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S U M M A R Y  

Parasites represent a considerable and ubiquitous threat to organisms, and studies of 

host-parasite interactions can demonstrate important insights into key biological 

processes. Identification and quantification of host defences and their role in parasite 

resistance is an important part of understanding these effects. Additionally, life-history 

traits can have significant effects on host-parasite interactions. For example, living in 

groups has many benefits, but also may have associated costs in terms of increased 

parasite transmission. Thus group-living animals may be predicted to invest heavily in 

disease resistance strategies, though which may depend on each species’ parasite 

pressure. Social insects, and ants in particular, are an ideal model with which to test 

these evolutionary and ecological hypotheses, as they possess an array of mechanisms to 

defend themselves against disease and have highly diverse life-histories. However, 

previous studies into disease resistance tend to have been performed on single species, 

often looking at just single measures of investment of defence. In this thesis I explore the 

comparative importance of disease resistance in different ant species. I show that ants 

possess a variety of defence mechanisms to protect themselves against the threat of 

parasites and demonstrate how investment into these important defences can vary 

between individuals and species, and may depend on context, type of parasite, and life-

history of the host. Work such as this, demonstrating the costs of individual components 

of disease resistance in multiple species, is important in developing our understanding of 

how changes in parasite pressures can influence host biology and how organisms can 

survive in a world abundant with parasites.  
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studies of host-parasite interactions can demonstrate important insights into key 

biological processes. Identification and quantification of host defences and their 

role in parasite resistance is an important part of understanding these effects. 

Additionally, life-history traits can have significant effects on host-parasite 

interactions. For example, living in groups has many benefits, but also may have 

associated costs in terms of increased parasite transmission. Thus group-living 

animals may be predicted to invest heavily in disease resistance strategies, though 

which may depend on each species’ parasite pressure. Social insects, and ants in 

particular, are an ideal model with which to test these evolutionary and ecological 

hypotheses, as they possess an array of mechanisms to defend themselves against 

disease and have highly diverse life-histories. However, previous studies into 

disease resistance tend to have been performed on single species, often looking at 

just single measures of investment of defence. In this thesis I explore the 

comparative importance of disease resistance in different ant species. I show that 

ants possess a variety of defence mechanisms to protect themselves against the 
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can vary between individuals and species, and may depend on context, type of 
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 General introduction 1.

1.1 Introduction 

1.1.1 Parasites 

The variety of life we see today represents the product of millions of years of 

evolution shaped by interactions between different organisms and their 

environments via natural selection (Anderson and May 1978; Poulin and Morand 

2000). Where organisms have particularly close interactions with one another 

these selective forces may be especially strong and result in dramatic transitions 

in their biology, such as the evolution of eukaryote cells from their prokaryote 

ancestors, the formation of multicellular organisms or the transition to obligatory 

sociality (Margulis and Bermudes 1985; Szathmáry and Smith 1995; Grosberg 

and Strathmann 2007). Parasitic organisms have by definition detrimental fitness 

consequences for their hosts, which in return are under selection to counteract 

such effects. The resulting reciprocal co-evolutionary dynamics, can escalate into 

an ‘arms race’ where host and parasite are locked in a stepwise evolutionary 

dynamic and an evolutionary innovation on one side will results in a counter-

adaptation on the other side (Gotwald 1996; Wojcik et al. 2007; Poulin 2007; 

Decaestecker et al. 2007) (Box 1). Such runaway processes have produced some 

truly remarkable phenotypes, ranging from deadly brain-eating amoeba, to three-

metre-long tapeworms, and parasitic crustaceans which functionally replace the 

tongue of their host (Stevens et al. 1980; Brusca and Gilligan 1983; Hoberg 

2002). Such extreme examples highlight the selective force that parasites exert 

across taxa and environments, shaping the evolutionary trajectory of both species 



2 

and communities (Hay et al. 2004; Boots et al. 2004; Poulin 2007; Schmid-

Hempel 2011). 

Box 1. Parasites of social insects 

Parasites are organisms which live in or on another organism (the ‘host’) and derive 

benefits at the host’s expense (Poulin and Morand 2000). Traditionally these can be 

divided taxonomically into macroparasites and ‘microparasites’ based on their scale 

(Schmid-Hempel 1995). Parasitism is one of the most successful modes of life and their 

infections are found almost ubiquitously across taxa, both in the distribution of parasites 

themselves and their host organisms (Poulin 2007). Social insects are no different, and 

are host to a wide range of parasites, the major groups of which are listed below 

(modified from Schmid-Hempel 1998; Boomsma et al. 2005). 

 

 

 

 

 

 

 

 

Figure 1.1. Examples of social insect species (overleaf). a) Dinoponera quadriceps, 

a primitive ant species, b) Nasutitermes termites, c) Azteca ants, d) Meliponine 

bees, e) Bee carrying pollen, f) Bombus terrestris bumblebees. 
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Figure 1.2. Examples of microparasitic infection in ants. a) A dead leaf-cutting 

Acromyrmex ant showing early signs of infection, b) Ectatomma ruidum killed by 

the parasitic Ophiocordyceps fungus which can be seen emerging from the cadaver, 

c) Leaf-cutting ant pupae sporulating with Metarhizium, d) A dying queen of the 

leaf-cutting ant Atta, amongst the remains of its fungal crop which has been 

destroyed by the parasitic fungus Escovopsis. 

 

1.1.2 Parasite pressures in social insects societies 

Living in groups has many benefits. Social species can have more efficient food 

acquisition, better defence against predators, and improved brood care, but these 

benefits are often traded-off against costs in terms of increase transmission of 

disease due to the high densities and close relationships between individuals. Such 

trade-offs have been documented in a diverse range of organisms including 

insects, mammals, birds, and lizards (Møller et al. 1993, 2001; Cote and Poulin 

1995; Schmid-Hempel 1998, 2011; Altizer, Nunn, and Thrall 2003; Lourenço 

and Palmeirim 2007; Godfrey et al. 2009). In social insects, these costs are likely 

amplified, as their nests provide highly buffered habitats in terms of temperature 

and humidity, with a reliable population of hosts, which facilitate the evolution 

and transmission of parasites. Additionally many social insects exhibit low genetic 

diversity between individuals which can increase susceptibility to disease and 

combined with homeostatic nest conditions provides an environment ideal for 

parasites to thrive (Schmid-Hempel 1994; O’Donnell and Beshers 2004; Calleri 

et al. 2006). Consequently it may seem initially perplexing that although early 

simple models based on host density predict a net cost in terms of disease to 

group-living (Schmid-Hempel 1998), sociality is a widespread and highly 

successful strategy. More in depth considerations of group-living have since 
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produced models which suggest that while group-living may in some cases 

increase within-group transmission, this may be counter-balanced by reduced 

between-group transmission (Watve and Jog 1997; Wilson et al. 2003). Thus 

sociality itself may provide the opportunity to reduce the costs from the risk of 

parasites, which may partly explain how group-living was able to evolve and 

persist (Schmid-Hempel 2011). Social insects (Figure 1.1), in particular, have 

shown surprisingly few signs of any of the predicted costs of sociality for parasite 

transmission, in some cases showing the opposite effect (Rosengaus et al. 1998; 

Hughes et al. 2002; Ugelvig and Cremer 2007; Reber et al. 2011), and 

consequently are thought to have especially effective disease resistance strategies. 

These are expressed individually by ants in the form of innate immunity and 

physiological responses, and also collectively via hygienic behaviours which help 

individuals and the colony as a whole resist the effects of disease (Cremer et al. 

2007; Cremer and Sixt 2009; Figure 1.2; 1.3).  

1.1.3 Comparative studies 

Social insect species exhibit a wide range of life-history strategies (Hölldobler and 

Wilson 1990; Boomsma et al. 2005). Consequently, social insect lineages provide 

many good examples for comparative studies. Social insects must defend against an 

array of parasites and have evolved a suite of responses. Many of these characters 

show considerable variation between species or in response to threats and can 

provide useful measurements of investment into disease resistance. Because the 

defence strategies of social insects are costly to maintain (Poulsen, Bot, Nielsen, et 

al. 2002), the relative investment of social insects into disease resistance through 

morphological, physiological, and behavioural adaptations can be used to infer the 

strength of parasite pressure, and through comparative studies, the effect of this on 
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the evolution of life history and sociality in insect societies can be inferred 

(Boomsma et al. 2005; Hughes, Pagliarini, et al. 2008). Current comparative 

studies have mainly focussed on just single components of disease resistance, or 

looked at multiple aspects of resistance but only in a single species (Fernández-

Marín et al. 2006; Hughes, Pagliarini, et al. 2008; Adams et al. 2012; Fernández-

Marín and Bruner 2013; Tragust, Mitteregger, et al. 2013). Whilst these have 

been very useful in answering specific questions and hinting at more general trends 

and significances, studies of a much larger range of species and resistance 

mechanisms are needed. In particular, studies which examine the investment of 

social insects into disease resistance at multiple levels, e.g. behavioural and 

physiological, will be important to identify the precise drivers of theses defensive 

adaptations.  

 

1.1.4 Introduction aims 

This review will explore recent work on social insect disease resistance, beginning 

with an outline of the different levels of defence mechanisms, and following up with 

a summary of how the life-history of social insects can affect parasite pressures and 

hence investment into disease. Finally I discuss how these defences may be 

employed and traded-off at both individual and group levels, and outline the aims of 

this thesis. 
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Figure 1.3. Summary parasite dynamics schematic showing simplified parasite 

exposure, infection and transmission dynamics in social insects, modified from 

Boomsma et al. (2005). Dashed lines indicate relationships and examples of 

synergistic effects. Examples are given in italics. Life history traits of social insects 

which may influence various aspects of parasite pressure and host defence are listed 

on the right. Inset numbers reference chapter sections for further details  
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1.2 Defending the fortress: disease defence 

mechanisms in social insects 

 

1.2.1 Exposure: detection and avoidance 

Social insect individuals can become infected when they encounter a parasite in 

the environment. This can be in the course of foraging, from food or external 

surfaces, or from interactions with non-nestmates or even from nest material 

itself. The first line of defence for any organism is to reduce the risk of exposure, 

and social insects have consequently evolved to detect and avoid parasites to 

minimise costs to individuals, and ultimately the colony as a whole. 

 

1.2.1.1 Individual avoidance 

It is possible to classify responses to parasitic threats as either proactive defences 

which prevent infection occurring in the first place, or reactive defences which are 

initiated after exposure (Hart 1990; Cremer et al. 2007). The ability of an 

organism to detect a threat is fundamental to them mounting a successful reactive 

defence against it. This is particularly key for resisting parasites, whose co-

evolutionary arms race with their host can select for better defended and more 

vigilant hosts, but also for more exploitative and harder to detect parasites (Ebert 

and Hamilton 1996; Decaestecker et al. 2007).  In social insects, microparasites 

such as entomopathogenic fungi, are often highly lethal to the host, and proactive 

avoidance of exposure is invariably a better strategy than relying on resistance 
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post-exposure (Shah and Pell 2003). Early and accurate detection allows for 

avoidance of the threat altogether, or at least the initiation of early defence 

mechanisms (Hart 1990, 1994; Schmid-Hempel and Ebert 2003; Wisenden et al. 

2009). Consequently social insects are able to detect a variety of parasites in 

different environments and contexts. Ants (Feener 1981; Diehl-Fleig et al. 1992; 

Tragust, Mitteregger, et al. 2013; Parmentier et al. 2015), termites (Kramm and 

West 1982; Zoebisch and Stimac 1990), bees (Arathi and Spivak 2001; Goode et 

al. 2006), and wasps (Glare et al. 1996; Harris et al. 2000) are all able to detect 

both macro- and microparasites, and initiate disease resistance mechanisms to 

them. For example, bumblebees are able to detect and avoid parasite-

contaminated flowers (Durrer and Schmid-Hempel 1994; Fouks and Lattorff 

2011), and ants, bees and termites groom more frequently in fungal infected 

environments in addition to cleaning infected brood and foodstuffs (Ugelvig and 

Cremer 2007; Rosengaus et al. 2011; Tragust, Mitteregger, et al. 2013; Tranter 

et al. 2014, 2015).  

This detection is likely mediated through chemical cues, and can utilise 

similar highly sophisticated chemoreception systems to those that social insects 

use for recognition of nestmates and communication (Fernando et al. 2005; 

Drilling and Dettner 2009; Meunier et al. 2011; Mburu et al. 2011; Baracchi, 

Fadda, et al. 2012; Diez, Moquet, et al. 2013). Termites have proven to be 

especially good models to test this hypothesis as many have limited vision. 

Studies have found strong evidence of the sensitivity of termite antennae to the 

odours of entomopathogenic fungi, and suggest an ability to discriminate parasites 

based on their virulence, and then implement defensive grooming (Myles 2002; 

Yanagawa et al. 2008, 2009; Mburu et al. 2009, 2011; Yanagawa and Fujiwara-
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Tsujii 2011). Bees are also able to similarly detect the volatile chemicals 

produced by chalkbrood infected larvae, and initiate hygienic behaviour to 

mitigate the cost (Swanson et al. 2009). Interestingly colonies that have been 

selectively bred for hygienic behaviour can detect larvae infected with chalkbrood 

at much lower stimulus levels, which suggests a strong heritable component to 

disease detection. (Spivak 1996; Spivak and Reuter 1998). Additionally, overall 

differences in colony fitness through the effectiveness of hygienic behaviour can 

result from the efficiency with which individual bees are able to detect and remove 

diseased larvae. (Arathi and Spivak 2001; Arathi et al. 2006), which 

demonstrates how vital detection is to individual and colony fitness. 

 

1.2.1.2 Group level avoidance 

As well as individual-level detection it is possible that parasite threat avoidance 

operates at group or population levels. It may make sense for ant colonies to 

avoid environments or situations which may be more hazardous, for example 

social insect species nest and forage in a multitude of ecological conditions with a 

wide range of associated parasite risks (Curtis and Sloan 2002; Van Borm et al. 

2002; Keller et al. 2003; Hughes et al. 2004; Reber and Chapuisat 2011). 

Additionally through geographical spacing of foraging ranges and territorial 

marking, social insects may be able to minimize horizontal transmission from 

other colonies (Boomsma et al. 2005). However, in some cases social insects do 

not show avoidance strategies, which suggests that the benefits from reduced 

exposure are not as simple as it may at first appear. This expectation is reversed 

in Pharaoh ant colonies and individual founding queens of Formica selysi, which 
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demonstrate an active preference for fungal contaminated environments during 

colony relocation and nest foundation (Brütsch et al. 2014; Pontieri et al. 2014). 

This surprising finding may be due to manipulation by the parasites, or more 

likely that fungal-presence is signal for otherwise good quality nesting sites or is 

beneficial through ‘immune priming’ (see 1.4.2).  

 

1.2.2 Disease resistance: internal and external individual defence 

After detection of a threat, the first line of insect defence against parasites is for 

individuals to minimise or remove the risk through cleanliness strategies. These 

external defences consist of both group and individual behaviours, and 

antimicrobial compounds, all of which are employed after detection of the threat 

but before the parasite has penetrated internally into the host. These defences are 

common in both vertebrate and invertebrate animals and range widely in 

complexity (Basibuyuk and Quicke 1999; Siva-Jothy et al. 2005). In the social 

insects both behavioural and antimicrobial components of disease resistance have 

been well described (Cremer et al. 2007; Otti et al. 2014), and include actions 

such as removal of dead or diseased brood, removal of dead individuals 

(‘undertaking’), general clearing of waste material from the nest (‘nest hygiene’), 

and grooming (Rothenbuhler 1964; Hart and Ratnieks 1998; Boomsma et al. 

2005; Cremer et al. 2007). In general, these defences describe an action or set of 

antiseptic behaviours which promote colony and individual hygiene, with the 

collective defences being termed ‘social immunity’ (Cremer et al. 2007; Wilson-

Rich et al. 2009). This initial definition has since been refined and expanded to 

include broader defence definitions, including within it for example social 

immunization, and has been applied to analogues beyond social insects (Wilson-
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Rich et al. 2009; Cotter and Kilner 2010). When referred to here, social 

immunity broadly describes the combined effects of individual-level and group-

level parasite resistance mechanisms, which act together to resist or reduce the 

impact of parasite infections on the colony. For example, one group-level external 

social-immune defence is the thermoregulatory behaviour of honeybees. Several 

bee parasites are sensitive to temperature, and honeybees may elevate the nest 

temperature prior to the establishment of infection which has been suggested to 

be an adaptive response to kill parasites (Starks et al. 2000; Thomas and 

Blanford 2003; Campbell et al. 2010). This warmer temperature may however 

benefit the parasite (Fialho and Schall 1995; Campbell et al. 2010), and so 

provides an important example of the need to disentangle the effects of host 

manipulation and disease defence.  

 

1.2.2.1 The cuticle 

The cuticle of insects covers the entirety of their external surface and acts as an 

important physical barrier to infection from parasites (Neville 1974; Andersen 

1979; Wilson et al. 2001; Siva-Jothy et al. 2005; Moret and Moreau 2012). Its 

role in parasite defence is recognised from arthropods that undergo moults, where 

the newly-formed, not-yet-hardened cuticle is substantially more vulnerable to 

penetration by parasites (Moret and Moreau 2012). In social insects this means 

that the brood stages may be especially vulnerable due to the reduction of this 

physical defence. In many ant species, the pupae are enclosed in a cocoon which 

can act as a proxy physical barrier until the cuticle is fully hardened, through 

melanisation (Tragust, Ugelvig, et al. 2013; see also the phenoloxidase cascade:  



14 

1.2.2.7). Similarly, the cuticle is formed of different layers and its structural 

characteristics range from tough and brittle to highly flexible, and in a range of 

thicknesses (Hopkins and Kramer 1992; Siva-Jothy et al. 2005). It is these thin 

flexible points, for example around joints, which are often most vulnerable. 

Although bacteria may penetrate the cuticle, fungi present the greatest risk and 

possess both physical and chemical methods to penetrate the cuticle of their 

prospective hosts (Khan and Aldrich 1973; Hänel 1982; St Leger et al. 1991). 

The primary defence of the cuticle itself to these infections is likely through 

physical thickness and the degree of sclerotisation (Wilson et al. 2001; Andersen 

2010; Moret and Moreau 2012), but there are important synergistic effects with 

antimicrobial compounds which are spread actively or passively over the surface 

of the cuticle (Hopkins and Kramer 1992; Andersen 2010; Otti et al. 2014). 

Insects may increase the melanisation of their cuticle in response to increasing 

populations densities, perhaps in a prophylactic attempt to counteract the 

additional threat of parasite transmission (Barnes and Siva-jothy 2000; Gillespie 

et al. 2000; Wilson et al. 2001). However, bees infected with mites showed little 

change in exoskeleton investment (Daly et al. 2015). Although cuticular defense 

may be simplistic compared with internal physiological defences, its role in 

parasite resistance is not well studied in social insects, which can demonstrate 

considerable variations in cuticle morphology (Neville 1974; Moret and Moreau 

2012). This is an area in need of detailed work in order to fully determine the role 

the cuticle plays in disease resistance in social insects.  
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1.2.2.2 Grooming 

Grooming is a complex, multipurpose behaviour, but which serves a major role in 

the cleaning of the external surface of an insect (Figure 1.4). Ants and bees 

possess tibal spurs which they may use as an antennal cleaner, or may simply rub 

together legs or body parts to physically remove particles (Basibuyuk and Quicke 

1999). Honeybees use their mouthparts to remove parasitic mites from the body 

of nestmates but do not actively ingest them (Peng et al. 1987). Ants may ingest 

debris groomed from the body of themselves or their nestmates, which they can 

filter out using a specialised infrabuccal filter to produce a pellet of waste that is 

accumulated in an infrabuccal pocket and then regurgitated (Quinlan, R. J. 

Cherrett 1978; Little et al. 2006). In termites, spores groomed from the body are 

completely ingested, but may then be inactivated by gut microorganisms 

(Yanagawa et al. 2008). The smallest caste of leaf-cutting ants ‘hitchhike’ on 

leaf-fragments being brought into the colony by returning foragers, defending 

foragers against macroparasites such as phorid flies, and also cleaning the leaves 

of microparasitic fungi through grooming (Feener and Moss 1990; Orr 1992; 

Griffiths and Hughes 2010). Additionally ants and bees returning to the nest will 

stop and increase grooming prior to returning, and contaminated individuals may 

even be disallowed entry, through nest guarding behaviours (Drum and 

Rothenbuhler 1985; Morelos-Juárez et al. 2010; see also 2.3.2 nest 

compartmentalisation) 

These actions in social insects can be highly effective in the mechanical 

removal of parasites including mites, nematodes, fungi and bacteria, from exposed 

individuals (Kermarrec 1975; Oi and Pereira 1993; Spivak 1996; Rosengaus et 
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al. 1998, 2000; Hughes et al. 2002; Traniello et al. 2002), and many studies 

document upregulation of grooming in response to parasites (Rosengaus et al. 

1998; Currie and Stuart 2001; Walker and Hughes 2009; Ugelvig et al. 2010; 

Reber et al. 2011; Tragust, Mitteregger, et al. 2013). 

 

Figure 1.4. Grooming defensive behaviours in ants. a) Allogrooming involves the 

grooming of one ant by another as seen in these Formica rufa workers, b) 

selfgrooming is performed by an individual social insect, such as this Polyrhachis 

delecta worker, and can be highly effective at removing parasites from the cuticle. 

 

Grooming may remove ectoparasitic mites which are known vector of viral 

diseases, but there is no evidence that the behaviour directly lowers the risk from 

viruses (Evans and Spivak 2010).  Experimental suppression of grooming 

behaviour can increase mortality after parasite exposure, demonstrating the direct 

fitness benefits of grooming (Kramm and West 1982; Shimizu and Yamaji 2003; 

Yanagawa et al. 2008). In particular, some pesticides such as Imidacloprid 

supress grooming responses and in so doing increase the susceptibility of ants to 

infection (Galvanho et al. 2013). Rapid removal of threats from the external 

surface of the insect is vital to stop penetration of the host and successful 

infection.   



17 

Allogrooming involves the grooming of one individual by another and is 

important in ant and termite social immunity for group-level removal of fungal 

conidia (Rosengaus et al. 1998; Yanagawa et al. 2008; Chouvenc et al. 2010; 

Graystock and Hughes 2011; Okuno et al. 2011). Allogrooming is especially 

useful as it allows for cleaning of areas otherwise inaccessible to selfgrooming. 

Both ants and termites allogroom nestmates as part of the maintenance of general 

nest hygiene, which may be influenced by group size, and parasite risk (Okuno et 

al. 2011), or as proactive prevention of disease  (Schmid-Hempel 1998). For 

example, leaf-cutting ants routinely groom returning foragers that are more likely 

to be contaminated with parasites (Morelos-Juárez et al. 2010). Ants (Liersch 

and Schmid-Hempel 1998; Walker and Hughes 2009), bees (Arathi et al. 2000; 

Wilson-Rich et al. 2009), wasps (Sumana and Starks 2004; Turillazzi 2012), 

and termites (Rosengaus et al. 1998; Traniello et al. 2002) also show directed 

allogrooming in response to pathogen exposure. The behaviour thus seems to be a 

readily observable and quantifiable trait which correlates with parasite risk.  

Because ants may spend a considerable proportion of their time grooming 

(Cole 1986), the behaviour is likely to be traded-off with other activities. 

Allogrooming may also present conflicting costs and benefits at different levels 

within the colony, as although there may be a group-level benefit in terms of 

overall disease reduction, grooming may carry an individual-level cost in terms of 

exposure to the parasite. (Rosengaus et al. 1998; Schmid-Hempel 

1998).However, current experimental data from leaf-cutting ants suggests that 

the cost to the grooming individual in terms of increased transmission may be 

minimal (Hughes et al. 2002). It seems that individual ants exposed to fungi may 

up-regulate self-grooming but decrease allogrooming of nestmates, which models 
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predict will thereby provide disease resistance to the individual whilst minimising 

disease spread (Theis et al. 2015).  

 

1.2.2.3 Antimicrobials 

Social insects possess a variety of secretory glands (Wilson 1965; Billen 2009, 

2011; Rosengaus et al. 2011; Adams et al. 2012; Figure 1.5). There is 

significant interspecific variation in the secretions of a particular gland between 

species, with closely related species producing a largely unique combination of 

chemical components that are important not just in communication, but also 

recognition, trail finding, and disease resistance (Attygalle and Morgan 1984; 

Adams et al. 2012). In some cases these gland secretions may be used as an 

external antimicrobial defence in social insects, in order to maintain hygiene at 

both individual and group levels (Attygalle and Morgan 1984; Tragust, 

Mitteregger, et al. 2013; Otti et al. 2014; Tranter et al. 2014; Tranter and 

Hughes 2015). 

 In leaf-cutting ants, mandibular secretions contain substances which 

inhibit fungal (North et al. 1997; Marsaro Júnior et al. 2001; Rodrigues et al. 

2008) and bacterial growth (Mendonça et al. 2009), and sterilize the infrabuccal 

pellet that is produced during grooming (Little et al. 2006). Similarly termites 

produce proteins in their saliva which are incorporated into their nest 

environment and are active against gram-negative bacteria (Bulmer et al. 2009; 

Rosengaus et al. 2011). 
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Figure 1.5. Antimicrobial glands and secretions. a) The metapleural gland 

reservoir or ‘bulla’ is located at the end of the propodeum and can be seen 

externally as in this Electron Micrograph image of a Formica rufa worker, b) 

Oecophylla workers like many social insect species possess antimicrobial venom 

which they can expel from a venom gland in their gaster. c) This venom is highly 

acidic as shown by the colour change of this pH indicator paper placed with a 

Formica rufa worker. 

 

Termites also secrete terpenoids and other chemicals from their cephalic 

and sternal glands which have antimicrobial activity (Rosengaus et al. 2011). In 

many species of ants the role of the venom, or poison, gland, which secretes high 

concentrations of formic acid for use in chemical defence in formicine species, aids 
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in disease resistance through its antimicrobial properties (Blum 1992; Graystock 

and Hughes 2011; Tragust, Mitteregger, et al. 2013; Otti et al. 2014; Tranter et 

al. 2014; Tranter and Hughes 2015). Antmicrobial venom has also been 

demonstrated in bees (Baracchi and Turillazzi 2010; Baracchi et al. 2011), and 

wasps (Turillazzi et al. 2006; Baracchi, Mazza, et al. 2012).  

The metapleural glands (MG) are a pair of exocrine glands found only in 

the ants, which has been extensively studied for its production of antimicrobial 

compounds in many species (Brown 1968; Beattie et al. 1986; Hölldobler and 

Wilson 1990; Angus et al. 1993; Ward 2007; Yek and Mueller 2011; Adams et 

al. 2012). Antimicrobial activity of the metapleural gland secretion has been 

documented against both bacteria (Iizuka et al. 1979; Veal et al. 1992), and fungi 

(Beattie et al. 1985, 1986; Bot et al. 2002; Poulsen, Bot, Nielsen, et al. 2002; 

Fernández-Marín et al. 2006, 2009). Importantly, experimental closure of the 

metapleural gland results in significantly reduced resistance of ants to the 

pathogenic fungus Metarhizium anisopliae, proving the importance of the gland 

in vivo for disease resistance (Poulsen, Bot, Nielsen, et al. 2002; Tranter et al. 

2014). Both venom and the metapleural gland secretions in ants may be actively 

spread onto the cuticle via specialized grooming (Brown 1968; Basibuyuk and 

Quicke 1999; Currie and Stuart 2001; Fernández-Marín et al. 2006). This 

behaviour allows antimicrobials to be actively dispersed and also allows for 

regulation of dispersal through variation in the extent of grooming.  

Recently a number of studies documenting the antimicrobial properties of 

substances used by honeybees has emerged (McCleskey and Melampy 1939; 

Bilikova et al. 2001; Fontana et al. 2004; Melliou and Chinou 2005; Alreshoodi 
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and Sultanbawa 2015; Bílikova et al. 2015; Brudzynski and Sjaarda 2015). This 

work has identified multiple antimicrobial peptides from royal jelly (a honey bee 

secretion that is used in the nutrition of larvae) that show broad activity against 

bacteria, including important bee parasites such as foulbrood, and may work 

synergistically with other antimicrobials (Romanelli et al. 2011; Alreshoodi and 

Sultanbawa 2015). Honey itself has long been known to possess antimicrobial 

properties, and molecular and chemical analyses have begun to isolate specific 

proteins and chemicals responsible (Viuda-Martos et al. 2008; Brudzynski and 

Sjaarda 2015). Propolis (a resinous substance that bees collect from the exudates 

of plants) also demonstrates in vitro antimicrobial effects, and colonies bred for 

increased propolis production showed increased brood viability and lifespans 

(Banskota et al. 2001; Viuda-Martos et al. 2008; Boonsai 2014; Campos et al. 

2014; Marques et al. 2014; Nicodemo et al. 2014; Lopez and Lourenço 2015). 

Colonies of bees exposed to the chalkbrood parasite may up-regulate resin 

collection as a form of ‘self-medication’ (Simone-Finstrom and Spivak 2012). 

There is also evidence that exposure to this propolis resin can affect immune gene 

expression in larvae, in addition to lowering bacterial loads (Simone et al. 2009).  

As well as propolis in bees, ants can also use externally derived 

antimicrobials for immune defence. The wood ant Formica paralugubris uses 

antimicrobial resin in nest construction, and this resin can reduce microorganism 

loads (Christe et al. 2003). The resin increases survival of individual ants when 

they are exposed to fungal and bacterial parasites, and could lead to a relaxation 

in their internal immune function (Christe et al. 2002; Chapuisat et al. 2007; 

Castella, Chapuisat, and Christe 2008; Castella, Chapuisat, Moret, et al. 2008; 

Brütsch and Chapuisat 2014). Similarly, there is active use of antimicrobials in 
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the facultatively social earwig, which uses faeces to line the soil of their burrows 

(Diehl et al. 2015). Some ants may actively ingest ‘reactive oxygen species’ 

compounds which, although harmful to the individual, can provide a net benefit 

through disease defence; healthy ants will avoid these substance, but infected ants 

will actively consume them to self-medicate, and in sodoing improve their survival 

(Bos et al. 2015). 

 

1.2.2.4 Symbiont defense  

Fungus-growing attine ants possess a vertically transmitted bacterial 

ectosymbiont which forms white blooms on their cuticle (Little et al. 2006). This 

symbiotic bacteria produces antimicrobial compounds which are highly active and 

specialized against the Escovopsis fungus which parasitizes the ant’s fungal food 

crop (Currie, Scott, et al. 1999; Currie 2001). Attine ants possess specialised 

structures for culturing the filamentous bacteria and show a highly developed 

relationship with these mutualists which they employ as a parasite defense 

mechanism (Zhang et al. 2007). Similarly there is recent evidence that Allomerus 

ants, which also cultivate beneficial fungi, possess similar bacteria on their cuticle 

which can produce antimicrobial compounds, though the extent of their use and 

mutualistic relationship is currently less clear (Seipke et al. 2012; Gao et al. 

2014). These symbiotic actinobacteria are also found in a solitary bee species and 

many other insect species, but are utilised in social insects for group level-defense 

(Kaltenpoth 2009; Souza et al. 2012). 
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Although not well studied compared to in vertebrates, the gut biota of 

social insects may also have an important immunological role (Dillon and Dillon 

2004) . Studies mainly from bees (Koch and Schmid-Hempel 2011; Vásquez et 

al. 2012), and termites (Chouvenc et al. 2010; Chouvenc and Su 2010, 2012; 

Sen et al. 2015), have shown a diverse gut microflora that includes many bacteria 

important in defence from microbial threats. These bacterial communities are 

different in social and solitary species, and their infections are established by 

exposure to faeces from nestmates after pupal eclosion (Koch and Schmid-Hempel 

2011; Korb et al. 2015).  

It has been demonstrated that Wolbachia, a common symbiont in many 

insects linages, can provide its host with increased resistance against a range of 

viral infections and thus constitutes an additional level of host antiviral defence 

(Martinez et al. 2014). However this work has focussed on the model organisms 

Drosophila melanogaster and Aedes aegypti, and the study of symbionts for 

defence against parasites, in particular viral infections, and their consequences for 

host fitness has been little studied in social insects. 

 

1.2.2.5 Internal immunity and physiological defences 

Classically, internal, physiological insect defences can be split into cellular and 

humoral immunity (Siva-Jothy et al. 2005; Viljakainen 2015). The Toll and Imd, 

and multipurpose JAK/STAT, signalling pathways work synergistically in insect 

humoral immunity and are triggered in response to the recognition of microbes, 

particularly bacteria and fungi (Kingsolver and Hardy 2012; Johnson 2015) or 
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cell damage (Dostert et al. 2005). This results in multiphase signal transduction 

and the secretion of antimicrobial peptides, lysozomes and general antimicrobial 

substances. The cellular component of the insect immune system consists of 

haemocytes which may aid in phagocytosis or encapsulation of foreign bodies 

through the activation of phenoloxidase. Viruses also represent important threats 

and have been confirmed in all major social insect groups including bees (Chen 

and Siede 2007; Oldroyd and Fewell 2007; McMahon et al. 2015), wasps (Rose 

et al. 1999), ants (Avery et al. 1977; Valles et al. 2004, 2007) and termites 

(Gibbs et al. 1970), with often detrimental outcomes for their hosts species. 

Comparatively little is known about the defence mechanisms social insects utilize 

against viral infections. In social insects the innate response to viral infection 

seems independent of the antimicrobial and antifungal responses associated with 

the Toll and Imd pathway (Azzami et al. 2012), which may not be the case for 

insects in general (Vodovar and Saleh 2012).  RNA interference may also plays 

an important role in the specific defense against viruses (Nazzi et al. 2012). The 

RNAi response is triggered by the presence of double-stranded RNA (dsRNA), 

which is a virus specific, and ultimately results in the direct degradation of the 

viral genome utilizing the RNAi machinery (Hannon 2002) to limit virus 

replication, and consequently damage to the host. 

1.2.2.6 Antimicrobial peptides 

Antimicrobial compounds are important components of the insect innate immune 

response (Bulet et al. 1999). Insect antimicrobial peptides can be grouped into 

three main categories based on their chemical composition. The first are the 

cysteine-containing peptides that include defensins and drosomycins. Insect 



25 

defensins are most active against Gram-positive bacteria, with limited activity 

reported against Gram-negative bacteria and fungus, and are one of the few 

compounds well defined in ants (Bulet et al. 1999). Drosomycin, however, has 

strong antifungal properties but has so far only been found in Drosophila and as 

analogous sequences in some coleopterans (Zhang and Zhu 2009). Both 

compounds are quick-acting and kill microorganisms within a few minutes of 

contact (Bulet et al. 1999). The other two categories of insect antimicrobial 

peptides are the proline-rich peptides and glycine-rich molecules, such as 

gloverins and attacins. These antimicrobial peptides are much slower acting 

(Bulet et al. 1999). Proline-rich peptides isolated from Hymenoptera haemolymph 

include apidaecins and abaecins (Casteels et al. 1990, 1993; Schlüns and Crozier 

2009), as well two formaecins detected in the metapleural gland secretion of the 

bulldog ant M. gulosa (Mackintosh et al. 1998). Combinations of these AMPS 

have important defensive interactions with Gram-negative bacteria (Viljakainen 

2015; Rahnamaeian et al. 2015). Another important antimicrobial protein is the 

enzyme lysozyme that breaks down bacterial cell walls by hydrolysing linkages in 

peptidoglycan (Gillespie et al. 1997). In insects, its presence in the haemolymph 

usually increases after infection (Hultmark 1996), and is thought to be one of the 

primary components in insect disease response (although its role in Drosophila 

may be more focussed on digestion; Daffre et al. 1994). Like other antimicrobial 

compounds lysozyme is mostly produced in the fat body, and to a certain extent 

from circulating haemocytes, and released into the haemolymph (Hultmark 1996; 

Vizioli et al. 2001).  Termite nymphs and workers exposed to the 

entomopathogenic fungus Metarhizium anisopliae up-regulate the levels of 

existing, and induce production of novel, protective antimicrobial proteins 

(Rosengaus et al. 2007).  
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1.2.2.7 Haemocytic defence and the phenoloxidase cascade 

Social insects possess three main types of general insect haemocyte, 

prohaemocytes, plasmocytes and granulocytes (Lavine and Strand 2002; Wilson-

Rich et al. 2009). Although a number of studies have counted humoral haemocyte 

numbers (Ashida and Brey 1995; Baer et al. 2006; Wilson-Rich et al. 2008, 

2012), often inferring levels of immunity from these, there has been little 

descriptive or experimental work on their role in social insects. These three cell 

types are known to work together and constitute the cellular response in a paper 

wasp and the honeybee (Manfredini et al. 2008; Negri et al. 2015), and correlate 

with infection time in a termite (Avulova and Rosengaus 2011), but much more 

work is needed. From other insects, plasmocytes are known to aggregate together 

to form nodules on foreign bodies, marking them for removal. Similarly 

plasmocytes may differentiate into flat lamellocytes which encapsulate a foreign 

body (Siva-Jothy et al. 2005; Wilson-Rich et al. 2009).  

Cuticular melanin is produced through enzymatic oxidation of tyrosine 

derivatives to quinones, and their resulting polymerisation, in a process known as 

the prophenoloxidase (proPO) cascade (Ashida and Brey 1995; Wilson et al. 

2001). This process is not only a vital structural component of the cuticle but is 

important in broad-action insect innate responses including cellular and humoral 

encapsulation and nodule formation (Ashida and Brey 1995; Siva-Jothy et al. 

2005). PO also produces reactive quinone intermediates and oxygen species 

which are toxic to invading microorganisms (Zhao et al. 2007). Prophenoloxidase 

is abundant in the insect haemolymph and cuticle (Ashida and Brey 1995). It is 

activated to phenoloxidase (PO) by serine proteases through immune triggers 
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such as penetration of the cuticle or the presence of foreign cellular components. 

Insects bred for reduced disease susceptibility exhibit higher PO activities and 

increased PO levels following exposure to a parasite (Paskewitz et al. 1989; 

Nigam et al. 1997; Reeson et al. 1998). Artificially reducing proPO levels in non-

social insect species has resulted in reduced melanisation and a lessened ability to 

resist bacterial infection (Shiao et al. 2001; Liu et al. 2007), while termites show 

variation in their encapsulation response to infection by the fungal parasite 

Metarhizium and also variation in the physiological costs this imposes (Chouvenc 

et al. 2010; Chouvenc, Su, et al. 2011). Thus cuticular melanisation, 

encapsulation response and PO levels may be a useful indicator of investment into 

disease resistance, particularly in social insects which experience high parasite 

pressures (Barnes and Siva-jothy 2000; Wilson et al. 2001; Chouvenc, Su, et al. 

2011). 

 

 

 

 

 

Figure 1.6.  Brood care in ants (overleaf). Brood are particularly vulnerable to the 

threat of disease as they lack behavioural and developed physiological immunity 

and so rely heavily on adults for their care a) Dinoponera quadriceps worker with 

pupae, b) Polyrhachis brood, adults of c) Sericomyrmex amabilis, d) Formica fusca 

and e) Acromyrmex echinatior tending to brood. 
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1.2.3 Intracolonial group defences: tolerating disease and reducing 

transmission  

1.2.3.1 Hygienic behaviour 

The greatest threat of transmission will occur within the densely populated, 

homogenous environment, within the nest, and consequently social insects 

attempt to minimise the initial entry of a parasite. However, once inside the 

colony social insects are able to minimise the threat of disease through removing 

the threat, or rendering it less harmful. Initially behaviours are employed which 

inform other members of the presence of a parasite. In bees, individuals which 

have detected a threat may perform a ‘grooming dance’ that elicits allogrooming 

from nestmates (Rath 1999; Peng et al. 2002), and termites exhibit vibrational 

displays that act as a parasite alarm (Rosengaus et al. 1999). Once detected by 

the collective, the threat can then be reduced or removed. For example honey bees 

infected with deformed-wing virus are detected and removed from the colony 

(Baracchi, Fadda, et al. 2012; Schöning et al. 2012). The removal of cadavers, 

‘necrophoric’ or ‘undertaking behaviour’ (Sun and Zhou 2013), is displayed in 

ants (Haskins and Haskins 1974; Howard and Tschinkel 1976; Julian and Cahan 

1999; Choe et al. 2009; Renucci et al. 2010; Diez et al. 2012; Diez, Le Borgne, 

et al. 2013), bees (Visscher 1983; Trumbo and Robinson 1997; Spivak and 

Gilliam 1998), and termites (Chouvenc, Robert, et al. 2011; Chouvenc and Su 

2012; Neoh et al. 2012), along with burial and cannibalism behaviours 

(Marikovsky 1962; Zoberi 1995; Myles 2002; Su 2005; Renucci et al. 2010). In 

ants, cadavers are carried away more rapidly than other waste in the nest and are 
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disposed of at specific sites (Wilson et al. 1958; Gordon 1983), and ant cadavers 

infected with fungi will be moved even further away than those uninfected (Diez 

et al. 2015). Similarly bees will remove old corpses more rapidly than freshly 

killed workers (Visscher 1983). In termites, cannibalism is performed more often 

on individuals with higher spore concentrations of the entomopathogenic 

fungus, Metarhizium anisopliae (Rosengaus and Traniello 2001). Additionally 

termites may display density-dependent, or time-dependent, switching between 

cannibalism at low levels of mortality and burial at higher levels (Chouvenc and 

Su 2012; Sun et al. 2013), and ants show differing necrophoric responses to 

different brood and workers (Figure 1.6). In addition termites may bury cadavers 

in soil mixed with saliva, secretions or faecal material with antimicrobial 

properties (Chouvenc and Su 2010; Chouvenc, Robert, et al. 2011). The removal 

of corpses is important for breaking the transmission cycle (Diez et al. 2014, 

2015). Bees will also proactively remove larvae infected by parasitic fungi, 

bacteria or mites (Spivak and Gilliam 1998; Spivak and Reuter 1998). 

Interestingly this hygienic behaviour in bees is highly heritable, with selective 

breeding producing lines of ‘hygienic colonies’ that are more successful in disease 

resistance (Spivak and Gilliam 1998; Spivak and Reuter 1998; Arathi and Spivak 

2001; Arathi et al. 2006).  

Although many hygienic behaviours are inherently risky to the individual 

carrying them out whilst decreasing the group-level threat, one of the most 

extreme examples of hygienic behaviour is ‘self exclusion’ (Shorter and Rueppell 

2012). This is where sick ants (Heinze and Walter 2010; Chapuisat 2010), or 

bees (Rueppell et al. 2010), will leave the colony in a form of altruistic self-

sacrifice to minimise the transmission of disease to their nestmates (Trail 1980). 
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Bees infected with parasitic mites show a reduced ability to navigate back to the 

hive which has been hypothesized to be an adaptive behaviour to stop introduction 

of the threat into the colony (Kralj and Fuchs 2006, 2009; Higes and Martín‐

Hernández 2008). However, it is very possible that being infected has negative 

effect on the bee’s navigation ability in general, both physically and 

neurobiologically, and the effect is not necessarily an adaptive behaviour. Some 

parasites are however skilled manipulators of host behaviour (Libersat et al. 

2009), for example a liver fluke (Dicrocoelium dendriticum) can hijack the  

navigational system of its host ant, Formica fusca, causing it to climbing to the 

tip of a blade of grass, thereby adaptively promoting its transmission via 

consumption by the vertebrate final host (Moore 1995; Poulin 1995). This 

highlights how difficult it can be to disentangle host adaptation from coincidental 

side-effects or parasite adaptations, especially where fitness effects are hard to 

measure. 

 

1.2.3.2 Compartmentalisation and division of labour 

The structured organisation of a colony is a quintessential trait in most social 

insects; involving complex physical and social division within the colony 

(Hölldobler and Wilson 1990; Bourke and Franks 1995; Ross and Keller 1995). 

The highly developed waste management strategies employed by ants involves 

the synergistic partitioning of both behaviours and nest compartmentalisation to 

isolate potentially hazardous waste through group level organisational immunity 

(Hart and Ratnieks 1998, 2001; Bot, Currie, et al. 2001). The strict division of 

labour can minimise the risk of within-colony transmission by separating tasks 
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that pose a high risk of infection (waste tenders, foragers), from those that 

interact with the most vulnerable areas of the colony (brood and queen-tenders) 

(Wang and Mofller 1970; Hart and Ratnieks 2001; Naug and Camazine 2002; 

Hart et al. 2002; Baer and Schmid-Hempel 2003; Cremer et al. 2007; Naug 

2008; Baracchi and Cini 2014). This may result in spatial separation of different 

caste-types within the nest (Appendix 1). In leaf-cutting ants this separation can 

be enforced by aggressive behaviours directed towards waste-heap workers 

(Hart and Ratnieks 2001; Ballari et al. 2007; Waddington and Hughes 2010; 

Abramowski et al. 2011). Nest architecture and environment itself may also 

influence parasite pressures within a colony (Schmid-Hempel 1998). Models 

suggest that more complicated nest structures result in both temporal and spatial 

heterogeneity which reduces the opportunity for disease transmission (Pie et al. 

2004). This effect can also work in conjunction with plastic avoidance 

behaviours where sections, or even whole nests, may be abandoned if 

environmental parasite loads become too great (Marikovsky 1962; Epsky and 

Capinera 1988; Drees et al. 1992; Oi and Pereira 1993). Compartmentalising 

the nest can also reduce the number and virulence of strains within the nest by 

minimizing the selective effect of between-strain competition (Ulrich and 

Schmid-Hempel 2015). 

 

1.2.3.3 Genetic diversity 

Haplodiploidy in hymenopterans results in high coefficients of relatedness 

between female nestmates, and because all the offspring in most insect societies 

are borne from a single, singly mated queen, there is limited genetic variation and 
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consequently the possibility of increased susceptibility to disease. It is thought 

that heterozygosity in disease resistance loci improves immune response to 

parasites, but because haploid males cannot be heterozygous, males may be 

intrinsically more vulnerable to disease (known as the ‘haploid susceptibility 

hypothesis’). However, males may alternatively have undergone relaxation in 

selection for disease defences because their lives within the colony involve 

minimal risks of parasite exposure and, unlike the queens they mate with, there is 

no fitness advantage to surviving after they have finished mating. Indeed male 

leaf-cutting ants have significantly lower innate immune responses than workers 

(Baer et al. 2005).  

Within the worker population, the impact a parasite has on a colony can be 

reduced if individuals within the group are composed of multiple genotypes, which 

vary genotypically in their resistance to disease (Poulin 2007). Genetic diversity 

may hinder transmission as parasites adapted to infect one genotype may be less 

successful at infecting others, and result in an overall ‘herd immunity’ where the 

proportion of susceptible individuals is low enough that the disease epidemic 

cannot be maintained (Anderson and May 1978). Similarly, the presence of 

multiple genotypes will in general hinder the evolution of parasites. Additionally 

high genetic diversity improves the probability that resistant individuals will 

occur, and these resistant individuals may then be able to offer protection to 

susceptible individuals through social immunity (Hamilton 1987; Harpur et al. 

2014). Genetic variation in disease resistance has been demonstrated in 

bumblebees, honeybees and ants (Baer and Schmid-Hempel 2003; Palmer and 

Oldroyd 2003; Hughes and Boomsma 2004b; Hughes et al. 2010). 

Experimentally produced polyandry has been studied in artificially inseminated 
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bumblebees, where more genetically diverse colonies were less affected by disease 

(Baer et al. 1999; Baer and Schmid-Hempel 2003). Additionally genetic diversity 

in bumblebees can reduce the load of parasitic mites (Whitehorn et al. 2014). In 

honeybees, results relating genetic diversity to disease resistance have been more 

conflicting. Studies have demonstrated both a reduction in the variation of disease 

prevalence (Tarpy 2003; Palmer and Oldroyd 2003; Tarpy and Seeley 2006; 

Invernizzi et al. 2009; Evison et al. 2013; Desai and Currie 2015), and in some 

cases no effect (Page et al. 1995; Neumann and Moritz 2000; Wilson-Rich et al. 

2012; Lee et al. 2012), in response to variations in genetic diversity. Reduced 

heterozygosity and allelic diversity due to inbreeding has a negative effect on 

social immune response and survival in termites (Calleri et al. 2006). In the ants 

there has been evidence for genetic variation in disease resistance from 

experiments on leaf-cutting ants. Worker nestmates from different patrilines of 

the polyandrous species Acromyrmex echinatior vary in their resistance to the 

parasite Metarhizium anisopliae (Hughes and Boomsma 2004b), and in the size 

of their antimicrobial-producing metapleural glands (Hughes et al. 2010). As 

these individuals shared a common environment and differed only in their paternal 

genotype, the patriline differences are strongly indicative of being due to the 

different paternal genotypes. Genetics has also been shown by a cross-fostering 

experiment in leaf-cutting ants to influence both individual immunity and the size 

of the metapleural gland (Armitage et al. 2011). Additionally when leaf-cutting 

ants were placed into high and low genetic diversity groups, resistance to a fungal 

parasite was highest  in the genetically diverse group (Hughes and Boomsma 

2004b). Lower levels of genetic diversity also reduce the effectiveness of 

behavioural responses to disease in Cardiocondyla obscurior, with inbred colonies 
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having a compromised ability to detect and remove diseased brood (Ugelvig et al. 

2010) 

 

1.2.3.4 Social insect genomics 

In insects, the genetic and molecular basis for insect immune responses has been 

best studied in Drosophila melanogaster (Sackton et al. 2007), but in general the 

genetic mechanisms for innate responses are thought to be similar across insect 

taxa (Gillespie et al. 1997). The first studies on social insect genomics in the 

honeybee Apis mellifera suggested that it has a reduced set of immune genes 

compared with Drosophila, and it was hypothesised that was because colony-level 

defences allowed reduced investment in individual-level defences (Evans et al. 

2006). However, it is also possible that insects as a whole possess only a limited 

suite of immune-related genes and that Drosophila represents an anomaly 

(Fischman et al. 2011). Recently, published genome sequences from bumblebees 

(Sadd et al. 2015), solitary Nasonia wasps (Werren et al. 2010), the solitary pea 

aphid Acyrthosiphon pisum (Consortium and others 2010), and several ant 

species (Bonasio et al. 2010; Smith, Smith, et al. 2011; Smith, Zimin, et al. 

2011; Wurm et al. 2011; Nygaard et al. 2011; Gupta et al. 2015) have also 

shown a small number of immune genes, and thus sociality now does not appear 

to be the predictor of the number of immune genes that was originally suggested 

(Fischman et al. 2011). Recent genomic studies in termites similarly found no 

evidence for enrichment of immune defense genes, but did find the existence of 

termite-specific AMPs and evidence of positive selection of many of these genes in 

the soil-foraging species (Lamberty et al. 2001; Bulmer and Crozier 2006; 
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Bulmer et al. 2010; Korb et al. 2015). The number of AMP genes in bumblebees 

is reduced, a state that appears to be basal in bees, and predates the evolution of 

sociality (Sadd and Schmid-Hempel 2006; Barribeau et al. 2015).  

 Social insects do, however, seem to show examples of fast rates of 

molecular evolution and evidence that sociality has driven selection on immune 

genes. Selection on genes can be inferred from comparisons with the substitution 

rates in related non-immunity genes or from the overall ratios of nonsynonymous 

to synonymous substitutions (Graur and Li 2000; Viljakainen et al. 2009). 

Because advantageous mutations reach fixation more quickly than neutral 

changes, and nonsynonymous substitutions change the function of a coded 

protein, the rate of nonsynonymous substitutions should exceed that of 

synonymous substitutions if positive selection for an advantageous mutation is 

occurring (Graur and Li 2000). Molecular evolution of immune genes in social 

insects may be likely to show evidence of positive selection if parasite pressures 

are great. In other species selection on immune genes may be relaxed if they 

experience a reduced environmental parasite threat. If nucleotide substitution 

rates are related to the stringency with which a structural protein coding region is 

maintained, then there may be observable increases in the rate of nucleotide 

substitutions in genes with a relaxation in their functional use (Graur and Li 

2000). Concordantly, rates of evolution may vary between lineages depending on 

the relative pressures that different species experience to maintain and express 

disease resistance traits. Termites show strong positive selection in the duplicated 

antifungal peptide termicin (Bulmer and Crozier 2006). Bee (Xu and James 

2012; Harpur and Zayed 2013; Zayed and Kent 2015; Barribeau et al. 2015; 

Sadd et al. 2015), and ant defense genes show evidence of positive selection 
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based on dN/dS values and population genetics studies (Viljakainen and Pamilo 

2005, 2008; Viljakainen et al. 2009; Roux et al. 2014; Gupta et al. 2015). In 

honeybees, however, some changes in immune genes seem to be best explained by 

relaxed selection (Wallberg et al. 2014; Zayed and Kent 2015). It is possible that 

social insects could experience more rapid rates of evolution due to their small 

effective population sizes which leads to faster fixation of mutations due to drift 

(Bromham and Leys 2005). However this rate should be uniform across the 

genome and current studies indicate faster rates of substitution in immune genes 

(Viljakainen and Pamilo 2008; Viljakainen et al. 2009), which lends weight to 

the inference of positive selection on immune genes. Some of these immune genes 

may also be differentially expressed, with AMP genes up-regulated more strongly 

in larvae compared with adults in immune-challenged Camponotus floridanus 

ants (Gupta et al. 2015). The differential expression of immune traits between 

individuals and life-stages, along with the increasing number of published 

genomes, makes social insects good models for studying the epigenetics of 

immunity in the future (Yan et al. 2014). 

 

1.3 Factors driving parasite defence 

The life-histories of social insects are both shaped by parasite pressures, and 

themselves, help shape the external threat of disease they face.  

Figure 1.7.  Colony sizes and modes of transmission (overleaf). a-b) Army ants 

such as Eciton, pictured here, can reach colony sizes of many millions and 

reproduce through colony fission, unlike most ants c) which reproduce through the 

nuptial flight of winged sexuals, such as this Tapinoma queen. d) Leaf-cutting ants 

have large colonies that produce long foraging trails across the forest floor. 
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1.3.1 Colony size 

Ant colonies range from just a few tens of individuals in some ponerine species, to 

populations of many millions in Dorylus army ants and Atta leaf-cutting ants 

(Hölldobler and Wilson 1990; Figure 1.7). Larger colonies may be generally 

better at maintaining a stable thermal optimum, and are typically warmer than 

smaller colonies in similar ecological conditions (Schmid-Hempel 1998). These 

conditions may be favourable for raising brood, but they also generally favour 

parasite survival. Thus although suboptimal external environments may reduce 

between-colony transmission, internal conditions could benefit maintenance of 

parasites within the nest, especially in larger colonies (Schmid-Hempel 1998).   

More importantly though, larger colonies may also be exposed to greater 

risk through the presence of a larger number of foragers, which can introduce 

external pathogens to the nest when they return, and through increases in 

density-dependent within-colony transmission. These more populous colonies will 

effectively sample a greater proportion of the external environment and may thus 

be more likely to be exposed to parasites to which they are susceptible that are 

rare or scattered in the environment. Larger colonies tend also to be longer-lived, 

with the potential for more within-colony transmission. Models suggest that 

colony growth can rapidly increase parasite transmission and that this pathogen 

risk can substantially reduce the benefits from increasing colony size (Schmid-

Hempel 1998). In species with strict division of labour and task partitioning, the 

increased disease risk associated with larger colonies could be mitigated through 

separation of, for example, foragers and nest workers. However even in societies 

with more complex organisation, models and meta-analyses still predict that 
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larger group sizes will correlate with increased parasite pressures (Alexander 

1974; Cote and Poulin 1995; Rifkin et al. 2012; Patterson and Ruckstuhl 2013). 

Empirical tests from social insects, however, have been inconclusive. Studies in 

bees and wasps have shown both weak reductions and slight increases in parasite 

prevalence in larger colonies (Macfarlane and Pengelly 1974; Schmid-Hempel 

1998), but comparative studies in ants tend to suggest that there may be a 

positive relationship between colony size and investment in immune defence 

(Hughes, Pagliarini, et al. 2008; Fernández-Marín et al. 2009, 2013). Whether 

this is due to species with larger colonies being able to invest more due to 

increased energy budgets, or needing to invest more because of greater parasite 

pressures, is an open question.  

 

1.3.2 Social parasitism 

Some species of social insect have evolved to exploit other social insect colonies in 

a relationship termed ‘social parasitism’ (Buschinger 1986; Hölldobler and 

Wilson 1990).  Because social parasites rely on their host species for many 

activities including food acquisition and brood care (Hölldobler and Wilson 1990), 

it seems possible that the parasitic species may also take advantage of their host 

for defence against other parasites. If socially parasitic species can gain sufficient 

disease resistance from host secretions, grooming and general hygienic behaviour, 

then they may be able to invest less of their own resources into disease resistance. 

The most obligate, ‘inquiline’ social parasites seem to show a number of 

characteristic ‘symptoms’ as they evolve towards a more specialized degree of 

host dependence, in what has been termed ‘inquiline syndrome’ (Wilson 1971; 
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Hölldobler and Wilson 1990). For example, in many social parasites, the 

energetically costly metapleural gland has been reduced or lost altogether 

(Sumner et al. 2003; Yek and Mueller 2011).  In a sample of 44 socially parasitic 

ant species from three subfamilies, 67% of inquiline species, but only 9% of 

temporary parasitic species, showed a loss of the metapleural gland This is 

logical, as the temporary parasites would only benefit from host defences for 

initial colony foundation, and must be sufficiently able to defend against other 

parasites on their own once the original host workers have died. Thus, investment 

in disease resistance cannot be relaxed as much in facultatively social parasites as 

in obligate social parasites which have a closer and longer-term relationship with 

their hosts. This idea broadly predicts a correlation between the level of host 

dependency of social parasites and the degree of reduction in their individual 

disease resistance. This hypothesis will be investigated further in Chapter 7.  

 

1.3.3 Living environment 

Ant species nest and forage in a multitude of ecological conditions with a wide 

range of associated parasite risks. Within ecosystems, bacterial and fungal loads 

are commonly highest in the soil and much lower on surrounding vegetation 

(Curtis and Sloan 2002; Keller et al. 2003). Ground-dwelling or subterranean ant 

species are therefore predicted to suffer greater exposure to environmental 

parasites than arboreal species. Because parasite pressures may therefore be 

lower for ants that nest and forage away from the soil, arboreal ants may have 

evolved to reduce their investment in resistance (Johnson et al. 2003; Schmid-

Hempel and Ebert 2003; Baer et al. 2005). However, a study of seven ant 
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species, exhibiting a spectrum of arboreal nesting and foraging behaviours, did 

not support this hypothesis (Walker and Hughes 2011). Instead, those species 

which spent time both in terrestrial and arboreal habitats were most resistant to 

infection, suggesting that it may be the diversity, rather than quantity, of 

parasites which is the most important factor in influencing the evolution of 

disease resistance. A second aspect which may affect disease exposure is nest 

material. The weaver ant species belonging to Polyrhachis, Camponotus and 

Oecophylla form colonies in nests weaved from larval silk instead of using 

substrates obtained from the environment. Although this may seem likely to 

provide the ants with a more aseptic living environment, in experiments on the 

weaver species Polyrhachis dives, nest material did not seem to confer any 

increased resistance against a fungal parasite or inhibit in vitro fungal growth 

(Graystock and Hughes 2011). Furthermore, the silk building material harbours 

large quantities of the opportunist fungal pathogen Aspergillus flavus, which 

infected ants much more commonly when they were kept with the silk nest 

material than without it (Fountain and Hughes 2011).  However, because the 

weaving behaviour of Polyrachis is relatively primitive, comparisons with other 

species with more advanced weaving behaviour may produce different results and 

will be useful in elucidating any relationship between nest weaving and disease 

resistance (see Chapter 4).  

1.3.4 Feeding strategy 

One of the primary routes of ingress for parasites into a host organism is via 

ingestion (Figure 1.8). This is particularly applicable in insects where the 

majority of the body is clad in protective cuticle.  The midgut is the only area 
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without a protective cuticular covering, so insects risk providing a weak point in 

their defences in order for efficient nutrient uptake (Siva-Jothy et al. 2005). The 

level of risk is likely to be dependent on the precise feeding behaviour of the 

species: both where they feed (e.g. amongst the soil or on vegetation) and what 

they feed on. For example, predatory species may be more likely to encounter 

parasites on relatively unhygienic carcasses, especially when scavenged, when 

compared to species feeding on vegetative matter (Boomsma et al. 2005). The 

risk of infection through predation is highlighted by parasitic nematode species 

that depend on consumption of infected arthropod tissue for the transmission per 

os to their ant host (Baur et al. 1998). Also, many predatory species are highly 

specialized, subsisting on prey from just one order or family (Hölldobler and 

Wilson 1990). Thus, there will have been greater potential for coevolution by the 

parasites they ingest with their insect prey, potentially making them more likely 

to be able to infect the predator ants (Poulin 2007). Generally the risk of infection 

and hence investment into disease defence is expected to be lower in herbivorous 

than predatory species. Additionally, lineages with more derived ‘vegetarian’ 

feeding strategies, such as the fungus-growing ants, may themselves be at 

reduced risk from parasite exposure, but may have the complication of preventing 

infection of their delicate fungal crop. 

Figure 1.8. Feeding strategies in ants (overleaf). a-b) Dolichoderine ants tending to 

scale insects and mealybugs which are farmed for secretions. c and e) fungus-growing 

Atta and Apterostigma ants cultivate a mutualistic fungus on plant material or detritus 

as a food-source. d) Messor harvester ants feed on seeds. f) ants may feed on 

carbohydrate-rich secretions produced by extrafloral nectaries on plants. Many species 

will hunt or scavenge on invertebrate prey such as g) these Crematogaster ants feeding 

on a dead Odontomachus ant, or h) Messor ants feeding on a mealworm larvae. 
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1.3.5 Sexual dynamics and colony reproduction 

The life cycles and composition of ant colonies may share a basic plan but many 

lineages can express key differences. Where no nest material or other provisions 

are transported to the new nest, only parasites of adults are able to be vertically 

transmitted. In most ant colonies, which do not reproduce via fission, vertical 

transmission is thought to be minimal or only occur in particularly avirulent 

parasites, as any cost during colony founding is likely to be enough to cause 

failure. However, in colonies that reproduce via fission there may be additional 

scope for vertical transmission because colony establishment is much less risky 

and not only the queen, but also a large number of workers (often 50% of the 

existing colony (Kronauer et al. 2004)) transfer to the new colony. From the 

perspective of the parasite this effectively increases the lifespan of the colony, 

which could lead to an increased accumulation of parasites from the environment 

and transmission between individuals within a colony (Boomsma et al. 2005). 

However from an epidemiological perspective, models predict that the force of 

infection should be inversely proportional to colony age (Schmid-Hempel 1998). 

Thus long-lived colonies with minimal horizontal transmission, may show a 

reduced level of infection, not due to efficient disease defence per se, but due to 

the co-evolutionary dynamics of the infection (Schmid-Hempel 1998).  

In most horizontally transmitted parasites, transmission rates are heavily 

influenced by host density. Therefore in group-living species, especially social 

insects, which live in very high-population nests with often little genetic diversity, 

the threat from parasites is often considered very high. However the dynamics of 

vertically transmitted parasites within social insects are especially complex. The 
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primary mode of transmission of many endosymbionts, such as Wolbachia or 

Spiroplasma, is vertically through generations and through the founding of new 

colonies by queens (Riesa and Amazineb 2001; Baldo et al. 2008). As the 

effectiveness of their transmission may rely on the fecundity of the host, the 

fitness of both parties is especially closely linked (Bull et al., 1991). As a result 

these endosymbionts, known as reproductive parasites, may alter the biology of 

their hosts in order to increase their own transmission. For example, Wolbachia 

may feminise hosts or kill males, as it is only transmitted through females (Duron 

et al. 2008; Werren et al. 2008). Because these parasites are mainly vertically 

transmitted we may expect them to be particularly prevalent in ants that 

reproduce via colony fission. However, evidence from army ants, which 

principally reproduce via fission, suggests if anything that army ants harbour 

fewer intracellular parasites, particularly Wolbachia, than average (Mitteldorf 

and Wilson 2000; Funaro et al. 2011; Kautz et al. 2013). Honeybees may 

reproduce at a colony level through the process of swarming, which is the same as 

fission in army ants. This behaviour is thought to be the main source of vertical 

transmission within honeybee populations, although some studies have reported 

decreased parasite loads in swarming, compared with, non-swarming colonies 

(Fries et al. 2003). Thus the diversity of reproductive strategies in social insects 

can have complex consequences for parasite risk. Through comparisons of both 

host and parasite biology it may be possible to infer modes of parasite 

transmission (Chapter 8). 

The traditional view of the colony with a single mated queen, may be 

complicated by polygyny (colonies have multiple queens) and polyandry (queens 

mate with multiple males) (Boomsma and Ratnieks 1996; Crozier and Pamilo 
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1996; Hughes, Ratnieks, et al. 2008). As these reproductive strategies both have 

considerable costs (Hughes, Ratnieks, et al. 2008), their evolution has been 

studied in order to ascertain how they have arisen and been maintained and what 

benefit they afford. Polygyny may arise due to nest site limitation during colony 

founding, where the advantages gained from allowing help from other queens 

outweighs fitness loss through shared reproductive output. However, this cannot 

explain the occurrences of polyandry. Instead it is likely that the increased colony 

genetic diversity, which results from the queen mating with multiple males, 

reduces the cost of incompatible matings, improves task specialization and 

produces a colony more resistant to disease (Boomsma and Ratnieks 1996; 

Crozier and Fjerdingstad 2001; Oldroyd and Fewell 2007; Hughes, Ratnieks, et 

al. 2008; Reber et al. 2008). Given the evidence for this from a range of social 

insects it is likely that life-history traits such as polygyny and polyandry may 

affect disease resistance through increases in genetic diversity. Consequently, 

parasite pressures may play an important role in the shaping of reproductive 

strategies of ant societies, which in turn may change the threat from parasites. 

 

1.4 A hierarchy of insects and defences: unifying 

multilevel defences 

Figure 1.9. Synergistic defences (overleaf). a) Trophallaxis is a behaviour where 

substances are exchanged orally between two social insects. This can result in not 

only the transfer of nutrition but also compounds important in disease defence. B) 

Hitch-hiking small workers of these leaf-cutting ants are responsible for cleaning 

leaf-fragments prior to their entry into the nest, which ensures the colony is kept 

parasite-free. 
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The multi-level picture of disease defence mechanisms set-out here is undeniably 

a simplistic one. There is a great degree of overlap to many defence mechanisms, 

for example, antimicrobial compounds are actively spread over the cuticle by 

grooming and AMPs may be spread via trophallaxis (Figure 1.9). Information 

from the complete spectrum of immune responses: behavioural, physiological 

chemical and genetic, will help build a more complete picture of the relative 

importance of each component. Similarly just as it is vital to understand the 

interplay between the different aspects of defence mechanisms, so too is it 

important to consider the various levels of selection which operate within social 

insect communities, in order to build an accurate picture of how traits benefit 

individuals and the colony (Schmid-Hempel 1998; Keller 1999; Michod 2006; 

Cremer and Sixt 2009). For example, it may be that the behavioural group-level 

defences in social insects reduce the selection pressure on individual-level 

defences. Thus individual defence mechanisms which are important in other, non-

social, insect taxa may be less important in social insects. 

 

1.4.1 Synergistic external defences 

Selfgrooming and allogrooming may be used in conjunction with the application of 

antimicrobial compounds. This is well documented in ants in conjunction with 

antimicrobial venom or metapleural gland secretions (Veal et al. 1992; 

Mackintosh et al. 1995; Ortius-Lechner et al. 2000; Bot, Obermayer, et al. 2001; 

Fernández-Marín et al. 2006; Poulsen et al. 2006; Tragust, Mitteregger, et al. 

2013), but also gram-negative binding proteins in termites (Bulmer and Crozier 

2006). Social insects are also able to enhance disease resistance through the 
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transfer of immune factors, such as up-regulated immune effector molecules, to 

other nest mates (Hamilton et al. 2011).  Where this transfer occurs from an 

exposed individual to a naïve individual, it effectively acts as ‘social immunization’ 

(Traniello et al. 2002; Fefferman et al. 2007). This is believed to occur during 

trophallaxis in ants (Figure 1.9): where, during feeding, immune effector 

molecules as well as liquid food, are shared between two individuals via the mouth 

(Hölldobler and Wilson 1990; Hamilton et al. 2011). Camponotus 

pennsylvanicus increased its trophallactic behaviour when immune-challenged 

and also produced regurgitated droplets with increased antimicrobial activity 

(Hamilton et al. 2011). In this way, an individual-level physiological response can 

be externalized and distributed to the rest of the colony via social behaviours, 

ultimately facilitating colony-level disease resistance. These external defences 

work together to defend not only the individual social insect but also to promote 

the wider group hygiene. 

 

1.4.2 Immune and behavioural priming 

There is some recent evidence, that much like in the vertebrate immune system, 

some exposure to parasites can be beneficial for disease defence through ‘immune 

priming’ (Little and Kraaijeveld 2004). A repeated parasite exposure can affect 

both the physiological immune system and behavioural social immune responses 

(Siva-Jothy et al. 2005; Wilson-Rich et al. 2009). Ants are known to up-regulate 

the expression of social immunity behaviours such as allogrooming after previous 

contact with fungal parasites (Walker and Hughes 2009; Westhus et al. 2014; 

but see Reber et al. 2011, where ants upregulated selfgrooming but not 
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allogrooming), although honeybee undertakers were not found to improve their 

cadaver removal with experience (Trumbo and Robinson 1997).  

Although there is currently no known system in invertebrates that can 

serve as an immunological memory in the way that leucocyte clonal expansion 

provides in vertebrates, priming has been shown both in individuals, between 

individuals and across generations. Trans-generational immune priming, that is 

increased immunity conferred from parent to offspring, has been demonstrated in 

bumblebees challenged with bacterial parasites (Sadd et al. 2005). This inherited 

immunity may also be r in males, which once dispersed will not return to the nest, 

compared to workers (Sadd et al. 2005; Haine et al. 2008). Both ants 

(Rosengaus et al. 1999; Traniello et al. 2002; Konrad et al. 2012), and bees 

(Sadd et al. 2005; Sadd and Schmid-Hempel 2006), show lower susceptibility to 

reinfection, which may be parasite-specific (Sadd and Schmid-Hempel 2006). 

This priming can occur during social contact with other nestmates and lead to 

upregulation of immune defences and increased survival in termites and ants 

(Rosengaus et al. 1999; Traniello et al. 2002; Konrad et al. 2012). This priming 

may be up-regulated through the act of mating in the ant Lasius niger, where 

virgin queens showed no beneficial response to priming (Gálvez and Chapuisat 

2014). In the ant C. pennsylvanicus, this social prophylactic priming seems to be 

mediated through trophallactic transfer of immune related proteins, which are up-

regulated after parasite exposure (Hamilton et al. 2011). Additionally the 

beneficial gut microbiota of termites are transmitted to young through exposure to 

the faeces of adult workers (Koch and Schmid-Hempel 2011). This demonstrates 

how exposure to low level, non-fatal doses, of a parasite can provide a benefit in 

social insects. This may explain why hygienic behaviour and allogrooming of 
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contaminated nestmates, which at first seems to have significant costs to the 

performer, may in fact be adaptive not just for improving group-level, but also for 

individual-level, defence (Konrad et al. 2012). It also demonstrates how 

behavioural defences such as grooming and trophallaxis can work synergistically 

to improve defences at both the individual physiological levels, but also more 

broadly at the group level through social immunization.  

 

1.4.3 Alternative defence strategies 

Because defence mechanisms are costly to express and maintain, in terms of time 

and energy expenditure, and even in terms of maintaining neural tissue 

responsible for behaviours, they may be traded-off with other traits (Lochmiller 

and Deerenberg 2000; Poulsen, Bot, Nielsen, et al. 2002; Sulger et al. 2014). In 

other organisms this may represent a trade-off with life-span or fecundity 

(Sheldon and Verhulst 1996; Lochmiller and Deerenberg 2000; Siva-Jothy et al. 

2005; Gwynn et al. 2005). However in social insects, where the majority of the 

workforce is sterile, this is more complicated. Trade-offs may be made at the 

individual level, where for example individual ants may possess a more robust 

antimicrobial defence but have fewer AMP genes, or at the group level, where for 

example ants may spend longer allogrooming or cleaning brood or the nest rather 

than investing in individual defences.  

In the fungus-growing ants there is also evidence for trade-offs between 

the use of antimicrobial symbiotic bacteria, grooming and weeding behaviours, 

and the use of the metapleural glands (Poulsen, Bot, Currie, et al. 2002; Poulsen 
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et al. 2006; Fernández-Marín et al. 2009, 2013). Some traits, such as grooming, 

may be more plastic and can be lost or gained more quickly under selection than 

physiological defence components. Flexibility in general may be a good strategy to 

possess. At its simplest, this idea can be seen in social insects which up regulate 

their defence in response to a threat, instead of maintaining constantly high levels 

(Rosengaus et al. 2007; Bocher et al. 2007; Tranter et al. 2015). Given accurate 

detection abilities, these defences can then be employed effectively in various 

contexts to efficiently combat the threat. Additionally this flexibility allows social 

insects to respond differently to fungal parasites presented in different contexts, 

perhaps because they represent differing levels of threats (Tranter et al. 2015). 

 

1.4.4 Summary and thesis aims 

Social insects possess an array of mechanisms to defend themselves against 

disease. These may be employed at the individual physiological and behavioural 

levels, but also at the group-level in social insects. However, previous studies into 

disease resistance tend to have been performed on single species, often looking at 

just single measures of investment of defence. In this thesis I aim to use ants as a 

model system in which to explore the comparative importance of disease 

resistance in different species and at multiple levels. I aim thereby to improve our 

understanding of how these defences are employed and traded-off, both within 

individuals and colonies, and between species. Additionally, I hope that by using 

physiological and behavioural responses as indicators of investment, it may be 

possible to build a picture of how the life-history of social insect species can both 

affect, and in turn be affected by, parasite pressures. In Chapter 2 I test the 
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ability of different ants to detect and recognise parasitic threats in various 

contexts, and demonstrate how these responses are important in promoting 

individual survival, and that they may vary between species. Then in Chapter 3 I 

investigate how ant species may use antimicrobial secretions from the metapleural 

and venom glands to help keep, not only themselves, but also their brood and nest 

material hygienic. I extend this in Chapter 4 to focus on comparing how ants may 

use different strategies, including grooming and antimicrobial secretions, to 

combat similar threats and highlight the importance of acidic venom as an 

antifungal agent in social immunity in weaver ants. In Chapter 5 I study how 

shifts in the quality and quantity of a different defence, the metapleural gland, in 

a range of Attine ants map to transitions in life-history, specifically colony size 

and social complexity, within the group. Then I investigate this further in Chapter 

6 by comparing the degree of social immunity between ant species with simple 

and complex societies, and identifying the presence of ‘hygienic personalities’ 

which can improve individual ant survival. Chapter 7 also looks at how variations 

in life history can affect investment into disease resistance, but instead of colony 

size or social complexity, I investigate how parasite pressures and investment into 

disease resistance can change in socially-parasitic ant species, which rely on their 

hosts for many aspects of their life history. Then Chapter 8 I present comparative 

infection data from 83 species of tropical Panamanian ant with different life-

histories screened for the presence of the reproductive parasite Wolbachia, using 

molecular typing of strains to elucidate transmission dynamics between host and 

parasite in this system. Finally in Chapter 9 I discuss the findings of this thesis 

and their wider implications. 
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 Threat detection: contextual recognition 2.

and response to parasites by ants  

Tranter C, LeFevre L, Evison SEF, Hughes WOH (2015) Threat detection: contextual 

recognition and response to parasites by ants. Behav. Ecol. 26:396–405 

2.1 Abstract 

The ability of an organism to detect threats is fundamental to mounting a 

successful defence and this is particularly important when resisting parasites. 

Early detection of parasites allows for initiation of defence mechanisms which are 

vital in mitigating the cost of infection and are likely to be especially important in 

social species, particularly those whose life-history makes parasite pressure more 

significant. However, understanding of the relative strength of behavioural 

responses in different species and situations is still limited. Here we test the 

response of individual ants to fungal parasites in three different contexts, for four 

ant species with differing life-histories. We found that ants from all four species 

were able to detect fungi on their food, environment and nestmates, and initiate 

avoidance or up-regulate grooming behaviours accordingly to minimise the threat 

to themselves and the colony. Individuals avoided fungal-contaminated surfaces 

and increased grooming levels in response to fungal-contaminated nestmates. 

Ants from all species responded qualitatively in a similar way, although the 

species differed quantitatively in some respects that may relate to life-history 

differences. The results show that ants of multiple species are capable of 

recognising fungal threats in various contexts. The recognition of parasite threats 

may play an important role in enabling ant colonies to deal with the ever-present 

threat from disease. 
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2.2 Introduction 

Organisms possess an array of defences to help combat potential threats from 

predators and parasites. Organisms can increase their fitness by monitoring 

predator abundances, parasite levels and habitat stability, and acting accordingly 

(Hart 1990; Blaustein et al. 2004; de Roode and Lefèvre 2012). In each case 

detection of the threat is a fundamental prerequisite for the launch of any targeted 

response or decision. This is particularly key for resisting parasites, whose co-

evolutionary arms race with their host can select for better defended and more 

vigilant hosts, but also for more exploitative and harder to detect parasites (Ebert 

and Hamilton 1996; Decaestecker et al. 2007). In insects, microparasites such as 

entomopathogenic fungi are often lethal to the host, and proactive avoidance of 

exposure is invariably a better strategy than relying on resistance post-exposure 

(Shah and Pell 2003). Early and accurate detection potentially allows for 

avoidance of the threat altogether, or at least the initiation of early defence 

mechanisms, which may be vital in mitigating the cost of the infection (Hart 

1990; Schmid-Hempel and Ebert 2003; Wisenden et al. 2009). Although there 

has been substantial work on the detection and triggering of physiological immune 

responses (Hoffmann et al. 1996; Medzhitov and Janeway 2000; Siva-Jothy et 

al. 2005), our understanding of the ability of insects to detect the threat of 

parasites prior to infection is less well developed, despite its probable importance 

(Hart 1990). 

Eusocial insects are thought to be particularly at risk from the threat of disease 

due to living in dense groups, with homeostatic nest environments, and high 

levels of relatedness within a colony (Schmid-Hempel 1998). However, evidence 
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of this increased parasite pressure is often lacking and this is thought to be 

because social insects have reduced the cost of group living through the 

development of effective group-level defences, termed ‘social immunity’ (Cremer 

et al. 2007). These include behavioural adaptations such as undertaking, waste 

management, and grooming behaviour, which are effective at removing parasites 

from individuals and the colony as a whole (Boomsma et al. 2005; Wilson-Rich et 

al. 2009). As many of these behaviours rely on the ability to target a 

contaminated item or individual, parasite detection is likely to be particularly 

important in eusocial insects. Food sources, such as flowers or leaves (Durrer and 

Schmid-Hempel 1994; Griffiths and Hughes 2010; Parker et al. 2010; Fouks and 

Lattorff 2011), can become a dangerous hub for the horizontal transmission of 

parasites to visiting individuals, and consequently insects can detect and avoid 

contaminated food (de Roode and Lefèvre 2012). Similarly, termites, crickets, 

and ladybirds will preferentially avoid environments heavily contaminated with 

entomopathogenic fungi (Staples and Milner 2000; Thompson and Brandenburg 

2007; Ormond et al. 2011), and ants and termites will increase self-grooming or 

allogrooming in the presence of fungal conidia (Rosengaus et al. 1998; Yanagawa 

and Shimizu 2006; Yanagawa et al. 2008; Walker and Hughes 2009; Morelos-

Juárez et al. 2010; Reber et al. 2011). Reponses have been shown to scale with 

the severity of the threat in termites, whose antennae play an important role in 

the detection of fungal conidia. (Rosengaus et al. 1999; Myles 2002; Yanagawa 

et al. 2009) Additionally, the ability to detect an external parasite threat may 

vary between species with different evolutionary parasite pressures and life 

histories, or between different parasites. Host species which are exposed to 

greater parasite pressure, for example because they have vulnerable food stores, 

feed on more contaminated food or in more contaminated environments, may be 
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more adept at detecting and recognising threats (Boomsma et al. 2005; Walker 

and Hughes 2011). Similarly, hosts will be selected to be better at detecting more 

dangerous threats, such as from virulent entomopathogens (Dieckmann 2002; 

Poulin 2007; Mburu et al. 2011). Both host life-history and parasite virulence 

have been shown to affect the evolution of host disease resistance (Currie 2001; 

Sumner et al. 2003; Fernández-Marín et al. 2006, 2009; Hughes, Pagliarini, et 

al. 2008), but their effects on disease avoidance are less clear. 

Although there has therefore been much progress made in understanding the 

resistance to parasites of insects in general, and of social insects in particular, our 

understanding of the behavioural recognition phase of resistance is still limited. In 

particular, it is not clear how the recognition and response of social insects to 

parasites may vary depending on the context of exposure, for example whether 

the parasite is encountered in food, the general environment, or on a nestmate. It 

is also not clear the extent to which the ability to behaviourally recognise and 

respond to parasites is present across taxa, or indeed if the ability may differ 

between social insect species. The behavioural response of social insects to 

parasites can sometimes be counter-intuitive (Brütsch et al. 2014) , so knowledge 

of this stage is important for a full understanding of the complete process that 

takes place from encountering a parasite to resistance or infection. 

Here we test the ability of individual ants to detect and respond to the presence of 

two fungal pathogens. To determine how the response was affected by context, 

we presented the fungal pathogens under controlled laboratory conditions, 

without the confounding effects of other environmental cues, and mimicked 

exposure via the three key routes of ingress for a parasite into a colony: through 
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contaminated food, environment, and nestmates (Schmid-Hempel 1998; 

Boomsma et al. 2005). Studies typically focus on a single species, but 

interspecific variation in parasite resistance is likely, so we here tested the 

response of ants from four species with similar colony sizes but different life-

histories: 1) Polyrhachis dives, an omnivorous Southeast Asian weaver ant which 

may frequently encounter contaminated food but which only has to protect its 

own nestmates from disease (Hung 1967); 2) Messor barbarus, a granivorous, 

European seed-harvesting ant which has, in addition to its nestmates, to protect 

its food store of seeds from microbial contaminants (Plowes et al. 2013); 3) 

Acromyrmex echinatior, a mycophagous Panamanian leaf-cutting ant which also 

has to protect a food store, but in which this is in the form of a fungal crop that is 

highly vulnerable to foreign microbes (Currie, Mueller, et al. 1999); 4) Formica 

rufa, a European wood ant that build large nests out of conifer needles and plant 

debris, and feeds on a mix of insect honeydew and scavenged carcases. Harvester 

ants, leaf-cutting ants and wood ants possess antimicrobial producing metapleural 

and venom glands, but weaver ants lack the metapleural gland, and the venom of 

wood ants and weaver ants may have particularly strong antimicrobial properties 

because it consists largely of formic acid (Attygalle and Morgan 1984; Hölldobler 

and Wilson 1990; Billen 2009; Yek and Mueller 2011; Tragust, Ugelvig, et al. 

2013). As leaf-cutting ants and harvester ants have vulnerable food stores to 

protect, we would predict that they may be more vigilant at preventing the 

ingress of pathogens into the colony, but we would also predict that all ant species 

will show effective behaviours to minimise their risk from parasites in the 

environment and on themselves. 
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2.3 Methods 

The experiments were conducted using randomly selected individual foragers. We 

tested individuals from four colonies each of leaf-cutting ants (Ae396, Ae398, 

Ae399, Ae088), harvester ants (Mb0801, Mb1201, Mb1301, Mb1302) and wood 

ants (Fr1301, Fr1302, Fr1303, Fr1304) and two colonies of weaver ants 

(Pd0701, Pd0704). The colonies had been kept at 27°C, 80% RH, 12h:12h 

photoperiod, on species-specific diets provided twice a week (Tenebrio larvae and 

20% sucrose solution for weaver ants and wood ants, the same supplemented by 

grass seeds for harvester ants, and privet leaves for leaf-cutting ants). All leaf-

cutting ant and weaver ant colonies and harvester ant colonies Mb0801 and 

Mb1201, had been kept as above for at least 12 months prior to the experiments, 

whilst all the wood ant colonies and the harvester ant colonies Mb1301 and 

Mb1301 had been kept for one month, and all appeared in good health (no signs 

of parasite infections or excessive mortality). The colonies were given ad libitum 

water and 20% sucrose solution throughout the experiment, but were starved of 

solid food during, and for three days prior to, Experiment 1: looking at the 

response of ants to contaminated food. Four treatments were tested: 1) conidia of 

the specialist entomopathogenic fungus Metarhizium anisopliae [strain ARSEF 

144467, isolated from the soil of a Canadian maize field], 2) conidia of the 

facultative entomopathogenic fungus Aspergillus flavus [GU172440.1, isolated 

from bees in an experimental apiary West Yorkshire, UK; Foley et al. 2012], 3) 

talcum powder control (to control for the presence of a physical particulate; 

talcum particles were 5.2 ± 6.6µm x 5.3 ±7.7µm, compared to 5.5 ± 0.2µm x 

3.3 ± 0.2µm for the M. anisopliae conidia and 3.6 ± 0.1µm x 3.6 ± 0.2µm for 

the A. flavus conidia), and 4) blank control (to control for the Triton-X used as a 
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surfactant in delivery of fungal conidia). Both Metarhizium anisopliae and 

Aspergillus flavus are very common in the soil environment of ants at many 

locations and have been reported as natural parasites of ants on numerous 

occasions (Jouvenaz et al. 1972; Allen and Buren 1974; Alves and Sosa-Gómez 

1983; Lofgren and Vander Meer 1986; Gilliam et al. 1990; Diehl-Fleig et al. 

1992; Humber 1992; Sanchez-Pena and Thorvilson 1992; Quiroz et al. 1996; 

Schmid-Hempel 1998; Hughes et al. 2004; Poulsen et al. 2006; de Zarzuela et al. 

2007, 2012; Rodrigues et al. 2010; Lacerda et al. 2010; Castilho et al. 2010; 

Ribeiro et al. 2012). Multiple species of Aspergillus have also been reported 

growing on the fungal garden of leaf-cutting ants or nest material of weaver ants, 

and will, given the opportunity, quickly overgrow them (Fountain and Hughes 

2011; Tranter et al. 2014). Additionally many opportunistic fungal species are 

found on the seeds harvested and stored within the colonies of the granivorous 

harvester ants, and Aspergillus can be a common and important threat to seed 

stores (Klich et al. 1984; Crist and Friese 1993; Satish et al. 2007). Although 

the generalist nature of both parasites makes coevolution with ant hosts unlikely, 

we used exotic strains of both parasites to avoid any potential for the parasites to 

have evolved to avoid recognition by any of the ant species used here. 

Metarhizium anisopliae is a more virulent entomopathogen than A. flavus 

(Zimmermann 1993; Glare et al. 1996; Frazzon et al. 2000; Hughes et al. 2004; 

Scully and Bidochka 2005), and thus would be expected to stimulate a more 

extreme behavioural response from ants. In Experiments 1 and 2 below, the 

conidia and talcum particles were made up as suspensions of 1.5 x 108 conidia or 

particles per ml in 0.05% Triton-X surfactant using a blank haemocytometer, 

with the control being pure 0.05% Triton-X solution. In Experiment 3, looking at 

the response of ants to contaminated nestmates, the conidia and talcum powder 
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were applied dry to avoid grooming being stimulated by the presence of a liquid 

on the cuticle. Fungal conidia were harvested from freshly sporulating media 

plates, and viability was confirmed to be > 90% throughout the experiments by 

plating the conidia solutions onto Sabouraud dextrose agar, incubating for 24 h 

and quantifying successful conidia germination, defined as the production of a 

germ tube longer than the conidia diameter (Siegel 2012).  

 

2.3.1 Exp. 1: Response to contaminated food 

In order to test the ability of the individual ants to detect and avoid contaminated 

food, ants from each species were presented with food treated with either 

Metarhizium or Aspergillus conidia, talcum powder control or Triton-X control 

solution. Weaver ant and wood ant workers were provided with a section of 

Tenebrio molitor larvae (length: 8 mm, diameter: 2.5 mm), harvester ant workers 

with two grains of rice (length: 7 mm, diameter: 1.8 mm), and leaf-cutting ant 

workers with a section of fresh privet leaf (Lingustrum sp. length: 8 mm, width: 

8 mm), with the surface area of the food (~ 64 mm2) being the same in each case. 

Shortly prior to the experiment, an even coating of 8 µl of the treatment solution 

was pipetted over the surface of the food and allowed to dry, resulting in a 

treatment density of approximately 1875 conidia/mm2 (the number of conidia 

adhering to the different food sources was very similar, see Table S2.1 p.274). A 

Fluon-lined 90 mm Petri dish was placed in the foraging arena of each colony on 

a Fluon-coated tripod so that ants could only enter via a removable bridge (Figure 

S2.1). The ants were allowed to acclimatise to the general apparatus over several 

days. For each trial, a piece of filter paper was placed in the dish and a single 
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foraging worker was allowed to enter the dish, with the ant then confined within 

an inverted transparent pot (25 mm diameter) for 5 min to allow it to acclimatise 

and ensure a consistent starting position within the dish to avoid biasing. The 

food was then placed in the centre of the Petri dish, the pot removed, and 

interactions between the ant and the food recorded by eye for 15 min. The 

behaviours recorded were: i) whether the ants appeared to attempted to harvest 

the food, i.e. transported the food from the centre of the Petri dish to the edge 

closest to their nest where the bridge was previously located, ii) the length of time 

spent interacting with the food (i.e. direct antennation, cutting or feeding, picking 

up without moving), and iii) the length of time spent self-grooming. For leaf-

cutting ants and wood ants this was repeated with n= 64 ants from each species 

for each of the four treatments (16 ants for each of the four colonies per species, 

per treatment). For harvester ants this was repeated with n = 48 ants per 

treatment (16 ants from two colonies, 8 ants from two colonies), and with n = 32 

ants per treatment for weaver ants (16 ants from two colonies). The filter paper 

was replaced after each trial to remove any cues potentially left on the paper from 

the previous trial. 

 

2.3.2 Exp. 2: Response to contaminated environment 

A 90 mm diameter filter paper of 2 µm porosity, sufficient to prevent the passage 

of fungal conidia (see dimensions above), was divided in two, with one half 

infused evenly with 0.4 ml of one of the four treatments, resulting in an 

approximate treatment density of 1875 conidia/mm2 for the fungal treatments or 

1875 particles/mm2 for the talcum powder treatment, and the other half infused 
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with 0.4 ml of 0.05% Triton-X control solution. Once dry, the two halves were 

placed in a Petri dish to provide a simple choice set-up, with one half of the Petri 

dish treated and the other untreated. The Petri dish arena was placed in an 

enclosure formed of blank white surrounding walls with diffuse lighting in order 

to remove visual orientation cues. For each trial, an ant was placed in the Petri 

dish and confined within a transparent pot (25 mm diameter) at the centre of the 

dish for 5 min to allow the ants to calm down after their initial alarm and ensure a 

consistent starting position. The pot was then removed and the ant video recorded 

(Logitech B910 HD) from a fixed and consistent position above the dishes for 15 

min. Lighting was provided by strip lighting on the ceiling 170 cm above dish and 

trials were performed at a room temperature of 21°C. For leaf-cutting ants and 

wood ants this was repeated with n= 64 ants from each species for each of the 

four treatments (16 ants for each of the four colonies per species, per treatment). 

For harvester ants this was repeated with n = 48 ants per treatment (16 ants 

from two colonies, 8 ants from two colonies), and with n = 32 ants per treatment 

for weaver ants (16 ants from two colonies). The filter paper was replaced 

between each trial, and the Petri dish replaced and reoriented by 180° every 

fourth trial, to remove any chemical cues and control for any visual cues that may 

have influenced the results. The videos were analysed to obtain the length of time 

spent, speed travelled, distance covered, and time spent stopped, by the ant on 

either half of the Petri dish. Results from the video analysis were outputted from 

AntTrak (Table S2.2 p.274), a path analysis program designed for this task, as 

data for analysis and as images of the tracks for visual inspection.  
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2.3.3 Exp. 3: Response to contaminated nestmates 

The ability of individual ants to recognise contaminated nestmates was tested by 

applying dry conidia or talcum powder evenly to the gaster of a treatment ant 

with a cotton bud, before placing the treated ant with an untreated nestmate in a 

Petri dish. Application was performed so as to provide a constant treatment layer 

between trials, whilst accounting for species and body size. A clean blank cotton 

bud was brushed onto the ant in the same manner as above for the control 

treatment. Instances of contact (defined as any non-grooming interaction, e.g. 

antennation) between the two ants, self-grooming by the treatment ant, and 

allogrooming were tallied by eye during 10 min. For leaf-cutting ants and wood 

ants this was repeated with n= 64 ants from each species for each of the four 

treatments (16 ants for each of the four colonies per species, per treatment). For 

harvester ants this was repeated with n = 48 ants per treatment (16 ants from 

two colonies, 8 ants from two colonies), and with n = 32 ants per treatment for 

weaver ants (16 ants from two colonies). None of the ants were used more than 

once and none were returned to the colony after use to avoid influencing the 

independence of other workers. 

 

2.3.4 Statistical analysis 

Data from all experiments were non-normal so generalised linear mixed models 

were used throughout with model distribution determined based on AIC scores 

and the structure of the non-normal data. No overdispersion was observed based 

on model deviance/df values. Non-significant interaction terms within the models 
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were removed based on likelihood-ratio tests to achieve the minimum adequate 

models. The effect of the colony from which the individual ants tested were 

obtained was included in all GLMM analyses as a random factor, but was non-

significant (P > 0.05) in all cases except when comparing contact rates in 

Experiment 3. For all experiments, overall tests were run on total data with 

species and treatment as factors, but the effect of treatment was additionally 

analysed for each species individually. In Experiment 1, the effects of treatment 

and species on the length of time individual ants spent engaged in each of the 

activities was analysed using a GLMM with gamma distribution and log link 

function. The proportion of trials in which ants harvested food was analysed 

using a GLMM with binomial distribution and probit link function. For 

Experiment 2, a GLMM with gamma distribution and log link function was used 

to analyse the effect of treatment and species on the relative proportions of length 

of time, speed and distance travelled (see Figure S2.3 for distance travelled). A 

GLMM with negative-binomial distribution and log link function was used to 

analyse the effect of time spent inactive on the treated side. For Experiment 3, 

the number of contacts, allogrooming and self-grooming was tested between the 

four different treatments and four different species using a GLMM with gamma 

distribution and log link function. Post-hoc comparisons between individual 

treatment groups were conducted using a pairwise sequential Bonferroni 

comparisons for all three experiments. All analyses were conducted using SPSS 

20.  
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2.4 Results 

 

2.4.1 Exp. 1: Response to contaminated food 

There was a significant overall interaction between ant species and treatment, 

indicating that ants from different species were responding differently to the 

various treatments, on the length of time ants spent interacting with food (F9,816 

= 17.04, P < 0.001), the proportion of trials in which ants harvested food (F9,816 

= 3.45, P = 0.002) and the length of time ants spent self-grooming (F9,816 = 

4.49, P < 0.001; Table S2.3 p.275). When analysed individually, all species 

showed a significant effect of treatment on the length of time spent interacting 

with, and in the time spent grooming after exposure to, contaminated food (Table 

S2.4 p.275). Both leaf-cutting and harvester ants also showed a significant 

difference in their propensity to harvest food (i.e. transporting the food towards 

the position where the bridge leading back to the nest had been located) 

depending on whether it was contaminated or uncontamined, but the wood ants 

and weaver ants did not. Weaver ants interacted with both contaminated and 

uncontaminated food for the longest time, and leaf-cutting ants the least (Figure 

2.1a; Figure S2.2). In all species there was no significant difference in interaction 

time with food between the two fungal treatments or between the two control 

treatments. Leaf-cutting ants and harvester ants showed a much greater 

difference in the time spent interacting with fungal-treated opposed to control-

treated food, when compared to wood ants and weaver ants. In both wood ants 

and weaver ants there was no significant difference in food-interaction time 

between the Aspergillus and talcum powder treatments. Harvester ants harvested 
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the food in most trials, whereas weaver ants very rarely harvested the food 

offered (Figure 2.1b). Less food was harvested by leaf-cutting ants and harvester 

ants when it was contaminated with Metarhizium or Aspergillus conidia than 

when it had been treated with the blank control or talcum powder. Wood ants 

only showed a difference in the proportion of trials where food was harvested 

between the Metarhizium and blank control treatments, and weaver ants showed 

no significant difference between any of the treatments. Leaf-cutting ants also 

were significantly more likely to harvest food treated with the blank control 

compared with food treated with talcum powder. Harvester ants groomed in the 

fewest trials, but at a similar level to leaf-cutting ants, whilst wood ants and 

weaver ants self-groomed for much longer (Figure 2.1c). All species of ants 

groomed significantly more after interacting with Metarhizium and Aspergillus-

treated food compared to the two control treatments, and harvester ants groomed 

less after interacting with on blank control-treated food compared to food treated 

with a talcum powder control. 

 

2.4.2 Exp. 2: Detection of contaminated environment 

Data from the analysis of ant tracks (Figure 2.2) showed there was overall a 

significant interaction between the effect of species and treatment on the 

proportion of time spent (F3,816 = 5.98, p = 0.001), speed travelled at (F3,816 = 

4.24, p = 0.006) and length of time spent inactive (F3,816 = 16.65, p < 0.001) 

by ants on the untreated side of the enclosure (Table S2.5 p.277). All four 

species, when analysed individually, showed a significant effect of treatment on 

the total time spent, and also the time spent inactive, on the treatment side. 
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Figure 2.1 Durations of feeding and grooming behaviours. The (a) mean ± s.e. 

time spent interacting with food, (b) proportion of food harvested (transported the 

food to the position of the bridge leading back to the colony) and (c) mean ± s.e. 

time spent self-grooming by leaf-cutting ants (n=64), harvester ants (n=48), 

wood ants (n=64), and weaver ants (n=32) in Experiment 1. Food was treated 

with either the Metarhizium (Met.) or Aspergillus (Asp.) fungal pathogens, talcum 

powder control (Talc.) or control solution (Ctrl.). Within each graph, treatments 

within each species group with different letters differed significantly from one 

another at P<0.05 
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Harvester ants and wood ants, also moved at significantly different speeds on the 

treated half depending on the treatment applied (Table S2.6 p.278). All species 

spent significantly longer on the uncontaminated half when the other side had a 

fungal treatment applied, compared to the blank and talcum powder control 

treatments where ants showed no preference for either side (Figure 2.3a; Figure 

S2.3). Additionally, leaf-cutting ants and harvester ants spent longer on the 

uncontaminated side when the other half had been treated with Metarhizium, 

compared to when it had been treated with Aspergillus. Leaf-cutting ants, 

harvester ants and wood ants moved significantly faster on surfaces treated with 

either Metarhizium or Aspergillus compared with either control treatment, where 

the ants travelled at the same speed on either half of the Petri dish (Figure 2.3b). 

This difference was greatest in harvester ants, with the largest difference in 

speed observed in the Metarhizium treatment. Weaver ants did not alter their 

speed depending on whether they were on treated or untreated halves in any of 

the treatments. All four species of ants stopped for significantly longer on the 

untreated side in the fungal trials but not in the control trials (Figure 2.3c). This 

difference was greatest in the wood ants and weaver ants, which spent around 

80% of their inactive time on the untreated sides when fungal conidia were 

present on the alternative.  
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Figure 2.2 Composite tracks from Experiment 2 for four environmental treatments 

produced from the video analysis of choice trials in four ant species (top left: 

weaver ant, top right: wood ant, bottom left: leaf-cutting ant, bottom right: 

harvester ant). Each of the four graphics within each quarter represents an overlay 

of 10 individual paths. Labels below each graphic show the treatment applied to the 

right side of the circle, compared to a control treatment on the left side. The track is 

colour-coded from pink and purple, where the ant travelled fastest, to green and 

yellow where the ant travelled more slowly. A blue circle is present to represent the 

point at which an ant stopped, and the larger the circle the longer the time spent 

stationary  
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Figure 2.3 Choice experiment data. The (a) proportion ± 95% CI of time spent, 

(b) speed travelled, and (c) time spent inactive, on the treatment side of a choice 

arena treated with either the Metarhizium (Met.) or Aspergillus (Asp.) fungal 

pathogens, talcum powder control (Talc.) or control solution (Ctrl.) in Experiment 

2, for leaf-cutting ants (n=64), harvester ants (n=48), wood ants (n=64), and 

weaver ants (n=32). Proportions with 95% C.I. error bars which do not overlap 

0.5 line (*) show a significant difference between treated and untreated sides. 

Within each graph, treatments within each species group with different letters 

differed significantly from one another at P<0.05 
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2.4.3 Exp. 3: Detection of contaminated nestmates 

Contact rates between the contaminated ant and its uncontaminated nestmate 

showed a significant difference between the four species (F3,816 = 10.82, p < 

0.001), with weaver ants showing slightly lower baseline levels of contact 

compared to the other species, but there was no overall difference between 

treatments or evidence of interaction (F3,816 = 2.21, p = 0.085, and F9,816 = 

1.80, p = 0.06, respectively; Table S2.7 p.279). When analysed individually 

only weaver ants showed a significant effect of treatment on contact rates. There 

was a significant effect of colony on overall contact rates with Mb1 showing 

consistently higher rates of contact than the other harvester ant colonies (Z = 

5.95, p<0.001). Harvester ants exhibited the highest contact rates, significantly 

higher than weaver ants, which had the lowest contact rate (Figure 2.4a; Figure 

S2.4).  

There was a significant interaction between the effect of species and treatment on 

both self-grooming (F9,816 = 2.77, p = 0.003) and allogrooming rates (F9,816 = 

2.03, p = 0.03). Weaver ants had higher baselines levels of self-grooming than 

any of the other species, which showed similar levels of self-grooming (Figure 

2.4b). Ants from all species showed higher frequencies of self-grooming after 

interaction with nestmates treated with a fungal pathogen. This was significantly 

different to control treatments for harvester ants and weaver ants in the 

Aspergillus treatment, and in the Metarhizium treatment for leaf-cutting ants.  

Harvester ants allogroomed the least, less than weaver ants, who in turn 

allogroomed less than leaf-cutting ants (Figure 2.4c). When analysed individually  
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Figure 2.4 Contact and grooming rates between ants. The (a) mean ± s.e. 

occurrence of contact and (b) self-grooming by the test ant, and of (c) allogrooming 

between treated and test ant in Experiment 3 of leaf-cutting ants (n=64), 

harvester ants (n=48), wood ants (n=64), and weaver ants (n=32) to nestmates 

that had been treated with either the Metarhizium (Met.) or Aspergillus (Asp.) 

fungal pathogens, talcum powder control (Talc.) or control solution (Ctrl.). Within 

each graph, treatments within each species group with different letters differed 

significantly from one another at P<0.05 
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each species showed a significant effect of treatment on allogrooming and self-

grooming responses, except allogrooming in weaver ants. In all species the control 

treatment resulted in the lowest incidence of allogrooming, with this being 

significantly lower than all other treatment groups in leaf-cutting ants and 

significantly lower than the Metarhizium treatment in harvester ants. Harvester 

ants allogroomed Metarhizium-treated nestmates more than those treated with 

talcum powder or untreated nestmates, but in leaf-cutting ants the talcum powder 

treatment also resulted in significantly higher rates of allogrooming than the 

blank control. This result is likely due to colony Ae396 where talcum powder 

produced dramatically high allogrooming rates. (Figure 2.4c; Figure S2.4c).  

 

2.5 Discussion 

The results demonstrate the ability of ants to detect fungal pathogens on their 

food, environment and nestmates. Ants from all the species tested avoided fungal-

contaminated surfaces and increased either allo or self-grooming behaviours when 

they detected contaminants on a nestmate. Treatments of the obligate 

entomopathogen Metarhizium generally resulted in the strongest recognition 

responses compared to the facultatively entomopathogenic Aspergillus and the 

control treatments. Individual ants from the four species showed different 

responses depending on the source of contamination. 

When presented with contaminated food individual ants were highly 

discriminatory between food treated with the controls and that treated with either 

Metarhizium or Aspergillus fungal parasites. Avoidance of parasites when 
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feeding may be particularly important. Although fungal conidia can be deactivated 

in the guts of adult insects, any ingestion will carry a risk of infection if 

deactivation is not completely effective and the larvae, for which proteinacious 

food is primarily collected, may lack the deactivation capabilities of adults 

(Broome et al. 1976; Dillon and Charnley 1988; Siva-Jothy et al. 2005; 

Chouvenc et al. 2010).  Additionally food stored in the crop which is transferred 

by trophallaxis may still pose a risk of horizontal transmission to other ants, as 

the fungistatic activity may only be sufficient to retard germination and not 

completely sterilize conidia (Shah and Pell 2003; Chouvenc et al. 2010).  

Ants which did interact with food with fungi present showed significantly higher 

rates of self-grooming. Similarly the individual ants from all species tested up-

regulated selfgrooming, and three out of the four species also allogroomed more 

frequently, in response to fungal contaminated nestmates. Grooming is an 

important defence against parasites and is an adaptive behaviour which ants and 

other social insects can use upon encountering fungal pathogens in various 

contexts, both to protect themselves, and nestmates (Cremer et al. 2007; 

Yanagawa et al. 2008; Reber et al. 2011). As well as directly removing parasites 

from the cuticle, grooming also transfers antimicrobial secretions from the 

metapleural gland and venom glands (Fernández-Marín et al. 2006; Tragust, 

Ugelvig, et al. 2013). The relative investment into these different forms of 

grooming may vary based on the nature of the threat and ant species (Okuno et 

al. 2011). For example, weaver ants have relatively high levels of self-grooming 

and low levels of allogrooming, whereas leaf-cutting ants have the opposite 

pattern (see Figure 2.4b and 2.4c). Allogrooming as a defence may require a 

greater investment from the colony as it involves the time and activities of two or 
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more individuals, but it may also be more effective (Hughes et al. 2002; 

Yanagawa and Shimizu 2006). While preliminary observations of ants 

encountering uncontaminated food in the Experiment 1 arena when the bridge 

was left in place (Figure S2.1), confirmed that ants picking up the food then 

transported it back to the nest, we cannot be certain that this would have been the 

case for the ants in all our trials, although it seems likely.  

It is likely that ants in these experiments were using chemical receptors to detect 

the presence of contaminates (Yanagawa et al. 2009), though physical detection 

may have also played a part in the trials where the treatments were applied dry. 

Ants possess a well-developed ability to detect and communicate information via 

chemical signals which is fundamental to nestmate recognition and recruitment, 

trail-building and alarm behaviours (Hölldobler 1978; Hölldobler and Wilson 

1990; Hughes and Goulson 2001). Fungi produce small size volatile organic 

compounds (Morath et al. 2012) which are detectable by insects and can act as 

signalling molecules (Rohlfs et al. 2005). Beetles are attracted to food through 

detection of volatiles produced by wood-rotting fungi (Drilling and Dettner 

2009), pollinators can be deceived by flower-mimic fungi which produce volatiles 

similar to the real flower (Ngugi and Scherm 2006), and ant queens may, 

unusually, be attracted to nest sites with entomopathogenic fungi (Brütsch et al. 

2014). Conversely invertebrates may be repelled by, or show alarm behaviour in 

response to, chemical cues from fungi which may indicate a potential threat 

(Rosengaus et al. 1999; Staples and Milner 2000; Wood et al. 2001; Hussain et 

al. 2010; Fouks and Lattorff 2011). 
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While the results show ants can detect the various parasite threats, they do not 

reveal whether the differences are due to differences in detection ability or in 

behavioural response after detection. Further work will be needed to establish 

this. Additionally, ants may alter their response threshold to a detectable threat 

based on the costs of avoidance or defence. For social insects in particular this 

trade-off may be complicated to assess as any benefits and costs need to be 

considered at both individual and colony levels (Wilson-Rich et al. 2009). In 

natural conditions avoidance of contaminated food or reduced exploration of 

unhygienic environments may protect the individual ant from infection (Wisenden 

et al. 2009), but this benefit may carry a colony-level cost by reducing food 

harvesting. Avoidance of contaminated nestmates may result in a reduced 

individual hazard, but overall a much greater threat to the colony as a whole, 

should a parasitized ant be allowed into the nest without intervention (Wilson-

Rich et al. 2009 but see Hughes et al. 2002; Konrad et al. 2012). 

Although all four ant species responded to parasites in a qualitatively similar way, 

there were some interesting quantitative differences in their responses. In 

particular, leaf-cutting ants and, to a lesser extent, harvester ants were more 

strongly discriminatory of contaminated food than weaver ants and wood ants. 

The leaf fragments that leaf-cutting ants retrieve are used as a substrate for their 

mutualistic fungal crop which is very vulnerable to other fungi, including 

Aspergillus (Luciano et al. 1995; Little et al. 2006; Pagnocca 2012; Tranter et 

al. 2014), and leaf-cutting ants are well known to scrupilously clean material to 

protect their fungal crop (Currie and Stuart 2001; Van Bael et al. 2009; Morelos-

Juárez et al. 2010; Griffiths and Hughes 2010). Harvester ants store their seed 

food in granaries which may also be vulnerable to fungal growth, whereas weaver 
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ants and wood ants possess no equivalent, long-term, within-colony food store to 

protect. In addition, leaf-cutting ants showed relatively high levels of 

allogrooming while weaver ants showed relatively high levels of self-grooming. It 

may be that weaver ants have evolved high rates of self-grooming to compensate 

for their lack of antibiotic-producing metapleural glands by greater mechanical 

removal of parasites, or because self-grooming is needed to spread their 

antimicrobial venom actively over their cuticle (Hölldobler and Engel-Siegel 

1984; Graystock and Hughes 2011; Yek and Mueller 2011; Tragust, Ugelvig, et 

al. 2013). Future comparative studies with more species will be important to 

establish whether such life-history differences do indeed drive variation in 

parasite response behaviour, and we may expect the response of these species to 

be even stronger when presented with fungi that are more dangerous parasites of 

food stores, such as Escovopsis (Crist and Friese 1993; Currie 2001). 

In conclusion, the results show that individual ants are capable of recognising 

fungal threats in various contexts. Host-parasite interaction studies are often 

conducted on a single host species, but here we use four different ant species to 

better investigate how individual ants respond to the threat. Ant societies are well 

known for their organised division of labour and task partitioning, and it will be 

interesting to see whether ants vary in their ability to detect parasites according 

to their role in the colony (Anderson and Ratnieks 1999; Vitikainen and 

Sundström 2011). It will also be interesting to see whether species differences 

are due to differences in detection ability or behavioural response, whether 

detection thresholds relate to infectivity thresholds (Rosengaus et al. 1999; 

Mburu et al. 2009), and if ants are able to recognise and respond to parasites 

when they are at much lower doses or masked by other environmental cues. 
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There has been much progress in our understanding of the individual and group-

level defences of social insects against parasites, and further comparative studies 

of different species will be valuable to elucidate the selection pressures that have 

shaped their evolution. 

  

Polyrhachis dives 
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 Sanitizing the fortress: protection of 3.

ant brood and nest material by worker 

antibiotics 

Tranter C, Graystock P, Shaw C, Lopes JFS, Hughes WOH (2014) Sanitizing the fortress: 

protection of ant brood and nest material by worker antibiotics. Behav. Ecol. Sociobiol. 

68:499–507  

3.1 Abstract 

Social groups are at particular risk from parasite infection, which is heightened in 

eusocial insects by the low genetic diversity of individuals within a colony. To 

combat this, adult ants have evolved a suite of defences to protect each other, 

including the production of antimicrobial secretions. However, it is the brood in a 

colony that are most vulnerable to parasites because their individual defences are 

limited, and the nest material in which ants live is also likely to be prone to 

colonisation by potential parasites. Here we investigate in two ant species 

whether adult workers use their antimicrobial secretions not only to protect each 

other, but also to sanitize the vulnerable brood and nest material. We find that in 

both leaf-cutting ants and weaver ants, the survival of brood was reduced, and 

the sporulation of parasitic fungi from them increased, when the workers nursing 

them lacked functional antimicrobial-producing glands. This was the case both for 

larvae that were experimentally treated with a fungal parasite (Metarhizium) and 

for control larvae which developed infections of an opportunistic fungal parasite 

(Aspergillus). Similarly, fungi were more likely to grow on the nest material of 

both ant species if the glands of attending workers were blocked. The results 

show that the defence of brood and sanitization of nest material are important 



81 

functions of the antimicrobial secretions of adult ants, and that ubiquitous, 

opportunistic fungi may be a more important driver of the evolution of these 

defences than rarer, specialist parasites. 

 

3.2 Introduction 

Many species form social groups, and by doing so benefit from greater resource 

exploitation, anti-predator defence and reproductive fitness (Dornhaus et al. 

2010). However, such benefits come at the potential cost of increased parasite 

exposure (Alexander 1974; Krause and Ruxton 2002). Eusocial insects are one of 

the pinnacles of sociality, but their vulnerability to parasites is heightened by a 

homeostatic nest environment and low genetic diversity of individuals within a 

colony, which will facilitate parasite transmission and evolution (Schmid-Hempel 

1998). To counter this, social insects, such as ants, have evolved a suite of 

behavioural and chemical defences which physically remove or chemically kill 

parasites that contaminate their cuticle (Boomsma et al. 2005; Wilson-Rich et al. 

2009). These first-line defences are important for resistance to specialist 

entomopathogens and also the more common opportunistic parasites which 

abound in and around ant colonies (Milner et al. 1998; Schmid-Hempel 1998; 

Poulsen et al. 2006; Fountain and Hughes 2011; Evans et al. 2011b; Reber and 

Chapuisat 2012; Anderson et al. 2012). Ants (Storey et al. 1991; Mackintosh et 

al. 1995; Zelezetsky et al. 2005; Mendonça et al. 2009), bees (Evans et al. 2006; 

Baracchi and Turillazzi 2010; Baracchi, Mazza, et al. 2012), wasps (Turillazzi et 

al. 2006; Baracchi, Mazza, et al. 2012), termites (Rosengaus et al. 2000, 2004) 

and eusocial thrips (Turnbull et al. 2010, 2012), as well as non-social insects 
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(Bulet et al. 1999; Kuhn-Nentwig 2003; Haine et al. 2008; Stow and Beattie 

2008), produce defensive compounds in their haemolyph and venom. In 

particular, most ants secrete antimicrobial compounds from their metapleural or 

venom glands on to their cuticle (Hölldobler and Wilson 1990). The secretions 

from both glands have been shown to inhibit the growth of parasites in vitro and 

adult workers with non-functional glands are more susceptible to parasites  

(Storey et al. 1991; Blum 1992; Bot, Obermayer, et al. 2001; Poulsen, Bot, 

Nielsen, et al. 2002; Graystock and Hughes 2011; Tragust, Ugelvig, et al. 

2013).  

Social insects are characterised by cooperation, with workers acting to maximise 

the fitness of their colony in spite of costs to themselves on an individual level. As 

a result, the resistance of social insects to disease consists of individual immunity 

and group-level responses that produce a form of ‘social immunity’, that can be 

adaptive and proactive (Rosengaus et al. 1998; Hughes et al. 2002; Traniello et 

al. 2002; Cremer et al. 2007; Chapuisat et al. 2007; Ugelvig and Cremer 2007; 

Walker and Hughes 2009; Morelos-Juárez et al. 2010; Reber et al. 2011; 

Hamilton et al. 2011; Konrad et al. 2012). Social immunity may be particularly 

important for the more vulnerable aspects of a colony, such as developing brood 

and nest substrates. Insect brood lack a fully developed physiological immune 

system (Gillespie et al. 1997; Lavine and Strand 2002; Wilson-Rich et al. 2008), 

are unable to self-groom, and do not have the important antimicrobial-producing 

glands (Hölldobler and Wilson 1990). Brood are thus extremely susceptible to 

disease and may consequently be particularly reliant on social immunity, including 

potentially the donation of antimicrobial secretions by adult workers. In an 

elegant study, Tragust et al. (2013) showed that nursing adult workers of Lasius 
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neglectus donate venom to brood during grooming, both directly via the acidopore 

and indirectly through oral uptake, and that this then benefited brood defence 

against parasites. In addition to brood, the substrate in, on, or with which, ants 

form their colony is also likely to be vulnerable to contamination, or in some cases 

infection, by potentially dangerous parasites (Currie, Scott, et al. 1999; Keller et 

al. 2003; Hughes et al. 2004; Fountain and Hughes 2011; Reber and Chapuisat 

2011). This is particularly evident in the attine fungus-growing ants, which 

cultivate a mutualistic fungal crop that forms the central substrate of the colony 

and which is very vulnerable to infection by parasites (Mueller et al. 1998; 

Currie, Mueller, et al. 1999; Little et al. 2006; Gerardo et al. 2006). 

Consequently fungus-growing ants will mechanically groom their gardens to 

remove potential threats, have large metapleural glands and apply metapleural 

secretions onto the fungal crop (Currie and Stuart 2001; Sumner et al. 2003; 

Fernández-Marín et al. 2006, 2009; Little et al. 2006; Hughes, Pagliarini, et al. 

2008). It is likely, therefore, that care, particularly the use of antimicrobial 

secretions, by worker ants is important to keep colony nest material hygienic.  

Here we use the entomopathogenic fungus Metarhizium anisopliae with a leaf-

cutting ant and a weaver ant to test experimentally if, and how effectively, the 

antimicrobial secretions produced by the venom and metapleural glands of adult 

workers are utilised to aid in brood survival, and how worker secretions may be 

used to keep nest material hygienic. 
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3.3 Methods 

We studied two ant species: 1) the Brazilian leaf-cutting ant Acromyrmex 

subterraneus subterraneus, which has large antibiotic-producing metapleural 

glands (Biggi de Souza et al. 2006)as well as a venom gland, and 2) the south-

east Asian weaver ant Polyrhachis dives, which lacks the metapleural gland but 

produces venom with antimicrobial properties (Zenghe 1986; Graystock and 

Hughes 2011). In both species, the respective glands (metapleural and venom) 

have been shown to be important in the disease resistance of adult workers 

(Poulsen, Bot, Nielsen, et al. 2002; Graystock and Hughes 2011). Workers and 

brood were collected from two colonies of weaver ants (Pd0701, Pd0704)  and 

three  colonies of leaf-cutting ants (As085 As086 and As0811) that had been 

maintained in the lab at 26°C and 80% RH for > 6 months prior to use and 

showed no apparent signs of decline or infection. Due to the availability of brood 

at the time of the experiment, all leaf-cutting ant brood were pupae of 

approximately 5 mm in length, while all weaver ant brood were larvae of 

approximately 5 mm length. For each species, adult workers were selected of 

similar size (6-8 mm), cuticle melanisation and location in the colony (and thus 

inferred age; Armitage and Boomsma 2010). We confirmed in a preliminary 

experiment that workers of these sizes and ages successfully cared for brood over 

14 days when kept in isolation (i.e. a single ant with a single pupa or larva). As 

our experimental parasite we used a strain of the entomopathogenic fungus 

Metarhizium anisopliae (isolate 144467, CABI; isolated from the soil of a maize 

field in Canada) which was exotic to both of the ant species. Fungal conidia were 

harvested from freshly sporulating media plates, and viability was confirmed to be 

> 92% throughout the experiments by plating the conidia solutions onto 
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Sabouraud dextrose agar plates, incubating for 24 h and quantifying conidia 

germination.  We applied 0.5 μl doses of species-specific concentrations of conidia 

in Triton-X, that we had determined in preliminary trials caused 50% mortality 

to brood (weaver ant: 1 x 105 conidia/ml; leaf-cutting ant: 1 x 104 conidia/ml). 

 

3.3.1 Exp. 1: Brood care 

To determine the importance of adult worker antimicrobial secretions for brood 

survival, we collected 120 leaf-cutting ant workers and 160 weaver ant workers, 

split into two cohorts. The leaf-cutting ant cohorts were each formed of 60 ants, 

with 20 ants from each of the three colonies, whilst the weaver ant cohorts 

consisted of 80 ants, with 40 ants from each of the two colonies used.  Half the 

ants from each colony had their main antimicrobial-producing glands (the 

metapleural gland in leaf-cutting ants and venom gland in weaver ants) blocked 

using nail varnish, and the remaining workers had nail varnish applied to the 

pronotum as a control (Poulsen et al., 2002; Graystock and Hughes, 2011). After 

24 h, we collected 60 leaf-cutting ant pupae and 80 weaver ant larvae, for each of 

the two cohorts, and surface-treated half of them with the Metarhizium parasite 

and the other half with 0.5 μl of a 0.05% Triton X control solution using a 

micropipette. Each pupa or larva was then placed in a pot (40 mm diameter) with 

a single ‘nurse’ worker ant from the same colony to give four combinations of 

infected/uninfected brood and workers with functional/non-functional glands, in a 

full factorial design, with a total of 30 leaf-cutting ant and 40 weaver ant 

replicates of each (Figure S3.1 p.263). Ants were maintained in the pots with 

moistened cotton wool to supply water and sucrose solution ad libitum. Any 
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workers which died during the experiment were replaced with an identically-

treated worker. The survival of the brood was monitored for 14 days. Dead brood 

were each placed on moistened filter paper in a Petri dish at 26°C and 80% RH, 

and checked daily for the appearance of fungal conidia and conidiophores 

diagnostic of a Metarhizium infection. In order to confirm that the blockage 

treatment did not affect normal brood-care behaviours, we also compared the 

behaviour of nurse workers for 20 ants of each species. Half the ants in each 

species had their respective glands blocked and the other half had the control 

treatment applied to the pronotum. The ants were placed in a Petri dish with a 

single item of brood (pupae for leaf-cutting ants and larvae for weaver ants) and 

a) the duration of any non-grooming interaction between nurse and brood (e.g. 

carrying, antennation), b) the frequency of physical contact between nurse and 

brood, and c) the frequency of brood-grooming by the nurse ant, was recorded for 

a 10 minute period.  

 

3.3.2 Exp. 2: Nest hygiene 

Sixty weaver ants (30 ants per colony) were collected from within the nest. Half 

of the ants from each colony had their venom gland blocked with nail varnish and 

half had a control treatment on the pronotal spines, for a total of 30 replicates per 

treatment. One hundred and twenty leaf-cutting ant workers (40 ants per colony) 

were collected from the outer surface of the fungal crop. The ants from each 

colony were divided evenly into the four blockage treatments as follows: i) 

varnish applied to the pronotal spines as a control, ii) metapleural gland blocked, 

iii) venom gland blocked, or iv) both venom and metapleural blocked, with a total 
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of 30 replicates per treatment. Each ant was placed in a pot with a 10 mm2 

section of either the silk nest material of weaver ants or the fungal garden of leaf-

cutting ants, from their original nest, and balls of cotton wool moistened with 

water and sucrose solution at 26°C and 80% RH. Thirty further 10 mm2 sections 

of nest material were set up identically for each species except no ant was placed 

in the pot (Figure S3.2 p.264). The nest substrate was monitored for 15 days for 

the appearance of any foreign fungus and death of the fungal crop. If a worker 

died during the experiment then it was replaced with an identically treated 

worker. 

To identify the fungi which developed in the leaf-cutting ant trials, three 

representative samples of each fungal morphotype (based on external morphology, 

spore structure, and colour) were isolated on malt extract agar (MEA) plates at 

30°C until the fungi produced conidia, and then stored at 4°C. DNA was 

extracted from the samples by adding 200 µl of 5% Chelex solution (in 10 mM 

Tris buffer) and 0.05 g of 0.1 mm silica beads to approximately 0.05g of the 

sample fungus, and placed in a QIAGEN Tissue Lyser beadbeater for 4 min at 50 

oscillations/s. Samples were then incubated at 90°C before being centrifuged for 

30 min at 4°C. Supernatant from the samples was cleaned with OneStep-96 PCR 

Inhibitor Removal Kit (Zymo Research) prior to PCR amplification of the internal 

transcribed spacer regions 1 and 2 with the primers ITS1 and ITS4 (Henry et al. 

2000; Foley et al. 2012). PCR products were sequenced and fungi identified by 

BLASTn searches of the resulting sequences.   
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3.3.3 Statistical analysis 

The effects of Metarhizium exposure, gland closure, and ant species, on brood 

survival, and the effects of gland closure and ant species on the appearance of 

foreign fungi on nest material, were analysed using Cox proportional-hazards 

regression models. Colony-of-origin and cohort (in Experiment 1), were included 

in the models to account for the structured nature of the data. Pairwise Kaplan-

Meier tests were used to test for pairwise differences between treatment groups. 

The effects of blockage on the duration of behavioural interactions of nurse ant 

and brood were examined using Mann-Whitney U-tests, and the survival of the 

nurses analysed using Cox proportional-hazards regression models. The 

proportions of brood sporulating with fungi were examined with χ2 tests and the 

proportions of nest material sporulating with fungi were analysed with Fisher’s 

exact tests. 

 

3.4 Results 

3.4.1 Exp. 1: Brood care 

Workers of both species tended to the brood throughout the experiment and the 

survival of brood that were cared for by a replacement worker did not differ from 

those that were cared for by the same worker ant throughout (leaf-cutting ants: 

Wald=2.54, p=0.111; weaver ants: Wald=0.19, p=0.67). Nurse worker ants 

with blocked or unblocked glands did not differ in their behaviours when 
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attending to brood or in their survival throughout the experiment; Figure S3.3 

p.265. There were significant effects of both exposure to Metarhizium and of 

gland blockage on brood survival, (Wald=17.8, p<0.001; Wald=27.2, 

p<0.001, respectively), but no overall difference between the ant species 

(Wald=1.84, p=0.1), or significant interactions between these effects (p >0.2 

in all cases). There was no difference in brood survival between leaf-cutting ant 

cohorts (Wald=0.54, p=0.817), but mortality was higher in the second, 

compared with the first, cohort of weaver ants tested (Wald=8.52, p=0.004), 

and there were no significant differences between colonies (P>0.1 in both 

species). In both ant species, gland blockage reduced brood survival regardless of 

treatment, while the effect of Metarhizium exposure was less consistent (Fig. 

3.1). Compared to the control brood cared for by nurse ants with functioning 

glands, the hazard ratio for the leaf-cutting ant brood was increased to 2.7 by 

blocking the metapleural gland, to 3.7 by exposure to Metarhizium when the 

metapleural gland was functional, and to 5.5 by both exposure to Metarhizium 

and blocking the gland. For the weaver ant brood, the hazard ratio was increased 

to 1.9 by exposure to Metarhizium with the venom gland of nurse ants functional, 

to 3.4 by blocking the venom gland, and to 4.7 by both exposure to Metarhizium 

and blocking the gland. 

Significantly fewer of the Metarhizium-exposed weaver ant brood sporulated with 

Metarhizium when the venom glands of their nurse ants were functional than 

when the glands were blocked (χ2=8.25, p=0.04), while there was no effect of 

gland blockage on Metarhizium sporulation from leaf-cutting ant brood (χ2=1.07, 

p=0.3; Fig. 2). A substantial number of brood of both ant species sporulated with 

the opportunistic fungal parasite Aspergillus sp. (Fig. 3.2). The proportion  
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Figure. 3.1 Survival ant brood for a) weaver ant pupae and b) leaf-cutting ant 

larvae that were treated with either Metarhizium parasite (solid lines) or control 

solution (dashed lines) and cared for by workers either with (open circles) or 

without (black circles) functional antimicrobial glands (the venom gland for weaver 

ants and the metapleural gland for leaf-cutting ants). For each species, different 

letters indicate treatments which differed significantly from one another at P < 

0.05 in pairwise comparisons with Kaplan-Meier tests. 
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Figure 3.2 Fungal-sporulating brood. Proportions of a) weaver ant larvae and b) 

leaf-cutting ant pupae that produced conidia of the Metarhizium experimental 

parasite (black), the opportunistic Aspergillus fungus (grey), or remained 

uninfected (white). Brood were either treated with Metarhizium parasite or control 

solution, and kept with workers either with or without functional antibiotic-

producing glands (the venom gland for weaver ants and the metapleural gland for 

leaf-cutting ants).  
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sporulating with this fungus was significantly greater when nurse ants had 

blocked glands, both for the weaver ants and leaf-cutting ants (respectively, 

χ2=12.5, p< 0.001; χ2=13.1, p<0.001). Few brood sporulated with 

Aspergillus when the nursing workers had functioning glands, but 48% of the 

weaver ant brood and 50% of the leaf-cutting ant brood did so when the glands 

were blocked (Fig. 3.2). Gland blockage therefore both significantly increased the 

proportion of brood exposed to Metarhizium that then sporulated with this 

parasite, and also significantly increased the proportion of brood, either treated 

with Metarhizium or not, that sporulated with opportunistic Aspergillus fungi. 

 

3.4.2 Exp. 2: Nest hygiene 

There was a significant effect of both gland blockage and ant species on the 

appearance of fungi on nest material, but no interaction between them 

(Wald=35.9, d.f.=4, p< 0.001; Wald=55.9, d.f.=1, p<0.001; Wald=5.46, 

d.f.=2, p=0.65 respectively). There were no significant differences between 

colonies (p>0.2 in both species). Both weaver ants and leaf-cutting ants 

experienced fungal growth sooner if one or both glands were blocked (Fig 3.3). 

For leaf-cutting ants, compared to nest material attended by an ant with 

unblocked glands, the hazard ratio for nest material attended by workers with 

blocked metapleural glands increased to 1.4, with workers with blocked venom 

glands it increased to 1.99, when workers had both glands blocked it increased to 

2.93, and when no worker ant was present it increased to 5.01. Blocking of the 

venom gland in weavers increased the hazard ratio to 2.29, and an absence of the  
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Figure 3.3 Hygiene of nest material. Proportion of a) weaver ant silk material and 

b) leaf-cutting ant fungal crop material that was free of contaminant fungal growth 

when cared for by workers with functional glands (white circles), blocked venom 

gland (black circles), blocked metapleural gland (black diamonds), both glands 

blocked (black squares), or where the worker ant was absent (dashed line). For 

each species, different letters indicate treatments which differed significantly from 

one another at P < 0.05 in pairwise comparisons with Kaplan-Meier tests.  
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Fig. 3.4 Proportion of trials where foreign fungus overgrew leaf-cutting ant nest 

material grouped by treatment. Foreign fungal species were Aspergillus fumigatus 

(white), Aspergillus tamarii (light grey), Aspergillus nomius (dark grey), 

Aspergillus sclerotiorum (black), Fusarium sp. (leftward diagonals), Trichoderma 

sp. (cross-hatched), Escavopsis sp. (rightward diagonals).The appearance of 

Escovopsis was relatively lower, and of other fungi relatively higher, when the 

glands of the attendant workers were blocked. Aspergillus fumigatus was common 

regardless of whether the ants had functional or blocked glands, while all other 

fungi grew only when the fungal crop was not tended by a worker with functional 

glands. 

 

worker ant to 2.39. Both results were significantly different (p < 0.05) when 

compared to nest silk attended to by a worker with a functional gland, but not 

when compared to each other, in post-hoc pairwise comparisons. Sporulation of 

fungi on the weaver ant silk resulted in only a sparse emergence of lightly 

filamentous fungi, which appeared morphologically similar across all trials and 
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was not successfully isolated and cultured. In those leaf-cutting ant trials where 

the fungal crop developed other fungi, it was overgrown quickly. Escovopsis was 

found most commonly in the trials where worker ants possessed functioning 

glands (p=0.007; Fig 3.4).  

 

3.5 Discussion 

Previous work investigating the social immunity and antimicrobial secretions of 

ants has focused on their protection of other adults ants against parasites. The 

results presented here show that antimicrobial secretions produced by adult ant 

workers can also help increase the survival of both control and parasite-treated 

brood, and reduce fungal growth on nest material. Importantly, the secretions in 

these contexts appear to be particularly significant for sanitizing against 

opportunistic fungi. In both leaf-cutting ants and weaver ants, and regardless of 

experimental exposure to the Metarhizium parasite, brood suffered higher 

mortality and growth of the opportunistic Aspergillus fungus when the workers 

nursing them did not have functional antimicrobial-producing glands. Brood 

exposed to the specialist fungal parasite Metarhizium were also more likely to 

sporulate with this parasite when nursing workers lacked functional glands. 

Similarly, in both ant species, nest material was more likely to be overgrown by 

fungi when tended by workers without functional glands. This effect was most 

substantial in the weaver ants where blocking the venom gland was sufficient to 

result in fungal growth on nest material comparable to when no tending ant was 

present at all. Leaf-cutting ants required the blocking of both metapleural and 

venom glands to show a similar result. Whilst adult insects, including ants, 



97 

wasps, bees, termites and eusocial thrips, utilise antibiotic secretions to protect 

themselves (Rosengaus et al. 2000; Bot, Obermayer, et al. 2001; Turillazzi et al. 

2006; Turnbull et al. 2010; Baracchi et al. 2011; Baracchi, Mazza, et al. 2012), 

it has recently been shown that Lasius ants transfer antimicrobial venom to 

enhance the resistance of brood to disease (Tragust, Mitteregger, et al. 2013). 

Our results indicate this is also the case for Acromyrmex and Polyrhachis ants. 

There has been much interest in the role of social immunity in the disease 

resistance of adult social insects, but their lack of individual immunity is likely to 

make brood the most vulnerable life-stage (Hölldobler and Wilson 1990; Gillespie 

et al. 1997; Cremer et al. 2007). Social immunity may therefore be especially 

essential for brood protection.  

Surprisingly, there was no significant interaction in either ant species between 

gland blockage and Metarhizium exposure. Antimicrobial secretions have 

previously been shown to be very important for protecting adult leaf-cutting ants 

and weaver ants against exposure to the Metarhizium parasite (Poulsen, Bot, 

Nielsen, et al. 2002; Graystock and Hughes 2011) as well as for protecting brood 

of Lasius neglectus ants (Tragust, Mitteregger, et al. 2013). The lack of a 

significant interaction here between gland blockage and Metarhizium exposure is 

likely to be for two reasons. First, both the probability of parasite infection 

success and the effects of antimicrobial secretions are dose-dependent (Ebert et al. 

2000; Hughes and Boomsma 2004b; Stow et al. 2007; Turnbull et al. 2012). 

The greater the dose of parasite, the more likely an infection is to be successful, 

and it may be that the dose of the parasite strain used here was too high for the 

antimicrobial secretions that were transferred from the adult ants to be fully 

effective in defending brood against the Metarhizium parasite. In addition, lower 
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doses of antimicrobial compounds are less likely to be effective against a parasite 

and it may be that the dose of antimicrobial secretions transferred to the brood 

was too low to fully defend the brood against Metarhizium, and thus too low for a 

strong effect of gland blockage on resistance to Metarhizium to be seen. Second, 

the effect of gland blockage on the mortality of even control brood was relatively 

high. Both here and in other studies (Poulsen, Bot, Nielsen, et al. 2002; 

Graystock and Hughes 2011), there has been found to be little impact of gland 

blockage on control-treated adult ants themselves, but it appears that control-

treated brood are far more susceptible to the impact of being with nursing 

workers with blocked glands. The behaviour of the nursing workers, including 

their grooming of the brood, was unchanged by gland blockage, and there is no 

known nutritional role for the glandular secretions, so it seems most probable that 

this impact relates to the infections by opportunistic fungal parasites which 

developed. 

As with all organisms, ant colonies co-exist with a wide diversity of opportunistic 

microbes that can be parasitic, such as the Aspergillus fungus found in this 

experiment and in ant colonies studied previously (Pereira and Stimac 1997; 

Schmid-Hempel 1998; Hughes et al. 2004; Poulsen et al. 2006; Lacerda et al. 

2010; Fountain and Hughes 2011). Adult ants appear to suffer relatively little 

from these opportunistic parasites even when their production of antimicrobial 

secretions is prevented (Poulsen, Bot, Nielsen, et al. 2002; Graystock and Hughes 

2011)presumably due to their well-developed immune system and grooming 

behaviour. We also found this to be the case here for brood and nest material 

when the antibiotic-producing glands of nurses were functioning. However, when 

the antimicrobial secretions of nurses were lacking, most brood succumbed to 
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infection by opportunistic Aspergillus fungi and most nest material became 

overgrown. It cannot be excluded that some of the fungal growth may have been 

opportunistic growth on larvae that died from another cause. However, even if 

this is the case, then the results nevertheless demonstrate the importance of 

antimicrobial secretions from nursing workers for sanitizing the cuticles of larvae. 

It therefore appears that the antimicrobial secretions of adults ants are essential 

to protect the vulnerable brood against opportunistic parasites and to prevent nest 

material becoming overgrown by contaminant fungi. It may indeed be the case 

that the protection of larvae against ubiquitous opportunistic microbes is of 

greater importance for ant fitness than protection against more specialist 

parasites such as Metarhizium which tend to be rarer, and may potentially have 

driven the evolution of antimicrobial secretions in ants. 

The leaf-cutting ant nest samples in this study were found to host at least seven 

species of fungi ranging from generalist, opportunistic Aspergillus spp. to 

Escovopsis, which specialises in parasitising the fungal crop of leaf-cutting ants 

(Currie 2001). Workers with functioning glands reduced both the number and 

diversity of fungi found compared to treatments with blocked glands. Only 

Escovopsis and the hyperabundant Aspergillus fumigatus (Latgé 1999) were 

found in treatments where the attending workers had functioning antimicrobial-

producing glands. Other fungi only occurred when the fungal crop was not tended 

by workers with functional glands. Escovopsis has evolved to be highly successful 

in natural leaf-cutting ant nest environments (Currie and Stuart 2001; Currie 

2001) and, as our results show, is able to grow on the fungal crop even when 

workers are producing antimicrobial compounds from their metapleural glands. In 

this antimicrobial-rich setting, Escovopsis is then able to exclude most of the 



100 

opportunistic fungi found in this study.  Interestingly, however, our results 

suggest the specialist Escovopsis may be less dominant if the antimicrobial 

secretions of the ants are reduced, through blocking of the metapleural gland, in 

which setting other fungi are far more competitive against Escovopsis. 

Consequently antimicrobial secretions may be more important for protection 

against more opportunistic fungal pathogens than previously thought.  

The results show how social immunity provided by the altruistic provision of 

antimicrobial secretions from adult ants has evolved to play an important role in 

brood survival and maintaining hygienic nest conditions, and thus the fitness of 

their colony. In addition, we show that these social secretions are important, not 

just to combat specialist parasites like Metarhizium and Escovopsis, but also in 

the everyday defence against opportunistic microbes which are ubiquitous in and 

around nest sites. This not only highlights the vulnerability of brood and nest 

material to disease but also their reliance on social care, and provides a 

compelling explanation for how immobile brood with immature immunity, survive 

in  a world abundant with pathogens.  

 

  

Acromyrmex subterraneus 



101 

 Acid, silk and grooming: alternative 4.

strategies in social immunity in ants? 

Tranter C, Hughes WOH (2015) Acid, silk and grooming: alternative strategies in social 

immunity in ants? Behav. Ecol. Sociobiol. 69:1687–1699 

 

4.1 Abstract 

Parasites are an important force in evolution, driving the need for costly 

resistance mechanisms. The threat from disease is potentially high in group-living 

species such as social insects, which have accordingly evolved behavioural and 

chemical defences that vary between species depending on their life histories. 

Several ant genera have lost a key exocrine antimicrobial defence, the metapleural 

gland, and yet are still able to thrive in environments abundant with parasites. 

We investigate, in species lacking the metapleural gland, how the production of 

antimicrobial venom, grooming behaviours, and the use of potentially 

antimicrobial larval silk may have evolved as alternative antiparasite defences. 

We focus on the Australasian weaver ant Oecophylla smaragdina, and compare 

this to Polyrhachis weaver ants. We show that the production of venom by O. 

smaragdina workers is important for disease resistance, but that the presence of 

larval silk is not, and that workers use their acidic venom to maintain nest 

hygiene. The grooming defences of O. smaragdina differ between castes, with 

minor workers allogrooming more and major workers showing greater 

upregulation of grooming in response to parasites.  Chemical and behavioural 

defences differ interspecifically between O. smaragdina and Polyrhachis, with O. 

smaragdina appearing to rely primarily on its venom while Polyrhachis use 
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higher rates of grooming. The results show how alternative investment strategies 

can evolve for disease defence, notably the highly effective application of acidic 

venom by O. smaragdina, and highlights the need for targeted comparative 

studies to understand how organisms respond to the ubiquitous threat from 

parasites. 

 

4.2 Introduction 

The threat from disease is an important driver of host biology and population 

structures (Poulin and Morand 2000; Poulin 2007). Strong parasite pressures 

can result in the rapid evolution of host defences which are required to reduce the 

cost of this pressure on host fitness (Brockhurst et al. 2004; Duffy and Sivars-

Becker 2007; Decaestecker et al. 2007). This threat has led to the evolution of a 

complex array of defence mechanisms, ranging from behavioural avoidance 

strategies to the complex adaptive immune system of vertebrates (Siva-Jothy et 

al. 2005; Thieltges and Poulin 2008; Wisenden et al. 2009; Tranter et al. 2015). 

Organisms that live in groups possess the additional benefit of group-level 

defences, such as allogrooming or shared use of antimicrobial secretions, which 

function in combination with individual-level defences against the threat from 

parasites (Krause and Ruxton 2002; Nunn and Altizer 2006). However living in 

groups also potentially increases the threat of disease, because the greater density 

of individuals within a group can enhance intragroup transmission, and many 

social activities such as chemical communication or sharing of food (trophallaxis) 

put members in close physical proximity (Alexander 1974; Moller et al. 1993; 
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Rose et al. 1999; Altizer, Nunn, Thrall, et al. 2003; Godfrey et al. 2009). 

Defence mechanisms against parasites are often costly (Bowers et al. 1994; 

Poulsen, Bot, Nielsen, et al. 2002; Rigby et al. 2002), and the great variety of 

strategies that organisms employ means that comparative studies are key to 

understanding the evolutionary biology of host disease resistance. In cases where 

the extensive datasets needed for full comparative analyses are lacking, targeted 

studies on species that differ in specific life-history traits that are predicted to 

affect the host-parasite relationship can be highly informative. 

 In social insects, the selection pressure from the threat of disease has 

resulted in the evolution of a suite of individual and group-level behavioural and 

chemical defences (Boomsma et al. 2005; Cremer et al. 2007; Wilson-Rich et al. 

2009; Rosengaus et al. 2011). Social insect colonies are based on division of 

labour and this can apply to disease resistance too, with worker and reproductive 

castes in leaf-cutting ants show differences in the use and effectiveness of disease 

resistance mechanisms (Hughes et al. 2002, 2010; Baer et al. 2005; Poulsen et 

al. 2006). These defences include meticulous self-grooming and allogrooming that 

are effective, adaptive and proactive in removing parasites (Farish 1972; 

Basibuyuk and Quicke 1999; Traniello et al. 2002; Yanagawa et al. 2008; 

Morelos-Juárez et al. 2010). In particular ants and termites will increase 

grooming when exposed to fungal conidia (Rosengaus et al. 1998; Yanagawa and 

Shimizu 2006; Yanagawa et al. 2008; Walker and Hughes 2009; Morelos-Juárez 

et al. 2010; Reber et al. 2011). This grooming can be combined with the use of 

antimicrobial secretions from exocrine glands by workers to sterilize themselves, 

their brood, their nest material, and food (Fernández-Marín et al. 2009; Tragust, 

Ugelvig, et al. 2013; Tragust, Mitteregger, et al. 2013; Tranter et al. 2014).  
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Similarly ants (Storey et al. 1991; Mackintosh et al. 1995; Zelezetsky et al. 

2005; Mendonça et al. 2009), bees (Evans et al. 2006; Baracchi and Turillazzi 

2010; Baracchi et al. 2011), wasps (Turillazzi et al. 2006; Baracchi, Mazza, et al. 

2012), termites (Rosengaus et al. 2000, 2004) and eusocial thrips (Turnbull et 

al. 2010, 2012), as well as non-social insects (Lowenberger et al. 1999; Kuhn-

Nentwig 2003; Haine et al. 2008; Stow and Beattie 2008), produce defensive 

compounds in their haemolyph and secretions which can be used in the defence 

against pathogens. Of particular importance is the antimicrobial-producing 

exocrine metapleural gland (MG), which is unique to, and ancestral in, ants 

(Hölldobler and Engel-Siegel 1984; Veal et al. 1992; Ortius-Lechner et al. 2000; 

Quinet and Vieira 2012; Vieira et al. 2012). Antimicrobial compounds are likely 

often transferred between nestmates during grooming, and in at least one ant 

species by trophallaxis (Hamilton et al. 2011).  

The most extreme evolutionary transition in antibiotic use, however, is 

shown by some formicine ant taxa in the genera Polyrhachis, Camponotus and 

Oecophylla which have secondarily lost the MG entirely, suggesting either a 

substantial relaxation in parasite pressure negating the requirement for 

maintaining an energetically costly gland, or the development of alternative forms 

of defence (Yek and Mueller 2011). The losses of the MG in these genera are 

correlated with arboreality and the evolution of weaving nests from larval silk, a 

behaviour which is unique to certain species in these genera (Johnson et al. 2003; 

Robson and Kohout 2005, 2007). It has been suggested that arboreal ants, such 

as Oecophylla and many Polyrhachis species, may be able to invest less in costly 

defences such as the MG because they are less exposed to the fungal parasites 

that are abundant in soil (Boomsma et al. 2005), although supporting evidence 
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for this hypothesis is still lacking (Walker and Hughes 2011). It may also be the 

case that the silk substrate of weaver ant nests provides an aseptic habitat for 

these species (Johnson et al. 2003), or that the silk contains antimicrobial 

compounds, as in other invertebrates (Wright and Goodacre 2012), which may 

transfer to ants. In the only direct test of this, Fountain & Hughes (2011) failed 

to find any benefit from silk for defence against pathogenic fungi in the weaver 

ant Polyrhachis dives, with the silk in fact carrying viable opportunistic fungal 

parasites. However, silk weaving in Oecophylla appears to be more derived and 

complex than in Polyrhachis (Crozier and Newey 2010), so it is possible that 

there may be stronger benefits from silk for Oecophylla than for the weaver ants 

investigated previously (Fountain and Hughes 2011; Graystock and Hughes 

2011). Alternatively, the loss of the MG may be associated with the evolution of 

different defence mechanisms. The venom of many social insects may possess 

antimicrobial properties, but it is in ants where we see the use of acidic venom 

diversified beyond stinging behaviours (Moreau 2013). Along with other 

formicines, Oecophylla and Polyrhachis produce acidic venom, composed 

principally of formic acid (Bradshaw 1979; Hölldobler and Wilson 1990; Blum 

1992). Polyrhachis dives, as well as other formicines, are known to use their 

venom during grooming, spreading venom on themselves, their brood and their 

nest material (Graystock and Hughes 2011; Tragust, Ugelvig, et al. 2013; Otti et 

al. 2014; Tranter et al. 2014). The use of venom in Oecophylla and Polyrhachis 

may be particularly important because they have lost their MG and the 

antimicrobial secretion it produces. Self-grooming also appears to be upregulated 

in Polyrhachis compared to other ants so may be another mechanism to 

compensate for the lack of a MG (Graystock and Hughes 2011; Tranter et al. 

2015). Ants may also alter the amount of trophallaxis, which may reduce the 
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transmission of pathogens through minimising physical contact, or, in at least one 

species of ant, transfer antimicrobial proteins to nestmates (Hamilton et al. 2011b 

Reber and Chapuisat 2012). These behaviours may provide an alternative form of 

protection in species which lack antimicrobial defences.  

In this study we investigate the defences employed for disease resistance 

by the but little studied green weaver ant Oecophylla smaragdina, a species which 

has complex societies with advanced nest weaving and polymorphic workers, and 

compare this with three Polyrhachis weaver ant species that also lack the MG, but 

which have monomorphic workers and less advanced nest weaving. Specifically 

we test: i) the importance of antimicrobial venom and the presence of potentially 

antimicrobial larval silk for the ability of O. smaragdina workers to resist parasite 

infection; ii) whether polymorphism in O. smaragdina allows division of labour in 

disease resistance, by examining whether the major and minor worker castes of 

O. smaragdina differ in their grooming defence against parasites; iii) how the 

grooming response of O. smaragdina to parasites compares with that of three 

Polyrhachis weaver ant species; iv) the effectiveness of venom in maintaining 

acidic nest conditions in both  O. smaragdina and P. delecta.  

 

4.3 Methods 

We used four different species of weaver ant in the experiments. Oecophylla 

smaragdina, was our primary study species and used in all four experiments. This 

is an ecologically dominant, polymorphic species of weaver ant found across Asia 
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and Australia which shows the most advanced form of nest weaving, making 

nests in trees and vegetation using leaves woven together with larval silk (Crozier 

and Newey 2010). We compared the behavioural and chemical defences of O. 

smaragdina in Experiments 3 and 4 with those of three species of Polyrhachis 

weaver ants: 2) Polyrhachis (Myrmhopla) dives (in Experiment 3), a 

monomorphic arboreal species from Asia and Australia which forms characteristic 

carton nests from twigs, foliage, and general detritus bound with larval silk; 3) 

Polyrhachis (Myrma) foreli (in Experiment 3), a large monomorphic Polyrhachis 

species which tends to be terrestrial and nest in rotting wood or ground-level 

epiphytes (Robson and Kohout 2007; Kohout 2012); 4) Polyrhachis 

(Cyrtomyrma) delecta (in Experiments 3 and 4), a monomorphic shiny black 

weaver ant from Queensland, Australia, which builds carton nests from larval silk 

between the lower leaves of trees and shrubs (Kohout 2006). Other than in 

Experiment 2, we used major workers of O. smaragdina throughout as they were 

most similar in size to the Polyrhachis workers. Fungi appear to be the most 

common parasite threat for ants and, while particularly abundant in the soil 

environment, are also present in the arboreal habitat as well (Boomsma et al. 

2005; Griffiths and Hughes 2010). Fungal disease threats to ants include 

specialist parasites of ants such as Ophiocordyceps, generalist entomopathogens 

such as Metarhizium, and opportunistic parasites such as Aspergillus (Jouvenaz 

et al. 1972; Alves and Sosa-Gómez 1983; Humber 1992; Schmid-Hempel 1998; 

Hughes et al. 2004; Rodrigues et al. 2010; Lacerda et al. 2010; Ribeiro et al. 

2012). Specialist ant parasites are likely to show strong coevolution with their 

specific host species making them unsuitable for comparative experiments, so we 

here use Metarhizium as the experimental parasite because it has been reported 

parasitizing a wide diversity of ant species (Allen and Buren 1974; Lofgren and 
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Vander Meer 1986; Sanchez-Pena and Thorvilson 1992; Quiroz et al. 1996; de 

Zarzuela et al. 2007, 2012; Castilho et al. 2010), and should be less likely to 

exhibit species-specific coevolution with the ants investigated here. 

 

4.3.1 Exp. 1: Venom gland blockage and silk in O. smaragdina  

Forty-eight major workers were collected from immediately outside the nest 

entrances for each of five colonies of O. smaragdina. The ants from each colony 

were divided into eight treatment groups representing a full-factorial combination 

of trials with ants either: i) treated or untreated with Metarhizium pingshaense 

[MT02_73 isolated from Panama (Hughes et al. 2004; Pull et al. 2013)] ii) with 

venom glands blocked with nail varnish or unblocked, and iii) with or without a 

section of nest silk to test whether ant workers may gain antimicrobial compounds 

from the silk. The Metarhizium-treated ants had 0.5 µl of a 1.5 x 106
 conidia per 

ml suspension of Metarhizium conidia in a 0.05% solution of Triton-X surfactant 

applied directly to the mesosoma and gaster of the ant with a micropipette. 

Similar doses have produced approximately 50% mortality in Polyrhachis and 

other formicine ants (Graystock & Hughes 2011; C Tranter unpublished data). 

Control ants had 0.5 µl of a 1.5 x 106 particle per ml suspension of talcum 

powder in 0.05% Triton-X solution applied in the same way as a particulate 

control. Ants were held with soft forceps during the treatment procedure. 

Metarhizium conidia were harvested from freshly sporulating media plates, and 

viability was confirmed to be > 90% throughout the experiments by quantifying 

conidia germination 24 h after plating onto Sabouraud dextrose agar (Siegel 

2012). Venom glands were blocked by placing a drop of quick-dry nail varnish 
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over the acidopore with a needle, with a drop of nail varnish being applied on to 

the dorsal surface of the gaster in control ants. The nail varnish was checked 

daily to ensure that it was still intact, but in all trials remained present for the 

duration of the experiment. Fresh white nest silk was obtained from the outer 

sections of the nest-of-origin for each ant, and cut into 1 cm2 squares, before 

being paired with each ant. After treatment, ants were kept individually at 22°C 

in pots (height: 100 mm, diameter: 22 mm), with two small balls of cotton wool 

soaked in water and 20% sucrose solution, and their survival monitored daily for 

a period of two weeks. 

 

4.3.2 Exp. 2: Caste differences in O. smaragdina behaviours 

In order to investigate whether O. smaragdina worker castes may differ in their 

self-grooming behavioural defences, 10 major and 10 minor workers were 

collected from each of five colonies of O. smaragdina. Half of the ants of each 

caste were treated with Metarhizium and half with a control treatment of talcum 

powder, as in Experiment 1. Each individual was placed in an individual pot, in 

the conditions described above, and observed for 15 min, with the length of time 

the ant spent self-grooming being recorded. In addition, 12 minor and 12 major 

workers were collected from each of four colonies of O. smaragdina to look at 

differences in allogrooming and trophallaxis between pairs of ants. For this, the 

ants from each colony were split into three pairings: major-major, major-minor, 

and minor-minor, with each pair of ants being placed together in a pot. The 

duration of any allogrooming or trophallaxis between the two ants was then 

recorded over a period of 15 min. Whilst it was possible to discriminate the 



110 

direction of allogrooming e.g. a major grooming a minor, this directionality was 

not accurately determinable for trophallaxis.  

4.3.3 Exp. 3: Behavioural defences of four species of weaver ant  

Ten major worker ants from each of three colonies were collected from the 

exterior nest surface of each of the four weaver ant species (P. delecta, P. dives, 

P. foreli, O. smaragdina). Half of the ants from each colony were treated with 

Metarhizium and the other half with a talcum powder control suspension, as in 

Experiment 1, placed in individual pots, and their self-grooming observed for 15 

min. Data from P. dives was collected prior to the rest of the experiment in 2012 

from colonies kept in the UK, using a different stock suspension of the same 

strain of Metarhizium, but with the concentration, delivery methods, and rest of 

the protocol being identical.  

4.3.4 Exp. 4: The use of acidic venom for nest hygiene 

We investigate directly whether worker presence affected the pH of nest material 

in four ways. First, nest silk from colonies of O. smaragdina and P. delecta was 

cut into 1 cm2 sections, and the pH tested by soaking the nest material samples in 

0.5 ml of distilled water and adding universal indicator solution (Fluka Universal 

indicator solution; pH 4-10). The nest material was sampled broadly from both 

towards the inside and outside the colony. This was repeated 15 times (five 

samples from each of three colonies) from each of the two species for: 1) nest 

material freshly sampled (less than 2 h since colony collection); 2) nest material 

which had been left on its own in a pot for 24 h; 3) nest material which had been 

paired with a worker ant and left in a pot for 24 h. Oecophylla majors were used 
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for the pairings, and all ants were sampled from those found immediately external 

to the nest. Second, the ability of ants to maintain alterations in pH in their 

environment was investigated by placing ants with a section of pH indicator paper 

(Fluka indicator paper; pH 0.5-7). Individual ants were placed into a pot with the 

bottom lined with two sections of indicator paper for 48 h. At time points 2 h, 12 

h, 24 h and 48 h both indicator sections of the dish were observed and the pH 

recorded based on the colour of the indicator paper. At each of the time points the 

left hand section of the indicator paper was replaced to account for any variation 

in the result due to time affecting the indicator paper, but both papers gave the 

same (± < 0.5 pH) results throughout. After 48 h the ant was removed and the 

paper left for a further 24 h before a final recording was taken. This was repeated 

for five ants from each of three colonies for P. delecta and five ants from each of 

five colonies for O. smaragdina. Third, in order to confirm that venom use was 

responsible for changes in pH we blocked the venom gland of 15 ants with nail 

varnish and applied nail varnish to the dorsal surface of the gaster for 15 control 

ants from five colonies of O. smaragdina, and recorded the pH of the environment 

within a pot in which they had been kept for 48 h using pH indicator paper. 

Fourth, the antifungal effect of pH was tested by measuring conidia viability on 

media at three acidities. Twenty agar media plates (Sabarose dextrose agar 

medium plus yeast) were prepared, and 100 µl of a 1.5 x 106
 suspension 

containing freshly harvested Metarhizium conidia in Triton-X was pipetted and 

spread evenly over the surface of the plate. The plates were left for 10 min for 

any excess liquid to evaporate before 100 µl of one of a series of sequentially 

diluted pH treatments were applied. Doses were as follows: undiluted formic acid 

solution (pH 3.7), 1:10 dilution of formic acid:ddH20 (pH 4.7), 1:100 dilution of 

formic acid:ddH20 (pH 5.7), and pure ddH20. Plates were then incubated for 16 h 
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at 28°C before the percentage of viable conidia (counted as those where the germ 

tube produced was longer than the diameter of the conidia) were counted under a 

stereo microscope at 200x magnification (Siegel 2012).  

4.4 Statistical analyses 

All data was tested for normality prior to analyses in order to determine the 

correct test and model distributions were chosen based on the best fit using AIC 

scores and the structure of the non-normal data. No over-dispersion was observed 

based on model deviance/df values. The survival of Oecophylla smaragdina ants 

in Experiment 1 were analysed using a Cox regression with fungal treatment, the 

presence of silk, gland blockage, and colony included as factors. Non-significant 

interaction terms were removed stepwise to achieve the minimum adequate 

model. Pairwise comparisons of treatments were made using Kaplan-Meier tests 

with the Breslow statistic. In Experiment 2, the effect of caste on the duration of 

self-grooming for O. smaragdina workers was examined using a linear mixed 

model, with caste-pairings and fungal treatment included as fixed factors. 

Allogrooming and trophallaxis rates in Experiment 2 and the differences between 

self and allogrooming rates between the four species of weaver ants with and 

without fungal treatment in Experiment 3, were analysed using generalized linear 

mixed models (GLMM) with gamma distributions and log link functions. The pH 

levels of the environment shared by an individual ant in Experiment 4 was 

analysed using a GLMM with gamma distribution and log link function, with time 

and species included as fixed factors. The pH levels of nest silk paired with 

different ant species for different periods, differences in conidia viability between 

pH treatments, and the effect of gland blockage on pH, were analysed using linear 
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mixed model. Post-hoc comparisons for all models were adjusted using the 

sequential Bonferroni method and colony-of-origin was included as a random 

factor for all linear mixed models and GLMMs. 

 

4.5 Results 

4.5.1 Exp. 1: Venom gland blockage and silk in O. smaragdina  

None of the control ants which died sporulated with the Metarhizium parasite, 

whereas approximately 75% of the dead Metarhizium-treated ants sporulated 

with the parasite. There was a significant interaction between the effects of gland 

blockage and Metarhizium treatment on survival (Wald = 44.7, d.f. = 1, p < 

0.001). Ants treated with control solution survived similarly well regardless of 

whether their venom gland was blocked and all ants exposed to Metarhizium 

parasite suffered greater mortality, but ants exposed to the Metarhizium parasite 

survived significantly less well when their venom gland was non-functional 

(Figure 4.1). The presence or absence of nest silk had no effect on worker 

survival (Wald = 0.42, d.f. = 1, p = 0.52). There were differences in the 

survival rates of ants from different colonies (Wald = 7.08, d.f. = 1, p = 0.008) 

but no interactions between the colony-of-origin and the effects of treatments (p 

> 0.05 in all cases). 
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Figure 4.1. The survival of individual O. smaragdina workers exposed to the 

Metarhizium parasite (solid lines) or control solution (dashed lines), with venom 

glands blocked (black symbols) or unblocked (white symbols), and kept with nest 

silk (squares) or without silk (circles). Different letters indicate three sets of 

treatments which differed significantly from one another in pairwise comparisons (p 

< 0.05). 

 

4.5.2 Exp. 2: Caste differences in O. smaragdina behaviours 

There was no effect of colony of origin on self-grooming, allogrooming or 

trophallaxis rates (z = 2.12, p = 0.07; z = 0.72, p = 0.47; z = 0.703, p = 

0.48, respectively) and therefore data across colonies were analysed together. 

There was a significant interaction between the effects of caste and fungal 

treatment on both self-grooming rates (F = 5.57, d.f. = 1, p = 0.02) and 

allogrooming rates (F3,88 = 2.85, p = 0.042). Major workers, but not minor 

workers, significantly increased their self-grooming rates in response to fungal 

exposure (Figure 4.2a). Minor workers had higher baseline allogrooming levels 

overall but did not alter their allogrooming rates in response to a fungal threat 
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Figure 4.2.Grooming duration in Oecophylla smaragdina. Either a) self-grooming, 

b) allogrooming, and c) trophallaxis major or minor workers that were either 

treated with the Metarhizium parasite (grey) or Triton-X control (white). Self-

grooming observations were made on individual minor or major workers, whilst 

allogrooming and trophallaxis rates were quantified for pairs of ants in all four 

combinations of major and minor castes. In (b), the first caste listed in the x-axis 

label indicates the ant carrying out allogrooming and the second caste listed 

indicates the ant receiving allogrooming. It was not possible to accurately 

determine the direction of trophallaxis. An asterisk above columns indicates a 

significant difference between the Metarhizium and control treatments, while 

different letters above columns indicate caste combinations which differed 

significantly from one another (talcum powder: a-c, Metarhizium: x-z; p < 0.05).  
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 (Figure 4.2b). Major workers, however, significantly up-regulated allogrooming 

rates, both of major and minor workers, in response to fungal exposure. The 

increase in allogrooming by majors after exposure to the fungi resulted in levels 

comparable to minors. Trophallaxis rates differed significantly between the caste 

combinations, with the presence of majors leading to higher trophallaxis rates 

(F2,66 = 61.4, p < 0.001; Figure 4.2c). Overall there was less trophallaxis when 

an ant had been treated with Metarhizium (F1,66 = 15.4, p < 0.001), although 

this difference was only significant in the major-minor pairing (Figure 4.2c), and 

there was no interaction between terms (F = 0.25,  d.f. = 2,66, p = 0.77).  

 

4.5.3 Exp. 3: Behavioural defences of four species of weaver ant  

The four weaver ant species differed significantly in their baseline self-grooming 

levels (F7,112 = 25.6, p < 0.001), and all the species groomed significantly more 

when exposed to Metarhizium (F1,112 = 58.3, p < 0.001). There was no 

interaction between factors indicating that they responded in similar ways (F3,112 

= 0.88, p = 0.454), and no effect of colony (z = 0.33, p = 0.75). Oecophylla 

smaragdina had significantly lower baseline self-grooming and up-regulation of 

grooming rates compared with the Polyrhachis species, of which P. foreli had the 

highest baseline grooming rates (Figure 3a). Overall there was a significant up-

regulation of allogrooming in ants treated with Metarhizium compared to those 

treated with talcum powder (F1,112 = 4.89, p = 0.029; Figure 3b), but no 

significant difference between species (F3,112 = 1.46, p = 0.225), interaction 

between effects (F3,112 = 0.515, p = 0.673), or effect of colony (z = 0.725, p = 

0.469). 
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Figure 4.3. Grooming durations in four weaver ant species: a) self-grooming and b) 

allogrooming for works of Polyrhachis delecta, Polyrhachis dives, Polyrhachis 

foreli, Oecophylla smaragdina, after exposure to the Metarhizium parasite (grey) or 

Triton-X control (white), in a 15 min period. An asterisk above columns indicates a 

significant difference between the Metarhizium and control treatments, while 

different letters above columns indicate caste combinations which differed 

significantly from one another (talcum powder: a-c, Metarhizium: x-z; p < 0.05). 
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4.5.4 Exp. 4: The use of acidic venom for nest hygiene 

In the first assay when the pH of silk was measured directly, there was a 

significant interaction in the effects of ant species and whether the silk had been 

kept with attending workers on the pH of silk (F5,84 = 4.41, p < 0.001). The rise 

in pH when silk was kept without ants was greater for silk from O. smaragdina 

nests than for silk from P. delecta nests, and the reduction in the pH of silk when 

kept for 24 h with an ant was also much greater with O. smaragdina than P. 

delecta, becoming more acidic than silk from the nest in the former but becoming 

identical to silk from the nest in the latter (Figure 4a). The pH of O. smaragdina 

silk was significantly lower when compared to silk from colonies of P. delecta for 

both fresh silk and silk that had been kept with an ant, but there was no 

difference in the pH of silk from the two species when it had been left without an 

attending ant for 24 h. In the second assay, the presence of ants resulted in a 

significant reduction in the environmental pH over time (F5,228 = 47, p < 0.001). 

Two hours after introduction of the ants, the pH was substantially reduced to a 

low level at which it was maintained for the 48 h that the ant was present 

(Figure 4.4b). After the ant was removed after 48 h, the pH returned to near the 

initial value by 60 h. The reduction in pH was much stronger with O. smaragdina 

than P. delecta (F1,228 = 203, p < 0.001), but the change over time was similar 

for the two species (F3,112 = 0.88, p = 0.454; Figure 4.4b). In the third assay, 

the pH of the environment within pots was significantly lower when O. 

smaragdina ants had functional venom glands, at pH 4.5 ± 0.2, compared to pH 

6.1 ± 0.1 when the gland was blocked (F1,15 = 54.96, p = 0.002) and there 

was no effect of colony-of-origin on the pH (F1,4 = 0.28, p = 0.56). 
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Figure 4.4. pH and acid application in weaver ants. a) The pH of nest silk that had 

been freshly removed from the inside of the colony (left), left for 24 h without an 

attending ant (middle), or kept for 24 h with an attending ant (right), from colonies 

of either O. smaragdina (white bars) or P. delecta (grey bars). An asterisk above 

columns indicates a significant difference between the Metarhizium and control 

treatments, while different letters above columns indicate caste combinations which 

differed significantly from one another (talcum powder: a-c, Metarhizium: x-z; p < 

0.05). b) The effect of the introduction of an individual ant on the pH of its 

environment at six time points over a 60 h period. pH readings were taken at 0, 2, 

12, 24, 48 and 60 h and each data point represents a mean ± s.e. of 25 individuals 

of either Polyrhachis delecta (black squares) or Oecophylla smaragdina (white 

triangles). At 48 h (indicated by the dashed vertical line) the ant was removed. c) 

The percentage of Metarhizium conidia germinating on media in the presence of 

three dilutions of formic acid or a control treatment of ddH20. Different letters 

indicate treatments which differed significantly from one another at p < 0.05. 

 

Additionally ants were observed spraying acid from their venom glands during 

trials which could be seen as distinct spots on the pH paper, indicating areas that 

had undergone significant reductions in their pH. In the fourth assay, the 

application of formic acid in vitro had a significant effect on conidia viability 

(F3,16 = 354.7, p < 0.001), with a pH of 4.7 reducing conidial viability by 

approximately 80% and a pH of 3.7 reducing it to almost to zero (Figure 4.4c).  

 

4.6 Discussion 

The results shed light on the behavioural and, in particular, chemical defences 

that Oecophylla weaver ants have against disease, and that the strength of these 

defences varies interspecifically when compared to Polyrhachis weaver ants. O. 
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smaragdina workers were more resistant to the entomopathogenic fungus 

Metarhizium when they could secrete venom. Their acidic venom was strongly 

antimicrobial, and application improved the hygiene of their nest material. There 

was no evidence for O. smargdina workers gaining antimicrobial compounds from 

silk, although other benefits of silk are possible. The behavioural defences of O. 

smaragdina varied phenotypically, with minor workers showing lower self-

grooming, higher allogrooming and lower upregulation in response to fungal 

threat than major workers. When compared with Polyrhachis weaver ant species, 

O. smaragdina exhibited lower grooming rates, but more active use of a more 

acidic venom.  

The use of venom in O. smaragdina seems to be very important for disease 

resistance, with individuals surviving exposure to the Metarhizium parasite 

significantly better when their venom gland was functional, as opposed to being 

blocked. The presence of O. smaragdina workers with functional venom glands 

also significantly reduced the pH of the ant’s environment and nest silk. The 

original nest material sampled from within the intact colony was found to be 

maintained at slightly acidic levels of around pH 5 which may represent the 

natural baseline pH within a colony. When the nest material was removed and 

left unattended, pH levels rose towards neutral after a short space of time (< 24 

h). The acidity of less than pH 4 was rapidly regained when silk was kept with a 

single attending worker. This acidity appears likely to be key in the general 

sterilisation of the ant colony against parasitic fungi because the highly acidic 

environments, generated through venom use in these ants, significantly reduced 

the viability of Metarhizium conidia. Fungi have been previously found to suffer 

decreased growth and viability at low pH or in the presence of generally acidic 
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compounds (Do Nascimento and Schoeters 1996; Rousk et al. 2009, 2010), and 

we confirm this here using formic (methanoic) acid that forms the major 

component of Oecophylla, and other formicine, ant venom (Bradshaw 1979; Blum 

1992). Many fungal parasites benefit from a mildly alkaline environmental pH, 

and Metarhizium itself will even raise the pH of its environment in order to 

promote its own fitness (St Leger et al. 1991; Leger et al. 1999). Thus the use of 

acidic venom to lower environmental pH may be a beneficial adaptation to help 

ants combat the efficacy of fungal parasites. However, Tragust et al. (2013a) 

found that dilutions of both hydrochloric and sulphuric acid set to the same pH 

(pH 2.5) as formic acid did not result in the same inhibition of fungal germination. 

Therefore formic acid may be antifungal for reasons other than pH, or the 

antifungal activity be due to the high concentrations of formic acid used. One 

other major component of Oecophylla venom is undecane which makes up around 

40% of the Dufor gland secretions (Bradshaw 1979; Keegans et al. 1991), and 

when combined with formic acid results in a strong behavioural alarm response in 

many insects. Undecane can produce antifungal effects synergistically with other 

gland components, but on its own has no documented antifungal activity 

(Bradshaw 1979; Dani et al. 2000; Fernando et al. 2005; Tragust, Ugelvig, et 

al. 2013). Acids such as formic acid when found in combination with other short-

chained acids can amplify the effective pH changes, or act as wetting agents 

promoting the delivery or effect, which may have compounding effects on their 

antifungal actions (Schildknecht and Koob 1971; Ortius-Lechner et al. 2000; 

Mendonça et al. 2009). Therefore whilst it seems likely that a large part of the 

sterilising power of Oecophylla venom is due to the presence of formic acid, the 

interaction of this component with other compounds in the venom and 

neighbouring glands is likely to be important. Formic acid has also been identified 
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as a major component of the cephalic exocrine secretions of Oxytrigona ‘firebees’, 

which use the acidic secretions as an effective defence against vertebrates (Roubik 

et al. 1987), and it would be interesting to discover whether the antimicrobial 

benefits of formic acid may extend beyond ants to other social insects.  

Additionally, within O. smaragdina colonies there appears to be some 

differentiation in grooming and trophallaxis levels, depending on caste. Major 

workers, which carry out most extranidal work and also predominate at the nest 

entrances, showed a greater up-regulation in their self-grooming and 

allogrooming levels in response to treatment with Metarhizium, whereas minor 

workers that stay exclusively within the social environment of the nest had higher 

baseline allogrooming rates. Trophallaxis levels between minor workers was 

generally very low, but interestingly, whilst there was no significant difference in 

trophallaxis rates between majors when exposed to Metarhizium, there was a 

significant reduction between majors and minors. Previously ants have been 

found to show increases (de Souza et al. 2008; Hamilton et al. 2011), decreases 

(Aubert and Richard 2008), and no change (Konrad et al. 2012) in trophallaxis 

rate in response to parasite challenge, so it appears the interaction with this 

behaviour is quite variable. As minor workers are found almost exclusively within 

the nest the reduction we see here in trophallaxis may represent a behavioural 

adaptation to try and stop the spread of parasites via trophallaxis into the colony. 

Wilson (1984) and Sempo and Detrain (2004), looking at the behavioural 

repertoires of castes in Pheidole found, as in this study, that minor workers 

performed the majority of allogrooming whilst majors performed more self-

grooming. In leaf-cutting ants, it is the minor workers that play the major role in 

parasite defence, having relatively large metapleural glands, high grooming rates, 
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and resistance to parasites (Hughes et al. 2002, 2010; Poulsen et al. 2006; 

Griffiths and Hughes 2010; Abramowski et al. 2011). In Oecophylla, in contrast, 

it appears to be the major workers that may have the major role in defending the 

colony against parasites on incoming material or ants.  

Between the different weaver ant species there were notable differences in 

grooming rates and venom use. While Polyrhachis delecta used its venom in a 

similar manner to O. smaragdina, in order to increase the acidity of nest silk, it 

did not produce as large a reduction in pH. However, the Polyrhachis weaver ants 

in general exhibited much higher baseline and up-regulated self-grooming rates 

than O. smaragdina, and indeed have higher rates of self-grooming than other 

ants too (Graystock & Hughes 2011; Tranter et al. 2015). The results of 

Experiment 4 suggest that pH needs to be reduced to around 4.7 to gain a 

significant benefit in terms of anti-fungal effect. A reduction to pH 3.7 results in 

very low conidia viability and is even better for ants trying to prevent the spread 

of pathogenic fungi.  O. smaragdina ants were consistently able to lower, and 

maintain, their environment to less than pH 4, whereas the Polyrhachis species 

tested was not. It appears then that the venom of Polyrhachis may be less 

effective, or used less effectively, when compared with O. smaragdina, or 

alternatively that it is used more sparingly in specific contexts such as to defend 

brood (Tragust et al. 2013a; Tranter et al. 2014). This may represent a 

differential investment into parasite defences between the genera, with 

Polyrhachis using behavioural removal of fungal conidia, instead of relying on the 

chemical sterilisation used by O. smaragdina.  However, it is difficult to 

determine which traits are drivers of evolutionary change and which are the 

result of trade-offs. For example, Polyrhachis species may have evolved increased 
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self-grooming because their venom is less effective, or evolved less effective 

venom because they do more self-grooming. Conversely, Oecophylla may have 

relaxed investment into grooming as they possess potent venom, or evolved more 

effective venom as they groom less. It seems likely, however, that there are fewer 

evolutionary constraints on behavioural self-grooming, making it most probable 

that there is a constraint on Polyrhachis venom production and that this then 

forces workers to use self-grooming to compensate.  

In conclusion, we show that Oecophylla weaver ants are able to improve 

their resistance to the fungal parasite Metarhizium, and the hygiene of both 

themselves and their nest, through application of acidic venom. There was no 

difference in the survival of ants if they were paired with nest silk and so no 

evidence that any antimicrobial compounds in silk transfer to adult ants, although 

it remains possible that silk may have other benefits such as being an antiseptic 

nest material or blocking the entry of parasites in the environment. There was 

also evidence of trade-offs between chemical and behavioural defences, with 

different weaver ant species relying on alternative responses to parasites to 

protect themselves, and variations in the expression of grooming between castes 

in Oecophylla. It will be interesting to see in future work on more species whether 

grooming and acid production vary within the diverse Polyrhachis and in other 

genera with weaving habits, whether this is tied to their nesting habits or some 

other aspect of their biology, and whether venom use in Polyrhachis is more 

sparing or just less effective. We show that ant species which lack the 

antimicrobial secretions supplied by the metapleural gland, can use the application 

of acidic venom and grooming to help to defend themselves and their nest material 

against the threat of fungal parasites which are a ubiquitous and serious threat to 
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ant societies. This demonstrates how differential investment in parasite defences 

can occur in species which share many ecological characteristics, further 

highlighting the complexity of disease resistance mechanisms, and the need for 

comparative studies to help understand how organisms have evolved in response 

to the threat of parasites. 

  

Oecophylla smaragdina 
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 Quality and quantity: transitions in 5.

antimicrobial gland use for parasite 

defence  

  

5.1 Abstract 

Parasites are a major force in evolution, and understanding how host life-history 

affects parasite pressure and investment in disease resistance is a general problem 

in evolutionary biology. The threat of disease may be especially strong in social 

animals, and ants have evolved the unique metapleural gland (MG), which in 

many taxa produce antimicrobial compounds that have been argued to have been 

key to their ecological success. However, the comparative importance of the MG 

in the disease resistance of individual ants across ant taxa has not been examined 

directly. We investigate experimentally the importance of the MG for disease 

resistance in the fungus-growing ants, a group in which there is interspecific 

variation in MG size and which has distinct transitions in life-history. We find 

that more derived taxa rely more on the MG for disease resistance than more 

basal taxa, and that there are a series of evolutionary transitions in the quality, 

quantity and usage of the MG secretions, which correlate with transitions in life-

history. These shifts show how even small clades can exhibit substantial 

transitions in disease resistance investment, demonstrating that host-parasite 

relationships can be very dynamic, and that targeted experimental, as well as 

large scale, comparative studies can be valuable for identifying evolutionary 

transitions.  
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5.2 Introduction 

Parasites can inflict considerable costs on host organisms (Sheldon and Verhulst 

1996; Rigby et al. 2002; Boots et al. 2004). This can result in a dramatic co-

evolutionary reshaping of the genotype, phenotype and overall life-history of both 

hosts and parasites, and may have been a key influence in major evolutionary 

transitions including the evolution of sex and sociality (Hamilton et al. 1990; 

Møller et al. 1993; Boomsma et al. 2005). Understanding how the life-history of 

hosts affects the selection strength on them from parasite pressure, and how this 

in turn leads to further changes in the evolutionary investment by hosts in costly 

disease resistance mechanisms, is an important problem in evolutionary biology. 

Group-living is associated with a potential increase in parasite pressure, because a 

social lifestyle can facilitate the transmission of parasites within the group 

(Alexander 1974; Cote and Poulin 1995; Møller et al. 2001; Altizer, Nunn, and 

Thrall 2003). This is compounded in social insect colonies which have highly 

homeostatic nest environments and low levels of genetic variation within the 

colony (Schmid-Hempel 1994; Frank 1996; Calleri et al. 2006). However, in 

addition to individual-level immune defences, social organisms are able to employ 

social defences that have been termed ‘social immunity’ in the broad sense 

(Dunbar 1991; Ugelvig and Cremer 2007; Wisenden et al. 2009; Otti et al. 

2014). This can include behavioural defences such as grooming, and the 

production and transfer of antimicrobial compounds(Rosengaus et al. 1998; 

Fernández-Marín et al. 2006; Yanagawa et al. 2008; Hamilton et al. 2011; 

Baracchi, Mazza, et al. 2012; Turnbull et al. 2012), which can mitigate or even 
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outweigh the fitness cost from parasites for group-living animals (Rosengaus et 

al. 1998; Hughes et al. 2002; Ugelvig and Cremer 2007; Reber et al. 2011). 

The threat of disease has led the most diverse group of social insects, the ants, to 

evolve a unique exocrine structure, the metapleural gland (MG), which varies in 

size between species and phenotypes, and in many taxa produces an antimicrobial 

secretion that is spread over the cuticle either passively or, in some species, 

actively by grooming (Hölldobler and Wilson 1990; Bot and Boomsma 1996; 

Sumner et al. 2003; Fernández-Marín et al. 2006; Poulsen et al. 2006; Hughes, 

Pagliarini, et al. 2008; Hughes et al. 2010; Yek and Mueller 2011; Yek et al. 

2012). Consequently, ants are able to vary their level of investment in disease 

resistance both on an evolutionary time-scale, and as a short-term behavioural 

response to disease threat by active grooming of the secretion on to the cuticle. 

Whilst the secretion from the metapleural gland can be antibacterial (Iizuka et al. 

1979; Veal et al. 1992), effective at inhibiting fungal sporulation and growth, 

and helping ants resist parasites (Beattie et al. 1985, 1986; Bot et al. 2002; 

Graystock and Hughes 2011; Tranter et al. 2014; Tranter and Hughes 2015), 

the gland is energetically costly to maintain (Poulsen, Bot, Nielsen, et al. 2002). 

Thus its degree of use in different ant species can be used as a measure of their 

relative investment in disease resistance, and thus to infer the strength of parasite 

pressure in different species with different life histories (Hughes et al. 2002; 

Poulsen, Bot, Nielsen, et al. 2002; Hughes and Boomsma 2006). Whilst 

experimental blockage of the metapleural gland has been shown to increase the 

susceptibility of ants to fungal parasites (Poulsen, Bot, Nielsen, et al. 2002; 

Graystock and Hughes 2011; Tranter et al. 2014), the comparative importance of 
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the metapleural gland in disease resistance of individual ants has not previously 

been quantified directly. 

One group of ants which has proved particularly powerful for comparative 

analyses of disease resistance are the fungus-growing ants (Attini) which form a 

monophyletic clade with well-developed MGs (Table S5.1 p.281; Mueller et al. 

1998; Currie, Scott, et al. 1999; Currie, Mueller, et al. 1999; Schultz and Brady 

2008; Fernández-Marín et al. 2013). Fungus-growing ants have been most 

extensively investigated with respect to the defence of their fungal crop mutualist 

against a specialist parasitic fungus, Escovopsis. The ants achieve this using a 

combination of weeding, antimicrobial compounds from the MG, and 

antimicrobials produced by actinomycete bacteria that the ants culture on their 

cuticles (Currie, Scott, et al. 1999; Currie and Stuart 2001; Fernández-Marín et 

al. 2013). There appears to be a trade-off between these two sources of beneficial 

antimicrobials, with species that possess more of the Escovopsis-specific 

actinomycete defences relying less heavily on the MG to protect their fungal crop 

(Fernández-Marín et al., 2013). However, while most attention has been focused 

on the mechanisms by which ants defend their fungal crop against parasites, the 

ants also need to defend themselves against disease. The antimicrobial compounds 

produced by the actinomycete bacteria are thought to be specifically active against 

Escovopsis (Currie, Scott, et al. 1999; Little et al. 2006; Pagnocca 2012), and 

the ants rely for their own defence on mechanisms such as grooming and the MG. 

The antimicrobial activity of the MG secretion of leaf-cutting ants has been 

demonstrated in vitro (Bot et al. 2002) and the importance of the MG for 

defending both adults and brood against parasites also demonstrated in leaf-

cutting ants experimentally (Poulsen et al. 2006; Tranter et al. 2014). Previous 
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comparative studies have shown that fungus-growing ants vary substantially in 

the size of their MG, the chemical composition of its secretion, and their use of 

active MG grooming to spread the secretion, with the more evolutionary derived 

Atta and Acromyrmex leaf-cutting ants which live in larger, more complex 

societies, having particularly large MG (Fernández-Marín et al., 2006; 2009; 

2013; Hughes et al., 2008b; Adams et al., 2012; Vieira et al., 2012b). However 

whether these evolutionary transitions in MG size and secretion result in 

differences in the disease resistance of individual attine ants themselves has not 

previously directly quantified. In this study we use MG use as a measure of 

investment into disease resistance within the evolutionary framework of the 

fungus-growing ants. Specifically we test the hypotheses that when compared to 

more evolutionarily basal species, the more derived species with larger and more 

complex societies will show 1) greater reliance on functioning MG glands for their 

own disease resistance, 2) greater active MG selfgrooming rates in response to a 

parasite threat, and 3) more powerful antifungal components within the chemical 

makeup of MG secretions.  

 

5.3 Methods 

5.3.1 Study species 

We studied six species of Neotropical attine ants spanning the major phylogenetic 

divisions (Appendix 3): two species of leaf-cutting ant (Atta colombica, 

Acromyrmex echinatior), three species of higher attines (Sericomyrmex amabilis, 

Trachymyrmex cornetzi, Trachymyrmex sp10) and one species of lower attine 
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(Apterostigma pilosum; Table S5.1 p.281). Colonies were collected in and around 

Gamboa, Panama in June 2013, and maintained at 80% relative humidity and 

27°C on a 12 h light/dark cycle. Colonies were fed twice per week with fresh 

privet (Ligustrum sp.) leaves for the two leaf-cutting species or chopped flower 

petals and oat flakes for the other four species, and provided with water ad 

libitum. As the experimental parasite, we used the entomopathogenic fungus 

Metarhizium pingshaense (KVL02-73; which was originally isolated from soil in 

Gamboa near a leaf-cutting ant nest;(Hughes and Boomsma 2004b)). 

Metarhizium is a ubiquitous, generalist fungal pathogen which parasitizes a wide 

range of insects, including attine and other ants, but which is unlikely because of 

its generalist nature to have coevolved to overcome the specific defences of attine 

ants (Sanchez-Pena and Thorvilson 1992; Quiroz et al. 1996; Hughes and 

Boomsma 2004b; Castilho et al. 2010; Reber and Chapuisat 2011; de Zarzuela et 

al. 2012; Ribeiro et al. 2012). 

 

5.3.2 Exp. 1: gland blockage and fungal exposure on survival 

Twenty worker ants were selected from just inside the nest entrance of each of 

six colonies of S. amabilis, T. cornetzi, T. sp10, and A.pilosum, 40 ants from six 

colonies of A. echinatior and 80 ants from three colonies of A. colombica. Trials 

involving A. echinatior and A. colombica were conducted as two separate cohorts 

and data later pooled (see Figure S5.1 p.266). Ants used within each species 

were a similar size, with medium cuticular colouration, and hence inferred age 

(Armitage and Boomsma 2010). For the polymorphic leaf-cutting ant species, we 

used workers of similar size to the other attines (0.9-1.4 mm head width). Half of 
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the ants from each colony had their MG blocked using quick-drying nail varnish, 

whilst the other half received a control treatment of nail varnish applied to the 

pronotum. Nail varnish was checked daily and remained intact on all ants treated 

for the course of the experiment. After 24 h, each of these groups then had either 

a suspension of Metarhizium conidia in 0.05% Triton-X or a control solution of 

0.05% Triton-X applied topically to the mesosoma with a micropipette. 

Treatment volumes were standardized for body size between species, and conidia 

concentrations were approximately the LD50 for the species based on pilot studies 

(5 x 106 conidia per ml for leaf-cutting ant species and 5 x 105 conidia per ml for 

the other species; Table S5.4 p.284). This design involved a total of 120 ants for 

each of S. amabilis, T. cornetzi, T. sp10, and A. pilosum (30 ants per species for 

each of the four treatment groups), and 240 ants for A. colombica and A. 

echinatior (60 ants per species for each of the four treatment groups). After 

treatment, each ant was placed in a plastic pot (diameter: 35 mm, height: 70 mm) 

supplied with cotton balls soaked in 20% sucrose solution and water and kept at 

70% relative humidity and 26°C. Ant mortality was recorded for 14 days. 

Cadavers were immediately removed and surface sterilised (Siegel, 2012), and 

then kept in a Petri dish with moistened filter paper for an additional 14 days to 

allow the sporulation of fungi.  

 

5.3.3 Exp. 2: the effect of simulated fungal exposure on grooming rates 

Twelve ants from each species (two individuals from each of six colonies for A. 

echinatior, S. amabilis, T. cornetzi, T. sp10, A. pilosum, and four individuals 

from three colonies for A. colombica) were observed in a 40 mm Petri dish for 30 
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min with two nestmates. Incidences of allogrooming, self-grooming and 

metapleural gland-grooming of the focal ant were recorded (Altmann, 1974). 

This process was repeated for 12 additional ants per species but with each ant 

receiving a standardized treatment of dry, unscented, talcum powder (magnesium 

silicate) applied evenly to the dorsal mesosoma and gaster with a fine brush, to 

induce grooming, prior to observation for 30 min with two nestmates. We used 

talcum powder because some of the colonies were small and talcum powder 

particles, which are similar in size to fungal conidia, act as a non-pathogenic 

stimulant of anti-parasite defensive behaviour in ants without incurring the 

mortality that would result from application of fungal conidia (Fernández-Marín 

et al., 2006; Morelos-Juárez et al., 2010; Tranter et al., 2015). 

 

5.3.4 Exp. 3: chemical inhibition of fungal growth 

Six chemical compounds that have been previously identified as major 

constituents of attine MG secretions (Vieira et al., 2012b) were tested for their 

effect on the conidia viability of the entomopathogenic fungus Metarhizium 

pingshaense. The compounds tested were: indole, skatole, methyl oleate (oleic 

acid), 2-nonanone, phenylacetic acid and methyl-3-indoleacelate (indoleacetic 

acid; Table S5.2 p.282), as well as acetone solvent control, bleach (NaClO) 

positive control and ddH2O negative control. Each compound was tested 10 times 

at five different concentrations based on the maximal amounts found in the MG of 

adult Atta workers (Table S5.4 p.284). A conidia solution of 1 x 105 conidia per 

ml was prepared from freshly sporulating M. pingshaense plates. 450 agar plates 

were prepared with selective media (Sabouraud dextrose agar [SDA] with 0.05 
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g/l streptomycin sulphate and 0.1 g/l chloramphenicol antibiotics, and 0.1 g/l 

dodin which inhibits the growth of other fungi but not Metarhizium; Shah et al., 

2005), in 50 mm Petri dishes and stored sealed at 4°C until use. 500 µl of the 

Metarhizium conidia solution (5 x 106 conidia per ml) was applied evenly over the 

surface of the Petri dish and left for 10 min to allow excess liquid to dry. A single 

6 mm diameter piece of sterile plastic tubing was placed carefully onto the centre 

of the surface of the agar plates, and 20 µl of test solution applied in the centre of 

this with the plastic cylinder acting as a well to restrict distribution to a defined 

area. The cylinder was left in place for 5 min to allow the compound to infuse the 

media, before the location of the treated area was marked on the underside of the 

Petri dish and the cylinder removed. The Petri dish was then sealed with parafilm 

and placed in an incubator at 32°C overnight. 12 h later the percentage of conidia 

producing a germ tube longer than the conidia diameter (Siegel 2012; conidia 

viability) was counted for a standardised area (complete area visible in the 

microscope eyepiece at 400x magnification) within the section where the 

compound was applied and also an untreated area outside the marked test area, 

equidistant with the edge of the Petri dish. A further 60 h later the plates were 

photographed from above and the average radius of any zone of inhibition, as 

characterised by an area around the marked test section free from fungal growth, 

was recorded (Figure S5.2 p267).   

5.3.5 Statistical analysis 

The effects of Metarhizium exposure, gland closure, and ant species, on ant 

survival in Experiment 1 were analysed using Cox proportional hazards 

regression models. Colony-of-origin, and cohort for the leaf-cutting ant trials, 

were included in the models to account for the structured nature of the data, but 
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were not statistically significant (p > 0.05 in all cases). Pairwise comparisons 

were made with Kaplan-Meier tests using the Breslow statistic. The numbers of 

cadavers sporulating with Metarhizium for ants with blocked or unblocked glands 

were examined for each species with Chi-squared tests. Grooming rates following 

exposure to talcum powder in Experiment 2 were analysed using a general linear 

mixed model with a gamma distribution and log link function; colony-of-origin 

was included as a random factor but was not statistically significant (p > 0.05 in 

all cases). Non-significant interaction terms were removed step-wise to obtain the 

minimum adequate model in each case. Pairwise comparisons were conducted 

between treatments within each species, and between species for each treatment. 

The effects of compound and dose in Experiment 3 on the size of fungal inhibition 

zones were analysed using a generalized linear model with a gamma distribution 

and log link function. Multiple comparisons were controlled for in all analyses 

using the sequential Bonferroni adjustment. All analyses were performed in IBM 

SPSS v21.  

 

5.4 Results 

5.4.1 Exp. 1: gland blockage and fungal exposure on survival 

Overall there were significant effects of species and interaction between blockage 

and fungal treatments on survival (Wald = 17, d.f. = 5, P = 0.005; Wald = 

9.98, d.f. = 1, P = 0.02, respectively). Ants from all six species showed a 

significant reduction in their survival when treated with the Metarhizium parasite 

(Fig. 5.1; Table S5.3 p.283). A. colombica, A. echinatior and S. amabilis all 
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showed a significant reduction in resistance to the parasite when their MG was 

blocked, while the resistance of ants with blocked and unblocked MG was nearly 

identical in both T. cornetzi and A. pilosum, and there was also no significant 

effect of MG blockage on the resistance of T. sp. 10 (Fig. 5.1; Table S5.3 p.283). 

There was no significant effect of colony on survival in any of the species (P > 

0.05; Table S5.3). None of the control ants sporulated with Metarhizium. Of 

those Metarhizium-exposed ants that died, significantly more of the cadavers 

sporulated with Metarhizium when they had blocked glands compared to those 

where the MG was functional (χ2 = 47.8, d.f. = 5, P < 0.001). This difference 

was present in A. colombica, A. echinatior and S. amabilis but not in T. cornetzi, 

T. sp. 10 or A. pilosum (Fig. 5.1). 

 

5.4.2 Exp. 2: the effect of simulated fungal exposure on grooming rates 

Contact rates between ants differed between species (F1,137 = 20.8, P <0.001), 

reflecting interspecific differences in the general activity levels of the ants, but 

there was no effect of talcum powder application or interaction between effects on 

activity (F1,132 = 0.42, P = 0.52; F5,132 = 1.12, P = 0.36; Fig. 5.2a). There 

was, however, a significant interaction between the effects of ant species and 

talcum powder treatment on MG grooming (F5,132 = 9.67, P = 0.014). A. 

colombica exhibited the highest rate of MG grooming by far, with A. echinatior 

and S. amabilis also conducting higher levels of MG grooming compared to the 

Trachymyrmex and Apterostigma species which exhibited little or no MG 

grooming (Fig. 5.2b). 
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Figure 5.1. Ant survival over two weeks of a) A. colombica, b) A. echinatior, c) S. 

amabilis, d) T. sp. 10, e) T. cornetzi and f) A. pilosum attine ants after treatment 

with either Metarhizium pingshaense fungal parasite (solid line) or control solution 

(dashed line), and with their antimicrobial-producing metapleural glands either 

experimentally blocked (closed circles) or functional (open circles). Different letters 

beside lines indicate treatments which differed significantly from one another 

within species at P < 0.05. Inset graphs show the proportions of cadavers of 

Metarhizium-exposed ants that sporulated with Metarhizium for ants of each 

species with either their glands blocked (‘B’: dark bars) or functional (‘F’: light 

bars).  Species in which the frequency of sporulation differed significantly between 

ants with blocked and functional glands at P < 0.05 are marked with an asterisk 

(*). 
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Figure 5.2. Grooming rates. The mean ± s.e. frequencies of (a) contact, (b) 

metapleural gland grooming, (c) self-grooming and (d) allogrooming in 30 min for 

six species of attine ants (A. colombica, A. echinatior, S. amabilis, T. sp10, T. 

cornetzi and A. pilosum) either treated with talcum powder (dark bars) or 

untreated (light bars). Significant differences between treated and untreated ants at 

P < 0.05 for each species are indicated with an asterisk. Species which differed 

significantly from one another at P < 0.05 are indicated by different letters, a,b,c 

for untreated ants, or x, y, z for treatment ants.   

 

There was also a significant interaction between species and talcum powder 

treatment on the rates of self-grooming (F5,132 = 3, P = 0.014), with T. sp10 

and A. pilosum both self-grooming significantly more when talcum powder was 

applied to them and baseline levels of self-grooming being highest in T. cornetzi 

(Fig. 5.2c). Only S. amabilis allogroomed significantly more when exposed to 

talcum powder treatment (F1,132 = 5.5, P = 0.02; Fig. 5.2d), and there was no 
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overall effect of species or interaction between factors for allogrooming (F5,132 = 

0.4, P = 0.86; F5,132 = 0.79, P = 0.56). 

 

5.4.3 Exp. 3: chemical inhibition of fungal growth 

There was a significant interaction between the compound tested and the dose 

applied on the size of the zone in which Metarhizium fungal growth was inhibited 

(χ2 = 194.5, d.f. = 32, P < 0.001) and on the number of fungal conidia that 

were viable (χ2 = 575.4, d.f. = 32, P < 0.001). Phenylacetic acid consistently 

produced the largest reductions in spore viability, especially at higher doses (Fig. 

5.3a). It also produced the largest inhibition zone in the highest dose, where it 

was generally comparable to, or even more effective than, bleach in its antifungal 

activity (Fig. 5.3b).  
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Figure 5.3. The effect of MG chemicals on fungal spores. The mean ± s.e. 

reduction in viability of conidia of the Metarhizium pinshaense fungal parasite (a) 

and size of growth inhibition zone produced (b), for six chemicals from the 

metapleural gland secretion (phenylacetic acid, 2-nonanone, indole, skatole, methyl-

3-indolacetate, methyl oleate), and bleach positive control, acetone and hexane 

solvent control, with each compound applied at five concentrations (1 lowest dose - 

5 highest: see Table S5.4 p.284 for details). A ddH2O negative control produced 

negligible effect and was omitted from the graph. For doses 1, 3 and 5 where 

pairwise comparisons were performed, different letters indicate chemicals which 

differed significantly from one another at P < 0.05. 
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5.5 Discussion 

Exposure to the fungal parasite Metarhizium pingshaense significantly reduced 

the survival of the six species of ants in this study, and there were species-specific 

differences between the resistance of ants when their MGs were blocked, 

compared with when they were left functional. There were also differences in MG 

grooming rates and the antifungal activity of chemical components of the MG 

secretions between species. The leaf-cutting ants A. colombica and A. echinatior, 

as well as the higher attine S. amabilis which also has relatively large colony 

sizes, all demonstrated a consistently greater reliance on MG use for protection 

against fungal pathogens compared with the more basal Trachymyrmex and 

Apterostigma species (Fig. 5.4). The resistance of leaf-cutting ants and 

Sericomyrmex to the parasite was significantly reduced when their MG glands 

were blocked. Additionally, of those ants that died, significantly more of the 

cadavers sporulated with the parasite when the MG was blocked. This highlights 

the importance of the gland in sterilising the ant’s cuticle and promoting their 

survival through fungistatic or fungicidal effects. The leaf-cutting ants and S. 

amabilis all also showed higher rates of MG grooming behaviour and their 

secretions contained chemicals with stronger antifungal activity, including more 

acidic compounds phenylacetic acid and methyl oleate (Do Nascimento and 

Schoeters 1996; Yek et al. 2012). This was particularly evident in Atta 

colombica, which was the only species in which the highly antifungal phenylacetic 

acid has been identified (Kim et al. 2004; Quinet and Vieira 2012; Fernández-

Marín et al. 2015). Additionally the strength of this effect, and reliance on the 

MG, seems to be compounded by the efficacy of some of the MG secretions 

themselves; not only do the leaf-cutting ants and S. amabilis use their glands 
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more actively, but the compounds in their secretions are more effective antifungal 

agents as well. These finding support our predictions that the more derived leaf-

cutting ant species and S. amabilis with their larger and more complex societies 

are considerably more reliant on their MG compared to the more basal species.  

 

Figure 5.4. Phylogenetic patterns of metapleural gland usage in the attine ants. 

Graphs show for the six species studied here (highlighted in dark gray boxes): 1) 

the hazard ratio from blockage of the antibiotic-producing metapleural gland for 

ants exposed to the Metarhizium fungal parasite; 2) the mean ± s.e. frequency of 

active grooming of the metapleural gland in a 30 min period; 3) the effectiveness of 

the overall metapleural gland secretion at reducing Metarhizium conidia viability, 

based on the sum of the average effectiveness of each chemical weighted by its 

representation in the secretion (Table S5.4, S5.5); 4) the size of the metapleural 

gland reservoir (bulla width) relative to body size (pronotum width; data from 

Hughes et al., 2008 and includes data for A. collare, not A.pilosum as in our 

study). The number of ant symbols shown next to species name represents the 

typical number of workers per colony in orders of magnitude. 

 

The importance of the MG in resisting disease varied across the attine phylogeny 

providing evidence for the existence of a series of four evolutionary transitions in 

MG use (Fig. 5.4). First, between Apterostigma and Trachymyrmex sp10 we see 

a small increase in the use of the MG and consequent increased importance of the 
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MG in resisting disease. Second, there is then a small increase in MG size and 

antifungal activity, and a large increase in MG grooming and the importance of 

the MG for disease resistance, between Trachymyrmex and Sericomyrmex. Third, 

there is a substantial increase in MG gland size between Sericomyrmex and the 

leaf-cutting ant species. Fourth, there is a transition between Acromyrmex and 

Atta, with Atta producing a more powerful suite of antifungal chemicals within 

their MG secretions, which they produce more of and groom much more actively 

than Acromyrmex (Fig. 5.4). There is no evidence of a trade-off between 

different aspects of individual self-directed MG use, but rather a general trend 

across the phylogeny towards the MG becoming more effective and important in 

disease resistance.  

These differences in MG use, in combination with transitions in other 

morphological and behavioural attributes such as gardening of the fungal crop or 

hitchhiking on harvested leaf material, may reflect changes in host-parasite 

interactions within the attine clade, notably, as a result of specialization of the 

fungal mutualism and the appearance of polymorphic workers (Hughes, 

Pagliarini, et al. 2008; Schultz and Brady 2008; Fernández-Marín et al. 2009; 

Griffiths and Hughes 2010; Quinet and Vieira 2012; Vieira et al. 2012). It may 

be that these derived characters have allowed for greater investment into costly 

disease resistance through improved resource acquisition; for example the fungal 

gardens cultivated on fresh vegetation by Atta and Acromyrmex ants may provide 

a more nutritious and reliable food source. Additionally, MG use within the group 

maps broadly with colony size between the species (Fig. 5.4; Table S5.1 p.281). 

Larger colonies have a greater workforce, greater resource acquisition, and are a 

more robust entity that can provide more stable nest conditions (Kunz 1982; 
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Rosengren et al. 1987; Jeanne and Nordheim 1996; Anderson and Ratnieks 

1999; Jones and Oldroyd 2006; Jeanson et al. 2007). Similarly, morphological 

and behavioural specialization will allow for more efficient disease resistance 

strategies. Within the Attini, the leaf-cutting species, and Atta especially, are the 

most morphologically and behaviourally specialised taxa (Hart et al. 2002; Evison 

and Ratnieks 2007), and, as we demonstrate here, are especially well adapted for 

parasite defence. The presence of discreet castes allows for a differentiation in 

MG morphology in the higher attine species with the smallest castes having 

relatively larger MG reservoirs (Hughes, Pagliarini, et al. 2008). This may aid in 

parasite defence through allowing investment into MG defence in those 

individuals that may benefit from them the most, i.e. in leaf-cutting ants the 

minims which tend the fungus, clean leaf fragments, and brood (Currie and Stuart 

2001; Hughes, Pagliarini, et al. 2008; Griffiths and Hughes 2010). However, 

larger group size may also result in increases in parasite pressure through the 

same stable and favourable nest conditions and increased colony longevity, which 

promote parasite transmission (Schmid-Hempel, 1998; Poulin, 2007). Also larger 

colonies ‘sample’ more of the environment which increases the chance of 

contracting parasites (Wilson 1971; Rosengren et al. 1987; Sherman et al. 1988; 

Hölldobler and Wilson 1990; Tschinkel 1991; Schmid-Hempel 1998; Zahn 1999; 

Poulin 2007). An alternative explanation is therefore that the larger colonies of 

leaf-cutting ants may be exposed to greater parasite pressures than lower attine 

species and thus invest more in disease resistance in order to mitigate this 

increased (Hart and Ratnieks 1998, 2001; Hughes et al. 2002; Naug and 

Camazine 2002; Fernández-Marín et al. 2006, 2009; Poulsen et al. 2006; 

Tranter et al. 2014). 
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Our results show how changes in the antifungal activity and use of MG secretions 

have evolved to protect individual ants from parasites, and demonstrate that even 

relatively small clades can exhibit substantial transitions in investment into 

disease resistance mechanisms. This highlights how dynamic the evolutionary 

relationships between host and parasite can be, and demonstrates the value of 

targeted experimental comparative studies for identifying and understanding 

evolutionary transitions in host-parasite relationships.  

  

Apterostigma pilosum 
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 Simple societies and hygienic 6.

personalities: species and individual 

differences in ant social immunity 

6.1 Abstract 

Living in groups has many benefits, but can increase the threat from parasites. 

This threat may increase with group size, and species with larger societies are 

expected to invest more in disease resistance and potentially express greater 

variation between individuals in behavioural defences (‘hygienic personalities’). 

We examine the social immunity of dinosaur ants and leaf-cutting ants, which 

respectively have simple and complex societies, and describe for the first time the 

presence of hygienic personalities in individual behavioural defence. We find that 

leaf-cutting ants show higher levels of social immunity, and more consistent 

personalities, than dinosaur ants, and ants with more hygienic personalities resist 

infection with a fungal parasite significantly better. This suggests that complex 

societies can possess higher levels of social immunity and more developed 

hygienic personalities than simple societies, which together may have contributed 

the ecological and evolutionary success of group-living species. 
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6.2 Introduction 

Animals, such as social insects, live in groups that vary in size and composition 

(Dornhaus et al. 2010). Part of the success of social insects is their ability to 

organize themselves within these groups (Naug and Camazine 2002). This has 

resulted in the evolution of complex societies that through cooperation and 

specialisation can perform tasks beyond the scope of individual members (Hart et 

al. 2002). However, as colony size increases so too does the potential risk of 

parasite transmission (Wilson et al. 2002). Thus, larger and more complex 

societies would be expected to invest more into disease resistance, and there is 

evidence that disease resistance strategies may be better developed in species 

with larger colony sizes (Hughes, Pagliarini, et al. 2008; Turnbull et al. 2010). 

The evolution of more complex societies may also allow for the expression of 

defensive specialisation and variation between individuals in behavioural 

defences, which may evolve as a strategy to mitigate the increased cost from 

parasites (Boomsma et al. 2005).  

Morphological and behavioural specialisation between castes can perform a key 

role in the maintenance of colony hygiene. The highly complex societies of leaf-

cutting ants, for example, operate extensive task partitioning and division of 

labour to stop intracolony pathogen transmission (Hart et al. 2002). Individuals 

of the same caste in several social insect species have also been found to show 

consistent individual differences in behaviours, termed ‘personalities’ or 

‘behavioural syndromes’, including aggression, learning and foraging (Jandt et al. 

2014). However besides some variation in undertaking behaviour (Diez et al. 

2011), and genetic variation in the hygienic behaviour of honeybees (Arathi et al. 
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2000),  there has been little investigation of individual-level variation in 

consistent disease resistance behaviours in social insects, despite the importance 

of parasite defences for the evolutionary success of their societies. 

 Grooming behaviours can be highly effective in parasite defence (Reber et al. 

2011; Tranter et al. 2015), and we use them here to test whether there are 

differences in the social immunity of an ant species with a larger more complex 

society that is potentially more at risk from parasites, compared with a species 

with a relatively simple society. Additionally we investigate whether social 

insects may possess ‘hygienic personalities’, in the form of consistency in 

grooming, and test if this has survival benefits when challenged with a fungal 

parasite.  

 

6.3 Methods 

We used ten colonies of Dinoponera quadriceps, a monomorphic, queenless, 

ponerine ant species with small, simple societies of monomorphic workers, and 

four colonies of Acromyrmex echinatior, a leaf-cutting ant with large, complex 

societies and highly polymorphic workers (see Supplementary Material).  

6.3.1 Social immunity and personalities 

We investigated the levels of social immunity by measuring selfgrooming and 

allogrooming of 40 workers from both D. quadriceps (4 ants from 10 colonies) 

and A. echinatior (10 ants from 4 colonies). These measurements were repeated 

seven times for each individual over 25 days for the dinosaur ants and 7 days for 
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the leaf-cutting ants. For each observation the individual ant was placed in a 100 

x 75 mm container lined with Fluon and left for 5 min to acclimatize. For self-

grooming trials, the individual focal ant was treated with Triton-X control 

solution and the total duration spent self-grooming recorded for 15 min. The ant 

was then treated with a 5 x 106 particles/ml suspension of talcum powder in 

0.05% Triton-X solution, and selfgrooming was observed for a further 15 min. 

Volumes were adjusted for body size between species (leaf-cutting ants: 0.5 µl; 

dinosaur ants: 5 µl; both delivering ~320 particles/mm2 body area. For 

allogrooming the same protocol was followed, but a second ant from the same 

colony was placed in the container and treated with talcum powder suspension. 

Allogrooming of this second ant by the focal ant was recorded for the 15 min 

period.  

6.3.2 Personalities and disease resistance 

As a parasite we used the entomopathogenic fungus Metarhizium pingshaense 

(KVL02-73 isolated from soil in Panama; (Pull et al. 2013)), which is a natural 

parasite of ants (Boomsma et al. 2005), but a generalist insect pathogen and thus 

unlikely to have coevolved with either ant species used here (see supplementary 

material). After the grooming-observation period, each of the leaf-cutting ants 

(35 in total) was exposed to the Metarhizium parasite by placing the ant into a 60 

mm Petri dish lined with filter paper on to which an even coating of 150 µl of 1.5 

x 106 conidia/ml Metarhizium suspension had previously been applied and left to 

dry for 10 min. The ants were left in the Petri dish for 1 h, before being 

transferred into individual 70 x 35 mm pots, supplied with water and sugar ad 

libitum, and then monitored daily for survival for 14 days. Cadavers of ants that 
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died during this period were surface sterilised, placed in a sterile Petri dish with 

moistened filter paper, and observed for two weeks for Metarhizium sporulation.  

6.3.3 Statistics 

Data was tested for normality prior to analyses and distributions were chosen 

based on AIC scores data structure. To test overall grooming rates, a GLMM 

with gamma distribution and log link function, with species and treatment 

included as factors, was run on both self-grooming and allogrooming data 

averaged for individuals over the time points. Post-hoc pairwise comparisons 

were adjusted using the sequential Bonferroni method, and colony-of-origin was 

included as a random factor for all GLMMs. To examine individual consistencies 

in the selfgrooming and allogrooming behaviour of ants, individual GLMMs were 

run for both species with ant identity and treatment included as factors. A gamma 

distribution with log link function was used for selfgrooming data, and a negative 

binomial distribution and log link function for allogrooming data. A Mann-

Whitney U test compared the intraindividual variances in grooming durations 

between the species, for both treatments. Pearson’s correlation coefficients were 

used to investigate the relationships between grooming behaviour in response to 

treatment, between selfgrooming and allogrooming durations in both species, and 

between grooming duration and survival in leaf-cutting ants. Statistics were 

calculated using SPSS v22. 
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6.4 Results 

6.4.1 Social immunity and personalities 

There was a significant interaction between treatment and species on overall 

selfgrooming and allogrooming (F1,156 = 9.19, p = 0.003; F1,156 = 61.71, p < 

0.001; respectively). Leaf-cutting ants had higher baseline selfgrooming levels 

compared with the dinosaur ants, and both species up-regulated selfgrooming in 

response to talcum powder (Figure 6.1a; supplementary material). Leaf-cutting 

ants also significantly up-regulated allogrooming in response to talcum powder, 

but dinosaur ants performed no allogrooming in either treatment (Figure 6.1b). 

Individual leaf-cutting ants and dinosaur ants differed in their 

selfgrooming duration (F39,402 = 3.58, p < 0.001, and F39,394 = 4.53, p < 0.001, 

respectively; Figures 6.2c and 6.2e), but leaf-cutting ants did not differ 

significantly in their allogrooming (Figure 6.2d). The intraindividual variation in 

selfgrooming duration was larger in dinosaur ants compared with leaf-cutting 

ants in the talcum powder treatment (U = 573, n1 = n2 = 40, p < 0.01). In 

leaf-cutting ants there was a significant positive correlation between selfgrooming 

and allogrooming durations (r = 5.25, n = 40, p = 0.001; Figure 6.2a; 

supplementary material). 
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Figure 6.1. The mean ± s.e. grooming durations of selfgrooming (a) and 

allogrooming (b) for dinosaur ants and leaf-cutting ants, treated with a control 

(white bars) or talcum powder (grey bars), and the mean ± s.e. selfgrooming and 

allogrooming durations for individual leaf-cutting ants, (c, d) and dinosaur ants (e, 

f), treated with talcum powder. Bars with different letter codes within each graph 

differ significantly at p < 0.05. 

 

 

Individual ID 
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Figure 6.2. Correlation plots. The relationships between (a) allogrooming and 

selfgrooming durations after talcum-powder treatment, and (b) ant survival and 

self-grooming duration after treatment with the Metarhizium parasite, in leaf-

cutting ants. 

 

 

6.4.2 Personalities and disease resistance 

The survival of leaf-cutting ants exposed to the Metarhizium parasite was 

positively correlated with self-grooming duration (r = 0.80, n = 35, p < 0.001, 

Figure 7.2b). There were also significant correlations with allogrooming (see 

supplementary material). Metarhizium sporulated within two weeks of death from 

97% of the cadavers, confirming that the parasite was the major cause of death.  
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6.5 Discussion 

We show that dinosaurs ants, with simple societies, have lower levels of social 

immunity compared to leaf-cutting ants, with larger, more complex societies. Both 

species showed individual differences in selfgrooming that were consistent across 

time. These ‘hygienic personalities’ were more consistent in leaf-cutting ants, and 

their strength also positively correlated with allogrooming, and resistant to the 

fungal pathogen Metarhizium.  

Larger, more complex colonies may be under increased threat from parasite 

transmission or acquisition, and therefore require the evolution of more effective 

resistance strategies. Alternatively larger colonies may be more productive and 

able to invest more in defences. For example fungus-growing ant species with 

larger, more complex colonies seem to possess more active antimicrobial defences 

than related species (Hughes, Pagliarini, et al. 2008; Fernández-Marín et al. 

2009). Other social insects have also shown differences in investment in chemical 

defences with group size and social complexity (Traniello et al. 2002; Stow et al. 

2007; Turnbull et al. 2010), and our results demonstrate that a similar change 

can be present for behavioural defences too. Leaf-cutting ants have previously 

been shown to have comparable grooming levels to other ant species with similar 

colony sizes (Tranter and Hughes 2015; Tranter et al. 2015), so it seems less 

likely that other aspects of their biology (e.g. protection of their vulnerable fungal 

crop) may explain the differences seen here.  

Variation in disease resistance can be seen at multiple levels of social insect 

organisation, including between species, colonies, and castes (Tarpy 2003; 

Hughes, Pagliarini, et al. 2008; Vitikainen and Sundström 2011). Here we show 
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for the first time consistent individual differences in selfgrooming which indicate 

the existence of ‘hygienic personalities’. These personalities correlated positively 

with the resistance of leaf-cutting ants to disease, and were also more consistent 

than dinosaur ants. This may suggest that some degree of general hygienic 

specialisation which may be a prerequisite, or by product, of the task-partitioning 

seen in leaf-cutting ants, possibly in response to increases in parasite pressure due 

to their large colony size.  

The response of social insects to disease can be highly dynamic both between and 

within species. This study demonstrates that social immunity and hygienic 

personalities can be more highly expressed in species with more complex societies. 

Future comparative investigations of disease resistance mechanisms between both 

individuals within colonies and also between social insect species with varying 

degrees of sociality will be vital in exploring these ideas.  

  

 

 

  

Dinoponera quadriceps 
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 Sanitary slaves and slovenly 7.

slavemakers: disease resistance of social 

parasites and their hosts 

 

7.1 Abstract 

Disease represents a considerable fitness cost to organisms and hosts have 

consequently evolved a suite of defensive adaptations against pathogens. 

Understanding how host life-history affects the selection pressure from 

pathogens, and how this in turn affects investment by hosts in disease resistance, 

is a key issue in evolutionary biology.  In social insects, certain ‘social parasite’ 

species have evolved to exploit the efforts of other colonies for routine tasks like 

foraging and brood care. Given that disease resistance is often costly, social 

parasites, especially those that are obligate, may be selected to also exploit their 

hosts for defence against pathogens. Here we test this hypothesis using a targeted 

experimental comparison of the behavioural, chemical and physiological immune 

resistance of closely related formicine ant species that are an obligate social 

parasite, a facultative social parasite, or free-living host species.  We find that 

socially parasitic ant species have significantly reduced disease resistance when 

compared to closely related free-living species, and that a facultative social 

parasite was intermediate in disease resistance. There was no evidence of any 

trade-offs between different defence mechanisms, with social parasites instead 

having reduced levels of all defences. This highlights the considerable reliance 

social parasites have on their hosts and demonstrates how the evolutionary 
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transitions between free-living, facultative, and obligate socially parasitic modes 

of life, may alter investment into disease resistance. Further targeted comparative 

studies like this will be valuable to develop our understanding of how the 

evolution of disease resistance mechanisms influences, and has been influenced 

by, changes in life history. 

7.2 Introduction 

Nature is rife with examples of parasitism, and the diversity and prevalence of 

parasitic interactions is testimony to the evolutionary success of this mode of life 

(Windsor 1998; Poulin and Morand 2000). The coevolutionary dynamics 

between host and parasite have produced an array of adaptations as hosts evolve 

to better defend themselves against a constantly evolving threat from parasites 

(Poulin 2007). Across taxa and environments, parasite pressure has been 

influential in shaping the evolutionary trajectory of species and communities 

(Boots et al. 2004; Schmid-Hempel 2011). However not all parasitic interactions 

and influences are obviously parasitic. For example, brood parasitism, which has 

been well studied in cuckoos, involves parasites exploiting not organisms as 

physical hosts, or as a direct source of sustenance, but rather for their investment 

in brood rearing (Payne 1977; Rothstein 1990). Similarly, the group-living 

eusocial insects include some ‘social parasite’ species of ants, bees, and wasps that 

have evolved the ability to live within colonies of closely related taxa and exploit 

the workers of their host colony for routine tasks such as foraging and brood care 

(Buschinger 1986, 2009; D’Ettorre and Heinze 2001). By unloading work onto 

their hosts, social parasites are then able to focus their energies on alternate ways 

to increase their fitness (Stearns 1992).  
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Sociality is often associated with considerable costs in terms of an 

increased risk of disease (Frank 1996; Altizer, Nunn, Thrall, et al. 2003; 

Schmid-Hempel 2005), but this threat is exacerbated in social insects, where 

crowded and homeostatic nests, combined with low levels of genetic diversity 

between eusocial individuals, provide ideal conditions for the transmission and 

evolution of parasites and pathogens (Schmid-Hempel 1994; Liersch and Schmid-

Hempel 1998; O’Donnell and Beshers 2004; Calleri et al. 2006). Consequently 

ants and other social insects have evolved effective disease resistance strategies  

(Boomsma et al. 2005; Cremer et al. 2007; Wilson-Rich et al. 2009). These 

include behavioural responses such as selfgrooming and grooming, chemical 

defences such as the production of antimicrobial gland secretions and venom, and 

internal innate immune responses including pathogen encapsulation by 

haemocytes and the phenoloxidase (Siva-Jothy et al. 2005; Wilson-Rich et al. 

2009; Otti et al. 2014).  The presence of these advanced, conspicuous, and 

energetically costly (Poulsen, Bot, Nielsen, et al. 2002), defence mechanisms 

makes ants good models to study how life-history affects the evolution of disease 

resistance. The facts that investment in disease resistance mechanisms is costly 

and that social parasites can rely on their host colonies for many normal 

functions, leads to the hypothesis that social parasites may invest less in disease 

resistance because they can rely on the workers of their host colonies for this 

(Stearns 1992; Michod 2006). An example of this is the reduction of the 

energetically costly antimicrobial-producing metapleural gland in many ant social 

parasites. The leaf-cutting ant social parasite Acromyrmex insinuator has 

reduced disease resistance as a result of its smaller metapleural gland (Sumner et 

al. 2003), and roughly three quarters of obligate socially parasitic ant species 

show a loss of the metapleural gland compared to less than 10% of ant species 
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that are ‘temporary’ social parasites (Yek and Mueller 2011). This is likely 

because the temporary parasites would only benefit from host defences for initial 

colony foundation and once the original host workers have died the parasitic 

species must be sufficiently able to defend against disease on their own. Thus, 

investment in disease resistance cannot be relaxed as much as in obligate social 

parasites in which host workers are present for the whole of the life cycle. This 

idea broadly predicts a negative correlation between the dependency of a social 

parasite on its host and investment in disease resistance. Facultative social 

parasites are thus expected to show a greater investment (or less of a reduction) 

in disease resistance than more obligate social parasites.  

 In this study we use a selection of closely related species within the tribe 

Formicini (Subfamily: Formicinae; Agosti 1994) to study experimentally the 

relationship between different modes of social parasitism and disease resistance. 

This group provides an ideal comparative framework within which to study the 

evolutionary relationship between social parasitism and disease resistance as it 

contains a range of free-living and socially parasitic species (Topoff 1990; Agosti 

1994). Specifically, we examined for four free-living species (Formica 

cunicularia, F. fusca, F. rufibarbis and F. rufa), a facultative social parasite (F. 

sanguinea) and an obligate social parasite (Polyergus rufescens): i) the disease 

resistance of ants and the benefit for this of their production of antimicrobial 

venom, ii) self- and allogrooming behavioural defences against parasites, iii) the 

quantity and quality of the primary chemical defence mechanism, the production 

of antimicrobial venom, and iv) the level of a key physiological immune defence 

mechanism, the phenoloxidase pathway (Armitage and Siva-Jothy 2005; 

Cerenius et al. 2008). Given the reliance of socially parasitic species on their 

http://en.wikipedia.org/w/index.php?title=Formicini&action=edit&redlink=1
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hosts for other tasks, we would expect the obligate social parasite Polyergus, and, 

to a lesser extent, the facultative social parasite F. sanguinea, to have lower 

disease resistance, behavioural, chemical and immune defences, compared to free-

living species. Additionally, because we test a suite of different defence 

mechanisms, we may be able to see if there are trade-offs in defences employed by 

the different species.  

 

7.3 Methods 

7.3.1 Study species 

We used six sympatric species of European formicine ants (see supplementary 

online material): the obligate, socially parasitic slavemaker Polyergus rufescens, 

the facultative, socially parasitic slavemaker Formica sanguinea, and four free-

living species (non-parasitic), F. rufibarbis, F. fusca, F. cunicularia and F. rufa. 

Within the free-living species, F. rufibarbis, F. fusca, and F. cunicularia are all 

commonly taken as ‘slave’ hosts by both of the social parasites. Colonies were 

maintained in the lab at 23°C and 60% relative humidity for at least three 

months prior to use and were in good health at the time of the experiment. All 

species were fed twice per week with chopped Tenebrio molitor mealworm larvae 

and supplied with water ad libitum. Ants for the experiments were collected from 

just outside the nest entrance, and were selected to be of similar size and cuticular 

colouration within each species, representative of an adult worker at least four 

weeks old (Table S7.2 p.287). Workers of P. rufescens, F. cunicularis, F. fusca 

and F. rufibarbis are monomorphic, and for the polymorphic F. rufa and F. 
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sanguinea we used smaller workers which more closely matched the size of 

workers from the other species. 

As a parasite for the experiments, we used the generalist 

entomopathogenic fungus Metarhizium pingshaense (strain KVL02-73 isolated 

from the soil in Panama; Hughes et al. 2004; Pull et al. 2013). Microparasitic 

fungi are one of the most common parasitic threats encountered by ants and are 

highly abundant in the soil environment  (Keller et al. 2003; Boomsma et al. 

2005; Reber and Chapuisat 2011). Fungal threats to ants include specialist 

parasites, generalist entomopathogens, and opportunistic parasites, but specialist 

parasites of ants are likely to show close coevolution with their specific hosts 

which renders them unsuitable for comparative experiments. Metarhizium infects 

a very wide range of insects, including many ants (Allen and Buren 1974; 

Lofgren and Vander Meer 1986; Sanchez-Pena and Thorvilson 1992; Quiroz et 

al. 1996; de Zarzuela et al. 2012), and will therefore be unlikely to exhibit 

species-specific coevolution with the ants investigated here.  

 

7.3.2 Exp. 1: Pathogen resistance and antimicrobial venom  

Twenty ants were used from each of four colonies for each of the five Formica 

species (F. fusca, F. cunicularia, F. rufibarbis, F. sanguinea, F. rufa; 80 ants 

total per species), and eight ants from each of four colonies of the obligate 

slavemaker Polyergus rufescens (32 ants total). Half of the ants from each colony 

had their venom glands blocked using quick-drying nail varnish, whilst the other 

half received a control treatment of nail varnish applied to the pronotum. After 24 
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h, half of the ants in each case had a suspension of 5 x 107 Metarhizium conidia 

per ml in 0.05% Triton-X applied topically to the mesosoma with a micropipette 

and half were treated with a control solution of 0.05% Triton-X. Treatment 

volumes were standardized for body-size between species (Table S7.2 p.287). 

After treatment, each ant was placed in a plastic pot (diameter: 35 mm, height: 

70 mm) supplied with cotton balls soaked in 20% sucrose solution and water, and 

kept at 50% RH and 21°C. Ant mortality was recorded for 14 days, with 

cadavers surface sterilised (Siegel 2012), and then kept in a Petri dish with 

moistened filter paper for a further 14 days to allow for the sporulation of the 

Metarhizium pathogen. This full factorial design resulted in 20 replicates per 

treatment per Formica species and eight replicates per treatment for P. rufescens. 

 

7.3.3 Exp. 2: Allogrooming and self-grooming behavioural defences 

To assess the behavioural defensive response of ants, 30 workers were used from 

each of four colonies for each of the five Formica species (F. fusca, F. 

cunicularia, F. rufibarbis, F. sanguinea, F. rufa; 120 ants in total per species), 

plus ten workers from four colonies of P. rufescens (40 ants in total; Table S7.1 

p.286). Each ant was placed in a pot (diameter: 35 mm; height: 70 mm) and left 

to acclimatize for 5 min. Half the ants from each colony were then treated with a 

talcum powder suspension (5 x 107 particles per ml) in 0.05% Triton-X solution 

whilst the other half were treated with just Triton-X solution as a control, with 

volumes adjusted for species as in Experiment 1. Talcum powder particles are 

comparable in size to fungal conidia and act as a non-pathogenic stimulant of anti-

parasite defensive behaviour in ants (Morelos-Juárez et al. 2010; Tranter et al. 
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2015).  The solutions were applied topically to the dorsal surface of the 

mesosoma and gaster using a micropipette, with amounts standardized for body 

size between species (Table S7.2 p.287). For each trial the frequency and total 

duration of self-grooming were recorded for 30 min. To assess allogrooming, 20 

pairs of ants were collected from each of four colonies for each of the Formica 

species (80 pairs in total per species), plus four pairs from each of five colonies of 

P. rufescens (20 pairs in total). Following set-up and acclimatization as above, 

one ant was treated with a talcum powder suspension in half of the pairs, whilst 

one ant in the other half of the pairs was treated with control solution (as above). 

The frequency and total duration of allogrooming performed by the attending ant 

on the treated ant were recorded for 30 min.  

In addition, in order to examine whether there is a relationship between 

the slave:slavemaker ratio in colonies and the grooming rates of the slavemakers, 

we recorded the self-grooming rates of ten F. sanguinea workers from each of ten 

colonies for a period of 15 min, using the same procedure as above. The numbers 

of F. sanguinea workers and slave workers (either F. fusca or F. rufibarbis) in 

each colony were counted, and the slave:slavemaker ratio calculated. For four 

colonies the ratio was then increased or decreased through manipulations of the 

colony populations. The ratio was increased by either the experimental 

introduction of slave brood from a different colony or the experimental removal or 

natural death of the F. sanguinea slavemakers, and the ratio of slaves to 

slavemakers was decreased by either removing slaves or the natural eclosion of F. 

sanguinea slavemaker workers. These manipulations were performed twice, each 

two weeks apart, to provide three different colony ratio compositions at different 

time points. The grooming rates of ten F. sanguinea workers per colony were 
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recorded using the method described above at each time point, giving three 

measures of colony grooming at different slave:slavemaker ratios for each colony. 

 

7.3.4 Exp. 3: Use and antimicrobial effectiveness of ant venom  

We tested the antifungal activity of ant-produced venom on both the conidia 

viability and hyphae growth of Metarhizium. Ants were chilled on ice for 20 min, 

and the venom gland and reservoir then dissected out by anchoring the ant at the 

petiole and pulling from the acidopore with fine forceps. This resulted in the clean 

liberation of the venom gland and reservoir from the gaster, leaving other organs 

such as the gut intact. The head of each ant was photographed using a 

stereomicroscope at fixed magnification, with the head width of each ant 

measured (Image J) and used as an estimate of body size (Figure S7.2 p.272).  

The venom gland and reservoir from three ants from the same colony were pooled 

together and immediately stored at -20°C in 20 µl Phosphate Buffered Saline. 

Venom was collected from 30 ants (with venom from 3 ants pooled to give 10 

pooled replicates) from each of four colonies of each of the Formica species (40 

pooled replicates in total per species), and 30 pooled replicates (again, each pooled 

from 3 individual ants) in total from seven Polyergus colonies (see Table S7.1 

p.286 for colony selection). 500 µl of a solution containing 1 x 105 Metarhizium 

conidia per ml was applied evenly over the surface of 50 mm Petri dish media 

plates (Saboraud dextrose agar with 0.1 g/l dodin , 0.05 g/l streptomycin 

sulphate and 0.1 g/l chloramphenicol) and left for 10 min to dry. A sterile 

segment of 6 mm diameter plastic tubing was placed onto the centre of the surface 

of the agar plates to form a well, and 20 µl of venom gland test solution placed in 
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this. The well was left in place for 5 min to allow the compound to infuse and dry, 

before the location of the treated area was marked on the underside of the dish 

and the well removed. The Petri dish was then sealed with parafilm and placed in 

an incubator at 24°C. After 14 h the percentage of conidia producing hyphae 

longer than the germ tube (conidia viability; Siegel 2012) was counted for a 

standardised area (complete area visible in the microscope eyepiece at 400x 

magnification), both within the section where the compound was tested, and in an 

untreated area outside the marked test area, equidistant with the edge of the Petri 

dish. A further 60 h later the plates were photographed from above and the 

average radius determined based on three measurements made using Image J 

software of any zone of inhibition around the marked test section that was free 

from hyphal growth .  

In addition, ten ants from each of P. rufescens, F. cunicularia and F. rufa 

were observed for their venom use. Each ant was anesthetised with a 

standardised burst of CO2 gas and then placed in a small pot (14 mm x 32 mm) 

with a 7 x 14mm rectangle of pH indicator paper (Whatman pH 0.5-5.5). After 3 

h, a photograph of the indicator paper was taken, and the pH value calculated 

from the colour of the pH paper (rounded to the nearest 0.5). Finally, the gasters 

of 30 ants from each of the same three species were removed from the rest of the 

ant, pooled into groups of three (10 replicates per species), and crushed in 250 µl 

of ddH20. The pH of the gaster solutions were then tested using indicator solution 

(Fluka universal indicator solution pH 0-7). The pH of a solution of formic 

(methanoic) acid and pure ddH20 were also tested as a positive and negative 

control. 
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7.3.5 Exp. 4: Physiological immunity 

To assess investment by the ant species in general physiological immunity, we 

quantified the number of haemocytes, and the levels of the phenoloxidase and 

prophenoloxidase immune enzymes. Ants were chilled on ice for 20 min before 

being placed dry under a stereo dissecting microscope. The head and gaster were 

removed and 0.2 µl haemolymph was extracted by placing a calibrated 

microcapillary against the wounds. Samples were collected from five ants from 

each of four colonies for each of the ant species (20 replicates per species) for 

measurement of the phenoloxidase (PO) and prophenoloxidase (PPO) immune 

enzymes, and the same number again for haemocyte counts. PO and PPO was 

measured using methods detailed in Armitage and Boomsma (2010) with minor 

modifications. Both PO and PPO measurements from each haemolymph sample 

was performed at the same time on the same plate. Samples from five ants for 

each species were pooled and used as a sample standard to control for any 

variation between plates. Haemolymph was immediately mixed with 12 µl of ice 

cold sodium cacodylate buffer (0.01M NaCac, 0.005M CaCl2, pH 6.5) after 

collection and snap frozen in liquid nitrogen. Samples were then defrosted on ice 

prior to measurement. For the measurement of PPO, 5 µl of sample and 5 µl of 

Bovine Chymotrypsin (5mg/ml in phosphate buffered saline) were added to each 

well. For the measurement of PO, 5 µl of sample and 5 µl of ddH2O were added 

to each well. A master mix containing 20 µl filtered L-DOPA (11mg/ml in PBS), 

20 µl of PBS and 100 µl of ddH2O, was prepared on ice and added to each cell. 

Each plate was run with a negative control well consisting of the master mix but 

without a sample, and a blank well with only ddH2O. Two positive control wells 

were also run per plate using a fixed volume of Sudan black dye in one well and 
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the pooled sample haemolymph run as above in another, in order to confirm that 

readings were consistent between plates. Immediately after the plate was 

prepared it was placed into a VersaMax plate reader spectraphotometer which 

was pre-heated to 25°C and light absorbance readings recorded every 15 s for 2 

h at a wavelength of 490 nm using Softmax Pro (Molecular devices) software. 

The Vmax values of the linear phase, which usually occurred after an initial lag 

period of 200 s, were recorded for each sample. Five samples which had r2 < 0.7, 

or where no reading was given by the software, were repeated. To count the 

number of haemocytes in haemolymph, 0.1 µl of defrosted haemolymph (20 

replicates per species) was vortexed and added to 20µl Ringer solution and mixed 

on parafilm (Armitage and Boomsma 2010). 2 µl of this mix was added to a 

microscope slide cover slip treated with Poly-D-Lysine. The cover slip was 

allowed to dry out overnight and was viewed under a fluorescence microscope at 

400x and all cells in the field of view counted. Use of frozen haemolymph resulted 

in comparable cell counts to using freshly extracted unstored haemolymph 

samples (Figure S7.1p 271) 

7.3.6 Statistical analyses 

The overall difference in the survival of ants in Experiment 1 was analysed using 

a Cox regression model, including species, blockage treatment, fungal treatment 

and their interactions. The data was then split based on species and the survival 

of ants analysed with respect to their colony-of-origin. Pairwise comparisons 

between treatment groups were made using Kaplin-Meier analyses with the 

Breslow statistic. The data from Experiments 2 and 3 were analysed using 

generalised linear mixed models (GLMM) where data from experiments were non-

normal, with model distribution selected based on AIC scores and the structure of 
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the non-normal data. No overdispersion was observed based on model deviance/df 

values. Non-significant interaction terms within the models were removed 

sequentially based on likelihood-ratio tests to achieve the minimum adequate 

models.  Self- and allogrooming durations in Experiment 2 were analyzed using a 

GLMM with gamma distribution and log link function, with the data analysed 

first overall to compare species. The relationship between the grooming duration 

of F. sanguinea and the ratio of slaves:slavemakers was analysed using a 

quadratic regression. The antifungal action of ant venom on conidia viability and 

hyphae growth in Experiment 3 was examined using a GLMM with gamma 

distribution and log link function. Differences in the pH of the environment and 

gaster of species were analysed using a general linear model. In Experiment 4, 

PO and PPO levels, and haemocyte counts, were compared between species using 

GLMMs with gamma distribution and log link function. All GLMM models 

included colony as a random factor nested within species and pairwise post-hoc 

comparisons were adjusted using sequential Bonferroni adjustments to control for 

multiple comparisons. All analyses were performed in SPSS v.21 (IBM).  
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7.4 Results 

7.4.1 Exp. 1: Pathogen resistance and antimicrobial venom  

There was a significant three-way interaction between species, fungal treatment, 

and gland blockage (Wald = 17.7, d.f. = 5, p = 0.003), but no effect of colony 

(p > 0.05 in all species). Ants from all of the Formica species survived well when 

treated with the control solution, while those of P. rufescens survived less well 

(Figure 7.1). Exposure to the Metarhizium pathogen significantly reduced the 

survival of ants from all species except for the free-living F. rufa, and blocking of 

the venom gland resulted in a significant reduction in the resistance of ants to 

Metarhizium for F. fusca, F. cunicularia and F. rufibarbis (Figure 7.1; Table 

S7.3 p.288). F. rufa was highly resistant to Metarhizium, with the survival of 

Metarhizium-exposed F. rufa ants being the same as control-treated ants when 

their venom glands were functional, and only moderately reduced even when the 

venom gland was blocked. In the cases of F. fusca, F. cunicularia and F. 

rufibarbis ants, Metarhizium-exposed ants had reduced survival compared to 

control-treated ants when their venom glands were functional, and much lower 

survival still when the venom glands were blocked. In the two social parasites, F. 

sanguinea and P. rufescens, there was no effect of venom gland blockage on the 

survival of Metarhizium-exposed ants, with it being significantly lower than 

control-treated ants in both species and particularly low in P. rufescens. 
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Figure 7.1. Pathogen resistance and the importance of antimicrobial venom. The 

survival over two weeks of a) Formica cunicularia, b) F. fusca, c) F. rufibarbis, 

and d) F. rufa free-living ant species, e), the F. sanguinea facultative social 

parasite, and f) the P. rufescens obligate social parasite, after treatment with either 

the Metarhizium pingshaense fungal pathogen (solid line) or control solution 

(dashed line), and with their venom gland either experimentally blocked (closed 

circles) or functional (open circles). Different letters beside lines indicate treatments 

within species that differed significantly from one another at p < 0.05.  
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7.4.2 Exp. 2: Allogrooming and self-grooming behavioural defences 

There was a significant interaction between the effects of species and treatment 

on the duration of self-grooming (F5,668 = 10.4, p < 0.001), while for 

allogrooming there were significant effects of both treatment and species, but no 

interaction between them (F5,408 = 14.9, p < 0.001; F1,408 = 32.2, p < 0.001; 

F5,408= 1.74, p = 0.124 respectively). Colony-of-origin had a significant effect on 

self-grooming but not allogrooming rates (Z = 2.06, p < 0.001; Z = 0.97, p = 

0.33, respectively), and there was no interaction between colony and treatment (p 

> 0.05 for both allogrooming and selfgrooming). All species, except for P. 

rufescens, allogroomed and selfgroomed for significantly longer when treated with 

talcum powder compared with the control treatment (Figure 7.2a, b). The four 

free-living Formica species selfgroomed significantly more than the two social 

parasite species when treated with talcum powder, while there was only a 

difference between the selfgrooming of F. rufibarbis and P. rufescens when 

treated with control solution (Figure 7.2a). The free-living F. cunicularia, F. 

fusca and F. rufibarbis allogroomed for longer than F. rufa and the facultative 

slavemaker F. sanguinea, and these in turn groomed for significantly longer than 

the obligate slavemaker P. rufescens which showed almost no allogrooming 

(Figure 7.2b). There was a significant negative correlation between the rates of 

selfgrooming by F. sanguinea and the ratio of slaves:slavemakers in their colony, 

with F. sanguinea from colonies with fewer slaves tending to self-groom more (r2 

= 0.1, F = 9.66 p < 0.001; Figure 7.2c) 
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Figure 7.2. Allogrooming and 

selfgrooming defences. The mean 

± s.e. duration of a) self-

grooming and b) allogrooming by 

ants from the free-living species 

Formica cunicularia, F. fusca, F. 

rufibarbis and F. rufa, the F. 

sanguinea facultative social 

parasite, and the P. rufescens 

obligate social parasite after 

treatment with either a fungal 

pathogen mimic (talcum powder; 

grey) or control solution (white). 

Asterisks above columns indicate 

species for which the talcum 

powder and control treatments 

differed significantly in the 

grooming response stimulated (p 

< 0.05), and different letters 

above columns indicate species 

that differed significantly from 

one another in grooming for that 

treatment (control solution: a-c; 

talcum powder: x-z). Also shown 

is c) the relationship between the 

mean duration of self grooming by 

ants of the facultative social 

parasite F. sanguinea and the 

ratio of F. fusca host workers to 

F. sanguinea workers in their 

colony.  
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7.4.3 Exp. 3: Use and antimicrobial effectiveness of ant venom 

Application of venom significantly reduced the viability of Metarhizium conidia 

from its baseline level of 88 ± 6%, with the strength of the effect differing 

between ant species (F5,234 = 2.47, p = 0.033). Venom from the obligate 

slavemaker P. rufescens did not reduce the viability of conidia as much as venom 

from F. cunicularia, F. fusca and F. rufa (Figure 7.3a). There was no overall 

difference between species in the zone of inhibition of Metarhizium hyphal growth 

(F5,234 = 1.98, p = 0.082), but there were significant differences between species 

in pairwise comparisons with venom from P. rufescens producing smaller zones of 

inhibition than F. cunicularia and F. rufa (Figure 7.3b).  There was a significant 

effect of colony-of-origin on both conidia viability and the inhibition zone size (Z 

= 1.14, p = 0.048; Z = 1.49, p = 0.037, respectively). There was no 

significant difference in the acidity of whole-gaster extracts from F. cunicularia, 

F. rufa and P. rufescens (F2,27 = 5.35, p = 0.069), but there were significant 

differences in the pH of the environment after the presence of an ants from the 

different species (F2,27 = 13.22, p < 0.001), with the obligate slavemaker P. 

rufescens reducing the pH of the environment much less than the free-living ant 

species (Figure 7.3c). However it seems that the venom gland in P. rufescens may 

not be any smaller, relative to body size, than the other free-living species, but 

may be enlarged in F. rufa (Figure S7.2 p.272). 
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Figure 7.3. Use and antimicrobial 

effectiveness of ant venom. The mean 

± s.e.  a) percentage viability of 

conidia and b) zone of inhibition of 

hyphal growth of the Metarhizium 

fungal pathogen when exposed to 

venom from the free-living species 

Formica cunicularia, F. fusca, F. 

rufibarbis and F. rufa ant species, 

the F. sanguinea facultative social 

parasite, and the P. rufescens obligate 

social parasite. Bars with different 

letter codings differ significantly at p 

< 0.05. Chart c)  shows the mean ± 

s.e. pH of the environment and of ant 

gasters for the free-living F. 

cunicularia (dark grey bars), and F. 

rufa (medium grey bars), and the 

obligate social parasite P. rufescens 

(light bars). The dashed line 

represents the pH of blank control 

trials.  
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7.4.4 Exp. 4: Physiological immunity 

There was a significant difference between the ant species in their baseline levels 

of the phenoloxidase (PO) immune enzyme in their haemolymph (F5,114 = 2.97, p 

= 0.015), with P. rufescens having lower levels than the Formica species (Figure 

7.4a). However there was no difference between ant species in their levels of 

constitutive prophenoloxidase (PPO; F5,114 = 0.92, p = 0.47; Figure 7.4b). We 

trialled two methods for counting haemocytes and these produced comparable 

results (Figure S7.1). There were significant differences in the number of 

haemocytes between species (F5,114 = 2.31, p = 0.048), with the obligate 

slavemaker P. rufescens having fewer haemocytes than F. cunicularia, F. 

rufibarbis or F. rufa (Figure 7.4c). There was no effect of colony on PO, PPO or 

haemocyte counts (Z = 1.24, p = 0.214; Z = 1.96, p = 0.05; Z = 0.734, p = 

0.16, respectively). 

7.5 Discussion 

The results show that the two socially parasitic species examined here have 

reduced disease resistance compared to related free-living species, and 

consequently were more susceptible to infection by a fungal pathogen. Between 

the socially parasitic species, the obligate social parasite P. rufescens generally 

had lower disease resistance than the facultative social parasite F. sanguinea. 

Both of the socially parasitic species had lower behavioural defences than the four 

free-living Formica species, and P. rufescens also had less effective chemical 

defences and reduced physiological immunity.  
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Figure 7.4. Physiological 

immunity. The mean ± 

s.e. levels (Vmax 

absorbance) of a) 

phenoloxidase and b) 

prophenoloxidase immune 

enzymes, and c) number of 

haemocytes (see also Supp 

mat S7.2 p286), for the 

free-living species Formica 

cunicularia, F. fusca, F. 

rufibarbis and F. rufa, the 

F. sanguinea facultative 

social parasite, and the P. 

rufescens obligate social 

parasite. Bars with 

different letter codings 

differ significantly at p < 

0.05.  
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Our findings support the hypothesis that socially parasitic species have reduced 

disease resistance compared to related free-living species. Other free-living 

formicine ants, including representatives of Lasius, Camponotus, Polyrhachis, 

and Oecophylla, have been found to have effective individual-level disease 

resistance mechanisms in the form of antimicrobial venom and grooming, as well 

as cooperative social defences as well (Chapuisat et al. 2007; Ugelvig and Cremer 

2007; Graystock and Hughes 2011; Hamilton et al. 2011; Walker and Hughes 

2011; Reber and Chapuisat 2011; Konrad et al. 2012; Tragust, Mitteregger, et 

al. 2013; Tranter et al. 2014, 2015; Tranter and Hughes 2015). The 

evolutionary history of these disease defences therefore indicates that they have 

probably been secondarily reduced in F. sanguinea and P. rufescens in parallel 

with their evolution of a socially parasitic lifestyle. This mirrors a socially 

parasitic species of leaf-cutting ant, Acromyrmex insinuator, in which the size of 

the antibiotic-producing metapleural gland has been secondarily reduced, with a 

consequent decrease in individual-level disease resistance (Sumner et al. 2003). It 

has been predicted that the evolution of a group-living lifestyle is associated with 

greater pressure from pathogens (Alexander 1974), and there is some evidence 

for a positive relationship between sociality and investment in ants, bees and 

social thrips (Stow et al. 2007; Hughes, Pagliarini, et al. 2008; Turnbull et al. 

2010, 2012; Fernández-Marín et al. 2013). The finding of secondary reductions 

in disease resistance in socially parasitic species suggests that this evolutionary 

relationship may also go in reverse.  
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The various different defences exhibited by social insects are often traded-off with 

one another (Lochmiller and Deerenberg 2000; Schmid-Hempel and Ebert 2003), 

with certain species investing heavily in one mechanism, but not another (Sheldon 

and Verhulst 1996; Fernández-Marín et al. 2013; Tranter and Hughes 2015). 

The facultative slavemaking ant, F. sanguinea, demonstrated normal 

physiological immune defences when compared with the free living species, but a 

reduction in the levels of grooming behaviours, placing it intermediate between 

the obligate slavemaker and the free-living species in terms of behavioural disease 

defence. Additionally, F. sanguinea seemed able adjust its grooming rates 

depending on the number of slaves present, and was flexible over relatively short 

time scales of a few months. It is likely that this finding may be exclusively 

observable in facultative social parasites such as F. sanguinea, which retain 

enough of their behavioural anti-parasite repertoire (Snelling and Buren 1985). 

This suggests that the more plastic behavioural defences, like the flexible 

grooming seen in F. sanguinea, may be reduced first during evolution, and that 

the less plastic defences such as acid production and physiological immunity are 

then reduced later. This is supported by P. rufescens, which shows not only 

significant reductions in behavioural grooming and the use of venom, but also in 

physiological immunity and the antimicrobial effectiveness of venom.  

 The relaxation of disease resistance may be unsurprising when you 

consider that they are often very energetically costly (Poulsen, Bot, Nielsen, et al. 

2002; Schmid-Hempel 2005), and that behaviours also potentially increase the 

individuals own risk of exposure (Rosengaus 2000; Hughes et al. 2002; 

Fefferman et al. 2007). However the significance of these costs for host fitness 

and evolution is relatively poorly understood. The finding that both obligate and 



180 

facultative slavemaker species have reduced investment into disease resistance, in 

addition to similar reductions in Acromyrmex insinuator (Sumner et al. 2003), 

provides evidence that these costs are significant enough for evolution to reduce 

them when the need for them is lower. The production of antimicrobial secretions 

from the metapleural gland in leaf-cutting ants can be very costly (Poulsen, Bot, 

Nielsen, et al. 2002), and it seems reasonable to assume that the production of 

antimicrobial venom is costly in the formicines. But the reduction in grooming in 

F. sanguinea indicates that behavioural defences likely incur significant costs as 

well, perhaps in terms of energy and time costs, or even in the cost of maintaining 

neural tissue governing these behaviours (Giorgi et al. 2001; Reber et al. 2011; 

Sulger et al. 2014).  These reductions in the more plastic behavioural defences 

may have evolved over just a few million years, as F. sanguinea is estimated to 

have diverged from the other Formica subgenera around 6 mya (Jansen et al. 

2010), whereas the physiological responses to a more obligate socially parasitic 

lifestyle may have taken longer (40 mya ca. divergence between Formica and 

Polyergus; Goropashnaya et al. 2012). 

We also found that the free-living species, F. rufa, is more resistant to disease 

than the other free-living Formica species, despite having lower levels of 

grooming. Although there was no difference in the potency of their venom or 

physiological immunocompetence, F. rufa does seem to possess much larger 

venom glands for its body size, which may explain its greater disease resistance. 

F. rufa has much larger, more complex colonies, than the other free-living 

Formica species we examined (Yarrow 1955; Domisch et al. 2009), which may 

increase parasite pressures through promoting horizontal transmission and 

greater ‘sampling’ of the environment (Tschinkel 1991; Schmid-Hempel 1998; 
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Poulin 2007). Thus it is possible the size, and ecological dominance, in F. rufa 

allows or necessitates greater investment into disease resistance. This may be 

similar to how larger, more complex, societies in fungus-growing ants possess 

more developed antimicrobial defences (Fernández-Marín et al. 2006; Hughes et 

al. 2008). Alternatively, the greater disease resistance of F. rufa may be a 

consequence of greater investment in predator defence. Unlike the defensive 

metapleural secretion, the venom of Formicines, large-colony wood ant species 

like F. rufa in particular, is often used as an antipredator defence (Blum 1978, 

1992). This predator defence strategy may therefore have driven the evolution of 

the larger venom glands found in F. rufa, with a secondary benefit in terms of 

disease resistance. 

Although slave-making social parasites have been studied for over 100 years the 

drivers of the evolution of this interesting trait are still debated (Wheeler 1910; 

Buschinger 1986). We suggest this study provides interesting evidence of how, in 

part, the evolutionary transition from non-parasite, to facultative parasite, to 

obligate parasite, may have evolved or been maintained; given increasing care 

from, and reliance on, their host species for parasite defence (Buschinger, 1986).  

Additionally, whilst there has been considerable work looking at how parasites 

affect the evolution of host defences, there are few studies looking at the defence 

responses of the parasites themselves to other threats, which can have 

considerable influences on the evolution of life-histories (Schmid-Hempel and 

Ebert 2003; de Roode and Lefèvre 2012). This is despite the not uncommon 

occurrence of hyperparasitism (parasites parasitizing parasites) and disease in 

parasitic species (Sullivan 1987; Foitzik et al. 2001). We show how the 

evolutionary transition between free-living, facultative and obligate socially 
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parasitic modes of life may influence or be influenced by pathogen parasite 

pressures and in turn alter investment into disease resistance and reliance on their 

hosts. Further targeted comparative studies like this will be vital to 

understanding how the evolution of immune function and parasite resistance has 

been influenced by a parasitic mode of life, and ultimately how these pressures 

may have influenced the evolution and persistence of social parasitism and other 

transitions in life history. 

  

Polyergus rufescens 
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 Evidence for cocladogenisis of 8.

Wolbachia symbionts and their hosts 

in a tropical ant assemblage 

 

8.1 Abstract 

Intracellular reproductive parasites such as Wolbachia are common in 

invertebrates and can have diverse and substantial effects on host biology. These 

parasites are usually transmitted vertically from, mother to daughter, but can also 

be transferred horizontally. By examining the phylogenies of both host and 

parasite within a system it is possible to reveal the modes of infection present. 

Here we screen species from a tropical ant assemblage in order to reveal the 

infection prevalence of Wolbachia and to explore the genetic relationships 

between hosts and parasites, and between parasite strains. Of 73 host ant species, 

26% were found to be infected with Wolbachia. Congruence in the topologies of 

host and Wolbachia phylogenies, based on both wsp and MLST sequencing, 

indicated cocladogenesis of Wolbachia and its hosts, supporting the current 

paradigm that Wolbachia is predominantly vertically transmitted. The substantial 

diversity in Wolbachia strains found also provides the possibility for future 

phylogenetic trait-mapping analyses which will allow the exploration of how host 

life-history affects may affect transmission dynamics of reproductive parasites in 

social insect societies.  
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8.2 Introduction 

Microbial endosymbiosis, where one partner lives within its host, is an important 

driver of evolutionary change, and has resulted in the formation of both 

mitochondria and chloroplasts (Cavalier-Smith 1987). Some endosymbionts 

which are transmitted vertically from one generation to the next, can alter the 

biology of their hosts in order to increase their own transmission, and in so doing 

act as ‘reproductive parasites’ (Duron et al. 2008). Wolbachia is the 

quintessential intracellular reproductive parasite, and is widespread in arthropods 

and nematodes. Although usually vertically transmitted, Wolbachia can also 

transmit horizontally between species at least occasionally, which has resulted in 

a global distribution within a diverse array of invertebrate hosts (Baldo et al. 

2008). Wolbachia can feminise hosts, induce mating incompatibilities or 

asexuality, result in the death of males, and be required for oogenesis (Duron et 

al. 2008; Werren et al. 2008). These manipulative behaviours are interesting 

examples of how complex the evolutionary dynamics between host and parasite 

can be, but also have important effects on the ecology and evolution of the hosts 

themselves (Poulin 2007). Reproductive parasites can drive changes in sex ratio 

or even reproductive strategies in their hosts which can have drastic impacts on 

their populations, as hosts undergo rapid selection due to these pressures (Duron 

et al. 2008). In addition, Wolbachia can have either positive and negative direct 

fitness costs in terms of increased or reduced host immunocompetence, and 

provides strong benefits in other cases such as the protection of Drosophila 

melanogaster and mosquitoes against several RNA viruses and nematodes (Gerth 

et al. 2011; Martinez et al. 2014) 
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 In most horizontally transmitted parasites, transmission rates are heavily 

influenced by host density (Mccallum et al. 2001; Riesa and Amazineb 2001). 

Therefore in group-living species, especially social insects, which live in very 

high-population nests with very little genetic diversity, the threat from parasites 

is often considered to be potentially high (Schmid-Hempel 1998; Calleri et al. 

2006; Fefferman et al. 2007). However the dynamics of vertically transmitted 

parasites like Wolbachia within social insects are especially complex (Baldo et al. 

2008). Wolbachia can only vertically transmit through the founding of new 

colonies by queens, as all worker females are unable to produce daughters and the 

parasite does not transmit through males (Riesa and Amazineb 2001; Baldo et al. 

2008). In vertical transmission, parasite and host fitness are closely intertwined, 

as effective transmission relies on the fecundity of its host (Bull et al. 1991). 

Phylogenetic studies of Wolbachia and their hosts can be useful for exploring the 

transmission modes and rates of endosymbiosis. Cocladogenesis between host and 

symbiont phylogenies is indicative of vertical transmission, while incongruence in 

phylogenies can indicate horizontal transmission (Vavre et al. 1999; Baldo et al. 

2005, 2008; Werren et al. 2008; Russell et al. 2009; Frost et al. 2010). Here we 

investigate the relationships between Wolbachia and its hosts in an assemblage of 

sympatric, tropical ants from the same ecosystem but which are diverse both in 

phylogeny and in life history. Our aim was to determine the occurrence of 

Wolbachia and to reveal the genetic relationships between it and the ant hosts, to 

explore the extent and dynamics of Wolbachia infection in this system.  

 

8.3 Methods 



186 

8.3.1 Sampling 

In order to sample an array of ants, representing a diverse tropical assemblage of 

species with varied life histories, we collected ants from Barro Colorado Island 

(BCI), Panama, in July of 2012 and July of 2013. BCI is home to over 400 

species of ants (D. Donoso, in prep). Ants were sampled using active searching, 

baiting, leaf-litter sifting and pitfall traps, and were immediately stored in 100% 

ethanol after collection. Ants were identified from morphological characteristics 

using keys by Longino (2007) and Bolton (1994; 1995) under a 

stereomicroscope, and were compared with reference samples from collections 

where possible. This resulted in a collection of 84 species, 80 of which were 

represented by at least 4 individual worker samples and were screened in this 

study. Samples were stored at -20°C until use.  

 

8.3.2 Screening for Wolbachia 

DNA from 878 individual ants (Table 8.1) was extracted by removing a single 

leg, or multiple legs for smaller species, which were then placed in 100µl of 5% 

Chelex 100 (Biorad) suspended in 10µM Tris buffer, with 5 µl of Proteinase K 

(5µL/mL). This mixture was then incubated for 4 h at 56°C before boiling for 15 

min at 99°C. The mixture was centrifuged at full speed for 25 min and 40 µl of 

the supernatant removed and frozen at -20°C. To screen samples for the presence 

of Wolbachia we used the primers wsp_f and wsp_r (Baldo et al. 2005) to 

amplify a 603-bp fragment of the wsp gene (Table 2). One individual from each 

species that screened positive for wsp was used for MLST sequencing using five 

housekeeping genes (gatB, coxA, hcpA, ftsZ and fbpA) distributed across the 
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genome, following standard procedures (Baldo et al. 2005; www.mlst.net). Each 

Wolbachia strain can then be characterized by the allelic profile of the five alleles 

at the MLST loci, producing its sequence type. Additionally the primers LCO and 

HCO were used to amplify a 710-bp fragment of the cytochrome oxidase 1 (cox1) 

mitochondrial gene, commonly used for DNA barcoding in many species (Folmer 

et al. 1994). This was used as a positive host control and to generate a host 

phylogeny. Primer details and PCR conditions are listed in Supplementary Table 

S8.1 p.289. PCR products were run on a 1% agarose gel and visualized under 

UV. Positive and negative samples were added with each complete run. Samples 

which positively amplified were purified with a QIAquick PCR Purification kit 

(QIAGEN), DNA concentrations checked with a NanoDrop 2000 (Thermo Sci.) 

and sequenced (Genbank: KT783613-KT783662). Samples were sequenced 

using both forward and reverse primers to ensure accuracy of the sequence 

results.  

 

8.3.3 Phylogenetic analyses 

Sequences were first aligned and trimmed using the CLUSTALW2 algorithm. 

Wsp, CO1 and concatenated MLST phylogenies were produced using a Maximum 

Likelihood criterion.  Maximum likelihood model selection analysis based BIC 

scores suggested the use of a GTR+I model for wsp data and GTR+G+I for the 

MLST and CO1 data. The robustness of the inferred ML tree topology was 

assessed by performing 10000 bootstrap replicates in in MEGA6 (Tamura et al. 

2013). Bayesian analyses were performed using MrBayes v3.2.5 (Huelsenbeck 

and Ronquist 2001; Ronquist and Huelsenbeck 2003) using a Markov chain 
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Monte Carlo analysis using a GTR+G model with Inverse gamma rates, 

performed for 1,000,000 generations with a sampling frequency of 100 

generations and a 25% burn in. All other settings were as default. Cophylogenetic 

trees were converted using FigTree v1.4.2 (Rambaut and Drummond 2012) and 

produced using TreeMap3. Cocladogenesis between host and parasite phylogenies 

was tested using tree reconciliation in TreeMap 3. The probability of obtaining 

the observed number of cospeciation events was then calculated by 1000 Markov 

randomizations of parasite trees to test if reconciled host and parasite trees 

demonstrate significantly higher levels of speciation events than chance (Page 

1998; Page and Charleston 1998). 

 

8.4 Results 

8.4.1 Infection status 

Of the 80 ant species collected, DNA was successfully extracted, and CO1 

fragment amplified from at least 4 replicate samples in 73 species (Table 8.1). Of 

these, the amplified CO1 fragment was successfully sequenced from 51 species. In 

total 19 out of 73 (26%) species had at least one individual test positive for 

Wolbachia infection. No species from the subfamilies Ectatomminae, 

Pseudomyrmicinae, Ecitoninae, Dorylinae, Ponerinae or Paraponerinae (total 28 

species), screened positive for Wolbachia. In contrast, 10 of 29 (34%) myrmicine 

species, and 6 of 10 (60%) of dolichoderine species screened positive. All of the 

Azteca and Crematogaster  species screened had very high proportions of workers 

infected. However there were also genera with mixed infection statuses, for 

example Camponotus and Pheidole in which only a single species was found to be  
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Table 8.1. List of ants screened and sequenced for CO1 barcoding, WSP and MLST Wolbachia screening. WSP screening results marked 

with an asterisk indicate the presence of multiple infections. Total number of sucessfully extracted species samples and percentage of those 

positive for Wolbachia are given at the end of each Subfamily group in bold. 

  

WSP sequenced MLST amplified

Subfamily (species) Species amplified sequenced (positive/total) per colony Proportion positive 5 loci sequenced

Aphaenogaster phalangium 1 (8) y n 0

Carebara c.f. urichi 1 (8) y n 0

Apterostigma dentigerum  1 (8) y y (3/5) 0.60 y y

Apterostigma pilosum 5 (25) y y (2/5) (2/5) (5/5) (5/5) (3/5) 0.68 y y

Apterostigma collare 1 (8) y y 0

Atta cephalotes 2 (16) y y 0

Acromyrmex octospinosus 3 (15) y y (5/5) (5/5) (5/5) 1.00 y y

Sericomyrmex amabilis 5 (25) y y (5/5) (5/5) (4/5) (5/5) (4/5) 0.92 y y

Trachymyrmex sp 10. 3 (24) y n 0

Trachymyrmex zeteki 2 (12) y y (0/6)(2/6) 0.17 n

Trachymyrmex cornetzi  5 (24) y y 0

Cyphomyrmex c.f. costatus 1 (8) y n 0

Cyphomyrmex rimosus 1 (8) y y (1/8)* 0.13 n

Myrmicocrypta sp. 1 1 (5) y y 0

Cephalotes atratus 2 (14) y y 0

Cephalotes minutus 1 (5) y n 0

Cephalotes maculatus 1 (5) y y (2/5) 0.40 y y

Crematogaster brasiliensis 3 (24) y y (8/8) (8/8)* (8/8) 1.00 y y

Crematogaster carinata 4 (28) y y (7/8) (8/8) (7/7) (5/5) 0.95 y y

Crematogaster c.f. limata 1 (5) y n (4/5)* 0.80 n

Tetramorium bicarinatum 3 (24) y y 0

Strumigenys c.f. marginiventris 1 (5) y n 0

Strumigenys elongata 1 (5) y y 0

Solenopsis sp 1. 2 (16) y n 0

Solenopsis sp 2. 1 (8) y - (7/9)* 0.78

Solenopsis sp 3. 1 (5) n - -

Megalomyrmex symmetochus 1 (1) - - -

Wasmannia auropunctata 1 (8) y y (5/5) 1.00 y y

Stegomyrmex sp 1. 1 (8) y y 0

Pheidole sp 1 3 (17) y y (2/8) (0/4) (2/5) 0.27 y y

Pheidole sp 2 1 (8) y y 0

Pheidole sp 3 1 (8) y n 0

Pheidole sp 4 1 (5) n - -

30/33

Camponotus brevis 1 (8) y n 0

Camponotus JTL-004 1 (5) y y 0

Camponotus novogranadensis 1 (5) y n 0

Camponotus c.f. pitteri 1 (8) n - -

Camponotus c.f. planatus 1 (9) y y 0

Camponotus sanctaefidei 1 (1) n - -

Camponotus senex 1 (8) n - -

Camponotus sericeiventris 4 (28) y y (2/8) (0/8) (0/8) (0/4) 0.07 y y

5/8

Ectatomma ruidum 5 (40) y y 0

Ectatomma tuberculatum 5 (28) y y 0

Gnamptogenys annulata 1 (5) y y 0

Gnamptogenys concinna 1 (5) y y 0

4/4

Azteca sp. 1 1 (5) n - -

Azteca c.f. alfari 3 (17) y y (6/6) (4/6) (5/5) 0.88 y y
Azteca c.f. brevis 1 (5) y n (5/5) 1.00 y
Azteca instabilis 5 (33) y y (8/8) ( 8/8) (5/5) (8/8) (4/4) 1.00 y y

Azteca nigra 1 (8) y n (8/8) 1.00 n
Azteca trigona 2 (16) y n (6/8)(7/8)* 0.81 n
Azteca c.f. velox 1 (8) y y (8/8) 1.00 y y
Dolichoderus bispinosus 1 (8) y y 0

Dolichoderus debilis 5 (39) y y 0

Dolichoderus c.f. laminatus 1 (5) y n 0

9/10

Pseudomyrmex occulatus 3 (6) y y 0

Pseudomyrmex boopis 3 (5) y y 0

Pseudomyrmex PSW-33 1 (5) y y 0

3/3

Eciton burchellii foreli 3 (24) y y 0

Eciton hamatum 2 (16) y n 0

Eciton dulcium crassinodes 1 (8) y y 0

3/3

Labidus coecus 1 (5) y y 0

Neivamyrmex pilosus mexicanus 1 (5) y n 0

Nomamyrmex esenbecki crassicornis 1 (5) y y 0

3/3

Ectomomyrmex apicalis 1 (5) y n 0

Neoponera bugabensis 1 (5) y y 0

Pachycondyla impressa 1 (5) y n 0

Mayaponera constricta 1 (1) - - -

Pachycondyla harpax 1 (1) - - -

Pseudoponera stigma 1 (4) y y 0

Neoponera unidentata 1 (5) y y 0

Neoponera verenae 3 (14) y y 0

Neoponera villosa 1 (4) y n 0

Platythyrea pilosula 1 (5) y n 0

Platythyrea c.f. prizo 1 (4) y y 0

Anochetus diegensis 1 (4) y y 0

Odontomachus bauri 3 (24) y y 0

Odontomachus ruginoides 1 (5) y y 0

Platythyrea prizo 1 (5) y y 0

Leptogenys JTL-004 1 (5) y y 0

Hypoponera sp 1 1 (5) y y 0

Hypoponera punctatissima 1 (4) y y 0

16/18

Paraponerinae (1) Paraponera clavata 2 (11) y n 0

1/1

Positive 73 51 19 13

(sp. counts) 83 species total 146 (883) Total 80 73 73 73

% 91.00 70.00 26.03 17.81

WSP positive screen

Myrmicinae 

(33)

colonies (individuals)

Table 1. List of ants screened and sequenced for CO1 barcoding, WSP and MLST Wolbachia screening. WSP screening results marked with an asterisk indicate the presence of multiple 

infections. Total number of sucessfully extracted species samples and percentage of those positive for Wolbachia are given at the end of each Subfamily group in bold.

COI amplifiedSamples screenedSample ID

13/30 (43%)

1/5 (20%)

Formicinae 

(8)

Ectatomminae (4)

Dolichoderinae 

(10)

0/4 (0%)

6/9 (67%)

0/3 (0%)

0/3 (0%)

0/3 (0%)

0/1 (0%)

0/16 (0%)

Pseudomyrmicinae

 (3)

Ecitoninae 

(3)

Dorylinae 

(3)

Ponerinae

 (18)
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infected in each case. Samples from single colonies of Cyphomyrmex rimosus, 

Crematogaster brasiliensis, Crematogaster limata, Solenopsis sp2, and Azteca 

trigona, showed evidence of multiple Wolbachia infections based on the 

sequencing traces. Where possible multiple colonies were screened to ascertain 

the distribution of infection within a species. Wsp samples were only successfully 

sequenced from multiple colonies in Crematogaster carinata and Azteca trigona, in 

both cases the colonies possessed the same wsp sequence type. There was a wide 

range of species infection intensities, from ~100% in Azteca spp. to 7% in 

Camponotus sericeiventris, but broadly similar infection intensities between 

colonies where species had multiple samples collected 

 

8.4.2 Phylogenetics and MLST profiling 

The overall host tree produced from CO1 sequences (648 bp; Figure 8.1) mapped 

to the Wolbachia parasite wsp and MLST phylogenies (Figures 8.2 and 8.3). ML 

and Bayesian analyses produced wsp and COI topologies that were not 

significantly different from one-another, and only ML results are shown (Figure 

8.2). For the concatenated MLST sequences there was less consistency in 

topologies produced between the two analyses (Figure 8.3). Generally bootstrap 

values for early branching patterns were low, which suggests some of the more 

broad phylogenetic patterns may be poorly resolved, but the comparisons at 

terminal nodes are largely well defined.  
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.  

Figure 8.1. Phylogeny based on COI sequences of 51 species from a tropical ant 

assemblage that were screened for infection by the Wolbachia symbiont. Maximum 

likelihood bootstrap 1000 values are shown at each node. Host species are labelled 

based on the presence of Wolbachia after wsp screening. Red: Wolbachia found in 

this species from this study. Yellow: Wolbachia found in this species from previous 

studies. Blue: Wolbachia found in ants from this genus in previous studies. 
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Figure 8.2. Host and Wolbachia phylogenies. a) Maximum likelihood phylogeny of 

13 Wolbachia strains found in the tropical ant assemblage studied based on wsp 

sequences, and b) a maximum likelihood phylogeny based on CO1 sequences of 

the13 host ant species of these Wolbachia strains. Host name are given at terminal 

nodes, and bootstrap 10000 iterations values are given at each node. Red highlight 

indicates identical sequences. 
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Figure 8.3. MLST phylogenies. Maximum likelihood a) and Bayesian b) phylogenies of 

13 Wolbachia strains found in the tropical ant assemblage studied, generated from 

concatenated MLST sequences. Host name is given at terminal nodes and bootstrap 

10000 iterations (ML) and clade credibility (Bayesian) values are given at each node.  
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Comparing host and wsp Wolbachia trees showed significant evidence for 

cocladogenesis, with the observed number of speciation events extremely unlikely 

to have occurred by chance, but still different from if the parasite had undergone 

complete cocladogenesis (p = 0.030, 95% CI [0.019, 0.041]; 19 codivergence, 6 

duplication, 11 loss, 0 host switch, 16 non-codivergence, events; Figure 8.4). For 

example the Apterostigma, and Crematogaster species share highly similar 

Wolbachia strains with other species of their genus, and the Camponotus-Azteca 

clade shows complete matching. 

  

 

Figure 8.4. Tanglegram. The concatenated MLST phylogeny of Wolbachia strains 

(right) mapped to the phylogeny of their host ants (left; based on COI sequences). 

Mappings are untangled to minimise line intersections.  
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Sequencing of MLST gene fragments produced many alleles not found in the 

online MLST database and were therefore assigned unique identifiers for the 

purposes of this study (Table 8.2). One Wolbachia sample, from Apterostigma 

pilosum, did produce a match for each of the 5 alleles, however the overall allelic 

strain profile did not match that of any other Wolbachia sample published. A. cf. 

alfari and A. instabilis had identical strain profiles. A. velox matched for 4/5 

alleles (1 bp difference) the other Azteca species, and the strain profiles for the 

two Crematogaster species matched for 4/5 alleles.  

 

Table 8.2. MLST allele profiles of Wolbachia symbiont strains identified in 13 host species from 

a tropical ant assemblage 

Ant species gatB coxA hcpA ftsZ fbpA 

Apterostigma dentigerum  CT5 20 32 154 CT1 

Apterostigma pilosum 75 20 32 154 46 

Acromyrmex octospinosus CT1 20 32 CT1 CT4 

Sericomyrmex amabilis 3 20 CT2 154 CT2 

Cephalotes c.f. maculatus CT6 20 207 154 46 

Crematogaster brasiliensis 19 CT2 CT4 CT2 CT3 

Crematogaster carinata 19 CT3 CT4 CT2 CT3 

Wasmannia auropunctata CT2 CT1 210 CT2 CT5 

Pheidole sp 1 CT3 CT3 CT5 154 380 

Camponotus sericeiventris CT4 CT5 CT3 46 46 

Azteca c.f. alfari 
a
 75 CT4 CT1 46 46 

Azteca instabilis 
a
 75 CT4 CT1 46 46 

Azteca c.f. velox 75 CT4 207 46 46 
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8.5 Discussion  

We found that 26% of the 73 host species sampled from a tropical ant assemblage 

were infected with the reproductive parasite Wolbachia, with substantial 

intraspecific and interspecific variation in infection prevalence. Unique MLST 

sequence types were found from all hosts where the complete set of genes were 

sequenced, except for Azteca c.f. alfari and Azteca instabilis, which shows that 

even closely related species can harbour different Wolbachia strains. However, 

the similarity of Wolbachia and host phylogenies, suggests that although 

different, Wolbachia strains from related hosts are themselves also generally 

related.  

 This study provides the first wide-scale evidence cocladogenesis between 

Wolbachia and its hosts in social insects. However, this cocladogenesis was not 

complete, which overall supports the current model of Wolbachia being 

predominantly vertically transmitted in social insects but with occasional 

horizontal transmission events (Baldo et al. 2008; Frost et al. 2010). Studies on 

Wolbachia in ants have found infection rates of 50% (Wenseleers et al. 1998), 

29% (Russell et al. 2009) , 29% (Russell et al. 2012), 22% (Kautz et al. 2013) 

and 26% (this study). The prevalence in ants is broadly in line with infection 

frequencies found in termites (27%; (Lo and Evans 2007), but lower than bees 

and wasps  (54% and 66%; (Gerth et al. 2011), and insects more generally (ca. 

40% (Russell et al. 2012; Martinez et al. 2014). Across the ant subfamilies there 

seemed to be strong evidence for infection heterogeneity, with the majority of 

Wolbachia-infected ants being from the Myrmicinae and Dolichoderinae. In the 

dolichoderines, we only screened samples from two genera, but there was a 
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distinct difference, with Azteca being nearly uniformly infected and Dolichoderus 

samples being uninfected. We found no Wolbachia in ponerines and only one of 

the formicine species screened was infected.  The Wolbachia strain from 

Wasmannia auropunctata was the most highly divergent from the other strains. 

Although found natively in Panama, this species is a widespread invasive species 

that can reproduce both clonally and sexually. Clonal populations of this species 

have been found to harbour very specific strains of Wolbachia which have been 

repeatedly inherited through exclusively vertical clonal reproduction, which may 

explain the significant divergence from other strains (Rey et al. 2013) 

The results provide evidence for cocladogenisis between Wolbachia and its 

hosts. Additionally we found a considerable diversity in Wolbachia strains 

between even closely related species, and show that infection status can be highly 

heterogenous between taxa. The identification of multiple unique strains in our 

study suggests the possibility that as more ants are screened for Wolbachia, and 

as we continue to build knowledge of the host’s natural history, it may be possible 

for trait-mapping to be used to see how Wolbachia infection is influenced by the 

life-history of lineages over and above phylogenetic or geographic transmission 

patterns. This will allow us to build a more complete picture of the dynamics of 

reproductive parasites such as Wolbachia in social insects.  

 

  

Sericomyrmex amabilis 



198 

 General Discussion 9.

Work on the evolutionary ecology of infectious disease has received increasing 

interest as host-parasite interactions continue to demonstrate important insights 

into key biological phenomena, including the evolution of sexual reproduction, the 

maintenance of genetic diversity, and the sculpting of community structure 

(Hamilton et al. 1990; Prenter et al. 2004; Poulin 2007; Schmid-Hempel 2011). 

This is built on a fundamental framework underlying the evolutionary theories for 

the evolution of parasite emergence, virulence, and their consequent effects on 

host biology and populations (Frank 1996; Schmid-Hempel 1998; Poulin 2007; 

Watson 2013). Identification and quantification of host defences and their role in 

combating disease is an important part of this process. In this thesis I show that 

ants possess a variety of defence mechanisms to protect themselves against the 

threat of parasites, and demonstrate how investment into these important 

defences can vary between individuals and species, and may depend on context, 

type of parasite, and life-history of the host.  

Current understanding of host-parasite relationships now includes a conceptual 

division between direct reduction of parasite loads, termed parasite resistance, 

and a reduction in the cost of a given parasite load, termed parasite tolerance 

(Miller et al. 2005; Chambers and Schneider 2012; Ayres and Schneider 2012; 

de Roode and Lefèvre 2012). Resistance and tolerance are two alternative but 

complementary host defense strategies, with host fitness representing the result 

of these two components, and thus hosts that are good at parasite resistance may 

still show considerable fitness costs if they are nonetheless poor at tolerating 
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disease (Chambers and Schneider 2012). There are key difference between these 

components from an evolutionary ecology perspective, with resistance protecting 

the host at the expense of the parasite, while tolerance reduces the cost to the 

host without direct negative effects on the parasite (Miller et al. 2005). Thus 

resistance and tolerance may result in different evolutionary outcomes for both 

host and parasite. Increased host resistance should be observed to reduce parasite 

prevalence in host populations, and may strongly drive antagonistic host-parasite 

coevolution (Miller et al. 2005; Poulin 2007). This is unlike tolerance, which may 

have little effect on parasite populations, and limited selection to overcome 

tolerance defences in the parasite (Miller et al. 2005). In this work we have 

tended not to make this explicit distinction, rather relating to the two collectively 

as a combined defence. This is partly because successful infections of the 

entomopathogenic fungi Metarhizium has very high rates of mortality and hence 

resistance defences will be the most important (St Leger et al. 1991; Boomsma et 

al. 2005). However, mechanisms such as grooming, which I measured extensively 

in this thesis, is a clear example of behavioural resistance which serves to 

physically reduce parasite loads, and to alter with exposure to Metarhizium. 

Internal measures of immunity may be more related to how well ants can 

withstand infection levels, and may represent parasite tolerance (Siva-Jothy et al. 

2005). Some entomopathogenic fungi, however, can show surprisingly few effects 

on hosts. Many Laboulbeniales fungi, for example, are effective at penetrating the 

insect cuticle and can reproduce to reach very high abundances inside the 

haemocoel without immediately killing the host, so in these species tolerance 

effects may be more important and more easily studied (Csata et al. 2013, 2014; 

Báthori et al. 2015). Because these components of defence can potentially result 

in very different outcomes for host-parasite dynamics, acknowledging the relative 
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importance of these types of defence is highly important, and future studies may 

be able to measure fitness costs given changing infection intensities in order to 

explore both these effects (Miller et al. 2005; de Roode and Lefèvre 2012). 

 

Where species suffer from similar parasite pressures, organisms may show 

alternative strategies to defend themselves (Minchella 1985; Restif and Koella 

2004; Boomsma et al. 2005; Schmid-Hempel 2011). Work from this thesis has 

shown this can be the case in ants. For example O. smaragdina weaver ants 

appears to rely primarily on its venom while Polyrhachis weaver ants use higher 

rates of selfgrooming, but both fill similar ecological niches within the same 

habitats, and likely encounter similar parasite pressures (Chapter 4). This 

demonstrates the considerable complexity of disease resistance traits and 

highlights the value of targeted, fine-scale comparative studies to identify and 

understand how disease resistance mechanisms are employed in different species. 

Where host life-history has led to potentially reduced parasite pressures, hosts 

are predicted to invest less into defence mechanisms (Bowers et al. 1994; 

Boomsma et al. 2005; Watson 2013). I provide evidence of this in Chapter 7, 

showing that socially parasitic species, which rely on their hosts for defensive 

duties, have significantly reduced behavioural, chemical and physiological 

immunity. Similarly the variation in investment in metapleural gland defence in 

attines in Chapter 5, and the use of alternative defences in weaver ant species in 

Chapter 4, suggest that life-history may have significant effects on investment 

into disease resistance.  
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The interspecific differences in disease resistance not only suggest significant 

costs from the different disease defences, but also demonstrate considerable 

plasticity in these traits, which can be up-regulated or reduced on both 

evolutionary and generational timescales, and in response to short-term threat. In 

slavemaker social parasites, it appears that behavioural defences were first to be 

lost, but there was no evidence of explicit trade-offs between mechanisms, as was 

the case in the weaver ant system (Chapters 4 and 5). Rather social parasites 

showed reduced immunity in all measures I examined. Demonstrations of trade-

off may be not only important in understanding the specific mechanisms of host 

defence, but may also be able to explain the maintenance of genetic diversity in 

hosts (Bowers et al. 1994; Michod 2006). The costs of immunity have the 

potential to reduce the survival or fecundity of resistant hosts, and if parasite 

pressures are low, the cost of immunity may even outweigh the cost from 

parasitism (Gwynn et al. 2005). Thus the relative cost and benefit for possession 

of disease resistance traits is expected to fluctuate with parasite pressure, and 

natural selection will maintain variation in susceptibility alleles (Morand et al. 

2015). Theoretical and empirical work suggests that host genetic diversity may 

promote disease resistance, however in order to fully demonstrate this link we 

need to better understand the genetic basis for resistance mechanisms themselves 

(Hughes and Boomsma 2004b, 2006; Calleri et al. 2006; Reber et al. 2008; King 

and Lively 2012). In the future we may be able to identify the genetic 

components that underlie important defence mechanisms, and then show that 

polymorphic systems are more resistant to diseases (Viljakainen 2015).  

Most studies of host-parasite dynamics stem from classical models of two-way 

interactions, but abiotic and biotic external factors can have dramatic effects on 
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these systems (Poulin and Morand 2000; Miller et al. 2005; Watson 2013; 

Morand et al. 2015). With multiple interacting partners it makes measuring host 

fitness and parasite virulence challenging in the field, but it is vital to fully 

understanding the coevolution of host parasite interactions. In this thesis we 

predominantly used the parasite Metarhizium as an experimental parasite. This 

entomopathogenic fungi is a useful model parasite which can infect many insect 

species and can have significant fitness costs to hosts (Milner et al. 1998; Leger 

et al. 1999; Keller et al. 2003; Santos et al. 2007; Santi et al. 2010; Rännbäck et 

al. 2015). We found responses to this entomopathogen were generally stronger 

than to those of an opportunistic, facultative parasite, such as Aspergillus 

(Chapters 2 and 3), which is normally saprophytic, but can opportunistically 

infect insects, including ants, when the exposure level is very high or when the 

ants are immunocompromised (Glare et al. 1996; Scully and Bidochka 2005; 

Graystock and Hughes 2011). However, there may often be interaction between 

different parasites during exposure from multiple threats. Ants can show an 

increased fitness cost from exposure to an opportunistic parasite when they are 

additionally infected with Metarhizium (Hughes and Boomsma 2004a; Graystock 

and Hughes 2011). This can even result in the opportunistic facultative pathogen 

outcompeting the entomopathogenic parasite once the host defences have been 

weakened. Similarly, in Chapter 3, I found that the larvae of ants, that possess 

reduced immunity to disease are highly vulnerable to the opportunistic parasite 

Aspergillus flavus (Tragust, Ugelvig, et al. 2013). The defence of brood against 

opportunistic, facultative parasites, may therefore be just as important as against 

obligate, entomopathogenic parasites (Graystock and Hughes 2011). However, it 

is important to note that the parasite strains used in this thesis were all novel to 

the hosts used, and Metarhizium is also not host-specific, so the parasites are 
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unlikely to have undergone species-specific co-evolution that could have affected 

the independency and interpretation of the results. Nonetheless future studies 

explicitly investigating the effect of direct coevolution between host and more 

highly specialised parasites such as Escovopsis or Ophiocordyceps will be valuable 

for determining how specific defences may be employed against specialised 

parasites, and how this may differ from more general parasites (Frank 1993; 

Gerardo et al. 2006; Agosta et al. 2010; Evans et al. 2011a; Kobmoo and 

Mongkolsamrit 2012; Ruiz-González and Bryden 2012). The fact that organisms 

are generally exposed to a multitude of different parasites means that further 

studies looking at threats from other parasitic organisms such as bacterial and 

viruses, including mixed infections, will be vital for building a complete picture of 

the defence capabilities of social insects (Schmid-Hempel 1998; Boomsma et al. 

2005). This will also allow us to compare how species may invest differently 

based on the varied and multiple parasitic threats they are exposed to, and to 

identify which defence mechanisms are specific and which are general. Thus we 

may be able to identify the extent to which natural selection may favour 

specificity in resistance, and how this may affect, or be affected by, the genetic 

diversity of hosts.  

Additionally host environmental conditions will vary geographically and it is 

likely that individuals of the same species will experience changes in parasite 

pressure depending on the precise conditions they inhabit at the time (Morand et 

al. 2015). Host populations may then be viewed as inhabiting an environmental 

mosaic with varying communities and conditions (Hoberg and Brooks 2008; 

Wolinska and King 2009). This heterogeneity will affect the maintenance of 

genetic variation in host resistance and the spread of parasites between 
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populations, and will be increasingly important to understand in the context of 

climate change (Lively 1999; Brooks and Hoberg 2007; Hoberg and Brooks 

2008; King and Lively 2012).  

This work may prove useful for future disease and pest management strategies, 

both helping to control social insect species themselves, but also harnessing their 

own defenses. Many social insect species, especially ant and termites are 

economically significant pest, can be highly invasive, and consequently there is 

heavy focus on management schemes (Pimentel et al. 2001, 2005; Hill 2012; 

Rust and Su 2012; Evans et al. 2013; Lewis et al. 2014). There has been much 

interest in the use of pathogenic fungi to control insect populations (Butt et al. 

2001; Lacey et al. 2001; Shah and Pell 2003; Chouvenc et al. 2012; Wang and 

Feng 2014). My work indicates that pathogenic fungi, especially specialized 

entomopathogens such as Metarhizium, represent a ubiquitous and potentially 

virulent threat to social insects. However, this threat is often not realised under 

normal circumstances because they have evolved highly effective defences and the 

generalist nature of Metarhizium means that it hasn’t coevolved with specific 

hosts in order to overcome those defences (Frank 1996). These key defences 

include behavioural grooming and the production of antimicrobial secretions. This 

suggests that in order for biological control with fungal parasites to be most 

effective, it could be used in conjunction with methods which disrupt the natural 

behaviours of ants, perhaps through pheromones or insecticides, or reduce the 

antiseptic power of antimicrobial secretions (Shorey et al. 1992; Suckling et al. 

2014). Conversely, the recent decline in honeybee populations, which is thought 

to be in part mediated by parasites, means that studies of social insect disease 

defence mechanisms is vitally important for understanding how we can best 
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conserve beneficial species (Allen-Wardell et al. 1998; Potts et al. 2010; Nazzi et 

al. 2012). For example, identification of the importance of the insects own 

defences has resulted in the selective breeding of genetic lines of ‘hygienic 

colonies’ which are more resistant to disease (Spivak and Reuter 1998; Harpur et 

al. 2014). Additionally, there is a wealth of unexplored avenues for therapeutic 

and commercial harnessing of social insect antimicrobial defences. For example, 

many novel antimicrobial peptides have been recently identified and isolated from 

social insects, and such substances are increasingly being recognized having 

powerful therapeutic value for human health (Bulet et al. 1999; Zasloff 2002; 

Reddy et al. 2004; Bulmer et al. 2009; Romanelli et al. 2011). On a wider scale, 

understanding how organisms are affected by, and respond to, different parasite 

pressures will be highly useful in predicting and mitigating the spread populations 

(Prenter et al. 2004). 

 

It has often been suggested that the threat of parasite may in fact be an important 

driver of the evolution of sociality, because of the benefits that group living can 

confer in terms of resistance (Møller et al. 1993). However, whether the defence 

mechanisms we see in social insects are drivers of sociality, or necessary results 

of group living remains unclear. The comparative work in this thesis provides 

evidence that there may be a positive correlation between sociality and the degree 

of investment into disease resistance. Fungus growing ant species with larger and 

more complex colonies appear to invest more heavily into disease defence than the 

more basal species with smaller colonies (Chapter 5), and a derived leaf-cutting 

species also shows significantly higher levels of social immunity and hygienic 

personalities compared to dinosaur ants with simple societies (Chapter 6). This 
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may be because larger, more complex societies have more energy in which to 

invest into parasite defence, or because larger colonies are fundamentally more at 

risk from parasites and a greater investment in resistance is thus necessary 

(Schmid-Hempel 1998; Rifkin et al. 2012). Tracing the evolutionary history of 

these traits may be valuable in order to disentangle these hypotheses. For 

example, in socially parasitic species, these defences appear to have been 

secondarily reduced compared to closely related hosts and outgroup species 

(Sumner et al. 2003; Chapter 7). This shows that investment into disease 

resistance may also be reversed if selection pressures are relaxed, and implies 

there is a considerable cost to these defences. By using investment into disease 

resistance as a measure of parasite pressure, it will be possible to broadly explore 

how the threat of disease can shape the life history of species, including both 

spatial and evolutionary distributions. Thus future work demonstrating the 

explicit costs of individual components of disease resistance will be important for 

developing our understanding of how changes in parasite pressures can influence 

host biology and how organisms can survive in a world abundant with parasites.  

  

Formica rufa 
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Figure S2.1. The experiment was performed on individual ants located, but 

isolated, within their own normal foraging arena to try and ensure most natural 

behaviours. Ants from the main nest (A) were able to access the Fluon-lined Petri 

dish (C) via a removable bridge (E). The Petri dish was kept isolated by being 

suspended on a Fluon coated tripod (D). When an ant entered the petri dish and the 

trial was to begin it was constrained initially using a plastic pot (B) to remove bias 

and help further acclimatise the ant to the trial. 
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Figure S2.2. The (a) mean ± s.e. time spent interacting with food, (b) mean ± s.e. 

time spent self-grooming, (c) and proportion of food harvested in Experiment 1, by 

colonies of leaf-cutting ants, harvester ants, wood ants , and weaver ants when 

food had been treated with either the Metarhizium (Met.) or Aspergillus (Asp.) 

fungal pathogens, talcum powder control (Talc.) or control solution (Ctrl.).  
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Figure S2.3 The (a) proportion of time, (b) mean ± s.e. speed travelled, (c) mean 

± s.e. distance travelled and (d) mean ± s.e. time spent inactive in Experiment 2, 

on the Metarhizium, Aspergillus, talcum powder and Triton-X control treated side 

(coloured bars) compared to the Triton-X treated alternative treated side (grey 

bars).  
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Figure S2.4 The (a) mean ± s.e. occurrence of contact and (b) self-grooming by 

the test ant, and of (c) allogrooming between treated and test ant (bottom) of leaf-

cutting ants, for colonies of harvester ants, wood ants, and weaver ants in 

Experiment 3, to nestmates that had been treated with either the Metarhizium 

(Met.) or Aspergillus (Asp.) fungal pathogens, talcum powder control (Talc.) or 

control solution (Ctrl.). 
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Figure S3.1. Details of treatment structure and subject assignment for 

Experiment 1. 120 leaf-cutting ants (a) were used in total, split between two equal 

cohorts. Each of the cohorts consisted of 20 ants from each of the three colonies, 

giving a total of 60 ants for each cohort. Within each cohort, ants from individual 

colonies were divided evenly into four treatment groups, consisting of five ants. 

This gave a total of 30 replicate ants per treatment across all colonies and cohorts.  

160 weaver ants (b) were used in total, split between two equal cohorts. Each of 

the cohorts consisted of 40 ants from each of the two colonies, giving a total of 80 

ants for each cohort. Within each cohort, ants from individual colonies were split 

evenly into four treatment groups, consisting of 10 ants. This gave a total of 40 

replicate ants per treatment across all colonies and cohorts.   
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Figure S3.2. Details of treatment structure and subject assignment for 

Experiment 2. 120 leaf-cutting ants (a) were used in total, consisting of 40 ants 

from each of the three colonies. Ants from individual colonies were divided evenly 

into four treatment groups, consisting of 10 ants. This gave a total of 30 replicate 

ants per treatment across all colonies. Fifteen additional blank trials were 

conducted in the absence of any ant.  60 weaver ants (b) were used in total, 

consisting of 30 ants from each of the two colonies. Ants from individual colonies 

were divided evenly into two treatment groups, consisting of 15 ants each. This 

gave a total of 30 replicate ants per treatment across all colonies.  Fifteen 

additional blank trials were conducted in the absence of any ant.   
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Figure S3.3. Results of experiment comparing brood-care behaviour and survival 

of nurse ants with blocked and unblocked glands. Both leaf-cutting ants (a; 

Wald=5.6, d.f.=1, p=0.45) and weaver ants (b; Wald=2.1, d.f.=1, p=0.15) 

showed no difference in survival of nurses with (open circles) or without (black 

circles) functional antimicrobial glands, whilst caring for brood treated with either 

Metarhizium parasite (solid lines) or control solution (dashed lines), over the course 

of the experiment. Additionally neither leaf-cutting ants (c) or weaver ants (d) 

showed any differences in the duration of time spent interacting with brood 

(U=39, d.f.=9, z=0.84, p=0.4, and  U=41.5, d.f.=9, z=0.64, p=0.52, 

respectively), the incidences of contact with  brood (U=46, d.f.=9, z=0.36, 

p=0.72, and U=43, d.f.=9, z=0.54, p=0.59, respectively), or incidences of 

brood-grooming (U=49.5, d.f.=9, z=0.54, p=0.96, and U=46.5, d.f.=9, 

z=0.27, p=0.79, respectively), between nurse ants with blocked (dark bars) and 

unblocked glands (light bars). 
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Figure S5.1. Experimental groups and species cohort information for Exp 1  
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Figure S5.2. Photos (top) of two plates (left: phenylacetic acid, right: bleach) 

showing zones around central application point in which growth of the Metarhizium 

fungal parasite was inhibited. Illustrations (bottom) show a representation of how 

zones were measured for analysis.  
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Figure S6.1. Mean ± s.e. selfgrooming durations for ants maintained either in 

their colony (white bars) or in individual pots (grey bars) and treated with either 

control solution or talcum powder suspension. 

 

Figure S6.2. The mean ± s.e. selfgrooming (a,b) and allogrooming (b,d) durations 

for individual leaf-cutting ants, (a-b) and dinosaur ants (c-d), treated with a control 

solution.  
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Figure S6.3. The relationships between allogrooming and selfgrooming durations 

after control treatment in leaf-cutting ants (a). The correlation between control and 

talcum-powder treatment in selfgrooming (b) or allogrooming durations (c) in leaf-

cutting ants, and (d) in selfgrooming durations in dinosaur ants.   
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Figure S6.4. The correlation between fungal-treated ant survival and allogrooming 

duration, in (a) control treated, or (b) talcum-powder treated, leaf-cutting ants, and 

the correlation between fungal-treated ant survival and selfgrooming duration in 

control treated leaf-cutting ants. 
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Figure S7.1. A comparison of cell count methods using fresh samples (white bars) 

and stored samples (grey bars) as per Baer et al. (2006). Although using the more 

destructive long-term storage method resulted in some degradation of cell 

structures it was still possible to accurately count the number present, and there 

was overall no difference between methods but a significant difference in cell counts 

between species. Haemolymph from each species were prepared for counting as live 

cells. 0.1 µl of haemolymph was mixed with cell growth media (Schneider’s Media 

with 10% foetal calf sera) onto a cover slip that had been previously coated with 

100µl of 0.2% gelatin in PBS and incubated for 1h at 28°C. The slip was then 

washed twice with PBS before applying 80µl of Hoechst stain to the slide, left for 

5mins, and finally washed in 100µl of PBS. The coverslip was then placed onto a 

sterile microscope slide, hydrated with 50% glycerol in pbs and sealed with 

Vaseline before counted as above. 
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Figure S7.2. Size of venom gland. a) The size of the venom gland relative to body size (head 

width) differed significantly between the free-living Formica rufa and F. fusca, the 

facultative social parasite F. sanguinea and the obligate social parasite Polyergus rufescens, 

with F. rufa having substantially larger venom glands for their body size than the other 

species. Different letters above columns indicate species which differed significantly from one 

another in pairwise comparisons as P < 0.05. b) Photographs showing the dissected gland 

reservoirs of the F. rufa and P. rufescens, with the heads of their respective ants to show the 

considerable size differences in venom reservoir size between these species. c) Mean ± s.e. 

size (head width), venom sac width, and size of venom gland relative to body size for Formica 

rufa, F. fusca, F. sanguinea and P. rufescens, showing the considerable variation in the size 

of the venom gland, presumably due to emptying of the venom gland in some cases which 

made accurate measurements difficult. Note however that this variation was much smaller in 

P. rufescens where in all cases the venom reservoir appeared full on removal.  
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Table S2.1. Five items of each of the three different food-types were dosed with a conidia solution 

(1.5x10
8
) and left to dry for 10 minutes. They were then placed in 500µl of ethanol and vortexed for 5minutes. 

The number of conidia in the resulting liquid were quantified using a blank haemocytometer. This washing 

was repeated sequentially three further times for each food item, to achieve a total number of conidia 

retrieved, and this as a percentage of the total applied. These results are consistent with conidia recovery rates 

reported in previous studies. There was no difference in the number of conidia retrieved between the three 

food-types (Kruskal-Wallis: H = 0.62, d.f. = 2, p = 0.733) 

Foodstuff 

Conidia 

applied Wash 1 Wash 2 Wash 3 Wash 4 Total retrieved 

% of 

applied 

Leaf 1.5x108 

1.12x108 ± 

1.53x107 

1.84x107 ± 

1.80x107 

1.02x105 ± 

2.22x105 

1.60x102 ± 

2.61x102 

1.31x108 ± 

8.62x106 

87.30 ± 

5.75 

Rice 1.5x108 

9.70x107 ± 

1.34x107 

3.32x107 ± 

1.97x107 

3.87x104 ± 

4.73x104 

1.60x102 ± 

1.82x102 

1.30x108 ± 

1.54x107 

86.83 ± 

10.24 

Mealworm 1.5x108 

1.04x108 ± 

1.24x107 

1.97x107 ± 

1.84x107 

2.31x105 ± 

4.73x104 

1.00x102 ± 

1.27x107 

1.24x108 ± 

1.27x107 

82.83 ± 

8.49 

 

Table S2.2. Fidelity of ‘AntTrak’ software 

         Frame-by-frame track analysis
1
 Overall analysis

2
 

Video Sensitivity 1 - Specificity Accuracy % Error 

49 0.913 0.800 0.783 1.3 

395 0.839 0.083 0.864 0.8 

399 0.999 0.173 0.962 0.9 

401 0.747 0.092 0.848 0.4 

403 0.831 0.714 0.812 1.5 

404 0.867 0.628 0.993 1.8 

4452 0.883 0.178 0.879 0.7 

4453 0.899 0.528 0.870 0.3 

 
1 Data computed from each frame of the video giving measures of fidelity for tracking for 
eight randomly selected videos based manual frame-by-frame tracking for comparison. 2 

Percentage error calculated based on differences in overall values for ‘Time ant spent on 

treated side’ calculated from the videos by the software and those recorded by human 
observation 
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Table S2.3. Overall statistical results of experiment 1: ‘Food’ 

Behaviour analysed Factor(s) Test score d.f. P 

Time spent interacting with 

food 

GLMM gamma log link 

Species 82.14 3,816 < 0.001 

fungal treatment 100.96 3,816 < 0.001 

species*treatment 17.04 9,816 < 0.001 

colony 0.87  = 0.387 

     

Proportion of trials with food 

harvested 

GLMM binomial probit link 

species 48.87 3,816 < 0.001 

fungal treatment 20.25 3,816 < 0.001 

species*treatment 3.45 9,816 = 0.002 

colony 0.39  = 0.68 

     

Time spent self-grooming 

GLMM gamma log link 

species 118.76 3,816 < 0.001 

fungal treatment 80.82 3,816 < 0.001 

species*treatment 4.49 9,816 < 0.001 

colony 0.46  = 0.65 
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 Table S2.4. Statistical results of experiment 1: ‘Food’ for each species  

Species Behaviour analysed Factor(s) Test score d.f. P 

Leaf-cutting ant 

Acromyrmex 

echinatior 

Time interacting with food 

GLMM gamma log link 

treatment 

colony 

69.15 

0.48 

3,252 < 0.001 

= 0.64 

Proportion with food harvested 

GLMM binomial probit link 

treatment 

colony 

25.73 

0.45 

3,252 < 0.001 

= 0.72 

Time spent self-grooming 

GLMM gamma log link 

treatment 

colony 

55.94 

0.76 

3,252 < 0.001 

= 0.45 

Harvester ant 

Messor barbarus 

Time interacting with food 

GLMM gamma log link 

treatment 

colony 

39.46 

0.51 

3,188 < 0.001 

= 0.29 

Proportion with food harvested 

GLMM binomial probit link 

treatment 

colony 

10.43 

0.25 

3,188 < 0.001 

= 0.82 

Time spent self-grooming 

GLMM gamma log link 

treatment 

colony 

22.08 

1.07 

3,188 < 0.001 

= 0.29 

Wood ant 

Formica rufa 

Time interacting with food 

GLMM gamma log link 

treatment 

colony 

11.98 

0.130 

3,252 < 0.001 

= 0.892 

Proportion with food harvested 

GLMM binomial probit link 

treatment 

colony 

10.43 

0.33 

3,252 = 0.110 

= 0.742 

Time spent self-grooming 

GLMM gamma log link 

treatment 

colony 

34.62 

5.43 

3,252 < 0.001 

< 0.001 

Weaver ant 

Polyrhachis dives 

Time interacting with food 

GLMM gamma log link 

treatment 

colony 

22.29 

0.48 

3,124 < 0.001 

= 0.640 

Proportion with food harvested 

GLMM binomial probit link 

treatment 

colony 

0.312 

0.22 

3,124 = 0.816 

= 0.820 

Time spent self-grooming 

GLMM gamma log link 

treatment 

colony 

11.72 

0.63 

3,124 < 0.001 

= 0.490 
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Table S2.5. Overall statistical results of experiment 2 

Behaviour analysed Factor(s) Test score d.f. P 

Time spent on the treatment side 

GLMM gamma log link 

Species 8.712 3,816 = 0.003 

fungal treatment 50.98 3,816 < 0.001 

species*treatment 5.98 9,816 = 0.001 

colony 0.19  = 0.36 

     

Speed on the treatment side 

GLMM gamma log link 

species 6.02 3,816 = 0.024 

fungal treatment 29.15 3,816 < 0.001 

species*treatment 4.24 9,816 = 0.006 

colony 1.02  = 0.307 

     

Time inactive on the treatment side 

GLMM gamma log link 

species 8.33 3,816 = 0.007 

fungal treatment 6.09 3,816 = 0.041 

species*treatment 16.65 9,816 < 0.001 

colony 1.61  = 0.1 
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Table S2.6. Statistical results of experiment 2: ‘Environment’ for each species  

Species Behaviour analysed Factor(s) Test score d.f. P 

Leaf-cutting ant 

Acromyrmex 

echinatior 

Time spent on the treatment side 

GLMM gamma log link 

treatment 

colony 

12.19 

0.95 

3,252 < 0.001 

= 0.34 

Speed on the treatment side 

GLMM gamma log link 

treatment 

colony 

1.91 

0.14 

3,252 = 0.200 

= 0.81 

Time stopped 

GLMM neg-binomial log link 

treatment 

colony 

3.29 

0.22 

3,252 = 0.037 

= 0.71 

Harvester ant 

Messor barbarus 

Time spent on the treatment side 

GLMM gamma log link 

treatment 

colony 

15.05 

1.697 

3,188 < 0.001 

= 0.09 

Speed on the treatment side 

GLMM gamma log link 

treatment 

colony 

11.11 

1.00 

3,188 < 0.001 

= 0.08 

Times stopped 

GLMM neg-binomial log link 

treatment 

colony 

2.33 

0.20 

3,188 = 0.051 

= 0.35 

Wood ant 

Formica rufa 

Time spent on the treatment side 

GLMM gamma log link 

treatment 

colony 

10.70 

0.57 

3,252 < 0.001 

= 0.63 

Speed on the treatment side 

GLMM gamma log link 

treatment 

colony 

3.38 

0.23 

3,252 = 0.049 

= 0.66 

Times stopped 

GLMM neg-binomial log link 

treatment 

colony 

9.69 

0.25 

3,252 < 0.001 

= 0.82 

Weaver ant 

Polyrhachis dives 

Time spent on the treatment side 

GLMM gamma log link 

treatment 

colony 

9.06 

0.28 

3,124 < 0.001 

= 0.77 

Speed on the treatment side 

GLMM gamma log link 

treatment 

colony 

0.94 

1.72 

3,124 = 0.081 

= 0.21 

Times stopped 

GLMM neg-binomial log link 

treatment 

colony 

9.75 

0.26 

3,124 = 0.015 

= 0.14 
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Table S2.7. Overall statistical results of experiment 3 

Behaviour analysed Factor(s) Test score d.f. P 

Contact rates between nestmates 

GLMM gamma log link 

Species 10.82 3,816 < 0.001 

fungal treatment 2.21 3,816 = 0.085 

species*treatment 1.80 9,816 = 0.066 

colony 5.95  < 0.001 

     

Self-grooming rates 

Negative binomial log link 

species 61.47 3,816 < 0.001 

fungal treatment 56.57 3,816 < 0.001 

species*treatment 2.77 9,816 = 0.003 

colony 0.57  = 0.565 

     

Allogrooming rates 

GLMM gamma log link 

species 16.83 3,816 < 0.001 

fungal treatment 29.14 3,816 < 0.001 

species*treatment 2.03 9,816 = 0.030 

colony 1.92  = 0.08 
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Table S2.8. Statistical results of experiment 3 ‘Nestmates’ for each species  

Species Behaviour analysed Factor(s) Test score d.f. P 

Leaf-cutting ant 

Acromyrmex 

echinatior 

Number of contacts  

GLMM gamma log link 

treatment 

colony 

0.60 

0.95 

3,252 = 0.620 

= 0.340 

Time allogrooming 

GLMM gamma log link 

treatment 

colony 

17.4 

4.71 

3,252 < 0.001 

< 0.001 

Time self-grooming 

GLMM gamma log link 

treatment 

colony 

4.99 

0.65 

3,252 = 0.002 

= 0.520 

Harvester ant 

Messor barbarus 

Number of contacts  

GLMM gamma log link 

treatment 

colony 

1.553 

1.697 

3,188 = 0.202 

= 0.090 

Time allogrooming 

GLMM gamma log link 

treatment 

colony 

14.05 

0.80 

3,188 < 0.001 

= 0.423 

Time self-grooming 

GLMM gamma log link 

treatment 

colony 

10.67 

0.16 

3,188 < 0.001 

= 0.781 

Wood ant 

Formica rufa 

Number of contacts  

GLMM gamma log link 

treatment 

colony 

1.78 

0.12 

3,252 = 0.149 

= 0.802 

Time allogrooming 

GLMM gamma log link 

treatment 

colony 

16.58 

0.41 

3,252 < 0.001 

= 0.621 

Time self-grooming 

GLMM gamma log link 

treatment 

colony 

48.91 

0.32 

3,252 < 0.001 

= 0.749 

Weaver ant 

Polyrhachis dives 

Number of contacts  

GLMM gamma log link 

treatment 

colony 

16.06 

0.33 

3,124 < 0.001 

= 0.742 

Time allogrooming 

GLMM gamma log link 

treatment 

colony 

4.3 

0.72 

3,124 = 0.006 

= 0.117 

Time self-grooming 

GLMM gamma log link 

treatment 

colony 

1.77 

0.38 

3,124 = 0.160 

= 0.650 
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Table S5.1. Fungus growing ant life-history traits   

 Colony size Life history summary MG grooming 

rates 

Actinomycete 

coverage 

Atta  

colombica 

Very large 

10
6
 

Polymorphic. Huge underground 

colonies. Cut leaves as fungus 

substrate 

‘Leafcutter group’ 

Very high None 

Acromyrmex 

echinatior 

Large 

10
4
 

Polymorphic. Cut leaves as fungal 

substrate 

‘Leafcutter group’ 

High Low 

Sericomyrmex 

amabilis 

Medium 

10
3
 

Monomorphic. Multiple fungal 

chambers. 

‘Higher agriculture’ 

High Low 

Trachymyrmex 

cornetzi 

Small 

ca. 10
2
 

Monomorphic 

‘Higher agriculture’ 

Very low High 

Trachymyrmex 

sp10 

Medium 

10
3
 

Monomorphic 

‘Higher agriculture’  

Low None 

Apterostigma 

pilosum 

Very small 

10
1
 

Monomorphic. Dead plant or 

arthropod material as substrate. 

‘Coral fungus group’ 

Very low Low 

References: (Weber 1972; Hölldobler and Wilson 1990; Murakami et al., 2000; Mikheyev et al., 2007; 

Pitts-Singer and Espelie 2007; Baer et al., 2009; Fernández-Marín et al., 2009, 2013; Mehdiabadi and 

Schultz 2010; Leal et al., 2011; Mueller et al., 2011; Bruner et al., 2013) 
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Table S5.2. MG compounds tested as a percentage of total secretion volume for Attine genera. 

Modified from Vieira et al., 2006. Product source identifier in brackets (Sigma-Aldrich); n.d. = not 

detectable.  
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 Apterostigma 

pilosum 

1.4 95.5 n.d 2.3 n.d n.d 

Mycetarotes 

parallelus 

13.1 55.9 15.5 n.d n.d n.d 

Trachymyrmex 

fuscus 

7.9 68.5 1.1 10.9 n.d n.d 

Acromyrmex 

coronatus 

n.d 40.9 1 2.8 11.7 n.d 

Atta laevigata 8.7 36.2 0.5 5.1 6.1 29.3 

  

http://www.sigmaaldrich.com/catalog/product/aldrich/i3408?lang=en&region=GB
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Table S5.3. Statistical results of survival analysis in six attine species with blocked or functional 

metapleural glands, and treated with Metarhizium pinshaense fungal parasite or control solution. 

Ant species Factor Wald Significance 

Atta colombica Gland blockage 

Fungal treatment 

Blockage * Fungal 

Colony 

22.04 

8.27 

4.36 

0.37 

<0.001* 

  0.004* 

  0.037* 

  0.841 

Acromyrmex echinatior Gland blockage 

Fungal treatment 

Blockage * Fungal 

Colony 

18.35 

6.96 

3.92 

0.58 

<0.001* 

  0.008* 

  0.048* 

  0.989 

Sericomyrmex amabilis Gland blockage 

Fungal treatment 

Blockage * Fungal 

Colony 

28.60 

10.55 

5.01 

10.56 

<0.001* 

  0.001* 

  0.025* 

  0.061 

Trachymyrmex sp10 Gland blockage 

Fungal treatment 

Blockage * Fungal 

Colony 

2.94 

4.36 

0.10 

1.73 

  0.087 

  0.035* 

  0.75 

  0.885 

Trachymyrmex cornetzi Gland blockage 

Fungal treatment 

Blockage * Fungal 

Colony 

1.32 

9.80 

0.07 

12.08 

  0.25 

  0.002* 

  0.79 

  0.06 

Apterostigma pilosum Gland blockage 

Fungal treatment 

Blockage * Fungal 

Colony 

0.63 

5.85 

0.01 

8.65 

  0.43 

  0.016* 

  0.92 

  0.124 
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Table S5.4. Isolated MG secretions listed by their abundances as reported in GC-MS fractions (Do Nascimento and Schoeters 1996; Ortius-Lechner et al., 2000; Vieira et al., 2012b) and natural gland secretions from 

Acromyrmex ants. Total secretion volumes taken as an average of 4µL (Ortius-Lechner et al., 2000; Yek et al., 2012). Calculated dilution series based on natural concentrations and appropriate solvent are also listed. 

Concentration 3 in bold is representative of the calculated natural concentration thought to be found in ants. Compounds for each dilution were first dissolved in their appropriate solvent and then further diluted with ddH20 to 

reach the correct concentration of test compound and a concentration of solvent which matches the appropriate dilution of control solvent. E.g. 2.4g of indole were dissolved in 0.5 mL of acetone, which was then added to 0.5 

mL of ddH2O. 

  

MG secretion test compounds Amount found in GC-MS analysis (ng) 

Concentration 

in ant MG 

secretion 

(ng/µL) 

Concentrations tested (g/mL) 

Solvent 

used (see 

below) 

Volume 

solution applied 

(µL) 

1 

1x10
-2

 

2 

1x10
-1

 

3 

1x10
0
 

4 

1x10
1
 

5 

1x10
2
 

Indole 95 24 2.4 x10-4 2.4 x10-3 2.4 x10-2 2.4 x10-1 2.4 x100 Acetone 20 

Skatole 430 108 1.1 x10-3 1.1 x10-2 1.1 x10-1 1.1 x100 1.1 x101 Acetone 20 

Methyl oleate 6 1.5 1.5 x10-5 1.5 x10-4 1.5 x10-3 1.5 x10-2 1.5 x10-1 Acetone 20 

2-Nonanone 30 7.5 7.5 x10-5 7.5 x10-4 7.5 x10-3 7.5 x10-2
 1.2 x10-1 Hexane 20 

Phenylacetic acid 350 87.5 8.8 x10-4 8.8 x10-3 8.8 x10-2 8.8 x10-1 8.8 x100 ddH20 20 

Methyl-3-indoleacetate 40 10 1.0 x10-4 1.0 x10-3 1.0 x10-2 1.0 x10-1 1.0 x100 Acetone 20 

          

Solvent control chemical Control type  

Dilutions tested 

Diluted in   1 2 3 4 5 

Hexane  solvent control  5 x10-5 5 x10-4 5 x10-3 5 x10-2 5 x10-1 ddH20  

Acetone solvent control  5 x10-5 5 x10-4 5 x10-3 5 x10-2 5 x10-1 ddH20  

Bleach positive control  5 x10-5 5 x10-4 5 x10-3 5 x10-2 5 x10-1 ddH20  

ddH20 negative control  1 1 1 1 1 n/a  

Dose volumes applied standardised for body size  

Atta, Acromyrmex: 0.5 µl, Sericomyrmex, Trachymyrmex sp10: 0.4 µl, Trachymyrmex cornetzi, Apterostigma: 0.3 µl 
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Table S5.5. 

Natural abundances 

       Species Indole Skatole Methyl oleate Methyl-3-indol. 2-Nonanone Phenylacetic acid total 

A.cephalotes 8.70 36.20 0.50 5.10 6.10 29.30 85.90 

A.echinatior 0.00 40.90 1.00 2.80 11.70 0.00 56.40 

S.amabilis 2.45 50.71 

 

6.61 14.00 

 

73.77 

T.sp10 7.90 68.50 1.10 10.90 1.10 0.00 89.50 

T.cornetzi 3.90 84.11 0.80 10.90 0.00 0.00 99.71 

A.pilosum 1.40 95.50 0.00 2.30 0.00 0.00 99.20 

        Compound average antimicrobial activities (Fig 3a) 

      Indole Skatole Methyl oleate Methyl-3-indol. 2-Nonanone Phenylacetic acid total 

 

10.45 11.88 15.70 10.45 27.87 41.29 

 

        Percentage 

composition 

       Species Indole Skatole Methyl oleate Methyl-3-indol. 2-Nonanone Phenylacetic acid total 

A.cephalotes 10.13 42.14 0.58 5.94 7.10 34.11 100.00 

A.echinatior 0.00 72.52 1.77 4.96 20.74 0.00 100.00 

S.amabilis 3.32 68.74 0.00 8.96 18.98 0.00 100.00 

T.sp10 8.83 76.54 1.23 12.18 1.23 0.00 100.00 

T.cornetzi 3.91 84.35 0.80 10.93 0.00 0.00 100.00 

A.pilosum 1.41 96.27 0.00 2.32 0.00 0.00 100.00 

        Antimicrobial activity x % composition 

    Species Indole Skatole Methyl oleate Methyl-3-indol. 2-Nonanone Phenylacetic acid total 

A.cephalotes 1.06 5.01 0.09 0.62 1.98 14.08 22.84 

A.echinatior 0.00 8.61 0.28 0.52 5.78 0.00 15.19 

S.amabilis 0.35 8.17 0.00 0.94 5.29 0.00 14.74 

T.sp10 0.92 9.09 0.19 1.27 0.34 0.00 11.82 

T.cornetzi 0.41 10.02 0.13 1.14 0.00 0.00 11.70 

A.pilosum 0.15 11.44 0.00 0.24 0.00 0.00 11.83 
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Table S7.1. Details of experimental design indicating how many, and from which 

colonies, ants were used for each section of this study 

 

  

Species colony # #uid StudyID Prelim Experiment 1 Experiment 2 Experiment 3 Experiment 5 Notes

Trial use Ant survival Grooming rates Slave ratios fungal viability venom pH PO & Cell counts

Formica cunicularia 1 cuni01oct11 Fc1 20 30

Formica cunicularia 2 cuni02oct11 Fc2 20 30

Formica cunicularia 3 cuni03oct11 Fc3 5 used to supply brood to P3-4

Formica cunicularia 4 cuni04oct11 Fc4 5 used to supply brood to P3-4

Formica cunicularia 5 cuni05oct11 Fc5 5

Formica cunicularia 6 cuni06oct11 Fc6 5

Formica cunicularia 7 cuni07mar13 Fc7 20 30 30

Formica cunicularia 8 cuni08mar13 Fc8 20

Formica cunicularia 9 cuni09mar13 Fc9 20 30 30

Formica cunicularia 10 cuni10mar13 Fc10 30

Formica cunicularia 11 cuni11mar13 Fc11 30

Formica fusca 1 fusc01oct11 Ff1 20 30 5

Formica fusca 2 fusc02oct11 Ff2 20 30 30 5

Formica fusca 3 fusc03oct11 Ff3 30 5

Formica fusca 4 fusc04oct11 Ff4 5

Formica fusca 5 fusc05oct11 Ff5 20 30 30

Formica fusca 6 fusc06oct11 Ff6

Formica fusca 7 fusc07oct11 Ff7 v. small colony size - not used

Formica fusca 8 fusc08dec11 Ff8 20 30

Formica fusca 9 fusc09dec11 Ff9 used to supply brood to P1-2

Formica fusca 10 fusc10dec11 Ff10

Formica fusca 11 fusc11mar13 Ff11 20 30

Formica fusca 12 fusc12mar13 Ff12 used to supply brood to P1-2

Formica rufibarbis 1 rufb01oct11 Frb1 20 30

Formica rufibarbis 2 rufb02oct11 Frb2 20 20 30 30 5

Formica rufibarbis 3 rufb03oct11 Frb3 20 30

Formica rufibarbis 4 rufb04oct11 Frb4 20 30

Formica rufibarbis 5 rufb05oct11 Frb5 5

Formica rufibarbis 6 rufb06oct11 Frb6 5

Formica rufibarbis 7 rufb07oct11 Frb7 5

Formica rufibarbis 8 rufb08mar13 Frb8 30

Formica rufibarbis 9 rufb09mar13 Frb9 30

Formica rufibarbis 10 rufb10mar13 Frb10 30

Formica rufa 1 fru01jul13 Fru1 40 20 30 30 5

Formica rufa 2 fru02jul13 Fru2 20 30 30

Formica rufa 3 fru03jul13 Fru3 20 30 30 5

Formica rufa 4 fru04jul13 Fru4 20 30 30

Formica rufa 5 fru05jun14 Fru5 5 5

Formica rufa 6 fru05jun14 Fru6 5 5

Formica sanguinea 1 sang01oct11 Fs1 20 10

Formica sanguinea 2 sang02oct11 Fs2 20 30 30 30 5

Formica sanguinea 3 sang03oct11 Fs3 10

Formica sanguinea 4 sang04oct11 Fs4 10

Formica sanguinea 5 sang05oct11 Fs5 10

Formica sanguinea 6 sang06oct11 Fs6 10

Formica sanguinea 7 sang07dec11 Fs7 30

Formica sanguinea 8 sang08dec11 Fs8 5

Formica sanguinea 9 sang09oct12 Fs9 20 30 10 30 5

Formica sanguinea 10 sang10dec12 Fs10 20 30 30 30

Formica sanguinea 11 sang11dec12 Fs11 20 30 30 30 5

Polyergus rufescens 1 plyg01oct11 P1 3 Kept with fusca slaves

Polyergus rufescens 2 plyg02oct11 P2 3 Kept with fusca slaves

Polyergus rufescens 3 plyg03oct11 P3 3 kept with cunicularia slaves

Polyergus rufescens 4 plyg04oct11 P4 8 10 5 5 kept with cunicularia slaves

Polyergus rufescens 5 plyg05oct11 P5 8 10 4 5 Kept with fusca slaves

Polyergus rufescens 6 plyg06aug14 P6 8 10 30 5|5 5 kept with cunicularia slaves, slaves used for Ex4

Polyergus rufescens 7 plyg06aug14 P7 8 10 30 5|5 5 kept with cunicularia slaves, slaves used for Ex4

Experiment 4
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Table S7.2. Standardisation of volume and dose of Metarhizium and talcum powder 

applied to species of different body size in Experiments 1 & 2 (n=10). Stock 

concentrations of 5x10
7 
conidia/particles per ml. 

Species Weber’s 

length  

Volume 

applied 

Conidia/mm
2
 Talc 

particles/mm
2
 

 

Formica cunicularia 

 

1.91±0.38 

 

0.2µl 

 

2610 

 

2610 

Formica fusca 2.02±0.37 0.2µl 2340 2340 

Formica rufibarbis 1.96±0.34 0.2µl 2480 2480 

Formica rufa 2.86±0.24 0.4µl 2330 2330 

Formica sanguinea 3.27±0.32 0.5µl 2230 2230 

Polyergus rufescens 2.16±0.20 0.2µl 2040 2040 
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Table S7.3. Survival of ants from six species over 14 days with or without 

exposure to Metarhizium and venom gland blockage 

Species Treatment Wald Sig. Exp(B) 

Formica cunicularia 

Fungal treatment * 3.291 0.040 0.233 

Gland blockage * 5.103 0.024 2.909 

Block * Fungal 0.923 0.337 .346 

Formica fusca 

Fungal treatment * 4.596 0.032 0.103 

Gland blockage * 6.206 0.013 2.997 

Block * Fungal 0.000 0.991 1.013 

Formica rufibarbis 

Fungal treatment * 4.037 0.045 0.117 

Gland blockage * 4.258 0.039 2.728 

Block * Fungal 0.417 0.518 .381 

Formica rufa 

Fungal treatment 0.345 0.557 0.487 

Gland blockage 2.374 0.123 3.521 

Block * Fungal 0.574 0.449 .290 

Formica sanguinea 

Fungal treatment * 6.538 0.011 0.140 

Gland blockage 1.277 0.258 1.578 

Block * Fungal 0.086 0.770 1.323 

Polyergus rufescens 

Fungal treatment * 4.579 0.032 0.279 

Gland blockage 2.073 0.069 2.040 

Block * Fungal 1.457 0.227 0.353 
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Table S8.1. Details of Primer and PCR conditions used for amplification of host ant (CO1) and 

Wolbachia symbiont sequences. 

Gene Primer PCR Mix PCR conditions 

CO1 

(710-bp) 

LCO (f) 

GGTCAACAAATCATAAAGATATTGG 8.2µl ddH20 

4.0µ FlexiBuffer 

2.0µ MgCl2 

1.6µl dNTPs 

1.0µl primer (x2) 

0.2µl TAQ  

2.0µl DNA  

94°C for 2 min 

37 cycles: 

   94°C for 30 s 

   59°C for 45 s 

   72°C for 1 min 30 s 

1 cycle: 

   72°C for 10 min 

     4°C hold 

HCO (r) 

TAAACTTCAGGGTGACCAAAAAATCA 

wsp 

(603-bp) 

wsp_f 

GTCCAATARSTGATGARGAAAC 
9.6µl ddH20 

4.0µ FlexiBuffer 

2.5µ MgCl2 

1.0µl dNTPs 

0.4µl primer (x2) 

0.1µl TAQ  

2.0µl DNA 

94°C for 2 min 

37 cycles: 

   94°C for 30 s 

   59°C for 45 s 

   72°C for 1 min 30 s 

1 cycle: 

   72°C for 10 min 

     4°C hold  

wsp_r 

CYGCACCAAYAGYRCTRTAAA 

MLST 

gatB 

(471-bp) 

gatB_f 

GAK TTA AAY CGY GCA GGB GTT 

9.6µl ddH20 

4.0µ FlexiBuffer 

2.5µ MgCl2 

1.0µl dNTPs 

0.4µl primer (x2) 

0.1µl TAQ  

2.0µl DNA 

95°C for 2 min 

35 cycles: 

   95°C for 30 s 

   Δ °C for 30 s 

   72°C for 1 min 

1 cycle: 

   72°C for 7 min 

     4°C hold 

Δ = 54°C 
gatB_r 

TGG YAA YTC RGG YAA AGA TGA 

MLST 

coxA 

(487-bp) 

coxA_f 

TTGGRGCRATYAACTTTATAG 
Δ = 50°C 

coxA_r 

CTAAAGACTTTKACRCCAGT 

MLST 

hcpA 

(515-bp) 

hcpA_f 

GAAATARCAGTTGCTGCAAA 
Δ = 54°C 

hcpA_r 

GAAAGTYRAGCAAGYTCTG 

MLST 

ftsZ 

(524-bp) 

ftsZ_f 

ATYATGGARCATATAAARGATAG 
Δ = 52°C 

ftsZ_r 

TCRAGYAATGGATTRGATAT 

MLST 

fbpA 

(509-bp) 

fbpA_f 

GCTGCTCCRCTTGGYWTGAT 
Δ = 59°C 

fbpA_r 

CCRCCAGARAAAAYYACTATTC 
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Appendices 

 

A preliminary study of nest structure and 

composition of the weaver ant Polyrhachis 

(Cyrtomyrma) delecta (Hymenoptera: Formicidae) 

 

Abstract 

Polyrhachis weaver ants build their nests from vegetation bound together using silk 

produced by their larvae. Here we provide a pilot study of the colony composition and the 

physical nest structure of the arboreal silk nests of three colonies of Polyrhachis 

(Cyrtomyrma) delecta based on examination of three colonies. We found broadly similar 

nest architecture and size of the nests with each containing six or seven identifiable 

chambers, and describe the distribution of ants of different castes and life stages between 

them. We also note the construction of silk ‘girder’ structures which spanned larger 

chambers and we hypothesise these provide additional strength to the internal nest 

structure. This study highlights the importance of more detailed investigation of the 

internal nest structure and composition in Polyrhachis, and other weaver ant species, 

which will help develop our understanding of this specialised form of nest construction 

and nesting habits in a diverse group of ants. 

Introduction 
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The ability of social insects to locate suitable nesting sites and, through manipulation of 

the environment, to construct often highly complex nests is key to the success of the 

colony and social insects in general (Hölldobler & Wilson 1990). In ants, nests can range 

in size and complexity from the vast underground networks of Atta leaf-cutting ants, to a 

whole colony of Temnothorax contained within a single acorn (Hölldobler & Wilson 

1990). The nesting habits of organisms are an important factor in their life history and a 

powerful driver of their morphology and ecology (Jeanne 1975; Mikheyev & Tschinkel 

2004;). The architecture of nests themselves is believed to be key in the evolution of 

division of labour which has contributed to the ecological success of ant societies 

(Hölldobler & Wilson 1990). The internal structure of a nest and the internal 

arrangement of ants and brood within it can potentially also have important implications 

for the spread of infectious diseases within colonies (Schmid-Hempel 1998; Naug & 

Camazine 2002). Social insects may be particularly vulnerable to parasites due to the 

very high population densities, homeostatic environmental conditions and low genetic 

diversity within colonies, which contribute to an increased risk of parasite transmission. 

In leaf-cutting ants, waste management tasks are partitioned spatially and between 

castes, which helps isolate the main colony from the increased risk of contamination (Bot 

et al. 2001; Waddington & Hughes 2010). Similarly, compartmentalisation between 

chambers within the nest may help prevent transmission of parasites to vulnerable 

aspects of the colony such as the queen or brood (Pie et al. 2004; Boomsma et al. 2005).  

 Polyrhachis Fr. Smith is a diverse genus of ants within the subfamily Formicinae 

with over 600 species widely distributed across Africa, Asia, and Australasia. Commonly 

termed ‘weaver ants’, many species form arboreal nests constructed from vegetation 

bound together with silk produced by their larvae, but may vary widely from 

subterranean nests formed from intertidal mangrove mud to lignicolous and lithocolous 

species (Robson & Kohout 2007). There is also an extreme range of colony sizes and 

compositions from very small colonies with just a few tens of individuals, through to 
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colonies with almost a million workers (Liefke et al. 1998; Dornhaus et al. 2010). 

Colonies tend to be polydomous, and in some species may also be polygynous with 

multiple dealate queens within a nest (Liefke et al. 1998; van Zweden et al. 2007). Like 

other formicines, weaver ants produce acidic venom from their venom gland which they 

can use to disinfect themselves and their brood (Graystock & Hughes 2011; Tragust et 

al. 2013; Tranter et al. 2014). Additionally, Polyrhachis and Oecophylla weaver ants use 

this venom to maintain acidic conditions of their nest silk (Tranter et al., 2014; CT and 

WOHH unpublished data). The general nesting habits of these ants have been well 

documented (Kohout 2000; 2012; Robson et al. 2015) and recently set into a 

phylogenetic framework, broadly describing patterns of weaving behaviour and basic nest 

composition (Robson & Kohout 2005, 2007). There has been a comprehensive study of 

the unusual nesting habits of the estuarine species Polyrhachis (Chariomyrma) sokolova, 

as well as brief details of mainly external colony architecture, and records of colony 

composition for a few other Polyrhachis species (Jinfu & Jue 1996; Nielsen 1997; Liefke 

et al. 1998; Downes 2015), However, detailed observation of the finer scale structure 

and colony composition of Polyrhachis nests is less well documented, especially 

considering the large number of species in the genus and the diversity of nesting habits. 

Here we provide some preliminary information on this from three nests of the arboreal 

and silk weaving species of Australian weaver ant Polyrhachis (Cyrtomyrma) delecta.  

 

Methods 

This work represents a preliminary study of the nest structure and nest composition of P. 

delecta (Kohout 2006) which we hope can provide a basis for further exploration of this 

interesting and understudied species. Ants were identified using keys available in Kohout 

(2006). Three nests of P. delecta were collected from around Centenary Lakes (-
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16.902°S, 145.749°E), Cairns, QLD, Australia in July 2014. The nests were externally 

formed from interwoven leaves hanging in vegetation approximately 1.5 m above ground 

and were suspended at a single point. At each site the nests collected were the only nests 

visible in the vicinity. Nests 2 and 3 were collected from approximately 20 m apart, 

whilst Nest 1 was located about 40 m from either of the other nests; none of the nests 

were therefore found on the same plant.  Nests were measured externally about three 

axes to give a height, breadth, width measurement using a 30 cm ruler. Nests were all 

approximately ellipsoid in shape and estimated volumes were calculated using the formula 

V = 4/3πabc, where a = ½height, b = ½breadth, c = ½width. The whole nest was 

collected by cutting the branch above the nest and gently releasing the nest into a plastic 

container. Returning worker ants were collected individually for a period of 15 min after 

collection of the nest and stored separately in 95% ethanol. This collection method 

resulted in minimal disturbance of the ants. The nest was then left for 6 h during which 

time the few ants which had emerged during collection returned to within the nest. The 

whole nest was then rapidly chilled by placing it in the freezer at -20oC for 3 h. The nest 

was then removed from the freezer, measured externally, and carefully dissected. The 

position and size of chambers within the nest were recorded, and their contents: queens, 

gynes (alate queens), males, workers, and brood, collected in ethanol for later counting 

under a stereomicroscope. Whilst every effort was made to minimise disturbance of the 

nest prior to dissection it was not possible to determine the extent to which ants within 

the nest may have repositioned during procedures. Therefore any positional data of 

castes within the colony should be treated cautiously.  P. delecta larvae do not spin larval 

cocoons, the loss of which is thought to be restricted to the Cyrtomyrma and Mymatopa 

subgenera, and pupae are exposed within the nest (Robson & Kohout 2007; Robson et al. 

2015). Whilst Downes (2015) reported that it is possible to discriminate between 

incipient workers and incipient sexuals in the closely related P. australis due to the 

present of wing buds on exposed pupae, we were not able to reliably do so here for P. 
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delecta. After removal with soft forceps of all ants and brood, the internal nest structure 

was recorded with sketches and photographs (Canon 7D and Canon MPE-65mm or 

100mm f/2.8 macro) as the dissection progressed. Samples are stored at the University 

of Sussex, UK. 

 

Results  

Nests 1 and 2 were similar in their external structure, dimensions and construction, 

whilst Nest 3 was larger and more spherical in shape (Table 1). 

 

 

Table 1. Information on external and internal colony structure of three nests of P. delecta. 

Numbering detailed in Figure 1. Approximate volumes are calculated from dimensions.  

Nest External dimensions 

(height x width x depth ) 

Internal chamber details 

Count (n)       Chamber      Volume (%)

  

 

 

1.  

 

 

Formed of 3 leaves 

 

140 x 70 x 65 mm 

volume: 333.53cm
3
 

1   10 

  2  20 

6 3  10 

 4  44 

 5  10 

 6  5 

 

 

 

2.  

 

 

Formed of 5 leaves 

 

135 x 75 x 60 mm 

volume: 318.09cm
3
 

1  10 

  2  20 

 3  5 

7 4  35 

 5  10 

 6  10 

 7  10 

 

 

3.  

 

 

Formed of 3 leaves 

 

110 x 85 x 80 mm 

volume: 39165 cm
3
 

1  10 

  2  20 

6 3  25 

 4 25 

 5  10 

 6  10 
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Figure 1. Lateral view schematic illustrations of the internal chamber arrangement 

of three nests of Polyrhachis delecta weaver ants. Chambers are labelled (1-7). 

Nests were suspended from vegetation at the top and thick black lines show the 

core arrangement of leaves which were divided into chambers through construction 

with larval silk (thin lines). Sections with wavy outlines in gray on the outer 

surface of the nest indicate areas constructed from carton. Internal structures with 

dashed lines indicate the position of internal ‘girders’. Nest openings are portrayed 

oriented towards the lower right of each nest. 

 

All three nests were formed from less than five leaves at the terminus of a hanging 

branch, with the leaves slightly folded and woven together with silk and carton material, 

and in some cases (ca. 20%) split along veins (Figure 2C). All nests had one entrance 

located at the bottom of the colony. Internally nests were composed of 1-2 large 

chambers, usually formed as one whole section between two leaves, and a number of 

smaller chambers towards the periphery (Figure 1). 
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Figure 2. Photographs detailing a cross section through the silk support structures 

(‘girders’) spanning some chambers within nests (A-B), a view of the outside of 

Nest 1 showing workers on sections of the folded leaf with an area of visible carton 

in the bottom right (C), examples of an alate queen (top), male (middle) and worker 

(bottom) of Polyrhachis delecta weaver ants (D), and examples of the various brood 

stages including a pupa (left) and variously sized larvae (middle to right) found 

within colonies (E).  
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These chambers were lined with silk sheets which varied in thickness from so thin as to 

be almost transparent to the approximate thickness of standard 75 gsm copy paper (100 

µm). Three of the larger chambers possessed cylindrical protuberances, which we term 

here ‘girders’. These girders emerged from the inner wall and spanned the chamber, and 

were formed from tightly layered silk (Figure 2A-B). A single large girder was present 

in Chamber 4 of Nests 1 and 2 and a smaller girder was also observed spanning the walls 

of Chamber 2 in Nest 2. Nests 1 and 2 contained similar numbers of workers, alate 

queens and brood (Table 2; Figure 2D-E). Nest 3 however had much fewer workers and 

brood, no dealate queens and very few alate queens present, unlike the other two nests. 

There were some similarities between the three nests in the location in which the 

majority of each of the castes were found (Figure 1,3), most evident between Nets 1 and 

2 which shared a more similar physical structure. The dealate queen in Nests 1 and 2 

were both located in the largest chamber of the nest which also contained a large number 

of eggs and small larvae. The males tended to be located in chambers towards the nest’s 

middle. Workers were found throughout the nests in all chambers but with indication of 

some concentrated in chambers adjacent to nest entrances, and those chambers towards 

the top of the nest. These uppermost chambers also contained large numbers of alate 

queens and larger larvae.  
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Figure 3. Panel showing the percentage of each ant life stage within each chamber 

of each of three nests of Polyrhachis delecta weaver ants.  
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Discussion 

We present here the first observations and descriptive data on the structure and 

composition of three nests of the weaver ant Polyrachis delecta. There was evidence of 

segregation of castes within the various chambers in the nest and similarities in their 

spatial position between nests. We also noted the inclusion of tightly wrapped sections of 

silk, that we term here ‘girders’, which horizontally spanned a number of the larger 

chambers. These girders were extremely rigid compared to the rest of the nest 

construction and we hypothesise that they function to provide internal support to stop 

lateral compression and collapse of inner chambers and the nest as a whole.  

Many ant colonies undergo seasonal variation in their size and composition, which 

is often best seen in the different rates of caste production (i.e. workers vs. sexuals) or 

the season in which brood may tend to be produced. Downes (2015) demonstrated 

seasonal fluctuations in the colony composition of P. australis. In their study, alate 

queens and alate queen pupae were mostly present only from July to December. In our 

study, conducted in July, we also found the presence of alate queens in quite high 

numbers. In addition, we found generally similar colony sizes to Downes (2015), with 

the exception of males which were more numerous in the colonies in our study. Compared 

to other Polyrhachis species these nest populations are small overall for the genus, many 

species of which have thousands of workers, but are more representative of species 

within the Cyrtomyrma subgenus as a whole (Dorow et al. 1990; Dorow 1995; Glaser 

1997; Liefke et al. 1998).  In this study we estimated that the proportion of foragers 

constituted around 5-18% of the total worker force, although returning foragers were 

only collected for 15 min after colony collection. In Odontomachus brunneus the foraging 

population found outside the nest was estimated to be 77% of the total workforce (Hart 

& Tschinkel 2011), much higher than we estimated here, but in general it is unknown 
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quite how the proportions of foragers varies depending on ant species or overall colony 

size (Tschinkel 1999) .   

As the size of nests and number of chambers increases, the chance of a complete 

mixing of colony members decreases and thus larger nests may promote colony 

complexity through task differentiation or protection against disease through 

compartmentalisation (Sendova-Franks & Franks 1995; Naug & Camazine 2002; Naug 

2008; Konrad et al. 2012). In this study there were indications of some degree of 

compartmentalisation of colony components to different chambers within the nest, 

although the potential for relocation of ants between collection and dissection, and the 

fact that the study was limited to only three nests means that these data must be treated 

cautiously. As with other social insect nests (Kugler & Hincapie 1983; Longino 1991; 

Ito et al. 1994; Baracchi & Cini 2014), the brood, and especially the queen, tended to be 

located away from the periphery of the nest, and usually away from the nest entrance. 

Additionally nest architecture is important in producing correct internal nest 

microclimates and brood may be moved within colonies in order to raise them at the 

correct temperature which may be in part responsible for the location of brood observed 

in this study (Sendova-Franks & Franks 1995; Tschinkel 1999). Further investigation 

of more P. delecta nests is needed to confirm the descriptive data provided here. 

 Polydomy occurs in a number of Polyrhachis species, some of which have been 

described as supercolonial (Yamauchi et al. 1987; van Zweden et al. 2007), and it is 

possible that the presence of the queenless, brood-bearing and otherwise healthy nest in 

this study is evidence for this in this species. Thus it is hard to know if assemblages 

collected here represent distinct colonies or, as we term them here, just one of possibly 

many ‘nests’ which comprise the colony as a whole.  As three nests were collected for 

this study and all were relatively small, collected from only where nests were readily 

discoverable and easily collected, and from a limited geographic locality, it is likely that 
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there is selection bias in these results. Larger colonies or those located higher in 

vegetation, or at a different location, may differ significantly in their structure and colony 

composition. It is likely that there will have been some internal relocation of ants within 

nests between collection and dissection, so the data on the intranidal location of ants 

needs to be treated cautiously. Nonetheless Nests 1 and 2, which were similar in size and 

structure, seemed to also share similarities in their spatial location of ants. 

Although general nesting patterns are quite well studied across Polyrhachis 

species, this study provides the first descriptive data of the interesting structure of P. 

delecta nests. We hope that this work will stimulate future more detailed studies on nest 

structure and composition in order to further explore the intricacies of this specialised 

form of nest construction, which may help to elucidate evolutionary patterns of nest-

building and habitat preference in this highly diverse genus of ants.  
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Life-history information of Formicine social parasites 

and their hosts 

Polyergus is an obligately duoltic (obligate slave-maker) social parasite that is 

completely dependent on the ants within the Formica subgenus Serviformica in 

order to survive (Topoff et al. 1989; King and Trager 2007). Individuals possess 

characteristic scythe-shaped mandibles which assist in their periodic group-raids 

of other colonies, where they retrieve brood which may be reared to eclosion and 

integrated into the worker population (Topoff et al. 1989; Topoff 1990). Young 

Polyergus queens are unable to found a colony on their own and will invade an 

existing Serviformica nest, kill or usurp the queen and take over the colony. 

Polyergus workers lack the ability to feed, even when presented with food, or 

clean themselves or other ants, and will not care for brood (Topoff, Inez-Pagani, 

et al. 1985; Topoff, LaMon, et al. 1985; Topoff et al. 1989; Hölldobler and 

Wilson 1990).  The facultatively duoltic species Formica sanguinea, a medium 

sized species with colonies of several thousands of individuals, however, retains 

some ability for its workers to undertake necessary day-to-day tasks within a 

colony (Snelling and Buren 1985; Mori et al. 2001). Individuals will feed and 

groom themselves and nestmates, can survive without slaves, and queens can 

found new colonies either on their own or through parasitism as in Polyergus 

(Mori et al. 2001). F. sanguinea will however conduct raids of Serviformica 

colonies, retrieving and raising workers from host colonies. The hosts themselves: 

F. fusca, F. cunicularia and F. rufibarbis tend to be smaller ants, but with 

colonies of many thousands of individuals, which, when not being raided, live as 

isolated independent colonies – foraging for scavenged food and tending to start 
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new colonies as solitary foundresses or through colony fission  (Bergström et al. 

1968; Francoeur 1973; D’Ettorre et al. 2002). Formica rufa builds nests formed 

of sticks and conifer needles, with very large colonies often composed of several 

hundred thousand workers (Francoeur 1973; Laakso and Setälä 1997; Domisch 

et al. 2009). Workers forage for honeydew and non-selectively scavenge and 

predate invertebrates (Domisch et al. 2009).  
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Supplementary material for Chapter 6. Simple 

societies and sanitary syndromes 

Supplementary methods 

Study species 

We used ten colonies of Dinoponera quadriceps, a monomorphic, queenless, ponerine ant 

species with small, highly simple, societies collected from Bahia state, Brazil, in 

November 2014, and four colonies of Acromyrmex echinatior, a myrmicine leaf-cutting 

ant with large, complex societies and highly polymorphic workers, collected in Gamboa, 

Panama, in 2011.  

Dinoponera dinosaur ants are a monomorphic Neotropical Ponerine ant genus, 

considered the biggest ants of the world. They exhibit amongst the most primitive 

societies of all ants, with a simple linear dominance hierarchy headed by an inseminated 

worker or gamergate, instead of a distinct queen. Dinoponera quadriceps Santschi, 1921 

forms colonies of 10s to a few 100s of individuals in subterranean nests. Workers are 

able to be categorised very simply into two groups: 1) low-rank workers that perform 

foraging activities outside the nest for arthropod prey, and guard and maintain the nest, 

and 2) higher-ranking workers that engage in helper activities, e.g. brood tending, 

mainly within the nest. (Choe and Crespi 1997; Monnin and Peeters 1997; Araújo and 

Rodrigues 2006; Nascimento et al. 2012; Sousa et al. 2012) 

Acromyrmex leaf-cutting ants are highly polymorphic Neotropical Myrmicine 

genus that cuts leaves on which they grow a fungal crop as a food source. Unlike 

dinosaur ants, Acromyrmex echinatior leaf-cutting ant colonies can reach 100,000s of 

individuals, headed by a very large distinct queen, and are organised into morphological 

and behaviourally distinct castes which vary by orders of magnitude in size. These 
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include enlarged soldiers which possess powerful mandibles for colony defence, through 

to miniscule worker ‘minims’ which live in the fungus. Leaf-cutting ants show much more 

distinct division of labour and task partitioning within colonies compared to dinosaur ants 

(Hölldobler and Wilson 1990; Schultz and Brady 2008; Waddington and Hughes 2010; 

Nygaard et al. 2011).  

As a parasite we used the entomopathogenic fungus Metarhizium pingshaense 

(KVL02-73 isolated soil in Panama; (Pull et al. 2013)), which is a natural parasite of 

ants (Boomsma et al. 2005), but a generalist insect pathogen and thus unlikely to have 

coevolved with either ant species used here 

Colony care 

All colonies were maintained in the laboratory at the University of Sussex at 23°C and 

60% relative humidity for at least three months prior to use and were in good health at 

the time of the experiment. Dinosaur ant colonies had previously been extensively 

censused and the ages of all individuals were approximately known, and we used external 

foragers of similar size (mesosoma length:7.9 ± 0.5 mm; width: 3.1 ± 0.2 mm) and age 

(> 8 months) for the experiments. For the leaf-cutting ants, we also used external 

foragers of similar size (mesosoma length:3.2 ± 0.2 mm; width: 0.78 ± 0.02 mm) and 

age (estimated from cuticular colouration; (Armitage and Boomsma 2010)). Foragers 

may be most likely to be exposed to fungal pathogens in the environment. 

Experimental set-up 

Dinosaur ants were individually marked for identification with small numbered discs 

attached to the mesosoma, and individual ants were removed from the colony for 

observation and then replaced in their colony after each repeat. This was impractical in 

the much larger A. echinatior colonies, so workers were housed in individual pots (70 x 

35 mm, with sucrose solution and water supplied ad libitum) for the duration of the 



311 

311 

experiment, and the experiment was done over a shorter time period to minimise the 

impact of segregation from the colony.  

In order to check that this difference in methodology did not affect the results, an 

additional 20 dinosaur ants from different colonies were kept in individual pots and tested 

over 7 days to mimic the set-up for the leaf-cutting ants, and this confirmed that the 

difference in setup had minimal impact on the behaviour of the ants (See results section 

‘housing comparison’ below). 

Treatment protocol 

Metarhizium conidia, and talcum powder, suspensions were thoroughly vortexed to 

ensure homogeneity prior to use. Individual ants were gently held with soft forceps and 

the treatment was applied with a calibrated micropipette. Positive application of talcum 

powder treatment could be visually confirmed by the presence of a fine white coating to 

the ants cuticle after drying.  

 

Supplementary results 

Housing comparisons 

We compared the effect on grooming behaviour of keeping dinosaur ants either a) in the 

colony or b) in separate pots during the grooming experiment, using a GLMM with 

gaussian distribution and log link function and colony included as a random factor. There 

was no significant difference in grooming durations between ants kept in their colonies or 

in pots for either control or talcum treated ants (respectively: F1,58 = 0.035, p = 0.85, 

F1,58 = 0.003, p = 0.96; Figure S6.1 p.267).  
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Social immunity and personalities 

There was a significant interaction between treatment and species on overall 

selfgrooming and allogrooming (F1,156 = 9.19, p = 0.003; F1,156 = 61.71, p < 0.001; 

respectively; Figure 6.1c-f; S6.2). There was no significant correlation between 

allogrooming and self-grooming in control-treated ants (r = 0.009, n =40, p = 9.57; 

Figure S6.3a). Leaf-cutting ants that had higher baseline levels of selfgrooming in the 

control treatment, showed a significant correlation with having higher selfgrooming rates 

after talc exposure (r = 0.34, p = 0.034, n = 40; Figure S6.3b). There was no similar 

correlation between the treatments in leaf-cutting ant allogrooming durations (r = -

0.133, n =40, p = 0.41; Figure S6.3c) or in the self-grooming of dinosaur ants or (r = 

0.15, n =40, p = 0.37; Figure S6.3d). 

Personalities and disease resistance 

In leaf-cutting ants treated with Metarhizium there was a significant positive correlation 

between allogrooming duration and survival in both control, and talcum-powder treated 

trials (respectively: r = 0.43, n = 35, p = 0.009; r = 0.34, n = 35, p = 0.024; Figure 

S6.4a-b), but no significant correlation between selfgrooming duration and survival in 

control trials (r = 0.2, n = 35, p = 0.25 Figure S6.4c).  
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Attine life-history  

Photo overleaf. The fungus growing ants form a monophyletic clade within the 

Myrmicinae which can be split based on their mode of agriculture. The leaf-

cutting ants, which include Acromyrmex and Atta, are the most evolutionarily 

derived genera (c-d overleaf) and have the most sophisticated fungal agriculture 

where they cut fresh vegetation to cultivate their fungal crops. The higher 

agriculture genera of Sericomyrmex (a) and Trachymyrmex use  found plant 

material on which to grow their fungus. The most basal genera belong to the 

lower agriculture group, including Apterostigma (b), which tend to use more 

diverse substrates for their fungus, including scavenged insect cadavers and other 

detritus. Within the lower agriculture groups there are also different fungal types 

which are grown, including ‘coral fungus’ and ‘yeast fungus’ 
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