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Abstract

Antineutrinos from the set of 7.09×1020 Protons-on-target (POT) of
νµ-dominant and 3.40×1020 POT of ν̄µ-enhanced MINOS beam data
is analysed to extract the antineutrino atmospheric-scale oscillation
parameters |∆m̄2| and sin2

(
2θ̄
)
. Using the Feldman-Cousins statisti-

cal technique to account for systematic and statistical errors, |∆m̄2| =
2.58+0.26

−0.17×10−3 eV2 and sin2
(
2θ̄
)

= 0.96+0.04
−0.10 were measured. This mea-

surement of |∆m̄2| improves on the previous world limits from Super-
K by a factor of five. Any observed difference between the neutrino
and antineutrino oscillation parameters could be an indication of CPT
violation, or otherwise physics beyond the standard model. This mea-
surement is consistent with the global limits on |∆m2| and sin2 (2θ) for
neutrinos.
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Preface

The work in this thesis arose in participation with the antineutrino
oscillation working group in the MINOS collaboration. As such, the
thesis contains a mixture of original work, and also builds on work
performed by, or in collaboration with, others. Much of the work de-
veloped for this thesis was used in the publications [1, 2].

Chapter 1 is the introduction, and contains a brief summary of mo-
tivations for the work carried out in the course of this thesis.

Chapter 2 is a summary of the theory and history of experimental
neutrino physics, and so contains no original workings, save several
diagrams constructed or reproduced to illustrate the discussion.

Chapter 3 contains summaries of the NuMI beamline and MINOS
experiment, which are not original work. The chapter also contains a
description of recently published results from the MINOS collabora-
tion, which I was involved with. In particular, I performed much of
the original work on which this thesis is based for the ν̄µ oscillation
result.

Chapter 4 describes the extrapolation method used to generate pre-
dictions, which was the work of others. However, I performed much
optimisation of the procedure, needed for the computationally inten-
sive Feldman-Cousins analysis, and performed the work on improv-
ing methods of calculating the oscillation probabilities, described in
section 4.2.5.

Chapter 5 describes the selection used to identify charged-current
ν̄µ interations in the detector. The development of the PID and selec-
tion variables was inherited, and not original work, but I was heav-
ily involved in derivation and optimisation of the combination of the
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variables used for the MINOS analysis selections, and the further work
performed to optimise the selection used in this thesis is entirely my
own. I performed the analysis of the effect of systematics on the re-
sults presented here, using the scales of the systematics quantified in
studies largely performed by others.

Chapter 6 describes the Feldman-Cousins statistical method, which
is not my own original concept, but the implementations, analysis, fit-
ting approaches and method for integrating systematics into the method
is entirely my own work.

Chapter 7 considers the results of the analysis, and so is entirely
based on work performed for this thesis, save the data used in the
comparisons with world experimental limits, which come from their
respective experiments.

Chapter 8 is the conclusion, and so is entirely based on work un-
dertaken in this thesis.

v



Acknowledgements

The list of people who have helped me to accomplish this thesis is long
and varied - and should probably involve almost everybody I have
interacted with during the process. Here is a small subset.

Foremost, I would like to thank my supervisor Jeff Hartnell for his
endless patience, encouragement and support throughout the (some-
what more turbulent than expected) process of writing this thesis. His
professionalism and persistent faith should be a model to all, and one
which I can only hope to emulate in the future. Thanks also to the staff,
postdocs, and other students at Sussex throughout - particularly Lisa
Falk, Phil Harris, Marta Tavera and Gwenaelle Lefeuvre, who were
there when I needed assistance - whether for friendship, physics, or
just for help navigating the institutional bureaucracy.

Everyone on the MINOS experiment deserves thanks, but in par-
ticular the antineutrino working group heads Justin Evans and Donna
Naples, and Jeff de Jong from the calibration working group. Addi-
tionally, Jess Mitchell, Phil Rodrigues, Chris Backhouse, Zeynep Isvan
and Ruth Toner were all fellow students whom helped keep me sane,
especially during long collaboration meetings, or when trying in vain
to wrestle the ROOT framework into submission.

I would like to thank my parents for always supporting my love
of science and computing, and the extraordinarily generous financial
support throughout my entire university career.

I would like to thank Charlotte, who became my wife shortly after
submitting, for supporting me in every way possible throughout the
ups and downs of the entire process, and having faith in me when it
felt like everything was grinding to a halt.

Finally, I would like to thank Angela Miller, Charlotte’s mother,
who passed away in 2014, but whose legacy allowed me to work to
completion. This is a debt I can only ever hope to repay, by being a
loving husband to Charlotte.

vi



Contents

1 Introduction 1

2 History and Theory 4
2.1 Neutrino Mixing Theory . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 PMNS Mixing Matrix . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Two-Flavour approximation . . . . . . . . . . . . . . . . . . 10
2.1.3 CPT Transformation and Conservation . . . . . . . . . . . . 11

2.2 The Solar Neutrino Problem . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The Atmospheric Neutrino Anomaly . . . . . . . . . . . . . . . . . . 17

2.3.1 Super-Kamiokande . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Recent Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Unresolved Properties of the Neutrino . . . . . . . . . . . . . . . . . 22

3 The MINOS Experiment 24
3.1 The NuMI Neutrino Beam . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Scintillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Near Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Far Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 The Light Injection System . . . . . . . . . . . . . . . . . . . 35
3.3.2 Muon tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Flux Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Event Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Previous MINOS Results . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Extrapolation 47
4.1 Predicting the Far Detector Energy Spectrum . . . . . . . . . . . . . 47
4.2 Beam Matrix Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Step-by-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Beam Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Converting Far Detector Flux to an Energy Spectrum . . . . 54
4.2.4 Purity Corrections: Background calculation . . . . . . . . . . 57
4.2.5 Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



5 Selection 67
5.1 Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Signal Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 NC Discrimination . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 Charge Sign Selection . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Choosing the selection variables . . . . . . . . . . . . . . . . . . . . 76
5.3.1 Antineutrino Beam Selection . . . . . . . . . . . . . . . . . . 78

5.4 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Actual effect of systematics . . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Data Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Application of the Feldman-Cousins Method 92
6.1 Statistical Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Applying the correction . . . . . . . . . . . . . . . . . . . . . 96
6.1.2 Fitting individual experiments . . . . . . . . . . . . . . . . . 98
6.1.3 Aggregating Multiple Runs . . . . . . . . . . . . . . . . . . . 101

6.2 Systematic Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.1 Experiment Generation . . . . . . . . . . . . . . . . . . . . . 105
6.2.2 Far Detector Fake Experiment Generation . . . . . . . . . . . 107
6.2.3 Systematic Shifts and Far Detector Generation . . . . . . . . 109
6.2.4 Systematic grids . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Results 114
7.1 Near Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2 Far Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Feldman-Cousins Corrected Results . . . . . . . . . . . . . . . . . . 120
7.4 Measuring Individual Parameters . . . . . . . . . . . . . . . . . . . . 122
7.5 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Conclusion 129

viii



List of Figures

2.1 Two-flavour oscillation survival probability . . . . . . . . . . . . . . 11
2.2 Global fit from 2008 on antineutrino vs neutrino oscillation . . . . . 13
2.3 Standard solar model prediction of neutrino energy from the sun . 14
2.4 Schematic of Sudbury Neutrino Observatory, and the SNO detector 16
2.5 Measured flux of νe vs νµ + ντ by the SNO detector . . . . . . . . . . 17
2.6 Neutrino production by cosmic rays. Based on a diagram in [9]. . . 18
2.7 The Super-Kamiokande Detector . . . . . . . . . . . . . . . . . . . . 19
2.8 The Super-K antineutrino results . . . . . . . . . . . . . . . . . . . . 21

3.1 The NuMI facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Stages in the target hall . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Neutrino flux with different target hall configurations . . . . . . . . 26
3.4 The structure of a scintillator strip . . . . . . . . . . . . . . . . . . . 30
3.5 A short scintillator strip illuminated by a blue LED . . . . . . . . . 30
3.6 Photograph and diagram of the near detector . . . . . . . . . . . . . 31
3.7 Diagram and Photograph of the far detector . . . . . . . . . . . . . . 32
3.8 The magnetic coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 A cross section of the light injection module . . . . . . . . . . . . . . 36
3.10 Detector average PMT ‘gain’ responses . . . . . . . . . . . . . . . . 36
3.11 Relative drift of detector response . . . . . . . . . . . . . . . . . . . 38
3.12 Types of neutrino interaction and topologies in the detectors . . . . 41
3.13 MINOS νe appearance results . . . . . . . . . . . . . . . . . . . . . . 43
3.14 The reconstructed energy spectrum of selected NC events at the far

detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.15 Confidence limits for the νµ disappearance oscillation fit. . . . . . . 44
3.16 Confidence limits for the MINOS ν̄µ and νµ fit . . . . . . . . . . . . . 46

4.1 Far/Near ratio for selected run I MC events . . . . . . . . . . . . . . 48
4.2 Converting measured ND data to an FD Prediction . . . . . . . . . 49
4.3 Example of the purity correction applied in the near detector. . . . 51
4.4 Converting reconstructed energy events to their original truth . . . 52
4.5 Near detector selection efficiency . . . . . . . . . . . . . . . . . . . . 53
4.6 Far detector selection efficiency . . . . . . . . . . . . . . . . . . . . . 55
4.7 Converting true energy events to their equivalent reconstructed

energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 Calculating the FD spectrum background events . . . . . . . . . . . 58
4.9 Efficiency of selecting wrong-sign µ tracks . . . . . . . . . . . . . . . 59
4.10 FD Purity and NC selection Efficiency . . . . . . . . . . . . . . . . . 61
4.11 Cross-section and Efficiency of ν̄τ interactions . . . . . . . . . . . . . 61

ix



4.12 Comparison between methods of calculating oscillation probability 64
4.13 Integrated error of different oscillation methods. . . . . . . . . . . . 65

5.1 Fiducial volumes in the near and far detectors . . . . . . . . . . . . 70
5.2 Distribution of the NC discrimination PID S1 . . . . . . . . . . . . . 72
5.3 Distribution of the NC discrimination PID S2 . . . . . . . . . . . . . 73
5.4 Calculation of the relative angle selection variable . . . . . . . . . . 75
5.5 The distribution of the relative angle variable . . . . . . . . . . . . . 75
5.6 Distribution of the fitting certainty estimation for PQ events . . . . 76
5.7 Optimisation of the PID S1 for run 1 Monte Carlo . . . . . . . . . . 78
5.8 Statistical sensitivity to oscillations with νµ-dominant beam . . . . . 79
5.9 Optimisation of the PID S2 for ν̄µ-enhanced Monte Carlo . . . . . . 80
5.10 Downstream event detector effects . . . . . . . . . . . . . . . . . . . 84
5.11 Band plot of systematic effects . . . . . . . . . . . . . . . . . . . . . . 86
5.12 Star plot of the systematic effects . . . . . . . . . . . . . . . . . . . . 87
5.13 Star plot of the systematic effects vs sensitivity . . . . . . . . . . . . 88
5.14 Data/MC comparison plots for νµ-dominant beam detector variables 90
5.15 Data/MC comparison plots for ν̄µ-enhanced beam detector variables 91

6.1 Probability density of the ∆χ2 distribution . . . . . . . . . . . . . . 93
6.2 Sample ∆χ2

fit distribution from the FC method for νµ-dominant beam 96
6.3 The ∆χ2 surface for νµ-dominant beam and the associated FC grid 97
6.4 Distribution of best fit points for an FC grid point . . . . . . . . . . 99
6.5 The 68% FC-correction surfaces calculated by applying the two fit-

ting scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.6 The points considered in the coarse grid search . . . . . . . . . . . . 100
6.7 FC correction grids for separate run 3 and 1+2+3 MC . . . . . . . . 103
6.8 FC Correction surfaces for νµ and νµ +ν̄µ modes . . . . . . . . . . . . 104
6.9 Systematic Shifts are chosen in a normal distribution . . . . . . . . 106
6.10 68% and 90% FC Correction Grids . . . . . . . . . . . . . . . . . . . 112
6.11 Sensitivity comparison of Gaussian, Statistical FC and Full FC . . . 113

7.1 ND positive charge data . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 FD Antineutrino results per run . . . . . . . . . . . . . . . . . . . . . 117
7.3 FD Antineutrino results . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4 Gaussian confidence limits of antineutrino fit . . . . . . . . . . . . . 119
7.5 Confidence limits of the measurement as a function of |∆m̄2| and

sin2
(
2θ̄
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.6 FC 68% correction grid for marginalisation of sin2

(
2θ̄
)

. . . . . . . . 123
7.7 1D Marginalisation corrections . . . . . . . . . . . . . . . . . . . . . 123
7.8 FC 68% correction grid for marginalisation of |∆m̄2| . . . . . . . . . 125
7.9 Comparison of confidence limits with other experiments . . . . . . 126

x



Chapter 1

Introduction

Neutrinos have been of great interest to physicists ever since they were first pos-

tulated in the thirties, not least because they have defied expectations at every

turn. From being proclaimed “impossible to observe”, it was twenty years before

they were first detected from nuclear reactors, and when used to probe the inner

workings of the sun there appeared to be a large portion missing!

Eventually, it was discovered that the disappearing neutrinos were actually

undergoing flavour change - confirming the oscillation hypothesis, and hence

that neutrinos must have a mass. This is the strongest current experimental evi-

dence of physics beyond the standard model.

Since then, many of the parameters describing the mixing between flavours

have been measured, using both neutrinos and antineutrinos. This includes the

neutrino mass squared differences, ∆m2
21 and |∆m2

32|, and recently, a non-zero

value for θ13. For measurements of antineutrinos, reactors supply a steady and

useful supply of ν̄e, whereas the sun provides a source of νe. Atmospheric neutri-

nos provide a mixed flux of νµ and ν̄µ, as well as νe and ν̄e. In contrast, accelera-

tors provide beams enhanced in νµ or ν̄µ and the associated experiments measure

L/E extremely precisely. Long-baseline accelerator neutrino oscillation experi-

ments have started operating with ν̄µ-enhanced beams, and the data used in this

thesis is from the first such operation of a long baseline experiment.

Prior to the analysis of this data the range of possible “atmospheric” |∆m̄2|

1
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values was [3]

(1 <
∣∣∆m̄2

∣∣ < 6)× 10−3 eV2 (90% C.L.).

In this thesis, data from exposure of the large steel scintillator-based MINOS de-

tectors to 10.49×1020 protons-on-target from the NuMI (anti)neutrino beam in

Fermilab, IL, USA is used to measure the antineutrino oscillation parameters

|∆m̄2| and sin2
(
2θ̄
)
. The magnetised MINOS detectors are used to select a high

purity ν̄µ sample. The Feldman-Cousins method has been used to more accu-

rately estimate the effects of systematic and statistical uncertainties on the final

results.

Chapter 2 starts with an overview of the history of the discovery and mea-

surements of the neutrino that led to the knowledge we have today, including

a summary of the most important experiments. It then discusses the theory of

neutrino oscillation, and looks at what measuring a difference between neutrinos

and antineutrinos would imply.

Chapter 3 continues by describing the NuMI beam at Fermilab, the (anti)neutrino

source for the MINOS Experiment, and then describes both the near and far de-

tectors. The chapter concludes by summarizing recently published results by the

experiment.

Chapter 4 describes the extrapolation method used to create predictions of

the neutrino energy spectrum at the far detector, using data from the near detec-

tor. This procedure allows the significant reduction of systematic errors due to

flux and cross-section uncertainties, by turning an absolute measurement into a

relative one.

In chapter 5 the best way to select the purest possible set of antineutrino

events amongst varying backgrounds is investigated. These backgrounds include

wrongly-identified muons from νµ-CC interactions, and hadronic showers con-

taining tracks. The largest sources of systematic uncertainty are then investigated

to determine what is important to account for in the final result.



3

Chapter 6 describes the Feldman-Cousins method, a process by which inter-

vals for both the sensitivity of the analysis and the final confidence levels can be

calculated, under conditions where the errors in the oscillation parameters are

not distributed according to Gaussian statistics. The Feldman-Cousins technique

is also used to account for the effect of systematic uncertainties in these intervals.

In chapter 7, the techniques discussed in chapters 4-6 are applied to the actual

data collected in the MINOS experiment, and a measurement of both |∆m̄2| and

sin2
(
2θ̄
)

is made. These results are then compared to those from Super-K, which

prior to MINOS provided the world’s best measurement of |∆m̄2
32|. Finally, chap-

ter 8 concludes the thesis and looks towards the future measurement of these

parameters.

Much of the work developed for this thesis was used in the MINOS publica-

tions [2] and [1], with a subset of the full beam data set that is analysed here.



Chapter 2

History and Theory

The history of the neutrino starts at the turn of the 20th century; with the discov-

ery of penetrating rays from radioactive sources in 1896, and their identification

as two separate products by Rutherford in 1899, α and β particles were found,

swiftly joined by γ rays.

In 1914 it was discovered by Chadwick that the β decay spectrum was con-

tinuous [4], in contrast to the discrete energies of α and γ decay products. This

was confirmed in 1927 when Ellis and Wooster [5] measured the heating from a

radioactive sample in a thick-walled calorimeter to confirm that this continuity

was due to the nature of the decay, ruling out other known energy loss mecha-

nisms.

In order to resolve this problem, which was starting to cause questions on

the universality of conservation of energy, W. Pauli wrote an open letter to a

1930 Tübingen physics conference. Starting “Dear Radioactive Ladies and Gen-

tlemen” [6], he tentatively proposed a new, neutral fermion inside the nucleus,

emitted in β-decay, which he suggested calling a neutron. He suggested that the

particle would be about the same mass as the electron, and would have up to ten

times more penetrating power than γ rays.

When the particle now known as the neutron was subsequently discovered by

Chadwick [7] in 1932, Fermi renamed this particle the ‘Neutrino’, meaning ‘Little

neutral one’ in Italian. This particle was subsequently included when Fermi for-

4



2.1. Neutrino Mixing Theory 5

mulated a successful theory in 1934 [8] to explain β-decay, which is now known

as Fermi theory. Although the scientific community was now convinced on the

existence of the neutrino [9], none had been observed, and predictions on the

cross-section for interaction by Bethe and Peierls [10] led them to suggest that it

was “Absolutely impossible to observe processes of this kind with the neutrinos

created in nuclear transformations”.

It was twenty years before Reines and Cowan first detected the neutrino in

1953 [11], and then confirmed in 1956 [12] - using a nearby nuclear reactor, they

detected signal coincidence in liquid scintillator via inverse beta decay, now known

to be the reaction

ν̄e + p+ → N0 + e+,

for which Reines subsequently shared a part of the 1995 Nobel prize for physics.

After the discovery of the muon in 1937 [13] the existence of a second neutrino

was discovered, νµ in 1962 [14] by searching for lepton flavour number violation

via the process π+ → µ+ + ν and then ν + p → n + e+. With the subsequent

discovery of the τ lepton in 1975 [15] and the measurement of the invisible width

of the Z boson [16] in 1989, the number of neutrinos is known to be three. The ντ

was first observed in 2000 [17, 18] by the DONUT experiment.

2.1 Neutrino Mixing Theory

In the standard theory of neutrino oscillations, any neutrino created in a charged-

current weak interaction is created in a weak flavour-eigenstate, which is a sum

of mass eigenstates

|να (t = 0)〉 =
∑

k

U∗αk |νk〉 (α = e, µ, τ) , (2.1)

where U is a unitary rotational matrix (satisfying U †U = 1) that defines the scale

of any mixing between the mass and flavour eigenstates. The actual form of this



2.1. Neutrino Mixing Theory 6

matrix for neutrino mixing will be discussed in section 2.1.1, but the calculations

here only depend on the general properties.

These mass eigenstates can be considered eigenstates of the Hamiltonian

H |νk〉 = Ek |νk〉 ,

and the Schrödinger equation

i
d
dt
|vk (t)〉 = H |vk (t)〉

can be solved in a way that the neutrino mass states can be expressed as an evo-

lution over time as plane waves:

|vk (t)〉 = e−iEkt |vk〉 ,

which, using equation (2.1), lets us describe how the flavour eigenstates evolve:

|να (t)〉 =
∑

k

U∗αke
−iEkt |vk〉 . (2.2)

Because of the unitarity of U , we can invert equation (2.1) to give the mass

eigenstate in terms of a mixture of flavour eigenstates:

|νk〉 =
∑

α

Uαk |να〉 .

Substituting this back into equation (2.2) then gives us:

|να (t)〉 =
∑

β=e,ν,τ

(∑

k

U∗αke
−iEktUβk

)
|νβ〉 .

Hence, if the mixing matrix U is not diagonal, the pure flavour |να (0)〉 be-

comes at some time t a superposition of different flavour states. Using the projec-
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tion of one of these flavour states,

〈νβ|να (t)〉 =
∑

k

U∗αkUβke
−iEkt,

we can describe the probability of transition from flavour α → β at some time t

as

Pνα→νβ (t) = |〈νβ|να (t)〉|2 =
∑

k,j

U∗αkUβkUαjU
∗
βje
−i(Ek−Ej)t. (2.3)

Performing a binomial expansion on the energy, assuming that the neutrinos

are ultra-relativistic and thus mk � |~p| (removing any terms of mn
k higher than

n = 1)

Ek =
√
~p2 +m2

k

≈ E +
m2
k

2E
,

where E = |~p2|, we can thus express the energy difference Ek − Ej as

Ek − Ej ≈
∆m2

kj

2E
.

Together with the fact that since the neutrinos are travelling at approximately

c, t ' L, (where L is the distance travelled between the source of the neutrino at

t = 0 and the interaction point), this lets us approximate the transition probability

in equation (2.3) as

Pνα→νβ (L,E) =
∑

k,j

U∗αkUβkUαjU
∗
βj · exp

(
−i

∆m2
kjL

2E

)
. (2.4)

Because the squared-mass differences and members of the mixing matrix are

all physical constants, only the properties L and E are available to be controlled

in an experiment designed to observe oscillation.

It turns out to be useful to separate the real and imaginary parts of equation



2.1. Neutrino Mixing Theory 8

(2.4). Using e−ix = cos(x) + i sin(x), and the fact that, from the unitarity of U ,

∑

k

|Uαk|2 |Uβk|2 = δαβ − 2
∑

k>j

Re
[
U∗αkUβkUαjU

∗
βj

]
,

we can write the oscillatory probability as

Pνα→νβ (L,E) = δαβ − 2
∑

k>j

Re
[
U∗αkUβkUαjU

∗
βj

] [
1− cos

(
∆m2

kjL

2E

)]

+ 2
∑

k>j

Im
[
U∗αkUβkUαjU

∗
βj

] [
sin

(
∆m2

kjL

2E

)]
,

and finally, using

1− cos

(
∆m2

kjL

2E

)
= 2 sin2

(
∆m2

kjL

4E

)
,

we can conclude that the probability of oscillation can be expressed as:

Pνα→νβ (L,E) = δαβ − 4
∑

k>j

Re
[
U∗αkUβkUαjU

∗
βj

] [
sin2

(
∆m2

kjL

4E

)]

+ 2
∑

k>j

Im
[
U∗αkUβkUαjU

∗
βj

] [
sin

(
∆m2

kjL

2E

)]
.

For the kind of disappearance analysis we are performing in MINOS, and in

this thesis, we are particularly interested in the case where α = β = µ, which is

usually called the survival probability. With this condition, the productU∗αkUβkUαjU
∗
βj

becomes both real and equal to |Uαk|2 |Uαj|2. In addition, moving away from nat-

ural units where c = ~ = 1 so that E is in units of GeV, L in km and ∆m2
ij is in

eV2, the relevant survival probability becomes

Pνα→να (L,E) = 1− 4
∑

k>j

|Uαk|2 |Uαj|2 sin2

(
1.27∆m2

kjL

E

)
. (2.5)
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2.1.1 PMNS Mixing Matrix

The modern formulism of neutrino oscillations was first first put forward by

Maki, Nakagawa and Sakata [19] in order to explain the mixing proposed by

Pontecorvo [20].

Relating the lepton flavour eigenstates which experience the weak interac-

tion, |νe〉, |νµ〉 and |ντ 〉, to the mass eigenstates |ν1〉, |ν2〉 and |ν3〉 which propa-

gate through the vacuum is the mixing matrix U , performing a similar role to

the CKM [21, 22] matrix for quark-mixing. This matrix is known as the PMNS

matrix.

From the maximum possible eighteen parameters, nine are removed by the

unitarity condition, and a further five are relative phases between the lepton

fields that they describe. This leaves four parameters free in U , which are nor-

mally parametrised as three mixing angles θ12, θ23 and θ13, and a complex phase

δ:

UPMNS =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



,

where sij = sin θij and cij = cos θij . The complex phase δ can, if δ 6= 0, π, give

rise to CP violation in the lepton sector. For this reason, it is often referred to as

δCP . In addition to this form, for oscillation phenomenology it can be useful to

separate this into three separate matrices:

U =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
iδ

0 1 0

−s13e
iδ 0 c13







c12 s12 0

−s12 c12 0

0 0 1



,
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where it can be seen that the first and third are only dependent on θ23 and θ12,

respectively, and the second matrix is only dependent on θ13 and δ. Since θ13 is

known to be small, from experimental data - sin2 2θ13 = 0.089± 0.01 [23], the sec-

ond matrix can be approximated by the identity matrix. In addition, the scales

of ∆m2
23 and ∆m2

13 have been shown to be sufficiently different that certain ex-

periments involving θ23 and θ12 can be considered essentially decoupled. θ12 is

usually associated with the study of solar neutrino oscillations, and θ23 with the

study of atmospheric-scale oscillations.

2.1.2 Two-Flavour approximation

This naturally occurring simplification means that the oscillation probability for-

mula can usually be reduced to a two-flavour case. When only considering oscil-

lation between two flavours, the mixing matrix becomes:




να

νβ


 =




cos θ sin θ

− sin θ cos θ







ν1

ν2


 .

It can be shown that the two-flavour survival probability can be expressed by

substituting into (2.5) as:

Pνα→να (L,E) = 1− sin2(2θ) sin2

(
1.27∆m2L

E

)
, (2.6)

where E is in units of GeV, L in km and ∆m2
ij is in eV2. It can also be shown [9]

that the general form reduces to this when using two-flavours.

Figure 2.1 shows the form of this probability, in terms of the combined L/E

value, for the approximate value of |∆m2| relevant to the measurements being

made in this thesis.
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Figure 2.1: Two-flavour oscillation survival probability (equation (2.6)) for
sin2 (2θ) = 1.0 and |∆m2| = 2.5× 10−3 eV2, in terms of the ratio L/E.

2.1.3 CPT Transformation and Conservation

Under the action of charge conjugation (C) alone, left-handed neutrinos1 are trans-

formed into left-handed antineutrinos. However, only right-handed antineutri-

nos are observed in nature [26], along with left-handed neutrinos. Therefore,

parity transformation (P) must also be applied to produce a state that interacts.

This means that neutrinos and antineutrinos are related by a CP transformation

να
CP←→ ν̄α.

The addition of a time reversal operation (T) reverses the initial and final states.

Therefore, under CP and T transformation a flavour change transforms as:

να → νβ
CPT←→ ν̄β → ν̄α.

1 The term left-handed refers to the chirality of the particle, which is invariant under Lorentz
frame-boosting, and is identical to the helicity for massless particles. With massive neutrinos,
a particle with specific chirality may have both left and right-handed helicity components, the
measured value of which depends upon the frame of measurement [9, 24, 25].
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Since CPT is a symmetry for any local quantum field theory [27], the oscillation

probabilities under CPT must be equivalent, so

Pνα→νβ = Pν̄β→ν̄α . (2.7)

For the special case of the survival probability, equation (2.7) becomes

Pνα→να = Pν̄α→ν̄α ,

and so measuring a difference in oscillation probabilities between neutrinos and

antineutrinos in a disappearance channel could reveal a violation of CPT symme-

try, or some other new physics.

In 2008 Gonzalez-Garcia and Maltoni [3] analysed the world data from neu-

trino oscillation experiments in the context of CPT violation where ν and ν̄ are

allowed to oscillate independently. Figure 2.2 shows their conclusions for sen-

sitivity to neutrino vs antineutrino oscillation parameter differences in the CPT-

violating scenario. The large discrepancy in the precision on ∆m2
31 was motiva-

tion for the analysis carried out in this thesis, and the associated publications [2,

1, 28].

2.2 The Solar Neutrino Problem

In 1964, motivated by theories developed to explain the thermonuclear reactions

in the sun, the Homestake experiment was proposed [29]. In particular, there

were new, higher predictions of the rate of the reaction

3He + 4He→ 7Be + γ,
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Figure 2.2: Global fit (from 2008) of measurements on ν vs ν̄ oscillation parame-
ters that shows the opportunity for a greatly improved measurement on |∆m̄2

atm|.
Figure from [3] and shows 90%, 95%, 99% and 3σ contours for neutrino and anti-
neutrino mass splittings and mixing angles.

leading to the 7Be and 8B neutrino-producing reactions in the Standard Solar Model

(SSM) (see figure 2.3), making it possible to observe the neutrinos via the reaction

νe + 37Cl→ 37Ar + e−, (2.8)

which has a threshold neutrino energy of 0.814 MeV.

Located 1478 m below the surface in the Homestake gold mine, at Lead in

South Dakota, and built over 1965-1967 [31], this radiochemical experiment con-

sisted of a 6×105 litre tank of tetrachloroethylene (C2Cl4) providing a potential

2.16×1030 37Cl targets. Every two months, the argon was extracted and the ra-

dioactive 37Ar was counted via its decay.

When first results came out in 1968 [32], they measured a capture rate of less

than 3 × 10−36 sec−1 atom−1 (with the unit of 1 × 10−36 sec−1 atom−1 known as a

SNU, or Solar Neutrino Unit), about a third of the eventually predicted rate [33] of
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Figure 2.3: Standard solar model prediction of neutrino energy fluxes from from
the pp (solid) and CNO (dashed) energy production chains. Data from [30]. The
pp chain is the primary sequence of stellar thermonuclear reactions, starting with
the p+p→ 3H+e++νe (pp) and p+e−+p→2 H+νe (pep) reactions. The CNO cycle
is a chain of reactions that converts between Carbon, 13N and 15O, also producing
neutrinos.
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9.3 ± 1.3 SNU. Further measurement and technique refinement over the next 26

years led to their final measurement of 2.56± 0.23 SNU, a discrepancy of over 3σ

from the SSM prediction.

Eventually, with mounting evidence from Homestake other experiments started

taking measurements of solar neutrinos. The water-Cherenkov detector Kamiokande

was enlarged to Kamiokande-II in 1986, and the energy threshold lowered to the

point where 8B solar neutrinos could be detected [34]. After taking data through

to 1995, they reported [35] a measured flux of ΦKam
8B

= (2.80± 0.38)× 106 cm−2s−1,

about half of that predicted by the SSM, by more than 2σ.

In addition, a generation of Gallium-based detectors were constructed, in

GALLEX/GNO [36] and SAGE [37]. These detected solar neutrinos via the re-

action [38]

νe + 71Ga→ 71Ge + e−,

which has a lower threshold than (2.8), at Eth
ν = 0.233 MeV - allowing neutrinos

from all SSM sources (figure 2.3) to be detected. Crucially, the pp flux is both

higher than the 8B and 7Be flux, and better known (to within 3% [39]) - as the

primary pp reaction p+p→ 2H+e++νe is well constrained by the total luminosity

of the sun. Each of these experiments found [40, 41]:

RGALLEX/GNO
71Ga

= 69.3± 5.5 SNU,

RSAGE
71Ga = 70.8+6.5

−6.1 SNU,

which are both in remarkable agreement, both being about half of the flux pre-

dicted by the SSM, at over 5σ significance.

The experimental verification of the solution to these problems came from

the Sudbury Neutrino Observatory (SNO). SNO was a water Cherenkov detector

located in an active mine sited near Sudbury, (Ontario, Canada). A kiloton of

heavy water (D2O) is used as the detector medium, contained in a 12m diameter,

spherical transparent-acrylic vessel, itself submerged in a large cavity of ultra-
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Figure 2.4: The layout of the Sudbury Neutrino Observatory laboratory (left) and
schematic of the SNO detector (right). Figures from [42].

pure H2O, all at a depth of 2092 m, equivalent to 6010 metres of water. The vessel

is surrounded by 9456 PhotoMultiplier Tubes (PMTs) , to observe the neutrino re-

actions. A schematic of the laboratory, and detector, can be seen in figure 2.4.

Using heavy water, SNO was sensitive to three channels of neutrino interac-

tion:

νx + e− → νx + e−, (ES)

νe + d → e− + p+ p, (CC)

νx + d → νx + n+ p, (NC)

and, because of energy thresholds, all three channels are only sensitive to 8B neu-

trinos, with the lowest threshold of ENC
ν > 2.224MeV . Crucially, the NC (and ES)

processes are sensitive to all neutrino flavour2, so SNO can not only measure the

CC flux (which one can assume is almost entirely νe), but can also measure the to-

tal flux of active neutrinos, regardless of any oscillations that may have occurred.

SNO also ran in several different phases, altering the composition of additives to

the heavy water in order to enhance various signals.

Figure 2.5 shows the results from SNO, and the final combined measurement

2However, ES is more sensitive to νe because the νe ES cross-section is much higher than for
νµ ES interactions
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Figure 2.5: Measured flux of νe vs νµ + ντ by the SNO detector [45]. The CC, NC
and ES measurements are shown separately, as is the SSM [44] prediction (within
the dashed lines). The Super-Kamiokande result from [46] is also shown.

from SNO gave a flux of [43]:

Φ8B = (5.25± 0.21)× 106 cm−2s−1,

which is compatible with the various SSM predictions listed in [44], which range

(4.59 < Φ8B < 5.79) × 106 cm−2s−1. This provided comprehensive evidence that

the solar models were accurate, and so neutrinos do, indeed, change flavour,

which in turn means that they have a non-zero mass.

However, solar neutrinos were not the only class of neutrino to cause prob-

lematic discrepancies between prediction and measurement, as we shall see in

section 2.3.

2.3 The Atmospheric Neutrino Anomaly

Neutrinos are produced by cosmic rays incident on the atmosphere. Cosmic rays

consist mainly of protons, which cover a vast range of energies up to 1020 eV.
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p

Figure 2.6: Neutrino production by cosmic rays. Based on a diagram in [9].

When interacting with the nuclei in the atmosphere, many secondary hadrons

are produced, including many pions which decay to produce neutrinos via

π+ → µ+ + νµ, π− → µ− + ν̄µ,

µ+ → e+ + νe + ν̄µ, µ− → e− + ν̄e + νµ,

and figure 2.6 shows a diagram of these decays.

These atmospheric neutrinos can be detected by underground detectors (which

would otherwise be overwhelmed by cosmic ray residuals that hit the ground be-

fore decaying). Atmospheric neutrinos were first detected in the 1960’s by scin-

tillator detectors at the Kolar Gold Field in South India [47] and at the East Rand

Proprietary mine in South Africa [48, 49], which could only separate secondary

cosmic ray muons from neutrino interactions in the rock surrounding the detec-

tors by measuring the horizontal flux.

In the late 1980’s, water Cherenkov detectors in the form of Kamiokande and

IMB, designed to search for proton decay, started taking measurements of at-

mospheric neutrino fluxes, which were an important proton-decay background.

These experiments could detect both neutrino interactions inside the detector,
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Figure 2.7: The Super-K detector. Image from [54].

and measure incoming muons from neutrino interactions with the rock surround-

ing the detector. Both experiments measured a significantly smaller total flux of

muon neutrinos that was expected [50, 51], with IMB reporting (26 ± 3)% out of

an expected (34± 1)% of events with identifiable muons, whilst Kamiokande re-

ported detecting (59±7)% of the expected number of muon events. To complicate

matters further, two fine-grained iron calorimeter experiments, NUSEX [52] and

Frejus [53] found no evidence of this anomaly in their data.

This apparent deficit was known as the atmospheric neutrino anomaly, and was

resolved by the Super-Kamiokande experiment.

2.3.1 Super-Kamiokande

Super-Kamiokande (Super-K) [54] is a 50 kton water Cherenkov detector, placed

about 500 m from where the Kamiokande detector was operated. It consists of

two separate detector volumes, a cylindrical inner detector with a height of 36.2 m

and diameter of 33.8 m, contained within a cylindrical outer detector 42 m high

and 39.3 m in diameter. The outer volume contains 1885 PMTs for veto of particles

and to determine containment, and the inner volume contained 11146 PMTs ,

until an accident before phase II in 2002 caused a reduction to 5182 PMTs. In

2006, for phase III, the PMTs were replaced and Super-K has been running with

11129 inner PMTs since.

With the wide range of energies possessed by atmospheric neutrinos and the
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effective baseline L = 2 ∗ R⊕ ∗ sin (θz/2) (where R⊕ is the radius of the earth,

and θz is the zenith angle from the horizon at the experiment to the source of

the neutrinos) varying from ∼ 15 km to 12,000 km, a very large area of L/E

parameter space can be sampled by Super-K. Atmospheric νµ from directly above

the detector will have travelled a very short L, and so will not have had a chance

to disappear into ντ , regardless of energy3.

In contrast, the neutrinos from the other side of the earth will have travelled

a very large L, and so the survival probability will be highly dependent on both

the L and the neutrino energy, to the extent that without extremely precise energy

and angle resolution, the average disappearance probability will be measured.

In 1998 the Super-K collaboration published the results of 535 days of expo-

sure, [55], in terms of an asymmetry in up and down-going muons:

Aup-down
µ = −0.296± 0.048± 0.01,

which was interpreted as a 6σ model-independent confirmation that part of the

upward-going neutrino flux disappears, thus concluding that the neutrino has

mass. Because Super-K could not easily measure the flux of ντ to establish that

the νµ were transmuting into another active flavour, a measurement of flavour

change (not just disappearance) would have to wait until the SNO results were

published in 2002 [56].

In 2011 Super-K published [57] an analysis of their atmospheric neutrino data

where neutrinos and antineutrinos were allowed oscillate separately in their fit.

They found that, to 90% confidence, |∆m̄2| = 2.0+2.0
−0.7 × 10−3 eV2 and sin2

(
2θ̄
)
>

0.83. The results can be seen in figure 2.8.

3For the large majority of energy ranges being measured by the detector, at least
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Figure 2.8: Results of Super-K analysis of antineutrino oscillation parameters.
The lines are the 68%, 90% and 99% confidence allowed regions. Image from [57].
The areas excluded are those to the left of the contours.
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2.4 Recent Measurements

One of the most exciting measurements of recent years in particle physics has

been the discovery of a non-zero θ13. Daya Bay consists [58] of six antineutrino

detectors, combining central Gd-loaded liquid-scintillator volumes with water

Cherenkov-based shields, placed at several different distances from six nuclear

power plants. In 2012 Daya bay released [23] an analysis of the first 55 days of

data taking, and measured a non-zero θ13 to over 5σ significance - measuring

sin2(2θ̄13) = 0.092± 0.016 (stat)± 0.005 (syst).

Since this important measurement, this subdominant oscillation has been con-

firmed by RENO [59], and lately T2K - operating a muon neutrino beam 295 km

from Super-K at the J-PARC accelerator facility, T2K recently measured [60]

sin2(2θ13) = 0.140+0.038
−0.032

(
0.170+0.045

−0.037

)
,

for normal (inverse) neutrino hierarchy. This result gave a significance of 7.3σ

over the sin2 2θ13 = 0 hypothesis. The discovery of the third and last PMNS

mixing angle has opened a door to measuring CP violation, the mass ordering

and the octant of θ23.

2.5 Unresolved Properties of the Neutrino

Despite great strides recently in narrowing down the values of parameters in the

PMNS matrix, there is still much about the neutrino to discover.

There are two possible descriptions of the fundamental nature of the neutrino

as a fermion, Dirac and Majorana. All of the other fermions in the standard model

are of Dirac type - distinct particles and antiparticles. In the Majorana case, the

neutrino would be its own antiparticle; that is - the only difference between a

neutrino and what we currently call an ‘antineutrino’ would be helicity.

One way of testing the nature of the neutrino, would be searching for the ex-
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istence of neutrinoless double-beta decay. Regular double beta decay transforms

2n→ 2p+ 2e− + 2ν̄e,

where the two neutrinos escape. With Majorana neutrinos, ν = ν̄, and so it be-

comes possible for the neutrino emitted by one proton to be absorbed by the other.

If observed, this would prove the Majorana nature of the neutrino, and also pro-

vide a measurement of the absolute mass - since the rate of this interaction is

related to the square of the absolute mass.

One other way to determine the absolute mass scale of the neutrino (indepen-

dent of its nature) is from measuring the endpoint of the beta decay spectrum

- since in the reaction n → p + e− + ν̄e all energy except that of the neutrino is

directly measurable. Measuring the end of the beta decay spectrum should allow

a measurement of the mass of the neutrino (or at least, a measurement of the mix

of mass eigenstates created).

Much of the other information that we are missing - the value of the CP vio-

lating phase δCP , the quadrant of θ23 and the sign of ∆m2
32 should hopefully be

within the reach of the next generation of accelerator experiments - NOνA [61],

DUNE [62], Hyper-K [63]. If not directly measurable, these experiments will have

significantly enhanced capabilities to exclude large areas of the parameter space

for δCP and θ23.



Chapter 3

The MINOS Experiment

3.1 The NuMI Neutrino Beam

In MINOS, the neutrinos are provided by the Neutrinos at the Main Injector (NuMI)

beam. The layout of the NuMI facility is detailed in figure 3.1 and can be de-

scribed in three stages - the main injector and NuMI transfer line, target hall and

decay pipe.

Figure 3.1: Layout of the NuMI facility. From [64].

The Main Injector

The Main Injector (MI) at Fermilab is part of the accelerator chain. It accepts 8

GeV protons and accelerates them up to 120 GeV ready for injection into either

24
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Figure 3.2: Stages the proton beam pass through in the target hall. This diagram
shows the horns configured for antineutrino focusing. Image from [66].

the main Tevatron ring or onto the anti-proton production target until 2011, when

the main Tevatron ring was shut down, or for use in NuMI . A comprehensive

overview of the Main Injector and the accelerator chain is given in [65].

Protons are extracted from the MI by a system of kicker and Lambertson mag-

nets, and then steered underground at a steep 156 mrad gradient, in order to

avoid the local aquifer layer. Once below the aquifer the protons are aimed to-

wards Soudan and the far detector, at an angle of 58 mrad, before travelling along

a chain of magnets to the target hall.

The kicker operates in a pulsed mode, transferring approximately 3 × 1013

protons from the MI every 1.9 s. The duration of any single pulse, or spill, is

between 8-10 µs, depending on how many batches of protons were designated

for use in NuMI . The beam typically operated at a power of 300 kW.

Target Hall

The target hall is where the proton beam is used to produce the mesons, which

then pass into the decay pipe where they decay into muons, neutrinos and other

particles. A schematic showing the main components of the beamline in the target

hall is given in figure 3.2.

The first device the protons pass through in the target hall is the baffle. This

is positioned just upstream of the target, and is a 1.5 m long graphite ‘shield’ for

the target and horn systems. Because of the power of the proton beam, a mis-
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Figure 3.4: Three possible configurations of the NuMI beam (low, medium and
high energy: LE, ME and HE). The relative target and focusing horn positions
are shown on the left and the corresponding νµ energy spectra on the right.

the Tevatron). The NuMI focusing horns are pulsed in coincidence with the arrival

of these spills, reaching a peak magnetic field in the region of 3 T. The typical

number of protons in a six-batch spill is 2.5 × 1013 (recent work has lead to the

possibility that this will increase to around 4 × 1013).

The neutrino energy spectrum provided by the NuMI beam is tunable, through

changing the relative positions of targets and horns. Three of these configurations

and their energy spectra are shown in figure 3.4. The main aim of MINOS is to

measure accurately the position of the oscillation dip of figure 3.2. This dip falls

in the region of 2 GeV, thus the low energy (LE) configuration of figure 3.4 has

been chosen to maximise statistics in this region. The configuration actually used

is a variant on this LE configuration. Moving the target 10 cm further upstream

and running the horns at a lower current (185 kA rather than 200 kA) was found

to give a higher flux in the energy region of interest. This is known as the LE-10

configuration and was used to obtain the data analysed in this thesis.

The composition of the LE-10 beam is shown in figure 3.5 (in terms of the

number of CC interactions in the near detector). There is a background of 6%

νµ events and 0.4% (νe + νe) events. The νµ events arise mainly from the decay

Figure 3.3: Three possible configurations of the target and second magnetic horn,
and the resultant changes to the neutrino energy spectra. Diagram from [68].

steered spill could do considerable damage to the horn edges and target cooling

systems. The baffle consists of a graphite core with an 11 mm aperture for the

correct beam path, and is specifically designed to withstand enough full intensity

pulses to give time to shut down the beam.

After the baffle, the protons strike the meson production target, a water-cooled

collection of 47 rectangular graphite plates arranged in a series to give approxi-

mately 1.9 interaction lengths of material in total. Graphite is used because of its

strength and ability to withstand the high, near-instantaneous heating of a spill

interaction [67]. The primary product of the target interactions are pions, which

decay into muons and neutrinos with 99.99% probability, but there are also other

contributions to the neutrino beam composition, primarily from kaons.

The pions and kaons exiting the target proceed into two magnetic focussing

horns. The use of such horns is a method pioneered by CERN [69] whereby in-

tense, pulsed magnetic fields are used to focus and select the interaction products

coming off the target. Only particles of one charge-sign are focussed, determined

by the direction of the current though the horn. The NuMI horns are pulsed with

up to 200 kA of current, giving a peak magnetic field of around 3 Tesla.

The longitudinal and transverse momenta of the mesons focussed by the horns

is tunable by adjustment of the position of the target and second horn. Figure 3.3

shows several possible configurations, and the corresponding neutrino energy
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spectra. Almost all running has been in a variant of the low energy (LE) config-

uration. To lower the risk of beam line component failure the target was posi-

tioned 10 cm further upstream from the lowest energy position (in the direction

away from the first horn) and the horns were run at the slightly lower current of

185 kA. This variant is known as LE-10.

Decay Pipe

After production and focussing, the mesons enter a 677 m long decay pipe, where

they can decay into neutrinos. The decay pipe is a 2 m diameter steel pipe, em-

bedded in at least 1.4 m of concrete shielding.

For the first two years of data taking, the decay pipe was evacuated to min-

imise further interactions that would occur with air, however in the 2007 accel-

erator shutdown the decay pipe was filled with helium. The change was made

over concerns at potential damage that might be sustained by the entry window

[70], which may have caused the entrance to the decay pipe to implode. Because

of the positioning and high radiation environment of the decay pipe, access is

extremely limited, so this scenario would have been catastrophic for the contin-

ued running of NuMI. The helium in the decay pipe contributes an extra 0.17

interaction lengths of material.

At the end of the decay pipe, there is a hadron absorber made of aluminium,

steel and concrete. This absorber is designed to stop any hadrons that have

reached the end of the decay pipe. Particles absorbed include the 25% of pro-

tons that passed through the target, and secondary pions.

The neutrinos and muons pass through the absorber, and then face 300 m of

rock before reaching the detector hall. The rock stops any remaining muons 1,

leaving only neutrinos to interact in the detector.

1From the decay pipe - the neutrinos can interact in this rock to produce new muons, which
may reach the detector.
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3.2 Detectors

The MINOS experiment uses data from two steel-scintillator sampling calorime-

ter detectors. The Near detector is based at Fermilab and measures the energy

spectrum and composition of the neutrino beam, while the Far detector sits 735 km

downstream in the inactive iron mine at Soudan, MN. A third, calibration detec-

tor, known as CalDet , was constructed at CERN and exposed to test beams to

evaluate the calorimetric response of the detector technology. Exhaustive details

of all three detectors design and construction can be found in [71].

All detectors are constructed to be as functionally similar as possible, in order

to reduce the systematic uncertainties associated with neutrino cross sections,

detector response, and acceptance. Each detector is constructed of many planes

of steel plates, of 2.54 cm average thickness2, interleaved with 1 cm thick planes

of scintillator and an air gap for mechanical tolerance, taking the plane pitch up

to 5.95 cm.

The near and far detectors are toroidally magnetized, in order to provide a

momentum measurement via curvature and aid in the containment of negatively,

or positively charged muons. CalDet was not magnetized, as its primary aim

was to measure the hadronic response of the technology, and the momentum and

charge sign of the particles in the test beam was known a priori. The magnetics of

the near and far detectors are discussed in section 3.2.4.

3.2.1 Scintillator

Each scintillator plane is constructed from a series of scintillator strips of identical

transverse construction, varying only in length. The solid scintillator strips are

constructed of polystyrene (doped with the organic scintillator 3) extruded into

strips up to 8 m long, with a cross section of 1.0 cm x 4.1 cm. To maximise light

2CalDet is a slight exception, as it built in Europe where 2.50 cm was the nearest obtainable
standard

3The organic scintillator used is 1.0% by weight POP (2,5-diphenyloxazole), and 0.03% by weight
POPOP (1,4-bis(5-phenyloxazol-2-yl) benzene).
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collection, the scintillator strips are co-extruded with a reflective outer layer of

TiO2. A cross-sectional diagram of a scintillator strip can be seen in figure 3.4,

and a photograph in figure 3.5.

Because the absorption length of the scintillator is on the order of 20 cm, an

extraction method is needed to get the light out. Each strip has a groove along one

side down which a 1.2 mm diameter Wavelength-shifting (WLS) fibre-optic cable

is glued. This fibre absorbs blue photons from the scintillator, and re-emits green

photons isotropically (average wavelength λ = 530 nm). Any photons re-emitted

along the direction of the fibre will be internally reflected, and carried away to

the ends of the strip. The glue has a similar refractive index to the scintillator,

and the WLS are double-cladded to minimize transmission of the green photons

back into the scintillator.

Multiple strips of scintillator are packaged into a single aluminium encased

module, that provides mechanical support and a light-tight enclosure. At the ends

of each module there is a manifold where the WLS fibres are coupled to clear

fibres, which are used to carry the light away from the detector to the PMTs.

Multiple modules are then used to construct a single plane of scintillator.

3.2.2 Near Detector

The 980 metric ton near detector (seen in figure 3.6) is located in an underground

cavern 100 m below the surface at Fermilab, offering an overburden equivalent to

225 metres of water. The detector sits at a distance of around 1 km downstream

from the NuMI production target, and measures the characteristics of the intense

neutrino beam. The detector is shaped as a squashed octagon, with a width of

4.8 m wide and a height of 3.8 m. Because the high neutrino flux at this position

yields approximately 25 neutrino interactions per 3 × 1013 proton spill, the near

detector is optimised for a relatively small target fiducial volume, while keeping

it as similar to the far detector as possible.

The near detector is constructed of 282 planes of steel, but only 153 of these
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strongly reduced by deploying an active veto shield made of
MINOS scintillator modules. This anticoincidence layer detects
hadron shower remnants emerging from the rock above and
beside the detector. The shield’s design and performance are
described in Section 3.7.

The near detector is designed to have similar physics response
to neutrino events as the far detector. However, some differences
are unavoidable because the neutrino event rate per unit mass is a
factor of 106 greater than that in the far detector. The key
differences between the scintillator systems of the near detector
and far detector are:

(i) The near detector scintillator modules are much shorter,
ranging from 2.5m to 6m in length.

(ii) The long WLS fibers of the far detector (and their correspond-
ing !5m attenuation lengths) required readout of both ends.
In contrast only one end of each near detector WLS fiber is
read out. With a mirrored far end, the near detector WLS fiber
gives approximately the same light yield as the dual-ended
readout in the far detector. Single-ended readout necessitates
attaching each Hamamatsu R5900-00-M64 photomultiplier
pixel to only one scintillator strip. This PMT has sixty-four
2" 2mm2 pixels but is otherwise very similar in construc-
tion and response to the R5900-00-M16 PMTs used in the far
detector.

(iii) Due to its much higher event rate, the near detector requires
faster, dead-time free readout electronics.

All other features of the near and far detector scintillator systems
are identical, including the strips, the WLS and clear fibers, the LI
systems, and construction techniques of the modules. The
resulting physics capabilities are discussed in Section 5.3.

3.2. Scintillator strips

Three technologies are crucial to the scintillator system,
namely: (i) low-cost extruded polystyrene scintillator; (ii) high-
quality WLS and clear fibers; and (iii) multi-pixel PMTs.

Fig. 9 shows a MINOS custom developed scintillator strip [18]
with its WLS fiber located in a 2.3mm-deep by 2.0mm-wide
groove in the center of the ‘‘top’’ face. The fiber must be
completely contained inside the groove to ensure efficient light
collection (Section 3.8.1). A specularly reflective strip of
aluminized Mylar tape is placed over the groove after the WLS
fiber has been glued in place. The scintillator surface is covered by
a thin (0.25mm) co-extruded titanium-dioxide (TiO2)-loaded
polystyrene layer that serves as a diffuse reflector. The scintillator
and TiO2 coating are co-extruded in a single process, a standard
technique in the plastics industry. The TiO2 concentration was
chosen to be as high as possible without posing extruding
problems. In R&D tests the highest concentration of TiO2 that
did not affect the quality of the extruded product was 12.5% by
weight, which coincided with the concentration needed to
maximize reflection of scintillator light. A 15% concentration
was achieved for scintillator production, performed by a different
extruding manufacturer. The thickness of the TiO2 layer was as
thin as could be reliably co-extruded and thick enough that
ultraviolet light (comparable to scintillator light) could not shine
through. Bench tests of light reflection and propagation were well
matched by models [19], with reflection angles following
Lambert’s law. Absolute reflectivity measurements, known to 1%,
were then tuned in the simulation below that level to match
observations.

The procedure used to fabricate the scintillator strips was
as follows:

(i) Polystyrene pellets (Dow STYRON 663W) were placed in a
nitrogen gas environment to prevent reduction in light yield
of the finished product, which would otherwise result from
exposure to atmospheric oxygen during the melting process.

(ii) Scintillator fluors PPO (2,5-diphenyloxazole, 1.0% by weight)
and POPOP (1,4-bis(5-phenyloxazol-2-yl) benzene, 0.03% by
weight) were mixed with polystyrene pellets in a nitrogen
gas environment.

(iii) The mixture was loaded into the primary extruding machine,
where it was melted and pushed into the main port of the
forming die.
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Fig. 9. Cutaway drawing of a single scintillator strip. Light produced by an ionizing particle is multiply reflected inside the strip by the 0.25mm-thick outer reflective
coating (shown in the cross-section view). Light absorbed by a WLS fiber is re-emitted isotropically. Those resulting waveshifted photons whose directions fall within the
total internal reflection cones are transported along the fiber to the edges of the detector, subsequently being routed to the photodetectors (Fig. 8).
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Figure 3.4: Drawing of a cut-away scintillator strip. Light produced by ionizing
particles is reflected by the internal reflective coating, and may be absorbed by
the wavelength-shifting fibre. It is then re-emitted isotropically. Any photons
emitted along the direction of the fibre are trapped and routed out of the detector,
to the photomultipliers. From [71].

Figure 3.5: A short scintillator strip being illuminated by a blue LED [72].
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Figure 3.6: Photograph of the near detector looking away from the beam [71] (left)
and a diagram of a partially instrumented plane [73] (right). In the diagram, the
dark spot is the centre of the neutrino beam, the diamond the magnetic coil hole,
and the shaded area shows the instrumented section.

planes are instrumented with scintillator. For data analysis, the first 120 planes

are split up logically into three sections: veto (21 planes) to discriminate against

upstream tracks entering the detector, target (40 planes) from where all the inter-

actions of interest should be contained, and finally a hadron calorimeter (60 planes)

to measure and contain the hadronic showers from any neutrino interactions Be-

cause of cost considerations, only every fifth plane in these sections is fully cov-

ered with scintillator, and the other four planes have scintillator covering only

the area around the beam spot. The scintillator placement for the partially instru-

mented planes can be seen in the diagram in figure 3.6. The beam spot is offset

1.48 m from the magnetic coil hole.

The last 161 planes compose the spectrometer, to track and ‘range out’ the

muons from any neutrino interactions in the target area. This matches the be-

haviour of the far detector, allowing more of a direct comparison. Because it is

not necessary to exactly measure the range of high energy muons, this rear sec-

tion of the detector is only instrumented every five planes; there is no partial

instrumentation.

Because of the smaller size of the near detector (relative to the far detector)

and therefore of the scintillator strips, light is read out from only one end, with

the other terminated with a reflective cover. In the near detector, Multi-anode

Hamamatsu M64 PMTs with 64 pixels are used to read out the scintillator strips.
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1. Introduction

The Main Injector Neutrino Oscillation Search (MINOS)
experiment is designed to perform precise measurements of
neutrino oscillation parameters from nm disappearance using an
accelerator-produced muon neutrino beam. MINOS uses two
detectors, called ‘‘near’’ and ‘‘far,’’ to measure the characteristics
of an intense Fermilab neutrino beam over a baseline distance of
735km. The two detectors are designed to be as similar as
possible so that many details of their responses will cancel in
comparisons of neutrino event characteristics between the near
and far ends of the baseline. The purpose of this paper is to
describe the design, construction, calibration and performance of
the detector systems used in the MINOS experiment. Brief
overviews of the neutrino beam and the detectors are given
below, concluding with an outline of the detector system
presentations which constitute the core of this paper.

MINOS utilizes 120GeV protons from the Fermilab Main
Injector to create the high-intensity NuMI (Neutrinos at the Main
Injector) neutrino beam [1]. The beamline is precisely aimed in
the direction of the Soudan Underground Laboratory in northern
Minnesota. The NuMI beam provides a high flux of neutrinos at
the end of the decay volume in the energy range 1oEno30GeV,
but the flux at Soudan is reduced by a factor of about 106 due to
the intrinsic divergence of the beam. The relative rates of neutrino
charged-current (CC) interactions in the MINOS near detector at
Fermilab are approximately 92.9% nm, 5.8% nm, 1.2% ne and 0.1% ne
for the low-energy beam configuration. With the parameters for
nm to nt oscillations measured by Super-Kamiokande [2] and other
experiments (Dm2

32 ’ 2:5! 10"3 eV2 and sin2 2y23 ’ 1:0), the
Fermilab-to-Soudan distance implies that the neutrino interac-
tions of most interest will be in the 1oEno5GeV range. Details of
this experiment’s measurements are published elsewhere [3,4].

The MINOS experiment uses two detectors to record the
interactions of neutrinos in the NuMI beam. A third detector,

called the calibration detector, was exposed to CERN test beams in
order to determine detector response. The near detector at
Fermilab is used to characterize the neutrino beam and its
interactions and is located about 1 km from the primary proton
beam target, the source of the neutrino parent particles. The far
detector performs similar measurements 735 km downstream.
The essence of the experiment is to compare the rates, energies
and topologies of events at the far detector with those at the near
detector, and from those comparisons determine the relevant
oscillation parameters. The energy spectra and rates are deter-
mined separately for nm and ne CC events and for neutral current
(NC) events.

All three MINOS detectors are steel-scintillator sampling
calorimeters with tracking, energy and topology measurement
capabilities. This is achieved by alternate planes of plastic
scintillator strips and 2.54 cm thick steel plates. The near and far
detectors have magnetized steel planes. The calibration detector
was not magnetized as the particle momenta were selected a
priori. The 1 cm thick by 4.1 cm wide extruded polystyrene
scintillator strips are read out with wavelength-shifting fibers
and multi-anode photomultiplier tubes (PMTs). All detectors
provide the same transverse and longitudinal sampling for
fiducial beam-induced events.

The far detector, shown in Fig. 1, is located in Soudan, MN
(47.81N latitude, and 92.21W longitude), 735.3 km from the NuMI
beam production target at Fermilab, in an inactive iron mine
currently operated as a State Park by the Department of Natural
Resources of the State of Minnesota. Much of the infrastructure
used in the mining days is still in service and is used to support
the operation of the experiment. The detector is housed in a
specially excavated cavern, 705m underground (2070 meters-
water-equivalent, mwe), 210m below sea level. The far detector
consists of 486 octagonal steel planes, with edge to edge
dimension of 8m, interleaved with planes of plastic scintillator
strips. This 5400 metric ton detector is constructed as two
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Fig. 1. End views of the second far detector supermodule, looking toward Fermilab. The drawing (left) identifies detector elements shown in the photograph (right): ‘‘A’’ is
the furthest downstream steel plane, ‘‘B’’ is the cosmic ray veto shield, ‘‘C’’ is the end of the magnet coil and ‘‘D’’ is an electronics rack on one of the elevated walkways
alongside the detector. The horizontal structure above the detector is the overhead crane bridge.
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Figure 3.7: Diagram and Photograph of the far detector looking towards the
beam. The labelled points on the diagram are A) The furthest downstream steel
plane B) The cosmic ray veto shield c) The end of the magnetic coil and D) one of
the electronics racks. From [71].

3.2.3 Far Detector

The 5400 metric ton far detector is 735.3 km downstream from the NuMI beam

target, in an inactive iron mine at Soudan, Minnesota. The detector sits in a

specially-excavated cavern 705 m underground, offering an overburden equiv-

alent to 2070 metres of water. The detectors primary purpose is to look for dis-

appearance of the muon neutrino flux from the beam, relative to that observed at

the near detector. Because of the distance from NuMI, the detector only observes

of order a few beam-neutrino interaction a day.

The detector is constructed from 486 octagonal steel planes, 8 m in width. Be-

tween each of the planes are layers of plastic scintillator. The detector is split lon-

gitudinally into two “supermodules”, each independently magnetised. The first

(southernmost) supermodule consists of 249 planes, for a length of 14.78 m. The

second supermodule is constructed from the remaining 237 planes, for 14.10 m

length. The modules are separated by a gap of 1.15 m, taking the total length of

the detector to 30.03 m.

Because of the size of the mineshaft, access to the cavern is limited to items of
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maximum dimension 9×2×1 m3 and weight less than 5.5 metric tons, and so the

far detector was constructed in-situ from modular components. The scintillator

strips were grouped into modules (described in section 3.2.1), and the steel planes

were each built by plug-welding eight 2 m wide, 1.27 cm thick plates.

Each scintillator strip is read out at both ends, in contrast to the near detector.

The far detector uses 1452 16-anode Hamamatsu M16 PMTs , with three PMTs

housed in a single enclosure, called a “MUX” box. In order to save costs, the

signals from eight scintillator strips are optically summed (inside the MUX boxes)

and then fed to a single PMT pixel; different summing patterns on the opposite

ends of the scintillator allow unambiguous reconstruction of scintillator hits.

Cosmic Veto Shield

The planar structure of the detector and its orientation provides challenges when

measuring atmospheric neutrinos. Cosmic-ray muons can pass between scintil-

lator planes and penetrate into the centre of the detector before interacting with

the scintillator. To aid in the rejection of this background, a veto shield surrounds

the upper part of the detector (visible in the diagram and photograph in figure

3.7).

The veto shield is constructed from the same types of scintillator modules as

used in the main detector, and uses the same electronics, with an extra 64 PMTs

dedicated to reading out the shield. The scintillator strips are still read out at both

ends, but the same strips are optically summed at both ends, so demultiplexing

is not possible.

3.2.4 Magnetisation

The toroidal magnetisation of the near and far detectors allows momentum mea-

surement and charge-sign determination of the muons due to their curvature in

the field, and aids containment of negative or positively charged muons, depend-

ing on the sign of the magnetic field.
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the planes were mounted vertically with a 5.95 cm center-to-
center spacing. The basic far detector steel plane construction is
shown in Fig. 3.

2.2.2. Steel plane construction
Each plane was assembled on a steel lift frame (called a

‘‘strongback’’), which was used to lift the completed plane onto
the support structure. Each plate is identified by a part number
specifying where it fits in the octagon, a ‘‘heat number’’ specifying
the batch of steel from which it is made, and a serial number
unique to that plate.

The construction of each of the 486 detector planes began with
the placement and alignment of four steel sheets on a strongback
to form the bottom of two layers. The top layer was then
placed and aligned in the orthogonal direction. The plates were
placed to minimize gaps between sheets. The eight sheets of a
complete plane were then welded together via seventy-two
2.5 cm diameter plug-weld holes in the top set of sheets (Fig. 3).
Surviving gaps of greater than 2mmwere measured and recorded.
Most of these gaps were in the range of 2–4mm and at most
9mm. Fewer than half of the seams had recordable gaps, typically
located at the outer edge of the seam and about 30–50 cm long.
Following the assembly of the steel planes, the scintillator
detectors were mounted on the plane and the full assembly lifted
into place.

The assembled planes are supported on two rails, one on each
side of the detector. Each plane is bolted to the previously
installed plane with eight axial bolts around the periphery and
eight additional bolts around the central coil hole. The steel planes
are magnetically isolated from the steel support structure by 1 cm
thick stainless steel strips between the plates and the support
rails. Plumbness and plane to plane alignment were obtained by
checking each plane as it was installed using a laser survey device
(Ref. [12] and Section 6.6), occasionally adding shims as needed
when new planes were bolted to a supermodule to maintain the
specification of 6.4mm plumbness.

2.2.3. Steel characteristics
The steel plates were made from low-carbon (AISI 1006

designation) hot-rolled steel. They were required to have flatness
to better than 1.5 cm—half the ASTM A-6 specification [13]. The
carbon content was specified to be ð0:04" 0:01Þ%. Samples from
each of the 45 foundry runs (called ‘‘heats’’) were tested to ensure
that their radioactivity was less than 0:15g=kg=s for g-rays above
0.5MeV. From block samples of the various heats, the average
steel density is found to be 7:85" 0:03g=cm3.

As steel was delivered over the course of construction, each
plate was individually weighed using a scale with a least count of
0.9 kg, and this value was compared to a nominal weight for
that part number. The scale calibration was checked and verified
to be stable during construction. An uncertainty of 1 kg in the
plate masses implies a plane-mass uncertainty of

ffiffiffi
8

p
kg ’ 3kg.

Deviations from the nominal weight were found to be correlated
with variations in the thickness of the steel. The first 190
(upstream) planes had an average mass of 10,831kg and the
remaining 296 (downstream) planes had an average mass of
10,718 kg. The rms mass variation within each group of planes is
0.35%, which grows to 0.62% if the detector is considered as
a whole.

Requirements on the accuracy of the target mass and on muon
range measurements imposed the specification that the fiducial
masses of the near and far detectors be known to 1%. The
average thickness of the near detector planes was measured to be
2:563" 0:002 cm, compared to 2:558" 0:005 cm for the far
detector.

2.2.4. Near detector steel
The near detector was assembled from 282 steel planes,

fabricated as single plates of 2.54 cm thickness from a subset of
the same foundry heats used for the far detector steel. The near
detector target (fiducial) region was chosen to be 2m in diameter
to give a high rate of fully contained neutrino interaction events in
the central region of the beam. The magnet coil hole in the steel
plates was located outside this area.

Plate thickness variations in the near detector planes were
found to be $0:3% by surveying with an ultrasound probe. No
systematic difference in steel density was found between the two
detectors. As was required for the far detector steel, the flatness
specification for the near detector plates was set at half of the
ASTM A-6 flatness standard, or 1.5 cm.

2.3. Magnet coils

The near and far detector steel geometries place somewhat
different requirements on their respective magnet coil designs.
The coil designs were optimized separately, taking into account
differing detector geometry as well as differences in the
laboratory infrastructures available at Fermilab and Soudan.

2.3.1. Far detector coil
Each supermodule is independently magnetized by its own coil

[14], as shown by item ‘‘C’’ in Fig. 1. Each coil consists of a central
bore leg running through holes at the center of each plane, a
single return leg located in a trench beneath the detector, and end
legs that connect the bore to the return legs. Fig. 4 shows a
schematic cross-section of the coil in the central bore leg, inside a
supermodule. The conductor consists of 190 turns of 1/0 gauge
stranded copper wire with Teflon insulation (National Electrical
Code designation TGGT). The bore leg is housed inside a 25 cm
diameter, water-cooled copper jacket. The return leg is also water
cooled and the end legs are air-cooled. An 80A power supply gives
a 15.2 kA-turn total current that provides an average toroidal
magnetic field of 1.27 T. Each coil dissipates 20 kW.

In order to minimize temperature induced aging of nearby
scintillator, the outer jacket characteristics were designed to
ensure a worst case maximum temperature of 150 1C. Each coil’s
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Fig. 4. Cross-section schematic of one of the far detector supermodule coils. The
larger diameter circles represent the copper cooling tubes and the smaller circles
are the 190 turns of 1/0 gauge stranded copper wire. The outlines of these
conductors are to-scale representations of the insulator thickness. The outer
circumference of the assembly is a copper-sheet jacket cooled by eight cooling
tubes.
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cooling-water system carries 72 l/min and was designed to
remove up to 25kW of heat per supermodule. A secondary heat-
exchange system removes the heat from the underground
laboratory. Fixtures along the air-cooled end legs of the coil
provide a 15 cm separation between the coil and the steel planes
to allow air circulation and to reduce distortion of the field in
supermodule end planes by the current in the end-legs of the coil.

2.3.2. Near detector coil
The near detector coil hole is offset 55.8 cm from the center of

the plane and the detector is placed so that beam is centered
halfway between the hole and the left vertical edge of the plane,
as shown in Fig. 2. Because of the squashed-octagon geometry, a
40 kA-turn current is required to achieve sufficient fields. Figs. 5
and 6 show the cross-section and the geometry of the near
detector coil, respectively. The coil [15] consists of eight turns,
each with 18.76m-long bore and return legs and two 2.89m-long

end legs that connect the bore and return. The return leg is routed
along the lower east 45! face of the steel plane. The high current
carried by the coil requires substantial cooling, provided by a
closed loop low-conductivity water (LCW) system that transfers
the heat out of the underground enclosure. There are no
photodetectors on the coil-return side of the near detector by
design, so the fringe fields from the return do not affect detector
operation.

The coil conductor is made from cold conformed aluminum
and has a 2:79" 3:81 cm2 rectangular cross-section with a
1.65 cm diameter central water channel. The 48 conductors are
arranged in a six by eight rectangular pattern, with groups of six
conductors formed into ‘‘planks.’’ The current runs in parallel
through the conductors within a plank. The electrical connections
were made with full-penetration aluminum welds at each end.
This offers the potential to disassemble the coil for repair or
replacement in case of failure. The coil is a single eight-turn 5 kA
electrical circuit which dissipates a power of 47 kW. Cooling water
of less than 80 1C flows through the coil at 380 l/min, limiting
conductor temperature.

2.4. Detector plane magnetization

2.4.1. Magnetic field determination
The finite element analyses (FEA) of both the near and far

detectors’ magnetic fields were performed with the ANSYS [16]
general purpose finite element program, using a 3-D scalar
magnetic potential approach. The accuracy of the field values
depends on the mesh density (discretization) of the model, the
input magnetization (‘‘B–H’’) curve, and the normalization to coil
currents set using power-supply current shunts. Fig. 7 shows the
results of FEA calculations of the near and far detector magnetic
field maps for detector planes near the detector centers.

There are a number of potential sources of plane-to-plane
magnetic field variations, including mechanical and chemical
non-uniformity and field distortion at the ends of the toroids. The
steel for the two detectors was produced in 45 different foundry
heats with slightly different chemical compositions (and hence
magnetic properties). Test toruses were fabricated from the steel
in each heat and used to measure B–H curves by magnetic
induction. The variations in these B–H curves between heats were
found to be small, allowing all plane field maps to be based upon a
single representative B versus H relationship. FEA calculations
confirmed that expected mechanical variations between planes,
such as variations in the gap between steel sheets in the far
detector, yield less than 15% field differences. Finally, the presence
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Fig. 6. Sketches of the four legs of the near detector coil assembly (left) and of one lap joint between two coil planks (right).
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Fig. 5. Cross-section schematic of the near detector coil. The dimensions shown
are in inches.
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Figure 3.8: Cross-section of the far detectors magnetic coil (left) and a sketch of
the four legs of the near detectors coil (right). The far detector coil consists of 190
turns of 8.252 mm stranded copper wire, with cooling pipes embedded. The near
detector coil is constructed from six layers of individually wound coil assemblies.
Both from [71].

Each detector is required to have a similar strength magnetic field, to help

reduce systematic uncertainties. The field strength averaged over the fiducial

volumes is 1.28 Tesla in the near detector, and 1.42 Tesla in the far detector. Dif-

ferences in the topology and structure of the detectors required different designs

for the magnetic field systems at each detector.

In the far detector, each supermodule has its own, independently controlled

magnetic coil. The coil consists of 190 turns of 1/0 gauge (8.252 mm) diameter

stranded copper wire, and consists of a bore leg that passes through the centre

of the detectors, a return leg that runs down a trench below the detector, and

two end legs, to connect the bore to the return. An 80 A power supply gives a

15.2 kA-turn current, providing the 1.28 T magnetic field. To deal with the 20 KW

of power being dissipated by each coil, water cooling pipes are embedded within

the copper turns in the bore and return legs (see figure 3.8 for a cross-sectional

diagram of the coil). The heat is then removed from the underground laboratory

by a secondary heat-exchange system.

In the near detector, a single coil is used. The coil consists of 48 aluminium

conductors, each with a central channel for water cooling. Groups of six conduc-

tors are formed into a single ‘plank’, and carry current in parallel. Eight of these

planks are used to form the coil. A 5 kA power supply provides a 40 kA-turn cur-

rent, which gives a similar strength magnetic field to the far detector. A sketch of



3.3. Calibration 35

the four legs of the assembled near detector coil can be seen in figure 3.8.

3.3 Calibration

One of the aims of the MINOS experiment is to measure the energy-dependent

disappearance of neutrinos. As such, the level of systematic uncertainty and en-

ergy resolution when measuring the energy of particles in the detector important.

Since MINOS measures a relative disappearance it is necessary to calibrate both

the relative and absolute energy scales of the detectors. An optical Light Injection

(LI) system, described in section 3.3.1, measures the linearity and PMT response

over time of the readout system in all of the detectors, including CalDet. Muons

are used to measure the calorimetric response of the scintillator, calibrate the rel-

ative timing response of the detector readout channels, and provides a way to

perform the relative calibration between detectors.

Absolute calibration allows the values obtained from the detector readout

systems to be translated into an absolute energy value. This is achieved by us-

ing measurements from placing a calibration detector, CalDet, in a test beam at

CERN, combined with simulations of the particle showers.

3.3.1 The Light Injection System

The Light Injection (LI) system [74] is used in the near, far and CalDet detectors to

monitor the response of the PMTs and electronics over time, and the integrity of

the readout systems.

The WLS fibres from the scintillator modules are illuminated by pulses of light

from UV LEDs, replicating a potential signal from the scintillator. The LEDs are

housed in groups of 20 or 40 in “pulser boxes”. From the pulser boxes, optical

fibres carry the light to LI modules - part of the scintillator module manifolds,

where light from a single fibre can illuminate multiple WLS readout fibres. A

cross-section of this configuration can be seen in figure 3.9. The intensity of the
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Figure 3.9: A cross section of the LI module, in the manifold at the top of each
scintillator module. Up to ten WLS fibres are illuminated by the light from the LI
system LEDs. From [74].
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Figure 3.10: Detector average PMT ‘gain’ responses, over the data taking periods,
for the near (left) and far (right) detectors. Originally generated for [75].

light from the LEDs is measured by PIN photodiodes 4 , to account for any change

in the performance of the LED over time.

During normal operations, each strip end is pulsed around 300 times an hour

in the far detector, and 1000 times an hour in the near detector. Both ends of the

far detector strips are pulsed, allowing a double check of response using light

that leaks to the opposite strip end. Every three days, data from these flashes

are analysed and the average response per photoelectron of each PMT channel

is calculated to give a set of PMT gains. These values are used by the Monte

Carlo simulations to more accurately represent the detector response, and the

reconstruction to aid in rejection of background noise. Figure 3.10 shows the

detector average gains, over the data taking periods.

The PMT response becomes slightly non-linear at higher light levels (5-10%

4A PIN photodiode is like a regular PN diode, but with an undoped semiconducting region
between the two doped PN regions. When reverse biased, photons arriving in the I region can
cause an electron-hole pair that results in a small, measurable current.
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at levels of approximately 100 photoelectrons [71]). Once a month, the linearity

of the PMT response is measured by injecting light ranging from just a few to

hundreds of photoelectrons. Combined with data from PIN diodes (themselves

shown [74] to be linear to 1% ), the response of each PMT is parametrized as a

function of true illumination. This is then used before reconstruction to calculate

the true light level, compensating for any non-linear effects.

3.3.2 Muon tracks

Whereas the LI system measures the time variation of the readout system, it can-

not be used to measure the scintillator response over time, or the relative calibra-

tion between detectors. For this, we use muons as a standard candle. At the far

detector, through-going cosmic muons have an average energy of approximately

200 GeV and a rate of around 0.5 Hz. At the near detector the mean energy is

55 GeV and 10 Hz, from calculations of known cosmic muon flux [76]. These

average values stay relatively constant with time.

To calculate the daily change in the response, or drift of each detector, the pulse

height per plane of each through-going cosmic muon is calculated, and then the

daily median of these values is compared to the median of an arbitrary reference

point, giving a single value representing the change in detector response. This

measurement encompasses changes in the entire calorimeter and readout system.

In contrast, the gain measurement made by the LI system is only sensitive to

the readout systems. Figure 3.11 shows the measured drift values over the data

taking periods.

In addition to the whole-detector response, the mean response of each indi-

vidual channel is measured, and corrected to the detector average. Track infor-

mation about each cosmic muon is used to calculate the position and angle of

incidence, and corrections are applied to each hit so that the calibration constant

is calculated based on a perpendicular hit in the centre of the strip.
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Figure 3.11: Relative drift of detector response, compared to an arbitrarily chosen
reference point. From [77].

Relative Detector Calibration

The previously discussed LI and cosmic muon methods calibrate the response of

a single detector. In order to use CalDet as an absolute calibration standard, the

detectors must be calibrated relative to each other. This is achieved using cosmic

ray muons that stop in the detector [72] - they are abundant enough in each, and

the energy they deposit in each plane can be accurately determined from range

measurements, and the Bethe-Bloch formula.

3.4 Monte Carlo Simulation

The Monte Carlo simulation in MINOS is split into two distinct units - the beam,

and the detector simulation. For the beam simulations, a package called FLUGG [78]

is used, which combines the FLUKA [79, 80] particle interaction and transport

package with the Geant4 [81], for its geometry handling. The beam is simulated

separately so that we can simulate a detailed model of the beamline, and study



3.4. Monte Carlo Simulation 39

in detail effects such as shifts in the target position, and the effect on the neutrino

energy distribution of helium in the decay pipe. The output from the beam sim-

ulation is a set of ‘flux files’ that contain details of the hadron and muon decays

for a given configuration. Each distinct data-taking run in the experiment has its

own flux files, allowing changes between runs in the beam to be accounted for.

The output from the beam simulation is then fed into the detector simula-

tion. The NEUGEN [82] package is used to simulate the neutrino interactions,

both in the rock surrounding the detector caverns and the detectors themselves.

The resulting particles are propagated through the detector geometry with the

GEANT3 [83] library, accounting for any physical effects of propagation and

recording the energy deposits. Showers are simulated using the GCALOR [84]

package, which was chosen because it agreed well with CalDet data. It is at this

stage that multiple interactions are combined for the near detector, because of the

high instantaneous event rate in a beam spill.

The response of the scintillator to the energy deposition, the subsequent prop-

agation of this light to the PMTs is handled by an internal MINOS C++ package

called PhotonTransport. Another internal package called DetSim simulates

the PMT response and the effects of the readout electronics. Inverse calibration

constants are applied by these packages, such that the MC can be processed by

the exact same processing chain as real data - when the reconstruction applies

the calibration, the Monte Carlo ends up with neutral calibration. A random date

from the running period that is being simulated is chosen for each overlayed set

of events.

3.4.1 Flux Tuning

Comparisons between reconstructed ND data and MC simulation have shown

that the beam simulation has significant uncertainties. In particular, comparison

between different beam configurations show that the high energy tail of the neu-

trino energy spectrum is consistently mismodelled. This discrepancy stems from
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uncertainty in the levels of hadron production from the target, expressed in pt

(transverse) and pz (longitudinal) momentum parameter space.

To compensate for this, real data is used to carry out a tuning [85] of the

hadron production parameters. CC-νµ selected data is used to constrain π+ and

K+ production, whilst CC-ν̄µ selected data is used together with the π+/π− pro-

duction ratio measurements from the NA49 experiment, to constrain π− and K−

production. The result of this tuning is a re-weighting value in pt, pz, which is

applied to the Monte Carlo. As a result of this tuning, the agreement between

data and Monte Carlo is greatly improved.

3.5 Event Reconstruction

The MINOS C++ based reconstruction software exists to estimate the energy of,

and discriminate between, muon tracks from CC interactions, and showers from

both CC and NC interactions (see figure 3.12 for typical interactions). Addition-

ally, in the near detector it is the reconstruction that is responsible for splitting the

multiple interactions seen in a single beam spill. This is done by applying a set

of timing and topology cuts that create slices of hits that are grouped in space and

time.

Tracks are found by looking for clusters of hits with correlated positions. A

Kalman Filter [86] is then used to estimate the path of the track, accounting for

any curvature in the detector’s magnetic field. The track fitter outputs an estimate

of the track momentum from this curvature, and an estimate from the track range.

In the analysis stage, the momentum from range is used for muons that stop

inside the detector.

The shower reconstruction looks for clustered groups of hits that appear to

belong to the same shower. Single hits giving a pulse height of less than 2 pho-

toelectrons are ignored by the reconstruction, as comparisons between data and

Monte Carlo showed discrepancies for low level noise (such as PMT crosstalk)
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Figure 3.12: The three classes of event topology relevant to this analysis; CC-νµ
(left), CC-ν̄µ (center) and NC (right). The Feynman diagram for each interaction is
shown in the top row, and a typical event from simulated data for the interaction
type below. CC-events are recognised by the long muon track, curving in the
magnetic field, and NC events typically have only a hadronic shower, from which
short tracks can sometimes be found as a background. From [66].
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that were not well understood. The energy of the shower is then estimated from

the sum of calibrated pulse heights for all hits in the shower.

3.6 Previous MINOS Results

Being a mature experiment, MINOS has already performed multiple analyses

exploring several areas of neutrino physics. A large part of this has been in the

form of oscillation analyses.

The MINOS analyses encompass several classes of particle interaction. The νe

appearance analysis looks for Charged Current (CC) events which contain both

a hadronic shower, and an electromagnetic shower from the electron. Neutral

Current (NC) interactions result in only a hadronic shower in the detector, and

contain no flavour information. The νµ and ν̄µ disappearance analyses identify

CC interactions of the incident neutrinos, with a long track from the muon, and a

possible hadronic shower at the event vertex.

νe Appearance

MINOS has searched for the appearance of electron neutrinos at the far detector

through the νµ → νe channel. This measurement is heavily background domi-

nated, as hadronic showers (from NC and νµ-CC) and electromagnetic showers

(from the νe) can look very similar in the coarse sampling of the far detector,

which was designed to measure νµ-CC events. In order to discriminate against

these background events, 11 variables characterising the shape of the energy de-

position in the detector were used in an artificial neural network [87, 88]. Out

of an expectation5 of 145.2± 12.0 (stat)± 4.9 (syst) events with no νe appearance

events, 172 events are observed. This allows limits to be placed on a measurement

of the θ13 parameter. Using the scenario where the CP violating phase δCP = 0,

5Calculated by adding the errors for the νe and ν̄e backgrounds in [89] in quadrature.
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Figure 3.13: νe appearance results, showing the confidence limits for both normal
(left) and inverted(right) hierarchy scenarios, with sin2(2θ23) = 0.957, |∆m2

32| =
2.39× 10−3eV2 and as a function of the CP violating phase δCP . From [89].

sin2(2θ23) = 0.957 and |∆m2
32| = 2.39× 10−3eV2, the limits are:

0.01 < 2 sin2(2θ13) sin2(θ23) < 0.12 90% C.L. in the normal mass hierarchy,

0.03 < 2 sin2(2θ13) sin2(θ23) < 0.18 90% C.L. in the inverted mass hierarchy.

The confidence contours for this data can be seen in figure 3.13. Using re-

cent values for sin2(2θ13) = 0.098 ± 0.013 from reactor experiments, MINOS also

demonstrated the capability of such long-baseline experiments to put constraints

on the value of δcp, the octant of θ23 and the neutrino mass hierarchy. More details

on this analysis can be found in reference [89].

Sterile Search

Because the NC interaction is independent of neutrino flavour, the rate should not

change in the standard three-flavour oscillation model. Any measured difference

could indicate oscillations to sterile neutrino flavour. MINOS has carried out an

analysis searching for such a deficit [90]. Because any νe CC events would be

included with the selected NC sample, the result depends on the possibility of νe

appearance. Out of an expectation of 754 ± 28(stat) ± 37(syst) events, 802 events

were observed, shown in figure 3.14. This puts a limit on the fraction of neutrinos
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Figure 3.14: The reconstructed energy
spectrum of selected NC events at the
far detector. The dashed blue line
shows the expectation with νe appear-
ance - the solid red line without. [90].
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oscillating to sterile flavours as:

fs ≡
Pνµ→νs

1− Pνµ→νµ
<

0.22 no νe appearance

0.40 with νe appearance
at 90% C.L.,

where the fraction with νe appearance is assuming sin2(2θ13) = 0.15, slightly

higher than the currently measured value.

νµ Disappearance

MINOS measures the atmospheric-scale oscillation parameters |∆m2| and sin2 (2θ)

through observing disappearance of νµ flux between the two detectors, over the

baseline of the experiment. In a two-flavour approximation6, the survival proba-

bility of a νµ with an energy E [GeV] travelling a distance L [km] is given by:

P (νµ → νµ) = 1− sin2 (2θ23) sin2

(
1.27∆m2

32L

E

)
,

where ∆m2
32 is the atmospheric neutrino mass splitting, and θ23 is the mixing

angle.

6See section 2.1 for a more thorough description of neutrino mixing
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MINOS has published ([28]) results for 10.71 × 1020 POT of νµ-dominant and

3.36×1020 POT of ν̄µ-enhanced beam, combined with 37.88 kton years of expo-

sure to atmospheric neutrinos. Many analysis improvements over the previous

results ([91, 92]) were made, including updated simulation and reconstruction,

selection improvements with improved efficiency, improved shower energy res-

olution, and reduced systematic errors. Data events are separated into bins of

both energy and resolution, increasing the sensitivity of the measurement.

Purely in terms of νµ in the νµ-dominant beam, 2579 events were selected, out

of a no-oscillation expectation of 3201 events. In addition to these, there were 905

atmospheric events of 1100 expected for the no-oscillation scenario, along with

smaller ν̄µ samples and large (but with relatively low contribution to the end

result) antifiducial samples - events for which the primary interaction vertex was

outside of the fiducial volume.

The best two-flavour neutrino oscillation fit to all data measures

∣∣∆m2
∣∣ =

(
2.41+0.09

−0.10

)
× 10−3 eV2,

sin2 (2θ) = 0.950+0.035
−0.036.

The confidence limit contours for the best fit to the data, compared to the pre-

vious results, are shown in figure 3.15. The MINOS results are highly compatible

with the 90% Super-K results for mixing angles sin2 (2θ) > 0.95, including the best

fit.

ν̄µ Disappearance

In addition to the two-parameter fit to beam + atmospheric data sets described

above, a four-parameter oscillation fit assuming separate |∆m2| and |∆m̄2| (and

sin2 (2θ) and sin2
(
2θ̄
)
) was done. This analysis builds on the work done for this

thesis and earlier associated publications [2, 1].

ν̄µ events are selected based on the reconstructed charge of the muon. Dis-



3.6. Previous MINOS Results 46

)θ(22) or  sinθ(22sin

)2
 e

V
-3

|)/
(1

0
2

m
Δ

| o
r |

2
m

Δ
 (| MINOS 90%

μν

μν

MINOS Best Fit
 Best Fitμν
 Best Fitμν

0.75 0.80 0.85 0.90 0.95 1.00

2.0

2.5

3.0

37.88 kton-years Atmospheric
-enhanced beamμν POT 20 10×3.36
-dominated beamμνPOT 20 10×10.71
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crimination is achieved against background NC events in the ν̄µ-enhanced beam

by using a k-Nearest-Neighbour algorithm - data is compared to Monte- Carlo

events in four parameters: track length, mean energy of track hits, energy fluctu-

ations along the track, and transverse track profile. These discriminations allow

MINOS to attain a high antineutrino purity in the final data set of > 98%.

With an expectation of 364 (313) events in the νµ-dominant beam and ν̄µ-enhanced

beam respectively, 312 (226) events were measured. The four-parameter fit finds

∣∣∆m̄2
∣∣ =

(
2.50+0.23

−0.25

)
× 10−3 eV2,

sin2
(
2θ̄
)

= 0.97+0.03
−0.08.

The confidence limits from this analysis, compared to those for the νµ disap-

pearance analysis, can be seen in figure 3.16.



Chapter 4

Extrapolation

4.1 Predicting the Far Detector Energy Spectrum

Measurement of the νµ disappearance parameters in MINOS consists of looking

for a deficit in the energy spectrum of νµ interactions in the FD, compared to that

extrapolated from the measurement in the ND. Because of differences between

the detector acceptances and in beam line geometry, the relative shape of the

neutrino flux energy spectrum differs by up to 30%.

As explained in section 3.4, simulated data for both detectors are generated

using a beam line simulation. In the simplest method of absolute prediction, this

Monte Carlo could be used directly. This has several disadvantages, not least of

which is a direct sensitivity to multiple sources of systematic uncertainty. The

purpose of the extrapolation is to use the ND data to build a prediction of the

event spectrum at the far detector that is relatively insensitive to systematics due

to flux, cross-section and detector systematic uncertainties, by turning an abso-

lute measurement into a relative one.

This chapter will start out by examining several ways of using the ND data

to more accurately predict the spectrum of interactions in the FD, and will then

explain in detail the method that has been used for past analyses. The changes

to this method will then be examined, in order to give a complete picture of how

the FD energy spectrum is predicted for the analysis in this thesis.

47
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Figure 4.1: Far/Near ratio for selected run I MC events, in reconstructed energy.
Each detector has been normalised to the same POT. The small nature of the abso-
lute y scale is due to the approximate 1/r2 dependence of the neutrino flux over
the 735 km baseline.

Far/Near

The fact that the neutrino spectra shapes are similar between the two detectors

suggests that we can use the differences between ND data and MC spectra to

correct the FD prediction, which naturally accounts for differences between the

detectors, such as energy resolution and efficiency differences. We do this using

the Monte Carlo for each detector, running the fully simulated events through the

selection criteria to get a simulated energy spectrum FMC for the far detector, and

NMC for the near detector. We can then use the ratio of these [93] to correct the

ND data, creating a prediction for the far detector

Fpredicted =
FMC

NMC
×Ndata,

where Ndata is the measured near detector data and Fpredicted is the resultant far

detector prediction. The ratio F is shown in figure 4.1. To create an oscillated

far detector prediction, the FMC may be re-weighted with the desired oscillation

parameters prior to calculating the ratio.
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Figure 4.2: The steps to convert measured ND data to a FD prediction with the
matrix method. [68, 94]

4.2 Beam Matrix Method

The beam matrix method is an the extrapolation method used for all the CC νµ

and ν̄µ disappearance studies [68, 94, 92], and is the extrapolation method used

for the analysis in this thesis. A key element of the method is a 2D transfer ma-

trix that translates a flux spectrum at the near detector to a flux spectrum at the

far detector. The specifics of this mechanism are discussed in section 4.2.1. A

flowchart showing the steps involved in the matrix method can be seen in figure

4.2. Because of the use of a transfer matrix, this method inherently works with

binned data. By choosing bins of an appropriate size, the effect on the accuracy of

the output of this method compared to a more precise method (e.g. more finely

binned data, or unbinned extrapolation methods) can be shown to be marginal.

A general overview of the process is presented here, followed by an in-depth

description in section 4.2.1.

Starting from the spectrum of selected near detector reconstructed energy

events, a purity correction is applied to remove the effects of impurities, by sub-

tracting the expected backgrounds. This pure νµ-CC reconstructed energy spec-

trum is then translated into an equivalent true energy spectrum, by using a de-
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convolution matrix. The effect of efficiency from selection is then taken out, fol-

lowed by interaction cross-section, fiducial mass and then POT exposure from the

beam. This results in a neutrino flux distribution, describing the absolute number

of neutrinos travelling through a unit section of the detector, per unit of beam.

After application of the beam matrix transformation, giving the correspond-

ing neutrino flux for the far detector, these steps are applied in reverse order; the

effects of POT, cross-section, far detector fiducial mass and the selection efficiency

are multiplied back in. It is at this stage that the effects of neutrino oscillation are

applied. After this, the spectrum undergoes another 2D matrix correction to ac-

count for energy smearing in the detector. Finally, a purity correction is made

to account for the various background signals. The method of this correction is

discussed in section 4.2.4.

Adaption for ν̄µ Analysis

The matrix method was used for the ν̄µ disappearance analysis, detailed in [68].

This required a few changes to the general prescription listed above. The main

change for the analysis was the separation of events originating from νµ and ν̄µ

interactions. To allow the potential separate measurement of νµ and ν̄µ oscillation

parameters, the νµ and ν̄µ spectra were individually extrapolated, with their own

efficiencies, purities, energy resolution matrices and beam matrices. In addition,

the way the far detector purity correction was made changed, due to the fact that

mis-classified events from νµ interactions is a background for the ν̄µ analysis.

4.2.1 Step-by-step

In this section, each step of the matrix method is examined in detail. The starting

point is the near detector CC energy spectrum, the selection of which is examined

in detail in chapter 5.
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Figure 4.3: Example of the purity correction applied in the near detector. Each
experimental run has its own purity correction histograms for νµ and ν̄µ selec-
tions.

Near detector Purity

The first step of the matrix method is to remove the effect of impurities from

the near detector data sample. Impurities are from event interactions that are

misclassified, and that pass through the selection criteria. The definition of purity

as applied to the selection is calculate using MC simulated data as:

PN
i =

(Number of CC signal events selected))i
(Total number of events selected)i

, (4.1)

where PN
i indicates the purity in the ith energy bin of the histogram for the near

detector, signal events means νµ or ν̄µ events depending on whether you are in

the neutrino or antineutrino half of the extrapolation, and the total number of se-

lected events is the literal number of events selected. A histogram as an example

this correction, for neutrinos and antineutrinos, can be seen in figure 4.3.

The correction is applied as:

RN
i → R

N,pure
i = RN

i P
N
i ,

where R indicates the reconstructed energy spectrum, i is the bin in question, N
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Figure 4.4: Reconstructed energy of near detector events (left) and the Monte
Carlo truth energy of the interaction that caused these events (right). A single bin
of reconstructed energy is contributed to by a range of true energies.

indicates we are operating on the near detector, and P is the purity correction

defined in equation (4.1).

Converting Reconstructed to True Energy

At this point the energy spectrum is still in reconstructed energy, the energy de-

termined by the reconstruction software. This is related to the true energy, but

has the effects of the detector energy resolution folded in, causing a smearing of

the energy spectrum, with many events at a given reconstructed energy coming

from interactions over a range of true energy. The effects of this are demonstrated

in figure 4.4. In order to deconvolve this spectrum, we use Monte Carlo truth in-

formation to build a 2D matrix MN
ij , where the i axis represents reconstructed

energy, and the j axis represents true energy. This matrix is normalised:

∑

i

MN
ij = 1, (4.2)

such that for every true energy bin event, only one reconstructed energy event is

contributed. The transformation is then applied as a matrix multiplication:

R
N,pure
i → TNj =

∑

i

R
N,pure
i MN

ij .

Since this transformation is operating on a pure νµ/ν̄µ-CC reconstructed en-
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Figure 4.5: The efficiency of selection at the far near detector, for both νµ and ν̄µ
samples.

ergy spectrum, only these signal events are considered in the building of the ma-

trix.

Efficiency correction

The true energy spectrum is then corrected for reconstruction and selection effi-

ciency. The efficiency of the selection is defined using MC simulated data as:

EN
j =

(Number of signal events selected)j
(Total number of true signal events)j

, (4.3)

where EN
j is the efficiency of the selection at the near detector, for a particular

true energy bin j, and the total number of signal events is the total number of

true νµ/ν̄µ-CC events interacting in the fiducial volume. Figure 4.5 shows the typ-

ical near detector selection efficiency. This correction compensates for an imper-

fect selection, and is applied thusly, where TN,Ej indicates the efficiency-corrected

true-energy near detector spectrum:

TNj → TN,Ej =
TNj
EN
j

.
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Cross-section, Fiducial mass, and POT

The final steps before we have a neutrino flux suitable for extrapolation with

the beam matrix, are to correct for the effects of neutrino cross-section, fiducial

mass, and POT exposure. Fiducial mass and POT are scalar constants which

apply evenly to the entire spectrum, whereas cross-section is energy and particle-

dependent (it differs between ν, ν̄ and flavours). Given the true-energy, efficiency

corrected histogram TN,ej , mass of the fiducial volume at the near detectormN , the

exposure of protons-on-target at the near detector pN and the neutrino species

cross-section σj , the near detector neutrino flux is calculated as:

TN,ej → ΦN
j =

TN,ej

mN pN σj
. (4.4)

4.2.2 Beam Matrix

The beam matrix transforms the normalised near detector flux, to the far detector

flux, in a similar way to the Reco-to-true matrices. The matrix itself is calculated

using kinematic information about the distribution of interactions in the NuMI

target and beamline, deriving from simulation and fundamental principles. The

construction of this matrix is detailed in Justin Evans’ thesis [68].

4.2.3 Converting Far Detector Flux to an Energy Spectrum

Once we have our far detector flux, we proceed with the reverse of the steps that

we took to convert the near detector data spectrum into a near detector flux. One

exception, is that the flux is also used in calculation of the backgrounds for the

purity contribution; this process is discussed in section 4.2.4.

Firstly, the cross-section, fiducial mass and POT are multiplied back in. Al-

though both detectors are subjected to the same beam, the time periods for which

each detector is active and without errors causes either detector to have a differ-

ent exposure. With mF the fiducial mass of the far detector, pF the exposure at
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Figure 4.6: The efficiency of selection at the far detector, for both νµ and ν̄µ sam-
ples.

the far detector and σj being the average cross-section of the energy bin under

consideration, the far detector reverse of equation (4.4) is as follows:

ΦF
j → T F,ej = ΦF

j mF pF σj.

The selector efficiency correction for the far detector is then made. Although

the method of calculating the efficiency, EF
j is the same as defined in equation

(4.3) - using MC simulated data - here the intention is to reproduce the inefficien-

cies of the selection. The inefficiency is thus applied via:

T F,ej → T Fj = T F,ej EF
j ,

where T F,ej is the complete far detector event sample, T Fj represents the actual

pure subsample selected, and EF
j represents the efficiency that this data sample

is selected at the far detector.
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Figure 4.7: True energy of Monte Carlo far detector events (left) and the recon-
structed energy of the interaction that caused these events (right).

Neutrino Oscillation

It is at this stage of the process that the effects of oscillation are introduced to the

FD spectrum. The correction is made in the form:

T Fj → T F,osc
j = T Fj Pj,

where Pi is the oscillation probability of each energy bin. The oscillation probabil-

ity is a function of energy and oscillation parameters. The oscillation parameters

are input as required (for example, in the oscillation fit) to give the predicted FD

spectrum with oscillation. Because this is a larger topic, detailed discussion of the

calculation of this probability is deferred until section 4.2.5.

Converting true to reconstructed energy

The transformations that need to be applied to the true energy spectrum are now

complete. The next step is to convert the true energy to reconstructed energy,

in the reverse of the process carried out at the near detector. It is at this stage

that the effects of energy resolution and detector imperfections are applied. For

each set of events of a given true energy bin, the reconstruction of these events

will span a range of reconstructed energy bins, as demonstrated in figure 4.7.

This convolution is achieved by using FD Monte Carlo to build a matrix MF
jk

where the j axis represents true energy, and the k axis represents reconstructed
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energy. As in equation (4.2), this matrix is normalised, but in this instance along

the reconstructed energy axis, so that each true energy event results in a single

reconstructed energy event. The transformation is then applied as

T F,osc
j → R

F,pure
k =

∑

j

T F,osc
j MF

jk,

where RF,pure
k is the reconstructed energy spectrum, T F,osc

j is the oscillated true

energy spectrum and the oscillation marker has been removed for clarity. At this

stage the impurities have not been mixed in to the reconstructed spectrum, so the

reconstructed energy spectrum is representative of a pure sample of the type of

signal being extrapolated (νµ, ν̄µ). The addition of this impurity is the subject of

the next section.

4.2.4 Purity Corrections: Background calculation

Unlike the near detector, where we simply reduce the measured event spectrum

by the expected amounts due to background signals, in the far detector some

of these signals are dependent on the oscillation parameters, and we add each

background signal explicitly. The background signals to a ν̄µ energy spectrum

are: NC events wrongly reconstructed as CC, events from ντ -CC interactions (that

appeared from νµ → ντ oscillations) and νµ-CC events that have been wrongly

reconstructed as ν̄µ-CC events.

The methods of calculation of each of these is shown in figure 4.8, and are

described in detail in the following sections. To avoid confusion, only the process

for the ν̄µ backgrounds is explicitly discussed. The process for the calculation of

the backgrounds to the νµ-CC sample in this method is identical, except the ν and

ν̄ signals are swapped.

Each of the processes start from the predicted flux of neutrinos at the far de-

tector, with the effects of POT exposure and detector fiducial mass accounted for.
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Figure 4.8: Calculation of the FD background events, for the ν̄µ backgrounds.
Both the ν̄µ and νµ neutrino flux spectra are used in the calculation of the ν̄µ back-
grounds.

νµ-CC with Wrongly Identified µ Tracks

The first background to consider, is that of wrongly identified tracks. With the

existence of a magnetic field in the far detector, most µ tracks have their charge-

sign correctly identified through their curvature. A small fraction are assigned an

incorrect charge. Low energy events are often too short to accurately determine

curvature, and can be biased through effects such as multiple scattering. High

energy tracks can be too straight for the reconstruction to reliably identify the

type of muon.

Because the background to the ν̄µ signal is due to νµ interactions, we must

use the flux prediction for the νµ signal. The process followed is similar to the

calculation of the νµ signal described in section 4.2.3. Firstly, the effects of νµ

cross-section are applied. After this, an efficiency correction is made - but in this

case the efficiency is defined as:

Ews =
Number of wrong-signed signal events selected

Total number of signal events
,
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Figure 4.9: Efficiency of selecting a µ− track as having the same curvature as a
µ+ track. Short low energy tracks, and straight high energy tracks, are the main
contributors. Data from ν̄µ selection of run I Monte Carlo events. MC statistics
< 10 GeV are high enough that the errors are not visible on these scales.

where the number of wrong-signed signal events is calculated by inspecting the

Monte Carlo truth for the charge of each track muon, and comparing it to the

reconstructed charge. Events with a mismatch, and that pass the ν̄µ selection, are

counted. Figure 4.9 shows this efficiency for one of the data run periods, and is a

typical example.

After this efficiency correction, the spectrum is oscillated with the νµ oscilla-

tion parameters, and converted to units of reconstructed energy through the νµ

true-to-reconstructed matrix. The resulting energy spectrum is ready to be added

to the ν̄µ signal spectrum as a background.

Neutral Current interactions

Neutral current interactions can produce tracks that are selected as CC muon

tracks by the reconstruction algorithm. Because these tracks are from shower

remnants, this contamination occurs mostly at low energy.

As indicated by the flow of data in figure 4.8, this background is calculated

by using the NC purity of the CC selection, calculated from the MC, after the



4.2. Beam Matrix Method 60

spectrum has been converted to reconstructed energy. The difference between

the calculation of the ν̄µ CC-signal and the NC contamination background, is that

for the NC calculation the true energy spectrum is not oscillated.

Using Monte Carlo, the NC selection efficiency is calculated, as defined:

ENC =
Number of NC signal events selected

Total number of signal events
,

but we cannot apply this directly to the calculated ν̄µ-CC spectrum, as it is pure

by construction and does not contain any NC events. Thus, a purity correction

comparable to that made in the near detector (equation (4.1)) is made, calculated

using Monte Carlo as:

P F =
Number of CC signal events selected

Total number of events selected
.

The typical content, using MC of run I data, of these purity and efficiency

corrections is shown in figure 4.10. This purity correction is applied to the recon-

structed energy spectrum as:

R
F,pure
k → RF

k =
R
F,pure
k

P F
k

,

and then the efficiency correction is made to extract the NC portion of this spec-

trum:

RF
k → RNC

k = RF
k ENC,k.

Tau neutrino background

The final background to include in the matrix method is events from ν̄τ inter-

actions. The majority of ν̄µ that undergo neutrino oscillations are expected to

reappear as ν̄τ , because sin2 (2θ23) is measured to be maximal. These ν̄τ particles

can then interact in the detector. Because ν̄τ can interact in a way that produces a

µ+ 18% of the time [95], and therefore a real, but unwanted positive track, ν̄τ can
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Figure 4.10: FD Purity (left) and Efficiency of falsely selecting an NC interaction
shower track as a CC interaction muon (right). Because these tracks originate
from shower fragments, low energy tracks are dominant. Data from ν̄µ selection
of run I Monte Carlo events.
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Figure 4.11: Ratio of total cross sections σν̄τ/σν̄µ (left) and efficiency of selection
of ν̄τ events (right).

produce a hard to distinguish background. In practice, the low ν̄τ cross-section

(see figure 4.11) around the NuMI beam peak energy, and that this is a second-

order effect only on events that have already undergone oscillation, mean that

this background is minimal - with only an expectation of around 0.3 events at our

analysis exposure level.

After application of the ν̄τ cross-section to the FD flux, an efficiency correction

is made in true energy. This efficiency is defined as:

Eτ̄ =
Number of ν̄τ events selected

Total number of events selected
,

and determined using Monte Carlo. Figure 4.11 shows the ν̄τ selection efficiency.

These corrections are applied to the (exposure and fiducial mass corrected) FD



4.2. Beam Matrix Method 62

flux spectrum ΦF,p,m
j as:

ΦF,p,m
j → T F,τ̄j = ΦF,p,m

j σj,τ̄ Eτ̄ ,j,

where σj,τ̄ is the ν̄τ cross-section.

After the efficiency correction, the effects of oscillation are introduced to the

ν̄τ spectrum. Where ν̄µ events are oscillated away according to the oscillation

formula P , ν̄τ events appear. To represent this, the ν̄τ are ‘inverse’ oscillated, with

a probability of 1− P :

T F,τ̄j → T F,τ̄ ,osc
j = T F,τ̄j (1− Pj) ,

where Pj is the oscillation probability of each bin, as a function of the neutrino

oscillation parameters.

The ν̄τ spectrum is then converted to reconstructed energy, using a ν̄τ -only

true-to-reconstructed matrix calculated using the Monte Carlo.

Combining the backgrounds

The final FD predicted energy spectrum is formed by summing the pure pre-

dicted CC signal ν̄µ spectrum R
F,pure
k with each of the backgrounds. Thus:

R
F,pure
k → RF

k = R
F,pure
k +RWS

k +RNC
k +Rν̄τ

k ,

where RWS
k is the wrong-sign background, RNC

k the NC background, and Rν̄τ
k the

ν̄τ background.



4.2. Beam Matrix Method 63

4.2.5 Oscillation

As discussed in chapter 2, the two-flavour survival probability of a νµ beam can

be expressed as:

P (νµ → νµ) = 1− sin2 2θ23 · sin2

(
1.27

∣∣∆m2
∣∣ L
E

)
,

with L in km andE in GeV. When applying this probability to a set of data binned

in energy, we have to apply a single probability to events covering a range of

energies. In the simplest method, the energy at the centre of the bin can be used.

This method is appropriate when we already know that the value of |∆m2| is low

enough that the oscillation probability does not change significantly over a single

bin, but for an unbiased search of unknown ν̄µ oscillation parameter space, we

need to be able to examine |∆m2| values where this is not the case, and multiple

complete oscillation cycles can occur in a single bin. The error incurred through

using this method with such oscillation values can be seen in figure 4.12.

During the process of attempting to solve this, a method of interpolation was

developed [96] that sampled the contents of each bin in linear energy divisions,

averaging the probability from each sample, and used this information to calcu-

late a weighted average oscillation value in steps of 1× 10−3 GeV.

In order to test the effectiveness of these methods, it is possible to calculate

exactly what the correctly oscillated histogram should look like, by using indi-

vidual Monte Carlo events and oscillating them according to their true energy.

Figure 4.13 shows the error of the linear interpolation method, in comparison to

the central-bin method, as an integral of the absolute differences between the two

histograms, i.e. the error E is calculated:

E =
∑

j

∣∣∣Approximationj − Exactj
∣∣∣ .

Unfortunately, this increased accuracy is paid for by increasing the running

time of the algorithm at least 600 fold, as shown in table 4.1, and this became
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Figure 4.12: Comparison between exact evaluation of neutrino oscillation prob-
ability, and points at which bin oscillation probability is calculated using bin cen-
tres. Three values for the mass difference are shown, and θ̄ = 1.0 for all plots.
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Figure 4.13: Integrated error of different oscillation methods.

|∆m̄2| Centre Linear Hybrid
0 0.001 7.426 0.013

100 0.019 12.080 1.362
1000 0.021 12.122 4.332

Table 4.1: Time in seconds taken to oscillate 1000 spectra, with different methods
and different values for |∆m̄2| (×10−3 eV2)

a serious problem in the running time of the analysis. To compromise between

these methods, a hybrid approach was developed for the analysis in this thesis.

Using the fact that the oscillation minima and maxima are found where

∂

∂E
P (νµ → νµ) = 0,

and rearranging in terms of energy, it can be shown that the minima and maxima

are found at:

E =
2

Nπ
1.27 ∆m2

32 · L N = 1, 2, . . . ,∞.

Using this, the hybrid method steps sequentially over the maxima and min-

ima, and identifies the energy at which the energy spacing drops below a thresh-

old of 0.5 GeV, which corresponds to two bins in the energy range of interest.

Bins with centres above this energy have their oscillation probabilities calculated

on the bin centre alone. The lower energy bins have their oscillation probabilities

calculated using the linear average method.
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As shown in figure 4.13, this method matches very well with the accuracy of

the linear interpolation method, and works at a much higher speed, as shown in

table 4.1. One side effect of the hybridisation is that the algorithm has a ∆m̄2
32

dependent running time, but outperforms the plain interpolation method at all

oscillation parameter values.



Chapter 5

Selection

A crucial part of any neutrino analysis is selection. This is where the full set of

data, including unwanted background events, is reduced to a smaller and purer

set of signal events. For the analysis in this thesis, it is ν̄µ-CC events that are of

interest.

The selection of signal events can be separated into two distinct phases. The

first phase of pre-selection, attempts to purge the data set of any events that do

not originate from detector neutrino interactions. This is discussed in section 5.1.

The second phase of selection aims to further reduce this to our desired signal

interactions, and is discussed in section 5.2.

Throughout the selection process, two quantities are used to evaluate the suc-

cess of the selection - the efficiency, and purity of selection. Each is estimated by

applying the selection to the full set of Monte Carlo events, and comparing the

selected set of events with the truth of all events. Efficiency E is defined as:

E =
Number of signal events selected
Total number of true signal events

,

and is a measure of the proportion of events of interest that are included in the

data set by the selection. Its complement, 1−E, is a measure of how many events

of interest are mistakenly cut out of the data set by the selection. In contrast to

67
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this, the purity P is defined as:

P =
Number of signal events selected
Total number of events selected

,

and its complement, 1 − P , is a measure of how many non-signal events are in-

advertently let into the event sample by the selection.

Because of the much lower number of interactions at the far detector com-

pared to the near detector, and the importance of these interactions to the mea-

surement we are attempting to perform, the selections are optimised for selecting

events at the far detector, and an identical selection is used at the near detector.

The price for this simpler analysis is that the efficiency at the near detector may

not be the highest possible, but this is more than compensated for by the fact that

having the same selection cuts at both detectors minimises systematic errors.

5.1 Preselection

The preselection phase aims to cut out all events that are not detector neutrino

interactions from the NuMI beam. We start by cutting out any data which is

known to be bad - when there was a problem with the electronics, magnetic coil,

or beam. This is done by comparing the events’ timestamp to an automatic data

quality database [97]. Additionally, any events marked as originating from the

light injection calibration system are removed.

To look for muon candidates, we only consider events where the reconstruc-

tion has identified a track, so events without a track are removed. Additionally,

even when a track is detected, a cut is applied on the fitting of the track, because

it is possible for the reconstruction to identify a track but fail to fit it. Where mul-

tiple tracks are identified in a single event (such as tracks from particles in the

hadronic shower), the longest track is used.

To eliminate events whose origin is outside of the detector, a fiducial volume

cut is applied on the origin of the muon track, the track vertex. The most common
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sources for these outside events are cosmic muons, and particles from beam neu-

trino interactions in the rock surrounding the detector. These rock-originating

muons interact an unknown distance away from the detector and lose energy

in their journey to the detector, so only a lower limit on the the energy of the

neutrino can be set. In addition, particles from interactions near the edge of the

detector may be lost, and so can also not be measured well.

In the far detector, the fiducial volume only includes events with vertices

within a radius of 3.742 m of the centre of the detector, and additionally no closer

than 0.42 m, to remove events most likely to lose energy in the uninstrumented

magnetic coil. The fiducial volume runs from (and inclusive of) the 4th to the

239th plane of the first supermodule, and the 253rd to the 464th plane of the sec-

ond supermodule. The gap in the fiducial volume, between the supermodules, is

to reduce the possibility of contamination from external events that come in at an

angle in the gap, and enter the detector without passing through the radial edge

of the fiducial volume. A visual representation of the fiducial volume of both

detectors can be seen in figure 5.1.

In the near detector, we require the track vertex to be within a cylinder of

radius 0.8 m around the centre of the neutrino beam, and spanning the 14th to

68th planes, entirely within the fully instrumented region of the detector. The

interaction rate in the near detector is high enough that the small fiducial volume

has no significant impact on the result, due to the statistics.

Cosmic Muon Elimination

The largest source of non-beam tracks are from cosmic muons. We make two cuts

at the far detector to keep this interference to a minimum, optimised by evalua-

tion of backgrounds using Monte Carlo, and fake spill triggers when there is no

real beam [98].

Two cuts are made to remove these events. The first is a cut on timing - any

events outside of a window of time from 2 µs before the spill to 12 µs after the spill



5.1. Preselection 70

−3 −2 −1 0 1 2 3 4
X (meters)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Y
 (

m
e
te

rs
)

−4 −2 0 2 4
X (meters)

−4

−2

0

2

4

Y
 (

m
e
te

rs
)

Figure 5.1: Fiducial Volumes of the ND (top) and FD (bottom), in X and Y . The
detector outline and coil holes are indicated with black lines, the fiducial volumes
are indicated by the grey areas, and the red line on the ND is the outline for the
partially instrumented planes. Each of these outlines are for a U-plane view.
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are discarded.The second is a cut on track direction - any events where the cosine

of the angle between the beam and track direction is cos θ > 0.6 are ignored.

At the near detector these cuts are not necessary as spill events are directly

tagged by the DAQ, the ratio of beam-originating to cosmic neutrinos is much

larger, and there is more area around the fiducial volume for identification of

external signals.

5.2 Signal Selection

While the job of preselection is to filter out non-beam events, a further level of

discrimination is required to select the desired ν̄µ-CC signal events from the back-

ground of NC and νµ-CC events. This section details the selection variables used

to discriminate events, and section 5.3 details the method used to optimise the

cut values used with these variables.

5.2.1 NC Discrimination

Two Particle Identification (PID) algorithms are used to distinguish NC events from

CC events. The first is used for discrimination on the neutrino beam data, and

is the PID used for [91, 94]. Three variables are used - the length of the event in

planes, the fraction of the event energy in the measured track, and the average

pulse height per plane in the hits attributed to the track. Each of these variables is

used to populate a probability density function (PDF) for Monte Carlo truth CC

and NC interactions, and a probability for each event being CC or NC in origin is

derived for each data event according to:

PCC,NC =
3∏

i=1

fi (xi)CC,NC ,
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Figure 5.2: Distribution of the NC discrimination PID S1 for Monte Carlo true
NC, CC-νµ and CC-ν̄µ events. An exposure of 1 × 1023 POT of run 1 far detector
MC are shown.

where fi (xi) are the individual PDF’s for each variable. These two probabilities

are combined into a single event selection parameter S1:

S1 = −
(√
− ln (PCC)−

√
− ln (PNC)

)
.

The distribution of this variable for NC and CC Monte Carlo truth events can

be seen in figure 5.2 . There is a clear distinction between the majority of CC

events and the NC events.

Antineutrino Beam NC discrimination

The second PID, S2 is used for discrimination with the data set taken with a

ν̄µ-enhanced beam. The PID was first used in [92]. Four variables are used [99]:

The length of the event, the average pulse height per plane of hits along the re-

constructed track, the transverse energy deposition profile of the track, and a

measure of the fluctuation of the energy deposited in scintillator strips along the

track. A k-Nearest-Neighbour algorithm (described in depth in [100]) is used to

combine an event’s variables into a single multidimensional space, and find a

subset k of the 80 nearest Monte Carlo events in this space. This sample can be
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Figure 5.3: Distribution of the NC discrimination PID S2 for Monte Carlo true
NC, CC-νµ and CC-ν̄µ events. Far detector MC for an exposure of 3 × 1023 POT
with the ν̄µ-enhanced beam is shown. The cut is made classifying events with
S2 > 0.3 as CC.

considered a sum of signal and background event sets:

k = ks + kb,

and so the probability of any randomly chosen event being a signal event can be

expressed as:

S2 = Ps =
kS
k
.

This probability is used directly as the PID value S2, and represents the prob-

ability of an event being due to a CC interaction. A sample of the distribution of

this variable for Monte Carlo can be seen in figure 5.3.

5.2.2 Charge Sign Selection

For the data taken with a νµ-dominant beam, this PID alone is not enough -

the prevalence of νµ interactions provides a large background of neutrino events

where the track fitter assigns an incorrect charge-sign. This situation can occur

for cases where the muon Coulomb scatters off a nucleus and changes its direc-

tion, events with high inelasticity where energy from the collision results in an



5.2. Signal Selection 74

electromagnetic shower, the wrong track being selected, or plain failure of the re-

construction algorithm. To compensate for this, two additional variables are used

to improve the estimation of the charge-sign of the interacting muon.

The first variable, developed in [99], is called relative angle. The initial direction

of the reconstructed track is projected in a straight line to the plane at which the

track ends (P), demonstrated in figure 5.4. The differences between this point

P and the reconstructed end point of the track, E are used to construct a set

of variables describing the relationship between these two points. The variable

used by this analysis is the relative azimuthal angle φ, the polar coordinate angle

of vector PE in the coordinate system with P at the origin, with x aligned with

the radial vector of the detector. The distribution of this variable for FD Monte

Carlo events reconstructed as µ+ tracks is shown in figure 5.5. Since we do not

care which transverse direction the end point may have ended relative to the

projected direction, we use the absolute offset |relativeAngle− π|. Because of

the sign of the magnetic field with the νµ-dominant beam, µ+ will tend to be bent

outwards, away from the magnetic coil. Thus, µ+ events will tend to have a value

for the relative angle of π, as evident in figure 5.5.

The second variable used for charge-sign selection is a measure of the cer-

tainty of the measured charge / momentum of the track,

q/p

σ(q/p)
,

where q is the reconstructed charge of the track, p the reconstructed momentum,

and σ(q/p) is the estimated uncertainty in this measurement. The distribution of

this variable for Monte Carlo events reconstructed with µ+ tracks can be seen in

figure 5.6.
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(a) The side-view geometry of how the relative angle positions are calcu-
lated

(b) End-on view of the sub-variable calculations

Figure 5.4: Geometry of the calculation of the relative angle selection variable.
The calculation of the reference points is shown in (a), and the end-on view of the
calculation variables is shown in (b). Diagrams from [99].
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Figure 5.5: The distribution of the relative angle variable for events reconstructed
as having a positive charge, used to discriminate against νµ events in the ν̄µ sam-
ple. An exposure of 1× 1023 POT of νµ-optimised far detector MC are shown.
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Figure 5.6: Distribution of the fitting certainty estimation for events recon-
structed as having a positive charge after pre-selection cuts were applied. An
exposure of 1× 1023 POT of νµ-optimised far detector MC are shown.

5.3 Choosing the selection variables

To decide upon the values for our selection cuts for the first analysis of the ν̄µ-CC

events in the νµ-beam, potential selectors were evaluated based on several crite-

ria [101]. First, a large number of potential selector combinations were generated

manually by observing the variable distributions and liberally combining vari-

ables that appeared to be complimentary. These were then reduced down to a set

of six potential selections based on simplicity and by maximizing the Efficiency

× Purity (E × P ) of far detector Monte Carlo event selection. The top five se-

lections were then blindly evaluated by several teams based on efficiency, purity,

and sensitivity to systematic errors [102]. The sensitivity to systematic errors was

evaluated based on the shift of the best fit to fake- oscillated Monte Carlo that re-

sulted from the ±100% application of each systematic. Each selectors sensitivity

to all systematics was then evaluated visually.

The effectiveness of the E × P metric was also checked by cross-checking

against the sensitivity of the analysis to |∆m̄2| and sin2
(
2θ̄
)

using the different

selections.

Based on the conclusions of the studies, it was decided that the following
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variables and cut values would be used to select signal events in these two sets:

CC/NC Discrimination: S1 > 0.25,

Charge-sign Selection: q
p

/
σ q
p

> 3.5,

|relativeAngle− π| > 2.12,

as the sensitivity to systematics was much lower than the other candidates, and

the E × P was 0.67, for events with true energy less than 5 GeV, which did not

vary very much from selector to selector.

There are two things that have changed since this analysis was performed.

Firstly, the reconstruction software has advanced, changing some of the methods

of calculation - this may cause small discrepancies in the reconstructed variables.

Secondly, our knowledge of the νµ oscillation parameters has improved [103].

Because of these changes, the values for these cuts have been re-examined for

this thesis.

Using the same PID and charge selection variables, a multidimensional max-

imisation was performed using the MINUIT2 package. Events from Monte Carlo

were selected using the exact same preselection criteria as described in section

5.1, and then oscillated using the νµ parameters ∆m2 = 2.32 × 10−3 eV2 and

sin2 2θ = 1.0. For each set of parameters, the E × P for events with true en-

ergy < 5 GeV was calculated. The results of this minimisation are displayed in

table 5.1. A plot of the variation of E, P and E × P as the S1 PID cut value is

changed is shown in figure 5.7.

Variable Run 1 Run 2 Run 3
S1 > 0.39 0.37 0.36
q
p

/
σ q
p

> 3.07 3.30 3.30
|relativeAngle− π| > 2.32 2.00 2.03
Efficiency 0.75 0.76 0.77
Purity 0.94 0.92 0.91
Efficiency × Purity 0.71 0.69 0.70

Table 5.1: Optimised selection thresholds for the three νµ-beam data runs anal-
ysed in this thesis.
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Figure 5.7: Optimisation of the PID S1 for run 1 Monte Carlo, oscillated with
|∆m̄2| = 2.32× 10−3 eV2. The charge selection cuts are at their optimal value.

The optimised cut values for runs 2 and 3 are very similar. Because of this

similarity, and the fact that the exposure of run 3 is larger than runs 1 and 2

together, for this thesis the run 3 selection values are used for all three neutrino

beam runs.

To confirm that this increase in E × P corresponds to an increase in statisti-

cal sensitivity, oscillated and scaled Monte Carlo was used to generate sensitivity

contours, and the results can be seen in figure 5.8. A slight but definite improve-

ment can be seen over all of the examined parameter space.

5.3.1 Antineutrino Beam Selection

With the data, taken with the ν̄µ-enhanced beam, the number of antineutrino in-

teractions in the region of interest is higher than those from neutrino interactions.

This means that the additional charge sign selectors are not required to get a pure

event sample. This data set has been analysed on its own [2], where for simplic-

ity and compatibility with the neutrino analysis the only signal selection applied

was:

S2 > 0.3,
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Figure 5.8: Statistical sensitivity to oscillations with |∆m̄2| = 2.32 ×
10−3, sin2

(
2θ̄
)

= 1.0 for 7 × 1020 POT of run 3 MC. The old limits are using the
previous values for the cuts, and the new limits are using the newly optimised
values.

with S2 being the same PID as described in 5.2.1. This choice of PID gives a base

E×P = 0.917, for events with true energy< 5 GeV. A similar optimisation of this

selection was undertaken, both for the PID variable on its own, and in addition

to the two charge-sign selection variables. The results of this optimisation can

be seen in table 5.2. Neither of the additional CSS cuts gave improvement to the

E × P , with both additional variables cuts being optimised away.

Figure 5.9 shows the optimisation of the PID variable alone, with no addi-

tional cuts applied. The best results are found with a slightly harsher cut of

Variable Previous Optim.
S2 > 0.30 0.40
q
p

/
σ q
p

> - 0
|relativeAngle− π| < - π
Efficiency 0.957 0.950
Purity 0.957 0.970
Efficiency × Purity 0.917 0.921

Table 5.2: Optimised selection thresholds for the single ν̄µ-beam data run anal-
ysed in this thesis. The previous analysis did not make any charge-sign selector
cuts, and they were found to be optimal as null cuts in this optimisation.
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Figure 5.9: Optimisation of the PID S2 for run 4 (antineutrino beam) Monte Carlo,
oscillated with |∆m̄2| = 2.32× 10−3 eV2. There are no additional charge selection
cuts applied.

S2 > 0.4, but at a negligible improvement of E × P = 0.921. Because this dif-

ference is so small, in this thesis the same value as used in the MINOS νµ-CC

analyses of S2 > 0.3 is used without alteration, for analysis of ν̄µ-enhanced data

runs.

5.4 Systematic Uncertainties

In this section, the systematic uncertainties that affect the analysis in this thesis

are described, and the effects of the systematics on the best fit are evaluated. A

summary of all the systematics errors considered in this analysis and the scale of

their shifts can be see in table 5.3.

A proper consideration of the effect of the systematics on the final confidence

intervals will be discussed in chapter 6.

Track Energy Scale

Reconstructed tracks whose energy is determined by range have a systematic un-

certainty of 2% on the measured energy, determined using CalDet. Tracks whose

energy is measured using curvature have an energy uncertainty of 3% - deter-

mined by comparing the range and curvature measurements of tracks which stop
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Systematic Scale of Shift
Track Energy Scale from Range 2%
Track Energy Scale from Curvature 3%
ND Shower Energy Scale 2.0%
FD Shower Energy Scale 1.0%
Absolute Shower Energy Scale (complex - see notes)
NC & νµ-CC background 50%
Near-to-Far Normalisation 1.54%
Downstream Events +50%/-100%
Cross Sections 1σ
Flux Modelling 1σ

Table 5.3: Summary of systematic shifts considered in this analysis. Cross-section
σ is relative to world data on neutrino cross sections. Flux modelling σ is relative
to the error on the beam flux fitting.

within the detectors.

Relative Shower Energy Scale

The relative shower energy scale systematics are estimated by comparing data

with MC simulations of cosmic ray muons [104]. By adding all the contributions

from various calibration steps an uncertainty can be derived of 2.0% in the near

detector and 1.0% in the far detector, with a total Near-to-Far Shower energy scale

of 2.3%.

Absolute Shower Energy Scale

Two components contribute the the absolute energy scale uncertainty. The first

is a 5.7% contribution from extrapolating CalDet measurements to any other de-

tector. In addition, there is an energy-dependent contribution [105] encompass-

ing uncertainties in hadron production and intra-nuclear effects. This systematic

takes an overall energy-dependent form of:

σshw = 6.6% + (3.5%)× e
Eshw

1.44GeV .
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NC & νµ-CC background

The NC and νµ-CC background systematic comes from a mis-estimation of the

quantities of NC and νµ-CC events that are wrongly classified as ν̄µ-CC events.

Two separate approaches were used to estimate the potential scales of any back-

ground systematic, for both beam configurations.

For νµ-dominant beam data, where the data is dominated by νµ events, data

and MC with a large NC background, 0 < S1 < 0.25 (see figure 5.2) were com-

pared. Because of the higher proportion of energy in the shower rather than the

track in νµ samples when compared to ν̄µ samples, due to the left-handed nature

of the weak interaction, this portion of the NC background sample also contains

approximately equal amounts of misidentified νµ background. The scale required

to account for any discrepancies with data was 50%.

For ν̄µ-enhanced beam data we are using the S2 PID (figure 5.3) which does

not give us this convenient dual measurement. Using samples of S2 < 0.3 the

systematic uncertainty was evaluated as 20% for NC background. Similarly, a

sample with a high wrong-sign component, q
p

/
σ
(
q
p

)
> 2.3 was used to evaluate

the νµ background uncertainty at 30%.

For simplicity, the analysis in this thesis uses the largest of these uncertain-

ties - 50%, to cover all of the uncertainty in the NC and wrong-sign CC-νµ back-

grounds.

Near-to-Far normalisation

The systematic uncertainties that contribute to a difference in the relative number

of events expected at the two detectors [106] are summarised in table 5.4. The un-

certainty is dominated by a 1.3% selection bias, derived by manually classifying

by inspection, data and MC events in both detectors [107].

The contributions named “ND Fiducial Bias” are a reflection of the differences

between simulation and data in the non-uniformity of the vertex distributions,

due to the geometry of the near detector.



5.4. Systematic Uncertainties 83

Systematic Uncertainty
Steel Thickness 0.2%
Scintillator Thickness 0.2%
FD Live Time 0.32%
ND Fiducial Bias (z) 0.43%
ND Fiducial Bias (y) 0.14%
ND Fiducial Bias (x) 0.53%
N/F Selection Bias 1.3%
Total 1.54%

Table 5.4: Summary of the contributions to the relative normalisation of event
numbers between the detectors. From [106].

Downstream Events

Primarily, the parents of neutrinos and antineutrinos are focussed by magnetic

horns - giving νµ in ν̄µ-enhanced mode, and ν̄µ in ν̄µ-enhanced mode. When in

νµ-dominant mode, ν̄µ parent hadrons are specifically not focussed. An important

source of ν̄µ arises from primary protons interacting in areas of the beamline other

than the target - particularly, interactions with the walls of the decay pipe. These

interactions can occur with protons that scatter in the target, but also secondary

hadrons that come from target interactions.

Because these interactions happen closer to the near detector - over the entire

length of the decay pipe, the ND/FD ratio is significantly larger than for hadrons

born in the target, causing a difference in expected measurement. Figure 5.10

shows the scale of this difference between target-area and decay-pipe ν̄µ parents.

Being approximately 7% of the beam for the νµ-dominant case, and concen-

trated near the oscillation maximum, analyses of the ν̄µ are potentially sensitive

to mismodelling of this effect, which can imitate the low energy spectrum differ-

ence between the detectors coming from oscillations.

To estimate the scale of the uncertainty [66], it was assumed that all ND MC-

data discrepancy was due to this systematic, and the scale adjusted so that the

number of low-energy events, both with and without other systematics, agreed.

This gave a worst-case systematic of +50%
−100%, which results in a similar effect on

fitting as the other systematics, which is minor compared to the statistical error.
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Figure 5.10: MC true ν̄µ spectra seen at the Near (red) and Far (black) detectors,
for parents produced in the target area (left) and decay pipe (right). The target
area can include parents produced in the horns and other areas of the target as-
sembly. The histograms are normalised for cross-comparison. From [66].

Cross-sections

The levels of uncertainty in the neutrino cross-sections is contributed to by the

overall cross-section, but also by various NEUGEN parameters controlling the

interaction models. Most of the difference that would be seen between the de-

tectors are eliminated due to the near-identical construction of the detectors [94].

The remaining differences are due to the flux differences between the detectors

causing a change in the composition of interaction types.

Flux Modelling

There are a number of contributions that can cause systematic differences in es-

timation of the neutrino flux. This includes uncertainties in hadron production,

beam optics, the exact positioning of the target and the detectors. The fit param-

eters used for beam tuning were adjusted within their uncertainties to give an

overall estimate on the error in the flux. This process is described in [94, p.19].
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5.5 Actual effect of systematics

The estimated effect of these systematics on the end results can be assessed in

a couple of different ways - separate from the Feldman-Cousins approach dis-

cussed in chapter 6. The first is by estimating the error introduced on the pre-

dicted data spectra, shown for both νµ-dominant and ν̄µ-enhanced beam configu-

rations in figure 5.11. For each systematic, sample ND and FD data was generated

by applying the systematic positively, and negatively, to MC events - to simulate

data taking under the ±1σ scenarios. Oscillation was also applied to the FD fake

data at a value of |∆m2| = |∆m̄2| = 2.43× 10−3eV2, sin2 (2θ) = sin2
(
2θ̄
)

= 1.0.

The ND systematically shifted spectra were then extrapolated using this known

oscillation value to generate a FD prediction, and then compared to the energy

spectrum built from systematically shifting FD MC events directly. This gives a

histogram describing the discrepancy, under this systematic, of the extrapolation

procedure. Finally, any difference incurred under the nominal scenario (e.g. the

extrapolation error without any systematics applied, ∼ 1% max), is removed.

This gives the calculation:

Σ =

(
Eprediction

Esummary

)

(
Nprediction

Nsummary

) ,

where Σ is a spectrum of the fractional error introduced for a particular direction,

of a specific systematic, E is the energy spectrum from applying that systematic

shift, N is the energy spectrum from the nominal, no-systematics case, prediction

indicates the spectrum is constructed from extrapolating ND MC, and summary

indicates the spectrum is constructed by shifting FD MC events and then building

a spectrum of the result.

Once these errors have been calculated, they are split into positive and neg-

ative effects, and summed in quadrature to give the final fractional error bands

shown in figure 5.11.

The effects of systematics from νµ-dominant and ν̄µ-enhanced are shown sep-
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Figure 5.11: Systematic error bands on the predicted FD energy spectrum for
νµ-dominant (top) and ν̄µ-enhanced (bottom) beam configurations. Data gener-
ated by comparing the quadrature-added effect after extrapolation, of applying
each systematic.

arately, as the beam spectra is qualitatively different between them and is how

the actual data will be studied - separated by beam configuration. The dip at

the lowest energy bin in νµ-dominant mode is due to the measured track energy

from range systematic moving events into the lowest extrapolation bins, where

the modelling is poor. The asymmetrical bias towards negative errors is due to

the asymmetry of the systematic describing neutrino parents originating from

within the decay pipe.

The second method employed to estimate the systematic errors is by observ-

ing the effect of applying systematics to the MC, on the best fit oscillation param-

eters to the energy spectra built with this shifted MC.
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For each systematic under consideration, shifted ND and FD data were gen-

erated, as above, for ν̄µ-enhanced and νµ-dominant configurations. These spectra

were then scaled to the expected POT of the real data, and then fit simultaneously,

in the same manner as the final data will be. The difference of the results of this

fit, compared to the nominal case where there are no systematics applied, can be

used as a visual guide to the scale of the effect of each systematic. This is be-

cause we have far more MC events than data, such that statistical effects become

negligible. The results from these fits can be seen in figure 5.12.

When fitting, the best fit was allowed to move into unphysical territory, as it

is not the absolute value of each fit that is of interest, but the difference from the

nominal, unshifted scenario.
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Figure 5.12: Effect of applying each systematic to the best fit results of scaled
high-statistics MC, for the full, combined νµ-dominant +ν̄µ-enhanced fit. For each
± value of each systematic, the systematic is applied to MC events, and the resul-
tant spectra are fitted as though they were data. A line is then drawn from each
subsequent best fit to that obtained by fitting nominal, unshifted MC.

For better understanding of the scale of these systematics, when compared to

the statistical uncertainly, the results in figure 5.12 have been superimposed on

the Gaussian sensitivity contours for the combined results. This can be seen in

figure 5.13. The nominal central point has been shifted to the true MC oscillation
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value, for illustration. It is clear that for this analysis, statistics are dominant.
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Figure 5.13: Effect of the systematic shifts on the best fit, compared with the Gaus-
sian sensitivity contours.

5.6 Data Validation

Before fitting and final analysis, the data and MC needs to be checked for com-

patability. This is done for the selection variables used in this thesis in figures

5.14 and 5.15 for νµ-dominant and ν̄µ-enhanced beam modes respectively.

The near detector plots show the systematic error band on the MC for the

near detector, from uncertainties on flux, neutrino cross-section and contributions

from the decay pipe. The far detector plots show the (dominant) statistical error
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for the selection variables, where the MC has been processed assuming oscillation

parameters of |∆m̄2| = 2.4× 10−3 eV2 and sin2
(
2θ̄
)

= 1.0.

All the rest of the variables were validated as part of the MINOS results vali-

dation, see [106].
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Figure 5.14: Data/MC comparison plots for νµ-dominant beam near detector
variables (left) and far detector variables (right). The Systematic error bands are
shown on the near detector plots, and Poisson statistical errors on the far detec-
tor plots, which have been generated with a |∆m̄2| = 2.4 × 10−3 eV2 at maximal
mixing.
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Figure 5.15: Data/MC comparison plots for ν̄µ-enhanced beam near detector vari-
ables (left) and far detector variables (right). The Systematic error bands are
shown on the near detector plots, and poisson statistical errors on the far detec-
tor plots, which have been generated with a |∆m̄2| = 2.4 × 10−3 eV2 at maximal
mixing.



Chapter 6

Application of the Feldman-Cousins

Method

A crucial part of calculating the results of any experiment is the computation

of the confidence intervals, which allows the reporting of errors on the results of

experiments, attempting to take into account the known and unknown variations

that affect every experiment.

One common approach, used in previous MINOS analyses, is directly based

on the likelihood-ratio method. For a single set of measured events, a likeli-

hood ratio can be calculated using the ratio of measured (N ) to expected val-

ues (Nexpect), of a single bin in the energy spectrum. Assuming that the distribu-

tions of errors for the model parameters are Gaussian, we can calculate a χ2 value

summed over all bins i:

χ2 = 2
∑

i

Nexpect,i −Ni +Ni ln

(
Ni

Nexpect,i

)
, (6.1)

the form of which comes from [108]. By minimising this measure, we are maxi-

mizing the likelihood over parameter space, and so a best fit likelihood χ2
best can

be found. Again using the assumption that the distribution of the errors in the

measured parameters is Gaussian, the difference between this maximal likeli-

92
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Figure 6.1: Probability density of the ∆χ2 distribution, for k = 1, 2, 3 degrees of
freedom.

hood and that from any other set of parameters:

∆χ2 = χ2 − χ2
best,

is distributed according to the k-parameter chi-squared distribution (shown in

figure 6.1 for k = 1, 2, 3). The properties of this distribution are well understood,

such that we can calculate the values of ∆χ2 which correspond to certain inte-

grated probability values (see table 6.1).

By constructing a k-dimensional surface of ∆χ2 values over each of the fit-

ted parameters, we can trace the contours at these pre-defined values in order

to calculate the confidence intervals. For example, when measuring neutrino os-

cillation parameters, we are interested in fitting two parameters tracing the 2D

surface - the mixing angle sin2 (2θ) and the mass difference |∆m2|. After finding

the best fit, we can construct the ∆χ2 surface and trace the contour at ∆χ2 = 11.83

to find the 3σ confidence limits.

However, this simple process breaks down if the core assumption of Gaussian-

distributed errors no longer holds. This can happen for several reasons, but in this

analysis there are two primary causes.

The first, is that of low statistics - because of the low number of antineutri-

nos being produced (compared to neutrinos, for which the experiment was de-
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Cum. Probability (%) k = 1 k = 2
68.27 1.00 2.30
90. 2.71 4.61
99. 6.63 9.21

99.73 9.00 11.83

Table 6.1: Value of the ∆χ2 distribution for which the integrated probability is
certain, useful values. Values from [95]

signed) the number of events being selected for analysis is small, and the number

of events in each bin is very often expected to be < 3. This puts the quantities

firmly in the realm of Poisson, not Gaussian statistics.

This effect is small compared to the second reason that the parameter errors

are non-Gaussian; that of physical boundaries. Consider the case of true oscil-

lation parameters near maximal mixing. Under the assumption of Gaussian er-

rors, the confidence intervals would encompass unphysical areas of parameter

space (that of sin2
(
2θ̄
)
> 1), a measurement of which would be meaningless. But

enforcing this physical boundary changes the available parameter space, so the

mixing angle would no longer be free to vary according to Gaussian statistics.

The Feldman-Cousins method [109] provides a way to reconcile this conflict.

It proposes a method for calculating the precise confidence intervals through an

ordering method, based on the likelihood ratios. Effectively, the method advo-

cates generating a large number of randomly fluctuated experiments, and using

the likelihood-ratio method as a measure whose distribution is sampled empiri-

cally.

For the analysis in this thesis, the Feldman-Cousins method has been imple-

mented to accurately estimate the confidence interval results of the oscillation

analysis. This work is described in section 6.1. The method has also been applied

to the calculation of the effects of known systematic errors on the contour. This is

described in section 6.2. In addition, the FC software and techniques I developed

were used for MINOS publications [2] and [1].
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6.1 Statistical Corrections

In this section, the actual process used to calculate the FC-corrections, and the

method of applying these corrections will be summarised. One key part of the

process not discussed here, is the actual method used to generate each random

experiment. This is the part that required most adaption for the inclusion of sys-

tematic errors, and is detailed in section 6.2.

The starting point for the FC method is a set of randomly generated experi-

ments with a single, known set of oscillation parameters |∆m̄2|truth , sin
2
(
2θ̄
)

truth.

Each of these experiments consists of a near and far detector spectrum, though

because of the level of statistics available at the near detector, the spectrum does

not need to be treated in the same way as the far - . The far detector spectrum,

containing a much more statistics-limited measurement, has to be sampled as if

it were actually measured from real events. Practically, this means integer event

counts, which can be achieved by Poisson-fluctuating each POT-scaled Monte

Carlo bin of the extrapolated prediction. The near detector sample is large enough

that having integer event-counts is not important.

Once each experiment has been generated, it can be fitted, to find the set of

oscillation parameters Tbest = |∆m̄2|fit, sin2
(
2θ̄
)

fit which gives best agreement be-

tween oscillated Monte Carlo and the individual fake experiments. This can then

be used to calculate the ordering measure, for which we use the ∆χ2:

∆χ2
fit = χ2

(∣∣∆m̄2
∣∣

truth , sin
2
(
2θ̄
)

truth

)
− χ2

(∣∣∆m̄2
∣∣
fit , sin

2
(
2θ̄
)

fit

)
.

After doing this for every generated experiment, we can use this set of ∆χ2

values to calculate the value of ∆χ2
fit that encompasses each probability that we

are interested in. This is best demonstrated in figure 6.2, where the distribution

of these ∆χ2
fit for a sampled set of experiments with a single pair of true values

is compared with the distribution that would be expected for the Gaussian case.

In this plot, generated at maximal mixing, the the physical boundary causes fit
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Figure 6.2: Sample ∆χ2
fit distribution from the FC method for 7 × 1020 POT of

νµ-dominant beam Monte Carlo, oscillated at |∆m̄2| = 2.32×10−3 eV2, sin2
(
2θ̄
)

=
1.0. The vertical markers are at cumulated probability of 68%, 90%, 99%.

results to ‘pile up’ against sin2
(
2θ̄
)

= 1, causing an excess of fits having a very

low ∆χ2
fit (compared to the Gaussian case).

The number of experiments to run this process on is defined by the level of

probability that you want to probe accurately; the number of experiments re-

quired to accurately find the ∆χ2
c sampling 68% of the distribution is far less than

that required to find the 99.73% (3σ) sample. In this thesis, the process has been

run until the statistical fluctuations between differing sets of true parameters is

reduced to acceptable levels, such that the measured ∆χ2
c for a particular proba-

bility appear relatively smooth across multiple true values.

6.1.1 Applying the correction

Once the distribution of ∆χ2
fit values has been sampled, we can use this to calcu-

late correct confidence intervals, without over- or under-coverage. After analysing

the data we wish to calculate the contours for, including the finding of a best fit,

we can construct the usual surface of

∆χ2
(∣∣∆m̄2

∣∣ , sin2
(
2θ̄
))

= χ2
(∣∣∆m̄2

∣∣ , sin2
(
2θ̄
))
− χ2

best
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Figure 6.3: (a) The ∆χ2 surface for 7 × 1020 POT of scaled νµ-dominant beam
Monte Carlo, oscillated at |∆m̄2| = 2.32 × 10−3 eV2, sin2

(
2θ̄
)

= 1.0 and (b) The
corresponding FC 90% statistical correction grid for the same.

values at all parameters in the range of interest, relative to the best fit point χ2
best.

Continuing the example from figure 6.2, figure 6.3a shows the ∆χ2 surface for the

same configuration, using equivalent data to 6.2 for many different oscillation

parameters.

We then need to calculate the correction to this from our FC simulated data.

After separately simulating experiments at all points in the range of parameters,

we can calculate a value at each point on the surface ∆χ2
c

(
|∆m̄2| , sin2

(
2θ̄
))

such

that α of the experiments have a value of ∆χ2
fit < ∆χ2

c . This set of values can be

formed into a grid, and this grid can be seen in figure 6.3b for α = 90%, for the

νµ-dominant beam example we are considering.

The confidence intervals are then easy to calculate: For the ∆χ2 surface, a

point is in the acceptance region if:

∆χ2
(∣∣∆m̄2

∣∣ , sin2
(
2θ̄
))
< ∆χ2

c

(∣∣∆m̄2
∣∣ , sin2

(
2θ̄
))
,

and the contours defining the edge of this region can be found where ∆χ2 = ∆χ2
c .



6.1. Statistical Corrections 98

Practically, this can be achieved by subtracting the correction grid from the ∆χ2

likelihood surface and tracing the contours where ∆χ2 −∆χ2
c = 0.

6.1.2 Fitting individual experiments

Special care needs to be taken when fitting individual experiments that bias is

not introduced via the introduction of artificial boundaries. The problem is illus-

trated in figure 6.4a, where a hard maximum of 10×10−3 eV2 has been imposed

on the fitting. Even if the distribution of fits followed the perfectly Gaussian case,

we would expect experiments to be distributed according to the likelihood sur-

face e.g. that shown in figure 6.3a. When constrained, many experiments end up

clustered around the artificial boundary instead of fitting higher in |∆m̄2|. As can

be seen in the corresponding 68% FC correction histogram for this scenario (fig-

ure 6.5a), this boundary causes an additional lowering of the 68% measurement

at the high-|∆m̄2| border, and away from the borders the behaviour is similar to

the Gaussian case (because the ∆χ2 between the best fit and true oscillation point

is being kept artificially low).

Even when not fitting with an artificial boundary, a similar effect can be ob-

served when the fitting procedure finds a local minimum of ∆χ2 instead of the

global minimum. This problem can be identified easily through manual inspec-

tion, but is impractical for the tens of thousands of experiments being analysed in

the FC method. For the fitting in this thesis and the published MINOS analyses,

a fitting method was developed in order to attempt to find the global minimum

automatically.

Firstly, a coarse grid search designed to probe as much of the likelihood sur-

face as possible attempts to find an approximate minimum. The points consid-

ered in this search are displayed in figure 6.6, and the density of points was de-

termined by manual inspection of a large number of random experiments and

chosen to cover the size of most local minima. Once a minimum has been found

this way, MINUIT is seeded with this minimum and used to find a more precise
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Figure 6.4: The distribution of best fit points for 10 k experiments where the
fitting is (a) constrained to 10×10−3 eV2 and (b) fit globally. 7×1020 POT of
νµ-dominant-beam MC was oscillated at |∆m̄2| = 2.5× 10−3 eV2, sin2
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Figure 6.5: The 68% FC-correction surfaces calculated by applying the two fitting
scenarios in figure 6.4 to a full range of parameters. (a) is with the fit constrained
to 10×10−3 eV2, and (b) fitting globally.
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Figure 6.6: Points considered in the coarse grid search stage of the global fitting
procedure. The likelihood is sampled linearly up to |∆m̄2| = 30 × 10−3 eV 2, and
logarithmically thereafter. The zero-oscillation point is also considered.

location.

There are several ways in which this fitting method can fail, and several meth-

ods of recovery. In the event that MINUIT fails, or finds a less likely mini-

mum than the seed value, a high resolution grid search is carried out around the

best fit coarse grid search point. The best fit from MINUIT is also compared to

two “known” points; the null-oscillation point, and the “known” true oscillation

point.

The use of this latter, true value point, can be justified by considering what

would happen with real data - a high resolution grid would be generated, fol-

lowed by a manual inspection; if a better fit is found by manual inspection then

the fit would be restarted. Therefore, in order to make sure the fitting procedures

are as close to the way the final result would be fitted as possible, it is valid to use

any information possible, in lieu of an exhaustive global search (which would

always cover the point of true oscillation).

If either of these give a better fit than the found minimum, then MINUIT is
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re-seeded from these points, with the same compensation for failure modes as

outlined above. This method finds a global minimum, or one very close to it,

extremely reliably, with all observed mis-fitting falling within the first 68% of

experiments.

Being close to the global minimum, and not exactly on it, in difficult fitting

cases, is not a problem, because it is the ∆χ2 between the minimum and truth

point that is important. As long as this difference falls within the first 68% of

experiments, it will not affect the final result. From study of sets of sample ex-

periments, the number of results with negative ∆χ2 is < 0.5%, and of those, all

studied would have fallen within the first 68% of the ∆χ2 spectrum, had they

fitted the true global minimum.

The distribution of fits for the same scenario, but using the global fitting method

is shown in figure 6.4b. The method is clearly finding fits over large areas of the

parameter space. The resultant 68% FC-correction grid can be seen in figure 6.5b.

There is no artificial boundary with this method, and the effects of non-Gaussian

fit distributions is clearly visible, by the region in the centre of the displayed pa-

rameter space being� 2.30.

6.1.3 Aggregating Multiple Runs

Data from MINOS has been taken over many years and beam configurations.

The biggest difference was in switching NuMI from νµ-dominant to ν̄µ-enhanced

mode, since this causes the shape of the ν̄µ energy spectrum to change drastically.

Because of these differences, data from each run period is separately simu-

lated, and this in turn leads to the requirement that each period of running must

be considered separately when performing the FC method.

However, the process requires all data to be fitted simultaneously into a single

∆χ2 value - so there is no way to combine the effects of multiple runs after the

process - it must all be done simultaneously. To do this, fake data for each run is

generated separately for every FC experiment, and then the fitting is done over
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all runs simultaneously. The likelihood χ2, used for fitting, for the combined data

set can be calculated as:

χ2 =
∑

j

χ2
j ,

where j indicates a sum over separate run periods, and χ2
j is calculated the same

as equation (6.1). This expression follows from the basic principles of log-likelihood

calculation.

The effects on the correction surface when combining multiple runs depends

heavily on what is being combined. Figure 6.7 shows the differences between

building the νµ-dominant- beam correction surface using run 3 MC only, and cor-

rectly combining runs 1-3 MC in the correct POT proportions. The difference in

the end result is minimal, an expected result given the similarity between the

spectra of the three νµ-dominant runs, and the statistical dominance of the run 3

POT. This means that we can safely use run 3 MC to represent all νµ-dominant

running.

In contrast, figure 6.8 shows the effect from combining the νµ-dominant and

ν̄µ-enhanced MC. Figure 6.8a shows the FC correction grids for 3.4×1020 POT

of νµ-dominant beam MC. Figure 6.8b shows the correction grids when combin-

ing this MC with 7.1×1020 POT of ν̄µ-enhanced beam MC to represent the full

10.5×1020 POT of running. Clearly, adding the extra statistics has had the effect

of constraining the extent to which the best fits to individual experiments can

move away from the Gaussian expectation.

6.2 Systematic Corrections

An essential part of any analysis is the compensation for unknown but bounded

experimental errors. For the analysis in this thesis, the FC method has been

adapted to include the effects of systematics through the Bayesian procedure of
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Figure 6.7: The 68% (top) and 90% (bottom) FC-correction surfaces calculated
from 7×1020 POT of (a) run 3 MC and (b) separate run 1, 2 and 3 MC in the same
proportions as actual data taking.
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Figure 6.8: The 68% (top) and 90% (bottom) FC-correction surfaces for (a)
3.4×1020 POT of ν̄µ-enhanced beam, and (b) aggregated correction for this ν̄µ-
sample with the 7.1×1020 POT of νµ-dominant beam (all runs combined).
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marginalization [110]:

prob (X|I) =

∫ +∞

−∞
prob (X, Y |I) dY, (6.2)

where X is the distribution that you are testing the probability of, I is the un-

derlying assumption and Y is the parameter that you are uncertain about. This

procedure allows us to eliminate nuisance parameters, such as systematic effects,

by integrating out the effect they have on the final result.

Because the calculation of this integral directly for each experiment would

require prohibitive quantities of computing power, especially when considering

multiple systematic shifts, a different approach is made in this analysis.

Upon generation of each FC experiment, a single set of exact values for each of

the systematic shifts is randomly generated, and used to build the data spectrum

for that experiment. By accumulating many thousands of experiments generated

this way, the effect is of performing the integral in equation (6.2) numerically.

6.2.1 Experiment Generation

The best way to accurately calculate the effect of multiple, possibly-correlated

systematics, is to calculate the exact effects by accounting for the shift on every

single Monte Carlo event. This is the approach used for this analysis.

In the statistical case, the ND spectrum does not need to be regenerated for

every experiment, as it has enough data that the statistical fluctuations do not

have a noticeable effect on the FD spectrum, and is otherwise identical for each

experiment. However, when simulating systematic effects there are systematics

that can affect the near and far detectors differently; thus affecting the difference

between predicted and measured FD spectra. Therefore, we need to regenerate

the ND spectrum for every experiment.

The systematic shifts are re-chosen for every experiment. Each shift has a de-

fined variance, and a random number generator is used to generate a value on a
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Figure 6.9: The magnitude of each systematic shift is chosen according to a nor-
mal distribution, based on predefined variance values.

normal distribution, as seen in figure 6.9. The value is chosen for each systematic

i as:

∆i = σi ×Xi,

where ∆i is the magnitude of the systematic shift to be used in the experiment,

σi is the magnitude that the shift should fall within 68% of the time, and X is a

random variable distributed asXi ∼ N (0, 1). With this approach, the stated mag-

nitudes for each of the systematic shifts become statements about the confidence

we have, rather than a limit to the magnitude of the shift.

Once we have the set of systematic shifts, then we can generate the ND spec-

trum. Since we have enough near detector data as to be relatively insensitive to

statistical fluctuations, the exact level of statistics at the near detector does not

matter - we can use the entire set of ND MC events to build the reconstructed

energy spectrum RN . Each of the systematic shifts Si are applied sequentially to

every MC event:

RN = S1 ◦ S2 ◦ . . . ◦ Sn ({MCND} ,∆n) .

This collection of events is then used to build the ND histograms used in the

extrapolation.
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6.2.2 Far Detector Fake Experiment Generation

Generation of the FD histograms is more complicated than generating the ND.

The low event count makes it very important to correctly sample the correct level

of statistics, from a high-statistics set of MC events. Additionally, the effects

of neutrino oscillation can be observed at the far detector, causing an energy-

dependant distortion of the MC spectrum. The nature of this oscillation function

can make it computationally expensive to calculate the effects of oscillation on

every MC event. Finally, the effects of systematic shifts can cause the distribution

and normalisation of events to change, in ways that can be hard to approximate

when combining multiple systematics.

This section describes how the FD histogram is built efficiently through usage

of the extrapolation, how rejection sampling was used to compensate for high

computation requirements, and how the FD histograms were eventually gener-

ated in this thesis.

The simple way

Before exploring the alternate methods that were developed for the analysis in

[2], it is illustrative to examine how, in principle, systematics are included in the

FC process, along with the reasons other methods were explored.

The simplest way of generating a fake-data systematically-shifted FD energy

spectrum would be to iterate over every single event in the MC, applying the

oscillation and chosen set of systematic shifts to every event, and then building

a full-MC-statistics histogram with the results. This could then be scaled down

to the desired level of POT, and each bin then fluctuated according to Poisson

statistics, so that the final histogram has integer events.

This process is time consuming, because of the combination of number of MC

events and the amount of data associated with each event, making it very compu-

tationally intensive to process even a single event. Worse, this process needs to be

done thousands of times because every FC experiment needs to have a different
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set of systematics applied to it, in order to correctly apply the marginalization.

These originally combined to make this approach untenable - and so the rejection

sampling method described in the next section was developed.

When constructing the final analysis for this thesis, however, this process was

heavily optimised and through a combination of data reduction, and rewriting

the systematic shifting and oscillation algorithms to minimize jumping around

memory for data access (potentially reducing the effects described in [111]). Through

these optimisations, approximately a 100x speed-up was observed in the rate of

processing, which was cross checked by running the old and new methods side-

by-side.

A faster way - Rejection Sampling

The speed problem can be solved by using rejection sampling [112]. Rejection

sampling allows an arbitrary probability distribution function f(x) to be sampled

from another, usually simpler, distribution g(x). For the purposes of this analysis,

the distribution to sample is the systematically shifted, oscillated neutrino true-

energy spectrum at the FD (T Fj ), and the actual distribution of events to sample

from are the systematically-neutral FD events from simulation ({MCFD}):

f(j) ≡ T Fj ,

g(j) ≡ F
{}
j = F (j, {MCFD}),

where j indicates that the probability density functions are binned, andF {}j indicates

the true energy far detector spectrum obtained by applying a binning function F

to the far detector MC event data {MCFD}. Any desired number of events can

then be drawn from the simulation data by selecting a single event at random,

and then deciding to throw it away and draw another by using the ratio of these

functions to calculate the probability of acceptance such that for any bin j:
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Paccept(j) = K · g(j)

f(j)
, (6.3)

where K is an arbitrary normalization constant, chosen such that the maximum

possible value of Paccept, Pmax, satisfies

0.0 < Pmax ≤ 1.0.

The normalization of this ratio does not matter - the number of events is calcu-

lated independently. Usually, K would be chosen such that Pmax = 1.0, to avoid

unnecessary discarding of events. However, in this analysis a value of K such

that Pmax = 0.87 is used, in order to compensate for systematic shifts, discussed

below.

Once the probability of acceptance has been calculated for each prospective

event, a uniform random number can be generated. By comparing this random

number with the probability for the bin that the events’ energy falls into, a de-

cision on acceptance can be made. However, first, systematic shifts need to be

taken into account.

6.2.3 Systematic Shifts and Far Detector Generation

The procedure becomes slightly more complicated once the potential shifts from

systematic errors are taken into account. Because of the computing time involved,

we cannot reprocess the entire set of events for every set of systematic shifts, but

because the effect of any particular shift could be highly dependent on each event,

the shifts due to systematics needs to be calculated for each event.

Thus, rejection sampling needs to be adapted to account for the effect of the

systematic shifts on the relative contribution of each event on the final histogram.

The important property of consideration is each event’s re-weight value, rw. Each

event is assigned a weight by the MC process that represents its proportional

contribution to the experimental results. When systematic shifts are applied, they
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can affect the relative probability of each event being observed, and so the weight

associated with individual events can shift.

Because the systematic shifts can affect the normalisation of events, the FC

process needs to account for the fact that a systematic shift can account for a

change in the number of observed events (relative to the nominal case).

For each event n randomly picked from the MC, a uniform random variable

tn ∼ U (0, 1) is drawn, and compared with the probability of acceptance calcu-

lated from the spectrum oscillation, such that the boolean acceptance An ∈ B of

the event is:

An = tn ≥ rn · Paccept (j) ,

where the bin j is calculable from the event properties, and the weight of the

event rn ≡ 1, because any variation would be taken out by the constant in the

acceptance probability, equation (6.3).

After application of the systematic shifts, the event weight changes such that

rn → r′n = f (n, S) ,

and there is a new acceptance case B ∈ B:

Bn = tn ≥ r′n · Paccept (j) ,

with three possible consequences; Either An = Bn, in which case the reweighting

of the event has caused no change to its acceptance, An = ∅, Bn = I in which case

the reweighting has caused an event that would have been previously rejected

to be accepted, or An = I, Bn = ∅, in which case an event that would have been

previously accepted, is now rejected.

These last two cases, by virtue of letting events through that would be ex-

cluded by the rejection sampling process, affect the normalisation. Since we are

using rejection sampling, we can deduce that while we are in the process of draw-
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ing events, the number of events total that we are trying to draw, changes. For

each event allowed through by the systematic reweighting that would have oth-

erwise been rejected, we increase the total number of drawn events by one. For

each event rejected that would have been allowed, we reduce the total number of

events by one (with the corresponding handling of the fact that if we had drawn

the last event, we would now be complete).

This gives us all of the knowledge we need in order to generate the entire set

of systematically shifted FC experiments.

6.2.4 Systematic grids

The actual grids calculated from this process are shown in figure 6.10, for 68%

and 90% confidence corrections. These were both generated with a minimum

of 5000 experiments at every data point - and once the final result was approxi-

mately known, further statistics was gathered for the area covered by up to the 3σ

Gaussian contours, giving the region covering the 3σ contour at least two million

sample points each.

The result of applying the FC corrections to the Gaussian sensitivity is shown

in figure 6.11, both for the statistical and statistical+systematic correction grids.

It can be seen that the effect on the end result of the systematic errors is minimal,

only slightly expanding the contours in |∆m̄2| and sin2
(
2θ̄
)
.
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Figure 6.10: 68% (top) and 90% (bottom) Feldman-Cousins correction grids for
full νµ-dominant +ν̄µ-enhanced samples, with systematic shifts applied.
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Chapter 7

Results

Having established a method for accurately evaluating the systematic and statis-

tical limits of any measured result with the Feldman-Cousins method, it becomes

time to actually look at and compare the MC simulations and extrapolated pre-

dictions with actual data directly.

7.1 Near Detector

Over the entire running time of the experiment under consideration 8.48×1020 POT

of data was collected at the near detector. This is less than at the far detector,

due to a lower live-time, various special near-detector only runs, and data qual-

ity cuts, but is acceptable because the near detector is not measuring oscillations,

but rather constraining our understanding of various systematics including beam

flux, cross-sections and detector uncertainties (as discussed in chapter 5), and be-

cause of the distance to the beam and various analysis differences, the near de-

tector sees over 103 more ν events than the far detector.

After applying the antineutrino selections detailed in chapter 5 to these data

samples, the number of events selected as muon antineutrinos, along with the

size of the data sample for that run, is summarized in table 7.1.

Figure 7.1 collects these data as an energy spectrum, split into separate spectra

for νµ-dominant and ν̄µ-enhanced mode running. The systematic error on the MC

114
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Beam Run ND POT ν̄µ Events
νµ-dominant 1 1.19×1020 109970

2 1.62×1020 150168
3 2.48×1020 245074

ν̄µ-enhanced 4 1.66×1020 350252
7 1.08×1020 227500
9 0.44×1020 88720

Total 8.48×1020 1171684

Table 7.1: Collected POT and reconstructed events selected as ν̄µ for each sample
run at the near detector.
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Figure 7.1: Near detector data events (black) selected as ν̄µ, for both νµ-dominant
beam (left) and ν̄µ-enhanced beam (right). The POT-scaled MC prediction is
shown in red, with the systematic errors.

expectation is generated by fluctuating every systematic to its ±1σ values, and

adding the results in quadrature. The statistical error on each bin is negligible,

and not visible on this scale.

The data appears to agree with the MC expectation within systematic errors,

and any differences are fed in as a correction to the beam matrix extrapolation, so

we can safely continue with inspecting the far detector data.

7.2 Far Detector

At the far detector, 10.49×1020 POT of data passed all the analysis cuts, corre-

sponding to 7.09×1020 POT with the beam in νµ-dominant mode, and 3.40×1020 POT

of data collected in ν̄µ-enhanced mode. A summary of the per-run POT and num-
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Beam Run FD POT ν̄µ Events No Osc. MC
νµ-dominant 1 1.27×1020 15 24.9

2 1.94×1020 27 38.0
3 3.88×1020 89 81.0

ν̄µ-enhanced 4 1.71×1020 99 160.0
7 1.24×1020 98 115.5
9 0.45×1020 29 40.7

Total 10.49×1020 357 460.1

Table 7.2: Collected POT and reconstructed events selected as ν̄µ for each sample
run at the far detector. The expected number of events, from simulation, in the
absence of neutrino disappearance is also shown, for comparison.

ber of reconstructed events selected as ν̄µ interactions can be seen in table 7.2.

Also shown in this table, is the expected number of events in the absence of

oscillations - comparing the scale of the numbers, it is clear that we are observing

some sort of disappearance effect, the scale of which we shall now quantify.

Using the near detector data for the separate extrapolation of summed νµ-dominant

and ν̄µ-enhanced data, the minimisation procedure developed in 6.1.2 for fitting

individual FC experiments was used to determine a best fit of oscillation param-

eters as |∆m̄2| = 2.58× 10−3 eV2 and sin2
(
2θ̄
)

= 0.962, for this observed data.

The energy spectra for each run individually is shown in figure 7.2, compared

to the predicted energy spectra for no antineutrino oscillations, and the energy

spectra of the extrapolated data at the overall best fit parameters (the individ-

ual best fit for each separate run is not calculated in the process of the final fit).

Similarly, figure 7.3 shows the same data but summed over all νµ-dominant and

ν̄µ-enhanced samples, and compared to the CPT-conserving neutrino oscillation

|∆m2| = 2.43 × 10−3 eV2. The blue band on all of these plots represents the 68%

Poisson-statistics per-bin error on the best fit prediction, calculated based on the

smallest-interval approach to Poisson coverage [113].

The contours for the Gaussian-distributed interpretation of the confidence

limits can be seen in figure 7.4 for the 68%, 90% and 3σ contours, drawn at

∆χ2 = 2.30, 4.61, 11.83 respectively, and compared to the point of best fit.
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Figure 7.2: Far detector reconstructed energy data events for individual
νµ-dominant runs (left) and ν̄µ-enhanced runs (right). Each run shows data
(black), the unoscillated prediction extrapolated from the ND data for the spe-
cific run (red) and the extrapolation of the same ND data at the global best fit
(blue). The blue band shows the expected 1σ error on the contents of each bin,
from Poisson statistics.
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Figure 7.3: Far detector reconstructed energy data events for 7.09×1020 POT of
νµ-dominant (top) and 3.40×1020 POT of ν̄µ-enhanced (bottom) beam configu-
rations. The dashed line shows the prediction at the CPT-conserving |∆m2| =
2.43× 10−3 eV2, sin2 (2θ) = 1.0 The blue line shows the best fit, and the blue band
shows the 1σ sensitivity for each bin’s prediction, from Poisson statistics.
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Figure 7.4: Gaussian confidence limits of fit to combined far detector recon-
structed antineutrino data over all beam modes. The best fit point is indicated
by the star marker.
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7.3 Feldman-Cousins Corrected Results

Before using these results to draw conclusions, we need to apply the Feldman-

Cousins method, as described in chapter 6. The results of this application is

shown in figure 7.5, compared to the Gaussian sensitivity, the same as shown

in figure 7.4. The effect of the procedure is clear - where the distribution of fits

are more likely to encounter physical boundaries, at maximal mixing, the ∆χ2

representing 68% coverage is reduced, as expected.

In contrast, at a lower mixing angle the contours are expanded in area - this

represents the difficulty that the experiment has in distinguishing between dif-

ferent |∆m̄2| at lower sin2
(
2θ̄
)
- a lower mixing angle means less disappearance,

which means that it is harder to distinguish between the case where |∆m̄2|would

cause a single survival probability dip over the peak, and the case where multiple

survival probability dips exist. This is because, in the case where |∆m̄2| is high

enough to cause multiple oscillation dips, the first dip would move into the high

energy tail of the spectrum, where there is less resolving power.

This inability to distinguish between multiple regions of |∆m̄2| means that

small fluctuations can cause the best fit to randomly move between the regions,

resulting in wider distribution of ∆χ2
exp than expected from a naively Gaussian

perspective, thus causing a lower corresponding cumulative probability for the

same ∆χ2
result.
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Figure 7.5: Confidence limits of the measurement as a function of |∆m̄2| and
sin2

(
2θ̄
)
. The effect on the 68%, 90% and 3σ statistical-only Gaussian contours

(dotted) is shown, of applying the Feldman-Cousins corrections to generate a
more representative contour (solid) that includes the effects of systematic uncer-
tainties. The best fit point is indicated by the F marker, and is by definition
unchanged by the procedure.
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7.4 Measuring Individual Parameters

It is useful to give the results of such oscillation experiments in terms of the

individual parameters e.g. |∆m̄2| (and sin2
(
2θ̄
)
). In order to do this, we scan

over fixed values of |∆m̄2| and then fit for sin2
(
2θ̄
)
. The resultant one-parameter

|∆m̄2|-∆χ2 confidence surface is then used to measure the interval of |∆m̄2|which

is within the desired ∆χ2 confidence. In the simple case of our single minimum,

and 68% confidence, this is equivalent to taking the range of |∆m̄2| values for

which ∆χ2 ≤ 1 on the contour plot.

We can correct the result from this using the Feldman-Cousins method, and

get a similar result. However, if the fitting approach from the generation of the

experiments that make up the grid is not identical to the way that the result is

generated, then application of the grid is invalid. Therefore, we need to generate a

special FC-correction grid where the fitting for every experiment is marginalised.

The results of this grid generation can be seen in figure 7.6. Whilst we only

technically require a 1D grid, along the actual values of the marginalised results,

generating a 2D grid allows us to generate the grid beforehand, and select the

appropriate grid entries once the marginalisation values have been determined.

The result of applying this correction to the 68% 1D marginalised likelihood

can be seen in figure 7.7, which compares the naive, Gaussian likelihood surface

for marginalised sin2
(
2θ̄
)

with the FC-corrected surface for the same operation.

Note that the corrected surface can only be interpreted in terms of above/below

the 68% coverage limit - the specific shape can not be used to interpret other

confidence intervals.

As expected, at low |∆m̄2| where the marginalisation results in a maximal

sin2
(
2θ̄
)
, the confidence intervals have been shrunk to compensate for the lack

of parameter space (because of the physical boundary), whilst the upper limit is

left almost uncorrected - with this specific fit, there is no large |∆m̄2| parameter

space for the fits to escape into, because moving the |∆m̄2| higher starts moving

the oscillation probability minimum over the peak of the energy spectrum, where
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there are lots of statistics and thus lots of statistical power.

Using the results from this, we can determine that within 1σ the confidence

on the measurement of |∆m̄2| is:

2.41× 10−3 eV2 ≤
∣∣∆m̄2

∣∣ ≤ 2.84× 10−3 eV2,

and therefore the final measurement from this thesis of |∆m̄2| is:

∣∣∆m̄2
∣∣ = 2.58+0.26

−0.17 × 10−3 eV2.

Similarly, we can generate a result for sin2
(
2θ̄
)

from marginalising |∆m̄2|. The

FC grid for this process is shown in figure 7.8, and we can see that without the

immediate physical constraint of sin2
(
2θ̄
)

the fit points are distributed in a rea-

sonably Gaussian way - with the average being slightly higher than ∆χ2 = 1.

This is due to experiments ‘Jumping’ out of any minima around the true oscilla-

tion point, and thus ending up with a higher ∆χ2 than cases where there are not

multiple minima.

We can thus determine the 1σ confidence on the measurement of sin2
(
2θ̄
)

is:

0.857 ≤ sin2
(
2θ̄
)
≤ 1.000.

Therefore, the final measurement of sin2
(
2θ̄
)

in this thesis is:

sin2
(
2θ̄
)

= 0.96+0.04
−0.10.
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for the analysis in this thesis, MINOS 90% data from [28], and Super-K antineu-
trino data from [57].

7.5 Comparisons

Figure 7.9 shows these results in comparison with three other datasets; The MINOS

ν̄µ and νµ results, from analysing beam and atmospheric data [28], and the latest

ν̄µ-only measurement results from the Super-K experiment [57]. All of the results

shown are to 90% confidence limits.

The result in this thesis is clearly both compatible with, and a great improve-

ment on the measurement of |∆m̄2| provided by the Super-K experiment, but has

a worse measurement of sin2
(
2θ̄
)
. This difference can be explained mainly by the

difference in approach - since Super-K is measuring atmospheric neutrinos (see

section 2.3.1) the experiment has a very large average sample of areas of the L/E

parameter space where the resolution on L/E is not sufficient to see the oscilla-

tion pattern.
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The high statistics measurement of this averaged out region gives a good re-

solving power of the sin2
(
2θ̄
)

parameter, but less information on |∆m̄2|. The re-

solving power that Super-K has for |∆m̄2|will come from relatively smaller slices

of zenith angle where the L/E oscillatory pattern can be resolved.

For calculation of any kind of global limits, Super-K is complementary to the

results in this thesis, because of the entirely different source of neutrinos, different

L/E, different baseline L and different energy range.

When comparing with the MINOS ν̄µ result [28], the result in this thesis has

a smaller limit on |∆m̄2|, but a slightly worse measurement on sin2
(
2θ̄
)
. Part of

this difference will be due to the more exhaustive calculation of limits using the

Feldman-Cousins method - which has the end effect in this analysis of expanding

the limits on sin2
(
2θ̄
)
, and slightly reducing the limits on |∆m̄2| at maximal mix-

ing. In addition, whilst this thesis uses a slightly larger set of accelerator data, an

extra 0.45× 1020 POT, the MINOS analysis includes 37.88 kton yr of atmospheric

neutrino data and antifiducial events, in the form of muons from beam neutrinos

that interact in the rock upstream of the far detector.

The atmospheric sample gives the MINOS result extra power to constrain

sin2
(
2θ̄
)
, for the same reasons as Super-K. The antifiducial events will add a small

global effect, but because of the very low energy resolution their power to con-

strain the end result is limited, especially in terms of sin2
(
2θ̄
)
.

Clearly, the MINOS νµ measurement is much better in terms of equivalent lim-

its on |∆m2| and sin2 (2θ)- due to larger beam exposure in POT and νµ vs ν̄µ cross-

sections. But the result is clearly compatible with this ν̄µ measurement - when

comparing the measurements for compatibility in the case of |∆m2| ≡ |∆m̄2|,

there is a level of agreement with the mass differences of

〈∆m2
32 −∆m̄2〉 = 0.16± 0.33× 10−3 eV2,
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and, when comparing with sin2 (2θ23) ≡ sin2
(
2θ̄23

)
,

〈sin2(2θ23)− sin2
(
2θ̄23

)
〉 = 0.01± 0.11.



Chapter 8

Conclusion

In this thesis, 10.49×1020 POT of νµ-dominant and ν̄µ-enhanced NuMI beam data,

collected over a period of 5 years using the magnetised MINOS detectors was

analysed. Direct disappearance of ν̄µ was observed, resulting in a measurement

of the atmospheric-scale antineutrino oscillation parameters:

∣∣∆m̄2
∣∣ = 2.58+0.26

−0.17 × 10−3 eV2,

sin2
(
2θ̄
)

= 0.96+0.04
−0.10.

This measurement of |∆m̄2| is the most precise ever made, surpassing the Super-K

result by a factor of about five. The measurement of sin2
(
2θ̄
)

by Super-K remains

the world’s most precise, although accelerator experiments are likely to substan-

tially improve on this measurement in the future.

This result allows the world’s most precise comparison of |∆m2| and |∆m̄2|,

with the worlds best measurement of |∆m2|, from [28], as:

∣∣∆m2
32

∣∣ = (2.38± 0.085)× 10−3 eV2,

giving a level of agreement with the mass differences of

〈∆m2
32 −∆m2

32〉 = 0.20± 0.32× 10−3 eV2.
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Thus, no evidence for a difference between neutrino and antineutrino atmospheric-

scale oscillation parameters was found.

In the near future, this measurement is likely to be improved by the current

long baseline neutrino oscillation experiments NOνA and T2K. T2K is currently

running in ν̄µ-enhanced mode, and expected to be able to make a competitive

measurement soon. NOνA is likely to switch their beam to ν̄µ within the next

year. In the longer term, the DUNE and Hyper-K experiments will be able to

make significant improvements to these measurements, and are expected to start

in the 2020s.
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