

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

MediateSpace
Applying Contextual Mediation to the

Tuple Space Paradigm

Danny Matthews

Foundations of Software Systems Group

School of Informatics
University of Sussex

A thesis submitted, on September 30, 2014, in partial fulfilment of the requirements

for the degree of Doctor of Philosophy (PhD) in the School of Informatics of the

University of Sussex.

For Angela and my family

Statement of Originality

This thesis is my own work and contains nothing which is the outcome of
work done in collaboration with others, except as specified in the text and the
Acknowledgments.

This thesis is not substantially the same as any that I have submitted or
am currently submitting for a degree, diploma or any other qualification at
any other university. No part of this dissertation has already been, or is being
submitted for any such degree, diploma or qualification.

September 30, 2014

© 2005–14 University of Sussex. All trademarks used in this thesis are hereby acknowl-

edged.

ii

Abstract

I designed, implemented and evaluated a decentralised context-aware content
distribution middleware. It can support a variety of applications, with all
network communication handled transparently behind a tuple space based
interface. Content is inserted into the network with an associated condition
stipulating the context that must be matched to receive it. Conditions can be
expressed using conjunctions, disjunctions, a form of universal and existential
quantification and nested block scopes. Conditions are mapped onto a set
of spatial indexes to enable lookup; and these are inserted into a distributed
multi-dimensional spatial data structure (e.g. an R-Tree). They are also
translated into an OWL representation to enable evaluation.

Nodes bind to their most geographically proximate neighbours which al-
lows distance-sensitive context sharing. The middleware is capability-aware,
pushing computationally expensive tasks onto more capable nodes.

I evaluated my system through benchmarks and simulation, defining condi-
tion classes which collectively represent a large portion of the condition space.
Random conditions were generated from these classes. Node mobility was
controlled through a number of probability distributions. Benchmark evalu-
ation times were reasonable, evaluating 500 typical messages in 1.4 seconds
each. When the number of stored contexts were reduced, this improved dra-
matically, evaluating 500 much more complicated conditions in one-tenth of a
second each. The number and complexity of context parameters has a major
impact on efficiency.

The number of spatial indexes generated was reasonable for most condi-
tions, with a 95th percentile of 6. However, existential quantification was
a challenge for both condition evaluation and index generation due to the
potentially large number of possible combinations of conditions.

As expected, simulations found that the distribution of workload was very
uneven because nodes tend to cluster in large cities; meaning that most com-
munication is localised within these areas. Also, node density had a dramatic
impact on the number of received messages as nodes within sparse areas were
unable to obtain context information which precluded condition evaluation.

I achieved my research goals of developing a distributed context-aware con-
tent distribution framework.

iii

Acknowledgments

I would like to thank my supervisors Dr Dan Chalmers and Dr Ian Wakeman
for their invaluable support throughout my research; offering encouragement,
direction and valuable feedback. I would also like to thank Dr Des Watson for
his support and for always being happy to help.

I am also thankful to Dr Simon Fleming for his copious feedback on paper
drafts, to Dr Renan Krishna for his advice and encouragement and to Dr
Shinya Sato for helping me to get through the madness that was printing and
binding.

Lastly, but certainly not least, I would like to express my thanks to Angela
for her constant encouragement and to my family for the unfailing support
they have shown me throughout my life.

iv

Contents

Statement of Originality ii

Abstract iii

Acknowledgments iv

Contents v

List of Figures viii

List of Tables x

Listings xi

1 Introduction 1
1.1 Contributions . 1
1.2 Published Works . 3
1.3 System Overview . 3
1.4 Motivation . 5
1.5 Thesis Organisation . 11

2 Decentralised Protocols 12
2.1 Introduction . 12
2.2 Publish-Subscribe Networks . 13
2.3 Tuple Spaces . 15
2.4 Hash Tables . 18
2.5 Spatial Indexes . 21
2.6 Summary . 28

3 Context-Aware Middleware 29
3.1 Introduction . 29
3.2 Context-Aware Frameworks . 30
3.3 Categories of Context-Awareness 31
3.4 Aspects of Context . 32

v

Contents vi

3.5 Representing Context . 33
3.6 Context Models . 33
3.7 Location Models and Services 37
3.8 Criteria for Evaluating Existing Frameworks 41
3.9 Evaluating Frameworks . 42
3.10 A Context-Aware Middleware Taxonomy 46
3.11 Summary . 46

4 Context-Aware Content Distribution 48
4.1 Introduction . 48
4.2 The MediateSpace Language 48
4.3 The MediateSpace Network . 52
4.4 Pervasive Advertising . 64
4.5 Summary . 69

5 A Context-Based Spatial Lookup Algorithm 71
5.1 Introduction . 71
5.2 Value Mapping . 73
5.3 Structure Mapping . 74
5.4 Summary . 87

6 Context Reasoning Using OWL 88
6.1 Introduction . 88
6.2 The OWL Language . 88
6.3 Motivation . 92
6.4 MediateSpace OWL Ontology 92
6.5 MediateSpace Evaluation Ontology 93
6.6 Summary . 109

7 Design and Experimental Setup 110
7.1 Introduction . 110
7.2 MediateSpace Design . 110
7.3 Context Modelling . 122
7.4 Simulation . 129
7.5 Benchmarking Condition Evaluation 137
7.6 Summary . 142

8 Results 144
8.1 Introduction . 144
8.2 Condition Classes . 144
8.3 Condition Evaluation Benchmarks 145
8.4 Simulation . 160
8.5 Properties of Spatial Indexes 170
8.6 Summary . 172

Contents vii

9 Conclusions and Future Work 175
9.1 Introduction . 175
9.2 Thesis Summary . 176
9.3 Future Work . 179
9.4 Summary . 180
References . 181

List of Figures

1.1 MediateSpace Topology . 5
1.2 A Summary of our Pervasive Advertising Application 7
1.3 A Summary of our Geocaching Application 9
1.4 An Example Geocache Message . 10

2.1 Illustrating the three basic operations of a tuple space. 16
2.2 (a) A Directed Connected Graph (b) A Tree 23

4.1 Representing the same Context using Different Commands 49
4.2 Contexts and ConcreteContexts from the Geocaching Application . 51
4.3 An Example Geocache Message . 53
4.4 The Five Supported Subspaces . 56
4.5 The Tuple Space Network Abstraction 56
4.6 A Three-Dimensional R-Tree[21] 58
4.7 The Bind Protocols . 60
4.8 The Message Request Protocol . 61
4.9 Context Requests and Request Buffering (max dist: 1 km) 62
4.10 The Context Request Protocol . 63
4.11 A Summary of our Pervasive Advertising Application 65
4.12 Context-Aware Bidding Formulae 68

5.1 Example MediateSpace Language Structures 72
5.2 A Simple Conjunction . 77
5.3 A Simple Conjunction: Fully Constraining A.A() 78
5.4 A Simple Disjunction . 79
5.5 Merging Two Blocks (Conjunction) 80
5.6 Copying Two Blocks (Disjunction) 81
5.7 Simple Nested Block Merging . 82
5.8 Cartesian Merging of Nested Blocks 83
5.9 Cartesian Merging and Block Copying 84
5.10 Parameterised and Non-parameterised Repeated Contracts 85
5.11 Transforming ∃ blocks to a form using logical connectives 86

viii

List of Figures ix

6.1 OWL Class and Property Hierarchies (in Protege1) 93
6.2 Context and ConcreteContext Forms 95
6.3 Representing a Contextual Condition 97
6.4 An exact match (==) condition . 98
6.5 Two range conditions, with dual ranges on A.A2() 99
6.6 An Ontology Condition . 100
6.7 A Condition with a Nested Block 101
6.8 A Condition with two Negated Contracts 103
6.9 The Algorithm for Preprocessing Exists Blocks 104
6.10 Representing ∃ Conditions . 105
6.11 Representing All Observable Context Information 107
6.12 An Example Illustrating OWL code structure and Inference 108

7.1 Files and Directories Available to a Node 113
7.2 System Interfaces . 115
7.3 Tuple Space Operations and Network Handling 116
7.4 ContextService getContextValue() Method Pseudo Code 121
7.5 ReasonerService executeContract() Method Pseudo Code 122
7.6 The Binomial Distribution with Different Levels of Skew 126
7.7 Communication between PlanetSim Layers and MediateSpace Nodes130
7.8 The Variables Considered within our simulation 133
7.9 Examples of Simulated Networks 136

8.1 Condition Class Examples . 147
8.2 Expected Values Initialisation . 150
8.3 Expected Values Evaluation . 151
8.4 Restricted Expected Values Initialisation 154
8.5 Restricted Expected Values Evaluation 155
8.6 Number of Contexts . 156
8.7 ∃ Block Initialisation . 157
8.8 Conjunctions and Disjunctions Data 158
8.9 First Response Times for Message Requests 161
8.10 Number of MessageMatch tuples dispatched from the bound Re-

gional Node . 163
8.11 Relative Node Degrees when ratio = 0.2 and 0.5 Respectively . . . 163
8.12 Num. of Message Received by Geographical Bounds 164
8.13 Regional Node Bind Request and Reject Behaviour for 50th, 75th

and 95th Percentiles . 165
8.14 Regional Nodes with Maximum Neighbours of {1, 6, 40} respectively166
8.15 First Response Times for Specific and Unspecific Requests 168
8.16 Num. Context Requests and Messages Received 168
8.17 Number of Indexes at 95th percentile 171
8.18 Exists Indexes . 172
8.19 Number of Indexes at the 50th, 75th and 95th Percentiles 173

List of Tables

3.1 An example of a TOTAM context rule [13] 45
3.2 Summarising the Toolkits with ratings (1* to 5*) 47

4.1 A Summary of all MediateSpace Tuples 54
4.2 Example Use Case . 70

5.1 Rules for Mapping contracts to Min-Max Values 75

6.1 Classes and Individuals : Manchester Syntax to OWL XML 90
6.2 Properties : Manchester Syntax to OWL XML 91
6.3 A Summary of the MediateSpace OWL Ontology Classes 94
6.4 A Summary of the MediateSpace OWL Ontology Properties 96
6.5 Rules for Mapping values to their OWL Representation 106

7.1 Node Capabilities . 111
7.2 Summary of the Tuple Space Services 120
7.3 Condition Generation Parameters with Expected Values 125
7.4 Condition Generation Parameters with Probabilities 127
7.5 Message Request Parameters with Default Values 128
7.6 Simulator Parameters . 131
7.7 Benchmark Code and JMH Framework Command Line Parameters 140

8.1 Condition Classes . 146
8.2 Data Collected for each Benchmark 148
8.3 Correlation and % Increase Data 152

x

Listings

7.1 The IContractImplementation Interface 115
7.2 The TupleSpaceNetworkHandler Interface 115
7.3 The NetworkComms Interface 115
7.4 The SpatialComms Interface 115
7.5 The IOntologyReasoner Interface 115
8.1 Expected, Skew = 0.15 . 147
8.2 Expected, Skew = 0.5 . 147
8.3 Expected Restricted, Skew = 0.5 147
8.4 Num-Conds-And, NumContractsPerBlock = 4 147
8.5 Num-Conds-Or, NumContractsPerBlock = 4 147
8.6 Exists-N-Div-2-N . 147
8.7 Exists-1-To-N . 147

xi

1 Introduction

Weiser’s vision of ubiquitous computing [90] is closer to being fulfilled than
ever before, with great strides towards it having been achieved in recent years.
It was estimated in 2009 that there were approximately four billion pervasive
devices in circulation, with numbers growing rapidly [80]. These devices al-
most uniformly provide built-in sensors such as cameras, microphones, GPS
and wireless communication capabilities such as 802.11, 4G and Bluetooth.
People are becoming ever more comfortable with the use of sensors, and there
is every reason to expect this familiarisation to grow as time goes by. This
growth in availability and public understanding opens the way for a variety
of new applications and services. Some have visions of harnessing these sen-
sors on a city or even country wide scale to create new applications that will
improve the lives and living conditions of all [80].

Applications may simply aim to make certain things more convenient or
more enjoyable for users. One example is LocoMatrix1 who provide location-
based games for fun and education. Other works focus on more serious appli-
cations such as healthcare monitoring [57] and advertising [29, 47].

Our work aims to support the development of applications such as these
through the development of a distributed context-aware content distribution
framework. We provide an overview of our system in section 1.3.

We will now briefly discuss the main contributions of our work and provide
an overview of our proposed framework. We then provide a motivation for
our framework by proposing two possible real-world applications. Finally, we
describe the organisation of the remainder of this thesis.

1.1 Contributions

• A Context-Aware Language
For supporting the development of Context-Aware applications.

1http://www.locomatrix.com/

1

1.1. Contributions 2

• A Context-Aware Middleware
A distributed and scalable context-aware content distribution middle-
ware.

• Contextual Condition Spatial Indexing Algorithm
An algorithm for mapping our contextual condition language to a multi-
dimensional spatial index such as the R-Tree [46].

• Contextual Language OWL Representation
An OWL representation of our context-aware language

• A Context-Aware Framework Taxonomy
A taxonomy for comparing frameworks along the dimensions of flexi-
ble evaluation, ontology extension, heterogeneous interoperability and
decentralisation.

Each of the above contributions are the candidates’ own work.
Our contributions are discussed briefly in Section 1.3. The context-aware

language and middleware are discussed in detail in Chapter 4 and the contex-
tual condition indexing and OWL representation algorithms are discussed in
Chapters 5 and 6 respectively.

We would also like to acknowledge the work of others on which our work
depends.

Tuple spaces were proposed by Gelernter [38] and enhanced with context-
awareness by Murphy el al. [23, 25, 27].

R-Trees were proposed by Guttman [46] and refined by a number of re-
searchers including Berchtold et al. who created the more efficient X-Tree [10]
and Bianchi who designed and implemented a distributed form of R-Tree [11].
This was later extended with fault tolerance by Valero et al. [87].

Chalmers et al.’s work on context-aware mediation [15, 16] and the plethora
of context-aware middleware solutions were also an influence on our work.
In particular we wish to highlight the Context Toolkit [78] for helping to
establish the field, the MetroSense project [32] for proposing the concepts of
network symbiosis, asymmetric design and localised interaction, the Hydrogen
framework [50] for incorporating simple decentralisation and the SOCAM [45]
and TOTAMmiddlewares [13] for their incorporation of OWL and tuple spaces
respectively.

The human mobility models of Barabasi et al. [6, 42], Wang et al. [88] and
Newman [65] were instrumental in the design of our simulation models.

TheWeb Ontology Language (OWL) [53] was used to implement our context-
aware language.

We also acknowledge the work of application researchers on whose software
we used. These are the PlanetSim network simulator [3], the JMH bench-
marking tool [68], the Gephi data visualisation software [8], the FaCT++

1.2. Published Works 3

OWL reasoner [85] and the OWL API [51].

1.2 Published Works

MediateSpace: decentralised contextual mediation using tuple spaces,
Proceedings of the Third International Workshop on Middleware for Pervasive
Mobile and Embedded Computing, M-MPAC 2011 [59]

Improving the Effectiveness of Advertising Through Contextual Me-
diation,
The 5th Workshop on Pervasive Advertising, Pervasive 2012 [60]

1.3 System Overview

The MediateSpace system is a middleware application designed to provide
decentralised context-aware content distribution. Shared data are referred to
as Messages and are distributed across the nodes of the network. Messages
are designed to be general, allowing data to be represented using an arbitrary
structure. Each Message is associated with a contextual condition which stip-
ulates the context that the user must match in order to receive it. Messages
are indexed using these contextual conditions, allowing users to specify con-
textual queries which are used to lookup relevant messages in the network.

Users can also issue requests for context information that they cannot ac-
cess locally via Context Request messages issued to geographically proximate
nodes.

1.3.1 Contextual Conditions

Contextual conditions can be constructed using simple conjunctions and dis-
junctions, or by using a modified form of the ∀ and ∃ predicate statements.
They also support block scoping and arbitrarily nested blocks.

1.3.2 Modelling Context

The Context tuple allows some aspect of context (e.g. location or tempera-
ture) to be defined abstractly and ConcreteContext tuples provide a concrete
implementation of a Context. This allows systems to have a shared under-
standing of the semantics of a particular context without enforcing a particular
type of sensor or implementation.

Context and ConcreteContext tuples are analogous to object-oriented in-
terfaces and classes respectively. Each Context structure defines one or more
Contracts which roughly equate to methods in an interface. An ontology may
also be specified if relevant. ConcreteContext structures implement Contexts,

1.3. System Overview 4

providing a concrete implementation for each of the Contracts and ontology.
Within a ConcreteContext, Contracts are roughly equivalent to static class
methods.

Contract parameters and return values support six data types: (Boolean,
String, Integer, Double, Date, Time, Ontology)

1.3.3 Messages

Message tuples specify a contextual condition (discussed below) which must
be satisfied by a requesting party if they wish to receive the message. The
message payload is stored within any number of modules and corresponding
Adverts can be defined for each module. These adverts are used to inform the
requesting party as to the contents of the module; allowing them to decide
whether they wish to receive it. Message evaluation is performed by translat-
ing the contextual condition within the message into an OWL representation.
This representation is then evaluated using an OWL reasoner.

1.3.4 Network Nodes

MediateSpace differentiates between two types of node in the network: Re-
gional and Participant. Regional nodes are responsible for any computation-
ally expensive operations which need to be performed and are also responsible
for the majority of network communication. Hence, it is intended that the
more capable machines on the network are used to host Regional nodes (e.g.
server machines). Participant nodes will usually represent mobile devices such
as phones and tablets. They may insert messages into the network, issue mes-
sage and context requests and satisfy context requests from other Participant
nodes.

1.3.5 Network Structure

Each Participant node is bound to it’s most geographically proximate Regional
node and performs rebinds periodically to ensure that it is still bound to a
nearby device. Regional nodes bind to the n most geographically proximate
Regional nodes. This allows them to issue context requests to one another
in an attempt to retrieve context information from an otherwise unreachable
but nearby Participant node. An OWL representation of the Context and
ConcreteContext structures is used by the Regional node to establish which
of their neighbours can provide the desired type of context. This topology is
summarised in Figure 1.1.

This geographical awareness is harnessed to ensure that any context infor-
mation shared between nodes is valid, as most context will lose its relevance
if used too far from its origin.

1.4. Motivation 5

PN

1B

PN

3B

RN

B
RN

A

PN

2A

PN

3A

RN

C

PN

1C

PN

2C
PN

2B

PN

1A

0.4 Km0.5 Km

1.1 Km

0
.3

 K
m

Figure 1.1: MediateSpace Topology

1.3.6 Node Communication

Each node has access to two tuple spaces: an internal space and an external
space. Communication between nodes is conceptually handled by placing
addressed tuples into these spaces. This dual tuple space abstraction makes
communication straightforward for the end user but in reality communication
relies on an overlay network and the distributed spatial indexes discussed in
the next section.

1.3.7 Spatial Indexing

Messages and Regional node locations are stored in two separate distributed
multi-dimensional spatial indexes. In this work we use an R-Tree [11, 46] but
other indexes could be used such as an X-Tree [10] or TV-Tree [56].

We have devised an algorithm for mapping our contextual condition lan-
guage to a multi-dimensional spatial index. We provide mappings for all as-
pects of the language including the use of conjunctions, disjunctions, blocks,
nested blocks and existential quantification (∀, ∃). This algorithm allows us
to index our messages (or any other data) via a contextual condition and to
efficiently lookup these messages within a spatial index using a contextual
query.

1.4 Motivation

The generality of the Message format in our middleware allows it to be ap-
plied to a number of applications such as context-aware games or pervasive
advertising. We will now provide a motivation for our system by discussing
these two potential applications.

1.4.1 Pervasive Advertising

The Pervasive Advertising application discussed in this subsection is based on
our 2012 paper on the same subject [60].

1.4. Motivation 6

Existing pervasive advertising frameworks such as MyAds [29] and Mo-
biAd [47] focus primarily on matching adverts based on explicitly entered
information (such as user demographics and interests), derived information
(e.g. through the parsing of browser history, Facebook or E-Mail) and loca-
tion. A number of commercial mobile services also have this focus2,3. We
aim to demonstrate how these types of context can be represented using the
MediateSpace middleware.

Our example of use considers a shopping scenario where stores wish to
advertise their products to appropriate customers. They wish to target indi-
viduals based on their budget, their proximity to the store, their availability
and their shopping interests. Our system allows stores to distribute adverts
with contextual conditions attached; delivering the adverts to only those in-
dividuals whose context matches. Figure 1.2 illustrates a potential design for
this scenario with five Contexts and seven ConcreteContexts.

We discuss this example scenario in much more detail when discussing our
context-aware middleware in Chapter 4.

1.4.2 Distributed Geocaching

Geocaching4 can be described as a modern form of treasure hunt, where peo-
ple hide containers of varying size in the environment and register the GPS
location of the container online. Players then use a GPS device to locate the
container and acknowledge finding it by making a note in a log book within
the container and online.

At present all geocaches are stored centrally at geocaching.com. Our system
could be used to decentralise their operation.

1.4.2.1 Representing Geocaches

A geocache is represented as a set of GPS co-ordinates and a number of fields.
These fields are the description, a list of recent log book messages, a hint to
find the cache, a collection of photos and a set of attributes (discussed in the
following section). The description and hint could be represented as simple
strings, while the logs and photos could be represented as lists of strings and
binary data respectively. In order to reduce the amount of data which needs
to be transmitted at one time the log and photo data could contain only a
subset of the available entries and the name of a tuple containing the next
subset could be appended to the end of the data in case the user wishes to
retrieve them. This method could be applied continuously to form a tuple
based linked list of the data.

2http://www.admob.com/
3http://advertising.apple.com/uk/
4http://www.geocaching.com/

1.4. Motivation 7

PN

RNRN

PN PN

RN

PN
PN

PN

Advert

Condition

Advert
Content

has part-of-tree
has part-of-tree

has part-of-tree

has advert

has contexts

Location
<Context>

Contracts:

BOOL location(ONTVAL loc)

ONTVAL getHome()

Ontology:

UK: contains England,

 contains London, ...,

London: contains Camden, ...

GPSLocation
<ConcreteContext>

CalendarLocation
<ConcreteContext>

DerivedInterests
<Context>

Contracts:

LIST getDerived(LIST words)

EMailInterests
<ConcreteContext>

FacebookInterests
<ConcreteContext>

Availability
<Context>

Contracts:

BOOL availability(ONTVAL loc)

Ontology:

AVAILABLE, UNAVAILABLE

CalendarAvailability
<ConcreteContext>

{

 Availability.availability(AVAILABLE) &&

 Location.location(WYCOMBE) &&

 Std.Compare(Budget.getBudget(), ">=", 15) &&

 Std.Compare(Budget.getBudget(), "<=", 30);

}

has condition

Me
<Context>

Contracts:

INT getAge()

DOUBLE getBudget()

Gender
<Context>

Contracts:

BOOL gender(ONTVAL

loc)

Ontology:

MALE, FEMALE

ExplicitPersonalInfo
<ConcreteContext>

FacebookDetails
<ConcreteContext>

Context Description

Location Provides an ontology which represents different regions of the United Kingdom.

location(ONTVAL): Accepts an ontology value as parameter and returns a boolean

indicating whether the user is within the specified location.

getHome(): Returns the ontology value that represents the user’s place of residence.

ConcreteContexts: Using GPS or the users’ calendar.

Availability availability(ONTVAL): Accepts an ontology value as parameter and returns a

boolean indicating whether the user is currently available.

ConcreteContexts: Via the users’ calendar.

DerivedInterests getDerived(LIST): Accepts a list of words taken from a data source and outputs a

list of derived words.

ConcreteContexts: Data mining the users’ E-Mail or Facebook account.

Me getAge(): A single Contract for obtaining the age of the user.

getBudget(): Returns a floating-point value representing the budget of the user.

ConcreteContexts: Explicit information input by the user or via Facebook.

Gender gender(ONTVAL): Accepts an ontology value as parameter and returns a boolean

indicating whether the user is of a specified gender.

ConcreteContexts: Explicit information input by the user or via Facebook.

Figure 1.2: A Summary of our Pervasive Advertising Application

1.4. Motivation 8

1.4.2.2 Attributes

In addition to a description and hint each cache can have a number of at-
tributes associated with them. These attributes include (among many others)
the availability of the cache (e.g. during the daytime, night, 24/7), the sea-
sons of the year that the cache is available, the approximate amount of time
it takes to find and the amount of walking required.

Geocaching.com divides walking time into three categories:

• Short Hike (< 1 km)
• Medium Hike (1 - 10 km)
• Long Hike (> 10 km)

This could be represented using an ontology with one concept for each
category. However, we could improve the granularity of this attribute by
representing distance as a floating-point value, allowing users to search for
caches within any range.

Some of the other attributes do not have a natural mapping to an ontology
or numeric value and equate to a boolean (e.g. a cache has a “scenic view” or
“telephone available” or it does not). These could be represented as individual
Contracts which return boolean values or alternatively they could be used for
further filtering after lookup in a similar way to our handling of keywords in
the Pervasive Advertising example discussed later in this chapter.

1.4.2.3 An Example

We have defined a number of Contexts and ConcreteContexts that may be
defined for a distributed geocaching application. These have been summarised
in Figure 1.3. The SearchParams ConcreteContext is useful as it allows users’
to specify their own values for a Contract. For example, if a user was attending
a conference in one month’s time and they wanted to do some geocaching
during their stay they could specify the GPS co-ordinates of the conference
centre and set the Time and Season appropriately to search for caches.

Figure 1.4 presents an example of how a geocache may be represented in
our system. The specified condition stipulates the location of the geocache on
the grounds of the University of Sussex and specifies that the following must
be true in order for the cache to be returned when a query is issued:

1. The time must be between 8 AM and 5 PM
2. It cannot be winter
3. The maximum distance the user is willing to walk must be greater than

or equal to 10 Km
4. The user must not have rejected a scenic view.

1.4. Motivation 9

Time
<Context>

Contracts:

DATE getTime()

DeviceTime
<ConcreteContext>

OnlineClock
<ConcreteContext>

Distance
<Context>

Contracts:

DOUBLE maxWalkDist()

Season
<Context>

Contracts:

BOOL season(ONTVAL loc)

Ontology:

SUMMER, WINTER,

AUTUMN, SPRING

DeviceCalendar
<ConcreteContext>

Attributes
<Context>

Contracts:

BOOL scenicView()

BOOL telephoneNearby()

BOOL drinkingWaterNearby()

SearchParams
<ConcreteContext>

Context Description

Time Represented as a single Contract for obtaining the time.

ConcreteContexts: Reading from the device clock, an online service or via

SearchParams.

Season Represented as a single Contract for obtaining the current season.

ConcreteContexts: Reading from the device calendar or via SearchParams.

Distance Represented as a single Contract for obtaining the maximum walk distance to a cache.

ConcreteContexts: Via SearchParams. This Context does not strictly represent a

facet of the users context; instead it allows them to specify these attributes in order to

restrict the search results.

Attributes Each attribute we wish to represent should have it’s own Contract returning a Boolean.

In this example we are representing the “has scenic view”, “has phone nearby” and

“has drinking water” attributes.

ConcreteContexts: Via SearchParams. Again, this Context does not represent a

facet of the users context; being used instead to restrict the search results.

Figure 1.3: A Summary of our Geocaching Application

1.4. Motivation 10

MessageTuple {

Meta {

((tupleName, ”cache−b8fa8a79847db01aa328”), (msgUniqueId, 865),

(originatorId, ”P2”), (sourceId, ”P2”), (destinationId, ”P5”));

}

Condition {

@Location.XY(51.06, 0.127, 0.5);@

{

Std.Compare(Time.getTime(), ”>”, 08:00:00) &&

Std.Compare(Time.getTime(), ”<”, 17:00:00) &&

{

Season.Season(SUMMER) || Season.Season(AUTUMN) ||

Season.Season(SPRING)

} &&

Std.Compare(Distance.MaxWalkDist(), ”>=”, 10) &&

Std.Compare(Attributes.scenicView(), ”==”, true)

}

Advert {

(Meta, [”Basic Info”,

”Title, desc, hint, difficulty, terrain, size”]) ,

(Logs, [”Logs”, ”Log info for this cache”]) ,

(Photos, [”Photos”, ”Photos of the cache”]);

}

PayLoadModules {

Meta { ((title, ”University of Sussex”),

(description, ”The cache is on the boundary walk”),

(hint, ”in a tree”),

(difficulty, 2), (terrain, 2), (size, 2)) ;

}

Logs { [((title, ”Found it!”), (date, 20/08/2014),

(body, ”Solved. quick trip to find it . TFTC”)),

((nextLink, ”cache−444b7c605dd7e22fdac6”));]

}

Photos { [((photo1, ”d76357f331433b1eec89c35e82b”),

(nextLink, ”cache−1ea90295d182746de156”));]

}

}

}

}

Figure 1.4: An Example Geocache Message

1.5. Thesis Organisation 11

1.5 Thesis Organisation

The remaining chapters of this thesis are organised as follows:

• Chapter 2 discusses a number of decentralised protocols which each pro-
vide different benefits; and we relate each to the goals of our middleware.

• Chapter 3 defines Context and discusses how it may be categorised and
represented. We also discuss a number of centralised and decentralised
context frameworks and evaluate them according to the four key criteria
we defined for our middleware. This is summarised using a taxonomy
at the end of the chapter.

• Chapters 4, 5 and 6 discuss the main contributions of our work. Specifi-
cally, we discuss our MediateSpace middleware and the spatial indexing
and OWL representation algorithms discussed in section 1.1.

• Chapter 7 discusses our system design and experimental setup. This
includes the definition of variables and a number of experimental models
to improve the realism of the simulation.

• Chapter 8 provides the results of our MediateSpace simulations, OWL
evaluation benchmarks and an evaluation of our spatial indexing algo-
rithm.

• Chapter 9 offers a summary of the thesis and suggests future work.

2 Decentralised Protocols

2.1 Introduction

This chapter reviews research into decentralised communication protocols.
That is, we discuss networking protocols which allow communication between
computers (which are often mobile devices such as phones or tablets) without
the need for a centralised system to arbitrate the communication.

Decentralisation is a desirable trait because it distributes the system func-
tionality across the nodes of the network; avoiding a single point of failure
and potentially increasing the scalability of the application. Our middleware
is decentralised in nature and this chapter discusses many of the decentralised
protocols available in relation to the goals of our middleware.

Traditional point-to-point synchronous protocols are coupled according to
space, time and synchronisation. We now provide a brief explanation of these
terms:

Time Coupling Refers to the fact that all interacting nodes are required to
be present in the network at the same time if they wish to communicate
with one another.

Space Coupling Implies that if two nodes wish to communicate with one
another they can only do so via an explicit contact address (e.g. IP
address).

Synchronisation Coupling Refers to protocols which require the request-
ing node to wait for a reply from the requestee before they can do any
further processing.

The distributed protocols we discuss below relax some or all of these cou-
plings. Specifically, we discuss Publish/Subscribe networks, Distributed Tuple
Spaces, Distributed Hash Tables and Distributed Graphs (with a specific focus
on trees used for spatial indexing).

12

2.2. Publish-Subscribe Networks 13

2.2 Publish-Subscribe Networks

Publish-Subscribe networks are a messaging middleware decoupled in space,
time and synchronisation [33]. Subscribers register their interest in one or
more events with an event service, which then notifies the subscriber asyn-
chronously whenever a publisher pushes an applicable event to the service.

Publish-Subscribe networks are decoupled in space because all communica-
tion between publishers and subscribers is handled via an event service; thus,
the nodes do not need to be aware of each other in order to communicate.
Time decoupling is achieved as the event service allows subscribers to issue a
subscription event even if some or all publishers are offline. Also, provided the
event service retains a buffer of events a subscriber can receive events issued
by a publisher even if the subscriber was offline at the time the event was
originally sent. Subscribers issue requests to the event service and are then
free to continue until the event service notifies them of an appropriate event;
thus, Publish-Subscribe networks also achieve synchronisation decoupling.

Publish-Subscribe networks can be centralised, where the event service
is situated on one or more servers or they can be implemented in a dis-
tributed fashion. For instance, Shvartzshnaider, Ott and Levy [81] proposed
a content-based Publish-Subscribe network written over a Distributed Hash
Table (DHT).

Publish-Subscribe networks tend to come in three flavours: topic-based,
content-based and type-based [33]. These will now each be discussed in turn.

2.2.1 Topic-Based

Topic-Based networks use string identifiers to represent subscription event
types and each topic is viewed as having its own event service with a unique
name and operations for publishing or subscribing to the topic. For example,
you may subscribe to events from the BBC Sports service by issuing a sub-
scription request to the topic “uk-bbc-sport”. Topic-Based networks have the
advantage of enforcing platform interoperability as the event space is divided
by simple strings.

Networks may use either a flat or hierarchical addressing scheme. With
flat addressing, publications to a topic will only be received by subscribers
who have explicitly subscribed to the given topic, whereas with hierarchical
addressing topics can be organised according to containment relationships,
where publishing to a topic will also deliver the event to any topics further
up in the hierarchy. For example, say the network has three topics (“uk-
bbc”, “uk-bbc-sport” and “uk-bbc-comedy”) and the latter two are contained
within the former; if a user is subscribed to “uk-bbc” they will receive all
events dispatched to any of the three topics. If instead they were subscribed
to “uk-bbc-comedy”, they would only receive events dispatched to “uk-bbc-
comedy”.

2.2. Publish-Subscribe Networks 14

2.2.2 Content-Based

In Content-Based networks subscription events specify details of the actual
content of the event rather than being based on some “predefined external
criterion” [33]. Subscriptions are often based on internal attributes of the
event or some event meta data. For example, in a stock notification system
some internal attributes of an event may be company name or price [33].

Subscriptions are specified using a subscription language which is often
key-value based with relational operators (e.g. <, >, ≥) and logical operators
(e.g. AND, OR). These subscriptions are often specified as strings which are
parsed according to a grammar by the event engine. However, they may also
be issued using templates which declare a type and any number of attributes
to be matched (similar to the way tuple matching occurs in a tuple space based
middleware; see Section 2.3). Finally, subscriptions may be given as executable
code specified as a predicate object to be evaluated against potential events
on the event service. One disadvantage of the executable approach is that
it makes it very difficult to optimise the network communication and event
processing tasks.

2.2.3 Type-Based

Typed-Based networks often use object-oriented principles to represent both
subscriptions and event types. It’s main benefits are that it provides type
safety and sub-typing. Also, type-based networks may be used to represent
content-based filtering if public member fields are used to represent the inter-
nal or meta attributes of an event.

2.2.4 Summary

Eugster et al. [33] recommend choosing Topic-Based networks if the primary
property of subscriptions range over a limited set of discrete values because
of it’s efficiency. However, if more flexibility is needed then Content-Based
networks can be highly expressive but with the cost of requiring more sophis-
ticated protocols and a higher overhead. They also suggest that Topic-Based
networks can be combined with Content-Based networks in cases where the
primary property is discrete and limited but further disambiguation is needed.

A content-based publish subscribe system could be used to process our
contextual conditions and provide message lookup. However, we felt that the
transient nature of context did not lend itself well to a subscription based
approach as the subscriptions would likely become invalid quickly. Short ex-
piry times could be specified for each request but that would negate the main
benefit of the protocol.

2.3. Tuple Spaces 15

2.3 Tuple Spaces

A tuple space is a shared space accessible to many entities (first proposed by
David Gelernter [38]). These entities may be separate processes or separate
machines communicating with the space over the network. Tuple spaces store
tuples - which are simply packages holding arbitrary data. Each tuple is
stored in the space with a set of fields whose values must be matched in order
to retrieve it. A tuple space has three basic operations which can be performed
on it:

• out - Place a new tuple in the space.
• rd - Read a copy of a tuple from the space (if available).
• in - Read and remove a tuple from the space (if available).

The rd and in commands are blocking operations, meaning that they will
not return until a matching tuple is found. There are also non-blocking vari-
ations of these commands (rdp and inp) and versions for retrieving multiple
matching tuples at a time (rdg and ing) [27]. Figure 2.1 illustrates the three
basic operations of a tuple space.

The tuple space has the benefit of being decoupled in space because all
communication is directed towards the tuple space rather than communicating
directly with other nodes. It is also temporally decoupled because once a tuple
has been inserted into the space it becomes associated with the space rather
than the originating node. Thus, the tuple will remain even if the originating
node leaves. This holds for subscribers also (i.e. nodes which consume tuples
from the space) as tuples can be inserted into the space before the subscribers
join. The issue of synchronisation decoupling is more complicated. Although
this holds on the producer-side the semantics of the tuple space dictate that
a tuple can only be removed (when the in command is invoked) by a single
node. Thus, the consumer and tuple space must work closely with one other
to ensure that the tuple is received on the consumer and removed from the
tuple space atomically.

We have chosen to use the tuple space paradigm for our middleware as
it provides spatial and temporal decoupling, and the tuple space abstraction
provides a simple interface for application developers to interact with.

We now discuss a number of distributed variants.

2.3.1 LIME

Although several research projects have focused on designing distributed tuple
spaces, one of the most mature of these is LIME (Linda In a Mobile Envi-
ronment) [27]. LIME is a Java implemented middleware application which
achieves the illusion of shared memory through the creation of a virtual tuple
space defined as the union of the tuple spaces of all nodes within wireless
communication distance. Their protocol ensures that all updates, additions
and removals are reflected in the global tuple spaces of all nodes.

2.3. Tuple Spaces 16

Tuple Space

Tuple ("Jack", 54)

Tuple ("Gwen", 25)

rd ("Gwen", u)

Tuple ("Ianto", 24)

in ("Ianto", w)

out ("Owen", 20)

Tuple ("Owen", 20)

Figure 2.1: Illustrating the three basic operations of a tuple space.

They extended the semantics of the tuple space operations to reflect the
distributed setting. For instance, the “out” operation may be augmented with
a destination node and the “rd” and “in” operations may include both source
and destination nodes.

LIME also supports the notion of “reactions”. These are constructs which
observe the properties of tuples as they enter the system and trigger the execu-
tion of an action when these properties match those specified by the reaction.
Reactions may be specified as strong or weak. Strong reactions must execute
their action immediately upon attaining a match whereas weak reactions do
not have this constraint - the action may be executed at any time in the future.

LIME uses a distributed index called the Global Virtual Data Structure
(GVDS) [4] which it uses to create and display a global tuple space containing
the spaces of all nodes within communication distance.

2.3.2 TinyLIME and TeenyLIME

The TinyLIME middleware [25] is extended from LIME and focuses on the
task of retrieving and aggregating sensor values from wireless motes. By using
the distributed shared memory approach of LIME, the middleware facilitates
the sharing of sensor values between nodes over the network. Sensor data may
be retrieved as single values or as the aggregate of the sensor values over a
specified time.

This approach differs significantly from the traditional method of collating
sensor data (i.e. collecting all data into a central monitoring station), making
it a more appropriate choice when sensors are sparse or isolated.

TinyLIME reactions have been enhanced to include contextual conditions.
For example, it is possible to specify that a reaction should trigger only if a
temperature value is between 20 and 30. TinyLIME is implemented using a

2.3. Tuple Spaces 17

combination of the Java, C and nesC (Network Embedded Systems C) [37]
languages.

TeenyLIME [23] provides very similar functionality to TinyLIME, with it’s
focus also being that of wireless sensor networks. However, this version of the
middleware is designed to exhibit significant performance improvements as it
is implemented on TinyOS1 using the nesC and C languages exclusively.

2.3.3 Peer-To-Peer Tuple Spaces

A number of other peer-to-peer tuples spaces have been proposed. Like LIME,
PeerWare [24] achieves distributed shared memory through the use of the
Global Virtual Data Structure (GVDS) [4] which it uses to represent network
nodes and documents (the payload). In order to maintain this shared state
the GVDS data structures’ of all available nodes are combined into one global
space, with this information being shared via a peer-to-peer network. Primi-
tives are provided to issue subscription requests to and to execute commands
on subsets of nodes and documents. They note that the more complicated the
resource language, the more complicated the runtime support architecture
required on each node.

The peer-to-peer tuple space middleware [72] is designed to handle the task
of resource brokering in a distributed fashion. All resource requests and re-
source usage information is shared via a tuple space which is spread over a Dis-
tributed Hash Table (DHT). The publish-subscribe pattern is used to match
resource requests with appropriate resource nodes (e.g. resources having suffi-
cient memory, being within the correct price range etc) and this co-ordination
is handled via one or more service nodes.

Each Co-ordination service is structured using a three-tiered architecture:

Application Layer Allowing users to make requests and inform of updates.

Core Services Layer Responsible for matching tasks to subscribers and also
for resource discovery (i.e. calculating the indexes for DHT lookups).

Connectivity Layer Delivers messages to the appropriate nodes using a
DHT such as Chord.

Resources are identified by more than one attribute and so queries are N-
dimensional. If a fixed value for each attribute is specified it is known as an
N-dimensional point query whereas if ranges of values are specified then it is
an N-dimensional window (or range) query.

The dimensions of a resource are both static (operating system, amount of
memory etc) and dynamic (processor utilisation, physical memory utilisation,
current price etc).

1http://www.tinyos.net/

2.4. Hash Tables 18

2.4 Hash Tables

Associative arrays allow the mapping of keys to values. Using this data struc-
ture, you can subsequently search for a value by using the appropriate key
as an index into the map. The simplest way to achieve this functionality is
via a linear search where the search key is compared against each key in the
array sequentially until the matching key is found (and the value returned).
This is however slow if the size of the array is large with a worst case search
complexity of O(n). An alternative approach is to represent the elements in
a binary search tree. This improves on linear search with an average search
complexity of O(log n) but again a worst complexity of O(n). The use of
red-black trees [92] to ensure that the tree is balanced eliminates this worst
case and gives a guaranteed O(log n) search complexity.

Although search trees have benefits such as support for ordered keys, if
these benefits are unneeded you can achieve constant (O(1)) search complexity
by using a hash table [43]. Hash tables operate by performing a calculation
(called a hash function) on the key which produces a number between zero
and the size of the table. The value is then stored at this index. Search then
becomes a simple process of performing the same calculation on the search
key and returning the value present at the corresponding index.

A perfect hash function will produce a unique index for every key inserted
into the table. However, perfect hashing can be costly to achieve. A good
hash function will distribute the keys evenly across the table but may cause
collisions where more than one value is mapped to the same key. To guaran-
tee a low number of collisions universal hashing can be used [12]. However,
collisions are almost inevitable and in this case separate chaining can be used,
where instead of each key mapping to a single value, it maps to a list of values.
An alternative approach may be to perform a second hash on the key in the
hope that this will produce a unique index [12]. If a very poor hash function
is used search complexity can degrade to a worst case of O(n).

2.4.1 Distributed Hash Tables

Distributed Hash Tables allow the distribution of data over an overlay network,
which achieves efficient lookup (O(log n) hops on average) with very little
overhead as each node only needs to retain a small routing table of neighbours.

A number of overlays to achieve this task have been suggested. We sum-
marise three such algorithms (Chord, Content Addressable Networking and
Pastry) in the following sections.

2.4.1.1 Chord

In Chord [82], both nodes and keys hash themselves into an m-bit ID space
using the SHA-1 algorithm which has good distributional properties. The

2.4. Hash Tables 19

hash table is modelled as an identifier circle modulo 2m, ensuring that all keys
are mapped to the space regardless of size. When a node joins the network
it takes over the management of X keys from its direct successor in the space
and reassigns said keys when the node leaves. Key k is mapped to the node
with the smallest ID larger than k. Each node maintains a routing table
containing a maximum of m successors with power-two intervals around the
ID circle. This scheme ensures that each node has significant local information
while still being able to forward a query at least halfway along the remaining
distance to the destination on each hop. The network is self-stabilising with
each node periodically updating it’s routing table.

2.4.1.2 Content Addressable Networking (CAN)

CAN [73] uses a d-dimensional cartesian co-ordinate space with each node
claiming responsibility for a zone within this space. The co-ordinate space
is represented on a d-torus which allows keys to wrap if their value exceeds
the maximum dimensions of the space. Key-value pairs are deterministically
mapped onto a point P using a uniform hash function and are stored at the
node responsible for the region that P falls. Joining the network causes the
joined node to split its region in half and allocate it to the new node. Each
node maintains a neighbour list of those nodes in directly adjacent zones
and greedy routing is used to forward a query progressively closer to the
destination. The use of a d-dimensional cartesian space has the benefit of
allowing the calculation of multiple paths to a destination which may be used
when neighbours fail.

Routing path length can be reduced by increasing the number of dimensions
because this increases the number of possible neighbours, and also improves
fault tolerance. Another suggested extension are “realities”, where the system
maintains R independent co-ordinate spaces with each node holding R zones
and R independent neighbour sets. Availability can be improved by storing
the data on all realities and the number of hops can be reduced because
each node now has r neighbour sets, making the discovery of nodes close
to the destination more likely. It is possible to make the algorithm more
topologically-aware and thus reduce latency by employing landmark routing
techniques to group the regions of nearby nodes together.

2.4.1.3 Pastry

The overlay used by Pastry [76] is similar to that used by the Chord protocol,
with each node being assigned an 128-bit ID using an algorithm which ensures
a uniform distribution of nodes over the space (such as SHA-1). The space is
also conceptually circular as in Chord. Messages are inserted into the node
with the ID closest to the hashed value of the message. There are two main
differences between Pastry and Chord. Firstly, Pastry takes into account the

2.4. Hash Tables 20

geographical proximity of nodes, favouring closer nodes in the construction of
the routing table. This helps to ensure an efficient route to the destination.

The second major difference is that while Chord regards an ID as indivisible,
Pastry separates each ID into “a sequence of digits with base b2”. Routing
tables are divided into levels with level n representing nodes that share the first
n digits of the local node. The routing algorithm operates by first determining
whether the message or query can be delivered in one step; if it can it is
delivered. If it cannot be delivered in one step, the routing table is used to
forward the message to a node whose ID shares a common prefix with the key
by at least one additional digit. On each hop the length of the prefix grows and
the number of matching nodes in the routing table decreases exponentially,
which results in much larger distances being traversed on each additional hop.
This allows the algorithm to deliver messages in O(log n) hops. Thus, Pastry
has very similar lookup and query times to the other discussed DHTs’ but
also has the benefit of taking network locality into account which can lead to
lower overall latency.

2.4.2 Applications

Hash tables are useful in any circumstances where you wish to be able to effi-
ciently map a piece of information you own (the key) against a value that you
need. Hash tables are enormously useful when programming an application
and distributed hash tables have found uses in a wide number of situations,
the most successful of which is probably peer-to-peer file sharing. It is used as
an integral part of the popular BitTorrent [84] protocol for finding peers with
access to a desired file in a decentralised way. BitTorrent is also used in in-
dustry to provide an inexpensive way for users to download software updates;
one example being Blizzard Entertainment2 who use it to distribute updates
to the phenomenally successful World of Warcraft.

However, hash tables, distributed or otherwise have their limitations. Be-
cause they operate over a one-dimensional space it becomes extremely difficult
to use them for any scenario requiring multiple dimensions. Although space-
filling curves [77] can be used to map multiple dimensions to a single dimension
they have been shown to quickly degrade in quality ([14], pg. 144). There-
fore, in scenarios such as these it is advisable to use an alternative spatial data
structure such as the R-Tree or one of its many variants.

2.4.3 Summary

As discussed, hash tables are an appropriate choice when data can be asso-
ciated with a one-dimensional index. They may also be used with indexes of

2http://eu.blizzard.com/en-gb/

2.5. Spatial Indexes 21

more than one dimension but this is often inadvisable as the quality of the
mapping tends to degrade quickly.

Distributed hash tables are often a good choice for providing store and
lookup facilities over the network. For instance, DHTs’ provide time decou-
pling as data is usually stored on a different node than the one that introduced
the data into the network. Thus, the data will continue to be available when
the source node leaves. Also, DHT protocols provide a mechanism to pass the
management of data to other nodes when one node leaves the network. Thus,
the data will continue to be available even after the node originally tasked
with managing the data leaves. DHT’s provide spatial decoupling because
each node is only responsible for retaining the addresses of a small number
of other nodes in the network. Whether DHT’s require synchronisation cou-
pling depends on the implementation. Dabek et al. [26] propose a common
API for use by DHT’s (and other key-based routing protocols) which allow
a node to be decoupled in terms of synchronisation. They provide callback
mechanisms to be invoked on the local application when relevant data arrives
so that processing can continue in the meantime.

As already discussed, DHTs tend to operate poorly when dealing with mul-
tiple dimensions. The indexing of our contextual conditions require multiple
dimensions, with the necessary number of dimensions being equal to the total
number of Contracts supported by the application. Hence, we have chosen not
to use a DHT for indexing and instead use spatial indexes; which we discuss
in detail in the next section.

2.5 Spatial Indexes

Spatial indexes allow you to efficiently index and lookup multi-dimensional
data and are mainly constructed as trees. After a definition of terms this sec-
tion discusses some of the many variants of spatial index and their distributed
counterparts.

2.5.1 Graphs

Graphs ([43], pgs. 288-292) are generally defined as the pair G = (V, E)
where V is a set of vertices and E is a set of edges. Vertices are used to
represent an entity such as a computer or a person. Edges are used to indicate
relationships between vertices and are represented as a line or arc between the
aforementioned vertices. For example, an edge between two computers might
be used to represent a direct network connection between the machines.

Graphs can be directed or undirected. In an undirected graph all edges
represent a symmetric relationship between the vertices. For example, in
the computer network example above it would indicate that both computers
have a connection to one another. In a directed graph the edges have arrows

2.5. Spatial Indexes 22

indicating the direction of the relationship. In our network example this may
indicate that computer A has a connection to computer B but not vice versa.
Edges may be unidirectional or bidirectional. Graphs may also be mixed,
containing both directed and undirected edges, and in this case are usually
represented as G = (V, E, A).

If the edges of a graph are weighted then they are each associated with
a value which indicates some useful characteristic. In our networking exam-
ple, each edge might be associated with a number estimating the latency of
communication between computers. This weighting can then be used to aid
graph traversal; perhaps by routing a message between two computers using
the route with minimum latency. If a graph is unweighted then all edges are
seen as having equivalent value.

A connected graph is a graph where every vertex can reach every other
vertex along one of the edges, either directly or via a path consisting of several
nodes.

2.5.2 Trees

Trees ([43], pgs. 75, 292-293) are the name given to the subset of connected
graphs without cycles. They can be further delineated as free trees or rooted
trees. Free trees have no ordering constraint whereas rooted trees have a
single vertex labelled as it’s “root”. Rooted trees have directed edges leading
away from the root and represent a hierarchy. Convention dictates that when
drawn the root node is situated at the top of the graph with the non-root
nodes below. Trees are often used to store key-value sets, with the key being
used for indexing within the tree and the value being stored (or pointed to)
from the corresponding node.

We now define the terminology commonly used with trees. A node (P)
with a directed edge to one or more other nodes below it (collectively known
as C) is known as the parent of C and C are known as the children of P. A
node with zero children is known as a leaf, whereas a node with one or more
children refers to an intermediate node. A balanced tree is a tree where all
leaf nodes appear on the same level.

In some cases the tree is inverted so that directed edges lead towards the
root and the root node is drawn at the bottom of the graph with the non-root
nodes above.

See Figure 2.2 for an example of a connected graph and tree.

2.5.3 Spatial Indexes

This section first offers an overview of the precursor to spatial indexing tech-
niques: B-Trees. We then go on to discuss several spatial indexing techniques
and their variants. Specifically, we discuss R-Trees, TV-Trees and X-Trees.

2.5. Spatial Indexes 23

(a) (b)

Figure 2.2: (a) A Directed Connected Graph (b) A Tree

2.5.3.1 B-Trees

The predecessor of spatial indexing trees is the B-Tree [22]. A B-Tree is a
balanced tree where every node (except the root) has between M/2 and M
children and the root node has between two and and M children if it is not a
leaf. B-Trees are used to store any values that a total ordering can be defined
for (e.g. numbers and strings). Each node holds a key which indicates its
position within the tree relative to the keys of all other nodes.

The B-Tree is often used to provide indexing in DBMS software for several
reasons:

1. The storing of many children (keys) per node allows them to be stored
conveniently in blocks of memory so that fewer disk reads are necessary.

2. They allow efficient filtering operations to be performed such as “Give
me all stored values > 25 and ≤ 50”.

3. The use of partially full nodes makes insertion and deletion more ef-
ficient by reducing the amount of memory allocation and movement
that needs to be performed.

For a node with k keys, it will have a maximum of k+1 child pointers which
are used as separators for it’s children. For instance, if a node contains the
keys 7 and 16, it will contain three child pointers, with one pointing to a node
containing keys less than 7, one pointing to a node greater than 7 but less
than 16 and the final pointer referencing a node greater than 16.

If a key is inserted into a node which is already full it causes overflow,
which results in the node splitting into two and the key with the middle value
being chosen to become the new parent of these two split nodes. This new
parent is then inserted into the parent node of the split nodes. If insertion
into the parent node itself causes overflow then this process continues until

2.5. Spatial Indexes 24

either overflow stops occurring or the root node is reached. If the root node
overflows it is split and a new root is created.

There are several variants of B-Tree, including the B+ Tree which only
stores data at the leaf level. This offers the advantage of being able to store
more keys per block (which reduces the number of disk reads) and, because
all keys are represented at the leaf level blocks can be linked together, which
makes sequential reads of the data extremely easy and efficient.

2.5.3.2 R-Trees

B-Trees and their variants are designed to represent and perform queries on
one-dimensional data. R-Trees [46], on the other hand were designed to rep-
resent the geometric data (e.g. points, lines, surfaces and volumes) of any
N-dimensional space, and to perform queries on this data. The geometric
data is represented within the tree using it’s Minimum Bounding Box (MBR)
which refers to the smallest N-dimensional rectangle which can completely
enclose the geometry. This greatly simplifies the search algorithm. As with
B+ trees, R-Trees store all of their data objects in the leaf nodes only, with
intermediate nodes being responsible for storing MBRs and pointers to child
nodes.

Node overflow is handled similarly to the way it is handled by B-Trees,
except that the split procedure is more complicated as it aims to create two
nodes which minimise the total MBR area rather than split based on position.
Another difference is that the split must be registered on all parent nodes up
to and including the root to ensure that their MBRs are of the correct size.

A number of topological relationships have been defined between the query
and data object MBRs which allow different types of queries to be performed
on the tree [58]. These include:

• Disjointness - The two MBRs do not meet.
• Meets - The two MBRs meet at one edge.
• Covers - The two MBRs are fully intersected and meet at one edge.
• Overlaps - The two MBRs are partially intersected.
• Contains - The two MBRs are fully intersected.
• Equals - The two MBRs are fully intersected with all edges of MBR A

meeting the respective edges of MBR B.

Queries begin at the root node and descend down the tree, entering any
nodes whose MBR satisfies the topological relationship specified. Traversal
continues until the leaf level is reached. At this point, if any objects are
still under consideration the query is performed on the actual geometry to
determine whether it actually matches the object or only matches its MBR.

A variety of query types are available, many of which are summarised below:

Window Queries Obtain all objects which are stored within a rectangular
range.

2.5. Spatial Indexes 25

Nearest Neighbour Queries Obtain the k nearest objects from a given
point. Incremental Nearest Neighbour returns the data objects in the
order that they are found.

Spatial Join Queries Obtain the objects which satisfy a spatial predicate
formed of two or more topological relations combined using conjunctions
and disjunctions.

As with B-Trees, an R* variant of the R-Tree algorithm was created which
offers much improved performance. The R* tree split functionality is based
on the observation that the gradual insertion of keys over time likely leads
to a sub-optimal tree, with bulk loading (the insertion of all keys “at once”)
producing more efficient results. Although it is obviously not always possible
to insert all keys into the tree at once, the R* tree derives some of its benefits
by re-inserting a fraction of the keys whenever a split occurs. This helps to
achieve a better structure than could be achieved by splitting alone. The
algorithm also places some emphasis on the elimination of overlapping keys
as a large amount of overlap results in many branches of the tree having to
be explored which are in all likelihood fruitless.

2.5.3.3 Hilbert R-Trees

The Hilbert curve is a space-filling curve [54] which makes it possible to con-
struct a mapping from 2-dimensional data to a 1-dimensional representation
which preserves data locality.

The Hilbert R-Tree [54] represents geometric objects using the Hilbert value
of their centroid. In addition to the MBR, each internal node also stores
the maximum Hilbert value of the subtree. When inserting a new rectangle
its centroid is calculated and compared against the Hilbert values of each
potential subtree at each node. The subtree with the smallest Hilbert value
larger than the new value is chosen.

One advantage of the Hilbert R-Tree is that the inclusion of the Hilbert
value at each node ensures that there exists an order to nodes which allows
siblings to be used as storage when overflow occurs. Thus, splits are only nec-
essary if all siblings are also full which can help maximise storage utilisation.

Hilbert values can be extended to N-dimensional data but it has been shown
that performance degenerates when using a large number of dimensions ([14],
pg. 144). This degeneration or “dimensionality curse” [58] is unfortunately
found in most spatial trees and is a consequence of excessive MBR overlaps.

Trees which are designed to combat this degeneration are discussed in the
section 2.5.3.5.

2.5. Spatial Indexes 26

2.5.3.4 Distributed R-Trees

Bianchi [11] proposed a Distributed R-Tree (DR-Tree) intended for use in
publish-subscribe applications. They evaluated their algorithm as applied
to R*-Trees and Hilbert R-Trees. Subscribers insert a poly-space rectangle
representing their subscription into the tree and publishers do the same for
any content they wish to distribute. Published content traverses the tree
until it is delivered to all subscribers. Subscription and publication times are
logarithmic in the size of the network and each node has a polylogarithmic
memory requirement. The tree is fully distributed and self-organising.

The connections between physical nodes (p-nodes) are dictated by the se-
mantic relationships between subscriptions. That is, p-nodes are connected
based on their location within the tree, with each node holding the addresses
of between m and M child nodes and one parent node. The child nodes are
responsible for more specific regions of the tree whereas the parent will be
responsible for a broader region.

To ensure balance, each node may be responsible for a virtual node (v-
node) at several contiguous levels of the tree from the leaf upwards. The
number of v-nodes a given p-node is responsible for depends on the number
and structure of the subscriptions entered as a new v-node must be created
whenever a node split occurs to represent the newly created node responsible
for the split nodes. Each p-node has to maintain parent and child sets for
each of their v-nodes.

The R-Tree structure guarantees no false negatives (i.e. all subscribers will
receive any relevant publications) and a small number of false positives. To
ensure a low number of false positives two containment properties should be
maintained between nodes (with ⊑ representing containment):

• If A ⊑ B then A cannot be an ancestor of node B.
• Either

1. If A ⊑ B then B is an ancestor or sibling of A.
2. If A ⊑ B, A ⊑ C, B 6⊑ C, C 6⊑ B then A may be a descendent of

either B or C (when a node has two containers).

A node joins the network using an oracle which is assumed to produce a
node in the network. To ensure good insertion in the tree the join request is
propagated recursively up to the root node where insertion begins.

Each node must maintain a filter representing their subscription and a child
set, parent set and MBR for each level of the tree that it is present within.
Note that the MBR represents the minimum bounding rectangle of the MBRs’
of all children at level L, and these sets must be maintained as the tree evolves.

Dynamic reorganisation and self-stabilisation is achieved by periodically
running algorithms to check tree structure and to make repairs if the structure
is in an invalid state as a result of transient faults such as dropped messages or
node failure. The system periodically checks for the correctness of MBRs, node
covers, child/parent sets and the child size invariants (i.e. that the number

2.5. Spatial Indexes 27

of children range between m, and M). Issues are dealt with by correcting any
broken invariants and then propagating the changes up the tree if possible, or
via reinsertions and splits if necessary.

Message dissemination can be made more reliable by buffering messages
in nodes and asking for retransmissions when the network is stable. The
degree to which this is possible depends on the amount of available memory,
and the length of time that it is desirable to buffer the data depends on the
data stored. For example, if dealing with the dissemination of stock quotes,
messages should only be buffered for a short period (if at all) due to their
transient nature.

Valero et al. [87] note that the DR-Tree relies on the reinsertion of nodes
when a subtree is disconnected. This can result in high message traffic and
long stabilisation times. They proposed a modified DR-Tree which replicates
each non-leaf node on any node in the network which holds one of its children.
When it is detected that node P has failed, every p-node holding the leftmost
replica of each v-node held by P restores the v-node. This results in a change to
the p-node interaction graph but does not alter the tree structure. It also has
the desirable property that restoration only concerns those peers containing a
replica of P.

Bianchi’s DR-Tree provides spatial decoupling because each node is only
required to know of a small number of other nodes in the network but is
still able to subscribe to and receive publications from any node. Temporal
decoupling is supported provided publications are buffered at nodes within
the tree for later transmission to new and recovering subscribers. Finally,
synchronisation decoupling is provided as each node will be notified when
new publications arrive that match their subscription request.

2.5.3.5 Supporting Multiple Dimensions

The TV-tree [56] is designed to support high dimensional data by only taking
into account the dimensions at each node which are not shared by all keys,
thus eliminating from consideration those dimensions which cannot make a
difference to filtering.

The X-Tree [10] is another alternative which acknowledges that in high
dimensions a high amount of overlap is likely to occur. This will be very
inefficient as it means that a large proportion of the branches will have to
be traversed. The X-Tree makes use of hierarchical storage (identical to the
R-Tree) for keys with little overlap but uses sequential storage in cases where
the overlap is high. Sequential storage in these cases is more efficient as it
allows those keys which will need to be read anyway to be stored sequentially
in memory rather than randomly. This approach is only used if attempts to
reduce overlap are unsuccessful.

The X-Tree shows itself to work extremely well for dimensions over two,
with speed increases of up to 450 as compared to the R*-Tree and between 4

2.6. Summary 28

and 12 times for the TV-Tree. It also exhibits insertion time improvements of
8 and 30 times for the R* tree and TV-Tree respectively.

Our middleware stores each Contract supported by an application as a
single dimension, so a spatial index is an appropriate data structure to use for
indexing messages. Nodes are also able to lookup and bind to their n most
geographically proximate neighbours. Again, a spatial index is appropriate as
it allows us to store the locations of nodes and offers nearest neighbour query
functionality.

In addition, a distributed R-Tree algorithm is available for use, and a repli-
cation scheme has been proposed and evaluated which allows us to ensure the
fault tolerance of the index.

2.6 Summary

In the preceding chapter we have provided an overview of various distributed
protocols using the notions of spatial, temporal and synchronisation coupling
to illustrate how they each exhibit different properties and capabilities; and
that care should be taken when building any distributed application to ensure
that the chosen protocol lends itself well to the types of data and communi-
cation patterns used.

For our middleware we have chosen to use the tuple space paradigm for
its temporal decoupling and straightforward communication interface, and a
distributed spatial index for message and node lookup because of its support
for multiple dimensions and its nearest neighbour query functionality.

Now that we have discussed the applicable protocols for our middleware we
move onto a discussion of context-awareness. Specifically, we define context,
discuss a number of ways of representing it and evaluate several context-aware
frameworks from the literature. We evaluate these frameworks in terms of four
criteria used during the design of our middleware.

3 Context-Aware Middleware

3.1 Introduction

The generally accepted definition of context is stated by Dey and Abowd [2]
as “any information that can be used to characterise the situation of an entity,
where an entity can be a person, place or physical or computational object”.
More specifically, they defined a place as a geographical space (e.g. room,
office, buildings, streets) and further divided people into individuals or groups
(which may be co-located or distributed). They further stipulated that these
entities can themselves be defined along a number of properties [28] which we
shall now briefly discuss:

Identity The ability to assign unique ID’s to every possible entity in the
application area.

Location In addition to the (X, Y) co-ordinates of the entity, this also refers
to orientation, elevation and spatial relationships between entities such
as co-location, proximity and containment.

Status Refers to characteristics of an entity that can be sensed. These vary
depending on entity type; with examples including temperature and
light level for place, mood and activity for people (taken either for indi-
viduals or groups) and CPU load or application state for physical and
computational objects.

Time Although potentially useful on it’s own, time is often used in conjunc-
tion with other types of context to form a history by associating it with
timestamps or ranges. This allows the system to derive the relative order
of events or causality.

Context awareness refers to the situation where software or devices are
aware of their situation and can adapt appropriately without user intervention
[19].

29

3.2. Context-Aware Frameworks 30

Middleware in the context of this research refers to ”software that mediates
between an application program and a network. It manages the interaction be-
tween disparate applications across the heterogeneous computing platforms“
[1]. A common example is the Object Request Broker (ORB) which is part
of the CORBA specification1 and allows applications to invoke methods on
remote machines. These invocations can be made programming language ag-
nostic (e.g. you may call a C++ method from a Java application) through
the use of the CORBA Interface Definition Language (IDL).

One of the first examples of a context-aware system was the Active Badge
Location System by Want et al. [89]. They designed a system to track the
location of individuals within a building using wearable badges equipped with
an infra-red emitter which sends a signal to a network of sensors placed around
the building once every 15 seconds. These signals were aggregated at a master
computer and made available to clients to display visually. The badges also
contained a light sensor which turned it off when in the dark.

Another pioneering study was that of the GUIDE context-aware electronic
tourist guide conducted by Cheverst et al. at Lancaster University [20]. They
observed that group-based tours of a location are “inherently inflexible” be-
cause of the need to target the majority at the expense of individual inter-
ests. To solve this issue they developed a computer-based tour guide with
an awareness of both location and user interests. This allowed them to de-
liver information related to nearby landmarks and to tailor this information
based on registered interests. Tours could be created by users listing all the
attractions they wished to visit, which were then intelligently scheduled by
the system. Tour scheduling could be updated dynamically based on new
information (e.g. users staying in one location longer than expected). Lo-
cation was determined by receiving broadcasts from base stations placed at
important locations throughout the city. These base stations contained state
pertaining to the location they represented (e.g. opening times) which could
be delivered to the user and used in scheduling.

3.2 Context-Aware Frameworks

In order for a device or application to reason over its context it will need to
observe its environment and internal state. It will then need to reason over
this context to decide on an appropriate action. The external environment
can be observed through the use of sensors and a variety of technologies can
be used to reason over the sensor data to make a decision. Internal state can
be specified by the user or derived through data-mining.

Although all context-aware applications are different, it is possible to derive
a set of common behaviours and requirements of all systems. To stop devel-
opers from having to keep “reinventing the wheel” a number of middleware

1http://www.corba.org/

3.3. Categories of Context-Awareness 31

solutions have been proposed which perform these common tasks and offer
outputs to the developer via well defined APIs.

Over the last decade a significant number of frameworks have appeared
which abstract the sensor reading and evaluation processes to the use of small
APIs and context models [83] (e.g. ontologies, key-value, graphical). These
systems have gradually increased in sophistication; from providing only sim-
ple abstraction and inference mechanisms (such as being able to signal when
an individual leaves a room) [78] to systems providing more powerful infer-
ence mechanisms [18, 55] through specialised languages (such as OWL2) and
conditional structures (e.g. ∧, ∨, ∃) [45].

Many of the systems discussed have been designed to be either centralised
or localised (requiring direct communication with a server tasked with aggre-
gating and processing the data). For small-scale or localised networks these
systems may be sufficient. However, they are largely inadequate for the con-
struction of large scale networks. Many researchers have noted this and have
taken it into account in their designs. These wide-area frameworks also range
in sophistication. Some frameworks simply provide the sharing of sensor data
between devices via short-range communication (e.g. BlueTooth) [50], whilst
others combine local and infrastructure communication to support more pow-
erful applications [79]. Both localised and wide-area systems are considered
in sections 3.9.1 and 3.9.2 respectively.

3.3 Categories of Context-Awareness

Chalmers et al. [16] suggest that the uses of contextual information fall into
six main categories:

Context Display Displaying the context information to the user. Common
examples on smart phones include location and weather information.

Contextual Augmentation Annotates data with the context of their cre-
ation. For example, diary applications sometimes allow the user to an-
notate a diary entry with location and weather information.

Context-aware configuration For example, a device may decide where to
print a document based on it’s proximity to a set of printers [16].

Context-triggered actions For example, a device may notify it’s user if
rain is forecast for the following day.

Contextual mediation Using context to best meet the needs and limita-
tions of the user and their device by modifying a service or the data
they receive. For example, a service may dynamically change the qual-
ity of graphics being transmitted to the device depending on bandwidth.

2http://www.w3.org/TR/owl-features/

3.4. Aspects of Context 32

Context-aware presentation Adapts the presentation of data according to
user or device context. For example, many applications alter their user
interface depending on whether they are running on a smart phone or
larger tablet.

They apply these last three categories to improve the visual information
displayed on an in-car satellite navigation system [15]. For instance, context
triggered actions are used to load map data based on the user’s predicted
next location and context-aware mediation and presentation are applied to
the map which shows more or less detail depending on the speed that the car
is travelling.

3.4 Aspects of Context

Context comes in many forms, each of which needs to be handled differently
by a system. Haghighi et al. [48] distinguish between dynamic context (which
changes continuously like location) and static context (e.g. username).

Environmental context, usually derived through the use of sensors and per-
sonal information, is either specified explicitly by the user or derived implic-
itly; for example by data-mining a user’s E-Mail inbox. Gellersen et al. [40]
propose the additional distinction of direct and indirect awareness. Direct
awareness refers to context obtained on the device itself (e.g. location infor-
mation via a local GPS sensor) whereas indirect awareness refers to context
obtained through the use of some external sensor or service (e.g. location
through the use of RFID beacons).

Context can also be percieved at different levels of abstraction as noted in
[50], who distinguish between physical and logical context. Physical context
represents the raw sensor data whereas logical context refers to more abstract
higher-level information. The example given is that of location; with GPS
co-ordinates representing the physical context and street names representing
logical context.

Ever higher levels of abstraction can be achieved by combining the data of
several sensors or logical contexts to form composites. For instance, Fahy and
Clarke [34] point out that in order to derive weather predictions, many types
of sensor data are necessary including temperature, light-level, rain, wind,
humidity and barometric pressure.

The efficacy of context information is often improved greatly when you
observe a sequence of readings instead of just each reading as it occurs (i.e.
historical context information). Through the use of this history (often taken
from several sensors) it is possible to derive highly abstract contexts such as
“running” or “sitting down” [64].

Many specific examples of context are enumerated in the literature [17].
These include:

3.5. Representing Context 33

Networking Context network connectivity, communication costs, bandwidth,
nearby resources (e.g. printers, displays, other devices)

Device Context screen size/resolution, supported codecs [64], available sen-
sors

User Context profile, location, nearby people and objects, social situation,
focus of attention, orientation [5]

Physical Context Lighting, noise levels, traffic conditions, temperature

Time time of day, week, month, year or season

3.5 Representing Context

Context information at it’s most basic level corresponds to the triple: (entity,
contextType, sensorValue) where entity refers to the person, place or thing the
context value represents. However, this representation is often inconvenient
for defining context conditions so abstract representations are used. Probably
the simplest abstraction is that of the numeric range; where it is specified that
an aspect of context should fall between two values (e.g. 25 - 50).

A significantly more powerful representation is that of the ontology. On-
tologies can be simply used to map value ranges to descriptive labels known
as concepts (e.g. 0-6 representing cold) or they can be used to specify com-
plex relationships between entities with additional semantics (e.g. reflexivity
or transitivity). Hierarchical ontologies are used [16] to model generalisations
and specialisations of concepts, giving it many of the advantages inherent in
object-orientation.

It should be noted that sensors are often noisy and error-prone so the quality
of the context produced is uncertain [16]. Chalmers et al. [16] suggest that this
issue can be alleviated by mapping a context value to a range of possible values,
with the size of the range depending on an application defined confidence value
(between 0 and 1). The confidence value represents how certain the context-
aware system is that the correct value for a given context is within the specified
range. Therefore, larger confidence values tend to correspond to larger ranges
and vice versa. They define a mapping strategy for numeric and hierarchical
ontologies and propose a number of relationships that can be defined over
uncertain context allowing the system to make more informed decisions.

3.6 Context Models

We argue that the choice of context model is a very important consideration
when designing a framework as the choice of model dictates the types of

3.6. Context Models 34

relationships which may be expressed and the forms of reasoning which may
be used. We shall now briefly discuss many of the various context models and
attempt to illustrate their properties [83].

While early models (such as [78]) used simple representations such as key-
value, these have now been largely abandoned in favour of more expressive
forms (such as ontologies, object-orientation and logic models) which support
complex relationships between entities and reasoning capabilities. [48] argue
that SQL and ontology based models are the best suited for representing and
reasoning over all aspects of context.

3.6.1 Key-Value Pairs

Although easy to parse due to their simplicity, this model lacks any expressiv-
ity, usually only being capable of performing exact match reasoning. This
makes it impossible to express non-trivial relationships between data and
hence is only useful for the simplest of context queries.

3.6.2 Markup-Based

These models are all based on the SGML markup standard3, and more specif-
ically are usually expressed in XML4. XML makes use of pairs of tags describ-
ing the data they surround. This simple definition makes it approximately as
flexible and expressive as simple key-value pairs. However, their power comes
from their support of tag hierarchies and properties which allow for more so-
phisticated modelling. For instance, the CC/PP5 and UAProf6 vocabularies
allow you to describe device capabilities and user preferences in order to cus-
tomise incoming data from servers or other devices. The CSCP model takes
advantage of tag hierarchies to support context-sensitive naming so that tags
and property names do not need to be unique across the entire profile [83].

Markup-based models are also capable of expressing extremely complex
contexts and any relationships between them; as exemplified by the XML
representations of ontology languages such as RDF7 and OWL8 (discussed
later).

3.6.3 Graphical

Graphical models such as UML and ORM diagrams allow for relationships and
dependencies to be expressed. Henricksen et al. [49] proposed an extended

3http://www.w3.org/MarkUp/SGML/
4http://www.w3.org/XMLowl/
5http://www.w3.org/Mobile/CCPP
6http://www.wapforum.org
7http://www.w3.org/RDF/
8http://www.w3.org/standards/techs/owl

3.6. Context Models 35

ORM model supporting both static and dynamic data, with dynamic data
being further categorised as profiled, sensed, derived, or temporal. The model
allows you to make inferences given facts (e.g. given that person A and B are
located in room C, it can be derived that person A and B are in the same
room) and to express dependencies between facts (if fact A changes, fact B
must change also).

Graphical languages intended as an alternative to SQL have also been pro-
posed [48] such as QBE (Query-By-Example) that generates queries based
on example tables constructed by the user. Other systems such as Chiro-
mancer [67] extend the QBE paradigm by allowing users to construct queries
on handheld devices using familiar concepts from the desktop user interface
paradigm.

The Bigraph model discussed briefly in Section 3.7.1.2 has a well developed
graphical representation to accompany its formal calculus-based approach [63].

Graphical models have the advantage that they are more human-readable
than other approaches and can potentially be used by those who are less tech-
nically experienced. Although graphical representations can be constructed
for non-graphical models it is unlikely that they would be as easy to compre-
hend because graphical display was not a central consideration during design.

3.6.4 Object-Orientation

The main benefits of using an object-oriented modelling approach are the
possibilities for encapsulation and reuse. Regardless of the dominant model
used, practically all systems make use of these principles in some form. For
example, the complexity of sensor handling (fusion, normalisation, noise elim-
ination etc) may be encapsulated within an object, with all communication
being performed via a small interface.

Object-Oriented models can be represented graphically using UML and a
number of other representations.

3.6.5 Logic-Based

This approach models context in terms of facts, rules and expressions. The
main benefits of this model are the formality of the representation and the
powerful inference capabilities present within the logic interpreter. It also
has the benefit of allowing additions to the model to be made rapidly simply
by adding additional rules and allows the additional or removal of context
information through the additional or removal of facts from the model. Gaia
uses a logic-based model for their context infrastructure [71].

3.6. Context Models 36

3.6.6 SQL-Based

SQL (Structured Query Language) is a declarative programming language
used primarily for querying relational databases. This model has been applied
to the querying of context by a number of systems, either by using it as
inspiration in the design of a context-aware variant of the language (as with
Coalition [19], discussed later) or by providing a mapping from a context-aware
language to an SQL database [62].

3.6.7 Ontologies

Ontologies are used to model a domain in terms of classes and subclasses of
objects, properties held by said classes and the relationships that exist between
classes. Their major strengths include their inference mechanisms and the fact
that ontologies may be shared freely and incorporated into other ontologies
with ease. An example scenario could be of a system which requires a certain
type of context unavailable for some reason (such as the failure of the node
holding it) An ontology reasoner could infer whether any equivalent contexts
are available and use one of them instead.

There have been a number of ontology languages proposed over the years
[53], used primarily in the fields of artificial intelligence and the semantic web.
One of the most developed and flexible of these is OWL, which has its roots in
description logics and the earlier languages RDF, RDFS9 and DAML + OIL10.
OWL is semantically equivalent to well-known description logics which allows
inferences to be made on the data through the application of a reasoner.

However, the act of performing inferences over an ontology is expensive
both in terms of system resources and time. For this reason (amongst others)
OWL was specified as three separate but linked languages [53]:

OWL DL Decidable inference and equivalent to the description logic SHOIN.
It has a worst-case nondeterministic exponential time (NEXPTIME)
complexity with no “practical” complete algorithm for inference.

OWL Lite More tractable inference than OWL DL with a worst-case de-
terministic exponential time complexity (EXPTIME) and practical op-
timised algorithms for inference. However, it has limited cardinality
support and lacks the union, intersection and complement boolean com-
binations

OWL Full Undecidable but more expressive than OWL Lite and OWL DL,
supporting all the features of RDFS.

9http://www.w3.org/TR/rdf-schema/
10http://www.daml.org/

3.7. Location Models and Services 37

3.7 Location Models and Services

We now discuss location. This is arguably the most important type of con-
text so we devote the following two sections to a discussion of location models
and services. Location models provide a means of representing the location of
entities and any relationships which exists between them. Location services
are distributed applications which allow entities to share location information
about themselves and others. The ability to determine the location of users
and computer systems is extremely important to context-aware applications,
and in particular to pocket-switch networks and any network which uses lo-
cation explicitly as part of the routing process.

3.7.1 Location Models

Location models in their simplest form provide us with a means of representing
physical locations as values we can use within applications. Location models
vary in levels of detail and scope and may be global (representing location
across the world) or local (e.g. representing location within a building or set
of buildings).

Locations are represented using a co-ordinate system which may be defined
as a set X of coordinates, where a coordinate is “an identifier which specifies
the position of an object with respect to a given coordinate system.” [9].
Probably the most ubiquitous coordinate system in used today is WGS84
which is used by GPS [9].

Becker and Dürr [9] argue that in general a location model should provide:

• Position,
• A distance function for performing distance-based calculations such as

nearest neighbour,
• A notion of connectedness to allow navigation (e.g. connections to in-

dicate a door connecting two rooms) and,
• Containment relationships to allow range queries (e.g. locating all rooms

within a building).

They may also support orientation (e.g. so that a system can establish
where a user is looking).

Locations models can be divided into two broad categories: geometric and
symbolic.

3.7.1.1 Geometric Models

Geometric models (such as GPS) use geometric coordinates. These can be
used to refer to “a point or geometric figure in a multi-dimensional space”
[9] (usually a plane or three-dimensional space). Because of their basis in
geometry, these models allow the definition of a distance function and other

3.7. Location Models and Services 38

topological relationships such as overlap and containment. They do not how-
ever support all topological relationships (such as connectedness). These need
to be defined explicitly within the model.

3.7.1.2 Symbolic Models

Symbolic models are represented using abstract symbols such as street names
or sensor IDs. These symbols can be structured in a number of ways - each
of which providing different capabilities. Four such structures are set-based,
hierarchical, graph-based and Bigraph-based. Each of these will now be dis-
cussed:

Set-Based Represented as a set L which contains all of the symbolic coor-
dinates of the model. Locations can be represented as subsets of L.
For example, if L contains all of the room numbers in a building you
can divide the building into floors by constructing subsets containing
all of the rooms of each floor. Overlap between two locations L1 and
L2 can be established when their intersection is non-empty (L1 ∩ L2
6= ∅) and L1 is said to be contained within L2 when L1 ∩ L2 = L1.
Connectedness can be represented as sets of directly connected locations
and larger neighbourhoods can be defined by recursively joining smaller
neighbourhoods with non-empty intersections. Set-based models have
no notion of distance.

Hierarchical Models Represented as a set of locations L ordered according
to their spatial containment relationships. L1 is an ancestor of L2 (L1
> L2) if L2 is spatially contained by L1. This set can be represented
as a tree, or if overlap is an issue, a lattice can be used with location
intersections being modelled by separate locations with more than one
parent. The hierarchy is used to support range queries where descen-
dants of a location L are within the range of L. Connectedness cannot
be represented using a hierarchical model.

Graph-Based Represented as a graph with edges between vertices represent-
ing a direct connection between two locations. Edges can be weighted to
model distance and range queries can be applied by specifying a reference
vertex with a radius to specify the range. This model does not support
the building of larger neighbourhoods through the recursive joining of
smaller neighbourhoods.

Bigraph-Based Although not limited to representing location, Bigraphs can
be used for this purpose, allowing the modelling of containment and
connectedness. It has the additional benefit of allowing the definition
of reaction rules which precisely specify actions that may be performed.
For example, a rule may be defined to represent a user leaving a room
or connecting to a computer [63].

3.7. Location Models and Services 39

3.7.1.3 Hybrid Models

Location models can be combined to incorporate the benefits of each into
a single model. Set-based and graph-based approaches can be combined by
representing locations as sets and using graphs to place connections between
locations. This hybrid model supports range queries, connectedness and dis-
tance calculations and has the added benefit of making it straightforward
to provide a representation at different levels of granularity (e.g. individual
rooms, floors or entire buildings). Graphs and hierarchy based approaches can
also be combined to support containment, overlap, distance calculations and
connectedness.

By combining geometric and symbolic approaches you can achieve greater
accuracy and precision for distance queries. You can also use arbitrary geomet-
ric figures for performing range queries and containment checks. Geometric
information may be provided for every modelled location or only for some.
For example, a coordinate system may be used to represent buildings but not
rooms, with geometric values being approximated for unsupported locations.
In cases where only a partial geometric model is provided either a top-down or
bottom-up approach is often taken. In a top-down approach, the root location
(e.g. the entire world or a building) has exact values along some coordinate
system but the values of descendent locations can only be approximated. The
bottom-up approach is the opposite of this, with exact geometric values for
the most specific locations (such as a room) and only approximate values as
you ascend towards the root.

3.7.2 Location Services

Location services allow you to establish the locations of other nodes in the net-
work. Knowledge of the geographical location of other nodes can be useful for
a number of reasons. For instance, a device could use the information to con-
nect to the closest server when downloading files or could share geographically
sensitive contextual information with a nearby device.

Landmark routing is an example of an early location algorithm which uses
router information to reduce the distance travelled when sending data to
a destination. Landmark routing has been applied in services such as the
topology-aware overlay devised by Xu et al. [93], which also makes use of
round-trip-time to refine location and increase service efficiency.

Mauve and Widmer [61] provide a detailed account of many location ser-
vices and describe them in terms of the responsibilities of nodes in the net-
work. Specifically, they highlight the number of nodes hosting the service (all
or some) and the amount of information stored at each service node (storing
location either for all or some). These properties are summarised as some-
for-some, some-for-all, all-for-some or all-for-all. They also discuss how the
systems vary in terms of communication complexity (the amount of commu-

3.7. Location Models and Services 40

nication between nodes), position accuracy, robustness and implementation
complexity.

The Dream service uses an all-for-all approach where all nodes store the
location information of all others. Each node regularly uses restricted flooding
to update their position at other nodes, with the update being discarded after
travelling a specified distance. This approach ensures that a node maintains
up-to-date information about other nearby nodes but only holds approximate
locations for more distant nodes. It is noted that the frequency of updates
should be proportional with the speed of travel of the node because the faster
the node is travelling, the more pertinent the information. Although the
service is highly robust and easy to implement it has high storage needs and
communication complexity.

Homezone is an all-for-some approach where each node maintains a con-
ceptual disk around itself with radius R and is positioned at a centre point
C. The position of C can be obtained by applying a known hash function to
the node identifier. All nodes within the radius of a node store its location
information. Homezone has low implementation complexity and good com-
munication complexity but the radius of nodes may need to be enlarged in
sparse networks to ensure good operation.

Quorums have been used extensively to provide replication in databases and
distributed systems and have been used successfully in a number of location
services [61]. Quorum based systems are usually some-for-some approaches
and have been shown to be efficient, robust and space conserving, but with
a high implementation complexity. A quorum consists of two subsets of the
network whose intersection is non-empty. One subset is used for receiving
information updates (write operations) from the network and the other is used
for handling information requests (read operations). Quorums communicate
via some non-position based routing scheme. It can be shown that using a
quorum-based approach ensures that an up-to-date version of some node’s
location can always be found.

The Grid Location System (GLS) divides the geographical area into a hi-
erarchy of squares using a quad tree [61], with each level of the tree further
dividing the space into four smaller areas. Each node maintains a table of
the position information for all other nodes within the local first-order square
and location lookups are handled by progressively traversing through the net-
work, and contacting the neighbour node closest to the destination until the
destination is found. GLS is efficient, space sensitive and robust with medium
implementation complexity.

GLS usually performs better than Homezone for mobile nodes while Home-
zone is superior if nodes tend to be close together.

3.8. Criteria for Evaluating Existing Frameworks 41

3.8 Criteria for Evaluating Existing Frameworks

With the overall goal (providing a decentralised context-centric network) in
mind, each of the discussed frameworks are now compared along the four
scales deemed important:

Flexible Evaluation Refers to the extent that the system may be used to
form complex contextual conditions (for example, allowing the use of
logical connectors such as conjunctions, disjunctions and negation) and
the extent to which the systems are capable of reasoning over contextual
information (i.e. how effectively more complex contexts may be derived
from simpler contexts).

Extension Refers to the ease at which models of context may be added to or
modified by developers. The ideal scenario would be to allow alteration
of the ontologies using some high level notation or graphical environment
which does not require modification of any of the sensor reading code.

Heterogeneous Interoperability Refers to the extent that the system re-
stricts the choice of programming language which may be used. For
example, if a system provides its callbacks over Java RMI the developer
would be restricted to using the Java language (without considerable
extra effort). Use of a protocol such as SOAP11 however would be far
less restrictive.

Centralisation Refers to the degree that systems rely on either a centralised
or localised infrastructure for storing and retrieving context information.

Centralised Systems refer to those which use a central server (or collec-
tion of servers) to handle the requests and inputs of all clients. Within
this infrastructure almost all data is stored on the server machines.

Localised Systems are almost identical to centralised systems but with
the difference that access to the system is only available over a reasonably
small geographic area.

Reliance on these infrastructures can be undesirable. Centralised net-
works may be criticised for both monetary and logistical reasons (such
as the cost of purchasing and maintaining server machines) but their
main limitations are their lack of support for internet incapable devices
and scalability issues where as the number of devices in the network
grows the centralised servers become a “bottleneck” which can seriously
reduce system throughput. This problem can be alleviated by purchas-
ing additional machines but this causes further problems such as making
data replication tasks more expensive.

11http://www.w3.org/TR/soap/

3.9. Evaluating Frameworks 42

These criticisms are less applicable when discussing localised networks;
however they instead suffer from their lack of applicability to the wider
world - being of use only within the small area it covers.

3.9 Evaluating Frameworks

As discussed above, context-aware frameworks can be broadly categorised
according to whether they have a localised or decentralised architecture. We
have chosen to structure the evaluation which follows using this categorisation.

3.9.1 Localised Frameworks

The Context Toolkit by Salber et al. [78] takes inspiration from graphical
user interface (GUI) “widget” libraries. These libraries provide all of the
functionality for handling GUI components such as text fields and combo
boxes other than the application specific logic. The context toolkit emulates
this by encapsulating the entirety of the sensor reading code within a sensor
widget containing various “attributes” (such as last sensor value and sensor
location) and callback functions which trigger on important events occurring.
The system has good support for interoperability as communication is handled
via HTTP and an XML language. However, it lacks any native means of
performing flexible evaluation (partially due to the choice of a simple key-
value model which is incapable of expressing relationships between the data)
and makes extension difficult as each ontology is tightly coupled with the
sensor reading code.

The CoBra ontology system [18] and The Context Management Framework
[55] both provide much more sophisticated ontologies, allowing higher levels
of context to be inferred. In addition, they both use XML to represent their
ontologies which makes extension easier and provides good interoperability.

CoBra is defined using OWL and determines the current context through
the use of a knowledge base queried by an inference engine. It allows the
definition of far richer semantic information about entities (e.g. it can be
stated that a location subsumes another) which allows more powerful infer-
ences to be made; and uses standardised XML protocols (such as SOAP) for
communication.

The Context Management Framework (CMF) defines ontologies in terms of
a hierarchy (e.g. Environment:Sound:Intensity) and improves upon previously
discussed models in two main ways. Firstly, it allows the specification of
higher level ontologies by combining the values of two or more lower level
ontologies. An example could be the combination of several sound based
ontologies (Harmonicity, SpectralSpread, Transients etc) to form a higher level
context of SoundType (Car, Elevator, RockMusic etc). Secondly, the model

3.9. Evaluating Frameworks 43

accounts for imperfect or partially ambiguous sensor data by allowing for
ontologies to be modelled using fuzzy sets and uses a Bayes probability model
[41] to make inferences about the context. The framework also provides much
of the desired evaluation flexibility (AND, OR, NOT).

SOCAM [45] provides excellent evaluative capabilities, allowing the use of
logical connectives (e.g. ∧, ∨, ¬), quantifiers (e.g. ∃) and the capabilities
provided by RDF/OWL (e.g. transitivity). Uncertainty is handled through
the use of a Bayes probability network. The use of OWL ensures both extend-
ability and interoperability.

3.9.2 Decentralised Frameworks

One of the first frameworks to support decentralisation was Hydrogen [50],
where devices communicated via short range protocols (such as BlueTooth)
to share sensor readings. This was an important first step, but for all it gains
in decentralisation it unfortunately loses in flexibility and extendability.

More recently researchers have been looking into the feasibility of wide-area
sensor frameworks. To this end, many have studied the combination of server
machines with pocket switch and related ad-hoc networking solutions. One
example of this approach is in the work of Santa and Gómez-Skarmeta [79]
which provided car users with useful information (e.g. traffic reports, tourism
and travel information, pollution problems etc) through the combination of
Vehicular Ad-Hoc Networks (providing vehicle-to-vehicle and limited vehicle-
to-infrastructure communication) and cellular networks (providing vehicle-to-
infrastructure and infrastructure-to-vehicle communication).

Eisenman et al. have gone further, ambitiously proposing that large scale
sensing can best be served through the addition of a new wireless sensor edge
for the current Internet [32]. They emphasise three key principles which should
be followed for success:

Network Symbiosis We should harness existing knowledge and technologies
as much as possible. For instance, use should be made of wireless access
points, existing routing protocols and security methodologies.

Asymmetric Design The authors acknowledge that systems vary in capa-
bility (bandwidth, processing power, battery capacity etc) and suggest
that protocols should leverage this asymmetry to provide a better ser-
vice; for example, by pushing computationally intensive tasks onto more
capable nodes.

Localised Interaction They argue for the communication range of all net-
work nodes to be heavily constrained to be within “spheres of inter-
action” (e.g. radio range) - with the motivation being that this will
facilitate simplified design and communication performance.

3.9. Evaluating Frameworks 44

These three principles were followed throughout the development of their
MetroSense architecture. Of particular note is the use of a three tiered
architecture (Server, Sensor Access Point (SAP) and the Sensor Tier),
with each tier being allocated appropriate capabilities and being built
upon current infrastructure including generic server machines and wire-
less access points (for SAPs’). The (perceived) limitation of localised
interaction is overcome through the process of opportunistic delegation,
which is the process of delegating jobs to nodes as they are encountered
(e.g. to collect sensor data). These nodes may themselves delegate and
so on. In this way, a node can obtain or send data across great distances
while still retaining the benefits of localised interaction.

Coalition [19] is a context processing framework which allocates processing
to other nodes in the network rather than rely on a centralised system. The
system does however use a centralised “Manager” to co-ordinate all activity.

Their rationale was that by distributing the processing they could avoid a
bottleneck at the Manager and achieve better overall throughput.

Coalition performs context-based queries using a Context Query Language
(CQL) which operates on attributes of context domains. For example, the
context domain “Person” may have an attribute “preference”. CQL is struc-
turally very similar to SQL.

Distributed context processing is achieved through the use of a generic
representation of the context query information called a “Query Plan” created
by the Manager. The manager parses the CQL and produces this generic
representation which contains a list of the context information to be retrieved
and methods for performing this retrieval. Each Query Plan also contains the
address of the requesting node so that the processing node can interact with it
without needing to involve the Manager. The other main benefit of the Query
Plan is that it eliminates the need for the processing nodes to understand the
CQL.

The Manager dispatches the Query Plan to the requesting node for pro-
cessing, and also dispatches it to a random node within the group of nodes
that can satisfy at least some of the context information required. This ran-
dom node then uses a peer-to-peer network to dispatch the plan to all other
related nodes. The context information is obtained and reported back to the
requesting node, which then processes the query and returns it’s results to the
application level program.

The authors compared Coalition against it’s original centralised form, find-
ing that this decentralised approach greatly reduced average query time and
increased system throughput.

The design of TOTAM (Tuples On The AMbient) [13] solves an issue within
all previous federation or replication based distributed tuple spaces; that is,
the possibility that incorrect context information is perceived.

3.9. Evaluating Frameworks 45

totam.inject (tuple: [VirtualObject, grenade, location]);

inContext: [tuple: [TeamInfo, ?u, GANGSTER],

tuple: [PlayerInfo, ?u, GANGSTER], ?loc],

inRange(location, ?loc)]

Table 3.1: An example of a TOTAM context rule [13]

In the case of federation based sharing this issue is due to the inaccurate
ranges of sensors. For example, the range of a context provider broadcasting a
location will likely be smaller or larger than the location it represents. Thus,
some nodes may erroneously detect that they are present in a location when
they are not (if the context provider range is larger than the room); and some
nodes may erroneously detect that they are not present in a location when
they in fact are (if the context provider range is smaller than the room).

Using the location example again, the issue with replication based services
is that a node (A) outside the room may come into transmission distance
with a node (B) inside the room. This would result in the location tuple
being incorrectly replicated to A.

The TOTAM middleware uses the Tuple Space paradigm to support context-
aware applications; with context being stored as tuples within a local tuple
space on each node in the network. Each tuple may specify a context rule
which dictates the conditions that must be met by another node before it is
able to perceive the tuple. Context rules are defined as a conjunction of tuples
and methods (defined in the AmbientTalk scripting language) where any tu-
ples included in a rule can use their field values as variables within methods,
allowing for quite sophisticated conditionals. See table 3.1 for an example
taken from a “Cops and Robbers” game called Flikken [13]. The example
shows a tuple being injected into the space with a context rule stipulating
that in order for a device to perceive the tuple (which represents a grenade)
it must have a group id of GANGSTER and be geographically proximate to
the location field specified in the inserted tuple.

The system also supports a leasing model which removes tuples from re-
mote spaces after a defined period and a propagation mechanism which allows
developers to scope the distribution of tuples in the network.

The tuple space supports both public and private tuples. Private tuples
remain solely in the local tuple space whereas public tuples may be perceivable
by remote nodes (if the specified context rule is satisfied). To support the
removal of tuples the originator node injects an anti-tuple into their local
space which is identical (apart from an “anti” marker) to the tuple they wish
to remove. This anti-tuple will then be propagated through the network,
eliminating it’s corresponding tuple whenever it is encountered.

3.10. A Context-Aware Middleware Taxonomy 46

3.10 A Context-Aware Middleware Taxonomy

There are several observations that can be made in light of the above discus-
sion.

Firstly, in order for a system to allow easy modification and extension of
ontologies it is necessary for them to be de-coupled from the application code.
In addition, to allow for flexibility, a modelling technique which supports the
definition of relationships between entities must be used. The OWL language
would seem to be the most suitable tool for achieving these goals, as illustrated
within several of the systems surveyed above.

Finally, systems tend to provide access to their services via a publish/sub-
scribe methodology which has the benefit of conserving bandwidth and power,
as well as conceivably reducing application complexity.

Each of the discussed systems is summarised in Table 3.2.

3.11 Summary

In this chapter we have provided definitions of both context and context-
awareness and have categorised context-aware systems according to the types
of functionality they provide. We then discussed the different aspects of con-
text, both in terms of their categorisation and by providing several concrete
examples. Next we looked into means of representing context information (lo-
cation in particular) and outlined each of the models used by current systems.

We provided several criteria for evaluating existing context-aware frame-
works (flexible evaluation, extension, heterogeneous interoperability and cen-
tralisation) and then evaluated nine such systems accordingly. We finish with
a taxonomy which illustrates that none of the systems surveyed completely
satisfy all of the criteria proposed and that this necessitates the development
of a new system to fulfil these requirements.

3.11. Summary 47

Flexible Eval
Ontology

Extend

Heterogenous

Op
Decentralisation

Context

Toolkit

Widget

Composition

(1*)

Tight coupling

with sensor code

(1*)

HTTP/XML

(3*)

Centralised

aggregation

server (2*)

CoBra

Inference Engine

& richer

semantics (3*)

OWL (4*)

SOAP/FIPA-

ADL/XML

(5*)

Central “context

broker” (2*)

Context

Manage-

ment

Frame-

work

Supports logical

connectives

AND, OR and

NOT (4*)

High level

contexts (3*)
RDF/XML (4*)

Centralised

“context

manager” (2*)

Hydrogen Limited (1*)
Tight coupling

with code (1*)
XML (3*)

Decentralised,

but limited (4*)

SOCAM

Sophisticated

reasoning

support and

logical

connectives (5*)

OWL (5*) OWL (4*)

Partially

decentralised

(3*)

Vehicular

Network-

ing

Inference-based

service

subscription (3*)

OWL (5*) Java RMI (2*)

Partially

decentralised

(vehicle-to-

vehicle), partially

localised (GSM

support) (3*)

MetroSense

N\A - Focuses

exclusively on

decentralised

data

requests/receipt

N\A - Focuses

exclusively on

decentralised

data

requests/receipt

Definition of

common

interfaces/com-

munication

primitives (4*)

Ad-hoc

movement based

delegation

network (5*)

Coalition

SQL-like

Domain-

attribute queries

+ constraints

(4*)

Arbitrary num of

key-value

properties (raw

sensor or high

level) (3*)

SOAP (5*)

Centralised

Management

service,

Decentralised

processing (3*)

TOTAM

Conjunctions,

not disjunctions,

XOR or nested

blocks (3*)

Define new

methods in

AmbientTalk

(4*)

AmbientTalk

(2*)

Decentralised

(5*)

Table 3.2: Summarising the Toolkits with ratings (1* to 5*)

4 Context-Aware Content Dis-
tribution

4.1 Introduction

This Chapter discusses our MediateSpace framework in detail. We begin by
describing our language, the network topology and network protocols. We
then discuss our methodology for evaluating the contextual conditions pro-
vided by our language. Finally, we provide a much expanded discussion of the
pervasive advertising application outlined in Chapter 1.

4.2 The MediateSpace Language

We based our work on the Tuple space paradigm [39], with all system structures
and payload data being stored in tuples. We extended the paradigm with
notions of context and decentralised communication.

4.2.1 The Contextual Language

The contextual language makes use of predicate logic to make it as flexible as
possible. Specifically, it supports universal and existential quantification (∀,
∃), conjunctions, disjunctions and negation.

Conditions may be connected together using two types of command. The
first simply binds commands together using logical connectives. The second
type is much more powerful as it allows you to use quantifiers. In predicate
logic the ∀ quantifier stipulates that all members of a domain satisfy a given
predicate; whereas the ∃ quantifier stipulates that at least one member of a
domain satisfies a given predicate. In our language it is used to stipulate that
all conditions evaluate to true or that at least one of the conditions evaluate
to true respectively. We have extended the ∃ quantifier with two additional
parameters that allow us to stipulate that O conditions are true, where n ≤
O ≤ m (∃ n .. m). Curly braces are used to separate blocks of conditions so
that they may be connected together into increasingly complex statements.

48

4.2. The MediateSpace Language 49

@Location.XY(51.06, 0.127, 0.5);@

{

Std.Compare(Time.getTime(), ”>”, 08:00:00) &&

Std.Compare(Time.getTime(), ”<”, 17:00:00) &&

{

Season.Season(SUMMER) || Season.Season(AUTUMN) ||

Season.Season(SPRING)

} &&

Std.Compare(Distance.MaxWalkDist(), ”>=”, 10) &&

Std.Compare(Attributes.scenicView(), ”==”, true)

}

(a) Example Contextual Conditions using Conjunctions and Disjunctions

@Location.XY(51.06, 0.127, 0.5);@

{

forall

Std.Compare(Time.getTime(), ”>”, 08:00:00),

Std.Compare(Time.getTime(), ”<”, 17:00:00),

Std.Compare(Distance.MaxWalkDist(), ”>=”, 10),

Std.Compare(Attributes.scenicView(), ”==”, true);

} &&

{

exists (1, 1)

Season.Season(SUMMER),

Season.Season(AUTUMN),

Season.Season(SPRING);

}

(b) Example ∀ and ∃ Conditions

Figure 4.1: Representing the same Context using Different Commands

A GPS location may be specified at the head of the condition to ensure that
only Participants within the set area can receive the message. The Location
Contract takes three parameters: latitude, longitude and a radius (in Km)
which surrounds the point specified in the first two parameters.

Figure 4.1 illustrates two ways of representing the same condition. Subfig-
ure 4.1a uses only conjunctions and disjunctions whereas Subfigure 4.1b uses ∀
and ∃ quantifiers. These examples also illustrate the use of blocks and nested
blocks. Subfigure 4.1b uses two blocks connected via a conjunction, illustrat-
ing how blocks can be used to separate multiple uses of quantifier commands.
Subfigure 4.1a uses a nested block to separate the Season Contracts into a
different scope, allowing us to specify the different possible values for Season
in a concise way.

4.2.2 Defining Context

In order to reason about contexts it is necessary to:

4.2. The MediateSpace Language 50

1. Create a model of the context.
2. Map the values from an appropriate sensor onto the model.

The former is achieved by defining a Context Tuple while the latter re-
quires definition of a ConcreteContext Tuple. Contexts and Concrete-
Contexts are analogous to object-oriented interfaces and classes respectively.
Contexts allow the definition of a list of abstract method signatures and an
ontology of possible values. ConcreteContexts implement the methods and
ontology with regard to a particular sensor.

The system supports six data types (Boolean, String, Integer, Double,
Date, Time, Ontology). The Ontology type accepts any value defined as
part of the ontology for the current Context.

Each ConcreteContext must specify a driver which is a small program that
interfaces with the appropriate sensor to return values for each of the Contracts
defined within the implemented Context Tuple.

Figure 4.2 provides examples of these structures using the Distributed Geo-
caching application from Section 1.4.2. The SearchParams ConcreteContext
implements all of the available Contexts so its driver must provide implementa-
tions for all possible Contracts. The driver program for each ConcreteContext
is specified as the value of the “contextDriver” key within the Meta block of
the ConcreteContext.

4.2.3 Exchanging Context Values

There will be circumstances where a participant cannot access the types
of context necessary to receive a message. In these circumstances, partici-
pants can request information from another participant via the exchange of
ContextRequest and ContextValue tuples. However, care must be taken
because contexts may only be applicable under certain conditions. For exam-
ple, a Location context may only be valid if the participant is less than 1/4 Km
away. The maximum distance for a given Context is specified as the value of
the “maxSpatialDistance” key within the Meta block of the Context Tuple.

In some cases context must be derived locally to be valid. Examples in-
clude age, gender, budget and personal interests. These details can be data
mined from Facebook profiles or E-Mail; or alternatively they can be explic-
itly specified by the user. See the “ExplicitPersonalInfo” and “SearchParams”
ConcreteContexts in Figures 4.11 and 1.3 respectively for examples. This lo-
cality property can be enforced on applicable Contexts by setting the “maxS-
patialDistance” key to zero.

Each regional node is aware of its position within geographical space and
the positions of the regional nodes to which it is bound. These properties
make it straightforward to restrict access by distance. Regional nodes may
continue issuing requests iteratively until all further regions lie beyond the
maximum distance from the original requesting node.

4.2. The MediateSpace Language 51

Context Season {

Meta {

((tupleName, ”P3−Season−e47e3a884ce5d6a411d8”),

(maxSpatialDistance, 50.0),

(originatorId, ”P3”), (sourceId, ”P3”));

}

Contracts {

bool Season(ontval ont);

}

Ontology {

SUMMER, WINTER, AUTUMN, SPRING;

}

}

ConcreteContext SearchParams implements Time, Season,

Distance, Attributes {

Meta {

((tupleName, ”P1−SearchParams−0ab1b619d264c83a420a”),

(contextDriver, ”uk.co.dmatthews.mediateSpace.SearchParams”),

(originatorId, ”P1”), (sourceId, ”P1”));

}

}

ConcreteContext DeviceCalendar implements Season {

Meta {

((tupleName, ”P3−DeviceCalendar−090515a65ce7c2b68da9”),

(contextDriver, ”uk.co.dmatthews.mediateSpace.DeviceCalendar”),

(originatorId, ”P3”), (sourceId, ”P3”));

}

}

Figure 4.2: Contexts and ConcreteContexts from the Geocaching Application

4.2.4 Exchanging Messages

Message Tuples contain the information which is distributed across the net-
work. It is composed of a contextual condition, an Advert (used by partic-
ipants to decide whether a message is applicable) and one or more payload
modules which contain the data of the tuple. Figure 4.3 illustrates an exam-
ple Message Tuple from our Geocaching application. In addition to a con-
textual condition the Message specifies several modules of information with
corresponding adverts. The user will receive the Advert block of the Message
before the content. This allows them to specify exactly which blocks of infor-
mation they want to receive. For example, a user may wish to only receive
the Meta and Logs blocks because they are on a cellular network and do not
want to waste bandwidth on the photographs.

Users obtain Messages by issuing MessageRequest Tuples into the net-
work, containing a contextual condition known as the guideline condition.
This is used to filter out any Messages which do not satisfy the condition.

4.3. The MediateSpace Network 52

The remaining messages are candidates for delivery.
The guideline condition is defined as the union between a condition specified

by the user and any context information which has already been evaluated and
is available locally.

The process of querying the system for messages is undertaken in sev-
eral steps and involves the MessageMatch tuple transitioning sequentially
through three states. The MessageMatch tuple acts as a container for var-
ious structures exchanged between the requesting and requestee nodes. For
instance, it is used to contain the adverts for any candidate messages and will
be used to deliver the filtered versions of these Messages when appropriate.

The protocol for Message lookup is explained is much greater detail in
Section 4.3.5.

4.2.5 Network Tuples

There are three types of tuple which are used purely to perform network
communication tasks. The Bind and Unbind Tuples are used when binding
to and unbinding from an external node respectively. The Signal Tuple is
used to represent events. For example, a Signal Tuple is issued to an external
node to inform it that all ConcreteContext Tuples have been dispatched to it.

In addition to containing source and destination information, the Bind
Tuple also contains the geographical location of the binding node and a field
indicating the status of the Bind operation. For example, the status field
may contain a REQUEST, REPLY or REJECT value. Bind requests are
rejected when the requestee is already bound to a defined maximum number
of neighbours.

Table 4.1 provides a summary description of each of the Tuples discussed
in the preceding section.

4.3 The MediateSpace Network

This section discusses the details of the MediateSpace network. Specifically,
we discuss the abstractions used for network communication, the different
types of supported node, the network topology and the protocols used during
communication.

4.3.1 Overview

All nodes have access to two tuple spaces, known as the internal and external
tuple spaces. The exact semantics of each space differ depending on the type
of node but in all cases the tuple spaces provide an abstraction which allow
nodes to communicate with one another. That is, the node places an addressed
tuple into one of their spaces and it will be delivered over the network to the

4.3. The MediateSpace Network 53

MessageTuple {

Meta {

((tupleName, ”cache−b8fa8a79847db01aa328”), (msgUniqueId, 865),

(originatorId, ”P2”), (sourceId, ”P2”), (destinationId, ”P5”));

}

Condition {

@Location.XY(51.06, 0.127, 0.5);@

{

Std.Compare(Time.getTime(), ”>”, 08:00:00) &&

Std.Compare(Time.getTime(), ”<”, 17:00:00) &&

{

Season.Season(SUMMER) || Season.Season(AUTUMN) ||

Season.Season(SPRING)

} &&

Std.Compare(Distance.MaxWalkDist(), ”>=”, 10) &&

Std.Compare(Attributes.scenicView(), ”==”, true)

}

Advert {

(Meta, [”Basic Info”,

”Title, desc, hint, difficulty, terrain, size”]) ,

(Logs, [”Logs”, ”Log info for this cache”]) ,

(Photos, [”Photos”, ”Photos of the cache”]);

}

PayLoadModules {

Meta { ((title, ”University of Sussex”),

(description, ”The cache is on the boundary walk”),

(hint, ”in a tree”),

(difficulty, 2), (terrain, 2), (size, 2)) ;

}

Logs { [((title, ”Found it!”), (date, 20/08/2014),

(body, ”Solved. quick trip to find it . TFTC”)),

((nextLink, ”cache−444b7c605dd7e22fdac6”));]

}

Photos { [((photo1, ”d76357f331433b1eec89c35e82b”),

(nextLink, ”cache−1ea90295d182746de156”));]

}

}

}

}

Figure 4.3: An Example Geocache Message

4.3. The MediateSpace Network 54

Tuple Type Description

Context A model for a type of contextual information. This involves the definition of one or

more Contracts and optionally an ontology

ConcreteContext An implementation of one or more Contexts; providing a driver program which

interfaces with an appropriate sensor and returns results

ContextRequest For requesting contextual information from nearby Participants. Context

information generally only remains valid over have a certain distance so requests

should not be made to nodes that exceed this distance

ContextValue Represents contextual values. ContextValue tuples only remain valid for a finite

period of time

Message Represents the application data. Each Message has a condition which must be

satisfied and a number of payload modules containing the actual data. Adverts can

also be specified to allow the user to choose which of the modules to receive

MessageRequest Used to query the network for Messages. They contain a guideline condition defined

as the union of a condition specified by the user and anylocally available context

information

MessageMatch Used as a container for delivering data between the requesting and requestee nodes.

Its contents may include message adverts and the actual messages themselves

Bind Used to issue Bind messages between two nodes. Bind Tuples carry the location of

the dispatching node and can have one of several states (REQUEST, REPLY,

REJECT)

Unbind Used to issue an Unbind request to a node

Signal Used to indicate the occurance of an event to an external node (e.g. end of data)

Table 4.1: A Summary of all MediateSpace Tuples

4.3. The MediateSpace Network 55

appropriate node. Each Tuple Space also has a number of subspaces which
are used to store different types of tuple.

The MediateSpace language structures are parsed into Tuples with named
fields being used to store the associated data. For example, each tuple will
have a field containing its name with the key TUPLE NAME.

Our system supports two types of node:

• Regional
• Participant

We now discuss each of these in turn.

4.3.2 Regional Nodes

The Regional node is responsible for most of the computationally expensive
operations and network communication. Specifically, they handle the eval-
uation of contextual conditions and the majority of network communication
necessary to lookup Context Values and Messages. It is intended that Re-
gional nodes are run on the more capable machines of the network with fast
processors and significant amounts of RAM.

As discussed previously, each node has an internal and an external tuple
space. Regional nodes use both spaces to communicate with remote nodes
to which they are bound. The internal space is used to communicate with
bound Participant nodes and the external space is used to communicate with
bound Regional nodes. Both tuple spaces support five subspaces, allowing the
Regional node to read and insert tuples of all types during communication
with remote Participant and Regional nodes. These subspaces are illustrated
in Figure 4.4.

4.3.3 Participant Nodes

In general Participant nodes will run on less capable devices such as phones
and tablets. These nodes can request and provide contextual information
and can issue requests for Messages from remote nodes. We anticipate that
Participant nodes can run adequately on devices with lower grade processors
and comparatively small amounts of RAM because they are not responsible for
any complicated or memory intensive operations. The main responsibilities of
Participants are to parse and dispatch tuples over the network and to interface
with onboard sensors to obtain context information for local use or for use by
another geographically proximate Participant.

The internal space of Participant nodes is not available to the network
and it’s contents are loaded from disk at startup. The space is used to store
Context, ConcreteContext and Message tuples. The external space is used to
communicate with the Regional node to which it is bound. The external space
supports all of the subspaces in Figure 4.4. The internal space is only required

4.3. The MediateSpace Network 56

Tuple Space

Caching SubSpace

ContextRequest

Tuples

ContextValue

Tuples

Communication

SubSpace

MessageRequest

Tuples

MessageMatch

Tuples

Conditional

SubSpace

Message

Tuples

Message
Tuple

Message Tuple Modules

Meta Logs Photos

Network SubSpace

Bind/Unbind

Tuples

Signal Tuples

Evaluation

SubSpace

ConcreteContext

Tuples

Context Tuples

Figure 4.4: The Five Supported Subspaces

PN
3B

PN
2B

PN
1B

PN
3A

PN
2A

PN
1A

RN
A

External Tuple Space

External TS

Internal TS

(Local Disk)

UNION

External TS

Internal TS

(Local Disk)

External TS

Internal TS

(Local Disk)

RN
B

External Tuple Space

External TS

Internal TS

(Local Disk)

UNION

External TS

Internal TS

(Local Disk)

External TS

Internal TS

(Local Disk)

Internal Tuple Space

Internal Tuple Space Internal Tuple Space

Figure 4.5: The Tuple Space Network Abstraction

to handle Contexts, ConcreteContexts and Messages so only the Evaluation
and Conditional subspaces are activated.

As discussed, nodes can communicate with one another via the tuple space
abstraction. The Regional internal space can be viewed conceptually as the
union of the external spaces of all bound Participants. The internal and
external spaces of both types of node are illustrated in Figure 4.5.

4.3. The MediateSpace Network 57

4.3.4 Network Topology

The topology of the network has the following basic properties:

1. Participant nodes attempt to bind to the most geographically proxi-
mate Regional node in the network

2. Regional nodes attempt to bind to the n most geographically proximate
Regional nodes in the network

Both types of node periodically rebind to ensure that they always remain
bound to nearby nodes.

4.3.4.1 The Location Spatial Index

Spatial indexes such as the R-Tree are data structures that allow the quick
insertion and lookup of multi-dimensional data and also provide a facility
for locating the N-nearest indexes to a particular point. Nodes are able to
efficiently lookup their closest Regional nodes because each Regional node
registers itself with a distributed spatial index at startup, and periodically
after that if the node is non-static. Regional node locations are stored as
two-dimensional indexes consisting of latitude and longitude.

4.3.4.2 The Message Spatial Index

Messages are also stored in a distributed spatial index, with the number of
dimensions used equal to the number of Contracts in all Context Tuples. Each
Contract corresponds to a single dimension of the index and each Message is
indexed according to it’s contextual condition. Contracts can represent single
points on a dimension or a range of values. For example, the Contract:

Std.Compare(Time.getTime(), "==", 08:00:00)

would be represented as a single point whereas the Contract:
Std.Compare(Time.getTime(), ">", 08:00:00)

would represent the range of values from 8 AM to 11:59:59 PM. See Fig-
ure 4.6 for an example of an R-Tree representing an application with three
Contracts. The point data represent conditions where a single value has been
specified for each Contract, whereas the internal rectangles represent condi-
tions where all Contracts have specified ranges. Conditions can also specify a
combination of point and range data. The mapping of conditions to indexes
is discussed in detail in Chapter 5.

When a Message Request is issued Regional nodes map the guideline con-
dition specified within it to an index. This index is then used to perform
an intersection-based search on the distributed data structure, resulting in a
number of candidate messages that should be explored further.

The location index is available to Regional and Participant nodes as both
are required to lookup nearby nodes to bind to. The Message index is available

4.3. The MediateSpace Network 58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Dim. 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dim. 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dim. 3

Figure 4.6: A Three-Dimensional R-Tree[21]

only to the Regional nodes as they are responsible for all Message lookup and
evaluation.

4.3.5 Network Protocols

We have defined a number of communication protocols that implement the
semantics given above. This section discusses each of the following protocols:

1. Participant and Regional Binding
2. Participant and Regional Unbinding
3. Context Requests
4. Message Requests
5. Message Distribution

4.3.5.1 Bind Protocol

We shall first discuss the bind protocol for Participant nodes and then for
Regional nodes.

In order to request messages and share context information Participant
nodes must first bind to a geographically proximate Regional node. The node
first obtains the address of the geographically closest Regional node and dis-
patches a bind request. The node includes its location within the request so
that the Regional node can make a record of it if binding is successful. Loca-
tion is stored during binding so that the Regional node can determine whether
a Context Request can be validly dispatched to the Participant without ex-

4.3. The MediateSpace Network 59

ceeding the maximum distance specified for the Context. If the Regional node
is not already oversubscribed it will reply to the Participant, accepting the
request.

The Participant will then dispatch copies of all their local ConcreteContext
tuples to the Regional node, which informs the node of the types of Context
the Participant supports so that Context Requests can be dispatched to it
when appropriate. The Participant dispatches a Signal tuple to indicate that
all available ConcreteContexts have been sent and the Regional node acknowl-
edges this with its own Signal. This signifies the end of the initialisation phase
of binding and the Participant is now ready to receive Context Requests.

If the Participant has any Message or Message Request tuples stored locally
they are now shared with the Regional node. Upon receipt of Message tuples
the Regional node will distribute them to the most appropriate Regional node
in the network. The message distribution protocol is explained in Section
4.3.5.5.

If the Regional node rejects a bind request the Participant will attempt
to bind to the next closest node, and so on until binding is successful or a
defined maximum number of attempts are exhausted. A maximum number of
attempts is specified to safeguard against the possibility that the Participant
has many failed attempts and eventually binds to a node a great distance away.
The maximum number of attempts should depend on the types of Context
supported by an application. For example, in our Geocaching application
the maximum valid distances for the Time and Season contexts would likely
be very large as their values tend to only change when country or continent
boundaries are passed. In the Pervasive Advertising application the number
of attempts should probably be much lower as location information should be
as accurate as possible.

The bind protocol for Regional nodes is similar to the Participant protocol.
The only differences are that there is no initialisation phase and each Regional
node attempts to bind to their N closest Regional nodes rather than just the
closest.

Each Regional node maintains separate BOUND and BOUND TO lists,
meaning that binds do not need to be symmetric. That is, node A can be
bound to node B without node B also being bound to node A.

The bind operations are summarised in Figure 4.7.

4.3.5.2 Unbind Protocol

The Unbind protocol is straightforward and simply requires that an unbind
tuple is dispatched to the appropriate node. The receiving node will remove
the requesting node from its bound and location lists.

4.3. The MediateSpace Network 60

(a) The Participant Node Bind Protocol

(b) The Regional Node Bind Protocol

Figure 4.7: The Bind Protocols

4.3. The MediateSpace Network 61

Figure 4.8: The Message Request Protocol

4.3.5.3 Message Request Protocol

The message request protocol is instigated when a Participant dispatches a
MessageRequest tuple to their bound Regional node. When the MessageRequest
tuple is received the contextual condition defined within it is parsed into one
or more spatial indexes. These indexes are used to query the Message tree
which returns a list of reference objects. Each object contains the address of
a Regional node and a list of candidate Ids which can be mapped to messages
within the node. The MessageRequest tuple is then dispatched to all nodes
for which a reference object was found. Each Regional node (including the
local node) will then begin the process of evaluating each candidate message.

Before each candidate message is evaluated the node will determine the
Context Values needed to perform said evaluation. Requests are then dis-
patched for these values (discussed in Section 4.3.5.4). The protocol waits
for a short period before continuing in order to allow any requested Context
Values to arrive. Each message is evaluated using the process in Section 4.3.6.
Any succeeding messages have their Advert section extracted and dispatched
to the Participant node for perusal within a MessageMatch tuple. The Par-
ticipant filters out any modules they do not wish to receive and dispatches
the tuple back to its originating node. Finally, the Regional node collates the
modules requested and dispatches them to the Participant. The protocol is
summarised in Figure 4.8.

4.3.5.4 Context Request Protocol

As discussed in the previous section the Regional node will issue Context
Requests for any required context information. Before issuing requests to

4.3. The MediateSpace Network 62

RN

Originating Node
RN

RN
RN

RN

RN

0.48 km

0.45 km

0.5 km 0.10 km

0.43 km

0.48 0.48 + 0.43 = 0.91

0.45 + 0.5 = 0.95
0.45 + 0.5 + 0.10 = 1.05

0.45

X

PN

PN

X0
.1

2
 k

m
0.48 +

 0.43 +
 0.12 =

 1.03

Figure 4.9: Context Requests and Request Buffering (max dist: 1 km)

external nodes the node will check whether the context is available in the
internal space. Context Value tuples will be available for a given context if a
previous request for them was made and answered and they have not expired.

If the context cannot be located locally the node determines whether any
of their bound Participant nodes would be able to provide it. As context
information tends to remain valid only within a finite geographical distance we
need to ensure that no requests are made to nodes that exceed this distance.
As noted earlier location information is stored locally for each node during
the binding process. The maximum distance is obtained from a field in the
appropriate Context tuple and the distance between the local node and a
prospective Participant node is calculated. The ContextRequest tuple is only
issued if the Participant is within the maximum distance.

If the context information is not available from a Participant, requests are
made to the bound Regional nodes. The same process is followed as above to
ensure that the nodes are within a valid distance.

Whenever a Regional node receives a Context Request from another Re-
gional node it saves the request in memory for a finite period so that if the
requested Context Value is later inserted into the local space it can be returned
to the requesting node. This process is illustrated in Figure 4.9 where the sin-
gle headed solid arrows represent Context Requests and the double headed
dashed arrows represent the return journey of the Context Value tuple.

The protocol is summarised in Figure 4.10.

4.3.5.5 Message Distribution Protocol

We attempt to store Message tuples in a Regional node which is geographically
close to where most requests for the Message originate. When each Message
is received by a Regional node it obtains the location specified at the head
of the contextual condition for the Message. It then calculates the distance
between these coordinates and the N closest Regional nodes (including the
local node). We multiply these distances against the total number of Messages

4.3. The MediateSpace Network 63

Figure 4.10: The Context Request Protocol

stored on each node to support a simple form of load balancing. Thus, our
message distribution protocol attempts to appropriately store Messages based
on location and load.

4.3.6 Evaluating Contextual Conditions

Our middleware allows the sharing of context and messages. In order to
achieve context sharing the Regional nodes need to be able to establish which
of their bound Participants can supply the necessary context values. To sup-
port message exchange the Regional nodes need to be able to evaluate the
contextual conditions specified with each message.

To establish Participant context support each Context and ConcreteCon-
text is translated into the web ontology language (OWL1) in a form that
retains the relationships between them. For example, if ConcreteContextA
implements ContextA a subclass relationship between these structures will be
created in OWL. An OWL reasoner can then be used to construct a list of
ConcreteContexts supporting a given Context.

Contextual conditions are evaluated by translating the conditions into OWL.
We also translate any available ContextValue tuples so that the reasoner has
a complete record of available context during evaluation.

1http://www.w3.org/TR/owl-features/

4.4. Pervasive Advertising 64

The OWL representations for Contexts, ConcreteContexts, ContextValues
and all types of contextual condition are described in Chapter 6.

The following subsection provides a much expanded discussion of the per-
vasive advertising application outlined in Chapter 1.

4.4 Pervasive Advertising

The Pervasive Advertising application discussed in this subsection is based on
our 2012 paper on the same subject [60]. This paper was written in conjunction
with my supervisors Dan Chalmers and Ian Wakeman and was influenced by
Chalmers et al.’s paper on comparing context relationships [16]. However, the
sections reproduced here are the candidates own work.

Existing pervasive advertising frameworks such as MyAds [29] and MobiAd
[47] focus primarily on matching adverts based on explicitly entered infor-
mation (such as user demographics and interests), derived information (e.g.
through the parsing of browser history, Facebook or E-Mail) and location. A
number of commercial mobile services also have this focus. The AdMob2 ser-
vice allows developers to insert adverts into their mobile applications and also
allows mobile-specific enhancements to be made to Google results (e.g. click-
able telephone numbers, maps and distance-from information). iAd3 allows
developers to insert adverts into their iOS applications and includes contexts
such as music and network availability (e.g. WiFi or 3G). We aim to demon-
strate how these types of context can be represented using the MediateSpace
middleware.

Our example of use considers a shopping scenario where stores wish to
advertise their products to appropriate customers. They wish to target indi-
viduals based on their budget, their proximity to the store, their availability
and their shopping interests. Our system allows stores to distribute adverts
with contextual conditions attached; delivering the adverts to only those indi-
viduals whose context matches. Figure 4.11 illustrates a potential design for
this scenario with five Contexts and seven ConcreteContexts.

Customers will obviously want the adverts they receive to be as relevant as
possible. Hence, our advertising platform should rank each matching advert by
relevance before delivery. Our ranking algorithm is based on Google Adwords4.
We will now briefly discuss the Adwords model and then move on to discuss
our Context-Aware Bidding model.

2http://www.admob.com/
3http://advertising.apple.com/uk/
4http://adwords.google.com/

4.4. Pervasive Advertising 65

PN

RNRN

PN PN

RN

PN
PN

PN

Advert

Condition

Advert
Content

has part-of-tree
has part-of-tree

has part-of-tree

has advert

has contexts

Location
<Context>

Contracts:

BOOL location(ONTVAL loc)

ONTVAL getHome()

Ontology:

UK: contains England,

 contains London, ...,

London: contains Camden, ...

GPSLocation
<ConcreteContext>

CalendarLocation
<ConcreteContext>

DerivedInterests
<Context>

Contracts:

LIST getDerived(LIST words)

EMailInterests
<ConcreteContext>

FacebookInterests
<ConcreteContext>

Availability
<Context>

Contracts:

BOOL availability(ONTVAL loc)

Ontology:

AVAILABLE, UNAVAILABLE

CalendarAvailability
<ConcreteContext>

{

 Availability.availability(AVAILABLE) &&

 Location.location(WYCOMBE) &&

 Std.Compare(Budget.getBudget(), ">=", 15) &&

 Std.Compare(Budget.getBudget(), "<=", 30);

}

has condition

Me
<Context>

Contracts:

INT getAge()

DOUBLE getBudget()

Gender
<Context>

Contracts:

BOOL gender(ONTVAL

loc)

Ontology:

MALE, FEMALE

ExplicitPersonalInfo
<ConcreteContext>

FacebookDetails
<ConcreteContext>

Context Description

Location Provides an ontology which represents different regions of the United Kingdom.

location(ONTVAL): Accepts an ontology value as parameter and returns a boolean

indicating whether the user is within the specified location.

getHome(): Returns the ontology value that represents the user’s place of residence.

ConcreteContexts: Using GPS or the users calendar.

Availability availability(ONTVAL): Accepts an ontology value as parameter and returns a

boolean indicating whether the user is currently available.

ConcreteContexts: Via the users calendar.

DerivedInterests getDerived(LIST): Accepts a list of words takenfrom a data source and outputs a

list of derived words.

ConcreteContexts: Data mining the users E-Mail or Facebook account.

Me getAge(): A single Contract for obtaining the age of the user.

getBudget(): Returns a floating-point value representing the budget of the user.

ConcreteContexts: Explicit information input by the user or via Facebook.

Gender gender(ONTVAL): Accepts an ontology value as parameter and returns a boolean

indicating whether the user is of a specified gender.

ConcreteContexts: Explicit information input by the user or via Facebook.

Figure 4.11: A Summary of our Pervasive Advertising Application

4.4. Pervasive Advertising 66

4.4.1 Google Adwords

We focus our discussion on Google AdWords because it holds the vast majority
of market share (81% [70]) and is largely representative of most other major
networks. Google AdWords allows businesses or individuals to advertise their
products within Google search results and on participating websites. The
AdWords user creates campaigns and specifies keywords to be matched, a
daily budget and a maximum cost-per-click for each chosen keyword. The
user is usually charged less per-click than their specified maximum (discussed
later). AdWords supports a myriad of customer targeting options and uses a
sophisticated advert ranking mechanism. We now discuss these.

Advertisement Targeting In order to target likely customers an Ad-
Words user supplies a number of keywords for each advert they wish to dis-
play. Adverts are shown when these keywords match Google search terms or
the theme of a participating website. Additional parameters can be specified
to further improve the likelihood of adverts being seen by interested parties.
For instance, display may be restricted to a particular geographical region
(e.g. city, country or radius around a point), by language, by device type or
even by operating system and network carrier in the case of mobile devices.
When embedding an advert in a website it is also possible to restrict by visitor
demographic (gender and age).

Advertisement Ranking The page number and position (AdRank) an
advert achieves within the results depends on both the maximum cost-per-
click attributed to the keyword and the quality of the advert. Quality scores
are within the range [1, 10] and are based on a number of metrics aimed at
determining how relevant an advert is to a user’s query. These include click-
through-rate (CTR) and the relevance of keywords to the advert text. The
actual cost-per-click (CPC) charged depends on the user’s maximum CPC,
their quality score and the AdRank of their closest competitor. The Formulae
for calculating AdRank are defined below.

AdRank = MaxCPC ×QualityScore

ActualCPC =
NextHighestCompetitorsAdRank

Y ourQualityScore
+ $0.01

4.4.2 Context-Aware Bidding

In our context-aware bidding model advertisers bid for the right to display
their adverts to users within a specified context. The system generates a
quality score for each contextual condition which is then combined with ad-
vertiser bids to calculate the actual cost-per-click paid by the advertiser. This
is based on the AdWords formula specified in section 4.4.1.

4.4. Pervasive Advertising 67

Quality score is based on specificity ; the more specific a condition, the
higher the quality score it will attain. For example, a condition targeting the
whole of the United Kingdom would likely (depending on the specificity of the
other contexts used) receive a lower quality score than a condition targeting
a single city within the UK.

Our system allows context to be specified using three types of representa-
tion:

Value ranges Ranges of values which the user’s context may coincide with.
For example, if an advertiser wished to only advertise to users with a
budget between 50 and 100 pounds (£), they could specify this using
the value range Budget(50 - 100).

Hierarchical ontologies Ontologies represent concepts and the relationships
which exist between them. Hierarchical ontologies are useful for repre-
senting many domains such as geographical location. This could be
modelled using containment relationships between the concepts; so, for
example the European Union contains the UK, and the UK contains
London.

Keywords Keywords represent the theme of the advert. For example, an
advert for a company developing software metric visualisation software
may specify the keywords Keywords(metrics, visualisation, software).

The value range and hierarchical ontology representations are based on the
relationships discussed in [16].

To calculate the quality score we first have to calculate a score for each
aspect of context (Aspect Score) within the condition; with each score falling
within the range [0, 10]. The quality score is then calculated as the arithmetic
mean of all aspect scores with a weight applied to favour those conditions with
a higher numbers of aspects. This is defined in Formula 4.1.

Specificity of Value Ranges To calculate the specificity of a value range
we first calculate an expected range ([EA, EB]), which is the estimated maxi-
mum range of values that a context will fall into. This is necessary to ensure
fair scores as the possible range of values may not fit well with the real world.
For example, although theoretically temperature could range from [-128, 136]
◦ F, this is extremely unlikely in practise.

Once the expected range has been calculated, we determine the score for
the aspect by calculating the percentage of the expected range occupied by
the Context Range ([CA, CB]). Note that we take the maximum of (EB, CB)
and the minimum of (EA, CA) to ensure that we take into account situations
where the context range is wider than the expected range. This is defined in
Formula 4.2.

Specificity of Hierarchical Ontologies To calculate a specificity score
for hierarchical ontologies, we assume that concepts get increasingly specific

4.4. Pervasive Advertising 68

QualityScore = AspectScores×
numAspects

maxNumAspects
(4.1)

V alueAspectScore = (1−
CB − CA

Max(EB,CB)−Min(EA,CA)
) ∗ 10 (4.2)

DepthBias = (1−
BiasV alue

MaxDepth
) (4.3)

OntAspectScore =
DepthBias

Ceil((MaxDepth−ActualDepth)/2)
∗ 10 (4.4)

KeywordAspectScore =
KeyWordV alues

MaxKeywordV alue
∗ 10 (4.5)

Figure 4.12: Context-Aware Bidding Formulae

the further down the tree they are. With this in mind, we calculate the aspect
score as the difference between the maximum depth and the actual depth
(where ontology-depth is zero-based).

We also apply a Depth Bias to compensate for the bias resulting from
comparing two ontologies of different maximum depth. The effect of the depth
bias decreases as the number of levels in the ontology increases. This is based
on the intuition that less granular ontologies will not allow the degree of
specificity afforded by their more granular counterparts. Depth bias can be
any real number in the range [0, 1]. The formulae for these calculations are
defined in Formula 4.3 and 4.4.

Specificity of Keywords To calculate an aspect score for keywords, we
take into account the importance of each keyword to the individual user.
This may be derived in many ways ranging from explicit specification to data
mining (web history, Facebook, E-Mail etc).

As multiple keywords may be specified within an aspect, we calculate the
mean value from each of the keywords then calculate the relative importance
of these terms by dividing against the value of the keyword with highest
importance. Note that Keywords are unused during the advert lookup process
as their possible values are too diverse and without meaningful semantics.
The set of candidate adverts are selected according to their Value Range and
Ontology conditions and keywords are then applied to further refine selection
as part of the quality score calculation. This is defined in Formula 4.5.

Note that the calculation of ontology depths and keyword scores is not
supported by MediateSpace; this functionality must be implemented as part
of the Pervasive Advertising application.

Supporting User Privacy We support user privacy by obfuscating their
contextual information, achieved by “widening” the user’s context whenever
it is requested. For example, a user may have the context Budget(25) and

4.5. Summary 69

Location(Wycombe). Their privacy settings obfuscate value ranges by ten,
and ontologies by one level; meaning that the context delivered is actually
Budget(15 - 35) and Location(Buckinghamshire) (Buckinghamshire contains
Wycombe). Obfuscation settings may also be defined explicitly for each aspect
of context.

4.4.3 An Example

We present an example of our system in Table 4.2. The relationship between
Quality Score and Max CPC can be clearly seen in Table 4.2a. The advertiser
at Rank 1 is able to spend 45% less than its closest competitor because of
it’s highly specific condition. In contrast, the advertiser in Rank 2 was able
to push ahead of the condition in Rank 3 despite having a much less specific
context by paying 43% more. Also, Table 4.2c illustrates the ontology depth-
bias effect; although the AVAILABLE concept is at maximum depth, it’s score
is heavily penalised because of the ontology’s shallowness.

The data used in this example are from the following sources:

Budget Data From the UK 2010 Annual Survey of Hours and Earnings[91].
320 individuals. Budget is calculated as 10% of the mean weekly salary
for their occupation.

Location Data From the Mid-2010 UK Local Authority population records[74].
We created a hierarchical ontology using the contains relationship which
has 493 concepts and a depth of 7.

Availability Illustrates how the hierarchical ontology formula handles on-
tologies of significantly different depths. Contains two concepts (AVAIL-
ABLE, UNAVAILABLE) and has a depth of 1.

Keywords Data Calculated by counting the number of occurrences of each
word within a number of personal documents. Semantically non-relevant
words such as “the” were removed and Porter Stemming [69] was used.
We identified the top 47 words with a total number of 4596 occurrences.

4.5 Summary

The preceding chapter discussed our MediateSpace middleware. We discussed
this in terms of the context-aware language, network topology and protocols
and the methodology used to evaluate contextual conditions.

In the following chapter we discuss our algorithm for mapping contextual
conditions to a set of one or more spatial indexes.

4.5. Summary 70

Advertiser Condition Quality Score AdRank Max CPC Actual CPC Rank

Budget (0 - 15) && Location (Wycombe) &&

7.23 14.46 2.00 1.37 1Available (AVAILABLE) &&

Keywords(metrics, visualisation, software)

Budget (0 - 80) && Location (London) &&
3.96 9.9 2.50 2.48 2

Available (AVAILABLE)

Budget (0 - 15) && Location (Wycombe) &&

6.75 9.79 1.45 1.41 3Available (AVAILABLE) &&

Keywords(tuple, space, java)

Budget (15 - 30) && Location (London) &&
4.73 9.46 2.00 1.25 4

Available (AVAILABLE)

Budget (15 - 30) && Location (Wycombe) &&
5.89 5.89 1.00 0.70 5

Available (AVAILABLE)

Budget (0 - 80) && Location (Wycombe) &&
5.12 4.1 0.80 0.48 6

Available (AVAILABLE)

Budget (0 - 15) && Location (London) &&
4.82 2.41 0.50 0.50 7

Keywords(metrics, visualisation, software)

(a) Example Conditions

Aspect CA CB EA EB Score

Budget 0 15 6.63 209.52 9.28

Budget 15 30 6.63 209.52 9.26

Budget 0 80 6.63 209.52 6.18

(b) Value Range Aspect Scores

Aspect Concept Max Depth Actual Depth Score

Location London 7 4 4.64

Location Wycombe 7 6 9.29

Available AVAILABLE 1 0 5

(c) Ontology Aspect Scores

Keywords Max Interest Score

{metrics,

285 5.35visualisation,

software}

{tuple,

285 3.42space,

java}

(d) Keyword Aspect Scores

Word Num. Word Num. Word Num.

class 285 memory 191 method 134

metrics 115 system 231 tuple 185

name 120 nes 114 table 219

code 147 cpu 118 space 107

visualisation 199 software 143 register 116

(e) Top 15 Keyword Occurrences

Table 4.2: Example Use Case

5 A Context-Based Spatial
Lookup Algorithm

5.1 Introduction

In order to support efficient message lookup, it is necessary to index the data.
In the case of messages, we search using the contextual conditions discussed
in Chapter 4. Thus, it is appropriate to use these conditions as the index for
lookup. See Figure 5.1a for an example of a simple contextual condition.

Conditions can make use of an arbitrary number of contracts, and each
of these contracts will need to be represented within the index. Thus, this
necessitates the use of an indexing scheme which supports multiple dimensions.
For example, Figure 5.1a shows a simple condition formed of three contracts
from three separate contexts and expresses that the user should be in Brighton
in the evening and that the temperature should be between 18.0 and 25.0
degrees. The Time contract will be expressed along one dimension, Location
along another and Temperature along yet another. Additionally, as shown
in our example, contracts can be defined which express a range of possible
values. In our example we can see that the Temperature should be between
18.0 and 25.0 degrees.

Due to the multidimensional and ranged nature of conditions, a spatial
index has been chosen and each contract will be represented along a single
dimension of the index. We chose to use the R-Tree as spatial index in our
implementation but any spatial structure which supports N-dimensional data
expressed using min-max notation could be used (e.g. X-Tree).

As explained in Chapter 4, the generated indexes will be used for two
purposes:

1. For representing the contextual conditions of messages in our Medi-
ateSpace system and storing said indexes in an R-Tree for lookup.

2. For representing the conditions of MessageRequests, whose indexes are
used to restrict the search space when looking up messages in the R-
Tree.

71

5.1. Introduction 72

{ Time.Time(EVENING) &&

Location.Location(BRIGHTON) &&

Std.Compare(Temperature.temperatureValue(), ">=", 18) &&

Std.Compare(Temperature.temperatureValue(), "<=", 25); }

(a) A Simple Condition

Context Time {

Meta {

((originatorId, "drm24"), (appID, "test"));

}

Contracts {

BOOL Time(ONTVAL time);

DATE getTime();

}

Ontology { MORNING, AFTERNOON, EVENING; }

}

(b) The Time Context

Figure 5.1: Example MediateSpace Language Structures

We now discuss the process involved in translating conditions of arbitrary
complexity to multi-dimensional spatial indexes. This process can be broken
down into two main steps which we discuss in turn:

Value Mapping In order to translate our language into a spatial index we
need to be able to map each part of a condition to a numeric value.

Structural Mapping We need to be able to map the structure of a condition
(blocks, nested blocks, logical connectives etc) to a set of spatial indexes.
This is achieved through the construction and manipulation of a block
forest.

5.2. Value Mapping 73

5.2 Value Mapping

There are three aspects of our language which require mapping to numeric
values. These are as follows:

1. Map contracts to integer values to ensure that each contract maps to
a specific dimension of the spatial index.

2. Map each of the data types supported by our language to a floating-
point representation which can be used as min-max values along a
dimension of the spatial index.

3. Map each instance of a contract to min-max values along a dimension
of the spatial index.

5.2.1 Mapping Contracts to Dimensions

Each contract is mapped to an integer value, with contracts being ordered
lexicographically. We assume that all nodes share the same contexts and that
contexts are not added or removed during the execution of the application.
Provided these assumptions are not violated a lexicographical ordering will
ensure that contracts are mapped to the same dimensions on all systems.

5.2.2 Mapping Data Types to Floating-Point Values

We now discuss the mapping between each of the data types supported by
the MediateSpace language and appropriate floating-point values for storage
within the spatial index. This transformation is performed as follows:

Integers and Floats This transformation is straightforward, with float val-
ues mapped directly and integers mapped to their floating point coun-
terparts.

Boolean Mapped to one or zero (one for true, zero for false).

Date Mapped according to their distance from the Unix epoch (the number
of seconds elapsed since midnight on January 1st 1970 UTC/GMT).

Time Mapped according to the number of seconds that have passed since 12
midnight (00:00:00). This data type has a range from 0 to 86400, which
corresponds to the number of seconds in a day.

Ontology Values Ontology values are mapped to a dimension according to
their order within the context that defines them. For instance, in the
Time context defined in Figure 5.1b, MORNING would be mapped to
0.0, AFTERNOON to 1.0 and EVENING to 2.0.

5.3. Structure Mapping 74

5.2.3 Mapping Contracts to Min-Max Values

The min-max values of the spatial index are derived by examining each con-
tract within a condition. Contracts are either used as parameters of the
Std.Compare(Contract, ComparisonOp, Value) method or they may be spec-
ified independently if the contract represents an ontology (i.e. the contract
shares the name of its enclosing Context and has a single OntVal parame-
ter). In the former case, the contract is transformed to a min or max value
which depends on the ComparisonOp and Value declared within the contract.
In the latter case, this transformation is performed on the value of the Ont-
Val parameter. Note that with the exception of ontology contracts, contract
parameters are not represented within the index.

In the case of ontology contracts both the min and max points are assigned
to the numeric value calculated for the OntVal parameter. To specify min-max
ranges for the other types we use the parameters of the Std.Compare method.
This method has three parameters: the contract we are evaluating (Contract),
the relational operator we are using for comparison (ComparisonOp) and a
value to compare against (Value). The derived min-max values are assigned to
the dimension representing the Contract. These min-max values are calculated
according to the rules in Table 5.1a.

When contracts are specified using negation the ComparisonOp is replaced
with the operator (or set of operators) which satisfy the negation. This trans-
formation depends on the data type considered. We list each of these trans-
formations in Table 5.1b. Note that whenever an ontology type is specified we
refer to the Time ontology in Figure 5.1b (MORNING (0.0), AFTERNOON
(1.0), EVENING (2.0)):

Now that we have a method for translating contracts onto our spatial index
we shall demonstrate how this mapping can be achieved for conditions of
arbitrary complexity.

5.3 Structure Mapping

We now discuss the process of mapping the structure of a condition (blocks,
nested blocks, logical connectives etc) to a set of spatial indexes. We discuss
this in terms of a system which supports only two contracts (and hence uses a
two dimensional spatial index) because it simplifies the discussion. However,
this method can be applied to N-contract systems without modification.

As mentioned earlier, this mapping is achieved through the construction
and manipulation of a block forest. We begin by defining a block forest and
it’s operations and then discuss how it can be used to achieve our goal.

5.3. Structure Mapping 75

Op Value Min Value Max Value

Numeric Values

= NumValue NumValue NumValue

≤ NumValue Unbounded NumValue

≥ NumValue NumValue Unbounded

< NumValue Unbounded NumValue - ulp

> NumValue NumValue - ulp Unbounded

Boolean Values

= true 1.0 1.0

= false 0.0 0.0

Ontology Values

= AFTERNOON (1.0) AFTERNOON (1.0) AFTERNOON (1.0)

(a) Mapping Contracts to Min-Max Values

Op Value New Op Min Value Max Value

Numeric Values

6= NumValue < Unbounded NumValue - ulp

and > NumValue - ulp Unbounded

≮ NumValue ≥ NumValue Unbounded

� NumValue > NumValue - ulp Unbounded

≯ NumValue ≤ Unbounded NumValue

� NumValue < Unbounded NumValue - ulp

Boolean Values

6= true = 0.0 0.0

6= false = 1.0 1.0

Ontology Values

6= AFTERNOON (1.0) = MORNING (0.0) MORNING (0.0)

or = EVENING (2.0) EVENING (2.0)

(b) Mapping Negated Contracts to Min-Max Values

Table 5.1: Rules for Mapping contracts to Min-Max Values

5.3. Structure Mapping 76

5.3.1 Block Forests

Indexes are generated by parsing conditions and building what we have termed
block forests. In the building of a block forest we distinguish between outer
blocks and nested blocks, where nested blocks refer to blocks contained within
other blocks and outer blocks refer to blocks without this constraint. A block
forest is a forest of trees with the following properties:

• Each node reflects a single block (outer or nested).
• Root nodes represent outer blocks
• Child nodes represent nested blocks.
• Each node stores an arbitrary number of indexes.

The block forest has two operations which may be performed on it: merging
and copying. Both of these operations are applied to a pair of blocks and return
a single block.

Merging involves obtaining the cartesian product of some subset of the
indexes in both blocks and combining them together, ensuring that all indexes
are as small as possible. That is, we should combine each pair of indexes,
reducing the volume of the index rectangle whenever possible. Dimensions of
an index are only merged if they have been modified (i.e. are not null). If
the sets of modified dimensions of the two indexes being merged are disjoint
a merge can be achieved simply by copying the modified dimensions from one
block to the other. If, however, the sets of modified dimensions are not disjoint
we must combine the shared dimensions with one another, reducing the range
of each dimension whenever possible.

Copying simply involves moving a set of indexes from one block to another
without modification.

When the processing of a condition is complete we will be left with a single
block which contains all of the indexes pertinent to the condition.

5.3.2 Manipulating Block Trees

As discussed, contracts are mapped to dimensions of an index and we can
generate min-max values to apply to a dimension whenever an instance of a
given contract is seen within a condition. These values depend on the operator
used and the data type.

Contracts may be connected using conjunctions or disjunctions and may
be grouped using blocks and nested blocks to arbitrary levels. The number
of indexes created per condition varies depending on the structure of the
condition. The algorithm assumes that conjunctions have a higher precedence
than disjunctions.

We now discuss each of these structural elements with examples, ranging
from the very simple to those consisting of many Contracts and several nested
blocks. Each example includes a condition, a graph representing the indexes
created and a diagram illustrating the building of the block tree during execu-

5.3. Structure Mapping 77

{ Std.Compare(A.A(), ">", 50) &&

Std.Compare(B.B(), "<", 75); }

(a) The Condition

(b) Generated Indexes

A.A 51 1000

B.B 0 74

(c) The Block Tree

Figure 5.2: A Simple Conjunction

tion. The contracts A.A() and B.B() are used throughout the examples and
for simplicity we assume that in every case both contracts are parameterless
and return an integer value. We also assume that the minimum and maximum
values for a dimension are 0 and 1000 respectively, with dimensions defaulting
to these values if no other value is specified.

5.3.2.1 Conjunctions

We begin with the simple case of two contracts connected using a conjunction.
This can be represented using a single rectangle as illustrated in Figure 5.2.
Figure 5.3 illustrates the more complicated case where both upper and lower
bounds are expressed for contract A.A which tightens the rectangle but still
only requires a single index.

5.3.2.2 Disjunctions

When disjunctions are used additional indexes must be created to represent
these alternative branches of the condition. This is demonstrated in Figure
5.4, where a second index has been created to represent the constraints of the

5.3. Structure Mapping 78

{ Std.Compare(A.A(), ">", 50) &&

Std.Compare(A.A(), "<", 75) &&

Std.Compare(B.B(), "<", 75); }

(a) The Condition

(b) Generated Indexes

A.A 51 74

B.B 0 74

(c) The Block Tree

Figure 5.3: A Simple Conjunction: Fully Constraining A.A()

B.B contract. Intersecting with either of these indexes is sufficient to include
the associated message on the candidate list.

5.3.2.3 Outer Blocks

Blocks (both outer and nested) can also be connected using conjunctions and
disjunctions. Outer blocks connected with a conjunction should be merged
using the full cartesian product of the indexes in both blocks. When the
merge is complete, the right-hand-side (RHS) block should be removed and
the left-hand-side (LHS) should be replaced with the newly created merged
block. Figure 5.5 illustrates this, showing the process and result of merging
the pairs (Node1 Index1, Node2 Index1) and (Node1 Index1, Node2 Index2).

Outer blocks connected via a disjunction should be handled by copying
all of the indexes from the RHS block into the LHS block. This is sufficient
because the two blocks are independent. Figure 5.6 illustrates this simple
process by copying the RHS indexes into the LHS.

5.3. Structure Mapping 79

{ Std.Compare(A.A(), ">", 50) &&

Std.Compare(A.A(), "<", 75) ||

Std.Compare(B.B(), "<", 75) }

(a) The Condition

(b) Generated Indexes

A.A 51 74

B.B 0 74

(c) The Block Tree

Figure 5.4: A Simple Disjunction

5.3.2.4 Nested Blocks

Figures 5.7, 5.8 and 5.9 all illustrate how the indexing algorithm handles the
nesting of blocks. For each nested block, a child node is added to the block
tree underneath the tree node representing its containing block. After a nested
block has been processed its block node is combined with its parent. Again,
this involves either a merge or copy depending on whether the nodes were
connected via a conjunction or disjunction respectively.

However, instead of using the full cartesian product during a merge, only
the final index of the parent block is included in product generation.

In Figure 5.7 the combination is a straightforward merge because the nested
block contains only a single index. Thus, the final combined block can be
created simply by merging the last index in the parent block with the index
in the child.

The merge of the nested block in Figure 5.8 is more involved as the child
contains two indexes. The final combined block is created by generating
the cartesian product of the child indexes and the last index of the parent,
generating the product: (Node1 Index2, Node2 Index1) and (Node1 Index2,
Node2 Index2).

5.3. Structure Mapping 80

{ Std.Compare(A.A(), ">", 50) }

&&

{ Std.Compare(B.B(), ">", 70) ||

Std.Compare(A.A(), ">", 65) }

(a) The Condition

(b) Generated Indexes

A.A 66 1000

B.B 71 1000

A.A 51 1000 A.A 66 1000

A.A 51 1000

B.B 71 1000

(c) The Block Tree

Figure 5.5: Merging Two Blocks (Conjunction)

Figure 5.9 features two nested blocks and operates similarly to the previous
example, but with the difference that the second nested block is connected to
it’s parent via a disjunction. Thus, when this nested block has been processed,
it will be copied into it’s parent block, which in turn is merged with the top-
level block to form the final block.

5.3.2.5 Handling Repeated Contracts and Parameters

If the same contract is specified multiple times within one condition and both
are stored within the same index (either because a conjunction connects the
two or they are both members of either side of a merge) it may be possible
to reduce the size of one or more indexes. We call this “spatial reduction” for
brevity. For instance, consider the condition in Figure 5.10a where the first
two contracts constrain the index dimension for A.A to between the values
of 51.0 and 74.0 (assuming that A.A returns an integer value). The third
condition gives us additional information about the value of A.A; namely that
A.A should also have a value which is greater than 60.0. Thus, we can further

5.3. Structure Mapping 81

{ Std.Compare(A.A(), ">", 50) }

||

{ Std.Compare(B.B(), ">", 70) ||

Std.Compare(A.A(), ">", 65) }

(a) The Condition

(b) Generated Indexes

A.A 66 1000

B.B 71 1000

A.A 51 1000 A.A 51 1000

A.A 66 1000

B.B 71 1000

(c) The Block Tree

Figure 5.6: Copying Two Blocks (Disjunction)

constrain the index dimension to values between 61.0 and 74.0. The second
condition in Figure 5.10b will result in the creation of the same index but
will be achieved through a merge operation between the nested block and its
parent. Although the condition can simply be rewritten to achieve the same
meaning spatial reduction becomes useful when we introduce parameterised
contracts.

The spatial reduction method remains valid when contracts may be param-
eterised. This is because each index can only contain contracts which must all
be true (i.e. they are all connected, directly or indirectly with a conjunction).
Thus, even if we have a condition which contains the same contract twice
but with different parameter values it is safe to reduce the relevant index di-
mension because both contracts must be fulfilled. For example, if we have a
message with the condition in Figure 5.10c (which reduces the Temperature
dimension of the index to be greater than 80.0) then applying the query in
Figure 5.10d will safely disregard this message because its condition cannot
be fulfilled regardless of the parameter values used by the contracts within
the query. Note that as parameters are not considered during index genera-

5.3. Structure Mapping 82

{ Std.Compare(A.A(), ">", 50) &&

Std.Compare(A.A(), "<", 75) ||

Std.Compare(B.B(), "<", 75) &&

{

Std.Compare(A.A(), ">", 10)

&&

Std.Compare(A.A(), "<=", 50)

}

}

(a) The Condition

(b) Generated Indexes

A.A 51 74

B.B 0 74

A.A 11 50

A.A 51 74

A.A 11 50

B.B 0 74

(c) The Block Tree

Figure 5.7: Simple Nested Block Merging

tion they can be safely excluded from MessageRequests without affecting the
operation of the algorithm.

5.3.2.6 Handling All (∀) and Exists (∃)

MediateSpace supports a modified form of the ∀ and ∃ quantification operators
(discussed in Section 4.2.1). These allow us to express that all conditions must
be true (∀) or that at least n and at most m of the conditions are true (∃ n ..
m).
∀ (“forall”) conditions are trivial to represent as the only stipulation made is

that all the conditions must be true. Hence, it is sufficient to simply construct
a compound expression where each condition is joined with a logical AND.

5.3. Structure Mapping 83

{ Std.Compare(A.A(), ">", 50) &&

Std.Compare(A.A(), "<", 75) ||

Std.Compare(B.B(), "<", 75) &&

{

Std.Compare(A.A(), ">", 10)

&&

Std.Compare(A.A(), "<=" 30)

||

Std.Compare(A.A(), ">", 75)

}

}

(a) The Condition

(b) Generated Indexes

A.A 51 74

B.B 0 74

A.A 11 !�

A.A 51 74

A.A 11 !�

B.B 0 74

A.A 7� ����

A.A 7� ����

B.B 0 74

(c) The Block Tree

Figure 5.8: Cartesian Merging of Nested Blocks

5.3. Structure Mapping 84

{ Std.Compare(A.A(), ">", 50) &&

Std.Compare(A.A(), "<", 75) ||

Std.Compare(B.B(), "<", 75) &&

{

Std.Compare(A.A(), ">", 10)

&&

Std.Compare(A.A(), "<=" 30)

||

Std.Compare(A.A(), ">", 75)

&&

Std.Compare(B.B(), ">", 10)

&&

Std.Compare(B.B(), "<=", 30)

||

{

Std.Compare(B.B(), ">", 40)

&&

Std.Compare(A.A(), ">", 75)

}

}

}

(a) The Condition

(b) Generated Indexes

A.A 51 74

B.B 0 74

A.A 11 ��

A.A 7� ����

B.B 11 ��

A.A 41 1000

B.B 7� ����

A.A 51 74

B.B 0 74

A.A 11 ��

A.A 7� ����

B.B 11 ��

A.A 41 1000

B.B 7� ����

A.A 51 74

A.A 11 ��

B.B 0 74

A.A 7� ����

B.B 11 ��

A.A 7� ����

B.B 41 74

(c) The Block Tree

Figure 5.9: Cartesian Merging and Block Copying

5.3. Structure Mapping 85

{ Std.Compare(A.A(), ">", 50) &&

Std.Compare(A.A(), "<", 75) &&

Std.Compare(A.A(), ">", 60) }

(a) A Simple Example of Repeated Contracts

{ Std.Compare(A.A(), ">", 50) &&

Std.Compare(A.A(), "<", 75) &&

{

Std.Compare(A.A(), ">", 60)

}

}

(b) An Example of Repeated Contracts with Nesting

{ Std.Compare(Temperature.getTemp("london"), ">", 50) &&

Std.Compare(Temperature.getTemp("brighton"), ">", 80) }

(c) An Example of Parameterised Repeated Contracts

{ Std.Compare(Temperature.getTemp(...), ">", 45) &&

Std.Compare(Temperature.getTemp(...), "<", 75) }

(d) An Example Query to be applied to the above condition

Figure 5.10: Parameterised and Non-parameterised Repeated Contracts

For example, ∀ A, B, C can be represented as A && B && C. This can be
easily transformed to a single index using the procedures discussed above.

Although in the simplest case (when ∃ (1, numConds)) ∃ conditions are
equally as trivial to represent as ∀ conditions (simply joining each condition
with a logical OR), in general the task is more complicated because of the
inclusion of minimum and maximum parameters. The problem can be broken
down into two parts:

1. constructing conditions which satisfy the minimum parameter, and
2. constructing conditions which satisfy the maximum parameter

Satisfying the minimum parameter (n) requires the generation of all com-
binations of conditions of size n. The elements of each combination should
be connected with a conjunction, and each combination should be connected
with a disjunction.

Satisfying the maximum parameter (m) requires that two extensions are
made to this algorithm. Firstly, combinations must be generated of all condi-

5.3. Structure Mapping 86

Exists(2,3) A, B, C, D

(a) An example ∃ condition

Given the conditions {A, B, C, D},

CALCULATING N

If n = 2, we would generate the following combinations:

{(A,B), (A,C), (A,D) (B,C), (B,D), (C,D)}

The resulting condition would be:

(A && B) || (A && C) || (A && D) || (B && C) ||

(B && D) || (C && D)

CALCULATING M

If m = 3, the resulting compound condition would become:

(A && B && !C && !D) || (A && C && !B && !D) ||

(A && D && !B && !C) || (B && C && !A && !D) ||

(B && D && !A && !C) || (C && D && !A && !B) ||

(A && B && C && !D) || (A && B && D && !C) ||

(A && C && D && !B) || (B && C && D && !A)

(b) An Application of the ∃ algorithm to the given example

Figure 5.11: Transforming ∃ blocks to a form using logical connectives

tions of sizes n to m, with each of these combinations being logically connected
as discussed in the previous paragraph. Secondly, we must ensure that no more
than m conditions can be resolved as true and still satisfy the generated com-
pound condition. To this end, we must extend each group of conjunctions
with additional conjunctions stipulating that all other conditions must NOT
be true. We use this algorithm to translate ∃ blocks into a form readily useable
by our indexing algorithms discussed above. See Figure 5.11 for a example
application of this algorithm.

However, in cases where a large number of conditions are used this method
can result in the production of an extremely large number of indexes. To
counteract this issue we provide an algorithm for continually simplifying the

5.4. Summary 87

∃ block until the number of indexes produced falls below a defined number.
Our simplification algorithm continually decrements the minimum value

specified for the ∃ block (n) until the number of indexes to generate falls
below the defined cap. Both the minimum and maximum values of the ∃
block are then set to this value and stage two of the translation algorithm
defined above is not applied. This provides a reasonable approximation while
keeping the number of indexes as low as possible. Importantly, although this
may result in some false positives it will never cause false negatives to occur.

An optimisation can be applied when the maximum value (m) equals the
number of conditions in the ∃ block. In this case, it is not possible for more
than m conditions to be resolved as true. Therefore, we need only require that
the minimum number of conditions be satisfied and can disable stage two of
the translation algorithm.

5.3.3 Detecting Ill-Formed Conditions

It is possible to write conditions that can never succeed. The following con-
dition can never succeed because a context value cannot be greater than 80.0
and less than 50.0 at the same time:

{ Std.Compare(A.A(), ">", 80) && Std.Compare(A.A(), "<", 50); }

Our index generating algorithm can be used to detect such ill-formed condi-
tions by examining each generated index for any dimension where min > max.
If this property holds for any dimension then we can conclude that the condi-
tion is ill-formed.

5.4 Summary

In the preceding chapter we discussed our methodology for mapping contex-
tual conditions to spatial indexes. This allows us to index our conditions,
supporting the efficient lookup of the information associated with them.

The lookup phase allows us to restrict the set of conditions we need to
consider, but it is still necessary to evaluate the conditions to ensure that the
requesting party holds the necessary context to receive the associated content.
This is the focus of the next chapter where we discuss how our contextual
conditions can be translated into an OWL representation. The conditions can
then be evaluated using an OWL reasoner.

6 Context Reasoning Using
OWL

6.1 Introduction

The MediateSpace language allows the construction of contextual conditions
consisting of an arbitrary number of contracts. These contracts may be con-
nected using logical operators (&&, ||) and quantification operators (∀, ∃),
and conditions can contain an arbitrary number of blocks nested to any level.
In order to evaluate these conditions we have chosen to use the OWL lan-
guage1 which we briefly discuss in the next section. We then go on to describe
the MediateSpace OWL ontology, which provides the vocabulary used when
translating the MediateSpace language to its OWL representation. We then
discuss the MediateSpace Evaluation ontology which is generated to represent
concrete instances of our language and demonstrate how these structures can
be used for evaluation.

6.2 The OWL Language

This section briefly discusses the basics of working with OWL, the various
syntaxes which are available for representing it and the main assumptions
made during the reasoning process. For additional discussion, see Section
3.6.7.

6.2.1 Classes, Individuals and Properties

The Web Ontology Language (OWL) supports the modelling of information
domains through the specification of classes and individuals. Classes provide
a model for a type of object, which may be tangible or just conceptual in
nature. For example, in a botanical ontology there may be a class of type
Rose. Individuals refer to concrete instances of a class, so in our botanical

1http://www.w3.org/TR/owl-features/

88

6.2. The OWL Language 89

ontology multiple individuals may be created which each represent a single
rose.

Classes are defined to accept a desired subset of individuals within a domain
(such as the Rose class above which accepts all individuals which are roses).
This subset of individuals is defined in part through the use of object and
data properties, which allow us to establish relationships with individuals of a
given class (or set of classes) or with a given literal value (or range of values)
respectively. The relationships established for a class can be made arbitrarily
complex by combining properties using intersections and unions. For example,
a Rose class could stipulate that all roses have between n and m petals and
also have a stalk. In this example, we have restricted membership of this class
to only those individuals with between n and m petals and one stalk.

6.2.2 Syntaxes

A variety of OWL syntaxes are available, including Turtle2, OWLXML and
the Manchester syntax [52]. We focus on the Manchester syntax because of
its focus on readability, terseness and support for users without a background
in description logics. As discussed above, OWL classes of arbitrary complex-
ity can be defined using intersections, unions and properties, and these can
all be represented in the Manchester syntax. We provide a summary of the
pertinent parts of this syntax in Tables 6.1 and 6.2 with a mapping to its
OWLXML representation. Note that the “and” and “or” operators can be
mapped directly to their counterparts in the MediateSpace language.

6.2.3 Reasoning Assumptions

OWL has a number of unusual properties which affects how it may be used.
For instance, most systems in use today use the closed world assumption which
posits that if a piece of information is not found within the system then it can
be concluded that it does not exist. For example, an accounting system may
conclude that if a given customer number is not found then the company does
not have a customer with that number. OWL uses the open world assumption
which would not make this conclusion. Instead, the existence of this customer
number would remain undecided unless it was explicitly stated that the given
customer number does not exist. By remaining open OWL ensures that the
conclusions it makes are consistent at all times. In our accounting example,
if the desired customer number was later added to the ontology we could
now conclude that the customer is present without contradicting any earlier
conclusions. This open world viewpoint can cause issues when attempting to
specify negative conditions. For example, if we were to express the class of
Male as “not Female” we might expect that any individual not classified as

2http://www.w3.org/TeamSubmission/turtle/

6.2. The OWL Language 90

Manchester Syntax OWLXML Syntax

AClass1 and AClass2

<ObjectIntersectionOf>

<Class IRI="#AClass1"/>

<Class IRI="#AClass2"/>

</ObjectIntersectionOf>

AClass1 or AClass2

<ObjectUnionOf>

<Class IRI="#AClass1"/>

<Class IRI="#AClass2"/>

</ObjectUnionOf>

Individual: #indAClass1

Types: #AClass1

Individual: #indAClass2

Types: #AClass2

<ClassAssertion>

<Class IRI="#AClass1"/>

<NamedIndividual IRI="#indAClass1"/>

</ClassAssertion>

<ClassAssertion>

<Class IRI="#AClass2"/>

<NamedIndividual IRI="#indAClass2"/>

</ClassAssertion>

Table 6.1: Classes and Individuals : Manchester Syntax to OWL XML

Female to be implicitly classified as Male. This conclusion will not be made
however as the individual may be classified as Female at some point in the
future, so to declare them Male now may lead to a contradiction later on. This
proved a challenge when attempting to provide support for negated conditions
in the MediateSpace language. We discuss this further and provide a solution
in Section 6.5.2.5.

In addition, OWL does not provide support for the unique name assump-
tion, meaning that it is permissible for more than one name to refer to the
same entity. For example, the King’s Cross train station may be referred to
using the names kingsCross or train station kings cross.

For our system we chose to use classes to model the contextual conditions
and individuals to represent the context values present within a node’s tuple
space. Through the application of an OWL reasoner we can then evaluate
conditions. We shall now briefly motivate our use of the OWL language. This

6.2. The OWL Language 91

Manchester Syntax OWLXML Syntax

hasObjValue some AClass1

<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasObjValue"/>

<Class IRI="#AClass1"/>

</ObjectSomeValuesFrom>

hasDataValue "5"ˆˆxsd:integer

<DataHasValue>

<DataProperty IRI="#hasDataValue"/>

<Literal datatypeIRI="&xsd;integer">

5

</Literal>

</DataHasValue>

hasDataValue some

integer[<= "25"ˆˆxsd:integer]

<DataSomeValuesFrom>

<DataProperty IRI="#hasDataValue"/>

<DatatypeRestriction>

<Datatype

abbreviatedIRI="xsd:integer"/>

<FacetRestriction

facet="&xsd;maxInclusive">

<Literal

datatypeIRI="&xsd;integer">25

</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataSomeValuesFrom>

Individual: #indAClass1

Types: #AClass1

Facts:

hasObjValue #indAClass2,

hasDataValue 5

<ObjectPropertyAssertion>

<ObjectProperty IRI="#hasObjValue"/>

<NamedIndividual IRI="#indAClass1"/>

<NamedIndividual IRI="#indAClass2"/>

</ObjectPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="#hasDataValue"/>

<NamedIndividual IRI="#indAClass1"/>

<Literal datatypeIRI="&xsd;integer">

5

</Literal>

</DataPropertyAssertion>

Table 6.2: Properties : Manchester Syntax to OWL XML

6.3. Motivation 92

is followed by a description of the representation and methodology used to
map our MediateSpace language to OWL.

6.3 Motivation

Although we could have chosen to implement a specialised reasoner to evaluate
our MediateSpace language we decided upon using the OWL language. This
was for a number of reasons:

• The OWL language and description logics in general are still actively
researched and applied to a number of use cases. Thus, we will be able
to reap the benefits of future research which will potentially improve
the tractability of reasoning.

• OWL is a mature specification with a significant number of reasoner
implementations available for a wide variety of hardware and operating
systems. Our implementation will benefit from future improvements
to these implementations. For example, future releases could provide
optimisations for runtime efficiency or memory consumption. Reasoners
have also been written for use within larger applications such as the
Oracle database.

• A number of tools are available that ease the development and debug-
ging of OWL implementations. For example, Protege3 and SWOOP4.
There are also libraries for manipulating OWL within other languages.
For instance, Thea5 allows Prolog programs to process OWL ontologies
and the OWL API6 provides a Java interface to build, manipulate and
evaluate OWL ontologies on a variety of supported reasoners.

• The OWL specification7 supports ontology versioning and extension,
meaning that our language can be safely amended and extended without
causing issues for consumers of our ontology. The specification also
provides support for interoperability between ontologies, meaning that
other languages could be translated into the MediateSpace language for
evaluation or vice versa.

6.4 MediateSpace OWL Ontology

The MediateSpace OWL Ontology provides the vocabulary used for represent-
ing the MediateSpace language in OWL. The ontology is available at http://
www.dmatthews.co.uk/ontologies/mediate-space/1.0/mediate-

space.owl and its contents are summarised in Figure 6.1.

3http://protege.stanford.edu
4https://code.google.com/p/swoop/
5http://www.semanticweb.gr/thea/
6http://owlapi.sourceforge.net/
7http://www.w3.org/TR/webont-req/

http://www.dmatthews.co.uk/ontologies/mediate-space/1.0/mediate-space.owl
http://www.dmatthews.co.uk/ontologies/mediate-space/1.0/mediate-space.owl
http://www.dmatthews.co.uk/ontologies/mediate-space/1.0/mediate-space.owl

6.5. MediateSpace Evaluation Ontology 93

A brief description of the classes provided and how they are used to trans-
late our language into OWL is provided in Table 6.3.

(a) Class Hierarchy (b) Object Properties (c) Data Properties

Figure 6.1: OWL Class and Property Hierarchies (in Protege8)

6.5 MediateSpace Evaluation Ontology

The MediateSpace language is transformed into the OWL Manchester syntax
[52], which is then loaded into the OWL API [51] within our Java program
for evaluation.

We use the FaCT++ reasoner [85], which is written in C++ and allows
the speedy evaluation of OWL ontologies, connecting the reasoner to our java
program via a JNI binding. We chose the FaCT++ reasoner because it is
actively maintained, runs natively on the machine and is straightforward to
use as it can be manipulated directly using the OWL API.

We now discuss the representation of each MediateSpace language element
within the OWL Manchester notation.

6.5.1 Representing Contexts and Concrete Contexts

A single subclass of Context is created for every Context within the local
tuple space and a subclass of Contract is created for every contract within
each context.

When participant nodes bind to a regional node they send a message con-
taining all of the ConcreteContext tuples they support. Each regional node

8http://protege.stanford.edu

6.5. MediateSpace Evaluation Ontology 94

Class Description

Context Representing Context structures

Contract Representing a contract within a Context structure

ConcreteContext Representing ConcreteContext Structures

ContextCond Representing context conditions

ContextRslt
Representing the individual contracts within a condition and

nested blocks

Parameter

Representing the values within contract parameters and con-

text value results. Structured as nested lists using the OWL-

List class defined by [30]

Exists Classes

For handling the representation and evaluation of ∃ blocks.

For efficiency, the conditions within ∃ blocks are evaluated

once prior to the evaluation of the other conditions.

Table 6.3: A Summary of the MediateSpace OWL Ontology Classes

generates a ConcreteContext subclass for each of these received tuples, with
each generated class subclassing the parent Context and ConcreteContext
classes discussed in the previous paragraph. A single individual is also cre-
ated for each of these subclasses to allow individuals to refer to these classes
within their definitions. This structure is summarised in Figure 6.2.

As discussed in previous chapters, Participant nodes can request context
values from the Regional node they are bound to. The Regional node is then
responsible for establishing which of their bound Participant nodes (if any)
can fulfil the request (i.e. which Participant registered a ConcreteContext
tuple for the appropriate Context with the Regional node). This task can be
achieved by querying the generated OWL structure to obtain a list of viable
participants. This is achieved in three steps:

1. Build a query class of the form: contextName and ConcreteContext,
2. Insert the query class into the ontology and obtain a list of all subclasses

of this query,
3. Choose the most appropriate subclass according to some criteria,
4. Map the subclass against the appropriate tuple in the Regional tuple

space using the subclass’s IRI.

6.5. MediateSpace Evaluation Ontology 95

context_A

subclass:

Context

(a) Structure of a Context class

concreteContext_A_0

subclass:

context_A and

ConcreteContext

(b) Structure of a ConcreteContext class

indi_context_A

Type:

context_A

(c) Structure of a Context individual

indi_contract_A1

Type:

Contract

(d) Structure of a Contract individual

Figure 6.2: Context and ConcreteContext Forms

At present, step 3 is handled simply by choosing a subclass at random,
but the OWL representation could be extended to support more intelligent
behaviour. For example, if a context value is only deemed valid within a
certain distance of the requesting participant (location information loses it’s
utility as distance grows for instance), a data property could be used to specify
the distance of the bound Participant from the Regional node. The query
could then be amended to include this constraint and only retrieve subclasses
within the valid range.

6.5.2 Representing and Evaluating Conditions

Contextual conditions are represented as a combination of classes, proper-
ties and literals. Figure 6.3 illustrates it’s basic structure. Each condition
has a root ContextCond class with an arbitrary number of hasContextCon-
tract object properties. Each hasContextContract property has a ContextRslt
class as its range, with each ContextRslt representing a single contract within
the condition. Each ContextRslt specifies the Context name, Contract name,
parameter list and expected result values/ranges.

All supported properties are summarised in Table 6.4. Note that both the
parameter and result lists are structured as nested lists so that a list can itself
be specified as a parameter if desired.

Our transformation algorithm allows all types of conditions to be repre-
sented in OWL. To achieve this we have defined six representations to be used
as appropriate when transforming a condition. These are Exact Match, Range,
Ontology, Nested Blocks, Negated Contracts and Exists (∃). These will now
each be discussed in turn.

6.5. MediateSpace Evaluation Ontology 96

Property Description Domain Range

hasContextContract

One created for each contract within the con-

dition. They are also created between all Con-

textRslt individuals to support nested blocks.

ContextCond

ContextRslt

ContextRslt

hasContext

Used to indicate which Context structure this

ContextRslt refers to. A single class and indi-

vidual exist for each Context.

ContextRslt Context

hasContract

Used to indicate which Contract structure this

ContextRslt refers to. A single class and indi-

vidual exist for each Contract.

ContextRslt Contract

hasParameterList

Refers to the list of parameters given for this

contract. If the contract does not have param-

eters this property is omitted.

ContextRslt OWLList

hasExists

Class Expression: Refers to the ExistsRe-

sult class used to determine if an ∃ block has

passed evaluation. Individual: Indicates that

an ∃ block has passed evaluation by linking to

an ExistsResult individual.

ContextCond ExistsResult

hasExistsStatement Refers to a contract forming part of an ∃ block. ExistsBlock ExistsStatement

hasResult

Class Expression: Refers to the list of values

that must be matched for this contract to suc-

ceed. Individual: Refers to the list of values

obtained by executing this contract.

ContextRslt OWLList

hasValue

Refers to the value given for a particular pa-

rameter or result value. If used to represent

a result value, this can also be expressed as a

value range (e.g. ≥ 50, ≤ 75).

Parameter Literal

hasType
Refers to the datatype used to represent the

given parameter or result value.
Parameter StringLiteral

hasName

Class Expression: Refers to the string literal

to be matched by an ExistsResult individual

for the ∃ block to pass evaluation. Individ-

ual: Refers to the string literal used to identify

a successfully evaluated ∃ block.

ExistsResult StringLiteral

Table 6.4: A Summary of the MediateSpace OWL Ontology Properties

6.5. MediateSpace Evaluation Ontology 97

hasContextContract

ContextRslt

hasContext

hasContract hasParameterList

<ContextName>

<ContractName>
OWLList

hasNext

EmptyList

hasContents

OWLList

hasNext

EmptyList

hasContents

Parameter

hasValue hasType

hasResult

OWLList

hasNext

EmptyList

hasContents

OWLList

hasNext

EmptyList

hasContents

Parameter

hasValue hasType

ContextCond

<DataType>^^string<Value>^^DataType <DataType>^^string<RangeOrValue>^^DataType

Class ObjectProperty ValueProperty LiteralValueKey:

hasContextContract

ContextRslt

hasExists ExistsResult hasName

“Exists_block_result”^^string

Figure 6.3: Representing a Contextual Condition

6.5.2.1 Representing Exact Matches

Figure 6.4 illustrates how to represent exact matching, with the condition
succeeding if the result of the contract A.A1() is the date equal to exactly 7 PM
on 27/06/2014. The contract has a Date return type and this is represented
explicitly via the hasType property, and is specified as the value type to ensure
that OWL processes the value correctly.

6.5.2.2 Representing Range Matches

Figure 6.5 illustrates how range conditions can be expressed. Multiple ranges
can be specified for a contract within one ContextRslt section which helps to
reduce space requirements and improves readability.

6.5. MediateSpace Evaluation Ontology 98

{ Std.Compare(A.A(), ==, 27/06/2014:19:00:00) }

(a) The Condition

ContextCond

and (hasContextContract some

(ContextRslt

and (hasContext some A_Context)

and (hasContract some A1_Contract)

and (hasResult some

(OWLList

and (hasContents some

(OWLList

and (hasContents some

(Parameter

and (hasType value "xsd:dateTime"ˆˆstring)

and (hasValue value "2014-06-27T19:00:00-00:00"ˆˆdateTime)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList)))))

(b) The OWL Code

Figure 6.4: An exact match (==) condition

6.5.2.3 Representing Ontology Matches

Figure 6.6 illustrates ontology matching, where the result is expressed as a
floating-point value. This value represents the position of the ontology concept
to be matched within its Context structure. For example, in Figure 6.6 the
condition should succeed when the ontology concept A 1 is matched. Position
is zero-indexed and A 1 is the second concept defined within the A Context
structure so the value 1.0 is chosen.

This example also illustrates how parameters are mapped to its OWL rep-
resentation.

6.5.2.4 Representing Nested Blocks

Nested blocks are modelled simply by connecting parent and child blocks via
a hasContextContract object property. This is illustrated in Figure 6.7.

6.5.2.5 Representing Negated Conditions

The MediateSpace language allows contracts to be negated. For instance, we
may wish to evaluate the following negated condition:

6.5. MediateSpace Evaluation Ontology 99

{ Std.Compare(A.A2(), >, 50) && Std.Compare(A.A2(), <, 75) &&

Std.Compare(B.B1(), <, 75); }

(a) The Condition

ContextCond

and (hasContextContract some

(ContextRslt

and (hasContext some A_Context)

and (hasContract some A2_Contract)

and (hasResult some

(OWLList

and (hasContents some

(OWLList

and (hasContents some

(Parameter

and (hasValue some integer[< "75"ˆˆinteger, > "50"ˆˆinteger])

and (hasType value "xsd:integer"ˆˆstring)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList)))))

and (hasContextContract some

(ContextRslt

and (hasContext some B_Context)

and (hasContract some B1_Contract)

and (hasResult some

(OWLList

and (hasContents some

(OWLList

and (hasContents some

(Parameter

and (hasValue some integer[< "75"ˆˆinteger])

and (hasType value "xsd:integer"ˆˆstring)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList)))))

(b) The OWL Code

Figure 6.5: Two range conditions, with dual ranges on A.A2()

6.5. MediateSpace Evaluation Ontology 100

{ A.A(A_1); }

(a) The Condition

ContextCond

and (hasContextContract some (ContextRslt

and (hasContext some A_Context) and (hasContract some A_Contract)

and (hasParameterList some (OWLList

and (hasContents some

(OWLList

and (hasContents some

(Parameter

and (hasType value "xsd:string"ˆˆstring)

and (hasValue value "A_1"ˆˆstring)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList)))

and (hasResult some (OWLList

and (hasContents some

(OWLList

and (hasContents some

(Parameter

and (hasType value "xsd:double"ˆˆstring)

and (hasValue value "1.0"ˆˆdouble)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList)))))

(b) The OWL Code

Figure 6.6: An Ontology Condition

{ !B.B(B_1) && !Std.Compare(B.B1(), "<=", 45); }

Although OWL allows the use of negation the open world assumption and
lack of unique name assumption makes it difficult to infer the semantics we
want without requiring the addition of many additional axioms. We chose to
handle this by transforming the negated contexts into positive forms (using a
similar method to that used for negated conditions in spatial indexes). Using
this method, the context given above would instead become:

{

{ B.B(B_0) || B.B(B_2) } && Std.Compare(B.B1(), ">", 45);

}

This example condition is illustrated further in Figure 6.8 which also demon-
strates the use of the “or” connective to specify more than one set of axioms
which can be matched to fulfil the condition. In our example, we have stip-
ulated that the return value for B.B can be either 0.0 or 2.0. The code has

6.5. MediateSpace Evaluation Ontology 101

{ Std.Compare(B.B2(), "==", 52.2) &&

{

Std.Compare(A.A3(), ">=", 102.9)

}

}

(a) The Condition

ContextCond

and (hasContextContract some

(ContextRslt

and (hasContext some B_Context)

and (hasContract some B2_Contract)

and (hasResult some

(OWLList

and (hasContents some

(OWLList

and (hasContents some

(Parameter

and (hasType value "xsd:double"ˆˆstring)

and (hasValue value "52.0"ˆˆdouble)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList)))))

and (hasContextContract some

(ContextRslt

and (hasContext some A_Context)

and (hasContract some A3_Contract)

and (hasResult some

(OWLList

and (hasContents some

(OWLList

and (hasContents some

(Parameter

and (hasValue some double[>= "102.9"ˆˆdouble])

and (hasType value "xsd:double"ˆˆstring)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList)))))

(b) The OWL Code

Figure 6.7: A Condition with a Nested Block

6.5. MediateSpace Evaluation Ontology 102

been sparsely commented using the # character to indicate the beginning of
a line comment.

These transformations are summarised in table 6.5.

6.5.2.6 Representing ∃ Blocks

∀ blocks are first converted to a sequence of contracts connected with AND
operators. They are then handled in the same way as already discussed.
∃ statements can be represented using a combination of AND and OR

logical operators (as discussed in the previous chapter). However, this can
result in extremely large and complicated conditions so we have chosen to
handle them differently.

When ∃ blocks are parsed we produce a ContextCond class whose struc-
ture is quite different from that generated for normal conditions. This class
requires that an ExistsResult axiom is present in the ontology with an asso-
ciated hasName data property which specifies a unique string value.

In addition to the class generated above, we also generate an ExistsBlock
class and ContextCond classes for each of the contracts within the ∃ block.
The ExistsBlock class is linked to each of these ContextConds via a hasEx-
istsStatement object property. These ContextCond classes are superclasses of
the ExistsStatement class so that the ExistsStatement class can be used in its
place for readability. We evaluate each ContextCond class within the block
once prior to evaluation and add an ExistsResult individual with the appro-
priately named unique string value to the ontology if the number of passing
contracts is within the min/max bounds specified in the ∃ opening statement.
Pseudo code for this algorithm and examples of OWL code are available in
Figures 6.9 and 6.10 respectively. Note that the code in these figures makes
reference to an i full context individual; the structure of which is explained in
the following section.

6.5.3 Representing Context Values

Context values are represented as instances of the ContextRslt class, consisting
of a number of individuals connected by object and data properties. Figure
6.11 illustrates this structure.

Parameter instances are connected to the actual values given for the Con-
text Values parameter list and result value.

We have attempted to reduce the size of the ontology by maintaining only
single instances of a class where possible. For example, as discussed earlier
there exists only one instance of each Context and ConcreteContext class and
these are used by all ContextRslt instances.

We define a single ContextCond individual (named i full context) which is
linked to each ContextRslt instance via the hasContextContract object prop-
erty.

6.5. MediateSpace Evaluation Ontology 103

{ !B.B(B_1) && !Std.Compare(B.B1(), "<=", 45); }

(a) The Condition

ContextCond

and (hasContextContract some # B.B(B_0) || B.B(B_2)

(ContextRslt

and (hasContext some B_Context) and (hasContract some B_Contract)

and (((hasParameterList some (OWLList # B.B(B_0)

and (hasContents some (OWLList

and (hasContents some (Parameter

and (hasType value "xsd:string"ˆˆstring)

and (hasValue value "B_0"ˆˆstring)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList)))

and (hasResult some (OWLList

and (hasContents some (OWLList

and (hasContents some (Parameter

and (hasType value "xsd:double"ˆˆstring)

and (hasValue value "0.0"ˆˆdouble)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList))))

or

((hasParameterList some (OWLList # B.B(B_2)

and (hasContents some (OWLList

and (hasContents some (Parameter

and (hasType value "xsd:string"ˆˆstring)

and (hasValue value "B_2"ˆˆstring)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList)))

and (hasResult some (OWLList

and (hasContents some (OWLList

and (hasContents some (Parameter

and (hasType value "xsd:double"ˆˆstring)

and (hasValue value "2.0"ˆˆdouble)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList)))))))

and (hasContextContract some # Std.Compare(B.B1(), ">", 45)

(ContextRslt

and (hasContext some B_Context)

and (hasContract some B1_Contract)

and (hasResult some

(OWLList

and (hasContents some (OWLList

and (hasContents some (Parameter

and (hasValue some integer[> "45"ˆˆinteger])

and (hasType value "xsd:integer"ˆˆstring)))

and (hasNext some EmptyList)))

and (hasNext some EmptyList)))))

(b) The OWL Code

Figure 6.8: A Condition with two Negated Contracts

6.5. MediateSpace Evaluation Ontology 104

function preprocessExists(existBlocks, i full context)

for existBlock : existBlocks do

numPasses← 0 ⊲ Count the number of successful conditions.

min← parseMinValue(existsBlock)

max← parseMaxValue(existsBlock)

existStatements←

getObjPropertyRange(HAS EXISTS STATEMENT)

⊲ Evaluate every condition associated with this ExistsBlock.

for existStatement : existStatements do

if passesEval(existStatement, i full context) then

numPasses← numPasses+ 1

end if

end for

if numPasses ≥ min and numPasses ≤ max then

existBlockId← getId(existBlock)

⊲ Create an ExistsResult individual with a hasName value property.

existsResult← createIndividual(EXISTS RESULT,

HAS NAME, existBlockId)

i full context←addObjProperty(i full context,

HAS EXISTS,

existsResult)

end if

end for

end function

Figure 6.9: The Algorithm for Preprocessing Exists Blocks

6.5. MediateSpace Evaluation Ontology 105

{ exists (1, 2)

Std.Compare(B.B(), "<=" 100.5),

A.A(A_1),

Std.Compare(A.A(), "==", 25);

}

(a) An ∃ block with three conditions

ContextCond

and (hasExists some

(ExistsResult

and (hasName value

"c_msg_10_context_cond_0_1_Exists_block_1$1_3_result"ˆˆstring)))

(b) OWL code for the ∃ form of Contextual Condition

Class: c_msg_10_context_cond_0_1_Exists_block_1$1_3

ExistsBlock

and (hasExistsStatement some c_msg_10_context_cond_0_1_Exists_statement_0)

and (hasExistsStatement some c_msg_10_context_cond_0_1_Exists_statement_1)

and (hasExistsStatement some c_msg_10_context_cond_0_1_Exists_statement_2)

(c) OWL representing the three conditions present in the ∃ block

individual: i_full_context

Types: ContextCond

Facts: hasExists indi_exists_1

individual: indi_exists_1

Types: ExistsResult

Facts: hasName c_msg_10_context_cond_0_1_Exists_block_1$1_3_result

(d) A potential i full context individual matching the condition in Figure 6.10b

Figure 6.10: Representing ∃ Conditions

6.5. MediateSpace Evaluation Ontology 106

Op Value New Value

Numeric Values

Any IntValue IntValueˆˆxsd:integer

Any FloatValue FloatValueˆˆxsd:double

Any DateValue DateValueˆˆxsd:dateTime

= StringValue StringValueˆˆxsd:string

Boolean Values

= true trueˆˆxsd:boolean

= false falseˆˆxsd:boolean

Ontology Values

= AFTERNOON (1.0) 1.0ˆˆxsd:double

(a) Mapping to OWL Data Types

Op Value New Op New Value

Numeric and String Values

6= NumValue < NumValueˆˆxsd:dataType

and > NumValueˆˆxsd:dataType

≮ NumValue ≥ NumValueˆˆxsd:dataType

� NumValue > NumValueˆˆxsd:dataType

≯ NumValue ≤ NumValueˆˆxsd:dataType

� NumValue < NumValueˆˆxsd:dataType

Boolean Values

6= true = falseˆˆxsd:boolean

6= false = trueˆˆxsd:boolean

Ontology Values

6= AFTERNOON (1.0) = MORNING (0.0ˆˆxsd:double)

or = EVENING (2.0ˆˆxsd:double)

(b) Mapping Negated Contracts to OWL Representation

Table 6.5: Rules for Mapping values to their OWL Representation

6.5. MediateSpace Evaluation Ontology 107

hasContextContract

ContextRslt

i_full_context (ContextCond)

ContextRslt

hasContextContract

hasContextContract

Individual ObjectPropertyKey:

ContextRslt

hasContextContract

hasContextContract hasContextContract

Figure 6.11: Representing All Observable Context Information

Prior to evaluation we calculate the Cartesian product of all ContextRslt
individuals and link them using the hasContextContract object property, re-
sulting in a fully connected subgraph of ContextRslt individuals. This is
necessary to ensure the correct evaluation of nested blocks.

After these amendments have been made the i full context individual rep-
resents the complete observable context at a given time.

6.5.4 Evaluating Conditions

Conditions are evaluated by running the OWL reasoner to infer class members
- i.e. to infer which individuals are instances of a class within the ontology. If
the i full context individual is found to be a member of an ContextCond class
then we can safely infer that the condition represented by this ContextCond
class has succeeded and that the associated message may be received by the
requesting participant. See Figure 6.12 for an example which demonstrates
a case where the illustrated i full context individual in Subfigure 6.12c would
be inferred as a member of the Condition illustrated in Subfigure 6.12b.

6.5. MediateSpace Evaluation Ontology 108

{ Std.Compare(A.A2(), ">=", 35118.25 &&

exists (1, 2)

Std.Compare(B.B1(), "<=", 100.5),

A.A(A_1); }

(a) The MediateSpace Condition

hasContextContract

ContextRslt

hasContext hasContract

A_Context A2_Contract

hasResult

OWLList

hasNext

EmptyList

hasContents

OWLList

hasNext

EmptyList

hasContents

Parameter

hasValue hasType

ContextCond

“xsd:double”^^string>= 35118.25^^double

hasContextContract

ContextRslt

hasExists

ExistsResult

hasName

“Exists_block_result”^^string

(b) The Class Structure

hasContextContract

indi_context_rslt_1

(ContextRslt)

hasContext hasContract

indi_a_context

(A_Context)

indi_a2_contract

(A2_Contract)

hasResult

indi_list_1

(OWLList)

hasNext

indi_empty_list

(EmptyList)

hasContents

indi_list_2

(OWLList)

hasNext

indi_empty_list

(EmptyList)

hasContents

indi_param_1

(Parameter)

hasValue hasType

i_full_context

(ContextCond)

“xsd:double”^^string35120.0^^double

hasContextContract

indi_context_rslt_2

(ContextRslt)

hasExists

indi_exists_result_1

(ExistsResult)

hasName

“Exists_block_result”^^string

hasContextContract

(c) The Individual Structure

Figure 6.12: An Example Illustrating OWL code structure and Inference

6.6. Summary 109

6.6 Summary

In the preceding chapter we discussed our methodology for translating con-
textual conditions to an OWL representation for evaluation.

We have now discussed in detail each of the major components of our
system; the middleware platform, the spatial indexing algorithm and the OWL
representation. In the following chapter we provide an overview of our system
design and describe the methodology followed for evaluating each element of
our system.

7 Design and Experimental
Setup

7.1 Introduction

This chapter discusses the design of the MediateSpace system and our exper-
imental setup. We first provide an overview of our system design and then
move onto our experimental setup, which is divided into three sections:

• Context Modelling
• Benchmarking
• Simulation

This first section discusses how we have modelled contextual conditions.
Specifically, we consider condition complexity and our methods for controlling
this complexity during experimentation. This model is used in both bench-
marking and simulation.

The second section discusses our methodology for benchmarking the evalu-
ation of contextual conditions. This is an important consideration, as if eval-
uation is inefficient it could become a major bottleneck which would impact
throughout and user response times.

The final section concerns the design of our simulation, and provides an
overview of the measured variables and the user modelling performed to pro-
vide additional realism to the simulation.

7.2 MediateSpace Design

This section provides an overview of our design and discusses major imple-
mentation decisions and any design patterns [36] employed.

7.2.1 Nodes

Nodes represent the physical devices in the network. There are two types
of node: Regional and Participant. However, their basic structure is largely

110

7.2. MediateSpace Design 111

Capability Description

In/Out Queues
For storing incoming and outgoing messages. These

queues are processed periodically.

NetworkComms Interface

For dispatching messages to other nodes within the

network. This class handles all communication with

the simulator so that Nodes do not need to be aware

of the environment they are running in.

SpatialComms Interface
For interacting with the spatial indexing data struc-

ture. In our implementation this is an R-Tree.

Location Reader
For retrieving the current and next geographical lo-

cation of the node.

Internal/External Tuple Spaces
For storing local tuples and triggering interaction

with other nodes in the network.

Table 7.1: Node Capabilities

identical and our discussion will only distinguish between node type when
necessary.

This subsection has the following structure:

1. We provide a summary of the properties and capabilities available to
each node,

2. We describe the file system structure employed by each node,
3. We describe the design of the tuple spaces held by each node.

7.2.1.1 Node Properties and Capabilities

Each Node has a unique ID, a geographical location and a number of capabil-
ities which are summarised in Table 7.1.

Tuples are inserted into the in or out queue, depending on whether they
are entering or leaving the node respectively. These queues are processed
periodically.

Each node also has a location reader which allows them to obtain their
current location and to update their location. In our simulation node locations
are calculated according to a number of probability distributions, discussed in
Section 7.4.3.2.

The remainder of these capabilities are discussed in more detail in the
following sections.

7.2. MediateSpace Design 112

7.2.1.2 File System Structure

Each node has an associated directory on disk which we call their repository.
Their repository is used to store the contents of all tuples belonging to the
node in MediateSpace language form. The major benefit of this approach is
that the tuples are stored persistently, meaning that this data will not be lost
if a node crashes. Additionally, because the tuples are stored in MediateSpace
language form, they can be loaded into any implementation of the system
provided it is capable of parsing our language.

Each node is associated with the directory structure in Figure 7.1a. Note
that each tuple type is stored in a separate directory which makes it straight-
forward to load a single type. If it becomes desirable to store tuples of different
types together they may be stored within the “ms-application” directory.

The repository is also responsible for storing contract handlers which are
Java classes that implement the IContractImplementation interface with the
single method in Listing 7.1. The process of loading and executing these
IContractImplementation classes is discussed in more detail in Section 7.2.6.2

Each class represents a particular Concrete Context and it is responsible for
establishing which contract should be executed and querying the appropriate
sensor with parameter values if available.

In addition, each node has an associated property file which specifies the
factory classes to use when constructing a number of system objects. Thus,
it is possible to change the types of object created during runtime without
recompilation. The available properties are shown in Figure 7.1b and we refer
back to it as appropriate during the remainder of this section.

7.2.2 Tuple Spaces

Our tuple spaces are implemented as wrapper classes around the LighTS tuple
space, which is a lightweight tuple space implementation developed by Picco,
Balzarotti and Paolo [66].

Tuple objects offer fields which are used to store useful information about
the language structure being processed. For instance, we can store meta field
values such as the source user Id, tuple name or any other information that can
be represented as an Object such as its OWL representation. Traditionally,
fields in a tuple are numbered and ordered using this numeric value. We chose
to use the more convenient “named fields” provided by LighTS which allow
us to refer to fields using a string identifier.

As discussed in Chapter 4, each node has an internal and external tuple
space, and each tuple space has several properties. These properties are dis-
cussed in the following subsections.

7.2. MediateSpace Design 113

nodeId

persistent-space

concrete-context-space

context-space

message-space

semi-persistent-space

context-request-space

context-value-space

message-match-space

message-request-space

ms-applications

contract-code-base

(a) The Directory Structure for a node with id “nodeId”

mediateSpaceFactory=LightsMediateSpaceFactory

internalRepFactory=NodeInternalRepFactory

externalRepFactory=MSLExternalRepTupleFactory

reasoningImplFactory=ManNodeOntologyFactory

owlApiReasonerFactory=FaCTPlusPlusReasonerFactory

queryFactory=NodeNetworkQueryFactory

(b) Property File specifying Factory Classes (without package names)

Figure 7.1: Files and Directories Available to a Node

7.2.2.1 Sub-Spaces

Each tuple space contains several tuple sub-spaces which each contain certain
types of tuple. The tuple sub-spaces supported within these internal and
external spaces vary depending on the type of node.

In order to support the tuple sub-space functionality we have associated
each tuple space with a Mediator object [36]. The Mediator is responsible for
filtering tuples to their appropriate sub-space and for returning a reference to
the appropriate sub-space given a tuple type when requested.

7.2.2.2 Addition and Removal Notification

When a tuple is added or removed from a tuple space, the node owning the
space will be notified.

Each tuple space and subspace are observable [36], meaning that a class

7.2. MediateSpace Design 114

can choose to observe a space and receive notifications whenever an action is
performed on it (rd, in, out, rdp, inp, rdg, ing, outg). Tuple spaces observe
each of their subspaces so when actions are performed on a subspace any
notifications are propagated to their parent space, and then onto any objects
which chose to observe the parent.

Each tuple space has an associated event handler which observes it and
performs appropriate actions based on the tuple notifications it receives. The
actions performed tend to depend on the origin of the tuple i.e. if the notifi-
cation was caused by the creation or modification of a tuple locally then the
action performed will usually be different than when the tuple was received
from a remote node.

We chose an observer-based implementation because it affords us a straight-
forward way of notifying the appropriate tuple spaces and event handlers
without requiring them to be explicitly coupled to the tuple space they are
monitoring. It is also potentially much more efficient than polling the space
for changes. If the space was polled too often it would result in a lot of wasted
CPU cycles; whereas if it was polled too seldom it would likely lead to delays
in tuples being received.

7.2.2.3 Remote Communication

Each tuple space (with the exception of the Participant internal space) can be
used to distribute and receive tuples to and from tuples spaces held on remote
nodes.

Each of the network-capable tuple spaces (both regional tuple spaces and
the participant external space) have an event handler which implements the
TupleSpaceNetworkHandler interface. This contains the single method in List-
ing 7.2 which should be called by remote nodes to insert tuples into the ap-
propriate space. The tuple(s) will then be processed as appropriate. Thus, to
allow remote nodes to access a tuple space you simply need to allow them to
execute one method (possibly via Remote Method Invocation [44]).

We separated the event handler classes from the tuple space as this gives us
additional flexibility in deciding how tuple events are handled. For example,
although in our implementation each node carries its own event handler, we
could instead situate event handlers on remote machines and make each one
responsible for forwarding events to multiple nodes based on the destination
field of the inserted tuple.

7.2.3 The NetworkComms Interface

The NetworkComms interface has three roles which will now be discussed in
the following subsections.

7.2. MediateSpace Design 115

getResult(String contractName, List<MSTypedListValue> params)

Listing (7.1) The IContractImplementation Interface

void tupleInsert(String tupleContent, boolean routeComplete);

Listing (7.2) The TupleSpaceNetworkHandler Interface

void offerTuple(String from, String to, String tupleContent);

void offerTupleNow(String from, String to, String tupleContent);

void dispatchTuples();

ILocationRef getLocation(TupleSpaceType type, int nodeId);

Listing (7.3) The NetworkComms Interface

void insertLocation(ILocationRef p, int myUniqueId, int numMsgs);

boolean deleteLocation(ILocationRef p, int myUniqueId);

int insertMessage(PolyRectangle p, int myUniqueId,

int msgUniqueId);

void removeMessage(PolyRectangle p, int msgId, int myUniqueId);
Set<MsgLookupInfo> lookupMessages(PolyRectangle poly);

List<RegionalNodeBundle> getClosestRegionalNodes(ILocationRef p,
int numNodes);

Listing (7.4) The SpatialComms Interface

String addTo(IOntologyChunk chunk, ETupleType tupleType,

ERepositoryType stateType);

void removeFrom(String identifier, ERepositoryType stateType);

void removeFrom(ETupleType tupleType, ERepositoryType repoType);

void clear(ERepositoryType stateType);

boolean evaluate(String observableName, String queryName);

Set<OWLClass> getContextSubclasses(IOntologyChunk classId, boolean direct)

void setStateChanged();

InputStream getState(ERepositoryType repoType);

InputStream getChunk(ERepositoryType repoType, String chunkId);

void outputOntology(OWLOntologyFormat format, OWLOntologyStorer storer,

File saveTo);

Listing (7.5) The IOntologyReasoner Interface

Figure 7.2: System Interfaces

7.2. MediateSpace Design 116

Node

Tuple Space

SubSpace

SubSpace SubSpace

Mediator

EventHandler
implements TupleSpaceNetworkHandler

Remote Node

NetworkComms

offerTuple(to, from, content)
tupleInsert(content, routeComplete)

Tuple Insertion

Tuple Insert Notification

Remote Node

NetworkComms

offerTuple(to, from, content)
tupleInsert(content, routeComplete)

Remote Node

NetworkComms

offerTuple(to, from, content)
tupleInsert(content, routeComplete)

Figure 7.3: Tuple Space Operations and Network Handling

7.2.3.1 Simulator Communication

The NetworkComms interface allows us to communicate with the simulator
in order to deliver messages to the appropriate node. This is desirable as it
means that nodes can communicate with the NetworkComms interface and
do not need an awareness of the simulator.

7.2.3.2 Message Queueing

Messages can be sent immediately to their destination by calling the offer-
TupleNow() method but by calling the offerTuple() method the message will
be queued until the dispatchTuples() method is called. This latter option is
useful as it allows us to send multiple messages without incurring the cost of
establishing multiple connections. If a connectionless protocol is used either
message queuing can be switched off or it can be used without modification
as the queuing approach will likely not result in any negative consequences.

7.2.3.3 Location Lookup

The interface allows us to lookup the location of a node. When remote nodes
bind to our local node we keep a record of their location; this method simply
looks up that location in the local map.

7.2. MediateSpace Design 117

7.2.4 The SpatialComms Interface

The SpatialComms interface provides access to the location and message spa-
tial indexes, and has been designed to encapsulate these indexes so as to allow
us to change the index used (e.g. exchanging the R-Tree for an X-Tree) with-
out exposing this change to the user. The interface has four roles which will
be discussed in the following subsections.

7.2.4.1 Inserting and Deleting Location

Regional nodes insert their location into the Location R-Tree on startup and
remove it when they leave the network. If the Regional nodes are static they
will insert their location only once. If they are non-static however they will
reinsert their location at regular intervals.

7.2.4.2 Inserting and Removing Messages

Once a message has arrived at the appropriate Regional node it is inserted
into the Message R-Tree so that other Regional nodes can perform message
lookups and send requests for the message if appropriate. The message should
be removed from the tree when the node leaves the network. If the node is
non-static then all stored messages should be removed periodically and sent
to a Regional node at a more appropriate location.

7.2.4.3 Obtaining Closest Regional Nodes

Both the Regional and Participant nodes need to lookup nearby Regional
nodes to bind to. In the case of Participant nodes they need only lookup the
closest Regional node as they bind to one node at a time. Regional nodes
will attempt to find multiple nearby nodes to bind to. Regional nodes should
refresh the list of nodes they are bound to periodically even if all Regional
nodes are static. This is because new nodes may have entered the network
since the last lookup was performed. Regional and Participant nodes change
their location and attempt a rebind every 600 steps, which equates to 10
minutes in real-time.

7.2.5 Internal and External Representations

The internal representation refers to the data structure used to represent our
MediateSpace language while the external representation refers to the String
representation used when outputting language tuples into the network.

As can be seen in figure 7.1b the factory classes to use during the construc-
tion of internal and external representations are specified in a property file.

7.2. MediateSpace Design 118

In our implementation we have chosen to represent our language tuples inter-
nally using a tree data structure and externally using the language specified
in Chapter 4.

When the external representation (our language) enters a node’s tuple space
from a remote node it is parsed using the Java Compiler Compiler (JavaCC)1

and a tree is generated using JJtree. JavaCC supports the automatic gen-
eration of parsers for languages defined using a BNF-like notation. JJTree
is provided as part of the JavaCC software and supports the construction of
trees which may then be traversed using the Visitor pattern [36].

The visitor pattern is then used in the construction of a number of ob-
ject types within the system. Of particular note are the TreeToMediateTuple
visitor class which translates the tree representation into Tuple object form
and the ManOntology classes which translate our tree to Manchester OWL
Syntax. As discussed above, useful properties of each language element are
stored within the generated tuples using named fields.

The RepositoryLoader class has a number of convenience methods for pars-
ing our language, creating tuples with the appropriate fields and returning said
tuples for use. It can parse tuples from the file system repository discussed
in Section 7.2.1.2 and also from strings, directories, files and streams. The
RepositoryLoader class is also responsible for loading and instantiating con-
tract drivers from the repository on the disk.

7.2.6 Tuple Space Services

A number of service classes are available for manipulating the tuples in the
internal and external tuple spaces. These services are summarised in Table
7.2. The getContextValue() method of the ContextService class and the exe-
cuteContract() method of the ReasonerService class are explained further in
the following sections. We also present pseudo code for both methods which
illustrate the use of the ReasonerService and ExternalRepresentationFactory
classes, and demonstrate how tuple spaces can be queried through the use of
templates.

7.2.6.1 Obtaining Context Values

The getContextValue() method has three main stages:

1. We attempt to obtain the requested context from the internal tuple
space of the local Node.

2. If it is not available locally, we request the context from a bound Partic-
ipant Node. This involves constructing an OWL class that represents
the type of context information we require and using the constructed

1https://javacc.java.net/

7.2. MediateSpace Design 119

class to query the reasoner for a list of Participants supporting the
context.

3. We issue a request for the context to bound Regional Nodes if the local
Node is not bound to any Participants that can satisfy the request. If
multiple participants can service a request the geographically closest
node is chosen.

A record of each Regional Node visited is stored in a field of the Contex-
tRequest tuple to ensure that the same request cannot be made of a Regional
Node more than once. Additionally, checks are performed to ensure that a
request for this context information was not made in the recent past. This
is to avoid wasting resources searching for it again when it is very likely that
either a previous request is still being propagated through the network or the
ContextValue is not available at this time.

The above process is carried out at each Regional Node in turn until either
the ContextValue is found or the ContextRequest can no longer be propa-
gated. This may be because the Node is bound only to Regional Nodes that
have already been visited or the request has reached the maximum allowable
distance from the originating Node. Pseudo code for this method is available
in Figure 7.4.

7.2.6.2 Executing ConcreteContext Implementations

When a Regional Node issues a request for context information to one of its
bound Participants it includes a CONCRETE CONTEXT NAME field which
specifies the name of the ConcreteContext tuple to be queried for context
information. When the request reaches the Participant Node the appropriate
tuple is loaded from the internal tuple space and the fully qualified name of
the class responsible for interfacing with the appropriate sensor on the local
device is read from a field of the ConcreteContext tuple. This driver Class
is instantiated using reflection and executed. Pseudo code for this process is
available in Figure 7.5.

7.2.7 Loading and Operating the Reasoner

Each regional node has access to a single instance of an OWL reasoner and an
ontology repository which is used to hold all of the owl ontology information
currently loaded for the tuples in either tuple space.

The repository holds ontology information in Manchester syntax form and
the repository is divided into Query (classes) and Observable (individuals)
partitions to balance the amount of data held by any partition, thus poten-
tially improving lookup and insertion speeds. Listing 7.5 summarises the
IOntologyReasoner interface implemented by the reasoner. This interface al-
lows clients to add “chunks” of an ontology to the repository, where a chunk

7.2. MediateSpace Design 120

Service Description

SpaceInteractionService
• Count the number of tuples of a type overall or in a

specific space.

• Perform a rd or in operation on all tuples matching a

template.

• Perform a rd or in operation on all tuples of a specific

type.

• Replace a tuple in the space by name and type.

ContextService
• Retrieve Context Value Tuples.

• Buffer Context Requests i.e. keep a record of requests

for context values and dispatch relevant values to

these nodes if the enter the local node later.

• Suppress repeated requests for Context Value Tuples.

ReasonerService
• Load the OWL representation for a specific type and

partition.

• Load the OWL representation for a specific named

tuple.

• Clear a partition of the repository.

ContractExecutionService
• Execute the driver program for a particular Concrete

Context to obtain a Context Value Tuple.

Table 7.2: Summary of the Tuple Space Services

7.2. MediateSpace Design 121

IMediateTuple getContextValue(IMediateTuple contextRqstTuple,
Contract contract) {

/*

* Create a template tuple to try and locate an appropriate Context Value

* tuple in the internal space.

*/

IMediateTuple template = new MediateTuple();

template.addKeyValueField(TUPLE_TYPE, CONTEXT_VALUE);

template.addKeyValueField(CONTEXT_NAME, contract.getContextName());

template.addKeyValueField(CONTRACT_NAME, contract.getContractName());

template.addKeyValueField(CONTRACT_PARAM_VALUES, contract.getParams());
value = getInternalSpace().rdp(template);

if (value != null) return value;

// We haven’t initiated a search for this contract in the recent past.

if (!recentRqst.contains(contract)) {
recentRqsts.add(contract);

// Update the list of visited nodes.

Set<String> visitedNodes = tuple.getFieldValue(VISITED_NODES);

visitedNodes.add(this.getUserId());

boolean success = requestFromParticipants(contextRqstTuple, contract);

if (!success) {

requestFromRegionals(contextRqstTuple, contract);
}

}

return null;
}

boolean requestFromParticipants(IMediateTuple contextRqstTuple,
Contract contract) {

/*
* Load the OWL code for Contexts and ConcreteContexts

* into the ontology repository.

*/

reasonerService.loadContextTupleOWL(QUERY_PARTITION);

reasonerService.loadConcreteContextTupleOWL(QUERY_PARTITION);

/*

* Construct a query to find ConcreteContexts for

* the given contextRqstTuple.

*/

availableConcretesQuery = OntConditionBuilder.and(
contract.getContextName(),
CONCRETE_CONTEXT_TUPLE);

Set<OWLClass> availableConcretes =

reasoner.getContextSubclasses(availableConcretesQuery);

if (availableConcretes.isEmpty()) return false;

// The default behaviour is to choose randomly.

OWLClass chosenConcrete = chooseConcreteContext(availableConcretes);

IMediateTuple concreteContextTuple =

reasonerService.getTupleForIRI(chosenConcrete.getIRI());

IMediateTuple newRqstTuple =
externalRepFactory.createContextRequestTuple(

concreteContextTuple,
contract.getContextName(),
contract.getContractName());

internalSpace.out(newRqstTuple);

return true;
}

void requestFromRegionals(IMediateTuple contextRqstTuple,
Contract contract) {

IMediateTuple newRqstTuple =
externalRepFactory.createContextRequestTuple(

contextRqstTuple,
contract.getContextName(),
contract.getContractName());

externalSpace.out(newRqstTuple);
}

Figure 7.4: ContextService getContextValue() Method Pseudo Code

7.3. Context Modelling 122

IMediateTuple executeContract(IMediateTuple contextRqstTuple,
Contract contract) {

IContractImplementation driver = loadDriver(contextRqstTuple);

/*

* Execute the driver, get the result and create a Context Value

* Tuple for dispatching to the requester.

*/

List<MSTypedValue> result = driver.getResult(contract.getContractName,
contract.getParamValues());

return externalRepFactory.createContextValueTuple(contract, result);
}

IContractImplementation loadDriver(IMediateTuple contextRqstTuple) {

String concreteContextName = tuple.getFieldValue(CONCRETE_CONTEXT_NAME);

/*

* Get the Concrete Context Tuple, discover the name of the driver

* and load the driver class via reflection.

*/

IMediateTuple template = new MediateTuple();

template.addKeyValueField(TUPLE_TYPE, CONCRETE_CONTEXT);

template.addKeyValueField(TUPLE_NAME, concreteContextName);

IMediateTuple concreteContextTuple = internalSpace.rdp(template);

String driverName = concreteContextTuple.getFieldValue(CONTEXT_DRIVER);

return repoLoader.loadContractDriver(driverName);
}

Figure 7.5: ReasonerService executeContract() Method Pseudo Code

usually refers to the Manchester representation of a Tuple or a contextual con-
dition. Chunks may be retrieved and removed by Id and can be removed by
Tuple Type. The stateChanged() method allows clients to notify the reasoner
of changes to the ontology so that the reasoner can re-evaluate if necessary.

To perform evaluation the ontology is loaded and manipulated using the
OWL API [51] and evaluation is performed using an OWL reasoner.

The OWL API makes it straightforward to create, modify and output OWL
ontologies using a variety of syntaxes (e.g. Manchester or Turtle). The API
also provides an interface for interacting with OWL reasoners and includes
a ReasonerFactory which allows the developer to replace the reasoner being
used without requiring recompilation. In our case we are using FaCT++ [86],
which is an efficient OWL Reasoner written in C++ and communicated with
using JNI bindings.

7.3 Context Modelling

In order to perform benchmarks and simulations we need to generate a large
number of contextual conditions of varying complexity. To this end we have
written a condition generator which takes a number of parameters to allow

7.3. Context Modelling 123

the complexity to be varied.
A significant number of parameters have been defined which influence con-

dition generation. These are summarised in Tables 7.3 and 7.4. Parameters
are defined as either:

Expected Values The number we feel best represents its value in real con-
ditions created in the field.

Probabilities The probability that a condition will have the property de-
fined. For example, the probability that two Contracts are connected
with a logical conjunction or the probability that a quantification block
is used instead of a logical block.

Each table is divided into two sections. The first section discusses parame-
ters relevant to the construction of Context structures. Considering Context
generation is important as these structures have a bearing on the conditions
generated. The second section discusses those parameters involved in condi-
tion generation.

Each value in Table 7.3 is based on the example conditions given for our
pervasive advertising and Geocaching applications and also on the definitions
of context in Sections 3.1 and 3.4. The values given by default generate slightly
more complicated conditions than our examples to ensure that the evaluation
does not underestimate condition complexity. The remaining tables provide
probabilities which we alter in various ways during evaluation to explore the
properties of our system.

We now discuss each of these tables in more detail.

7.3.1 Expected Values

As discussed, each parameter in Table 7.3 specifies an expected value (unless
specified otherwise). Note that our parameters distinguish between blocks and
nested blocks as we believe they have different expected values. Specifically,
we believe that there will be fewer nested blocks than top-level blocks and
that nested blocks will contain fewer Contracts. We also support the Exists
Divisor parameter which makes it straightforward for us to generate ∃ blocks
with min/max parameters that are dependent on the number of Contracts
within the block.

We use a binomial distribution to choose actual values during condition
evaluation as this allows us to add an element of randomness to the genera-
tion process while still making it likely that the majority of conditions will be
constructed using values around our expected value. The Binomial distribu-
tion is defined in Formula 7.1.

When a task with a measurable success or failure is performed n times, the
binomial distribution allows us to determine the probability of succeeding in

7.3. Context Modelling 124

this task k times. The probability of succeeding on each trial is given as p,
and the probability of failure on each trial is q (p - 1).

P (n) =

(

n
k

)

pkqn−k (7.1)

Binomial Distribution

One benefit of obtaining parameter values from a Binomial distribution is
that its shape can be modified by applying different levels of skew. Figure
7.6 shows the Binomial distribution which represents an Expected Value of 3
with four levels of skew. Each of these examples show the result of generating
100,000 discrete random values from the binomial distribution with n = 6 and
p = the chosen skew. The values of k range from zero to six.

A skew of 0.5 is specified as our base case. This produces a distribution
which is roughly normally distributed. From Figure 7.6 we can see that as
the skew gets more extreme on either side the expected value becomes much
smaller (when the skew < 0.5) or much larger (when the skew > 0.5). We can
leverage this property by altering the skew to produce more or less complex
conditions.

To achieve the desired binomial distribution for each Expected value, we
multiply it by two in order to place the Expected value in the centre of the
distribution.

Each of the parameters defined in Table 7.3 may also be defined in terms
of a maximum and minimum value, with the value being chosen uniformly
between these bounds.

7.3.2 Probabilities

Probability-based parameters are represented as floating-point values in the
range [0.0, 1.0], where the probability of each parameter grows as its value
increases towards 1.0.

The HasConcreteContext parameter declares the probability of a given par-
ticipant having a ConcreteContext structure for a given Context. For example,
if this property has a value of 0.7 then each participant will have access to a
ConcreteContext for approximately 70% of Contexts.

The HasMatchingContracts parameter gives the probability that a Contract
will be specified more than once within a condition to constrain both sides of
the Contract’s dimension. For example, if we have the condition:

Std.Compare(A.A1(), ">", 20)

and the HasMatchingContracts parameter passes we append a matching
condition which results in the condition:

Std.Compare(A.A1(), ">", 20) && Std.Compare(A.A1(), "<", 50)

7.3. Context Modelling 125

Parameter Description Expected Value

Context Structure Generation Parameters

NumContextTypes+ The number of Context structures used 6

NumContractsPerContextType+ The number of Contracts each Context

should contain

3

NumContractParameters The number of parameters a given Contract

should require

2

NumOntologyConcepts The number of ontology concepts supported

by a given Context

4

Condition Generation Parameters

NumBlocks The number of top-level blocks a condition

should have

2

NumContractsPerBlock The number of Contracts (n) in each

top-level block. If the SplitContracts flag is

on, the Contracts are divided evenly amongst

all top-level blocks rather than generating n

separate Contracts for each block

3

NestedBlockDepth The degree of nesting within a top-level block 1

NumContractsPerNestedBlock The number of Contracts (n) to use within

each nested block. If the SplitContracts flag

is on, the n Contracts are divided evenly

amongst all blocks nested at this level rather

than generating n separate Contracts for each

nested block

2

ExistsDivisor+ If turned on via the ExistsDivisor flag, all ∃

blocks are of the form: ∃ (n/existsDivisor, n)

where n = number of conditions within the

block. When ExistsDivisor = 0 blocks

instead take the form: ∃ (1, n)

2

+ Has an absolute value, not an expected value. The value given is the default.

Table 7.3: Condition Generation Parameters with Expected Values

7.3. Context Modelling 126

Figure 7.6: The Binomial Distribution with Different Levels of Skew

Finally, note should also be taken of the ContextValuePasses parameter
which is responsible for determining the probability of generating a Con-
textValue structure which fulfils the constraint given in a contextual condition.
For example, if a condition stipulates that:

Std.Compare(A.A1(), ">", 50) && Std.Compare(A.A1(), "<", 75) &&

Std.Compare(B.B1(), ">=", 25)

and the ContextValuePasses parameter has a value of 1.0, we can be certain
that two ContextValues can be generated fulfilling the condition:

A.A1() == 55, B.B1() == 300

The HasConcreteContext and ContextValuePasses parameters are partic-
ularly relevant to simulation as they can impact the number of neighbours
capable of obtaining context values and the number of succeeding conditions
respectively. An increase in the number of succeeding conditions will result in
a greater amount of activity in the network as more messages will be requested
and received.

7.3.3 Message Request Condition Generation

When running simulations we need to generate message requests for partic-
ipants to issue into the network. Message requests can be generated using
all of the parameters discussed so far. However, for message requests we also
wish to model how specific they are. That is, we wish to be able to specify
how much of the message space is considered by a given request. For example,

7.3. Context Modelling 127

Parameter Description Probability

Context Structure Generation Parameters

HasConcreteContext A given Participant will have a given

ConcreteContext structure

1.0

Int/Float/Bool/Date ParamType Choosing a Contract parameter data type 0.3/0.3/0.23/0.17

Condition Generation Parameters

QuantificationBlocks Generating a block using quantification

rather than logical connectives

0.4

∀Blocks Choosing a ∀ block rather than an ∃

block when quantification is chosen

0.8

Conjunction/Disjunction Connecting two Contracts with a

conjunction/disjunction

1.0/0.0

HasMatchingConditions The same Contract is used multiple times

to constrain the condition on both sides

0.7

ContextValuePasses The probability that the ContextValue

generated for a given condition will pass

1.0

Table 7.4: Condition Generation Parameters with Probabilities

if our system supports a total of four Contracts (divided evenly between two
Contexts) we might have the two conditions:

{ Std.Compare(A.A1(), ">", 5) && Std.Compare(A.A1(), "<", 1000) &&

Std.Compare(B.B1(), ">=", 200) &&

Std.Compare(B.B1(), "<", 3000) && A.A(A_2) && B.B(B_1); }

{ Std.Compare(A.A1(), ">", 5) && Std.Compare(A.A1(), "<", 10) &&

Std.Compare(B.B1(), ">=", 200) &&

Std.Compare(B.B1(), "<", 259) && A.A(A_2) && B.B(B_1); }

The first condition will likely consider a much larger subset of the message
space than the second. This first condition will likely result in the dispatch
of a greater number of network messages. Thus, the specificity of requests is
important to consider as it can impact the scalability of the network.

The specificity of requests is controlled by a number of parameters. Through
the combination of the RangeSpecificity and PercentOfContracts parameters

7.3. Context Modelling 128

Parameter Description Default Value

RangeSpecificity How constrained the range should be for each Contract. 0.5

PercentOfContracts The percentage of the available contracts to be included

in the condition

0.5

Force&&Joins Logical Blocks: All Contracts are connected with

conjunctions.

Quantification Blocks: All blocks must be ∀

false

ForceMatchingContracts Each Contract must be used multiple times to constrain

it on both sides

false

ForceSingleBlock All Contracts specified within a single block false

ContractsInEachBlock Each block contains every contract from the set

generated for the PercentofContracts parameter

false

Table 7.5: Message Request Parameters with Default Values

it is possible to broaden or reduce the volume of the hyper-rectangle created
for a condition. Reducing the percentage of contracts included in each request
necessarily broadens the hyper-rectangle as the dimensions representing any
missing contracts will need to be fully unbounded. Increasing range specificity
will reduce the bounds of the contracts supported. In our examples above,
the first condition has very open bounds for the A.A1() and B.B1() Contracts;
whereas the bounds of the second condition are much more restricted. The
ForceMatchingConditions parameter can be used to restrict the index dimen-
sions of each Contract further.

The remaining parameters allow you to increase specificity in a number
of ways. Force&&Joins ensures that all of the Contracts within a block are
connected using conjunctions, with the benefit being that this block will result
in a single spatial index containing all available constraints. If disjunctions
were permitted these constraints could be divided between multiple spatial
indexes.

ForceSingleBlock ensures that all Contracts are within a single block. This
can result in simpler conditions which require fewer spatial indexes to repre-
sent. If you wish to allow multiple blocks within a condition but still enforce
specificity within each block the ContractsInEachBlock parameter can be used.

7.4. Simulation 129

7.4 Simulation

We use the PlanetSim [3] network simulator to carry out simulations of our
system. PlanetSim is a discrete-event simulator, meaning that simulations are
measured using discrete steps independent of time. The number of steps to
run depends on the measure of time a step represents and also depends on
the application being simulated. For our application each step is modelled as
a second in real time and we have chosen to run our simulations for a total of
43,200 steps each, which equates to 12 hours in real time.

A 12 hour simulation time is appropriate as it covers what we perceive to be
the “active” hours of an average individual; leaving for work at approximately
8 AM and returning home at 8 PM or before. The remaining time is usually
spent at home where a context-aware service is probably only used sparingly.
The mapping of one step to a second seems appropriate as the amount of work
each node performs on each step tends to equate to what we would intuitively
expect a node to be able to process in one second.

PlanetSim has a tiered architecture, consisting of three layers:

Network Layer Responsible for modelling the behaviour of the underlying
network.

Overlay Layer Provides an interface for implementing overlays which oper-
ate over the Network. The interface used is proposed in [26] and its use
within PlanetSim is discussed in detail in [3].

Application Layer Represents the actual application which leverages the
underlying overlay for network connectivity. The PlanetSim documen-
tation includes an implementation of the SCRIBE event notification in-
frastructure [75] which sits atop the Pastry overlay.

Each layer contains callback methods which are called by the layer below
when an event occurs. For example, the deliver(key, msg) method of the
Application layer is called by its associated Overlay node whenever a message
is received.

Our implementation only uses the Application layer, using the Network
and Overlay implementations provided by the PlanetSim team. The overlay
used for all simulations is Pastry [76]. Pastry is an appropriate choice because
it takes the geographical proximity of nodes into account when building the
routing table. Nodes in our middleware bind to nearby nodes as part of the
protocol; thus the Pastry overlay will ensure that network messages reach their
destination in a small number of hops.

A MediateSpace node (either Participant or Regional) is injected into each
Application layer node within the simulated network, and any messages re-
ceived are forwarded to our node via the tupleInsert(content, routeComplete)
method discussed in Section 7.2.2.3.

7.4. Simulation 130

Network Layer

Overlay Layer

Application Layer

MediateSpace Node Layer

process(stepNum)

deliver(id, msg)
byStep()

routeData(to, nextHop, msg)

tupleInsert(content, routeComplete) offerTuple(to, from, content)

tupleInsert: Insert a received msg into the
 MediateSpace node tuple space

offerTuple: Insert Tuples into the Network

deliver: Deliver a msg from the network

byStep: A New Network Step has occurred

routeData: Routes msgs through the overlay
 to a destination node

process: A new network step has occurred -
 inform the nodes in the overlay

Method Summaries:

Figure 7.7: Communication between PlanetSim Layers and MediateSpace Nodes

PlanetSim represents node addresses within the network using NodeHandle
objects. Our SimulationRunner class provides maps for converting between
our numeric node id’s and PlanetSim NodeHandles and vice versa.

Figure 7.7 summarises the PlanetSim architecture and how our MediateS-
pace application communicates with it.

There are a number of parameters that can be specified to modify the
behaviour of the simulator. These are summarised in Table 7.6.

7.4.1 Achieving Reproducibility

The simulation process requires the generation of a large number of random
values which are obtained from a variety of different random number gen-
erators. These range from the uniformly distributed values obtained when
establishing a new node in the overlay to the Binomial values obtained during
condition generation. In order to ensure that our simulations are reproducible
we establish a master seed value which is specified as the seed of a uniform
random generator. This random generator is then used to generate initial
seeds for further random generators and so on until all generators have been
seeded. This method ensures that our simulations are reproducible while only
requiring us to specify a single master seed value.

7.4.2 Collecting and Processing Statistics

Statistics are recorded for every node in the network, with both “counter” and
timing data collected. Timing data reflects the length of time in milliseconds
that a specified task takes to complete whereas “counter” data represents
the number of times a specified event occurs or type of message is received.

7.4. Simulation 131

Parameter Description

NumSteps The number of steps to run the simulator for

InitialSeed The seed used to initialise the random number generator

NumMsgs The number of messages that each participant should insert into the

network upon first joining

MaxRegionalNeighbours The maximum number of Regional neighbours a Regional Node can have.

MaxParticipantNeighbours The maximum number of Participant neighbours a Regional Node can

have.

MaxContextDistance The maximum geographical distance that a request for context information

can travel from the originating node

Location Min/Max X/Y The min and max X and Y values of the geographical space inhabited by

nodes. These values represent the total area of the geographical space

(a) Basic Parameters

Parameter Description Default Value (secs)

AckPeriod The period of time between the dispatch of

acknowledgement messages into the network. By

adding a slight delay several acknowedgements can

often be combined to reduce network traffic

2

RetransmitDelay The delay between a message being transmitted

into the network and it being retransmitted if an

acknowledgement has not been received

8

ContextValueExpiryTime The amount of time a ContextValue tuple should

remain valid

300

MsgMatchDispatchDelay The delay between issuing requests for Context

Values and performing message evaluation. This

delay allows required ContextValue tuples to be

received before proceeding with message evaluation

3

(b) Timing Parameters

Table 7.6: Simulator Parameters

7.4. Simulation 132

Counter data is associated with the step on which the event occurred and this
data can be aggregated, which gives flexibility over analysis.

Variables are represented in a tree structure, allowing higher level variables
to base their collection partially or completely on an aggregate of the values
held by one or more lower level variables.

We also divide all counter collections by origin of message. Specifically, each
variable distinguishes between messages created locally and messages created
by an external node.

Figure 7.8 provides a complete list of the variables considered, along with
their structure. We are measuring the time it takes to receive both first
and last replies for requests where appropriate because this will allow us to
measure both the length of time it takes before a user receives any feedback
for a request and the length of time until the request has been completely
fulfilled.

7.4.3 Experimental Models

The modelling of behaviour is important to governments and industry as it al-
lows them to make predictions about future events and behaviours. For exam-
ple, weather forecasting is achieved through the modelling of weather patterns
and insurance companies use modelling to calculate the premiums customers
have to pay. These experimental models are often based on probability dis-
tributions which have been found to reflect the empirical data available for
the area discussed. To ensure that our simulator is as realistic as possible we
model the following:

• Human mobility
• Timings of Message Requests

We briefly discuss the Poisson distribution which until recently was used
to model many types of behaviour. We discuss the assumptions which under-
pin the model and discuss why it should not be used as a model within our
simulation. We then proceed to discuss alternatives for each of the required
models.

7.4.3.1 Problems with the Poisson Distribution

The Poisson distribution allows us to determine the probability of a particular
event occurring k times within a given time-frame provided we have an ex-
pected frequency of events within this time-frame. Although useful to model
a number of physical phenomena this distribution makes a number of as-
sumptions which render it inaccurate in many cases; namely it assumes the
properties of “independent and stationary increments”.

The independent increments property stipulates that events are indepen-
dent. That is, the probability of an event occurring at any given time cannot
be influenced by past events. The number of children born each day worldwide

7.4. Simulation 133

NumTuples...Num Tuples Created and Num Received

NumContextTuples

NumConcreteContextTuples

NumContextRqstTuples

NumContextValuesTuples

NumMsgTuples

NumMsgMatchTuples

NumMsgRqstTuples

NumTuplePackages

NumSignalTuples

NumBindTuples

NumBindRejectTuples.........Rejecting Bind as Already Bound to Max Number

NumBindRejectParticipants................Rejections to/from Participants

NumBindRejectRegionals.......................Rejections to/from Regionals

NumBindRequest............................Num Bind Requests Created/Received

NumBindRequestParticipants

NumBindRequestRegionals

NumBindReply..................................Signifies a Successful Bind Attempt

NumBindReplyParticipants

NumBindReplyRegionals

NumUnbindTuples

RetransmittedMsgs.........Msgs have been Dropped and Retransmitted from this Node

DuplicateMsgs.......................................Number of Duplicate Msgs Received

NumAcks..............................Number of Msg Receipt Acknowledgements Received

(a) Counter Variables

MsgLookup..Evaluating Msg Rqsts (OWL Reasoner)

ConcreteContextMatch...Details of Participants Supporting a Context (Section 7.2.6.1)

ContextRqstResponse.........................Waiting for a Response to a Context Rqst

MsgRqstFirstResponse............................Waiting for a Response to a Msg Rqst

MsgRqstLastResponse......................Waiting for the Last Response to a Msg Rqst

MsgRqstFirstMsgReceipt..............Waiting for the First set of Msgs for a Msg Rqst

MsgRqstLastMsgReceipt................Waiting for the Last set of Msgs for a Msg Rqst

(b) Timing Variables

Figure 7.8: The Variables Considered within our simulation

7.4. Simulation 134

does not satisfy this property as the probability of child birth will be affected
whenever birth occurs.

The stationary increments property stipulates that the number of events
which occur in any time interval should depend only on the length of said time
interval. This assumes that the rate of event occurrence does not change. The
number of customers entering a shop each hour would probably not satisfy
this property as there is often a busy period such as lunchtime.

7.4.3.2 Modelling Human Mobility

The MediateSpace system is used to lookup and retrieve messages based on the
user’s current context, and it is anticipated that our system will be installed
on mobile devices such as mobile phones and tablet computers. Thus, in order
to ensure valid simulation results we must model user mobility and represent
user location within the simulation. We now discuss a number of models which
we have applied to our simulations. Each of the discussed models is expressed
precisely below:

P (x) =
e−λλx

x!
(7.2)

Poisson Distribution

P (x) ∝
1

xα
(7.3)

Zipf Distribution

P (rg) =
(

rg + r0g
)−βr

exp (−rg/K) (7.4)

Barabasi’s Radius of Gyration

P (T) = T −α (7.5)

Power Law

Research by Barabasi [6] has found that many behaviours are better mod-
elled as “bursty”, with a flurry of activity followed by a long period of no
activity. Among the behaviours seen to exhibit this distribution are E-Mail
sending, web browsing, phone calls, human and animal sleeping patterns and
even Darwinian Evolution [7]. This suggests that the Poisson distribution is
inadequate when modelling these kinds of behaviours, and that it can be much
more usefully modelled as a power law, which accounts for the outliers result-
ing from this bursty behaviour. Barabasi [6] suggests that this behaviour may
be explained by an innate tendency to prioritise our activities into a priority
queue, which will result in most of our activities being completed quickly - but
with outliers caused by low priority activities which stay within our internal
queue for extended periods.

Barabasi et al. [42] discovered that patterns of human mobility also follow
a power law, with the vast majority of individuals restricting their movements

7.4. Simulation 135

to a small area and only a few travelling large distances on a regular basis.
Interestingly, it was found that this difference in mobility had little effect on
the predictability of their movements. More specifically, they found that each
individual has a representative radius of gyration which dictates the distances
they travel, and that the probability of an individual having a certain radius
follows the truncated power law in Formula 7.4 with parameters r0g = 5.8 km,
βr = 1.65 ± 0.15 and K = 350 km.

Barabasi et al. also discovered that people tended to frequent between 5 and
50 unique locations and that when ranked by number of visits the probability
of finding an individual at a location L can be approximated as P(L) ∼ 1/L
independent of the number of locations. Interestingly, this means that with
high probability we will find any individual at one of their top-two locations
40% of the time. This property can be modelled using a zipf distribution
(illustrated in Formula 7.3) with parameter α = 1.

Wang, Han and Wang [88] found that people tend to stay at locations for
quite long periods, reporting a staying time distribution which follows a power
law with α = 1.98.

These observations have been applied to our mobility model in the following
ways:

• Each user within the simulation is allocated a radius of gyration (G)
taken from the distribution given in Formula 7.4.

• Each user is also randomly allocated a number of unique locations (taken
from the set { 5, 10, 30, 50 }). The first location is generated by moving
G units in a random direction within the two-dimensional location grid.
The remaining locations are generated in the same way, always starting
at the previously found new location.

• Each time a user changes position they obtain a staying time in seconds
from the power law distribution in Formula 7.5 (with α = 1.98).

However, we also wish to distribute users realistically within the geograph-
ical space. Research by Newman [65] has found city sizes follow a zipf dis-
tribution (Formula 7.3 with parameters α = 2.30 and xmin = 40000), so we
elected to calculate the bounds for 50 cities on our geographical grid and to
distribute users to these cities in proportion to city size i.e. the larger the
city, the more people present within it. Each user is given a random location
within their chosen city.

Subfigures 7.9b and 7.9c show an example of a network generated using
the above models. Subfigure 7.9a shows a network generated using a uniform
distribution for comparison.

We use the powerlaws2 and zipf3 libraries to generate probability distribu-
tions for use during the construction of user models.

2https://github.com/Data2Semantics/powerlaws
3http://diveintodata.org/2009/09/13/zipf-distribution-generator-in-java/

7.4. Simulation 136

Participant NodeRegional Node

(a) 500 Node, Uniformly Distributed

Participant NodeRegional Node

(b) 500 Node, Zipf Distributed (50 cities)

(c) Visualising the generated cities of Subfigure 7.9b

Figure 7.9: Examples of Simulated Networks

7.5. Benchmarking Condition Evaluation 137

7.4.3.3 Modelling Network Request Timings

Our system allows users to issue requests for messages into the network. The
number of requests and the delay between these requests must be modelled
accurately to ensure that the results of any evaluation are valid. To model
this behaviour we return again to the work of Barabasi [6] who documented
the “burstiness” of many aspects of human activity. This pattern of regular
activity interspersed with periods of inactivity has been found to hold true for
a variety of message sending behaviours including E-Mail, instant messaging,
job submissions on a supercomputer and FTP requests. We believe that valid
comparisons between these activities and the task of issuing message requests
into our network can be made so have chosen to model message requests as
bursty in nature.

Message request times for each user are derived from the power law proba-
bility distribution specified in Formula 7.5 (with parameter α = 2). After issu-
ing a request each user retrieves a delay in seconds from the distribution. The
user will not perform any further requests until this delay has passed. Users
will continue this pattern until the maximum number of simulation steps has
been reached. Thus, the number of requests per user will vary depending on
the lengths of delay each user encounters.

7.4.3.4 Alternative Approaches

An alternative approach to mobility modelling could be to use data traces such
as those provided by the MIT Reality data set [31]. These sets provide mo-
bility data taken periodically from the mobile devices of real users. The main
advantage of this approach is that provided the data was collected correctly
we can be sure that the model is accurate. In addition, the model provides a
history of user movement which is necessary when evaluating certain types of
algorithm such as those used in pocket-switch networks. The disadvantages of
this approach are that they limit the number of nodes to the number of indi-
viduals surveyed and that the data sets are finite, and thus can only be used
to model relatively short periods of time. Although a trace driven approach
could have been used to conduct our simulations, we chose a mathematical
model because it gives us the flexibility to run additional simulations of arbi-
trary length, it does not restrict the number of nodes and our algorithm does
not depend on movement history.

7.5 Benchmarking Condition Evaluation

Our contextual conditions are evaluated using the FaCT++ OWL reasoner.
In order to assess the efficiency of this reasoning process we have used the

7.5. Benchmarking Condition Evaluation 138

JMH benchmarking framework4 which is created and maintained by the team
responsible for the Java Just-in-Time (JIT) compiler. JMH makes it straight-
forward to benchmark code by providing a number of annotations to be applied
to the fields and methods used during the benchmarking process.

In this section we first discuss the benchmarking process and the many
issues which need to be dealt with to obtain valid results. We then discuss the
specifics of what we have chosen to benchmark and discuss the parameters we
provide to each invocation.

7.5.1 The Benchmarking Process

Obtaining valid benchmarks can be a complicated process, particularly when
dealing with an optimising JIT virtual machine such as the JavaVM. Execu-
tion will always be slower at the beginning because the processor caches need
to be populated and the JavaVM needs to complete its first stage of profil-
ing in order to apply optimisations to sections of commonly executed code.
JMH eliminates the effects of a slow start by executing the benchmarked code
a number of times before starting to record execution times. These are the
warmup iterations and the number to run can be set via command line or
within the benchmarking class.

Once the warmup iterations have been completed the benchmark is exe-
cuted a defined number of times and a summary of these iteration times is
given. Possible summary information includes the throughput (number of
times a method can be executed in a time period) and an average runtime.
By performing a number of iterations JMH can obtain a more realistic indi-
cation of performance because the final result can account for the inevitable
slight variance in runtime. It can also help to negate any unrepresentative
iteration times caused by an uncontrolled variable such as an operating sys-
tem maintenance cycle; although if at all possible these variables should all
be controlled.

The above process is duplicated a number of times within different forks of
the JavaVM. By executing sets of iterations in different forks we can obtain a
significant number of timing data points without profiler problems.

We now move on to discuss what we have chosen to benchmark and how
we overcame the potential pitfalls inherent in benchmarking.

7.5.2 Benchmarking the Reasoner

In order to assess the efficiency of condition evaluation we have run two types
of benchmark:

• Ontology Loading and Reasoner Initialisation
• Message Evaluation

4http://openjdk.java.net/projects/code-tools/jmh/

7.5. Benchmarking Condition Evaluation 139

We originally ran benchmarks which first loaded and initialised the ontology
and then performed evaluation. However, we noted that the time it took to
load our ontology into the reasoner was often considerable and may have a
significant impact on our evaluation times. Thus, we decided to split the task
into two separate benchmarks.

Before we discuss the specific details of our benchmarks we shall discuss
the parameters of our code and the benchmarking framework.

7.5.2.1 Benchmark Parameters

Both benchmarks had a number of parameters which were specified at the
command line. The JMH framework also accepts a number of parameters.
These parameters are summarised in Table 7.7.

Each time a benchmark is run the two most important parameters are
num-msgs and data-index. num-msgs indicates the number of messages to be
loaded/evaluated by the reasoner during benchmarking, whereas data-index
represents the class of data to be used. Data classes refer to a list of con-
text generation parameters which define the complexity of the conditions the
reasoner will be operating on. Context modelling and the context generation
parameters are discussed in detail in Section 7.3. For example, we have a class
of conditions labelled “expected-0.5” which consists of conditions generated
from expected values with a skew of 0.5.

The JMH framework parameters specify the number of forks, number of
warmup iterations and number of actual iterations. JMH also allows the
specification of a number of profilers which output statistics about some facet
of execution after each iteration. We chose to use garbage collection, JVM
runtime and Java stack profilers to give us additional information about the
execution.

7.5.2.2 Potential Pitfalls

The Java compiler (javac) performs optimisations during compilation. Or-
dinarily these optimisations are very welcome but they can cause problems
when benchmarking [68]. For instance, javac will remove redundant code (i.e.
code that is never executed or in the case of methods whose return values are
never used). When benchmarking, classes and methods are often executed
in isolation from the rest of their application as we wish only to benchmark
a specific behaviour. This can result in method calls having no side effects
outside of the method itself and having unused return values.

To ensure that the compiler does not optimise out these method calls we
must ensure that the return value is always used and that the compiler cannot
deduce the return value and replace the call with it at compile time. If a
method is called n times within a loop, where n is decided at run-time (as in
our code) a straightforward way of ensuring that this optimisation does not

7.5. Benchmarking Condition Evaluation 140

Parameter Meaning

msg-space Disk location where the msg tuples to be evaluated can be found

context-space Disk location where the Context tuples used within msg conditions can be found

context-value-space Disk location where the Context Value tuples for each msg can be found

num-msgs The number of msgs that should be loaded/evaluated

data-index The index representing the class of data to generate

(a) Benchmark Code Parameters

Parameter Meaning Value

forks The number of forks to perform 10

warmups The number of warmup iterations to perform per fork 15

iterations The number of actual iterations to perform per fork 20

(b) JMH Framework Parameters

Parameter Meaning

gc, hs gc Standard and implementation specific garbage collection profiling

hs rt Implementation specific runtime profiling

stack naive Java stack profiler

(c) JMH Framework Profiler Parameters

Table 7.7: Benchmark Code and JMH Framework Command Line Parameters

7.5. Benchmarking Condition Evaluation 141

occur is to modify a variable with each call to the method. For instance, if
the return type is numeric, the return value could be added to the variable
on each return. In our case, the benchmark methods return booleans and we
perform a logical disjunction on our variable upon each return.

Care must also be taken to ensure that different benchmarks are executed
within different instances of the JVM. This is because the JIT compiler opti-
mises the code during runtime to perform as efficiently as possible based on
the history of execution. Thus, if several benchmarks are run in sequence the
JVM may have already optimised for a previous benchmark and the results
for the new benchmark may be unrepresentative.

7.5.3 Experimental Setup

All benchmarks were run on the University of Sussex HPC Bright Cluster
using the Univa Grid Engine (UGE) batch system. The cluster runs Scientific
Linux release 6.4. All jobs were submitted to the queue for a 12 core node
containing two Intel X5650 processors with approximately 48 GB of RAM.
Although the benchmarking software is single-threaded, we reserved all 12
cores to ensure that our benchmarking results could not be affected by the
execution of other jobs.

The benchmarks were run on the OpenJDK Virtual Machine (version 1.7.0.51
x86 64) with 30 GB of heap space allocated at startup and 1 GB of stack
space. We allocated a 30 GB heap at startup to ensure that the benchmarks
would not be affected by heap resizing operations during execution. A 1 GB
stack is allocated because our system can produce very large trees to represent
complex conditions, and these need to be traversed.

Version 1.6.2 of the FaCT++ Reasoner is used, with the JNI bindings
compiled locally for the Linux Operating System.

7.5.3.1 Common initialisation

Both benchmarks perform the same initialisation prior to each invocation of
our benchmark method. This involves re-initialising the tuple spaces and
reasoner to ensure that each inovation starts with a clean slate. In addition,
all of the generated Context tuples and num-msgs messages are loaded into
their tuple space.

A ContextValue tuple is generated for each Contract within each condition
so, depending on the complexity of the conditions this could result in the
generation of a large number of ContextValues. We load a single ContextValue
for each possible Contract and choose these ContextValues randomly to ensure
that message evaluation is as representative of real use as possible.

7.6. Summary 142

7.5.3.2 Ontology Loading and Reasoner Initialisation

This benchmark measures the amount of time it takes to perform all of the
following tasks:

• Load the Manchester OWL code for every tuple into the reasoner,
• Build and insert into the ontology the i full context individual,
• Preprocess the ∃ statements.

The i full context individual represents the full contextual state at the time
of creation. That is, it represents all of the ContextValue tuples in the space.
This individual and the preprocessing of ∃ statements is discussed in detail in
Sections 6.5.3 and 6.5.2.6 of Chapter 6.

7.5.3.3 Message Evaluation

As discussed above, we observed that reasoner initialisation times tend to
be considerable so any message evaluation results which are not measured
independently of initialisation tend to be masked by initialisation times.

Thus, in order to accurately measure execution times, in addition to the
common initialisation discussed in Section 7.5.3.1 we initialise the reasoner
once at the beginning of the benchmarking process and cache the resulting
ontology so that it can be used for all future iterations without needing to
reprocess it. This ontology is loaded into the reasoner prior to each invocation
to ensure that we are only measuring message evaluation.

Message evaluation is performed simply by obtaining a list of all Messages
in the tuple space and evaluating each one in turn. The benchmark ends when
all messages have been evaluated.

7.6 Summary

In the preceding chapter we first provided an overview of the implementation
of our MediateSpace system, which included a discussion of the interfaces we
have defined for communication with the network. We then explained our
methodology for modelling contextual conditions and defined the parameters
used to control the complexity of these conditions. The third section concerned
the simulation of our system, summarising the PlanetSim simulator, describ-
ing our method of gathering statistics and discussing the models of human
mobility and network activity we used to make our simulation more realistic.
Finally we discussed our benchmarking methodology, including a description
of the JMH benchmarking framework, some potential pitfalls of benchmark-
ing and our specific setups for the benchmarking of reasoner initialisation and
condition evaluation.

7.6. Summary 143

The following chapter presents the results of our evaluation, offers some
recommendations for optimal use of the system and considers several potential
improvements.

8 Results

8.1 Introduction

This Chapter presents the results of our system evaluation. Specifically, we
have evaluated the system along three dimensions:

Network analysis through simulation We used the PlanetSim network
simulator to analyse patterns of message exchange and response times.

Contextual Condition evaluation times We have measured the execu-
tion times for a number of different classes of contextual condition using
the JMH benchmarking framework.

Properties of the spatial indexing algorithm We have generated spatial
indexes for a number of different classes of condition and have discussed
how these classes affect the number of generated indexes.

We begin by describing the condition classes we have defined for evaluation
and then proceed to discuss our system in terms of each of the dimensions
listed above.

8.2 Condition Classes

We defined a number of condition classes that each exhibit an aspect of the
contextual language that we wished to evaluate. We now briefly describe each
of these classes in the following subsections.

8.2.1 Expected

This class represents the conditions we expect to be representative of those
used in real deployments. All of the “expected” parameters in Table 7.3
are used with this class. Each parameter is fed into a binomial distribution
in the manner described in Section 7.3.1. The resulting distributions are

144

8.3. Condition Evaluation Benchmarks 145

used to select the actual values used during data generation. The use of a
binomial distribution allows us to make random choices for each parameter
while ensuring that a given value is the most likely to be chosen. We provide a
“skew” parameter in the range [0.0, 1.0] that allows us to shift the distribution
to make either larger or smaller values more likely. This is discussed in more
detail in Section 7.3.1.

8.2.2 Expected Restricted

This class is similar to the above but with the difference that each Contract
will have zero parameters and ∃ blocks are not permitted. This allows us
to very significantly reduce the number of ContextValue tuples required to
evaluate a condition and to eliminate the ∃ preprocessing step during reasoner
initialisation respectively. The purpose of this class is explained further in
Section 8.3.1.4.

8.2.3 Num-Conds-And and Num-Conds-Or

These classes restrict conditions to using conjunctions or disjunctions respec-
tively, allowing us to illustrate the different effects that these operators have
on our system. For instance, when a Message is processed for insertion into the
Message tree the use of disjunctions will result in the generation of additional
spatial indexes whereas the conjunction will not.

8.2.4 Exists-N-Div-2-N and Exists-1-To-N

The Exists-N-Div-2-N class generates conditions consisting only of ∃ blocks
with an ExistsDivisor of 2. This generates blocks of the form: ∃ (n/2, n)
where n represents the total number of Contracts in the block. Exists-1-To-N
also generates only ∃ conditions but has an ExistsDivisor of 0. This is a special
case and results in each block having the form: ∃ (1, n). These classes can
be used to establish the effects of different Min and Max parameters to the ∃
statement.

The classes are summarised in Table 8.1 using the parameters defined in
Section 7.3 and examples from the generated test data for each class are given
in Figure 8.1.

These classes were used extensively during the evaluation process.

8.3 Condition Evaluation Benchmarks

As discussed in Chapter 7 we performed benchmarks on our contextual condi-
tions using the JMH benchmarking framework. 15 warmup iterations and 20
actual iterations were run for each benchmark, and this process was repeated

8.3. Condition Evaluation Benchmarks 146

Set Parameters Value

expected ExpectedSkew {0.15, 0.3, 0.45, 0.5, 0.6, 0.75, 0.9}

expected-restricted NumContractParameters 0

∀Blocks 1.0

ExpectedSkew {0.15, 0.3, 0.45, 0.5, 0.6, 0.75, 0.9}

num-conds-and NumBlocks 1

NumContractsPerBlock {1, 2, 4, 8, 16}

Conjunction/Disjunction 1.0/0.0

num-conds-or NumBlocks 1

NumContractsPerBlock {1, 2, 4, 8, 16}

Conjunction/Disjunction 0.0/1.0

num-contexts NumContextTypes {4, 8, 16, 32}

NumContractsPerContextType {4, 8, 16, 32}

exists-n-div-2-n NumBlocks 1

QuantificationBlocks 1.0

∀Blocks 0.0

NumContractsPerBlock {1, 2, 4, 8, 16}

ExistsDivisor 2

exists-1-to-n NumBlocks 1

QuantificationBlocks 1.0

∀Blocks 0.0

NumContractsPerBlock {1, 2, 4, 8, 16}

ExistsDivisor 0

Table 8.1: Condition Classes

8.3. Condition Evaluation Benchmarks 147

{ Std.Compare(platycoria.dolomedes(false), "==",83378.016); }

Listing (8.1) Expected, Skew = 0.15

{

Std.Compare(extortioner.makhzan(-49,8.7,-27,1.7), "<",63.4)
&&

Std.Compare(extortioner.makhzan(-49,8.7,-27,1.7), "<",8.83)
&&
Std.Compare(newspaperese.organosol(8.74,1.9,true), ">=",27.88)
&&
{

Std.Compare(extortioner.makhzan(-49,8.7,-27,1.7), ">=",38.2);
};

}

Listing (8.2) Expected, Skew = 0.5

{
Std.Compare(newspaperese.decernment(), "==",true)
&&

Std.Compare(precentorial.wungee(), "==",true)
&&

Std.Compare(inthronization.antitabloid(), "==",false)
&&
unnewness.unnewness(unnewness_1);

}

Listing (8.3) Expected Restricted, Skew = 0.5

{
Std.Compare(unnewness.alfonso(2.8,true,10/02/2051), "<",18.25)
&&

Std.Compare(unnewness.syriac(-15,96), "==",93)
&&

Std.Compare(precentorial.wungee(false,false,16), ">=",14/09/2032)
&&

Std.Compare(unnewness.syriac(-15,96), "<",94.1);
}

Listing (8.4) Num-Conds-And, NumContractsPerBlock = 4

{
Std.Compare(unnewness.alfonso(2.8,true,10/02/2051), "<",18.25)

||

Std.Compare(unnewness.syriac(-15,9), "==",93.6)

||

Std.Compare(precentorial.wungee(false,false,16), ">=",14/09/2032)

||

Std.Compare(unnewness.syriac(-15,9), "<",94.1);
}

Listing (8.5) Num-Conds-Or, NumContractsPerBlock = 4

{ exists (2, 4) platycoria.platycoria(platycoria_1),

Std.Compare(precentorial.zoogonic(78,46,true), "==",true),
Std.Compare(unnewness.alfonso(2.8,true,10/02/2051), "<",1.25),

Std.Compare(platycoria.cadmopone(true,01/10/2078), ">",12);
}

Listing (8.6) Exists-N-Div-2-N

{ exists (1, 4) precentorial.precentorial(precentorial_0),

cairned.cairned(cairned_1),

Std.Compare(platycoria.xylophagus(-27,true), ">",85),

inthronization.inthronization(inthronization_1);
}

Listing (8.7) Exists-1-To-N

Figure 8.1: Condition Class Examples

8.3. Condition Evaluation Benchmarks 148

Summary Stats Min, Arithmetic Mean, Max, Standard Deviation, 99.9% Confidence Interval

Memory Management Free Memory, Max memory, Total Memory, GC execution times, GC

generation info, Misc implementation- specific GC properties

System Num Context Values, Num Contexts, Num Exists Blocks

Table 8.2: Data Collected for each Benchmark

in 10 forks of the Java Virtual Machine. Thus, we collected a total of 200 data
points per benchmark.

Two types of benchmark were executed:

Ontology Loading and Reasoner Initialisation Measures the time required
to load the full ontology into the reasoner, build and insert the i full context
individual and preprocess ∃ statements (see Sections 6.5.3 and 6.5.2.6
respectively)

Message Evaluation Measures the time taken to evaluate all loaded Mes-
sages

Each benchmark accepts two main parameters:

• A condition class
• The number of Messages to evaluate

For each condition class a benchmark is executed multiple times with an
increasing number of Messages specified each time. This allowed us to observe
how the number of Messages affects timing, memory usage and other aspects
of our system.

A significant amount of additional data is generated during the execution
of each benchmark. These are summarised in Table 8.2.

We make no attempts to use regression analysis to fit our data to a family
of curves as the number of data points is insufficient for this to be meaningful.

We discuss our findings in the following sections. Please note that in all
timing graphs the Y axis units are specified in seconds for initialisation times
and milliseconds for evaluation times. These graphs also present the standard
deviation for each data point. In most cases these are very small.

8.3.1 Expected Values

This section discusses our findings for the expected data set. We have evalu-
ated our data in terms of initialisation time, Message evaluation time, memory
consumption and other factors.

8.3. Condition Evaluation Benchmarks 149

8.3.1.1 Initialisation

Figure 8.2 presents initialisation times with all possible skews. Initialisation
times rise as the skew is increased and drop as the skew is decreased. This is
the expected result as increasing or decreasing the skew results in the creation
of more or less complex conditions respectively.

The expected-0.5 dataset represents the collection of conditions without
skew - i.e. these conditions have the properties that we would expect condi-
tions to have during deployment. The initialisation time for this set is reason-
ably fast when evaluating up to 120 messages, taking 5.62 seconds. However,
this time increases at a non-linear rate and soon becomes prohibitive. When
initialising 500 messages evaluation takes nearly two minutes and just over
nine minutes when initialising 1000 messages. A similar pattern can be seen
for all the other “expected” sets, with the curve becoming steeper as the skew
increases.

8.3.1.2 Message Evaluation

Our evaluation benchmarks determine the amount of time required to eval-
uate all of the loaded Messages. We then divide this value by the number
of Messages to obtain the average amount of time per Message, with the as-
sumption that each Message takes the same amount of time to evaluate. These
results are presented in Figure 8.3. Again, the timings vary appropriately de-
pending on the value of the skew parameter and the curves are non-linear
and increase in steepness with the skew value. Evaluation times are reason-
able, with expected-0.5 achieving an evaluation time of about 1.4 seconds per
Message when 500 Messages are loaded into the reasoner.

8.3.1.3 Memory Requirements

The memory requirements for the expected condition class are quite steep,
requiring just under 8 GB of memory to store 2000 Messages with very simple
conditions. As expected, memory requirements get progressively steeper as
the conditions increase in complexity, and when the skew is 0.9 there is a
requirement of nearly 4 GB to represent just 200 Messages.

This steep requirement can be explained in part by the number of Con-
textValue tuples which need to be represented. However, as we later discuss
in Section 8.3.2.3 memory usage remains fairly high even when the number of
stored ContextValues is reduced significantly.

8.3.1.4 Context Values and ∃ Statements

We observed that the execution times closely followed the number of Con-
textValue tuples and ∃ statements loaded into the reasoner. This behaviour is
reasonable as the skew value has a direct impact on the number of Contracts

8.3. Condition Evaluation Benchmarks 150

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

Num Msgs

N
u
m

C
on

te
x
t
V
al
s

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

Num Msgs

T
im

e
(i
n
S
ec
s)

expected-0.15
expected-0.3
expected-0.45
expected-0.5
expected-0.6
expected-0.75
expected-0.9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

Num Msgs

M
em

or
y
(G

B
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

Num Msgs

N
u
m

E
x
is
ts

Figure 8.2: Expected Values Initialisation

8.3. Condition Evaluation Benchmarks 151

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

Num Msgs

T
im

e
(i
n
m
il
li
se
co
n
d
s)

Expected Reasoner Eval

expected-0.15
expected-0.45
expected-0.5

Figure 8.3: Expected Values Evaluation

generated for each condition and the expected number of parameters each
Contract within a Context will use. Contract parameter types are generated
according to the probability distribution given in Table 7.3 but parameter
values for each Contract within a condition are generated using a uniform dis-
tribution, meaning that all values are equally likely. Although ontology and
boolean parameters have a small number of possible values, Integer, Float,
Date and Time types have a very large number, making it unlikely that the
same value will be chosen more than once during condition generation. Thus,
an increase in the number of Contracts within each condition, and number
of parameters for each Contract will, with very high probability result in the
generation of a large number of ContextValue tuples in proportion with the
number of Messages. The increase in ∃ statements is a direct result of the
increase in Messages. We calculated the correlation between the execution
time and both number of Context Values and number of ∃ statements to
corroborate our claim. These are available in subtables 8.3a and 8.3b.

In order to eliminate the effect that Contract parameters and ∃ statements
have on execution times we created the expected-restricted condition class
which eliminates parameters and ∃ blocks from condition generation. We
discuss the effect of these changes in the following section.

8.3.2 Restricted Expected Values

Without parameters the number of ContextValues required to evaluate every
Message peaks at 32 for each expected class. This is because each data set

8.3. Condition Evaluation Benchmarks 152

Context Vals. ∃ Statements

expected-0.15 0.93 0.98

expected-0.3 0.96 0.95

expected-0.45 0.93 0.96

expected-0.5 0.95 0.97

expected-0.6 0.93 0.95

expected-0.75 0.92 0.94

expected-0.9 0.96 0.91

(a) Correlations with Init Execution Time

Context Vals. ∃ Statements

expected-0.15 0.99 0.94

expected-0.45 0.99 0.99

expected-0.5 0.99 0.99

(b) Correlations with Eval Execution Time

Context Vals.

restricted-expected-0.15 0.51

restricted-expected-0.3 0.24

restricted-expected-0.45 0.24

(c) Correlations with Init Execution Time

Context Vals.

restricted-expected-0.15 0.89

restricted-expected-0.3 0.37

restricted-expected-0.45 0.53

(d) Correlations with Eval Execution Time

0.15 0.3 0.45 0.75

200 33.69 59.57 66.29 72.89

300 30.07 65.01 72.68 78.91

400 40.35 69.53 76.58

500 37.69 69.14 80.88

1000 34.23 77.14 88.95 89.53

(e) % Increase Initialisation

0.15 0.45

200 35.29 86.5

300 51.19 91.27

400 57.45 93.66

500 65.2 95.18

(f) % Increase Evaluation

Table 8.3: Correlation and % Increase Data

8.3. Condition Evaluation Benchmarks 153

uses 8 Contexts, with 4 Contracts each; meaning that without parameters the
maximum number of ContextValues needed to represent all of the available
Contracts is 32. ∃ blocks are not created so the ∃ preprocessing step is unnec-
essary. This has a very noticeable effect on both initialisation and evaluation
times which we now discuss.

We note that this data set shows a far weaker correlation with number of
ContextValue tuples and ∃ statements than the “expected” data set; presented
in subtables 8.3c and 8.3d. This suggests that the following results are less
affected by the presence of the ContextValues.

8.3.2.1 Initialisation

Figure 8.4 presents the restricted-expected initialisation times. They are a
very significant improvement on the times exhibited for the expected class in
Figure 8.2. The speed improvement generally increases both as the number
of loaded Messages and as the complexity of said Messages increases. This
is demonstrated in Subtables 8.3e and 8.3f where the execution times are
compared via a percentage increase in speed.

8.3.2.2 Message Evaluation

Figure 8.5 presents the evaluation times. As with initialisation times, there are
tremendous speed increases of up to 95.18% when comparing the 0.45 classes
with 500 loaded Messages. As the complexity of Messages grow we begin to
see progressively steeper curves. However, in general evaluation scales well.
For example, we can evaluate conditions with a skew of 0.9 and a load of 500
Messages in approximately one-tenth of a second each.

8.3.2.3 Memory Requirements

The amount of memory consumed is reduced from that consumed by the
expected condition class, and the reduction increases as message complexity
increases. This seems reasonable as complex conditions tend to have a higher
number of Contracts within each condition and thus require a higher number
of Context Values. However, despite these reductions the memory consumed
remains fairly high. For example, to represent 2000 Messages with a skew of
0.3 we require over 8 GB of memory. This skew produces relatively simple
conditions so we might expect a lower memory consumption. When the skew
reaches 0.75 we require approximately 6 GB to represent only 1000 Messages.

This could result in scalability issues if the expected number of Messages
is high or unevenly distributed within the Regional nodes of the network.

We note that the drops in memory usage at the higher ends of the expected-
0.3 and expected-0.45 benchmarks are due to the execution of the Java garbage
collector.

8.3. Condition Evaluation Benchmarks 154

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
10

20

30

40

Num Msgs

N
u
m

C
on

te
x
t
V
al
s

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

50

100

150

200

Num Msgs

T
im

e
(i
n
S
ec
s)

expected-0.15
expected-0.3
expected-0.45
expected-0.75
expected-0.9

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

2

4

6

8

10

Num Msgs

M
em

or
y
(G

B
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
−1

−0.5

0

0.5

1

Num Msgs

N
u
m

E
x
is
ts

Figure 8.4: Restricted Expected Values Initialisation

8.3. Condition Evaluation Benchmarks 155

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

·104

0

50

100

150

Num Msgs

T
im

e
(i
n
m
il
li
se
co
n
d
s)

Expected Reasoner No Params Eval

expected-0.15
expected-0.3
expected-0.45
expected-0.6
expected-0.75
expected-0.9

Figure 8.5: Restricted Expected Values Evaluation

8.3.3 Number of Contexts

In addition to taking care with the number of parameters given to each Con-
tract we must also be mindful of the number of Contracts we provide. Aside
from the fact that an increase in the number of Contracts will lead to an in-
crease in the dimensionality of the distributed spatial index, it will also result
in an increase to the number of possible Contract Values. In addition, when-
ever a Context or ConcreteContext is defined it is represented in the ontology
to allow Regional nodes to lookup a list of bound Participants supporting a
given Context (see Section 6.5.1). Thus, the definition of many Contexts and
ConcreteContexts will increase the size of the ontology.

Figure 8.6 demonstrates that initialisation times increase when a larger
number of Contexts are used. Each data set produces n Contexts and n
Contracts within each Context. For example, numContexts-8 will produce a
total of 64 Contracts divided evenly between 8 Contexts. However, the effect
of introducing many Contracts can be minimal provided that the number and
types of parameter for each Contract is carefully considered.

8.3.4 ∃ Blocks

Figure 8.7 illustrates a possibly unforeseen implication of our ∃ preprocessing
algorithm in regards to initialisation time. As can be seen, exists1ToN condi-
tions tend to take longer to initialise than their existsN2 counterparts. This
is because exists1ToN conditions require fewer Contracts to pass in order for

8.3. Condition Evaluation Benchmarks 156

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

10

20

30

40

50

Num Msgs

T
im

e
(i
n
S
ec
s)

numContexts-4
numContexts-8
numContexts-16
numContexts-32

Figure 8.6: Number of Contexts

the ∃ block to succeed; and thus it is more likely that an ExistsResult individ-
ual will need to be created and added to the ontology. The ∃ preprocessing
algorithm is discussed in detail in Section 6.5.2.6.

This effect can be seen particularly prominently for existsN2-1 which ini-
tialises ∃ blocks of the form ∃ (0, 1). In this case, every condition will neces-
sarily pass and require the addition of new individuals to the ontology. These
results suggest that this addition to the ontology is significantly more com-
putationally expensive than Contract evaluation as existsN2-1 initialisation
times are approximately three times larger that existsN2-4 despite it requir-
ing the evaluation of four times as many Contracts per Message.

8.3.5 Conjunctions and Disjunctions

Figure 8.8 demonstrates that conditions using conjunctions take significantly
longer to initialise than conditions using disjunctions. This difference can-
not be affected by the number of context values or ∃ statements, or amount
of memory use as these are almost identical. The difference gets more pro-
nounced as complexity increases.

8.3.6 Conclusions and Recommendations

Because our language was transformed into OWL all results are intrinsically
linked to the performance properties of the OWL language and the utilised
reasoner, and thus it is not possible to precisely separate the characteristics of
our algorithm from the characteristics of said language and reasoner. Different

8.3. Condition Evaluation Benchmarks 157

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

50

100

150

200

250

Num Msgs

T
im

e
(i
n
S
ec
s)

exists1ToN-1
exists1ToN-2
exists1ToN-4
exists1ToN-8
existsN2-1
existsN2-2
existsN2-4
existsN2-8
existsN2-16

Figure 8.7: ∃ Block Initialisation

reasoner implementations are each likely better suited to a particular class of
problem, and these differences would impact our results. For example, in
Section 8.3.4 we found that FaCT++ is inefficient when inserting axioms into
an existing ontology. This may not be the case when using another reasoner.

However, despite these issues our evaluations did reveal a number of trends
and properties of the MediateSpace language:

• The complexity of Contracts has a very significant effect on the perfor-
mance and memory consumption of our algorithm as the introduction
of additional parameters and wide-valued data types result in a greater
number of potential ContextValues.

• The OWL representation of our language is quite verbose, resulting in
high overall memory consumption.

• Our implementation of the ∃ statement relies on the insertion of an
additional axiom to indicate that the statement passes. This resulted in
degraded performance for conditions with a small minimum parameter
because it increased the likelihood that the ontology would need to be
modified. The exact performance impact of this property depends on
the reasoner implementation used.

Based on the results and our above discussion we now make a number of
recommendations.

8.3.6.1 Context and Contract Definition

Care should be taken over the number of Contexts defined, the number of
parameters specified for each Contract and the data type chosen for each

8.3. Condition Evaluation Benchmarks 158

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

500

1000

1500

Num Msgs

N
u
m

C
on

te
x
t
V
al
s

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

50

100

150

200

Num Msgs

T
im

e
(i
n
S
ec
s)

numCondsAndOnly-4
numCondsAndOnly-8
numCondsOrOnly-4
numCondsOrOnly-8

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

2

4

6

8

10

Num Msgs

M
em

or
y
(G

B
)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

20

40

60

Num Msgs

N
u
m

E
x
is
ts

Figure 8.8: Conjunctions and Disjunctions Data

8.3. Condition Evaluation Benchmarks 159

parameter. When Contracts are defined with many parameters this increases
the number of different possible combinations of parameter values that can
be specified; and thus increases the number of potential ContextValue tuples.
Perhaps more important is the choice of parameter data type. If a data type
with a wide range of values is chosen, such as Integer or Double, this allows
the user to specify thousands of different values.

This could be remedied in a number of ways. These include:

• The introduction of more restricted data types (e.g. a Byte data type
that allows the representation of one of only 256 values),

• The implicit limiting of range by documenting a Contract with an al-
lowable range of values,

• The explicit limiting of range by allowing developers to specify con-
straints on a parameter enforced by the MediateSpace system,

• The removal of wide ranging data types from the language.

Of these options, we believe that the incorporation of more restricted types
and a mechanism for restricting value ranges are the most appropriate.

8.3.6.2 Memory Consumption

Memory consumption for even quite simple conditions is fairly high. Thus,
Regional nodes should be provisioned with an adequate amount of memory
to operate correctly and efficiently. The exact required amount of RAM will
depend on the application. Specifically, we should take notice of:

• The kinds of data held in Messages. For example, in our Geocaching
application most Messages will likely store a relatively small payload,
consisting of co-ordinates and textual information.

• The anticipated complexity of the contextual conditions.
• The Contexts and Contracts supported by the application (discussed in

detail in Section 8.3.6.1).
• The density of Regional nodes and the anticipated network load.

Attempts should also be made to reduce the verbosity of our OWL repre-
sentation.

8.3.6.3 Conjunctions and Disjunctions

Conditions using conjunctions take longer to initialise than conditions using
disjunctions. This should be taken into consideration when constructing con-
ditions, but their use cannot realistically be avoided in most cases.

8.3.6.4 ∃ Blocks

It is important to consider the effect that ∃ blocks have on initialisation time.
When the minimum parameter of a block is small it can result in a significant

8.4. Simulation 160

speed reduction because it becomes more likely that the ontology will need to
be modified to signify the success of the ∃ block.

In simple cases it would likely be more efficient to represent a condition
using only conjunctions and disjunctions. However, this method quickly be-
comes infeasible as the conditions grow extremely complex very quickly. This
is discussed in more detail in Section 5.3.2.6 and as part of the evaluation of
our spatial indexing methodology in Section 8.5.3.

An optimisation could be applied in the simple case where an ∃ block is
within the Exists1ToN class by halting the evaluation process when a single
Contract evaluates as true. This would work correctly as the block only re-
quires that one Contract passes, and the maximum parameter can be discarded
as it is equivalent to specifying a block with no upper bound.

8.4 Simulation

In this section we evaluate our distributed protocol through simulation.
Our simulation runs produce a number of different outputs for post-run

analysis, and a significant number of parameters are available which allow us
to manipulate the structure of the network and the complexity of the data
distributed within it. We will now briefly discuss the simulation output and
main parameters before moving on to discuss our findings.

8.4.1 Simulation Outputs

Our simulation produces a number of CSV files containing statistics for every
node in the network. This information includes the number of tuples cre-
ated and received for every type of tuple and response time data for message
requests, messages and context requests. We also retain a bind history for
all nodes; which consists of a record for each node of the number of nodes
it is bound to and the number of nodes that are bound to it. This record
is appended to each time the node changes location and hence performs a
rebind.

We also generate a graph representing the complete movement and binding
history of the network nodes. Binding relationships between two nodes are
represented as an edge between them. The graph is represented in the GEFX
XML format using the Gephi API. Each node and edge has an associated
“spell” of time that stipulates the period that it exists within the network.
Whenever a node changes its position its spell of time ends and it is replaced
with a new node whose time begins. The same is true for edges whenever
a binding changes. In this way we were able to construct complete histories
of movement and binding. We used the Gephi [8] network analysis tool to
observe the changes in the network over time and to produce several of the
graphs presented in this section.

8.4. Simulation 161

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

Network Ratio

S
ec
on

d
s

50th Percentile
75th Percentile
95th Percentile

Figure 8.9: First Response Times for Message Requests

8.4.2 Simulation Parameters

We control the ratio of Participant to Regional nodes in each simulation run.
The ratio is a floating-point value in the range [0, 1]. When ratio = 0.5,
there are an equal number of Regional and Participant nodes in the network.
When the ratio > 0.5 the number of Regional nodes outweighs the number of
Participants in proportion with the value; and vice versa. For example, if the
network contains 100 nodes and the ratio = 0.7, there would be 70 Regional
nodes and 30 Participant nodes. The size of the network remains constant
regardless of the ratio.

The ratio of Participant to Regional nodes will affect the performance of
the network, as when there are a greater number of Participants, Regional
nodes will tend to be bound to a larger number of them, and hence will be
required to receive and evaluate more network messages.

The remaining parameters are discussed in detail in Section 7.4.
In the following sections we present the details of the simulation runs we

carried out and discuss the observations we have derived from the results.

8.4.3 Distribution of Workload

As might be expected, when the node ratio decreases (resulting in a greater
number of Participant nodes and fewer Regional nodes) the time it takes to
receive a response to a MessageRequest tuple increases. This is illustrated in
Figure 8.9.

In addition, we calculated the 50th, 75th and 95th percentiles for the
number of MessageMatch tuples created by bound Regional nodes, which we

8.4. Simulation 162

present in Figure 8.10. We observe that the difference between the 75th and
95th percentiles is very large, suggesting that the distribution of workload is
very uneven for a variety of node ratios. The reason for this could be because
of the following:

1. Each Regional node was set to allow up to 50 Participants to bind to
it.

2. Our node mobility algorithm defines different cities of dramatically de-
creasing size, and each node resides within one of these cities at startup.
The probability of a node residing in a given city is proportional to the
size of the city. Thus, the larger the city, the more nodes we would
expect to be within it.

3. Participant nodes tend to only travel short distances and also tend to
spend much of their time within just a handful of locations.

We suspected that the workload was so unevenly distributed because Par-
ticipants tended to reside in the big cities and rarely leave them. Thus, a large
number of Participants would be bound to a small number of Regional nodes
throughout the simulation. This hypothesis can be validated by looking at
the graphical history of node movements and bindings. The graph in Figure
8.11 illustrates the relative degree of each Regional node through size. The
larger the node, the greater its degree. The edges shown represent the bind-
ing relationships between Regional nodes; the nodes and edges for Participant
nodes have been omitted for clarity. The largest four of these nodes have a
degree in the range [737, 1098]. In the discussed simulations each Regional
node performs binding once to a maximum of six nodes at startup and remains
static throughout. Thus, we can conclude that node degree is a good measure
of the binding behaviour of Participants.

8.4.4 Network Size and Density

The network is very sensitive to the number of nodes present, and more im-
portantly to the geographical distribution of these nodes. This is because
shared context has a finite distance where it remains valid so Participants
must either have direct access to all the context information they require or
they must be situated quite close to other Participants to request context from
them. Without the ability to obtain context information, Message candidates
cannot be evaluated. Figure 8.12 presents the 50th, 75th and 95th percentiles
for the number of Messages received by each Participant in an 100 node net-
work with a node ratio of 0.9. The only variable changed between runs was
the maximum geographical area that the nodes could reside in. We can see
that the number of received Messages increases as the geographical area gets
smaller. The reason for this is that nodes are necessarily closer to one another,
and thus can share context information. We note that the 95th percentiles
are much larger than the 75th, once again a consequence of clustering within

8.4. Simulation 163

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2
·105

Network Ratio

N
u
m
b
er

of
T
u
p
le
s

Regional: Num. of MessageMatch Tuple Created

Message Match 50th
Message Match 75th
Message Match 95th

Figure 8.10: Number of MessageMatch tuples dispatched from the bound

Regional Node

Figure 8.11: Relative Node Degrees when ratio = 0.2 and 0.5 Respectively

8.4. Simulation 164

geo-500x500 geo-1000x1000 geo-2000x2000
0

2

4

6

8
·104

Network Class

N
u
m
b
er

of
T
u
p
le
s

Messages: Participant Receive

Messages 50th
Messages 75th
Messages 95th

Figure 8.12: Num. of Message Received by Geographical Bounds

large cities.
The numbers and density of Regional nodes are also an important con-

sideration as Messages are stored on the Regional node whose geographical
position is closest to the co-ordinates specified within the Message’s contex-
tual condition. If Regional nodes are sparsely distributed, a single node may
become responsible for most of the Messages within an area. This provides
the motivation for the load balancing scheme proposed in Section 4.3.5.5. In
our simulations without the load balancing scheme in place we found that in
almost all cases Message Requests were only processed by the bound Regional
node, and were not forwarded to any other node because all of the applicable
Messages were stored on the bound node.

8.4.5 Binding and Unbinding

As the ratio of nodes increase Participant nodes tend to bind and unbind from
Regional nodes more often. This is a result of there being a larger number of
Regional nodes in the network, making it more likely that Participants will
move to an area with a closer Regional node to bind to.

The number of binds made by Regional nodes at the 50th percentile seems
to spike when ratio = 0.2 but then settles into a predictable pattern. The spike
is a result of an increase in the number of rejections. The spike disappears
when the network contains enough Regional nodes to bind to without major
contention.

8.4. Simulation 165

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5

10

15

20

25

30

Network Ratio

N
u
m
b
er

of
T
u
p
le
s

Bind Request: Regional Creation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

Network Ratio

N
u
m
b
er

of
T
u
p
le
s

Bind Reject: Regional Receive

50th Percentile
75th Percentile
95th Percentile

Figure 8.13: Regional Node Bind Request and Reject Behaviour for 50th, 75th

and 95th Percentiles

However, an interesting behaviour occurs for the bind behaviour of the 75th
and especially 95th percentiles. In this case, the binding behaviour fluctuates
between an increase and decrease in bind messages as the node ratio increases.
This is a result of a fluctuating number of bind rejections from other Regional
nodes, which itself is a consequence of the clustering of nodes within large
cities. These nodes will attempt to bind to one another and when a sufficiently
large number of Regional nodes are present within the cluster many of the
nodes will reach their bind limit before all of their neighbours have completed
the bind process - resulting in an increase in rejections. As the number of
nodes increases the network reaches a point where the clustered nodes are
able to bind with one another again without resulting in a large number of
rejections. This pattern then begins again as the number of nodes grows. This
is shown in Figure 8.13.

8.4.6 Condition Complexity and Context Requests

From our benchmarking data in the previous section we can see that when pa-
rameter values are permitted the number of required Context Values increases
sharply as the complexity of conditions increases. If a significant proportion
of issued Message Requests have wide ranging queries that consider a large
number of candidate Messages, the bound Regional nodes could be responsi-
ble for issuing a large number of Context Requests to their neighbours. This
is discussed in more detail in Section 8.4.7.

8.4. Simulation 166

Figure 8.14: Regional Nodes with Maximum Neighbours of {1, 6, 40} respec-

tively

Care must be taken when specifying a maximum valid distance for Contexts.
If this is set too low and the network is sparse Participants will rarely be able
to request the Context from one of their peers. If, however the distance is
set too high and applicable ConcreteContexts are not plentiful, it can result
in a context request being dispatched to a large number of Regional nodes
before the context is found or the maximum distance is reached. If a large
number of requests are made for this Context it could result in part of the
network being flooded with requests. In addition to applying the Contract
restriction methods outlined in Section 8.3.6.1, the excessive proliferation of
Context Requests could be curtailed in a number of ways.

The simplest method would be to allow Regional nodes to only forward a
Context Request to their closest bound neighbour. This methodology may
work well in cases where there is a strong connectedness between the Re-
gional nodes as each node will only be required to issue a single request for
the Context Value, yet the request will be recursively issued amongst each of
the nearby nodes and all participating nodes will benefit when the value is ob-
tained. However, when connectedness is poor, requests may go quickly beyond
the allowed distance without contacting nearby nodes. The connectedness of
nearby Regional nodes is largely dependent on the bind limits specified at each
node; when the limits are large there will be a strong connection in an area
and vice versa. This issue is illustrated in Figure 8.14. We note that when the
maximum number of neighbours was 40, the queues for a number of nodes be-
come saturated and the simulator stopped execution. This demonstrates that
there are practical limits to the maximum number we can specify. However,
The network is well connected when a maximum of 6 neighbours is specified
so this should not cause an issue.

An alternative approach could be to use a stigmergic routing protocol such
as that proposed by Fleming et al. [35]. Their work is based on the behaviour
of ants, which produce pheromones to encourage other ants to follow their
path. The pheromone trail gets stronger as the number of ants following a

8.4. Simulation 167

given path increases. This was applied to a distributed question-and-answer
network where links to desirable network members are strengthened. In their
case strengths were applied for each of n categories (e.g. computers and In-
ternet or Sport). In the context of our work Regional nodes could store a
link strength for each possible Contract. This approach seems promising for
scenarios where Regional nodes are static and long-living as Participants tend
to stay within a small, well defined radius of their home (as discussed in Sec-
tion 7.4.3.2). Thus, it seems reasonable to assume that the calculated link
strengths would remain valid over an extended period.

8.4.7 Message Specificity

When users issue Message Requests into the network they can be at varying
levels of specificity. Specificity refers to the number of Contracts within the
request and the range of values being matched for each Contract. When a
Contract is unspecified the system assumes its range to be the largest possible
range for its data type. Thus, by specifying a Contract it helps to increase the
specificity of the query. We specify two example conditions below assuming
the system uses a single Context tuple containing two Contracts. The first
condition is very specific as it includes both Contracts and specifies small
ranges for each; whereas the second is quite unspecific as it specifies only one
of the conditions and has a reasonably large range.

{ Std.Compare(B.B1(), ">", 5) && Std.Compare(B.B1(), "<=", 45) &&

Std.Compare(B.B2(), ">", 28) && Std.Compare(B.B2(), "<", 32) }

{ Std.Compare(B.B1(), ">", 5) && Std.Compare(B.B1(), "<=", 948); }

We consider two classes of specificity: Specific and Unspecific. The Specific
class has a RangeOfSpecificity parameter value of 1.0 and ForceMatching-
Contracts = true to ensure that the range of each Contract is restricted from
both sides. The Unspecific class has a RangeOfSpecificity value of 0.0 and
ForceMatchingContracts = false.

The number of Messages considered and Context Requests issued will in-
crease as conditions becomes less specific; which will increase the response
time for a Participant’s request. Response times for a network with ratio =
0.9 are given in Figure 8.15. This demonstrates that response times are ap-
proximately three times slower when a request is specific, compared to one
that is unspecific. Figure 8.16 shows the difference in the number of Context
Requests made by Regional nodes and Messages received by Participants re-
spectively. We note that Figure 8.16 shows only the 95th percentile as it was
only the top 5% of Regional nodes that dispatched any Context Requests at
all. This is because these Regional nodes are the only ones within a valid
geographical distance of Participant nodes. This is once again an effect of the
big city clustering problem discussed previously.

8.4. Simulation 168

Specific Unspecific
0

5

10

15

S
ec
on

d
s

Message Requests

50th Percentile
75th Percentile
95th Percentile

Specific Unspecific
0

10

20

30

S
ec
on

d
s

Messages

50th Percentile
75th Percentile
95th Percentile

Figure 8.15: First Response Times for Specific and Unspecific Requests

Specific Unspecific
0

20

40

60

80

100

120

Node Class

N
u
m
b
er

of
T
u
p
le
s

Num. Context Requests

Specific Unspecific
0

2

4

6

·104

Node Class

N
u
m
b
er

of
T
u
p
le
s

Num. Messages Received

Messages 50th
Messages 75th
Messages 95th

Figure 8.16: Num. Context Requests and Messages Received

8.4. Simulation 169

8.4.8 Validity of Simulation Results

Care must be taken when making conclusions about response times in a sim-
ulated environment as there are a wide variety of factors that can skew the
data. Firstly, there may be other processes sharing the processor and memory.
Although our simulations were run on an exclusively owned core within the
cluster environment discussed in Section 7.5.3, they may have shared memory
with the processes of other users.

The other important influence on timing is the simulation environment it-
self. For an N node network, the PlanetSim simulator is required to instantiate
some combination of N Regional and Participant nodes. Although Participant
nodes are fairly lightweight, Regional nodes require additional memory and
processing time for parsing and evaluating OWL conditions. Thus, in a large
network the memory and processor requirements will be much greater than if
each node were executed on their own device.

Our response and execution times should be treated only as an approxima-
tion. To obtain accurate results we would need to deploy our application on
actual devices or on a network environment such as PlanetLab 1. A deploy-
ment on PlanetLab would have its own issues however as it does not provide
support for mobile nodes; meaning that this aspect of the tests would still
need to be simulated.

8.4.9 Summary

We now provide a number of recommendations based on our above analysis.

• Heavily populated areas require well equipped Regional nodes to handle
the demand and ideally multiple Regional nodes should be deployed in
reasonable proximity with one another to balance Message storage and
lookup and the issuing of Context Requests.

• The density of the network is an important consideration as, if the
network is too sparsely distributed Participants will be unable to share
Context information with one another. Thus, in order to be effective,
the network would require quite high adoption rates within any area it
is used.

• In order to be able to properly provision the Regional nodes in the
network, we must have an understanding of the typical complexity and
specificity of the contextual queries specified. The more complex and
unspecific queries become, the better the specification and number of
Regional nodes required.

1https://www.planet-lab.org/

8.5. Properties of Spatial Indexes 170

8.5 Properties of Spatial Indexes

We now discuss the generation of spatial indexes and the factors that dictate
the number of indexes created for a given condition. Firstly we describe the
data sets used in our analysis and then follow this with a discussion of our
analysis of the expected, num-conds-and, num-conds-or, exists-n-div-2-n and
exists-1-to-n condition classes.

8.5.1 Data Sets

We performed analysis on five data sets containing 1000 conditions each for
each condition class. The sets were generated to establish the number of
indexes we would expect to generate for each condition. Each set modifies the
probability of choosing a conjunction over a disjunction each time a connective
is requested during the condition generation process. They are as follows:

and-1-0-max-100 100% probability of choosing a conjunction over a dis-
junction with the maximum ∃ threshold set to 100,

and-0-8 80% probability of choosing a conjunction over a disjunction,

and-0-5 50% probability of choosing a conjunction over a disjunction,

and-0-0 100% probability of choosing a disjunction over a conjuction,

and-1-0 100% probability of choosing a conjunction over a disjunction.

The last four sets all have a maximum ∃ threshold of 10,000. Thresholds
are discussed in Section 8.5.3 and in more detail in Section 5.3.2.6.

8.5.2 Expected Values

Figure 8.17 presents our analysis on the “expected” class of conditions. We
have taken the 50th, 75th and 95th percentile. As expected, the number of
indexes tends to increase as condition complexity increases. The number of
indexes for expected-0.5 (the class we anticipate best represents reality) peaks
at five indexes when disjunctions are used exclusively and drops to one when
only conjunctions are used. The maximum number of generated indexes at
the 95th percentile for the “expected” class with all skews is six which we
believe to be reasonable.

8.5.3 ∃ Blocks

Our algorithm tends to produce far more spatial indexes for ∃ blocks than for
other connectives. This is because, depending on the number of Contracts and
the minimum and maximum parameters there can be a very large number of

8.5. Properties of Spatial Indexes 171

0

2

4

6

ex
pe
ct
ed
-0
-1
5

ex
pe
ct
ed
-0
-3

ex
pe
ct
ed
-0
-4
5

ex
pe
ct
ed
-0
-5

ex
pe
ct
ed
-0
-6

ex
pe
ct
ed
-0
-7
5

ex
pe
ct
ed
-0
-9

and-1-0
and-0-5
and-0-8
and-0-0

Figure 8.17: Number of Indexes at 95th percentile

combinations that satisfy the condition. For this reason we enforce a maximum
number of indexes per ∃ block. This is discussed in more detail in Section
5.3.2.6.

This throttling algorithm can counterintuitively result in more complicated
∃ blocks having fewer generated indexes than a simpler ∃ block. This is
because the algorithm continually simplifies the ∃ block parameters until the
number of generated indexes falls below a threshold. Thus, a more complicated
condition may need to be restricted much further than a less complicated
condition, resulting in the latter generating a larger number of indexes.

Figure 8.18 presents the number of generated indexes for each of our ∃
condition classes with the maximum index thresholds set to 100 and 10,000.
The use of two wildly different thresholds allow us to demonstrate the effects
of our throttling algorithm.

When the number of Contracts within each condition is small the number
of indexes is identical for both thresholds as throttling has not come into
effect. However, as the number of Contracts grows the difference between the
thresholds becomes very significant. Note that the values for exists-1-To-N-16
are identical as even with a threshold of 10,000 it is not possible to represent
all indexes.

This exponential increase in the number of indexes can be avoided for the
exists-1-To-N class by using the optimisation discussed in Section 5.3.2.6 but
this remains an issue for other classes of ∃.

8.6. Summary 172

100

101

102

103

104

ex
ist
s-
1-
To
-N
-2

ex
ist
s-
1-
To
-N
-4

ex
ist
s-
1-
To
-N
-8

ex
ist
s-
1-
To
-N
-1
6

ex
ist
s-
N
-D
iv
-2
-2

ex
ist
s-
N
-D
iv
-2
-4

ex
ist
s-
N
-D
iv
-2
-8

ex
ist
s-
N
-D
iv
-2
-1
6

and-1-0-Max-100
and-1-0-Max-10000
exists-optimisation

Figure 8.18: Exists Indexes

8.5.4 Combining Conjunctions, Disjunctions and ∃ Blocks

Figure 8.19 presents the index generation statistics for the num-conds-and and
num-conds-or classes with a ∃ threshold of 10,000. At the 75th percentile the
maximum number of indexes is only 22, generated when only disjunctions are
used and each condition contains 16 Contracts. Very large values appear at
the 95th percentile which account for the complex ∃ blocks within some of the
conditions. This is encouraging because it suggests that complex ∃ tend to be
only a small percentage of the data and that their incorporation may not be
as problematic as Section 8.5.3 suggests.

Although the outliers are of concern the majority of the data is within what
we deem a reasonable range. If ∃ blocks became an issue one remedy could
be to reduce the index threshold, which would result in more false positives
but crucially no false negatives.

8.6 Summary

The preceding chapter discussed the results of our evaluation.
We divided our benchmark tests into initialisation and message evaluation

times. While we found evaluation times to be reasonable and scalable, ini-
tialisation times for the “expected” class tend to be slower than desirable.
The main cause of these inefficiencies are the large number of required Con-

8.6. Summary 173

100

101

102

103

104

nu
m
-c
on
ds
-o
r-
on
ly
-1
6

nu
m
-c
on
ds
-o
r-
on
ly
-8

nu
m
-c
on
ds
-o
r-
on
ly
-4

nu
m
-c
on
ds
-o
r-
on
ly
-2

nu
m
-c
on
ds
-o
r-
on
ly
-1

nu
m
-c
on
ds
-a
nd
-o
nl
y-
16

nu
m
-c
on
ds
-a
nd
-o
nl
y-
8

nu
m
-c
on
ds
-a
nd
-o
nl
y-
4

nu
m
-c
on
ds
-a
nd
-o
nl
y-
2

nu
m
-c
on
ds
-a
nd
-o
nl
y-
1

and-1-0-max-10000-50th-Perc
and-1-0-max-10000-75th-Perc
and-1-0-max-10000-95th-Perc

Figure 8.19: Number of Indexes at the 50th, 75th and 95th Percentiles

textValues and the preprocessing required for exists blocks. This hypothesis
is supported by our “restricted expected” results which show very significant
speed increases due to a reduction in the number of ContextValues and the
elimination of exists blocks. We propose that the number of ContextValues
can be reduced by restricting the number and types of parameters given to
Contracts or by implicitly or explicitly limiting the ranges of values each pa-
rameter may take.

We also found the memory requirements for even quite simple conditions
to be of concern, requiring Regional nodes to be provisioned with significant
amounts of RAM. Attempts should also be made to alleviate this requirement
by reducing the verbosity of our OWL representation.

In our simulations we found that the distribution of workload was very
uneven because nodes tend to cluster within large cities; meaning that the
majority of communication is localised within these areas. We also found that
node density had a dramatic impact on the number of received messages as
nodes within sparse areas were unable to obtain valid context information.
Finally, we demonstrated the impact that message specificity has on response
times, the number of generated Context Requests and the number of Messages
received by Participants.

Our evaluation of the spatial index generation algorithm found that the
number of indexes generated for each condition tends to be low, but that

8.6. Summary 174

certain configurations of ∃ blocks can result in the generation of a very large
number of indexes. We have proposed a throttling algorithm to limit this at
the cost of some expressivity.

The main take-home message is threefold:

1. The MediateSpace middleware is best suited to urban areas where there
will be a higher density of Regional and Participant nodes. This density
of nodes allows Participants to share ContextValues freely.

2. The required density of and provisioning needs of Regional nodes is
strongly related to the complexity and specificity of contextual condi-
tions. As condition complexity increases so does the required Regional
node density and/or provisioning needs, whereas in the case of speci-
ficity the opposite is true, with the required density and provisioning
needs decreasing as specificity increases.

3. Insufficient provisioning can be compensated for by increasing node
density in the affected areas, and insufficient node density can be alle-
viated by improving the specification of existing nodes; provided that
the density is sufficient to allow Participants to share ContextValues.

9 Conclusions and Future
Work

9.1 Introduction

The goal of this thesis was to design, implement and evaluate a decentralised
context-aware middleware for the distribution of information. Information is
packaged within Message tuples which stipulate a contextual condition that
must be met by any user wishing to receive it.

To this end, we developed a context-aware language for communication
between devices and the specification of complex contextual conditions. We
also constructed a network protocol, an indexing algorithm to allow users
to efficiently lookup relevant Messages and an OWL representation of our
condition language to allow the evaluation of Messages.

The main contributions of this work are as follows:

• A Context-Aware Language
For supporting the development of Context-Aware applications.

• A Context-Aware Middleware
A distributed and scalable context-aware content distribution middle-
ware.

• Contextual Condition Spatial Indexing Algorithm
An algorithm for mapping our contextual condition language to a multi-
dimensional spatial index such as the R-Tree [46].

• Contextual Language OWL Representation
An OWL representation of our context-aware language

• A Context-Aware Framework Taxonomy
A taxonomy for comparing frameworks along the dimensions of flexi-
ble evaluation, ontology extension, heterogeneous interoperability and

175

9.2. Thesis Summary 176

decentralisation.

We now provide a short summary of all preceding chapters and then move
on to a discussion of future work.

9.2 Thesis Summary

In Chapter 2 we provided a detailed examination of the pertinent decentralised
protocols and justified our choice of a tuple-space based approach with a
distributed spatial index for Message lookup.

Chapter 3 presented an overview of context modelling techniques and a
discussion of current context-aware middleware solutions. We chose to use
an OWL based representation for context evaluation because of the inference
mechanisms it provides and set out four criteria for the design of our mid-
dleware. These were Flexible Evaluation, Ontology Extension, Heterogenous
Interoperability and Decentralisation.

We provided flexible evaluation through our contextual condition language
which provides support for a modified form of universal and existential quan-
tification (∀, ∃), conjunctions, disjunctions and negation. Block scopes and
nested blocks are also supported so conditions can be arbitrarily complex.

Ontology extensibility was supported through our Context and Concrete-
Context tuples. Context tuples allow a common interface to be provided for a
type of context and ConcreteContexts allow the specific implementation for a
given sensor. Ontologies may be specified within a Context if required, with
the ConcreteContext tasked to provide the correct mappings from raw sensor
data to the ontology concepts.

We provided heterogenous extensibility through the definition of our context-
aware language. These structures can be shared with other devices in the net-
work over any communication protocol such as SOAP and require only that
the device is able to parse the language.

Our network protocol is decentralised in nature; splitting computational
tasks and message storage and lookup across the nodes of the network. Our
decentralised network was designed to split nodes into two categories: Partic-
ipant and Regional.

Regional nodes are responsible for all computationally expensive tasks (such
as the evaluation of contextual conditions) and for communication with other
remote nodes to obtain context information or forward requests for informa-
tion.

Participant nodes can issue Message Request tuples to lookup and obtain
relevant messages, with their only other main responsibility being to provide
context information when requested. The network is location-aware, with
nodes binding to their most geographically proximate neighbours, which allows
Regional nodes to ensure that any context information obtained from a remote
node is not so far away from the requester as to have become invalid.

9.2. Thesis Summary 177

Chapter 4 motivated our middleware by way of a pervasive advertising
application and provided a detailed discussion of our context-aware language
and network protocols.

Chapter 5 described the mapping between our language and spatial indexes
and Chapter 6 described our methodology for translating our language into
an OWL representation for evaluation.

Chapter 7 discussed the high level design for our middleware and explains
the methodology we followed during the evaluation of our system. This in-
cludes the parameters used for context modelling, simulation and benchmark-
ing.

This leads into our results in Chapter 8. Firstly, we evaluated our OWL
representation in terms of execution speed and memory consumption. This is
followed by an evaluation of our network protocol in terms of response times
and other concerns such as the distribution of workload and data across the
network. Finally, we evaluated our spatial indexing algorithm in terms of the
number of indexes required to represent conditions of varying complexity.

Our evaluation demonstrated that the OWL representation, network pro-
tocol and spatial indexing algorithm generally work well but that some im-
provements can be made. We provide a summary of our findings in the below
subsections.

9.2.1 OWL Execution time and Memory Evaluation

We divided the evaluation into two sections: initialisation, which involved
loading the ontology into the OWL reasoner and preprocessing ∃ statements
and evaluation which measures the amount of time required to evaluate all
loaded Messages.

We found that in the general case condition evaluation times were reason-
able, but that initialisation times could be improved by reducing the verbosity
of our OWL representation and by developing methods for restricting the
range of values held by Contract parameters. Initialisation times were found
to be particularly poor when many Context Value tuples were required for
Message evaluation.

The required number of Context Values rose as message complexity in-
creased, but the main contributing factor was the number of Contracts, and
more importantly the number and types of their parameters. This was to be
expected as the number of possible Context Values grow as the number and
complexity of Contracts increase.

This is because the introduction of additional parameters increases the
number of possible combinations of ContextValue tuples that will be required
for evaluation. Parameters with data types such as Double and Integer are
especially problematic as they offer an extremely wide range of possible values.

We performed further tests using Contracts without parameters and found
that both initialisation and evaluation times improved greatly.

9.2. Thesis Summary 178

Memory usage was found to be a challenge, with quite simple conditions
consuming over 8 GB of memory when representing 2000 Messages. This could
cause scalability issues if the middleware is required to handle a large number
of Messages or the Messages are distributed unevenly across the network.
However, we envisage that this memory requirement could be reduced by
making the representation less verbose.

When evaluating the initialisation of ∃ blocks we found that certain config-
urations took much longer to initialise than others. Specifically, we found that
blocks which required fewer Contracts to succeed took significantly longer to
initialise because the block as a whole was therefore more likely to succeed,
incurring the overhead of inserting additional individuals into the ontology.

9.2.2 Simulation

The main findings of our simulations were that the network nodes tend to
be unevenly distributed and that this could be problematic for the scalability
of the network. In order to ensure satisfactory performance these “hotspots”
should be identified and sufficient resources allocated. This could be achieved
by ensuring that the available Regional nodes have enough processing power
and memory or by deploying a sufficient number of nodes in the area. Fortu-
nately, these hotspot areas should generally be quite straightforward to iden-
tify as they will tend to present themselves in highly populated areas such as
cities.

The density of nodes is also an issue as if they are too sparsely distributed
Participants will struggle to obtain the Context Values they require from their
surrounding neighbours. We must also ensure that we achieve a good level
of connectedness between Regional nodes so that Context Requests can be
distributed to the closest nodes in the network.

Finally, we concluded that it was important to determine the typical condi-
tion complexity and specificity of Messages for particular use cases in order to
provision the network appropriately. Ideally, we could derive some universal
properties from these use cases to allow us to define a baseline specification
for nodes.

9.2.3 Properties of Spatial Indexes

We found that our spatial indexing algorithm performed well in the general
case, with the number of generated indexes hitting a maximum of six for all
complexities of our “expected” condition class. ∃ blocks did pose a problem,
as in order to represent their semantics completely sometimes requires the
generation of a very large number of indexes. However, we found that these
cases tended to only account for a small percentage of our data and we have
proposed a throttling algorithm to restrict the number of generated indexes
to a more reasonable number. The throttling algorithm does however simplify

9.3. Future Work 179

the block which may result in more false positives during Message lookup; but
importantly will not result in any false negatives.

9.2.4 System Boundary Conditions

The MediateSpace middleware is appropriate for applications where the fol-
lowing two properties hold:

Network Topology The MediateSpace middleware is appropriate for appli-
cations where most Participant nodes are geographically close to other
Participants, allowing them to exchange ContextValue tuples when nec-
essary. This constraint is most easily fulfilled in urban areas such as
large cities and towns. However, this constraint can be relaxed when
the types of context supported by the application have a wide area of
applicability. For example, an accurate temperature can be shared over
a larger geographical distance than location. Applications that require
limited context sharing are also less bound by this constraint. For ex-
ample, the Geocaching application we outline in Section 1.4.2 can be
used successfully with only locally specified context.

Condition Structure Our middleware is also appropriate for applications
whose Contracts require only a small amount of variability in their pa-
rameters, and ideally have short parameter lists. Application designers
should also be aware of the expected specificity of conditions as the
demand on nodes increases as condition specificity decreases. In cases
where these properties do not hold performance can be improved by in-
creasing the number and density of Regional nodes or by improving the
hardware specifications of existing Regional nodes.

We now move on to propose potential avenues of future work.

9.3 Future Work

• Use cases could be defined for typical uses of the middleware; defining a
representative condition complexity and specificity for each. This would
allow us to ensure that an appropriate number of suitable Regional
nodes were deployed to support the system. Universal properties could
hopefully be derived from the use cases which would allow us to define
a baseline specification for applications.

• Alternative Context Request protocols could be explored. For example,
Fleming et al.s’ [35] stigmergic approach (discussed in Section 8.4.6).

• The distribution of nodes tend to be unevenly distributed. It could be
useful to run additional simulations to determine the appropriate pa-
rameters for efficiently handling the network demands of areas of vary-

9.4. Summary 180

ing size and node density. These parameters could then be applied to
estimate the provisioning requirements for similar areas.

• Our system could be deployed on mobile devices in order to test it’s
effectiveness in the real world with real people.

• More restrictive data types and an explicit means of restricting param-
eter values for Contracts could be incorporated into the language (as
discussed in Section 8.3.6.1). This would benefit the initialisation times
of our OWL representation as the number of possible combinations of
Context Value would be reduced.

• Optimisations for the handling of ∃ blocks in our OWL representation
could be researched and implemented; or alternative representations
could be devised.

• The memory requirements of our OWL representation could be im-
proved by reducing its verbosity.

• The throttling algorithm we defined for the mapping of ∃ blocks to
spatial indexes could be refined by retaining more of the semantics of
the original condition, but with a comparable output.

• Security and privacy are both concerns which need to be addressed
as users may be uncomfortable sharing certain types of context such as
location with nearby nodes. This may be particularly true with Regional
nodes as they could be managed by businesses or government agencies.
Security could also be an issue as at present all messages are dispatched
through the network in plain text.

• To successfully deploy our system in the real world, we would require a
replication protocol to ensure fault tolerance and availability.

9.4 Summary

The evaluation confirms that our design works as intended, allowing the in-
sertion, retrieval and evaluation of Messages using sophisticated contextual
conditions capable of modelling multiple aspects of context with variable con-
text information.

In conclusion, we achieved our aim of developing a distributed context-
aware content distribution framework. This included a flexible condition and
context representation language, a network topology and protocol that sup-
ports context sharing, and indexing and evaluation capabilities.

References 181

References

[1] The free on-line dictionary of computing, http://foldoc.org/, editor denis
howe. URL http://foldoc.org/middleware.

[2] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context and
context-awareness. In Proceedings of the 1st international symposium on
Handheld and Ubiquitous Computing, HUC ’99, pages 304–307, London,
UK, UK, 1999. Springer-Verlag. ISBN 3-540-66550-1. URL http://

dl.acm.org/citation.cfm?id=647985.743843.

[3] Jordi Pujol Ahull and Pedro Garca Lpez. Planetsim: an exten-
sible framework for overlay network and services simulations. In
Sndor Molnr, John R. Heath, Olivier Dalle, and Gabriel A. Wainer,
editors, SimuTools, page 45. ICST, 2008. ISBN 978-963-9799-
20-2. URL http://dblp.uni-trier.de/db/conf/simutools/

simutools2008.html#AhulloL08.

[4] C. Archer. Process Coordination and Ubiquitous Computing, chapter 1,
pages 11–29. CRC Press, Inc., 2002.

[5] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey
on context-aware systems. International Journal of Ad Hoc and Ubiqui-
tous Computing, 2(4):263–277, June 2007. ISSN 1743-8225. doi: 10.
1504/IJAHUC.2007.014070. URL http://dx.doi.org/10.1504/

IJAHUC.2007.014070.

[6] Albert-Laszlo Barabasi. The origin of bursts and heavy tails in human
dynamics. Nature, 435:207, 2005. URL http://www.citebase.org/

abstract?id=oai:arXiv.org:cond-mat/0505371.

[7] Albert-Lszl Barabsi. Bursts : the hidden pattern behind everything we do.
New York, N.Y. Dutton, 2010. ISBN 978-0-525-95160-5. URL http://

opac.inria.fr/record=b1130554.

[8] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi:
An open source software for exploring and manipulating networks,
2009. URL http://www.aaai.org/ocs/index.php/ICWSM/09/

paper/view/154.

[9] Christian Becker and Frank Dürr. On location models for ubiq-
uitous computing. Personal Ubiquitous Comput., 9(1):20–31, 2005. ISSN
1617-4909. doi: http://dx.doi.org/10.1007/s00779-004-0270-2.

[10] Stefan Berchtold, Daniel A. Keim, and Hans P. Kriegel. The X-Tree:
An Index Structure for High-Dimensional Data. In T. M. Vijayaraman,

http://foldoc.org/middleware
http://dl.acm.org/citation.cfm?id=647985.743843
http://dl.acm.org/citation.cfm?id=647985.743843
http://dblp.uni-trier.de/db/conf/simutools/simutools2008.html#AhulloL08
http://dblp.uni-trier.de/db/conf/simutools/simutools2008.html#AhulloL08
http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0505371
http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0505371
http://opac.inria.fr/record=b1130554
http://opac.inria.fr/record=b1130554
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

References 182

Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda, editors, Pro-
ceedings of the 22nd International Conference on Very Large Databases,
pages 28–39, San Francisco, U.S.A., 1996. Morgan Kaufmann Publish-
ers. URL http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.53.6661.

[11] Silvia Bianchi. Load-balanced Structures for Decentralized Overlays. PhD
thesis, Instituté dInformatique, Universite De Neuchâtel, 2008.

[12] Avrim Blum. Universal and perfect hashing. University Lecture
Notes, 2012. URL http://www.cs.cmu.edu/˜avrim/451f12/

lectures/lect0918.pdf.

[13] Elisa Gonzalez Boix, Christophe Scholliers, Wolfgang De Meuter,
and Theo DHondt. Programming mobile context-aware applica-
tions with {TOTAM}. Journal of Systems and Software, (0):–,
2013. ISSN 0164-1212. doi: http://dx.doi.org/10.1016/j.jss.2013.07.
031. URL http://www.sciencedirect.com/science/article/

pii/S0164121213001799.

[14] Christian Bhm. Efficiently Indexing High-Dimensional Data Spaces. PhD
thesis, Universitt Mnchen, 1998.

[15] D. Chalmers, M. Sloman, and N. Dulay. Map adaptation for users of
mobile systems. In Proceedings of 10th Intl. World Wide Web Conference
(WWW10), pages 735–744. ACM, 2001.

[16] D. Chalmers, N. Dulay, and M. Sloman. Towards reasoning about context
in the presence of uncertainty. In Proceedings of Workshop on Advanced
Context Modelling, Reasoning And Management at UbiComp 2004, 2004.

[17] Guanling Chen and David Kotz. A survey of context-aware mobile com-
puting research. Technical report, Hanover, NH, USA, 2000.

[18] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-
aware pervasive computing environments. Knowl. Eng. Rev., 18(3):197–
207, May 2004. ISSN 0269-8889. doi: http://dx.doi.org/DOI:10.1017/
S0269888904000025.

[19] Penghe Chen, Shubhabrata Sen, Hung Keng Pung, and Wai Choong
Wong. Context processing: A distributed approach. In INTELLI 2013,
The Second International Conference on Intelligent Systems and Appli-
cations, pages 58–64, 2013.

[20] Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday, and Christos
Efstratiou. Developing a context-aware electronic tourist guide: some
issues and experiences. In CHI ’00: Proceedings of the SIGCHI conference

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.6661
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.6661
http://www.cs.cmu.edu/~avrim/451f12/lectures/lect0918.pdf
http://www.cs.cmu.edu/~avrim/451f12/lectures/lect0918.pdf
http://www.sciencedirect.com/science/article/pii/S0164121213001799
http://www.sciencedirect.com/science/article/pii/S0164121213001799

References 183

on Human factors in computing systems, pages 17–24, New York, NY,
USA, 2000. ACM. ISBN 1-58113-216-6. doi: 10.1145/332040.332047.
URL http://dx.doi.org/10.1145/332040.332047.

[21] Chire. Visualization of an r*-tree for 3d points using elki. URL http://

commons.wikimedia.org/wiki/File:RTree-Visualization-

3D.svg#mediaviewer/File:RTree-Visualization-3D.svg.
Accessed: 22/09/2014.

[22] Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137,
June 1979. ISSN 0360-0300. doi: 10.1145/356770.356776. URL http://

doi.acm.org/10.1145/356770.356776.

[23] Paolo Costa, Luca Mottola, Amy L. Murphy, and Gian P. Picco.
TeenyLIME: transiently shared tuple space middleware for wireless sen-
sor networks. In MidSens ’06: Proceedings of the international work-
shop on Middleware for sensor networks, pages 43–48, New York, NY,
USA, 2006. ACM Press. doi: http://doi.acm.org/10.1145/1176866.
1176874. URL http://dx.doi.org/http://doi.acm.org/10.

1145/1176866.1176874.

[24] Gianpaolo Cugola, Gian P. Picco, and Politecnico Di Milano. PeerWare:
Core middleware support for peer-to-peer and mobile systems, 2001.

[25] Carlo Curino, Matteo Giani, Marco Giorgetta, Alessandro Giusti,
Amy L. Murphy, and Gian Pietro Picco. Mobile data collec-
tion in sensor networks: The TinyLIME middleware. Perva-
sive and Mobile Computing, 1(4):446 – 469, 2005. ISSN 1574-
1192. doi: DOI:10.1016/j.pmcj.2005.08.003. URL http://www.

sciencedirect.com/science/article/B7MF1-4H9GRV7-1/2/

bf4f596735fdf93adcfd4a0ecfd6255a. Special Issue on PerCom
2005.

[26] Frank Dabek, Ben Y. Zhao, Peter Druschel, John Kubiatowicz, and Ion
Stoica. Towards a common api for structured peer-to-peer overlays. In
M. Frans Kaashoek and Ion Stoica, editors, IPTPS, volume 2735 of Lec-
ture Notes in Computer Science, pages 33–44. Springer, 2003. ISBN 3-
540-40724-3. URL http://dblp.uni-trier.de/db/conf/iptps/

iptps2003.html#DabekZDKS03.

[27] Amy Murphy Dept and Amy L. Murphy. LIME: A middleware for phys-
ical and logical mobility. In Proceedings of the The 21st International
Conference on Distributed Computing Systems, ICDCS ’01, pages 524–,
Washington, DC, USA, 2001. IEEE Computer Society.

http://dx.doi.org/10.1145/332040.332047
http://commons.wikimedia.org/wiki/File:RTree-Visualization-3D.svg#mediaviewer/File:RTree-Visualization-3D.svg
http://commons.wikimedia.org/wiki/File:RTree-Visualization-3D.svg#mediaviewer/File:RTree-Visualization-3D.svg
http://commons.wikimedia.org/wiki/File:RTree-Visualization-3D.svg#mediaviewer/File:RTree-Visualization-3D.svg
http://doi.acm.org/10.1145/356770.356776
http://doi.acm.org/10.1145/356770.356776
http://dx.doi.org/http://doi.acm.org/10.1145/1176866.1176874
http://dx.doi.org/http://doi.acm.org/10.1145/1176866.1176874
http://www.sciencedirect.com/science/article/B7MF1-4H9GRV7-1/2/bf4f596735fdf93adcfd4a0ecfd6255a
http://www.sciencedirect.com/science/article/B7MF1-4H9GRV7-1/2/bf4f596735fdf93adcfd4a0ecfd6255a
http://www.sciencedirect.com/science/article/B7MF1-4H9GRV7-1/2/bf4f596735fdf93adcfd4a0ecfd6255a
http://dblp.uni-trier.de/db/conf/iptps/iptps2003.html#DabekZDKS03
http://dblp.uni-trier.de/db/conf/iptps/iptps2003.html#DabekZDKS03

References 184

[28] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual
framework and a toolkit for supporting the rapid prototyping of context-
aware applications. Hum.-Comput. Interact., 16(2):97–166, December
2001. ISSN 0737-0024. doi: 10.1207/S15327051HCI16234 02. URL
http://dx.doi.org/10.1207/S15327051HCI16234_02.

[29] Antonio Di Ferdinando, Alberto Rosi, Ricardo Lent, Antonio Manzalini,
and Franco Zambonelli. Myads: A system for adaptive pervasive adver-
tisements. Pervasive Mob. Comput., 5(5):385–401, October 2009. ISSN
1574-1192. doi: 10.1016/j.pmcj.2009.06.006.

[30] Nicholas Drummond, Alan Rector, Robert Stevens, Georgina Moulton,
Matthew Horridge, Hai Wang, and Julian Sedenberg. Putting owl in
order: Patterns for sequences in owl. In OWL Experiences and Directions
(OWLEd 2006), Athens Georgia, 2006.

[31] Nathan Eagle and Alex (Sandy) Pentland. Reality mining: sensing com-
plex social systems. Personal Ubiquitous Comput., 10(4):255–268, March
2006. ISSN 1617-4909. doi: 10.1007/s00779-005-0046-3.

[32] Shane B. Eisenman, Nicholas D. Lane, Emiliano Miluzzo, Ronald A. Pe-
terson, Gahng seop Ahn, and Andrew T. Campbell. Metrosense project:
People-centric sensing at scale. In WSW 2006 at Sensys, 2006.

[33] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. The many faces of publish/subscribe. ACM Comput.
Surv., 35(2):114–131, June 2003. ISSN 0360-0300. doi: 10.1145/857076.
857078. URL http://doi.acm.org/10.1145/857076.857078.

[34] Patrick Fahy and Siobhan Clarke. Cass a middleware for mobile context-
aware applications. In Workshop on Context Awareness, MobiSys, 2004.

[35] Simon Fleming, Dan Chalmers, and Ian Wakeman. A deniable and ef-
ficient question and answer service over ad hoc social networks. Infor-
mation Retrieval, 15(3-4):296–331, 2012. ISSN 1386-4564. doi: 10.1007/
s10791-012-9185-0. URL http://dx.doi.org/10.1007/s10791-

012-9185-0.

[36] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995. ISBN
0-201-63361-2.

[37] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesc language: A holistic approach to networked
embedded systems. In Proceedings of the ACM SIGPLAN 2003 Confer-
ence on Programming Language Design and Implementation, PLDI ’03,

http://dx.doi.org/10.1207/S15327051HCI16234_02
http://doi.acm.org/10.1145/857076.857078
http://dx.doi.org/10.1007/s10791-012-9185-0
http://dx.doi.org/10.1007/s10791-012-9185-0

References 185

pages 1–11, New York, NY, USA, 2003. ACM. ISBN 1-58113-662-5.
doi: 10.1145/781131.781133. URL http://doi.acm.org/10.1145/

781131.781133.

[38] David Gelernter. Generative communication in linda. ACM Trans. Pro-
gram. Lang. Syst., 7(1):80–112, January 1985. ISSN 0164-0925. doi:
10.1145/2363.2433. URL http://doi.acm.org/10.1145/2363.

2433.

[39] David Gelernter. Generative communication in Linda. ACM Trans.
Program. Lang. Syst., 7(1):80–112, January 1985. ISSN 0164-0925.
doi: 10.1145/2363.2433. URL http://dx.doi.org/10.1145/2363.

2433.

[40] Hans W. Gellersen, Albercht Schmidt, and Michael Beigl. Multi-
sensor context-awareness in mobile devices and smart artifacts. Mob.
Netw. Appl., 7(5):341–351, October 2002. ISSN 1383-469X. doi:
10.1023/A:1016587515822. URL http://dx.doi.org/10.1023/A:

1016587515822.

[41] Larry Gonick and Woollcott Smith. The Cartoon Guide to Statistics.
HarperResource, February 1994. ISBN 0062731025. URL http://

www.amazon.com/exec/obidos/redirect?tag=citeulike07-

20&path=ASIN/0062731025.

[42] Marta C. Gonzalez, Cesar A. Hidalgo, and Albert-Laszlo Barabasi. Un-
derstanding individual human mobility patterns. Nature, 453(7196):779–
782, June 2008. doi: 10.1038/nature06958.

[43] Michael T. Goodrich and Roberto Tamassia. Algorithm design - foun-
dations, analysis and internet examples. Wiley, 2002. ISBN 978-0-471-
38365-9.

[44] William Grosso. Java RMI. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 1st edition, 2001. ISBN 1565924525.

[45] Tao Gu, Hung K. Pung, and Da Q. Zhang. A service-oriented middleware
for building context-aware services. Journal of Network and Computer
Applications, 28(1):1–18, January 2005. doi: 10.1016/j.jnca.2004.06.002.

[46] Antonin Guttman. R-trees: a dynamic index structure for spatial search-
ing. In SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD in-
ternational conference on Management of data, volume 14, pages 47–
57, New York, NY, USA, June 1984. ACM. ISBN 0-89791-128-8.
doi: 10.1145/602259.602266. URL http://dx.doi.org/10.1145/

602259.602266.

http://doi.acm.org/10.1145/781131.781133
http://doi.acm.org/10.1145/781131.781133
http://doi.acm.org/10.1145/2363.2433
http://doi.acm.org/10.1145/2363.2433
http://dx.doi.org/10.1145/2363.2433
http://dx.doi.org/10.1145/2363.2433
http://dx.doi.org/10.1023/A:1016587515822
http://dx.doi.org/10.1023/A:1016587515822
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0062731025
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0062731025
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0062731025
http://dx.doi.org/10.1145/602259.602266
http://dx.doi.org/10.1145/602259.602266

References 186

[47] Hamed Haddadi, Pan Hui, Tristan Henderson, and Ian Brown. Targeted
Advertising on the Handset: Privacy and Security Challenges. Human-
Computer Interaction Series. Springer, July 2011.

[48] P.D. Haghighi, A Zaslavsky, and S. Krishnaswamy. An evaluation of
query languages for context-aware computing. In Database and Expert
Systems Applications, 2006. DEXA ’06. 17th International Workshop on,
pages 455–462, 2006. doi: 10.1109/DEXA.2006.25.

[49] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Gener-
ating context management infrastructure from high-level context models.
In In 4th International Conference on Mobile Data Management (MDM)
- Industrial Track, pages 1–6, 2003.

[50] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonharts-
berger, Josef Altmann, and Werner Retschitzegger. Context-awareness
on mobile devices - the Hydrogen approach. In HICSS ’03: Proceedings
of the 36th Annual Hawaii International Conference on System Sciences
(HICSS’03) - Track 9, page 292.1, Washington, DC, USA, 2003. IEEE
Computer Society. ISBN 0-7695-1874-5.

[51] Matthew Horridge and Sean Bechhofer. The owl api: A java api for owl
ontologies. Semant. web, 2(1):11–21, January 2011. ISSN 1570-0844. URL
http://dl.acm.org/citation.cfm?id=2019470.2019471.

[52] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector,
Robert Stevens, and Hai Wang. The manchester owl syntax. In
OWLED2006 Second Workshop on OWL Experiences and Directions,
Athens, GA, USA, 2006.

[53] Ian Horrocks, Peter F. Patel-Schneider, and Frank Van Harmelen. From
shiq and rdf to owl: The making of a web ontology language. Journal of
Web Semantics, 1:2003, 2003.

[54] Ibrahim Kamel and Christos Faloutsos. Hilbert r-tree: An improved r-
tree using fractals. In Proceedings of the 20th International Conference
on Very Large Data Bases, VLDB ’94, pages 500–509, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc. ISBN 1-55860-153-8.
URL http://dl.acm.org/citation.cfm?id=645920.673001.

[55] Panu Korpipaa, Jani Mantyjarvi, Juha Kela, Heikki Keranen, and Esko-
Juhani Malm. Managing context information in mobile devices. IEEE
Pervasive Computing, 2(3):42–51, 2003. ISSN 1536-1268.

[56] King I. Lin, H. V. Jagadish, and Christos Faloutsos. The TV-Tree: An
Index Structure for High-Dimensional Data. VLDB Journal: Very Large
Data Bases, 3(4):517–542, 1994. URL http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.57.3060.

http://dl.acm.org/citation.cfm?id=2019470.2019471
http://dl.acm.org/citation.cfm?id=645920.673001
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.3060
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.3060

References 187

[57] David Malan, Thaddeus Fulford-Jones, Matt Welsh, and Steve Moulton.
Codeblue: An ad hoc sensor network infrastructure for emergency med-
ical care. In In International Workshop on Wearable and Implantable
Body Sensor Networks, 2004. URL http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.113.7341.

[58] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopou-
los, and Y. Theodoridis. R-Trees: Theory and Applications, chapter 4,
pages 55–61. Springer, 1 edition, September 2005.

[59] Danny Matthews, Dan Chalmers, and Ian Wakeman. Mediatespace: de-
centralised contextual mediation using tuple spaces. In Proceedings of the
Third International Workshop on Middleware for Pervasive Mobile and
Embedded Computing, M-MPAC ’11, pages 5:1–5:8, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-1065-9. doi: 10.1145/2090316.2090321.

[60] Danny Matthews, Dan Chalmers, and Ian Wakeman. Im-
proving the effectiveness of advertising through contextual media-
tion. 2012. URL http://www.dmatthews.co.uk/resources/

publications/pervasive-advertising-2012-paper.pdf.

[61] M. Mauve, A. Widmer, and H. Hartenstein. A survey on position-based
routing in mobile ad hoc networks. Netwrk. Mag. of Global Internetwkg.,
15(6):30–39, November 2001. ISSN 0890-8044. doi: 10.1109/65.967595.
URL http://dx.doi.org/10.1109/65.967595.

[62] Ted McFadden, Karen Henricksen, and Jadwiga Indulska. Automating
context-aware application development. In In: UbiComp 1st Interna-
tional Workshop on Advanced Context Modelling, Reasoning and Man-
agement, pages 90–95, 2004.

[63] Robin Milner. Bigraphs and their algebra. Electronic Notes in Theoretical
Computer Science, 209:5–19, April 2008. ISSN 15710661. doi: 10.1016/
j.entcs.2008.04.002. URL http://dx.doi.org/10.1016/j.entcs.

2008.04.002.

[64] B Moltchanov, M Knappmeyer, C.A. Licciardi, and N Baker. Context-
aware content sharing and casting. In Proceedings of ICIN 2008, Bor-
deaux, France, 2008.

[65] M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Con-
temporary Physics, 46:323–351, December 2005. URL http://arxiv.

org/abs/cond-mat/0412004.

[66] Gian Pietro Picco, Davide Balzarotti, and Paolo Costa. LighTS: A
Lightweight, Customizable Tuple Space Supporting Context-Aware Ap-
plications. In Proceedings of the 20th ACM Symposium on Applied Com-

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.7341
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.7341
http://www.dmatthews.co.uk/resources/publications/pervasive-advertising-2012-paper.pdf
http://www.dmatthews.co.uk/resources/publications/pervasive-advertising-2012-paper.pdf
http://dx.doi.org/10.1109/65.967595
http://dx.doi.org/10.1016/j.entcs.2008.04.002
http://dx.doi.org/10.1016/j.entcs.2008.04.002
http://arxiv.org/abs/cond-mat/0412004
http://arxiv.org/abs/cond-mat/0412004

References 188

puting (SAC05), SAC 05, pages 1134–1140, Santa Fe (New Mexico, USA),
March 2005. ACM Press.

[67] Stavros Polyviou, Paraskevas Evripidou, and George Samaras. Con-
textaware queries using query by browsing and chiromancer. In Second
International Conference on Pervasive Computing, 2004.

[68] Julien Ponge. Avoiding benchmarking pitfalls on the jvm. Java Magazine,
pages 42–50, 2014. URL http://www.oracle.com/javamagazine.

[69] M. Porter. The Porter Stemming Algorithm. URL http://www.

tartarus.org/martin/PorterStemmer.

[70] Q-Success. Usage of advertising networks for websites. URL http://

w3techs.com/technologies/overview/advertising/all. Ac-
cessed: 22/09/2014.

[71] Anand Ranganathan and Roy H. Campbell. An infrastructure for
context-awareness based on first order logic. Personal Ubiquitous Com-
put., 7(6):353–364, December 2003. ISSN 1617-4909. doi: 10.1007/
s00779-003-0251-x. URL http://dx.doi.org/10.1007/s00779-

003-0251-x.

[72] Rajiv Ranjan, Aaron Harwood, and Rajkumar Buyya. Peer-to-Peer Tuple
Space: A novel protocol for coordinated resource provisioning. Technical
report, The University of Melbourne, Victoria, Australia, 2007.

[73] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. In Proceed-
ings of the 2001 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, SIGCOMM ’01,
pages 161–172, New York, NY, USA, 2001. ACM. ISBN 1-58113-411-8.
doi: 10.1145/383059.383072. URL http://doi.acm.org/10.1145/

383059.383072.

[74] Simon Rogers. Uk population: find out what’s happened near you. URL
http://www.theguardian.com/news/datablog/2011/jun/

30/uk-population-growth-data. Accessed: 22/09/2014.

[75] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Dr-
uschel. Scribe: The design of a large-scale event notification infrastruc-
ture. In In Networked Group Communication, pages 30–43, 2001.

[76] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer systems. In
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, Middleware ’01, pages 329–350, London,

http://www.oracle.com/javamagazine
http://www. tartarus. org/martin/PorterStemmer
http://www. tartarus. org/martin/PorterStemmer
http://w3techs.com/technologies/overview/advertising/all
http://w3techs.com/technologies/overview/advertising/all
http://dx.doi.org/10.1007/s00779-003-0251-x
http://dx.doi.org/10.1007/s00779-003-0251-x
http://doi.acm.org/10.1145/383059.383072
http://doi.acm.org/10.1145/383059.383072
http://www.theguardian.com/news/datablog/2011/jun/30/uk-population-growth-data
http://www.theguardian.com/news/datablog/2011/jun/30/uk-population-growth-data

References 189

UK, UK, 2001. Springer-Verlag. ISBN 3-540-42800-3. URL http://

dl.acm.org/citation.cfm?id=646591.697650.

[77] Hans. Sagan. Space-Filling Curves, chapter 2, pages 9–30. Springer-
Verlag New York, Inc., 1994.

[78] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context
Toolkit: aiding the development of context-enabled applications. In CHI
’99: Proceedings of the SIGCHI conference on Human factors in com-
puting systems, pages 434–441, New York, NY, USA, 1999. ACM. ISBN
0-201-48559-1. doi: http://doi.acm.org/10.1145/302979.303126.

[79] J. Santa and A. F. Gómez-Skarmeta. Sharing context-aware road and
safety information. Pervasive Computing, IEEE, 8(3):58–65, July 2009.
ISSN 1536-1268. doi: 10.1109/MPRV.2009.56.

[80] Katie Shilton. Four billion little brothers?: privacy, mobile phones, and
ubiquitous data collection. Commun. ACM, 52(11):48–53, 2009. ISSN
0001-0782. doi: 10.1145/1592761.1592778. URL http://dx.doi.org/
10.1145/1592761.1592778.

[81] Yan Shvartzshnaider, Maximilian Ott, and David Levy. Publish/-
subscribe on top of dht using rete algorithm. In Proceedings of the
Third Future Internet Conference on Future Internet, FIS’10, pages
20–29, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-15876-
5, 978-3-642-15876-6. URL http://dl.acm.org/citation.cfm?

id=1929268.1929271.

[82] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. In SIGCOMM ’01: Proceedings of the 2001 conference
on Applications, technologies, architectures, and protocols for computer
communications, volume 31, pages 149–160, New York, NY, USA, Octo-
ber 2001. ACM. ISBN 1-58113-411-8. doi: 10.1145/383059.383071. URL
http://dx.doi.org/10.1145/383059.383071.

[83] Thomas Strang and Claudia L. Popien. A context modeling
survey. In Workshop on Advanced Context Modelling, Reason-
ing and Management, UbiComp 2004 - The Sixth International
Conference on Ubiquitous Computing, Nottingham/England, Septem-
ber 2004. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.2.2060.

[84] Theory.org. Bittorrent protocol specification v1.0.
http://wiki.theory.org/BitTorrentSpecification, September 2014.

http://dl.acm.org/citation.cfm?id=646591.697650
http://dl.acm.org/citation.cfm?id=646591.697650
http://dx.doi.org/10.1145/1592761.1592778
http://dx.doi.org/10.1145/1592761.1592778
http://dl.acm.org/citation.cfm?id=1929268.1929271
http://dl.acm.org/citation.cfm?id=1929268.1929271
http://dx.doi.org/10.1145/383059.383071
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.2060
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.2060

References 190

[85] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System
description. In Proc. of the Int. Joint Conf. on Automated Reasoning
(IJCAR 2006), volume 4130 of Lecture Notes in Artificial Intelligence,
pages 292–297. Springer, 2006.

[86] Dmitry Tsarkov and Ian Horrocks. Fact++ description logic reasoner:
System description. In Proceedings of the Third International Joint Con-
ference on Automated Reasoning, IJCAR’06, pages 292–297, Berlin, Hei-
delberg, 2006. Springer-Verlag. ISBN 3-540-37187-7, 978-3-540-37187-
8. doi: 10.1007/11814771 26. URL http://dx.doi.org/10.1007/

11814771_26.

[87] Mathieu Valero, Luciana Arantes, Maria Potop-Butucaru, and Pierre
Sens. Enhancing fault tolerance of distributed r-tree. In LADC, pages 25–
34. IEEE Computer Society, 2011. URL http://dblp.uni-trier.

de/db/conf/ladc/ladc2011.html#ValeroAPS11.

[88] Xiang-Wen Wang, Xiao-Pu Han, and Bing-Hong Wang. Correlations and
scaling laws in human mobility. PLoS ONE, 9(1):e84954, 01 2014. doi:
10.1371/journal.pone.0084954.

[89] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The
active badge location system. ACM Trans. Inf. Syst., 10(1):91–102, Jan-
uary 1992. ISSN 1046-8188. doi: 10.1145/128756.128759. URL http://

doi.acm.org/10.1145/128756.128759.

[90] Mark Weiser. Some computer science issues in ubiquitous comput-
ing. Commun. ACM, 36(7):75–84, July 1993. ISSN 0001-0782.
doi: 10.1145/159544.159617. URL http://doi.acm.org/10.1145/

159544.159617.

[91] Mark Williams. Annual survey of hours and earnings, 2010 revised
results. URL http://www.ons.gov.uk/ons/rel/ashe/annual-

survey-of-hours-and-earnings/2010-revised-results/

index.html. Accessed: 22/09/2014.

[92] Derick Wood. Data structures, algorithms, and performance. Addison-
Wesley, 1993. ISBN 978-0-201-52148-1.

[93] Zhichen Xu, Chunqiang Tang, and Zheng Zhang. Building topology-
aware overlays using global soft-state. In Proceedings of the 23rd In-
ternational Conference on Distributed Computing Systems, ICDCS ’03,
pages 500–, Washington, DC, USA, 2003. IEEE Computer Society.
ISBN 0-7695-1920-2. URL http://dl.acm.org/citation.cfm?

id=850929.851967.

http://dx.doi.org/10.1007/11814771_26
http://dx.doi.org/10.1007/11814771_26
http://dblp.uni-trier.de/db/conf/ladc/ladc2011.html#ValeroAPS11
http://dblp.uni-trier.de/db/conf/ladc/ladc2011.html#ValeroAPS11
http://doi.acm.org/10.1145/128756.128759
http://doi.acm.org/10.1145/128756.128759
http://doi.acm.org/10.1145/159544.159617
http://doi.acm.org/10.1145/159544.159617
http://www.ons.gov.uk/ons/rel/ashe/annual-survey-of-hours-and-earnings/2010-revised-results/index.html
http://www.ons.gov.uk/ons/rel/ashe/annual-survey-of-hours-and-earnings/2010-revised-results/index.html
http://www.ons.gov.uk/ons/rel/ashe/annual-survey-of-hours-and-earnings/2010-revised-results/index.html
http://dl.acm.org/citation.cfm?id=850929.851967
http://dl.acm.org/citation.cfm?id=850929.851967

	DPhil Coversheet
	Matthews, Danny
	Statement of Originality
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Contributions
	Published Works
	System Overview
	Motivation
	Thesis Organisation

	Decentralised Protocols
	Introduction
	Publish-Subscribe Networks
	Tuple Spaces
	Hash Tables
	Spatial Indexes
	Summary

	Context-Aware Middleware
	Introduction
	Context-Aware Frameworks
	Categories of Context-Awareness
	Aspects of Context
	Representing Context
	Context Models
	Location Models and Services
	Criteria for Evaluating Existing Frameworks
	Evaluating Frameworks
	A Context-Aware Middleware Taxonomy
	Summary

	Context-Aware Content Distribution
	Introduction
	The MediateSpace Language
	The MediateSpace Network
	Pervasive Advertising
	Summary

	A Context-Based Spatial Lookup Algorithm
	Introduction
	Value Mapping
	Structure Mapping
	Summary

	Context Reasoning Using OWL
	Introduction
	The OWL Language
	Motivation
	MediateSpace OWL Ontology
	MediateSpace Evaluation Ontology
	Summary

	Design and Experimental Setup
	Introduction
	MediateSpace Design
	Context Modelling
	Simulation
	Benchmarking Condition Evaluation
	Summary

	Results
	Introduction
	Condition Classes
	Condition Evaluation Benchmarks
	Simulation
	Properties of Spatial Indexes
	Summary

	Conclusions and Future Work
	Introduction
	Thesis Summary
	Future Work
	Summary
	References

