All algorithms considered in this paper require

the same time-shifting module, thus only other different processes are compared.

To sum A time-shifted signals, DAS needs (A− 1)K additions. Then the summed

signal is truncated by a time window with length α , and α and α − 1 operations for

multiplication and addition are required for obtaining the energy of this signal. DAS thus

has an asymptotic complexity of O(K).

The first step in DMAS is generating C2
A sets of pairs from A signals for pair multipli-

cation, and [A(A−1)/2−1]K multiplications are involved. Step 2 sums [A(A−1)/2−1]

signals with K sampling points, which are [A(A−1)/2−1]K additions. The last integration

within a time window requires α and (α −1) operations for multiplication and addition,

respectively. Ignoring small values in summed operations of all steps, DMAS has an

asymptotic complexity of O(K).

Unlike DAS and DMAS, MWDAS brings forward the windowing of signals; thus, for

each signal, only α calculations are needed. Step 1 requires (A− 1)α summations and

one division to obtain the reference waveform. Step 2 involves weighting signals from A

channels with the aid of the generated reference waveform, requiring Aα multiplications.
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Step 3 is the energy calculation of the weighted signals which calls for (2α −1) operations.

Last step multiplies signal energy from all propagation channels, where (A−1) multiplica-

tions are needed. Thus MWDAS requires (4Aα −1) operations in all and has a complexity

of O(α).

Two additional parts are needed for FDAS in addition to that of DAS. First is the

collection of distance-dependent reference waveforms for filter design, and second is the

filtering process. Since the gathering of reference signals could be precomputed, the main

extra computational burden of FDAS lies in the filtering process when calculating each

pixel intensity. For K sampling points, K(NK) multiplications are required to implement

the finite impulse response (FIR) filtering in time domain, where N is the selected filter

length. Combined with extra DAS operations and ignore small values, FDAS therefore has

a complexity of O(K2).

In the proposed RAR, the windowing of signal is brought forward; thus, only α calcula-

tions is involved for each signal. Step 1 involves (A−1) calculation of neighbourhood pair-

wise correlation coefficients, which requires 6α(A−1) operations following equation (4.5).

Then, the normalisation needs 2(A−1) operations. Step 3 sorts the (A−1) normalised

correlation coefficient for the maximum combining. For a sorting algorithm with (A−1)

numbers, the time complexity is up to O(A2). To generate the weighted value, which

is the product of the first half number of sorted correlation coefficients, [(A−1)/2−1]

multiplications are involved. Step 4 weights the signal and α multiplications are required.

Last step calculates the energy and needs (2α −1) operations. Accordingly, ignoring small

values in summed operations, RAR has an asymptotic complexity of O(α).

Simulation results on a PC with Intel (R) Core (TM) 2 Duo CPU E7500 2.93 GHz

(2 CPUS) combined with Matlab R2014a software confirmed the computation overhead

of algorithms. 48 signals with 1500 sampling points in each signal are processed, where

a time window length of 294 is employed. Thus, A = 48, K = 1500, and α = 294. The

calculated processing time employs the mean of three replicates to reduce random errors.
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(a) Time complexity of algorithms

(b) Processing time

Fig. 4.20 (a) Time complexity of algorithms, where K is the length of sampled signal,
and α is the time window length. K = 1500 and α = 294 are used in our simulations. (b)
Processing time (unit: second) to calculate each pixel intensity by different algorithms.

Fig. 4.20 compares the complexity and processing time to calculate one pixel intensity

required by each algorithm. Simulation results verified the time complexity analysis.

As can be seen, the complexity is mainly determined by the number of points needed

to be processed in each signal, which can be K or α in different algorithms. A much

higher computation burden than other algorithms is observed in FDAS, which requires

the longest processing time of 1.37 (s), whereas DAS only needs 0.0003 (s). In addition,

the same linear growth is observed in DAS, DMAS, MWDAS, and RAR, whereas FDAS

has an exponential tendency. This demonstrates that RAR maintains the same level of

computational efficiency, even compared with the simplest DAS algorithm.

4.9 Conclusion

A novel imaging algorithm for early breast cancer detection entitled RAR is proposed. The

efficacy of RAR is verified under a number of scenarios, using FDTD-based 3-D breast

models with various structures and densities.
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Simulation results showed that the performance of imaging algorithms is more sensi-

tive to the early-stage artefact, compared with the late-stage clutter, due to the different

orders of magnitude of these two types of interference. Results with superior perfor-

mance and robustness were provided by RAR in comparison to other algorithms, including

DAS, DMAS, MWDAS, and FDAS. In the four out of the six challenging scenarios (see

Figs. 4.12, 4.13, 4.15, and 4.16), RAR was the only algorithm which clearly identified and

accurately localised the tumour. These scenarios considered practical artefact removal,

various tumour positions, and breasts ranging from mildly to moderately density classifica-

tions. Simulations also demonstrated the computational efficiency of RAR, which has the

same asymptotic complexity as DAS, DMAS, and MWDAS. The significant improvement

provided by RAR is only at the expense of negligible increased computational effort. These

results show a high potential of RAR for early cancer detection in breasts with low to

medium densities. The investigation of RAR’s performance for further enhancement will

be involved in next chapter.



Chapter 5

Improved Algorithms via Weighting

Factor and Spatial Diversity

Exploration

5.1 Introduction

The proposed RAR algorithm in Chapter 4 offered significantly improved performance

over existing methods, and achieved excellent tumour detection capability in mildly and

moderately dense breasts. To enhance tumour detectability in severely dense breasts, based

on the exploration of weighting factor and spatial diversity, three new imaging algorithms

are proposed in this chapter, which is organised as follows. In Section 5.2, two algorithms

referred to as local coherence exploration (LCE) and dynamic neighbourhood pairwise

correlation (DNPC) are presented. In Section 5.3, the multiple spatial diversity (MSD)

algorithm is introduced. Differ from previous algorithms building upon the monostatic

signal acquisition, multistatic signals are evaluated and exploited in MSD. The imaging

results of LCE, DNPC, and MSD in various scenarios are presented and discussed in

Section 5.4. Section 5.5 provides comparative analysis of proposed algorithms, and

conclusions are drawn in Section 5.6.
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5.2 Diverse and Dynamic Weighting Factor Exploration

5.2.1 Monostatic Signal Acquisition

For consistent comparison, the same antenna configuration and monostatic signal acqui-

sition for RAR [see Fig. 5.1(a)] is used in this section. In monostatic method, the same

antenna is used to transmit signal and receive the backscattered signal from the breast,

which functions as as a transceiver, while all other antennas are turned off. Then this

process is repeated sequentially for every antenna in the antenna array. The received signal

in monostatic is uniformly denoted as Si(n), representing the received signal at the ith

antenna while itself acts as the transmitting antenna. As exemplified in Fig. 5.1(b), four

monostatic signals S1(n), ...,S4(n) are collected, where n = 1,2, ...K, and K is the number

of signal sampling points.

(a) Breast model and antenna array (b) Monostatic signal collection

Fig. 5.1 Breast model, antenna configuration, and illustration of monostatic signal collec-
tion. (a) Breast model with two concentric rings of 24 antennas (indicated by solid dots)
surrounding the breast. (b) Illustration of monostatic signal collection. Four antennas are
represented by squares, which are labelled as T1 to T4. Solid arrows provide a reference
of the propagation path of transmitted signals, and dotted arrows provide a reference of the
propagation path of received signals.

5.2.2 Local Coherence Exploration (LCE)

This section details the proposed LCE imaging algorithm and its novelty is threefold.

First, the correlation is used to quantify the consistency of relative phase change between

backscattered signals. Second, adjacent antennas are grouped, and related backscattered
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signals are utilised to generate a local coherence reference signal for each group. This is

critical because the strongest reflection received at different antennas may originate from

different scatterers, this regional correlation measurement ensures the robustness in both

single- and multi-scatterer cases. Third, the signals exhibit high correlation are adaptively

selected and combined, reducing the algorithm sensitivity to data anomalies and ensuring

a high chance of localising the tumour.

Let l be the lth location of a pixel within a constructed image L. Let A be the number of

antennas, and A signals are collected in a monostatic way. Let Si(n) be the artefact-removed

signal at ith antenna in discrete form, where n = 1,2, . . . ,K, and K is number of signal

sampling points. To compute the intensity at each l, three steps are involved in LCE.

Step 1: Signals received from all antennas are time-shifted at l. The ith signal after

being time shifted is denoted as Si(n+ τil), where τil is the two-way travel time from

the ith antenna to l. Signal propagation speed is calculated assuming that each traversed

medium, including immersive liquid, skin layer, and underlying breast tissue, has a constant

permittivity. The average dielectric property of underlying breast tissue is assumed to be

established through an appropriate patient-specific estimation algorithm such as the one

developed in [205]. This step is needed in all UWB data-independent imaging algorithms

for compensating propagation time delay.

Step 2: Time-shifted signals at adjacent antennas are grouped with a size of G. The

reference signal for calculating correlation is generated by averaging the signals within

each group, which is a representative of the local coherence. For the ith shifted signal

Si(n+τil), its group members include S j(n+τ jl), where j = i+1, i+2, . . . , and i+G−1.

The reference signal R(n) is thus obtained as

R(n) =
1
G

j=i+G−1

∑
j=i

S j(n+ τ jl). (5.1)

The correlation coefficient cil between the ith shifted signal and its intragroup reference

signal within a time window Wα is obtained as

cil =
∑

α
n=1 Xi(n)R(n)√

∑
α
n=1[Xi(n)]2 ∑

α
n=1[R(n)]2

(5.2)
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where Xi(n) = Si(n+τil), and α is an integer defines the time window. Wα =α∆t, and ∆t is

the time step used in FDTD. Time window W294 is used, which is equivalent to input pulse

width, since it is proved to be effective for detecting small tumours [50]. The procedure

is repeated for every signal, thus A correlation coefficients are obtained. This coefficient

represents the conformity of each signal with its proximity peers. High correlation is

expected at tumour locations, since all shifted signals should be a broadened version of the

same input pulse, after backscattering from the same strong scatterer.

Step 3: The intensity of location l is obtained through the combining of selected signals.

Let Pl be the correlation coefficients vector at l, which can be expressed as

Pl = [c1l c2l ... cAl]. (5.3)

All cil are linearly normalised from the range of [-1, 1] to [0, 1], avoiding negative

coefficients generating a high weight

Pl_Nor =
(Pl +1)

2
. (5.4)

Let Pl_Sort be the sorted Pl_Nor in a descending order and Cil be the sorted coefficients.

Pl_Sort can thus be expressed as

Pl_Sort = [C1l C2l ... CAl] (5.5)

where C1l > C2l > ... > CAl . Let Il be the intensity of l

Il =
α

∑
n=1

[w fl ·Suml(n)]2 (5.6)

where

w fl =
A/2

∏
i=1

Cil (5.7)



120

is weight factor, equals to the product of the first half elements of Pl_Sort , and

Suml(n) =
A/2

∑
i=1

Si(n+ τil) (5.8)

is the sum of signals, corresponding to those selected largest coefficients. Simulation results

showed that selecting the best half of signals with the highest coefficients is sufficient to

offer effective performance in most if not all cases. This procedure is repeated for each l,

and L loops are needed as shown in Pseudocode 5.3. A group size (G) of 6 is used since it

provides an effective tumour detection as verified by simulation results. The distribution of

Il is displayed as an image. For comparison and consistency, the imaging results of LCE

are presented in subsequent sections.

Pseudocode 5.3 Calculate the intensity of pixel Il (l=1,2,...,L) with LCE

1: INPUT: Si(n), i = 1,2, ...,A. % A monostatic signals
2: Obtain Si(n+τil), where n= 1, . . . ,α % Time-shifting and windowing of signals
3: for l = 1 to L do % lth location of L
4: for i = 1 to A do % ith signal of A
5: cil = corr[Si(n+τil)R(n)]% Local correlation coefficient (5.2)
6: Pl(i) = cil % Coefficient vector (5.3)
7: end for i % End of iteration of signal
8: Pl_Nor = (Pl +1)/2 % Normalised vector (5.4)
9: Pl_Sort = [C1l C2l ... CAl] % Sorted vector (5.5)

10: w fl = ∏
A/2
i=1 Cil % Weight factor at l (5.7)

11: Suml(n) = ∑
A/2
i=1 Si(n+ τil)% Sum of selected signals (5.8)

12: Il = ∑
α
n=1[w fl ·Suml(n)]2 % Intensity at l (5.6)

13: end for l % End of iteration of pixels
14: OUTPUT: I1, I2, ..., IL % Intensity of all pixels

5.2.3 Dynamic Neighbourhood Pairwise Correlation (DNPC)

This section presents the DNPC imaging algorithm. DNPC is based on the RAR algorithm,

and two modifications are added for further robustness. First, it changes the way of

calculating the neighbourhood pairwise correlation between signals. Second, instead of

the equal weighting of signals used in RAR, a dynamic weighting of signals for combining

is exploited in DNPC.
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Fig. 5.2 Block diagram illustrating the DNPC algorithm to calculate the intensity of the
lth pixel Il in the imaging region indicated by the mesh area.

The block diagram depicted in Fig. 5.2 shows DNPC to calculate the intensity value

of each pixel in the breast model. Let l represent the lth location of a pixel within a

constructed image L. The whole process is composed of four steps.

Step 1: Time shifting and windowing of signals. Each pre-processed Si(n) is time-

shifted based on the corresponding round-trip time delay at a location l. The time-shifted

signals are expressed as Si(n+ τil), where n = 1,2, . . . ,K, and τil is the two-way travel

time from the ith transceiver to a specific location l within the imaging region. Moreover, a

window truncation for each time-shifted signal is applied. The time window is represented

as Wα = α∆t, where α is an integer and ∆t is the time step used in FDTD, which equals

1.91 (ps) as explained in Cha. 4.3.2. W294 = 294∆t = 562 (ps) is used as a default time

window, unless otherwise specified.

Step 2: Modified calculation of neighbourhood pairwise correlation. To generate

consistent weight for each signal, and considering the distance between the two rings of

antenna array, the correlation coefficients between signals received at each antenna ring

is calculated separately. Let A represent the number of antennas. The first ring includes

antenna 1,2, ...,A/2, and the second ring includes antenna A/2+1, , ...,A. In the model

shown in Fig. 5.1(a), A = 48, and this process is illustrated in Fig. 5.3.
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Fig. 5.3 Correlation and weighting coefficients calculation in DNPC. The antenna (T) is
represented by solid squares. The left-side Ring 1 contains T1 to T24, and the right-side
Ring 2 contains T25 to T48. ri, j_l is the neighbourhood pairwise correlation coefficients in
each antenna ring at l, and dwi_l is the dynamic weight for the ith shifted signal at l.

For signals received at antennas which are within the two rings (see Fig. 5.3), the

neighbourhood pairwise correlation coefficient ri, j_l is calculated as:

ri, j_l =
∑

α
n=1 Xi(n)X j(n)√

∑
α
n=1[Xi(n)]2 ∑

α
n=1[X j(n)]2

(5.9)

where Xi(n) = Si(n+ τil) and X j(n) = S j(n+ τ jl) with j = i+1, are the shifted signals at

location l from the ith and (i+1)th antenna, respectively, where i = 1,..., 23; 25,..., 47.

For the correlation between signals received at end antennas (see Fig. 5.3), including

T24 and T48, their neighbourhood pairwise correlation is calculated also following (5.9),

but with i = 24, j = 1, and i = 48, j = 25, respectively. These two additional sets of

correlation coefficients for the signals received at end antennas were not included in

RAR. Accordingly, the neighbourhood pairwise correlation coefficients vector Pl in DNPC

composed of A elements for l is obtained as

Pl =[r1,2_l r2,3_l ... rA/2,1_l rA/2+1,A/2+2_l ... rA−1,A_l rA,A/2−1_l]

=[r1,2_l r2,3_l ... r24,1_l r25,26_l ... r47,48_l r48,25_l].

(5.10)
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Considering ri, j_l is in the range of [-1, 1], all ri, j_l are linearly normalised to the range

of [0, 1], avoiding negative coefficients generating a high weight

Pl_Nor =
(Pl +1)

2
. (5.11)

Based on the normalised ri, j_l , the dynamic weight dwi_l for the ith signal at location l,

where i = 2,..., 23; 26,..., 47, is giving by

dwi_l = (ri−1,i_l + ri,i+1_l)/2 (5.12)

which is the average of the two neighbourhood pairwise coefficients the ith signal involved,

including the i−1 antenna and the i+1 antenna. For those two end antennas, including

T1, T24, T25, and T28, corresponding dwi_l are calculated as: dw1_l = (r24,1_l + r1,2_l)/2,

dw24_l = (r23,24_l + r24,1_l)/2, dw25_l = (r25,26_l + r48,25_l)/2, and dw48_l = (r47,48_l +

r48,25_l)/2, which are illustrated in Fig. 5.3.

Step 3: Generate dynamic weights for combining signals. Unlike the equal weighting

in RAR, DNPC exploits a dynamic weighting for combining signals.

In RAR, the same weighting coefficient of 1 is applied for all signals (4.4):

Suml(n) =
A

∑
i=1

Si(n+ τil)

=1 ·S1(n+ τ1l)+1 ·S2(n+ τ2l)+ ...+1 ·SA(n+ τAl)

(5.13)

where Suml(n), n = 1,2, . . . ,α , is the sum of all time-shifted signals within the time

window Wα at the lth location. Si(n) is artefact-removed signal from the ith antenna, τil is

the two-way travel time from the ith transceiver to a specific location l within the imaging

region, and Si(n+ τil) is the time-shifted signal.
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In DNPC, each signal is weighted by its corresponding dynamic weight dwi_l , and the

sum of dynamic-weighted signals is calculated as

Suml(n) =
A

∑
i=1

dwi_l ·Si(n+ τil)

=dw1_l ·S1(n+ τ1l)+dw2_l ·S2(n+ τ2l)+ ...+dwA_l ·SA(n+ τAl).

(5.14)

Each neighbourhood pairwise correlation coefficient measures the likelihood of carrying

effective tumour response, a larger dwi_l signifies a higher quality of this propagation

channel. An increased tumour response can be obtained in the summed signal by weighting

each signal based on its quality level, thereby achieving an enhancement of tumour

detection.

Step 4: Pixel intensity calculation through maximum combining. Let Pl_Sort be the

sorted Pl_Nor in a descending order and Ri_l be the sorted coefficients, i = 1,2, . . . ,A,

Pl_Sort = [R1_l R2_l ... RA_l] (5.15)

where R1_l > R2_l > ... > RA_l . The weighting factor for the summed signal at the lth

location is introduced as

w fl =
i=A

2

∏
i=1

Ri_l (5.16)

which is the product of the first half elements of Pl_Sort .

To calculate the intensity at l, the combined signal Cl(n) is calculated as

Cl(n) = w fl ·Suml(n). (5.17)

where Suml(n) is the weighted summed signal calculated in (5.14). Let Il denote the

intensity of pixel l within the desired imaging area, and it is given by

Il =
α

∑
n=1

[Cl(n)]2. (5.18)
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The procedure is repeated for every pixel within the imaging region (see Fig. 5.2), and L

loops are required in total. The distribution of intensity at each location Il is displayed as

an image. For comparison and consistency, the imaging results of DNPC are presented in

subsequent sections.

5.3 Multiple Spatial Diversity (MSD) Algorithm

5.3.1 Multistatic Signal Acquisition

(a) Breast model and antenna array (b) Multistatic signal collection

Fig. 5.4 Breast model, antenna configuration, and multistatic signal collection. (a) Breast
model with two concentric rings of 24 antennas (indicated by solid dots) surrounding the
breast. (b) Diagram illustrating multistatic signal collection. Four antennas are represented
by squares, which are labelled as T1 to T4. T1 is selected as the transmitter and all antennas
record the backscattered signals. S1,2(n) denotes the backscattered signal received at T2
while T1 is acting as the transmitter. S1,1(n),S1,3(n), and S1,4(n) follow the same rule. The
solid arrow provides a reference of the propagation path of transmitted signal, and the
dotted arrows provide a reference of the propagation path of backscattered signals.

As opposed to monostatic, another signal acquisition method is multistatic. In multistatic,

each antenna takes a turn to transmit and the backscattered signals are recorded at all

antennas simultaneously. This process is illustrated in Fig. 5.4(b). As an example, an

antenna array composed of four elements (T1 to T4) is used. The received signal in

multistatic is uniformly denoted as Si, j(n), representing the received signal at the jth

antenna while the ith antenna acts as the transmitter. Therefore, signal Si,i(n) which refers

to the received signal at the ith antenna while itself acts as the transmitter, which is the

same as Si(n) defined in monostatic mode. For clarity, in the following study, Si,i(n) is
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called monostatic signal, Si, j(n) is called multistatic signal. In particular, Si, j(n), when

j = i+1 or j = i−1, is called neighbouring multistatic signal, which is the signal received

at the ith antenna while the (i+1)th or (i−1)th antenna is the active transmitter.

As shown in Fig. 5.4(b), T1 is selected as the transmitter and all antennas record the

backscattered signals. S1,2(n) denotes the backscattered signal received at T2 while T1 is

acting as the transmitter. S1,1(n),S1,3(n), and S1,4(n) follow the same rule. Compared with

the monostatic method, a much higher number of signals can be obtained in multistatic.

Let A represent the number of antennas. A signals are collected in monostatic, whereas

A(A+1)/2 independent signals can be acquired in multistatic [145], through which one

order of magnitude higher number of signals than monostatic can be collected.

Compared with monostatic, multistatic-based algorithms have several advantages.

Firstly, the diversity of multiple angles can improve the probability of target detection due

to a higher number of available signals [208]. Moreover, it can mitigate clutter effectively.

In monostatic UWB breast imaging, the direct reflection path always suffer from the

greatest skin reflection, whereas in multistatic, extra paths containing less reflection could

be employed for extracting useful tumour response while suppressing clutter signals [42].

Therefore, in the proposed MSD algorithm, besides monostatic signals, extra signals via

multistatic propagation paths are taken into account, and the details are introduced in next

section.

5.3.2 Algorithm Rationale

Based on the simulation of UWB breast imaging with multistatic signals presented in

Chapter 3.8.5, two important indications were given. First, backscattered signals received at

antennas which act as transceivers (i.e. monostatic signals) have the maximum strength of

effective tumour response in most if not all cases. Second, signals received at neighbouring

receiving antennas (relative to transmitting antenna) tend to possess higher portion of

effective tumour response than those received at antennas which are far away from the

transmitting antenna, due to the small distance from a transmitting antenna to tumour and

back to its neighbouring receiving antenna, assuming all antennas are equally placed.
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Accordingly, in MSD algorithm, besides monostatic signals [e.g. S1,1(n),S2,2(n),

etc.], only neighbouring multistatic signals [e.g. S1,2(n),S2,3(n), etc.] are employed,

and the benefits are twofold. First, the neighbourhood pairwise correlation between

monostatic signals indicates the probability that the dominant part of these two signals

are from the same strong scatterer, the efficacy of which has been proved by the re-

sults of RAR algorithm. Signals received at transmitter/receiver pairs which are far

away from each other could be dominated by different scatterers, such as tumour and

glandular tissue. Thus those signals are less reliable to evaluate the quality of prop-

agation channels. Second, a much high computational efficiency can be achieved by

employing the neighbourhood multistatic signals only. Assuming there are 48 (A) an-

tennas, the number of all independent multistatic signals would be 1176 [A(A+ 1)/2],

including S1,1(n),S1,2(n), ...S1,48(n),S2,2(n),S2,3(n), ...S2,48(n), ...,S48,48(n). For neigh-

bourhood multistatic signals only, including S1,1(n),S1,2(n), ...,S47,48(n),S48,48(n), this

number reduces to 96, which leads to a 91.8% reduction of the number of signals. This

ensures a high algorithm efficiency by choosing those most usable signals.

Let l represent the lth location of a pixel within the imaging region of a constructed

image L. To calculate the intensity value of l, three steps are included in MSD: time

shifting and windowing, signal quality evaluation, and adaptive combining.

Step 1: Time Shifting and Windowing of Signals. Each pre-processed (for artefact

removal) monostatic and neighbouring multistatic signal Si, j(n) is time-shifted based on

the corresponding round-trip time delay at a location l. This is for phase compensation as

used in all data-independent imaging algorithms. The time-shifted signals are expressed as

Si, j(n+ τi, j_l), where n = 1,2, . . . ,K, and τi, j_l is the travel time from the ith transmitter

to a specific location l within the imaging region and back to the jth receiver. The same

propagation velocity is assumed for both propagation trips, from transmitter to l and from

l back to receiver. Propagation distance is calculated based on relevant space coordinates

in the constructed model. The propagation speed of the signal is calculated under the

assumption that each traversed medium has a constant relative permittivity at the centre

frequency of input pulse. The permittivity at centre frequency is chosen since it can be
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regarded as an average value across the frequency range of input pulse. This average

dielectric property of underlying breast tissue is assumed to be established through an

appropriate patient-specific dielectric properties estimation algorithm such as the one

developed by Winters et al. [205].

Prior to further processing, a window truncation for each time-shifted signal is applied.

The time-shifted signal after truncation with a time window Wα can be represented as

Si, j(n+ τi, j_l), where n = 1,2, . . . ,α , and α is the window length. The time window is

represented as Wα = α∆t, where α is an integer and ∆t is the time step used in FDTD,

which equals 1.91 (ps) as explained in Cha. 4.3.2. W294 equals 294∆t = 562 (ps) is used as

a default time window, unless otherwise specified. Let A be the number of antennas, and

2A monostatic and neighbouring multistatic signals are employed in MSD algorithm.

Step 2: Signal Quality Evaluation. Considering the high amplitude of monostatic

signals, including S1,1(n),S2,2(n), ...,S48,48(n), only monostatic signals are used to evaluate

the quality of each propagation channel. Due to the distance between the two rings of

antenna array, the correlation coefficients between signals received at each antenna ring

is calculated separately. The first ring includes antenna 1,2, ...,A/2, and the second ring

includes antenna A/2+1, , ...,A. In the following simulation, A = 48, which is illustrated

in Fig. 5.3.

For signals received at antennas which are within the antenna ring (see Fig. 5.3), the

neighbourhood pairwise correlation coefficient is calculated as

ri, j_l =
∑

α
n=1 Xi(n)X j(n)√

∑
α
n=1[Xi(n)]2 ∑

α
n=1[X j(n)]2

(5.19)

where Xi(n) = Si,i(n+ τi,i_l) and X j(n) = S j, j(n+ τ j, j_l) with j = i+1, are shifted signals

at location l from the ith and (i+1)th antenna, respectively, where i = 1,..., 23; 25,..., 47,

are antennas 1 to 23 on ring 1 and antennas 25 to 47 on ring 2.

For signals received at end antennas (see Fig. 5.3), including T24 and T48, their

neighbourhood pairwise correlation is calculated also following (5.19), but with i = 24, j =

1, and i = 48, j = 25, respectively. Accordingly, the neighbourhood pairwise correlation
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coefficients vector for Pl for the lth pixel in MSD is composed of A elements as following

Pl = [r1,2_l r2,3_l ... rA/2,1_l rA/2+1,A/2+2_l ... rA−1,A_l rA,A/2−1_l]. (5.20)

Considering ri, j_l is in the range of [-1, 1], all ri, j_l are linearly normalised to the range of

[0, 1], avoiding negative coefficients generating a high weight

Pl_Nor =
(Pl +1)

2
. (5.21)

Let Pl_Sort be the sorted Pl_Nor in a descending order and Ri_l be the sorted coefficients,

i = 1,2, . . . ,A. Therefore,

Pl_Sort = [R1_l R2_l ... RA_l] (5.22)

where R1_l > R2_l > ... > RA_l .

Step 3: Adaptive Combining. To exploit the extra useful information contained in

neighbourhood multistatic signals, the high-quality (indicated by high Ri_l) transceiver-

related monostatic and neighbouring multistatic signals are combined. Ri_l measures

the degree of coherence between time-shifted signals. High correlation between signals

received from neighbouring antenna pairs is expected at tumour locations, considering all

time-shifted signals are a broadened version of the same input pulse, after reflected from

the same strong scatterer. Thus, a larger Ri_l indicates that this position could have a higher

possibility of being the tumour.

The intensity of location l is represented by Il , which can be obtained through the

combining of selected signals.

Il =
α

∑
n=1

[w fl ·Suml(n)]2 (5.23)
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where w fl is weight factor given by

w fl =
A/2

∏
i=1

Ri_l (5.24)

equals to the product of the first half elements of Pl_Sort , and Suml(n) is the sum of

monostatic and neighbouring multistatic signals, corresponding to those selected largest

coefficients, which is given by

Suml(n) =
A/2

∑
i=1

[Si,i(n+ τi,i_l)+Si, j(n+ τi, j_l)] (5.25)

where j = i+1. Provided that the selected high-quality signals are S1,1(n),S3,3(n), ...,S5,5(n),

then Suml(n) = [S1,1(n+τ1,1_l)+S1,2(n+τ1,2_l)+S3,3(n+τ3,3_l)+S3,4(n+τ3,4_l)+ ...+

S5,5(n+τ5,5_l)+S5,6(n+τ5,6_l)]. Simulation results showed that selecting the half number

of signals with the highest coefficients is sufficient to offer effective performance in most

if not all cases. This procedure is repeated for each l, and L loops are needed as shown in

Pseudocode 5.4.

Pseudocode 5.4 Calculate the intensity of pixel Il (l=1,2,...,L) with MSD

1: INPUT: Si,i(n),Si, j(n), i= 1, ...,A, j = i+1.% 2A input signals
2: Obtain Si, j(n+τi, j_l), where n= 1, . . . ,α % Time-shifting and windowing of signals
3: for l = 1 to L do % lth location of L
4: for i = 1 to A do % ith monostatic signal of A
5: ri, j_l = corr[Xi(n)X j(n)]( j = i+1)% Correlation coefficient (5.19)
6: Pl(i) = ri, j_l % Coefficient vector (5.20)
7: end for i % End of iteration of signals
8: Pl_Nor = (Pl +1)/2 % Normalised vector (5.21)
9: Pl_Sort = [R1_l R2_l ... RA_l] % Sorted vector (5.22)

10: w fl = ∏
A/2
i=1 Ri_l % Weight factor at l (5.24)

11: Suml(n) = ∑
A/2
i=1 [Si,i(n+ τi,i_l)

+Si, j(n+ τi, j_l)] % Sum of selected signals (5.25)
12: Il = ∑

α
n=1[w fl ·Suml(n)]2 % Intensity at l (5.23)

13: end for l % End of iteration of pixels
14: OUTPUT: I1, I2, ..., IL % Intensity of all pixels

Observing line 1 of Pseudocode 5.4, both monostatic and neighbourhood multistatic

signals are used in MSD, which enables the exploration of richness of signals via different

propagation routes. In line 5, the correlation coefficients ri, j_l between shifted neighbouring
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monostatic signals are used as a quality indicator. A higher ri, j_l indicates that the position

l has a higher chance of being the tumour, considering these two time-shifted signals can

be both dominated by the reflection from the same strong scatterer, assuming time-shifting

can well compensate the phase of backscattered signals. Due to the largest dielectric

property of tumour among all comparably sized breast tissues, the weighting which is

based on such a quality evaluation can localise the tumour with a high chance in most if not

all cases. After the quality evaluation of propagation channels, high ri, j_l and related both

monostatic and neighbourhood multistatic signals are combined to calculate the intensity

of pixel l, corresponding to the line 10, 11, and 12, respectively.

The quality measurement and selective combining of monostatic and neighbouring

multistatic signals are concurrently used in MSD, which implements an adaptive selection

of those most usable signals. In MSD, only signals with high chance of possessing effective

tumour response can contribute to the weight factor, and only high-quality propagation

channel-related multistatic signals would be used for the combining of signals, which

yields a flexible beamforming. The robustness of MSD is demonstrated under a variety of

challenging scenarios, where non-perfect artefact removal, along with multi-density breast

models are considered, and these are presented in the next section.

5.4 Imaging Results and Discussion

For completeness, the proposed algorithms are evaluated in ten scenarios (S1 to S10), in

which breast models with both homogeneous and heterogeneous structures, different den-

sity classifications, and varied tumour positions are considered. For fair cross-comparisons,

the same conditions used for RAR are applied.

Both ideal and the entropy-based artefact removal methods are applied to assess algo-

rithm performance, considering the serious impact of artefact signals. The entropy-based

artefact removal method is selected since it introduces zero distortion to tumour response,

does not require any prior information, and has high computational efficiency [206, 207].

This also allows the direct performance comparison between RAR and the newly proposed

techniques.
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All reconstructed images were normalised to the maximum intensity value of the 3-D

volume. Same datasets were applied for all algorithms. To quantify algorithm performance,

two metrics were applied, which are signal-to-clutter ratio (SCR) and signal-to-mean ratio

(SMR) [50].

5.4.1 Breast of Medium Type A and B with Ideal Artefact Removal

Fig. 5.5 S1: (a) 2-D slice of breast model with medium type (MT) A. (b)-(d) Imaging
results of LCE, DNPC, and MSD with ideal artefact removal. Tumour’s actual position is
indicated by dotted circles.

To assess the best performance of algorithm and serve as benchmark, ideal artefact removal

and sparse breast with medium type (MT) A was used in S1. As shown in Fig. 5.5(a), the

malignant tumour (white area) is constructed as a sphere with a diameter of 10 mm. In this

study, the focus is placed on different tumour sizes and positions, which represent different

orders of magnitude of backscattered tumour response, thereby enabling the performance

evaluation of imaging algorithm. It is aware that tumour can have different shapes and

properties (benign or malignant), and these factors will be considered in future work.

The imaging results offered by LCE, DNPC, and MSD algorithms are shown in

Fig. 5.5(b) to (d), which represent a distribution of energy resulted from each voxel within
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the breast model. The peak intensity of the reconstructed image (white area) is regarded

as the tumour position, which has the strongest reflection among all heterogeneous breast

tissues with a comparable size [40]. For clarity, the actual tumour position in constructed

images is indicated by dotted circles [see Fig. 5.5(b)-(d)]. It can be seen that in this case,

the embedded tumour is clearly identified and accurately localised by all three methods.

In S2 (see Fig. 5.6), the same ideal artefact removal is applied as in S1, but the

breast model has been changed from single-layer homogeneous fatty (MT A) to the three-

layer heterogeneous fatty (MT B). All three methods offered images with correct tumour

localisation. However, compared with S1, the image resolution decreased due to the

increased heterogeneity. Specifically, the SCR of LCE reduced from 11.8 to 9.2 dB (see

Table 5.1), whereas for DNPC, this value reduced from 13.6 to 7.5 dB.

Fig. 5.6 S2: (a) 2-D slice of breast model with MT B. (b)-(d) Imaging results of LCE,
DNPC, and MSD with ideal artefact removal. Tumour’s actual position is indicated by
dotted circles.
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Table 5.1 SCR and SMR of LCE, DNPC, and MSD algorithms in ten scenarios (S1 to
S10). The ten scenarios correspond to Figs. 5.5 to 5.14(b)-(d). For comparison, the results
of RAR algorithm are included, corresponding to Figs. 4.7(f) and 4.8(f), Figs. 4.10(f)
to 4.17(f). "Ave" abbreviates for average, which is the arithmetic mean of SCR and SMR
values in ten different scenarios. Best results of each case are highlighted in Bold.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Ave

SCR(dB)

RAR 14.0 8.5 5.3 4.8 4.0 3.9 0.5 0.1 0.1 -0.3 4.1
LCE 11.8 9.2 6.7 5.1 3.8 0.5 -4.7 -1.0 -1.9 -1.0 2.9
DNPC 13.6 7.5 6.5 4.0 3.9 4.0 1.1 1.2 0.3 -0.3 4.2
MSD 10.5 6.4 6.9 6.5 4.4 3.1 1.9 2.9 1.2 -1.3 4.3

SMR(dB)

RAR 21.0 20.7 20.1 17.1 14.3 18.2 11.4 16.0 17.3 9.2 16.5
LCE 20.8 20.7 19.6 16.0 15.7 14.1 9.8 14.4 15.4 15.3 16.2
DNPC 21.0 20.6 20.4 17.3 15.3 18.4 12.9 17.6 18.4 11.5 17.3
MSD 20.8 20.6 20.5 19.2 19.5 20.5 17.8 17.3 18.4 15.6 19.0

5.4.2 Breast of Medium Type B with Entropy Artefact Removal

Fig. 5.7 S3: (a) 2-D slice of breast model with MT B. (b)-(d) Imaging results of LCE,
DNPC, and MSD with entropy artefact removal. Tumour’s actual position is indicated by
dotted circles.

In S3 (see Fig. 5.7), the same breast model with S2 is used, but the entropy-based artefact

removal rather than the ideal method is applied. As previously shown in Chapter 4.5.3, the
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residual artefact signals seriously degraded the performance of all existing data-independent

algorithms, making all of them failed to identify the tumour (see Fig. 4.10). Observing

Fig. 5.7(b)-(d), all three newly proposed algorithms showed encouraging results, the tumour

was accurately positioned and clearly identified. The SCR of LCE, DNPC, and MSD

algorithms are 6.7, 6.5, and 6.9 dB, respectively. The positive SCR value indicates the

correct localisation of tumour, which proves their strong artefact resistance than existing

algorithms, including DAS, DMAS, MWDAS, and FDAS, all of which completely failed

to localise the tumour [see Fig. 5.7(b)-(e)].

5.4.3 Breast of Medium Type C with Entropy Artefact Removal

Fig. 5.8 S4: (a) 2-D slice of breast model with MT C. (b)-(d) Imaging results of LCE,
DNPC, and MSD with ideal artefact removal. Tumour’s actual position is indicated by
dotted circles.

The performance of these techniques in breast models with fibro-glandular tissue was

investigated in S4 (see Fig. 5.8). To independently investigate the effect brought by

glandular tissues, S4 assumes that all artefact signals have been ideally removed. Compared

with S2 (see Fig. 5.6), which did not consider the glandular tissue, it can be seen that

the performance of three methods suffered due to the signal attenuation and dispersion



136

introduced by glandular tissues. In spite of reduced image sharpness, the three methods

located the tumour with a high accuracy, whose peak intensity precisely corresponded to

the dotted circle. Specifically, the decrease of SCR from S2 to S4 of LCE, DNPC, and

MSD are 4.1, 2.5, and 0.1 dB, respectively. The smallest degradation was observed in

MSD, which demonstrated the strength of utilising multiple spatial diversity. The best

clutter rejection and overall image resolution are achieved by MSD in this case, which has

the highest SCR of 6.5 dB, and SMR of 19.5 dB. In comparison, a small portion of clutter

can be observed in the result of DNPC [see Fig. 5.8(c)] at position (y,z) = (120, 95) (mm),

which has a SCR of 4.0 dB and is the smallest value among all algorithms in this scenario.

Fig. 5.9 S5: (a) 2-D slice of breast model with MT C and a tumour in fatty tissue. (b)-(d)
Imaging results of LCE, DNPC, and MSD with entropy artefact removal. Tumour’s actual
position is indicated by dotted circles.

In S5 (see Fig. 5.9), the same breast model in S4 but with the entropy-based artefact

removal method was considered. In this case, both glandular response and residual

artefact signal can have adverse effect on tumour detection. Despite the challenge, fairly

clear images with correct tumour localisation were provided by all three techniques,

which proved their capability of distinguishing the scattering from tumour and that from

glandular tissues. However, this comes with further increased clutter in the constructed
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images. Compared with S4, the SCR of LCE, DNPC, and MSD decreased from 5.1 to 3.8,

4.0 to 3.9, 6.5 to 4.4 dB, respectively.

Fig. 5.10 S6: (a) 2-D slice of breast model with MT C and a tumour close to glandular
tissue. (b)-(d) Imaging results of LCE, DNPC, and MSD with entropy artefact removal.
Tumour’s actual position is indicated by dotted circles.

Since a high percentage of breast cancers are invasive ductal carcinomas, which start at

fibro-glandular regions [106], it is worth testing algorithm in cases considering tumours

are very close to or grow from the glandular tissues. This new case is simulated in S6 (see

Fig. 5.10), which can be challenging for algorithm to discriminate the easily overlapped

tumour and glandular responses. Comparing Fig. 5.10(b) with Fig. 5.9(b), the performance

of LCE deteriorated drastically. In this case, the backscattered signal from tumour and

glandular tissues overlap seriously due to the small spacing, the local-region coherence-

based reference waveform used in LCE can be a mixture of backscattered signals from

heterogeneous tissues, resulting in serious clutter around the tumour. In contrast, the

neighbourhood pairwise correlation-based weighting factor used in DNPC offers a much

more improved clutter rejection [see Fig. 5.10(c)].

This scenario clearly illustrates the significance of properly designing the reference

waveform. LCE uses the average of local signals as the reference signal to calculate the

cross-correlation coefficients. When there is residual artefact, the average of signals could
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be dominated by the artefact signal due to its much higher order of magnitudes than tumour

response. With this distorted reference signal, which is no longer dominated by tumour

response, the calculated weights at tumour positions could be comparable or even smaller

than other positions, resulting in tumour location bias. In comparison, all the reference

signal used for calculating neighbourhood pairwise correlation for RAR, DNPC, and MSD

is the actually received signal at each antenna. This reference signal represents a single

propagation path between the target and the antenna, which is independent from other

antennas, thus it is less likely to be deformed. After calculating the correlation based on

this reference signal with high robustness, high weights are more likely to be produced at

tumour positions.

The imaging results confirmed the above analysis. For LCE, the SCR is 0.5 dB, whereas

this value of DNPC and MSD are 4.0 and 3.1 dB, which offer much improved performance

than LCE. This illustrates the stability of DNPC and MSD. For DNPC, the neighbourhood

pairwise correlation measurement is more robust than the local group coherence used

in LCE. Also its dynamic weighting can further suppress clutter signals. The selective

combining of signals in MSD ensures the robustness and reduce the sensitivity to data

abnormality. Furthermore, the adoption of multiple spatial diversity is achieved through

exploiting those applicable neighbouring multistatic signals.
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5.4.4 Breast of Medium Type D with Entropy Artefact Removal

Fig. 5.11 S7: (a) 2-D slice of breast model with MT D and an off-centre tumour. (b)-(d)
Imaging results of LCE, DNPC, and MSD with entropy artefact removal. Tumour’s actual
position is indicated by dotted circles.

The breast model with increased glandular tissues is considered in S7 [see Fig. 5.11(a)].

The percentage of glandular tissue in previous breast models is below 25%, whereas

for this MT D, 25% to 50% among all are glandular tissues, which belongs to a denser

category. The imaging results in S7 further verified the advantage of DNPC and MSD over

LCE. Observing Fig. 5.11(b), LCE failed to localise the tumour, whereas DNPC and MSD

still positioned the tumour properly [see Fig. 5.11(c)-(d)]. This scenario also showed the

advantage of MSD over DNPC in terms of enhanced image readability. Although both

DNPC and MSD identified the tumour, the image offered by MSD is clearer than that

offered by DNPC. The three strong clutters in the result of DNPC [see Fig. 5.11(c)] at

position (y,z) = (90, 55), (y,z) = (100, 95), (y,z) = (130, 60) (mm) are all diminished in the

result offered by MSD [see Fig. 5.11(d)]. This is greatly desired in practice, which can

help radiologists make more informed decision of tumour identification.
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Fig. 5.12 S8: (a) 2-D slice of breast model with MT D and a tumour close to glandular
tissues. (b)-(d) Imaging results of LCE, DNPC, and MSD with entropy artefact removal.
Tumour’s actual position is indicated by dotted circles.

In S8 (see Fig. 5.12), the tumour is moved closer to glandular tissues to mimic the

invasive ductal carcinomas. It is noted that the localisation accuracy of these algorithms

decreases when the tumour is surrounded by scattered glandular tissues. These spo-

radic glandular tissues considerably reduces the uniformity between different propagation

channels, which leads to a huge mismatch between the assumed uniform and actually

non-uniform channels. This can be observed by comparing the results of S6 (see Fig. 5.10)

with that of S8 (see Fig. 5.12). In both cases, the tumour is located in the centre of breast,

but with different distributions of the glandular tissues. From S6 to S8, the SCR of LCE,

DNPC, and MSD dropped from 0.5 to -1.0, 4.0 to 1.2, 3.1 to 2.9 dB, respectively. Although

all three imaging results do not exactly correspond to the tumour position, the peak of the

reconstructed image by these algorithms are not far from the tumour, which can be used as

a reference for tentative diagnosis.
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5.4.5 Breast of Medium Type E and F with Entropy Artefact Re-

moval

Fig. 5.13 S9: (a) 2-D slice of breast model with MT E and a tumour in glandular tissues.
(b)-(d) Imaging results of LCE, DNPC, and MSD with entropy artefact removal. Tumour’s
actual position is indicated by dotted circles.

In S9, the breast with MT E is considered [see Fig. 5.13(a)]. Breast with MT E represents

the severely dense category, and the percentage of glandular tissue in breast is between 50%

to 75%. Without doubt, much more attenuation of backscattered signals is expected in this

type of breast. Observing the results shown in Fig. 5.13(c)-(d), in spite of relatively clear

images, the SCR of all three methods further decreased. From S8 to S9, a reduction of SCR

with 0.8, 0.9, and 1.7 dB of the three methods is observed. Interestingly, all three images

have strong clutters around the correct tumour position [see Fig. 5.13(b)-(d)], which is

outside the dotted circle. But only the peak in the image offered by MSD corresponding to

the correct tumour position, which explains its highest SCR of 1.2 dB. This again confirms

the superiority of MSD algorithm over its monostatic counterparts.
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Fig. 5.14 S10: (a) 2-D slice of breast model with MT F and a tumour in glandular tissues.
(b)-(d) Imaging results of LCE, DNPC, and MSD with entropy artefact removal. Tumour’s
actual position is indicated by dotted circles.

In S10 (see Fig. 5.14), the breast with MT F is applied, in which the glandular tissue

percentage can be over 75% among all tissues. For this extremely dense breast, none of the

proposed algorithms is able to position the tumour correctly. In this case, the large mass

fibro-glandular tissue could generate the backscattering which is as strong as that from the

tumour. Additionally, the seriously damaged uniformity of propagation channel makes

it challenging to identify the tumour correctly solely based on the reflected energy. The

difference among propagation channels, i.e., from transmitter to a scattering point in breast

and back to receiver, can be caused by the variance of skin thickness and the compositions

of heterogeneous tissues along each path, and the later one is the key factor. In sparse

breasts which are mainly composed of fatty tissues, the propagation channels are relatively

uniform and thus an assumed average propagation velocity could closely represent the

characteristics of actual propagation channels. With significantly increased heterogeneity

mainly caused by fibro-glandular tissues, however, this assumption used in the imaging

algorithm no long holds, rendering the malfunction of these techniques. To address this
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challenge, potential solutions such as contrast agent-based tumour detection [106, 209],

and morphology-dependent lesion differentiation [105] could be considered.

5.5 Comparison and Analysis of Proposed Algorithms

5.5.1 Algorithm Comparison

In this section, the difference between proposed algorithms are analysed and compared.

For clarity, the first proposed RAR algorithm is used as a benchmark.

For LCE algorithm, its first difference from RAR is the way of generating weighting

factors. Specifically, the selected reference signal for calculating correlation coefficient

is different. RAR uses the neighbourhood pairwise correlation, whereas LCE employs a

local grouping averaged signal. Secondly, LCE utilises a two-step maximum combining,

in which both the most usable signals and weights are selected based on their correlation

coefficients, whereas RAR only employs one-step maximum combining which only selects

highest weights, and uses all shifted signals for calculating the intensity of pixels.

The first difference between DNPC and RAR is the modified calculation of neighbour-

hood pairwise correlation. For each antenna ring, the correlation is calculated separately in

DNPC. The new correlation between signals received at end-to-end antenna elements are

also included for producing consistent weighting coefficients. Additionally, the dynamic

weighting of signals for effective combining is applied in DNPC, whose efficacy and

superiority were confirmed by simulation results.

As for MSD, its first difference from RAR is its signal quality evaluation procedure

for selective combining. This ensures only high-quality signals that possess a higher

portion of effective tumour response can be used for computing the intensity of pixel.

Furthermore, besides monostatic signals, extra signals which bear useful tumour response

collected through multistatic method are exploited. These two extra modules in MSD

secures the effectiveness and desirable detectability, which is particularly effective for

tumour detection in severely dense breasts.
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5.5.2 Performance Analysis

SCR and SMR statistics of algorithms are summarised in Table 5.1. For comparison, the

performance statistics of RAR are also listed.

Based on the calculated average in ten different scenarios, MSD performs best among

all, which has the highest SCR and SMR on average. This proves the effectiveness of using

multiple spatial diversity of signals. Despite that LCE provides decent tumour detectability

in S1 to S6, its imaging performance deteriorate seriously for dense breasts, which results

in its smallest SCR and SMR.

DNPC method is superior to RAR algorithm in general. Specially, in eight out of ten

scenarios, the SMR of DNPC outperforms RAR (S3 to S10); and in five out of ten scenarios

(S3, S6 to S9), the SCR of DNPC is higher than that of RAR. With an improved SMR, the

non-tumour area is overshadowed by DNPC, thereby highlighting the tumour and reducing

the chance of misidentification. This confirms the efficacy of dynamic weighting, which

strengthens the overall image readability.

For fairness, it should be mentioned that the improved performance of DNPC and MSD

over RAR is at the expense of increased algorithm complexity. For DNPC, this is caused

by the additional dynamic weighting of signals. For MSD, from the shifting of multistatic

signals to signal quality evaluation and combining, more processing steps than RAR are

required. Therefore, depending on the specific application scenario, DNPC and MSD can

be used in cases with high-robustness requirement, whereas RAR can be applied in cases

call for fast image reconstruction or with limited computing power.

5.6 Conclusion

In this chapter, three new algorithms, namely, LCE, DNPC, and MSD, are proposed. The

examination of these algorithms under a variety of challenging scenarios is conducted,

which is followed by discussion and analysis. Strong artefact resistance of the proposed

algorithms over existing data-independent methods is observed. In these proposed algo-

rithms, both monostatic and multistatic signal acquisition, static and dynamic weighting,
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selective and non-selective signal combining are investigated. RAR offers an optimum

trade-off between performance and complexity. The best performance was achieved by

MSD, which exploited selective combining of neighbouring multisatic signals, and offered

strong robustness even in heterogeneously dense breasts.

Besides robustness, the computational efficiency of image reconstruction algorithms is

of crucial importance, as it can significantly reduce the processing time, and this will be

studied in next chapter.



Chapter 6

Accelerated Image Reconstruction

Mechanisms

6.1 Introduction

Motivated by the high complexity of UWB imaging algorithms, the accelerated image

reconstruction (AIR) mechanism for UWB breast cancer detection is investigated. Two

AIR schemes are proposed in this chapter, which is organised as follows. Literature

review on fast image forming techniques are presented in Section 6.2. In section 6.3, a

redundancy elimination (RE) scheme is proposed, of which the effectiveness is validated

by theoretical analysis and simulations. In section 6.4, a novel annulus predication (AP)

scheme is proposed. Extensive analysis and simulation results demonstrate the strong

accelerating capability of AP. The performance of imaging algorithms with and without

AP is examined, and a remarkable speedup is offered by AP at the expense of graceful

performance degradation. A comparative analysis of the proposed AIR schemes is provided

in Section 6.5, which is followed by the conclusions in Section 6.6.

6.2 Literature Review

Besides improving the robustness of UWB detection and imaging techniques, another

obstacle need to be overcome is computational complexity. Fast image reconstruction is
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desired for almost all applications, and is particularly critical for scenarios which require

real-time results [210]. Several factors can restrict the speed of UWB imaging, including

the size of imaging scene, the number of collected signals, sampling number of signals, and

image resolution requirement. To reduce the processing time of image reconstruction, two

strategies can be employed: 1) hardware enhancement, such as the use of high performance

computing (HPC) or graphics processing units (GPUs); and 2) introduction of accelerated

calculation approaches. The second strategy is the focus of this study.

Fast image reconstruction has attracted much attention and various techniques have

been developed, which can be divided into quantitative and qualitative categories. Quanti-

tative imaging is based on the inverse scattering, through which the retrieval of geometry

and/or constitutive parameters of the target can be achieved. To reduce computational

burden, a range of strategies have been exploited. For example, [112] proposed a fast

multipole method (FMM), which accelerated the volumetric target reconstruction without

compromising accuracy. In FMM, the matrix inversion was not required, and the calcula-

tion speed was improved by 40 times. As for qualitative UWB SAR imaging, the main

complexity stems from matrix–vector multiplications which is inevitable in compressing

sensing (CS) theory. This multiplication is both time-consuming and requires a large

memory for variable storage. To reduce complexity, a segmented reconstruction method

for CS-based SAR is proposed in [211]. This method splits the large-scale imaging area

into small pieces and then combine all pieces back for final reconstruction. In spite of

improved computational and memory storage efficiency, this approach may lead to serious

reconstruction error with the increased number of segmented pieces. Another way to speed

up the matrix-vector multiplication is through the non-uniform fast Fourier transform

(NUFFT) as presented in [212] and [213], whose efficacy of NUFFT for fast and accurate

imaging was verified, while restricting the introduced error within a low level. Another

promising method for fast imaging was realised by the employment of uniform rectangular

array (URA) [213]. Both theoretical analysis and experimental results for TWI application

demonstrated the validity of URA, which offered a 60 times speed up than the approach

without using URA.
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However, none of these acceleration techniques are designed for UWB breast imaging,

rendering the application of these methods inappropriate or infeasible. Even the URA

method which is developed for UWB TWI is inapplicable for UWB breast imaging,

and there are three reasons. First, URA is only suitable for uniform rectangular planar

antenna arrays. The planar antenna, however, has limited tumour detection capability

compared with the circular antenna array, which has been studied and reported in [197].

Second, the assumption made in URA that the spacing of pixel should be equal to that

of antenna array elements cannot be met in UWB breast imaging. This is due to the

widely different resolution requirements in TWI and breast imaging. For TWI, is normally

human body and centimetre-level spacing of image pixels is sufficient, whereas for breast

cancer detection, target is the early-stage tumour and a millimetre imaging resolution is a

minimum. Third, URA only considered the cross-range imaging resolution, whereas the

down-range resolution is not taken into account, which further limited its practicability.

Therefore, novel accelerating techniques for UWB breast cancer imaging are needed. In

this study, two schemes for accelerating data-independent UWB breast imaging algorithms

are proposed, namely, redundancy elimination (RE) and annulus prediction (AP), and their

rationale and details are introduced in following sections.

6.3 Redundancy Elimination (RE) for Fast Computation

6.3.1 Complexity Bottleneck

UWB imaging is a pixel-based method, which is opposed to the boundary extraction

imaging techniques such as the one introduced in [214]. Therefore, the intensity of each

pixel within imaging area need to be calculated. For clear target identification, high-

resolution images have been favourable as a large number of pixels of the reconstructed

image is vital for reliable distinction between target and its surroundings [213]. This is

because certain target may only occupy several cross-range cells or be confined to a single

resolution cell [215]. Hence, the complexity of algorithm can be gravely large, leading to

a lengthy image reconstruction process.
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Table 6.1 Time complexity of DAS imaging algorithm.

Number of signals (A) Signal sampling points (K) Pixel number (L) Complexity
4.8e1 1.5e3 6.4e6 O(AKL)

Fig. 6.1 Breast model with two concentric rings of 24 antennas (indicated by solid dots)
surrounding the breast. The categorised tissue types are represented by different values:
fat-high (3.1), fat-median (3.2), fat-low (3.3), fibro-glandular (FG)-high (1.1), FG-median
(1.2), FG-low (1.3), and skin (-2). The outer ring of antennas is at x = 80 mm (antennas 1
to 24), and the inner ring (antennas 25 to 48) is at x = 130 mm, in which the position of
both rings are related to the chest wall. The same yz plane coordinates for both rings of
antennas are: (39, 101), (50, 120), (63, 140), (82, 153), (100, 158), (116, 159), (131, 158),
(147, 154), (162, 145), (174, 132), (185, 116), (192, 97), (189, 74), (178, 56), (166, 47),
(152, 39), (135, 34), (119, 32), (103, 31), (84, 38), (71, 44), (59, 55), (43, 69), and (37, 83).

The complexity of algorithm is measured by the number of arithmetic operations, which

is determined by different aspects of inputs. For UWB imaging algorithm, three aspects

which determine the complexity are the number of signals, signal sampling points, and

the number of pixels. The number of signals varies depending on the number of antennas,

and the selected signal collection method, which can be monostatic or multistatic. The

signal sampling points decide the arithmetic number for each signal, and the pixel number

is determined by the size of imaging area and required resolution. Take the monostatic

DAS algorithm as an example, its asymptotic complexity is O(AKL), in which A is the

number of signals, K is signal sampling points, and L is pixel number of imaging area.

The value s of A, K, and L are summarised in Table 6.1, which is for imaging the breast

model shown in Fig. 6.1. It is noted that pixel number L is the decisive one among all three
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factors, which is three orders of magnitude higher than signal sampling points K, and five

orders of magnitude higher than the signal number A. Accordingly, exploring an efficient

way to reduce the complexity of pixel-related operations can significantly alleviate the

overall computational burden.

6.3.2 Redundancy Classification

As analysed in Chapter 4.7, all UWB data-independent imaging algorithms share the

same time-shifting module for signal phase compensation. This module calculates the

propagation time delay between each pixel and antenna based on their space coordinates,

then the signal is shifted by the estimated time delay for each pixel sequentially, and the

process is illustrated in Fig. 6.2.

Assuming a monostatic signal collection is applied, thus A signals can be collected

from A antennas. Let Si(n) be the ith received signal from antenna Ti, where n = 1,2, ...,K,

K is the number of signal sampling points. Let L be the total number of pixel of imaging

area [see Fig. 6.2(a)]. For clear illustration, an enlargement of partial imaging area with

numbered pixels is provided in Fig. 6.2(b). The estimated propagation time delay for

the ith antenna at the lth pixel is expressed as τi_l , which is the two-way travel time

from the ith antenna to pixel l. As shown in Fig. 6.2(b), for T1, corresponding time

delays include τ1_1,τ1_2, ...,τ1_20, whereas for T2, corresponding time delays include

τ2_1,τ2_2, ...,τ2_20. Propagation distance is calculated based on their coordinates, and the

propagation speed of signal is calculated under the assumption that the medium has a

Fig. 6.2 Propagation time delay calculation between antenna and pixel in UWB data-
independent imaging algorithms. (a) Antenna T1, T2 and imaging area composed of L
pixels. (b) Enlargement of partial imaging area of (a) with numbered pixels.
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Fig. 6.3 Classification of redundancies in non-optimised UWB data-independent algo-
rithms for obtaining shifted signals between antenna-pixel pairs. (a) Type I: Repetitive
calculation of time delays. (b) Type II: Repetitive operation of time shifting signals.

constant relative permittivity. Therefore, AL time delays and corresponding time-shifted

signals are needed for all pixel-antenna pairs. As for the example shown in Table 6.1,

this involves 3.1e8 calculations, which is the product of A and L. This is a huge number

of computations, which can be extremely time- and resource-consuming. However, it is

observed that plentiful redundant operations exist in this process, which can be classified

into two categories (see Fig. 6.3).

The first type of redundancy (Type I) is the repetitive calculation of time delays. This

is performed for each antenna, and for those antenna-pixel pairs with the same relative

distance. As shown in Fig. 6.3(a), for antenna T1, all pixels that have a same distance to T1

will be assigned a same time delay. All pixels are equally spaced, since pixel 1, T1, and

pixel 3 are equally space along the horizontal direction, thus time delay τ1_1 and τ1_3, τ1_6

and τ1_8 are exactly the same. τ1_10, τ1_14, and τ1_18 are also equivalent, because these

three pixels have a same distance to T1, which form the circle indicated by a dotted arc.

Additionally, because time delay is determined by the relative distance between antenna
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and pixel, there can be numerous time delays with same value between different antennas.

This can be seen in the right-hand sub-figure of Fig. 6.3(a). τ1_1 and τ2_3, τ1_13 and τ2_15

are exactly the same due to their same relevant spacing. Since all time delays are needed

for time-shifting signals, these repeated computations can cause a huge waste and slow the

computing process.

The second type of redundancy (Type II) is the actual operation of time-shifting of each

signal by the estimated time delay. As shown in Fig. 6.3(b), for pixel 10, 14, and 18, due

to their same time delay, for the signal S1 received at T1, the output of time-shifted signals

at these three pixels, namely, S1(n+ τ1_10), S1(n+ τ1_14), S1(n+ τ1_18), are exactly the

same. Therefore, these three time-shifting operations are repeated.

Type II redundancy can consume more computing power than Type I. In Type I

redundancy, to calculate time delay τ , only the distance D between two points and estimated

velocity v are needed, then the time delay can be obtained through basic arithmetic

operations such as summation and multiplication, and this can be illustrated as

τ = D/v =
√
(x1 − x2)2 +(y1 − y2)2 +(z1 − z2)2/v (6.1)

where (x1,y1,z1) and (x2,y2,z2) are the coordinates of antenna and pixel, respectively. v

is the estimated average propagation velocity in breast, and it can be calculated as [192]

v = c0/
√

εr_ave, where c0 is the speed of light and εr_ave is the estimated average dielectric

property of breast through an appropriate patient-specific dielectric property estimation

algorithm such as the one developed by Winters et al. [205]. Without distinguishing

between addition and multiplication, the number of arithmetic operations in (6.1) is 8, in

which square root is regarded as 1 basic operation. In Type II redundancy, the time-shifted

signal Si(n+ τi_l) can be obtained through a discrete filter. The filtering process adds a

single delay to the input signal, and the signal is shifted by the number of samples. This

process can be expressed as

Si(n+ τi_l) = filter[Si(n),τi_l] (6.2)
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which has an asymptotic complexity of O(FK2), where K = 1500 is signal sampling points,

and F is the filter length. Obviously, Type II has a much higher complexity than Type I

and more execution time is expected.

Therefore, to improve computational efficiency, a new redundancy elimination (RE)

mechanism to accelerate image formation is proposed.

6.3.3 Redundancy Elimination

The proposed RE scheme employs an uniform computing and indexing of time-shifted

signals for all antenna-pixel pairs, which avoids both repetitive time delay calculation and

the operation of time-shifting signals. Due to the enormous quantity of pixels, the overall

running time can be effectively shortened. Let l be the lth pixel of L, Si(n) be the ith signal

Pseudocode 6.5 Calculate time-shifted signals without RE

1: INPUT: Si(n), i = 1, ...,A % A input signals
2: for i = 1 to A do % ith signal of A
3: for l = 1 to L do % lth pixel of L
4: Calculate τi_l % Calculate time delay for current antenna-pixel pair
5: Shift Si(n) by τi_l % Obtain shifted signal
6: Store Si(n+ τi_l) % Store shifted signal
7: end for l % End of iteration of pixels
8: end for i % End of iteration of signals
9: OUTPUT: Si(n+ τi_l), i = 1,2,% Shifted signal for all antenna-pixel pairs

...,A, l = 1,2, ...,L

received from the ith antenna of A, where n = 1,2, ...,K and K is signal sampling points,

τi_l be the time delay between the ith antenna and l, and Si(n+ τi_l) be the time-shifted

signal for the ith signal at l. To calculate time-shifted signals for all antenna-pixel pairs, the

implementation in methods with and without RE are presented in Pseudocode 6.5 and 6.6,

respectively.

RE introduces a repetition-eliminating module which completely removes the two types

of redundancies. Observing steps 5 to 11 in Pseudocode 6.6, for a certain signal Si(n), the

time delay calculation and corresponding shifting signal operation will only be performed

once throughout the whole computation. For a time delay, after comparing it with already

calculated time delays, if the time delay exist, then corresponding time-shifted signal
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Pseudocode 6.6 Calculate time-shifted signals with RE

1: INPUT: Si(n), i = 1, ...,A % A input signals
2: for i = 1 to A do % ith signal of A
3: for l = 1 to L do % lth pixel of L
4: Calculate τi_l % Calculate time delay

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5: if τi_l exist then % If this is an existing time delay
6: Copy shifted signal % Copy corresponding shifted signal
7: end if % End of if
8: if no τi_l exists then % If this is a new time delay
9: Shift Si(n) by τi_l % Obtain shifted signal

10: Store τi_l & Si(n+ τi_l)% Store time delay and corresponding shifted signal
11: end if % End of if

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12: end for l % End of iteration of pixels
13: end for i % End of iteration of signals
14: OUTPUT: Si(n+ τi_l), i = 1,2,% Shifted signal for all antenna-pixel pairs

...,A, l = 1,2, ...,L

will be indexed and copied. Only for the new time delays, corresponding shifted signals

will be calculated. The comparison between the time delay of current pixel and existing

time delays can be implemented by calculating their difference. If there is the outcome

is zero, which means that current time delay already exists, then corresponding shifted

signal will be copied and stored for this pixel. It is admitted that this indexing process

will introduce new calculations, but it avoids a huge number of operations of shifting

signals [see Fig. 6.3(b)]. For an imaging region composed of 13,000 pixels, simulation

results showed the number of repeated time delays is 8,450, occupying 65% among all

calculations. Considering the complexity of time-shifting signal as illustrated in (6.2), the

extra complexity introduced by indexing is minor, thereby reducing the overall running

time. All procedures involved in RE (Pseudocode 6.6) are fully implemented, and its

effectiveness is proved by the simulation results shown in next section.

6.3.4 Simulation Results and Analysis

In this section, the following simulation parameters are used to assess the performance

of RE: A = 48 and K = 1500. The methods with and without using RE for calculating

time-shifted signals are implemented in Matlab R2014a. The testing environment is on a
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PC with Intel (R) Core (TM) 2 Duo CPU E7500 2.93GHz (2 CPUS), and simulation results

are displayed in Table. 6.2. To verify the performance in different scenarios, their running

time as a function of imaging pixel number L is considered, which simulates different sizes

of the imaging region.

Table 6.2 Running time (RT) of calculating time-shifted signals by different methods
without and with RE measured in seconds. The speedup is measured by the ratio of running
time of different methods, which is unitless.

Pixel Number (L) Running Time (s) Speedup = RT1/RT2
Without RE (RT1) With RE (RT2)

102 20.3 18.7 1.1
202 78.4 62.8 1.2
302 172.9 135.6 1.3
402 307.2 212.0 1.4
502 512.6 300.1 1.7
602 731.1 422.3 1.7
702 984.9 492.6 2.0
802 1315.2 626.3 2.1
902 1659.2 790.1 2.1

1002 1943.2 883.2 2.2

(a) Running time (b) Speedup offered by RE

Fig. 6.4 Running time comparison between methods with and without RE as a function
of the pixel number of imaging area L. (a) Running time. (b) Speedup offered by RE.

Simulation results showed that the method with RE is faster than its counterpart without

using RE in all cases with varied numbers of pixels, ranging from 100 to 10,000 (see

Table 6.2). It is noted that when the imaging area is small, the running time of the two

methods is comparable. Specifically, for an area composed of 100 pixels, the running

times are 20.3 and 18.7 seconds, respectively, and the speedup is only 1.1. When the pixel
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number of imaging area increases to 10,000, RE is 2.2 times faster, and 1060 seconds are

saved. Observing Fig. 6.4(b), the exponentially increasing trend of speedup offered by

RE is particularly encouraging, indicating an increased saving of time can be obtained for

even larger imaging regions.

The favourable speedup offered by RE comes at zero performance loss, because its

efficiency is accomplished by removing those purely repeated operations. The time-shifted

signals through the method with RE is exactly the same as the outcome offered by the

method without using RE. Furthermore, RE is flexible and has no application restricts.

Unlike the URA method introduced in [213], RE is independent of antenna configurations

and can be used for both planar and circular antenna arrays. RE does not require the same

spacing of pixels and that of antenna elements, which is required in URA. RE also ensures

both cross-range and down-range resolution since it transverses every single pixel in a

row-by-row and column-by-column way, both horizontal and vertical directions are treated

equally. Lastly, RE has a great applicability, which is suitable for a range of algorithms.

For all data-independent UWB imaging algorithms which involve the time-shifting module,

the RE mechanism can be applied in a straightforward way.

6.4 Annulus Prediction (AP) for Fast Computation

6.4.1 Rational

To further speedup the calculation of time-shifted signals, a novel annulus predication

(AP)-based acceleration scheme is proposed in this section.

As mentioned in previous section, all signals need to be time-shifted for every single

antenna-pixel pair. Thus, for a certain imaging area, there is a corresponding time delay

matrix for each antenna, and each element in this matrix stores the time delay for each

antenna-pixel pair and corresponding time-shifted signals. The time delay distribution

of different antennas for the same imaging area are displayed in Fig. 6.5. It is noted

that all time delay matrices show an uniform annulus pattern because of the same radius-

based calculation. Considering the pixel spacing can be as small as 1 mm, the time
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(a) Antenna 1 (b) Antenna 4 (c) Antenna 8

(d) Antenna 12 (e) Antenna 16 (f) Antenna 20

Fig. 6.5 Time delay (unit: second) matrices of different antennas for the cross-section x
= 95 in the model shown in Fig. 6.1. (a) to (f) correspond to antenna 1, 4, 8, 12, 16, and 20,
respectively, and the coordinate of numbered antennas is defined in caption of Fig. 6.1.

delay difference for adjacent pixels is very small. Therefore, an efficient annulus-based

prediction of time delay over the whole imaging region is exploited.

In the proposed AP scheme, the same time delay is employed for all pixels which

locate within the same annulus. This predicted scheme is flexible since the number of

divided annulus zones can be varied. When the number of predicted annulus zones is large,

each annulus would be fine enough to distinguish all pixels, which would produce the

same output as original pixel-by-pixel computation. If the number of annulus decreases,

one calculated time delay would represent an annulus area composed of certain number

of pixels. Decreased accuracy is expected due to this approximative calculation of time

delays, but this can lead to much faster computation. However, the number of annulus

cannot be too small. If only very few annulus zones are used to represent the whole area,

in spite of a much improved calculation speed, the inaccuracy caused by this prediction

could be intolerant. Therefore, AP offers a trade-off between performance and complexity,

and the detailed procedures of AP is introduced in next section.
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6.4.2 Procedure

There are four steps involved in AP, including time delay range estimation, annulus zone

division, calculation of time-shifted signals, and matching between pixels and predicted

zones.

Step 1: Estimate the range of time delays. To divide the entire imaging area into

several zones, the range of time delay for each antenna needs to be firstly estimated. This

can be implemented by calculating the time delay of the first row and the last row pixels,

which suffices the range estimation and introduces negligible computation. As illustrated

in Fig. 6.6, the first row and last row pixels within the imaging region are pixel 1 to 5,

and 16 to 20, respectively [see Fig. 6.6(a) and (b)]. The minimum and maximum time

delay for the ith signal received at antenna Ti denoted by τi_min and τi_max can be obtained,

which are the minimum among time delays of first row pixels, and the maxima among

time delays of last row pixels, respectively [see Fig. 6.6(c)].

Fig. 6.6 Time delay range calculation. (a) Imaging area. (b) Enlarged partial imaging
area with numbered pixels. (c) Predicted time delay matrix comprising divided annulus
zones.

Step 2: Annulus zone-based time delay division. The whole imaging area is then

linearly divided into N annulus zones with a width of R [see Fig. 6.6(c)]. Within each zone,

the same time delay and corresponding shifted signal is applied for all pixels. The interval

R represents the width of each annulus and it can be obtained as:

R = (τi_max − τi_min)/(N −1). (6.3)
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Accordingly, the whole time delay matrix T Di for the ith signal is composed of N time

delays, corresponding to N annulus zones, which can be expressed as

T Di =[τi_min,τi_min +R, ...,τi_min +(N −1)R]

=[T Di_1,T Di_2, ...,T Di_N ].

(6.4)

N is a much smaller number than the total number of pixels L. For instance, L can be several

millions, whereas N can be only several hundreds. Therefore, the annulus prediction-based

calculation can offer a significant reduction of computation complexity.

Step 3: Calculate time-shifted signals for all annulus zones. For each annulus zone,

time-shifted signals are calculated based on the estimated time delay. Specifically, for the

first annulus zone with time delay T Di_1, corresponding shifted signal is Si(n+T Di_1),

and this process repeats for all N annulus zones. Therefore, for N time delay zones, N

shifted signals are obtained. The annulus-zone-based shifted signal vector ZSi can be

denoted as

ZSi = [Si(n+T Di_1),Si(n+T Di_2), ...,Si(n+T Di_N)]. (6.5)

Step 4: Match pixels to predicted time delays and obtain corresponding shifted signals.

The match is conducted based on the minimum distance between the actual time delay

of each pixel and the predicted time delays of annulus zones. Let τi_l be the time delay

of the lth pixel. Firstly, the closest time delay in T Di will be indexed for τi_l . This can

be realised by calculating the difference between τi_l and each element in T Di, which is

a simple process since there are only N elements in T Di. Secondly, after indexing the

closest time delay, corresponding time-shifted signal will be copied for this pixel. Assume

the xth element in T Di is the closest predicted time delay for τi_l , where x can be 1,2, ..,

and N, then corresponding shifted signal Si(n+T Di_x) will be copied and stored for this

pixel. This process will go over all pixels, and all pixels will have their time-shifted signals,

which can be used for subsequent steps involved in algorithms for image reconstruction.

The procedure of AP scheme is illustrated in Pseudocode 6.7. Depending on the

selected number of annulus zones N, corresponding predicted time delay matrix T Di

would be different. The larger the N is, the higher accuracy can be ensured, whereas the
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Pseudocode 6.7 Calculate all time-shifted signals with AP

1: INPUT: Si(n), i = 1, ...,A % A input signals
2: for i = 1 to A do % ith signal of A
3: Estimate τi_min and τi_max % Obtain time delay range
4: Obtain T Di % Obtain annulus-based predicted time delay
5: Obtain ZSi % Time shift the signal for each annulus
6: for l = 1 to L do % lth signal of L
7: Calculate τi_l % Calculate time delay for current pixel
8: Match τi_l with T Di % Match with predicted annulus zones
9: Copy Si(n+T Di_x) % Copy the matched time-shifted signal

10: end for l % End of iteration of pixels
11: end for i % End of iteration of signals
12: OUTPUT: Si(n+ τi_l), i = 1,2,% Shifted signal for all antenna-pixel pairs

...,A, l = 1,2, ...,L

smaller the N is, the predicted time delay matrix would have decreased accuracy. This

may cause degradation of performance, but can produce a much faster computation speed.

Specifically, for the same time delay matrix, depending on selected N, the predicted time

delay matrix would have different levels of accuracy. As displayed in Fig. 6.7, five different

values of N are used, including 112, 56, 28, 14, and 7. Obviously, when N is large enough

[see Fig. 6.7(b)], each pixel will be treated individually and can be clearly differentiated,

this offers the highest accuracy and matched degree with the original time delay matrix

[see Fig. 6.7(a)]. If N is too small [see Fig. 6.7(f)], the divided zones will be too coarse

to properly represent the original time delay matrix, which may lead to an unacceptable

imaging result. Therefore, the number of annulus should be selected carefully to maintain

a balance between performance reduction and increased computational efficiency, and

corresponding results are presented in next section.



161

(a) Original time delay (b) N = 112 (c) N = 56

(d) N = 28 (e) N = 14 (f) N = 7

Fig. 6.7 Prediction of time delay (unit: second) matrix with different numbers of annulus
zones N. (a) Original time delay. (b) to (f) are predicted time delays based on AP scheme,
and N is selected as 112, 56, 28, 14, and 7, respectively.

6.5 Simulation Results and Analysis of AP

To comprehensively examine the effectiveness of AP acceleration scheme, three different

testing scenarios are considered. First, the acceleration of AP as a function of the number

of annulus is assessed. Second, the comparison of running time of methods with and

without AP is conducted. Third, the performance of imaging algorithms combining AP is

investigated.

6.5.1 Varied Numbers of Predicted Zones

In this section, the performance of AP as a function of the number of predicted annulus

zones is examined. For consistent comparison, the same simulation environment used for

RE in Section 6.3 is applied for AP.
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The simulation is tested with following parameters: L = 13, 000, A = 48, and K =

1500. The running time required to calculate time-shifted signals for all antenna-pixel

pairs is summarised in Table 6.3. The maximum number of annulus zone is chosen as 700,

which is determined by the pixel resolution of the selected imaging area. Although there

are 13,000 pixels, the maximum number of non-repeated time delays among all pixels

is 708. This means that N should be less than 708, because even if N is larger than 708,

no further improved resolution can be achieved. It is noted that by choosing different N,

the running time varies considerably. Comparing the cases of N = 700 and 7, which takes

196.4 and 14.8 seconds, respectively. The latter case (N = 7) improved the speed by 13.3

times than the first case (N = 700), achieving the acceleration of one order of magnitude.

This signifies that an appropriate selection of the number of annulus zones is critical for

speeding the computation process.

Table 6.3 Running time of calculating time-shifted signals by AP as a function of annulus
zones N measured in seconds. The number of signals A is 48, the signal sampling points K
= 1500, and the pixel number of imaging area L = 13,000.

Annulus Number (N) Running Time (s)
700 196.4
400 100.6
224 60.6
112 37.5
56 26.9
28 18.4
14 15.2
7 14.8

6.5.2 Computation Speed Comparison

In this section, the computation for obtaining shifted signals through methods with and

without AP acceleration is examined and compared. In AP, N is selected as 56, which is a

median value as shown in Table 6.3. For completeness, the running time as a function of

the number of pixel L is considered. Different values of L represent different sizes of the

imaging region, which is selected from 100 to 10,000. The maximum pixel number of
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Table 6.4 Running time (RT) of calculating time-shifted signals by different methods
with and without AP in seconds. The number of annulus number N of 56 is used in AP.
The speedup is measured by the ratio of running time of different methods.

Pixel Number (L) Running Time (s) Speedup = RT1/RT2
Without AP (RT1) With AP (RT2)

102 20.3 12.2 1.7
202 78.4 13.0 6.0
302 172.9 13.7 12.6
402 307.2 13.8 22.3
502 512.6 15.3 33.5
602 731.1 15.6 47.0
702 984.9 16.8 58.8
802 1315.2 18.9 69.6
902 1659.2 20.2 82.0

1002 1943.2 21.6 90.0

(a) Running time (b) Speedup offered by AP

Fig. 6.8 Running time comparison between methods with and without AP as a function
of the number of pixels L. (a) Running time. (b) Speedup offered by AP.

10,000 can represent the widest zy cross-section in the breast model (see Fig. 6.1), and other

zy cross-sections with different x coordinates can be computed in a same way following

the same trend.

Corresponding results are displayed in Table 6.4, and the trend can be observed in

Fig. 6.8. For a small imaging area which has 100 pixels, the running time of the methods

without and with AP is comparable, which is 20.3 and 12.2 seconds, respectively. However,

the running time of the method without using AP increased exponentially with the increase

of pixel number, whereas AP still maintained a very low level [see Fig. 6.8(a)]. Specifically,

when the image region has a 10,000 pixels, it takes the method without using AP 1943.2



164

seconds to calculate the shifted signals, whereas AP only needs 21.6 seconds, which is

90.0 times faster. Additionally, observing Fig. 6.8(b), the speedup offered by AP over its

non-optimised counterpart shows an exponential trend, which means AP can offer an even

stronger accelerating capability for larger imaging regions, proving its excellent scalability.

6.5.3 Algorithm with AP Acceleration

AP showed considerable speedup which can be up to 90 times faster than the non-optimised

method with direct computation. However, this might cause performance loss of imaging

algorithms due to the non-perfect prediction of time delays and corresponding time-shifted

signals. Furthermore, the speedup of AP is associated with the number of annulus zones

N, and the optimum compromise should be studied for practical use. To address these two

problems, the performance of algorithms combining AP acceleration is examined in this

section, and the key factors for optimum trade-off between performance and acceleration

are pointed out.

Combined with the delay-and-sum (DAS) algorithm [39, 45], the accelerating capability

of proposed AP scheme is evaluated. The performance of DAS without using AP is used

as a benchmark, then combining AP, DAS performance is assessed with varied numbers of

annulus zones N. The performance degradation is measured by the difference between the

result of DAS with and without AP. Two metrics of SCR and SMR are used to measure the

imaging results of DAS. The acceleration is measured by the ratio between running time

for cases with and without AP, respectively. The breast model used is with medium type

A, and ideal artefact removal is applied (the details of breast medium type and artefact

removal technique are given in Chapter 4.3). The number of pixels in imaging area is

13,000.

The imaging results and metrics of DAS, and DAS with AP as a function of N are

displayed in Fig. 6.9 and Table 6.5. Comparing Fig. 6.9(b) and (c), which are the results

for DAS and DAS with AP of N = 700, there is no difference observed, but the DAS with

AP is 14 times faster (see Table 6.6). Figs. 6.9(e) is the result of DAS with AP of N = 56.

Compare this one with the original result of DAS [see Fig. 6.9(b)], a minor performance
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degradation can be seen, which is reflected by the increased clutter around the peak. The

SCR of this result is 6.8 dB, which is 0.2 dB smaller than the benchmark result offered

Fig. 6.9 Imaging results of DAS, and DAS with AP acceleration, different numbers of
annulus N are applied. (a) Breast model with medium type A. (b) Imaging result by DAS.
(c)-(f) Results by DAS with AP as a function of N, where N = 700, 112, 56, and 28,
respectively.

Table 6.5 Performance of DAS, and DAS with AP as a function of number of annulus N.

DAS (Benchmark) SCR (dB) SMR (dB)
7.0 17.2

DAS with AP
Annulus Number (N) SCR (dB) SMR (dB)

700 7.0 17.2
400 7.0 17.2
224 7.0 17.2
112 7.0 17.2
56 6.8 17.0
28 5.4 16.6
14 3.9 15.1
7 0.3 12.4

by DAS without AP (see Table 6.5). But this case offers a speedup of 102.5 (see Table 6.6),

which massively improved the computational efficiency. Observing Fig. 6.9(f), the number

of annulus N of 28 is used. The imaged tumour in this scenario is more obscured in

comparison to the original one [see Fig. 6.9(b)], and the clutter around the peak start to
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Table 6.6 Running time of calculating shifted signals by AP with varied annulus numbers
N for pixel number L of 13,000 (Corresponding to Fig. 6.9). The speedup is defined as the
ratio between the running time of the two methods with and without AP.

Running Time without AP (s)
2757.5

Annulus Number (N) Running Time with AP (s) Speedup
700 196.4 14.0
400 100.6 27.4
224 60.6 45.5
112 37.5 73.5
56 26.9 102.5
28 18.4 149.5
14 15.2 181.3
7 14.8 186.9

(a) DAS with AP (b) Speedup offered by AP

Fig. 6.10 Performance of DAS with AP as a function of annulus zone number N. (a)
Performance of DAS with AP. (b) Speedup offered by AP.

show an irregular pattern, which corresponds to a much lower SCR of 5.4 dB (see Ta-

ble 6.5).

The trend of performance (see Table 6.5) and speedup (see Table 6.6) as a function of

N are plotted in Fig. 6.10. Observing Fig. 6.10(a), with the decrease of N, the performance

measured by SCR and SMR declines due to the increased inaccuracy between predicted

and the original time delay matrix. Meanwhile, the speedup shows a steady increase [see

Table 6.6 and Fig. 6.10(b)], from 14.0 to 186.9. These two figures indicate the trade-

off between performance and computation speed. In practice, both high performance

with extremely slow computation speed and fast calculation with seriously degraded

performance should be avoided.
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To examine the effectiveness of AP acceleration without affecting algorithm per-

formance, two algorithms DAS and RAR [216] with AP are examined in ten different

scenarios (S1 to S10), respectively. In these scenarios, different tumour positions in

breast models with varied structures and densities are considered. The imaging results of

non-accelerated DAS and RAR are shown in Figs. 4.7(b)(f) and 4.8(b)(f), Figs. 4.10(b)(f)

to 4.17(b)(f), and the performance statistics of algorithms combining with AP are presented

in Figs. 6.11 and 6.12, respectively. For each scenario, to accurately identify an appropriate

trade-off between performance and acceleration, eight different annulus numbers of AP (N

= 700, 400, 224, 112, 56, 28, 14, and 7) are used, which forms 160 simulation cases in

total.

Observing Figs. 6.11 and 6.12, it can be seen that in all cases, the performance of both

DAS and RAR degrades with the reduced N, which is due to the increased inaccuracy

of predicted time delay matrices. Moreover, in most cases, when N is larger than 224,

the performance degradation is fairly small, which is reflected by the gentle descending

curves. Furthermore, when N is smaller than 56, a steep decline of performance can be

observed. Meanwhile, abnormal increase of SCR and SMR can appear [see Fig. 6.11(d)

and Fig. 6.12(d)].
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(a) S1 (b) S2

(c) S3 (d) S4

(e) S5 (f) S6

(g) S7 (h) S8

(i) S9 (j) S10

Fig. 6.11 Performance of DAS with AP as a function of the number of annulus N. (a)
to (j) are the results in ten different scenarios (S1 to S10). DAS without AP is added as a
benchmark.
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(a) S1 (b) S2

(c) S3 (d) S4

(e) S5 (f) S6

(g) S7 (h) S8

(i) S9 (j) S10

Fig. 6.12 Performance of RAR with AP as a function of the number of annulus N. (a)
to (j) are the results in ten different scenarios (S1 to S10). RAR without AP is added as a
benchmark.
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Table 6.7 Performance loss of DAS and RAR as a function of the number of annulus N.
For each N, the performance loss measured by SCR and SMR (unit: dB) is calculated by
averaging the results in ten different scenarios. The speedup is measured by the ratio of
running time of different methods, which is unitless.

Annulus Number (N) 700 400 224 112 56 28 14 7
Speedup 14.0 27.1 45.5 73.5 102.5 149.5 181.3 186.9

DAS
SCR Loss (dB) 0 0.02 0.02 0.03 0.17 0.45 1.86 3.03
SMR Loss (dB) 0 0 0 0.01 0.09 0.31 1.43 2.86

RAR
SCR Loss (dB) 0 0.48 0.48 0.89 2.66 4.4 7.7 14.1
SMR Loss (dB) 0 0.11 0.15 0.11 0.69 1.89 6.58 9.63

(a) DAS with AP (b) RAR with AP

Fig. 6.13 Average performance loss of DAS and RAR as a function of the number of
annulus N in different scenarios. (a) DAS. (b) RAR.

Based on the results shown in Table 6.7 and Fig. 6.13, it can be concluded that when

N is large enough (e.g. N = 700), there is no performance loss caused, and a speedup

factor of 14.0 can be offered by AP. Moreover, when N is slightly smaller (e.g. N = 224), a

speedup of 45.5 can be offered by AP. Encouragingly, with such a high acceleration, only

negligible performance loss is observed. Specifically, the average SCR and SMR loss of

DAS is 0.02 and 0 dB, and these two values for RAR are 0.48 and 0.15 dB, respectively.

With graceful performance degradation of less than 0.5 dB, the reconstructed images can

still clearly show the location of tumours (see Fig. 6.9). With further decreased N (e.g. N =

112), in spite of a significantly improved acceleration, the performance loss can approach 1

dB on average, which is not advisable and should be employed with caution.
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6.6 Comparative Analysis of RE and AP Mechanisms

Extensive analysis and simulation results proved that both RE and AP offered highly

desired speedup over the non-optimised method. This speedup is particularly advantageous

for large imaging area with millions of pixels, which is demonstrated by the exponentially

increased trend of acceleration (see Fig. 6.4 and Fig. 6.8).

The proposed RE scheme removes a large number of repetitive operations of both

time delay calculation and time-shifting signals. For an imaging region composed of

10,000 pixels, the acceleration ratio offered by RE over non-optimised method is 2.2,

and no any performance degradation is observed. In comparison, AP exploits a novel

annulus prediction to speed up the computation of time-shifted signals for millions of

antenna-pixel pairs. In AP, the pixels that are close to each other are assigned with a same

time-shifted signal, and results demonstrated that considerable acceleration is achieved by

using this highly efficient batch computing. For a certain imaging region, depending on the

selected number of predicted annulus, a flexible trade-off between imaging performance

and speedup can be offered. On average, AP achieved a 45.5 speedup with a graceful

performance degradation of less than 0.5 dB, which is a highly desirable trade-off for the

vast majority of imaging scenarios.

Both RE and AP aim to speedup the calculation of time-shifting signals for antenna-

pixel pairs, considering that this module is inescapable and one of the most time-consuming

steps in all data-independent UWB breast cancer imaging algorithms. Although RE and

AP are designed for accelerating image reconstruction for breast tumour detection, they

can be directly applied for all UWB algorithms which involve time-shifting signals.

6.7 Conclusion

In this chapter, two mechanisms referred to as RE and AP are designed to reduce the

complexity of UWB algorithms for accelerated imaging reconstruction. RE eliminates a

massive number of redundant operations, whereas AP predicts the time delays of pixels
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which are geographically close and belong to the same annulus zone with a width of R,

thereby accomplishing the calculation in a highly efficient batch mode.

Extensive analysis and simulation results demonstrated the superiority of the proposed

schemes. Without any performance loss, RE can be twice faster than its non-optimised

counterpart. AP offers a valuable trade-off between imaging performance and recon-

struction speed, which can be implemented by selecting appropriate number of predicted

annulus zones. On average, AP is 45.5 times faster than the method without using AP,

while restricting the performance loss less than 0.5 dB. Therefore, these techniques can

speed up UWB imaging for breast tumour detection with remarkably reduced running

time.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis primarily focuses on UWB image reconstruction algorithm design for tumour

detection. Idealised antenna modelling as point excitation source with single polarised field

component is used. For completeness, both monostatic and multistatic signal acquisition

methods were investigated. More practical antenna modelling will be considered in future

work.

Several contributions have been made to improve UWB imaging algorithms for early

breast cancer detection, and the main achievements are summarised in the following.

Chapter 2 reviewed the context of UWB technology and its existing and potential

applications. This review was with a special emphasis on the UWB imaging for breast

cancer detection, and conclusions from this review are: 1) UWB imaging is a promising

technique for breast cancer screening, and hence it deserves wide attention from research

communities; 2) Several challenges must be overcome before it can be deployed in practice.

These include accurate propagation modelling of signals in realistic breast phantoms,

and effective imaging algorithms with robust performance and affordable complexity.

This review identified the major technical challenges in this area, which constituted the

motivation and objectives of this thesis.

To address the challenges identified in Chapter 2, Chapter 3 proposed a new compu-

tational engine entitled as VECE, which accurately simulated the propagation of UWB
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signals in realistic breast tissues. The novel implementation combining ADE and CPML,

which are adopted for describing the dispersive breast tissues and truncating the computa-

tional domain, respectively, is concurrently achieved in VECE. The ADE approach has

great advantage in reducing computational complexity and memory storage requirement.

The CPML, which is a very robust absorbing boundary condition, significantly reduces the

late-time reflections and offers improved efficiency and flexibility for terminating various

media. The accuracy of VECE was validated in both time and frequency domains across a

variety of assessment criteria. The results generated by VECE were in great agreement

with the outcome from commercial software. VECE’s practicability for modelling and

simulating UWB breast tumour imaging was clearly demonstrated through combining

the state-of-the-art 3-D breast phantoms. In designed scenarios, the variation of input

signals, breast models, and signal collection schemes were considered, which laid a solid

foundation for developing imaging algorithms for following studies.

Considering the severe influence of artefacts on imaging results, a robust and artefact

resistant algorithm of UWB imaging for breast cancer detection named as RAR was

proposed in Chapter 4. A novel neighbourhood pairwise correlation of signals was

utilised in RAR, which was proved to be very effective in mitigating the adverse effects

from residual artefact signals. Furthermore, the maximum selection in RAR enabled the

distinguishing of tumour response from the response from other strong scatterers such

as fibro-glandular tissues. Based on 3-D anatomically and dielectrically accurate breast

phantoms, extensive analysis and simulation results demonstrated the effectiveness and

superiority of RAR, in which the comparisons with four well-known algorithms under a

range of challenging scenarios were conducted. RAR exhibited substantially improved

tumour identification capability and robust artefact resistance over existing techniques in

the vast majority of cases considered. Based on the statistics of algorithm performance

in ten different scenarios, compared with the other four methods, RAR offered both the

highest SCR and SMR of 4.1 and 16.5 dB, respectively. These two metrics (SCR and SMR)

of the second best algorithm FDAS were -1.68 and 9.17 dB. The performance difference
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between RAR and FDAS showed a clear advantage and strong potential of RAR for breast

cancer screening.

In Chapter 5, three new image reconstruction algorithms referred to as LCE, DNPC,

and MSD have been designed, which further enhanced the performance in terms of clutter

rejection and tumour detectability even in beasts with high density. To measure the local

coherence among signals received at adjacent antennas, a grouping strategy was employed

in LCE. Furthermore, unlike RAR which only selected the highest weighting coefficients,

LCE adopted a two-step maximum combining, both the highest weighting coefficients

and corresponding signals were combined for the calculation of pixel intensity. DNPC

employed the dynamic weighting for different propagation channels according to their

qualities. Differ from previous algorithms that were all based on monostatic signals, MSD

explored and exploited the richness offered by the multistatics signals. Extra neighbouring

multistatic signals were selected for acquiring extra tumour response. The efficacy of

these algorithms were validated via extensive analysis and simulations. Encouragingly,

compared with RAR, enhanced performance was observed in DNPC and MSD, which

provided an average SCR of 4.2 and 4.3 dB in the ten scenarios considered, respectively,

indicating a further improved tumour detection over the RAR algorithm.

In Chapter 6, two accelerated image reconstruction schemes, namely, RE and AP, have

been proposed to speedup the imaging process for UWB breast tumour detection. This is

motivated by the fact that medical imaging normally have high demand of resolution, in

which millions of pixels can be involved. Therefore, RE and AP were designed to improve

the efficiency of the pixel-based UWB breast cancer imaging algorithms. The substantial

reduction of running time offered by these acceleration techniques could effectively speed

up the overall imaging process. RE was implemented by removing of a huge number of

repeated operations, whereas AP employed a novel predicted method to accomplish the

pixel-related computations in a highly efficient batch mode. The effectiveness of RE and

AP has been demonstrated through extensive analysis and simulations. Compared with the

non-accelerated method, RE was two times faster with zero loss in imaging performance,

whereas AP improved the speed by 45 times at the expense of performance degradation of
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less than 0.5 dB for both SCR and SMR metrics, which provided efficient utilisation of

computing resources and a valuable trade-off.

7.2 Future Work

This research primarily focuses on UWB image reconstruction algorithm design for tumour

detection. To obtain the backscattered signals, idealised antenna (point source) modelling

with single polarised field component was used, and more practical and extensive antenna

modelling will be considered in future work. In addition, some other potentially productive

areas and topics which are related to the work in this thesis are addressed as follows.

• Extensive modelling. First, different tumour modelling can be considered. In this

study, the malignant breast tumour with varied positions and sizes were used to

examine the imaging algorithms. All tumours were modelled as spheres but with

varied diameters, which represented different strengths of backscattered energy from

the tumour as widely used in existing studies. However, it is worthwhile to model

the tumour with more realistic shapes, such as spiculate or lobulated. This could

provide further insights regarding different tumour responses, thereby assessing and

improving imaging algorithms in a wider range of scenarios. Second, alternative

propagation modelling of UWB signal could be studied. The proposed computational

engine VECE was designed for Debye model that well represented the dispersion of

breast tissues. However, different dispersive models, such as Lorentz and/or Drude,

might be more suitable for other types of biological tissues. Therefore, it is worth

exploring a unified computational engine for generating heterogeneous families,

which will enable a wide diversity of modelling, simulation, and imaging of different

biological systems.

• Further improved imaging algorithms. The proposed algorithms in this thesis

could potentially be improved, which can be achieved by combining them with other

techniques, such as MIMO or signal filtering. Additionally, aside from the data-

independent algorithms studied in this thesis, further investigation can be carried
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out for data-dependent algorithms. These two types of methods have their own

merits and demerits. Data-dependent algorithms potentially could be superior to

their data-independent counterparts, assuming the required prior information is

accurately known. Data-independent algorithms are free from this prior knowledge

and have much higher computational efficiency than data-dependent techniques. For

data-dependent algorithm, it is particularly interesting to test their performance in

scenarios combining 3-D (rather than 2-D) breast models and practical (rather than

ideal) artefact removal methods. This could be a challenge since in most existing

literature, oversimplified breast models and artefact removal methods are being used.

The elimination of these idealised assumptions could lead to more practical imaging

scenarios. Furthermore, due to the high complexity of data-dependent algorithms,

accelerated computation schemes could also be investigated.

• Imaging algorithms for distinguishing different types of tumours. Existing

UWB breast tumour detection algorithms mainly aim to identify and localise the

tumour. However, after the tumour is identified, none of these algorithms is able to

distinguish the attribute of the tumour, such as benign or malignant. But this type of

information is of great value for both screening and treatment, and it would be highly

beneficial if this information could be retrieved by such UWB-based non-invasive

imaging techniques.

• Antenna and physical breast phantom design. As an extension of this work,

the antenna design for UWB breast cancer detection is suggested. Due to the

limited space for accommodating antenna array, miniature UWB antennas are highly

desirable. And this would involve innovative design, tuning, and validation of

antennas. The performance of antenna will directly impact on the quality of collected

UWB signals, which potentially could challenge existing algorithms. To enable

the collection of signals, realistic physical breast phantoms are essential. Based

on the combination of these two aspects, in conjunction with imaging algorithms,

a prototype of UWB breast cancer imaging system could be established, thereby

enabling further development of related diagnostic and therapeutic techniques.
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Appendix A

Matlab Code of RAR Image

Reconstruction Algorithm

1 f u n c t i o n [ o u t p u t _ a r g s ] = U n t i t l e d ( i n p u t _ a r g s )

2 %% ********[ Env i ronmen t i n i t i a l i s a t i o n ]********

3 a n t _ p o s _ c o r ( 1 , 1 ) = { [ 8 0 , 3 9 , 1 0 1 ] } ;% Antenna c o o r d i n a t e

4 a n t _ p o s _ c o r ( 1 , 2 ) = { [ 8 0 , 5 0 , 1 2 0 ] } ;

5 a n t _ p o s _ c o r ( 1 , 3 ) = { [ 8 0 , 6 3 , 1 4 0 ] } ;

6 a n t _ p o s _ c o r ( 1 , 4 ) = { [ 8 0 , 8 2 , 1 5 3 ] } ;

7 a n t _ p o s _ c o r ( 1 , 5 ) = { [ 8 0 , 1 0 0 , 1 5 8 ] } ;

8 a n t _ p o s _ c o r ( 1 , 6 ) = { [ 8 0 , 1 1 6 , 1 5 9 ] } ;

9 a n t _ p o s _ c o r ( 1 , 7 ) = { [ 8 0 , 1 3 1 , 1 5 8 ] } ;

10 a n t _ p o s _ c o r ( 1 , 8 ) = { [ 8 0 , 1 4 7 , 1 5 4 ] } ;

11 a n t _ p o s _ c o r ( 1 , 9 ) = { [ 8 0 , 1 6 2 , 1 4 5 ] } ;

12 a n t _ p o s _ c o r ( 1 , 1 0 ) = { [ 8 0 , 1 7 4 , 1 3 2 ] } ;

13 a n t _ p o s _ c o r ( 1 , 1 1 ) = { [ 8 0 , 1 8 5 , 1 1 6 ] } ;

14 a n t _ p o s _ c o r ( 1 , 1 2 ) = { [ 8 0 , 1 8 8 , 9 7 ] } ;

15 a n t _ p o s _ c o r ( 1 , 1 3 ) = { [ 8 0 , 1 8 6 , 7 4 ] } ;

16 a n t _ p o s _ c o r ( 1 , 1 4 ) = { [ 8 0 , 1 7 8 , 5 6 ] } ;

17 a n t _ p o s _ c o r ( 1 , 1 5 ) = { [ 8 0 , 1 6 6 , 4 7 ] } ;

18 a n t _ p o s _ c o r ( 1 , 1 6 ) = { [ 8 0 , 1 5 2 , 3 9 ] } ;

19 a n t _ p o s _ c o r ( 1 , 1 7 ) = { [ 8 0 , 1 3 5 , 3 4 ] } ;

20 a n t _ p o s _ c o r ( 1 , 1 8 ) = { [ 8 0 , 1 1 9 , 3 1 ] } ;

21 a n t _ p o s _ c o r ( 1 , 1 9 ) = { [ 8 0 , 1 0 3 , 3 1 ] } ;

22 a n t _ p o s _ c o r ( 1 , 2 0 ) = { [ 8 0 , 8 4 , 3 8 ] } ;

23 a n t _ p o s _ c o r ( 1 , 2 1 ) = { [ 8 0 , 7 1 , 4 4 ] } ;

24 a n t _ p o s _ c o r ( 1 , 2 2 ) = { [ 8 0 , 5 9 , 5 5 ] } ;

25 a n t _ p o s _ c o r ( 1 , 2 3 ) = { [ 8 0 , 4 9 , 6 9 ] } ;

26 a n t _ p o s _ c o r ( 1 , 2 4 ) = { [ 8 0 , 4 5 , 8 3 ] } ;

27 a n t _ p o s _ c o r ( 1 , 2 5 ) = { [ 1 3 0 , 3 9 , 1 0 1 ] } ;
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28 a n t _ p o s _ c o r ( 1 , 2 6 ) = { [ 1 3 0 , 5 0 , 1 2 0 ] } ;

29 a n t _ p o s _ c o r ( 1 , 2 7 ) = { [ 1 3 0 , 6 3 , 1 4 0 ] } ;

30 a n t _ p o s _ c o r ( 1 , 2 8 ) = { [ 1 3 0 , 8 2 , 1 5 3 ] } ;

31 a n t _ p o s _ c o r ( 1 , 2 9 ) = { [ 1 3 0 , 1 0 0 , 1 5 8 ] } ;

32 a n t _ p o s _ c o r ( 1 , 3 0 ) = { [ 1 3 0 , 1 1 6 , 1 5 9 ] } ;

33 a n t _ p o s _ c o r ( 1 , 3 1 ) = { [ 1 3 0 , 1 3 1 , 1 5 8 ] } ;

34 a n t _ p o s _ c o r ( 1 , 3 2 ) = { [ 1 3 0 , 1 4 7 , 1 5 4 ] } ;

35 a n t _ p o s _ c o r ( 1 , 3 3 ) = { [ 1 3 0 , 1 6 2 , 1 4 5 ] } ;

36 a n t _ p o s _ c o r ( 1 , 3 4 ) = { [ 1 3 0 , 1 7 4 , 1 3 2 ] } ;

37 a n t _ p o s _ c o r ( 1 , 3 5 ) = { [ 1 3 0 , 1 8 5 , 1 1 6 ] } ;

38 a n t _ p o s _ c o r ( 1 , 3 6 ) = { [ 1 3 0 , 1 9 2 , 9 7 ] } ;

39 a n t _ p o s _ c o r ( 1 , 3 7 ) = { [ 1 3 0 , 1 8 9 , 7 4 ] } ;

40 a n t _ p o s _ c o r ( 1 , 3 8 ) = { [ 1 3 0 , 1 7 8 , 5 6 ] } ;

41 a n t _ p o s _ c o r ( 1 , 3 9 ) = { [ 1 3 0 , 1 6 6 , 4 7 ] } ;

42 a n t _ p o s _ c o r ( 1 , 4 0 ) = { [ 1 3 0 , 1 5 2 , 3 9 ] } ;

43 a n t _ p o s _ c o r ( 1 , 4 1 ) = { [ 1 3 0 , 1 3 5 , 3 4 ] } ;

44 a n t _ p o s _ c o r ( 1 , 4 2 ) = { [ 1 3 0 , 1 1 9 , 3 1 ] } ;

45 a n t _ p o s _ c o r ( 1 , 4 3 ) = { [ 1 3 0 , 1 0 3 , 3 1 ] } ;

46 a n t _ p o s _ c o r ( 1 , 4 4 ) = { [ 1 3 0 , 8 4 , 3 8 ] } ;

47 a n t _ p o s _ c o r ( 1 , 4 5 ) = { [ 1 3 0 , 7 1 , 4 4 ] } ;

48 a n t _ p o s _ c o r ( 1 , 4 6 ) = { [ 1 3 0 , 5 9 , 5 5 ] } ;

49 a n t _ p o s _ c o r ( 1 , 4 7 ) = { [ 1 3 0 , 4 3 , 6 9 ] } ;

50 a n t _ p o s _ c o r ( 1 , 4 8 ) = { [ 1 3 0 , 3 7 , 8 3 ] } ;

51 %********[ S e t t i n g and t i m e d e l a y c a l c u l a t i o n ]********

52 M = 4 8 ; % Number o f a n t e n n a s ;

53 v f r e e s p a c e = 2 .99792458 e11 ;% Speed o f l i g h t i n f r e e space ,mm/ s ;

54 immer_epsr = 4 . 3 2 8 4 ; % F a t t y −2 = immes ive l i q u i d , a t c e n t e r f r e q ;

55 s k i n _ e p s r = 3 4 . 0 8 ;

56 vb re = v f r e e s p a c e / s q r t ( immer_epsr ) ;% Propag . v e l o c i t y i n b r e a s t ;

57 v s k i n = v f r e e s p a c e / s q r t ( s k i n _ e p s r ) ; % Propag . v e l o c i t y i n s k i n ;

58 s k i n _ t i m e = 2 * 1 . 5 / v s k i n ; b a s i s t i m e s l o t = 1 .9066 e−12;

59 Tota lT imeDelay = c e l l ( 1 ,M) ;% Number o f t i m e d e l a y group ;

60 c r o _ s e c _ c o r _ x = 9 5 ; imagerow = 130 ;

61 i m a g e c o l = 100 ;% 2D Cross−s e c t i o n imaging area ;

62 i m g _ r o w _ s t a r t = 5 5 ; img_row_end = 184 ;

63 i m g _ c o l _ s t a r t = 4 5 ; img_col_end = 144 ;

64 t i m e d e l a y = z e r o s ( imagerow , i m a g e c o l ) ;% L i m i t s o f imaging area ;

65 f o r c u r _ a n t = 1 : M % C a l c u l a t e t h e 48 s e t s o f t h e o r e t i c a l

66 % t i m e d e l a y be tween imaging

67 % p l a n e and each an tenna ;

68 a n t _ p o s _ c e l l = a n t _ p o s _ c o r ( 1 , c u r _ a n t ) ;

69 an t_pos_ma t = c e l l 2 m a t ( a n t _ p o s _ c e l l ) ;

70 Tx = an t_pos_ma t ( 1 , 1 ) ;

71 Ty = an t_pos_ma t ( 1 , 2 ) ;
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72 Tz = an t_pos_ma t ( 1 , 3 ) ;

73 f o r i = i m g _ r o w _ s t a r t : img_row_end

74 f o r j = i m g _ c o l _ s t a r t : img_co l_end

75 d = 2* s q r t ( ( c r o _ s e c _ c o r _ x − Tx )^2 +

76 ( i − Ty )^2 + ( j − Tz ) ^ 2 ) ;

77 t e m p t i m e d e l a y = ( d − 2 * 1 . 5 ) / vb re ;

78 %Round− t r i p t i m e d e l a y ;

79 tempx = i − 5 4 ;

80 tempy = j − 4 4 ;

81 t i m e d e l a y ( tempx , tempy ) = t e m p t i m e d e l a y + s k i n _ t i m e ;

82 end

83 end

84 Tota lT imeDelay ( 1 , c u r _ a n t ) = { t i m e d e l a y } ;

85 end

86 %% ********[ Pre−p r o c e s s i n g f o r a r t e f a c t removal ]********

87 TWNum_pusewidth = round ( 0 . 5 6 e−9/ b a s i s t i m e s l o t ) ;

88 Rat io_TW_Pulsewid th = 1 ;

89 TimeWindowNum1 = Rat io_TW_Pulsewid th *TWNum_pusewidth ;

90 TimeWindowUsing = TimeWindowNum1 ;

91 f o r i = 1 : M

92 rawdata_name = [ ’ o u t p u t /A’ , num2str ( i ) , ’ _ w i t h _ E _ s i g ’ , ’ . t x t ’ ] ;

93 RawData = load ( rawdata_name ) ; Tota lRawData ( 1 , i ) = {RawData } ;

94 end

95 [ RawDataRowNum , b ] = s i z e ( RawData ) ; a l l t i m e = RawData ( : , 1 ) ;

96 I d e a l _ s i g n = 0 ;%" 1 " : I d e a l ; " 0 " : En t ropy .

97 i f ( I d e a l _ s i g n == 1)

98 run_mode = ’ I d e a l ’ ; Tota lRawData = TotalRawData ;

99 e l s e

100 run_mode = ’ En t ropy ’ ;

101 %********[ Entroy−based a r t e f a c t remova l ]********

102 e n t r o p y _ t r u n c a t e _ t i m e 1 = 0 .66*1 e−9;

103 e n t r o p y _ t r u n c a t e _ t i m e 2 = 0 .66*1 e−9;

104 f o r i = 1 :M

105 i f ( i > 24)

106 t r u n c a t e _ t i m e = e n t r o p y _ t r u n c a t e _ t i m e 2 ;

107 e l s e

108 t r u n c a t e _ t i m e = e n t r o p y _ t r u n c a t e _ t i m e 1

109 end

110 t r u n c a t e _ t i m e _ m a t _ s t a r t ( 1 , i ) = t r u n c a t e _ t i m e ;

111 end

112 f o r i = 1 :M

113 d a t a = TotalRawData {1 , i } ;

114 t r u c a t e _ t i m e = t r u n c a t e _ t i m e _ m a t _ s t a r t ( i ) ;

115 t r u n c a t e _ n u m = round ( t r u c a t e _ t i m e / b a s i s t i m e s l o t ) ;
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116 v a l = d a t a ( : , 2 ) ; v a l ( 1 : t r u n c a t e _ n u m ) = 0 ; d a t a ( : , 2 ) = v a l ;

117 TotalRawData ( 1 , i ) = { d a t a } ;

118 end

119 end

120 %***[ Ke rne l c a l c u l a t i o n o f p i x e l i n t e n s i t y f o r f o r m i n g image ]***

121 I n t e n s i t y 1 = z e r o s ( imagerow , i m a g e c o l ) ;% Memory a l l o c a t i o n ;

122 f o r i = 1 : imagerow

123 f o r j = 1 : i m a g e c o l

124 s h i f t e d _ s i g _ m a t = z e r o s ( TimeWindowUsing ,M) ;

125 S u m o f S h i f t e d D a t a = z e r o s ( TimeWindowUsing , 1 ) ;

126 f o r k = 1 :M

127 t i m e d e l a y g r o u p = Tota lT imeDelay {1 , k } ;

128 t i m e d e l a y = t i m e d e l a y g r o u p ( i , j ) ;

129 RawData = TotalRawData {1 , k } ;

130 r e s = m y t i m e s h i f t ( RawData , t i m e d e l a y , b a s i s t i m e s l o t ) ;

131 s1 = r e s ( : , 2 ) ; s _ t r u n c a t e d = s1 ( 1 : TimeWindowUsing ) ;

132 s h i f t e d _ s i g _ m a t ( : , k ) = s _ t r u n c a t e d ;

133 end

134 S u m o f S h i f t e d D a t a = sum ( s h i f t e d _ s i g _ m a t , 2 ) ;

135 %*********[ Neighbourhood p a i r w i s e c o r r e l a t i o n ]*********

136 p a i r _ n e i _ i n d = 1 ;% I n d e x i n i t i a l i s a t i o n ;

137 f o r k = 1 : M−1

138 s1 = s h i f t e d _ s i g _ m a t ( : , k ) ; s2 = s h i f t e d _ s i g _ m a t ( : , k + 1 ) ;

139 t h e _ c o r = m y c o r e f f ( s1 , s2 , TimeWindowUsing ) ;

140 p a i r _ n e i b o u r _ c o r _ m a t _ a l l ( 1 , p a i r _ n e i _ i n d ) = t h e _ c o r ;

141 p a i r _ n e i _ i n d = p a i r _ n e i _ i n d + 1 ;

142 end

143 n p c _ m a t _ a l l = ( p a i r _ n e i b o u r _ c o r _ m a t _ a l l + 1 ) / 2 ;

144 n p c _ a l l _ s o r t = s o r t ( n p c _ m a t _ a l l , ’ de scend ’ ) ;

145 %*********[ Maximum combin ing ]*********

146 num = 0 . 5 * l e n g t h ( n p c _ a l l _ s o r t ) ;

147 n p c _ a l l _ s o r t _ u s i n g = n p c _ a l l _ s o r t ( 1 : num ) ;

148 p r o d _ p a i r _ n e i = prod ( n p c _ a l l _ s o r t _ u s i n g ) ;

149 S u m o f S h i f t e d _ w e i g h t e d = p r o d _ p a i r _ n e i * S u m o f S h i f t e d D a t a ;

150 I n t e n s i t y 1 ( i , j ) = sum ( S u m o f S h i f t e d _ w e i g h t e d . ^ 2 ) ;

151 %*****************************************************

152 end

153 end

154 %********[ S t o r e imaging m a t r i x ]********

155 save ( ’S6_RAR . mat ’ , ’ I n t e n s i t y 1 ’ ) ;

156 end

157

158 %*********************************************

159 f u n c t i o n r e = m y t i m e s h i f t ( t _ i n p u t d a t a , t _ d e l a y t i m e , t _ t i m e s l o t )
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160 % method 1 ( can o n l y h and l e i n t e g r a l p e r i o d t i m e d e l a y ) ;

161

162 RawData = t _ i n p u t d a t a ;

163 s h i f t e d R a w D a t a = RawData ;

164 [ RawDataRowNum , c o l ]= s i z e ( t _ i n p u t d a t a ) ;

165 b a s i s t i m e s l o t = t _ t i m e s l o t ;

166 delaynum = t e m p d e l a y t i m e / b a s i s t i m e s l o t ;

167 r e a l d e l a y n u m = round ( delaynum ) ;% where g e n e r a t e t h e e r r o r ;

168 h = d f i l t . d e l a y ( r e a l d e l a y n u m ) ;

169 s h i f t e d R a w D a t a ( : , 1 ) = f i l t e r ( h , RawData ( : , 1 ) ) ;

170 % s h i f t t h e t i m e d e l a y r a t h e r than t h e y−va lue ,

171 % t h e e f f e c t e q u a l s s h i f t toward LEFT r a t h e r than r i g h t ;

172 s h i f t e d R a w D a t a = s h i f t e d R a w D a t a ( r e a l d e l a y n u m +1: RawDataRowNum , : ) ;

173 % d e l e t e t h o s e z e r o o f x ; o t h e r w i s e i n t e r p o l a t i o n c an no t be used ;

174 n = RawDataRowNum − r e a l d e l a y n u m ;

175 i f ( n > 0 | n == 0)

176 r e a l s h i f t e d D a t a = s h i f t e d R a w D a t a ;

177 r e a l s h i f t e d D a t a ( n +1: RawDataRowNum , 1 ) =

178 RawData ( n +1: RawDataRowNum , 1 ) ;

179 r e a l s h i f t e d D a t a ( n + 1 : RawDataRowNum , 2 ) = 0 ;

180 e l s e

181 r e a l s h i f t e d D a t a = z e r o s ( RawDataRowNum , 2 ) ;

182 end

183 r e = r e a l s h i f t e d D a t a ;

184 end

185 %*********************************************


	DPhil Coversheet
	Yin, Tengfei
	Table of contents
	List of abbreviations
	List of figures
	List of tables
	1 Introduction
	1.1 Background and Motivations
	1.2 Research Aims and Objectives
	1.3 Original Contributions
	1.4 Outline of the Thesis

	2 Background of Ultrawideband (UWB) and Literature Review on UWB Breast Cancer Imaging
	2.1 Introduction
	2.2 UWB Fundamentals
	2.2.1 Signal Definition
	2.2.2 System Regulations

	2.3 UWB Features and Related Applications
	2.3.1 High-speed Data Transmission
	2.3.2 Precise Localisation
	2.3.3 High-resolution Imaging

	2.4 Literature Review on UWB Imaging for Breast Cancer Detection
	2.4.1 Significance
	2.4.2 Deficiencies of Existing Techniques
	2.4.3 Principle of UWB Breast Tumour Detection
	2.4.4 Advantages of UWB Breast Tumour Detection

	2.5 Technical Advances and Challenges of UWB Breast Cancer Imaging
	2.5.1 Numerical Breast Phantom
	2.5.2 Modelling of Signal Propagation
	2.5.3 Image Reconstruction Algorithm
	2.5.4 Physical Breast Phantom and Antenna Design

	2.6 Conclusion

	3 Propagation Modelling and Simulation of UWB Signals for Breast Tumour Detection
	3.1 Introduction
	3.2 Literature Review
	3.3 Auxiliary Differential Equation
	3.4 Convolutional Perfectly Matched Layers
	3.5 Design and Implementation
	3.5.1 Environment Setting
	3.5.2 Memory Initialisation
	3.5.3 Kernel Iteration
	3.5.4 Field Output

	3.6 Validation Study
	3.6.1 Measurements and Evaluation
	3.6.2 Comparative Verification
	3.6.3 Computational Efficiency

	3.7 Visualisation of Breast Model and Signal Propagation
	3.7.1 Breast Model Construction
	3.7.2 Breast Medium Types
	3.7.3 Simulation Setup Variations
	3.7.4 Visualisation of Signal Propagation

	3.8 Simulation Results
	3.8.1 Varied Breast Models
	3.8.2 Signals with Varied Centre Frequencies
	3.8.3 Signals with Varied Pulse Widths
	3.8.4 Signal Acquisition with Monostatic Method
	3.8.5 Signal Acquisition with Multistatic Method

	3.9 Further Applications
	3.10 Conclusion

	4 A Robust and Artefact Resistant (RAR) Algorithm of UWB Imaging System for Breast Cancer Detection
	4.1 Introduction
	4.2 Literature Review on UWB Breast Imaging Algorithms
	4.3 Backscattered Signal Acquisition
	4.3.1 Breast Model
	4.3.2 Simulated Model Setup

	4.4 Breast Cancer Detection with RAR
	4.4.1 Pre-processing for Artefact Removal
	4.4.2 Algorithm Rationale

	4.5 Software Environment and Implementation
	4.5.1 Software Environment
	4.5.2 Implementation

	4.6 Imaging Results and Discussion of RAR and Comparisons
	4.6.1 Breast of Medium Type A and B with Ideal Artefact Removal
	4.6.2 Breast of Medium Type B with Entropy Artefact Removal
	4.6.3 Breast of Medium Type C with Entropy Artefact Removal
	4.6.4 Breast of Medium Type D with Entropy Artefact Removal
	4.6.5 Breast of Medium Type E and F with Entropy Artefact Removal

	4.7 Robustness Analysis of RAR and Comparisons
	4.8 Complexity Analysis of RAR and Comparisons
	4.9 Conclusion

	5 Improved Algorithms via Weighting Factor and Spatial Diversity Exploration
	5.1 Introduction
	5.2 Diverse and Dynamic Weighting Factor Exploration
	5.2.1 Monostatic Signal Acquisition
	5.2.2 Local Coherence Exploration (LCE)
	5.2.3 Dynamic Neighbourhood Pairwise Correlation (DNPC)

	5.3 Multiple Spatial Diversity (MSD) Algorithm
	5.3.1 Multistatic Signal Acquisition
	5.3.2 Algorithm Rationale

	5.4 Imaging Results and Discussion
	5.4.1 Breast of Medium Type A and B with Ideal Artefact Removal
	5.4.2 Breast of Medium Type B with Entropy Artefact Removal
	5.4.3 Breast of Medium Type C with Entropy Artefact Removal
	5.4.4 Breast of Medium Type D with Entropy Artefact Removal
	5.4.5 Breast of Medium Type E and F with Entropy Artefact Removal

	5.5 Comparison and Analysis of Proposed Algorithms
	5.5.1 Algorithm Comparison
	5.5.2 Performance Analysis

	5.6 Conclusion

	6 Accelerated Image Reconstruction Mechanisms
	6.1 Introduction
	6.2 Literature Review
	6.3 Redundancy Elimination (RE) for Fast Computation
	6.3.1 Complexity Bottleneck
	6.3.2 Redundancy Classification
	6.3.3 Redundancy Elimination
	6.3.4 Simulation Results and Analysis

	6.4 Annulus Prediction (AP) for Fast Computation
	6.4.1 Rational
	6.4.2 Procedure

	6.5 Simulation Results and Analysis of AP
	6.5.1 Varied Numbers of Predicted Zones
	6.5.2 Computation Speed Comparison
	6.5.3 Algorithm with AP Acceleration

	6.6 Comparative Analysis of RE and AP Mechanisms
	6.7 Conclusion

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References
	Appendix A Matlab Code of RAR Image Reconstruction Algorithm


