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Abstract

Chapter 1 provides an insight into the current areas of research that could provide an-

swers to the global energy problems outlined in Appendix A, namely the reductive func-

tionalisation of carbon oxides and as an extension to this, the activation of other small

molecules. The review predominantly concentrates on the chemistry of the 5f elements

which already contain examples of reductive functionalisation of carbon oxides, albeit in

homogeneous phase. In addition the chapter provides an overview of the current re-

search in surface science and by extension, the development of molecular models that

mimic such surfaces. This synopsis provides an insight into the difficulties involved in this

area of research and why molecular mimics are of vital importance.

Using ligating Si-O bonds to mimic a silica surface, Chapter 2 outlines the research which

enabled the development of a series of uranium siloxides, centred on the previously un-

reported pentakis(triarylsiloxy) uranate(IV) ion. Characterisation data and full analysis

are included within this chapter which provided the basis for the investigations discussed

in the following chapters. This chapter also presents an interesting UV-Vis analysis of

the uranium siloxides which will enable a wider understanding of the f -elements and the

role f -orbitals have on the chemistry and geometry of f -element molecules. Chapter 2

develops a deeper understanding of these complexes by investigating the mechanisms

of formation and the chemistry of the U(Ph3SiO)5 fragment using ESI techniques in con-
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junction with NMR analysis.

Chapter 3 investigates the reactivities of the uranium siloxides previously developed and

discusses a new dioxo species and a rare and novel UV monooxo complex which was

synthesised and successfully isolated. An analysis of other dioxo and monooxo com-

plexes is included which allows the reader to develop an appreciation of how few and

far between monooxo products are. In addition, previous examples of monooxo’s are

lacking characterisation data and are mostly products of oxygen atom donor reactions,

not as a result of small molecule activation as is presented here. There is currently one

previous example of such a system resulting from small molecule activation which is also

discussed in this chapter.

Chapter 4 investigates a second ligand system which could be used to mimic a silica sur-

face. Whilst the ligand, tris tertbutoxy has been investigated previously, at the time of this

work, the ligand had not been successfully used in relation to a uranium complex. The

U3.5 species, [(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] is presented here alongside the com-

plexes [((tBuO)3SiO)3U]2(µ2- O)3 and U(OSi(OtBu)3)4. During the development of this

species, very similar species were published by another group and these syntheses and

characterisation data are presented here as a comparison to the species developed as

part of this work.

Chapter 5 investigates the reactivities of the uranium siloxides developed in Chapter 4

including decomposition analysis and reactions with small molecules such as O2, I2 and

CO2 and presents the resulting complexes some of which were developed by a Masters

student working in collaboration with the author.
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Chapter 1

Siloxides as surface mimics and the

use of uranium in molecular models

In order to establish the motivation behind the research presented here, the global pic-

ture is first analysed and presented in Appendix A with focus on current trends in climate

change and the peak oil crisis. The analysis begins with the role carbon dioxide plays

within the atmosphere and the potential effects on the planet when the atmospheric com-

position changes. The following discussion leads on from the global picture, analysing

and investigating potential solutions via the use of siloxides as surface mimics and the

use of uranium in those molecular models which has repeatedly shown interesting and

unusual chemistry when used to activate small molecules such as carbon oxides.

1.1 Atomic and physical properties of uranium

No other element has such a Jekyll and Hyde reputation [1]
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The actinides and more specifically early actinides such as uranium, are distinguished

from the lanthanides and transition metals in a number of aspects. One of the most

significant physical properties of the actinides is the contraction of the ionic radii as the

nuclear charge increases across the period. This is also observed more prominently

in the lanthanide series. The lanthanide contraction is caused by the strong attraction

between the electrons in a 4f orbital and the positively charged nucleus. This attraction is

only partially shielded by the electrons in other orbitals. As the nuclear charge increases

across the lanthanide series, the shielding becomes less efficient.

The 5f orbitals of the actinides are not as effectively shielded by the filled 6s and 6p

subshells compared to the 4f orbitals of the lanthanides, so whilst actinide contraction is

observed, it is not as pronounced as the lanthanide series. Due to the fact that the 5f

subshell of the actinides is less effectively shielded than the lanthanides, the 5f electrons

in actinide ions are not considered as ‘inner’ subshells but more closely described as

part of the ‘outer’ subshells. For this reason, the 5f electrons can play a greater role in

bonding than the equivalent 4f electrons of the lanthanides. This effectively means the

5f , 6d and 7s subshells can all play a role in bonding in the actinides. [2] [3]

With the 5f–orbitals more available for bonding and the ionic radius of uranium being

comparatively large, as shown in Appendix M, compared to the later actinides, a greater

number of oxidation states and higher coordination numbers available. [4] This can be

further analysed by considering the electronic configuration of the oxidation states of

uranium itself. A UIII complex would have an electronic configuration of [Rn]5f 3, UIV =

[Rn]5f 2 and UV = [Rn]5f until the 5f orbitals are empty at UVI. It is this variety of available

oxidation states that provides access to different chemistry compared to the relatively

restricted lanthanide series, which almost entirely relies on the LnIII oxidation state. [2] [3]

Due to these unusual qualities, research has developed in the field of uranium catalytic
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chemistry with a number of successes in the field of small molecule activation.

1.1.1 Small molecule activation and uranium

The previously discussed characteristics and properties of uranium provide access to

interesting and sometimes unpredictable chemistry. Evidence has been reported that

uranium can activate small molecules efficiently and effectively and therefore the de-

velopment of uranium–based catalysts has gathered pace. [1] [5] The following sections

examine the development of uranium–based catalysts with emphasis on small molecule

activation over the last thirty years.

Dinitrogen activation

In order to activate H2 and N2 to synthesise NH3, pressures of around 150–250 bar and

temperatures of around 300–500 ◦C are needed, which are both dangerous, expensive

and resource–intensive, thereby impacting greatly on environmental cycles. [6] Such con-

ditions are due to the inert nature of dinitrogen. Dinitrogen’s bond dissociation energy

is 944 kJ mol−1 [7] making cleavage of the triple bond difficult and activating dinitrogen

has proven a challenge. Dinitrogen is a non–polar molecule with tightly bound σ and

π electrons. This coupled with the large gap between its HOMO and LUMO means

dinitrogen will not readily accept or lose electrons. There have been examples recorded

of dinitrogen activation through ‘end–on’ or ‘side–on’ bonding to actinide and transition

metal centres. [1] [8]

Elongation of the N–N bond within a dinitrogen complex is often taken as a measure of

the degree of reduction of the N2 moiety, albeit an indirect one. Bond elongation is com-

monly caused by donation of electrons from a metal orbital of appropriate symmetry into
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the anti–bonding molecular orbitals of dinitrogen. Once activated, dinitrogen may then

proceed to other products, resulting in functionalisation, further activation or complete

cleavage. Figure 1.1 illustrates generic examples of monometallic and bimetallic bonding

to dinitrogen. [7]

Figure 1.1: Dinitrogen binding modes in monometallic and bimetallic complexes

[((N3N)U)2(N2)] (N3N = N(CH2CH2NSi(tBu)Me2)3) was the first uranium, side bound dinitro-

gen complex and was synthesised by reacting the trivalent complex [U(N3N)] with N2 to

form a side–on bridged dinuclear uranium complex as shown in Scheme 1.1. [9] The N2

bond length is 1.109± 0.007 Å, which is similar to the bond length of free dinitrogen at

1.0975 Å. This comparison of data can be interpreted to indicate that little activation of

the dinitrogen bond had occurred. However the data still provides evidence that uranium

complexes could be used to bind dinitrogen and lead to activation of the bond. [1]

The uranium complex (Ar(R)N)3U(N2)Mo(N(tBu)Ph)3 (R = N–tert–butylanilide) was isol-

ated and is an example of a stable hetero–bimetallic dinitrogen complex. Li(N[R]Ar)(OEt2)

was reacted with one equivalent of UI3·(THF)4 resulting in a yellow compound being isol-

ated, identified as the UIV complex, (U(I)(N[R]Ar)3) which could be reacted further to form



5

Scheme 1.1: The first example of a side–on dinitrogen UIII complex

U(THF)(N[R]Ar)3. Activation of dinitrogen was unsuccessful and therefore the uranium

complex was reacted in a 1:1 ratio with Mo(N[tBu]Ph)3 under 1 atm of nitrogen which

resulted in the aforementioned nitrogen bound complex as shown in Scheme 1.2. [10] The

N–N distance of the end–on bound dinitrogen is substantially longer with an observed

distance of 1.232 Å, an increase of 0.13 Å. This indicates that the dinitrogen molecule

had been activated by a uranium–based complex for the first time.

Scheme 1.2: The first example of a heterodinuclear end–on dinitrogen UIV complex

Complete cleavage of dinitrogen was observed when potassium naphthalenide was re-

acted with [(Et8−calix−4−tetrapyrrole)U(dme)][K(dme)] and dinitrogen gas to synthesise

[(K(dme)(calix−4−tetrapyrrole)U)2(µ−NK)2][K(dme)4]. This product was unprecedented

and provided a unique example of a binuclear mixed–valent µ–nitrido UV/UIV complex in

addition to providing the first example that a highly reducing uranium centre could reduce

the strong dinitrogen bond when in the presence of the correct ligand environment. [11]

The first example of a mixed sandwich UIII complex reacting with dinitrogen is shown in
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Scheme 1.3. The reaction resulted in dinitrogen bonding in a side–on manner forming

a UIV complex. The key N–N bond length was reported to be 1.232(10) Å, similar to a

N=N double bond which suggests that the dinitrogen had been partially reduced by the

uranium centre. Unfortunately this nitrogen bound complex was not stable and released

N2 very easily in both the solution and solid state resulting in the retrieval of the UIII

starting material. [12]

Scheme 1.3: A binuclear, side–on bridging dinitrogen unit, reducing N2 to N2–
2

By subjecting the UIII complex (Cp · )3U to 80 psi of N2 an example of a monometallic

end–on bound dinitrogen complex was synthesised as shown in Scheme 1.4. When the

pressure was reduced, C6D6 solutions of the uranium complex released N2 regenerating

(Cp · )3U. The N–N bond distance of 1.120(14) Å is relatively similar to that of free N2 at

1.0975 Å, indicating that the N2 molecule had not been significantly altered. [13]

Scheme 1.4: The monometallic end–on dinitrogen UIII complex, (Cp · )3U(η1N2)
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Carbon monoxide activation

The activation of carbon based small molecules is an important process especially since

the development of the Fischer–Tropsch process in the 1930’s. The bond energy of car-

bon monoxide is greater than dinitrogen at 1079 kJ mol−1 but the bond is more easily

broken due to the polarity between the carbon and oxygen atoms causing a greater de-

gree of ionic bonding. [14] CO can bond to a metal centre in an ‘end–on’ manner via the

carbon or the oxygen although normally found to be via a σ–bonding interaction between

the carbon and the metal with secondary π–bonding between the d–orbitals on the metal

centre and the p–orbitals on the carbon. [15] Other binding modes are illustrated in Figure

1.2 with many examples on transition metals found in the literature. [16] [17]

Figure 1.2: Carbon Monoxide binding modes in monometallic and bimetallic complexes

The first reported example of carbon monoxide bound to uranium was (Me3SiC5H4)3UCO,

which was synthesised by reacting 1 atm of carbon monoxide at 20◦ C with (Me3SiC5H4)3U

and is shown in Figure 1.3. The volumetric studies carried out showed the uranium com-

plex absorbed 1.0 ± 0.05 M equivalents of CO at 25 ◦ C. It was also found that the

reaction could be reversed under vacuum several times with no decomposition of the

uranium complex. The CO was found to be bound to the uranium centre through the

carbon in a linear fashion, supported by X–ray analysis. In addition a significant reduc-
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tion of the carbon monoxide stretching frequency was observed (1969 cm−1), indicating

a lengthening and therefore weakening of the C≡O bond. [18]

Figure 1.3: (Me3SiC5H4)3UCO, the first example of carbon monoxide bound to a uranium complex

The first example of a CO bridged dinuclear uranium compound is shown in Scheme

1.5. [19] Carbon monoxide was reacted with the uranium complex resulting in a pale brown

solution. Infrared characterisation showed a distinct band at 2092 cm−1, which is close to

that of other coordinated CO complexes. X–ray diffraction analysis supported the bridged

CO formulation although no reliable CO bond distance data were available due to disorder

of the crystals.

Scheme 1.5: The first example of carbon monoxide bridged dinuclear uranium complex

The previously reported complex, [U(η−COT)(η−Cp∗)(THF)] was reacted with CO at am-

bient pressure to give the dimeric UIV deltate complex as shown in Scheme 1.6. Most

of the bond distances were unremarkable and the majority of discussion focusses on the

U(C3O3)U planar unit. The U2–O3 bond distance was found to be slightly longer than

aryloxides and the U1–O1 and U1–O2 bond lengths observed were significantly longer
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(2.516(3) Å and 2.484(3) Å respectively). The C–O bond lengths were found to lie in

between the average single and double CO bond lengths. In addition the C–C bond

distances were also noticeably distorted with one long and two shorter bonds and this

was investigated further with DFT calculations which reproduced the same distortions

suggesting the distortions are effected by the sterics within the system. [20]

Scheme 1.6: Reductive cyclotrimerization of CO to the deltate dianion by an organometallic
uranium complex

Based on the work previously reported on the deltate dianion, subtle changes in the

steric or electronic properties of the starting material were utilised to investigate whether

the squarate dianion was possible. By replacing the Cp∗ ligand with CpMe3H to form the

complex, [U(η−C8H6(SiiPr3−1, 4)2)(η−CpMe3H )(THF)] and exposing it to ambient pres-

sures of CO at -30 ◦C the squarate dianion was synthesised and is shown in Scheme

1.7. The oxocarbon unit was found to be planar like the deltate dianion and the U–O

distances were observed to be almost identical to the deltate distances. The difference

however, is found in the U–C distances which were longer (3.045 Å average) than those

found in the deltate dianion (2.662 Å average). [21]

Scheme 1.8 shows an example of CO insertion into a uranium carbon double bond.

The tetrahedral complex [(Cp)3U(η−−COCHPMePh2)] was synthesised by reacting the

starting material, [(Cp)3U(−−CHPMePh2)] with atmospheric pressures of CO at ambient

temperature. The C–O bond length of the η2–CO fragment is 1.27 Å, the P–C distance

was 1.77 Å and the C–C distance was 1.37 Å which suggest a delocalised structure as
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Scheme 1.7: Reductive cyclotetramerization of CO to squarate by a UIII complex

depicted in Scheme 1.8 as two resonance structures. [22]

Scheme 1.8: Carbon monoxide insertion into the uranium carbon double bond

These examples show that CO can interact with uranium complexes in a variety of ways.

Uranium also possesses the ability to activate the coordinated CO fragment and to func-

tionalise the fragment providing evidence that uranium may be a suitable element to be

used in a catalytic CO transformations.

Carbon dioxide activation

As discussed in section A.1, CO2 is relatively inert. This characteristic of CO2 requires

the molecule to be activated prior to any reaction taking place and this can be achieved

by bonding CO2 to a metal centre. This can be achieved in a number of ways such as

‘end–on’ or bridging between two metal centres. The following section highlights some of

the key uranium–based complexes that have successfully activated CO2.
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One of the first examples of a carbon dioxide insertion into a uranium methyl bond was

demonstrated by reacting [(Cp∗)2U(Me)2] with an excess of CO2 to yield bis(acetate)

complex [(Cp∗)2U(OAc)2]. In addition by adding just one equivalent of CO2 to the same

starting material, the monomeric methyl acetate complex, [(Cp∗)2U(Me)(OAc)] was syn-

thesised.

Scheme 1.9: The first example of carbon monoxide bridged dinuclear uranium complex

The complex shown in Scheme 1.9 also reacted with CO2 to form an oxide–bridged

uranium compound releasing carbon monoxide. [19] A similar complex was also investig-

ated in the CO2 reactivity studies. The ortho t–butyl substituents on the aryloxides were

replaced with adamantyl substituents as shown in Scheme 1.10. This complex formed

the previously unreported η1−OCO·- radical anion.

Scheme 1.10: The first example of an end–on carbon dioxide uranium complex

Characterisation of the resulting complex showed the CO2 molecule had bound in an

almost linear fashion with U–O–C and O–C–O angles of 171.1 ◦ and 178.0 ◦ respectively.

The infrared vibration spectra also showed a significantly reduced frequency for CO2 of

2188 cm−1 compared to free CO2 which has a vibrational frequency of around 2349

cm−1. [23]
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Scheme 1.11 shows the symmetrical UIV dimer (OTtbp)2U(µ−O)(µ−O2COTtbp)2U(OTtbp)2

which was synthesised from UIII reduction of CO2. The O–Ar bonds were similar to other

O–Ar bonds however the U–µ–O distance is 2.095(3) Å, shorter than expected and the

U–O–U angles was not the predicted linear angle, but observed at 140.4(5) ◦. The car-

bonates have U–O bond distances of 2.315(7) and 2.371(7) Å and UO–C bond distances

of 1.258(12) and 1.253(13) Å suggesting delocalisation of the charge. [24]

Scheme 1.11: Insertion of carbon dioxide into uranium aryloxide bonds

A more recent example shown in Scheme 1.12 highlights the reductive coupling of CO2

to form a bridging oxalate complex. The identity of the R group and therefore the sterics

of the complex are vital to the outcome of the reaction. When R = Me, two products

were identified, (U(η8−C8H6(1, 4−SiMe3)2)(η5−CpMe5))2(µ−O) and the bridging oxalate,

(U(η8−C8H6(1, 4−SiMe3)2)(η5−CpMe5))2(η−µ2:µ2−C2O4). When R = Et or iPr, the bridging

carbonate complex, (U[η8−C8H6(1, 4−SiMe3)2](η5−CpMe4R))2(µ−η1:η2−CO3) and the bridging

oxalate complex (U[η8−C8H6(1, 4−SiMe3)2](η5−CpMe4R))2(µ−η2:η2−C2O4) were formed

and when R = tBu the only product observed was the bridging carbonate complex,

(U[η8−C8H6(1, 4−SiMe3)2](η5−CpMe4tBu))2(µ−η1:η2−CO3). 1.12 specifically shows how

the oxalate was synthesised as the major product when the R group size was increased

(R = Me (20%), Et (30%), IPr (60%)). The structural analysis of the oxalate complexes

obviously differ depending on the R group, however the U–O bond distances ranged from

2.431(4) to 2.441(5) Å with the average C–O distances observed at 1.263 Å. [25]
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Scheme 1.12: Reductive activation of CO2 by mixed sandwich uranium III complexes

These examples of show that uranium has been used successfully to react with small

molecules such as N2, CO and CO2. Both sterics and electronics play a role in the

synthetic outcome of these reaction. Development in this area could potentially result in

some interesting and significant outcomes.

1.2 Surface sites and molecular mimics

The majority of industrial processes employ heterogeneous catalysis for several reasons.

Solid catalysts, or solid–supported catalysts are mechanically robust and self–supporting,

which simplifies the construction and operation of large–scale reactors. Additionally, cata-

lytic reactions are then either gas–solid or, more rarely, gas–liquid and the removal of the

catalyst is then clearly simple. Solid phase catalysts are usually thermally robust, allow-

ing a wider range of temperatures. Approximately 90% of industrial catalytic processes

are based on heterogeneous catalysis. [26]

There are several difficulties when attempting to explain fundamental aspects of surface–
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mediated catalysis. The majority of the material is bulk material and conforms to the

structure of the normal solid and is only indirectly involved with the catalytic mechanism,

as the reaction takes place on the surface of a dense–phase catalyst. Even on the sur-

face, reaction does not occur at every atomic position but at a subset, which means that

if the average structure of the surface can be determined, little structural data may be

available for the active site or sites.

Several chemical approaches have been used to circumvent these disadvantages, with

the hope that increased structural and mechanistic understanding of the active site or

sites will allow a rationally designed approach to catalysts with greater activity. One ap-

proach is to employ a microporous material, such as a zeolite, which is a crystalline, peri-

odically folded surface in which every atom is at the surface or is surface–like. Structural

determinations are in principle no different from a structural determination of a small mo-

lecule crystal. Within the microporous structure, catalytic sites can be introduced either

as surface atoms, for example in the formation of a microporous Brønsted acid shown

below where (s−) represents the surface:

s − Si [SiO4]→ s − Si(1−x)[AlH]x[SiO4] (1.2.1)

A second approach is to mount an atom exohedrally on the surface such that the atom

is chemically bound to the surface and all the reactivity that is established by this route

is determined by these surface atoms and not the unmodified support. A proportion of

surface materials are based on silica and there are various types of functional group

active sites on a silica surface, a number of which are shown in Figure 1.4. It is key to

begin by understanding the support surface and the active sites.

The concentrations of each type of active site can be varied with treatment. Dehydroxyla-
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tion transforms vicinal silanol groups into isolated groups with treatment temperatures

around 700 ◦C. At higher temperatures in the region of 800 ◦C the vicinal groups are

transformed into strained four membered ring siloxane bridges. The concentrations of

each type of silanol or siloxane bridge are therefore dependant on the pretreatment the

surface receives and can be manipulated accordingly. Silica can be considered homo-

geneous, with regard to its active surface sites, with R3SiOH. [26]

Figure 1.4: Types of surface silanol groups

In order to understand the reactivity of these groups, the tools of molecular chemistry

are employed to investigate such systems. Complexes are developed that ‘mimic’ the

surface active sites but on an organometallic, molecular level. There are key questions

that should always be considered when using one system as a mimic for another. For

example; does the molecular system react in identical ways to the surface it is mimicking?

Can the structure of the molecular systems be rationalised in terms of the solid surface

sites? Is it possible to study the steps of a reaction on the molecular mimic and is this

a true reflection of the chemistry involved on the surface site? [26] Investigations into the

acidity and behaviour of the Si–OH unit are therefore important.

1.2.1 Silanols as molecular mimics for surface sites

Silanols are compounds containing the Si–OH bond and are homologous with the carbon

containing alcohol group, C–OH. There are three major groups within the silanol family.
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First the silanol groups which contain just one Si–OH unit. Second the group of silanols

containing compounds which possess one or more Si(OH)2 units and finally the third

group containing all the silanol compounds which possess one or more Si(OH)3 units. [27]

For the purposes of this work only silanols with one Si–OH unit will be considered.

In general silanols tend to be difficult to synthesise and store. There are currently two

main methods used to synthesise silanols. The first is to hydrolyse compounds containing

the Si–X unit (X = F, Cl, Br, I, H). The second method is to oxidise the Si–H unit of the

desired compound using an oxidising agent such as KMnO4, AgNO2, AgNO3, Ag2O, O3

or dioxiranes. [27]

The Si–O group also shows a tendency to undergo an intermolecular condensation re-

action resulting in a very stable siloxane compound and water. This tendency means the

isolation of pure silanols can be problematic and this is, to a large extent, the reason for

the high price of many silanol derivatives. Solutions to this issue involve storage of the

silanols at lower temperatures to reduce the rate at which the condensation reaction oc-

curs, dilution of the silanols in order to reduce the probability of a condensation reaction

and using bulky R groups on the silicon in order to stabilise the silanol kinetically.

Finally, during the preparation of most silanols, the R3Si−Cl group is synthesised first.

The hydrolysis of the Si–Cl moiety results in acidic impurities which can cause degrada-

tion of the desired silanol. Mild bases such as triethylamine or aniline can be effective in

the removal of such impurities. [27]

Si–O Bonding

The σ–bonding in a Si–O bond is very different from a C–O bond. The bond dissociation

energies of the two are 498 kJ/mol and 358 kJ/mol respectively showing that the C–O
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single bond is weaker. The converse is observed in the case of Si=O and C=O, in which

case, the bond dissociation energies are 749 kJ/mol and 803 kJ/mol respectively. [28,29]

The principle difference between these two quantities rests on the description of the con-

stituent atomic orbitals that are assembled under the LCAO approximation. In carbon,

the p–orbitals have no radial node, are contracted and can form π–interactions readily

at the distance of a C=O bond. However, because of the strong interaction between the

two atoms, the gap between the bonding and anti–bonding orbitals is substantial and any

donation into a σ∗–orbital is negligible. A C–O single bond therefore has single bond

character only.

For a Si–O single bond, other effects are involved. The s−p gap is somewhat larger, lead-

ing to a higher degree of p–character in the valence shell; the electronegativity difference

is greater therefore:

∆χ = χ (O)− χ (C) = 0.89

∆χ = χ (O)− χ (Si) = 1.54

resulting in a far more polar bond and therefore a greater electrostatic contribution. In

additon the radial node present in the 3p orbital destabilises 3p −−2p π–interactions.

Because the bonding–antibonding gap is smaller in an Si–O bond, then the availability of

the σ∗–orbitals becomes important and the interaction between the p–rich Si bonding hy-

brids and the anti–bonding CH or SiH σ*–orbitals is significant. [30,31] This bonding model

provides a more satisfactory explanation than the earlier hypothesis of p–d dative bond-

ing. [32,33] This π–acidity at the Si centre also plays a role in the geometry of the M–O–Si

linkage, as discussed below.

In addition, when comparing the silyl ligand, Ph3SiOH to the alkyl ligand, Ph3COH it has

been noted that the silyl ligand is more electron withdrawing. Whilst the carbon atom is
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in fact the more electronegative of the two, the silicon atom possesses a strong inductive

effect which has an impact on the whole ligand. This is reflected by the acidity of the

two ligands. For example Ph3SiOH (pKa = 16.57, DMSO) is a stronger acid than the

alkoxide equivalent Ph3COH (pKa = 16.97, DMSO). In addition it is worth noting that the

siloxide ligand binds to metal centres in a more ionic fashion than the less acidic alkoxide

ligands. [34]

Si–O–M Bonding

The Si–O–M bond is normally linear, whereas the C–O–M bond is more often bent. It

is generally accepted that the principle bonding between siloxides or alkoxides and the

metal centre occurs through a σ–bond from the oxygen to the metal centre. There is

also an argument for significant interaction between the ligand and the metal via donation

from the pπ–orbitals on the oxygen, see Figure 1.5 (a) and (b) respectively. [34] This type of

bonding presumes a three electron donation from the ligand to the metal centre, therefore

enabling the stabilisation of low coordinate and electron deficient metal centres.

The linear nature of the Si–O–M bond angle has been previously accredited to the d–

orbitals on the silicon atom accepting electrons from the p–orbitals on the oxygen. [35,36]

However, more recently this theory has been superseded and the linear nature of the Si–

O–M bond is more accurately described by considering ‘Bent’s rule’ [37] and electronegat-

ivity differences. [31] Bent’s rule predicts that bonding sp hybrids to atoms of higher elec-

tronegativity will result in an increased percentage of p character, which will lead to smal-

ler bond angles. [31] Therefore, because carbon has a greater electronegativity value (2.5)

compared to silicon (1.9) the orbital of the oxygen atom will posses greater p character

and lead to smaller (non–linear) bond angles.
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(a) (b)

Figure 1.5: Si–O Bonding modes (a) pσ donation and (b) pπ donation

1.2.2 Surface organometallic chemistry

As discussed in section 1.2, surface science can use the surface of a material to stabilise

inorganic catalysts. Moreover, reactions that are unprecendented in solution can occur

at surface–bound metal atoms. This has proved to be useful in the transformation of

alkanes, which is of great interest to the petrochemical industry in their quest to trans-

form small hydrocarbons such as methane. Because of reactions such as this, surface

organometallic chemistry (SOMC) is an area of chemistry that has gained popularity and

is used to anchor complexes onto surfaces such as oxides, zeolites or metals in order to

use the complex further in catalysis.

There are a variety of examples of complexes bound to zeolites. Once bound, the struc-

ture of the complex is investigated along with the possible mechanism, reactivities of the

complex and the catalytic properties in relation to the activation of alkanes via a meta-

thesis type reaction, which is examined further here.

Metathesis of alkanes

The metathesis of alkanes is not without its issues. For example, if the metathesis of al-

kenes are considered for a moment, in most cases there is only one double bond for the

reaction to occur. Now consider alkanes, and more specifically, Cn where n>3. Each C–C
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bond is a potential reaction site and therefore multiple products are to be expected. [38–40]

To illustrate this point further, a complex previously reported in 1978 by Schrock and

Fellmann [41] can be used as an example when the tantalum complex is bound to a de-

hydroxylated silica surface, represented as s- in Scheme 1.13. The reaction produced

two silica bound tantalum compound and neopentane gas. [42]

Scheme 1.13: Tantalum compound on dehydroxylated silica surface

Following this example, the synthesis of the monohydride tantalum compound [43] was

synthesised by exposing the two tantalum products, depicted in Scheme 1.13, to 1 atm

of hydrogen in temperatures of up to 200◦ C. The hydride species [38] showed no catalytic

reactivity when reacted with cycloalkanes and only a TaIII cyclo–alkyl species was formed

with the evolution of hydrogen gas. However, when the tantalum hydride species was

exposed to acyclic alkanes a catalytic metathesis reaction was observed (25◦ C -200◦

C) leading to both higher and lower homologues. For example, the metathesis of ethane

simply formed methane and propane. However, as predicted, when exposed to an alkane

with more than one C–C bond a mixture of products were observed and the metathesis of

propane led mainly to the products n–butane and isobutane with other observed products

being ethane, n–pentane, isopentane and propane.



21

In addition to the tantalum hydride, zirconium hydrides have also been investigated. The

development of a highly electron deficient zirconium neopentyl complex, which was sta-

bilised by being bound to the surface of dehydroxylated silica causing steric crowding,

as shown in Scheme 1.14. The product was reacted with hydrogen (6 x 104 Pa at

150◦ C) to form the hydride and various reactions were observed with cyclo–octane and

methane. [44] However, more interesting was the synthesis and reactivity of a zirconium

monohydride and dihydride. [45] The reactivities of these complexes were reported with re-

gard to exposure to methane. The monohydride reacted slowly and incompletely to form

[s−(SiO)3ZrMe] whilst in contrast the dihydride reacted quickly and completely to form

the species [s−(SiO)2ZrMe2] via the intermediate [s−(SiO)2ZrHMe] as shown in Scheme

1.15.

Scheme 1.14: Zirconium species on a dehydroxylated silica surface

Scheme 1.15: Zirconium hydride species on a dehydroxylated silica surface reacting with methane

This observation suggests that dihydrides and perhaps polyhydrides could be used more

effectively in the catalytic reactions involving methane and other alkanes.
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1.3 Current molecular models for surface materials

One of dominant area of research has been on the use polyhedral oligosilasesquiox-

anes (POSS) as surface mimics. [46] This group of molecules are useful in this area of

chemistry for two reasons. Firstly, they possess an adequate degree of oligomerisation

making them relevant models for highly silaceous materials and secondly, they retain the

Si–OH functionality which allows them to be used as ligands in a wide range of transition

metal and main group complexes. [46] In addition, the extensive framework within POSS

suggests that the electronic properties should be closer to those of silica and siliceous

solids compared to conventional models such as siloxide ligands. For example, the elec-

tron withdrawing properties of the Si8O12 framework are similar to CF3 which is a stark

contrast to the electron donating properties of the R3Si derivatives. Furthermore, conven-

tional models fail to mimic the geometry observed in silica supported species due to the

metal centre being the dominant force in the ligand arrangement. A silica surface dictates

its own structure due to the inflexible nature of the solid surface itself.

The first example of a transition metal containing siloxane that was designed to mimic sur-

face sites possessed three hydroxyl groups bonded to a single metal atom. [47] The new

compounds are called polyhedral oligometallasilsesquioxanes (POMSS) and synthesised

by substituting transition metal atoms into the silicon oxygen framework of polyhedral

oligosilasesquioxanes. One of the most notable examples in this area is a vanadium con-

taining silsesquioxane complex. [48–50] Vanadium complexes are reported to be possible

catalysts for the oxidation of methane and other hydrocarbons. In addition, a number

of studies have reported that vanadium formed the elusive "three–legged" surface com-

plexes which are preferable due to the increased stability of three anchors.
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1.3.1 Triphenylsiloxide as a molecular surface mimic

Triphenylsiloxide has been used as a ligand on a number of transition metal and lanthan-

ide complexes with a view to synthesise a mimic for a surface bound species; such com-

plexes include both heteroleptic and homoleptic systems.

1.3.2 Lanthanides

Scheme 1.16 shows various lanthanum siloxide complexes which have been reported in

the literature, the first of which was [La(OSiPh3)3(THF)3]·THF which was synthesised by

reacting [La(N(SiMe3)2)3] with aliquots of Ph3SiOH at 0◦C. [51] The resulting [La(OSiPh3)3]n

was then stirred in THF and recrystallised from THF/diethyl ether mix. Derivatives of this

complex were synthesised by using different solvent systems. [La(OSiPh3)3(py)3] was

prepared by condensing pyridine onto the solid, [La(OSiPh3)3]n and recrystallised from

a pyridine/diethyl ether mix. Finally [La(OSiPh3)]n was stirred with OP(nBu)3 to form the

complex, [La(OSiPh3)3(OP(nBu)3)2]. Only one of these complexes had full character-

isation data, [La(OSiPh3)3(THF)3]·THF. The complex has average La–Osilox bonds of

2.226(3) Å, La–OTHF bonds of 2.643(7) Å and Si–O bonds of 1.598(0) Å. [51]

Cerium has also been investigated and Ce(OSiPh3)2(µ−OSiPh3)2 can be synthesised

by reacting Ln[N(SiMe3)2]3 (Ln = La, Ce) with Ph3SiOH which crystallises as the dimer

[Ce(OSiPh3)3]2 with bridging siloxide ligands. The average Ce–Osilox bond lengths were

observed at 2.163(6) Å whilst the Ce–Obridging were found to be slightly longer at 2.384(5)

Å. [52] Secondly, Ce(OSiPh3)4 was prepared from Ce(OPri )4 by reacting it with Ph3SiOH in

DME. Single crystals of Ce(DME)(OSiPh3)4 which were of X–ray diffraction quality were

yielded from a toluene/Et2O mix and Ce–Osilox bond lengths were observed at 2.11(48)

Å, on average, whilst the Ce–ODME were found to be slightly longer at 2.581(10) Å. [53]
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Scheme 1.16: The homoleptic triphenylsiloxide lanthanum complexes and lewis base adducts

Finally, by heating Ln(NO3)3(H2O)y (Ln = Y, Ce, Nd, Pr) in the presence of NH4NO3 the

anhydrous trivalent nitrates (NH4)xLn(NO3)3+x were formed which could then be reacted

with three equivalents of NaOSiPh3 to synthesise [Ln(OSiPh3)3(THF)3](THF). Only the

cerium compound was characterised fully, but the average Ce–Osilox bond lengths were

observed at 2.222(4) Å whilst the Ce–OTHF were found to be 2.591(7) Å. [54]

An example of a samarium complex was synthesised by reacting a previously prepared

solution of [Cp”
2SmF]2 in THF with Ph3SiOH. The characterisation data showed the com-

plex had a Sm–Osilox bond of 2.169(8) Å and a O–Si bond of 1.590(8) Å. [55]

Two further samarium siloxide examples were developed by reacting Sm(N(SiMe3)2)3

with Ph3SiOH and recrystallised from ether. By reacting [(Ph3SiO)3SiO]3Sm(THF)3 with

[Cp · Sm(µ−OSi(OtBu)3)3Sm], a mixed polynuclear siloxide was isolated and the product,

[(Ph3SiO)3Sm(Cp · )Sm(OSi(OtBu)3)3Sm] is shown in Scheme 1.17. Only structural data
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were published for the second complex which gave an average Sm–Osilox bond length of

2.161(8) Å and an Si–O bond length of 1.608(2) Å. [56]

Scheme 1.17: The samarium complex, Sm(OSiPh3)3(THF)3·(THF)

Three dysprosium complexes have been reported, which are similar to the lanthanum

complexes discussed previously and shown in Figure 1.6. [Dy(µ−OSiPh3)(OSiPh3)2]2

(a), Dy(OSiPh3)3(THF)3 (b) and Dy(OSiPh3)3(py)3 (c) were synthesised using Dy(NR2)3,

Ph3SiOH and either toluene, THF and pyridine respectively with no structural data avail-

able. [57]

Figure 1.6: Examples of dysprosium siloxides

1.3.3 Titanium

A wide variety of titanium triphenylsiloxide complexes have been reported as surface

mimics for titanium supported on silica; these compounds are summarised in Table 1.1.

Cyclopentadienyl derivatives as anchors

Large ring systems have long been investigated as ligands for their ability to stabilise

otherwise reactive metal centres. The same systems are also considered mimics for
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surfaces and as such, group IV metallocenes have been developed as a homogeneous,

single site, metallocene anchored catalysts, as shown in Scheme 1.18. The M–O–Si IR

stretch of this system was observed at 957 cm−1 for the Ti and Zr derivatives, whilst

the Hf derivative was recorded at 977 cm−1. The M–O (M = Ti, Zr, Hf) bond lengths

were observed through X–ray analysis and were found to be 1.842(4) Å, 1.961(6) Å and

1.934(5) Å respectively and M–O–Si bond angles of 164.5(2)◦, 173.0(4)◦ and 171.9(4)◦

respectively. [58]

Scheme 1.18: Synthesis of a group IV metallocene chloro triphenylsilanolate

Scheme 1.19 shows the synthesis of titanasiloxanes via a hydrogen transfer process from

a monosilanol such as triphenylsilanol to a titanium framework. The reaction gave good

yields in the region of 71–95%. [59]

Scheme 1.19: The synthesis of titanasiloxanes using silanols

Both complexes of the general formula, Cp”(Ph3SiO)2TiX and Cp”(Ph3SiO)TiX2 (X = Cl,

Me, CH2Ph) can be synthesised and are shown in Scheme 1.20. Unfortunately, only

Cp”(Ph3SiO)Ti(CH2Ph)2 was reported with X–ray data showing the Si–O bond length to

be 1.6430(15) Å and the Ti–O bond length to be 1.8055(15) Å. [60]

In the above examples, the titanium metal centre is in its most commonly found TiIV oxid-
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Scheme 1.20: Group 4 metal siloxy and silsesquioxane complexes: soluble model systems for
silica–grafted olefin polymerization catalysts

ation state. The following provides an example of a TiIII compound, [Cp∗2Ti(OSiPh3)] of

which green crystals were grown following an insertion reaction between the starting ma-

terials, permethyltitanocene [Cp∗Ti(η5: η1- C5Me4CH2)] and triphenylsilanol. Electronic

absorption data were collected and peaks were found in the ranges 497–525, 605–665

and 1300–1800 nm. The IR data were observed as an intense absorption band at 956

cm−1. X–ray data were also analysed with an observed Ti–O bond length of 1.9190(13)

Å and an Si–O bond length of 1.6115(13) Å. [61]
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Scheme 1.21: [Cp · 2 Ti(OSiPh3)], synthesised by protonolysis of the titanium–methylene bond in
a singly tucked–in permethyltitanocene

Other ligand systems

Whilst cyclopentadienyl derivatives are many, other ligand systems have also been invest-

igated. The reaction between [Mg2(µ−OSiPh3)2(OSiPh3)2(THF)2] and TiCl4 is shown in

Scheme 1.22. Several titanium complexes can be synthesised with this method and one

of the products, [TiCl2(OSiPh3)2(THF)2] · 2 THF, was synthesised and exhibits a distorted

octahedral geometry and an Si–O bond length of 1.653(3) Å. In addition the complex has

a Ti–O bond length of 1.800(3) Å.

Reacting [Mg2(µ−OSiPh3)2(OSiPh3)2(THF)2] with four equivalents of cis−[TiCl2(η2−mal)2]

(mal = (O,O)–3–oxy–2–methyl–pyran–4–onato), [TiCl(OSiPh3)(η2−mal)2] · THF was syn-

thesised in 72% yield. This new complex had an observed Si–O bond length of 1.634(3) Å

and a Ti–O bond length of 1.799(3) Å. Further treatment of [TiCl(OSiPh3)(η2−mal)2] · THF

with LitBu and Ph3SiOH resulted in two further siloxide compounds being synthesised,

[Ti(tBu)(OSiPh3)(η2−mal)2] in 63% yield and [Ti(OSiPh3)2(η2mal)2] in 91% yield. [62]

Complexes with the general formula [(Ph3SiO)2MCl2(THF)2](tol)2 (M = Ti, Zr, Hf) were

synthesised from MCl4(THF)2 and two equivalents of Ph3SiOLi in THF. X–ray analysis

showed a Si–O bond length of 1.642(2) Å and a Ti–O bond length of 1.782(2) Å. [63]

Ti(OSiPh3)4 can be synthesised by reacting Ti(OnBu)4 with triphenylsilanol in toluene at
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Scheme 1.22: Synthesis of various titanium siloxanes

Scheme 1.23: Synthesis of group IV complexes, [(Ph3SiO)2MCl2(THF)2](tol)2

ambient temperature and pressure. The Ti–O bond lengths range from 1.782(4) Å to

1.798(7) Å whilst the Si–O bond lengths range from 1.650(4) Å to 1.613(7) Å. The Ti–O–

Si bond angle is observed as 148.2(3)◦. [64]

Triphenylsilanol can also be reacted directly with the metal containing complex. An ex-

ample of this is [PcTi(OSiPh3)2 (shown in Scheme 1.25), an air sensitive blue/green com-
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Scheme 1.24: Synthesis of the monomeric, tetrahedral, four coordinate titanium siloxide complex,
Ti(OSiPh3)4

pound, which was synthesised by reacting two equivalents of Ph3SiOH with one equi-

valent of the starting material, N,N’–di–4–tolylureato(phthalocyaninato)titanium(IV). From

X–ray data the observed bond length for Ti–O was found to be 1.852(11) Å whilst the

Si–O bond length was 1.627(11) Å. In addition, two peaks were observed in the UV–Vis

spectrum at λmax 741 nm and 698 nm, which were attributed to the siloxy ligands. The IR

spectrum showed a band at 821 cm−1 which was assigned to the O–Si–O antisymmetric

stretch. [65]

Scheme 1.25: Synthesis of trans–bis (triphenylsiloxy)phthalocyaninatotitanium(IV)

In addition, by adding one and a half equivalents of triphenylsilanol to one equivalent of

(PyO)2Ti(OiPr)2, the product (PyO)2Ti(OSiPh3)2 was synthesised, although in relatively

poor yields (50%). X–ray quality crystals were grown in which a Ti–O bond length of

1.85 Å was observed within the siloxy ligand. In addition the colourless compound was

observed to have a UV–Vis λmax value of 281 nm. [66]

Finally, a solution of Ti(OtBu)4 was stirred with triphenylsilanol and triethanolamine in THF
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with the resulting product, (Ph3SiO)TiN(OCH2CH2)3 which was subsequently recrystal-

lised from toluene in yields of 78%. The X–ray analysis showed an Si–O bond length of

1.608(2) Å and a Ti–O bond length of 1.834(2) Å with a perfectly linear Ti–O–Si bond

angle of 180◦. [67]

Titanium Oxidation Si–O Bond Ti–O Bond

Compound State Length Length

[Cp∗2Ti(OSiPh3)] [61] III 1.6115(13) Å 1.9190(13) Å

(Ph3SiO)2(pc)Ti [65] IV 1.627(11) Å 1.852(11) Å

[(Cp · Ti(µO))3(µCHR)(OSiR’
3)] [59] IV — —

(OPy)2Ti(OSiPh3)2
[66] IV — 1.85 Å

Cp2TiCl(OSiPh3) [58] IV — 1.842(4) Å

[TiCl2(OSiPh3)2(THF)2] · 2 THF [62] IV 1.653(3) Å 1.800(3) Å

[TiCl(OSiPh3)(η2−mal)2] · THF [62] IV 1.634(3) Å 1.799(3) Å

[Ti(tBu)(OSiPh3)(η2−mal)2] [62] IV — —

[Ti(OSiPh3)2(η2mal)2] [62] IV — —

Ti(OSiPh3)4
[64] IV 1.632(1) Å 1.790(6) Å

[(Ph3SiO)2MCl2(THF)2](tol)2
[63] IV 1.642(2) Å 1.782(2) Å

(Ph3SiO)TiN(OCH2CH2)3
[67] IV 1.608(2) Å 1.83(4) Å

Cp”(Ph3SiO)Ti(CH2Ph)2
[60] IV 1.6430(15) Å 1.8055(15) Å

Average Bond Length III 1.6115(13) Å 1.9190(13) Å

Average Bond Length IV 1.634(3) Å 1.81(74) Å

Table 1.1: Summary of key bond lengths found in examples of titanium triphenylsiloxides

1.3.4 Zirconium

Examples of triphenylsiloxides as ligands for zirconium based complexes are as abundant

as the titanium based compounds and are summarised in Table 1.2 along with key bond

distances.
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Cyclopentadienyl derivatives as anchors

As shown in Scheme 1.18 (Section1.3.3) the compound, Cp2ZrCl(OSiPh3) was synthes-

ised by reacting the zirconium metallocene dichloride with triphenylsilanol and piperid-

ine. The complex was then reacted with K[H2BC8H14] to afford the 18 electron com-

plex Cp2Zr(OSiPh3)(µ−H)2BC8H14). X–Ray diffraction analysis showed the Zr–O bond

lengthening from 1.961(6) Å in the first compound to 1.985(3) Å in the second com-

pound, Cp2Zr(OSiPh3)(µ−H)2BC8H14). This species had an observed Si–O bond length

of 1.614(3) Å. Whilst this is within the average values found for silicon oxygen bonds, no

comparison can be made to the starting compound due to a lack of reported data. [58]

Scheme 1.26: Metathesis reaction between Cp2ZrCl(OSiPh3) and K[H2BC8H14] to synthesise the
18 electron complex Cp2Zr(OSiPh3)(µ−H)2BC8H14)

The compounds Cp”(Ph3SiO)2ZrCl, Cp”(Ph3SiO)Zr(CH2Ph)2 and Cp”(Ph3SiO)2Zr(CH2Ph)

were all synthesised from the starting material Cp”ZrCl3 and either silsesquioxane or tri-

phenylsiloxy and are shown in Scheme 1.20. Colourless crystals of Cp”(Ph3SiO)2ZrCl

were grown from a saturated hexane solution and X–ray diffraction analysis showed a

Zr–O bond length of 1.925(5) Å. [60]

Other ligand systems

[(η7−C7H7)Zr(OSiPh3)]2 was synthesised from [(η7−C7H7)Zr(N(SiMe3)2)]n and a tolu-

ene/THF solution of Ph3SiOH. The dimeric structure was characterised by X–ray diffrac-

tion studies revealing Zr–O bond lengths of 2.1810(9)–2.2494(9) Å, which are significantly
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longer than the average Zr–O bond length reported to be ca. 1.93 Å in the paper. [68]

Scheme 1.27: Synthesis of the zirconium siloxide complex, [(η7−C7H7)Zr(OSiPh3)]2

A second approach to synthesising zirconium derivates is to use an alkali metal siloxide.

The dimeric structure, [Zr2(OSiPh3)6(OH)2(H2O)2]·C7H8 was synthesised from Ph3SiOLi

in THF with NEt3 and H2O and is shown in Scheme 1.28. After work–up, X–ray quality

crystals were grown from a solution of n–hexane. Analysis of the data showed the av-

erage Zr–O bond was 1.964(8) Å whilst the average Si–O bond is 1.618(1) Å, both well

within the range of values found in similar complexes. [69]

Scheme 1.28: Synthesis of the dimeric ZrIV complex, [Zr2(OSiPh3)6(OH)2(H2O)2]·C7H8

As shown in Scheme 1.23, the starting material ZrCl4(THF)2 was reacted with two equi-

valents of Ph3SiOLi to give [(Ph3SiO)2ZrCl2(THF)2](tol)2 and recrystallised from toluene.

By omitting THF, the starting material ZrCl4 reacted with two equivalents of Ph3SiOLi,

forming the highly toluene soluble product, [(Ph3SiO)2ZrCl2]n.

[(Ph3SiO)2ZrCl2(THF)2](tol)2 reacted further with the chelate ligands, N,N,N’,N’ –tetra–

methylethylenediamine (tmen), 2,2’–bipyridine (bpy) or 1,2–bis(diphenylphosphino)ethane
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(diphos) in THF which led to ligand substitution and resulted in three different products,

[(Ph3SiO)2ZrCl2(tmen)](tol)n, [(Ph3SiO)2ZrCl2(bpy)](tol)n and [(Ph3SiO)2ZrCl2(diphos)](tol)n.

The same starting material could also be reacted with MeLi in the presence of 2,2–

bipyridine to form the complex, [(Ph3SiO)2Zr(CH3)2(bpy)](tol)2. Finally, by varying the

amount of Ph3SiOLi in THF/toluene, (Ph3SiO)3ZrCl2(THF)](tol)0.5 and [(Ph3SiO)2ZrCl2(THF)]2

were synthesised respectively from ZrCl4(THF)2. Unfortunately aspects of the data were

not reported but the data that was reported on is summarised in Table 1.2. [63]

Finally, ZrCl4 was reacted with Ph3SiONa in DME to synthesise (DME)ZrCl2(OSiPh3)2

which was recrystallised from a solution of toluene. The X–ray diffraction analysis showed

a Zr–O bond length of 1.911 Å and a Si–O bond length of 1.652 Å. [70]
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Zirconium Oxidation Si–O Bond Zr–O Bond

Compound State Length Length

[(η7−C7H7)Zr(OSiPh3)]2
[68] III — 2.215(3) Å

[Zr2(C18H15OSi)6(OH)2(H2O)2] · C7H8
[69] IV 1.618(1) Å 1.964(8) Å

Cp2ZrCl(OSiPh3) [58] IV — 1.961(6) Å

Cp2Zr(OSiPh3)(µ−H)2BC8H14) [58] IV 1.614(3) Å 1.985(3) Å

Cp”(Ph3SiO)2ZrCl [60] IV — 1.925(5) Å

Cp”(Ph3SiO)Zr(CH2Ph)2
[60] IV — —

Cp”(Ph3SiO)2Zr(CH2Ph) [60] IV — —

[(Ph3SiO)2ZrCl2(THF)2](tol)2
[63] IV 1.634(2) Å 1.928(2) Å

[(Ph3SiO)2ZrCl2] [63] IV — —

[(Ph3SiO)2ZrCl2(tmen)](tol)n
[63] IV — —

[(Ph3SiO)2ZrCl2(diphos)](tol)n
[63] IV — —

[(Ph3SiO)2ZrCl2(bpy)](tol)n
[63] IV — —

[(Ph3SiO)2Zr(CH3)2(bpy)(tol)2
[63] IV 1.626(3) Å 1.959(3) Å

(Ph3SiO)3ZrCl2(THF)](tol)0.5
[63] IV — —

[(Ph3SiO)2ZrCl2(THF)]2
[63] IV 1.646(2) Å 1.928(4) Å

Cp2Zr(OSiPh3)2
[70] IV — —

(DME)ZrCl2(OSiPh3)2
[70] IV 1.652 Å 1.911 Å

Average Bond Length IV — 2.215(3) Å

Average Bond Length IV 1.631(8) Å 1.94(5) Å

Table 1.2: Summary of key bond lengths found in examples of zirconium triphenylsiloxides

1.3.5 Hafnium

As summarised in Table 1.3 the number of hafnium examples utilising triphenylsiloxide

as a ligand is significantly less than the previous group 4 transition metals, titanium and

zirconium.
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Cyclopentadienyl derivatives as anchors

As shown in Scheme 1.18 the compound Cp2HfCl(OSiPh3) was synthesised from the

starting material CpHfCl2 and one equivalent of Ph3SiOH in the presence of piperid-

ine. The Hf–O bond is 1.934(5) Å using X–ray diffraction analysis. Further reaction with

K[H2BC8H14] afforded the metallocene Cp2Hf(OSiPh3)(µ−H)2BC8H14). The Hf–O bond

length is 1.993(4) Å and the Si–O bond length is 1.608(4) Å. [58]

Other ligand systems

Similarly to the other group IV metals discussed and shown in Scheme 1.23, alkali metal

siloxides can be used to synthesise hafnium triphenylsiloxide derivatives. The convenient

starting material, HfCl4 was reacted with Ph3SiOLi at 0◦C to synthesise the complex,

[(Ph3SiO)2HfCl2(THF)2](tol)2. The H–O bond length was observed by X–ray diffraction

analysis at 1.929(2) Å whilst the Si–O bond length is 1.623(2) Å. [63]

Hafnium Oxidation Si–O Bond Hf–O Bond

Compound State Length Length

Cp2HfCl(OSiPh3) [58] IV — 1.934 Å

Cp2Hf(OSiPh3)(µ−H)2BC8H14) [58] IV 1.608(4) Å 1.993(4) Å

[(Ph3SiO)2HfCl2(THF)2](tol)2
[63] IV 1.623(2) Å 1.929(2) Å

Average Bond Length IV 1.615(8) Å 1.952(2) Å

Table 1.3: Summary of key bond lengths found in examples of hafnium triphenylsiloxides

1.3.6 Tris tert–butoxy siloxide as a molecular surface mimic

Tris tert–butoxy siloxides have long been used as surface models on transition metals and

lanthanide systems, but until recently, actinide complexes of this nature were unknown.
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The following analysis provides an insight into the usefulness of the ligand tris tert–butoxy

siloxide as a model system for a variety of surface support materials.

1.3.7 Lanthanides

One of the first lanthanide tert–butoxy siloxide species was prepared specifically for the

purpose of mimicking the surface material, MCM–48. [Ln(OSi(OtBu)3)(AlMe4)2·(AlMe3)]

(Scheme 1.29) was characterised fully and revealed a 7 coordinate lanthanide cation with

two asymmetrically η2–coordinating tetramethylaluminium ligands, one asymmetrically

η2–coordinating siloxide ligands and one methyl group of a trimethylaluminate donor to

give a distorted pentagonal bipyramidal geometry. The complex was prepared with both

lanthanum and neodymium. The neodymium complex activated with Et2AlCl produced

cis–1,4–polyisopropene in variable yields. Importantly though, this work influenced re-

search into several more lanthanide based siloxide complexes. [71]

Scheme 1.29: Synthesis of [Ln(OSi(OtBu)3)(AlMe4)2·(AlMe3)]

A library of samarium complexes were reported using mixed ligand systems with cyclo-

pentadienyl and siloxides and are shown in Figure 1.7. (Cp∗)2Sm(THF)2 was reacted

with 1.5 equivalents of (tBuO)3SiOH to form the unsymmetrical binuclear Sm(II) com-

plex, [(Cp · )Sm(µ−OSi(OtBu)3)3Sm. This was then treated with a variety of reagents

to give a number of different samarium examples. One of the complexes synthesised,
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[((tBuO)3SiO)3Sm−(Cp · )Sm(µ−OSi(OtBu)3)3Sm] is an inverse sandwich complex which

is similar to a complex synthesised and characterised as part of this work and examined

in section 4.2. [56]

Figure 1.7: Binuclear samarium siloxide complexes synthesised from (Cp · )2Sm(THF)2 and
(tBuO)3SiOH

Protonolysis of the tris alkyl complex [Ln(CH2SiMe3)3(THF)2] (Ln = Y, Tb, Lu) with tris

tert–butoxy silanol gave the complexes [Ln(µ, η2−OSi(OtBu)3)(CH2SiMe3)2]2 which were

characterised by X–ray diffraction. Scheme 1.30 shows the subsequent reactions that

were possible with these complexes.

Heteroleptic siloxide complexes Ln(OSi(OtBu)3)(AlMe3)(AlMe4)2] (Ln = Ce, Pr, Nd) were

synthesised by methane elimination from [Ln(AlMe4)3] when reacted with one equival-

ent of tris tert butoxy silanol. They were then used further as precatalysts in isoprene

polymerisation. [72] (η5−PC4Me2R2)Nd(AlMe4)2 (R = Me, SiMe3) was also reacted with

(tBuO)3SiOH resulting in (η5−PC4Me2R2)Nd[OSi(OtBu)3](AlMe4)2(AlMe3) which was used

as a model for surface experiments on mesoporous SBA–15 and methane elimination. [73]

Ln[(µ−OSi(OtBu)3(µ−R)(AlR2]2 (Ln = Yb, Sm; R = Et; Ln = Yb; R = Me) have been de-
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Scheme 1.30: Neutral and cationic lanthanide siloxide complexes synthesised using tris tert but-
oxy silanol

veloped by reacting [Ln(AlEt4)2]n (Ln = Sm, Yb) with one equivalent of (tBuO)3SiOH. The

complexes were then used as molecular model complexes for the mesoporous silica KIT–

6. The work introduced the concept of Surface OrganoLanthanide Chemistry (SOLnC)

(see section 1.2.2 for analysis of SOMC) and the models synthesised provided evidence

of alkane elimination, trialkylaluminium adduct formation and LnIIO(siloxane) bonding. [74]

1.3.8 Transition metals

Transition metals furnished with (tBuO)3SiO– are widely known and Figure 1.8 shows

one of the first titanium species, (OPy)2Ti(OSi(OtBu)3) (where Py = 2–pyridylcarbinol).

By reacting Ti(OiPr)4 with PyOH the compound, (OPy)2Ti(OiPr)2 was isolated and then

further reacted with tris tert–butoxy silanol in order to synthesise the desired product.

Structural characterisation data were published and the observed Ti–O bond was found

to be 1.84 Å. [66]

A second titanium species, [Cp · 2 Ti(OSi(OtBu)3)] shown in Scheme 1.31 was synthes-

ised by protonolysis of the titanium–methylene bond in a singly tucked–in permethylti-
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Figure 1.8: One of the first titanium species furnished with the tris tert–butoxy siloxide ligand,
(OPy)2Ti(OSi(OtBu)3)

tanocene [Cp · Ti(η5: η1- C5Me4CH2)] with tris tert–butoxy silanol. Characterisation data

were reported and the Ti–O bond lengths were found to be 1.9244(9) Å and TiO–Si bond

lengths were observed at 1.6032(9) Å. In addition IR data showed an intense absorption

band at 1025 cm−1. [61]

Scheme 1.31: [Cp · 2 Ti(OSi(OtBu)3)], synthesised by protonolysis of the titanium–methylene bond
in a singly tucked–in permethyltitanocene

Several zirconium species have also been developed using the tris tert–butoxy siloxide

ligand and are shown in Scheme 1.32. [Zr(OPri )3(OSi(OtBu)3)] and [Zr(OPri )2(OSi(OtBu)3)2]

were first synthesised by adding one or two equivalents of tris tert–butoxy silanol to

[Zr(OPri )4] · PriOH. These complexes were further treated with 1.1 equivalents of ethane–

1,2–diol to form [Zr(O(CH2)2O)(OSi(OtBu)3)2] and [Zr(OPri )(O(CH2)2O)(OSi(OtBu)3)] re-

spectively. The structural characterisation data of [Ti(OPri )2(OSi(OtBu)3)2] were pub-

lished which reported an observed Ti–O bond length of 1.734(2) Å to 1.810(2) Å. Unfor-

tunately no other X–ray diffraction data were published. [75]
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Scheme 1.32: Zirconia–silica mixed oxides developed as a possible catalytic support

Scheme 1.33 shows the synthesis of the complex M[OSi(OtBu)3]4 (M = Zr, Hf) using the

addition of tert–butoxy silanol to a cold solution of M(NEt2)4. X–ray diffraction quality

single crystals were grown and the data reported shows a Zr–O and Hf–O bond length

of 1.979(2) Å and 1.961(8) Å respectively. [76] Hydrolysis of these complexes with careful

addition of one or two equivalents of H2O resulted in the products, M[OSi(OtBu)3]4(H2O)

and M[OSi(OtBu)3]4(H2O)2. Only X–ray diffraction data of Hf[OSi(OtBu)3]4(H2O) were

published and reported Hf–O bond distance of 1.941(4) Å and O–Si bond distances of

1.588(6) Å. [77]

Scheme 1.33: Synthesis and hydrolysis of M[OSi(OtBu)3]4
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Chapter 2

Synthesis and characterisation of

K[(Ph3SiO)5U] and its derivatives

An important factor in small molecule activation studies is the electronic and steric avail-

ability of the metal centre. Most small molecule activation takes place via coordination

followed by some type of electronic change either through electron transfer from the metal

to the small molecule or by a formally oxidative insertion of the metal centre into an avail-

able bond in the small molecule. Additionally, these steps may be sequential or con-

certed. The steric requirement can be set by using bulky ligands which provide steric

protection to the metal centre. In order to achieve this, it is important that the ligands

selected sterically saturate the metal centre whilst ensuring it remains coordinatively and

electronically unsaturated. This can present problems if the ligands pack together so

tightly they impede the path of a small molecule intended to react with the metal centre.

Steric bulk can be quantified in terms of Tolman cone angles or visualised using space

filling models. Both systems provide useful information of how sterics can play a role in

the reactivity of a system. For example, the Tolman cone angle of a methyl ligand (based
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Figure 2.1: (left) Molecular structure of ferrocene using the ball and stick model; (right) Molecular
structure of ferrocene using the space filling model; (Hydrogen atoms omitted from
both for clarity)

on a metal covalent radius of 1.32 Å) is calculated to be 90◦ whilst the cone angles for

ethyl, phenyl and tert–butyl are 102◦, 105◦ and 126◦ respectively. [78] This information

can be used to manipulate ligand systems in order to increase or decrease the protection

provided to the metal centre.

Space filling models are three dimensional molecular models where atoms are represen-

ted by spheres. The individual spheres are proportional to the radii of the atoms which

they represent. In addition the distances between the atoms are proportional to the dis-

tances between the atomic nuclei. The model provides a clear and concise method of

assessing steric bulk which can otherwise be difficult. Figure 2.1 provides an example:

ferrocene is a typical sandwich complex and the space filled model provides insight into

the steric protection provided by the cyclopentadienyl rings and the available access to

the iron atom in the equatorial region of the molecule.

The work reported here attempts to synthesise a sterically protected complex with the

aim to catalytically transform small molecules, specifically carbon oxides. In this Chapter,

investigations into different siloxide ligands are discussed along with the discovery and

characterisation of K[U(OSiPh3)5] and its derivatives.
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2.1 Synthesis of siloxide transfer reagents

2.1.1 Synthesis of silanols

Due to the high cost of most siloxides, it was deemed appropriate to synthesise them

rather than buy them. The literature provides little clue as to the best method to use with

some methods too dangerous to consider, for example one method uses large amounts

of tBuLi to be reacted with SiF4 followed by base hydrolysis. [79] However, analysis of the

desired products and the availability of low cost starting materials provided three main

synthetic methods to trial, Grignard, metal–halogen exchange and ortho lithiation. Figure

2.2 shows the starting materials used for each R3SiOH derivative attempted.

Figure 2.2: Starting materials for the synthesis of a variety of silanols a) 1–Bromonaphthalene
b) 4–Bromobiphenyl c) Methoxybenzene (anisole) d) 1–Bromo–2,4,6–
triisopropylbenzene e) 2–Bromomesitylene

The starting materials were used in an attempt to synthesise five different silanols, tri–(1–

naphthyl) silanol, tri–(4–biphenyl) silanol, tri–(1–anisyl) silanol, tri–(2,4,6–triisopropylbenzene)

silanol and tri–(2–mesitylene) silanol respectively. Of the three synthetic methods em-
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ployed, metal–halogen exchange and ortho lithiation provided more satisfactory results.

Despite some success, separation and purification of the products proved difficult with

mass spectrometry analysis showing a mixture of mono, bis, tris and tetra products.

Some of these experiments were conducted or repeated by students under the authors

supervision as indicated in Table 2.1.

Starting Material Synthetic Method Identified Product(s) Experimental

1–Bromonaphthalene Grignard tri(naphthyl)silanol [80]

binaphthalene

M–X exchange intractable [81]

4–Bromobiphenyl Grignard intractable [81]

M–X exchange di(4–biphenyl)disilanol [80]

Methoxybenzene (anisole) Ortho lithiation tri(anisyl)silanol [80,81]

di(1–anisole)disilanol

1–Bromo–2,4,6–triisopropylbenzene M–X exchange intractable author

2–Bromomesitylene M–X exchange intractable author

Table 2.1: An overview of the experiments attempted in order to synthesise silanols with a sum-
mary of results

tri–(1–naphthyl)silanol

Scheme 2.1: Synthesis of tri–(1–naphthyl)silanol using Grignard methods

Some success was achieved in the synthesis of tri–(1–naphthyl)silanol by reacting the

Grignard reagent C10H7MgBr with the starting material and using SiCl4 as the source of

silicon. Mass spectrometry and 1H NMR are used to analysise the resulting products and

alongside the desired tri–(1–naphthyl)silanol (m/z = 426) the formation of binaphthalene



46

is found (m/z = 254). Concentration levels were then increased and the product tetra–(1–

naphthyl)silane is observed (m/z = 536). [80]

tri–(4–biphenyl)silanol

Scheme 2.2: Synthesis of tri–(4–biphenyl)silanol using metal–halogen exchange

Using metal–halogen exchange, the synthesis of tri–(4–biphenyl)silanol was attempted

with little success. However the product, di–(4–biphenyl)disilanol is observed by 1H NMR

and mass spectrometry (m/z = 368). Unfortunately the NMR spectra showed overlapping

signals and full assignment is not achieved. The starting material, 4–bromobiphenyl is

identified in the spectrum and there is a clear shift towards the product. The reaction

overall was unreliable and provided low yields and purity and therefore not pursued fur-

ther. [80]

tri–(1–anisyl)silanol

Scheme 2.3: Synthesis of tri–(1–anisole)silanol using ortho lithiation

In order to synthesise the desired product, anisole was reacted with nBuLi in the presence

of TMEDA and then the resulting anisyl–lithium, was reacted in slight excess with SiCl4.

Mass spectrometry indicated the presence of the desired product (m/z = 349) alongside
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di–(1–anisyl)disilanol (m/z = 276). The desired product is also observed by 1H NMR. It

is possible that the lithiation step did not go to completion, resulting in a mixture of final

products. [80]

tri–(2,4,6–triisopropylbenzene)silanol and tri–(2–mesitylene)silanol

Scheme 2.4: Synthesis of tri–(2,4,6–triisopropylbenzene)silanol and tri–(2–mesitylene)silanol us-
ing ortho lithiation

The same ortho lithiation reaction was used to synthesise tri–(2,4,6–triisopropylbenzene)

silanol and tri–(2–mesitylene) silanol. The experiment was conducted at -78 ◦C in order

to slow the rate of the lithiation reaction. The lithiated product was then reacted slowly

with SiCl4 at -78 ◦C

In both cases the mass spectrometry results show a lack of mono, bis, tris or even tetra

products with the 1H NMR confirming the unsuccessful results. The silanes were also

tested via mass spectrometry prior to reaction with KOH and the expected products are

not identified at this stage suggesting either the lithiation process failed or as the lithiation

synthesis has previously proved successful, it is possible the steric bulk of the ligand

systems were to great to pack around the relatively small silicon atom.
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2.1.2 Characterisation of silanols

Characterisation of Ph3SiOH

Triphenylsilanol (98%) was purchased from Sigma Aldrich. Literature reports of spectro-

scopic data for this material are scarce and therefore, NMR spectroscopy analyses were

undertaken.

For the parent silanol, the 1H and 13C{H} NMR spectra are unexceptional and show the

standard splitting pattern associated with a mono–substituted phenyl group and are found

to be in line with literature values that are available. [82]. The resonances for both nuclei

are collated in Section 7.6.

Figure 2.3: Triphenylsilanol

Four resonances are observed in the 13C{H} NMR spectrum at δ 136.91, 134.76, 129.21

and 127.31 ppm and are assigned as ipso, ortho, para and meta respectively. In addition,

three resonances are also observed in the 1H NMR spectrum at δ 7.62–7.60, 7.37–7.29

(multiplet) and 6.02 ppm which, in conjunction with the HSQC and HMBC data (Appen-

dices B.7 and B.8) and the proton integration values, are assigned as ortho, meta/para

and Si−OH respectively. The resonance observed at δ 6.02 ppm is assigned to the pro-

ton bound to the oxygen as there are no resonances correlating to a 13C environment in

the HSQC spectrum. Finally the 29Si NMR spectroscopy data shows the expected single

silicon environment at δ -17 ppm.



49

In the solid state, triphenylsilanol has been reported as a tetrameric unit with the four

oxygen atoms arranged in a slightly distorted (non planar) square with O–O distances on

the edges of the square in the range of 2.637–2.684 Å which is suggestive of hydrogen

bonding. The two diagonals across the square show O–O distances in the range of 3.42–

3.61 Å. X–ray diffraction data of triphenylsilanol is consistent across the literature. The

average Si–O bond is found to be 1.644 Å. [83] [84] The average Si–Ph bond is 1.875 Å and

the average O–H bond is 0.852 Å, finally the average length from the silicon atom to the

hydrogen atom is 2.121 Å. [85]

Solid state 29Si CPMAS NMR spectroscopy data were reported and showed eight crystal-

lographically inequivalent Si sites being observed and fully resolved at 363K. These eight

silicon environments refer to the four sites shown in the ‘clockwise’ arrangement and an-

other four silicon sites in a second, ‘anticlockwise’ arrangement both shown in Figure

2.4. [86]

Figure 2.4: Solid State Triphenylsilanol Tetrameric Unit a) clockwise b) anticlockwise

The IR spectrum of triphenylsilanol in the solid state shows two distinct absorbances at

3068 cm−1 and 3270 cm−1. Comparing these data with other silanols [27] the broad peak

is likely to correlate with the hydrogen bonded Si–OH group, whilst the sharp peak is

assigned to the free Si–OH group.
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Characterisation of (tBuO)3SiOH

Tris tert–butoxy silanol (99.999%) was purchased from Sigma Aldrich and the structure is

shown in Figure 2.5 . Literature reports of spectroscopic data for this material are much

more widely available than of the previously discussed Ph3SiOH. However, spectroscopic

analysis was undertaken in order to ascertain the purchased material was clean and dry

before use.

Figure 2.5: Tris tert–butoxy silanol

For the parent silanol, the 1H and 13C{H} NMR spectra are unexceptional. The reson-

ances for both nuclei are shown in Section 7.24 along with the respective assignments.

Two resonances are observed in the 13C{H} NMR spectrum at δ 72.77 and 31.99 ppm.

This is in line with published data which reported two resonances in the 13C{H} spectrum

at δ 73.0 and 31.2 ppm (CDCl3) and are assigned to ((CH3)3CO)3SiOH and ((CH3)3CO)3SiOH

respectively. [87]

Two resonances are also observed in the 1H NMR spectrum at δ 5.25 and 1.30 ppm and

in conjunction with HMBC NMR spectroscopy data (Appendix E.3), the resonances are

assigned as ((CH3)3CO)3SiOH and ((CH3)3CO)3SiOH respectively. These data correlate

well with the 1H NMR spectroscopy literature values which reported the resonance at δ

1.32 ppm (in CDCl3) to be ((CH3)3CO)3SiOH. [87]

In the solid state the silicon atom in tris tert–butoxy silanol is observed to be in a distor-

ted tetrahedral geometry and hydrogen bonding is found between two silanol units form-
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ing a dimeric unit as shown in Figure 2.6. The Si–O distances range from 1.605(2) to

1.635(2)Å with the longest Si–O bond distance due to the hydrogen bonding interaction

with the neighbouring tris tert–butoxy silanol unit. The hydrogen bonding is reportedly

also responsible for the narrow O–Si–O bond angle of 114.9(1)◦. [87]

Figure 2.6: Solid State tris tert–butoxy silanol dimeric unit

2.1.3 Synthesis and characterisation of siloxides

Synthesis and characterisation of Ph3SiOK

Scheme 2.5: Synthesis of PhSiOK

The elaboration of the uranium centre with siloxides required a siloxide transfer reagent.

The most straight–forward route was salt metathesis given the acidity of the hydroxyl

proton in triphenylsilanol (pKa 10.8), [88]. Variations of this method have been established

in previous work on siloxides: [Li(OSiPh3)]n, [K(THF)0.2(OSiPh3)]n and [K(OSiMe2
tBu)]n

are prepared from the deprotonation of Ph3SiOH or tBuMe2SiOH with either nBuLi in

hexane or KH in THF respectively which is the preferred method used in this work. [89] In
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addition the siloxide, NaOSitBu3 was prepared in 80–90% yields via reflux of tBu3SiOH

with sodium metal in hexanes. [34]

13C{H}, 1H, HSQC and HMBC NMR spectroscopy analysis of Ph3SiOK was undertaken

and resonances are in a similar pattern to the resonances observed previously for Ph3SiOH

(Section 2.1.2). The 13C{H} resonances are observed at δ 145.77, 135.81, 128.54 and

128.27 ppm and assigned as ipso, ortho, para and meta respectively. The 1H reson-

ances are observed at δ 7.49 and 7.25–7.17 and are assigned as ortho and meta/para

respectively. These data correlate well with the HSQC and HMBC data which are shown in

Appendices B.11 and B.12.

Synthesis and characterisation of (tBuO)3SiOK

Scheme 2.6: Synthesis of (tBuO)3SiOK

In order to generate (tBuO)3SiOK, tris tert–butoxy silanol was treated in the same man-

ner as the triphenylsilanol in section 2.1.3, from a modified literature procedure. [90] The

product was analysed by 13C{H}, 1H, HSQC and HMBC NMR spectroscopy. The 13C{H}

NMR spectrum showed two resonances at δ 71.07 and 32.83 ppm and are assigned in

line with literature reports as ((CH3)3CO)3SiOK and ((CH3)3CO)3SiOK respectively. The

1H spectrum showed the expected one resonance at δ 1.32 ppm and is assigned to

((CH3)3CO)3SiOH. HSQC and HMBC data confirm this analysis and are shown in Appen-

dices E.7 and E.8 respectively.
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2.2 Synthesis and characterisation of K[U(OSiPh3)5]

There are only three known examples of triphenylsiloxides being used as a ligand system

on a uranium metal centre, none of which were developed with the goal of mimicking

surface supports. [91,92] Scheme 2.7 shows a UIV complex synthesised by a protonolysis

reaction between triphenylsilanol and [Cp3U(NEt2)]. X–ray diffraction analysis of the

product, [Cp3U(OSiPh3)], identified the U–O bond length as 2.135(8) Å, whilst the Si–

O bond length is observed at 1.62(1) Å. The U–O–Si bond angle is observed as almost

linear at 172.6(6)◦. [91]

Scheme 2.7: Synthesis of [Cp3U(OSiPh3)]

Scheme 2.8 shows two further examples. The UV complex is synthesised by adding

one equivalent of HSiPh3 to (Ar acnac)2UO2 (Ar acnac = ArNC(Ph)CHC(Ph)O; Ar = 3,5-

tBu2C6H3) in the presence of B(C6F5)3. U(OSiPh3)(OB(C6F5)3)(Ar acnac)2 can then be

reduced to UIV by reacting it with Cp2Co to form [Cp2Co][U(OSiPh3)(OB(C6F5)3)(Ar acnac)2

in 78% yield. The U–Osilox bond length is observed at 2.034(9) Å for the UV complex with

the Si–O bond length observed at 1.666(9) Å. The reduced UIV complex has a slightly

longer U–O bond length of 2.173(8) Å and a Si–O bond length of 1.610(9) Å. [92]

The data summarised in Table 2.2 are consistent with each other. The UIV complexes

exhibit U–O bond distances of 2.16 Å average, whilst the Si–O bond length is 1.62 Å

average. The UV species possess shorter U–O bond lengths at 2.03 Å, whilst the Si–O

bond length has marginally increased to 1.67 Å. The data implies a correlation between

the oxidation state increasing and the U–O bond distance decreasing, however a much
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Scheme 2.8: Synthesis of U(OSiPh3)(OB(C6F5)3)(Ar acnac)2 and
[Cp2Co][U(OSiPh3)(OB(C6F5)3)(Ar acnac)2]

larger sample group is needed before this can be relied upon.

Compound Oxidation U–O Bond O–Si Bond

State Distance / Å Distance / Å

[Cp3U(OSiPh3)] [91] IV 2.135(8) 1.62(1)

[Cp2Co][U(OSiPh3)(OB(C6F5)3)(Ar acnac)2
[92] IV 2.173(8) 1.610(9)

U(OSiPh3)(OB(C6F5)3)(Ar acnac)2
[92] V 2.034(9) 1.666(9)

Table 2.2: Summary of key bond distances for uranium complexes with one or more triphenylsiloxy
ligands

2.2.1 Synthesis of K[U(OSiPh3)5]

Scheme 2.9: Synthesis of K[U(OSiPh3)5]

In an attempt to synthesise U(OSiPh3)3Cl, uranium tetrachloride and three equivalents of

Ph3SiOK were added to THF at room temperature. The resulting products were intractable

due to the formation of multiple produces vide infra in Section 2.4.2, however, when

Ph3SiOK was layered on UCl4 in THF, a colour change was observed at the interface

between the two layers. Other stoichiometries were therefore investigated which resulted

in K[U(OSiPh3)5] being synthesised by the following methods.
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Treatment of a uranium tetrachloride in THF with five equivalents of Ph3SiOK at room

temperature with vigorous stirring resulted in a solution that quickly changed from dark

green to turquoise to blue to lilac and pink. The product was extracted with toluene and

the resulting product was recrystallised from toluene at room temperature. Large purple

crystals, up to a centimetre across, of X–ray diffraction quality were prepared as shown

in Figure 2.7.

Figure 2.7: Photograph of crystallised K[U(OSiPh3)5] measuring up to 1 cm in diameter

2.2.2 Characterisation of K[U(OSiPh3)5] : X–ray Diffraction

K[U(OSiPh3)5] crystallises from toluene in the monoclinic space group P 21/n with an

R factor of 4.51. The lattice parameters for this structure are a = 13.7420(2) Å, b =

26.867o(3) Å, c = 24.2270(2) Å, α = 90 ◦, β = 105.9140(10) ◦, γ = 90 ◦.

The molecular structure is shown in Figures 2.8 and 2.9. The uranium centre has a

trigonal bipyramidal geometry consisting of five siloxy ligands with the potassium coun-

terion, coordinated to three of the phenyl rings on three siloxy ligands in an η3, η3 and

η6 fashion and this distorts the geometry away from the standard trigonal bipyramidal.

In addition, the potassium ion is coordinated to two of the oxygen atoms resulting in the

lengthening of the respective U–O bonds, which are located cis to each other.
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Comparing these experimental values to the complexes, U(OSiPh3)xRy in Table 2.2, it

is clear that bond lengths for K[U(OSiPh3)5] compare well to other UIV U(OSiPh3)xRy

species providing evidence of a UIV complex.

Figure 2.8: Molecular structure of K[U(OSiPh3)5] (Hydrogen atoms omitted for clarity)

Figure 2.9: Core molecular structure of K[U(OSiPh3)5] containing the Si, O U and K atoms (Hydro-
gen atoms and phenyl rings omitted for clarity)

Figures 2.10 and 2.11 show the full range of literature values for complexes of the general

formula U(OSiR3)xR′y (R, R’ = alkyl, aryl) (blue) and experimental values for K[U(OSiPh3)5]

(red). The average literature bond length for U–OSiR3 is 2.054 Å, the average bond length

for UO–SiR3 is 1.662 Å and the average bond length for UOSi–R3 is 1.858 Å. [85] Com-

paring these figures to the average experimental bond lengths for K[U(OSiPh3)5] which
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Figure 2.10: Correlation between U–O
bond distances and O–Si for
uranium compounds with the
ligand R3SiO. (Data points
in red are the experimental
values for K[U(OSiPh3)5])

Figure 2.11: Correlation between O–Si
bond distances and Si–R3 for
uranium compounds with the
ligand R3SiO. (Data points
in red are the experimental
values for K[U(OSiPh3)5])

are observed at 2.181(2) Å for U–OSiPh3, 1.617(2) Å for UO–SiPh3 and 1.879(3) Å for

UOSi–Ph3 it is clear that the experimental values are within previously reported ranges.

Two of the U–O distances for K[U(OSiPh3)5] shown in Figure 2.10 fall beyond the range of

literature values in U(OSiR3)xR′y species. These two points refer to the two U–O bonds

that are coordinated to the potassium counterion. In addition the two data points also

relate to two of the shortest O–Si bonds with the molecule. The coordination with the

electron deficient potassium counterion results in some of the oxygen’s electron density

being used in this coordination rather than the uranium or silicon bonding, weakening

and lengthening the U–O bonds. In addition, by comparing these data directly against

other U(OSiPh3)xRy compounds as shown in Table 2.2, it seems that longer U–O bond

distances are expected when phenyl is used as the R group, presumably due to the large

and rigid steric bulk.

In addition there is a distinct correlation between the lengthening of the U–O bond and the

shortening of the O–Si bond. This same trend is observed in all group IV and early first
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row transition metal siloxides. [85] However if the alkoxide group, M−−OCPh3 is analysed,

no correlation is observed between the M−−O bond and the O−−C bond suggesting

that the pattern observed in the siloxides is driven by the sterics or electronics of the

silicon atom. [85] An explanation for this observation lies with the fact that both uranium and

silicon are oxophillic atoms. When the electronics or the sterics of the molecule change,

weakening the U–O bond, the oxygen atom is more available to the silicon, thus reducing

the O–Si bond length. Figures 2.12 and 2.13 also show a distinct correlation between

the lengthening of the U–O bond and an overall lengthening of the intramolecular U–Si

distance. The figure shows a correlation as the electron density on the oxygen atom is

more available to the oxophillic silicon, the total distance between the uranium and silicon

lengthens overall.

Inverse Trans Influence

The inverse trans effect was first introduced in 1992 by Denning [93] and describes the

stabilisation of ligands trans to certain other ligands which are labelled ‘trans directing

ligands’. Semi–core 6p–orbitals mix with valence d– or f–orbitals and this provides the

basis for the inverse trans influence, however, the presence of both orbital types in the

actinide valence shell complicates the description for actinide species and the semi–core

6p–orbitals are not the sole determining factor. [94]

The concept requires the comparison of bond lengths in six coordinated species of the

type MZY5
n− where Z is either an oxo or nitrido group and Y is a halide. Where M is

a transition metal of the type d0,1,2 the the metal–halide trans bond is typically found

to be 5–15% longer than the equivalent metal–halide cis bond. However, as alluded

to above, the situation is more complex for actinide species and in similar complexes

where M is either U or Pa the M–Y trans distances are found to be 4–8% shorter than
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Figure 2.12: Correlation between O–
Si bond length and U–Si
distances for uranium com-
pounds with the ligand R3SiO.
(Data points in red are the
experimental values for
K[U(OSiPh3)5])

Figure 2.13: Correlation between U–O bond
length and U–Si distances for
uranium compounds with the
ligand R3SiO. (Data points in
red are the experimental val-
ues for K[U(OSiPh3)5])

the equivalent M–Y cis bonds. [95] Subsequent studies, using DFT, show this effect in

a number of complexes, albeit the average shortening of the trans bond is closer to

2%. [94] [96]

This effect could be, at least partially, responsible for the lengthening and shortening of

bonds observed within this complex. Only two ligands are trans to each other, O2–U1–

O5 with an angle of 172.51◦ or 178.38◦ if measuring the Si2–U1–Si5 angle. The average

bond length of the equatorial cis U–O bonds is 2.180 Å and 2.183 Å for the trans bonds.

In addition the comparison between the O–Si bond lengths show a similar trend, with

the equatorial O–Si observed at 1.617 Å average and the trans O–Si bonds are 1.620

Å average. Whilst initially unremarkable, when compared to each other, a different trend

in observed. Instead of the U–O lengthening (or shortening) and corresponding O–Si

bond shortening (or lengthening) in this case both the U–O and O–Si trans bonds are

marginally greater in length than the cis U–O and O–Si bonds showing a small ‘trans’

effect but no inverse trans effect.
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Finally Figure 2.11 shows some correlation between the O–Si and Si–R bond distances.

The Si–R bond lengths are typical of such complexes and are mostly unaffected by the

uranium centre or the potassium counterion.

Figure 2.14: U–O–Si bond angles for uranium compounds with the ligand R3SiO. (Data points in
red are the experimental values for K[U(OSiPh3)5])

Figure 2.14 shows the U–O–Si bond angles found in the literature and the U–O–Si bond

angles found for K[U(OSiPh3)5]. Four of the five U–O–Si bond angles are within a range

that has been observed before, however, one bond angle is lower than this literature

range and two are considerably more bent than the other three. These two ligands also

coordinate to the potassium counterion via the two oxygen atoms. The presence of the

counterion coordinating to the two closest ligands reduces the angles to 148.0(8) ◦ and

167.0(8) ◦.
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2.2.3 ‘Ate’ complexes

‘Ate complexes are defined as complexes where a salt has been formed by the coordin-

ation of an extra ligand to the metal centre. The central atom increases its coordination

sphere by one, in addition to becoming negatively charged, but remains in the same

formal oxidation state. In this case the uranium centre in UCl4 which is neutral and has

a coordination number of four, has become a negatively charge anion with a coordina-

tion number of five in K[U(OSiPh3)5], therefore filling the criteria to be deemed an ‘ate’

complex. Examples of other uranium ‘ate’ complexes are shown in Figure 2.15.

Only Figure 2.15–f is a siloxide complex and therefore the closest to K[U(OSiPh3)5] in

terms of its electronics and structure. Figure 2.15–f was analysed by X–ray diffraction and

shown to possess U–O bond distances of 2.228(17) Å. This bond length is longer than the

average bond U–O bond distance for K[U(OSiPh3)5] which is 2.18 Å. As K[U(OSiPh3)5] is

higher in oxidation state and coordination number (CN = 5, OS = 4 compared to CN = 4,

OS = 3) it would be expected that the bond length would increase as the bond weakens.

However as this is not the case and therefore the ligand structure should be considered.

The OtBu groups are inductively more electron withdrawing than a Ph ring and it is the

OtBu groups that are inductively removing electron density somewhat from the uranium

centre, in turn weakening the bonds and increasing the bond lengths.

2.2.4 Characterisation of K[U(OSiPh3)5] : NMR

13C{H} and 1H NMR spectra were obtained in d8–toluene solution. The resonances

observed display a similar pattern to the starting materials and the resonances were as-

signed accordingly as shown in Tables 2.3 and 2.4. Full spectra are shown in Appendices

B.13 and B.14 along with HSQC and HMBC data shown in Appendices B.15 and B.16
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Figure 2.15: Examples of uranium ‘ate’ complexes
a) [DIPPNCOCN]UCl3Li(THF)2

[97];
b) [Cp∗UCl3]− [98];
c) [Li(DME)1.5]2[UO2(CH2SiMe3)4] [99];
d) [(Li(DME))2Cl][Li(DME)][UO2(NC5H10)3]2

[100];
e) [Li(MeIm)][UO(η−O)(Ar2nacnac)(η−C,N−C4H5N2)2] [101];
f) [K(18c6)][U(OSi(OtBu)3)4] [102]

The 13C{H} NMR spectrum clearly shows four carbon environments at δ 150.19, 128.45,

127.11 and 126.58 ppm. The weakest signal at δ 150.19 ppm is assigned to the ipso

carbon and this correlates well with the HSQC spectrum which shows no proton correl-

ation for this resonance. The other resonances are assigned as ortho, para and meta

respectively and in accordance with the 1H NMR spectroscopy integration values and the

HSQC and HMBC data.

The 1H NMR spectrum shows three proton environments at δ 6.54, 5.61 and 4.91 ppm

in a 1:2:2 ratio which is as expected with a plane of symmetry passing from the siloxide
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substituent, through the phenyl ring to the para proton. With an integration of 1H, the

resonance at δ 6.54 ppm is assigned to the proton in thepara position. The resonance

at δ 4.91 ppm is broadened (FWHH = 84.6 Hz) due to the proximity to the uranium centre

and is therefore assigned to the proton closest to the uranium centre in the ortho position.

This leaves the resonance at δ 5.61 ppm assigned to the proton in the meta position.

Carbon Assignment δ/ppm

ipso 150.19

ortho 128.45

para 127.11

meta 126.58

Table 2.3: NMR Spectroscopy Resonances for the 13C{H} spectrum of K[U(OSiPh3)5] in d8–
toluene

Proton Assignment δ/ppm (multiplicity, coupling constant)

para 6.54 (s, 1H)

meta 5.61 (s, 2H)

ortho 4.91 (s, broad, 2H)

Table 2.4: NMR Spectroscopy Resonances for the 1H spectrum of K[U(OSiPh3)5] in d8–toluene

It is commonly found that in investigating paramagnetic complexes, the NMR resonances

broaden which can make signals of low intensity all but impossible to detect. This is due to

the presence of unpaired electrons, resulting in large isotropic shifts and the broadening

of the resonances making accurate integrations difficult to obtain and usually obscures

any nuclear spin–spin coupling. The magnitude of these effects can vary, depending on

the number of unpaired electrons in a system and the electron spin relaxation time, both

of which vary with the metal, oxidation state and coordination environment. This means

there is no single rule which applies to all compounds and the relationship between chem-

ical shift and chemical environment varies greatly. [103] However, by increasing the spectral

window and decreasing the relaxation delay, the NMR spectra of paramagnetic complexes
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can easily be acquired.

The NMR data presented here, has sharp resonances which are normally seen within dia-

magnetic complexes, the sample was analysed by elemental analysis and proved to be

analytically pure and within C, 0.8% and H, 0.6% of calculated values. In addition, the 1H

spectrum window was broadened to +200 to -200 ppm and the relaxation delay was de-

creased, in order to search for any broadened peaks that might indicate a paramagnetic

species, but none were found as shown in Figure 2.16. Whilst sharp resonances with low

FWHH measurements are unusual, it has been observed with previously published ‘ate’

complexes. [97]

Figure 2.16: 1H NMR spectrum of K[U(OSiPh3)5] with broadened window of +200 to -200 ppm

2.3 Synthesis and characterisation of ([K(py)6][U(OSiPh3)5(py)])2

([K(py)6][U(OSiPh3)5(py)])2 was prepared by reacting UCl4 with six equivalents of Ph3SiOK

in THF. The crude product was extracted with a toluene/hexane mix before recrystallisa-

tion from pyridine at -40◦C.
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Scheme 2.10: Synthesis of ([K(py)6][U(OSiPh3)5(py)])2

2.3.1 Characterisation of ([K(py)6][U(OSiPh3)5(py)])2 : X–ray Diffraction

([K(py)6][U(OSiPh3)5(py)])2 crystallises as the pyridine trisolvate in triclinic space group

P-1 with an R factor of 4.79. The lattice parameters for this structure are a = 15.2760(2)

Å, c = 17.6573(3) Å, c = 23.5609(4) Å, α = 94.8100(10) ◦, β = 108.0410(10) ◦, γ =

90.2700(10) ◦.

The structure is highly complex, with two formula units per unit cell, a total of 541 atoms.

From the molecular structure shown in Figure 2.17 the uranium centre has a square bipyr-

amidal geometry consisting of five siloxy ligands with the sixth site occupied by a pyridine

molecule. The counterion, potassium, is also co–ordinated to six pyridine molecules and

a further three pyridine molecules are found in the crystal cell. It should be noted that

for clarity Figure 2.17 only shows half the crystal cell, with the other half consisting of

another formula unit.

The average experimental bond length for ([K(py)6][U(OSiPh3)5(py)])2 for U–OSiR3 is

2.215(5) Å, 1.606(5) Å for UO–SiR3 and 1.886(2) Å for UOSi–R3. Figures 2.19 and

2.20 show the full range of U–O and O–Si literature values for the general formula

U(OSiR3)xR′y (blue) and the experimental bond lengths for [K(py)6][(Ph3SiO)5U(py)] (red).

Comparing the literature average bond lengths to the average experimental bond lengths

for ([K(py)6][U(OSiPh3)5(py)])2 the U–O bonds are found to be slightly longer than expec-

ted. Based on the hypothesis described in the previous section (Section 2.2.2), these

elongated U–O bonds suggest the O–Si bonds should be amongst the shortest found
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Figure 2.17: Molecular structure of ([K(py)6][U(OSiPh3)5(py)])2 (Only half the cell is shown; hydro-
gen atoms omitted for clarity)

Figure 2.18: Core molecular structure of [K(py)6][(Ph3SiO)5U(py)] containing the Si, O U and K
atoms and coordinated pyridine (Hydrogen atoms, phenyl rings, potassium coun-
terion and solvate molecules have been omitted for clarity)

which is shown to be the case in Figure 2.20. This correlation is again highlighted by

comparing the total U–O–Si distance to the U–O or O–Si bond length and is shown in

Figures 2.21 and 2.22.

To explain the lengthening of the U–O bond the coordinating solvent molecule should

also be considered. The lone pair on pyridine acts as a σ–donor to the uranium centre, in

contrast to the homoleptic starting material. In the latter, the five oxygen atoms compete

as π–donors to both the uranium centre and as discussed in section 1.2.1, to a lesser ex-
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Figure 2.19: Correlation between U–O
bond distances and O–Si
for uranium compounds
with the ligand R3SiO.
(Data points in red are the
experimental values for
([K(py)6][U(OSiPh3)5(py)])2)

Figure 2.20: Correlation between O–Si
bond distances and Si–R3
for uranium compounds
with the ligand R3SiO.
(Data points in red are the
experimental values for
([K(py)6][U(OSiPh3)5(py)])2)

tent to the silicon atom. With greater electron density present in the heteroleptic pyridine

complex, the donation from the oxygen atoms is lessened and consequentially, the bond

is marginally longer. In addition, if the inverse trans effect (Section 2.2.2) is considered,

the ligand (U1–Si3), which is trans to the pyridine ligand, is shown have the shortest U–O

bond found within this compound, although still longer than the ligands on K[U(OSiPh3)5].

A similar, non halide, inverse trans effect has been observed previously within a uranium

(V) imide complex. [104]

Figure 2.20 indicates there is little correlation between the O–Si and Si–R bond distances

with only a slight trend in favour of shorter Si–R bonds in the presence of longer O–Si

bonds with the observed Si–R bonds well within the precedent set in the literature. Figure

2.23 shows the average U–O–Si bond angles for complexes U(OSiR3)n (blue) and the

experimental values for ([K(py)6][U(OSiPh3)5(py)])2 (red) which, whilst spread across the

literature range are still within the limits of published data.
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Figure 2.21: Correlation between O–
Si bond length and U–Si
distances for uranium com-
pounds with the ligand R3SiO.
(Data points in red are the
experimental values for
([K(py)6][U(OSiPh3)5(py)])2)

Figure 2.22: Correlation between U–
O bond length and U–Si
distances for uranium com-
pounds with the ligand R3SiO.
(Data points in red are the
experimental values for
([K(py)6][U(OSiPh3)5(py)])2)

Figure 2.23: U–O–Si bond angles for uranium compounds with the ligand R3SiO. (Data points in
red are the experimental values for ([K(py)6][U(OSiPh3)5(py)])2)

2.3.2 Characterisation of ([K(py)6][U(OSiPh3)5(py)])2 : NMR

1H and 13C{H} NMR spectra were collected from solutions in d5–pyridine, the resonances

and assignments are shown in Tables 2.5 and 2.6. The 13C{H} NMR spectroscopy data
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show a number of resonances. Once the resonances for pyridine and trace toluene are

assigned, the three resonances left at δ 137.43, 128.12 and 127.71 ppm are assigned to

the carbons in the ortho, para and meta positions respectively based on comparisons with

the starting materials and analysis of the 1H and HSQC NMR spectroscopy data (Appendix

B.19).

The 1H NMR spectroscopy data show three resonances in the familiar pattern at δ 9.22,

7.30 and 7.08 ppm. The integration values show the resonances to be in a 2:1:2 ratio

suggestive of ortho, para and meta respective assignments. The resonance at δ 9.22 ppm

is relatively broad compared to the other resonances (FWHH = 518.1 Hz). Broadening of

the peak is evidence that this resonance should be assigned to the ortho protons as they

are the closest to the uranium centre.

Carbon Assignment δ/ppm

ortho 137.43

para 128.12

meta 127.71

Table 2.5: NMR Resonances for the 13C{H} spectrum of ([K(py)6][U(OSiPh3)5(py)])2 in d5–pyridine

Proton Assignment δ/ppm (multiplicity, coupling constant)

ortho 9.22 (s, broad, 6H)

para 7.29 (q, J = 11.5 Hz, 3H)

meta 7.08 (s, 6H)

Table 2.6: NMR Resonances for the 1H spectrum of ([K(py)6][U(OSiPh3)5(py)])2 in d5–pyridine

2.4 Synthesis and characterisation of K[(Ph3SiO)5U(THF)]

Uranium tetrachloride and five equivalents of Ph3SiOK were stirred together vigorously in

THF at room temperature. Within minutes the solution had changed from green to lilac to
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Scheme 2.11: Synthesis of K[(Ph3SiO)5U(THF)]

pink. After work up, the resulting pale pink solid was dissolved in THF which resulted in a

deep pink solution. Recrystallisation was difficult due to the high solubility of the product

in THF. Other non–coordinating solvents (benzene, pentane and hexane) were trialled,

with a minimum amount of THF added in order to ensure the complex recrystallised with

THF coordinated, but without success. Despite these difficulties, NMR spectroscopy data

complimented the data collected for K[U(OSiPh3)5] and ([K(py)6][U(OSiPh3)5(py)])2 well.

2.4.1 Characterisation of K[(Ph3SiO)5U(THF)] : NMR

13C{H} and 1H NMR spectroscopy data were obtained and compared to the starting ma-

terials of Ph3SiOH and Ph3SiOK. The resonances observed display a similar pattern to

the starting materials and with this information, along with the proton integration values

and HSQC data shown in Appendix B.23, the resonances are assigned as shown in Tables

2.7 and 2.8.

Carbon Assignment δ/ppm

ipso 143.94

ortho 138.04

para 128.41

meta 128.11

Table 2.7: NMR Resonances for the 13C{H} spectrum of K[(Ph3SiO)5U(THF)] in d8–THF

Similarly to the K[U(OSiPh3)5] the mono–substituted phenyl ring was expected to have
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Proton Assignment δ/ppm (multiplicity, coupling constant)

ortho 8.96 (s, 2H)

para 7.12 (t, J = 7.3 Hz, 1H)

meta 6.87(t, J = 7.1 Hz, 2H)

Table 2.8: NMR Resonances for the 1H spectrum of K[(Ph3SiO)5U(THF)] in d8–THF

four carbon environments. The 13C{H} NMR spectrum supports this hypothesis with four

carbon environments observed in approximately the correct ratios at δ 143.94, 138.04,

128.41 and 128.11 ppm and are assigned to the ipso, ortho, para and meta carbons

respectively.

The 1H NMR spectrum was expected to have three proton environments in a 1:2:2 ratio

(para, meta, ortho). This is observed in the spectrum with the ortho resonance slightly

broadening (FWHH = 18.8 Hz). In order to further confirm the proposed 13C{H} and 1H

assignments, both HSQC and HMBC spectra were collected and analysed which can be

seen in Appendix B.23 and B.24.

The isotope 29Si has a low natural abundance of only 4.68% and low receptivity of

2.09 [105] compared to 13C and for this reason it is very difficult to observe directly by

NMR spectroscopy. 2D NMR spectroscopy methods provide an alternative by indirectly

observing the silicon atoms and reconstructing the silicon dimension. An example of this

is found in the 29Si HMBC spectrum of K[(Ph3SiO)5U(THF)] in Figure 2.24 and clearly

shows one observed silicon environment at δ -29ppm indicating the molecule either has

identical ligand environments or it is fluxional in solution. By repeating the 29Si HMBC NMR

spectroscopy at a -38◦, two silicon environments are observed, shown in Figure 2.25. By

considering the structure of ([K(py)6] [U(OSiPh3)5(py)])2 which also has a coordinated

solvent molecule, two ligand environments are predicted, cis and trans to a coordinated

THF molecule and therefore explaining the two silicon environments seen in Figure 2.25.
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Figure 2.24: 29Si NMR HMBC spectrum of K[(Ph3SiO)5U(THF)] in d8–THF

Figure 2.25: 29Si NMR HMBC spectrum of K[(Ph3SiO)5U(THF)] at -38 ◦C in d8–THF

2.4.2 Characterisation of K[(Ph3SiO)5U(THF)] : Negative ion ESI HRMS

Due to the ‘rainbow’ of colour changes observed during the synthesis of all the above

uranium siloxides, investigations into the nature of the intermediates present were under-

taken, specifically focused towards stepwise substitution, in order to afford well–defined
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and hopefully isolable intermediates. [106]

The possibility of stepwise complex formation during the synthesis meant ESI HRMS char-

acterisation techniques could be used to identify species on the addition of each individual

ligand. In a typical ESI HRMS experiment, a suspension of UCl4 was prepared in THF as

well as a solution of Ph3SiOK in the same solvent volumetrically. Aliquots equal to one

equivalent of the ligand were added to the UCl4 and reacted for 20 minutes before ESI

HRMS injection, using a gas–tight Hamilton syringe and data collection were undertaken,

the results of which are summarised in Table 2.9.

Ph3SiOK HRMS m/z Relative Intensity Anion Assignment

1 eq. 358.9515 0.39 —

414.8908 0.28 UCl5

655.0104 0.33 Ph3SiOUCl4

2 eq. 358.9517 0.22 —

655.0105 0.18 Ph3SiOUCl4

895.1304 0.33 (Ph3SiO)2UCl3

1170.2239 0.15 (Ph3SiO)3UCl3

1410.3450 0.12 (Ph3SiO)4UCl2

3 eq. 1133.2587 0.22 (Ph3SiO)3UCl2

1410.3479 0.22 (Ph3SiO)4UCl2

1614.4872 0.57 [(Ph3SiO)5U]

4 eq. 1614.4781 1.0 K[U(OSiPh3)5]

5 eq. 1614.4781 1.0 K[U(OSiPh3)5]

6 eq. 275.0889 0.17 Ph3SiO

589.1415 0.31 (Ph3SiO)2K

1156.3733 0.35 K2[OU(OSiPh3)3]

1401.4449 0.17 —

Table 2.9: Negative ion ESI HRMS data for the synthesis of K[(Ph3SiO)5U(THF)] in THF

The data highlights that multiple ions are present up until 3 equivalents of Ph3SiOK were

added. At this stage, the primary negative ion is the K[U(OSiPh3)5] species at m/z

1614.4781, with two other species at m/z 1133.2587 and 1410.3479. On addition of

the fourth and fifth equivalent of Ph3SiOK the only negative ion observed is the desired
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K[U(OSiPh3)5] at m/z 1614.4781 suggesting uranium has a predisposition to large co-

ordination numbers, which is expected based on the electronics and sterics of uranium.

In addition, ‘ate’ complexes (Section 2.2.3), generally exhibit greater kinetic stability than

the equivalent neutral counterpart. This stability is achieved by saturating the uranyl co-

ordination sphere which suggests the addition of a sixth ligand would not react or result

in the dissociation of the molecule. [100,101]

Considering this theory further, the reported bond dissociation energies of U−−O are

761(17) kJ/mol, OU−−O at 678(59) kJ/mol and O2U−−O at 644 kJ/mol. It is clear that

the greater the number of oxygen ligands, the weaker the bonds become. Assuming the

same theory applies to K[U(OSiPh3)5], it could be deduced that if a sixth ligand binds

to the uranium centre, the molecule becomes unstable and dissociates. In addition, if a

sixth siloxide ligand binds to the uranium centre, the molecule will possess a 2- charge

which is high for uranium and mostly unstable.

As predicted, on addition of the sixth equivalent, K[U(OSiPh3)5] completely disappears

and multiple ions are observed. Five coordinating ligands leaves the uranium centre

sterically saturated with space left only for smaller ligands such as a coordinating solvent

making the addition of a sixth bulky ligand destabilising.

In addition the ESI HRMS data show the generation of [(Ph3SiO)K(OSiPh3)]− which is

seen in literature within larger structures or as a fragment of a larger tetramer structure

similar to that shown in Figure 2.4 and has been previously characterised by X–ray dif-

fraction crystallography. [89] It is possible that the generation of this species is more stable

than a K2[U(OSiPh3)6] derivative. In addition to the siloxide species two other peaks are

observed at m/z 1156.3733 and 1401.4449 which are tentatively assigned to uranium

based derivatives, thermodynamically more stable than K2[U(OSiPh3)6] and potentially

some form of ‘ate’ complex, known to be kinetically more stable due to an increase in
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coordination number. [100]

With the analysis confirming that the K[U(OSiPh3)5] species is by far the most stable, the

aim of synthesising U(Ph3SiO)3Cl is therefore unlikely via a metathesis reaction between

three equivalents of the ligand and the UCl4 starting material. A different approach was

therefore required. A logical solution to the problem would be to substitute the Ph3SiO−

ligands with another more sterically bulky species, stabilising a uranium complex with a

lower coordination number. A second solution would be to remove a Ph3SiO− ligand

from the already formed K[U(OSiPh3)5] complex via a second metathesis reaction result-

ing in a leaving group or functional group on the uranium centre. The second option is

investigated further in section 2.5.

2.5 Chemistry of the [U(OSiPh3)5] fragment

Given the steric encumbrance of the uranium centre in K[U(OSiPh3)5], and given the res-

istance of K[U(OSiPh3)5] to reduction in a tractable manner, other methods to open the

coordination sphere to form a heteroleptic complex of the general form [U(OSiPh3)3X]

were explored. The anionic nature of K[U(OSiPh3)5] implies that an electrophilic modi-

fication should be possible. As such, treatment of K[U(OSiPh3)5] with TMSOTf aimed to

degrade the K[U(OSiPh3)5] complex by removal of Ph3SiO− to form (R3SiO)5−xU(OTf)x

with TfO− representing the required leaving group.

Me3SiOTf and TMSOTf have been widely used in substitution reactions with the ligand

R3SiO−. [107] An example of such a substitution reaction is shown in Scheme 2.12 which

uses a germanium siloxide compound. [108] Further examples of such reactions have been

documented using d–block metal centres and one such reaction is shown in Scheme 2.13

which substitutes the Me3SiO− group on a rhenium compound with the desired TfO−
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leaving group. [109]

Scheme 2.12: The substitution reaction between Me3SiO− and TfO− (A p–block example)

Scheme 2.13: The substitution reaction between Me3SiO− and TfO− (A d–block example)

Another good example of this type of substitution reaction being employed for a uranium

complex is shown in Scheme 2.14. [110]

Scheme 2.14: The substitution reaction between Me3O− and TfO− (An f–block example)

In order to substitute a single Ph3SiO− ligand from the already formed K[U(OSiPh3)5] with

the pseudo halogen and convenient leaving group, TfO− (Scheme 2.16) investigative re-

actions were undertaken, starting with a thorough analysis of how the starting materials,

Ph3SiOH and Ph3SiOK react with TMSOTf and to identify if Ph3SiO−TMS was formed.

2.5.1 Characterisation of Ph3SiOTMS, HOTf and KOTf : NMR

Ph3SiOH and Ph3SiOK, were reacted TMSOTf in line with literature methods [111]. In

addition, both d8–THF and d2–dcm were used as solvents and the products were then
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Scheme 2.15: Synthesis of Ph3SiOTMS, HOTf and KOTf

characterised using NMR spectroscopy.

Initially TMSOTf was characterised by NMR spectroscopy and the 13C{H} NMR spec-

trum clearly shows the distinct quartet resonance at δ 119.76 ppm which is assigned to

TMSOTf in accordance with literature values. [82]

The reaction between TMSOTf and Ph3SiOH or Ph3SiOK was then characterised by 1H,

13C{H} and 19F NMR. The quartet resonance observed in the TMSOTf spectrum is sub-

sequently not observed after reaction with Ph3SiOH or Ph3SiOK. The TMSOTf resonance

is observed at δ 0.30 ppm. After reaction with Ph3SiOH or Ph3SiOK the TMSOSiPh3 res-

onance is observed at δ 2.23 and 2.28 ppm respectively. In addition four new resonances

are observed which are assigned to the phenyl groups. The two siloxide products differ

slightly but not to any great extent.

The 1H NMR spectrum also shows a clear and consistent pattern of the TMSOSiPh3

product from both the protonated and potassiated starting materials with resonances

observed at δ 0.09 and 0.10 ppm respectively and the TMSOSiPh3 resonances observed

between δ 7.57 and 7.34 ppm. These data correlate well with literature values. [82] In

addition, the compounds were analysed using 19F NMR spectroscopy which confirmed

the expected single fluorine environment, observed at δ -76 ppm for TMSOTf and δ -79
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ppm for HOTf and KOTf.

2.5.2 Characterisation of the reaction between K[U(OSiPh3)5] and

TMSOTf : NMR

Scheme 2.16: Hypothetical reaction scheme of K[U(OSiPh3)5] and TMSOTf

With TMSOSiPh3 well characterised and understood by NMR spectroscopy, the complex

K[(Ph3SiO)5U(THF)] was reacted with one and two equivalents of TMSOTf in a solution

of THF. As shown in Figures 2.26 and 2.27 the resulting products were characterised by

13C{H} and 1H NMR spectroscopy. Adding a third equivalent of TMSOTf was also carried

out but this resulted in an intractable solid which proved difficult to extract from the NMR

tube and impossible to purify. The cause of this is likely due to a polymerisation reaction

between THF and TMSOTf. [112] In order to overcome this problem, DCM was used, which

gave similar NMR spectroscopy results on addition of one and two equivalents of TMSOTf

and an intractable solid on addition of the third equivalent.

The 13C{H} and 1H NMR spectra are shown in Figures 2.26 and 2.27. In both cases the

red spectrum is the K[(Ph3SiO)5U(THF)] in THF, the green spectrum shows the reaction

between K[(Ph3SiO)5U(THF)] and one equivalent of TMSOTf and the third, blue spec-

trum shows the reaction between K[(Ph3SiO)5U(THF)] and two equivalents of TMSOTf.

In both the 13C{H} and 1H NMR spectra the K[(Ph3SiO)5U(THF)] signals completely dis-

appear on addition of just one equivalent of TMSOTf showing that K[(Ph3SiO)5U(THF)]

has completely reacted. On addition of both one and two equivalents of TMSOTf the
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product TMS−−OSiPh3 is observed as indicated by the resonances at δ 137.31, 135.96,

130.72 and 128.69 ppm, providing evidence that at least one ligand has been removed

from the K[(Ph3SiO)5U(THF)] species.

Figure 2.26: NMR Resonances for the 13C{H} spectrum of the reaction between
K[(Ph3SiO)5U(THF)] (red) and one (green) and two (blue) equivalents of TMSOTf in
d8–THF

The 13C{H} spectrum in Figure 2.26 shows the resonances assigned to K[(Ph3SiO)5U(THF)]

(red) completely disappear on addition of TMSOTf (green spectrum = 1 eq. and blue

spectrum = 2 eq.). The spectra showing the products of the reaction between one and

two equivalents of TMSOTf and K[(Ph3SiO)5U(THF)] show four major resonances in a

similar pattern to the familiar arrangement previously seen for K[(Ph3SiO)5U(THF)]. This

is likely the result of a uranium complex, possibly the desired [U(OSiPh3)5−xOTfx ] but fur-

ther analysis was difficult due to the intractable nature of the products. Further evidence

for the hypothesised reaction (Scheme 2.16) can be gathered from the clear indication

that TMSOSiPh3 is synthesised. The resonances at δ 2.27 and 2.35 ppm are assigned

to TMSOSiPh3 and compare well with the previously assigned resonances from the re-

action of Ph3SiOH or Ph3SiOK with TMSOTf in which the chemical shifts for TMSOSiPh3
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is assigned as δ 2.23 and 2.28 ppm respectively.

Figure 2.27: NMR Resonances for the 1H spectrum of the reaction between K[(Ph3SiO)5U(THF)]
(red) and one (green) and two (blue) equivalents of TMSOTf in d8–THF

Figure 2.27 shows the 1H NMR spectrum of the reaction between K[(Ph3SiO)5U(THF)]

and TMSOTf and further supports the hypothesis in Scheme 2.16. The resonance at δ

0.11 ppm is assigned to TMSOSiPh3 and was also observed from the reaction between

Ph3SiOH or Ph3SiOK with TMSOTf. The intensity of the resonance increases as TMSOTf

is added providing evidence that the addition of a second equivalent of TMSOTf removes

more than one ligand from the uranium species K[(Ph3SiO)5U(THF)], which again is

shown to completely react on the addition of just one equivalent on TMSOTf. Whilst

the complex, K[(Ph3SiO)5U(THF)] is no longer observed, a new species with resonances

in the aromatic region is identified and the resonances increase in intensity as TMSOTf

is added. This is assigned tentatively to the desired complex, [U(OSiPh3)5−xOTfx ].
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2.5.3 Characterisation of the reaction between K[(Ph3SiO)5U(THF)] and TMSOTf

: Negative ion ESI HRMS

In addition to the NMR spectroscopy characterisation, negative ion ESI HRMS analysis was

employed in order to establish whether the desired product [U(OSiPh3)5−xOTfx ] could be

synthesised by removing a ligand from the uranium species K[(Ph3SiO)5U(THF)]. Each

NMR spectroscopy sample as described above was also subjected to positive and negat-

ive ion ESI HRMS in order to identify products synthesised during the reaction, the results

are shown in Table 2.10.

K[(Ph3SiO)5U(THF)] was first analysed by negative ESI HRMS without the addition of

TMSOTf and the primary ion observed is at m/z 1614.48, as expected. A secondary

ion is also observed at m/z 1370.44 which is assigned as [U(OSiPh3)4O2]. This was

likely formed on exposure to air during the ESI HRMS process.

On addition of one equivalent of TMSOTf to K[(Ph3SiO)5U(THF)], the primary ion ob-

served at m/z 1488.34 is identified as the desired product, [U(OSiPh3)4OTf]. In addition,

[U(OSiPh3)3OTf2] is observed as a secondary product, indicating the ligand exchange is

a favourable reaction. On addition of a second equivalent of TMSOTf a single ion peak at

m/z 1235.06 is observed which is assigned as [U(OSiPh3)2OTf3].

TMSOTf HRMS m/z Relative Intensity Anion Assignment

0 eq. 1614.4829 0.74 [U(Ph3SiO)5]

1370.4401 0.26 [U(OSiPh3)4O2]

1 eq. 1488.3454 0.69 [U(OSiPh3)4(OTf)]

1361.2143 0.31 [U(OSiPh3)3(OTf)2]

2 eq. 1235.0673 1.00 [U(OSiPh3)2(OTf)3]

Table 2.10: Negative ion ESI HRMS data of the reaction between K[(Ph3SiO)5U(THF)] and TMSOTf
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The negative ion ESI HRMS data show that even when two equivalents of TMSOTf were

added to K[(Ph3SiO)5U(THF)] the only negative ion observed is [U(OSiPh3)2(OTf)3]. In

order to balance the equation, other ions must be formed during the reaction and there-

fore positive ion ESI HRMS was employed.

2.5.4 Characterisation of the reaction between K[(Ph3SiO)5U(THF)] and TMSOTf

: Positive ion ESI HRMS

To further investigate the reaction, positive ion ESI HRMS analysis was undertaken, the

results of which are shown in Table 2.11. On addition of one or two equivalents of TMSOTf

to K[(Ph3SiO)5U(THF)] the primary ion observed in both cases is K[TMSOSiPh3] which

shows the TfO− exchanged with Ph3SiO−, providing further evidence of the proposed

reaction scheme.

Similarly to the negative ion ESI HRMS results, the procedures in place to excluded air from

the system were not rigorous enough and the air sensitive complex, K[(Ph3SiO)5U(THF)]

reacted with oxygen to form K2[U(OSiPh3)4O2]. Due to this, oxygen based derivatives

were observed as minor products throughout the experiment.

Analysis of the results unaffected by oxygen, showed K[(Ph3SiO)5U(THF)] reacted with

one equivalent of TMSOTf to form [U(OSiPh3)3(OTf)3] and [U(OSiPh3)2(OTf)4] on addi-

tion of the second equivalent, highlighting the excellent substitution potential of TMSOTf.

These negative and positive ion ESI HRMS lead to a chemical equation of;

10K [U(Ph3SiO)5]+13TMSOTf → 7[U(OSiPh3)4(OTf )]+3[U(OSiPh3)3(OTf )2]+13K [TMSOSiPh3]

(2.5.1)
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TMSOTf HRMS m/z Relative Intensity Cation Assignment

O eq. 1465.3680 0.12 —

1692.4103 0.88 K2[U(OSiPh3)5]

1 eq. 387.0987 0.2 K[TMSOSiPh3]

1323.2942 0.27 K2[U(OSiPh3)3(OTf)O2]

1395.3547 0.13 K[U(OSiPh3)4O]

1450.4253 0.17 K2[U(OSiPh3)4O2]

1511.1901 0.05 [U(OSiPh3)3(OTf)3]

1930.3151 0.17 —

2 eq. 387.0990 0.56 K[TMSOSiPh3]

1269.2176 0.10 K[U(OSiPh3)3(OTf)O]

1385.0786 0.18 [U(OSiPh3)2(OTf)4]

2168.4412 0.16 —

Table 2.11: Positive ion ESI HRMS data of the reaction between K[(Ph3SiO)5U(THF)] and TMSOTf

2.6 UV–Vis spectroscopy K[U(OSiPh3)5] and K[(Ph3SiO)5U(THF)]

The nature of actinide complexes, especially the early actinides, makes interpreting the

electronic absorption spectra more difficult than those of the d–block metals or the lanthan-

ides. This is due to several effects, including relativistic effects on the energy, the pres-

ence of spin–orbit coupling that is substantial and the greater degree to which the 5f

orbitals interact with the ligands.

There are two descriptions of spin–orbit coupling that reflect the possible extremal in-

teractions between the orbital motion of the electron, denoted by l , the orbital quantum

number, and the intrinsic angular momentum of the electron, denoted by s.

In the case when the orbital motion of the electron is such that the magnetic field, due to

motion of the nucleus in the rest–frame of the electron, is so large that the interaction of
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the individual spin with the individual motion is so strong that it is best described by an

individual vector sum of these momenta, denoted as j . These individual j–momenta then

sum together to give the total angular momentum of the system, J. This is the jj coupling

scheme. Under this scheme, the inter–electron repulsions are much smaller than the

spin–orbit coupling scheme.

The other case occurs when the electron–electron momenta dominate and the field, due

to the motion of the nucleus, is small. In this case, the momenta due to the orbital

motions couple to give a resultant L and the spin–spin interation couple to yield S; these

two momenta then form the resultant total angular momentum of the state, denoted by J.

This is the Russell–Saunders or LS coupling scheme. The Russell–Saunders coupling

scheme treats spin–orbit coupling as much weaker than inter–electronic repulsions

In either case, the energy due to the spin–orbit interaction is the same and is given by

ESO =
λ

2
(J (J + 1)− L (L + 1)− S (S + 1)) (2.6.1)

where λ represents the spin–orbit coupling constant, which is the average of the variation

of the radial potential for the electron concerned and therefore represents the radial por-

tion of the energy term. As λ ∝ Z 4, then the magnitude of the splitting is very sensitive to

the atomic number Z . [113]

The ‘intermediate coupling scheme’ [114] lies between these two schemes and applies

when the interelectron repulsions are of a similar magnitude to the spin–orbit coupling.

Actinide chemistry is therefore complex as, in general, actinides in fact lie somewhere

between the two models. In practice this results in significantly altered absorption spec-

tra from the smallest change in ligand set for any given actinide in any given oxidation
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state. [2,115]

Due to the relatively large size of the 5f orbitals of the actinides, the electrons overlap

much more significantly with the orbitals of the ligand systems than the 4f orbitals of

the lanthanide species. This in turn causes much higher extinction coefficients and in

addition, the overlapping with the ligand orbitals forming a covalent bond, increases the

orbital size. This is due to the resulting molecular orbital formed from the two atomic or-

bitals (nephelauxetic effect). These effects cause a much greater variation (position and

intensity) in the resulting electronic absorption spectra for actinide species. [2] In addition

the electronic dipole transitions are normally forbidden but in the presence of an asym-

metric ligand field, the transition can be allowed. This can occur by a permanent distortion

in the dipole or by a temporary coupling with an asymmetric metal–ligand vibration also

referred to as vibronic coupling. [2]

Other transitions, apart from the f–f transitions, which are formally not allowed (Laporte

rule) can occur. Firstly, f–d transitions, which are formally allowed, occur above 20000

cm−1 (500 nm) and are normally broad and intense. This is due to the large energy gap

between the 5f orbitals and the energetically higher, 6d orbitals (albeit smaller than 4f

to 5d transitions). Finally, metal–ligand charge–transfer (MLCT) transitions are observed

in the actinides and are normally found in the UV region. The peaks are again normally

broad and intense and the tails of such peaks are commonly seen in the visible region.

It is normally the MLCT transitions that are responsible for the intense colours frequently

observed in the actinides.

Despite the difficulty of assigning the electronic absorption spectra for actinides, work has

been carried out to assign the bands observed for simple complexes such as f 2 systems.

Figure 2.28 is reproduced from literature sources [2,116] and shows the calculated ground

state of such a system to be 3H4. Due to the relatively large nature of the 5f orbitals,
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the energy levels are more sensitive to the coordination number of the complexes. For

example, differences can be observed between the spectra of the 6 coordinate, [UCl6]2–

and that of aqueous UIV. [2] As a result, the interpretation of actinide electronic absorption

spectra should be carried out individually on each compound. [115]

Figure 2.28: Qualitative energy level diagram for an f 2 system such as UCl4 showing the effects of
electrostatic repulsion and spin–orbit coupling



87

The electronic absorption spectra of UCl4 in THF is shown in Appendix K.1 and clearly

shows nine absorption bands which are also shown in Chapter 7. These bands correlate

well with literature sources and are assigned accordingly. [117–119] Analysis further into the

UV region (below 400 nm) proved problematic due to the high levels of ‘noise’ in this

region and the LMCT bands that are likely the source of the intense green colour of UCl4

were not clearly observed. UCl4 was also analysed in toluene, shown in Appendix K.2

and clearly shows seven absorption bands which are also assigned accordingly in Table

7.3.

All the complexes synthesised as part of this work so far are UIV and therefore f 2 systems,

however, they do possess different coordination numbers. The K[U(OSiPh3)5] complex

has a coordination number of five, whilst the K[(Ph3SiO)5U(THF)] complex has a coordin-

ation number of six, which should result in different electronic absorption spectra. In

addition, the K[U(OSiPh3)5] complex does not possess perfect symmetry and the crys-

tal structure of K[(Ph3SiO)5U(THF)] was not obtained, but for the purposes of assigning

electronic absorption spectra, the symmetry groups D3h for (K[U(OSiPh3)5]) and C4v for

(K[(Ph3SiO)5U(THF)] is investigated.

The electronic absorption spectra of K[U(OSiPh3)5] in THF and toluene both exhibit mod-

erate absorptions in the visible region with extinction coefficients in the region of 3–25

M−1 cm−1. These extinction coefficients are indicative of f–f transitions. [120] Figure 2.29

shows the absorptions observed in THF and Table 2.12 assigns these peaks based on

previously reported cases of six coordinate f 2 uranium complexes. [119] Appendix K.10

shows the same complex but dissolved in toluene and is also reported in Table 2.12

with tentative assignments based on previously reported five coordinate f 2 uranium com-

pounds. [119] In general terms the more polar the solvent the broader the bands are likely

to be, with the less polar solvents showing far greater resolution. The polar solvents can
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interact with the solute through intermolecular bonding which is seen in the molecular

structure of [K(py)6][(Ph3SiO)5U(py)] and presumed to be true in the K[(Ph3SiO)5U(THF)]

structure. If the solvent aligns its dipole moment with that of the solute the ground state

and the excited states of the solute can increase or decrease and change the frequency

of the absorbed photon causing the different transition energies which then become ‘av-

eraged’, causing peak broadening. Non polar solvents however, can interact through po-

larizability via London interactions (induced–dipole–induced–dipole interactions between

molecules).

Comparing K[(Ph3SiO)5U(THF)] to K[U(OSiPh3)5] the data in Table 2.12 shows sev-

eral bands of the same or similar wavelengths. In addition, there are four peaks in the

spectrum of K[(Ph3SiO)5U(THF)], not observed in the K[U(OSiPh3)5] spectrum at 397.5,

525.5, 652.6 and 716.0 nm and the K[U(OSiPh3)5] spectrum shows two peaks at 607.5

and 735.5 nm. These transitions must therefore be assigned to transitions effected by

the change in symmetry. It must be noted that due to the reasons outlined above these

conclusions and assignments are tentative.

Figure 2.29: UV–Vis spectrum for K[(Ph3SiO)5U(THF)] in THF (Red) and K[U(OSiPh3)5] in Toluene
(Blue)
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Compound λ / nm ε / L mol−1 cm−1 A Assignment

K[(Ph3SiO)5U(THF)] 397.5 11.42 0.216 3P,1D [119]

426.5 13.69 0.259 —

469.5 6.61 0.125 —

489.5 8.83 0.167 —

525.5 9.89 0.187 3P [119]

549.0 18.87 0.357 3P [119]

593.1 9.31 0.176 1D,3P [119]

628.5 3.75 0.071 —

652.6 6.40 0.121 —

716.0 8.94 0.169 —

K[U(OSiPh3)5] 427.5 12.37 0.245 —

466.0 18.84 0.373 —

501.0 8.74 0.173 3P [119]

554.6 24.39 0.483 3P [119]

595.4 11.31 0.224 1D,3P [119]

607.5 11.97 0.237 —

654.0 13.74 0.272 —

735.5 5.05 0.100 —

Table 2.12: Molar absorptivity (ε) of K[U(OSiPh3)5] and K[(Ph3SiO)5U(THF)] with tentative assign-
ments

2.6.1 Formation of K[(Ph3SiO)5U(THF)] : UV–Vis spectroscopy

Analysis of each step of the K[(Ph3SiO)5U(THF)] synthesis by UV–Vis spectroscopy were

conducted. Accurate concentrations were recorded of UCl4 in THF and 5 x 1 eq. of

Ph3SiOK. Each single ligand equivalent was added to the UCl4 in turn and analysed by

UV–Vis spectroscopy of which the full spectra are shown in Appendices K.1, K.3, K.4,

K.5, K.6 and K.7. The results of the experiments were hindered by the production of
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the side product, KCl suspended in the solution. Attempts were made to remove KCl

by filtration but this affected concentrations making the identification of isosbestic points

challenging. The results here were obtained by reacting Ph3SiOK with UCl4 and waiting

for the KCl to settle prior to UV–vis analysis.

The graphs in the appendices and Figure 2.30 clearly show the reaction progression. The

data indicates that UCl4 (black line) reacts immediately with just one equivalent of the lig-

and, Ph3SiOK. With the UCl4 completely reacted, the changes observed are suggestive

of the production of a new species. Despite the issues surrounding the production of KCl,

three isosbestic points were observed and highlighted by the red boxes in Figure 2.30.

Figure 2.30: UV–Vis spectrum of UCl4 and the addition of Ph3SiOH in one equivalent aliquots
(Black=UCl4; Blue=1eq; Purple=2eq; Brown=3eq; Green=4eq; Olive=5eq; Red=6eq)
with isosbestic points

Isosbestic points are indicative of only two dominant species present in the reaction solu-

tion. If two species have equal values for the molar absorption coefficients at the same

wavelength, the likelihood of a third species also possessing the same molar absorp-

tion coefficient is so remote, the information is generally considered to be confirmation

of two dominant species. The first isosbestic point at 280 nm highlighted in Figure 2.30



91

seems to indicate that up to five equivalents, there are two dominant species. On the

addition of the sixth equivalent (red line), the isosbestic point is no longer observed and

therefore more than two dominant species are likely to be present which is also seen in

Section 2.4.2. The second isosbestic point is clearer at 300 nm with the UCl4, second

and sixth equivalent lines all crossing. Finally at 320 nm, up to two isosbestic points can

be determined.
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Chapter 3

Reactivity Studies of K[(Ph3SiO)5U]

As K[(Ph3SiO)5U] proved to be a viable and stable siloxide complex, it was prudent to in-

vestigate it in terms of its reactivity, especially as the two complexes, K[(Ph3SiO)5U(THF)]

and ([K(py)6][U(OSiPh3)5(py)])2 formed six coordinate complexes whilst the K[(Ph3SiO)5U]

was only a five coordinate. It seemed probable that the five coordinate complex could,

sterically at least, sustain a further bonded species and therefore a variety of small mo-

lecules were reacted with the complex as shown in Scheme 3.1.

Scheme 3.1: Reactivities of K[(Ph3SiO)5U(THF)] that were investigated, K[(Ph3SiO)5U] was in-
vestigated with the same small molecules

Both the complexes K[(Ph3SiO)5U] and K[(Ph3SiO)5U(THF)] were investigated in terms of

their reactivity with small molecules and the reaction with O2 showed promising results.
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As uranium has a predisposition to form the dioxo species with the two oxygen atoms

located in the trans positions, work was also carried out to identify this species and if

a monooxo species could be synthesised. Monooxo species by comparison, are rare,

with only 18 publications containing 24 monooxo examples found in the literature. Of

these, five are RN=U=O species, which are isolobal with O=U=O. From the remaining

monooxo examples, most are synthesised via an oxygen atom donor reaction and only

one is synthesised by reacting with carbon dioxide.

3.1 Uranium dioxo species

The uranyl group, UO2
2+ is the most common uranium oxide species and is normally lin-

ear rather than bent as is found in transition metals and earlier actinides such as thorium.

This is thought to be due to the large energy gap between the 5f orbitals and the ener-

getically higher 6d orbitals. Whilst thorium is able to use its 6d orbitals to overlap with the

p orbitals on the ligand, uranium can bond with an f–p overlap as shown in Figure 3.1. [2]

Figure 3.1: σ and π–bonding in the uranyl ion [UO2]2+: a) σg–bonding in the uranyl ion; b) σu–
bonding in the uranyl ion; c) πu–bonding – dxz–px overlap; d) πg–bonding – f xz

2–px

overlap [2]

A literature search for all uranyl species gave an average U–O bond length of 1.767 Å
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and a range of 1.359 Å to 1.961 Å. [85] The UO2
2+ uranyl group can be easily detec-

ted by IR spectroscopy with a strong band in the region of 920–980 cm−1, caused by

the asymmetric O–U–O stretching vibration and a band around 860 cm−1 in the Raman

spectrum caused by the symmetric O–U–O stretching vibration. [2] In the electronic ab-

sorption spectra fine structure can be observed due to the symmetric uranyl stretching

vibrations in uranyl complexes, normally around 450 nm. [2] The UO2
+ species also exists

but is less common due to its relative instability, compared to the UO2
2+ uranyl group.

Table 3.1 summarises calculated U–O bond lengths and compares these with calculated

U–N species. [121] From this information a pattern can be observed in the bond lengths,

as the UOn+
2 species changes from UVI to UIV the bond length increases. Finally, by

comparing the [UO2] and [UN2] moiety by calculation, it was observed that the bond

lengths are relatively similar. [121]

Species Bond Length / Å

UO2
2+ 1.6718

UO2
+ 1.7410

UO2 1.8305

UN2 1.8645

Table 3.1: Calculated Relativistic U–O Bond Lengths

3.1.1 Uranyl halides, UO2
2+

The majority of known UVI complexes contain the UO2 group with a few exceptions and ur-

anyl halides are well studied and provide a convenient entry into dioxo structures. [122,123]

UO2F2 derivative is synthesised by reacting UO3 with gaseous anhydrous HF at tem-

peratures which can range from 350 to 500 ◦C in a nickel reactor. [124] The dichlor-

ide derivative UO2Cl2(THF)3
[125] is prepared utilising a simple one pot dehydration of
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UO2Cl2 · x(H2O) and the diiodide derivative, UO2I2
[126] is synthesised by reacting uranyl

triflate with iodotrimethyl silane and recrystallisation from pyridine gives UO2I2(py)3. [126]

Key characterisation data are summarised in Table 3.2 for these compounds along with

a sample of other uranyl halide species.

Compound U=Ouranyl bond Stretching

length / Å frequency / cm−1

UO2F2
[124,127] 1.74 900–985

UO2Cl2(THF)3
[125] 1.766(6), 1.765(6) 875, 841

[UO2Cl4]2− [128,129] 1.76 908a

UO2Br2.3 H2O [130] 1.73(1) —

UO2I2 [126] — 988, 982

UO2I2(py)3
[126] 1.757(6), 1.754(6) 927

UO2I2(OPPh3)2
[130] 1.760(4) —

Table 3.2: OU=Ouranyl bond lengths and stretching frequencies for selected uranyl compounds
a = Computational data

The bond distances observed in the uranyl halides derivatives give an average U=Ouranyl

bond length of 1.753(7) Å which is slightly longer than that predicted in Table 3.1 (1.6718

Å). In addition this analysis gives an IR range of 841cm−1 to 988cm−1. These data will

provide a good basis for comparison with the dioxo and monooxo examples discussed in

the following sections.

3.2 Uranium monooxo species

3.2.1 Reactions with uranium oxide halides

Reported in the 1970’s, the first monooxos were UOF4
[131,132] and [UOCl5][Ph4P] [128,133]

and these became versatile and valuable precursors for a number of monooxo com-
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pounds. Characterising data are summarised in Table 3.3. [128,132] The compounds listed

are all UVI compounds and together give an average U–Ooxo bond length of 1.77(1) Å.

Further data on these monooxo compounds are unfortunately lacking, with only the U–

Ooxo stretching frequencies reported. The data indicate that a strong peak indicative of a

U–Ooxo stretch is commonly found in the region of 900 cm−1 with weaker bands possible

in the same region. Specific values for these starting materials are shown in Table 3.3

Compound U–Ooxo bond Stretching

length / Å frequency / cm−1

UOF4
[132] 1.77(3)–1.79(2) 891

[UOCl5][Ph4P] [128,133] 1.76(1) 838, 928

Table 3.3: U–Ooxo bond lengths and stretching frequencies for selected UVI monooxo starting ma-
terials

These starting materials are precursors for the development of other UVI monooxos.

UOCl4(NP(m−Tol)3) [134], [Ph4P][UOCl4(NSPh2)] [135], [Ph4P][UOCl(NS(p−ClC6H4)2)] [135]

and [Ph4P][UOCl4(NPPh3)] [135] are all examples of this and the characterisation data that

are available are summarised in Table 3.4. Analysis shows the average U–Ooxo bond

length in these complexes is 1.77(4) Å. This value is almost identical to the previously

discussed average for the monooxo starting materials and is therefore a good approxim-

ation of monooxo U–Ooxo bond lengths in UVI compounds.

Of these UVIcomplexes only two have had the U–Ooxo stretching frequencies, reported as

850 cm−1 and 845 cm−1 for UOCl4(NP(m−Tol)3) [134] and [Ph4P][UOCl4(NSPh2)] [135] re-

spectively. Comparing these values to the previously discussed IR frequencies it shows

that UVI monooxo complexes generally have an observed U–Ooxo stretching frequency

within the range of 800–900 cm−1 with weaker bands falling outside of this range. Un-

fortunately no further data regarding this type of compound in different oxidation states

are available, therefore comparisons must be made to a second class of monooxo com-
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pounds which are synthesised from oxygen atom donor reactions and are discussed in

section 3.2.2.

Compound U–Ooxo bond Stretching

length / Å frequency / cm−1

UOCl4(NP(m−Tol)3) [134] 1.759(13) 850

[Ph4P][UOCl4(NSPh2)] [135] 1.786(3) 845

[Ph4P][UOCl(NS(p−ClC6H4)2)] [135] — —

[Ph4P][UOCl4(NPPh3)] [135] 1.777(3) —

Table 3.4: U–Ooxo bond lengths and stretching frequencies for selected UVI monooxo compounds

[K(18−crown−6)(Et2O)] [UO(µ2−NCH2CH2N(CH2CH2NSiButMe2)2)]2
[136], shown in Fig-

ure 3.2 is particularly interesting as it is currently the only known dimer and is synthes-

ised from the uranyl starting material [K(18−crown−6)]2[UO2Cl4]. It is reported to have

a mixed valency of UV/VI and the U–Ooxo bond length is observed at 1.838(5) Å. The

compound is structurally equivalent between the two monomeric units (indicated by an

inversion centre at the midpoint of the compound). This means there is no way of ac-

curately assigning separate oxidation states to either uranium centre crystallographically,

giving a possible valence average of U5.5 via delocalisation or rapid intramolecular elec-

tron transfer of the unpaired electron. The U–Ooxo stretching frequency of this complex

is observed and reported at 827 cm−1 which is as expected if the electron density on the

metal centre is considered. As the oxidation state decreases from UVI to UV, the electron

density will increase. Therefore the bond length will increase proportionately, weakening

the bond and reducing the IR stretching frequency.
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Figure 3.2: The mixed valent (UV/VI) dimeric monooxo complex,
[K(18−crown−6)(Et2O)][UO(µ2−NCH2CH2N(CH2CH2NSiButMe2)2)]2

3.2.2 Oxygen atom donor reactions

Terminal monooxo compounds resulting from oxygen atom transfer reactions are more

commonly found in literature and include a fair number of examples of UV and UVI oxida-

tion states. There are also a few examples of UIV monooxo complexes, but these are rare

and, of the few that have been reported, not all have been fully characterised.

Uranium IV compounds

Due to the greater electron density on UIV metal centres, it is expected that the U–Ooxo

bond lengths of these species would be greater than those of UV or UVI compounds.

Tp∗2U(O) [137] and Cp’
2U(O) [138] are synthesised using the oxygen atom donor pyridine–

N–oxide, but unfortunately suitable X–ray quality single crystals of the latter complex

were not able to be grown and therefore X–ray data on the complex are lacking. A third

monooxo compound synthesised via serendipitous oxygen was Cp∗2U(O)[C(NMeCMe)2]

and provides an interesting insight into UIV monooxo compounds. [139]

The available characterisation data for these structures are shown in Table 3.5. The in-

formation gives an average UIV-Ooxo bond length of 1.890(5) Å and this fits the hypothesis

that UIV complexes have longer terminal oxo bonds when compared to the previously dis-
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cussed UVI monooxo starting materials and their direct products (section 3.2.1). No IR

data have been reported to date on UIV complexes.

Compound Oxygen atom U–Ooxo bond

donor length / Å

Tp∗2U(O) [137] pyridine–N–oxide 1.863(4)

Cp’2U(O) [138] pyridine–N–oxide —

Cp∗2U(O)[C(NMeCMe)2] [139] — 1.917(6)

Table 3.5: U–Ooxo bond lengths for selected UIV monooxo compounds synthesised from oxygen
atom donor reactions

Uranium V compounds

UV monooxo complexes resulting from oxygen atom donor reactions are more commonly

found in literature. Pyridine–N–oxide, is commonly used as the oxygen atom transfer

reagent in the synthesis of monooxo compounds and (Cp*)2U(O−dipp)(O) [140] (dipp =

2,6–diisopropylphenyl) is an example. Also, (1, 2, 4−(Me3C)3C5H2)2U(O)(py) is synthes-

ised and the addition of Me2NC5H4N (dmap) displaced the pyridine to give the complex,

(1, 2, 4−(Me3C)3C5H2)2U(O)(dmap) as a second UV complex. [138] The pyridine derivative

proved unstable but the dmap derivative gave quality single crystals for X–ray character-

isation.

Another commonly found oxygen atom donor is trimethylamine–N–oxide. When reacted

with [U(NN′3)(CH3PMe3)] (NN′3 = N(CH2CH2NSiMe2
tBu)3), [U(NN′3)(O)] [141] was syn-

thesised. Unfortunately, full characterisation could not be achieved as the purification

steps proved difficult and X–ray quality single crystals could not be grown.

Water is not a compound frequently used as an oxygen atom donor in uranium chemistry,

but the uranium imido complex, [U(NtBu)(O)I2(THF)(NH2Ph)2] [142] was initially discovered
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by accident due to traces of H2O on glassware reacting with [U(NtBu)2I2(THF)2]. The

complex was fully characterised but in order to develop a more rational synthesis for

the discovery, further reactions with one equivalent of H2O were carried out with little

success. However, the use of B(C5F5)3·H2O proved fruitful, providing two characterised

UVI monooxo examples which will be discussed further in the section 3.2.2.

The product, [Ph3PCH3][U(O)(CH2SiMe2N−SiMe3)(NR2)2] was synthesised by reacting

the previously discussed UIV carbene with the widely used oxygen atom donor, TEMPO

(TEMPO = 2,2,3,3–tetramethyl–piperidine–1–oxyl). [143] The product was then treated fur-

ther to synthesise a UVI complex which is discussed later.

Although the UV complexes are in fact more commonly reported, the characterisation

of such species has proved difficult and data are therefore limited. The data that are

available are collated in Table 3.6 and this gives an average UV-Ooxo bond length of

1.837(1) Å, which is as expected.

Compound Oxygen atom U–Ooxo bond

donor length / Å

(Cp*)2U(O−2, 6−dipp)(O) [140] pyridine–N–oxide 1.859(6)

(1, 2, 4−(Me3C)3C5H2)2U(O)(py) [138] pyridine–N–oxide —

(1, 2, 4−(Me3C)3C5H2)2U(O)(dmap) [138] pyridine–N–oxide 1.860(3)

[U(NN′3)(O)] [141] trimethylamine–N–oxide —

[U(NtBu)(O)I2(THF)(NH2Ph)2] [142] H2O 1.781(4)

[Ph3PCH3][U(O)(CH2SiMe2NSiMe3)(NR2)2] [143] TEMPO 1.847(2)

Table 3.6: U–Ooxo bond lengths for selected UV monooxo compounds synthesised from oxygen
atom donor reactions

(1, 2, 4−(Me3C)3C5H2)2U(O)(dmap) and (1, 2, 4−(Me3C)3C5H2)2U(O)(py) have IR stretch-

ing frequencies reported at 765 cm−1 and 760 cm−1 respectively. [138] These two UV com-

plexes are unfortunately the only reported IR frequencies and whilst data on the other



101

complexes would have been desirable, these observed frequencies are lower than the

previously discussed UVI IR frequency range (section 3.2.1), which is as expected.

Regardless of synthetic methods or oxidation state, only two complexes have magnetic

moment data reported. [Ph3PCH3][U(O)(CH2SiMe2NSiMe3)(NR2)2] exhibited an effect-

ive magnetic moment of 1.97 µB at 300 K and 1.47 µB at 4 K using SQUID magnetometry.

This is comparable to the data reported for t[U(NN′3)(O)] which exhibited an effective

magnetic moment of 1.47 µB at 225–295 K which was analysed using the Evans method.

Uranium VI compounds

UVI complexes are by far the most commonly found uranium monooxo compounds, al-

though most of them are synthesised from UVI starting materials and have therefore been

discussed previously in section 3.2.1. The following examples are all synthesised from

oxygen atom donor reactions.

(Cp*)2U(dipp)(O) [140] (dipp = 2,6–diisopropylphenyl) was synthesised from the addition of

pyridine–N–oxide to a solution of (Cp*)2U(dipp)(THF). A second example is the complex,

[Ph3PCH3][U(O)(CH2SiMe2NSiMe3)(NR2)2 which can undergo a one electron oxidation

reaction resulting in the UVI complex U(O)(CH2SiMe2NSiMe3)(NR2)2. [143] Finally, the last

UVI complex to be discussed here is [(BIPM)UOCl2] [144] (BIPM = C(PPh2NSiMe3)2). The

UVI carbene was synthesised by treating [(BIPM)UCl3Li(THF)2] with the oxygen atom

donor 4–morpholine N–oxide. Once again the production of X–ray quality crystals was

difficult, but disordered crystals were obtained and the data are quoted along with the

other examples in Table 3.7. These data give an average UVI–Ooxo bond length of

1.828(6) Å which gives a good approximation of the expected monooxo bond lengths

to be found in a newly synthesised UVI complex. More information can be gathered if the
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isolobal nature of nitrogen and oxygen is considered.

Compound Oxygen atom U–Ooxo bond

donor length / Å

(Cp*)2U(N−2, 6−diisopropylphenyl)(O) [140] pyridine–N–oxide 1.844(4)

U(O)(CH2SiMe2NSiMe3)(NR2)2
[143] TEMPO 1.800(2)

[(BIPM)UOCl2] [144] 4–morpholine N–oxide 1.841(4)

Table 3.7: U–Ooxo bond lengths for selected UVI monooxo compounds synthesised from oxygen
atom donor reactions

3.2.3 Isolobal nitrogen species

Using the MLX electron counting system, an oxygen heteroatom is bonded in an X2 fash-

ion. The nitrene moiety, RN-, can be considered isolobal with oxygen, if bonded to the

uranium centre in an X2 manner. Ligands of the general formula RN=U are X2 ligands with

a lone pair also found on the nitrogen. On this basis, RN=U=O can be considered elec-

tronically equivalent to the uranyl species, O=U=O. The following reported UVI monooxo

complexes all have a nitrogen atom bonded to the uranium, which is considered isolobal

to an oxygen atom and therefore can be thought of as a uranyl type species but they

should not be dismissed completely as they are still technically monooxo species.

Of these complexes, three were synthesised from the starting material with the general

formula, (Cp*)U(NAr)(L) (Ar = (2, 4, 6−Me3C5H2), (2, 6−iPr2C5H3) or (2, 6−tBu2C5H3)

and L = pyridine or THF).

Pyridine–N–oxide was used to donate an oxygen atom and formed (Cp*)2U(O)(Ar) [145]

(Ar = (2, 4, 6−Me3C5H2) or (2, 6−iPr2C5H3)) whilst (Cp*)2U(O)(N−2, 6−tBu2C5H3) [145]

was synthesised from nitrous oxide (N2O). In addition, following on from the previ-

ously discussed UV complex and in search of a rational synthesis for the compound
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[U(NtBu)(O)I2(THF)(NH2Ph)2], two new UVI complexes were synthesised using the oxy-

gen atom donor, B(C6F5)3 · H2O. Of the two products, U(NtBu)(O)I2(THF)2
[142] and

U(NtBu)(O)I2(Ph3PO)2
[142], only the latter could be fully characterised as the former com-

plex was too badly disordered.

This analysis gives an average U–Ooxo bond length for UVI complexes of the formula

RN−−U−−O of 1.764(5) Å and combined with the previously discussed UVI complexes, an

average of 1.812(6) Å. As expected, this is shorter than the average UIV and UV monooxo

bond lengths showing that the uranium centre is more contracted as the oxidation state

increases.

Terminal U–Ooxo stretching frequency data are more extensively reported on UVI com-

plexes. The IR stretching frequencies of U(NtBu)(O)I2(THF)2 and U(NtBu)(O)I2(Ph3PO)2

are observed at 883 cm−1 (KBr pellet) and 903 cm−1 respectively shown in Table 3.8. [142]

[(BIPM)UOCl2] is observed to have an IR stretching frequency of 917 cm−1 shown in

Table 3.7. [144] These complexes all fall within the expected range of IR stretching frequen-

cies, higher than the previously discussed UV values. (Cp*)2U(O)(N−2, 4, 6−Me3C5H2)

and (Cp*)2U(O)(N−2, 6−tBu2C5H3) had reported IR stretching frequencies of 757 cm−1

and 755 cm−1 respectively. [145] These are lower than expected for UVI complexes. The

ligands on these complexes are far greater in size than the previously discussed ligand

systems and will therefore effect the asymmetric stretching of the molecule and con-

sequently the stretching frequencies.

3.3 Small molecule activation

Perhaps most relevant to this work, due to its reactivity with a small molecule, is the

monooxo complex synthesised by reacting the UIII aryl oxide substituted triazacyclonon-
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Compound Oxygen atom U–Ooxo bond Stretching

donor length / Å frequency / cm−1

(Cp*)2U(O)(N−2, 4, 6−Me3C5H2) [145] pyridine–N–oxide — 757

(Cp*)2U(O)(N−2, 6−iPr2C5H3) [145] pyridine–N–oxide — —

(Cp*)2U(O)(N−2, 6−tBu2C5H3) [145] N2O — 755

U(NtBu)(O)I2(THF)2
[142] B(C6F5)3 · H2O — 883

U(NtBu)(O)I2(Ph3PO)2
[142] B(C6F5)3 · H2O 1.764(5) 903

Table 3.8: RN=U–Ooxo bond lengths and stretching frequencies for selected UVI monooxo com-
pounds synthesised from oxygen atom donor reactions

ane complex, [((RArO)3tacn)U(NMes)] (R = tBu or Ad) with CO2 as shown in Scheme

3.2. [146] The UV products, [((RArO)3tacn)U(O)] are fully characterised and U–Ooxo bonds

are observed to be 1.848(8) Å where R = tBu and 1.848(4) Å where R = Ad. These data

are comparable to the previously discussed UV monooxo species which have an average

U–Ooxo bond length of 1.837(1) Å. The side product from this reaction is R−NCO and it

is hypothesised that it is the generation of this isocyanate that provides the driving force

for the reaction.

Scheme 3.2: Synthesis of UV imido and UV oxo complexes

Electronic absorption spectra were studied in the range of 300 to 2100 nm. Both the UV

complexes lack the strong ligand to metal charge transfer bands which were observed
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for the respective starting materials. Instead the complexes possess a different set of

absorption bands. Four, sharp and low intensity bands were observed at λmax = 1770

nm, 1480 nm, 1205 nm and 850 nm. In addition a shoulder was observed at 585 nm.

The distinct absorption bands were attributed to f–f transitions but were unable to be

compared to other UV oxo species, because none have been fully characterised in this

way.

SQUID data were also collected on the two UV species. [((tBuArO)3tacn)U(O)] had an

effective magnetic moment ranging from 1.61 to 1.98 µB with a temperature range of 5–

300K. For [((AdArO)3tacn)U(O)], the effective magnetic moment value ranged from 1.49

to 1.92 µB over the same temperature range. Calculated values at 0 K were 1.19 and

1.36 µB respectively.

Whilst these terminal monooxo complexes provide interesting and much needed informa-

tion about the reactivity of uranium and its compounds, none provide conclusive evidence

of a uranium terminal monooxo species which has been synthesised from O2 alone.

3.4 Synthesis and characterisation of K2[(Ph3SiO)4UO2]

Scheme 3.3: Synthesis of K2[(Ph3SiO)4UO2]
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In order to understand the reactivity of K[(Ph3SiO)5U(THF)] and K[U(OSiPh3)5], they were

separately exposed to one equivalent of oxygen at -78 ◦C in THF and toluene respectively.

K[U(OSiPh3)5] in toluene was reacted with one equivalent of O2 at -78 ◦C. The solution

turned from purple to brown and remained so whilst kept at low temperature. When the

solution was warmed to room temperature it became yellow. The experiment was also

run at room temperature alone and the brown intermediate colour was observed very

briefly before turning yellow.

The reaction at -78 ◦C was repeated using K[(Ph3SiO)5U(THF)] in THF and the same

observations were recorded. When the reaction was repeated at room temperature in

THF, the brown intermediate colouration was not observed and the solution turned from

pink to yellow in two hours indicating a faster reaction in a coordinating solvent. From the

resulting yellow solution, at room temperature, one crystal was isolated from a solvent

system of benzene/pentane. X–ray and react IR analysis showed the product to be

K2[(Ph3SiO)4UO2] and are discussed below.

3.4.1 Characterisation of K2[(Ph3SiO)4UO2] : X–ray Diffraction

The complex crystallises in space group P-1 with an R factor of 3.55. The lattice para-

meters for this structure are a = 13.7729(3) Å, b = 14.3688(3) Å, c = 19.3087(3) Å, α =

101.0470(10) ◦, β = 90.5910(10) ◦, γ = 91.9460(10) ◦.

From the molecular structure shown in Figures 3.3 and 3.4 the molecule is observed to

have a square bipyramidal geometry consisting of four equatorial siloxide ligands and

two oxygen atoms in a trans arrangement. It has two potassium counter–ions which co–

ordinate to the oxygen atoms and three phenyl rings each (K1 = η3, η1, η1; K2 = η6, η6,

η1).



107

Figure 3.3: Molecular structure of K2[(Ph3SiO)4UO2] (Hydrogen atoms omitted for clarity)

Figure 3.4: Core molecular structure of K2[(Ph3SiO)4UO2] containing the Si, O U and K atoms
(Hydrogen atoms and phenyl rings omitted for clarity)

The four equatorial siloxide ligands have an average U–Osilox bond length of 2.247(7)

Å with a small range of 2.210(2) Å to 2.286(2) Å giving the complex a good level of

symmetry. Comparing these data to the K[U(OSiPh3)5] complex shows the U–Osilox bond

has lengthened slightly in the dioxo species (0.066 Å).

The two U–Ouranyl bonds are observed at 1.824(2) Å and 1.819(2) Å and are closest to the

UIVO2 species when compared to the data in Table 3.1. Electron counting the molecule

suggests it is a UVI species and therefore in order to ascertain if this discrepancy is

consistent with other published material, a survey of six coordinate linear O=U=O uranium
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complexes was undertaken, the results of which are shown in Figure 3.5. This analysis

gave an average of 1.767 Å. [85] A wider analysis of experimental values showed the

range of bond distances to be varied, whilst the data in Table 3.1 relates to the calculated

average bond distances only. The bond lengths of the uranium species presented here

are well within experimental range.

Figure 3.5: Comparison of U=O bond distances uranyl compounds. (Data points in red are the
experimental values for K2[(Ph3SiO)4UO2]

3.4.2 Characterisation of K2[(Ph3SiO)4UO2] : React IR

Due to the difficulty in gathering NMR spectroscopy data, variable temperature IR spec-

troscopy was conducted on a React IR Toepler line. One equivalent of O2 was reacted

with K[(Ph3SiO)5U(THF)] in THF at -78 ◦C, warming slowly to room temperature. THF

was also analysed and the subsequent data were subtracted from the reaction with O2 to

ensure any activity in the spectra was solely due to the uranium species and subsequent

reaction rather than a change in THF as the temperature varied. The data are shown in

Figure 3.6 with the relevant peaks expanded in Figure 3.7.
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Figure 3.6: React IR Data of (Ph3SiO)5UK + O2

As shown in Figure 3.7, a peak at 945.9 cm−1 starts to decrease as soon as O2 is added

to the system and continues to reduce as the reaction progresses to room temperature. A

second peak at 893.8 cm−1 increases marginally as the reaction progresses and warms

to room temperature, eventually becoming a shoulder on a more defined peak at 875.1

cm−1. The peak at 875.1 cm−1 starts to appear at -10◦C and is well defined as the tem-

perature reaches room temperature. A third peak at 856.5 cm−1 immediately appears as

soon as O2 is added to the reaction. The peak increases in intensity slowly as the solu-

tion is warmed, but at -50 ◦C the peak reaches maximum intensity and starts decreasing

in size as the reaction continues to warm. The peak remains until room temperature is

reached and then the peak drops significantly and becomes a shoulder on a larger peak

at 875.1 cm−1.

The linear [UO2]2+ stretch is commonly found between 920 and 980 cm−1. [2,147] How-

ever, analysis undertaken in Section 3.1 and summarised in Table 3.2 shows that dioxo

stretching frequencies can be found in a wider range from 841 to 988 cm−1. For ex-
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Figure 3.7: Zoomed in Section of the React IR Data of (Ph3SiO)5UK + O2

ample the complex UO2Cl2(THF)3
[125] has a stretching frequency of 841 and 875 cm−1.

The monooxo species reviewed indicate a slightly different range of values, from 838 to

928 cm−1, however further analysis of IR studies currently published shows that the UO

region can be located within a much wider range, from 800 to 950 cm−1. [148–150]. Com-

paring this data to the experimental data gathered here, the peak observed at 945.9 cm−1

which is shown to decrease as O2 is added is assigned to the U–Osilox stretch whilst the

peak at 856.5 cm−1 which increases until the temperature reaches -50◦C and then de-

creases is a, currently unidentified, intermediate species which was initially hypothesised

based on colour changes observed in solution as the reaction warmed to room temperat-

ure. The two remaining peaks at 893.8 and 875.1 cm−1 are both well within the defined

range for dioxo species and monooxo species. Monooxo complexes are normally found

at lower frequencies than UO2 or uranyl stretches and therefore the peak at 875.1 cm−1

is assigned as a monooxo species and the peak at 893.8 cm−1 is assigned as the UO2

stretch.
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3.5 Synthesis and characterisation of [K(THF)2][(Ph3SiO)4UO(THF)]

Scheme 3.4: Synthesis of [K(THF)2][(Ph3SiO)4UO(THF)]

As previously shown, uranium monooxo species are relatively rare compared to the uranyl

species and therefore work was undertaken to investigate the reactivity of K[U(OSiPh3)5]

and K[(Ph3SiO)5U(THF)] in terms of controlled and accurate addition of oxygen.

K[(Ph3SiO)5U(THF)] in THF was exposed to half an equivalent of O2 at -78 ◦C. The solu-

tion turned brown quickly and remained so at -78 ◦C. When warmed to room temperature

the solution turned orange. The reaction proceeded with the same outcome at room

temperature without the brown solution being observed.

The experiment was repeated using K[U(OSiPh3)5] in toluene at -78 ◦C and room tem-

perature with similar results. The exception being that the brown colour was observed

briefly at room temperature before the orange solution was formed within seconds. The

brown solution indicates the presence of an intermediate species which was stable at

temperatures of -78 ◦C and unstable at room temperature. In both cases the final orange

solution was worked up and X–ray diffraction quality single crystals were recrystallised

from THF/pentane at -40 ◦C. Analysis showed the product to be a rare monooxo species,

[K(THF)2][(Ph3SiO)4UO(THF)].
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3.5.1 Characterisation of [K(THF)2][(Ph3SiO)4UO(THF)] : X–ray Diffraction

[K(THF)2][(Ph3SiO)4UO(THF)] crystallised in space group P2 1/c with an R factor of 5.68.

The lattice parameters for this structure were a = 13.6745(5) Å, b = 17.1515(6) Å, c =

36.6721(13) Å, α = 90 ◦, β = 90.6740(10) ◦, γ = 90 ◦.

From the molecular structures shown in Figures 3.8 and 3.9 the molecule consists of

four siloxy ligands with a fifth site coordinating to a THF molecule and a sixth site bound

to an oxygen atom which is coordinated to a potassium counterion and two further THF

molecules. The molecule has a reflection in the σ plane and therefore has a Cs point

group.

Figure 3.8: Molecular structure of [K(THF)2][(Ph3SiO)4UO(THF)] (Hydrogen atoms omitted for
clarity)

The three equatorial siloxide ligands have an average U–Osilox bond length of 2.200(7)

Å, marginally shorter than the dioxo complex (2.243 Å). The siloxide ligand trans to the

monooxo is shorter than the equatorial ligands at 2.126(5) Å, possibly due to an inverse

trans influence. [151–153]
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Figure 3.9: Core molecular structure of [K(THF)2][(Ph3SiO)4UO(THF)] containing the Si, O U and
K atoms and coordinated THF (Hydrogen atoms and phenyl rings omitted for clarity)

The U–Ooxo bond length is observed as 1.865(5) Å which is inbetween the previously

discussed UIV and UV monooxo complexes. In addition the U–Ooxo bond length of the

monooxo complex is longer than the U–Ouranyl bond length of 1.821(7) Å which is expec-

ted based in the previous analysis of uranium dioxo and monooxo species. This analysis

is also depicted in Figure 3.10.

Figure 3.10: U–Ooxo bond lengths of the monooxo complexes. (Data point in red is the experi-
mental value for [K(THF)2][(Ph3SiO)4UO(THF)]
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3.5.2 Characterisation of [K(THF)2][(Ph3SiO)4UO(THF)] : NMR

13C{H} and 1H NMR spectra of the crude monooxo product are shown in Figures 3.11

and 3.12 over layered by the spectrum of K[(Ph3SiO)5U(THF)] in green. It is clear

that the reaction leaves little or no starting material, and in addition the presence of

Ph3SiOH is observed with the OH resonance clearly observed at δ 6.01 ppm in the 1H

NMR spectrum. The formation of Ph3SiOH is observed in a 1:1 ratio with the proposed

[K(THF)2][(Ph3SiO)4UO(THF)]. Analysing the 13C{H} spectrum it seems likely that more

than two species are present and as purification via recrystallisation was unreliable with

low yields, further methods were employed to investigate this species.

Figure 3.11: NMR Resonances for the 13C{H} spectrum of [K(THF)2][(Ph3SiO)4UO(THF)] (red)
and K[(Ph3SiO)5U(THF)] (green) in d8–THF

As the previous experiment has shown, even with attempted purification, the NMR spec-

tra were complex, with multiple chemical environments identified and silanol seemingly

ubiquitous. A second experiment was undertaken in which the K[(Ph3SiO)5U(THF)] was

exposed to half an equivalent of oxygen in an NMR tube at -78 ◦C. 1H NMR spectroscopy

analysis was then undertaken at -78 ◦C and at 10 ◦C intervals thereafter until the sample
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Figure 3.12: NMR Resonances for the 1H spectrum of [K(THF)2][(Ph3SiO)4UO(THF)] (red) and
K[(Ph3SiO)5U(THF)] (green) in d8–THF

had reached room temperature. The resulting spectra are shown in Figure 3.13 with the

K[(Ph3SiO)5U(THF)] at room temperature and at -78 ◦C assigned. The addition of O2 to

the sample at -78 ◦C is shown with the remaining spectra showing the sample at 10 ◦C

intervals from -78 ◦C to 30 ◦C.

Figure 3.13: NMR Resonances for the 1H spectra of K[(Ph3SiO)5U(THF)] reacting with 0.5 eq. O2

from -78 ◦C to 30 ◦C in 10 ◦C intervals in d8–THF
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(a) (b)

Figure 3.14: Zoomed in sections of Figure 3.13 a) δ 13.5 to 8.5 ppm; b) δ 5.5 to -5.5 ppm in d8–THF
(omitted for clarity)

The data show the changes that occur to the K[(Ph3SiO)5U(THF)] species when the

temperature is reduced to -78 ◦C. Based on the integration values of the resonances

in the spectrum of K[(Ph3SiO)5U(THF)] at -78 ◦C, the broad resonance at δ 12.32 ppm

is assigned as the para protons on the phenyl rings. This resonance broadens as the

temperature increases and at -50 ◦C the resonance is so broad it is difficult to identify.

Additionally the resonance shifts upfield until the temperature reaches -20 ◦C when the

resonance starts to sharpen at δ 8.97 ppm. This is previously assigned to the para

protons of the starting material K[(Ph3SiO)5U(THF)], suggesting that in the timescales of

the NMR spectroscopy experiment the reaction did not go to completion. Secondly the

two resonances at δ 7.66 and 7.50 ppm at -78 ◦C are assigned as the meta and ortho

protons on the phenyl ring. Four new resonances also occur, the first is a doublet of

triplets at δ 7.20 ppm, the other three are broad singlets at δ 5.02, 4.03 and -4.59 ppm

and each of these new resonances integrate as 0.5 to each phenyl group.

By adding half an equivalent of O2 to the solution at -78 ◦C, the resonances assigned to

the K[(Ph3SiO)5U(THF)] immediately reduce by a factor of four and multiple new reson-

ances appear in the region of δ 6–8 ppm, which are assigned to the phenyl rings on the

monooxo complex. In addition, it is noted that other uranium based complexes are syn-

thesised including the previously discussed dioxo species and the resonances between
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δ 6–8 ppm are indicative of multiple species and discussed further in Section 3.6. In ad-

dition the resonances observed at δ 5.02, 4.03 and -4.59 ppm also reduce by a factor of

four and disappear by the time the temperature reaches -70 ◦C.

New resonances between δ 7.02–6.84 ppm and δ 6.70–6.54 ppm occur but they overlap

and are difficult to define further. In comparison to the simple separation of the meta–

,para and ortho–protons seen in Ph3SiOH, Ph3SiOK and K[U(OSiPh3)5], the aromatic

region of the product is complex and highly coupled, with no clear and identifiable (or-

tho,meta,para) splitting pattern, indicative of one or more new species.

3.5.3 Characterisation of [K(THF)2][(Ph3SiO)4UO(THF)] : Negative ion ESI

In addition to the NMR spectroscopy data, negative ion ESI HRMS was also employed to

identify other products formed during the reaction with oxygen. K[(Ph3SiO)5U(THF)] in

THF was exposed to 0.5 eq. oxygen and once reacted, the resulting orange solution was

analysed. The negative ion ESI HRMS results are shown in Table 3.9.

HRMS m/z Relative Intensity Anion Assignment

1354.3904 0.23 [(Ph3SiO)4UO]

1400.4260 0.23 —

1443.4801 0.25 [(Ph3SiO)4UO2(THF)]

1615.00 0.03 [(Ph3SiO)5U]

1630.00 0.07 [(Ph3SiO)5UO]

1645.5173 0.12 K[(Ph3SiO)4UO2(THF3)]

1701.35 0.08 K[(Ph3SiO)5UO2]

Table 3.9: Negative ion ESI HRMS data of the reaction between K[(Ph3SiO)5U(THF)] and 0.5 eq.
O2

The peaks at m/z 1354.3904 and 1400.4260 have identical isotope distribution patterns

the first of which is identified as [(Ph3SiO)4UO] with the second peak as yet, unidentified.
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The peaks at m/z 1615, 1630 and 1645.5173 also have identical isotope distribution

patterns and are assigned as [(Ph3SiO)5U], [(Ph3SiO)5UO] and K[(Ph3SiO)4UO2(THF3)]

respectively. These data show the multiple species suspected from the NMR spectroscopy

data are present in solution under ESI HRMS conditions. Additionally the data confirms

that the starting material, K[(Ph3SiO)5U(THF)] reacts almost completely with oxygen with

only trace amounts observed in the ESI HRMS analysis.

From these data, [(Ph3SiO)4UO] and [(Ph3SiO)4UO2(THF)] are the major products with

an unidentified peak at m/z 1400.4260. It is likely that the solution was exposed to

oxygen during the ESI HRMS process which would account for the discrepancy in the

stoichiometric sum, however it seems apparent when analysing the NMR and ESI HRMS

data that the monooxo and dioxo are both formed on addition of oxygen. This provides

an understanding as to why the two species are difficult to isolate.

3.6 Intermediate species and mechanistic hypothesis

Dioxygen can bind to a single metal centre to give a MO2 moiety in which the oxidation

state is uncertain. Figure 3.15 illustrates these possibilities. With no electron transfer,

the hypothetical, neutral species is formed, shown in Figure 3.15(a) while one electron

transferred results in a superoxide complex shown in Figure 3.15(b). The transfer of

two electrons results in the formation of the peroxo complex shown in Figure 3.15(c).

Using these species, previously published examples, the ESI HRMS data and the NMR

spectroscopy data, a tentative mechanistic hypothesis can be proposed.
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(a) (b) (c)

Figure 3.15: Active oxygen species: (a) dioxygen, bound side–on; (b) superoxide and (c) peroxide

3.6.1 Mechanistic pathways

Previous examples of dioxygen coordination and subsequent cleavage are reported in

the literature [154] and a generic cleavage reaction is shown in Equation 3.6.1;

2M + O2 → MO2 + M → MOOM → 2M = O (3.6.1)

One such example used magnesium reduction of the readily available cobalt halide,

Tp’CoX (Tp’ = hydridotris(3–tert–butyl–5–methylpyrazolyl)borate, X = Cl, I) in a nitro-

gen atmosphere resulting in the dinitrogen complex Tp’Co(N2). This product was then

reacted further with an excess of dioxygen resulting in the superoxo product, Tp’Co(O2)

as shown in Figure 3.16. Tp’Co(O2) and Tp’Co(N2) were then reacted together which

resulted in the product Tp’CoOH in high yields. The authors hypothesised the dinitrogen

was released and the two cobalt complexes formed a dinuclear peroxo–bridged cobalt

complex which, via hydrogen abstraction from the ligand system, produced the Tp’CoOH

species. [155] Further characterisation data and reactivities were published later. [156–158]

Figure 3.16: Side–on superoxo complex of cobalt
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Similarly, [Ni(tmc)][OTf], shown in Scheme 3.5 was used and in order to access a nickel

peroxo species with the activation of dioxygen, tmc was chosen as the ligand because it

eliminates the vacant coordination sites around the nickel in cis positions. The available

coordination sites, trans to each other, were surrounded by the bulky ligand system there-

fore forcing the binding of oxygen in an ‘end–on’ manner rather than ‘side–on’. Scheme

3.5 [159] shows the resulting species found from this reaction with dioxygen. The authors,

whilst sure of the resulting products, are unsure of the mechanism and how the bridged

dinickel species or the ‘end–on’ bound dioxygen species can form [Ni(tmc)(OH)][OTf] and

based this hypothesis on DFT calculations. [159]

Scheme 3.5: Dioxygen activation at monovalent nickel

The mechanism for the formation of the monooxo complex must account for the observed

formation of one molar equivalent of Ph3SiOH in high spectroscopic yield, despite the re-

peatedly low isolated yield of [K(THF)2][(Ph3SiO)4UO(THF)]. In the variable temperature

reaction between dioxygen and K[U(OSiPh3)5], an intermediate, corresponding to the

brown intermediate in low temperature preparative reactions, was observed, which dis-

played an IR band consistent with either a bridging dioxo species or a side–bound dioxo
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species. In other work in this laboratory, U(η2−O2)(OSi(OtBu)3)4(THF)) was prepared

serendipitously [80] shown in Figure 3.17 and discussed further in Section 5.4.

Figure 3.17: Peroxo species U(η2−O2)(OSi(OtBu)3)4(THF)) [80]

The O–O bond length in this complex is 1.374(4) Å, which lies between the bond lengths

in gas phase hydrogen peroxide (1.474 Å) and superoxide ion (1.33 Å). [155]

Scheme 3.6 shows a tentative mechanism that accounts for all of the observed proper-

ties of the reaction and the spectroscopic data, including the NMR integration analysis

which indicated the silanol and monooxo were formed in a 1:1 ratio. Dioxygen binds to

the uranium centre in K[U(OSiPh3)5] and forms eventually a side–bound peroxide spe-

cies. The in situ peroxide complex then reacts with a second equivalent of K[U(OSiPh3)5],

forming the mixed–valent dimer [(Ph3SiO)UOOU(OSiPh3)5]2– shown below. Either this di-

uranium complex or the earlier η2−O2 complex is responsible for the new band observed

at low temperature in the variable temperature infra–red spectrum and the temperature–

sensitive brown species observed during the course of the reaction.

The [(Ph3SiO)UOOU(OSiPh3)5]2– complex is unstable: electron transfer into the peroxide
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moiety then cleaves the O-O linkage with a formal one electron oxidation from a siloxide

ligand, which leaves as a siloxyl radical.

The bond strength for the oxygen–hydrogen bond in R3SiO−H is found to be 494 kJ

mol−1, which is stronger than a C–H bond. [160] From these data, abstraction of a hydro-

gen atom from the ligand (which would lead to a disruption of the splitting pattern in the

NMR spectrum), or from the solvent, (which will result in the formation of an NMR–silent

Ph3SiOD bond) accounts for the observation of the charge and coordination sphere of

the isolated product and the appearance of one mole–equivalent of Ph3SiOH.

Scheme 3.6: Proposed uranium superoxide and peroxide mechanism of formation for the
monooxo species

3.7 Reaction of K[(Ph3SiO)5U(THF)] and CO2

In order to test the nucleophilicity of coordinated Ph3SiO, K[(Ph3SiO)5U(THF)] was dis-

solved in d8–THF and exposed to three equivalents of CO2 at -78 ◦C using Toepler line

techniques. The solution showed no obvious signs of reaction whilst the temperature

remained at -78 ◦C, but once warmed to room temperature the solution became yel-
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low/brown in colour. A small number of X–ray diffraction quality crystals were grown from

THF.

3.7.1 Characterisation of (Ph3SiO)5U(THF) : X–ray Diffraction

(Ph3SiO)5U(THF) crystallises in space group P2 1/n with an R factor of 7.83. The lattice

parameters for this structure are a = 13.1098(5) Å, b = 25.5252(6) Å, c = 25.7502(10) Å,

α = 90 ◦, β = 92.0610(10) ◦, γ = 90 ◦.

From the molecular structure shown in Figures 3.18 and 3.19 the molecule is observed

to have a square bipyramidal geometry consisting of five siloxy ligands with a sixth site

coordinating to a THF molecule. There is no counterion observed within the crystal struc-

ture which suggests the molecule is in an oxidation state of UV and clearly must be the

result of a one electron oxidation, the nature of which is unknown.

Figure 3.18: Molecular structure of (Ph3SiO)5U(THF) (Hydrogen atoms omitted for clarity)

Figures 3.20 and 3.21 show the full range of U–O and O–Si literature values for U(OSiR3)xR′y

(blue) and the average U–O and O–Si bond lengths for (Ph3SiO)5U(THF) (red).
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Figure 3.19: Core molecular structure of (Ph3SiO)5U(THF) containing the Si, O U and K atoms
and coordinated THF (Hydrogen atoms and phenyl rings omitted for clarity)

(Ph3SiO)5U(THF) has an average experimental bond length for U–OSiPh3 of 2.111(5) Å,

UO–SiPh3 of 1.63(9) Å and UOSi–Ph3 of 1.87(7) Å. Overall, the data for (Ph3SiO)5U(THF)

was much closer to the mean literature values than the previously discussed K[U(OSiPh3)5]

and ([K(py)6][U(OSiPh3)5(py)])2 complexes which both had structural data which were

found at the extreme end of the ranges. The U–O bond in the (Ph3SiO)5U(THF) species

is much shorter than in ([K(py)6][U(OSiPh3)5(py)])2 and K[U(OSiPh3)5] however this is

expected as the UV oxidation state would normally present shorter bond lengths with the

reduced electron density on the uranium centre. In addition, THF is typically a weak σ–

donor and therefore less electron density is pushed onto the uranium metal centre from

the coordinated solvent. The electron deficient uranium centre gains its electron density

from the other ligands, shortening the U–Osilox bonds.

The average bond angles are typical of a square bipyramidal geometry. The cis O–U–O

average bond angle is 89.2(4) ◦. The slight deviation from the expected 90 ◦ is explained

by the steric bulk of the ligands around the uranium. The siloxy ligands are sterically

bulky and therefore distort away from an otherwise square bipyramidal geometry and

occupy the otherwise empty space surrounding the much smaller THF molecule. This is

also highlighted by considering the trans O–U–O bond angles which are experimentally
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Figure 3.20: Correlation between U–O
bond distances and O–Si for
uranium compounds with the
ligand R3SiO. (Data points
in red are the experimental
values for (Ph3SiO)5U(THF))

Figure 3.21: Correlation between O–Si
bond distances and Si–R3 for
uranium compounds with the
ligand R3SiO. (Data points
in red are the experimental
values for (Ph3SiO)5U(THF))

Figure 3.22: Correlation between O–
Si bond length and U–Si
distances for uranium com-
pounds with the ligand R3SiO.
(Data points in red are the
experimental values for
(Ph3SiO)5U(THF))

Figure 3.23: Correlation between U–O bond
length and U–Si distances for
uranium compounds with the
ligand R3SiO. (Data points in
red are the experimental val-
ues for (Ph3SiO)5U(THF))
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shown to be 178.05 ◦ on average, not the expected 180 ◦, the ligands are bent towards

the small THF molecule.

Figure 3.24: U–O–Si bond angles for uranium compounds with the ligand R3SiO. (Data points in
red are the experimental values for (Ph3SiO)5U(THF))

3.7.2 Characterisation of (Ph3SiO)5U(THF) : NMR

13C{H}, 1H and HSQC NMR spectroscopy data were all obtained on the reaction mixture,

the results of which are shown in Appendices D.3, D.4 and D.5 and discussed further

here. Both the 1H and 13C spectra clearly show the vast majority of the species found

in the solution is the initial starting material, K[(Ph3SiO)5U(THF)]. In addition there is a

clear indication that Ph3SiOH is present by the observation of the distinct OH resonance

in the 1H spectrum and previously discussed in section 2.1.2. This would suggest that

the addition of CO2 is initiating a reaction in which the displacement of at least one of the

ligands occur, however the reaction does not go to completion resulting in large amounts

of starting material remaining. The only isolated product from the reaction mixture was

the UV species observed by X–ray diffraction.
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3.7.3 Synthesis and characterisation of Ph3SiO−A where A = Li, Na, Rb,

Cs or Tl

Initially, the X–ray diffraction data on these reactions with oxygen were difficult to solve

and side bound dioxygen was identified instead of the disordered potassium ion that

was actually present. It seemed appropriate to ascertain if the compounds could be

synthesised with different counter ions possessing greater electron density. Scheme 3.7

shows an overview of the alkali metal based starting materials that were investigated and

Table 3.10 shows some of the various reactions and experimental conditions that were

trialled.

Scheme 3.7: Attempted synthesise of Ph3SiO−A where A = Li, Na, Rb, Cs or Tl

In addition to the above reactions, literature methods were used to synthesise, [Li(OSiPh3)]n,

K8(OSiPh3)8(DME)3 and [K(THF)x (OSiPh3)]. [89] These products were reacted further

with UCl4 but the final products were not easily extracted and therefore pure samples

were difficult to obtain and analyse.

Two of the tabulated reactions proved the most successful and could be reliably repeated.

These reactions, between the silanol and either KH or nBuLi, became the favoured meth-

ods of siloxide production, specifically using KH due to ease of use under inert glove box

conditions and has been discussed fully in Section 2.1.3. Unfortunately the reactions

with rubidium and caesium proved completely unsuccessful with the reactions mixture
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Silanol/ Alkali Metal Solvent system timeframes temperature

Siloxide Sources system

Ph3SiOH LiH hexane 24 hrs r.t.

24 hrs 80◦C

toluene 48 hrs r.t. [161]

Ph3SiOH nBuLi hexane 30 mins r.t.

Ph3SiOH KH hexane 30 mins r.t.

24 hrs r.t.

24 hrs 80◦C

Ph3SiOH NaH hexane 24 hrs r.t.

24 hrs 80◦C

pentane 12 hrs r.t.

THF 12 hrs r.t.

Ph3SiOH Cs THF 6 hrs r.t.

Ph3SiOH Rb THF 24 hrs r.t.

d8–THF 1 hr r.t.

pentane 24 hrs -78◦C

Ph3SiOK TlCl THF 24 hrs r.t.

Table 3.10: Summary of experiments conducted in order to vary the alkali metal bonded to the
siloxide

resembling black sludge and any products, completely intractable.

As this avenue proved unsuccessful, attempts were made to change the counter ion on

the uranium complex directly. Excess RbI and CsI were both reacted with K[U(OSiPh3)5]

and analysed by 1H and 13C{H} NMR. The results for the caesium iodide reaction are

shown in Figures 3.25 and 3.26.

Analysis of the 13C{H} NMR spectrum clearly shows multiple species have been formed.

The 1H NMR data show the same pattern of resonances observed for K[(Ph3SiO)5U(THF)]



129

Figure 3.25: NMR Resonances for the 13C{H} spectrum of the reaction between
K[(Ph3SiO)5U(THF)] and excess CsI in d8–THF

Figure 3.26: NMR Resonances for the 1H spectrum of the reaction between K[(Ph3SiO)5U(THF)]
excess CsI in d8–THF

but slightly shifted to δ 8.89, 7.06–7.02 and 6.81–6.77 ppm. This suggests that RbI has

reacted with K[(Ph3SiO)5U(THF)] forming Rb[(Ph3SiO)5U(THF)] with the 29Si NMR spec-

trum indicating one silicon environment at δ -69.42 ppm. Recrystallisation was attempted

in a variety of solvent systems, THF, toluene, and toluene/hexane, at room temperature
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and -40◦C but unsuccessful.
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Chapter 4

Studies of

[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))]

Between November 2012 and April 2014, most of the compounds synthesised as part of

this work were published by Mazzanti et al. of the Institut Nanonsciences et Cryogénie,

CEA, Grenoble. [90,162–164]

Investigations into other ligand systems that retain the primary Si–O–U linkage were un-

dertaken, using tert–butoxy siloxide to more accurately mimic the electronic nature of a

mesoporous silica surface, while retaining significant steric encumbrance.

The ligand is commonly found on transition metals and occasionally lanthanide species

both of which are discussed in section 1.3.6. The use of tris tert–butoxy siloxide has

long been identified as a possible mimic for surface materials (section 1.2.2). [165,166] At

the start of this work (summer 2012) tris tert–butoxy siloxides had not been successfully

used as supporting ligands on actinide based complexes.
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4.1 Uranium tris tert–butoxy siloxides

The Mazzanti group used siloxides as supporting ligands in UIII mediated small mo-

lecule activation. A homoleptic siloxide complex, [(U(OSi(OtBu)3)2(µ−OSi(OtBu)3))2]

was synthesised. This was achieved by treating [U(N(SiMe3)2)3] with three equivalents

of (tBuO)3SiOH in hexane at -40 ◦C and recrystallised from hexane in yields of 82%. [162]

X–ray analysis of the single crystals showed the complex was a centrosymmetric di-

nuclear structure. The geometry of the two uranium ions were observed as a distorted

pentagonal bipyramid with the oxygen atoms of two terminal siloxide ligands bonding to

each uranium centre, two bridging bidentate siloxide ligands and a neutral tert–butoxy

group of a bridging siloxide ligand. Despite the reducing nature of the complex, the co-

ordination of the siloxide ligands provided enough electron donating character that it was

stable at room temperature for a few hours. The U–U distance was determined to be

3.9862(2) Å and the U–O distances for the terminal siloxides was 2.193(4) Å on aver-

age which was determined to be within the range of other typical uranium(III) alkoxide

complexes. The bridging siloxides were observed to have longer U–O bond distances of

2.396(3) Å and 2.549(3) Å and the neutral tert–butoxy group had a U–O bond distance of

2.540(2) Å which were all comparable to other similar lanthanide complexes. [162] Scheme

4.1 shows the reaction between [(U(OSi(OtBu)3)2(µ−OSi(OtBu)3))2] and CO2, CS2 and

toluene.

In the case of CS2, a stoichiometric amount was added to the uranium complex which

resulted in an immediate change in colour from brown to yellow forming the two elec-

tron reduction product, [(U(OSi(OtBu)3)3)2(µ−η2(C,S):η2(S,S)−CS2)]. The highly soluble

product could be extracted in an analytically pure form, from hexane, in yields of 53%. X–

ray quality crystals were crystallised from toluene and the analysis showed a UIV dimer

with the two uranium centres bridged by a CS2
2− group, which binds the two uranium
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Scheme 4.1: Mazzanti’s reduction of CO2, CS2 and toluene by [(U(OSi(OtBu)3)2(η−OSi(OtBu)3))2]
(November 2012) [162]

centres in a rare µ−η2(CS1):η2(S1S2) binding mode. The two uranium centres are six–

coordinate with an average siloxide U–O distance of 2.11(5) Å and a U–OtBu bond dis-

tance of 2.642(3) Å. The central CS2
2− unit is unlike free CS2 in that it is asymmet-

rical, with each C–S bond observed at 1.748(11) Å and 1.594(12) Å (C–S bond distance

1.560(3) Å in free CS2). In addition the S–C–S bond angle also deviates from the linear

free CS2 to 131.6(8)◦. These data compare well to other transition metals complexes with

similar bonding patterns. [162]

[(U(OSi(OtBu)3)2(µ−OSi(OtBu)3))2] was then investigated in terms of its reactivity with

CO2. The uranium complex was suspended in hexane and reacted with one equival-

ent of CO2 for six hours which resulted in a slow change in colour to form a light green

solution. In addition the evolution of CO was observed which was identified by NMR

spectroscopy. After work–up the resulting green residue was recrystallised from toluene
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at -40◦C and analysis showed the product to be the dimeric UIV/UIV carbonate complex,

[(U(OSi(OtBu)3)3)2(µη1:η2CO3)], in yields of 33%. The reaction was monitored by 1H NMR

spectroscopy over a period of six hours, showing [(U(OSi(OtBu)3)2(µ−OSi(OtBu)3))2]

was converted into [(U(OSi(OtBu)3)3)2(µη1:η2CO3)] and [U(OSi(OtBu)3)4] in a 2:5:1 ratio

respectively. In addition it was noted that the carbonate complex decomposed in the pres-

ence or absence of CO2 to yield [U(OSi(OtBu)3)4] indicating a slow ligand redistribution

process and an unidentified UIV carbonate complex. [162]

[(U(OSi(OtBu)3)3)2(µη1:η2CO3)] was observed to possess a dimeric structure with the

carbonate complex bridging between the two uranium centres in a µη1:η2 fashion. Each

uranium centre is coordinated by a terminal siloxide ligand with a U–O distance of 2.09(1)

Å in addition to two siloxide ligands with an average U–O bond distance of 2.18(1) Å.

Finally two siloxide ligands bond in a bidentate fashion so each uranium atom is bonded

to two oxygen atoms from tBuO groups with an average U–O bond distance of 2.67(6) Å.

The bridging carbonate group binds to the two uranium centres in a µη1:η2 fashion with

one shorter U–O bond length (2.25(2) Å) compared to the other two (2.404(2) Å). The

carbonate C–O distances are 1.28(1) Å. [162]

Finally, [(U(OSi(OtBu)3)2(µ−OSi(OtBu)3))2] was reacted with excess toluene in hexane to

synthesise the diuranium inverted sandwich complex, [(U(OSi(OtBu)3)3(µ−η6: η6- tol))2].

The X–ray analysis showed the presence of two identical U(OSi(OtBu)3)3 units bridged

by a toluene molecule in a µη6:η6 symmetrical fashion. The C–C bond distance in the

bridging toluene molecule is 1.432(3) Å which is found to be marginally longer than free

toluene but similar to other systems containing reduced arenes. The average U–C bond

distance is 2.692(3) Å and this was found to be shorter than other UIII complexes with

neutral arenes. The siloxide ligands were found to have U–O bond distances of 2.117(2)

Å which are much shorter than those of [(U(OSi(OtBu)3)2(µ−OSi(OtBu)3))2] and suggest
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the presence of a UIV ion. The author therefore describes this complex as "a UIV complex

of a dianionic toluene ligand resulting from the reduction of toluene by a UIII siloxide com-

plex." However it is noted that a UV complex with a tetraanionic arene is also a possibility.

Table 4.1 shows a comparison between the complexes reported by Mazzanti. [162]

Complex U–Oterminal U–Ot Bu U–Osilox Date

/ Å / Å / Å reported

[(U(OSi(OtBu)3)2(µOSi(OtBu)3))2] 2.193(4) 2.540(2) 2.472(8) Nov 2012

(bridging)

[(U(OSi(OtBu)3)3(µ−η6: η6- tol))2] 2.117(2) — — Nov 2012

[(U(OSi(OtBu)3)3)2(µ−η1: η2CO3)] 2.09(1) 2.67(6) 2.18(1) Nov 2012

[(U(OSi(OtBu)3)3)2(µ−η2(CS):η
2(SS)−CS2)] 2.08(0) 2.642(3) 2.16(7) Nov 2012

Table 4.1: Comparison of key bond distances and angles for Mazzanti’s uranium siloxide com-
plexes

In July 2013 Mazzanti published work highlighting the some reactivity studies undertaken.

[(U(OSi(OtBu)3)4] was reacted with KC8 and 18-crown-6 to form the monomeric ‘ate’

complex, [K(18C6][U(OSi(tBu)3)4] in yields of 69%. The work also investigated the re-

activities with trimethylsilyl and adamantyl azides which are summarised in Schemes 4.2

and 4.3. [90]

In November 2013, Mazzanti published further results, investigating the reactivities of

the inverted sandwich complex, [(U(OSi(OtBu)3)3(µ−η6: η6- tol))2]. Two new complexes

were synthesised by the reduction of the parent arene bridged complex with stoichiomet-

ric amounts of KC8 resulting in the products [K(U(OSi(OtBu)3)3)2(µη6:η6−C7H8)] and

[K2(U(OSi(OtBu)3)3)2(µη6:η6−C7H8)] resulting in three complexes which possess three

different states of charge and were investigated in terms of the structure and electron-

ics. [163]

Finally in April 2014, Mazzanti published work highlighting the sterically demanding silox-
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Scheme 4.2: Synthesis of [K(18C6][U(OSi(tBu)3)4] and subsequent reactions with AdN3, TMSN3

and CsN3, July 2013 [90]

Scheme 4.3: Reaction of [U(OSi(OtBu)3)2(µ−OSi(OtBu)3)]2 with AdN3 and CsN3, July 2013 [90]

ide ligands inducing a large cooperative effect in the reduction of CO2 shown in Scheme

4.4. The previously reported [K(18c6][U(OSi(tBu)3)4] was found to promote the select-

ive reductive disproportionation of CO2, yielding CO and the mononuclear UIV carbonate

complex, [U(OSi(OtBu)3)4(µ−κ2:κ1−CO3)K2(18c6)]. [164]

The reaction of [U(OSi(OtBu)3)4K] with 1 atm of CO2, in toluene, at room temperature res-

ulted in the analytically pure terminal oxo pentavalent uranium complex [UO(OSi(OtBu)3)4K]
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Scheme 4.4: Synthesis and reactions of [U(OSi(OtBu)3)4K] and [K(18c6)][U(OSi(OtBu)3)4] with
CO2, (April 2014) [164]

in yields of 77%. 13C{H} NMR studies showed the presence of CO and X–ray diffraction

showed the uranium centre in a distorted octahedral geometry, coordinated by two oxy-

gen atoms from a siloxide ligand bound in a bidentate fashion, three monodentate siloxide

ligands, also coordinated to a potassium ion and one terminal oxo ligand with a U=O dis-

tance of 1.825(2) Å which is comparable to other UV monooxo complexes discussed in

Section 3.2. The U–Osilox bond distance, trans to the oxo is 2.142(2) Å which was also

found to be the shortest, possibly indicative of an inverse trans influence (see Section

2.2.2 ). The average U–O bond for the terminal siloxide ligands was 2.211(7) Å and the

final bidentate ligand had a U–O bond distance of 2.257(2) Å. [164]

[K(18c6)][U(OSi(OtBu)3)4] was also investigated in terms of its reactivity with 1 atm of

CO2. The reaction was instantaneous at room temperature with the evolution of CO

observed (confirmed by 13C{H} NMR). 1H NMR analysis was used to analyse the two
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products that were synthesised in a 1:1 ratio which were identified as [U(OSi(OtBu)3)4]

and [K(18c6)][U(OSi(OtBu)3)4]. Pale pink single crystals of the later, of X–ray diffraction

quality, were recrystallised from toluene. The data showed the uranium centre to be

hexacoordinated in a distorted octahedral geometry. Four siloxide ligands are bound

to the uranium centre along with a terminally bound carbonate ligand and a potassium

counter ion bound to three of the oxygen atoms on the siloxide ligands. The U–O bond

distances of the bridging siloxide ligands were found to be slightly longer at 2.23(1) Å

than the non–bridging siloxide ligands at 2.205(5) Å. [164]

4.2 Synthesis of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))]

As previously discussed in Section 1.3.6 tris tert–butoxy siloxides have long been used

as surface models on transition metals and lanthanide systems. Until recently however,

actinide complexes were unknown. Simple analysis of the uranium and siloxide starting

materials available generated two potential targets for synthesis, U(OSi(OtBu)3)3 and

UCl(OSi(OtBu)3)2. Therefore, in a number of experiments, (tBuO)3SiOK was reacted

with either UI3 or UCl4.

By reacting three equivalents of (tBuO)3SiOK in THF with UI3, which was also suspended

in THF and added dropwise, the product K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] was syn-

thesised. The reaction was stirred vigorously and colour changes were observed within

a few minutes, from royal blue to chocolate brown. Once the reaction was complete the

resulting brown solid was dissolved in toluene and X–ray quality crystals were grown at

-40 ◦C in yields of 16%.

In comparison, Mazzanti’s inverted sandwich complex, [(U(OSi(OtBu)3)3(µ−η6: η6- tol))2]

was synthesised by reacting an orange suspension of [(U(OSi(OtBu)3)2(µ−OSi(OtBu)3))2]
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Scheme 4.5: Synthesis of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))]

in hexane with a few drops of toluene over a period of two days. The reaction resulted in

the formation of large dark brown crystals which were filtered and rinsed in toluene and

dried in vacuo in yields of 89%.

4.2.1 Characterisation of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] : X–ray Diffrac-

tion

The compound K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] crystallises in P 21 space group. The

lattice parameters for this structure are a = 14.3524(3) Å, b = 23.5604(5) Å, c = 18.3105(4)

Å, α = 90 ◦, β = 103.258(1) ◦, γ = 90 ◦.

In comparison, Mazzanti’s [(U(OSi(OtBu)3)3(µ−η6: η6- tol))2] complex crystallises in R-3

space group with an R factor of 3.33. The lattice parameters for Mazzanti’s structure are

a = 23.5027(5) Å, b = 23.5027(5) Å, c = 16.1715(4) Å, α = 90 ◦, β = 90 ◦, γ = 120 ◦

The X–ray diffraction image of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] is shown in Figures

4.1 and 4.2. Each uranium atom has a distorted trigonal pyramidal geometry and can

be assigned a C3v point group. Alternatively, the whole molecule is assigned a D3d



140

point group. Each uranium atom has three tert–butoxy ligands bonded to it and the

two uranium centres (U1 and U2) are coordinated to a central toluene molecule in an

inverted sandwich type orientation, the two sets of tert–butoxy ligands are in a staggered

conformation due to the steric bulk of the ligands. There is also one counterion present

which is coordinated to all three ligands on U1 atom, via the oxygen atoms.

Figure 4.1: Molecular structure of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] (Hydrogen atoms omitted
for clarity)

Figure 4.2: Core molecular structure of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] containing the Si, O U
and K atoms and bridging toluene (Hydrogen atoms and tert–butoxy groups omitted
for clarity)
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Similarly, Mazzanti’s structure possesses three siloxide ligands on each of the two uranium

centres (U1 and U1L) which are also in a staggered conformation due to sterics. The two

uranium atoms are coordinated to a central toluene molecules in an inverted sandwich

orientation. Mazzanti’s structure does not possess a coordinated potassium counter ion

unlike the complex presented as part of this work.

Table 4.2 shows the key bond distances of both structures. Mazzanti’s complex has an

average U–O bond distance of 2.117 Å which is slightly shorter (ca. 0.009 Å) than the

U–O bond distance of the complex presented here. In addition Mazzanti’s complex has

slightly shorter O–Si bond lengths (ca. 0.39 Å) but longer U–Ctol (ca. 0.084 Å) than

K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] which is discussed further in Section 4.2.2.

The U–O bond distances for K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] range from 1.9681 Å to

2.2467 Å with the average across both uranium centres found to be 2.126 Å. The O–Si

bond distances range from 1.5366 Å to 1.8077 Å with an average of 1.653 Å. Figures 4.5

and 4.6 compare these values to other actinide based complexes furnished with a tris

tert–butoxy ligand system. This comparison clearly shows the U–O bond distances are

within previously identified limits for similar systems. Analysis of the O–Si bonds however,

show there are two bonds (1.7574 Å and 1.8077 Å) that exceed previously identified O–

Si bond distances. These lengthened bonds correspond with the shortest of the U–O

bonds within the molecule. In addition, one elongated O–Si bond is located on each of

the uranium centres which indicates that the potassium counterion, which is coordinated

to one of the uranium centres, is not responsible for the lengthening of these bonds.

The U–O distances for each uranium centre are shown schematically in Figure 4.3, show-

ing the difference between the U1 close to the potassium ion in (a) and the uncoordinated

U2 centre in (b).



142

Complex U–Osilox O–Sisiloxide U–Ctol Ctol –Ctol

/ Å / Å / Å / Å

K[(U(OSi(Ot Bu)3)3)2(µ−η6:η6- tol))]

tol–U1–O1–Si1 2.0713 1.7574 2.6014 1.3900

tol–U1–O2–Si2 2.1965 1.5969 2.5840 1.3900

tol–U1–O3–Si3 2.2467 1.5366 2.5993(1) 1.3900

tol–U1 2.6318 1.3900

tol–U1 2.6489 1.3900

tol–U1 2.6338 1.3900

Average 2.172 1.630 2.617 1.390

tol–U2–O4–Si4 2.1221 1.6216 2.5193

tol–U2–O5–Si5 1.9681 1.8077 2.5452

tol–U2–O6–Si6 2.1457 1.5987 2.6249

tol–U2 2.6778

tol–U2 2.6531

tol–U2 2.5743

Average 2.079 1.676 2.599

Total average 2.126 1.653 2.608

[(U(OSi(Ot Bu)3)3(µ−η6:η6- tol))2] [162]

tol–U1–O1–Si1 2.118 1.614(3) 2.695 1.432(5)

tol–U1–O1A–Si1A 2.117 1.614(2) 2.695 1.432(6)

tol–U1–O1B–Si1B 2.116 1.614(4) 2.694 1.432(6)

tol–U1 2.689 1.432(5)

tol–U1 2.689 1.432(5)

tol–U1 2.690 1.432(5)

tol–U1L–O1L–Si1 2.118 1.614(3) 2.689

tol–U1L–O1M–Si1 2.117 1.614(2) 2.689

tol–U1L–O1N–Si1 2.116 1.614(4) 2.690

tol–U1L 2.695

tol–U1L 2.695

tol–U1L 2.694

Total average 2.117 1.614 2.692 1.432

Table 4.2: Key bond lengths: A comparison between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and
Mazzanti’s [(U(OSi(OtBu)3)3(µ−η6: η6- tol))2] structure [162]

(a) (b)

Figure 4.3: Uranium–oxygen distances in K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] at the U centre close
to K (a) and distant from K (b)

The presence of one short and two long bonds around each uranium is reminiscent of the

second order Jahn–Teller distortion, often seen in trigonal metal systems. [167–169] Second

order Jahn–Teller distortions have been discussed in detail with respect to pyramidalisa-
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tion of trigonal d–metal transition metal complexes in detail, where a C3v pyramidal geo-

metry can be preferred if the interaction of the dxz and dyz is more favourable than the

interaction of the ligand system i.e. px , dx2−y2 and py , dxy . [170,171]

In the plane of the molecule, a similar effect is possible, as the a electronic ground state

will always mix with the LUMO symmetry and will distort, in principle, if the LUMO has

e symmetry. The effect of the 5f orbitals can be ignored for two reasons, the level of

covalency associated with these orbitals is very small and the irreducible representa-

tions of the 5f span all of those present in any C3–derived group. This means that any

direct product is possible when using the 5f–orbitals as a basis. If, however, there is

a small degree of covalency due to the 6d orbitals, then a similar mechanism may be

present in this system, though it is notable that the structure published by Mazzanti of

[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] was in space group R-3 with the U1 and U1L atoms

positioned directly along the C3 as shown in Figure 4.4. The location of the C3 axis

through the pair of uranium centres shows that any electronic distortion is extremely

small.

Figure 4.4: Mazzanti’s inverted sandwich complex with the C3v axis highlighted, Blue = uranium;
Red = oxygen; Yellow = silicon (Carbon and hydrogen atoms are omitted for clarity)

In addition, the lattice packing is also considered as an explanation as to why one U–O

bond is shorter on each uranium centre. However, when the lattice is investigated, it is

observed that each of the short U–O bonds are parallel to each other, both directed along

the same z–axis and therefore it is concluded that the lattice packing is not responsible
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Figure 4.5: Correlation between Ac–O bond
distances and O–Si for actinide
compounds with the ligand
(tBuO)3SiO. (Data points in red
are the experimental values for
K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))]

Figure 4.6: Correlation between O–Si
bond distances and Si−OtBu
for actinide compounds
with the ligand (tBuO)3SiO.
(Data points in red are the
experimental values for
K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))])

for the shortening of these two bonds.

On average, U1 is found to have shorter than average O–Si bonds at 1.630 Å and longer

than average U–O bonds 2.172 Å. This lengthening and contracting across the U–O–Si

bonds was also seen in the K[U(OSiPh3)5] complex and analysed in Chapter 2.

The U–O–Si bond angles range from 149.65◦ to 175.58◦ with an average of 161.99 ◦.

Figure 4.7 shows that this is within the range of published data. The U1–O–Si angles

are more linear (average 169.6 ◦) to due the coordination of the potassium counterion

compared to the non potassiated side, U2–O–Si (154.3 ◦ average).

4.2.2 Bridging arenes

Bridging arenes or ‘inverted sandwich’ complexes are those which have the general

structure, LnM–ArR–MLn where ArR is an arene. The arene featured could be ben-

zene, [172,173] toluene, [162,172,174,175] naphthalene, [176,177] biphenyl, [172] cycloheptatrienyl [178]
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Figure 4.7: U–O–Si bond angles for actinide compounds with the ligand (tBuO)3SiO. (Data points
in red are the experimental values for K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))])

or cyclooctatetraene [176] bonded as the bridging ligand. Bridging arenes on actinides are

relatively rare [179] but the general structure is mainly observed in low valent uranium

chemistry. The first example of an arene bridged uranium was (µ−C7H8)[U(N[R]Ar)2]2

as shown in Figure 4.8. [174] It is generally accepted that δ bonding play an important role

between both the d and f–orbitals of the uranium (d–f mixing) and the LUMO of the

appropriate symmetry of the ligand in actinocene complexes [177] but development in this

area is required and investigating the nature of bonding in inverted sandwich complexes

could provide further insight into this area. [162,163,175]

In this work, the toluene molecule is coordinated to both uranium centres in an inverted

sandwich motif with a U–Centroid–U angle of 174.8◦ and an average U–C bond distance

of 2.599 Å on the non potassiated side and 2.617 Å on the potassiated side as high-

lighted in Table 4.2. These bond lengths are marginally shorter than Mazzanti’s structure

which has an average U–C bond length of 2.692 Å. Both complexes have much shorter

U–C bond lengths than those found in uranium complexes of neutral arenes (average
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Figure 4.8: An early example of an arene bridged diuranium complex

2.93 Å). [162] In both cases the bridging toluene molecule is bound in a η6:η6 symmetrical

fashion to the two uranium centres.

Table 4.2 shows the average C–C bond distance within the toluene molecule is 1.39 Å

which is slightly longer than free toluene (1.379 Å [85]). This is suggestive that the toluene

has been reduced slightly. Mazzanti’s structure has an observed C–C bond distance

of 1.432 Å in the toluene bridge [162] which is much longer and suggestive of a greater

reduction of the toluene than observed in K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))].

Covalent Bond Classification

Whilst the covalent bond classification (CBC) method is applicable only in the case of

very significant covalency, and therefore is not applicable to the actinides as a general

description of the bonding situation, the notation is useful to describe electron assign-

ments within a molecule.

According to the C.B.C method [180,181], any metal or ligand can be organised into one of

four classifications, M, L, X or Z. The central metal is classified as M whilst ligands can

be separated into L, X or Z based on their bonding electronics. X and L ligands simply

contribute either one or two electrons respectively to the bond with the metal centre. Z
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ligands possess empty orbitals which require donation of two electrons from the metal

in order to form a bond. Additionally the method provides an outline of how to treat

cations and anions and according to the C.B.C method, anions are treated as X− and

this converts to L as illustrated by the following example for [MoX6]3−;

[MoX6]3− = [MoX3(X−)3] and if X− = L then [MoL3X3]

Therefore, by implementing all the rules to the uranium complex reported here, the fol-

lowing can be concluded;

[U2L3X6]− = [U2L3X5(X−)] = [U2L4X5]

The above analysis assumes the arene is neutral which gives the molecule an oxidation

state for each uranium centre as U2.5 (U2L4X5) which is unlikely. If the arene acts as a

dianion (L2X2) then the molecule would formally be counted as U2L3X7 which gives an

oxidation state for each uranium as U3.5.

Mazzanti’s complex, [(U(OSi(OtBu)3)2(µ−OSi(OtBu)3))2] [162] was described as a UIV ion

centre with a dianionic toluene bridged ligand resulting from the reduction of toluene by

the UIII siloxide complex. The average U–O bond length of the complex described here is

2.126 Å which is slightly longer than Mazzanti’s inverted sandwich complex (U–O 2.117

Å), but shorter than the non bridged UIII derivative, [(U(OSi(OtBu)3)2(µ−OSi(OtBu)3))2]

supporting the hypothesis that the uranium centres described here are in a U3.5 state.

4.2.3 Characterisation of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] : NMR

The NMR spectroscopy data correlate well with the observed X–ray diffraction data. The

X–ray diffraction data suggest two uranium centres in an inverted sandwich conformation
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and the two uranium centres differing only with proximity to the coordinated potassium

counterion. Analysis of the 13C{H} and 1H NMR spectrum also show two different chem-

ical environments in solution with equal integration values as shown in Appendices E.9

and E.10.

The 13C{H} NMR spectroscopy data are tabulated in Table 4.3 and clearly show two

chemical environments. The electro–positive nature of the potassium counterion changes

the magnetic environment of the uranium atom and the coordinated tert–butoxy groups

and are assigned to the resonance at δ 28.78 ppm whilst the tert–butoxy groups that are

not coordinated to the potassium counterion are assigned to the second resonance at δ

33.27 ppm.

This structure is further supported by the 1H NMR spectrum. The resonance observed at

δ -0.54 ppm (FWHH = 8.4 Hz) is assigned to the tert–butoxy groups coordinated to the po-

tassium counter ion, whilst the other non–coordinated tert–butoxy groups are assigned to

the resonance at δ 2.38 ppm (FWHH = 1.72 Hz). This hypothesis is additionally supported

by the integrals which are of equal value and HSQC data which are shown in Appendix

E.12.

Carbon Assignment δ/ppm

U((tBuO)3SiO)3 (U2) 33.27

K[((tBuO)3SiO)3U] (U1) 28.78

Table 4.3: NMR Resonances for the 13C{H} spectrum of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] in d6–
benzene

Proton Assignment δ/ppm (multiplicity, coupling constant)

U((tBuO)3SiO)3 (U2) 2.38 (s, 1H)

K[((tBuO)3SiO)3U] (U1) -0.54 (s, 1H)

Table 4.4: NMR Resonances for the 1H spectrum of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] in d6–
benzene
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NMR spectroscopy techniques were used to investigate the reaction pathway and Figure

4.9 shows the results of these experiments. The 1H NMR spectrum clearly show two

resonances at δ 2.38 and 0.07 ppm increasing in intensity as (tBuO)3SiOK) is added.

Comparing this to the 1H NMR spectrum observed for the inverted sandwich complex and

the (tBuO)3SiOK) starting material, these resonances are assigned to U2 and U1 respect-

ively. Interestingly, other species are also observed during the synthesis. A resonance

appears at δ 12.95 ppm as one equivalent of the ligand is added and slowly decreases as

further equivalents of ligand are added providing evidence of a possible intermediate. In

addition resonances at δ 5.88 and 1.54 ppm are observed which increase in intensity as

ligand is added, providing evidence of a second product being synthesised which could

provide a reason why the product was difficult to recrystallise reliably.

Figure 4.9: Stacked 1H NMR spectra for the reaction between UI3 and 1 eq. of (tBuO)3SiOK) (red),
2 eq. of (tBuO)3SiOK) (green) and 3 eq. of (tBuO)3SiOK) (blue) in d8–THF
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Robin–Day classification

The Robin–Day classification separates mixed valence systems into three classes simply

referred to as class I, class II and class III depending on the strength of the electronic

interactions between the oxidised and reduced sites. Class I refers to complexes where

the electrons are localised and completely trapped on the separate sites. Class III refers

to complexes were the electrons are completely delocalised and their position indistin-

guishable. Class II lies between the two extreme positions and the electrons are partially

delocalised. Considering the NMR spectroscopy and X–ray diffraction evidence it is lo-

gical to assign this complex as a class I complex where the electrons are localised on the

two separate uranium sites and therefore can be observed both in the solution and solid

state. [182–184]

4.2.4 Synthesis of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] : Negative ion ESI

In order to ascertain the products that were synthesised during the reaction, negative

ion ESI HRMS was employed as a further analysis technique. The starting material UI3

was suspended in THF and the ligand species, (tBuO)3SiOK was dissolved in THF. Ali-

quots equal to one equivalent of the ligand were added to the UI3. Each equivalent was

analysed and recorded by negative ion ESI HRMS and shown in Table 4.5.

On addition of both one and two equivalents of (tBuO)3SiOK, only two major fragments

are observed, neither being the desired product, U(OSi(OtBu)3)3. The uranium species

observed has two siloxide ligands and three iodides. However, as soon as three equival-

ents of the ligand were added to the solution the desired tris product is observed along

with the tetra side product, both of which are stable over a three hour period. The syn-

thesis of more than one product, also observed by NMR spectroscopy, presented prob-
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(tBuO)3SiOK HRMS m/z Relative Intensity Anion Assignment

1 eq. 745.6644 0.37 UI4

961.1200 0.06 —

1145.0823 0.56 [((tBuO)3SiO)2UI3]

2 eq. 745.6689 0.04 UI4

961.1241 0.08 —

1145.0914 0.89 [((tBuO)3SiO)2UI3]

3 eq. 1059.5356 0.32 [((tBuO)3SiO)3UO2]

1154.4550 0.23 [((tBuO)3SiO)3UI]

1290.7186 0.45 [((tBuO)3SiO)4U]

3 eq. (3 hours) 1059.5356 0.38 [((tBuO)3SiO)3UO2]

1154.4550 0.22 [((tBuO)3SiO)3UI]

1290.7182 0.41 [((tBuO)3SiO)4U]

Table 4.5: Negative ion ESI HRMS data of the synthesis of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))]

lems regarding the crystallisation of the products, but co–crystallisation was achieved,

the results of which are discussed in Section 4.3. In addition, and as previously seen in

Section 2.5, unavoidable oxygen impurities reacted with the products and are seen in the

ESI HRMS results.

4.3 Co–crystallisation products

Alongside the orange/brown crystals of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] discussed in

Section 4.2, two other products co–crystallised which were visually very different and

all three were isolated. The two co–crystallised products were black block crystals and

green block crystals. The black blocks were analysed by X–ray diffraction and found to

be an oxo bridged compound, [((tBuO)3SiO)3U]2(µ2- O)3, whilst the green block crystals
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Scheme 4.6: Synthesis of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and two cocrystallisation products,
[((tBuO)3SiO)3U]2(µ2- O)3 and [(U(OSi(OtBu)3)4)]

were identified as the tetrakis unit, ((tBuO)3SiO)4U which had also been synthesised

directly from UCl4 by J. Pankhurst, a Masters student under the authors supervision. The

crystallised products, K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))], [((tBuO)3SiO)3U]2(µ2- O)3 and

((tBuO)3SiO)4U crystallised in approximately a 5:2:3 ratio but the X–ray diffraction data

were not of publishable quality.

4.3.1 Characterisation of [((tBuO)3SiO)3U]2(µ2- O)3 : X–ray Diffraction

The compound crystallises in space group R3. The lattice parameters for this structure

are a = 23.4821(2) Å, b = 23.4821(2) Å, c = 16.2502(3) Å, α = 90◦, β = 90◦, γ = 120◦.

The X–ray diffraction data shown in Figure 4.10 shows two tris tert butoxy uranium units

to be bridged by three oxygen atoms. It can therefore be surmised that each uranium unit

has a distorted trigonal pyramidal geometry with a C3v point group. The entire molecule

however has a point group of D3d . The two sets of tert butoxy ligands on each uranium

centre are in a staggered conformation due to the steric bulk of the ligands.



153

The U–Osilox bond distances range from 2.08(1) Å to 2.16(2) Å with an average of 2.11

Å. The O–Si bond distances range from 1.57(1) Å to 1.64(2) Å with an average distance

of 1.60 Å. [85] Comparing these distances to the K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] com-

plex the U–Osilox bond distance have decreased slightly whilst the O–Si bond distance

have also decreased suggesting that the three oxygen bridging atoms are withdraw-

ing electron density from the uranium centres. The U–O–Si bond angles range from

163.7(8)◦ to 167.0(9) ◦ with an average angle of 165.3◦. The O–U–O bond angles range

from 85.7(4)◦ to 146.5(4)◦ with an average angle of 115.7◦.

In addition, the U–Obridged bond distances range from 2.679(4) Å to 2.689(4) Å with an

average of 2.684 Å, slightly longer than the U–Osilox bond distances and longer than

the average U–O–U bond distances previously reported (average 2.32 Å). [85] Analysis

of other U–(µ2 − O)3)–U complexes were undertaken but none found. Analysis of other

U–(µ2 − O)2)–U was conducted with the average U–O found to be 2.127 Å [85] which

is shorter than the U–(µ2 − O)3)–U bond distance reported here, however this is to be

expected as the bridging trioxo requires more electron density and weaken the bonds. In

addition the average U–(µ2 −O)2)–U bond angle found in the literature was 107.38◦ [85],

whilst the average U–(µ2−O)3)–U angle for [((tBuO)3SiO)3U]2(µ2- O)3 is 155.8(2)◦. Again

this is expected with the shorter U–Ooxo bonds, sterics will increase the bond angles to

increase the intramolecular distance between the oxygen atoms.

Delocalised bonding in bridged diuranium species

Representing the cluster core as shown in Figure 4.11, it is possible to assemble a bond-

ing picture between the bridging trioxo species and the bridging arene systems in the limit

of full delocalisation and ignoring relative orbital contributions.
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Figure 4.10: Molecular structure of [((tBuO)3SiO)3U]2(µ2- O)3 (Hydrogen atoms omitted for clarity)

With [U] = U(OSitBu3)3 and assuming that each U−OSitBu3 linkage represents a two–

centre two–electron bond, then U will contribute three electrons to the core cluster. In

the case of the core of the arene–bridged dimers, each carbon atom contributes three

electrons to the framework of the cluster, excluding the exohedral C–H from the count. Of

these, then two electrons per carbon will be involved with C–C σ–bonding, leaving one

electron per carbon atom available to the cluster. Six electrons are therefore available,

making a total of twelve electrons in the bonding model of the core.

Figure 4.11: The core structure for U2X6 (X = CH) and U2X3 (X = O) cores for diuranium ‘inverted
sandwiches’

In the case of the trioxo–bridged system, the count for the neutral uranium centres are

identical; each oxygen atom then carries two non–bonding electron pairs and a pair of

electrons that are available to the cluster core. In this sense, the bridge yields exactly

the same number of electrons as the arene bridged system, that is six electrons in both

cases. Both bridge clusters therefore contain twelve electrons each.
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For [((tBuO)3SiO)3U]2(µ2- O)3, the oxidation state of uranium is clearly six on both cases,

with the electrons being localised on the formally bridging oxide ligands. For arene–

bridged systems, the oxidation states are discussed above.

4.4 Synthesis and characterisation of U(OSi(OtBu)3)4

The complex U(OSi(OtBu)3)4 which was co–crystallised alongside the inverted sandwich

complex [(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] was also synthesised by the following method

by a Masters student under the authors supervision. [80]

4.4.1 Synthesis of U(OSi(OtBu)3)4

Scheme 4.7: Synthesis of U(OSi(OtBu)3)4

Treatment of uranium tetrachloride in THF with four equivalents of (tBuO)3SiOK at room

temperature, with stirring, resulted in a blue solution. A blue solid was extracted from

the solution in 60% yields when the solvent was removed in vacuo. The blue crude

product turned light purple when subjected to extended periods of vacuum. In solution

the product also turns green when cooled to -40◦C. The product was then recrystallised

from a toluene solution at -40◦C resulting in purple crystals. [80]
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4.4.2 Characterisation of [(U(OSi(OtBu)3)4)] : X–ray Diffraction

U(OSi(OtBu)3)4 crystallises from toluene in temperatures of -40◦C in the space group C

2/c with an R factor of 4.64. The lattice parameters are a = 24.2415(5) Å, b = 13.5626(3)

Å, c = 41.0629(9) Å, α = 90◦, β = 96.6880(10)◦ and γ = 90◦.

The molecular structure is shown in Figures 4.12 and 4.13. The structure shows the

uranium centre is five coordinate with three siloxide ligands bonded monodentate and

one of the ligands bonding in a bidentate fashion to give a distorted square pyramid

geometry of C4v symmetry. In this conformation the uranium centre has an oxidation

state of UIV as the internally solvating tBuO group coordinates through a dative bond.

The bond length of the dative bond is lengthened from an average of 2.141 Å to 2.562 Å,

an increase of 0.42 Å.

Figure 4.12: Molecular structure of U(OSi(OtBu)3)4 (Hydrogen atoms omitted for clarity) [80]

The U–Osilox bond distance range from 2.111(3) Å to 2.135(3) Å with an average of

2.12(3) Å, very similar to the U3.5 complex, K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] (2.125 Å)

and shorter than Mazzanti’s UIII inverted sandwich, [(U(OSi(OtBu)3)2(ηOSi(OtBu)3))2] [162]
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Figure 4.13: Core molecular structure of U(OSi(OtBu)3)4 containing the Si, O and U atoms (Hy-
drogen atoms and tert–butyl carbon atoms omitted for clarity) [80]

(2.193(4) Å), providing support to the formal oxidation state calculated to be UIV. The

bidentate tris tert butoxy siloxide ligand is bound via one siloxide oxygen (2.195 Å) and

via the tert butoxy oxygen (2.563 Å) in a dative bonding fashion. The O–Si bond lengths

range from 1.596(3) Å to 1.618(3) Å with an average of 1.607(3) Å. This average is shorter

than the U3.5 complex, K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] but this is expected as the U–

O bond lengths are slightly longer.

In addition to the above structures, crystals were also grown from THF at -40◦C. Ana-

lysis showed the turquoise crystals to be the bis–THF derivative, U(OSi(OtBu)3)4(THF)2

has shown in Figure 4.14, however the data was not of publishable quality and further

evidence of this structure was obtained by NMR spectroscopy.

Figure 4.14: Structure of U(OSi(OtBu)3)4(THF)2
[80]
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4.4.3 Characterisation of U(OSi(OtBu)3)4: NMR

Analysis of the complex was conducted via 13C{H} and 1H NMR in both coordinating and

non–coordinating solvents. Toluene was used as the non–coordinating solvent and two

resonances are observed in the 1H NMR spectrum in a 1:1 ratio, indicating two distinct

chemical environments. These are assigned as a terminal siloxide unit and an internally

solvating siloxide unit. The 13C{H} NMR spectrum showed four resonances at δ 69.14,

67.61, 29.73 and 28.07 ppm. Each tBuO unit has two predicted carbon chemical envir-

onments and in conjunction with the 1H NMR analysis, the resonances are assigned as

shown in Table 4.6. 29Si NMR analysis showed two resonances at δ -21.17 and -55.28

ppm which further confirms only two siloxide environments.

Carbon Assignment δ/ppm Solvent

1a 69.14 Toluene

1b, 1c 67.61

2a 29.73

2b, 2c 28.07

1a, 1b, 1c 72.64 THF

2a 37.96

2b, 2c 31.86

Table 4.6: NMR Spectroscopy Resonances for the 13C{H} spectrum of U(OSi(OtBu)3)4 in d8–
toluene and in d8–THF [80]

In addition to these results, NMR analysis was undertaken in the coordinating solvent,

THF and it was found that the ligand chemical environments are better defined. 1H NMR

analysis shows three resonances at δ 6.05, 5.28 and 1.02 ppm in a 3:1:5 ratio which fits

with the structure proposed in Figure 4.15 and assigned as shown in Table 4.7. Further

to these results, 13C{H} NMR analysis was undertaken and the spectrum showed three

resonances at δ 72.64, 37.96 and 31.86 ppm which are in line with the proposed structure
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Proton Assignment δ/ppm (multiplicity, coupling constant) Solvent

A 1.10 (s, 1H) Toluene

B, C 1.06 (s, 1H)

C 6.05 (s, 3H) THF

B 5.28 (s, 1H)

A 1.02 (s, 5H)

Table 4.7: NMR Spectroscopy Resonances for the 1H spectrum of U(OSi(OtBu)3)4 in d8–toluene
and in d8–THF [80]

shown in Figure 4.15 and are therefore assigned as shown in Table 4.6.

Figure 4.15: Solution state structure and NMR assignments for U(OSi(OtBu)3)4 in d8–toluene and
d8–THF

Mazzanti also published 13C{H} and 1H NMR data in d14–hexane of the decomposition

product, [U(OSi(OtBu)3)4]. This analysis only showed one resonance in the 1H NMR

spectra at δ 0.982 ppm and two resonances in the 13C{H} NMR spectra at δ 68.127 and

28.778 ppm. Assuming each tBu unit has two carbon chemical environments (C(CH3)3

and C(CH3)3) then, in solution at least, the structure has equal siloxide chemical environ-

ments. NMR analysis in other solvents were not available in detail so direct comparisons

cannot be made at this time, however, Mazzanti’s solid state, X–ray analysis showed the

complex to possess three terminal siloxide ligands and one internally solvating ligand,
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similar to the analysis described above and shown in Figure 4.13.

4.4.4 Characterisation of U(OSi(OtBu)3)4: Mass Spectrometry

The expected molecular ion peak is observed at m/z = 1290 with another peak observed

at m/z = 1027 which corresponds to the molecule with one ligand removed.

4.5 Synthesis and characterisation of UCl(OSi(OtBu)3)3

As previously discussed in Section 4.2, the complex UCl(OSi(OtBu)3)2 was a synthetic

target for the puroposes of siloxide based surface mimics and therefore, under instruction

from the author, (tBuO)3SiOK was reacted with UCl4 in the following synthesis.

4.5.1 Synthesis of UCl(OSi(OtBu)3)3

Scheme 4.8: Synthesis of UCl(OSi(OtBu)3)3

Treatment of UCl4 in THF with three equivalents of (tBuO)3SiOK at room temperature,

with stirring, resulted in a blue/green solution. A blue solid remained when the solvent

was removed in vacuo. The product was then recrystallised from a THF solution at -40◦C

resulting in turquoise blue crystals. [80]
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4.5.2 Characterisation of UCl(OSi(OtBu)3)3: X–ray Diffraction

UCl(OSi(OtBu)3)3 crystallises from THF in temperatures of -40◦C in the space group C

with an R factor of 6.6. The lattice parameters are a = 24.724 Å, b = 14.208 Å, c = 38.674

Å, α = 90◦, β = 107.478◦ and γ = 90◦.

The molecular structure is shown in Figures 4.16 and 4.17. It should be noted that these

figures show half the unit cell. The full unit cell comprised of two asymmetric molecules

and one THF solvent molecule. The structure shows each uranium centre is six coordinate

in a distorted octahedron geometry with no counter ion, confirming the predicted UIV hy-

pothesis. On each uranium centre, three (tBuO)3SiO− ligands are located on one single

face of the octahedron with the opposite face being occupied by the two THF molecules

and the chloride. There is no symmetry associated with this molecule and therefore point

group C1 is assigned.

Figure 4.16: Molecular structure of UCl(OSi(OtBu)3)3 (Hydrogen atoms omitted for clarity and yel-
low = Cl atom) [80]

The X–ray diffraction analysis shows an average U–Osilox bond distance of 2.152 Å and

average O–Si bond distance of 1.599 Å. Comparing these data with the inverted sand-
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Figure 4.17: Core molecular structure of UCl(OSi(OtBu)3)3 containing the Si, O and U atoms (Hy-
drogen atoms and tert–butyl carbon atoms omitted for clarity and yellow = Cl atom) [80]

wich complex, K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] discussed in Section 4.2, the U–O

distance is expected to be marginally longer in the UIV chloride complex than the U3.5

inverted sandwich complex and this is found to be accurate. In addition and as expected,

as the U–O bond distance is longer than the U3.5 inverted sandwich complex and the

U(OSi(OtBu)3)4 reported above, it also has the shortest O–Si bond distances. In addition

the average U–OTHF bond is observed at 2.4952 Å and the average U–Cl bond is 2.687

Å, both within typical ranges found in the literature (U–OTHF = 2.497 Å average; U–Cl =

2.655 Å average [85]).

4.5.3 Characterisation of UCl(OSi(OtBu)3)3: NMR

13C{H}, 1H and 29Si NMR spectra were obtained in d8–toluene solution. The resonances

observed are summarised in Tables 4.8 and 4.9. Despite the X–ray diffraction analysis

showing the complex crystallises as the bis–THF adduct, once the product was washed

thoroughly and exposed to vacuum, NMR analysis showed all the ligands to be in an
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equivalent chemical environment in solution.

Carbon Assignment δ/ppm

1a 76.14

2a 35.50

Table 4.8: NMR Spectroscopy Resonances for the 13C{H} spectrum of UCl(OSi(OtBu)3)3 in d8–
toluene at room temperature [80]

Proton Assignment δ/ppm Temperature

(multiplicity, coupling constant) ◦C

B 8.68 -80

C 4.58

D 1.21

A 5.96 (s, 27H) 20

A 4.83 (s, 27H) 70

Table 4.9: NMR Spectroscopy Resonances for the 1H spectrum of UCl(OSi(OtBu)3)3 in d8–toluene
at variable temperatures [80]

A variable temperature 1H NMR experiment was conducted in order to assess the solution

state structure further. The tBu signal identified at δ 5.96 ppm at room temperature moves

from δ 8.68 ppm at -80◦C to δ 4.83 ppm at 70◦C. This signal is broad at extremely low or

high temperatures (FWHH = 0.65 ppm and 0.25 ppm) but sharpens around -20◦C (FWHH

= 0.09 ppm). In addition, at -20◦C two further resonances are observed at δ 4.79 and 1.06

ppm that shift to 4.58 and 1.21 when cooled to -80◦C. The ratio of these signals are 1:1:1

with the broad resonance previously assigned to tBu. This indicates that at temperatures

of -20◦C or below the siloxide ligands are in different chemical environments, whilst at

temperatures above -10◦C the siloxide ligands are in equivalent chemical environments

as shown in Figure 4.18 and confirmed by 29Si NMR which shows a single resonance at

δ -61.91 ppm.
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Figure 4.18: Solution state structure and NMR assignments for UCl(OSi(OtBu)3)3 in d8–toluene at
a) -80◦C to -20◦C and b) -10◦C to 70◦C
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Chapter 5

Reactivity studies of uranium

tris–tertbutoxy complexes

Between November 2012 and April 2014, most of the compounds synthesised as part of

this work were published by Mazzanti et al. of the Institut Nanonsciences et Cryogénie,

CEA, Grenoble. [90,162–164]

Reductive functionalisation of carbon oxides is proving to be of vital importance and looks

to provide huge potential applications with regards to solving the issues surrounding the

global energy crisis. [185,186] The chemistry of the 5f elements already contains reductive

functionalisation of carbon oxides, albeit in homogeneous phase and further research in

this area looks promising. Some interesting reviews on this subject have been published

and discussed in section 1.1.1. [1,5,187]
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5.1 Reactivity studies of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))]

5.1.1 Small molecule activation

In order to investigate the reactivity of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))], NMR spectro-

scopy studies were undertaken with carbon oxides and other small molecules as illus-

trated in Scheme 5.1.

Scheme 5.1: Reactivities of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] which were investigated

Each of these experiments were undertaken by adding one equivalent of the relevant gas

using a Toepler line, to the NMR spectroscopy sample which was dissolved in d8–THF and

were carried out at -78◦C, room temperature and over varying timescales. Unfortunately,

K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] was found to decompose at low temperatures and

over short time frames (days) to U(OSi(OtBu)3)4 and with the liberation of (tBuO)3SiOH

and isobutylene. This made the analysis of data from the reactivity studies problematic.

Due to the difficulties in obtaining data on any reactivities with small molecules, decom-

position analysis was undertaken on K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] over a period of

one month. A control sample was treated identically to the reactivity studies described

above (minus the gas addition) and NMR spectroscopy data was collected at low temper-

atures. Changes in the resonances were clearly identified even after a few days.

The results of these experiments are shown in Appendix F. However, ultimately the de-
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composition of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] interfered with any accurate analysis

of data and resonance assignments. Further isolation of any decomposition products or

products from the gas reaction were attempted but unsuccessful, probably due to the

mixture of products and reactants that were present in the reaction solution.

In November 2012, Mazzanti published NMR spectrum that showed the decomposition

of [(U(OSi(OtBu)3)3)2(µ−η1: η2CO3)] to U(OSi(OtBu)3)4 over a period of 1 to 6 days as

shown in Scheme 5.2. [162].

Scheme 5.2: Decomposition of [(U(OSi(OtBu)3)3)2(µ−η1: η2CO3)] to U(OSi(OtBu)3)4 (November
2012) [162]

Initially, on addition of CO2 to [(U(OSi(OtBu)3)2(η−OSi(OtBu)3))2], two further products

were formed, [(U(OSi(OtBu)3)3)2(µ−η1: η2CO3)] and U(OSi(OtBu)3)4 in a 2.5:1 ratio re-

spectively. However, leaving a solution of [(U(OSi(OtBu)3)3)2(µ−η1: η2CO3)] in toluene for

up to three days showed that the decomposition continued whether CO2 was present or

not. This suggests that the complex underwent a slow ligand rearrangement resulting in

the formation of U(OSi(OtBu)3)4 and an unidentified UIV carbonate complex. Analysis of

any decomposition of [(U(OSi(OtBu)3)3(µ−η6: η6- tol))2] was not published by Mazzanti,

however some analysis was carried out as part of this work on the decomposition of

K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))].

In this work, the 13C{H} NMR spectrum for the reaction of K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))]
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with CO, CO2 and CO/H2 all show the same resonance at approximately δ 31 ppm after

a few days, suggesting any reaction that had occurred with the gases does not effect the

decomposition product. The same resonance was also observed in the control sample

which did not have any gas added to the sample. This evidence, coupled with the co–

crystallisation of U(OSi(OtBu)3)4 with K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] in an inert at-

mosphere suggests the decomposition occurs via an intramolecular pathway not related

to any reaction with a gaseous small molecule.

In addition to Mazzanti’s work, analysis on the thermal stability of U(OSi(OtBu)3)4 was

carried out within this group. [80] The results showed the complex decomposed via an

intramolecular process, liberating (tBuO)3SiOH and isobutylene steadily over a period of

a few days. A solution of U(OSi(OtBu)3)4 in d8–toluene was sealed in a Young’s NMR

tube and pressurised with argon gas. 1H NMR analysis was carried out over 16 days, the

results of which are shown in Figure 5.1. The silanol resonances at δ 1.36 ppm which are

assigned to tBu and δ 1.84 ppm, assigned to Si–OH, increase in intensity over time. At

five days, two new alkene resonances appeared at δ 4.71 and 4.76 ppm along with a new

methyl resonance at δ 1.46 ppm, all of which increased with time in a linear fashion. Due

to the bi–dentate coordination observed in U(OSi(OtBu)3)4 and shown in Figure 4.13,

the tBu group on the internally solvating ligand becomes an excellent leaving group. The

NMR data suggests that the decomposition proceeds via proton abstraction from the tBu

group by a neighbouring siloxide ligand, resulting in the elimination of (tBuO)3SiOH and

iso–butylene which would account for the alkene resonances observed.



169

Figure 5.1: Thermal decomposition analysis of U(OSi(OtBu)3)4
[80]

5.2 Reactivity studies of UCl(OSi(OtBu)3)3

Further to the work described in Sections 4.4 and 4.5, the students also carried out

a number of reactivity studies in collaboration with the author, the results of which are

described below. [80,81]

5.2.1 Alkylation by metathesis

In order to provide a general starting material for the exploration of insertion reactions

of carbon oxides at uranium centres, an alkylated uranium species was required, which

could then undergo hydrogenation to a metal hydride, as shown in Equation 5.2.1.

U(R)(OSi(OtBu)3)3 + H2 → U(H)(OSi(OtBu)3)3 + RH (5.2.1)
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or direct insertion to form the alkyl carboxylate complex as shown in Equation 5.2.2.

U(R)(OSi(OtBu)3)3 + CO2 → U(O2CR)(OSi(OtBu)3)3 (5.2.2)

Accordingly, UCl(OSi(OtBu)3)3 was treated with equimolar amounts of KCH2Ph forming

a viscous orange/brown oil. Recrystallisation of the oil from hexane at -40◦C forms cubic

crystals which were analysed as the bis benzyl product, K[U(CH2Ph)2(OSi(OtBu)3)3].

Scheme 5.3: Synthesis of [U(CH2Ph)2(OSi(OtBu)3)3]K

5.2.2 Characterisation of K[U(CH2Ph)2(OSi(OtBu)3)3]: X–ray Diffraction

K[U(CH2Ph)2(OSi(OtBu)3)3] crystallises in the 21/n space group. The lattice parameters

for this structure are a = 13.787 Å, b = 21.080 Å, c = 21.756 Å, α = 90◦, β = 97.197◦, γ =

90◦.

The molecular structure is shown in Figures 5.2 and 5.3. The uranium centre has a

trigonal bipyramidal geometry with a C2v symmetry. Three siloxide ligands are bonded

in a monodentate fashion and two benzyl ligands are bonded cis to each other. The

potassium counter ion is coordinated to one of the benzyl ligands and two of the siloxide

ligands via four oxygens and two silicon atoms.

This UIV complex is observed with average U–O bond distances and O–Si bond dis-

tances of 2.181(3) Å and 1.604(4) Å, respectively. Of all the UIV complexes reported here,

K[U(CH2Ph)2(OSi(OtBu)3)3] has the longest average U–O bonds distance and one of the
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Figure 5.2: Molecular structure of K[U(CH2Ph)2(OSi(OtBu)3)3] (Hydrogen atoms omitted for clar-
ity) [80]

Figure 5.3: Core molecular structure of K[U(CH2Ph)2(OSi(OtBu)3)3] containing the benzyl car-
bons, Si, O and U atoms (Hydrogen atoms and tert–butyl carbon atoms omitted for
clarity) [80]

shortest average O–Si bond distance (only UCl(OSi(OtBu)3)3 being shorter by 0.005 Å).

This is likely due to the electronics of the benzyl ligands being more donating than either

chlorides or butoxy groups. The U–Cbenzyl bond distances are 2.405(5) Å and 2.480(5)

Å which are slightly shorter than average literature values (2.615 Å. [188]) and this is due

to the electronics of the siloxide ligands drawing electron density away from the uranium
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centre. The potassium counter ion reduces the U–C–C bond angle to 105.6(3)◦ of the

benzyl ligand it is coordinated to, compared to the non–coordinating benzyl–potassium

ligand which has a U–C–C bond angle of 120.6(4) ◦.

5.2.3 Characterisation of K[U(CH2Ph)2(OSi(OtBu)3)3]: NMR

13C{H} and 1H NMR spectrum of the K[U(CH2Ph)2(OSi(OtBu)3)3] are shown in Tables

5.1 and 5.2. The benzyl signals are difficult to assign accurately in the 13C{H} NMR

spectrum. The data indicate that there is only one benzyl environment whereas the 1H

NMR spectrum indicates two distinct benzyl environments. This discrepancy is likely due

to overlapping signals in the 13C{H} NMR spectrum and the presence of a broad signal

underlying the aromatic region.

The 1H NMR spectrum shows two distinct siloxide chemical environments with reson-

ances observed at δ 1.97 and 0.92 ppm in a 1:2 ratio which are assigned to the single

non–coordinating siloxide ligand and the two siloxide ligands coordinating to the po-

tassium counter ion respectively. 29Si NMR analysis confirms the presence of two siloxide

environments with resonances observed at δ 95.2 and -25.0 ppm.

Carbon Assignment δ/ppm

Ph ipso 129.72

Ph ortho 128.81

Ph meta 128.61

Ph para 162.22

OSi(OC(CH3)3) 72.80

OSi(OC(CH3)3) 38.21

Benzyl CH2 1.43

Table 5.1: NMR Spectroscopy Resonances for the 13C{H} spectrum of K[U(CH2Ph)2(OSi(OtBu)3)3]
in d6–benzene



173

Proton Assignment δ/ppm (multiplicity, coupling constant)

Ph meta 7.13 (d, 6H)

Ph para 7.07 (d, 5H)

Ph ortho 6.99 (d, 7H)

Benzyl CH2 1.49 (s, 4H)

tBunoncoordinating 1.97 (s, 27H)

tBuKcoordinating 0.92 (s, 54H)

Table 5.2: NMR Spectroscopy Resonances for the 1H spectrum of K[U(CH2Ph)2(OSi(OtBu)3)3] in
d6–benzene

5.3 Reactivity studies of U(OSi(OtBu)3)4

In order to ascertain if the U(OSi(OtBu)3)4 complex would reaction and activate small

molecules, reactivity studies were undertaken with a number of small molecules, the

results of which are presented here.

5.3.1 Reaction between U(OSi(OtBu)3)4 and CO2

U(OSi(OtBu)3)4 was dissolved in THF and reacted with 1 eq. of CO2 gas. After 24 hours

the resulting green solution was then cooled to -40◦C producing large green cubic crystals

suitable for X–ray diffraction analysis which was determined to be the bis–THF derivative

of the starting material U(OSi(OtBu)3)4(THF)2 showing the U–O bond is inert towards

CO2 in this instance.

5.3.2 Reaction between U(OSi(OtBu)3)4 and O2

U(OSi(OtBu)3)4 was dissolved in THF and reacted with a one molar equivalent of O2 gas.

After a few hours, the resulting yellow solution was worked up and recrystallisation was
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Scheme 5.4: Proposed synthesis and structure of the product from the reaction between
U(OSi(OtBu)3)4 and O2

attempted but unsuccessful.

1H NMR analysis shows a sharp resonance at δ 2.43 ppm indicating a single siloxide

environment and no internal ligand solvation. Unfortunately mass spectrometry analysis

was difficult to assign and therefore IR analysis was attempted. The IR spectrum shows

a strong band at 904 cm−1 which is normally found to be a uranyl stretch in line with the

literature analysis in Chapter 3. In addition the visible spectrum shows no indication of

f–f transitions indicating the species is a 5f 0 complex (UVI). A broad peak is observed at

428 nm which is potentially the uranyl LMCT band.

5.4 Synthesis of U(µ2−O2)(OSi(OtBu)3)4(THF)

In order to attempt an oxidation without addition of oxygen atoms to the uranium centre,

U(OSi(OtBu)3)4 was treated with an excess of iodine. U(OSi(OtBu)3)4 was dissolved in

hexane and excess I2 was sublimed onto the solution.

Scheme 5.5: Synthesis of U(µ2−O2)(OSi(OtBu)3)4(THF)

The blue solution quickly turned indigo and was left exposed to I2 for a further 20 minutes.
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After work–up the black residue was recrystallised from THF at -40◦C resulting in black

plate crystals suitable for X–ray diffraction.

5.4.1 Characterisation of U(µ2−O2)(OSi(OtBu)3)4(THF): X–ray Diffraction

U(µ2−O2)(OSi(OtBu)3)4(THF) crystallises in the P 21/n space group with an R factor of

4.41. The lattice parameters for this structure are a = 24.3626(4) Å, b = 13.9506(3) Å, c

= 25.3050(3) Å, α = 90◦, β = 118.5590(10)◦, γ = 90◦.

The molecular structure is shown in Figures 5.4 and 5.5. The uranium centre is pseudo–

octahedral with the O2 ligand occupying one vertex along on of the axes. The complex

also has three equatorial siloxide ligands, one axial siloxide ligand trans to a side–on

bound diatomic oxygen and an equatorial THF molecule. The peroxo group was assigned

as such with Q–peak analysis as it showed 17 electrons across the two sites. As iodine

has 53 electrons it was ruled out as a disordered iodine atom. The only explanation is air

leaked into the system during the reaction and oxygen reacted with the uranium complex.

Figure 5.4: Molecular structure of the peroxo species U(η2−O2)(OSi(OtBu)3)4(THF)) (Hydrogen
atoms omitted for clarity) [80]



176

Figure 5.5: Core molecular structure of the peroxo species U(η2−O2)(OSi(OtBu)3)4(THF)) contain-
ing the Si, O and U atoms and THF molecule (Hydrogen atoms and tert–butyl carbon
atoms omitted for clarity) [80]

The O2 ligand is bound to the uranium asymmetrically. The U–O distances are 2.200(2)

Å and 2.187(3) Å whilst the O–O distance is observed at 1.374(4) Å which is a significant

change from free O2 at 1.21 Å [189] but within normal O–O bond distances for this type of

complex as previously discussed in Section 3.6.1.

The average U–O bond distance is observed at 2.091 Å which, unsurprisingly due to the

peroxo ligand, is the shortest so far within the complexes reported here. This means

the O–Si bond distance is one of the longest at 1.629 Å average with only the inverted

sandwich complex showing longer O–Si bond distances (0.023 Å). The U–OTHF bond

distance is 2.4804 Å.

5.4.2 Characterisation of U(µ2−O2)(OSi(OtBu)3)4(THF): NMR

13C{H} and 1H NMR spectrum of the peroxo are shown in Tables 5.3 and 5.4.

The NMR data confirms the structure observed in the solid state is also stable in solution

as the number of proton and carbon environments observed equate to those of the THF
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adduct. The 13C{H} NMR spectrum data are shown in Table 5.3 and are assigned ac-

cordingly, three clear OC(CH3)3 carbon environments along with three further OC(CH3)3

carbon environments.

Carbon Assignment δ/ppm

OSi(OC(CH3)3) (cis to THF) 72.82

OSi(OC(CH3)3) (trans to peroxo) 72.52

OSi(OC(CH3)3) (trans to THF) 71.51

OSi(OC(CH3)3) (cis to THF) 32.47

OSi(OC(CH3)3) (trans to peroxo) 32.11

OSi(OC(CH3)3) (trans to THF) 31.79

Table 5.3: NMR Spectroscopy Resonances for the 13C{H} spectrum of
U(µ2−O2)(OSi(OtBu)3)4(THF) in d6–benzene

The 1H NMR data are shown in Table 5.4 and support the hypothesis that the THF adduct is

stable in solution. Four clear proton environments are identified with one clearly assigned

to THF and the other three assigned to the siloxide ligands, using the multiplicities to

identify individual resonances.

Proton Assignment δ/ppm (multiplicity, coupling constant)

OSi(OC(CH3)3) (trans to O2) 2.23 (s, 29H)

THF 2.05 (s, 8H)

OSi(OC(CH3)3) (cis to THF) 1.73 (s, 54H)

OSi(OC(CH3)3) (trans to THF) 1.66 (s, 27H)

Table 5.4: NMR Spectroscopy Resonances for the 1H spectrum of U(µ2−O2)(OSi(OtBu)3)4(THF)
in d6–benzene

The reaction was repeated with little success. I2 was repeatedly diffused over a solution

of U(OSi(OtBu)3)4 dissolved in hexane but resulted in a green solution instead of the

desired black solution described above. In an attempt to recreate an oxygen ‘impurity’,

one molar equivalent on O2 was added to the solution during the reaction, but resulted in



178

intractable orange and brown solids.
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Chapter 6

Conclusions

Siloxides have been used as molecular mimics for silica surfaces for a number of years.

Despite this, research into using uranium in these systems has been lacking as most of

the work concentrates on transition metals and to a lesser extent, the lanthanides. In

addition, the type of siloxide previously investigated is also limited, with tris tert–butoxy

siloxide forming a significant proportion of examples.

During the course of this work a number of previously unreported complexes have been

synthesised and characterised using Ph3SiO− as the ligand. The complexes, K[U(OSiPh3)5],

([K(py)6] [U(OSiPh3)5(py)])2 and K[(Ph3SiO)5U(THF)] are all presented here with full char-

acterisation data, including ESI HRMS analysis of the formation. In addition, investigations

into the UV–Vis spectra of these complexes were attempted, with interesting results which

can aid a better understanding of these complex systems and provides a valuable insight

into the f–elements and the role f–orbitals have on the chemistry and geometry of such

systems.

In order to open the coordination sphere to form a heteroleptic complex of the general

form U(OSiPh3)3X where X represents a good leaving group, attempts where made to
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use TMSOTf in a metathesis type reaction in order to remove a siloxide ligand in favour

of the excellent leaving group, TfO−. ESI HRMS and NMR spectroscopy techniques were

employed to analyse these reactions at each step and to identify the products synthes-

ised.

Reactivity studies were undertaken on the uranium siloxides using a number of gaseous

small molecules such as oxygen and carbon oxides. As a result of these studies, a rare

and novel UV monooxo complex, [K(THF)2][(Ph3SiO)4UO(THF)] was synthesised, suc-

cessfully isolated and characterised. The discussion includes observations of an inter-

mediate species and a possible mechanism of formation. In addition, a uranyl derivative,

K2[(Ph3SiO)4UO2] was also synthesised and characterised.

Finally, a second ligand system which could be used to mimic a silica surface is investig-

ated and the complexes, K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))], [((tBuO)3SiO)3U]2(µ2- O)3

and U(OSi(OtBu)3)4 are presented here along with reactivity studies on the complexes.

During the course of this work, similar complexes were published by Mazzanti [90,102,162–164]

and the complexes are analysed and compared to the published structures.
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Chapter 7

Experimental

All solvents used in synthetic procedures were pre-dried over 4 Å (1.6mm) molecular

sieves before reflux over the appropriate drying agent, which are collated in Table 7.1.

Solvent Drying agent Solvent Drying agent

Diethyl ether NaK3 Benzene K

Tetrahydrofuran K Toluene Na

Dimethoxyethane K Pentanes NaK3

Dioxane Na Hexanes K

Methanol Mg(OMe)2 Pyridine K or CaH2

Table 7.1: Drying agents for solvents

Anhydrous solvent was then collected in an ampoule containing a potassium mirror (for

hydrocarbons) or 4 Å molecular sieves (for ethers). Solvents used for NMR spectroscopy

were dried over CaH2 or K prior to reflux for approximately one week, before being va-

cuum transferred into an ampoule containing a potassium mirror or NaK. These solvents

were then freeze, pump, thaw, degassed at least three times before use.
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Air or moisture sensitive samples for NMR spectroscopy were prepared by vacuum trans-

fer on the high-vacuum line of the appropriate NMR solvent into an NMR tube sealed with

a Young’s tap.

All air or moisture sensitive solids and solutions were handled using standard Schlenk

techniques under argon or nitrogen, or in an argon-filled glove box, with concentrations

of H2O and O2 less than 0.1 ppm. Glassware was dried in a 170◦C oven after being

cleaned thoroughly in a base and acid bath. Recrystallizations were performed in a glove

box freezer (-40◦C), in a chest freezer (-30◦C) or in a -80◦C freezer. Reactions were

conducted in standard Schlenk ware, vials or high-vacuum ampoules.

NMR spectra were recorded on either a 400 MHz or 500 MHz Varian spectrometer, with

resonant frequencies for different nuclei given in Table 7.2. 29Si NMR spectra were run

with a relaxation delay of 1 second or 0.1 second for weak samples, all others were run

with the default settings.

B0 / T 9.3778 11.74

Nucleus Frequency / MHz Frequency / MHz

13C 100.5801 125

1H 400 500

19F 376.3760 —

29Si 79.4 —

Table 7.2: NMR frequencies

Alkali metals and alkali metal hydrides were freed of hydrocarbon oil by extensive washing

with hexane. tBuLi was received as a nominal 1.6 M solution in hexane. The solution was

filtered through a fine frit and then evaporated in the glove box to yield a white crystalline

solid that was stored at -40◦C. All other reagents were used as received unless specified
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in the preparation.

All negative and positive electrospray ionisation ESI were conducted by Dr. A. Abdul-

Sada, University of Sussex. A 4.7 Tesla Bruker Daltonics APEX III Fourier Transform

Mass Spectrometer (FTMS) with electrospray ionisation (ESI) was used to carry out all the

experiments in this work. Due to the low volatility and thermal liability of the ionic uranium

complexes, the electron impact EI was not suitable. In order to monitor the reaction and

characterise the final product at different stages, both negative and positive electrospray

ionisation ESI was used. The complexes were prepared in the glove box and loaded in a

250 µL Hamilton gas-liquid-tight syringe. Samples were dissolved in dry THF which was

the solvent used for spraying the complexes. The concentration of the sample for ESI was

1ng/µL. The Fourier transformer mass spectrometry APX III 4.7 Tess high resolution with

Apolo ESI source was used. The negative sources conditions included; capillary voltage

4400 V, spray shield 3800 V, capillary exit - 187, dry temperature 150 C, skimmer 1-24.5

v, skimmer 2-7.8. These were optimised to help in using THF as a spray solvent.

All single crystal X-ray data were collected and solved by Dr. M. Roe at the University

of Sussex. Data were collected at 173 K with an Enraf-Nonius FR590 diffractometer,

using graphite-monochromated Mo K α radiation (λ - 0.71073 Å). Data collection was

made with a 95 mm CCD camera on a κ-goniostat, handled using KappaCCD software.

Final cell parameter calculations were performed using the WinGX package. The data

were corrected for absorption using MULTISCAN program. Refinement was performed

using SHELXL-97. ORTEP representations were generated using ORTEP-3 and POV-

Ray software.

UV-vis data were collected using a Varian Cary-50 spectrophotometer, using a 1 cm

quatrz cell sealed with a Young’s tap for air and / or moisture sensitive samples. All

samples were dissolved in THF, was the masses of analyte and solvent accurately known.
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Background absorption was subtracted manually from each data set, using absorption

data previously collected of anhydrous THF in a matched quartz cell, using OriginPro 8

software.

Elemental analysis were carried out by E. M. Pascher at Mikroanalytisches Labor Pascher,

Germany. Samples were flame sealed under vacuum.

IR data was collected using in situ ReactIRTM equipment with a diamond probe, with

samples prepared as THF solutions before transfer to an IR cell fitted with gas-tight O-

rings and a Rotaflo® stopcock, connected to a high vacuum argon line with a Swagelok®

connection to a gas tight line and Toepler pump.

7.1 tri-(naphthyl)silanol

Activated Mg turnings (1.51 g, 62.1 mmol, excess) were added to enough Et2O to cover

the turnings. The Grignard reaction was then initiated with a single crystal of I2 and a few

drops of 1-bromonaphthalene with no stirring. Once an exothermic reaction had begun

a 0.1 M solution of 1-bromonaphthalene (3.5 mL, 25mmol) in Et2O (220 mL) was ad-

ded dropwise and stirring commenced.The reaction mixture started turning cloudy before

turning clear and then orange/brown. After 2 hours of stirring, the Mg turnings appeared

black. This solution was then added dropwise to a 0.1 M solution of SiCl4 (1 mL, 8.7

mmol, 0.35 eq.) in Et2O (85 mL) over a period of one hour with no immediate changes

observed. The reaction was left stirring for 60 hours which resulted in a tan/beige pre-

cipitate. HClaq. was then added causing a vigorous exothermic reaction and a yellow

precipitate which was suspended at the interface between a yellow organic fraction and

a colourless aqueous fraction. The organic fraction was collected and washed with water

and separated from the aqueous fraction. It was then dried using Na2SO4 which was



185

removed with filtration. The solvent was then removed in vacuo resulted in a yellow solid

which was recrystallised from hot ethanol. [80]

Yield: 2.06 g / 58%

1H NMR (d6-benzene): δ / ppm: 7.74 (d, J = 5 Hz, 1H, 9-position), 7.72 (d, J = 5 Hz,
1H, 6-position), 7.50 (d, J = 10 Hz, 1H, 2-position),
7.36 (t, J = 5 Hz, 1H, 8-position), 7.32 (d, J = 5 Hz,
1H, 4-position), 7.22 (t, J = 7.5 Hz, 1H, 7-position),
7.02 (t, J = 10 Hz, 1H, 3-position), 7.00 (s, Si−OH)

Mass Spectroscopy (EI): m/z = 426 ((C10H7)3Si−OH)

7.2 Synthesis of tri-(4-biphenyl)silanol

A 0.17 M solution of 4-bromobiphenyl (1.00 g, 4.29 mmol) in THF (25 mL) was cooled to

-78◦C. nBuLi (3 mL, 4.29 mmol, 1 eq.) in hexane (1.37 M solution) was added dropwise,

with stirring. The clear solution turned yellow and a white precipitated was observed.

The reaction was left stirring at -78◦C for one hour. A 0.2 M solution of SiCl4 (0.23 mL,

2 mmol, 0.4 eq.) in THF (10 mL) was then added dropwise with stirring. The reaction

turned clear and colourless and was left stirring for 18 hours, slowly warming to room

temperature. The reaction was then cooled to 0◦C before a 0.78 M solution of KOH

(0.33 g, 5.89 mmol) in H2O (7.5 mL) was added. A white precipitate was observed upon

addition which was filtered and washed with cold Et2O. The white solid was analysed

and assigned as (C12H9)2Si(OH)2 and not the desired tri-(4-biphenyl)silanol. [80]

Yield: 0.36 g / 45.6%

1H NMR (d2-CD2Cl2): δ / ppm: 7.81 (d, J = 10 Hz, 1H, 8-position), 7.78 (d, J = 10
Hz, 2H, 2-position), 7.68 (d, J = 5 Hz, 2H, 6-position), 7.60-7.64
(m, 3.5H, 3,7-positions)

Mass Spectroscopy (EI): m/z = 368 ((C12H9)2Si(OH)2)
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7.3 tri-(1-anisyl)silanol

Anisole (2.17 mL, 20 mmol, 1 eq.) was diluted in hexane (34.4 mL) and THF (5.6 mL).

TMEDA (3.00 mL, 20 mmol, 1 eq.) was added to the reaction and the solution was then

cooled to -78◦C. A 1.6 M solution of nBuLi (20 mmol, 1 eq.) in hexane was then added

dropwise to the reaction, with stirring over a period of one hour. The clear solution rapidly

turned yellow and then cloudy towards the end of the addition. The reaction was left

stirring and warming to room temperature for three hours. The solution was then added

dropwise to a 0.33 M solution of SiCl4 (0.76 mL, 6.7 mmol, 0.33 eq.) in THF (20 mL) at

room temperature. The clear solution turned pale yellow and white vapour was observed.

The reaction was left to stir for 16 hours and then cooled to 0◦C. H2O was then added

slowly which resulted in a white precipitate which was collected by filtration and washed

with cold Et2O. [80]

Yield: 0.80 g / 34.2%

1H NMR (d2-CD2Cl2): δ / ppm: 7.48 (d of d, J = 5,10 Hz, 1H, 3-position), 7.42 (t of d,
J = 0,7.5 Hz, 1H, 4-position), 6.97 (t, J = 10 Hz, 1H,
5-position), 6.88 (d, J = 10 Hz, 1H, 6-position)

Mass Spectroscopy (EI): m/z = 349 ((C7H7O)3Si), 276 ((C7H7O)2Si(OH)2)

7.4 Synthesis of tri-(2,4,6-triisopropylbenzene)silanol

2-Bromo 1,3,5-triisopropylbenzene (0.447 mL, 1.765 mmol, 1 eq.) was diluted in THF and

cooled to -78◦C. A 1.6 M solution of nBuLi (0.30 mL, 1 eq.) in hexane was added dropwise

to the solution of 2-bromo 1,3,5-triisopropylbenzene over a period of one hour resulting

in a dense white vapour. The solution was left stirring for three hours. The solution was

then added dropwise to a 0.33 M solution of SiCl4 (0.0675 mL, 0.5884 mmol, 0.33 eq.) in
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THF at -78◦C resulting in the formation of a white vapour. After one hour the solution had

turned yellow and was left stirring and warmed to room temperature over a period of 12

hours. The predicted product (C15H23)3SiCl was then extracted by filtration to remove the

side product KCl (0.1072 g recovered) and solvent removed in vacuo leaving a yellow oil.

Mass Spectroscopy (EI): m/z = 260

7.5 Synthesis of tri-(2-mesitylene)silanol

2-Bromomesitylene (0.384 mL, 2.511 mmol, 1 eq.) was diluted in THF and cooled to -

78◦C. A 1.6 M solution of nBuLi (0.43 mL, 1 eq.) in hexane was also cooled to -78◦C and

added dropwise to the solution of 2-Bromomesitylene over a period of one hour resulting.

The solution initially turned bright yellow with a white vapour and then turned beige. The

solution was left stirring for one hour at -78◦C and a white precipitate was observed. The

solution was then added dropwise to a 0.33 M solution of SiCl4 (0.0961 mL, 0.837 mmol,

0.33 eq.) in THF at -78◦C resulting in the formation of a white vapour and the solution

turned yellow. The reaction was left stirring at -78◦C for one hour and warmed to room

temperature over a period of 3 hours and the solution turned brown/red. The solution was

filtered with no obvious solid extracted, the side product, KCl (0.1322 g recovered) was

extracted from hexane and the solvent removed from the filtrate in vacuo and analysis

undertaken.

Mass Spectroscopy (EI): m/z = 120

7.6 Characterisation of Ph3SiOH

Tiphenylsilanol (98%) was purchased from Sigma Aldrich and used as received.
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13C{H} NMR (d8-THF): δ / ppm: 136.91 (ipso), 134.76 (ortho), 129.21 (para), 127.31
(meta)

1H NMR (d8-THF): δ / ppm: 7.61 (d, J = 6.8 Hz, 6H, ortho), 7.33 (m, 9H, meta /
para), 6.02 (s, 1H, OH)

29Si NMR (d8-THF): δ / ppm: -17.02
HSQC NMR (d8-THF): δ / ppm: 7.62, 134.87 (ortho); 7.36, 129.31 (para); 7.32,

127.39 (meta); 3.59, 66.94 (THF); 1.73, 24.77 (THF)
HMBC NMR (d8-THF): δ / ppm: 7.61, 129.15; 7.60, 136.83; 7.30, 136.85; 6.01,

136.85; 3.58, 66.33 (THF); 3.58, 24.43 (THF); 1.72, 66.36
(THF); 1.72, 24.45 (THF)

7.7 Synthesis of Ph3SiOK

Synthetic methods were found in the literature for the synthesis of Ph3SiONa, however

the methods used multiple solvents and heating up to 115◦C which seemed overly com-

plex. [190] The following methods were adapted from a synthesis published by Caulton. [89]

Triphenylsilanol (4.3948g, 0.0159 mol, 1 eq.) was added to hexane and stirred. Po-

tassium hydride (0.6377g, 0.0159 mol, 1 eq.) was added and no immediate changes

were observed. After a few minutes a milky white precipitate was observed along with

the evolution of a gas (presumed to be H2). The solution left to stir for 24 hours before it

was filtered, washed three times with hexane and dried in vacuo for four to six hours.

Yield: 4.8038 g / 96.08 %

13C{H} NMR (d8-THF): δ / ppm: 145.77 (ipso), 135.81 (ortho), 128.54 (para), 128.27
(meta), 67.57 (THF), 25.51 (THF)

1H NMR (d8-THF): δ / ppm: 7.49 (d, J = 6.9 Hz, 2H, ortho), 7.25-7.17 (m, 3H,
meta/para), 3.58 (THF), 1.73 (THF)

HSQC NMR (d8-THF): δ / ppm: 7.47, 135.53; 7.18, 128.11; 3.58, 67.57; 1.73, 25.58
HMBC NMR (d8-THF): δ / ppm: 7.46, 145.75; 7.46, 135.80; 7.46, 128.45; 7.19,

135.81; 7.16, 128.27; 7.15, 145.74; 3.58, 67.57;
3.58, 25.47; 1.73, 67.59; 1.73, 25.56
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7.8 Synthesis of UCl4

The method used to synthesise UCl4 was taken from the literature [191] and modified by

Ibers [192] in 2007. It should also be noted that the method used here presents an explo-

sion risk and an improved synthesis has been published by Kiplinger. [193]

UO3 (3.7800g, 0.0132 mol, 1 eq.) was added to a large three necked round bottomed

flask fitted with a reflux condenser, a thermometer and a glass stopper. A glass stirrer

bar was also added to the flask. Hexachloropropene (9.5mL, 0.0674 mol, 5 eq.) was

then carefully added and the solution was stirred. The solution was gradually heated, at

approximately 40◦C reflux was observed. At 140◦C no reaction had occurred and it was

switched off overnight. At 163◦C a slight colour change was observed and at 166◦C an

exothermic reaction occurred followed by a colour change to a deep red. Following the

initial reaction a green line was observed on the edge of the flask followed by growth of

large single crystals. The solution was left at reflux for 1 hour before being switched off

overnight. Reflux was restarted at 168◦C and left for eight hours, this was repeated three

times, before being left to cool and stir for 48 hours.

Carbon tetrachloride (20mL) was added to the reaction to wash out any unreacted hexa-

chloropropene and filter canulated out, this was repeated three times. Carbon tetrachlor-

ide was then added again and the green solid was canulated out into a clean round

bottomed flask. The carbon tetrachloride was then filter canulated out and the resulting

green solid was dried in vacuo.

Yield: 4.0522g / 81%
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Compound λ / nm ε / L mol−1 cm−1 A Assignment

UCl4 408.0 1.87 0.123 3P,1D [119]

in THF 438.0 4.79 0.315 —

453.9 6.55 0.431 1I [119]

470.0 4.35 0.286 —

489.9 4.57 0.301 —

508.0 3.42 0.225 3P [119]

556.0 3.47 0.228 3P [119]

645.9 11.58 0.762 —

666.1 10.78 0.709 —

UCl4 437.5 18.83 0.098 —

in Toluene 453.5 23.25 0.121 1I [119]

491.0 15.95 0.083 —

549.5 10.95 0.057 3P [119]

587.5 8.84 0.046 1D,3P [119]

648.0 16.91 0.088 —

664.0 18.83 0.098 —

Table 7.3: Molar absorptivity (ε) of the compound UCl4 in THF and toluene with assignments

7.9 K[U(Ph3SiO)5]

Uranium tetrachloride (0.500g, 1.3165 mmol, 1 eq.) was suspended in THF and stirred

vigorously. Triphenylsiloxide (2.0700g, 6.5824 mmol, 5 eq.) was dissolved in THF and

then added to the UCl4 dropwise over a period of five minutes. A colour change from

dark green to bright green to dark blue to dark purple was observed. After two hours the

solution was dark pink and the reaction was stirred for 24 hours. The solution was filtered

through a frit and the solvent removed in vacuo. The resulting sticky pink product was

washed in pentane until a loose pale pink powder. The solid was dissolve in toluene and
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filtered to remove the side product, KCl and left to recrystallise at room temperature.

Yield: 1.6406g / 75.33%

13C{H} NMR (d8-Toluene): δ / ppm: 150.19 (ipso), 137.47 (Toluene), 129.09-128.61
(Toluene), 128.45 (ortho), 128.18-127.70 (Toluene), 127.11
(para), 126.58 (meta), 125.35-124.87 (Toluene), 20.78-
19.83 (Toluene)

1H NMR (d8-Toluene): δ / ppm: 7.05 (d, J = 7.2 Hz, 1H, Toluene), 6.97 (d, J =
10.4 Hz, 2H, Toluene), 6.54 (s, 7H, para), 5.61 (s, 12H,
meta), 4.91 (s, 10H, ortho), 2.15-2.10 (m, 2H, Toluene)

HSQC NMR (d8-Toluene): δ / ppm: 7.07, 127.52 (Toluene); 6.96, 128.25 (Toluene);
6.55, 127.49 (para); 5.62, 126.28 meta; 2.09, 20.40
(Toluene)

HMBC NMR (d8-Toluene): δ / ppm: 7.08, 137.50; 7.08, 128.53; 7.00, 128.63; 6.75,
128.71; 6.54, 126.77; 6.33, 128.28; 2.09, 137.86;
2.09, 129.32

Anal Calcd: C, 65.37; H, 4.57; O, 4.84; K, 2.36; Si, 8.46; U, 14.39; Found: C, 64.84,
H, 4.54: O, 4.0

UV-Vis (Toluene) nm / A : 427.5, 0.245; 466.0, 0.373; 501.0, 0.173; 554.6, 0.483; 595.4,
0.224; 607.5, 0.237; 654.0, 0.272; 735.5, 0.100

7.10 ([K(py)6][(Ph3SiO)5U(py)])2

Uranium tetrachloride (0.0201g, 0.0529 mmol, 1 eq.) was added to THF at room temper-

ature and stirred vigorously until dissolved. Ph3SiOK (0.1g, 0.3179 mmol, 6 eq.) was

added to THF and then added dropwise to the UCl4 solution, stirring vigorously. Within

minutes the solution had changed from green to lilac to pink. The solution was filtered

through a grade 3 frit and the solvent was removed in vacuo. The pale pink precipitate

was washed in pentane four times and then dried in vacuo for 30 minutes. The solid was

then dissolved in a minimum amount of toluene and an excess of hexane was added. A

pink solid precipitated out which was filtered and dried in vacuo (0.0681g). The pink solid

turned bright orange when dissolved in a minimum amount of pyridine. The orange solu-

tion was filtered and left to cool to -40◦C for three days which resulted in orange crystals
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approximately 1mm in size. The crystals were then filtered and washed in cold pyridine

over a pre-cooled frit.

Yield: 0.0545g / 55%

13C{H} NMR (d5-Pyridine): δ / ppm: 149.80 (pyridine), 138.15, 137.43 ortho, 135.81
(pyridine), 129.52, 128.72, 128.12 para, 127.71 meta,
125.87, 123.83 (pyridine), 21.44

1H NMR (d5-Pyridine): δ / ppm: 9.22 (s, broad, 6H, ortho), 8.74 (m, 1H, pyridine),
8.05 (m, 1H), 7.62 (m, 1H, pyridine), 7.50 (m, 1H, pyridine),
7.29 (q, J = 11.5 Hz, 3H, para), 7.08 (s, 6H, meta), 2.29
(s, 1H)

HSQC (d5-Pyridine): δ / ppm: 8.34, 136.83 (ortho); 8.28, 136.40; 8.01, 135.82;
7.58 (pyridine), 135.91; 7.47, 130.24; 7.47 (pyridine),
128.47; 7.26, 128.24 (para); 7.25, 126.57; 7.06, 129.45;
7.04, 127.85 (meta); 2.26, 21.81

7.11 K[(Ph3SiO)5U(THF)]

Uranium tetrachloride (0.5000g, 1.3165 mmol, 1 eq.) was added to THF at room temperat-

ure and stirred vigorously until suspended. Ph3SiOK (2.0700g, 6.5824 mmol, 5 eq.) was

added to THF and then added dropwise to the UCl4 solution, stirring vigorously. Within

minutes the solution had changed from dark green to turquoise to blue to lilac. After

four hours the solution was filtered through a grade 3 frit and the solvent was removed in

vacuo. The pink solid from the filtrate was washed in pentane five times and then dried

in vacuo for 30 minutes.

Yield: 2.1327g / 82.98%
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13C{H} NMR (d8-THF): δ / ppm: 143.94 (ipso), 138.04 (ortho, 130.58, 128.41
(para, 128.11 (meta, 67.57 (THF), 25.61 (THF)

1H NMR (d8-THF): δ / ppm: 8.96 (s, 2H, ortho), 7.12 (t, J = 7.3 Hz, 1H, para),
6.87, (t, J = 7.1 Hz, 2H, meta), 3.58 (s, 1H, THF), 1.77
(1H, THF)

29Si HMBC (d8-THF): δ / ppm: 8.97, -29.01; 7.13, -28.99; 6.86, -28.99
29Si HMBC -38 ◦C (d8-THF): δ / ppm: 9.52, -43.59; 6.00, -15.73
HSQC (d8-THF): δ / ppm: 8.95, 138.31 (ortho); 7.11, 128.69 (para); 6.85,

128.42 (meta); 3.58, 67.42 (THF); 1.76, 25.37 (THF)
HMBC (d8-THF): δ / ppm: 8.97, 137.91; 8.97, 128.08; 7.54, 137.91;

7.27, 143.79; 7.27, 127.60; 7.13, 137.90; 6.86,
143.79; 6.86, 127.99; 6.71, 138.02; 6.44, 143.79;
6.44, 127.98; 3.58, 67.29; 3.58, 25.37; 1.77,
67.20; 1.77, 25.34

Mass Spectroscopy (HRMS Negative ESI):
1 eq. Ph3SiOK m/z = 358.9515 (5.4x106), 414.8908 (3.8x106), 655.0104 (4.7x106),
895.1304 (0.9x106), 1275.05 (0.6x106)
2 eq. Ph3SiOK m/z = 275 (0.4x106), 358.9517 (1.1x106), 655.0105 (1.0x106), 895.1304
(1.7x106), 1170.2239 (0.7x106), 1410.3450 (0.6x106)
3 eq. Ph3SiOK m/z = 1133.2587 (0.2x107), 1410.3479 (0.2x107), 1614.4872 (0.8x107)
4 eq. Ph3SiOK m/z = 1614.4781 (2.0x106)
5 eq. Ph3SiOK m/z = 1614.4781 (2.0x106)
6 eq. Ph3SiOK m/z = 275.0889 (0.6x107), 589.1415 (0.9x107), 912.30 (0.2x107),
1156.3733 (1.0x107), 1401.4449 (0.6x107)

UV-Vis (THF) nm / A : 397.5, 0.216; 426.5, 0.259; 469.5, 0.125; 489.5, 0.167; 525.5,
0.187; 549.0, 0.357; 593.1, 0.176; 628.5, 0.071; 652.6, 0.121; 716.0, 0.169

7.12 Experiments with TMSOTf

7.12.1 TMSOTf

TMSOTf (99%) was purchased from Sigma Aldrich and used as received.

13C{H} NMR (d8-THF): δ / ppm: 119.76 (q, 1JCF = 316.8 Hz, TMS-OTf), 0.30
(TMS-OTf)

1H NMR (d8-THF): δ / ppm: 0.45 (TMS OTf)
19F NMR (d8-THF): δ / ppm: 74.40, 76.53, 76.72
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7.12.2 Reaction between TMSOTf + Ph3SiOH

Ph3SiOH (ca. 0.001 g, 0.0036 mmol, 1 eq.) was added to an NMR tube and dissolved in

a minimum amount of d8-THF. TMSOTf (ca. 0.65 µL, 0.0036 mmol, 1 eq.) was the added

to the sample and analysis undertaken.

13C{H} NMR (d8-THF): δ / ppm: 137.22 (TMS OSiPh3 ipso), 135.87
(TMS OSiPh3 ortho), 130.65 (TMS OSiPh3 para), 128.62
(TMS OSiPh3 meta), 67.57 (THF), 25.44 (THF), 2.23
(TMS OSiPh3)

1H NMR (d8-THF): δ / ppm: 7.56 (dd, J = 7.9, 1.3 Hz, 2H, TMS OSiPh3 ortho),
7.37 (d, J = 7.3 Hz, 1H, TMS OSiPh3 para), 7.33
(d, J = 7.2 Hz, 2H, TMS OSiPh3 meta), 3.58 (THF), 1.72
(THF), 0.09 (TMS OSiPh3)

19F NMR (d8-THF): δ / ppm: 76.24, 79.11

7.12.3 Reaction between TMSOTf + Ph3SiOK

Ph3SiOK (ca. 0.001 g, 0.0032 mmol, 1 eq.) was added to an NMR tube and dissolved

in a minimum amount of d8-THF. TMSOTf (ca. 0.575 µL, 0.0032 mmol, 1 eq.) was the

added to the sample and analysis undertaken.

13C{H} NMR (d8-THF): δ / ppm: 137.28 (TMS OSiPh3 ipso), 135.93 (TMS OSiPh3
ortho), 130.70 (TMS OSiPh3 para), 128.67 (TMS OSiPh3
meta), 67.57 (THF), 25.83 (THF), 2.28

1H NMR (d8-THF): δ / ppm: 7.57 (d, J = 7.1 Hz, 2H, TMS OSiPh3 ortho), 7.37
(d, J = 7.1 Hz, 1H, TMS OSiPh3 para), 7.34 (d, J = 7.1 Hz,
2H, TMS OSiPh3 meta), 0.10 (s, 5H)

19F NMR (d8-THF): δ / ppm: 76.23, 79.10

7.12.4 Reaction between TMSOTf + K[(Ph3SiO)5U(THF)]

K[(Ph3SiO)5U(THF)] (0.0200g, 0.0121 mmol, 1 eq) was dissolved in THF. Trimethylsilyltri-

flate (2.2 µL, 0.0121 mmol, 1 eq.) was injected into the solution and analysis undertaken.

The second equivalent of TMSOTf (2.2 µL, 0.0121 mmol, 1 eq.) was then added to the
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reaction mixture and analysis was repeated. The reaction turned the pink solution pale in

colour and resulted in an intractable mixture.

1eq. TMSOTf
13C{H} NMR (d8-THF): δ / ppm: 137.31, 135.96, 130.72, 130.41, 129.86, 129.10,

128.69, 128.63, 128.52, 126.23, 67.57, 25.51, 2.28
1H NMR (d8-THF): δ / ppm: 7.96 (s, 1H), 7.59 (m, 4H), 7.35 (m, 6H), 7.19

(t, J = 7.4 Hz, 2H), 7.11 (m 2H), 7.00 (s, 1H), 6.88 (s, 1H),
3.58 (s, 7H), 2.31 (s, 1H), 1.73 (s, 3H), 1.10 (s, 3H)

2eq. TMSOTf
13C{H} NMR (d8-THF): δ / ppm: 137.38, 136.02, 130.79, 129.93, 129.16, 128.76,

126.30, 67.57, 25.54, 2.35
1H NMR (d8-THF): δ / ppm: 15.35 (s, 4H), 13.45 (s, 2H), 13.27 (s, 3H), 12.03

(t, J = 7.2 Hz, 1H), 7.59 (d, J = 7.9 Hz, 17H), 7.38
(dt, J = 13.8, 6.8 Hz, 30H), 7.25-6.99 (m, 12H), 6.89 (s, 2H),
3.66-3.50 (m, 19H), 2.32 (s, 4H), 1.73 (s, 16H), 0.51 (s, 1H),
0.12 (s, 25H)

Mass Spectroscopy (HRMS Negative ESI) :
0 eq. TMSOTf m/z = 1370.4401 (0.5x107), 1614.4829 (1.4x107)
1 eq. TMSOTf m/z = 1361.2143 (1.8x105), 1488.3454 (4.0x105)
2 eq. TMSOTf m/z = 1235.0673 (1.1x106)

Mass Spectroscopy (HRMS Positive ESI) :
0 eq. TMSOTf m/z = 1465.3680 (0.5x106), 1692.4103 (7.0x106)
1 eq. TMSOTf m/z = 387.0987 (3.0x106), 1323.2942 (4.0x106), 1395.3547 (1.8x106),
1450.4253 (2.6x106), 1511.1901 (0.8x106), 1930.3151 (2.6x106)
2 eq. TMSOTf m/z = 387.0990 (7.0x106), 1269.2176 (1.5x106), 1385.0786 (2.0x106),
2168.4412 (2.0x106)

7.13 K[(Ph3SiO)4U(O2)

Potassium pentakissiloxy uranium (0.0502g, 0.0303 mmol, 1 eq.) was dissolved in ap-

proximately 0.6mL of THF in an ampoule. Using a toepler line, oxygen (4.2 mmHg, 0.0302

mmol, 1 eq.) was added at -78°C. The solution turned brown very quickly and remained

brown at -78°C. The solution was removed from the acetone / CO2 cold bath and warmed

slowly to room temperature. On warming the solution turned yellow. The solution was

then dried in vacuo and dissolved in a minimum amount of benzene. Pentane was added

to the solution until a precipitate was momentarily observed. The solution was then left
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at room temperature to recrystallise.

Yield: 0.015g / 29.88%

Wavenumber IMS Bath IMS Bath Chiller -50 -40 -30 -20 -10 0 10 Room
/ cm-1 O2 added Unit Temp
1485.9 0.013 0.013 0.014 0.015 0.017 0.018 0.017 0.017 0.018 0.019 0.010
1113.5 0.115 0.114 0.099 0.097 0.097 0.098 0.096 0.095 0.094 0.094 0.091
945.9 0.317 0.268 0.183 0.129 0.097 0.085 0.073 0.062 0.057 0.063 0.075
890.0 0.021 0.044 0.038 0.030 0.037 0.049 0.054 0.058 0.061 0.063 0.066
741.1 0.107 0.106 0.087 0.082 0.084 0.085 0.083 0.081 0.080 0.085 0.084
707.6 0.387 0.374 0.333 0.321 0.313 0.310 0.303 0.294 0.290 0.292 0.282

Table 7.4: React IR data for the reaction between K[(Ph3SiO)5U(THF)] and O2 at various temper-
atures

7.14 K[(Ph3SiO)4UO

K[(Ph3SiO)5U(THF)] (0.4151g, 0.2510 mmol, 1 eq.) was added to an ampoule in the

glove box and dissolved in a minimum amount of THF. The ampoule was evacuated on

a high vacuum line (ca. 10−6 bar). A second ampoule was also evacuated on the high

vacuum line which had a volume of 81 cm3. 37 mbar of O2 was expanded into the line and

into a second ampoule which was then sealed. The high vacuum line was then evacuated

and the two ampoules were sealed from the rest of the line leaving a connection between

the two. Whilst the K[(Ph3SiO)5U(THF)], THF solution was stirring, the O2 was released

into the ampoule and left to stir for two hours. The resulting orange solution was then

pumped down to a minimum amount of THF and removing any unreacted O2 before being

taken back into the glove box. Pentane was then added to the THF solution and left at

-40 ◦C to recrystallise. The crystals were then filtered, washed in cold THF and dried in

vacuo.

Yield: 0.0377g / 9.33%
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13C{H} NMR (d8-THF): δ / ppm: 137.29, 136.90, 136.17, 130.61, 130.06, 129.39,
129.29, 128.71, 128.36, 128.17, 126.42

1H NMR (d8-THF): δ / ppm: 8.53 (s, 1H), 7.87 (d, J = 6.9 Hz, 7H),
7.60 (d, J = 6.6 Hz, 5H), 7.35 (d, J = 3.2 Hz, 1H), 7.36-7.28
(m, 6H), 7.23-7.14 (m, 6H), 7.09 (p, J = 7.1, 6.4 Hz, 11H),
6.97 (t, J = 7.4 Hz, 2H), 6.89 (qd, J = 16.0, 12.8, 5.9 Hz, 7H),
6.78 (q, J = 6.3, 4.4 Hz, 2H), 6.66 (dd J = 7.5, 3.7 Hz, 2H),
6.56 (t, J = 7.4 Hz, 1H), 6.01 (s, 1H), 3.58 (s, 4H), 2.30 (s,
3H), 1.73 (s, 3H)

Mass Spectroscopy (HRMS Negative ESI) :
m/z = 1354.3904 (1.5x106), 1400.4260 (1.6x106), 1443.4801 (1.7x106), 1615.00 (0.2x106),
1630.00 (0.5x106), 1645.5173 (0.8x106), 1701.35 (0.5x106)

7.15 (THF)(Ph3SiO)5U

K[(Ph3SiO)5U(THF)] (0.0212g, 0.0128 mmol, 1 eq.) was dissolved in d8-THF at -78 ◦C.

Using a Toepler line, 3 equivalents of CO2 were added to the solution. No change was

observed initially. When warmed to room temperature the solution turned yellow in colour.

A small number of crystals were grown from THF at room temperature.

Yield: 0.0071g / 33.49%

13C{H} NMR (d8-THF): δ / ppm: 143.84, 137.93, 137.15, 136.27, 136.03, 130.47,
129.92, 129.15, 128.74, 128.67, 128.57, 128.29, 128.00,
126.28, 126.13, 67.57, 25.95, 21.74

1H NMR (d8-THF): δ / ppm: 8.91 (s, 8H), 7.90 (m, 1H), 7.64 (dd, J = 7.7, 1.6 Hz,
2H), 7.51 (d, J = 6.5 Hz, 1H), 7.41-6.97 (m, 18H), 6.92 (s, 3H),
6.81 (t, J = 7.3 Hz, 12H), 3.58 (s, 2H), 2.34 (s, 1H), 1.74 (s, 1H)

HSQC (d8-THF): δ / ppm: 8.91, 136.56; 8.85, 136.54; 7.08, 126.80; 6.83, 126.56;
6.77, 126.71

7.16 Reaction between Ph3SiOH and LiH

Ph3SiOH (0.05 g, 0.1809 mmol, 1 eq.) was dissolved in hexane and stirred. LiH (0.0015

g, 0.1887 mmol, 1.eq.) was then added as a solid with no immediate changes observed.
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After 24 hours the solution had turned cloudy with a thin layer of precipitate observed. The

solution was filtered and solvent removed in vacuo resulting in a white solid. Variations

of this reaction were attempted by refluxing the solution in an oil bath which was heated

to 80◦C and changing the solvent system to toluene.

Yield: 0.0260 g / 50.58 %

13C{H} NMR (d6-benzene): δ / ppm: 136.11, 135.47, 130.21, 128.17, 128.30-127.82
(benzene)

1H NMR (d6-benzene): δ / ppm: 7.81-7.78 (m, 5H), 7.33-7.32 (m, 9H), 2.00 (s, 1H)

7.17 Reaction between Ph3SiOH and nBuLi

Ph3SiOH (4.8950 g, 17.71 mmol, 1 eq.) was dissolved in hexane and stirred. A 4.60 M

solution of nBuLi (3.825 mL, 17.7 mmol, 1 eq.) was added slowly and left to stir. After

30 minutes the solution had turned milky white and the solution was filtered and solvent

removed in vacuo resulting in a white solid.

Yield: 5.1819 / 103.64 %

13C{H} NMR (d8-THF): δ / ppm: 145.37, 136.30, 128.42, 127.59, 67.57 (THF), 25.49
(THF)

1H NMR (d8-THF): δ / ppm: 7.63 (s, 2H), 7.20 (s, 3H), 3.58 (THF), 1.75 (THF), 1.29
(hexane), 0.89 (hexane)

7Li NMR (d8-THF): δ / ppm: 1.45

7.18 Reaction between Ph3SiOH and NaH

Ph3SiOH (0.05 g, 0.1809 mmol, 1 eq.) was added to hexane and stirred. NaH (0.0044

g, 0.1834 mmol, 1 eq.) was added as a solid and stirred for 48 hours. The solution had
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turned cloudy and was filtered and the solvent removed in vacuo resulting in a white solid.

Variations of this method were trialled, refluxing the solution in an oil bath heated to 80◦C.

Yield: 0.0149 g / 27.74 %

13C{H} NMR (d6-benzene): δ / ppm: 135.47, 130.21, 128.35, 129.17, 128.25-127.87
(benzene)

1H NMR (d6-benzene): δ / ppm: 7.66-7.64 (m, 2H), 7.19-7.16 (m, 4H), 1.86, 1.36,
0.92

7.19 Reaction between Ph3SiOH and Cs

Ph3SiOH (0.0204 g, 0.0738 mmol, 1 eq.) was dissolved in THF. Separately Cs metal

(0.0094 g, 0.0707 mmol, 1 eq.) was added to a vial. The solution of Ph3SiOH was

then added slowly to the Cs and stirred vigourously. The Cs metal turned black almost

immediately. After a few minutes the solution turned orange/yellow and then brown. After

one hour the solution had turned orange/red. Within six hours the solution was clear

and colourless. The solution was filtered to remove any unreacted Cs and a sample was

extracted for analysis. The remaining solution was used in a further reaction.

13C{H} NMR (d8-THF): δ / ppm: 146.16, 136.01, 129.82, 129.06, 128.45, 128.18,
126.19, 67.57 (THF), 25.49 (THF)

1H NMR (d8-THF): δ / ppm: 11.69, 9.26, 8.89, 7.63, 7.61, 7.34, 7.32, 7.31, 7.04,
6.81, 6.79, 6.78, 6.02, 3.58 (THF), 1.78 (THF), 1.31, 0.89

7.20 Reaction between Ph3SiOH and Rb

Ph3SiOH (0.05 g, 0.1809 mmol, 1 eq.) was dissolved in THF. Separately Rb metal

(0.0155 g, 0.1809 mmol, 1 eq.) was added to a vial. The solution of Ph3SiOH was then

added slowly to the Rb and stirred vigourously with no immediate changes observed.
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After a 30 minutes the solution turned orange. After 12 hours the solution had turned

yellow. Within six hours the solution was clear and colourless. The solution was filtered

to remove any unreacted Rb and a sample was extracted for analysis. The remaining

solution was used in a further reaction. The reaction was repeated at -78◦C.

13C{H} NMR (d8-THF): δ / ppm: 232.77, 135.81, 128.42, 128.20, 67.57 (THF), 25.50
(THF)

1H NMR (d8-THF): δ / ppm: 7.47, 7.19, 5.95, 3.58 (THF), 1.73 (THF)

7.21 Reaction between Ph3SiOK and TlCl

Ph3SiOK (0.0208 g, 0.0661 mmol, 1 eq.) was added to THF. TlCl (0.0156 g, 0.0650, 1

eq.) was added to the solution slowly. No changes were observed and the solution was

filtered and solvent removed in vacuo. The reaction was repeated using toluene.

Yield: 0.0278 g / 78.97 % crude

7.22 Reaction between K[(Ph3SiO)5U(THF)] and CsI

K[(Ph3SiO)5U] (0.0105 g, 0.0063 mmol, 1 eq.) was added to THF forming K[(Ph3SiO)5U(THF)]

and stirred vigorously. Excess CsI (0.0105 g, 0.0404 mmol, 6.5 eq.) was added slowly

with no immediate changes observed. After 12 hours the solution was pale pink with

some solids observed. The reaction was filtered to remove unreacted solids and solvent

removed in vacuo leaving an off white solid.

Yield: 0.0078 g / 74.29 % crude
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13C{H} NMR (d8-THF): δ / ppm: 143.79, 137.89, 135.99, 130.37, 129.87, 129.01,
128.51, 128.25, 127.95, 67.57 (THF), 25.51 (THF)

1H NMR (d8-THF): δ / ppm: 8.89, 7.91-7.89, 7.63, 7.34-7.32, 7.06-7.02, 6.81-6.77,
3.58 (THF), 2.32, 1.74 (THF)

29Si NMR (d8-THF): δ / ppm: 69.42

7.23 Reaction between K[(Ph3SiO)5U(THF)] and RbI

K[(Ph3SiO)5U] (0.0105 g, 0.0063 mmol, 1 eq.) was added to THF forming K[(Ph3SiO)5U(THF)]

and stirred vigorously. Excess RbI (0.0135 g, 0.0636 mmol, 10 eq.) was added slowly

with no immediate changes observed. After 12 hours the solution was pale pink with

some solids observed. The reaction was filtered to remove unreacted solids and solvent

removed in vacuo leaving a beige/yellow solid.

Yield: 0.0064 g / 60.95 % crude

1H NMR (d8-THF): δ / ppm: 7.59 (s, 5H), 7.32-7.30 (d, 7H), 7.18, 7.16, 7.13, 7.07, 6.00
(s, 1H), 3.58 (THF), 2.42, 2.30, 1.77, 1.73 (THF)

7.24 Characterisation of (tBuO)3SiOH

Tris tert-butoxy silanol (99.999%) was purchased from Sigma Aldrich and used as re-

ceived.

13C{H} NMR (d8-THF): δ / ppm: 72.77 (((CH3)3CO)3SiOH), 31.99 (((CH3)3CO)3SiOH)
1H NMR (d8-THF): δ / ppm: 5.25 (((CH3)3CO)3SiOH), 1.30 (((CH3)3CO)3SiOH)
HMBC NMR (d8-THF): δ / ppm: 1.31, 72.92; 1.43, 32.14; 1.30, 32.27; 1.14, 32.21
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7.25 Synthesis of (tBuO)3SiOK

Synthesised in an identical manner to Ph3SiOK and modified from literature prepara-

tions. [90] Tris tert-butoxy silanol (4.00g, 0.0151 mol, 1eq.) was dissolved in hexane and

stirred vigorously. Potassium hydride (0.6058g, 1.0515 mol, 1 eq.) was added slowly

as a solid. Bubbles were observed in the reaction vessel, assumed to be H2 and a white

precipitate formed during the exothermic reaction. After a few minutes the reaction turned

clear and was left to stir for 24 hours. The resulting solution was filtered through a frit and

the solvent removed in vacuo. The white solid was washed in three times with hexane

and dried in vacuo.

Yield: 3.8625 g / 84.55 %

13C{H} NMR (d8-THF): δ / ppm: 71.07 (((CH3)3CO)3SiOK), 67.57 (THF), 32.83
(((CH3)3CO)3SiOK), 25.70 (THF)

1H NMR (d8-THF): δ / ppm: 3.58 (THF), 1.73 (THF), 1.32 (s, 7H,
((CH3)3CO)3SiOK)

29Si NMR (d8-THF): δ / ppm: -88.38, -110.90
HSQC NMR (d8-THF): δ / ppm: 1.32, 32.83
HMBC NMR (d8-THF): δ / ppm: 1.32, 32.83; 1.32, 71.07

7.26 K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))]

Uranium iodide (0.1320 g, 0.2133 mmol, 1 eq.) was dissolved in THF. Tris tert-butoxy

siloxide (0.1936 g, 0.6400 mmol, 3 eq.) was dissolved in THF and added to the UI3

dropwise over a period of 5 minutes. A colour change from royal blue to chocolate brown

was observed within minutes. The solution was left to stir overnight and then filtered to

remove the side product, KI and dried in vacuo. The resulting brown solid was dissolved in

toluene, filtered and left to recrystallise at -40 ◦C for two weeks resulting in orange/brown

plate crystals.
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Yield: 0.0186 g / 8.5%

13C{H} NMR (d6-benzene): δ / ppm: 128.08, 33.27 (U((tBuO)3SiO)3 (U1)), 28.78
(K[((tBuO)3SiO)3U] (U2))

1H NMR (d6-benzene): δ / ppm: 7.16 (m, 3H), 2.42 (s, 1H), 2.38 (s, 9H,
U((tBuO)3SiO)3 (U1)), 1.38 (s, 1H), -0.54 (s, 9H,
K[((tBuO)3SiO)3U] (U2))

29Si HMBC (d6-benzene): δ / ppm: -25.00
HSQC (d6-benzene): δ / ppm: 7.16, 128.06; 2.36, 32.87; 2.37, 32.82; -0.57,

28.26

Mass Spectroscopy (HRMS Negative ESI) :
1 eq. Ph3SiOK m/z = 745.6644 (0.90 x 107), 961.1200 (0.15 x 107), 1145.0823
(1.30 x 107)
2 eq. Ph3SiOK m/z = 745.6689 (0.1 x 105), 961.1241 (0.5 x 105), 1145.0914
(6.8 x 105)
3 eq. Ph3SiOK m/z = 1059.5356 (2.5 x 106), 1154.4550 (1.8 x 106), 1290.7186
(3.5 x 106)
3 eq. (+ 3 hours) Ph3SiOK m/z = 1059.53 (6.0 x 105), 1154.45 (3.0 x 105), 1290.71
(2.2 x 105)

7.27 Co-crystallisation products - [((tBuO)3SiO)3U]2(µ2−O)3

Uranium iodide (0.0222 g, 0.0359 mmol, 1 eq.) was dissolved in THF. Tris tert-butoxy

siloxide (0.0332 g, 0.1097 mmol, 3 eq.) was dissolved in THF and added to the UI3

dropwise over a period of 5 minutes. A colour change from royal blue to chocolate brown

was observed within minutes. The solution was left to stir overnight and then filtered to

remove the side product, KI and dried in vacuo. The resulting brown solid was dissolved

in toluene, filtered and left to recrystallise at -40 ◦C for two weeks resulting in black block

crystals.

Yield: 0.0072 g / 3.3%
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7.28 Co-crystallisation products - [(U(OSi(OtBu)3)4)]

Uranium iodide (0.0222 g, 0.0359 mmol, 1 eq.) was dissolved in THF. Tris tert-butoxy

siloxide (0.0332 g, 0.1097 mmol, 3 eq.) was dissolved in THF and added to the UI3

dropwise over a period of 5 minutes. A colour change from royal blue to chocolate brown

was observed within minutes. The solution was left to stir overnight and then filtered to

remove the side product, KI and dried in vacuo. The resulting brown solid was dissolved

in toluene, filtered and left to recrystallise at -40 ◦C for two weeks resulting in green block

crystals.

Yield: 0.0114 g / 5.2%

7.29 UCl(OSi(OtBu)3)3

Uranium tetrachloride (0.0246g, 0.0648 mmol, 1 eq.) was suspended in THF. (tBuO)3SiOK

(0.0588g, 0.1943 mmol, 3 eq.) was also dissolved in THF and added dropwise to the

UCl4. The green suspension quickly turned light blue and then a cloudy turquoise after

four hours. The reaction was left to stir for 24 hours. The solvent was removed in vacuo

and the remaining solid was washed in pentane and filtered repeatedly removing the

side product KCl and any unreacted (tBuO)3SiOK. The pentane was removed from the

blue filtrate in vacuo and the remaining blue and white solids were washed in pentane

repeatedly. Extraction of one of the solids proved difficult, as the solubility’s of both were

identical. Crude separation was achieved by dissolving both solids in toluene and under

vacuum the white solid precipitated first, sticking to the glassware. As soon as the blue

solid started to precipitate, it was decanted using a pipette. The blue solid was crystal-

lised from a saturated solution of THF at -40◦C.
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Yield: 0.0404g / 58.7% crude

13C{H} NMR (d8-toluene): δ / ppm: 76.14, 35.50
1H NMR (d8-toluene): δ / ppm: 5.96 (s, FWHH = 0.19 ppm, tBu)
29Si HMBC (d8-toluene): δ / ppm: -61.91

7.30 U(OSi(OtBu)3)4

Uranium tetrachloride (0.03g, 0.0789 mmol, 1 eq.) was suspended in THF. (tBuO)3SiOK

(0.0954g, 0.00032 mmol, 4 eq.) was also dissolved in THF and added dropwise to the

UCl4. The green suspension quickly turned light blue and then a cloudy turquoise after

four hours. The reaction was left to stir for 24 hours. The solvent was removed in vacuo

and the remaining solid was washed in pentane and filtered repeatedly to remove the

side product, KCl and any unreacted (tBuO)3SiOK. The pentane was removed from the

blue filtrate in vacuo and the remaining blue and white solids were washed in pentane

repeatedly. The product turned purple on exposure to vacuum. Extraction of one of the

solids proved difficult, as the solubility’s of both were identical. Crude separation was

achieved by dissolving both solids in toluene and under vacuum the white solid precip-

itated first, sticking to the glassware. As soon as the blue solid started to precipitate, it

was decanted using a pipette. The blue solid was crystallised from a saturated solution

of toluene at -40◦C.

Yield: 0.053g / 52.1%

13C{H} NMR (d8-toluene): δ / ppm: 28.07, 29.73, 67.61, 69.14
1H NMR (d8-toluene): δ / ppm: 1.06 (s, 1H), 1.10 (s, 1H)
29Si (d8-toluene): δ / ppm: -55.28, -21.17
HSQC (d8-toluene): δ / ppm: 1.06, 28.07; 1.10, 29.73
13C{H} NMR (d8-THF): δ / ppm: 31.86, 37.96, 72.64, 89.26
1H NMR (d8-THF): δ / ppm: 1.02 (s, 4H), 5.28 (s, 1H), 6.05 (s, 3H)
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Mass Spectrometry : m/z = 1290 (M+ U(OSi(OtBu)3)4), 1027 (M+ OSi(OtBu)3)

7.31 Reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and

CO

UI3 (0.02 g, 0.0323 mmol, 1 eq.) was added to a Young’s NMR tube with Ph3SiOK (0.0293

g, 0.0970 mmol, 3 eq.) and dissolved in d8-THF at room temperature and left to react for

one hour. The reaction was then cooled to -78◦C and 13CO (5.1 cm/Hg, 1 eq.) was

added via the Toepler line. The solution showed no immediate changes. After six days

the solution started to look darker in colour, probably due to decomposition. The NMR

analysis was conducted at -78◦C.

Day 1 13C{H} NMR (d8-THF): δ / ppm: 72.47, 67.57 (THF), 32.81, 25.53
(THF), 2.32

Day 2 13C{H} NMR (d8-THF): δ / ppm: 71.40, 67.57 (THF), 33.02, 25.79
(THF), 1.13

Day 8 13C{H} NMR (d8-THF): δ / ppm: 185.51, 67.57 (THF), 60.59, 25.48
(THF)

Day 9 13C{H} NMR (d8-THF): δ / ppm: 185.49, 90.80, 67.57 (THF), 45.10,
25.49 (THF), 1.39, -25.48

Day 23 13C{H} NMR (d8-THF): δ / ppm: 185.49, 90.77, 67.57 (THF), 60.74,
45.05, 25.49 (THF)

Day 23 @ 30◦C 13C{H} NMR (d8-THF): δ / ppm: 185.41, 67.57 (THF), 31.79, 25.58
(THF)

Day 1 1H NMR (d8-THF): δ / ppm: 3.58 (THF), 1.72 (THF), 1.32, 0.02,
0.51

Day 2 1H NMR (d8-THF): δ / ppm: 11.91, 11.12, 3.58 (THF), 1.73 (THF),
1.30, 0.25, -4.00

Day 8 1H NMR (d8-THF): δ / ppm: 38.12, 26.30, 24.25, 14.09, 12.81,
11.99, 11.20, 10.66, 3.58 (THF), 2.23, 1.74
(THF), 0.89, 0.51, 0.41, -3.96

Day 9 1H NMR (d8-THF): δ / ppm: 38.22, 26.27, 11.99, 10.67, 3.58
(THF), 2.24, 1.75 (THF), 0.43, -3.95, -9.71,
-11.49, -12.77

Day 23 1H NMR (d8-THF): δ / ppm: 37.64, 29.01, 26.63, 26.07, 11.98,
10.66, 3.58 (THF),2.24, 1.75 (THF),1.47, 1.27,
0.44, -3.94, -7.85, -9.63, -10.40, -11.42, -12.75

Day 23 @ 30◦C 1H NMR (d8-THF): δ / ppm: 22.06, 7.88, 3.58 (THF), 3.44, 2.89,
2.79, 1.70 (THF), 1.53, -0.14 – -0.53
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7.32 Reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and

CO2

UI3 (0.02 g, 0.0323 mmol, 1 eq.) was added to a Young’s NMR tube with Ph3SiOK (0.0293

g, 0.0970 mmol, 3 eq.) and dissolved in d8-THF at room temperature and left to react

for one hour. The reaction was then cooled to -78◦C and 13CO2 (5.2 cm/Hg, 1 eq.)

was added via the Toepler line. The solution showed no immediate changes. The NMR

analysis was conducted at -78◦C.

Day 1 13C{H} NMR (d8-THF): δ / ppm: 67.57 (THF), 33.24, 32.77, 32.48, 31.96, 25.48
(THF)

Day 2 13C{H} NMR (d8-THF): δ / ppm: 67.57 (THF), 33.24, 32.77, 32.48, 31.96, 25.48
(THF)

Day 7 13C{H} NMR (d8-THF): δ / ppm: 72.77, 67.57 (THF), 32.48, 31.96, 25.48 (THF)

7.33 Reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and

CO/H2

UI3 (0.02 g, 0.0323 mmol, 1 eq.) was added to a Young’s NMR tube with Ph3SiOK (0.0293

g, 0.0970 mmol, 3 eq.) and dissolved in d8-THF at room temperature and left to react for

one hour. The reaction was then cooled to -78◦C and 13CO

ceH2 (5.2 cm/Hg, 1 eq.) was added via the Toepler line. The solution showed no imme-

diate changes. After six days the solution started to look darker in colour, probably due

to decomposition. The NMR analysis was conducted at -78◦C.
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Day 1 13C{H} NMR (d8-THF): δ / ppm: 71.28 – 71.14, 67.57 (THF), 63.61, 32.88,
28.83, 25.68 (THF), -1.60, -66.98

Day 10 13C{H} NMR (d8-THF): δ / ppm: 186.41, 91.59, 68.33 (THF), 61.49, 45.84,
26.27 (THF)

Day 11 13C{H} NMR (d8-THF): δ / ppm: 185.45, 72.82, 72.77, 67.57 (THF), 31.79,
25.60 (THF), 85.15

Day 1 1H NMR (d8-THF): δ / ppm: 11.97, 3.58 (THF), 1.74 (THF), 1.31, -0.23,
-4.01

Day 10 1H NMR (d8-THF): δ / ppm: 11.95, 3.58 (THF), 1.74 (THF), 1.04, -0.05,
-3.97

7.34 K[U(CH2Ph)2(OSi(OtBu)3)3]

UCl(OSi(OtBu)3)3 (0.2g, 0.188 µ mol, 1 eq.) was added to THF. A solution of C6H5CH2K

(0.0448g, 0.376 µ mol, 2 eq.) in THF was added to the solution of UCl(OSi(OtBu)3)3

and the colour changed to green and then yellow. After two hours the solution was or-

ange/brown. The solvent was removed in vacuo leaving a sticky orange residue. The

residue was washed repeatedly in pentane and filtered to remove a white solid. The

orange brown residue was then crystallised from hexane at -40◦C.

Yield: 0.1498g / 61.2%

13C{H} NMR (d6-benzene): δ / ppm: 129.72 (ipso Ph), 128.81 (ortho Ph), 128.61
(meta Ph), 162.22 (para Ph), 72.80 (tBu), 38.21 (tBu),
1.43 (benzyl CH2)

1H NMR (d6-benzene): δ / ppm: 7.13 (d, 6H, 3JHH = 10 Hz, meta Ph), 7.07
(d, 5H, 3JHH = 10 Hz, para Ph), 6.99 (d, 7H, 3JHH = 5 Hz,
ortho Ph), 1.49 (s, 4H, benzyl-CH2), 1.97 (s, 27H, tBu),
0.92 (s, 54H, tBu)

7.35 U(OSi(OtBu)3)4 with CO2

U(OSi(OtBu)3)4 (0.2361g, 0.183 mmol, 1 eq.) was dissolved in a minimum amount of

THF. The solution was freeze, pump, thaw, degassed three times on a high vac line before
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it was exposed to CO2 (148.45 mbar in 3.054 x 10−5 m3, 1 eq.). The solution turned green

within 24 hours. The solution was then cooled to -40◦C and large green cubic crystals

crystallised. X-ray diffraction showed the product to be U(OSi(OtBu)3)4(THF).

7.36 U(OSi(OtBu)3)4 and O2

U(OSi(OtBu)3)4 (18.3mg, 14.2 µ mol, 1 eq.) was dissolved in a minimum amount of THF.

The solution was freeze, pump, thaw, degassed three times and then exposed to O2 (14

mbar in 3.054x10−5m3, 1.2 eq.). The solution slowly turned grey then yellow over 3 hours.

The solvent was removed in vacuo resulted in a yellow residue that was then washed in

pentane five times. Attempts to recrystallise failed.

Yield: 0.0222g / 118.2%

1H NMR (d8-THF): δ / ppm: 2.43 (s, tBu)

7.37 U(µ2−O2)(OSi(OtBu)3)4(THF)

U(OSi(OtBu)3)4 (0.123g, 95.3 µ mol, 1 eq.) was dissolved in hexane. The schlenk flask

was then attached to another schlenk flask via a fly-over bridge under a positive flow

of argon. Excess I2 crystals were added to the second schlenk and the whole systems

was freeze, pump, thaw, degassed. The I2 was then heated until it started to sublime

over to the stirring blue solution of U(OSi(OtBu)3)4. The solution turned indigo and was

left for a further 20 minutes to ensure the reaction had gone to completion. The solvent

and excess I2 were removed in vacuo resulting in a black residue. Recrystallisation was

achieved from THF at -40◦C to give black plate like crystals suitable for X-ray diffraction.
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13C{H} NMR (d6-benzene): δ / ppm: 72.82 (tBu cis to THF), 72.52 (tBu trans to
peroxo), 72.51 (tBu trans to THF), 72.41 ((tBuO)3SiOK),
32.47 (tBu cis to THF), 32.11 (tBu trans to peroxo), 31.79
(tBu trans to THF), 31.61 ((tBuO)3SiOK)

1H NMR (d6-benzene): δ / ppm: 2.23 (s, broad, 29H, OtBu trans to peroxo),
2.05 (s, 8H, bound THF), 1.73 (s, 54H, OtBu cis to THF),
1.66 (s, 27H, OtBu trans to THF), 1.39 (tBuOSiOK)

29Si (d6-benzene): δ / ppm: -90.61 (cis to THF), -95.00 (trans to peroxo),
-95.17 (trans to THF)
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Appendix A

The Global Picture

A.1 The nature of greenhouse gases

An upward trend in global temperatures is now generally accepted as fact and is the

current position of the scientific consensus. A major factor in this is the alteration of the

atmospheric composition through the unrestrained release of CO2 and other small mo-

lecules, which, when coupled with the incident solar radiation and terrestrial radiation from

reflection, causes a change in the radiation balance of the Earth and therefore heating of

the atmosphere. Such gases are known as ‘greenhouse gases’ (GHG).

The term ‘greenhouse gas’ covers a number of industrially and agriculturally important

small molecules that include CO2, CH4, N2O and fluorinated gases. The effect of each

gas on the climate is determined by three main factors:

· The concentration of the gas

· The kinetics of gas formation and destruction of the gas resulting in an atmospheric

residence time



228

· The fundamental interaction of the molecule with radiation

A.2 The atmospheric radiation field

The sun has a surface temperature of approximately 5800 K. Although the sun is not a

black body, as it is thermodynamically open, its spectrum approximates to a black body

or Planck radiator. The theoretical frequency spectrum for a Planck radiator is given by:

Iν (T ) =
2hν3

c2
[
exp

(
hν

kBT

)
− 1
] (A.2.1)

where kB is Boltzmann’s constant, T is the absolute temperature, c is the speed of light

and ν is the frequency. An alternative expression in terms of the wavelength of the radi-

ation is given by:

Iλ (T ) =
2hc2

λ5
[
exp

(
hc
λkBT

)
− 1
] (A.2.2)

Equation A.2.2 is plotted in Figure A.1 together with the ASTM standard solar spec-

trum. [194]

Absorbtion by atmospheric components substantially alters the radiation incident on the

surface, as shown in Figure A.2. The upper trace shows the spectrum incident at the top

of the atmosphere (I. I.), the middle trace shows the solar spectrum incident at the earth’s

surface (S. I.) after modification by passage through the atmosphere and the lower trace

(∆I) shows the difference between the two and therefore the modification of the solar

incident spectrum, primarily by near infrared absorbtions by H2O and CO2.
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Figure A.1: A comparison between the ASTM solar spectrum (bottom) and Equation A.2.2 with
T = 5, 777 K (top); values for Equation A.2.2 have been scaled to match the the ASTM
G173 normalisation.

Coupling of GHG’s to the incoming radiation is the first part of energy transfer into the

atmosphere and is broadly governed by the vibrational selection rule in infrared spectro-

scopy: that the vibration must have the same character as the dipole operators in the

point group of the molecule. Thus it is important to note that no homodiatomic molecule

can couple to electromagnetic radiation and there is no relaxation via photon emission

available for compounds such as N2 or O2.

At the surface of the earth, the incident solar radiation is largely absorbed, with some

being scattered. The absorbed fraction is then dissipated as heat, which is reradiated at

the characteristic temperature of the earth’s surface. On average over the whole surface,

this temperature is 288 K. There is also a substantial quantity of heat from radioactive

decay. The shift in wavelength incident solar spectrum and the reradiated spectrum is

shown in Figure A.3, which does not reproduce absolute integrated intensities of the

fluxes involved and are calculated from idealised Planck radiators.

Given that 10,000 nm = 1,000 cm-1, then the reradiation of the solar spectrum occurs in
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Figure A.2: Atmospheric absorbtion and its effect on the solar spectrum incident at the surface:
the upper trace shows the incident solar spectrum, the middle trace, the incident solar
spectrum at the surface and the lower trace, the difference ∆I = I. I.− S. I.

Figure A.3: Calculated Planck radiator spectrum that represent the incident radiation (black, T =
5777 K) and the reradiated thermal radiation from the earth’s surface (red, T = 288 K).
Absolute integrated intensities are not reproduced.
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the infrared region, making the infrared properties of a GHG critical in the photophysics of

global warming.

A.3 The Global Warming Potential

For practical purposes, a measure of the effect on the global temperature for each GHG,

and particularly its concentration, is desirable. This is termed the ’Global Warming Po-

tential’ (GWP) and contains each these three main factors. The potential is also a relative

measure and values are quoted referenced to CO2, given the importance and dominance

of the greenhouse gas burden of CO2. Using kinetic data for the removal of GHG, a time-

dependance can also be determined and the GWP is normally quoted over a given period

of time. [195,196]

For any single gas, the energy absorbed per molecule, which is the integrated intensity

of its infrared spectrum and is the absorbtion cross–section for the molecule, yields an

equation for the radiative forcing, ρ, of the form:

ρ = Σiσi fi (A.3.1)

where i represents the frequency band, σi the absorption cross–section in that band and

fi the natural reradiated spectrum within that band.

The radiative forcing for a greenhouse gas, γ, is then given by:

γ = Nρ ·
∫

exp
(
− t
τ

)
dt (A.3.2)
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where N is a measure of concentration and τ is the average life time of the gas in the

atmosphere. The quoted values for the GWP, Γ, are given in ratio to that for CO2 and

therefore the GWP for a greenhouse gas is given by:

Γ (GHG) =

∫ t
0 γ (GHG ) dt∫ t
0 γ (CO2) dt

(A.3.3)

Several issues arise with this expression. It depends both on the cross–section of the gas

and of that of CO2; it also depends on the life–time of the gas in the atmosphere as well

and if this is longer than that of CO2, such as for N(C4F9)3
[197], then the GWP can be very

significant over a long period of time. Standard values for Γ are quoted for 1 kg of gas in

comparison to 1 kg of CO2 and data are widely available; all data quoted here are taken

from the International Panel on Climate Change (IPCC) reports for 2013 and 2007. [198,199]

Table A.1 presents constants from the IPCC 2007 report for use in GWP calculations.

Given the dominance of CO2 by mole fraction in the total atmospheric greenhouse gas

burden, its lifetime is parametrised as shown in Table A.1 with a0 = 0.217, a1 = 0.259,

a2 = 0.338, a3 = 0.186, τ1 = 172.9 years, τ2 = 18.51 years, and τ3 = 1.186 years.

Compound τ / years ρ / W m−2 ppb−1

CO2 τ (CO2) = a0 +
∑3

i=1 ai exp
(
− t
τi

)
1.4× 10−5

CH4 12 3.7× 10−4

N2O 114 3.03× 10−3

CCl2F2 100 0.32

CCl4 26 0.13

CH3Br 0.7 0.01

CHF3 270 0.19

SF6 3,200 0.52

Table A.1: Values of τ and ρ for selected greenhouse gases for γ calculations [199]
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Graphs of γ illustrate the impact of each gas on the atmosphere. The most important

greenhouse gases that have an anthropogenic source are CO2, CH4 and N2O. The

individual γ-graphs are shown in Figure A.4

Figure A.4: Radiative forcing values for CO2, CH4 and N2O over 1000 year timescale. Note that
γ(CO2) does not reach zero due to its natural occurrence

Figure A.5 illustrates the GWP as a factor of time and it becomes clear that whilst CO2 is

not the most potent greenhouse gas on an absolute, molecular level, in terms of times-

cales CO2 is a major contributor to the greenhouse gas atmospheric burden. [200]

Figure A.6 shows the hydrooxygenate greenhouse gases and their relative strengths

versus their most commonly found oxidation state and clearly shows the inert nature

of CO2. The energy of formation is much more negative than any of the other hydrooxy-

genates indicating the molecule is incredibly stable and therefore unlikely to be amenable

to further reactions.
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Figure A.5: Relative global warming potentials for N2O and CH4, with CO2 also shown, to emphas-
ise the relative nature of the measure

Figure A.6: Relative strengths of hydrooxygenates

Furthermore and of critical importance, the emissions of CO2 are directly correlated with

human activity, primarily due to the dependance on fossilised energy in the form of fossil

fuels. Fossil fuel combustion leads directly to the uncontrolled release of CO2 and current

estimates from combustion are shown in Figure A.7. Therefore, given the dominance of

hydrocarbons on the GEB and the correlated effects on the global radiation balance, a

terminal solution to this dependant pair of globally important problems is urgent.
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Figure A.7: Global fossil fuel emissions 1751 - 2010

A minimum set of qualities exist that any technical solution must possess. They must

be driven by a renewable source such as light, wave or wind, in order to decouple from

the generation of CO2 by combustion. Secondly such a process must be reductive and

either remove CO2 from the atmosphere, converting it into a reduced product or by us-

ing the reduction of CO2 as a thermodynamic working fluid for energy production. The

reductive nature of the solution is driven by the thermodynamics of Cx species as previ-

ously discussed. A wider set of technical solutions also exist, derived from this approach:

‘depowering’ current thermally driven industrial processes through development of pho-

tocatalytic approaches can have a very large effect on industrial energy consumption.

A.4 Historical variations in CO2

The first two graphs in Figure A.8 show recorded CO2 concentrations from ice cores at

two different stations. The graph in Figure A.8(a) clearly shows natural variations of CO2
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(a) (b) (c)

Figure A.8: Historical atmospheric CO2 concentrations, derived from ice core data: (a) CO2 con-
centration from the Ice Core Record, Vostock, Antarctic, (b) CO2 concentration from
the Ice Core Record, Siple Station, Antarctica, in comparison with (c) atmospheric
measurements from the Mauna Loa observatory

levels over a 400000 year period before human activities began. It is clear that Earth

undergoes a natural cycle of warming and cooling with the highest CO2 levels recorded

at approximately 300 ppmv. [201] The graph in Figure A.8(b) uses ice core data to show the

rise in CO2 levels since 1750 for a two hundred year period. The approximate exponential

nature of the graph indicates the rate at which CO2 is entering the Earth’s atmosphere.

The key point to note is that in the early 1900’s the CO2 concentration levels rapidly

exceed all previous concentration levels from the ice core data. [201]

Finally, the third graph in Figure A.8(c) shows the level of atmospheric CO2 since the

1980’s according to measurements and experiments conducted at the Mauna Loa ob-

servatory, which is the oldest site used for the direct measurement of CO2 in the atmo-

sphere. The graph shows a steady increase in the CO2 levels in the Earth’s atmosphere

with the CO2 concentrations far exceeding all previous measurements. [202] Considering

these data alongside the previous discussion regarding the inert nature of CO2 and the

timescales associated with the removal of CO2 from the atmosphere it seems apparent

that, although the levels of CO2 are rising by relatively small amounts, it is the timescales

required to reverse the process that presents the largest problem.

In addition, by comparing these atmospheric composition data with CO2 emissions from

burning fossil fuels since 1751, as shown in Figure A.7, a similar upward trend is ob-
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served. [203] Figure A.7 shows that the total fossil fuel carbon emissions started to rise

in the 1850’s which correlates well with expansion of the industrial revolution. Much im-

proved systematic data became available in the early 1950’s with the development of the

Mauna Loa Observatory, which began direct measurement of atmospheric CO2 concen-

trations. As well as being a direct and current measure of CO2, these data lower the

reliance on ice core data. [204]

With one exception in the 1970’s which corresponds with the 1973 oil crisis caused by

members of OAPEC proclaiming an oil embargo, the rate of increase of CO2 emissions

from fossil fuels has not slowed. It is now generally accepted by the scientific community

that the industrial use of fossil fuels and the increase in atmospheric CO2 levels are

directly linked.

Figure A.9 [205] highlights the differences in global temperature since 1850 using the aver-

age global temperature as a baseline. From 1880 to 1930 there was a consistent trend of

colder than average temperature anomalies. However, from the late 1930’s to the 1970’s

the trend begins to shift and, whilst the temperature anomalies are still cooler than the

average temperature, the extreme has shifted from -0.6 ◦C to -0.4 ◦C.

From 1978 onwards, the trend shifts even further to warmer than average temperature

anomalies and shows no signs of slowing or decreasing. Whilst Figure A.9 shows temper-

ature anomalies, Figure A.10 [206] highlights the effects of the global average temperature

increasing by just 1 ◦C, the effect at the extreme ends of the temperature range becomes

more pronounced.

The bell curve in Figure A.10 shows the increase in temperature anomalies shifting the

bell curve to the right and therefore increasing the mean temperature. The diagram also

shows a change in the variance of the temperature anomalies which has the impact of
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Figure A.9: Global temperature anomalies 1850 - 2012

flattening the bell curve and a rise in the number of occurrences of extreme temperatures

at both ends of the scale.

Figure A.10: Temperature anomaly distribution highlighting the impact of changes in the frequency
of occurrence and an increase in mean temperature

This evidence suggests that the burning of fossil fuels is causing changes to our atmo-

sphere and in all likelihood, the climate as well. Ultimately it becomes a question of

timescales. The Global Energy Balance GEB is a delicate system that takes millions of

years to convert carbon into fossil fuels and store as oil and coal. As millions of tonnes of
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hydrocarbons are extracted and burnt every year, the carbon is rapidly released into the

atmosphere and the reverse process of storage cannot compete, shifting the GEB. The

burning of fossil fuels for energy is a practice that cannot continue indefinitely, not only

because of the impact CO2 is having on the atmosphere, but also because fossil fuels

are a finite resource that will eventually deplete.

A.5 Peak oil crisis

A report published in 2005 entitled, ‘Peaking of World Production: Impacts, Mitigation,

and Risk Management’ [207] was commissioned by the US Department of Energy. The

report, also known as the ‘Hirsch Report’, examines the timescales for when the peak in

oil production is likely to occur, any mitigating actions necessary and the impacts of such

actions. In a summary of the report, Hirsch states;

The peaking of world oil production presents the U.S. and the world with an

unprecedented risk management problem. As peaking is approached, liquid

fuel prices and price volatility will increase dramatically, and, without timely

mitigation, the economic, social, and political costs will be unprecedented.

Viable mitigation options exist on both the supply and demand sides, but to

have substantial impact, they must be initiated more than a decade in advance

of peaking. [207]

Humans have developed an ever increasing reliance on fossil fuels to power homes,

businesses and transport. This is illustrated by comparing Figure A.7 to Figure A.11. [208]

The world total energy consumption in 2010 was 11,943 million tonnes (oil equivalent),

whilst the total fossil fuel carbon emissions equated to 9,167 million metric tonnes of



240

carbon in 2010. On these figures alone, the human population relies on carbon based

fuels for 77% of energy requirements.

Figure A.11: World Energy Consumption 1965 - 2012

When global hydrocarbon stores will run out is a matter of debate and a method using

‘2P data’ has been developed to estimate when this will occur. ‘2P data’ refers to the oil

reserves proved to be in existence plus the probable reserves yet to be discovered and

it is estimated that in 2002 all regions had depleted at least half their oil reserves, except

the Middle Eastern countries. This would effectively give the Middle Eastern countries

control over the worlds oil supply in the future. In addition, the data suggests that in 2002

North America had depleted about three quarters of its oil reserves having reached its

peak in 1971. The data also implies that Asia-Pacific and Europe were about to peak and

therefore start declining. Overall, the global peak for oil reserves was estimated to be

between 2007 and 2012 with a more optimistic estimate of between 2012 and 2017. [209]

Alternative sources of ‘2P data’ indicates a global oil peak between the years 2005 to

2015 [210] or between 2010 and 2015. [211] Whilst the data vary, they still suggest that a
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global oil peak is imminent.

Figure A.12 shows the proved oil reserves only and from the data it can be deduced

that whilst the global oil reserves are increasing it is mainly due to new oil reserves

being identified in Central and South America since 2010. All other individual areas are

reaching a plateau, especially, North America, Asia, Oceania and Europe. Africa and the

Middle East are increasing their reserves but at a slow rate.

Figure A.12: Proved oil reserves 1980 - 2014

Hydrocarbons are a finite resource and even with improving technology, oil resources will

decline. As this happens basic economics of supply and demand dictate that prices will

increase, consequently making alternative energy sources more attractive and potentially

reducing the demand for oil. [212] It seems unwise to rely on sources of oil that have yet

to be discovered despite a reasonable certainty that extraction technology will improve in

the future. However, it also seems unwise to rely on other hydrocarbon sources being

available as oil becomes more scarce.
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A.6 Technical solutions to climate change

Given the structure of the GEB, the future constraints of supply and the waste products

from combustion, new approaches to a sustainable energy balance need to be developed

as a matter of urgency. As discussed above in section A.3, the process, or more likely

the array of processes, that can offer a technical solution must be driven sustainably,

ideally by solar energy, and will also ideally reduce CO2 to more useful materials. These

processes must also be catalytic and run as close to ambient temperature as possible, to

ensure that the process itself is not a major consumer of natural resources. [213]



243

Appendix B

NMR spectra - triphenysiloxide

ligands



244

Figure B.1: 1H NMR for (1-napthyl)3silanol in d6-Benzene [80]
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Figure B.2: 1H NMR for (4-biphenyl)3silanol in d2-CD2Cl2 [80]
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Figure B.3: 1H NMR for (1-anisyl)3silanol in d2-CD2Cl2 [80]
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Figure B.4: 13C{H} NMR for Triphenylsilanol in d8-THF
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Figure B.5: 1H NMR for Triphenylsilanol in d8-THF
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Figure B.6: 29Si NMR for Triphenylsilanol in d8-THF
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Figure B.7: HSQC NMR for Triphenylsilanol in d8-THF
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Figure B.8: HMBC NMR for Triphenylsilanol in d8-THF
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Figure B.9: 13C{H} NMR for Triphenylsiloxide in d8-THF



253

Figure B.10: 1H NMR for Triphenylsiloxide in d8-THF
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Figure B.11: HSQC NMR for Triphenylsiloxide in d8-THF
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Figure B.12: HMBC NMR for Triphenylsiloxide in d8-THF
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Figure B.13: 13C{H} NMR for K[U(OSiPh3)5] in d8-Toluene
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Figure B.14: 1H NMR for K[U(OSiPh3)5] in d8-Toluene
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Figure B.15: HSQC NMR for K[U(OSiPh3)5] in d8-Toluene
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Figure B.16: HMBC NMR for K[U(OSiPh3)5] in d8-Toluene



260

Figure B.17: 13C{H} NMR for ([K(py)6] [(Ph3SiO)5U(py)])2 in d5-Pyridine
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Figure B.18: 1H NMR for ([K(py)6] [(Ph3SiO)5U(py)])2 in d5-Pyridine
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Figure B.19: HSQC NMR for ([K(py)6] [(Ph3SiO)5U(py)])2 in d5-Pyridine
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Figure B.20: 13C{H} NMR for K[(Ph3SiO)5U(THF)] in d8-THF
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Figure B.21: 1H NMR for K[(Ph3SiO)5U(THF)] in d8-THF
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Figure B.22: 29Si HMBC NMR for K[(Ph3SiO)5U(THF)] in d8-THF
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Figure B.23: HSQC NMR for K[(Ph3SiO)5U(THF)] in d8-THF
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Figure B.24: HMBC NMR for K[(Ph3SiO)5U(THF)] in d8-THF
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Figure B.25: 29Si HMBC NMR for K[(Ph3SiO)5U(THF)] in d8-THF
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Appendix C

NMR spectra - reactions with

TMSOTf
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Figure C.1: 13C{H} NMR for TMSOTf in d8-THF
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Figure C.2: 1H NMR for TMSOTf in d8-THF
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Figure C.3: 19F NMR for TMSOTf in d8-THF
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Figure C.4: 13C{H} NMR for TMS−OSiPh3 and H−OTf in d8-THF
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Figure C.5: 1H NMR for TMS−OSiPh3 and H−OTf in d8-THF
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Figure C.6: 19F NMR for H−OTf in d8-THF
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Figure C.7: 13C{H} NMR for TMS−OSiPh3 and K−OTf in d8-THF



277

Figure C.8: 1H NMR for TMS−OSiPh3 and K−OTf in d8-THF



278

Figure C.9: 19F NMR for K−OTf in d8-THF



279

Figure C.10: 13C{H} NMR for the reaction between K[(Ph3SiO)5U(THF)] and 1 eq. TMSOTf in
d8-THF
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Figure C.11: 13C{H} NMR for the reaction between K[(Ph3SiO)5U(THF)] and 2 eq. TMSOTf in
d8-THF
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Figure C.12: 13C{H} NMR of the reaction between K[(Ph3SiO)5U(THF)] and 1 and 2 equivalents
of TMSOTf
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Figure C.13: 1H NMR for the reaction between K[(Ph3SiO)5U(THF)] and 1 eq. TMSOTf in d8-THF
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Figure C.14: 1H NMR for the reaction between K[(Ph3SiO)5U(THF)] and 2 eq. TMSOTf in d8-THF
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Figure C.15: 1H NMR spectrum of the reaction between K[(Ph3SiO)5U(THF)] and 1 and 2 equival-
ents of TMSOTf
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Appendix D

NMR spectra - triphenysiloxide

ligands reactivity studies
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Figure D.1: 13C{H} NMR for [K(THF)2][(Ph3SiO)4UO(THF)] in d8-THF
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Figure D.2: 1H NMR for [K(THF)2][(Ph3SiO)4UO(THF)] in d8-THF
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Figure D.3: 13C{H} NMR for the reaction between K[(Ph3SiO)5U(THF)] and CO2 in d8-THF
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Figure D.4: 1H NMR for for the reaction between K[(Ph3SiO)5U(THF)] and CO2 in d8-THF
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Figure D.5: HSQC NMR for for the reaction between K[(Ph3SiO)5U(THF)] and CO2 in d8-THF
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Figure D.6: 13C{H} NMR for the reaction between Ph3SiOH and LiH in d6-benzene
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Figure D.7: 1H NMR for the reaction between Ph3SiOH and LiH in d6-benzene
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Figure D.8: 13C{H} NMR for the reaction between Ph3SiOH and nBuLi in d8-THF
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Figure D.9: 1H NMR for the reaction between Ph3SiOH and nBuLi in d8-THF



295

Figure D.10: 7Li NMR for the reaction between Ph3SiOH and nBuLi in d8-THF
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Figure D.11: 13C{H} NMR for the reaction between Ph3SiOH and NaH in d6-benzene
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Figure D.12: 1H NMR for the reaction between Ph3SiOH and NaH in d6-benzene
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Figure D.13: 13C{H} NMR for the reaction between Ph3SiOH and Cs in d8-THF
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Figure D.14: 1H NMR for the reaction between Ph3SiOH and Cs in d8-THF
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Figure D.15: 13C{H} NMR for the reaction between Ph3SiOH and Rb in d8-THF
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Figure D.16: 1H NMR for the reaction between Ph3SiOH and Rb in d8-THF
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Figure D.17: 13C{H} NMR for the reaction between K[(Ph3SiO)5U(THF)] and CsI in d8-THF
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Figure D.18: 1H NMR for for the reaction between K[(Ph3SiO)5U(THF)] and CsI in d8-THF
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Figure D.19: 29Si NMR for for the reaction between K[(Ph3SiO)5U(THF)] and CsI in d8-THF
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Figure D.20: 1H NMR for the reaction between K[(Ph3SiO)5U(THF)] and RbI in d8-THF
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Appendix E

NMR spectra - tris (tert)-butoxide

ligands
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Figure E.1: 13C{H} NMR for Tris tert-butoxy silanol in d8-THF
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Figure E.2: 1H NMR for Tris tert-butoxy silanol in d8-THF
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Figure E.3: HMBC NMR for Tris tert-butoxy silanol in d8-THF
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Figure E.4: 13C{H} NMR for Tris tert-butoxy siloxide in d8-THF
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Figure E.5: 1H NMR for Tris tert-butoxy siloxide in d8-THF
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Figure E.6: 29Si NMR for Tris tert-butoxy siloxide in d8-THF



313

Figure E.7: HSQC NMR for Tris tert-butoxy siloxide in d8-THF
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Figure E.8: HMBC NMR for Tris tert-butoxy siloxide in d8-THF
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Figure E.9: 13C{H} NMR for the inverted sandwich complex K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] in
d6-Benzene
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Figure E.10: 1H NMR for the inverted sandwich complex K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] in
d6-Benzene
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Figure E.11: 29Si NMR for the inverted sandwich complex K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] in
d6-Benzene
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Figure E.12: HSQC NMR for the inverted sandwich complex K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))]
in d6-Benzene
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Figure E.13: 1H NMR for the reaction between 1 eq. (OtBu)3SiOK and UI3 in d8-THF
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Figure E.14: 1H NMR for the reaction between 2 eq. (OtBu)3SiOK and UI3 in d8-THF
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Figure E.15: 1H NMR for the reaction between 3 eq. (OtBu)3SiOK and UI3 in d8-THF
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Figure E.16: Stacked 1H NMR for the reaction between (OtBu)3SiOK and UI3 in d8-THF
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Figure E.17: 13C{H} NMR for U(OSi(OtBu)3)4 in d8-THF
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Figure E.18: 1H NMR for U(OSi(OtBu)3)4 in d8-THF
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Figure E.19: HMBC NMR for U(OSi(OtBu)3)4 in d8-THF
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Figure E.20: 13C{H} NMR for U(OSi(OtBu)3)4 in d8-toluene
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Figure E.21: 1H NMR for U(OSi(OtBu)3)4 in d8-toluene
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Figure E.22: HMBC NMR for U(OSi(OtBu)3)4 in d8-toluene
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Figure E.23: 29Si NMR for U(OSi(OtBu)3)4 in d8-toluene
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Figure E.24: 13C{H} NMR for UCl(OSi(OtBu)3)3 in d8-toluene
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Figure E.25: 1H NMR for UCl(OSi(OtBu)3)3 in d8-toluene
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Figure E.26: 29Si NMR for UCl(OSi(OtBu)3)3 in d8-toluene
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Appendix F

NMR spectra - tris (tert)-butoxide

ligands reactivity studies
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Figure F.1: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at
-78 ◦C Day 1 in d8-THF
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Figure F.2: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at
-78 ◦C Day 2 in d8-THF
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Figure F.3: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at
-78 ◦C Day 8 in d8-THF
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Figure F.4: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at
30 ◦C Day 9 in d8-THF
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Figure F.5: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at
-78 ◦C Day 9 in d8-THF
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Figure F.6: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at
-78 ◦C Day 23 in d8-THF
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Figure F.7: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at
30 ◦C Day 23 in d8-THF
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Figure F.8: Stacked 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and
13CO in d8-THF
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Figure F.9: 1H NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at -78
◦C Day 1 in d8-THF
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Figure F.10: 1H NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at -78
◦C Day 2 in d8-THF
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Figure F.11: 1H NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at -78
◦C Day 8 in d8-THF
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Figure F.12: 1H NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at 30
◦C Day 9 in d8-THF
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Figure F.13: 1H NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at -78
◦C Day 9 in d8-THF
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Figure F.14: 1H NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at -78
◦C Day 23 in d8-THF
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Figure F.15: 1H NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO at 30
◦C Day 23 in d8-THF
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Figure F.16: Stacked 1H NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and
13CO in d8-THF
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Figure F.17: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and
13CO/H2 at -78 ◦C Day 1 in d8-THF
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Figure F.18: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and
13CO/H2 at -78 ◦C Day 10 in d8-THF
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Figure F.19: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and
13CO/H2 at -78 ◦C Day 11 in d8-THF
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Figure F.20: Stacked 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))]
and 13CO/H2 in d8-THF
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Figure F.21: 1H NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO/H2 at
-78 ◦C Day 1 in d8-THF
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Figure F.22: 1H NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO/H2 at
-78 ◦C Day 10 in d8-THF
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Figure F.23: Stacked 1H NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and
13CO/H2 in d8-THF
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Figure F.24: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO2

Day 1 in d8-THF



358

Figure F.25: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO2

Day 2 in d8-THF
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Figure F.26: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO2

Day 7 in d8-THF
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Figure F.27: 13C{H} NMR for the reaction between K[(U(OSi(OtBu)3)3)2(µ−η6: η6- tol))] and 13CO2

stacked spectra d8-THF
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Figure F.28: 13C{H} NMR for K[U(CH2Ph)2(OSi(OtBu)3)3] in d6-benzene
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Figure F.29: 1H NMR for K[U(CH2Ph)2(OSi(OtBu)3)3] in d6-benzene
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Figure F.30: HMBC NMR for K[U(CH2Ph)2(OSi(OtBu)3)3] in d6-benzene
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Figure F.31: 29Si NMR for K[U(CH2Ph)2(OSi(OtBu)3)3] in d6-benzene
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Figure F.32: 1H NMR for the reaction between U(OSi(OtBu)3)4 and O2 in d8-THF



366

Figure F.33: 13C{H} NMR for U(µ2−O2)(OSi(OtBu)3)4(THF) in d6-benzene
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Figure F.34: 1H NMR for U(µ2−O2)(OSi(OtBu)3)4(THF) in d6-benzene
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Figure F.35: HMBC NMR for U(µ2−O2)(OSi(OtBu)3)4(THF) in d6-benzene
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Figure F.36: 29Si NMR for U(µ2−O2)(OSi(OtBu)3)4(THF) in d6-benzene
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Appendix G

Mass spectra - silanol synthesis
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Figure G.1: EI mass spectrum for (1-napthyl)3silanol [80]
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Figure G.2: EI mass spectrum for (4-biphenyl)3silanol [80]
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Figure G.3: EI mass spectrum for (1-anisyl)3silanol [80]
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Figure G.4: EI mass spectrum for (2,4,6-triisopropylbenzene)3silanol
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Figure G.5: EI mass spectrum for (mesitylene)3silanol
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Appendix H

Mass spectra - triphenylsiloxide

ligands
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Figure H.1: Negative ion HRMS ESI UCl4 and 1 eq. Ph3SiOK
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Figure H.2: Negative ion HRMS ESI UCl4 and 1 eq. Ph3SiOK
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Figure H.3: Negative ion HRMS ESI UCl4 and 1 eq. Ph3SiOK
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Figure H.4: Negative ion HRMS ESI UCl4 and 1.5 eq. Ph3SiOK
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Figure H.5: Negative ion HRMS ESI UCl4 and 1.5 eq. Ph3SiOK
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Figure H.6: Negative ion HRMS ESI UCl4 and 1.5 eq. Ph3SiOK
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Figure H.7: Negative ion HRMS ESI UCl4 and 2 eq. Ph3SiOK
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Figure H.8: Negative ion HRMS ESI UCl4 and 3 eq. Ph3SiOK
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Figure H.9: Negative ion HRMS ESI UCl4 and 3 eq. Ph3SiOK
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Figure H.10: Negative ion HRMS ESI UCl4 and 4 eq. Ph3SiOK
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Figure H.11: Negative ion HRMS ESI UCl4 and 5 eq. Ph3SiOK
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Figure H.12: Negative ion HRMS ESI UCl4 and 6 eq. Ph3SiOK
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Appendix I

Mass spectra - reactions with

TMSOTf
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Figure I.1: Negative ion HRMS ESI K[(Ph3SiO)5U(THF)] and 0 eq. TMSOTf
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Figure I.2: Negative ion HRMS ESI K[(Ph3SiO)5U(THF)] and 1 eq. TMSOTf
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Figure I.3: Negative ion HRMS ESI K[(Ph3SiO)5U(THF)] and 2 eq. TMSOTf
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Figure I.4: Positive ion HRMS ESI K[(Ph3SiO)5U(THF)] and 0 eq. TMSOTf
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Figure I.5: Positive ion HRMS ESI K[(Ph3SiO)5U(THF)] and 1 eq. TMSOTf
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Figure I.6: Positive ion HRMS ESI K[(Ph3SiO)5U(THF)] and 2 eq. TMSOTf
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Appendix J

Mass spectra - triphenysiloxide

ligands reactivity studies
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Figure J.1: Negative ion HRMS ESI K[(Ph3SiO)5U(THF)] and 0.5 eq. O2
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Figure J.2: Negative ion HRMS ESI K[(Ph3SiO)5U(THF)] and 0.5 eq. O2
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Appendix K

UV-Vis spectra
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Figure K.1: UV-Vis spectrum for UCl4 in THF
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Figure K.2: UV-Vis spectrum for UCl4 in Toluene



402

Figure K.3: UV-Vis spectrum for UCl4 and 1 eq. of Ph3SiOK in THF
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Figure K.4: UV-Vis spectrum for UCl4 and 2 eq. of Ph3SiOK in THF
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Figure K.5: UV-Vis spectrum for UCl4 and 3 eq. of Ph3SiOK in THF
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Figure K.6: UV-Vis spectrum for UCl4 and 4 eq. of Ph3SiOK in THF
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Figure K.7: UV-Vis spectrum for UCl4 and 5 eq. of Ph3SiOK in THF
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Figure K.8: UV-Vis spectrum of UCl4 and the addition of Ph3SiOH in one equivalent aliquots
(Black=UCl4; Blue=1eq; Purple=2eq; Brown=3eq; Green=4eq; Olive=5eq; Red=6eq)
with isosbestic points
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Figure K.9: UV-Vis spectrum for K[(Ph3SiO)5U(THF)] in THF
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Figure K.10: UV-Vis spectrum for K[U(OSiPh3)5] in Toluene
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Appendix L

Important bond lengths and angles

for molecular structures

See attached files
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Appendix M

Useful information on uranium

Atomic Properties Value

Oxidation States 6, 5, 4, 3

Covalent Radius 196 pm

Atomic Radius 156 pm

Van der Waals Radius 186 pm

1st Ionisation Energy 584 kJ/mol

2nd Ionisation Energy 1420 kJ/mol

3rd Ionisation Energy 1900 kJ/mol

4th Ionisation Energy 3145 kJ/mol

Electronegativity (Pauling Scale) 1.38

Electronic Configuration [Rn] 5f3 6d1 7s2

Table M.1: Atomic Properties of Uranium [2]
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Physical Properties Value

Standard State Solid

Density @ r.t. 19.1 g/cm3

Liquid Density @ m.p. 17.3 g/cm3

Specific Heat Capacity 27.665 J/mol−1K

Heat of Fusion 9.14 kJ/mol

Heat of Vaporisation 417.1 kJ/mol

Melting Point 1132◦C

Boiling Point 4131◦C

Table M.2: Physical Properties of Uranium [2]

Reduction Potentials of Uranium E◦/V

M3+ + 3e→ M -1.8

M4+ + 4e→ M -1.38

M3+ + e→ M2+ -4.7

M4+ + e→ M3+ -0.63

Table M.3: Reduction Potentials of Uranium [2]
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