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Abstract 

Microwave imaging technologies have been widely researched in the biomedical field 

where they rely on the imaging of dielectric properties of tissues. Healthy and malignant 

tissue have different dielectric properties in the microwave frequency region, therefore, 

the‎ dielectric‎ properties‎ of‎ a‎ human‎ body’s‎ tissues‎ are‎ generally‎ different‎ from‎ other‎

contraband materials. Consequently, dielectric data analysis techniques using 

microwave signals can be used to distinguish between different types of materials that 

could be hidden in the human body, such as explosives or drugs. Other concerns raised 

about these particular imaging systems were how to build them cost effectively, with 

less radiation emissions, and to overcome the disadvantages of X-ray imaging systems. 

The key challenge in security applications using microwave imaging is the image 

reconstruction methods adopted in order to gain a clear image of illuminated objects 

inside the human body or underneath clothing.  

This thesis will discuss in detail how microwave tomography scanning could overcome 

the challenge of imaging objects concealed in the human body, and prove the concept of 

imaging inside a human body using image reconstruction algorithms such as Radon 

transformation image reconstruction. 

Also, this thesis presents subspace based TR-MUSIC algorithms for point targets and 

extended targets. The algorithm is based on the collection of the dominant response 

matrix reflected by targets at the transducers in homogenous backgrounds, and uses the 

MUSIC function to image it. Lumerical FDTD solution is used to model the transducers 

and the objects to process its response matrix data in Matlab. Clear images of metal 

dielectric properties have been clearly detected. Security management understanding in 

airports is also discussed to use new scanning technologies such as microwave imaging 



xii 

in the future.The main contribution of this reseach is that microwave was proved to be 

able to image and detect illegal objects embedded or implanted inside human body.  

Key Words 

Microwave Tomography, Security Imaging, Dielectric properties, Human Body Tissues, 

Image reconstruction, Simulation, Microwave imaging, Subspace based TR-MUSIC, 

security management, aviation security, body scanners, privacy.
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 Microwave Imaging for Security Chapter 1:

and Medical Applications 

1.1 INTRODUCTION 

This chapter will walk the reader through the journey of microwave imaging since it 

started up to the most recent developments. It will introduce the reader to microwave 

capabilities in biomedical and security applications, and what has been done to date in 

this area. The motivation of this research into microwave imaging is that microwave 

waves are less harmful than X-rays and could be produced at a lower cost than any other 

imaging system. Also microwaves have advantages in the collection of dielectric 

properties of tissues. However, they also have disadvantages in image quality and these 

challenges have been studied in this research. 

In the medical field, X-ray mammography has shown the best results in detecting 

human breast tumours. However, it has disadvantages such as compressing the breast of 

women during the test for image quality, stability of the breast during the test, painful 

test procedure for women, false negative rates of missing the cancer of between 4% and 

34% [1], ionizing X-ray. 

Ultrasound imaging could be used for further investigation after the mammogram test 

for masses discovered in the breasts. MRI is used to enable more image information to 

be collected before surgery or any suspected discovery after the mammogram. This 

concludes that there have always been many systems and procedures for detection 

investigation, which leads to an increase in the cost of imaging. Consequently 

microwave imaging can be seen to use non-ionized rays to obtain the dielectric 

properties of tissues, and is more comfortable for the women being tested. Image quality 
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has been extensively researched when using microwaves by a trade-off between 

resolution and tissue penetration depth. Resolution is one of the most important factors 

to consider when it comes to designing a microwave imaging system. 

 Resolution has been explained in terms of wavelength, but the penetration depth of the 

microwave system could also be limited when using different frequencies. The human 

body is considered to be a high degree loss if using a microwave imaging system. The 

penetration depth of microwaves into human tissues was studied in [2]; it was 

concluded that at 3GHz the penetration depth for muscle and fat tissue is 1.2 and 9cm, 

respectively. The penetration depth for normal and cancerous breast tissue are 4.4 and 

2.3cm. This confirms that material with water and liquid content absorbs more 

microwaves and could be penetrated better than any other materials.  

A comparison study in [3] between continuous microwave wave radiation and pulsed 

microwave wave radiation to calculate the penetration depth for tissue media has 

concluded that lower frequency pulsed microwave radiation can travel deeper in tissue 

media than higher frequency; this takes into account their conductivities and 

permittivity. This research concentrates more on lower microwave frequencies than 

higher frequencies, between 1-10GHz. A study in [4] showed different microwave 

frequencies for different tissues, and showed that the higher the frequency, the less 

penetration depth for biological tissue. 
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 Figure ‎1.1: Adapted from [4] penetration depth of microwave for different tissues 

of human body 

 

From [5] and all the above reviews about the relationship between resolution, frequency 

and penetration depth, we came to the conclusion that the higher the frequency the more 

details of the object could be achieved with pulsed microwave radiation. At the same 

time, however, there would be less penetration through the complex layers of tissue in 

the human body. We would, therefore, lose imaging in the objects that microwaves 

cannot reach at higher frequency radiation; at the same time at a lower frequency higher 

penetration could be achieved but with a lower imaging quality. Therefore a trade-off 

between the choice of frequency and penetration depth should be considered to obtain 

moderate imaging resolutions. This research has chosen a microwave pulse radiation 

between 1GHz and 10GHz to obtain the best imaging results. 

X-ray tomography and microwave tomography have the same method of illuminating 

the object to be tested or seen, but the final image reconstruction for the X-ray relies on 

the density of the tissues, whereas the microwave relies on the dielectric information of 

the tissues. The wavelength in X-rays is less than the size of the object that can show the 
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image easily, but the microwave wavelength is always larger than the object size and 

causes large diffraction around the object; this cannot be ignored. 

1.2 MICROWAVES IN MEDICAL FIELD DEVELOPMENT 

Microwaves have the properties of being able to travel through an opacity medium, 

which makes them a non-invasive agent for imaging, testing or taking measurements. 

An opacity medium could be a human body, and its organs. Therefore the microwave 

sensors have been manufactured according to the factors that affect microwave rays 

such as water and temperature. Three approaches have been developed using microwave 

imaging for breast cancer; these approaches are passive, dual and active approaches. 

Passive microwaves are when radiometers are used to measure the temperature level 

caused by malignant tissues compared to other healthy tissues when applying 

microwave signals; these are then later assisted by the use of mammograms [6]. When 

dual microwave-acoustics are used to illuminate the breast, they show a tumour 

expanding and creating a pressure wave resulting from higher conductivity, energy 

deposited, or heat rise in the tumour region [7].  

Active microwave imaging involves the use of microwave transducers by illuminating 

the object and obtaining the scattered field data to be calculated for image 

reconstruction, as discussed later in this thesis. Previous research attempted to 

reconstruct an optical image from the microwave range of frequency, but this research 

has not shown any good results [8]. Microwave imaging in the field of medicine has 

been investigated since the 1980s [9]. In addition, the first tomographic images of 

microwave tomography have shown good results, as shown in [10].  

Part of knowing that microwave techniques are suitable for imaging difficult areas is 

how to reconstruct the images from the data obtained by experiments or any simulated 
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data. Later in this thesis research, two different types of imaging algorithms that support 

the use of microwave imaging will be shown. The first one is the use of available X-ray 

CT tomography algorithms that have been developed using the popular Fast Fourier 

Transform Algorithm to show different proposed images and models. The second one 

took into consideration the scattering mechanism of the microwave rays when they are 

projected on the object models such as a human body or metallic materials.  

The use of microwave imaging to detect foreign objects within the human body has 

proven to be sensitive, non-invasive, non-ionized and low cost [11]. Also, the use of 

microwave imaging has been extended to the field of security to see concealed objects 

underneath passenger’s clothing using millimetre waves [12].  

Microwave imaging attracted huge attention in medical areas for cancer imaging 

research because of the electrical properties, permittivity and conductivity of the 

malignant tissue that differs from normal healthy tissue [13]. Also microwave 

frequencies are non-ionizing and could travel through human body tissues with a 

moderate resolution. The experimented research of microwave antennae were 

transducers (receivers and transmitters) of scattered rays from the illuminated object and 

has proven to be able to detect a small size of tumours of between 5-10mm [14]. One of 

the clinical systems that have been used for research was carried out at Dartmouth 

College by Meaney. This system used monopoles antennae to excite microwave rays 

from 3MHz- 3GHz. It showed some good results, as shown in [15]. Another clinical 

system has also been developed by the University of Bristol. They used ultra wideband 

microwave imaging from 4.5-10GHz excited by cavity-backed patch antennae; these 

showed better results as shown in [16].  
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As discussed above the research into microwaves in the medical field has been 

extensively undertaken, especially the antennae of microwaves such as dipole, MEMS-

steerable antennae, Horn antennae, Vivaldi antennae, slot antennae, patch antennae and 

dielectric antennae [17]–[25]. The system in microwave imaging was always how to 

obtain the best data that could be measured from the transducer of microwaves, and then 

this data has to be calculated by reconstructing the image using a different type of 

imaging algorithm. The two main imaging algorithms have been achieved by 1) 

microwave tomography [15], [26]–[29] and 2) radar-based imaging[30]–[37].  

All of the above state-of-the-art imaging algorithms tried extensively to visualize the 

image of the tumour by drawing shapes of that tumour. This is done by collecting 

information about the object illuminated and its dielectric properties to reconstruct the 

shape of the tumour, as seen from [38], [39]. To shed light on the clinical prototype for 

cancer detection developed by Dartmouth College, the United States developed a 16 

circular monopole antennae array. Its frequency was between 0.5-3GHz and its 

continuous wave was able to reconstruct a 2D image; this system was later upgraded to 

reconstruct a 3D image using the Gauss-Newton iterative strategy. Clinical results 

showed that normal and abnormal breast tissue images contrasted on average between 

150% to 200%, with an accuracy of between 80% to 90%. The minimum size of the 

object detected was between 2-3mm; with a typical resolution of 5-10mm. Figure 1.2 

shows a test bed system. 
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Figure 1.2: Microwave Tomography Prototype Test Bed System at Dartmouth 

College 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Microwave Imaging System at Dartmouth College 

 

The University of Bristol team has developed an ultra wideband radar-based microwave 

imaging system using a hemispherical patch antenna array operating at a frequency 

range from 4-9GHz. The number of antennae was gradually developed from 16 
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antennae to 60 antennae for better results. Their imaging system was based on the radar 

approach used for military and ground penetration applications, which was proposed in 

1996 and 1998 by Benjamin and Hagness respectively [36]-[38]. Their imaging 

algorithm was based on the first algorithm, standard delay-and-sum (DAS) focusing, 

used for underground mining [43], [44], and the multistatic adaptive microwave 

imaging method (MAMI) for early breast cancer detection [11].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: University of Bristol Ultra Wide Band Radar Based Microwave 

Imaging System 
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Another microwave imaging system has been developed in the University of Manitoba 

in Canada using a Vivaldi antenna to excite frequencies from the range between 3-

6GHz. Their imaging algorithm used was an enhanced version of the distorted born 

terative method (DBIM), and the multiplicative regularized contrast source inversion 

(MR-CSI) method [45]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Microwave Imaging System by the University of Manitoba, Canada 

In addition, a team at the University of Denmark has developed a hardware system that 

consists of 32 coaxial probe antennae, with operating frequency between 0.3-3GHz, to 

produce a 3D image using the single frequency Newton iteration method. The 

reconstruction image took between 90 and 130 minutes to be produced [46]. 
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Figure 1.6: Microwave Imaging System Architecture for the University of 

Denmark 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: The University of Denmark Microwave Hardware System, 

Measurement Unit and the Antennae 

The Chungbuk University in South Korea has built a microwave imaging system with a 

16 circular monopole antennae array, with operating frequencies of between 0.5-3GHz. 

The resulting image was in 2D using the iteration plus FDTD method [47].  
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Figure 1.8: Chungbuk University Microwave Imaging System 

The Australian IT and Electronic Engineering College developed an ultra-wide band 

imaging system consisting of a circular 12 Tapered Slot Antennae (TSAs) array, with an 

operating frequency of between 3-11 GHz. Their imaging algorithm is time domain or 

frequency domain with a 2D imaging result [33]. 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: Australian IT and Electronic Engineering College Microwave System 
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It has been seen from the above review of microwaves in medical research that this is a 

promising technology. However, there are still many challenges to overcome, such as 

acquiring a high resolution when imaging objects are to be detected. Improving the 

resolution should be a trade-off between the penetration depth of the wavelength and the 

frequency chosen; this should not to be high or more than 10 GHz. In practice the 

microwave imaging system should take into consideration some factors such as:  

1) Overall system planning and irradiation program simulation and evaluation; 

2) The antenna array cell design and integration; 

3) The scattering data acquisition and storage; 

4) Image reconstruction algorithm; 

5) System control and conversion software systems; and 

6) System testing and performance evaluation.  

A proposed experiment has been constructed to do this research: this will be discussed 

in Chapter 6.The above review of microwave imaging used in the medical scanning 

applications could be transferred to serve the field of security scanning technology 

which is the purpose of this research. 

1.3 MICROWAVE TECHNOLOGIES IN SECURITY FIELD 

DEVELOPMENT 

The microwave range lies between 300MHz and 30GHz, corresponding to a wave 

length of between 1mm and 1 metre. The one used for the security check in this thesis 

will be between 1-10GHz to have better penetration to the human body. Microwaves are 

used extensively in communication devices such as mobile phones, medical and security 

applications.  
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In biomedical and security applications, the challenge for using microwaves was how to 

image objects using dielectric materials information, even though it has a long 

wavelength, in order to penetrate media such as living tissues, plastic, clothing, ceramic, 

soil, fog, etc. Detecting contraband materials and weapons underneath human clothing 

or within their bodies is a vital concern in the field of security for transportation, events 

and VIP buildings. Microwaves, as seen in the medical review, could be adapted to suit 

security applications. Here microwave technology will be discussed and reviewed up to 

the current situation in the field of security imaging.  

Microwave imaging has been used in the security application field, such as imaging 

through walls to counter terrorism [44]-[46], and detecting concealed weapons [47]-

[49]. 

As discussed previously, microwave frequency has been chosen depending on the trade-

off between depth of penetration and resolution. A lower frequency is needed for 

medical research to penetrate deep inside the human body, but a higher frequency is 

needed for applications that are limited by diffraction. The microwave wave systems 

approach could be divided into four categories:  

1. Using a short pulse of frequency from each antenna to the targets to be 

illuminated; then all these scattered waves from the target have been measured at 

each antenna to form an image. This technique is called Broadband/Noise Pulse 

Microwave Imager. 

2. When two beams of electromagnetic wave have been aimed at the target and 

then interfere to calculate the amplitude and the phase. This is called microwave 

holography[54], [55].  
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3. Similar to the pulse microwave imager, but this depends on the illuminated 

object sending information or intensity to be calculated for image reconstruction. 

This is called a Passive Millimeterwave Imager [56], [57].  

4. When a frequency modulated continuous wave has been aimed on a moving 

target to obtain distance information and then a reflected wave is calculated 

based on a frequency shift. This is called a Microwave/Radar Imager.  

An ultra-wide band system has been developed using multiple-input-multiple-output 

(MIMO) and synthetic aperture radar (SAR). A combination of a digital beam 

forming in the MIMO array with SAR in the orthogonal direction has shown a 3D 

volumetric image, as shown in Figure1.10 [58].  

 

 

 

 

 

 

Figure 1.10: 3D Volumetric Image Adapted from [58] 

An additional microwave imaging research range of between 576-600GHz to detect 

concealed weapons from a distance of 4-25 metres using a radar-based imaging system 

has shown decent imaging results. Less than 1cm resolution at a distance of 4 metres 

has been obtained [59].  MMW for concealed object detection could be active and 

passive, as it is portable and transportable. In addition, a stand-off position has been 

achieved.   
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1.4 EXISTING TECHNOLOGIES FOR CONCEALED OBJECT 

DETECTION 

A number of existing technologies are used for the detection of concealed objects; they 

will be discussed here and their limitations explained. The security technology 

illustrated will focus on imaging technology because of its relationship to this thesis. 

Explosive detection systems could include screening and other methods such as tracing 

detection systems.  

Screening technologies are used to check passengers and their baggage, and should 

match the criteria of national laws when implemented in sensitive locations such as 

airports. The aviation authorities always have requirements for the use of scanning 

technology to be deployed in airports. Some of these requirements are, for example, the 

type of material hidden, its shape image, location of the targets, total resolution and the 

quantity that could be detected. At the same time, the technology should be suitable for 

the management side such as throughput, fast and reliable. Scanning equipment for 

baggage cannot be deployed to scan humans, and this is because of the danger of these 

scanning technologies affecting human health. This factor will be discussed in detail in 

later chapters.  

The most trusted technique in airports is a physical search method such as pat-down 

searches. The downside of this method that it cannot detect any thing implanted inside 

the human body. Therefore searches using imaging technology are becoming more 

widespread. Imaging technologies can see an image of the human body and interpret the 

image. These technologies will be discussed here, and will include X-rays and 

millimetre wave systems, etc.  
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This research focusses on the image reconstruction collected from microwave 

techniques. For baggage scanning in aviation security this is called bulk detection. Bulk 

detection uses technologies such as X-rays, gamma rays, millimetre waves and 

electromagnetic fields.  

Explosives components have their own characteristics; the main components of 

explosives are oxygen, nitrogen, hydrogen and carbon. Each of these components has 

their own dielectric properties; these will be discussed in Chapter 2 for their microwave 

detection. Explosive devices consist of an explosive agent and a detonating agent. An 

explosive agent consists of inorganic nitrate and carbonaceous fuels, and the detonator 

agent consists of metal tubes and shells with an igniting explosive. Plastic explosive can 

detonate by itself [60]. The new threat from terrorism is that they can implant 

explosives inside their bodies [57]-[59]. To view explosives or drugs in a person or 

luggage scan, it is important to analyse the geometry of the metal or the shape of the 

object. Material density is also important for detection. Drugs, including narcotics such 

as heroin or cocaine, have chloride. Narcotics have low nitrogen and oxygen, but they 

have high carbon and hydrogen.  

1.4.1 Acoustic and ultrasonic detection  

The acoustic method relies on the acoustic reflectivity of objects hidden underneath 

clothing. The image of this technology depends on the rigidity of the object such as 

metal or hard plastics. The limitation of this method is that it does not differentiate 

between different types of material such as weapons or non-weapon objects. For 

example, if the passenger is carrying a phone or weapon the system cannot tell the 

difference between them. Also leather jackets can cause large acoustic reflections that 

will prevent any detection of hidden weapons. Nevertheless a combination of acoustic 

and ultrasonic methods has been investigated to detect concealed weapons in [64].  



17 

Their approach was to be able to locate a zone with ultrasonic and then non-linear 

interaction by generating a lower acoustic wave frequency to penetrate clothing better 

than traditional direct ultrasonic. The advantage of this technology is that it is harmless 

to the human body; however, it does have its limitations as previously mentioned. 

1.4.2 Metal detection and earth magnetic field distortion 

These devices include walk through gates and portable devices for concealed weapon 

detection. They depend on the passive sampling of the distortion of the Earth’s magnetic 

field. The detectors of these devices are called Gradiometer Metal Detectors. This type 

of detector will sound an alarm if a person goes through the gates and is carrying metal. 

This technology is a new application to the existing technology of magnetometer. This 

database where magnetic signatures for different types of weapons are stored and are 

used to differentiate them from different types of non-weapon metallic. These different 

metals are easily detected by using an advanced signal processing algorithm. Recently a 

new Joint Time Frequency Analysis digital signal processing has been developed that 

reduces false alarms [65]. 

This technology is passive so it will not affect any medical device, which is an 

advantage. However, because this technology requires the object to be ferromagnetic, 

objects such as aluminium, copper or stainless steel cannot be detected. Also the 

detection quality depends on the number of the gradiometer: the higher number of 

gradiometer, the better the detection, but at the same time the cost is also higher. 
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Figure 1.11: Adopted from INL Portal for CWD 

1.4.3 Inductive magnetic field method 

This concealed weapon detection technology uses a passive electromagnetic inductive 

technique. The device is a walk through gate that contains two coils: one is the 

transmitter coil and the second one is a receiver coil. A pulsed current with a frequency 

of between 5 kHz to 5MHz is fed into the transmitter coil, which results in a time 

varying magnetic field received by the receiver. If there is a conductive material 

between those two coils then a secondary magnetic field will be produced and interfered 
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by the transmitter coil to produce a current, called an eddy current, to flow to the 

detector or receiver coil. An eddy current is affected by the shape and size of the 

conductive material; therefore it could carry unique information for that material. A 

database has been stored if that type of metal is considered to be threat to the rest of the 

material detected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: Adapted from [66] 
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This technology suffers from sensitivity problems, and it cannot detect non-metallic 

objects. Also small objects cannot be detected because the signals detected from the 

human body are larger than the signal detected from the small sized objects. Objects 

could be detected without its location in this technology where the passenger or the 

suspect has to go through a physical pat-down search. 

1.4.4 Electromagnetic resonance based on radar sweep detection 

This technology depends on an active sweep of radar frequency between 200MHz-

2GHz and, in addition, uses electromagnetic resonance as a signature to recognize 

weapons and contraband materials. The target can be illuminated by a sweep of 

frequency or pulses then reflected signals from the object in the target space give the 

object a unique electromagnetic signature (EM resonance). This is then compared with 

other EM resonance signatures for other materials in order to know if the object is a 

threat or not. In addition, a neural network has been used to distinguish a weapon’s 

signature and other material’s signatures [67]. Although this technology is simple, it 

faces a high rate of false alarms. The signature of a person carrying a weapon is very 

similar to one not carrying a weapon. 

1.4.5 Millimetre wave  

Millimetre waves use radiation longer than infrared (IR), from 1-10mm wavelength, 

which is shorter than radio waves and microwaves. Millimetre waves have been studied 

extensively to provide better imaging for contraband material. Millimetre waves 

systems have already been deployed in airports in America, the UK and Europe [64]-

[67]. Figure 1.13 shows an example of a current millimetre wave scanner [72, p. 10]. 

Millimetre waves are in the range from 30GHz-300GHz. Millimetre wave imaging has 

been investigated by many researchers for concealed weapons’ detection. A novel 

approach of a millimetre wave has been developed using millimetre waves of between 
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26-40GHz to detect concealed weapons: hidden weapons have been discovered by 

studying their unique electromagnetic characteristics [73]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13: Millimetre Wave Scanner Adapted from [74] 

1.4.6 THz imaging 

THertz imaging operates on the 0.1-1mm wavelength, which are sometimes called sub-

millimetre waves. Concealed objects, such as metallic guns, plastic or chemical 

explosives, have special characteristics towards the THz spectrum range. Metallic guns 

block the THz completely; other less metallic weapons will partially reflect the THz 

frequency. However, human skin will absorb the THz because of its high water content. 

The use of THz scanning for human bodies is useful because it can show the reflection 

of metallic or non-metallic objects, but content with water, such as the human body, will 

be shown completely dark [75].  
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The advantage of this technology is that it is non-ionized, safe to the human body, and 

has a wide spectra of THz and high resolution. However, because the human body 

absorbs THz radiation it cannot be used to detect inside the human body, which is the 

main objective of this thesis. Another disadvantage is that THz requires a special output 

power to generate THz at standoff detection. This will be limited and affected by the 

atmospheric conditions, which also leads to higher cost of equipment [75].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14: Terahertz Imaging Adapted from [76] 

Thruvision produces a state of THz scanners, TS4 [indoor] and TS5 [outdoor], but even 

though it uses non-ionized radiation there are still concerns about the power used. For 

their product characteristics they use a passive system that delivers a robust detection of 

concealed materials at standoff distances. They use passive heterodyne systems that 

employ a mixer as the main component to receive the blackbody radiation transmitted 
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by the object. It has a 250GHz received radio frequency downgraded and converted by 

local oscillator to a few Gigahertz of intermediate frequency. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15: TS4 and the Imaging Results Adapted from [77] 

 

 

 

 

 

 

 

 

Figure 1.16: TS4 and the Imaging Results Adapted from [78] 
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Researchers have been questioning the safety of Terahertz by arguing that a set of 

terahertz emission exposures could distress the normal dynamics of DNA, and 

consequently affect the gene expression and DNA replication [79]. 

The privacy issue is a concern for THz because of its ability to penetrate clothes at a 

wavelength of 1.2mm. 

1.4.7 Infrared imager 

Infrared is usually used for night vision to show the temperature of objects in the dark, 

such as human bodies [80]. Therefore, this technology has also been developed to see 

concealed weapons hidden underneath clothing. The approach in this technology is that 

the human body will emit infrared radiation, which will be absorbed by clothing first 

and will then be received by infrared detectors to analyse the results of possible targets 

within a human body. However, the resulting infrared images will be poor if the 

clothing of that person was loose; this is because the infrared radiation emitted will be 

spread over a wider area of clothing, which will limit the purpose of imaging of such a 

technology.  

Iscon has developed a state-of-the-art infrared imaging scanner that will scan a full body 

in 30 seconds. Their technology combines infrared and heat transfer methods. The 

infrared camera shows the objects heated by heat transfer, therefore no radiation has 

been emitted [81]. Figure 1.17 shows human body images scanned, and Figure 1.18 

shows a human body scanner from Iscon.  

Also the purpose of this study is to image contraband materials in the human body, and 

if there is material embedded inside a human body for a long time, its temperature will 
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be similar to the human body. Therefore detection will be difficult for those concealed 

objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.17: Images Shown from Iscon Whole Body Scanner  
 

 

 

 

 

 

 

 

 

 

Figure 1.18: Iscon Body Scanners Adapted from [81]  
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1.4.8 X-ray imager 

X-ray penetration is high, which makes it suitable to inspect containers, suitcases and 

dense boxes. X-ray sources used in X-ray machines emit energy from 1,000 to 

1,000,000 electron volts (10−4 − 10−7𝜇𝑚). This amount of energy passing through 

objects is absorbed by some of the objects to be imaged. The amount of X-ray photons 

in the X-ray stream of light is calculated by a number of factors such as the absorption 

of the photoelectric, electronic production and antielectron and inelastic scattering of a 

photon, known as Compton scattering [82]. The calculation of an attenuation coefficient 

will be based on the amount of energy passed through the object and the active atomic 

number of the object. A brief description of different types of method will be explained 

here. 

Single energy X-ray system 

This system emits 120 keV. It can detect targets made of metals clearly, and can detect 

explosive devices such as explosive wires, detonators and batteries. The disadvantage of 

this system is that it cannot see behind or within high atomic number targets. Moreover 

it cannot detect explosive materials.  

Dual energy X-ray system 

The dual energy system is considered to have a better resolution than the single energy 

X-ray. It can image both dense materials such as metals and less dense materials such as 

clothing and food. This means that it can differentiate between high atomic number 

materials and low atomic number materials. Moreover it can send information about the 

location, shape and density of the materials. 
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Computer tomography (CT) 

CT is a diagnostic technique that uses extraordinary X-ray equipment to generate cross-

sectional images of the human body. In order to get this image, the cross-section has to 

project the X-ray at several angles around the human cross-section. The resolution of 

the CT scans depends on the spatial and contrasts of the object. The X-ray detectors 

collect a number of photons, and then these data are processed using an image algorithm 

to reconstruct the image. This process is occasionally named spiral, volume, or three-

dimensional CT scanning. There is no CT scan employed for human scans in airports 

because it takes a long time to scan a person. 

Backscattering  

Backscatter X-ray systems irradiate the scanned objects with low dose X-rays, from 

0.01 to 10nm wavelengths. Compton scattering has been identified where it has been 

calculated from the incident photon on the objects and its scattering angle. It is 

specialized in detecting materials with lower atomic numbers, such as explosive 

powders and drugs. There are different types of scattering X-ray systems, one which has 

been developed by a leading company in the market, American Science and 

Engineering (AS&E). They have created a Z-backscatter imaging system by employing 

a low energy 50KV X-ray that can only show the surface of the human body, which 

means it can also show behind clothing. The person is scanned vertically by a pencil 

beam, and then the image is transported horizontally by scattered radiation detected at 

the detectors beside the X-ray tube. Figure 1.19 shows an image of a human hiding 

pistols and knives [83]. Figure 1.20 shows a later development of AS&E personal 

scanners. 
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Figure 1.19: Adapted from [83] Backscatter Imaging of Humans 

 

 

 

 

 

 

 

Figure 1.20: AS&E Smart Check System Adapted from [84]  

Of course, for better penetration of passengers’ baggage a higher energy X-ray emission 

is needed to detect detailed objects. Direct X-ray imaging technique can be used in 

medical applications, but it cannot be used for security scans because of its high dose. 

Nevertheless, backscatter X-rays are used in security applications, as illustrated above. 
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This is an X-ray technology that reconstructs images from inside a passenger’s body by 

the reflection of low dosage X-rays emitted at the body. After the reflection a 2D image 

is shown on a computer screen to show if there are any hidden contraband materials. It 

is fast and reliable but cannot see through heavy materials, as seen from experience. It is 

used as a secondary scan machine if the passenger has been selected for further 

screening.  

Although this system scans quickly, it raises concerns over privacy and health issues. In 

addition, in order to scan a human body a total of four scans per person are required, 

front, back and sides. Backscatter penetration is limited; therefore anything hidden in a 

human body will not be detected. Rapiscan have developed a backscatter system that 

has been employed in some airports. 

 

 

 

 

 

 

 

 

 

 

Figure 1.21: Rapiscan System Secure 1000 Adapted from [85] 
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The most recently developed system by Tek84 Engineering Group LLC is called 

AIT84; this system can detect guns, knives and plastic weapons underneath passengers’ 

clothing or hidden in private/groin areas and on the sides of the body. It is only 5ft wide 

and has been implemented in Israeli airports where security is critical in that region of 

the world [86]. Figure 1.22 shows the AIT84 system. The disadvantage of these systems 

is privacy intrusion because it shows anatomical information about the passenger. There 

are also health issues because of its radiation: no matter how low the radiation is, the 

risk is still there. The United States Food and Drug Administration (USFDA) did not 

state officially that it is 100% safe for human bodies [87]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.22: AIT84 System Adapted from [88] 
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X-rays are seen by the public as unsafe systems because of its radiation. Even though 

the dosage used is almost equivalent to two minutes of high altitude flight or 1/2500 as 

per the American College of Radiology [89]. Nevertheless the risk is still there for 

people who already have skin cancer, gene mutations damage and young children [90]. 

In addition to the radiation, the public were also concerned over privacy issues. As a 

result of such issues, in 2013 TSA planned to remove X-ray backscatter from American 

airports and use other technologies such as millimetre waves: this has Automated Target 

Recognition (ATR) that hides passenger details. The X-ray backscatter manufacturer 

Rapiscan has failed to deliver software that hides passenger details when scanning.  

1.5 MOTIVATION 

From all the above techniques, it is clear that no single method meets the requirements 

of security and detecting concealed objects within the human body. The requirement of 

security imaging is to be able to image inside human body taking in consideration the 

resolution and penetration depth. Millimetre waves have been researched widely and 

there are actually systems in airports using millimetre wave imaging. As discussed 

before, microwave imaging can detect dielectric properties of material embedded inside 

the human body, is non-invasive, and can detect metallic or non-metallic material. 

Therefore this is the area that will interest security applications in the near future.  

Existing human body security imaging systems in airports are X-ray machines or metal 

detectors. Millimetre waves have been used for detecting concealed weapons under 

passenger clothing. Microwave through wall imaging has been used recently in law 

enforcement operations and differentiating between terrorists and their hostages if they 

are behind walls. 
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All the other problems of how to find dangerous objects if passengers are carrying them 

in their bags have been solved by different security imaging systems such as X-ray 

machines, CT explosive scanners and other types of imaging systems such as 

backscatters for liquid and powder detectors. Also chemical sniffers were used in 

airports with the help of dogs. However, the challenge of the detection of materials such 

as drugs or explosives if a human has planted anything in his body remains. These 

should be detected directly without involving dangerous X-ray radiation on human 

bodies. An X-ray is an ionized radiation that affects both the security personal and 

suspected criminals.  

1.6 OBJECTIVES 

It can be seen from the above review that a lot of research has been done on all the 

security imaging techniques, but not much in microwave imaging for security systems. 

Although microwave holography has been researched, their imaging results are not 

robust. The essential part of this research in microwave imaging is to understand how 

microwaves interact with human body organs or other materials, such as explosives or 

drugs that could be surgically implanted in the bodies of smugglers and terrorists. When 

understanding microwave interaction it will be easier to construct experiments to add 

human tissues dielectric properties to our models in the next chapter’s numerical 

simulations. Also the imaging process of microwaves plays a vital role in how to 

reconstruct an image out of microwave rays. There are a number of image 

reconstruction algorithms that have been researched before and used for microwave 

holography, such as synthetic aperture radar (SAR).  

New imaging algorithms will be suggested and tried in this research to differentiate 

between human organs and contraband materials. The target should be constructed as a 
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cross-section of the human body and foreign materials embedded inside them. Cross-

sections of the human body will be layers of skin and other human organs with different 

dielectric properties. Simulated target points will be tested to see how effective the 

resolution achieved using a state-of-the-art imaging reconstruction algorithm called TR-

MUSIC.  

The aim of this thesis is to investigate whether microwave imaging is the future for 

security applications, and to study the management side of this research when new 

scanning technology is installed in places to be secured, such as airports, shopping 

malls, events and VIP buildings.  

1.7 CHAPTER SUMMARY 

The above chapter has reviewed the use of microwave imaging in both medical and 

security applications. This chapter started with the introduction of microwave radiation 

and its advantage over X-ray radiation, and explained the motivation behind microwave 

radiation as a safe, non-ionised radiation suitable for human body scanning technology. 

Microwave imaging has been researched extensively in the field of medical 

applications, where it is used in the detection of tumours using the dielectric properties 

of materials. This indicates that dielectric properties of materials are an essential part of 

microwave imaging; this will be discussed in the next chapter.  

Microwave imaging research has been carried out by a number of universities, including 

Dartmouth College in the USA, The University of Bristol in the UK, and the University 

of Manitoba in Canada, University of Denmark, The Chungbuk University in South 

Korea, and The Australian IT and Electronic Engineering College. We observed that the 

imaging resolution should be a trade-off between the frequency chosen and the 

penetration depth of the wavelength; this should not be too high or more than 10GHz.  
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The chapter showed the up-to-date technologies used for scanning human bodies for the 

detection of concealed objects. Microwaves have been used for security applications, 

such as imaging through walls to counter terrorism and detecting concealed weapons. It 

explained the method of tomography used for microwave and X-ray systems. All 

security applications for contraband material detection have been discussed in this 

chapter. These have mainly been in airport security check points where this research is 

included in airport scanning technology.  

The motivation of this research in microwave imaging is the challenge of imaging 

inside human bodies using dielectric properties of tissues, to detect if terrorists or 

smugglers surgically or manually implant illegal objects inside their bodies. The 

objectives are summarised by way of understanding the effect of microwaves on human 

body tissues or other contraband material (which will be discussed in the next chapter), 

using different imaging algorithms for reconstructing the image, modelling target and 

contraband materials embedded in modelled human body cross-sections, to investigate 

whether microwave imaging is the future for security applications, and to study the 

management side when installed in places needing to be secure, such as airports, 

shopping malls, events and VIP buildings.  

Finally this chapter explained the purpose of this research and gave an idea of how 

interesting microwave imaging is. 
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 Dielectric properties of materials Chapter 2:

on microwave 

Understanding an electromagnetic field interaction with human tissues is important for 

the calculation of the dielectric properties of tissues [87]-[92]. The study of dielectric 

properties of biological material and its polarization mechanism was started by Herman 

P. Schwan, whose name has been linked with many key findings in the area over the 

past 50 years. Further analysis and studies have been undertaken by Pethig, 1979 [92], 

Stuchly, 1979 [92], Schwan and Foster, 1980 [97], Pethig and Kell, 1987 [96], and 

Foster and Schwan, 1989 [93]. 

2.1 PERMEABILITY, PERMITTIVITY AND CONDUCTIVITY 

There are differences in the definition between permeability, permittivity and 

conductivity of tissue medium; the easy definition between them all is as follows:  

 permeability denotes the capability of a tissue medium to allow magnetic fields 

to pass through it;  

 permittivity characterises similar for electric fields; and  

 Conductivity signifies the ability of a material to allow a stream of electrical or 

heat current to travel through it; this is because of the free electrons generated.  

As explained previously, when it comes to scanning technology that involves 

microwave radiation, the scanned human body is considered by the cell membrane and 

its conductive intercellular watery tissues. The dielectric properties of the human body, 

including permeability, permittivity and conductivity, are not well known and are 

always dependent on‎ the‎ person’s‎ activity.‎ These‎ dielectric‎ properties‎ from 10Hz to 

10GHz have been researched extensively by Gabriel for more than 50 years[98]. Human 

body tissues always contain water; therefore they will not act as conductor or dielectric. 
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The best way of describing this is as a frequency-dependant dielectric with losses. The 

lower the frequency the deeper the electromagnetic wave can travel through the skin 

resulting in high penetration depth. The higher the frequency the lower penetration 

depth that wave length could travel through the skin.  

Also from [99], the dielectric properties of biological tissue change according to the 

level of water inside these tissues, and the frequency creating a loss factor as well. 

Figure 2.1 shows different dielectric properties for three tissues from the range between 

10 KHz to 1GHz. These tissues are blood, which has a very high water contents muscle, 

which has a medium level of water, and fat, which has a low level of water. It shows 

that the higher the frequency the less the relative permittivity for the highest water 

content. This means that the higher water content of tissues the more lossy it is, but on 

the other hand the drier the tissues the less lossy it is. The magnetic permeability inside 

biological tissues is considered to be similar to that in a vacuum[100]. 

 

 

 

 

 

 

 

Figure ‎2.1: Blood, Muscle and Fat dielectric properties for different frequencies 

adapted from[99].  
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2.2 DIELECTRIC PROPERTY THEORY 

Historically, dielectric properties were observed by Faraday as the change in capacity of 

an empty capacitor when a material was positioned inside this capacitor. Faraday used 

the term ‘specific inductive capacity’ to explain the ratio of the capacities of the filled 

and unfilled capacitors, and then this ratio measure was given the term permittivity𝜀. 

The electrical properties for any material positioned between a two plate capacitor with 

an area 𝐴 and distance 𝑑 between the plates of the capacitor can be calculated using the 

following Equations: 

Conductance: 𝐺 = 𝐴𝜎/𝑑 𝑈𝑛𝑖𝑡𝑠 𝐹𝑎𝑟𝑎𝑑  (1 ) 

Electrical capacitance: 𝐶 = 𝐴𝜀𝜀0/𝑑 units Ohm” or Siemens  (2) 

The conductivity 𝜎 is a measure of how easily the delocalized charge carriers can travel 

through the material when an electric field is applied, and is a proportional factor 

between the electric field and the electric current density. In biological material, the 

conductivity is the measure of the ability of its atomic and molecular charge to be 

transported throughout its volume. The factor 𝜀0 is the dielectric permittivity of free 

space, and has the value 8.854X10−12 “F m”, whereas 𝜀𝑟  is the permittivity of the 

material relative to that of free space: 𝜀 is referred to as the dielectric constant. Pethig 

and Kell, 1978 in [96] gave a simple example, see Figure 2.2, of how an electric dipole 

has been shaped around a globular protein and at the surface of a membrane.  
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Figure2.2: Adapted from [96]  

This is a diagram of the electrical double layers moulded at the surface of a charged 

biological membrane (a), and around a charged, aqueous globular protein (b). A simple 

polar molecule (c), containing in this case of a pair of opposite unit charges +q and -q, 

detached by a distance S and possessing a dipole moment of m = qs C m. 

It consists of two magnitudes of a 𝑞 negative and 𝑞 positive charge separated by a 

vector distance. Therefore the molecular dipole moment 𝑚 =  𝑞𝑠 has a unit of Cm. 

From this example the dielectric property of tissues depends on the molecular size, 

structure and its content to calculate their relative permittivity, which can be written as a 

complex function from [101]: 
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 𝜀∗(𝜔) = 𝜀∞ + (𝜀𝑠 − 𝜀∞)/(1 + 𝑖𝜔𝜏) (3) 

in which 𝜀∞ is the measure of the permittivity when the polarized material is incapable 

to respond to the electric field, 𝜀𝑠 is the static permittivity where polarization is fully 

observed sometimes at low frequency, 𝜔 is the angular frequency of the sinusoidal 

electrical field (in Rad 𝑠−1), i is (−1)1/2 and 𝜏 is the relaxation time. The real and 

imaginary part of complex permittivity may also be x form: 

 𝜀∗ = 𝜀′ − 𝑗𝜀′′ (4) 

Where the real part is𝜀′, which is defined as the measure of charge displacement and 

consequence of energy stored in the material, and equivalent to the permittivity defined 

in (3). It is given by:  

 𝜀′(𝜔) = 𝜀∞ + (𝜀𝑠 − 𝜀∞)/(1 + 𝜔2𝜏2) (5) 

The imaginary part𝜀′′, of the above complex permittivity is called the loss factor, which 

is the measure of electrical energy dissipated when associated with the movement of 

polarizable charges in phase with the electric field. This is given by:  

 𝜀′′(𝜔) = (𝜀𝑠 − 𝜀∞)(𝜔𝜏)/(1 + 𝜔2𝜏2) (6) 

It could also be defined in terms of frequency dependent conductivity as  

 𝜀′′ = 𝜎(𝜔)/ 𝜀0𝜔 = (𝜎0 + 𝜎𝑑(𝜔))/𝜔𝜀0 (7) 

Where 𝜎0 is the steady state conductivity caused by the mobility of ions when the 

external field is excited, and 𝜎𝑑(𝜔) is the frequency dependant conductivity caused by 

dielectric polarization. 



40 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Adapted from [96]. 

The dielectric dispersion displayed by pure water at 20°C, shown in terms of the change 

in (a) the real (ε’) and imaginary (ε “; dielectric loss) parts of the permittivity, and (b) 

the frequency dependence of the conductivity. The low-frequency conductivity at 

neutral pH, because of the existence of H+ and OH−ions, has electrical conductivity 

value of some 5μSm−1. 

We can outline the magnitude of dielectric dispersion in Figure 2.3 (a) as  

 ∆𝜀′ = 𝜀′
𝑠 − 𝜀′

∞  (8) 
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By combining Equation (5) and (6)  

 𝜀′(𝜔) = 𝜀′
∞ + ∆𝜀′/[1 + (

𝑓

𝑓𝑐
)
2
]  (9) 

And  

 𝜎(𝜔) = 𝜎𝑠 + (2𝜋𝜀0𝑓
2∆𝜀′)/𝑓𝑐[1 + (

𝑓

𝑓𝑐
)
2
]  (10) 

Where 𝑓𝑐  is the relaxation frequency (𝑓𝑐 = 1/2𝜋𝜏), the factor 𝜎𝑠 is the conductivity at 

low frequency where relaxation frequency is lower than 𝑓𝑐 , and contains the steady state 

conductivity and dielectric losses associated with polarization processes. By putting 

𝑓 ≫ 𝑓𝑐  the conductivity increment is shown in Figure 2.3 (b) and calculated by 

 ∆𝜎 = 𝜎∞ − 𝜎𝑠 = 2𝜋𝑓𝑐𝜀0∆𝜀′ (11) 

From the above it shows that if the frequency has been changed across the dielectric 

dispersion, the change in conductivity is proportional to the change in permittivity. 

Therefore the total energy of the electric field is constant and it must either be stored as 

reflected 𝜀′(𝜔) or dissipated as reflected𝜀′′(𝜔). Equation (11) could be rewritten by  

 𝜏 = ∆𝜀′𝜀0/∆𝜎 (12) 

Equations (11) and (12) only consider frequencies with single relaxation time. 
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Figure 2.4: Adapted from [102]. Graphical Presentation of Debye’s Model in 

Liquid Water 

When frequencies are used as a parameter to calculate the complex permittivity, a plot 

of 𝜀′ against 𝜀′′ is obtained, a semicircle is created, and its centre lies on the abscissa 

which intersects 𝜀′axis at the points 𝜀′
−∞and 𝜀′

−𝑠 over a range of frequency. This is 

recognized as a Cole-Cole Circle, termed after the brothers K. S. and R. H. Cole who 

first derived it [103].  
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Figure 2.5: Adapted from [104], shows Cole-Cole Model Plot 

2.3 BIOLOGICAL TISSUES SPECTRUM 

As previously stated, the dielectric properties of tissue are the measure of the interaction 

of the electromagnetic field with the tissue constituent at the cellular and molecular 

level. The polarization mechanisms of the interaction are well studied and identified 

theoretically and experimentally [91]. The dielectric spectrum of biological tissue 

specified at the [91] depends on the frequency and temperature. Therefore it consists of 

three main regions, known‎as‎α, β, ϒ‎dispersions, and is divided into low, intermediate 

and high frequencies from hertz to gigahertz.  
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The 𝛼 dispersion is due to the polarization of ionic diffusion at the membrane of the cell 

in the range between hertz to kilohertz. The‎β‎dispersion‎caused‎by‎the‎polarization‎at‎

the membrane of the cell and intracellular membranes in the region of intermediate 

frequencies (100 kilohertz). The ϒ‎dispersion‎is‎due‎to‎the‎polarization‎and relaxation of 

water in tissue in the region of gigahertz. From these definitions of different dispersion 

regions, the measurement of dielectric properties of tissue that has been investigated by 

[94] was‎between‎the‎tail‎of‎the‎β‎dispersion‎and‎the‎good‎part‎of the ϒ dispersion (50-

20,000MHz). Measurements of dielectric properties of tissue used a Cole-Cole 

expression where the complex permittivity is expressed as (13): 

 𝜀̂(𝜔) = 𝜀∞ + 
𝜀𝑠−𝜀∞

1+(𝑗𝜔𝜏)1−α
+

𝜎𝑙

𝑗𝜔𝜀0
 (13) 

𝜀∞ Permittivity at the field frequency where 𝜔𝜏 ≫ 1 

𝜀𝑠 Permittivity at the field frequency where 𝜔𝜏 ≪ 1 

𝜎𝑙 Conductivity of the ionic drift and lower frequency polarization 

mechanisms 

α Broadening of the dispersion 

α Is zero for pure water but for tissue is ≥0 and negligible for body fluid. The relaxation 

time 𝜏 of tissue is usually longer than the one for pure water, which signifies a 

restriction of rotation capability of tissue with water molecules for the reason of organic 

environment. 
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2.4 DIELECTRIC PROPERTIES DATA OF HUMAN TISSUE 

Dielectric properties of the human body have been discussed by several researchers. The 

most reliable data was produced by Gabriel, 1996 [105], under variable tests of 

microwave frequencies. Semenov and his group have used Federal Communication 

Commission tabulated values for the human body’s dielectric properties in their 

simulation experiments [106],[107]. As we are using Matlab simulation experiments 

only, the dielectric properties of the human body helped to model the cross-section of the 

human body. This dielectric data will help to easily distinguish it from other contraband 

materials’ dielectric properties, where it will show differences in image results after 

reconstruction. The First experiments in this research will be using Radon transformation 

technique [108] and the second experiments in this research will be using  TR-MUSIC 

technique. The advantage here of dielectric property analysis is that the dielectric 

property values of explosives or drugs are lower than human body tissue, which contains 

blood and water. Table 1; shows different dielectric properties of human body tissues 

with‎different‎frequency‎range‎,based‎on‎Gabriel’s‎study[109].More human body tissue 

dielectric properties are included in Appendix D. 
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Tissue Frequency Conductivity Relative Loss Wavelength Penetration

name [Hz] [S/m] permittivity tangent [m] depth [m]

Air 1GHz 0 1 0 0.29979 N/A

Aorta 1GHz 0.72866 44.561 0.29393 0.044442 0.049146

Bladder 1GHz 0.39663 18.85 0.37823 0.067887 0.059107

Blood 1GHz 1.5829 61.065 0.46596 0.037411 0.026875

BloodVessel 2GHz 1.1708 43.089 0.24421 0.02267 0.029982

BodyFluid 2GHz 2.1556 68.472 0.28294 0.01794 0.020578

BoneCortical 2GHz 0.31007 11.654 0.23914 0.043604 0.058856

BoneMarrow 3GHz 0.12085 5.2378 0.13824 0.043561 0.10078

BrainWhiteMatter 3GHz 1.5106 35.541 0.25467 0.01663 0.021118

BreastFat 3GHz 0.17889 5.0386 0.21273 0.044272 0.066986

Cartilage 3GHz 2.205 37.605 0.35134 0.016057 0.014983

Cerebellum 4GHz 3.2796 42.427 0.34737 0.011341 0.010697

CerebroSpinalFluid 4GHz 5.1959 63.73 0.36638 0.0092394 0.008288

Cervix 4GHz 2.9533 45.706 0.29037 0.010973 0.012278

Colon 4GHz 3.4636 51.31 0.30335 0.010347 0.011102

Cornea 4GHz 3.6521 49.229 0.33338 0.01054 0.010336

Duodenum 4GHz 3.8476 59.611 0.29006 0.0096088 0.010762

Dura 4GHz 2.7456 40.096 0.30772 0.011702 0.012384

EyeSclera 4GHz 3.4044 50.448 0.30326 0.010435 0.0112

Fat 4GHz 0.1829 5.1249 0.16038 0.033002 0.065918

GallBladder 5GHz 4.6525 54.763 0.30542 0.0080114 0.0085398

GallBladderBile 5GHz 5.9127 64.915 0.32745 0.0073465 0.0073279

Gland 5GHz 4.6614 53.342 0.31416 0.0081123 0.0084174

Heart 5GHz 4.8626 50.274 0.34772 0.0083348 0.0078538

Kidney 5GHz 4.9423 48.059 0.36971 0.0085094 0.0075686

Lens 5GHz 3.5606 41.671 0.30719 0.0091829 0.0097349

Liver 5GHz 3.8278 39.26 0.35052 0.0094296 0.0088186

LungDeflated 5GHz 3.9413 44.859 0.31587 0.0088451 0.0091305

LungInflated 5GHz 1.722 18.966 0.32641 0.013592 0.013599

Lymph 7GHz 7.4403 50.08 0.38151 0.0059482 0.0051373

MucousMembrane 7GHz 5.5823 37.146 0.38591 0.006904 0.0058993

Muscle 7GHz 6.4607 46.865 0.35401 0.006163 0.0057101

Nail 7GHz 1.4431 9.171 0.40406 0.013872 0.011357

Nerve 7GHz 3.7733 26.216 0.36961 0.0082296 0.0073216

Oesophagus 7GHz 8.1918 54.315 0.3873 0.0057088 0.0048617

Ovary 7GHz 6.5446 36.891 0.45556 0.0068831 0.0050472

Pancreas 7GHz 7.4403 50.08 0.38151 0.0059482 0.0051373

Prostate 7GHz 7.6733 50.216 0.39239 0.0059346 0.0049928

Retina 7GHz 7.0332 45.994 0.39268 0.0062008 0.0052133

SkinDry 10GHz 8.0138 31.29 0.46038 0.0052291 0.0037979

SkinWet 10GHz 8.951 33.528 0.47989 0.0050416 0.0035267

SmallIntestine 10GHz 12.687 42.03 0.54258 0.0044728 0.0028047

SpinalCord 10GHz 6.0295 23.778 0.45581 0.0060013 0.0043983

Spleen 10GHz 11.381 40.56 0.5044 0.0045721 0.0030585

Stomach 10GHz 13.314 48.923 0.48919 0.0041697 0.0028668

Tendon 10GHz 10.339 29.31 0.63406 0.005299 0.002905

Testis 10GHz 12.377 45.248 0.4917 0.0043346 0.0029665

Thymus 10GHz 12.132 45.15 0.48301 0.0043432 0.0030204

Thyroid 10GHz 12.132 45.15 0.48301 0.0043432 0.0030204

Tongue 10GHz 11.077 41.484 0.47998 0.0045325 0.00317

Tooth 10GHz 2.1359 8.1197 0.47284 0.010252 0.0072681

Trachea 10GHz 8.5368 31.09 0.49358 0.0052282 0.0035658

Uterus 10GHz 12.492 45.341 0.49526 0.0043285 0.0029432

Vacuum 10GHz 0 1 0 0.029979 N/A

VitreousHumor 10GHz 15.126 57.872 0.46982 0.0038414 0.0027391

 

 

Table 2.2: Variable biological tissues dielectric properties for different frequencies 

adapted from [109]. 
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2.5 DIELECRIC PROPERTIES OF EXPLOSIVES AND DRUGS 

As discussed above, the dielectric properties of material 𝜀′ are the electrical field 

strength value in an empty medium to that tested material. It is indicated that the 

material has a dielectric constant as an insulator. When microwave energy is dissipated 

into the material then the energy is converted to heat; therefore this measure is called 

the dissipated factor. Moreover the dielectric constant of a material could refer to the 

density of the material.  

As explained above, the dielectric properties of the human body, and explosives or 

drugs that could be imbedded in the human body also have its own dielectric properties. 

Therefore the difference between both dielectric properties could be used to detect 

foreign materials in the human body. For instance, plastic explosives and explosive 

powders have very low dielectric properties and a low dissipation factor; therefore the 

lower density of these materials could be observed.  

The relative permittivity for most explosives is between 2.70-3.14 [110], while plastic 

objects are in the range of 2.08-5.04 [111]. Metals can be highly reflective materials that 

could reflect microwaves and be observed clearly. Table 2.2 shows some materials and 

their relative permittivity. 
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Table 2.2: Relative Permittivity of Some Material, Compiled from [101]-[103]  

Material Relative permittivity Frequency  

Comp B (explosive) 2.90 1GHz 

Comp C-4 (explosive) 3.14 1GHz 

RDX 3.14 1GHz 

PETN(explosive) 2.72 1GHz 

TNT(explosive) 2.70 1GHz 

Black powder 3.3 2GHz 

Pistol Powder 3.1 2GHz 

Ceramic 5.60 3GHz 

Glass (Pyrex) 4.82 3GHz 

Plexiglass 2.60 3GHz 

Styrofoam 1.03 3GHz 

Teflon 2.08 10GHz 

Polystyrene 2.54 10GHz 

Polyethylene 2.25 10GHz 

Lucite 2.56 10GHz 

Cocaine and Heroin 3 Not observed 
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2.6 CHAPTER SUMMARY 

This chapter has summarised the history and the theory behind the calculation of 

dielectric properties. 

The dielectric properties of materials include permittivity, permeability and 

conductivity. Complex permittivity of materials has been calculated. The chapter shows 

that if the frequency has been changed across the dielectric dispersion, the change in 

conductivity is proportional to the change in permittivity. Therefore the total energy of 

the electric field is constant, and it must either be stored as reflected 𝜀′(𝜔) or dissipated 

as reflected𝜀′′(𝜔). 

The Cole-Cole Circle technique was used to calculate complex permittivity of materials. 

The dielectric spectrum of biological tissue depends on the frequency and temperature. 

Therefore it consists of three main‎ regions,‎ known‎ as‎ α,‎ β,‎ ϒ‎ dispersions,‎ and‎ are‎

divided into low, intermediate and high frequencies from hertz to gigahertz.  

The dielectric properties of the human body has been researched by Gabriel[105] with 

different values to each tissues, as shown in table 2.1.  

The dielectric properties of contraband materials have been explained; some of the 

values are shown in table 2.2. 

The explained dielectrics properties of different materials have helped in modelling 

cross-sections with embedded targets inside them containing different dielectric 

properties. The next chapters will use the discussed dielectric properties in this chapter 

to set up the experiential simulation in Matlab and FDTD software to reconstruct the 

images using microwave radiation. 
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 Microwave tomography for Chapter 3:

security applications 

3.1 INTRODUCTION 

Microwave imaging systems exist under different types of technologies and these 

technologies are found in medical imaging systems. There are already several papers 

that discuss the use of microwave imaging via the analysis of dielectric properties of 

tissues using different techniques [113], [114]. Microwave imaging is non-ionizing, 

non-invasive, sensitive and low-cost [11], which makes it a promising area for security 

applications for use in border control, such as in airports.  

Although the microwave is not comparable to the X-ray in image resolution, it has the 

advantage of imaging physiological changes [88], [106]. The preferred microwave 

illumination level frequency for imaging makes it safe and non-destructive for the 

operator, avoiding the hazards of radiation from the X-ray systems used in airports at 

the moment.  

This chapter will illustrate the possible application of Security Imaging Systems using 

microwave frequencies of between 0.9GHz to 2.36GHz, since it has been already 

researched in the medical field[106]. The concerns raised about this imaging system 

were how to construct them cost effectively and with less radiation emission. 

Microwaves used to face the issues of expensive hardware and insufficient computing 

power, but now the technologies have advanced, indicating a brighter future for 

microwave systems, especially with the knowledge of the interaction of electromagnetic 

waves between human body tissue and their dielectric properties [105], [116].  



51 

The current human body inspection systems in airports are metal detectors, which can 

only detect metals concealed in a person’s clothing; they are ineffectual if the person is 

hiding other illegal materials such as plastic explosives or drugs. There is an additional 

machine in airports that uses high dosage X-ray radiation, but it is very harmful for both 

the scanned person and the operator.  

This chapter discusses the possibility of microwave tomography imaging techniques for 

security applications, using dielectric property analysis to discuss the data of dielectric 

properties of the human body to be used in the simulation, describes the minimum 

resolution and microwave frequency to be used in the imaging for security applications, 

and describes the simulation results. 

3.2 RADON TRANSFORMATION IMAGE RECONSTRUCTION THEORY 

The Radon transformation algorithm was discovered by Johann Radon. His imaging 

algorithm has already been used in x-ray medical imaging and Computed tomography 

medical scanning. Figure 3.1 shows a basic diagram of how images constructed using a 

Radon transformation algorithm. 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.1:  adapted from [117] Parallel beam geometry for Radon Image 

reconstruction algorithm  
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When it comes to image an object, a beam of waves is made of a set of line integrals at 

a given angle. We would like to image the object𝜇(𝑥, 𝑦). This method is better 

explained if we consider the collection of data as a series of parallel rays across a 

projection at angle 𝜃 and at a position𝑟. This is repeated for different angles around the 

object. For attenuation, the exponential of tissue is: 

                               𝐼 = 𝐼0 exp(−∫𝜇(𝑥, 𝑦)𝑑𝑠)                                (14) 

Where 𝜇(𝑥) is the attenuation coefficient at position 𝑥 along the wave path. Therefore 

the total attenuation 𝑝 of a wave at a position 𝑟 on the projection at angle 𝜃 is given by 

the line integral; 

𝑝(𝑟, 𝜃) = 𝑖𝑛𝑡
𝐼

𝐼0
− −∫𝜇(𝑥, 𝑦)𝑑𝑠)                             (15) 

As seen from the figure, 𝑟 will be expressed as; 

𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃                                                 (16) 

So the equation above will be  

𝑝(𝑟, 𝜃) = ∬ 𝑓(𝑥, 𝑦)𝛿(
∞

−∞
𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑟)𝑑𝑥𝑑𝑦       (17) 

Where 𝑓(𝑥, 𝑦) represent(𝑥, 𝑦). The above function is the Radon transformation of the 2 

D object. The above projection slice theory tells us that if we could have an infinite 

number of one dimensional projections of an object at an infinite number of angles to 

reconstruct the original image𝑓(𝑥, 𝑦), therefore if we need to find the 𝑓(𝑥, 𝑦) back from 

the above equation we need to find the inverse of the Radon transformation from the 

filtered back propagation algorithm. 

𝑓(𝑥, 𝑦) = ∫ 𝑝(𝜃
2𝜋

0
, 𝑥 cos 𝜃 + 𝑦 sin 𝜃)𝑑𝜃                            (18) 

The above mathematical function is already a tool in Matlab that is added to the total 

imaging reconstruction algorithm code used for our experiment in this chapter. 
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3.3 RESOLUTION AND FREQUENCY FOR MICROWAVE 

TOMOGRAPHY  

The resolution of the illuminated object by microwave tomography is affected by 

factors such as microwave wavelength, reconstruction algorithms, and signal-to-noise 

ratio adjustments in microwave tomography imaging systems, number of emitters and 

receivers, and dielectric properties of biological objects. The resolution of microwave 

tomography has been studied by Serguei Semenov [106]. Their microwave operating 

frequencies were between 0.9 and 2.36GHz and signal-to-noise ratio was 30dB. They 

concluded that a resolution of between 6.3-7.8mm was achieved at 2.36GHz. Therefore, 

knowing that the wavelength in water at 2.36 is equal to 1.44cm, the spatial resolution 

achieved was better than half of the wavelength. They also concluded that a resolution 

of between 7.3-9.5mm was achieved at 0.9GHz. Therefore, knowing that wavelength in 

a medium at 0.9GHz is equal to 3.32cm, the spatial resolution resulting experimentally 

was better than the quarter of the wavelength (𝜆/4 = 8.3mm). These have demonstrated 

that microwave resolution is not limited by the wavelength in medium. The smallest 

object that could be detected is 6.3mm; therefore, that is the minimum resolution 

required for microwave security applications. For security control of contraband, 6.3mm 

diameter or higher is the required resolution to detect any illegal object hidden in the 

human body. 

3.4 EXPERIMENT SET UP DETAILS   

In the next sections there will be a numerical simulation based on suitable assumptions 

when it comes to microwave tomography scanning of human body cross-sections. The 

dielectric properties of the selected human body tissues to be in that cross-section were 

in the range 0.9-2.36GHz. The dielectric properties decreased in value when the 



54 

frequency chosen increased, which explains that it has a proportional relationship. 

Therefore the scenario is to choose human body tissues with dielectric properties in one 

frequency, such as 0.9GHz, and then choose another material to be embedded in that 

cross-section modelled with the same 0.9GHz dielectric properties; this could be metals 

or any other contraband powders. In most cases illegal powders have almost similar 

values of dielectric properties in frequency objection, ranging from 0.9-2.36GHz. Its 

dielectric value would range from 1-3.5 maximum because they do not contain water or 

blood like human body tissues.  

To ease our problem on Matlab, we started with square shaped cross-section layers of 

different human tissue dielectric properties values, and small objects embedded inside 

these layers with different dielectric properties each time. The dielectric properties data 

of human body tissues have been taken from websites[109], [118]. Later models will be 

spheres, which are closer to human body cross-sections. Again it will be similar 

scenario to the square model idea of layers of different human body tissue dielectric 

properties values. To visualise the sphere cross-section more clearly, the model will be 

made of a few layers with illegal objects embedded in them. These models will then be 

image reconstructed using a Radon transformation algorithm, as explained previously. 

3.5 NUMERICAL SIMULATION FOR MICROWAVE TOMOGRAPHY 

USING RADON TRANSFORMATION TECHNIQUE 

The microwave tomography technique is adapted here to test human body cross-

sections by subjecting them to microwave rays and analysing the image created. In 

order to develop this program in Matlab we had to follow the flow chart below, 

described in Figure 3.2. 
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Figure 3.2: Flowchart of Microwave Tomography Simulation 

The simulation was carried out to prove the concept of detecting different dielectric 

properties of materials inside a human body cross-section. After projecting the 

microwave ray onto the developed phantom of a human body cross-section there will be 

an image reconstruction algorithm using radon transformation to calculate the dielectric 

properties from the inside of the human body. If there is an extra object such as a metal 

gun, it should be easily observed as an object with high pixel intensity, raising 

suspicions and showing different dielectric property values inside the human body. The 

first assumption of the simulation was to treat the human body cross-section in the form 

of a square cross-section to ease the problem as shown in Figures 3.3and 3.4.  
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Figure 3.3: Shows Two Metal Pieces Blocking the Microwave with High Intensity 

 

 

 

 

 

 

 

 

 

Figure 3.4: Final Image of Two Metal Pieces after Reconstruction 

From Figure 3.4 the locations of the two white or high intensity points have been 

replaced with different dielectric properties values, which are lower than the human 

dielectric properties in the cross-section. The square shape is assumed to be different 

Metals 

Metals 
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layers of human cross section. Remarkably it is still detected because of its low value 

compared with higher values of human body tissue dielectric properties, as shown in 

Figures 3.5 and 3.6. 

 

 

 

 

 

 

 

 

Figure 3.5: Shows Two Contraband Materials Inserted in the Cross Section 

 

 

 

 

 

 

 

 

Figure 3.6: Final Image of Contraband Materials after Reconstruction 

Explosives 
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As the use of a square cross-section showed successful results, to make it more realistic 

another phantom sphere cross-section of the human body was developed, giving us the 

results in Figures 3.7 and 3.8.  

 

 

 

 

 

 

 

 

 

Figure 3.7: Sphere Cross-Section with Two Contrabands Overlapping the Usual 

Dielectric Properties of a Human Body 

 

 

 

 

 

 

 

 

Figure 3.8: Final Image of Contraband Materials after Reconstruction 

Explosives 
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From these we can see how 8.3mm and 6.3mm resolution of a very low dielectric 

property microwave image can be visualized after the image reconstruction simulation.  

 

 

 

 

 

 

Figure 3.9:10cm radius of sphere cross-section and 2cm radius of illegal powder 

embedded inside it  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Final image of contraband materials embedded in human dry skin 

after reconstruction 

The above simulation result shows a sphere cross-section of 10cm radius, assumed to be 

dry skin; its dielectric value is 36.587315 at 4GHz. There is 2cm illegal object 

Human Dry Skin 

Explosive  

Human Dry Skin 

Explosive  
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embedded inside it, which has a dielectric value of 3 at 4GHz microwave objection. The 

background of this model is air and its dielectric value assumed to be 1; because the 

dielectric value of the illegal object (powder) is very low it can be seen clearly. This 

result‎ could‎ be‎ compared‎ with‎ the‎ next‎ chapter’s‎ simulations‎ to‎ make‎ comparisons‎

between Radon Transformation theory and TR MUSIC theory in image formation 

techniques for microwave imaging. 

 

 

 

 

 

 

 

 

Figure 3.11: 2 cm radius of illegal powder 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: final Image of contraband materials after image reconstruction 
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The above simulation shows 2 cm radius of illegal powder with a defined dielectric of 3 

at 4 GHz microwave objection.it has been detected clearly even that its dielectric value 

is closer to the background dielectric value which is Air. This scenario could be a 

hidden powder underneath clothes such as jackets or underwear where terrorist uses 

most for their operations. This simulation result could be compared later in chapter 6 

with other simulation results using TR-Music Algorithm. 

As seen from the simulation, we already have the data of the human body with 

microwave dielectric properties simulated and reconstructed using a Radon 

transformation technique. There were two pieces of metal (metallic explosive devices) 

that were blocking the microwave radiation and showed very clearly, detected as higher 

intensity to the projected microwave rays as shown in Figures 3.3 and 3.4. Furthermore, 

powdered explosives or drugs could be detected because of their lower dielectric 

property values compared with the human dielectric properties shown in Figures 3.5-

3.7. Further development of the simulation technique could enable us to match real 

human bodies with real microwave images, tested in this simulated image 

reconstruction program.  

3.6 CHAPTER SUMMARY 

This chapter explained the reason for choosing microwave imaging over X-ray imaging 

when it comes to health factors and the complexity of technology. In this chapter, the 

frequency range of the experiments used for microwave imaging was between 0.9-

2.36GHz; this range has been used before in medical devices. Knowing the dielectric 

properties of human tissues is an essential part of this research; this is because we need 

to be able to model the human body cross-section in Matlab. The resolution of imaging 
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is not limited with the wavelength for microwave imaging, as was explained in Section 

3.3.  

The minimum resolution required for security applications is 6.3mm, but the resolution 

could achieve better values in future research. The theory of the Radon transformation 

technique and its inverse algorithm to be used for the final image reconstruction of 

microwave imaging has been explained. Experiment set-up details were explained to 

give the reader details of how we arrived at the final image after image reconstruction. 

A flowchart explained the numerical simulation for the microwave tomography.  

The simulation started with square layers of human tissues and illegal objects embedded 

inside them; it showed the illegal objects very clearly. The illegal objects used were 

metals and very low dielectric powders; these were shown successfully. Sphere cross-

sections treated as a human body torso were modelled and illegal circular objects were 

embedded inside them; these were also shown very clearly. This chapter ended 

successfully with clear imaging results.  

The next chapter will discuss a new image reconstruction theory called Time Reversal 

MUSIC. This will be applied for the next microwave tomography numerical simulation 

experiments in the later chapters. 
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 Time Reversal MUSIC Theory Chapter 4:

This chapter describes the mathematical theories behind Time Reversal MUSIC 

(Multistatic Signal Classification) in locating and visualizing embedded targets in a 

homogenized or inhomogenized medium such as the human body. Super resolution 

imaging was formed by using singular value decomposition in the combination with 

time reversal MUSIC. This chapter will also investigate the relationship between the 

number of antennae N and the number of scattered targets M, to be illuminated where 

MUSIC algorithm could solve well-known vector subspace if N > M. In the simulation 

we will see the effect of the TR MUSIC algorithm in the well-known targets by 

specifying the number of the antennae in an arbitrary location around the targets using 

this Equation:  

 𝑁 ≥
2𝜋𝑅𝑓

𝑐
  (19) 

Where R is the radius from the centre of the illumination area to the arbitrary location of 

each antenna. 

4.1 TR MUSIC THEORY  

Throughout this theory discussion, the Equations will be discussed in the form of 

frequency domain where it is originally expressed in the time domain and processed 

through Fourier Transforms as shown below: 

 𝐹(𝑥) =
1

2𝜋
∫ 𝑑𝜔𝐹̃(𝜔)𝑒+𝑖𝜔𝑡∞

−∞
  (20) 

With  

 𝐹̃(𝜔) = ∫ 𝑑𝑡 𝐹(𝑡)𝑒−𝑖𝜔𝑡∞

−∞
 (21) 
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Therefore in a frequency domain the time reversal signal time dependant will be phase 

conjugation. 

Assuming an arbitrary antenna array placed evenly, or in other words regularly spaced 

at the positions 𝜉𝑖, 𝜉𝑗, 𝑖 and 𝑗, are treated as transducers where they can transmit and 

receive at the same time, 𝑖 and 𝑗 = 1, 2, 3, … ,𝑁. The antennae here are dipole point 

sources where they radiate a vector field 𝐸𝑗(𝑥, 𝜔) into the space where targets of illegal 

dielectric objects are imbedded. The radiated field from the jth antenna at 𝑥 access is: 

 𝐸𝑗(𝑥, 𝜔) = 𝐺(𝑥, 𝜉𝑗)𝑒𝑗(𝜔)  (22) 

By neglecting the multiple scattering between targets, the resulting scattered field from 

the 𝑗𝑡ℎ antenna (single antenna excitation) are identical to: 

 𝐸𝑗
𝑠(𝑥, 𝜔) = ∑ 𝐺(𝑀

𝑚=1 𝑥, 𝑋𝑚)𝜏𝑚(𝜔)𝐺(𝑋𝑚, 𝜉𝑗)𝑒𝑗(𝜔) (23) 

Where 𝜏𝑚(𝜔) is the amplitude of the scattered target, 𝑋𝑚 is the location of mth targets, 

𝑒𝑗(𝜔) is the input voltage applied to the antennae for transmission, 𝜔 is the angular 

frequency, 𝐺(𝑥, 𝑋𝑚) is the Green function of the medium where the targets are inserted. 

Once all the antennae are excited by a voltage at the source from the 𝑖𝑡ℎ antennae, the 

resulting scattering field on the 𝑖𝑡ℎ will be:  

𝐸𝑖
𝑠(𝑥, 𝜔) = ∑𝐸𝑗

𝑠(𝜉𝑖, 𝜔) 

𝑁

𝑗=1

 

 = ∑ ∑ 𝐺(𝜉𝑖, 𝑋𝑚)𝜏𝑚(𝜔)𝐺(𝑋𝑚, 𝜉𝑗)𝑒𝑗(𝜔)𝑀
𝑚=1

𝑁
𝑗=1  (24) 
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Now, by introducing the Green function column vectors, the above Equations can be 

interpreted into matrix representation, therefore: 

 𝑔𝑚(𝜔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗0 = {𝐺0 (𝜉𝑖 , 𝑋𝑚)} 

                                            = [𝐺𝑜(𝜉1, 𝑋𝑚), 𝐺𝑜(𝜉2, 𝑋𝑚), … , 𝐺𝑜(𝜉𝑁 , 𝑋𝑚)]𝑇  (25) 

The scattered field on the transducers will be a symmetrical multistatic response matrix: 

 H = [hij]N×N
= [∑ 𝐺(𝜉𝑖, 𝑋𝑚)𝜏𝑚(𝜔)𝐺(𝑋𝑚, 𝜉𝑗)𝑀

𝑚=1 ] 

                                                    = ∑ 𝜏𝑚𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
𝑔𝑚⃗⃗ ⃗⃗  ⃗

0𝑇
𝑀
𝑚=1   (26) 

Equation (23) can be rewritten as:  

 𝐸𝑖
𝑠(𝑥, 𝜔) = ∑ hij

𝑁
𝑗=1 𝑒𝑗 = 𝐻𝑒 (27) 

Where 𝑒 is the applied voltage on the antennae for excitation:  

 e={𝑒𝑗} = [𝑒1, 𝑒2, … , 𝑒𝑁]𝑇 (28) 

The above equations can be applied to both homogeneous and inhomogeneous media 

where the targets will be embedded and depends entirely on the Green functions to be 

known and calculated. 
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4.1.1 Time reversal matrix 

Time reversal matrices are defined as:  

 𝑇𝑅(𝜔) = 𝐻†(𝜔)𝐻(𝜔) 

 = 𝐻∗(𝜔)𝐻(𝜔) (29) 

The‎superscript‎†‎ indicates‎ to‎ the‎adjoint‎matrix, and because the multistatic response 

matrix is symmetric then 𝐻†(𝜔) = 𝐻∗(𝜔) where the superscript asterisk * represents 

the complex conjugate. 

Because of symmetry, and in terms of Green function vectors, the time reversal matrix 

is equal to: 

TR=[ ∑ 𝜏𝑚𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
𝑔𝑚⃗⃗ ⃗⃗  ⃗

0𝑇
𝑀
𝑚=1 ]

∗

[∑ 𝜏𝑚,𝑔𝑚,⃗⃗ ⃗⃗ ⃗⃗  
0
𝑔𝑚,⃗⃗ ⃗⃗ ⃗⃗  

0𝑇
𝑀
𝑚,=1 ] 

 = ∑ ∑ Λ𝑚,𝑚,𝑔𝑚⃗⃗ ⃗⃗  ⃗
0∗

𝑀
𝑚,=1

𝑀
𝑚=1 𝑔𝑚,⃗⃗ ⃗⃗ ⃗⃗  

0𝑇
 (30) 

Where  

 Λ𝑚,𝑚, = 𝜏𝑚
∗ 𝜏𝑚, < 𝑔𝑚⃗⃗ ⃗⃗  ⃗

0
, 𝑔𝑚,⃗⃗ ⃗⃗ ⃗⃗  

0
> (31) 

When ≠ 𝑚′ , Λ𝑚,𝑚, = 0 

Where the angular product stands for the standard inner product in𝐶𝑁, such as: 

 < 𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
, 𝑔𝑚⃗⃗ ⃗⃗  ⃗

0
>=< 𝑔𝑚⃗⃗ ⃗⃗  ⃗

0∗
, 𝑔𝑚⃗⃗ ⃗⃗  ⃗

0
> 

 = ∑ 𝑔𝑚⃗⃗ ⃗⃗  ⃗
0∗

(𝑛)𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
(𝑛)𝑁

𝑛=1  (32) 



67 

4.1.2 Eigenvalues and eigenvectors of the time reversal matrix 

The time reversal matrix is Hermitian, therefore it has orthogonal eigenvectors having 

non-negative eigenvalues. The rank of the TR will depend on the number of target M 

and number of antenna N. Two cases will be discussed as well as resolved scatterers or 

targets and non-well resolve scatterers or targets. 

4.1.3 Well resolved scatterers 

It is termed a well resolved target when the measure ofΛ𝑚,𝑚,. Equation (31) is 

approximately zero when𝑚 ≠ 𝑚,. This occurs in the case of orthogonal Green function 

vectors, and the inner product between Green functions vectors are approximately zero, 

i.e.:  

 < 𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
, 𝑔𝑚,⃗⃗ ⃗⃗ ⃗⃗  

0
>= ∑ 𝑔𝑚⃗⃗ ⃗⃗  ⃗

0∗
(𝑛)𝑔𝑚,⃗⃗ ⃗⃗ ⃗⃗  

0
(𝑛)𝑁

𝑛=1  

 = ∑ 𝐺∗𝑁
𝑛=1 (𝜉𝑛, 𝑋𝑚)𝐺(𝜉𝑛, 𝑋𝑚,) ≈ 0,  (33) 

For 𝑚 ≠ 𝑚, then 

 𝐻(𝑥, 𝑋𝑚,) = ∑ 𝐺∗𝑁
𝑛=1 (𝜉𝑛, 𝑥)𝐺(𝜉𝑛, 𝑋𝑚,) (34) 

The above equation is called the coherent point spread function (CPSF). If𝑥 = 𝜉𝑛, 𝑛 =

1, 2, … ,𝑁, which represents the antenna emitted waves Green function into space. 

Therefore the inner product of Equation (33) < 𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
, 𝑔𝑚,⃗⃗ ⃗⃗ ⃗⃗ 

0
> is also the point spread 

function for the antenna array at the image point if𝑥 = 𝜉𝑚, and the measure of Λ can be 

represented in relationship of CPSF as: 

 Λ𝑚,𝑚, = 𝜏𝑚
∗ 𝜏𝑚, , 𝐻(𝑥, 𝑋𝑚,)  (35) 
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The geometry of the antennae array and the wavelength of the radiation is an essential 

factor for the spatial extent. Therefore if two targets, location 𝑋𝑚 and𝑋𝑚,, are separated 

greater than the effective spatial extent of CPSF, then Λ𝑚,𝑚, reduces approximately to  

 Λ𝑚,𝑚, = |𝜏𝑚|2𝜌𝑚𝛿𝑚,𝑚, (36) 

Where 𝛿𝑚,𝑚,the Kroneker delta is function and 𝜌𝑚 expressed as  

 𝜌𝑚 = 𝐻(𝑋𝑚, 𝑋𝑚) =< 𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
, 𝑔𝑚⃗⃗ ⃗⃗  ⃗

0
> (37) 

And this is the case of well resolved target or scatterers. 

From (35) and (30) the time reversal operator become in the form 

 𝑇𝑅(𝜔) = |𝜏𝑚|2𝜌𝑚𝑔𝑚⃗⃗ ⃗⃗  ⃗
0∗

𝑔𝑚⃗⃗ ⃗⃗  ⃗
0𝑇

  (38) 

Which represents the projection operator of the spanned subspace by a complex 

conjugate vector of the Green functions𝑔𝑚.  

The Green function vectors are orthogonal with norm squared equal to 

𝜌𝑚 In the case of the well resolved target such as; 

 < 𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
, 𝑔𝑚,⃗⃗ ⃗⃗ ⃗⃗  

0
>= 𝜌𝑚𝛿𝑚,𝑚, (39) 

Therefore in the case of a well resolved target, the eigenvectors of the time reversal 

matrix is the complex conjugate of the Green function vectors. Therefore |𝜏𝑚|2|𝜌𝑚|2 

are the eigenvalues. 
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 𝑇𝑅𝑔𝑚0
⃗⃗ ⃗⃗ ⃗⃗  ⃗

0∗
= ∑ |𝜏𝑚|2𝜌𝑚𝑔𝑚⃗⃗ ⃗⃗  ⃗

0∗
𝑔𝑚⃗⃗ ⃗⃗  ⃗

0𝑇
𝑔𝑚0
⃗⃗ ⃗⃗ ⃗⃗  ⃗

0∗
𝑀
𝑚=1  

 = ∑ |𝜏𝑚|2𝜌𝑚𝑔𝑚⃗⃗ ⃗⃗  ⃗
0∗

𝑀
𝑚=1 𝜌𝑚0

𝛿𝑚,𝑚0
 

 = |𝜏𝑚0
|
2
|𝜌𝑚0

|
2
 𝑔𝑚0
⃗⃗ ⃗⃗ ⃗⃗  ⃗

0∗
 (40) 

The eigenvectors of the time reversal matrix H are considered to be one of the complex 

conjugates of the Green function vectors, and under the assumption that M is less than N 

antenna element the remaining N-M eigenvectors are equal to 0 values because of their 

orthogonalities on the Green Functions, such as 

 𝑇𝑅(𝜔)𝜐 = |𝜏𝑚|2𝜌𝑚𝑔𝑚⃗⃗ ⃗⃗  ⃗
0∗

𝑔𝑚𝜐⃗⃗⃗⃗ ⃗⃗ ⃗⃗  0
𝑇
=0 (41) 

Where 𝜐 is the orthogonal eigenvectors on the space spanned by the Green function. 

Thus  

 𝐶𝑁 = 𝒮  𝒩 (42) 

Where 𝒮 is the signal subspace spanned by the Green function𝒮 = {𝑠𝑝𝑎𝑛(𝑔𝑚⃗⃗ ⃗⃗  ⃗
0∗

, 𝑚 =

1, 2, … ,𝑀)}, 𝒩 is the noise subspace, and 𝐶𝑁 is the N-dimensional complex valued 

column vectors (the space of the applied voltage to the N element antenna array). The 

above mathematic formulae are based on the assumption of the M number of targets are 

less than the number of antennae N. In the case of well resolved targets, the 

eigenvectors of the signal space 𝒮 are propotional to the complex conjugate of the 

Green function vectors: 
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 𝜐𝑚 =
𝑔𝑚⃗⃗ ⃗⃗ ⃗⃗  

0∗

√𝜌𝑚
, 𝑚 = 1, 2,… ,𝑀. (43) 

4.1.4 The case of non-resolved targets 

By going back to Equation (40): 

 𝑇𝑅 = ∑ ∑ Λ𝑚,𝑚,𝑔𝑚⃗⃗ ⃗⃗  ⃗
0∗

𝑀
𝑚,=1

𝑀
𝑚=1 𝑔𝑚,⃗⃗ ⃗⃗ ⃗⃗  

0𝑇
 (44) 

The Λ𝑚,𝑚, will not be the diagonal matrix, and the time reversal matrix will still be the 

projection operator onto the subspace spanned by the complex conjugates of the Green 

functions vector 𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
, identified also as the signal subspace 𝒮. However, there will no 

longer be a complex conjugate Green function eigenvector for the TR, but rather there 

will be superpositions of these eigenvectors. In the case of non-resolved targets the rank 

of TR, dimension of the subspace 𝒮 will not be equal to M because of target size and 

configuration. By representing the TR orthogonal set of eigenvectors by 𝜐𝑚, 𝑚 =

1, 2, … ,𝑀,𝑀 + 1,… ,𝑁 where the first M represents the eigenvectors with non-zero 

eigenvalues, which spans the signal subspace𝒮. The remaining N-M eigenvectors have 

zero eigenvalues and span the noise subspace𝒩; 

 𝑇𝑅𝜐𝑚 = λ𝑚𝜐𝑚 , 𝑚 = 1, 2,… ,𝑀. 

𝑇𝑅𝜐𝑚 = 0,𝑚 = 𝑀 + 1 + 2,… ,𝑁 

< 𝜐𝑚, 𝜐𝑚, > = 𝛿𝑚,𝑚,   
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The representation of the signal and noise subspace projection operators is as follows: 

 𝑃𝒮 = ∑ 𝜐𝑚𝜐𝑚
†𝑀

𝑚=1  (45) 

 𝑃𝒩 = ∑ 𝜐𝑚𝜐𝑚
†𝑀𝑁

𝑚=𝑀+1  (46) 

From Equation (42) the sum of the above operators will be the identity operator in𝐶𝑁: 

 𝑃𝒮 + 𝑃𝒩 = 𝐼 (47) 

4.1.5 Time reversal eigenvectors focusing 

If we consider well resolved targets, the signal space eigenvectors of the TR are 

proportional to the complex conjugate of the Green function vectors as in Equation (44). 

The wave field excited from each antenna when the input voltage is 𝑒 = {𝑒𝑗(𝜔) } is 

equal to the eigenvectors of the signal space 𝜐𝑚 = {𝜐𝑚(𝑗)},𝑚 = 1, 2, … .𝑀 and by using 

Equation (47): 

 𝐸𝑗(𝑥, 𝜔) = ∑ 𝐺(𝑥, 𝜉𝑗)𝜐𝑚(𝑗)𝑁
𝑗=1  (48) 

And from Equation (44) and Equation (3): 

𝜐𝑚 =
𝑔𝑚⃗⃗ ⃗⃗  ⃗

0∗

√𝜌𝑚

, 𝑚 = 1, 2,… ,𝑀 

=
1

√𝜌 𝑚
∑𝐺∗

𝑁

𝑗=1

(𝜂, 𝜉𝑗)𝐺(𝑥, 𝜉𝑗) 

 =
1

√𝜌 𝑚
 𝐻∗(𝑥, 𝜂) (49)  



72 

 

Therefore from the above Equations in the case of a well resolved target, the use of 

Equation (49) will satisfy calculating the location of the target, which will be the 

maximum value of this calculated image field. The image field calculation in Equation 

(49) using CPSF will depend on the number of antenna element arrays, the geometry of 

the arrays and the wavelength, as discussed earlier. 

When using Equation (47) it is necessary to know the Green function of the background 

medium. On the other hand, however, there is no need to know the Green function when 

calculating the eigenvalues and eigenvectors of the time reversal matrix. However, the 

above does not include the non-resolved targets where linearity of the signal space 

eigenvectors will lead to a linear combination of CPSFs, and each will focus on 

different targets with different amplitudes. This will result in image fields interfering 

with each other and will show poor image quality. All the above is the classical image 

formation process, which will be replaced later with the MUSIC (Multistate Signal 

Classification) subspace method to deal with both resolved and non-resolved targets. 

4.1.6 MUSIC 

This section will discuss the use of a MUSIC algorithm with a TR algorithm that will 

still require multistatic data using the FDTD method to calculate the time reversal 

Matrix 𝑇𝑅(𝜔) = 𝐻∗(𝜔)𝐻(𝜔) and the eigenvectors of this matrix. The MUSIC 

algorithm considers the time reversal matrix 𝑇𝑅(𝑤) as a projection operator onto the 

subspace of 𝐶𝑁 spanned by the complex conjugates of the Green function vectors (the 

signal subspace) 𝒮 and that the noise subspace 𝒩 is spanned by the eigenvectors of 

𝑇𝑅(𝜔) having zero eigenvalue. As a result, the complex conjugate of the Green 
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function vector must be orthogonal to the eigenvector of the time reversal matrix, which 

will be zero eigenvalue; i.e.  

 < 𝜐𝑚0, 𝑔𝑚
∗ >=< 𝜐𝑚0

∗ , 𝑔𝑚 >= 0 (50) 

If 𝑚 = 1, 2, … ,𝑀,𝑚0 = 𝑀 + 1,… ,𝑁, where 𝜐𝑚0 are the eigenvectors of the 𝑇𝑅(𝑤) 

having zero eigenvalue, the pseudo-spectrum according to the algorithm:  

 𝐵(𝑋𝑝) =
1

∑ |<𝜐𝑚0
∗ ,𝑔𝑝>|

2𝑁
𝑚0=𝑀+1

 (51) 

And  

 𝑔𝑝(𝜔) = {𝐺(𝜉𝐼 , 𝑋𝑝)} = [𝐺(𝜉1, 𝑋𝑝), 𝐺(𝜉2, 𝑋𝑝), … , 𝐺(𝜉𝑁 , 𝑋𝑝)]
𝑇
 (52) 

Is the Green function vector for the target located at the assumed position𝑋𝑝, and (51) is 

the MUSIC algorithm for the time-reversal algorithm. To implement the MUSIC 

algorithm the denominator of the pseudo-spectrum has been used in relation with the 

projection operator used, as discussed in Equations (44, 45, and 46). Therefore by using 

Equation (51) in particular, the denominator of the pseudo-spectrum will be  

∑|< 𝜐𝑚0
∗ , 𝑔𝑝 >|

2
𝑁

𝑀+1

 

= ∑|< 𝜐𝑚0𝑔𝑝
∗ >|

2
𝑁

𝑀+1

 

 = |𝑃𝒩𝑔𝑝
∗ |

2
= |[𝐼 − 𝑃𝒮]𝑔𝑝

∗ |
2
 (53) 
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The above MUSIC algorithm should be connected with the time reversal imaging 

technique, which could be expressed in the following form: 𝐸𝑗(𝑥, 𝑤) 

  𝐸𝑗(𝑋𝑝, 𝜔) = ∑ 𝐺(𝑁
𝑗=1 𝑋𝑝, 𝜉𝑗)𝜐𝑚0(𝑗) =< 𝜐𝑚0

∗ , 𝑔𝑝 > (54) 

𝑥 has been replaced by𝑋𝑝, 𝑔𝑝 is the Green function vector calculated at𝑋𝑝, which is 

calculated in Equation (52). 𝜐𝑚0 is the 𝑚0′th eigenvector of 𝑇𝑅(𝑤) having zero 

eigenvalue. Consequently the pseudo-spectrum in Equation (51) can be expressed in 

two forms, the first one as: 

 𝐵(𝑋𝑝) =
1

∑ |𝐸𝑚0(𝑋𝑝,𝜔)|
2𝑁

𝑀+1

 (55) 

In Equation (55) the pseudo-spectrum is inversely proportional to the sum of the 

intensities of the images made from the eigenvectors having zero eigenvalue. 

Consequently, time reversal images will be calculated from the images corresponding to 

zero eigenvalues. The second possible form of pseudo spectrum could be concluded 

from the simple form of time-reversal operator expressed as: 

 𝑇𝑅(𝜔) = ∑ |𝜏𝑚|2𝜌𝑚𝑔𝑚⃗⃗ ⃗⃗  ⃗
0∗

𝑔𝑚⃗⃗ ⃗⃗  ⃗
0𝑇

𝑀
𝑚=1  (56) 

And from Equations (44) and (54) to be formed as the following Equations; 

∑|< 𝜐𝑚0
∗ , 𝑔𝑝 >|

2
𝑁

𝑀+1

= |[𝐼 − 𝑃𝒮]𝑔𝑝
∗ |

2
 

= |𝑔𝑝
∗ − ∑ 𝜐𝑚

𝑀

𝑚=1

< 𝜐𝑚, 𝑔𝑝
∗ >|

2
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 = |𝑔𝑝|
2
− ∑ |𝐸𝑚(𝑋𝑝, 𝜔)|

2𝑀
𝑚=1  (57) 

which explains that the pseudo-spectrum is inversely proportionate to the difference 

amongst the intensity of the image of the steering vector and the sum of the intensities 

of the images shaped from the eigenvectors having a non-zero eigenvalue. Therefore the 

time reversal image will be calculated from the images corresponding to non-zero 

eigenvalues. 

4.2 FINAL MATHEMATICAL MODEL BASED ON PREVIOUS THEORY  

We can assume that 𝑁 is the number of antennae and 𝑀 is the number of targets to be 

illuminated at different locations𝑥1, 𝑥2, … . , 𝑥𝑚, with reflectivity strengths of 

𝜏1,𝜏2, … . , 𝜏𝑀.  𝜉𝑖, 𝜉𝑗 is the location of the transducers 

and𝑚 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 = 1, 2, … ,𝑀. The signal vector sent out from 

transducers will be represented in the below expression: 

 𝑆(𝑤) = [𝑆1(𝑤), 𝑆2(𝑤),… . . , 𝑆𝑁(𝑤)]𝑇 (1) (58) 

where T denotes to transpose. 

The reflected signals received at the jth transducers will be expressed as the following 

Equation: 

 𝑅𝑗(𝑤) = ∑ ∑ 𝐺𝑜(𝜉𝑗
𝑁
𝑖=1

𝑀
𝑚=1 , 𝑥𝑚)𝜏𝑀𝐺𝑜(𝜉𝑖 , 𝑥𝑚)𝜏𝑖(𝑤) (59) 

the illumination vectors can be defined at the following expression: 

 𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
= [𝐺𝑜(𝜉1, 𝑥𝑚), 𝐺𝑜(𝜉2, 𝑥𝑚), … , 𝐺𝑜(𝜉𝑁 , 𝑥𝑚)]𝑇 (60) 
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The total wave field received at the transducer including to the number of targets and 

their locations will be: 

 𝐻(𝑤) = ∑ 𝜏𝑚
𝑀
𝑚=1 𝑔𝑚⃗⃗ ⃗⃗  ⃗

0
𝑔𝑚⃗⃗ ⃗⃗  ⃗

0𝑇
 (61) 

And from (45) the total wave field vector received will be: 

 𝑅⃗ (𝑤) = 𝐻(𝑤)𝜏 (𝑤) (62) 

Therefore the time reversal matrix, keeping in mind the reciprocity factor, will be 

expressed as: 

 𝑇𝑅(𝑤) = 𝐻(𝑤)𝐻(𝑤) = 𝐻∗(𝑤)𝐻(𝑤) (63) 

where * denotes to adjoint. It is known that Hermitian matrices share properties with 

real symmetric matrices by having eigenvalues always real, therefore from (61) and (63) 

the Hermitian matrix of 𝑇𝑅(𝑤) will be expressed as follows: 

𝑇𝑅(𝑤) = ∑ 𝜏𝑚𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
𝑔𝑚⃗⃗ ⃗⃗  ⃗

0𝑇
𝑀

𝑚=1

∑ 𝜏𝑚́𝑔𝑚́⃗⃗ ⃗⃗  ⃗
0
𝑔𝑚́⃗⃗ ⃗⃗  ⃗

0𝑇
𝑀

𝑚́=1

 

 = ∑ ∑ Λ𝑚,𝑚́
𝑀
𝑚=1 𝑔𝑚

0⃗⃗ ⃗⃗  ⃗𝑀
𝑚́=1 𝑔𝑚́

0⃗⃗ ⃗⃗  ⃗
𝑇

                           (64) 

where total reflectivities  

 Λ𝑚,𝑚́ = 𝜏𝑚𝜏𝑚́ < 𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
, 𝑔𝑚⃗⃗ ⃗⃗  ⃗

0
≥ 𝜏𝑚𝜏𝑚́ 𝑔𝑚⃗⃗ ⃗⃗  ⃗

0
𝑇

 𝑔𝑚⃗⃗ ⃗⃗  ⃗
0
 (65) 

The image of the targets could be shown from the construction of the response matrix as 

in (63), but if we use the MUSIC formula to create the image, which has the advantage 
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of defining the signal space 𝑉𝑠 in term of Singular Value decomposition and defining 

the𝑉𝑁, then the image function will be expressed as: 

 𝐼(𝑥) =
1

‖𝑝𝑉𝑁𝑔0⃗⃗⃗⃗  ⃗(𝑥)‖
2 (66) 

where 𝑔0⃗⃗ ⃗⃗ the illumination is vector and 𝐻𝑉𝑁 is the projection operator. 

It could be assumed that 𝑢1⃗⃗⃗⃗  ⃗, 𝑢2⃗⃗⃗⃗ , … , 𝑢𝑀⃗⃗ ⃗⃗  ⃗ are the singular vectors that span signal space𝑉𝑠, 

then the imaging function will be: 

 𝐼(𝑥) =
1

‖𝑔⃗ 0(𝑥)‖2−‖𝑃𝑉𝑠𝑔⃗ 0(𝑥)‖
2 =

1

‖𝑔⃗ 0(𝑥)‖2−∑ |𝑔⃗ 0(𝑥)⋅𝑢𝑚⃗⃗ ⃗⃗ ⃗⃗  |2𝑀
𝑚=1

 (67) 

This concludes the final theory of the proposed model. We should now consider that the 

array of antennae is divided in 𝑡 transmitters located at 𝜉1, … , 𝜉𝑡 and 𝑟 receivers located 

at 𝜂1, … , 𝜂𝑘, therefore the response matrix for the 𝑀 point target positioned at 𝑥1, … , 𝑥𝑀 

with reflectivity strength 𝜏1, … , 𝜏𝑀 referring to Equations (65) and (66),  

 𝐻(𝑤) = ∑ 𝜏𝑚
𝑀
𝑘=1 𝑔𝑚

𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑔𝑚
𝑟⃗⃗⃗⃗⃗⃗ ⃗⃗ 
𝑇
 (68) 

Where  

 𝑔𝑚
𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝐺𝑜( 𝜉1, 𝑥𝑚), 𝐺𝑜( 𝜉2, 𝑥𝑚), … , 𝐺𝑜( 𝜉𝑡 , 𝑥𝑚)]𝑇 (69) 

and 

 𝑔𝑚
𝑟⃗⃗⃗⃗⃗⃗ ⃗⃗ = [𝐺𝑜(𝜂1, 𝑥𝑘), 𝐺

𝑜(𝜂2, 𝑥𝑘), … , 𝐺𝑜(𝜂𝑟 , 𝑥𝑘)]
𝑇 (70) 
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are the left and right illumination vectors for the transmitters and receivers array that 

span the column and raw of signal spaces 𝑉𝐶
𝑆 and 𝑉𝑅

𝑆 correspondingly. Therefore the 

imaging function for using MUSIC for both vectors will be:  

 𝐼(𝑥) =
1

‖𝑔𝑡⃗⃗⃗⃗ 
0
(𝑥)‖

2
−‖𝑃

𝑉𝐶
𝑆𝑔𝑡⃗⃗⃗⃗ 

0
(𝑥)‖

2 +
1

‖𝑔𝑟⃗⃗ ⃗⃗  
0
(𝑥)‖

2
−‖𝑃

𝑉𝐶
𝑆𝑔𝑟⃗⃗ ⃗⃗  

0
(𝑥)‖

2 (71) 

The above formulation is the main concept of the well resolved target, but if the target 

size and numbers are more than the resolution of the array then the above formula in 

Equation (71) will not be enough to find the desired target. Therefore extra filtration 

formulae were proposed to calculate the geometry of the targets by selecting the 

appropriate signal space according to the resolutions of the array.  

This will compute the time reversal matrix 𝑇𝑅 = 𝐻(𝑤)∗𝐻(𝑤) and the eigenvalues and 

the eigenvectors of this matrix. The MUSIC algorithm considers the time reversal 

matrix 𝑇𝑅 as a projection operator onto the subspace of 𝐶𝑁 spanned by the complex 

conjugates of the Green function vectors (the signal subspace), and that the noise 

subspace 𝑁 is spanned by the eigenvectors of 𝑇 having zero eigenvalue. As a result the 

complex conjugate of the Green function vector must be orthogonal to the eigenvector 

of the time reversal matrix, which will be zero eigenvalue; i.e.:  

 < 𝜇𝑚0, 𝑔𝑚
∗ >=< 𝜇𝑚0

∗ , 𝑔𝑚 > 0 (72) 

If 𝑚 = 1, 2, … ,𝑀,𝑚0 = 𝑀 + 1,… ,𝑁, where 𝜇𝑚0 are the eigenvectors of the 𝑇 having 

zero eigenvalue, the pseudo-spectrum according to the algorithm  

 𝐷(𝑋𝑝) =
1

∑ =𝑀+1𝑁
𝑚0 |<𝜇𝑚0

∗ ,𝑔𝑝>|
2 (73) 
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and  

 𝑔𝑝(𝑤) = {𝐺(𝑅𝐼 , 𝑋𝑝)} 

 = [𝐺(𝑅1, 𝑋𝑝), 𝐺(𝑅2, 𝑋𝑝),… , 𝐺(𝑅𝑁 , 𝑋𝑝)]
𝑇
 (74) 

is the Green function vector for the target located at the assumed position𝑋𝑝. Equation 

(73) is the MUSIC algorithm for a time-reversal algorithm,  

4.2.1 Non-resolved targets 

To implement the MUSIC algorithm the denominator of the pseudo-spectrum has been 

used in relation to the projection operator in terms of the signal subspace projection 

operator. This has been used in the following Equations: 

 𝑃𝑆 = ∑ 𝜇𝑚𝜇𝑚
†𝑀

𝑚=1  (75) 

 𝑃𝑁 = ∑ 𝜇𝑚𝜇𝑚
†𝑀𝑁

𝑚=𝑀+1  (76) 

 𝑃𝑁 + 𝑃𝑆 = 𝐼 (77) 

4.2.2 Implementation of MUSIC 

Therefore the denominator of the pseudo-spectrum will be  

∑|< 𝜇𝑚0
∗ , 𝑔𝑝 >|

2
𝑁

𝑀+1

= ∑|< 𝜇𝑚0𝑔𝑝
∗ >|

2
𝑁

𝑀+1

 

 = |𝑃𝑁𝑔𝑝
∗ |

2
= |[𝐼 − 𝑃𝑆]𝑔𝑝

∗ |
2
                                      (78) 
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4.2.3 Connection with classical time-reversal imaging 

The above MUSIC algorithm should be connected to the time reversal imaging 

technique, which could be expressed in the following form: 

 𝜓𝑚0(𝑋𝑝, 𝜔) = ∑ 𝐺(𝑁
𝑗=1 𝑋𝑝, 𝑅𝑗)𝜇𝑚0(𝑗) 

 =< 𝜇𝑚0
∗ , 𝑔𝑝 > (79) 

r has been replaced by𝑋𝑝, 𝑔𝑝 is the Green function vector calculated at𝑋𝑝, which is 

calculated in Equation (76). 𝜇𝑚0 is the 𝑚0′th eigenvector of 𝑇 having zero eigenvalue. 

Consequently, the pseudo-spectrum in Equation (78) can be expressed in two forms, the 

first one as: 

 𝐷(𝑋𝑝) =
1

∑ |𝜓𝑚0(𝑋𝑝,𝜔)|
2𝑁

𝑀+1

 (80) 

In Equation (80) the pseudo-spectrum is inversely proportional to the sum of the 

intensities of the images shaped from the eigenvectors having zero eigenvalue. Thus 

time reversal images will be calculated from the images corresponding to zero 

eigenvalues. 

The second possible form of pseudo-spectrum could be concluded from the simple form 

of time-reversal operator expressed as: 

 𝑇 = ∑ |𝜏𝑚|2𝜌𝑚𝑔𝑚
∗ 𝑔𝑚

𝑇𝑀
𝑚=1  (81) 

and from Equations (75) and (76) to be formed as the following Equations: 
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∑ =

𝑁

𝑀+1

|< 𝜇𝑚0
∗ , 𝑔𝑝 >|

2
= |[𝐼 − 𝑃𝑆]𝑔𝑝

∗ |
2
 

= |𝑔𝑝
∗ − ∑ 𝜇𝑚

𝑀

𝑚=1

< 𝜇𝑚, 𝑔𝑝
∗ >|

2

 

 = |𝑔𝑝|
2
− ∑ |𝜓𝑚(𝑋𝑝, 𝜔)|

2𝑀
𝑚=1  (82) 

which explains that the pseudo-spectrum is inversely proportional to the difference 

between the intensity of the image of the steering vector and the sum of the intensities 

of the images made from the eigenvectors having a non-zero eigenvalue. Therefore the 

time reversal image will be calculated from the images corresponding to non-zero 

eigenvalues. 

4.3 CHAPTER SUMMARY  

This chapter has taken the reader through the journey of TR-Music theory discussed and 

explained before in [119]–[123]. The theory explained here was based on the purpose of 

this research, which is human body security scanning. Therefore all the terms and 

mathematical definitions used were purely for the purpose of security scanning. The 

mathematical expressions of all formulas were based on the creativity of this research 

only. This chapter has investigated the relationship between the number of antennae N 

and the number of scattered targets M, to be illuminated where the TR-MUSIC 

algorithm could solve well-known vector subspace if N > M. This is also true in the 

case of non-resolved targets when M > N, the rank of TR matrix. The dimension of the 

subspace 𝒮 will not be equal to M because of target size and configuration; therefore a 

sum of signal and noise subspace has to be calculated to bring the real identity matrix as 
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in equation (77). Later the final mathematical model was created based on the original 

theory of TR-MUSIC.  

The mathematical model explained the time reversal theory was then connected to the 

MUSIC theory to arrive at the final image created to be used for microwave imaging in 

the next chapters. The MUSIC algorithm considers the time reversal matrix, TR (𝑤), as 

a projection operator onto the subspace of 𝐶𝑁 spanned by the complex conjugates of the 

Green function vectors (the signal subspace) S, and that the noise subspace N is spanned 

by the eigenvectors of TR ( 𝑤). Super resolution imaging was formed by using singular 

value decomposition in combination with time reversal MUSIC, as seen in equation 

(67). The use of a MUSIC algorithm with a TR algorithm will still require multistatic 

data using the FDTD method to calculate the time reversal Matrix TR. The 

mathematical model will use the data received at the transceivers to reconstruct the final 

image. Better understanding of this chapter’s theory will be shown in the next chapter. 
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 Microwave Tomography Chapter 5:

This chapter will discuss how the previous theory could be used as tomography to 

gather microwave images. 

5.1 THEORETICAL DEVELOPMENT OF MICROWAVE TOMOGRAPHY 

Microwave imaging systems existing under different types of technologies have been 

found in applications in medical imaging systems. There are already several papers 

discussing the use of microwave imaging via the analysis of dielectric properties of 

tissues using different techniques [113]. Microwave imaging has non-ionizing, non-

invasive, sensitive and low-cost features [11], which makes it a promising technology 

for applications in security areas, such as border control in airports. Although the 

resolution of microwave imaging is not as high as an X-ray, it has the advantage of 

being capable of imaging physiological changes [115], [124]. The preferred illumination 

level in frequency for microwave imaging makes it safe and non-destructive for 

operator and customer, avoiding the hazards of X-ray radiation used in airport security.  

This chapter will illustrate the possible application of Security Imaging Systems using 

microwave frequencies between 2GHz to 10GHz, which has already attracted research 

interests in the medical field [106]. In active microwave imaging methods there are two 

types of possible detection method for contraband materials: microwave tomography 

and UWB radar techniques, which have been investigated in both the medical field and 

security systems [109].  

Microwave tomography has been successful in measuring the dielectric properties of the 

object to be imaged by solving non-linear inverse scattering problems [126], where the 

UWB techniques used to measure the targets are only from the back scattering signals 



84 

[127]. The UWB technique on its own has failed to get the best resolution needed [121], 

whereas the time reversal Multi-static Signal Classification (MUSIC) technique has 

found a gap within the UWB to gain a higher resolution.  

The time reversal with electromagnetic inverse scattering imaging method has been 

used in many applications such as ultrasonic imaging in medical applications, detection 

of underground mines, and other target detection systems such as radar or sonar 

systems. The MUSIC algorithm is used to describe the theoretical and experimental 

measurement of the scattered wave received at multiple antenna arrays located in 

arbitrary positions around the illuminated targets. This calculates the number of signals, 

directions of arrivals, strength of the scattered wave, polarization and level of noise 

interference [128]. The key ideas behind this algorithm are (1) physical demonstration 

of the scattered field matrix, and (2) filtration approach constructed on the arrays 

resolution and the singular value decomposition of the response matrix.  

The method proposed in this chapter can be used to analyse the dielectric properties of 

the target, using different waveforms such as plane wave or point source, and using near 

or far field data. This method calculates the amplitude modulation of the signals coming 

from the dominant scattered field and then time reverses it in conjunction with the 

MUSIC algorithm. The ideas of the image reconstruction algorithm is similar to the 

concept of the multi-static radar system, by transmitting an electromagnetic wave of 

single or multiple frequencies towards the targeted area and receiving a matrix of 

scattered field data, then being analysed and viewed as an image. This method of 

measuring a scattered wave field received at the transducers (receiver’s antenna) is 

suitable for the security application of detecting image target location and its geometry.  
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This approach is more straightforward and simpler than the usual approaches of an 

inverse problem where the whole medium is considered as unknown. Solving a non-

linear inverse problem will image the targets, but it takes a long time because of the 

iteration method that is usually used to solve a non-linear optimization: it is also 

expensive, which requires a huge computation process. In a homogeneous medium with 

each iteration, solving the adjoint forward problem in addition to shape regularization is 

needed to find the shape derivative.  

The subspace-based TR-MUSIC direct imaging algorithm proposed in this thesis will 

locate the target as well as its shape where dominant scattering wave field is detected. 

Moreover the target has its own dielectric properties that distinguish it from the 

background medium.  

In heterogeneous media the detection of the target depends on two factors: (1) position 

of the dominated scattering event at the boundary of the target in the medium; (2) how 

well the Green function of the medium can be approximated.  

The image reconstruction formulation is based on the Helmholtz Equation where all the 

transmitters send out pulses to the target, and the scattered wave, called the response 

matrix, is recorded at the receivers. Then an iterated time reversal procedure is used as 

well as the Singular Value Decomposition to extract the dominant scattered events that 

describe the shape information of the target. The algorithm proposed in this thesis can 

be used to analyse the dielectric properties of the target, use different waveforms using 

data near field or far field.  

The concerns raised about this imaging system were how to construct them cost 

effectively and with lower radiation emissions. Microwave imaging was used to face the 

issue of expensive hardware and insufficient computing power. However, technologies 
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have advanced, and have indicated a brighter future for microwave systems, especially 

with the knowledge of the interaction of electromagnetic waves between human body 

tissue and their dielectric properties [106], [107]  

The current human body walk-through inspection systems in airports are metal 

detectors, which can only detect metals concealed in the person’s clothing; they are 

ineffective if the person is hiding other illegal materials such as plastic explosives or 

drugs. There are additional machines at airports that use a high dosage X-ray radiation, 

but it is very harmful for both the scanned person and the operator. Moreover, the goal 

of our research is to find contraband materials concealed within a human body. 

However, at this stage we have only investigated the strength of another image 

reconstruction method to find concealed metallic weapons within a human body, and 

then this algorithm will be developed to find extremely small hidden targets within the 

human body using dielectric properties analysis.  

Compared with microwave tomography, wave front reconstruction and Delay-and-Sum 

algorithms, a subspace-based TR-MUSIC algorithm is supposed to feature in super-

resolution, simplicity and generalizability. In this chapter, we propose a multi-static 

radar system to visualize concealed metallic weapons within clothing, and it will later 

be extended to dielectric object detection. We will also discuss the possibility of 

microwave imaging techniques for security applications using a Subspace-based TR-

MUSIC algorithm.  

5.2 RECONSTRUCTION ALGORITHM USING TR-MUSIC 

In the wave Equation of lossless and stationary medium, the quadratic differential 

relationship between field components and time keep the invariance to the sign of time, 

upon which the concept of time-reversal is based. If E(𝒙, t) is the solution to the wave 
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Equation (83), E(𝒙,−t) is also its solution, which is entitled as the time-reversal field 

ofE(𝒙, t). 

 ∇2E(𝒙, t) − με
∂2

∂2t
E(𝒙, t) = 0 (83) 

where E(𝒙, t) is the electric field component at position 𝒙 and time t, μ and ε are the 

permittivity and permeability of the medium, respectively. The wave propagation 

process means that the time-reverse field E(𝒙,−t) would exactly retrace the path of the 

original waveE(𝒙, t). If E(𝒙, t) is the divergent scattered field, then E(𝒙,−t) is the 

convergent wave that will focus on the source with the physical or computational TR 

process. In the frequency domain, the TR process can be implemented by phase 

conjugation, using E(𝒙,ω)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  to replaceE(𝒙,ω), where the superscript bar denotes 

complex conjugation and E(𝒙,ω) is the Fourier transformation ofE(𝒙, t).  

5.2.1 Multi-static Response Matrix (MRM) and TR operator 

For the array of N transducers in Figure 1.1, we can define the inter-element impulse 

response hij(t) to be the signal received at the ith transducer with an impulse sent out 

from the jth transducer, i, j = 1, 2, … , N the matrix. 

 H(t) = [hij(t)]N×N
 (84) 

is called the multi-static response matrix in time domain. Due to the space reciprocity of 

the static medium, the matrix H(t) is symmetric, i.e. hij(t) = hji(t). For a source signal 

distribution 

 S(t) = [s1(t), s2(t),… , sN(t)]T (85) 

The received signals at the array are 
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 R(t) = [r1(t), r2(t),… , rN(t)]T = H(t) ∗ S(t) (86) 

where the star sign ∗ denotes convolution in time domain. In the frequency domain, it 

becomes 

 R(ω) = H(ω)S(ω) (87) 

P(ω) is called multi-static frequency response matrix at frequencyω. The Hermitian 

operator 

 K(ω) = H†(ω)H(ω) (88) 

is also called the time-reversal matrix, where the superscript † denotes complex 

conjugation transposition. K(ω)S(ω) = H†(ω)H(ω)S(ω) = H†(ω)R(ω) means the 

received signals are back propagated after phase conjugated, according to the TR 

principle mentioned above, toward the source positions they come from.  

There exists singular value decomposition (SVD) for matrix H(ω) 

 H(ω) = UΣV† (89) 

with m singular valuesσ1 ≥ σ2 ≥ ⋯σm ≥ 0, where m = rank(H), U and V are left 

singular vectors and right singular vectors, respectively. The first m columns and the 

last N − m columns of V span the row space and nullspace of H(ω), respectively, and 

the first m columns of U span the column space of H(ω), the last N − m columns of U 

span the nullspace of HT(ω), respectively. It can be shown that the orthonormal 

columns of U and V are eigenvectors of H(ω)H†(ω) andH†(ω)H(ω), respectively, and 

the eigenvectors of the TR matrix K(ω) can be shown to correspond to different targets 

in a one-to-one manner. So the singular vectors of H(ω) play the same role as the 
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eigenvectors ofK(ω). That is the reason why the subspace-based MUSIC method is also 

called TR-MUSIC method. Mathematically and practically, SVD of H(ω) is preferred 

compared to the eigenvalue decomposition (ED) of K(ω), because: (1) SVD uses 

orthonormal bases whereas ED uses a basis that generally is not orthonormal; (2) all 

matrices (even rectangular ones) have a SVD and not all matrices (even square ones) 

have an ED. 

5.2.2 MRM matrix structure for point targets in electromagnetic scattering 

problems 

Electromagnetic wave propagation is dominated by the Green function g0(𝒙1,𝒙2) of the 

background medium, where 𝒙1 denotes the field point and 𝒙2 the source point. Due to 

the spatial reciprocity of the homogenous background, the 𝒙1and𝒙2can be exchanged, 

that isg0(𝒙1,𝒙2) = g0(𝒙2,𝒙1). 

Assume that there are M point scatterers placed at 𝒙1, 𝒙2, ⋯ , 𝒙Min the imaging region 

with isotropic reflectivity 1, and the array element antenna locates at𝝃1, 𝝃2, ⋯ , 𝝃N, 

respectively. If Born approximation is applied, i.e. neglecting the multiple scattering 

effect, H(ω) can be written 

H(ω) = ∑ G0(𝒙m)G0(𝒙m)T

M

m=1

= 

 [

∑ g0(𝝃1,𝒙m)g0(𝒙m,𝝃1)
M
m=1 ⋯ ∑ g0(𝝃1,𝒙m)g0(𝒙m,𝝃N)M

m=1

⋮ ⋱ ⋮
∑ g0(𝝃N,𝒙m)g0(𝒙m,𝝃1)

M
m=1 ⋯ ∑ g0(𝝃N,𝒙m)g0(𝒙m,𝝃N)M

m=1

] (90) 

Where G0(𝒙m) is called illumination vector for𝒙m, defined by 
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 G0(𝒙m) = [g0(𝝃1,𝒙m), g0(𝝃2,𝒙m),⋯ , g0(𝝃N,𝒙m)]
T
 (91) 

According to (91), it is clear that H(ω) is a linear combination of M illumination 

vectorsG0(𝒙1), G
0(𝒙2),⋯, andG0(𝒙M), and furthermore,rank(H) = min (M,N). 

5.2.3 Subspace-based MUSIC algorithm 

In the MUSIC algorithm, for M < 𝑁 case, sincerank(H) = M. The first M columns of 

U span the column space of H(ω) in terms of SVD theory, which is defined as the 

signal spaceVS, and the last N − M columns of V span the nullspace ofH(ω), defined as 

the noise spaceVN, which is the orthogonal complement ofVS. For an arbitrary search 

point 𝒙 in the imaging region, its illumination vector isG0(𝒙), if it collocates with any 

point among𝒙1, 𝒙2, ⋯ , 𝒙M, then G0(𝒙) belongs to VS and its projection to VN equals to 

zero, otherwise the projection of G0(𝒙) to VN is finite. According to this finding, a 

pseudo-spectral imaging function can be constructed as 

 I(𝒙) =
1

‖PVNG0(𝒙)‖
2 =

1

∑ |vk∙G0(𝒙)|2N
k=M+1

 (92) 

where vk is the kth column vector ofV. This imaging function will peak greatly at the 

positions of point targets, and super-resolution characteristics can be expected. 

5.2.4 TR-MUSIC algorithm for extended targets 

It can be assumed that when there is noise in measurement or an extended target, the 

performance of the TR-MUSIC algorithm is degraded, but it can be applied in these 

circumstances. The key issue is how to decide the optimal M value to obtain the best 

imaging results if the array element number is big enough. For extended targets, the 

peaks of the imaging function no longer correspond to the point targets one-by-one, and 

may exist on the target boundary or inside the object due to the physical resonance and 
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dielectric property of the objects. In this scenario, TR-MUSIC can be used to sketch the 

shape of extended targets, which is demonstrated in the following simulation examples. 

5.3 CHAPTER SUMMARY 

This chapter has taken the reader through a quick history of microwave imaging and its 

advantages, where different types of technologies have been found in applications in 

medical and security imaging systems. Microwave tomography has been successful in 

measuring the dielectric properties of the object to be imaged by solving non-linear 

inverse scattering problems [126], where the UWB techniques used to measure the 

targets are only from the back scattering signals [127]. It has been found that a Time 

reversal multistatic classification (MUSIC) technique has achieved higher resolution 

when combined with UWB technique [119].  

For comparisons between microwave tomography, wave front reconstruction and delay-

and-sum algorithms, a subspace-based TR-MUSIC algorithm is supposed to be a better 

algorithm in terms of simplicity, generality and resolutions. The key ideas behind the 

Time reversal multistatic classification (MUSIC) algorithm are (1) a physical 

demonstration of the scattered field matrix, and (2) a filtration approach constructed on 

the arrays resolution and the singular value decomposition of the response matrix. It 

explained the scenario of how the data was transmitted and received, collected and 

processed to form Images through the TR-MUSIC mathematical Model. The Maxwell 

wave equation was used to calculate the electric field received at the transceivers with 

the‎consideration‎of‎the‎medium’s‎permittivity‎and‎permeability.‎The‎wave‎propagation‎

Time reversal process illustrates that the time-reverse field E(𝒙,−t) would exactly 

retrace the path of the original wave E(𝒙, t) in equation (88).  
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Singular Value 

Decomposition 

Load Background Data Using FDTD method (without image) 

Multi-static Frequency Response Matrix created in Matlab 

Unitary Matrices Singular Value Vector 

TR-Music Image reconstruction 

Illumination Vector Using Green Function 

Choose Boundary 

Load Image for a specified frequency 

The above chapter showed how to drive the mathematical model to image microwave 

images based on the previous chapter of TR MUSIC theory. The resulting images based 

on the above mathematics will be shown in the next chapter. 

The following flowchart explains the process of the mathematical model used in the 

next‎ chapter’s simulation to be more visible when it comes to Target Image 

Reconstructions. 
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Figure 5.1: Flow chart of TR-MUSIC Algorithm 

 

The above flow chart has been constructed in this research only and its code has been 

created and shown in  appendix C .The data of scattered field objects were created using 

Lumerical FDTD after  spending long training period of time on the software and then 

these data were applied to the Matlab code created.  
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 2D simulation for security object Chapter 6:

detection 

To show results from microwave objection the choice was to go for simulation for both 

the scattered data and the reconstruction of the image using TR-MUSIC algorithm in 

Matlab. An experiment is explained below, which was proposed but not approved by 

the university to carry out due to a lack of equipment. To carry out an experiment in the 

lab it is proposed that the target will be modelled using different types of materials such 

as crude paraffin wax phantom and a small sphere of higher or lower dielectric material 

inside the paraffin wax as a contraband material. As shown below in Figure 6.1, for the 

microwave imaging system the experiment set up would be; 

1. N number of UWB antennae such as Micro-strip TEM-type antennae; 

2. Vector Network Analyser such as Agilent 87050A Option K24 Multiport 

Mechanical Switching Test Set, or other similar switch array device; 

3. a controller is used to switch signal channels between transducers, and frequency 

change is completed by VNA;  

4. coaxial used to connect from antennae to (VNA); 

5. Connections between VNA and computer, where the computer can read directly 

measured data from the VNA and transfer it through special cables such as 

cable, net or USB. 

The procedure for the experiment could be as follows:  

1. distance from the source to target is computed; 

2. analogue to digital converter from the received data; 

3. computer to process the raw data received using TR Music Algorithm; 

4. Display of the image for the operator. 



94 

 

Figure 6.1: Experiment set up for Microwave Imaging System 

The above experiment is mentioned here to give an understanding for the reader of how 

to set up a real experiment in the future. 

6.1 ANTENNA AND RECEIVERS CONFIGURATION 

The imaging geometry and configuration is demonstrated in Figure 6.2. The object is 

surrounded by a circular N-element array with radius R, and inside is the imaging 

region with length L and width W. Each element antenna transmits an electromagnetic 

wave towards the imaging region in turn, and all the elements receive all-directional 

wave front scattered by the object. This means that each antenna is a transducer. The 
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obtained scattering data are then processed to reconstruct the position and shape of the 

object. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Imaging Geometry and Configuration 

The above configuration was set up in lumerical FDTD solution. The FDTD solution is 

used to collect scattered data on each transducer. These data are then processed in 

Matlab with a TR MUSIC algorithm to reconstruct the image. Figure 6.3 shows how 

such a system was configured in lumerical FDTD solution. The shown target in Figure 

6.3 could be changed at any time to any shape required. 
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Figure 6.3: Shows Experiment set up in Lumerical FDTD Solution 

6.2 SIMULATION RESULTS  

The microwave imaging technique is adapted here to test 2D objects by subjecting them 

to multi-static single frequency excitation of microwave rays from an arbitrary antennae 

array around the object and analysing the image created: this program has been 

developed in Matlab. The simulation was carried out to prove the concept of detecting 

different objects in a homogenized background such as air.  

After projecting the microwave ray onto the developed models of objects using the 

FDTD method, there will be an image reconstruction algorithm using subspace-based 

TR-MUSIC to calculate the scattered field absorbed by the arbitrary antenna array. To 

demonstrate the usage of the TR-MUSIC algorithm in microwave imaging applications, 

the 2D scattered fields are calculated by the FDTD method to get the MRM H(ω) to be 
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processed. The zero-order Hankel function of 2nd kind ℋ0
(2)(k0ρ) in 2D free space is 

used as the Green function g0(𝒙1,𝒙2) in the illumination vectorG0(𝒙), where k0 =

2π λ⁄  is the wave number and ρ is the distance between the field point and source point. 

The probing array consists of N = 14 isotropic point transducers equally distributed on 

the circumference of radiusR = 30cm. The frequency of the electromagnetic wave is 

3GHz and the wavelengthλ = 10cm. The imaging region is30cm × 30cm. Some 

typical imaging results are listed in the Figures 6.4-6.7. 

6.3 MULTIPLE POINT TARGETS 

In a numerical experiment for point targets imaging, the MRM H(ω) is calculated 

directly by the Hankel function but not the FDTD method. The five point targets are 

located at the coordinates of (-10, 0), (-1, 0), (1, 0), (-10, -10) and (0, -10), and their 

units of measurement are centimetres. The imaging result is shown in Figure 6.4 using 

2D and 3D views. It should be noted that the vertical axis is linear scaled in the 2D 

view, but logarithmic scaled in the 3D view: all the following figures are the same. It 

can be observed that the TR-MUSIC algorithm can resolve them completely, even from 

the smallest distance, which is only 2cm less thanλ 4⁄ . This super-resolution is obtained 

only from the single frequency scattering information; better resolution can be expected 

for multiple frequency or wide-band data. 
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Figure 6.4: Multiple Point Targets Imaging: (Left) 2D View; (Right) 3D View 

6.3.1 Small metal cylinder 

In the second numerical experiment, it is assumed that the target could be a metallic gun 

underneath a terrorist’s clothing. Therefore a small metal cylinder was created in 2D 

FDTD with radius R = 2cm and reconstructed by a TR-MUSIC algorithm. In Figure 

6.5, the cylinder is located at the coordinate of (0, 0): it can be seen that the small 

cylinder looks like a point target due to radial symmetry. When the cylinder is moved to 

(0, 6) in Figure 6.6, it looks like a point target as before but there is a negligible virtual 

point at the y-axis imagery position, which may be caused by calculation error in 

Lumerical FDTD software. When the same two cylinders coexist in Figure 6.7, the 

image becomes a little complicated because of multiple scattering between them, 

although they can be still distinguished clearly from each other. 
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Figure 6.5: Small Metal Cylinder Located (0, 0) 

 

 

 

 

 

 

 

Figure 6.6: Small Metal Cylinder Located (0, 6) 

 

 

 

 

 

 

Figure 6.7: Two Small Metal Cylinders Located (0, 0) and (0, 6)  
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6.3.2 Extended target 

Extended target means that target sizes are bigger than the wavelength object; therefore 

the imaging results can give their shape details. Figure 6.8 shows another metal cylinder 

with R=20cm and Figure 6.9 is for a metal rectangle whose dimension is 20cm×10cm, 

respectively. These two objects are extended targets compared to the wavelength. It can 

be seen that the image peaks or spotlights located on the boundary and inside the metal, 

the TR-MUSIC images sketch the shape for the illuminated objects, which conclude 

that the “large” targets can be represented by their main scattering centres as radar target 

characteristics. 

 

 

 

 

 

 

Figure 6.8: Big Metal Cylinder with R=20cm 

 

 

 

 

 

 

 

Figure 6.9: Metal Rectangle with 20cm×10cm 
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It can be seen from the simulation that this method (subspace-based TR-MUSIC) for 

image reconstruction showed a very clear point target as well as the boundary and inside 

of the metal objects. It is a direct algorithm, simple and does not need forward solution 

or iteration. The goal of this algorithm is to locate and visualize a strong scattering field 

that has been generated by a target’s response matrix, and use Singular Value 

Decomposition to collect its information and generate the final image. Choosing the 

best M values for different types of models and shapes emitted by different frequencies 

of microwave will help for better TR-MUSIC imaging results of extended targets. 

The simulation assumed here was for single frequency excitation; with multiple 

frequency excitations the result will be far superior. Consequently it could not be denied 

that this algorithm method will not construct the image of a metallic gun if concealed 

underneath clothing. Therefore the later research work will focus on the same scenarios 

as in Figures 6.8 and 6.9, and use more array elements to resolve them to gain a robust 

and clear image. Also the test of this algorithm will continue to try and build different 

models of different material properties and different frequency range to match the 

contraband materials that terrorists could use for threats.  
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6.4 SIMULATION RESULTS FOR RISKY OBJECTS (EXTENDED OR NON 

EXTENDED) WITH DIFFERENT TARGETS MODEL AND 

DIFFERENT FREQUENCIES 

6.4.1 2GHZ  

Square Model 

To give the reader an idea of how we construct different type of models to be imaged 

using microwave the Lumerical FDTD software tool shown in Figure 6.10 shows  how 

the square has been placed to be imaged.  

 

 

 

 

 

 

 

 

 

Figure 6.10: Square Shape Model in Lumerical FDTD software 

All the other shapes and models will be constructed in different sizes and different 

materials: this will show us the value of utilizing this fascinating imaging technology. 

The common models will be squares, polygons, triangles, rectangles, spheres and 

embedded objects. Every model will be constructed with different frequencies 

objection, and then the data will be collected and imported in Matlab to run the TR-
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MUSIC mathematical model. This will reconstruct the image caused by this microwave 

antenna seen around the square, or around any other object later in this discussion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: Lower Dielectric Square Shape Model Using 2GHz Objection 

Figure 6.11 above illustrates the shape of a 15cm x 15cm square being imaged using 

2GHz. The square has a relative dielectric of 1.4.  
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Polygon model 

 

 

 

 

 

 

 

Figure 6.12: Polygon Shape Model in Lumerical FDTD Software 

The above polygon points are (X,Y); (0-9), (7,-5), (7,5), (0,9), (-7,5) and (-7,-5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: Lower Dielectric Polygon Shape Model Using 2GHz Objection 
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The above figure shows a polygon shape, if all the peak points were connected, which 

has been generated by a TR-MUSIC algorithm. The above figure shows peaks or 

spotlights that exist both on the boundary of the polygon object and inside it. 

6.4.2 3GHz 

 

 

 

 

 

 

 

 

 

Figure 6.14: Cylinder of 5cm Radius Using 3 GHz Objections 

The above illustration shows a cylinder of 5cm radius with defined relative dielectric of 

2.4. It shows the very clear shape of such a cylinder because of its extended size related 

to the 3GHz wavelength and the imaging region 30x30. The above scenario could be 

any metal or material hidden underneath passengers’ clothes. 
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Figure 6.15: Cylinder of 3cm Radius Using 3 GHz Objections 

The above figure shows a cylinder target that has a radius of 3cm and defined relative 

dielectric of 5. It shows part of the cylinder shape because it is not fully extended, or it 

could be shown clearly if we change the number of the M value. The M value is the 

number of the boundary between the signal subspace and noise subspace. Also this 

could be very small contraband materials hidden within the human body. This result 

makes the possibility of small targets being shown clearly very promising. 
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Figure 6.16: 10cm Human Body Cross Section with 2cm Object Hidden Inside 

The above figure shows a human body cross-section of 10cm radius with a defined 

dielectric of 5. A small size of contraband material of 2cm radius is embedded within 

this human body cross-section and defined relative dielectric of 6.5. The above figure 

shows both a human body and the small contraband material embedded within this 

human body; which could alert the operator of the possibility of illegal items being 

hidden within this passenger. 
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6.4.3 4GHz 

Triangle Model  

The Lumerical FDTD software tool shown in Figure 6.17 displays how a triangle has 

been placed to be imaged.  

Figure 6.17 below shows how to build a triangle model in FDTD using 4GHz. The 

transceivers’‎ data around the triangle are then collected and implemented in Matlab 

code to show the imaging results  

 

 

 

 

 

 

 

 

 

Figure 6.17: Triangle Shape Model in Lumerical FDTD Software  

The above figure is a triangle shape with a relative dielectric of 1.4; the dimensions are 

(-10,5), (10,5) and (0,-10). As can be seen from this figure, the shape has been shown 

clearly: there is intensity or more details in the middle of the shape that has been shown. 
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Figure 6.18: Lower Dielectric Triangle Shape Model Using 4GHz Objection 

As you can see from the above figure the image of the triangle has been detected 

clearly. A concentrated spot light is shown in the middle of the triangle. 
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Figure 6.19: Polygon Shape Model in Lumerical FDTD Software 

The above figure shows how to model a polygon shape with a relative dielectric of 1.4, 

using 4GHz frequency. The dimensions are (X, Y), (0,-5, 49), (4.75448,-2.745), 

(4.75448, 2.745), (6.723e-16, 5.49), (-4.75448, 2.745), (-4.75448,-2.745).  

 

 

 

 

 

 

Figure 6.20: Lower dielectric polygon shape model using 4GHz objection 
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Figure 6.20 shows a clear image of Polygon even the dielectric of its material is low. If 

the material of the polygon has been changed from lower dielectric properties to metal, 

a perfect electric conductor, then this will cause the simulation results shown in Figure 

6.21.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21: Metallic Polygon Shape Model and Different Angle of View Using 

4GHz Objection 

According to the above figure, a 4GHz frequency objection on the metal polygon shows 

the boundary of the metallic polygon clearly. 
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Figure 6.22: Square Shape Model in Lumerical FDTD Software 

Figure 6.22 above shows the construction of the square model in FDTD containing 

relative dielectric of 1.4. The dimensions of the square are 15cm x 15cm. The results of 

the Matlab simulations are shown in the figure below. 
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Figure 6.23: Lower Dielectric Square Shape Model and Different Angle of View 
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The above figures show a very clear square shape boundary, with the middle of the 

square showing peak spotlights. 

When changing the dielectric properties of the square with dimensions of 15cm x 15cm 

to metal (PEC), the following results will appear: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24: Metallic Square Shape Model and Different Angle of View 

As we can see from the models above, the detail inside the models has been shown; 

these have directed the viewer to similar shapes projected earlier using 40 antennae. 
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Figure 6.25: Cylinder Model With 5cm Radius 

Figure 6.26 below shows a cylinder with a radius of 5cm and defined relative dielectric 

of 1.4. It shows a very clear image of this type of cylinder, even though the dielectric 

value of this material is low. 

 

 

 

 

 

 

 

 

 

Figure 6.26: 5cm Cylinder Using 4GHz Objection 
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Figure 6.27: Cylinder of 10cm Using 4GHz 

The above figure shows an extended target of a cylinder with a radius of 10cm and the 

index is a perfect electric conductor; this is considered to be metal in the simulation. 

There is a very nice shape as this cylinder has been achieved by 4GHz microwave 

objection. 

Hidden Object  

 

 

 

 

 

 

 

 

Figure 6.28: 2cm Hidden Target 
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The above figure shows how a 4GHz pulse can image contraband material of 2cm 

radius, with defined relative dielectric value of 1.4 imbedded inside a box of 15cm x 

15cm dimension and dielectric value of 3. The box is assumed to be the human body 

medium. 

6.4.4 5GHz 

Square Model 

A square shape model has been constructed similar to Figure 6.23 above, and the results 

of the image reconstruction are shown in the figures below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.29: Lower Dielectric Square Shape Model, Dimension 15cm x 15cm and 

Different Angle of View Using 5GHz Objection 
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The above figure shows that the shape of square has been detected when applying 

5GHz. The dielectric of the square was 1.4, and the dimensions of the square model are 

15cm x 15cm. 

Now, when the material of the square changes to metal, then the results would show the 

following: 

 

 

 

 

 

 

 

 

 

 

Figure 6.30: Metallic Square Shape Model Using 5GHz 

The above figure shows that clear boundary lines of the square have been detected after 

image reconstruction. 
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6.4.5 7GHz 

Square Model  

A 7GHz projection on a square shape shows the shape of a square very clearly, as 

shown in Figure 6.31 below. The square has a dielectric of a perfect electric conductor 

or metal. The dimensions are 15cm x 15cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.31: Metallic Square Shape Model Using 7GHz Objection 

Now, if we change the material of the square to a lower dielectric property such as 1.4, 

the result would be as follows: 
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Figure 6.32: Lower Dielectric Square Shape Model Using 7GHz Objection 

The above figure shows a similar but slightly different shape to the previous figure. The 

four boundary edges of the square show a high peak of spotlight. 
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Polygon Model  

A polygon model shape dielectric of 1.4, constructed the same as Figure 6.19 above in 

FDTD, showed very clear peak points of all six edges of the polygon after image 

reconstruction in Matlab. This is shown in Figure 6.33 below. 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 6.33: Lower Dielectric Polygon Shape Model Using 7GHz Objection 

Now if we change the material of the polygon to metal (PEC) then the results would be 

as shown in Figure 6.34. 
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Figure 6.34: Metallic Polygon Shape Model Using 7GHz Objection 

As seen from above figure, clear polygon boundary lines have been detected after image 

reconstruction on Matlab. 
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Figure 6.35: Sphere Shape Model in Lumerical FDTD Software  

The above figure shows the construction of a sphere model with a radius of 8cm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.36: Sphere Shape Model Using 7GHz Objection 
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Figures 6.35 and 6.36 above show a sphere shape with a radius of 8cm and relative 

dielectric of 1.4. After simulation in MatLab, very clear boundary lines of the sphere 

shape can be seen. 

Now, metal in the shape of a polygon has been embedded inside the sphere to test the 

imaging results. This shows if it is possible to differentiate between two materials or if 

hidden material can be shown. Figure 6.37 shows how to construct this in FDTD. 

 

 

 

 

 

 

 

 

 

Figure 6.37: Metallic Polygon Inside Sphere Model 

The idea of the illustration shown above in Figure 6.37 comes from the possibility of a 

metallic gun being hidden underneath human clothing. Normally the guns and knives 

used for terrorist acts are metallic. 
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Figure 6.38: Metallic polygon hidden inside sphere 

Figure 6.38 shows details of a polygon inside a sphere, and shows the sphere also. The 

polygon is PEC and the sphere is 1.4 dielectric.  

Now if the material of both models is shown the other way round, i.e., metal for the 

sphere and 1.4 for the polygon, then the results will be as shown in Figure 6.39 below. 

A lower dielectric polygon that could be hidden in any metallic object; this might be 

how terrorists or smugglers smuggle their illegal materials in metallic objects. 

Comparing figures [6.39, 6.38] with figure 6.39 we can see how the image is different 

when there are no materials or objects embedded in figure 6.36. 
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Figure 6.39: Lower Dielectric Polygon Model Inside Metallic Sphere 

Figure 6.39 above clearly shows how easy it is to detect materials imbedded in other 

material. This is an example such as when a terrorist implants objects in their baggage. 

It shows the boundary of the polygon and, inside it, also the boundary of the sphere. 

As you can see from the above figures, the models have been shown clearly with low or 

higher dielectric properties. 

It can be seen from all the above results that 7GHz can show very clear images.  



126 

x(cm)

y
(c

m
)

 

 

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Cylinder or human torso cross-section using 7 GHz 

 

 

 

 

 

 

 

Figure 6.40: Circle Model, Assumed to be Human Torso 

The above figure shows how to construct a 10cm radius of a cross-section shape model, 

assuming it could be a human torso.  

 

 

 

 

 

 

 

 

Figure 6.41: 10cm Radius Object, Assumed to be Human Torso using 7GHz 

Objection  

As you can see from the above figure, a 10cm radius circle that could be related to the 

human body cross-section is shown very clearly. The dielectric of the torso was 6 in this 



127 

x(cm)

y
(c

m
)

 

 

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

10

15

20

25

30

simulation. There is a good peak of spotlights around the cross-section that helps the 

viewer to visualise this model without any confusion. 

6.4.6 10GHz 

Square Model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.42: Metallic square Shape Model Using 10GHz Objection 

The above figure shows shape details that could lead the viewer to a square shape. More 

detail is shown at 10GHz, which means the higher the frequency the better the image. 

On the other hand, the smaller the wave length the higher the resolution that this robust 

TR-MUSIC algorithm could generate. 
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Figure 6.43: 10cm Radius Object  

Figure 6.43 shows the result from omitting a 10GHz microwave and shows a circle of 

10cm radius that can been seen perfectly clearly; the inner shape of the material is also 

shown very clearly. This concludes that the higher the frequency the clearer the image. 

The simulation results in Chapter 6 approve the use of TR-MUSIC. The simulation 

results are much clearer than other research groups using a TR-MUSIC algorithm to 

reconstruct their images. Different models and shapes were tested and showed both the 

boundary of these models and inside them.  

This research concentrated on the frequency range between 0.9 and up to 10GHz, which 

showed better results. Other researchers used a range of microwave frequency between 

30GHz and 300GHz such as the millimetre wave where they faced loss problems [129], 

[130]. This research concentrated on a lower frequency range to have a better trade-off 

between resolution and penetration depth. In addition this simulation had tested 

different objects embedded inside human body tissue, and brought the reader to 

visualise how terrorist and smugglers could use their bodies to implant illegal objects.  
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Successful imaging results were obtained when it comes to different objects being 

embedded inside tissues, using both a Radon Transformation algorithm and a TR-

MUSIC algorithm. TR-MUSIC has been used before in ground penetration detection 

but not in security applications. In this application it gave this research the advantage of 

being the first to use a TR-MUSIC algorithm in microwave imaging.  

This research has investigated the 2D images for its entire algorithm, which actually 

gave very clear results. Some of the X-ray backscatter machines are using 2D images to 

find illegal objects when bags are scanned[131]. Therefore this technology could 

depend only on 2D rather than 3D images. If the future required 3D images, then it 

would only require a different layer of cross-section to be added to form the 3D image. 

For example, a human body cross-section could be sliced to a different number of layers 

and then all these slices could be summed to form a 3D image.  

6.5 CHAPTER SUMMARY 

This chapter aimed to show the simulation results after the microwave imaging system 

was set up in Lumerical FDTD and Matlab. It started with an explanation of the real 

microwave imaging system set up to enable the reader to visualize it in the simulation 

process, and to carry out a real experiment in the future. The antennae were arbitrarily 

but evenly located around the target in Lumerical FDTD solution to collect the Multi 

Static Response Data Matrix. These data were later loaded and processed in Matlab 

code using a TR-MUSIC algorithm. Figure 6.4 showed multiple point targets using TR-

MUSIC very clearly. Figures 6.5, 6.6, and 6.7 showed a clear metallic cylinder, which 

could be assumed to be metallic guns hidden underneath human clothing. Figures 6.8, 

6.9 showed how powerful TR-MUSIC is in showing the boundary and shape of an 

extended metal target. This proves that this algorithm is simple, direct and does not need 

forward solution and iteration for image reconstructions.  
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Previous successful imaging results led the research to be developed further to see the 

effect of different frequencies with different target models. At 2GHz the results of 

square and polygon models showed high peaks or spotlights that exist both on the 

boundary of the object and inside it. At 3GH Figure 6.14 and 6.15 showed clear 

cylinders of 5cm and 3cm radii in different locations, which indicates that microwave 

imaging can image small contraband objects. Also at 3GHz, a successful image of a 

2cm radius object embedded inside a human body cross-section model was shown, 

which could alert the scanning officer to suspected materials within this passenger.  

At 4GHz, models such as a triangle, polygon, square and cylinder have all been imaged 

successfully with metallic or lower defined dielectrics. An extended cylinder target with 

a radius of 10cm was imaged clearly at 4GHz microwave objection. Additionally a 

hidden object with a radius of 2cm also has been detected using 4GHz. At 5GHz a 

square model was imaged successfully, both metallic and lower defined dielectric. At 

7GHz, models including a square, polygon and sphere were detected clearly in metallic 

and lower defined dielectric.  

Comparing Figure 6.36 with Figures 6.38 and 6.39 shows a clear hidden object inside a 

sphere model. This scenario experiment comes from the possibility of metallic or plastic 

guns, explosive powder and drugs being hidden underneath human clothing. At 10GHz 

a square and cylinder model have been shown clearly.  

Going back to chapter 3 figures 3.9 and 3.10 and compare it with figure 6.28 in this 

chapter, it shows that TR-MUSIC algorithm similar was successful in detecting 2cm 

radius object hidden in human body cross section. In addition if we compare also 

figures 3.11 and 3.12 in chapter 3 with figure 6.15 in this chapter, it shows that TR-

MUSIC can detect 2 cm radiuses object or smaller objects. Image reconstruction of 

Radon Transformation algorithm and TR-MUSIC were slightly different for the viewer 
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but they all lead to the same purpose of this research which is detecting different sizes 

of contraband objects embedded inside human body cross sections. Images were 

reconstructed based on each algorithm criteria.  

From the above discussion of results, it cannot be denied that the TR-MUSIC algorithm 

can detect any material with any dielectric property; it also concludes that, up to 10GHz, 

the higher the frequency the better the imaging results.  

This chapter has concluded and proved that microwaves can be used in imaging for 

security systems, as shown from the simulation results. It has also proved that TR-

MUSIC is a perfect algorithm to process data collected from circular arrays of antennae 

to give robust imaging results. It has also been proven that the higher the frequency the 

clearer the image and that different materials dielectric embedded in other materials can 

be shown clearly.  

The next chapter will discuss the history of terrorism, the importance of aviation 

security, and security scanning technology management, including factors that could be 

considered when new imaging technology is introduced to airports. 
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 Aviation industry and security Chapter 7:

7.1 HISTORY 

Terrorist acts have been carried out over a long period. For example, two well-known 

groups are the Irish Republican Army (IRA) who carried out attacks on the British 

police and army in the 1970s, 80s and 90s, and Germany’s Red Army Faction (RAF): 

both organized a series of bombings and assassinations. In 1988 there was the Lockerbie 

bombing disaster when flight Pan Am 103 exploded shortly after take-off from 

Heathrow airport. The 9/11 attack on the World Trade Centre in New York and the 

Pentagon in Washington D.C. in 2001. In 2004 a bomb was placed on a train in Madrid 

and killed more than 190 people [132]. In 2005 more than 200 people were killed and 

injured on the underground and buses in the London bombings.  

The head of the Federal Service for Supervision of Transport in Russia announced 

recently that terrorist attacks on the Russia transport system have doubled between 2009 

and 2010 [133]. In addition, on 25 December 2009, Umar Abdulmutallab managed to 

go through all security body scanners, including a millimetre wave scanner, with a 

hidden plastic explosive in his underwear to detonate a bomb on flight 253 from 

Amsterdam to Detroit. 
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Figure 7.1: ‘Underwear Bomber’: Umar Farouk Abdulmutallab is Arrested. Photo 

by Jasper Shuringa/New York Post [134] 

In 2011, there was a bomb explosion at Moscow’s busiest airport Domodedovo [135]. 

In August 2009 Abdullah Hassan Tali Al-Asiri, an Al-Qaeda suicide bomber, inserted 

half a kilo of explosive inside himself and detonated it at a meeting with Prince Nayef 

bin Abdulaziz Al Saud, killing himself and causing minor injuries to the prince [136]. 

There have also been recent attacks on Peshawar airport in Pakistan in 2012, and Kabul 

international airport in 2013 [137], [138]. The most recent attack on the Westgate mall 

in Kenya left 72 dead [139].  

In addition, by looking at the open source Internet Worldwide Incident tracking system, 

attacks on the aviation and transport industry have increased despite the increase in 

security control after 9/11 [140].  

Terrorism is not a tactical war that comes back every day and you respond to it: 

terrorism is planned for a long time and hits countries at unknown times. Therefore a 

plan for such terrorism has to be robustly planned to manage it when it occurs, or detect 

it before it happens. Therefore, securing airports, train stations and shopping malls and 

ports is vital to save human lives and sustain the economy. 
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7.2 INTRODUCTION 

Any terrorist act on the aviation or transport industry will result in the loss of hundreds 

of lives and loss of infrastructure and equipment worth of millions of pounds; such acts 

will therefore have a significant impact on the economy and the travel industry. Security 

of airports, or any other sensitive places, starts at key locations, such as the entrance or 

check-in points where a terrorist could take advantage to start his terrorist act. A current 

security technology for scanning passengers has been discussed in Chapter 1. 

The question has always been asked about how to secure the supply chain such as 

airports, ports, canals and shopping malls from man-made threats such as terrorism or 

piracy. What is the best way to guarantee security using advanced technology? Ninety 

per cent of global trade flows through 39 bottleneck regions [123]. Security 

management is to manage the attack incidents before any crisis happens. 

Body scanners, such as microwave scanners for explosive detection in the human body, 

are useful, but they will be useless if security personnel are not very well trained in how 

to use them. Passengers in modern airports would like to see modern advanced 

technology to serve them well and secure their journey. Terrorist attacks in a country 

can damage its economy as a direct cost, and damage the tourism industry. They can 

target logistic hubs and gateways. For instance more than 14.5% of world airfreight 

traffic travels through Hong Kong-Shenzhen, and any attack there could have a huge 

impact on the global economy. Security in general costs a lot of money to make sure 

that people are safe. 

Also there is a concern that, for example, if more security has been implemented in 

airports, then this will mean longer queueing times for passengers and therefore higher 

transport costs, which will slow the movement in airports. Although this thesis 
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discusses implementing advanced technology in body scanners, concerns about cyber-

attacks should be taken into account when integrating this new body scanner with other 

security checks at airports. As discussed later, existing technologies are the solution at 

the moment, but every technology has limitations, although microwave technology 

showed a promising imaging technology for security applications. 

The decision to invest in more body scanner technologies should be taken into account 

when planning any security investment strategy. Maybe implementing these higher end 

technology body scanners in international airports only, or where airports that could be 

a target for terrorist attacks. The transport security companies and logistics should take 

the lead in developing high end security technologies, i.e., body scanners, and the 

government should only set security regulations. At the end of the day, both the security 

companies and the government should collaborate together to be more effective and 

efficient. 

7.3 SIGNIFICANCE OF AVIATION SECURITY  

Aviation security is constructed around the defences established in the 1970s to fight 

hijackers and on approvals completed by the Commission on Aviation Security and 

Terrorism, which were considered in the wake of the explosion aboard Pan Am 103 

over Lockerbie, Scotland. Developments in aviation security have been complex for the 

reason that government administrations and industry frequently found themselves at 

odds, not capable of resolving arguments over funding, efficiency, technology, and 

possible influences on processes and passengers [142].  

Throughout history, terrorists, criminals and smugglers have always found aviation an 

easy target to access and exercise their illegal actions. Aviation is considered a strong 

arm for countries’ economies, and if aviation is not run very well because of terrorism 
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or other factors, people will use different technologies in order not to travel, such as 

video conferencing and other telecommunication technologies. If business people find 

alternative ways to travelling by air, airline companies could raise their ticket prices, 

which will deter frequent travellers from travelling. In addition, other industries will be 

affected such as hotels, tourism, rentals and export or import industries. 

Aviation includes airline operations and airports. Airports consist of commercial, 

general, private and military aviation services. Anyone who has the responsibility of 

securing aviation should be the most updated in strategies and new technologies to 

tackle new threats: screening officers should always be well trained in new screening 

technology. Strategies such as passenger profiling should be updated, and intelligence 

agencies should try to infiltrate terrorist groups to understand their intentions and plans 

for their next target. Aeroplanes and airports have always been high priority targets for 

terrorists. Aviation security is costly, tragic and lasts. It is one of the targets where 

terrorists can affect such enormous numbers of a country’s population. 

Aviation security is required to be cooperative work between different organizations, 

which include international and national organizations, airport ground staff operators, 

airline staff and government teams such as police and intelligence agencies. All have 

one goal, of providing safe and secure services for travellers to travel without any 

difficulties to strengthen the economy of the country. In airports the airline staff are 

obliged to check in the passengers’ baggage and screen them; some airlines hire private 

screening companies to do this job. The airport ground staffs are responsible for the 

airport’s general policy for internal and external security. The screening officers are 

sometimes hired by the government or by the airport itself: this depends on each 

country’s policies. For example, Dubai airport only hires locals for the screening.  
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Governments control the security covering who comes in and who goes out through 

immigration and other police departments. Also they provide intelligence information to 

the airport to block or catch terrorists or criminals. Governments correspondingly 

support the research of new policies to be implemented, and technology research to 

enhance security such as security screening. 

Since the start of civil aviation security, its programme has always been designed 

around detecting, preventing, or mitigating terrorist threats in relation to trivial amounts 

of explosives and personal weapons. Also it has been based on a number of principles, 

as argued in [143]. The key aspects of these principles are divided into:  

1. Terrorist intrusion of civil aviation premises should be completely prevented, 

and that is the role of intelligence including police and government intelligence.  

2. A strict policy or procedure combined with technological detection systems to 

prevent any terrorist from breaching the front line of security at the aviation 

premises. 

3. Damage control procedure: if the terrorist succeeded in breaching step two of the 

security line, then the aircraft system and structure must be robust enough to 

minimize the damage. 

From the illustrated security breached history of aviation security, it was important to 

invest in scanning equipment research and development. Following the 11 September 

attack the US Committee of Commerce, later Transportation, and USA Senate has 

formed to discuss: 1) computer aided systems used for aviation security; 2) access 

control of airports; 3) screening of passengers and their baggage, and how US systems 

are different from other countries. 
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In 2000, the committee identified that the key aspect of the problem is the weakness of 

the screeners. This is because of the huge, unbearable amount of work to check every 

bag by the screeners. There is a high turnover in screening staff, mainly because of 

limited benefits, low salaries and a boring repetitive style of work.  

This concludes that there will always be a problem with human factors when screening 

passengers, and, in the USA, the Federal Aviation Authority (FAA) proposed the use of 

threat projection software deployed in the X-ray screening machine to keep the screener 

on alert if illegal objects were detected. Moreover this software monitors the screener’s 

performance and actually certifies the screener for employment in the screening 

employment.  

All the previous discussion confirms that screening is a vital issue to enhance security 

against terrorism and smuggling. The recent terrorist attacks have strengthened the 

research in finding new technologies to image inside human bodies and to detect illegal 

materials carried with passengers. 

7.3.1 Importance of airport security 

Airports are vibrant parts of the 21
st
 century framework, demonstrating current growth 

and the existing procedures of globalization.  

In 2013, the aviation industry opens up the UK to the worldwide tourism market, with 

incoming tourists putting almost £19bn into the UK economy [144].  

The airline industry is a major industry that employs around 8.3 million people, and 

supports 15.1 million jobs worldwide [145]. Airports are an essential infrastructure of 

the transportation industry, where passengers use them daily. In Geneva, as an example 

of the growth in passenger numbers, the International Air Transport Association (IATA) 
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has released a report showing a strong growth of 6% year on year growth. Tables 7.1 

and 7.2 show such growth compared with 2012 in detail. 

Table 7.1: Passenger Growth Analysis Table 7.3: Passenger Growth Analysis  

 

June 2013 vs. 

June 2012 

RPK 

Growth 

ASK 

Growth 
PLF 

International 5.9% 5.7% 81.4 

Domestic 6.1% 5.2% 82.0 

Total Market 6.0% 5.6% 81.7 

 

RPK: Revenue Passenger Kilometres measures actual passenger traffic;  

ASK: Available Seat Kilometres measures available passenger capacity;  

PLF: Passenger Load Factor is % of ASKs used 

Source: The International Air Transport Association (IATA) 

With the growing number of travellers throughout the world, airports are critical targets 

for terrorist groups. Therefore technologies in the field of security are racing to 

overcome such attacks to manage the terrorist events before they happen; this is called 

critical security management. Passengers are using airports on a daily basis, which 

makes it a critical source of wealth to the country and improving the economy by 

increasing employment for people. 

Passengers take the luxury, benefit and easy operations of these substantial and 

progressively complicated facilities for granted. However, modern passengers would 

also like to see no queues or delays in airports. Both security and delays in airports 

could have an impact on the country economically and politically. Following the 9/11 

terrorist acts, all security regulations and laws and technologies in airports have been 

changed. These changes include 100% of passenger’s baggage being screened through 

YTD 2013 

vs. YTD 2012 

RPK 

Growth 

ASK 

Growth 
PLF 

International 4.8% 4.0% 78.5 

Domestic 4.6% 3.7% 79.7 

Total Market 4.8% 3.9% 79.0 
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explosive detection systems [128]. Sophisticated safety and security programmes have 

to be constructed to meet the highest level of security.  

7.4 SUMMARY OF CURRENT AIRPORT SECURITY CHECKS WORLD 

WIDE 

Most airports currently have several layers of security screening. It starts when the 

traveller comes to the check-in area where identification is required. They then answer 

some security questions from the check-in desks, such as the contents of their bags and 

if someone else has touched their bags. Once the passenger leaves his luggage at the 

check-in area he is allowed to take a certain weight of any hand luggage, including not 

more than 50ml of liquids. After this he goes through a checkpoint where, in some 

domestic European airports such as the UK and Ireland, a photograph is taken of the 

passenger before they reach the metal detection gate. There are several lanes containing 

metal detection gates and X-ray scanners to view the passengers’‎ carry-on baggage. 

Liquids and laptops are taken from the carry-on baggage and screened separately for 

better visualization by the X-ray scanners. These X-ray scanners view a 2D image and, 

if the screener has suspicions about the carry-on baggage, then this baggage only will be 

checked manually by another officer. After this the traveller goes through the metal 

detector; if there is an alarm then he will be further checked by a pat-down search. If the 

traveller is suspected of carrying anything dangerous he goes through another human X-

ray scanner to view the location of the detected alarm and further investigation. If not, 

then the passenger takes his screened carry-on baggage to the duty free and then to the 

plane.  

Recently millimetre wave gates have been implemented in some UK airports, such as 

Gatwick. These are behind the walk through metal detector and are used for external 
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checks, as shown in Figure 7.2. These new millimetre wave systems require an extra 

person to check the screen of the system to see if there is contraband material held by 

the traveller: this is an extra cost for the airports.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Millimetre Wave System Used in Gatwick Airport 

The baggage left by the passenger at the check-in area after weight allowance control 

then goes through an Explosive Detection System (EDS), which uses computed axial 

tomography (CAT). The image resulting from the scanned baggage is then sent to a 

human screener for final review and analysis before loading in the aeroplane. If there is 

something suspicious in the baggage then another security officer has to search the bag 

or deal with the baggage depending on the analysis of the images. 
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7.4.1 Screening of baggage 

The European Parliament and council regulations for civil aviation security require all 

travellers and their luggage to be screened using available security screening machines 

[129]. 

Almost all European airports operate dual-energy X-ray systems to screen baggage that 

is held by passengers or left at the check-in area. The operator is able to visualize the 

images by these X-ray systems using a pseudo colour technique to differentiate between 

different material colours. Computed tomography (CT) machines are also implemented 

in some parts of European airports; these show the baggage in 3-D and can be rotated 

through 360 degrees. The hand luggage is screened using dual-view or multi-view.  

All existing dual-view and multi-view X-ray systems, and CT show the cutting edge of 

such technology. These systems are equipped with very useful software such as an 

Image Enhancement Function (IEFs), image storage and Threat Image Protection (TIP). 

All this state-of-the-art software can be turned on or off while screening. IEFs are used 

to recognize and analyse the image more carefully, such as edge-enhancement, colour 

inversion, organic only and metal only, etc. Nevertheless, some researchers question the 

effectiveness of such software because the best recognition of the image is the original 

image [148], [149]. Image storing functions are used for the benefit of data storage and 

are to be used when necessary. Every nation has their own national law for data storage; 

therefore the operation of such software differs from nation to nation. 

TIP has been seen to be the best function to help operators in their decisions on 

selecting bags with threats. TIP depends on using stored threat images to cross-check 

passengers’ baggage, both cabin and hold bags. Fictional Threat Images (FTIs) are 

selected by computer to be immersed in the passenger’s cabin bag image. For the hold 
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bags, the computer selects Combined Threat Images (CTIs) and Combined Non-Threat 

Images (CNTIs); these are also immersed in the real images of the hold bags.  

TIP can increase the prevalence to decrease the miss rate done by the screeners. In 

signal detection expressions, the prevalence can be described as a measure of alteration 

and not an adjustment in sensitivity. A system of short-term retraining times with high 

prevalence and full evaluation grants the screeners the ability to embrace a good 

measure during times of low prevalence with no evaluation [150]. Where low 

prevalence in the case of cabin bags is limited because screeners can correct their 

mistakes and catch it, in the case of hold bags it is not possible for the screener to catch 

their mistakes [151]. It is also known that vigilance is described as observance, physical 

readiness to respond or react during visual searches decreases over time [152], [153]. 

TIP also shows messages of how efficient all screeners are in the screening process.  

Even though X-ray imaging technology has been established for more than 41 years, it 

still has its limitations in penetrating high density machines. Modern passengers travel 

these days with their mobile phones, mp3 players, or iPad, and all these come with their 

cables and chargers that show more complex images to the operator. Research shows 

that if a laptop remains in a passenger’s bag it could prevent other items from being 

clear to the security officer, and it showed that laptops being screened separately 

provided screening officers the greatest screening practice [154]. All these electronic 

devices and their batteries could be similar to an improvised explosive device, therefore 

the operator at this point has to open the baggage manually to make sure it is not a 

contraband device or material.  

At the moment X-ray machines were invented for the purpose of speeding up the 

security check process. However, the speed of any security check also depends on these 



144 

machines’ belt movements and the time taken by the security officers to analyse the 

image. Therefore the issue here with current X-ray machines depends on human 

interaction with such a technology or any other new developed technology. 

7.4.2 Passenger screening 

As discussed earlier in the current solutions of airport screenings, there are two types of 

human body scanners: ionizing radiation such as X-ray systems or non-ionizing 

radiation systems such as terahertz and millimetre waves. They are active and passive 

systems. An active system emits radiation to screen the passengers and a passive system 

receives radiation from the passengers to visualize their bodies. However, there are 

privacy and health concerns from using these body scanners on human bodies. In 

America it is routine to use these scanners, but in Europe the law is still strict on using 

these scanners on passengers.  

Ionizing scanners have been proven to use a very low radiation dosage, which is less 

than 1% of the dose a flyer will receive from exposure to cosmic rays at elevated 

altitudes. Therefore there is no threat of radiation from the scans according to [155]. 

Consequently there is no risk at all from a non-ionizing system, similar to millimetre 

waves, or my developed system in the earlier chapters. The process in human body 

screening using ionizing technology such as X-rays is to view an image of the screened 

person by the screener who actually interprets it to see if that person is carrying 

something illegal. This is thought to be revoking‎people’s‎right‎to‎privacy as stated by 

the European Union and other privacy protection groups.  

Recently new European Union regulations have been amended to allow non-ionizing 

body scanners to be used in European airports [147]. Millimetre wave scanners using 

non-ionizing technologies have solved the privacy problem by developing ATR 
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(Automated Target Recognition) such as millimetre waves. The body of the passenger 

does not appear, only a dummy photo with the location of targets, if there are any. On 

the screen of the imaging of mmw, if the passenger has no suspicious material 

concealed within his body the screen shows OK with no image. However, if there is 

anything it will be highlighted in the pictogram and a pat-down search will be carried 

out by the security officer. Figure 7.3 shows the resulting image from a millimetre wave 

scanner. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: a) Shows the Location of a Possible Threat using Millimetre Wave, b) is 

Showing OK Sign to the Operator 

However, using non-ionizing technology with ATR alone will not solve privacy 

concerns unless there is some kind of policy implementation within both technological 

and operational procedures. 
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As seen from the above discussion, one of the main concerns to people is privacy; the 

second concern is the radiation. However non-ionizing systems are no risk to 

passengers; in addition, the ionizing X-ray body scanners used for people in airports are 

also safe, but extra care has to be taken when children and pregnant women are scanned 

[155], [156].  

Privacy concerns have been initiated and argued by the public and European Union 

since the first generation of X-ray systems, which show the full image of the person 

being scanned and interpreted by the screener. The image of a scanned person viewed 

by the screener in detail to look for contraband material in the image formed faced a 

complete rejection by the European Union. Research has been undertaken to see the 

balance between security and privacy invasion to people. Air travellers would like to 

travel safe from any terrorism; at the same time their privacy and health should be 

considered. Some religions have to be taken into account regarding the privacy issue.  

Studies show that security officials, such as Transport Security Administration (TSA), 

should provide air travellers with an educational campaign about the privacy and health 

issues with new scanning machines [157], [158]. The balance of security and other 

issues could be discussed and agreed depending on the time and the circumstance for 

using ionized scanners. 

As explained above, millimetre wave scanners have solved the issue of privacy, 

however, they do not store the images scanned [159]. In general, all of the above 

discussed scanners have their own advantages and disadvantages. The advantage of 

ionizing scanners is that they can provide a better resolution than non-ionizing scanners. 

The disadvantages of the ionizing scanner are privacy concerns, health concerns from 

radiation emitted, and the comprehensive training required for the security officers to 
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interpret the images formed. The advantage of non-ionizing scanners is that they are 

safe for health, there is no privacy intrusion as discussed, and less training is needed for 

the screeners. On the other hand, the disadvantage is lower resolution, which could miss 

contraband material that could be implanted in the human body. Finally security 

scanners have a substantial effect on humans (air travellers and screeners), security, 

throughput, process (policy and pat-down) and cost.  

7.5 FACTORS AFFECTING SECURITY SYSTEMS 

No matter how the technology has been developed, there are factors that can affect the 

process of security control. State-of-the-art technology can always help in the detection 

of contraband objects carried within people, and minimize the effect of other factors 

such as external factors and internal factors. External factors can always affect the 

security control, such as seasonal variety for airport security. For example, passengers 

will travel with heavier clothes in winter and carry more baggage with them; this results 

in more security checks or poor image quality of screened objects and will be more 

challenging for security operators to analyse. Internal factors that affect the security 

control will be the human factors both as a security operator or passenger’s interaction 

with new technologies.  

To shed light on the human factors in security control, there is the story of the TSA 

undercover bomber who succeeded in going through two security check points at 

Newark Airport USA, even though the undercover bomber carried an improvised 

explosive device stuffed down his pants: he also went through a pat-down search [41]. 

In addition, privacy and health issues were one of the main issues to be considered as 

factors to new security technologies. 
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From the above history and reviews of airport security systems, the problem still exists 

if any terrorist is hiding contraband materials inside his body. Moreover, although 

changes in security regulations and technologies have been accomplished and enhanced 

to be effective in detecting any terrorist act, even the consequences of this are 

complicated, such as delays and spending more time inspecting passengers in the 

airports [30]. One of the main problems that aviation security faces over a long period is 

detecting dangerous objects planted within a human body with clear images. 

Technology alone cannot do this, without security screening personnel who received the 

blame for poor performance. This is because of poor training and low salaries for the 

screeners [31]. Technologies in security could be anything from cyber security, 

biometric and screening technology. Our main focus in this thesis is screening 

technology, which has the following issues; 

1. health issues; 

2. privacy issues; 

3. space issues due to machine size; 

4. human interaction with new technologies;  

5. traffic issues caused by delays in screening; 

6. New technologies integration with existing technologies. 

7.5.1 Human issues in scanning technology 

Human factors should be included and considered in the design of scanning machines. 

For instance, there is a problem with detection by some screeners and this is due to 

image based factor view difficulty as illustrated in [160]. Viewing luggage and its 

contents, as well as the X-ray machines are the main factors for these difficulties. This 

could be solved with more computer-based training. In addition, the new X-ray 
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machines or any other systems with a multiview function could reduce the detection 

problem.  

A dark alarm system has been implemented in X-ray machines to warn the screener if a 

dense area in the bag has exceeded limits, and a manual search has to be done at that 

point. The visual ability of the person is one of the factors that can affect the detection 

problem, but this could be solved by better training on computer-based object 

recognition [161]. Knowledge of the contraband materials and how they could look is 

also a factor. Visual ability is stable but knowledge ability is built up with time. 

Therefore more training is needed to keep the screeners more efficient and updated 

[143]-[145].  

However, assessing the screener’s visual ability is required before employment, and 

some research has demonstrated that it is important for the manager to asses screeners 

before they employ them using an object recognition test tool (ORT) in X-ray systems 

[164]. After assessing the screener, there is also a national standard test that has to be 

taken, as well as computer-based training as identified in [165]. Moreover, some 

European countries carry out a competency assessment test annually to certify the 

screeners, to make sure that they are capable of interpreting images from X-ray 

machines [166].  

Although this cutting edge technology has been extensively developed and innovated, 

research today has moved towards whole system performance, management and 

leadership, operational factors and motivation of the screeners. The human factor with 

security was always the weakest link in today’s security process, therefore training is 

needed in leadership awareness and team work for any security control process. There 

are already studies focused on the training and competency aspects [167]. Also covert 
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testing in security control is shown to be effective in enhancing security measures in the 

field of airport security. Covert testing is part of the training to the security personnel to 

deal with dangerous situations and give them the ultimate preparation if there are real 

threats [168].  

7.5.2 Privacy 

Privacy is seen as a vital human right. There is no specific definition of privacy, but it 

normally includes the right of an individual to keep his private sphere, such as body, 

home, property, and identity. A person has the right to be left alone [169]. The 

protection of privacy is seen as how far outsiders, such as the government or any other 

society body, can interfere in someone’s private property.  

In airports, security scanners can reveal sensitive information about the scanned 

passengers. This could be medical details or any other private areas within the body that 

could cause embarrassment to the scanned person. Researchers still argue whether a 

physical pat-down search or 3D full body image is violating the privacy of the person. It 

seems that a full body image that could be transferred or saved on the web invades the 

person’s privacy more than physical touching during a search [170].  

New screening technologies used in security applications ensure safety for passengers 

and increase security. However, questions are always being raised about their clear 

images that violate the privacy of human bodies. Full naked body images produced by 

these technologies invade the privacy and the physical integrity of our bodies, which 

results in an invasion of our human rights and dignity. Body scanners, such as 

millimetre waves and backscatter X-rays, use the most advanced and least invasive 

technology, and seem to be quicker for passenger inspections. However, they have 
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always been criticized, and concerns have been raised by privacy advocates, data 

protection authorities and different parliaments.  

The approach detailed in this thesis in imaging the human body using microwave 

technology would be similar to the approach using millimetre wave technologies, but 

with a different frequency range. Therefore it is worth illuminating the issues arising 

from these advanced technologies and look at the possible solutions to minimize the 

threat to individual privacy.  

The security of the aviation industry is set by an agency called the International Civil 

Aviation Organization (ICAO), but they do not give any guidance about body scanning 

technology. They are aware of privacy and other issues that conflict with society’s 

interests when using body scanners. From the legal side, by using these scanners an 

image has already been captured, processed and stored, which breaches both data 

protection rights and the human rights convention, such as the Universal Declaration of 

Human Right 1948 (UDHR).  

If a passenger chooses not to go through these body scanners then he has to face the 

consequences such as not flying, further questioning or a different method of passenger 

search such as a pat-down, which controls the freedom of the passengers. In Article 13 

of the UDHR, every person has the right to freedom of movement and residence within 

the borders of each state. Everyone has the right to leave any country, including his or 

her own, and to return to his or her country [171]. In Dubai airports authorities did not 

agree to the deployment of these scanners and they are against these advanced body 

scanners. This is because, according to Arab culture and tradition, these advanced 

scanners show the whole body, which is a violation of human rights and sanctity. In 

addition the effect of these body scanners on human health is not yet known, although 
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they say the scanners use very low dosage radiation, a person has the right to fear 

unknown effects on his health.  

In the end, no matter how these technologies can save lives of passengers and crews, a 

person has to consider whether his right to life and freedom will not conflict with his 

right to dignity and privacy. One example occurred in Nigerian airports on 21 

September 2010 when security officers who were trained on the 3D body scanner 

abused the use of the scanners to see female images [172]. 

A person has the right not to be exposed to these scanners, but if that happened in the 

USA the passenger would be searched through a pat-down search and metal detection 

walk through gate. 

In the UK, passengers have the right to opt out from these scanners, but they have to 

agree to a manual search or they will not be able to fly [173]. In the UK, ministers are 

facing pressure to legislate that children under the age of 18 do not have to be scanned 

as scanning is against child pornography laws. However, at the same time consequences 

might lead to terrorists recruiting children for their operations. In Europe there is no 

alternative search method if a passenger refuses to go through body scanners installed at 

that airport.  

Passengers are also questioning why 3D body scanners are not deployed in all ICAO 

member states but only some of them. Also the effectiveness of these scanners was 

questioned since Hassan Ali Al-siri planted in himself half a kilo of explosive, which he 

then detonated while sitting negotiating with Prince Nayef of Saudi Arabia. Also the 

underwear bomber, Umar Abdualmutallab, flew from Amsterdam to Detroit with a 

hidden plastic bomb in his underwear: Schiphol airport had 15 body scanners at that 

time.  
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The following paragraph will discuss how to overcome the privacy issue. Some 

companies such as TSA have used Advanced Imaging Technologies (AIT) to search 

passengers at an airport; some of these AITs are backscatter X-rays and millimetre wave 

systems. Millimetre waves are currently equipped with privacy software called 

automated target recognition based on the types of the target concealed under clothing 

of humans. Backscatter systems are not equipped with this software; this is why 

backscatter X-ray systems have been removed from most American airports until 

privacy software has been developed. 

Microwave body scanners could follow the same steps by integrating filter software to 

avoid privacy concerns. Millimetre wave technology has ATR (Automated Target 

Recognition): the body of the passenger does not appear, only a dummy photo with the 

location of targets if there are any. In the screen of the mmw image, if the passenger has 

no suspicious material concealed within his body the screen shows OK with no image. 

However, using AIT systems with ATR alone will not solve privacy concerns, unless 

there is some kind of policy implemented in both technologies and operational 

procedures. Policies on the AIT systems could be such as disabling the data storage on 

the same screening units, remote imaging location so the screener cannot see the image 

of the passengers. TSA also prevents its screening personnel from taking any recording 

devices with them. A clever privacy filter installed in the AIT units blurs facial features 

or provides a less detailed image of the human body; this will help to reduce privacy 

concerns.  

Despite taking all the above cautions, still there were complaints that some passengers 

had been screened repeatedly, and TSA replied in its policy not to screen any passenger 

twice. Above all 100% security cannot be achieved, even if the machines neglect the 

role of privacy.  
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Body scanners can do the job of security, but future developments of screening systems 

should include an intelligent system to study the behaviour of the passengers as soon as 

they enter the airport, and make a probability calculation to detect and screen people 

who might be a terrorist. At the same time, this intelligent behaviour system could be 

used to alert security officers and train staff to easily target only suspicious passengers 

for further screening. Another way of reducing mass screening of all passengers is to 

profile check passengers, but this will raise concerns of fewer people being searched. 

From 4 December 2013, TSA created a pre-check program to passengers in most 

American airports. Pre-approved passengers or low risk travellers will be allowed to 

move through faster lanes where they do not need to take off their shoes or belts, or any 

laptops or gels from their bags [174]. Most passengers around the world will see this as 

a good approach to avoid strict screening or waiting for long periods in queues.  

There is still no good answer about whether these technologies can really ensure the 

safety of passengers against losing their right to privacy and dignity. Therefore it is also 

very difficult for privacy advocates to win this argument in favour of security standards. 

Until now governments have failed to create a body scanner policy that takes care of the 

privacy law. Future policies for body scanner technology should include legal policy 

and technical measures to regulate scanning, and control the scanners. The expectation 

of the new technologies should take into account privacy issues and data protection, or 

develop alternative solutions to tackle the privacy problems.  

Passengers should be fully notified with the information about scanning machine 

technology so that they can determine their right to privacy. Before deploying new 

scanning machines in airports a review from authorized companies, government bodies 

and individuals should be made available for the public to read and be informed. The 

manufacturer or the creator of scanning machines should be aware of the legal issues 
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associated with privacy that could be raised by law. These legal measures include image 

capture, storage, copyright, system encryption, password and complex 

identification/authentication mechanisms. Furthermore, the ICAOs could take body 

scanning measures seriously and start to link them with a human’s right to privacy. 

7.5.3 Traffic management or basic queueing notation 

More security developments in airports have created long queues. Tight security has 

also caused increases in the cost and time wasted on screening non-threatening 

passengers, and passengers get frustrated from longer screening times. To manage such 

complex queues a trade-off and balance between maximum security and screening times 

has to be achieved. There are a number of strategies to achieve effective security and 

timing, such as selection of technologies or combination of technologies when it comes 

to screening technologies selection [175]. Moreover there are strategies developed 

where passengers will be screened depending on a passenger pre-screening process 

[176]. 

A multiple level of screening has been examined and proposed according to passengers’ 

risk levels [159]-[163]. The literature provided an overview of queueing models that 

have focused on minimizing the number of passengers, and minimizing the time a 

customer spends on each security system [164]-[169]. A reasonable approach to tackle 

this issue could be a study by Harrison and Wein where they separate passengers as type 

A to go through one station alone, while other passengers, type B, goes through two 

stations. They classify passengers as they arrive to be chosen to be screened differently 

according to their dynamic policy: this minimizes the number of customers per system 

[188]. Moreover, research by Schwartz shows that a freedom lane selection by 

passengers could work better than any conventional way. That led them to develop a 
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static model to calculate the number of passengers and length of time at each lane 

depending on the class of passenger [189].  

Recent research has developed a static simulation framework that makes use of the 

selected passenger lane depending on the neighbourhood search procedure, which 

succeeded in the selection of 4% probability of true alarm than the usual passenger 

selection lane programme [190]. The key problem when it comes to aviation security is 

time and security efficiency; therefore Lee and Jacobson have solved such a problem by 

modelling a number of policies and programmes. These are:  

1. a queueing program for multilevel check point security systems in the airport 

made from specialized screening devices;  

2. obtaining a steady state policy to minimize the time passengers spent on security 

systems;  

3. developing a dynamic policy that analyses the balance between true alarm 

probability and the amount of time spent on security systems; 

4. The classification of security systems into two classes, instead of the 

conventional primary and secondary level of screening. The two class system 

has proved a high throughput of passengers screened with less time for each 

passenger in the security system [191].  

Future queueing strategy has to take into consideration the special processes to tackle 

time length and queueing length depending on the security levels of screened 

passengers. For instance, a true alarm passenger has to go through a different security 

class for strict screening and investigation, while lower risk passengers can go through a 

different security class, then it will take less time for all overall passenger security 

screening. 
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7.5.4 Hazards of microwaves  

The above research has investigated whole body scanner technology, which they 

operate in a type of frequency such that their energy per photons is not sufficient to 

ionise molecules or atoms: this is non-ionised radiation. This scanner technology can 

image inside the human body and clothing for any hidden contraband materials. 

In general, whole body scanners would be X-ray backscatterers and millimetre wave 

scanners. The above microwave technology research has investigated lower frequencies 

than millimetre wave scanners, where millimetre wave uses frequencies from 30-

300GHz. Millimetre waves are so called because their wavelengths are 3-10mm in air 

and they take 2-5 seconds to complete a multi-directional scan. To educate ourselves 

more on such allowable effects on human bodies, a good reference of this statement is 

available on the International Commission on Non-Ionising Radiation Protection 

(ICNIRP) [192] and IEEE standards [193]. It is known in radio frequency that the 

absorption of RF measured as Specific Absorption Rate (SAR) within a given tissue 

mass. Therefore SAR is a quantity to measure the dose of RF in human bodies. The 

radiation quantity of SAR exceeding 4W/Kg is required to harm human tissues in the 

range between 1MHz and 10GHz. The microwave scanners are a pulsed operated mode, 

which will generate a low level of power density. For example the power densities for 

millimetre wave scanners are 1kW per metre square, which is almost one-tenth of the 

acclaimed guidelines for the general public.  

To conclude the above subject, to date there are no known health effects from pulsed 

microwave scanners or millimetre wave scanners according to the Food and Drug 

Administration in the USA 
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7.5.5 Security and efficiency enhancements in airports 

Firm security in scanning systems means an image of forbidden materials carried out 

with passengers from boarding to an aircraft or even allowed to travel. Effective 

efficiency means imaging the baggage of passengers using imaging systems without 

using a manual search method for faster operation. In order to do this, a cutting edge 

technology should be developed to achieve firm security and effective efficiency.  

X-ray systems at the moment are developed to view baggage without human interaction 

unless necessary. However, even with these technologies available there are still 

challenges to meet high security and high efficiency. The demonstrated microwave 

imaging system could enhance both aspects. These technologies are in the hands of 

security officers who image passengers to ensure that the security is fast, not missed and 

producing fewer false alarms. Also there is stress caused by passengers needing to catch 

their flights.  

To achieve security and efficiency in airports, the scanning needs to be accurate and fast 

in order to achieve a smooth operation and achieve passenger satisfaction. A study 

proposed that screeners should work on a single goal or dual goals such as speed and 

accurate security. It seems that when screeners work on one goal, they achieve it in 

favour of the other factor. For instance, if they focus on speed scanning there are errors 

in the scan. But if they focus on dual goals such as speed scanning and security 

accuracy, that slowed down the scanning operation and made the security more robust. 

Therefore both goals have to be managed together, as long as both goals do not affect 

their mental or emotional levels [194]. This means that there is a balance between speed 

and security accuracy that should be taken into account to reach both goals.  

  



159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Adapted from [195]. Displays the Six Goal Domains and the 21 

Objectives Agreed by Airport Managers 

Accordingly, the legal constructions of an airport should consider the balance of 

security, safety, costs, operation and privacy to manage a complicated operation overall. 

It has become a nationwide priority that measuring productivity of an organization 

should‎ come‎ before‎ improving‎ it.‎ Therefore,‎ to‎ measure‎ the‎ balance‎ of‎ an‎ airport’s‎

complex operations, a system called Productivity Measurement and Enhancement 

System (ProMES) could be implemented [195], [196]. ProMES can be an excellent 
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method of setting up system performance management and security control 

enhancement. 

Managers of airports should rely on a holistic approach to decide on investing in new 

security scanning technology. This approach carries out a laboratory test, field test and 

stress test as demonstrated in [197]. The earlier proposed microwave research should 

refer to this approach for future development. 

7.5.6 Future imaging security in airports 

Future imaging security such as X-rays and CT scanning machines could be developed 

to have higher resolution, be reliably fast and cost effective. This is why this thesis 

discusses the latest techniques in image reconstruction algorithms using microwave 

techniques. Automation research is gradually increasing in imaging scan technology. It 

is already executed in the hold baggage scan, and soon possibly it will be implemented 

in the scanning of cabin baggage.  

CSIRO and Nuctech Company Limited developed automated systems to detect the 

shape of contraband materials such as chemical materials, explosives, narcotics and 

other organic threat materials smuggled through cargos. They looked for future 

development on the system to be faster in scanning for larger volumes of cargo and 

improved image resolution [198]. Figure 7.5 shows the prototype of the system. 

Automated detection is a useful function in the system, but the detection should always 

executed by a human. Machines could always give a false alarm and therefore screeners 

will not trust the machine; on the other hand, sometimes screeners will think real threats 

are false alarms and that could have tragic consequences.  

New European laws urge researchers to find ways to detect gels or liquids. X-rays and 

CT scanners can visualize this easily without the need for automation, but it is a helpful 
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function to differentiate different types of materials from each other, such as contraband 

materials. Deploying new scanning technologies will change the job requirement of the 

screeners, or sometimes new technologies will not need screeners to sit beside the 

device itself. This is called remote screening where one officer can control all the 

images passed through scanning devices in one control room somewhere in the airport. 

This has been already deployed for hold baggage and in the future it could be executed 

for cabin baggage. This remote image control can save time, is cost effective, and has an 

advantage of focus for the screeners to have a quiet and pleasant environment to focus 

in their image analysis. The only disadvantage of this innovative method that is the 

screeners will be far away from the passengers and the baggage to be scanned, which 

will make it hard for the screeners to call the passengers if there is a real threat or even 

have access to the baggage.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: AC6015XN Air Cargo Scanner Developed by CSIRO and Nuctech 

Company Limited 
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7.5.7 Security systems integration 

Airport security systems have been integrated in different ways internationally 

depending on the size of the airport and the country those airports are. The airports in 

the USA were equipped with high end technologies because of the threats received after 

9/11. The regulations and rules have been changed since then, and much research has 

been carried out to develop airports in a smarter and more cost efficient way.  

An example of exact data has been taken from the website of TSA (Transportation 

Security Administration). This states that they operate and manage more than 781 check 

points across US airports, with more than 43,000 transportation security officers [199]. 

This means a high cost for the TSA of approximately US$3 billion a year. Although this 

is a high cost of security spending at the checkpoints, an undercover test made by TSA 

officers at Los Angeles international airport and Chicago O’Hare International Airport, 

showed failure to detect contraband materials of between 60% and 75% [200].  

From the above facts, the outstanding problem is still how to integrate all security 

screening technologies and methods with the existing airport systems to deliver better 

control of security with reduced current operational cost. Therefore screening in airports 

should be integrated with other security systems to have an effective tool for the better 

detection of suspected terrorists or smugglers. Pre-screening checks should be 

integrated with the screening systems to decide on who to screen and which baggage to 

concentrate screening on. Screening results should be integrated with the main security 

control officers for analysis and be integrated with other security systems such as facial 

recognition, CCTV in airports, and behaviour analysis systems. 
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 Conclusions  Chapter 8:

8.1 CONCLUSIONS 

This thesis took the race into the development of microwave imaging in the field of the 

security systems. The research purpose was to image contraband materials hidden or 

implanted within human bodies. To this end it was proven that microwaves can image 

inside a human body using a state-of-the-art imaging algorithm called Time Reversal 

Multistatic Signal Classifications. It was important to carry out research on a technology 

that is less harmful and human friendly to be used in scanning people in airports, or 

securing VIP sites from any terrorist acts or smuggling.  

The research in Chapter 1 conducted a comprehensive literature review of microwave 

imaging use in the field of medical and security applications. Then an understanding of 

microwave interaction with human bodies in Chapter 2 gave the opportunity to image 

different dielectric properties that could be hidden in the human body. A lumerical 

FDTD solution was used to gather scattered field data from objected microwaves in 

different type of targets. Choosing a TR-MUSIC algorithm as an imaging reconstruction 

method to reconstruct images from scattered fields of microwave rays objections on the 

target was explained in Chapter 4. A simulation showed successful imaging results in a 

simulated cross-section using microwave rays by both a radon transformation algorithm 

and TR-Music algorithm.  

The above research was conducted by simulation using lumerical FDTD solutions to 

gather the data and then processed through a state-of-the-art TR-MUSIC algorithm 

using Matlab code. A simulated cross-section with an object inside them assumed to be 
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a human torso cross-section with different dielectric properties. In TR MUSIC it seems 

that the higher the frequency the better the resolution, as shown in Chapter 6.  

As simulation showed successful results, a possible experiment explained in Chapter 6 

could be set up in the future to gather the right results to be investigated. Also a 

prototype of such a system could be implemented. The limitation of my successful 

results showed that a real prototype should be built and implemented to gather real data 

rather than simulation. A real experiment in the future will prove the concept of 

microwave imaging. Practical experiments in this field would always be suitable to 

show practical evidence that microwave imaging is happening, and will give a strong 

reason to commercialize the system and build it in the future. 

As technology proved to be successful in imaging, particularly in scanning systems, 

Chapter 7 therefore discussed the scanning security system management used in airports 

and how new technologies could be managed by airport management and operators. 

Most current scanning systems suffer from privacy and health concerns for passengers. 

All these aspects have been discussed to give the reader experience on how security is 

handled in airports, and how to manage security from any terrorist act or risk that could 

cause countries to have a major economic crisis. 

Finally, this thesis proved that microwaves could be used to image inside the human 

body, and that this technology could be developed in a real system in the future to be 

used for security applications. This technology has been discussed to be suitable for a 

scanning system to replace X-ray systems used in airports. Microwave systems are non-

ionized, safe, protect passenger’s privacy, and provide clear images of objects inside 

human bodies. 
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8.2 RECOMMENDATIONS 

It is recommended in the future to execute the experiment set up in Chapter 6 to collect 

real data on modelled targets. Practical results will then be available to provide robust 

and accurate information to lead to the development of a real prototype. 

It is recommended that a real prototype system should be developed to enhance this type 

of research area. It is also recommended that microwave imaging techniques discussed 

in this thesis could be combined with other technologies for better imaging results, as 

seen from [201]. Combined images from different technologies plus microwaves in one 

system will lead to a more informative image that will help the operator to obtain a 

better analysis. 

After successful prototype development, extra software for privacy protection could 

also be developed to be integrated with the prototype to show attractive solutions for 

airport body scanning systems. 

It is recommended also to develop a video-based system to be added to the current 

system to enhance the security imaging. 

It is recommended that this system could be integrated with other security systems in 

the airport for better security management. 
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Appendices 

Appendix A 
 

Script design of the simulated model in Lumerical FDTD 

solutions 
 

 

Deleteall; 

 

 

for(i=1:n){ 

addpower; 

set("monitor type","point"); 

set("z",0); 

set("y",dist*sin(2*pi*(i-1)/n)); 

set("x",dist*cos(2*pi*(i-1)/n)); 

set("name", "monitor_"+ num2str(i)); 

 

} 

 

 

adddipole; 

 

set("z",0); 

 

set("y",0);set("y",dist*sin(2*pi*(Source-1)/n)); 

set("x",dist*cos(2*pi*(Source-1)/n)); 

 

setnamed("source","wavelength start",0.0000299792); 

setnamed("source","wavelength stop",0.0000299792); 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendices 180 

Appendix B 

 

 

Simulation code in Lumerical FDTD solutions and data 

collections 
 

monitor_Ex=matrix(40,40); 

monitor_Ey=matrix(40,40); 

monitor_Ez=matrix(40,40); 

 

for(i=1:40){ 

 

filename="source"+num2str(i); 

save(filename); 

switchtolayout; 

 

setnamed("analysis group", "Source",i); 

run; 

} 

for(i=1:40){ 

 

filename="source"+num2str(i); # You can comment this line if you want to save the file 

for each simulation 

load(filename); # You can comment this line if you want to save the file for each 

simulation 

 

 

# I am using the getelectric command which returns the electric field intensity which is 

a positive real number 

# If you want to return the complex field instead, change all of the following to : 

# monitor(i,1)=sum(pinch(getresult("analysis group::monitor","E" ).E)); 

# monitor(i,2)=sum(pinch(getresult("analysis group::monitor_1","E" ).E)); 

# etc.  

for( j=1:40){ 

monitor_dataset=getresult("analysis group::monitor_"+num2str(j),"E" ); 

monitor_Ex(i,j)=sum(pinch(monitor_dataset.Ex)); 

monitor_Ey(i,j)=sum(pinch(monitor_dataset.Ey)); 

monitor_Ez(i,j)=sum(pinch(monitor_dataset.Ez));  

} 

} 

 

 

# the file named monitor_fields.txt will contain the information 

write("monitor_fields_Ex.txt",num2str(monitor_Ex)); 

write("monitor_fields_Ey.txt",num2str(monitor_Ey)); 

write("monitor_fields_Ez.txt",num2str(monitor_Ez)); 
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Appendix C 

 

TR Music Code 
 

 

function TRMUSIC_2D_Modified 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%set model 
frequency=7e9;                   % frequency,unit:Herz 
speed=3e8;                      % EM propagating speed in the 

simulated media,unit:meter/second 
lambda=speed/frequency;         % waveleng of EM wave,unit:meter 
ImagingSizeX=0.30;               % imaging reconstruction region in X 

direction,unit:meter 
ImagingSizeY=0.30;               % imaging reconstruction region in Y 

direction,unit:meter 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%get measurements 
[filename pathname]=uigetfile('*.*','open Object data file'); 
str=[pathname,filename]; 

  
fid=fopen(str,'r'); 
if fid==-1 
    output('open file fail') 
end 

  
Data_M=[]; 
i=1; 
while (~feof(fid)) 

     
    data=fscanf(fid,'%s',1) 
    if isempty(data) 
        break 
    end 

         
    Data_M(i)=str2num(data); 
    i=i+1; 

    
end 
Anum=length(Data_M)^0.5;     
Data_Object=reshape(Data_M,Anum,Anum)';  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%get measurement of background 
[filename pathname]=uigetfile('*.*','open Background data file'); 
str=[pathname,filename]; 

  
fid=fopen(str,'r'); 
if fid==-1 
    output('open file fail') 
end 

  
Data_M=[]; 
i=1; 
while (~feof(fid)) 

     
    data=fscanf(fid,'%s',1); 
    if isempty(data) 
        break 
    end 
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    Data_M(i)=str2num(data); 
    i=i+1;  
end 

  
Anum=length(Data_M)^0.5;     
Data_Background=reshape(Data_M,Anum,Anum)';  
Data=(Data_Object-Data_Background); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%get antena axies 
Angu=2*pi/Anum*(0:(Anum-1));        % angular positions of circle 

array 
R=0.2;                          % the radius of circle array, 

unit:meter 
Aposi=[R*cos(Angu);R*sin(Angu)];    % xy coordinats of antennas 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
noisefactor=0; 
phasenoise=270; 

  

  
energy=norm(Data,'fro')^2; 
[U,D,V]=svd(Data); 

  
svvector=diag(D); 
weightofnoise=zeros(size(svvector)); 
totalenergy=norm(diag(D),'fro')^2; 
for k=1:length(svvector) 
    weightofnoise(k)=norm(svvector(1:k),'fro')^2/totalenergy; 
end 

  
Grid=100;                       % imaging reconstruction points 

density 
dx=ImagingSizeX/Grid; 
dy=ImagingSizeY/Grid; 
I=zeros(Grid+1); 
boundary=1; 
while boundary<Anum 
    if weightofnoise(boundary)>0.7 && weightofnoise(boundary)<0.88 
        boundary 
        II=zeros(Grid+1); 
        for jj=1:Grid+1%pixel 
            for ii=1:Grid+1 
                gx=illuminationvector([(ii-1-Grid/2)*dx;(jj-1-

Grid/2)*dy],Aposi,lambda); 
                aa=0.0; 
                for kk=boundary+1:Anum 
                   aa=aa+(abs(U(:,kk).'*gx))^2+(abs(V(:,kk)'*gx))^2; 
                end 
                II(jj,ii)=1/aa; 
            end 
        end 
        I=I+II; 
    end 
    boundary=boundary+1; 
end 

  
I=abs(I); 
%save('N:\MyWork\ZhangPapers\result\image_metal_rec_4ge40.mat','I'); 
figure 
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[X,Y]=meshgrid(100*(-ImagingSizeX/2:dx:ImagingSizeX/2),100*(-

ImagingSizeY/2:dy:ImagingSizeY/2)); 
SVDVector=diag(D); SVDVector=10*log(SVDVector/max(SVDVector)); 

  
%save('N:\MyWork\ZhangPapers\result\metal_nonregular_4ge40_sv.txt','SV

DVector','-ascii'); 
%save('N:\MyWork\ZhangPapers\result\metal_nonregular_4ge40_er.txt','we

ightofnoise','-ascii'); 

  
subplot(2,2,1),plot(weightofnoise,'o-'),grid on; 
subplot(2,2,3),plot(SVDVector,'o-'),grid 

on,xlabel('N'),ylabel('Singular Value(d B)');axis square; xlim([1 

length(SVDVector)]);ylim([min(SVDVector)-5 max(SVDVector)+5]); 
%subplot(2,3,2),plot(diag(trEigValue),'*-'),grid 

on,,xlabel('N'),ylabel('Eigen Value'); 
subplot(2,2,2),imagesc(100*(-ImagingSizeX/2:dx:ImagingSizeX/2),100*(-

ImagingSizeY/2:dy:ImagingSizeY/2),I); colorbar;axis xy 

square,axis(100*([-ImagingSizeX/2 ImagingSizeX/2 -ImagingSizeY/2 

ImagingSizeY/2])),xlabel('x(cm)'),ylabel('y(cm)'); 
%subplot(2,2,4),contour(X,Y,10*log(I),50); axis square,grid 

on,axis(100*([-ImagingSizeX/2 ImagingSizeX/2 -ImagingSizeY/2 

ImagingSizeY/2])),xlabel('x(cm)'),ylabel('y(cm)'); 
subplot(2,2,4),surf(X,Y,10*log(I)); shading interp; axis(100*([-

ImagingSizeX/2 ImagingSizeX/2 -ImagingSizeY/2 ImagingSizeY/2 

min(min(10*log(I)))/100 

max(max(10*log(I)))/100])),xlabel('x(cm)'),ylabel('y(cm)'); 
%subplot(2,3,5),surf(X,Y,10*log(abs(I2))),shading interp; axis(100*([-

ImagingSizeX/2 ImagingSizeX/2 -ImagingSizeY/2 ImagingSizeY/2 0 

1])),xlabel('x(cm)'),ylabel('y(cm)'); 
%subplot(2,3,6),contour(X,Y,10*log(abs(I2)),50),axis square,grid 

on,axis(100*[-ImagingSizeX/2 ImagingSizeX/2 -ImagingSizeY/2 

ImagingSizeY/2]),xlabel('x(cm)'),ylabel('y(cm)'); 
% subplot(2,3,5),surf(X,Y,abs(psf)),shading interp,axis(100*([-

ImagingSizeX/2 ImagingSizeX/2 -ImagingSizeY/2 ImagingSizeY/2 0 

max(max(abs(psf)))/100])),xlabel('x(cm)'),ylabel('y(cm)'); 
% subplot(2,3,6),contour(X,Y,abs(psf),50),axis square,grid 

on,axis(100*[-ImagingSizeX/2 ImagingSizeX/2 -ImagingSizeY/2 

ImagingSizeY/2]),xlabel('x(cm)'),ylabel('y(cm)'); 
figure,imagesc(100*(-ImagingSizeX/2:dx:ImagingSizeX/2),100*(-

ImagingSizeY/2:dy:ImagingSizeY/2),I); colorbar;axis xy 

square,axis(100*([-ImagingSizeX/2 ImagingSizeX/2 -ImagingSizeY/2 

ImagingSizeY/2])),xlabel('x(cm)'),ylabel('y(cm)'); 

  
% illumination vector generation function 
function [IV]=illuminationvector(x1,x2,lambda) 
    for ii=1:size(x2,2) 
        for jj=1:size(x1,2) 
            IV(ii,jj)=besselh(0,2,2*pi*norm(x1(:,jj)-

x2(:,ii),2)/lambda); 
        end 
    end 
    IV=IV/norm(IV,2); 

  
%%%%%%%%%%%%%diagonal line equal to 0 

  
%{ 
for i=1:length(Data) 
    Data(i,i)=0; 
end 
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Appendix D 

Human body tissues dielectric properties from [118] 
  Frequency = 1000.00 MHz 
Tissue                     Epslon     Sigma 

Bladder                  18.849951   0.396606 

Blood                    61.065372   1.583073 

Bone_Cancellous          20.584105   0.363929 

Bone_Cortical            12.363424   0.155647 

Bone_Marrow_Infiltrated  11.196044   0.239370 

Bone_Marrow_Not_Infiltr   5.485393   0.042796 

Breast_Fat                5.407877   0.052824 

Cartilage                42.316879   0.828792 

Cerebellum               48.857254   1.307865 

Cerebro_Spinal_Fluid     68.438515   2.455200 

Colon(Large_Intestine)   57.481392   1.127232 

Cornea                   54.834404   1.437892 

Dura                     44.200764   0.993314 

Eye_Tissue(Sclera)       55.016594   1.205489 

Fat                       5.447024   0.053498 

Fat(Mean)                11.294223   0.116371 

Gall_Bladder             58.997078   1.288284 

Gall_Blad_Bile           70.010414   1.875942 

Grey_Matter              52.281815   0.985324 

Heart                    59.290333   1.283632 

Kidney                   57.939972   1.449651 

Lens_Cortex              46.399349   0.824299 

Lens_Nucleus             35.666695   0.511831 

Liver                    46.400772   0.897076 

Lung(Inflated)           21.824909   0.474023 

Lung(Deflated)           51.101418   0.896929 

Muscle(Parallel_Fiber)   56.660660   1.034154 

Muscle(Transverse_Fibr)  54.811028   0.978189 

Nerve(Spinal_chord)      32.251652   0.599883 

Ovary                    49.781193   1.344658 

Skin(Dry)                40.936264   0.899814 

Skin(Wet)                45.710957   0.881826 

Small_Intestine          58.870239   2.217532 

Spleen                   56.610710   1.322749 

Stomach_Esop_Duodenum    64.797188   1.231625 

Tendon                   45.633930   0.759827 

Testis_Prostate          60.258781   1.252566 

Thyroid_Thymus           59.469212   1.078719 

Tongue                   55.016594   0.974955 

Trachea                  41.778152   0.802269 

Uterus                   60.776573   1.314722 

Vitreous_Humour          68.875465   1.667309 

White_Matter             38.577381   0.621925 

 

  Tissue             Permittivity Conductivity Density(app.) 

Avg. Brain               45.429596   0.803625     

1030.0 

Avg. Skull               16.473764   0.259788     

1850.0 

Avg. Muscle              55.735844   1.006172     

1040.0 

 

 



Appendices 185 

 
  Frequency = 2000.00 MHz 
 

Tissue                     Epslon     Sigma 

Bladder                  18.233961   0.577910 

Blood                    59.022324   2.186298 

Bone_Cancellous          19.086840   0.652147 

Bone_Cortical            11.653735   0.310047 

Bone_Marrow_Infiltrated  10.560427   0.381228 

Bone_Marrow_Not_Infiltr   5.347769   0.076143 

Breast_Fat                5.232330   0.106125 

Cartilage                39.759468   1.422889 

Cerebellum               45.667870   1.822794 

Cerebro_Spinal_Fluid     66.910255   3.074140 

Colon(Large_Intestine)   54.728954   1.709016 

Cornea                   52.389404   1.983488 

Dura                     42.621681   1.419668 

Eye_Tissue(Sclera)       53.270287   1.724382 

Fat                       5.327579   0.085915 

Fat(Mean)                10.958710   0.212486 

Gall_Bladder             58.039181   1.758431 

Gall_Blad_Bile           68.848633   2.440050 

Grey_Matter              49.691940   1.511044 

Heart                    55.816109   1.911761 

Kidney                   53.851925   2.089864 

Lens_Cortex              45.125866   1.248484 

Lens_Nucleus             34.436775   0.872733 

Liver                    43.821468   1.403848 

Lung(Inflated)           20.790388   0.685185 

Lung(Deflated)           49.058723   1.394516 

Muscle(Parallel_Fiber)   55.048576   1.563861 

Muscle(Transverse_Fibr)  53.290001   1.453851 

Nerve(Spinal_chord)      30.626297   0.913736 

Ovary                    45.821945   1.948826 

Skin(Dry)                38.567902   1.265463 

Skin(Wet)                43.520454   1.335596 

Small_Intestine          55.405083   2.833670 

Spleen                   53.378410   1.912456 

Stomach_Esop_Duodenum    62.892017   1.843474 

Tendon                   43.908924   1.338648 

Testis_Prostate          58.270180   1.826838 

Thyroid_Thymus           57.849407   1.633252 

Tongue                   53.270287   1.493848 

Trachea                  40.262257   1.209725 

Uterus                   58.576450   1.901683 

Vitreous_Humour          68.472313   2.155583 

White_Matter             36.731686   1.001391 

 

  Tissue             Permittivity Conductivity Density(app.) 

Avg. Brain               43.211815   1.256217     

1030.0 

Avg. Skull               15.370287   0.481097     

1850.0 

Avg. Muscle              54.169289   1.508856     

1040.0 

 

 

 

 



Appendices 186 

Frequency = 3000.00 MHz 
 

Tissue                     Epslon     Sigma 

Bladder                  17.720135   0.836041 

Blood                    57.353104   3.050023 

Bone_Cancellous          17.943909   1.006083 

Bone_Cortical            11.066273   0.506200 

Bone_Marrow_Infiltrated  10.014117   0.561665 

Bone_Marrow_Not_Infiltr   5.237837   0.120841 

Breast_Fat                5.038583   0.178889 

Cartilage                37.606441   2.204820 

Cerebellum               43.895130   2.481987 

Cerebro_Spinal_Fluid     65.390442   4.005437 

Colon(Large_Intestine)   52.931404   2.494820 

Cornea                   50.741783   2.728974 

Dura                     41.340321   2.014976 

Eye_Tissue(Sclera)       51.859085   2.468150 

Fat                       5.223881   0.130037 

Fat(Mean)                10.655297   0.344170 

Gall_Bladder             57.099659   2.496229 

Gall_Blad_Bile           67.719376   3.325326 

Grey_Matter              48.048622   2.218852 

Heart                    53.736992   2.728830 

Kidney                   51.587826   2.890790 

Lens_Cortex              44.013100   1.865653 

Lens_Nucleus             33.415573   1.387762 

Liver                    42.164696   2.075518 

Lung(Inflated)           20.130270   0.968909 

Lung(Deflated)           47.603607   2.084595 

Muscle(Parallel_Fiber)   53.648708   2.331691 

Muscle(Transverse_Fibr)  52.057980   2.142127 

Nerve(Spinal_chord)      29.620144   1.329582 

Ovary                    43.519238   2.684416 

Skin(Dry)                37.450352   1.740625 

Skin(Wet)                42.112106   1.947430 

Small_Intestine          53.372101   3.639210 

Spleen                   51.447182   2.686221 

Stomach_Esop_Duodenum    61.267498   2.729206 

Tendon                   42.126114   2.166165 

Testis_Prostate          56.694633   2.647093 

Thyroid_Thymus           56.403088   2.441327 

Tongue                   51.859085   2.237616 

Trachea                  39.112415   1.784121 

Uterus                   56.921238   2.730568 

Vitreous_Humour          67.816994   2.955925 

White_Matter             35.541309   1.510638 

 

  Tissue             Permittivity Conductivity Density(app.) 

Avg. Brain               41.794968   1.864745     

1030.0 

Avg. Skull               14.505091   0.756141     

1850.0 

Avg. Muscle              52.853344   2.236909     

1040.0 

 

 

 

 

 

 



Appendices 187 

Frequency = 4000.00 MHz 
 

Tissue                     Epslon     Sigma 

Bladder                  17.203909   1.158089 

Blood                    55.676739   4.133829 

Bone_Cancellous          16.946363   1.398758 

Bone_Cortical            10.531953   0.727466 

Bone_Marrow_Infiltrated   9.513246   0.763736 

Bone_Marrow_Not_Infiltr   5.135623   0.174125 

Breast_Fat                4.839307   0.262300 

Cartilage                35.568672   3.109459 

Cerebellum               42.426952   3.279400 

Cerebro_Spinal_Fluid     63.730064   5.195953 

Colon(Large_Intestine)   51.309887   3.463443 

Cornea                   49.228466   3.651875 

Dura                     40.096230   2.745700 

Eye_Tissue(Sclera)       50.448219   3.404340 

Fat                       5.124863   0.182898 

Fat(Mean)                10.362132   0.502257 

Gall_Bladder             56.005550   3.471673 

Gall_Blad_Bile           66.405968   4.495789 

Grey_Matter              46.579636   3.090741 

Heart                    51.960747   3.721706 

Kidney                   49.750916   3.849305 

Lens_Cortex              42.866955   2.646292 

Lens_Nucleus             32.387699   2.030912 

Liver                    40.688957   2.892883 

Lung(Inflated)           19.540581   1.318113 

Lung(Deflated)           46.231846   2.943226 

Muscle(Parallel_Fiber)   52.215027   3.301380 

Muscle(Transverse_Fibr)  50.820927   3.015586 

Nerve(Spinal_chord)      28.739086   1.838678 

Ovary                    41.647400   3.536764 

Skin(Dry)                36.587315   2.340467 

Skin(Wet)                40.847412   2.701600 

Small_Intestine          51.633865   4.621600 

Spleen                   49.784317   3.630427 

Stomach_Esop_Duodenum    59.610611   3.847599 

Tendon                   40.238796   3.173510 

Testis_Prostate          55.130844   3.678429 

Thyroid_Thymus           54.906033   3.463722 

Tongue                   50.448219   3.173806 

Trachea                  37.996571   2.502838 

Uterus                   55.314041   3.768641 

Vitreous_Humour          66.922874   4.049424 

White_Matter             34.477913   2.136275 

 

  Tissue             Permittivity Conductivity Density(app.) 

Avg. Brain               40.528774   2.613508     

1030.0 

Avg. Skull               13.739159   1.063112     

1850.0 

Avg. Muscle              51.517975   3.158483     

1040.0 
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