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SUMMARY 
 

Epstein - Barr virus (EBV) is a member of the γ-herpesvirus subfamily of 

Herpesviridae. EBV is a double stranded DNA virus infecting humans causing a 

variety of disease from asymptomatic infection to association with certain 

tumours including Burkitts lymphoma, Hodgkin’s disease and nasopharyngeal 

carcinoma. EBV encodes an immediate-early protein called Zta (BZLF1, EB1, 

ZEBRA), which is an important transcription factor and replication factor direct in 

disrupting latency. EBV encodes viral proteins that assemble as a replisome at 

the viral lytic origin recognition site (Ori-Lyt). Zta binds Ori-Lyt and it is unclear 

how Zta interacts and recruits the complex to the site of DNA replication, while 

coordinating and recruiting host factors. After a mutation to three alanines 

(ZtaAAA) data implicates that the extreme C-terminus of Zta is essential for 

replication. 

 

The question posed is how does Zta assemble the replisome? Identification of 

the lytic changes that contribute to lytic replication, including cellular components 

that may contribute to EBV replication is attempted.  

 

Transfected control, Zta and ZtaAAA in HEK293-BZLF1-KO cells was compared. 

Size exclusion chromatography identified a higher molecular weight complex 

containing Zta during viral replication.  SILAC (Stable isotope labelling by amino 

acids in cell culture) coupled to proteomics analysis identified the elution fraction 

composition. An interpretation of these cellular components in the context of lytic 

replication is explored. Identification of interactions of Zta with cellular proteins 

was attempted by SILAC histidine tagged Zta with pull down assay. Quantitative 

data was returned and a confirmation of interactions was attempted. A global 

proteomics approach was also performed. An enrichment method to isolate 

SILAC labeled Burkitts Lymphoma cells undergoing EBV lytic replication was 

coupled to mass spectrometry analysis to identify changes in host and viral 

proteins.  

 

Overall, cellular targets that may interact with Zta are to be confirmed. The global 

proteomics study recognized for the first time by proteomic analysis the 

identification of three EBV lytic replication cycle protein 
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1. Introduction 

 Historical Background of Virology 

The scientific study of microbiological diseases began in the late 1800s. The 

ability to separate some microorganisms using filters initiated the understanding 

that microbes were causative of disease and this was well documented. In 1840, 

Henle reported that these infectious agents could not be seen by the light 

microscope and by the late 19th century Robert Koch had introduced criteria 

designed to establish the relationship between the microorganism and disease 

termed Koch’s postulates. With the development of molecular biology and our 

understanding of pathogens that cause disease, these criteria became limited. 

The contribution of infectious agents towards the development of cancer meant 

that the criteria could not be fulfilled. Also, subclinical infections that include the 

majority of herpesviruses present themselves as an asymptomatic infection for 

an indefinite period, without causing cancer in the majority of the world 

population. Therefore, revised versions of the criteria proposed to include viruses, 

as they do not fit into the criteria originally suggested (Fredricks & Relman 1996).  

 

Virology research began with the observation of a disease first described as 

lesions of tobacco plant leaves by Adolf Mayer in 1879 (Lustig & Levine 1992). 

Transmission of the virus was performed by inoculating healthy plants with the 

liquid from viral infected leaves. Beijerinck displayed that this agent could 

replicate itself in living tissues and referred to this as a contagious living liquid. In 

addition to plant viruses, bacteriophages can infect bacteria. These viruses that 

are parasitic to bacteria were discovered in the early 1900s (Duckworth 1976). It 

also became apparent viruses can infect animal cells and viruses infect humans 

causing disease including cancer. 

 

The pathology of diseases was described but the causative agents were not 

determined until the ability for these to be visualized and improved molecular 

biology techniques were established. It wasn’t until the invention of the electron 
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microscope that viruses were visualized and in 1939 the first images of the 

tobacco mosaic virus (TMV) were developed (Levine & Enquist 2007). 

 

The concept of a transmissible agent that could be the foundation of oncogenesis 

in animals began when the Rous sarcoma virus was found to have oncogenic 

properties, the cell free transmission of filtrate could convey a tumour sarcoma in 

chickens (Rous 1910; Rous 1911). However, the idea that an agent that could 

cause cancer in humans was not accepted until the discovery of Epstein - Barr 

virus (EBV) by Epstein (Epstein et al. 1964). When EBV was discovered it was 

established as the first tumour associated virus identified in humans. Since the 

middle of the 20th century, tumour virology has become one major focus of cancer 

research. It is now known that viruses cause at least 10% of human cancers. 

Research into the understanding of viral pathogenesis will reveal therapeutic 

targets against which drugs can be developed that will contribute to the 

prevention and treatment of human cancers (Levine & Enquist 2007). 

 Herpesviruses 

The herpesvirus family consists of many DNA viruses that undergo a true latency 

period in a wide range of different cells. They are large enveloped, double 

stranded DNA viruses and are extremely widespread among humans, and 

considered to be one of the most successful virus family that infects the human 

population. Herpesvirus virions are spherical with a core, capsid, tegument and 

envelope to enclose the viral DNA. They have been widely studied and their 

genomes sequenced (Whitley, 1996). At least eight herpesviruses have been 

identified that infect humans. It is estimated that the eight human herpesviruses 

share a significant homology in about 40 genes (McGeoch 1989). Between 

herpesviruses, the size of their DNA varies in size from 124kbp to 235kbp 

containing about 70 to 200 genes (Roizmann et al. 1992). There are three major 

subfamilies of herpesviruses that include alpha (α), beta (β, and gamma (γ) 

classified by the International Committee on Taxonomy of Viruses. Alpha 

herpesviruses can infect a wide range of species, whereas beta and gamma 

herpesviruses have restricted infectivity (Davison 2007). 

Alpha herpesviruses include Human herpesvirus 1 (HHV-1) known as Herpes 

simplex virus 1 (HSV1), Human herpesvirus 2 (HHV-2) known as Herpes simplex 
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virus 2 (HSV2), and Human herpesvirus 3 (HHV-3) known as Varicella Zoster 

Virus (VZV) and these all infect neurons. Beta-herpesviruses include Human 

herpesvirus 5 (HHV-5) known as human cytomegalovirus (HCMV), human 

herpesvirus 6 (HHV6) and human herpesvirus 7 (HHV7) that infect monocytes. 

Gamma-herpesviruses include Human herpesvirus 4 (HHV4) known as Epstein-

Barr virus (EBV) and Human herpesvirus 8 (HHV-8) known as Kaposi’s Sarcoma 

Herpesvirus (KSHV), these infect lymphocytes and either epithelial or endothelial 

cells. Both of these viruses have been shown to cause cancer in humans. EBV 

and KSHV are also known as the lymphocryptoviruses (Longnecker & Neipel 

2007) or gamma-1 herpes virus (for EBV), gamma-2 herpes virus (for KSHV) 

(Crawford et al. 2014). 

 

Following infection of cells by herpesviruses, the linear viral DNA locates to the 

nucleus. Depending on the cellular environment either viral replication proceeds 

or viral latency is established. During latency, a small subset of latent genes are 

expressed to maintain the viral episome in cells until a cellular event initiates the 

reactivation into lytic cycle. A cascade of lytic genes can then express proteins to 

promote replication of the viral genome within the nucleus. During lytic cycle 

around 70 genes are expressed and these contribute to genome viral replication 

and virion production. 

 Epstein - Barr virus 

Epstein - Barr virus (EBV) infects 90% of the world population (Young & Rickinson 

2004). EBV research began after the discovery and categorisation of tumours 

that were present in people living in regions of Africa by Denis Burkitt (Burkitt 

1958). The distinct tumours were first described in 1958 and named as Burkitt’s 

lymphoma (BL). From the publications of this data and attending various lectures 

and discussions, tumour virologist Epstein, with Barr and Achong studied 

biopsies taken from these tumours. A virus was isolated from one of the BL cell 

line from Africa and this virus was identified under an electron microscope in 

1964, (Epstein et al. 1964). The virus was named Epstein-Barr virus after the 

research team of Epstein and Barr. Since the breakthrough of the identification 

of this virus, many other viruses have been discovered that contribute to the 
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pathogenesis of cancer. These include human papillomavirus, Merkel cell 

polyomavirus and Kaposi’s sarcoma herpesvirus (KSHV) (Moore & Chang 2010) 

 

EBV has been extensively studied since its discovery in 1964, although we still 

do not fully understand how it causes disease. As with other herpesviruses, 

survival in the body is associated with the latent state, with only a sporadic switch 

into its lytic cycle to spread infectious virions. Both latency and lytic cycles have 

been studied in the contribution of the viral mechanisms towards disease. 

 EBV Disease 

Although EBV infects the majority of the world population asymptomatically, the 

virus can have oncogenic properties (Young & Rickinson 2004). The beginning 

of the association with EBV and disease was demonstrated using 

immunofluorescence studies by the Henle laboratory in the 1960s. This initially 

indicated that antibodies against the virus now known as EBV are found in 

patients with very high levels when presenting with infectious mononucleosis 

(Henle & Henle 1966). Most diseases that arise are associated with the latent 

form of EBV, which is unlike other human herpes viruses, where disease is 

related to the lytic phase of the virus. EBV exhibits a distinct tropism for both B 

cells and epithelial cells and EBV infection of B cells results in ‘one step’ 

immortalization in vitro, but within the body this is countered by 

immunosurveillance. When this fails, the EBV-associated diseases progress. The 

mechanisms of EBV infection and contribution to disease in both B cells and 

epithelial cells is beginning to be more understood. 

 EBV associated with Cancer 

1.5.1. Burkitt’s lymphoma 

Denis Burkitt first described the disease now known as Burkitt ’s lymphoma (BL) 

as outlined previously. This disease is common in children was first seen as facial 

swellings and later classified as a lymphoma (Burkitt 1983).  As described earlier, 

these samples led to the first identification of EBV.  

 

There are three variants of BL that differ in their biology, presentation and 

association with EBV. These are endemic, sporadic and immunodeficiency 
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variants (Kutok & Wang 2006). EBV is present in 95% of all endemic BL cases in 

Africa. BL is prevalent in equatorial Africa and Papua New Guinea, where EBV 

plays a central role, causing an incidence rate over 50-100 per 1,000,000 

individuals (Kutok & Wang 2006). A sporadic form of BL is evident, where 10–

15% tumours are EBV-positive. There is a low base-line rate of BL developing 

without EBV in all populations worldwide, and that any increases above this 

baseline are due to the influence of EBV (Magrath 2012). 

 

The majority of BL in patients is characterized by a chromosomal translocation 

between chromosome 8 and 14 (Zech et al. 1976), involving a c-myc proto-

oncogene and an immunoglobulin gene. The activated immunoglobulin gene 

leads to the overexpression of myc, a transcription factor involved in many cellular 

targets that ultimately leads to tumorigenesis (Baumforth et al. 1999). The mark 

of this lymphoma is the deregulation of myc contributes to BL by clonal 

expansion, mutagenesis, and escape from immune surveillance (Orem et al. 

2007). EBV also contributes to the pathogenesis of BL by providing anti-apoptotic 

signals. These override c-myc-induced cell death (Rowe, Fitzsimmons, et al. 

2014). Altered myc expression may also replace EBV-driven cell proliferation and 

allow cells to survive and proliferate with downregulation of the Epstein-Barr 

Nuclear Antigen (EBNAs) and latent membrane proteins (LMPs), which may in 

turn enable the infected cells to evade immunosurveillance (Rowe et al. 1987). 

 

BL cells display an EBV latency I expression, of EBNA1 with Epstein–Barr virus-

encoded small RNAs (EBERs) (Kutok & Wang 2006). EBNA1 and EBERs have 

an effect on cell growth in some experimental systems. EBV may act by 

increasing the frequency of genome instability within the B-lymphocytes the virus 

infects.  

1.5.2. Hodgkin’s lymphoma 

Hodgkin’s disease (HD) or Hodgkin’s lymphoma is classified by the presence of 

Reed-Sternberg cells, which are derived from B-lymphocytes. The evidence that 

EBV may play a role in the development of HD was the observation of raised 

antibody titres against EBV antigens when compared to other lymphoma patients 

(Levine et al. 1971). It was first demonstrated that there was an increased 
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occurrence of EBV DNA in HD tissue specimens (Weiss et al. 1991). EBV was 

then further suggested to contribute to the development of the disease (Murray 

et al. 1992).  

 

HD is a tumour of the lymph nodes and can be diverse in morphology. HD has 

been classified into four histological subtypes: lymphocyte predominance (LP), 

nodular sclerosis (NS), mixed cellularity (MC), and lymphocyte depletion (LD), 

based on the morphology of Reed-Sternberg cells (Harris et al. 1994). EBV is 

mostly associated with the MC subtype of HD (Pallesen et al. 1991). HD of 

patients greater than 55 years of age, and children less than 10 years of age are 

most likely to develop HD that is EBV associated (Armstrong et al. 1998). 

 

LMP1 has a high level of expression in Reed-Sternberg cells and there is a 

correlation between LMP1 expression and EBV positive HD (Durkop et al. 1999; 

Murray et al. 2001). LMP1 can prevent entry into the lytic cycle via NFκB and 

downregulating BLIMP1α, required for plasma cell differentiation and induction of 

the lytic cycle (Prince et al. 2003; Vrzalikova et al. 2011). Whereas LMP2 can 

induce the lytic cycle acting as a B-cell receptor homologue (Schaadt et al. 2005). 

The loss of the B-cell receptor contributes to the progression of classical HD, 

which may suggest that cells without a BCR or BCR signalling are positively 

selected towards EBV-associated HL, with latent EBV proteins playing a central 

role (Vockerodt et al. 2013) presenting as a Latency II disease (Cesarman & 

Mesri 1999). 

1.5.3. Nasopharyngeal Carcinoma 

Nasopharyngeal carcinoma (NPC) (Type 3) has the most consistent association 

with EBV in the world population. This undifferentiated form of nasopharyngeal 

carcinoma is characterized by the presence of undifferentiated carcinoma cells. 

These are joined with prominent infiltrating lymphocytes; this is believed to be 

important for the growth of the tumour cells (Young & Murray 2003). NPC is 

common in areas of China and South-East Asia, with environmental cofactors 

adding to genetic factors (Yu et al. 1986).  
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EBV and the expression of EBNA proteins were first shown to be present in NPC 

tumour cells (zur Hausen et al. 1970). Serological screening of elevated antibody 

titres have aided diagnosis and monitoring therapy of NPC (Zeng 1985) as the 

association is well established between EBV and NPC. It has been proposed that 

NPC may arise from the expansion of a single EBV infected nasopharyngeal 

epithelial cell (Pathmanathan et al. 1995). LMP1 may be central to the 

pathogenesis of the disease. LMP1 inactivation of cellular pathways contributes 

to the proliferation and transformation of epithelial cells (Lo et al. 2013). NPC can 

present as a Latency II disease (Cesarman & Mesri 1999), again with latent 

proteins playing a role in the pathogenesis of disease. 

1.5.4. Post Transplant Lymphoproliferative Disorders (PTLD) 

Nearly all Post Transplant Lymphoproliferative Disorders (PTLDs) are associated 

with EBV. It is the most common disease associated with transplantation, arising 

in 10% of all transplant recipients (Penn 1994). Immunosuppressive agents that 

are used to prevent rejection of transplants result in a lack of immune control 

against EBV, this leads to unrestricted proliferation of B-lymphocytes and 

possible tumour formation. The infection of B-lymphocytes with EBV can lead to 

a hyper-proliferative state that can vary in severity (Loren et al. 2003). 

 

The origin of EBV in this disease varies. Bone marrow transplantation can lead 

to the reactivation of EBV from donor cells containing EBV (Zutter et al. 1988). 

Patients who are seronegative for EBV have a higher risk of developing PTLD 

after transplantation, as they have no T cell response to EBV. A 10-75-fold 

incidence of PTLD occurs in recipients that are seronegative over donor 

seropositive transplant patients. The main immune control of EBV primary 

infection is a CD8+ T cell response. Tumours arising from PTLD include 

polymorphic PTLD or monomorphic PTLD, arising from B-lymphocytes. 

1.5.5. NK and T Cell lymphomas 

EBV has been found in many T cell and natural killer (NK) lymphoproliferations 

but this is a rare event. EBV can enter B cells through the CD21 receptor 

(Fingeroth et al. 1984), but T cells including NK cells lack CD21 expression (Fox 

et al. 2011). The EBV role in pathogenesis of T cell lymphomas has been 

investigated. 
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Five T-cell tumours carry EBV DNA: aggressive NK cell leukaemia, extranodal 

NK/ T-cell lymphoma nasal type, enteropathy-type T-cell lymphoma, angioblastic 

T-cell lymphoma, and peripheral T-cell lymphoma, unspecified (Jaffe & Ralfkiaer 

2001). The model for B-cell infection and EBV life cycle cannot explain how these 

diseases may arise, raising questions such as the mechanism of infection in vivo 

and the heterogeneity of infection within the same tissue sample (Fox et al. 2011). 

 Other diseases associated with Epstein - Barr virus 

1.6.1. Infectious Mononucleosis 

The link between EBV and infectious mononucleosis (IM) was discovered by the 

Henle laboratory, as described previously (Henle et al. 1968). EBV was also 

shown to replicate in oropharyngeal epithelial cells during infectious 

mononucleosis (Lemon et al. 1977). 

 

IM is a symptomatic infection. IM generally lasts a few weeks but some symptoms 

will remain such as fatigue for months after the initial primary infection (Rea et al. 

2001). After infection, an incubation period of four to six weeks is evident 

(Hoagland 1955), where a high viral load can be detected in the oral cavity and 

blood (Balfour et al. 2015). IM is characterized by a global expansion of CD8+ T 

cells with activated T cell response to EBV infected B cells (Hislop 2015). Once 

the infection is controlled by the immune system, a delayed antibody response 

against EBNA1 develops (Henle et al. 1987) IM may be relevant to cancer as a 

history of IM leads to a higher risk of developing EBV-positive HD (Hjalgrim et al. 

2010). 

1.6.2. Oral Hairy Leukoplakia 

Oral hairy leukoplakia (OHL) was first described in 1984 and is a mucosal disease 

associated with EBV, with all cases occurring in immunosuppressed patients. 

The disease is present on the tongue of these patients, and is common with 

immunosuppressed individuals infected with HIV (Reichart et al. 1989). EBV can 

replicate in oral epithelial cells (Greenspan et al. 1985). B95-8 EBV from HEK293 

cells shows a preferential to infect differentiated primary epithelial cells (Feederle 
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et al. 2007), displaying EBV can preferentially infect epithelial cells at a high 

infection rate, possibly due to the differentiation of epithelial cells. 

 

The disease can be treated with acyclovir, a viral DNA replication inhibitor, 

although acyclovir-resistant EBV has been detected in patients treated with 

acyclovir for oral hairy leukoplakia (Walling et al. 2003). It is unknown whether 

treatment failures for oral hairy leukoplakia occur because of sub-therapeutic 

levels of acyclovir or an EBV resistance to acyclovir.  

1.6.3. Autoimmune diseases 

EBV is linked with systemic autoimmune diseases such as rheumatoid arthritis 

(RA), Sjögren's syndrome (SS), systemic lupus erythematous (SLE) and multiple 

sclerosis (MS). These diseases may have genetic and environmental factors 

contributing to their development and EBV is suggested to play a role, however 

this remains controversial (Fust 2011). 

 

Rheumatoid arthritis (RA) involves a persistent synovial inflammation of the 

joints, B and T cells with macrophages and cytokines infiltrate and cause tissue 

damage and cartilage destruction (Scott et al. 2010). Infection with EBV has been 

suggested to contribute to RA, the frequency of EBV being higher in patients with 

RA (Balandraud et al. 2003) 

 

Sjögren's syndrome (SS) can present as disorders with the exocrine glands and 

lymphocyte infiltration (Jonsson et al. 2011). EBV antigens and DNA were 

detected from biopsies of patients with severe SS, indicating the virus may play 

a role in the pathogenesis (Fox et al. 1986). 

 

Systemic lupus erythematous SLE presents as a rare autoimmune disease that 

may include the failed clearance of the early phases of apoptosis, leading to an 

autoimmune reaction (Gaipl et al. 2007). SLE patients have an abnormally high 

frequency of EBV-infected cells in the host, independent of immunosuppressive 

therapy (Gross et al. 2005). Also EBV mRNA expression was significantly 

increased in SLE (Poole et al. 2009). 
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Multiple sclerosis (MS) has also been linked to EBV infection. MS is a chronic 

disease of the nervous system, evident with demyelination of the myelin sheaths 

surrounding axons. In vitro cells from patients with MS had an increased tendency 

for spontaneous EBV induced B-lymphocyte transformation (Fraser et al. 1979). 

Molecular mimicry may play a role in disease as CD4+ T lymphocytes specific for 

myelin and the EBV DNA polymerase protein have been isolated (Wucherpfennig 

& Strominger 1995). 

 EBV genome 

EBV is a double-stranded DNA virus of about 172kb in length and can express 

around 86 latent or lytic cycle genes. Latent promoters are clustered near the 

terminal repeats of the fused genome, where the viral DNA circularizes 

maintaining as a viral episome (Speck & Ganem 2010). The genome contains 

the Wp promoter which is the initial promoter expressed after infection. The 

genome is also composed of multiple exons for latent genes. EBNAs are 

transcribed from the Cp or Wp promoter during latency III, and different EBNA 

products arise from differential splicing of the primary transcript (Figure 1.1) 

(Young & Murray 2003). A switch from Wp to Cp during the establishment of 

latency represents a shift from control by cellular transcription factors to the 

control by viral transcription factors (Speck & Ganem 2010). The Qp region is 

active in Latency I and II. 

 

Currently there are two major subtypes of EBV that have been identified 

worldwide, EBV-1 and EBV-2 (Zimber et al. 1986). These subtypes differ in their 

geographical distribution, EBV-1 is established in most Western populations 

whereas both EBV-1 and EBV-2 are widespread in equatorial Africa (Sixbey et 

al. 1989). 

 

Prior to recent advances in DNA sequencing, DNA polymorphisms were used to 

determine EBV type in tissue samples. Some of the nucleotide sequence from 

the B95-8 EBV genome was first determined from BamHI fragments of the virus 

(Cheung & Kieff 1982; Dambaugh & Kieff 1982). A BamHI digest created 

fragments of the viral DNA and a cloned library was created. The viral DNA was 

cloned as restriction fragments and into vectors, sequenced by the Sanger 
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method. The restriction fragments were named by size and open reading frames 

determined by their orientation from left (L) to right (R) (Baer et al. 1984).  The 

B95-8 EBV-1 virus was the first herpesvirus to be completely sequenced (Baer 

et al. 1984). 

 

Figure 1.1 Diagram showing the location and transcription of the EBV latent genes on the 
double-stranded viral DNA episome.  The linear viral DNA ligates together at the Terminal 
Repeats (TR) shown in green. The origin of plasmid replication (oriP) is shown in orange. The 
arrows indicate the direction in which they are transcribed; the latent proteins include the six 
nuclear antigens (EBNAs 1, 2, 3A, 3B and 3C, and EBNA-LP) and the three latent membrane 
proteins (LMPs 1, 2A, 2B). The EBNAs are transcribed from either Wp or Cp promoter in latency 
III. EBNA1 is transcribed in Latency I or II from Qp. EBERs are also highly transcribed. Diagram 
of genome from (Young & Murray 2003). MicroRNAs are also expressed from regions of the 
genome (Zhu et al. 2009; Lin et al. 2013; Pfeffer et al. 2004). 

 

The EBV GD1 (Guangdong strain 1) sequence was assembled from a 

lymphoblastoid cell line obtained from a patient with nasopharyngeal carcinoma 

(NPC) in China (Zeng et al. 2005) and a Type 2 sequence was annotated from 

an African BL cell line AG876 (Dolan et al. 2006). EBV within the Raji cell line 

has also been sequenced, this genome has a 12kb deletion compared to the B95-

8 virus sequence (Parker et al. 1990). This deleted sequence has been shown to 

include the BALF2 gene, which is essential for lytic replication.  Therefore within 

Raji cells EBV is unable to replicate in viral lytic cycle due to the absence of the 

lytic replisome protein. 
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An updated wild type EBV sequence was drawn together from the B95-8 

sequence and the Raji sequence. This aided the assembly of the current 

standard reference sequence of EBV, which is the RefSeq HHV4 (EBV) 

sequence located on the NCBI Reference Sequence database (RefSeq 

Accession NC_007605). To date, 84 EBV genomes have been compared which 

is currently the most comprehensive analysis so far (Palser et al. 2015). 

 

There are variations between the genome sequences for EBV genes. EBV-1 and 

EBV-2 have a distinct variation in the EBNA2 gene with a 70% identity at the 

genome sequence level and 54% identity in protein sequences (Tzellos & Farrell 

2012). EBV-1 and EBV-2 also differ in the organization of genes that code for the 

Epstein-Barr Nuclear Antigen (EBNA) proteins (Sample et al. 1990). These 

include EBNA2, EBNA3A, EBNA3B and EBNA3C.  

 EBV Life Cycle 

1.8.1. Virion Structure 

Mass spectrometry analysis has identified components of the EBV virion 

(Johannsen et al. 2004). The capsid has an icosahedral shape that is surrounded 

by tegument proteins and a lipid envelope covered in glycoproteins. Electron 

microscopy revealed a structure similar to other herpesviruses. On the viral 

capsid, the viral glycoprotein gp350/220 attaches to the CD21 (Cr2) molecule 

located on the surface of B-lymphocytes (Fingeroth et al. 1984; Nemerow et al. 

1985). The viral protein is abundantly expressed and has two forms named gp350 

and gp220 (Hummel et al. 1984). Glycoprotein gp350 is highly abundant, followed 

by glycoprotein gH, gB, gM, gp42, gL, gp78 and gp150 (Johannsen et al, 2004). 

These viral factors are essential for viral entry to cells. The viral glycoprotein gp42 

binds to HLA class II cell surface protein (CD74), which acts as a cofactor (Li et 

al. 1997). Also gH has a role in attachment and penetration into epithelial cells 

(Molesworth et al. 2000), along with gp85 (Oda et al. 2000). gB is also important 

to mediate viral entry into cells (McShane & Longnecker 2004). 
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Figure 1.2 Schematic diagram illustrating the multilayer organization of human 
herpesviruses. The virion contains a capsid, envelope, glycoproteins and tegument that 

surround viral DNA. Adapted from (Liu & Zhou 2007) 

 
The main cells for EBV infection include B-lymphocytes and epithelial cells. The 

virus is spread by oral transmission (Cohen 2000). Virus is passed to B-

lymphocytes that then become infected. The method of entry between cell types 

becomes complex as the presence of gp350, essential for B cell entry, is 

inhibitory for the entry into epithelial cells (Shannon-Lowe et al. 2006). The fusion 

of virion envelope with the cellular membrane mediates entry into B-lymphocytes 

following endocytosis, and entry into epithelial cells may be different (Miller & 

Hutt-Fletcher 1992). EBV can enter epithelial cells through CD21 independent 

pathways (Tugizov et al. 2003). Transfection of epithelial cell lines with the 

receptor CD21 shows an increased efficiency of infection, expressing only 

EBERs and EBNA1 (Li et al. 1992). Transfer infection of EBV to efficiently infect 

epithelial cells involves gH and gL glycoproteins but not gp42 (Shannon-Lowe & 

Rowe 2011). Therefore the method of viral entry into B cells and epithelial cells 

are different. Infection of epithelial cells can be from direct and B-cell mediated 

transmission, and this suggests that EBV infects epithelial cells using both 

pathways (Feederle et al. 2007). 

Once the virus enters the cell then cellular pathways are activated. The signal 

transduction pathways involved in EBV infection may include tyrosine and 

phosphoinotiside-3 kinases, both of which contribute to viral gene expression 

after infection (Sinclair & Farrell 1995). This exploitation of the host signal 

transduction pathway enables efficient infection by the virus. After successful 

entry into cells, the viral genome is transported to the nucleus. The linear genome 
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circularises to form a closed circular episome, through its terminal repeats (TR) 

sequences (Kintner & Sugden 1979). These TRs are approximately 500bp in size 

and circularise by homologous recombination. The expression of genes LMP2a 

and LMP2b (also termed Tp1 and Tp2) genes require this circularization of the 

linear EBV genome (Laux et al. 1989).  This produces fused termini of unique 

length for each independent circularization. EBV in the virion is nucleosome free 

(Shaw et al. 1979) and the virus exists as an extrachromosomal element in the 

cell nucleus (Nonoyama & Pagano 1972). The latent phase enables the viral 

episome to be maintained within the nucleus while being associated with histones 

in a similar manner to cellular chromatin (Tempera & Lieberman 2010). 

 

EBV persists in a circulating subset of resting memory B cells at a frequency of 

∼1 in 1 × 105 to 1 × 106 cells (Thompson & Kurzrock 2004). The viral DNA is 

replicated once per cell cycle during S phase in synchrony with the cellular DNA 

(Adams 1987). There are many different initiation sites of latent viral replication 

across the viral genome (Norio & Schildkraut 2001). A cellular recognition 

complex binds to the viral latent origin of replication with EBNA1 to initiate copying 

of the viral genome (Schepers et al. 2001). Pre-replication complexes are 

important in latent replication, assembling onto the viral genome (Ritzi et al. 

2003). Only a few of these pre-recognition complexes are activated per viral 

genome, suggesting this is a highly organized and precise mechanism to keep 

maintain a viral episome in each dividing cell (Papior et al. 2012). 

1.8.2. Latency Cycle 

The reversibility of EBV to enter into a lytic cycle after a silent phase within cells 

is a key characteristic of true latency by herpesviruses. This reversibility, along 

with persistence allows EBV to be a very successful virus where both latency and 

lytic cycles are key to viral survival (Speck & Ganem 2010). Viral gene expression 

within the latency phase produces proteins and RNA for viral genome 

maintenance and host modification.  

 

Upon primary infection of B lymphocytes, the EBV latency-associated proteins 

are expressed including EBNAs, their mRNAs initiate from a common and B-cell-

specific promoter, Wp (Alfieri et al. 1991). This is shown in Figure 1.1. The origin 
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of plasmid replication (OriP) was found to be a region essential for stable 

replication of latent EBV (Yates et al. 1984). This region is the site of replication 

for the virus, once per cell cycle and cellular factors including viral protein EBNA1 

are important (Kirchmaier & Sugden 1995). The origin of plasmid replication 

(OriP) on the EBV genome allows for episome maintenance through the action 

of EBNA1, for the latent replication of the viral DNA. The C-terminus of EBNA1 

binds to the FR and DS tandem repeats within OriP (Rawlins et al. 1985) and 

regions of the N-terminus of EBNA1 facilitates anchoring of the episome to 

cellular chromatin (Marechal et al. 1999; Hung et al. 2001).  

 

EBV expresses eight latency-associated genes, with different patterns of 

expression in different cells resulting in four latency programs. EBNA1, EBNA2, 

EBNA3A, EBNA3B, EBNA3C, EBNA-LP, LMP1, LMP2A/LMP2B are the latent 

proteins expressed. A low level of EBNA1, EBNA3A, EBNA3B, EBNA3C and 

LMP1 and LMP2 expression are initiated by EBNA2 and EBNA-LP. The Wp 

promoter is used before a switch to the Cp promoter and EBNA2 mediates this 

promoter switch (Jin & Speck 1992). There are 4 distinct patterns of EBV latent 

gene expression observed in infected lymphocytes, with a subset of the genes 

expressed in different cells and malignancies.  
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Figure 1.3 EBV life cycle in B Cells (Adapted from (Vockerodt et al. 2015) EBV is transmitted 
in saliva. Following infection of naive B cells in the lymph node all latent genes are expressed in 
Latency Type III and the viral latent proteins drive proliferation in the absence of antigen. B-cell 
differentiation into the memory compartments occurs in germinal centres driven by latency type 
II proteins. Infected memory B cells exiting the germinal centre down-regulate viral proteins and 
are invisible to the immune response as Latency Type 0. EBNA1 is expressed during homeostatic 
proliferation to maintain the latent viral episome in Latency I. An establishment of a life-long 
infection of memory B cells are detected in the peripheral circulation. Differentiation to plasma 
cells results in reactivation of the virus to the lytic cycle, expression of lytic proteins and production 
of infectious virus. 
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Memory B-cells can express a latency 0 profile (Shaknovich et al. 2006). EBERs 

and miRNAs are only expressed in latency 0. The other expression profiles 

include latency I, II and III, these are outlined in different states of infected cells 

in Figure 1.3 (Vockerodt et al, 2015). 

 

The latency gene expression within epithelial cells is more restricted compared 

to B-cells and the cellular phenotype of epithelial cells. Also latent viral replication 

in epithelial cells requires expression of lytic cycle genes, suggesting that the 

infection and life cycle of EBV in epithelial cells is dependent on the cellular 

environment (Shannon-Lowe et al. 2009). Chromatin changes that include 

histone modifications are decreased and redistributed heterochromatin marks are 

associated with growth transformation (Hernando et al. 2013). 

 

The latency patterns in Figure 1.4 are outlined below: 

 

Latency III expresses all six EBNA (EBNA1, 2, 3A, 3B, 3C and LP) proteins, 

LMP1 and LMP2 and EBER1 and EBER2. Also BamA rightward transcripts 

(BARTs) with microRNAs are expressed. This form of latency is characteristic of 

lymphoblastoid cell lines (LCLs) that have been transformed from resting B-

lymphocytes in vitro with EBV. These cells are routinely used in cell culture to 

study latency III (Thorley-Lawson 2001). 

 

Latency II is characteristic of NPC tumours. Only EBNA1, two latent infection 

integral membrane proteins (LMP1 and LMP2a/LMP2b) and two EBV encoded 

smalls RNAs (EBER1 and EBER2) are expressed with microRNAs (Brooks et al. 

1992). 

 

In vivo, latency I is characteristic of BL cells. Only EBNA1 and EBERs are 

expressed and is similar to the latency pattern seen in vivo for memory cells 

(Rowe et al. 1987). 

 

Latency 0 has rarely been identified where only EBERs and BARTs are 

expressed in memory B-lymphocytes and plasma cells (Shaknovich et al. 2006). 
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Several microRNAs (miRNAs) are expressed throughout the EBV latency cycles. 

These perform many cellular functions, including RNA silencing guided by these 

small RNAs derived from double-stranded RNA, acting as viral regulators of host 

and viral gene expression (Zhu et al. 2009; Lin et al. 2013; Pfeffer et al. 2004). 

 

 

Figure 1.4 The latency pattern of viral genes expression in EBV-associated tumours. (Fox 
et al. 2011). Latency 0 can be observed in non-dividing circulating infected memory B cells of 
healthy carriers; it is possible that the majority of these cells express no viral genes at all, but that 
a minority may express non-coding RNAs. Latency I expresses EBNA1 with EBERs and 
microRNAs, Latency II expresses EBNA1, EBERs, microRNAs and LMP1, 2A and 2B. Latency 
III expresses all the EBNA proteins, EBERs, microRNAs and LMP1, 2A and 2B. 
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 Lytic Cycle 

1.9.1. Reactivation 

EBV remains latent within the cells that it infects until a reactivation event occurs. 

The lytic switch for gamma herpesviruses has been significantly studied to 

research the causality leading to the activation of the lytic cycle. The lytic cycle is 

the reactivation from latency that leads to the production of infectious virions. This 

is essential for the virus to ensure the virus survival and spread to other hosts. 

There is interplay between cell signalling during the latency stage that 

suppresses lytic cycle. The Notch pathway is highly conserved cell signal system 

which contains four Notch receptors, NOTCH1, NOTCH2, NOTCH3 and 

NOTCH4 (Hori et al. 2013). EBNA2-dependent gene expression can be 

modulated by Notch and also NOTCH2 inhibited entry into lytic cycle by 

upregulating Zeb2, to repress BZLF1 transcription (Rowe, et al 2014). Therefore, 

the establishment of latency in memory B cells is being modulated through 

varuous cellular mechanisms to inhibit lytic cycle and to maintain the viral 

episome in latency. Despite this, the switch between latency and lytic cycle can 

be induced a number of ways. Current models suggest that B cell differentiation 

from resting cells to plasma cells stimulated through the antigen receptor 

stimulates the lytic cycle (Laichalk & Thorley-Lawson 2005). The activation of 

EBV to produce lytic proteins and enter the lytic cycle by exposure to anti-IgM 

was documented early (Tovey et al. 1978) and the crosslinking of surface 

immunoglobulin lead to EBV replication in Akata cells (Takada 1984). This 

receptor activation allows signalling pathways to be activated that ultimately lead 

to the induction of lytic cycle.  

 

Within lytic cycle there are epigenetic mechanisms that also control the 

mechanism of the EBV life cycle. The lytic cycle genes within the EBV genome 

are silenced in latency. Control of reactivation includes viral and cellular factors 

that may activate or repress many elements in the pathway to lytic cycle. This 

switch can be manipulated in cell culture systems using many different stimuli.  

This repression involves epigenetic mechanisms such as DNA methylation and 

chromatinisation (Fernandez et al. 2009). The Zp promoter is highly methylated 

during latency (Li et al. 2012). Transcriptional repression is initiated by 
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methylation of DNA. This repressive mark attracts proteins with methyl binding 

sites, such as histone deacetylases and methyl transferases. These impose a 

repressive chromatin structure upon the DNA (Jones & Baylin 2007). Methylation 

of DNA in humans occurs primarily on carbon 5 of the pyrimidine ring of cytosine 

residues in the context of a cytosine guanine (CpG) dinucleotide site (Schones & 

Zhao 2008). Numerous cellular processes are regulated by DNA methylation, 

used to transcriptionally repress genes (Robertson 2005). This is evident for the 

regulation of lytic viral gene expression 

1.9.2. Zta 

Zta is a 245 amino acid residue protein and is a bZIP protein with four defined 

regions: an N-terminal transactivation domain, a basic DNA contact region and a 

dimerization region (zipper) and a c-terminal region. The basic and zipper regions 

are characterised as a basic leucine zipper motif (Sinclair, 2006), which shares 

homology to AP-1 transcription factors c-fos and c-jun. AP1 transcription factors 

contain basic region leucine zipper (bZIP) and this region can dimerise with 

related bZIP factors. In contrast, Zta only forms homodimers. Zta can bind to DNA 

with consensus AP-1 DNA elements in addition to other sites (Farrell et al. 1989; 

Flower et al. 2011).  

 
Zta (BZLF1, EB1, Z, and ZEBRA) is the first protein expressed in the lytic cycle, 

from the BZLF1 gene (Countryman & Miller 1985). Zta plays a role as both a 

transcription factor and as a replication factor and is expressed within 30 minutes 

after lytic activation (Sinclair 2003). Zta binds to and interacts with AP-1 binding 

sites (Urier et al. 1989). Zta can bind to Zta response elements (ZREs), which 

are 7bp DNA motif that closely resemble AP-1 binding sites. There are three 

different classes of ZREs: Class I, Class II and Class III. Class I ZREs do not 

contain a CpG motif, whereas Class II and III do. Zta may bind to these 

methylated CpG motifs, bypassing the inhibitory effect of DNA methylation 

(Bhende et al. 2004). 
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Figure 1.5 Zta dimerization and DNA binding domain structure (Petosa et al 2006) using 
the Cn3D macromolecular structure viewer NCBI. Two strands of Zta are present (green and 
brown). Zta can form a dimer that is bound to the DNA double helix (blue and purple). 

 

Zta can interact with key ZREs within methylated DNA sequences, as well as 

human promoters containing these methylated ZREs (Flower et al. 2010). The 

strategy Zta uses to enhance lytic cycle is to bind viral promoters that are 

methylated (Dickerson et al. 2009). Zta can interact with many parts of the viral 

genome and this has been mapped in detail, noting many novel sites of 

interaction (Ramasubramanyan et al. 2012; Woellmer & Hammerschmidt 2013). 

 

The amino terminal of Zta encompasses amino acids 1 to 167 and includes the 

transactivation domain. The transactivation domain was characterized and 

mapped, with residues 28 to 78 critical for the function of the domain (Flemington 

et al. 1992). . Transcription preinitiation complexes interact with this region of Zta 

(Chi & Carey 1993). TATA box binding protein associated factors (TAF) interact 

with the Zta transactivation domain to form stable complexes on promoter DNA. 

This leads to the activation of transcription (Lieberman & Berk 1994). 

 

The bZIP domain encompasses the basic DNA binding region and the leucine 

zipper region. The DNA binding domain of Zta is located in the 175aa - 196aa 

region. This basic region of amino acids are important for the transcriptional 

function of Zta and activating gene expression of lytic genes, such as BRLF1 

(Heston et al. 2006). Mutations of this domain also alters the sub-nuclear 
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localization of Zta to replication compartments (Park et al. 2008). Also residues 

Y180A, Y180E, K188A mutations are deficient in activating EBV DNA replication 

(Heston et al. 2006). Serine 186 (S186) is important for the DNA binding 

(Baumann et al. 1998). It mediates the recognition of the Rp promoter (Francis et 

al. 1999), and mediates methylated activation of the Rp promoter (Bhende et al. 

2005). A redox sensitive cysteine at amino acid 189 (C189) is essential for the 

lytic replication function of the protein (Wang et al. 2005; Karlsson et al. 2008). 

Transcription of early gene promoters is not affected but transcription of late 

genes are with this mutation. This residue is conserved among the bZIP family of 

proteins. 

 

The bZIP domain bound to a ZRE sequence of DNA has been crystalized and 

shows unique residues that contribute to the dimer interface (Petosa et al. 2006). 

The dimer formed at the two asparagine 211 (Asn211) residues share a hydrogen 

bond conserved in most bZIP structures. But unique to Zta, there is an extended 

hydrogen bond network that links these residues to the C-terminal tail at the top 

of the coiled coil, two Cys222 residues position their thiol groups 3.9Å apart, 

which is too far to form a disulphide bond. This may be functionally significant. 

Evidence suggests that Cys222 partly contributes to the redox sensitivity of 

ZEBRA's DNA binding activity (Wang et al. 2005). 

 

The leucine zipper and dimerization domain is located between residues 197aa-

221aa. A coiled-coil structure is structurally related to leucine zippers while the 

Zta dimerization domain shares amino acids in common with C/EBPα leucine 

zipper (Kouzarides et al. 1991).  Zta has a unique dimer region that lacks the 

heptad leucine zipper motifs. Instead this region has non-leucine coiled-coil 

domain, the leucine coiled-coil is characteristic of bZIP factors (Chang et al. 1990; 

Flemington & Speck 1990b). Zta can form a homodimer with and without DNA 

binding. The amino acids 196 to 227 can direct the folding of the coiled-coil 

domain and this interaction is not as strong as other bZIP proteins (Hicks et al. 

2001). The contribution of the c-terminal region of Zta has been shown to have 

high importance for the function of the coiled-coil domain (Hicks et al. 2003). 

The c-terminal region is unique to EBV and is required for EBV genome 

replication. An unexpected discovery was that a region of the c-terminus of Zta 
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intercalates with the ZIP region. The zipper of Zta is located adjacent to the c-

terminus of the protein. A fold back structure of the zipper domain is supported 

by the c-terminal region where the proximal region essential (Schelcher et al. 

2007). These residues fold back against the zipper region and maintain the 

protein structure. Therefore the c-terminus Is essential for viral DNA replication 

(McDonald et al. 2009). The final 9 amino acids from the crystal structure have 

not been crystallised so the structure of the c-terminus is yet to be elucidated 

(Petosa et al, 2006). The formation of replication compartments rely on Zta and 

crucial amino acids for nuclear localization and induction of lytic proteins (Park et 

al. 2008).  

 

In vitro activation of EBV lytic cycle can be initiated by chemical agents for 

example by sodium-butyrate activating as a histone deacetylase inhibitor (Luka 

et al. 1979). The resulting histone acetylation changes at the promoter of Zta can 

lead to induction of gene expression and lytic cycle (Jenkins et al. 2000). Histone 

acetylation allows a permissive or repressive state of chromatin. The acetylation 

of histones weakens the affinity of histones with DNA, making the DNA more 

accessible for transcription factors. This inhibits the deacetylation of histones, 

leading to a hyper acetylation state where the agent acts. 

 

12-0-tetradecanoyl phorbol-13-acetate (TPA) differentiates B-lymphocytes into 

plasma cells and can induce EBV replication (zur Hausen et al. 1978; Anisimova 

et al. 1984).  Calcium ions and protein kinase C can mediate lytic expression of 

the viral genome (Castagna et al. 1982; Faggioni et al. 1986; Gradoville et al. 

2002).  TPA phorbol ester binds the C1 domain of protein kinase C (PKC), 

mimicking antigen receptor activation. 5-aza-cytidine is another lytic inducing 

agent. This is incorporated into DNA but can not be methylated and so prevents 

cytidine methylation in DNA, through an unknown mechanism this reactivates 

viral gene expression (Ben-Sasson & Klein 1981) 

 

Although these agents initiate lytic cycle, the mechanism of reactivation is 

complex and there are variations between cell lines. For example, phorbol esters 

do not activate a HH514-16 BL cell line, whereas activation is evident in B95-8 

cells (Gradoville et al. 2002). Raji cells require both sodium butyrate and TPA to 
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initiate the expression of early lytic genes, although Raji cells cannot produce 

virions (Nutter et al. 1987). The EBV genome in Raji cells contain a deletion for 

the BALF2 gene, which is an essential lytic replication protein (Zhang et al. 1988). 

This suggests additional mechanisms are involved between cell lines for 

activation. 

 

Reactivation involves a temporally regulated cascade of gene expression. The 

signal transduction pathways involved can be complex. This leads to the lytic 

cascade of viral genes in lytic cycle. The lytic cycle can be separated into three 

stages of gene expression; these are termed immediate-early, early and late. 

Cellular transcription factors are also involved in stimulating replication (Baumann 

et al. 1999). Sp1 and Sp3 are cellular transcription factors that bind to the Zta 

promoter, contributing to activity (Liu et al. 1997).  

1.9.3. Immediate Early genes 

Immediate early (IE) genes are the first lytic genes expressed after the 

reactivation of EBV from latency.  These include two transcription factors with the 

ability to activate lytic genes (Chevallier-Greco et al. 1986). Immediate early 

genes initiate lytic cycle and expression of early and late genes. Central to the 

activation of the lytic cycle are BZLF1 as mentioned previously, and BRLF1. The 

importance of the BZLF1 gene in induction of lytic cycle was demonstrated by the 

transfection of B95-8 BamHI BZLF1 fragments into EBV positive Raji cells 

(Takada et al. 1986). The BZLF1 fragment induced the expression of transcription 

factor Zta. The expression of Zta leads to the productive infection of active virions, 

capable of the immortalization of B-lymphocytes (Grogan et al. 1987). 

 

BZLF1 expresses Zta and BRLF1 expresses Rta. Both of these proteins are 

transcription factors, and both transactivate other lytic genes and coordinate the 

cascade together (Countryman & Miller 1985; Hardwick et al. 1988). Zta can also 

auto-regulate its own promoter (Flemington & Speck 1990a). Both are essential 

for the induction of lytic cycle, both a BZLF1 knockout virus and a BRLF1 

knockout virus are incapable of reactivating EBV from latency (Feederle et al. 

2000). 
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When the lytic cycle is initiated, both BZLF1 and BRLF1 are expressed 

immediately, Zta first activating the Rta promoter, Rp (Sinclair et al. 1991). Zta 

can then co-activate genes with Rta (Ragoczy & Miller 1999). Rta can also 

interact with CREB-binding protein CBP to induce the activation of early lytic 

genes (Swenson et al. 2001). Rta with Zta plays a key role in lytic replication, Rta 

interacting with the origin of lytic replication (OriLyt) on the viral genome and this 

interaction may stabilize the replication proteins that locate there (El-Guindy et 

al. 2013). 

 

Another immediate-early protein that facilitates the stability of lytic gene mRNA is 

indispensible for EBV lytic cycle is BMLF1, a nuclear RNA binding protein. BMLF1 

has been demonstrated to be essential for lytic replication (Lieberman et al. 

1986).Most lytic genes are intronless and BMLF1 enhances expression of these 

viral intronless genes by binding their mRNA and facilitating its transport (Ruvolo 

et al. 1998). With the stability of gene expression, lytic cycle can progress and 

the production of infectious virus (Gruffat et al. 2002).  

1.9.4. Early genes 

Viral early (E) genes after IE lytic genes are next expressed in the cascade of 

lytic cycle gene expression, in order to faciltate the production of newly replicated 

viral DNA and to manipulate the cellular architecture for viral synthesis. These 

accessory proteins aid virion synthesis and modify the cellular environment to 

enable the execution of EBV lytic replication. Some key genes are outlined below: 

 

BMRF1 is essential for lytic virus replication, recruited to viral replication 

compartments as a DNA polymerase processivity factor (Neuhierl & Delecluse 

2006). This oligomeric ring shaped structure acts as a sliding clamp (Makhov et 

al. 2004) and forms a tetrameric ring from head to head dimers (Murayama et al. 

2009). BMRF1 can also act a transcription factor, activating the BHLF1 promoter 

(Zhang et al. 1996; Zhang et al. 1997). The BHLF1 promoter is activated by Zta 

or BMRF1 or both together, this region located in the EBV oriLyt region is crucial 

for lytic replication (Zhang et al. 1997). Another lytic protein expressed is BHRF1, 

which shows homology to cellular Bcl-2. This protein inhibits apoptosis, which is 

the cellular response to the onset lytic cycle (Henderson et al. 1993). 
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EBV encodes a viral kinase protein expressed named BGLF4. This protein is a 

serine/threonine protein kinase and is the only protein kinase expressed from the 

EBV genome (Chee et al. 1989). The BGLF4 protein kinase phosphorylates viral 

genes including Zta. BGLF4 phosphorylates BMRF1 (Chen et al. 2000) as well 

as EBNA-LP (Kato et al. 2003) and may play other roles in the phosphorylation 

of cellular proteins. A stable complex between BGLF4 and Zta is formed with the 

amino acid serine 209 of Zta being essential for this interaction (Asai et al. 2009) 

colocalising with BGLF4 in replication compartments, implying a direct regulation 

of EBV lytic replication (Asai et al. 2009).  

 

BNLF2a is an early lytic gene that blocks CD8+ lymphocytes through HLA Class 

II interference, blocking TAP processing (Hislop et al. 2007). This early protein 

creates a window of opportunity for the virus to remain undetected from T cell 

responses to lytic cycle (Horst et al. 2009). 

 

An early gene immune response modulator BARF1, interacts with the colony 

stimulation factor 1 (CSF1). The lytic protein acts as a decoy receptor for the 

cytokine CSF1 to limit the differentiation of macrophages (Strockbine et al. 1998; 

Hoebe et al. 2012). 

 

BRRF1 early gene encodes a transcription factor Na, and this protein enhances 

the induction of the lytic cycle with Rta. Here, Na activates the Zp promoter 

through c-jun phosphorylation (Hong et al. 2004).  

 

BGLF5 is an alkaline exonuclease that contributes to immune evasion. BGLF5 

promotes mRNA degradation and shut off of HLA class I (Rowe et al. 2007). The 

recognition by T cells therefore becomes impaired by the action of BGLF5 (Zuo 

et al. 2008). This protein is also essential for viral replication, as viral DNA 

replication in cells lacking the BGLF5 gene generated abnormal linear genomes 

(Feederle et al. 2009). 
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 EBV Lytic Replication 

One essential role of Zta is as a replication factor. Zta coordinates the transition 

from latency to lytic cycle involving the recruitment of essential viral factors for 

viral DNA replication to the origin of lytic replication (OriLyt). Replication units are 

also referred to as the replisome. Cellular replisome protein machinery consists 

of DNA polymerase, single strand DNA binding protein complex, DNA primase 

and ligase, DNA topoisomerases, clamp loading complex and a processivity 

factor (Chagin et al. 2010). These proteins conduct DNA synthesis in an 

organised manner in the 5’ to 3’ direction, creating a replication fork with a leading 

and lagging strand (Perumal et al. 2010). 

 

 

 

Figure 1.6 A model of the EBV lytic replisome adapted from both (Baumann et al. 1999) 
and (El-Guindy et al. 2013). Cellular Sp1 and ZBP89 presumably bind to the TD element during 
the latent as well as lytic phase of EBV's life cycle. Zta activates oriLyt directly by binding to ZREs, 
located in the upstream component (Lieberman & Berk 1990; Schepers et al. 1993; Schepers et 
al. 1996). Protein–protein interactions exist between the Zta and the DNA polymerase accessory 
factor (BMRF1) (Zhang et al. 1996), and between the transactivation domain of Zta and both the 
viral helicase (BBLF4) and the primase complex BSLF1 and BBLF2/3 (Gao et al. 1998). BALF2 
may contact the BSLF1 and BBLF2/3 subcomplex (Gao et al. 1998). BMRF1 interacts with BALF5 
(Murayama et al. 2009).  Rta interacts with oriLyt. Rta is required for synthesis of the BHLF1 
transcript, which facilitates strand separation and recruitment of replication proteins to oriLyt 
during replication (El-Guindy et al. 2013). BALF5 and BMRF1 interact (Kiehl & Dorsky 1995) with 
the cellular transcription factors Sp1 and ZB89. 

 
The identification of the origin of lytic replication (OriLyt) (Hammerschmidt & 

Sugden 1988) led research to be focused on this point of newly synthesized 

viral DNA. Zta interacts with and contacts ZREs at OriLyt in order to initiate lytic 

replication (Schepers et al. 1996) (Figure 1.6). The majority of EBV genomes 

contain two copies of OriLyt, OriLyt L and R. Some EBV genomes contain just 
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one copy, but no genome has been found that lacks both (Xue & Griffin 2007). 

The KSHV genome contains two copies of OriLyt, but there is not an absolute 

requirement of two origins of lytic replication for viral genomes (AuCoin et al. 

2002).  

 

Initiation of lytic replication requires a stable RNA-DNA hybrid to form at OriLyt, 

composed of a BHLF1 RNA transcript (Rennekamp & Lieberman 2011). This 

guanine-cytosine rich RNA template is essential for the DNA strand separation 

and loading of the core replication proteins. The replication machinery then 

initiates and synthesizes leading and lagging viral DNA strands. The viral genes 

and proteins essential for EBV replication include BALF5 DNA polymerase, 

BMRF1 DNA polymerase processivity factor, BALF2 single-stranded DNA 

binding-protein, BSLF1 Primase, BBLF4 Helicase, BBLF2/3 associated 

component of the helicase-primase complex (Fixman et al. 1992). 

 

The BALF5 DNA polymerase is a 113kDa protein that extends viral DNA and can 

extend RNA primers on template DNA (Tsurumi 1991). Through the interaction 

with BMRF1 processivity factor, the polymerase increases in replication activity 

(Kiehl & Dorsky 1995). BMRF1 interacts with BALF5 as a monomer (Murayama 

et al. 2009). The BALF2 single stranded (ss) DNA binding protein (SSB) is about 

130kDa in size, and binds ss-DNA covering about 30 nucleotides to one protein 

monomer, thus destabilising double stranded DNA (Tsurumi et al. 1998). The 

helicase-primase interaction (BBLF4-BSLF1) stabilises the formation of the 

replisome, localising within the nucleus with BBLF2/3, the primase-associated 

protein (Gao et al. 1998) (Figure 1.5) 

 

The majority of this replication machinery is well conserved with Herpesviridae. 

Most replication proteins can be interchanged with other herpes virus replication 

proteins, but the correct origin-binding protein is essential for each complex to 

initiate replication (Rennekamp & Lieberman 2010).  

 

Nuclear architecture is important for viral DNA replication. It is reprogrammed 

during the transition into lytic phase. Several hours before lytic viral DNA 

replication, host chromatin recesses to the nuclear boundaries, not associated 
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with EBV amplification factories (Chiu et al. 2013). The synthesis of viral DNA 

takes place in these amplification compartments formed within the nucleus, Zta 

and BMRF1 colocalise here (Takagi et al. 1991). The viral replication proteins 

localize to the replication compartments and BMRF1 readily distributes on newly 

formed DNA as well as acting as an accessory factor for the viral DNA 

polymerase (Daikoku et al. 2005). The architecture changes to allow the viral 

replication compartments to be surrounded externally by cellular DNA and 

histones. A redistribution of cellular proteins is also involved in DNA replication. 

The EBV replication compartments associate with promyelocytic leukaemia 

protein PML bodies and disrupt nuclear domain 10 (ND10). (Bell et al. 2000; 

Amon et al. 2006). Zta may compete with PML bodies for SUMOylation, as Zta 

itself can be SUMO-1 modified (Adamson & Kenney 2001). This redistribution of 

cellular factors and modification of the immediate nuclear environment allows 

EBV to take control its own genome replication. The viral replication factories 

contain PCNA (Chiu et al. 2013).  PCNA is loaded onto newly synthesized viral 

DNA with mismatch repair factors assembling in these compartments (Daikoku 

et al. 2006). Also recombination repair factors such as ATM and MRN complexes 

localize to the replication compartments (Kudoh et al. 2009).These factors may 

aid replication and repair damage to the viral DNA. Two essential cellular factors 

involved with EBV lytic replication are Sp1 and ZBP-89. These are transcription 

factors that interact with the viral DNA polymerase BALF5 and processivity factor 

BMRF1, Sp1 and ZBP-89 tether these viral proteins to OriLyt aiding assembly of 

the viral replisome (Baumann et al. 1999). 

 

BMRF1 plays a transcriptional role as well as a replicative role, further activating 

the OriLyt BHLF1 promoter when together with Zta. An interaction between 

BMRF1 DNA polymerase processivity factor and Zta takes place between the 

first 45 amino acids of BMRF1 and the bZIP domain of Zta (Zhang et al. 1996).  

BBLF4, BBLF2/3 and BSLF1 form a tripartite complex that localizes to the 

nucleus (Gao et al. 1998). BBLF4 and BBLF2/3 plus BSLF1 bind to the 

transactivation domain of Zta at 1aa to 133aa, stabilize the replication complex. 

The binding of BBLF4 to Zta has been mapped to 22aa to 86aa of Zta 

transactivation domain (Liao et al. 2001).  
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Some cellular proteins contribute and aid lytic replication. The protein Sp1 forms 

a weak complex with BALF5 in vivo, and Zta can interact with BALF5 through its 

transactivation domain between 26aa and 88aa (Baumann et al. 1999). Also 

ZBP89 Zta interacts with BMRF1, with Sp1 and ZBP89 interacting the 

downstream component of OriLyt, the TD element 88aa (Baumann et al. 1999) 

Zta interacts with nearly all viral replication components of the replisome except 

for BALF2, the single-stranded DNA binding protein (El-Guindy et al. 2010) 

(Figure 1.6). Overall, EBV DNA is newly synthesised from OriLyt into concatamer 

DNA that is then processed and packaged into virions. 

 Zta-Host Interactions 

There are many stages where viruses can interact with the host cell through viral 

protein interactions. Host proteins are manipulated in order to facilitate survival 

of the virus. Herpesviruses have been extensively investigated for viral-host 

interactions. Ranging from viral entry to the cell, DNA damage, apoptosis, 

immune evasion and viral replication. 

 

Zta has been shown to interact with a variety of different viral and cellular proteins 

for a number of different functions in the cell. These range from transcription of 

host and viral genes, manipulating the cellular environment to facilitate the lytic 

cycle and viral lytic replication. The switch between latency and lytic cycle can be 

regulated by the control of cellular proteins and pathways. 

 

p53 is a key tumour suppressor protein and is central to the formation of some 

cancers. Other viruses have manipulated and disrupted p53. Zta interacts with 

p53 through its bZIP domain and the C-terminus of p53 (Zhang et al. 1994). 

Knockdown of p53 in LCLs leads to interruption of EBV reactivation (Chua et al. 

2012), suggesting that a direct interaction between Zta and p53 may play a role 

in regulating reactivation into lytic cycle. 

 

CREB-binding protein (CBP) is a histone acetylase protein. Histone acetylation 

weakens the interaction between DNA and nucleosomes, changing the chromatin 

conformation (Norton et al. 1989). Zta interacts with CBP through the 

transactivation domain and zipper domain of Zta and the amino-terminus of CBP. 
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Zta may target cellular histone acetylases to early viral promoters to assist in 

transcription (Adamson & Kenney 1999). 

 

Cellular CCAAT/enhancer binding protein α (C/EBPα) is a bZIP transcription 

factor that shows similarity to myc. The leucine zipper shares homology with Fos 

and Jun (Landschulz et al. 1988). C/EBPα may also play a role in cell cycle arrest. 

This protein interacts with Zta through the bZIP domain, inducing p21 expression 

and also mediating cell cycle arrest (Wu et al. 2003).  

NFkB is a central protein involved with controlling transcription and cellular 

signalling pathways. Zta can interact with the p65 subunit of NFkB through the 

Zta dimerization domain, inhibiting Zta transactivation function (Gutsch et al. 

1994). 

 

Zta and Rta can form a complex through an intermediary protein MCAF1 on 

ZREs. The proteins work in synergy for transcription using MCAF1 at ZREs to 

promote gene expression (Chang et al. 2010). 

 

Zta interacts with a member of the host DNA damage pathway. 53BP1 is 

connected to the ataxia telangiectasia mutated (ATM) signal transduction 

pathway. The c-terminal region of Zta is responsible for the interaction with 

53BP1 (Bailey et al. 2009). Upon the induction of lytic cycle, ATM pathway is 

activated and Zta may reduce this effect by interacting with 53BP1, facilitating 

lytic replication 

 

Ku80 is part of the DNA-dependent protein kinase family and involved in the DNA 

repair pathway. The n-terminal 425aa of Ku80 interacts with 168aa and 245aa of 

Zta, enhancing Zta-activated transcription (Chen et al. 2011). 

 

Zta can associate with the mitochondrial single-stranded DNA binding protein 

(mtSSB). This protein is involved in mitochondrial DNA replication,  and this 

interaction with Zta may play a role in viral replication (Wiedmer et al. 2008).  The 

Zta interaction with mtSSB facilitates viral replication and blocks mitochondrial 

DNA replication. 
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The basic transcription factor TFIID interacts with 25aa to 86aa of Zta and may 

form a stable promoter complex, to stimulate transcription (Lieberman & Berk 

1991). The myb protein, a member of myeloblastosis transcription factors, can 

activate the BMRF1 promoter in synergy with Zta (Kenney et al. 1992). 

Ubinuclein, another nuclear transcription factor can interact with Zta through the 

bZIP domain (Aho et al. 2000). The functional significance of these interactions 

is currently unclear. 

 

Zta also plays a role in negatively regulating genes. The retinoic acid receptor 

(RAR) and retinoid X receptor (RxR) play a role in hormone receptor and 

transcription. Zta interacts here through its dimerization domain, together with 

RAR to negatively regulate the promoter for BMRF1 (Sista et al. 1995). 

 

As outlined previously, cellular factors are also recruited to replication 

compartments. Topoisomerases acts by unwinding supercoiled DNA. RecQL1 

maintains chromosome stability as a DNA helicase enzyme. RecQL1 associates 

with Zta at OriLyt, while topoisomerase I is required for this recruitment. 

Topoisomerase I also associates with Zta at OriLyt in EBV-positive cells, 

promoting replication assembly at this viral origin of lytic replication (Wang et al. 

2009). 

 Aims of project 

Cellular factors are recruited to the origin of lytic replication for EBV and for the 

closely related gamma herpesvirus, KSHV. These include Topoisomerase I and 

II, MSH2/6, RecQL, poly(ADP-ribose) polymerase I (PARP-1), DNA-PK, Ku86/70 

autoantigens, and scaffold attachment factor A (SAF-A) (Wang et al. 2008).  

There is evidence for a wide range of host factors to be recruited that may 

contribute to herpesvirus lytic replication. A proteomics direction will be taken to 

investigate questions of EBV lytic replication and cellular proteins.  

 

The aims are:  

 Develop a method to identify cellular proteins that interact with Zta and 

investigate these protein-protein interactions. Transfection of histidine 

tagged Zta into EBV negative cells (U2OS) will allow an establishment of 
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protein extraction conditions. Through the poly-histidine tag, binding 

conditions to immobilized metal ion affinity chromatography (IMAC) will be 

optimised. EBV negative SILAC labelled extracts transfected with Zta and 

then applied to this pull down assay will be coupled to mass spectrometry 

analysis. Identified proteins of interest will be attempted to be assessed 

for interaction with Zta 

 

 The developed method for protein-protein interactions would be taken 

further by applying cross-linking and denaturing conditions to identify novel 

interactions with Zta. EBV positive SILAC labelled extracts transfected 

with Zta and applied to this optimised pull down assay will be coupled to 

mass spectrometry analysis. Proteins of interest will be assessed for 

interaction with Zta. 

 

 A difference in protein complexes created during EBV lytic replication will 

be dissected through size exclusion chromatography. Size exclusion 

chromatography of EBV negative cells transfected with Zta will be 

optimised, before EBV positive cells transfected with Zta are applied to the 

chromatography column. Differences in the elution profile between control 

cell extract, full lytic cycle extract and extract unable to undergo lytic cycle 

will be assessed. Specific elutions from the column will be investigated by 

SILAC labelled mass spectrometry analysis. Protein complexes will be 

dissected and evaluated. 

 

 Whole cell proteomics of BL cells undergoing lytic cycle will be assessed 

for protein expression in control and Zta expressing cells. Using an 

enriched SILAC labelled population of cells undergoing latent and lytic 

cycle coupled with mass spectrometry, a global proteomics view will 

determine any differences between latent and lytic protein expression of 

host and viral proteins. 
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2. Materials and Methods 

 Materials 

2.1.1. Plasmids 

Vector Method Source 

pBABE Transfection of cells 
(Morgenstern & Land 
1990) 

pCDNA3 Transfection of cells Invitrogen 

pBABE - Zta Transfection of cells (Hicks et al, 2001) 

pCDNA3 - hisZta Transfection of cells (Bailey et al 2009) 

pCDNA3 - hisZtaAAA Transfection of cells Cloned by Q. Karlsson 

pcDNA3-flag-BMRF1 Transfection of cells Cloned by Q. Karlsson 

pcDNA3-flag-NFκB p65 Transfection of cells Cloned by Q. Karlsson 

pcDNA3-flag-p53 Transfection of cells Addgene 

pcDNA3-flag-BGLF4 Transfection of cells 
(Tarakanova et al. 
2007) 

pCpGL-BHLF1 Luciferase assay (Bergbauer et al. 2010) 

pCpGL-BHLF1 mutant Luciferase assay 
(Ramasubramanyan et 
al. 2015) 

Table 2.1 List of plasmids used in the experiments 

2.1.2. Antibodies 

Antibody (order) Species, clonality Source 

BZ1 mouse monoclocal 
(Primary) 

Mouse, monoclonal (Young et al, 1991) 

ScZ α-Zta(Primary) Goat, polyclonal 
Santa Cruz 
Biotechnology 

Monoclonal α-FLAG 
(Primary) 

Rabbit, polyclonal Sigma 

Actin (Primary) Rabbit, polyclonal Sigma 

FANCA (Primary) Rabbit, polyclonal AbCam 

BRD4 (Primary) Rabbit, monoclonal AbCam 

ELP3 (Primary) Rabbit, polyclonal AbCam 

ELK4 (Primary) Rabbit, polyclonal AbCam 

HSP90 (Primary) Mouse, monoclonal AbCam 

BMRF1 (Primary) Mouse, monoclonal AbCam 

BALF5 (Primary) Rat, monoclonal (Barth et al. 2008) 

Poly(A) RNA Pol 
(Mitochondrial) (Primary) 

Rabbit, polyclonal AbCam 

Casein Kinase II alpha 
(Primary) 

Mouse, monoclonal AbCam 
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53BP1 (Primary) Rabbit, polyclonal Sigma 

ECL α-rabbit HRP-linked 
(Secondary) 

Goat GE Healthcare 

ECL α-mouse HRP-linked 
(Secondary) 

Horse GE Healthcare 

IR Dye α-rabbit 680CW 
(Secondary) 

Goat LICOR 

IR Dye α-mouse 800CW 
(Secondary) 

Goat LICOR 

IR Dye α-mouse 680CW 
(Secondary) 

Goat LICOR 

IR Dye α-rabbit 800CW 
(Secondary) 

Donkey LICOR 

Table 2.2 List of antibodies used for western blotting 

2.1.3. Purchased reagents and materials 

Reagent Use Supplier 

DMEM Cell Culture GIBCO 

RPMI Cell Culture GIBCO 

DMEM R0K0 (SILAC) Cell Culture Dundee Cell 

DMEM R6K4 (SILAC) Cell Culture Dundee Cell 

RPMI R0K0 (SILAC) Cell Culture Dundee Cell 

RPMI R6K4 (SILAC) Cell Culture Dundee Cell 

RPMI R10K8 (SILAC) Cell Culture Dundee Cell 

Fetal Calf Serum Cell Culture GIBCO 

Fetal Calf Serum (SILAC) Cell Culture Dundee Cell 

PBS Cell Culture GIBCO 

Antimycotic Antibiotic (AA) Cell Culture GIBCO 

Penicillin/Strep/Glutamine Cell Culture GIBCO 

Trypsin Cell Culture GIBCO 

Hygromycin B Cell Culture Invitrogen 

Dimethyl Sulfoxide (DMSO) Cell Culture Sigma 

6-well plate (3.5cm diameter) Cell Culture NUNC 

25cm3 small flask Cell Culture NUNC 

75cm3 medium flask Cell Culture NUNC 

175cm3 large flask Cell Culture NUNC 

Anti IgG 
Induce EBV lytic 
cycle in cell culture 

DAKO 

Doxycycline  
Induce doxycycline 
promoter 

Sigma 

Formaldehyde Cross-linking cells Sigma 

Sample Buffer, Laemmli 2X 
concentration 

Protein Gel Sigma 

3-8% Precast Tris-acetate gel Protein Gel Invitrogen 

10% Precast BIS-tris gel Protein Gel Invitrogen 
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12% Precast BIS-tris gel Protein Gel Invitrogen 

SimplyBlue Safestain Protein Gel Invitrogen 

Flag control peptide Protein Gel Sigma 

BSA Protein Gel Sigma 

HIS-Select Nickel Affinity Gel Pull Down assay Sigma 

Imidazole Pull Down assay Sigma 

CellLytic MT Cell lysis reagent Protein Extraction Sigma 

Benzonase Nuclease Protein Extraction Sigma 

Protease inhibitor EDTA-free Protein Extraction Roche 

Sodium 
orthovanadate (Na3VO4 ) 
Phosphatase Inhibitor 

Protein Extraction Sigma 

Sodium Fluoride (NaF) 
Phosphatase inhibitor 

Protein Extraction Sigma 

β-Glycerolphosphate 
Phosphatase inhibitor 

Protein Extraction Sigma 

Trypsin (Mass Spectrometry 
grade) 

Mass spectrometry Promega 

Superose 6 10/300GL Column SEC GE Healthcare 

Acetone Acetone precipitation Fisher 

Odyssey Blocking buffer Western Blot Licor 

PBS (100 tablets) Western Blot Oxoid 

Tween 20 Western Blot Fisher 

Nitrocellulose Membrane Western Blot Licor 

MOPS SDS running buffer 
(20x) 

Western Blot Invitrogen 

Tris-acetate SDS running buffer 
(20x) 

Western Blot Invitrogen 

Luminol Western Blot Sigma 

P-Coumaric acid Western Blot Sigma 

Hydrogen Peroxide (30%) Western Blot Sigma 
Table 2.3 List of reagents and materials purchased from various suppliers. 
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2.1.4. Solutions 

Solutions Use Composition 

Solution A Nuclear Extract 

10mM Hepes pH 7.9 
10mM KCl 1.5mM 
MgCl2 0.1mM EGTA 
(chelating agent) 
0.5mM DTT (reducing 
agent) 0.5mM PMSF 
(phenyl methane 
sulfoyl fluoride) (serine 
protease inhibitor) 

Solution C Nuclear Extract 

10mM Hepes pH 7.9 
400mM NaCl 1.5mM 
MgCl2 0.1mM EGTA 
(chelating agent) 
0.5mM PMSF (phenyl 
methane sulfoyl 
fluoride) (serine 
protease inhibitor) 5% 
Glycerol 

HIS-Select Equilibration 
Buffer 

Pull down 

50 mM sodium 
phosphate, pH 8.0, 
with 0.3 M sodium 
chloride and 10 mM 
imidazole 

HIS-Select Wash Buffer Pull down 

50 mM sodium 
phosphate, pH 8.0, 
with 0.3 M sodium 
chloride and 10 mM 
imidazole 

HIS-Select Equilibration 
Buffer with 8M urea 

Pull down 
0.1M Sodium 
Phosphate at pH 8.0 
with 8M urea 

HIS-Select Wash Buffer 
with 8M urea 

Pull down 
0.1M Sodium 
Phosphate at pH 6.2 
with 8M urea 

HIS-Select Elution Buffer 
with 8M urea 

Pull down 
0.1M Sodium 
Phosphate at pH 4.5 
with 8M urea 

WB Blocking Buffer Western Blot 

5% dried milk (w/v), 
10mM Tri-Base pH 7.4, 
150mM NaCl, 1mM 
EDTA, 0.1% Tween 20 
(v/v). 

Transfer Buffer Western Blot 
0.025M Tris, 0.192M 
Glycine, 15% methanol 
(v/v) 
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PBS Tween Western Blot 

10mM Tris-Base, 
150mM NaCl, 1mM 
EDTA, 0.1% Tween 20 
(v/v), pH 7.4 

Ponceau-S concentrate 
(10X) 

Western Blot 

2% (w/v) Ponceau-S, 
30% (v/v) 
Trichloroacetic acid, 
30% (v/v) 
Sulphosaliylic acid 
(Sigma) 

Laemmli Protein Sample 
buffer 

Western Blot 

2% SDS, 10% glycerol, 
5% 2-mercaptoethanol, 
0.002% bromphenol 
blue, 0.0625 Tris HCl 
(Sigma) 

ECL solution I Western Blot 
10mM Tris HCl pH8.5, 
0.4mM p-Coumaric 
acid, 2.5mM Luminol 

ECL solution II Western Blot 
10mM Tris HCl pH8.5, 
0.02% Hydrogen 
Peroxide 

Size Exclusion buffer SEC 
20mM Tris 100mM 
NaCl pH 8.0 buffer 

Table 2.4 List of Solutions made in the laboratory 

2.1.5. Kits used and their suppliers. 

Kit Manufacturer Use 

QIAquick PCR 
Purification Kit 

Qiagen DNA purification  

QIAprep Maxi-Prep Qiagen 
Maxi-Prep of 
expression 
vectors 

Effectene 
Transfection Kit 

Qiagen Transfection 

Luciferase Assay 
System 

Promega Luciferase Assay 

Table 2.5 Kits used and their suppliers 

2.1.6. QPCR primers 

Name Sequence (5' → 3') Reference 

BALF5 
(a) agtccttcttggctagtctgttga 
(b) ctttggcgcggatcctc 

(Gallagher et al. 1999) 

β-Globin 
(a) ggcaaccctaaggtgaaggc    
(b) ggtgagccaggccatcacta 

 (Gallagher et al. 1999) 

Table 2.6 QPCR primers 
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2.1.7. Cell Lines 

Cell Lines Reference 

Akata containing pRTS-CD2-BZLF1 (Ramasubranyan et al, 2015) 

Akata (Takada, 1984) 

HEK293-BZLF1-KO  (Feederle et al, 2000) 

U2OS  ATCC Catalog No. HTB-96 
Table 2.7 Cell lines used 

 Methods 

2.2.1. Transformation/Maxi Prep 

100ng of plasmid DNA was added to Top10 chemically competent E.Coli cells. 

The cells were incubated on ice for 5 minutes before adding preheated LB media 

(42°C), heat shocked at 42°C for 30 seconds and incubated on ice for 2 minutes. 

Cells were plated onto pre-warm LB agar plates containing 100µg/ml of ampicillin 

and incubated at 37°C overnight. Single colonies were chosen and added to 5ml 

of LB media containing ampicillin and incubated at 37°C shaking at 225rpm in a 

ThermoScientific MaxQ4000 incubated shaker for 8 hours. The media was then 

transferred to flasks containing 150ml LB media with 100µg/ml of ampicillin and 

incubated at 37°C shaking overnight. Qiagen maxi preps were performed as 

recommended by the manufacturers protocol. The plasmid stocks were then 

quantified for dsDNA concentration with an Eppendorf Biophotometer. 

2.2.2. Luciferase Assay 

U2OS cells were grown in 6-well plates and transfected with BHLF1 wild type 

promoter sequence or BHLF1 mutated promoter sequence, with control or hisZta 

expression vectors. Cells were harvested after 48 hours and washed in 1ml PBS 

before being split into 2 x 500µl. Half of the harvested cells were used for Western 

Blot protein expression and the other half of cells used for luciferase assay. 125µl 

of passive cell lysis buffer (Promega) was added to the cell pellet and incubated 

for 15 minutes. The cells were centrifuged and the supernatant was pipetted into 

clean tubes. For the luciferase activity analysis, 10µl of each lysate sample was 

pipetted into a white 96-well luminescence plate. 50µl of the luciferase kit 

reagents (Substrate and Buffer) were added to the samples and the 
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bioluminescence was measured by a Glomax multidetection machine. The 

samples were repeated in triplicate. 

2.2.3. Cell Culture 

Cells were grown in an incubator at 37°C with 5% CO2. EBV positive Burkitt ’s 

lymphoma (BL) cell line (B Cells) are maintained in RPMI (Invitrogen). 

 

HEK293-BZLF1-KO cells (Feederle et al, 2000) are adherent cells maintained in 

RPMI (Invitrogen) supplemented with hygromycin (100µg/ml). These cells 

contain the B-958 EBV strain but the BZLF1 gene has been removed. The cells 

containing the recombinant virus are maintained with the addition of hygromycin. 

SILAC labelled HEK293-BZLF1-KO cells (Feederle et al, 2000) maintained in 

light (R0K0), medium (R6K4) or heavy (R10K8) RPMI (Dundee Cell) 

supplemented with hygromycin (100µg/ml).  

 

U2OS cells maintained in DMEM (Invitrogen). U2OS are an adherent 

osteocarcinoma cell line. SILAC labelled U2OS cells maintained in light (R0K0), 

medium (R6K4) or heavy (R10K8) DMEM (Dundee Cell). 

 

R0K0 media containing metabolically unlabelled arginine and lysine amino acids 

(R0K0). R6K4 media containing 13C labelled arginine and 2D labelled lysine 

amino acids (R6K4). R10K8 media containing 13C and 15N labelled arginine and 

13C and 15N labelled lysine (R10K8) 

 

All media for cell growth is supplemented with 100U/ml of penicillin, 100µg/ml of 

streptomycin and 2mM of L-glutamine solution and AA. 10% (v/v) final volume 

Foetal Calf Serum (FCS) (Invitrogen) was also added or 10% (v/v) final volume 

Foetal Calf Serum (FCS) (Dundee Cell) for SILAC labelling of cells. 

 

For long term storage of cell lines, cells were washed and then resuspended in 

90% FCS supplemented with 10% DMSO at 1x10⁷ cells/ml. Cells were frozen at 

-80°C overnight before long term storage in liquid nitrogen. Frozen cell stocks 

were recovered by rapid thawing, followed by a subsequent wash in 10ml of 

chilled media before culturing. 
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2.2.4. Determination of cell count  

10µl of cells were taken from the cell populations and placed on a 

haemocytometer with a coverslip. Four quadrants of cells were counted and the 

number averaged before being multiplied by 1 x 104. This was the total number 

of cells per millilitre. 

2.2.5. Small Scale Transfection 

All transfections were performed in a class II microbiology cabinet. Cells were 

washed and resuspended in PBS before being counted and plated. 

U2OS cells were plated at 2.5 x 105 cells in 6-well plates in 3mls of media. 

Transfection was done using a Qiagen Effectene Transfection Kit. 1μg of DNA 

was added to 100μl of EC buffer with 3.2μl enhancer. After vortexing the DNA 

mixture was incubated at room temperature for 5 minutes. 2.5μl of effectene was 

added and vortexed before being incubated for 10 minutes at room temperature. 

The media in the wells were replaced with 2ml DMEM. 1ml of DMEM media was 

added to the DNA mixture before being added to the well. Cells were incubated 

for 72 hours before being washed in PBS and then harvested. 

2.2.6. Large Scale Transfection 

U2OS cells were plated at 3.75 x 106 cells in large flasks in 30mls of media. 

Transfection was done using a Qiagen Effectene Transfection Kit. The 

transfection ratio was scaled up to 17.5x. 17.5μg of DNA was added to 1.75ml of 

EC buffer with 56μl enhancer. After vortexing the DNA mixture was incubated at 

room temperature for 5 minutes. 44μl of effectene was added and vortexed 

before being incubated for 10 minutes at room temperature. The media in the 

wells were replaced with 27ml DMEM. 3ml of DMEM media was added to the 

DNA mixture before being added to the well. Cells were incubated for 72 hours 

before being washed in PBS and harvested. 

 

HEK293-BZLF1-KO cells were plated into large flasks in 30mls of media and 

grown to 60% confluency. Transfection was done using a Qiagen Effectene 

Transfection Kit. 17.5μg of DNA was added to 1.75ml of EC buffer with 56μl 

enhancer. After vortexing the DNA mixture was incubated at room temperature 

for 5 minutes. 44μl of effectene was added and vortexed before being incubated 

for 10 minutes at room temperature. The media in the wells were replaced with 
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27ml DMEM. 3ml of DMEM media was added to the DNA mixture before being 

added to the well. Cells were incubated for 72 hours before being washed in PBS 

and harvested. 

2.2.7. Akata cell induction 

EBV positive Akata cell lines have been established using the expression plasmid 

pRTS-CD2-BZLF1 which as well as carrying endogenous EBV BZLF1 inducible 

by IgG (0.125%) also has a bidirectional DOX inducible promoter B-Tet, which 

drives expression of BZLF1 together with a non-functional neuronal growth factor 

receptor (NGFR) and green fluorescent protein (GFP) as markers of DOX-

induced expression. The same cell line with the same construct but carrying the 

reverse BZLF1 sequence was used to control for any dox induced effects. 

Doxycycline was added to cells to give a 500ng/ml final concentration for a 24-

hour induction. 

 

For Akata cells induction, IgG (0.125% of final volume) was added to cells for 48-

hour induction. 

2.2.8. DNA purification 

DNA was extracted from cells using Promega Wizard Genomic DNA Extraction 

kit. This was performed following the manufacturers protocol for the kit 

(Promega). DNA was stored at -20°c. 

2.2.9. QPCR  

Quantitative polymerase chain reaction method was used to detect EBV genome 

replication. SYBR green (Promega) intercalates with double strand DNA and the 

SYBR will fluoresce, detected by the qPCR machine (StepOnePlus, Applied 

Biosystems) controlled by StepOne software version 2.3 (Applied Biosystems). 

Viral lytic gene BALF5 is used to detect the amplified viral genome and β-globin 

used as an internal control. 1 x 106 HEK293-BZLF1-KO cells. A standard curve 

was constructed by using serial dilutions of a 100ng sample with one primer set.  

 

A master mix of reagents was used and distributed onto the 96-well sample plate 

for each sample. A master mix prepared with 12.5μl SYBR, 8.5μl dH2O, 1μl 
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forward primer 10μM, and 1μl reverse primer 10μM. 2μl of each 10ng sample 

were plated in triplicate and the master mix added. 

 
The QPCR reaction conditions included:  
 

Temperature Time  

50°c 2 Minutes 

95°c 10 Minutes 

95°c 15 Seconds 

60°c 1 minute 

95°c 15 Seconds 

60°c 1 Minute 

95°c 15 Seconds 

  

The qPCR results were analysed by StepOne software 2.3 (Applied Biosystems). 

The melting curve was analysed for each reaction to ensure results were 

acceptable, with no contamination, mispriming or artefacts affecting results 

2.2.10. Cell Extraction 

CellLytic MT Cell lysis reagent (Sigma) was used for cell lysis and extraction of 

proteins. 1mM of phosphatase inhibitors: Sodium Fluoride, Sodium 

Orthovanadate, β-glycerophosphate were added to the reagent. Protease 

inhibitor 1X (Roche) and the determined benzonase at 125/Units were also 

supplemented to the reagent. Cells were harvested and washed in PBS before 

being resuspended in this cell lysis reagent for 25 minutes at room temperature. 

Centrifugation for 10 mins at 13000rpm in a Fisher accuSpin micro R centrifuge 

allowed the supernatant kept as the protein extract. 

 

Nuclear extract protocol was adapted from Lee et al 1998. Cells were harvested 

and washed in PBS. Before spun at 2000rpm in a Fisher accuSpin micro R 

centrifuge for 5 minutes. The cell pellet was resuspended in one packed cell 

volume of Solution A and left on ice for 15 minutes. NP40 was added to final 

concentration of 0.6% and cells were then vortexed briefly before centrifuging. 

The supernatant was discarded and the remaining pellet resuspended in one 

40 cycles 
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nuclear volume of Solution C rotating at 4°C for 30 minutes. The cell suspension 

was centrifuged and the supernatant was kept as the nuclear fraction. 

The cell lysis reagent was prepared as described but made up to the required 

volume with 8M urea.  

2.2.11. Native Affinity Tag Pull Down 

HIS-Select Nickel Affinity Gel (Sigma) used for small-scale purification of 

histidine-tagged recombinant Zta. The affinity gel was aliquoted into 50μl 50% 

suspension and spun at 8000rpm in Fisher accuSpin micro R centrifuge for 5 

mins. The ethanol was removed and the affinity gel washed with dH2O twice. The 

gel was equilibrated with equilibration buffer for 5 minutes before centrifuging and 

removing the buffer. Cell extract that was prepared with cell lysis buffer was 

applied to the gel and incubated for 60 minutes rotating at 4°C. The supernatant 

was removed and kept; the gel was washed with Wash Buffer twice for 15 

minutes each rotating at 4°C, with or without imidazole. The gel was either eluted 

with elution buffer containing imidazole or finally boiled in an equal volume protein 

sample buffer before being loaded onto SDS-PAGE. 

2.2.12. Denatured Affinity Tag Pull Down 

A denatured pull down was performed as described but with minor adjustments 

to the buffers. Equilibration buffer containing 8M urea, wash buffer containing 8M 

urea were used. An elution buffer containing 8M urea was also used before the 

elutions were collected. 

2.2.13. FPLC 

An AKTA purifier system was used for size exclusion chromatography. The AKTA 

purifier (GE Healthcare) was controlled using Unicorn software (v.5.20). A 

Superose 6 10/300GL (GE Healthcare) is a prepacked Tricorn column with a 

protein fractionation range between 5,000da and 5,000,000da. All water and 

buffers used were filtered using a 0.22μm filter before being applied to the Akta 

system and column. This column was connected to the AKTA purifier with 

appropriate tubing and washed with two column volumes of distilled water after a 

pump wash of the system with pump A and B. The column was then equilibrated 

with two column volumes of 20mM Tris buffer with 100mM NaCl at pH 8.0. 500μl 

of protein extract was centrifuged at 13000rpm in a Fisher accuSpin micro R 
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centrifuge for 5 minutes before being loaded into a 500μl loading loop connected 

to the AKTA purifier. The protein was fractionated at 0.2ml/min for two column 

volumes, either collecting into 2ml fractions or 500μl fractions. The fractions were 

then kept and labeled according to the collection plate used. Samples were mixed 

with a minimal 4X acetone before being placed in -20°C until further analysis. 

 

The UV detector measures protein by milli absorbance unit (mAU). This is one-

thousandth of an absorbance unit, where an absorbance unit is defined as the 

absorbance at 280nm. This determines protein concentration of the sample being 

detected. 

2.2.14. Acetone precipitation 

Proteins in solution were precipitated with 4X volume prechilled (-20°C) acetone 

in acetone compatible tubing before being placed at -20°C overnight. The tubes 

were spun at 15000G for 15 minutes in a Sorvall RC-5B Centrifuge in an SS-34 

rotor at 4°C before carefully removing the buffer. The proteins that were 

precipitated into a white pellet were resuspended in 2x protein sample buffer and 

then heated at -95°C for 5 minutes before being analysed by western blotting. 

2.2.15. Protein electrophoresis SDS-PAGE 

Cells, protein extracts or agarose gel were mixed with an equal volume of 2x 

protein sample buffer (Sigma). Samples were heated at 95°C for 5 minutes before 

being spun at 13000rpm in a Fisher accuSpin micro R centrifuge for 5 minutes. 

Samples were loaded onto precast 10% or 12% Bis-Tris NuPage (Invitrogen), or 

3-8% Tris-Acetate gel (Invitrogen). SeeBlue marker (Invitrogen) was loaded as a 

molecular weight marker. The gels were run at 200 volts for 50 minutes in MOPS 

SDS running buffer for 10 or 12% gels, 150 volts for 60 minutes in Tris-acetate 

SDS running buffer for 3-8% gels (Invitrogen). 

2.2.16. Western Blotting 

After samples are separated by SDS-PAGE, proteins transferred to nitrocellulose 

membrane in a Bio-Rad Transfer tank at 75 volts for 90 minutes containing 

transfer buffer. The addition of Ponceau Red stain to the membrane checked that 

proteins were transferred correctly. The stained transferred membrane was 

washed with water to display stained protein bands. The membrane was washed 
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three times in PBS-tween for 5 minutes each before blocking the membrane. The 

membranes were blocked for 45 minutes using either 5% milk in PBS-tween or 

Odyssey Blocking Buffer (Licor). The membrane was incubated with primary 

antibody overnight at 4°C. The membrane was washed three times with PBS-

Tween before the addition of secondary antibody. Two methods of secondary 

antibody were performed. A secondary horseradish peroxidase linked antibody 

was added selected against the animal from which the primary antibody was 

generated. Or the addition of a secondary fluorescent linked antibody (Licor) was 

added selected against the animal from which the primary antibody was 

generated. The secondary antibodies were incubated with the membrane moving 

at room temperature for one hour. The membranes were washed three times with 

PBS-tween after incubation. The HRP antibody complexes were detected using 

enzymatic chemiluminescence. ECL buffer A was mixed with ECL buffer B for 

one minute in the dark. Excess buffer was removed before the membrane sealed 

in saran wrap and placed in a cassette with photographic film. This exposed the 

antibody specific protein bands. If the secondary fluorescent antibodies (700nm 

or 800nm) (Licor) were used then the membrane was exposed directly to the 

Odyssey Fc imager. After detection at either 700nm or 800nm wavelength by the 

Odyssey Fc system, the antibody specific bands were detected. 

2.2.17. Mass Spectrometry 

Mass spectrometry analysis was either performed myself at the University of 

Sussex or sent to the University of Bristol Proteomics Facility for analysis. 

 

The protocol that was used at the University of Sussex Mass Spectrometry: 

Samples in protein sample buffer (Sigma) were mixed together equally and 

separated by SDS-PAGE before stained with SimplyBlue safestain (Invitrogen) 

for one hour.  The gel was washed with distilled water for one hour to remove 

residual stain. The gel was placed on a light box and bands were cut using a 

clean scalpel. The gel pieces were cut into finer pieces and the residual buffer 

removed. The gel was washed three times with 200μl of 50% acetonitrile in 25mM 

NH4HCO3 on a rotator. The gel pieces were subjected to 5 minutes in a SpeedVac 

concentrator with no heat. The gel pieces were reduced by addition of 100μl 

10mM DTT at 20°C
 for 45 minutes. Alkylation performed by the addition of + 200µl 
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50mM iodoacetamide (IAA) in 25mM NH4HCO3. This was added to the tubes 

which were placed in a lightproof box for 45 minutes. The gel was washed three 

times with 200μl of 50% acetonitrile in 25mM NH4HCO3 on a rotator with 5 

minutes speed vac on no heat at the end. 12.5ng/µl trypsin was added to each 

gel piece and left on ice for 10 minutes. Excess trypsin was removed before the 

addition of 25mM NH4HCO3 at 37°C overnight. Formic acid was added to a final 

concentration of 5% and the peptides were moved to clean tubes. The gel pieces 

had 1X volume of acetonitrile vortexed and rotated at room temperature for 15 

minutes. The supernatant added to the tubes containing peptides. The peptides 

were applied to speed vac until the supernatant was removed. The peptides were 

resuspended in 8μl of 0.1% trifluoroacetic acid (TFA) and placed into -20°C until 

further analysis. 

 

An LTQ-OrbitrapXL mass spectrometer was used to obtain the mass 

spectrometry spectra and created an .RAW output file of the peptides identified. 

Mascot Daemon was first used to investigate the dataset. Within the Task Editor, 

the parameters and dataset were set for the search. The parameter editor to 

format parameters included the UniProt/SwissProt database, Carbamidomethyl 

and Oxidation as modifications. Trypsin was the enzyme at a peptide tolerance 

set to 7Da and a peptide charge 2+ and 3+. SILAC quantitation was also inputted 

here with K+4, K+8, R+6 and R+10. The mascot result report for a peptide mass 

fingerprint search enabled a list of proteins, each of which the matches some of 

the experimental peptide masses. The result was kept as a screenshot. 

 

MaxQuant (v1.5.0.25) was also used to obtain protein lists from the .RAW output 

files from the LTQ-OrbitrapXL mass spectrometer, using a FASTA file containing 

the human proteome alongside the EBV proteome. 

 

The parameters used in Maxquant included: 

Parameter  Value 

Version 1.5.0.25 

User name ct245 

Fixed modifications Carbamidomethyl (C) 

Decoy mode revert 

Special AAs KR 
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Include contaminants True 

MS/MS tol. (FTMS) 20 ppm 

Top MS/MS peaks per 100 Da. (FTMS) 10 

MS/MS deisotoping (FTMS) True 

MS/MS tol. (ITMS) 0.8 Da 

Top MS/MS peaks per 100 Da. (ITMS) 6 

MS/MS deisotoping (ITMS) False 

MS/MS tol. (TOF) 0.1 Da 

Top MS/MS peaks per 100 Da. (TOF) 10 

MS/MS deisotoping (TOF) True 

MS/MS tol. (Unknown) 0.5 Da 

Top MS/MS peaks per 100 Da. (Unknown) 6 

MS/MS deisotoping (Unknown) False 

PSM FDR 0.01 

Protein FDR 0.01 

Site FDR 0.01 

Use Normalized Ratios For Occupancy True 

Min. peptide Length  7 

Min. score for unmodified peptides 0 

Min. score for modified peptides 40 

Min. delta score for unmodified peptides 0 

Min. delta score for modified peptides 6 

Min. unique peptides 0 

Min. razor peptides 1 

Min. peptides  1 

Use only unmodified peptides and True 

Modifications included in protein quantification Acetyl (Protein N-
term);Oxidation (M) 

Peptides used for protein quantification Razor 

Discard unmodified counterpart peptides True 

Min. ratio count 2 

Re-quantify True 

Use delta score False 

iBAQ True 

iBAQ log fit True 

Match between runs False 

Find dependent peptides False 

Site tables True 

Decoy mode Oxidation (M)Sites 

Special AAs revert 

Include contaminants KR 

RT shift True 

Advanced ratios False 

AIF correlation True 

First pass AIF correlation 0.47 

AIF topx 0.8 

AIF min mass 20 

AIF SIL weight 0 
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AIF ISO weight 4 

AIF iterative 2 

AIF threshold FDR True 0.01 
Table 2.8 Maxquant parameters used for mass spectrometry anaylysis. 

 

The protocol that was used at the University of Bristol Proteomics Facility: 

The gel lane was cut into 3 slices and each slice subjected to in-gel tryptic 

digestion using a ProGest automated digestion unit (Digilab UK).  The resulting 

peptides were fractionated using a Dionex Ultimate 3000 nanoHPLC system in 

line with an LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific).  In brief, 

peptides in 1% (vol/vol) formic acid were injected onto an Acclaim PepMap C18 

nano-trap column (Dionex). After washing with 0.5% (vol/vol) acetonitrile 0.1% 

(vol/vol) formic acid peptides were resolved on a 250 mm × 75 μm Acclaim 

PepMap C18 reverse phase analytical column (Dionex) over a 150 min organic 

gradient, using 7  gradient segments (1-6% solvent B over 1min., 6-15% B over 

58min., 15-32%B over 58min., 32-40%B over 3min., 40-90%B over 1min., held 

at 90%B for 6min and then reduced to 1%B over 1min.) with a flow rate of 300 nl 

min−1.  Solvent A was 0.1% formic acid and Solvent B was aqueous 80% 

acetonitrile in 0.1% formic acid.  Peptides were ionized by nano-electrospray 

ionization at 2.1 kV using a stainless steel emitter with an internal diameter of 30 

μm (Thermo Scientific) and a capillary temperature of 250°C. Tandem mass 

spectra were acquired using an LTQ- Orbitrap Velos mass spectrometer 

controlled by Xcalibur 2.1 software (Thermo Scientific) and operated in data-

dependent acquisition mode.  The Orbitrap was set to analyze the survey scans 

at 60,000 resolution (at m/z 400) in the mass range m/z 300 to 2000 and the top 

six multiply charged ions in each duty cycle selected for MS/MS in the LTQ linear 

ion trap.  Charge state filtering, where unassigned precursor ions were not 

selected for fragmentation, and dynamic exclusion (repeat count, 1; repeat 

duration, 30s; exclusion list size, 500) were used.  Fragmentation conditions in 

the LTQ were as follows: normalized collision energy, 40%; activation q, 0.25; 

activation time 10ms; and minimum ion selection intensity, 500 counts. The raw 

data files were processed and quantified using Proteome Discoverer software 

v1.2 (Thermo Scientific) and searched against the UniProt/SwissProt Human 

database release version 57.3 (20326 entries) plus the HisZta sequence using 

the SEQUEST (Ver. 28 Rev. 13) algorithm.  Peptide precursor mass tolerance 
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was set at 10ppm, and MS/MS tolerance was set at 0.8Da.  Search criteria 

included carbamidomethylation of cysteine (+57.0214) as a fixed modification 

and oxidation of methionine (+15.9949) and appropriate SILAC labels (2H4-Lys, 

13C6-Arg) as variable modifications.  Searches were performed with full tryptic 

digestion and a maximum of 1 missed cleavage was allowed.  The reverse 

database search option was enabled and all peptide data was filtered to satisfy 

false discovery rate (FDR) of 5%.  The Proteome Discoverer software generates 

a reverse “decoy” database from the same protein database and any peptides 

passing the initial filtering parameters that were derived from this decoy database 

are defined as false positive identifications.  The minimum cross-correlation factor 

(Xcorr) filter was readjusted for each individual charge state separately to 

optimally meet the predetermined target FDR of 5% based on the number of 

random false positive matches from the reverse decoy database. Thus each data 

set has its own passing parameters.  Quantitation was done using a mass 

precision of 2ppm.  After extracting each ion chromatogram the Proteome 

Discoverer software runs several filters to check for, among other things, 

2.2.18. Antibody search using BLAST 

For each antibody, the epitope amino acid sequence that was recognised by the 

antibody was retrieved from the manufacturers datasheet. This sequence was 

entered into the http://web.expasy.org/blast/ tool and a BLAST search performed 

against the Homo sapiens UniProtKB taxonomic subset. This returned a 

graphical overview of the alignments and a list of the matches with an expectation 

value. The proteins that were aligned with a 100% match were investigated for 

their molecular weight and amino acid sequence length and collated into a table. 

Therefore the proteins identified from this BLASTP search contain the amino acid 

sequence the selected antibody is reported to recognize.  

http://web.expasy.org/blast/
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3. Identify novel interacting partners of Zta 

 Introduction 

A method to identify cellular proteins that interact with Zta and investigate these 

protein-protein interactions was developed. The extraction of Zta from cells is 

essential to enable the identification and study of any associated proteins. Protein 

extracts that maximise the release of transfected Zta into the supernatant were 

optimised. Existing proteins that have been demonstrated to interact with Zta 

were also assessed for optimal extraction from cells, in an attempt to extract Zta 

in the context of possibly binding to these interaction partners. 

 

A polyhistidine tagged version of Zta was used so that nickel affinity 

chromatography could attempt to purify tagged Zta with any associating proteins. 

Immobilized metal ion affinity chromatography (IMAC) is based on the specific 

covalent bonds of amino acids to metal ions. Poly-histidine (6x His-tag residues) 

has an affinity for nickel ions (Zhao et al. 2010). 

 

The identification of proteins by mass spectrometry is a regular proteomics 

method. Functional proteomics assays have integrated quantitative routes to 

answer questions in more detail. Quantitative proteomics has traditionally been 

performed by two-dimensional gel electrophoresis. Advancements of quantitative 

proteomics included the combination of stable isotope labelling and mass 

spectrometry. This has been achieved through stable isotope labelling of amino 

acids in cell culture (SILAC). SILAC was first described and implemented and has 

since been applied to many studies (Ong et al. 2002). The in vivo incorporation 

of labelled amino acids in cell culture can be identified and quantitated using 

mass spectrometry. Using software designed to identify peptides with a higher 

molecular mass these SILAC peptides can be differentiated from unlabelled 

peptides. This technique has furthered the field of proteomics and allowed the 

identification and quantitation of proteins from complex biological mixtures. 

SILAC can be used as a quantitative proteomic approach in any cell culture 

system and applied to affinity purification (Blagoev et al. 2003). Protein 

populations from control and experimental samples can be mixed directly after 

harvesting or samples can be mixed prior to mass spectrometry analysis. 
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Figure 3.1 Diagram of SILAC-immunoprecipitation principle Control cells are labelled with 
unlabeled arginine and lysine containing normal isotopes of carbon and hydrogen. Cells are 
labelled medium or heavy with arginine and lysine containing heavier isotopes for carbon and 
hydrogen amino acids. These cells can be transfected with a control or the histidine tagged 
expression vector of interest. An immobilized metal ion affinity chromatography (IMAC) pull down 
can pull the histidine tagged protein from the extracts. This can be combined with a control pull 
down sample and the difference in peptide mass for detected peptides can result in a quantitated 
list of proteins identified. NS is Non Specific proteins, equally binding nonspecifically to both pull 
down affinity gels. PI is Protein interaction, more proteins that interact or associate with Zta have 
a higher abundance in the hisZta pull down. 
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Cell populations are SILAC labelled with either normal (light) isotope labelled 

amino acids or heavy isotope amino acids. The arginine amino acid in the cell 

growth media contains 13C compared to 12C and the cells incorporate the amino 

acids into new proteins. A control sample contains normal naturally occurring 

isotopes, versus the treated sample with heavier isotopes. Leucine, arginine and 

lysine can be altered to contain heavier isotopes of carbon. Arginine is not an 

essential amino acid but is essential in many cell lines (Scott et al. 2000).    

Commercially available amino acids contain 13C, 15N or 2H, or medium/heavy 

isotopes in cell culture media. 

 

Using an EBV negative cell line (U2OS) cells, mock transfection of the normal 

cell population are labelled with ‘light’ media and transfection with histidine 

tagged Zta of the heavy cell population are labelled with ‘medium’ media was 

performed.  

 

SILAC labelled cell extracts were established and a quantifiable pull down 

method coupled to mass spectrometry was executed in order to identify any 

possible protein interactions with Zta.  Using control ‘light labelled’ cell extracts 

and Zta expressing ‘medium labelled’ cell extracts a nickel pull down experiment 

can bind Zta via the histidine tag to nickel affinity gel (Figure 3.1). Identification of 

protein interaction partners in mammalian cells using SILAC-immunoprecipitation 

quantitative proteomics is possible using this defined technique (Emmott & 

Goodfellow 2014). 

 

Combining samples of both gels and separating the proteins using SDS-PAGE, 

the samples can be prepared for mass spectrometry analysis. To identify which 

proteins are present in both the light and heavy samples, mass spectrometry was 

performed on the proteins bound to the nickel affinity gel.  

 

Software analysis on the raw data obtained may reveal what proteins are present 

in the samples, as well as protein abundance due to a ‘mass shift’ of identical 

peptides. A mass shift of ‘heavier’ peptides due to the metabolic uptake of amino 

acids with heavier isotopes into proteins, sees a mass shift by mass spectrometry 

analysis as the retention time in the mass spectrometer differs for these peptides. 
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Peptides identified with an identical amino acid sequence will have a longer 

retention time due to being ‘heavier’ in the mass spectrometer and can be 

compared to normal peptides. Any proteins that have been enriched in the Zta 

containing sample would indicate that the corresponding protein may be 

interacting with Zta, therefore having an increased protein ratio higher than 1.0. 

A higher ratio would suggest that Zta is interacting with this protein of interest. 

 

If protein interactions with Zta were established then the cellular role of the 

proteins would be further investigated in the context of EBV replication. Is the 

protein-protein interaction essential and required for EBV replication? 
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 Results 

3.2.1. Extraction of Zta and associated proteins from the nucleus 

Zta has been demonstrated to translocate to the nucleus and accumulate there 

within 24 hours of transfection (Mahot et al., 2005). In order to be able to study 

this protein an efficient extraction protocol was required. 

 

I compared a gentle cell lysis and a nuclear extraction protocol to determine 

efficient extraction conditions. U2OS cells were transiently transfected with a 

number of plasmids designed to express Zta and proteins known to co-associate 

with it and the protein expression and extraction efficiency levels were 

determined by western blot. 

 

First, U2OS cells were transfected with plasmids expressing wild type Zta and 

also Zta binding partners: FLAG-tagged p53, NFκB, BMRF1 and BGLF4.  

Both cell lysis and nuclear extract protocols resulted in a final supernatant of 

extract containing soluble proteins and a cell pellet after extraction (Figure 3.2A). 

The supernatant and pellet were resuspended in protein sample buffer and 

separated by SDS-PAGE and western blots were performed and probed for the 

presence of these proteins. 

 

The first experiment confirmed that the transfection of Zta into U2OS cells was 

successful. The presence of wild type Zta, was confirmed by western blot (Figure 

3.2B). Comparing the cell lytic reagent extraction and nuclear extract methods, 

Zta remained in the pellet for both methods. Only a very small amount of the 

transfected Zta protein is extracted and solubilised into the supernatant. 
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Figure 3.2 Cell lytic reagent and nuclear extract methods to determine extraction efficiency 
of Zta A Flow diagram of the two methods (Cell lytic reagent and nuclear extract) used for protein 
extraction. Both methods extracted proteins into a supernatant and a pellet remained. B U2OS 
cells were transfected with control, and Zta expression vectors and harvested after 72 hours. 
Proteins were extracted using CellLytic reagent or nuclear extract. The supernatant was mixed 
with an equal volume of protein sample buffer and the pellet boiled in the same volume of protein 
sample buffer. The proteins were separated by SDS-PAGE and a western blot for Zta is shown. 
The antibody used here was BZ1. SN refers to supernatant, P refers to Pellet 
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Figure 3.3 Cell lytic reagent and nuclear extract methods to determine extraction efficiency 
of FLAG-tagged cellular proteins. U2OS cells were transfected with control, and FLAG-tagged 
cellular expression vectors and harvested after 72 hours. Cellular proteins were extracted using 
Cell Lytic reagent and nuclear extract. The supernatant was mixed equally with protein sample 
buffer and the pellet boiled in the same volume of protein sample buffer. Supernatant and protein 
pellet were compared between each transfection. The proteins were separated by SDS-PAGE 
and a western blot for NFκB, p53, BMRF1 and BGLF4 shown. The antibody used here was anti-
FLAG. SN refers to supernatant, P refers to Pellet 
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The extraction of the transfected host and viral proteins into U2OS cells was also 

successful. The cell lytic reagent and nuclear extract methods of protein 

extraction of these Flag-tagged transfected proteins was compared (Figure 3.3). 

For NFκB, p53, BMRF1 and BGLF4 both extraction methods allowed some 

soluble protein to be extracted from the cells. Not much difference was observed 

between the two methods apart from NFκB being exception here, where more 

protein was extracted into the supernatant from the pellet using the cell lytic 

reagent compared to the nuclear extract protocol.   

 

From the standard cell lytic reagent and nuclear extraction methods, the majority 

of transfected Zta and Flag-tagged proteins remain in the nuclear pellet after a 

first round of extraction. The issue with proteins remaining in the nuclear pellet 

was addressed with the addition of a benzonase nuclease (Biedermann et al. 

1989). Benzonase can degrade all forms of DNA and RNA with no proteolytic 

activity and releases nuclear proteins intimately associated with DNA such as 

histones. Benzonase was applied to further rounds of the two protein extractions 

applied to the pellet that was obtained from a first round of extraction. For the 

nuclear extract protocol, benzonase was applied to the pellet generated after the 

addition of solution A. A schematic diagram illustrates each of the three rounds 

of extraction for each method (Figure 3.4). The samples highlighted in yellow 

were separated by SDS-PAGE and investigated for protein extraction by western 

blot. 

 

Some Zta protein is solubilised into the supernatant with the addition of 

benzonase to the reagents (Figure 3.5A) although some remains in the pellet. 

The same result is found for the nuclear extract protocol, some Zta is solubilised 

into the supernatants (Figure 3.5B).  
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Figure 3.4 Diagram of cell lytic reagent and nuclear extract method applied to transfected 
U2OS cells.   After transfection, U2OS cells were harvested and spun into a cell pellets before 
protein extraction with either cell lytic reagent or nuclear extract. The extraction methods were 
repeated on the cell pellet from the first extraction and 25 Units of benzonase were added to the 
lysis buffers after a first round of protein extraction.  Highlighted boxes represent the samples 
explored by western blot analysis. 
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Figure 3.5 Comparison of extraction efficiency of Zta with the addition of benzonase to the 
extraction protocols. Cell lytic reagent or nuclear extract protocol with the addition of benzonase 
were used to extract transfected proteins. The supernatant was mixed with an equal volume of 
protein sample buffer and the pellet boiled in the same volume of protein sample buffer. The 
proteins were separated by SDS-PAGE and a western blot for Zta was performed. The antibody 
used here was BZ1. SN refers to supernatant, P refers to Pellet. A Cell lytic reagent with the 
addition of benzonase to the second round of extract attempt of transfected Zta B Nuclear extract 

with the addition of benzonase to the second and third round of extract attempt of transfected Zta 
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Figure 3.6 Comparison of extraction efficiency of FLAG-tagged proteins with the addition 
of benzonase to the extraction protocols. Cell lytic reagent or nuclear extract protocol with the 
addition of benzonase were used to extract transfected proteins. The supernatant was mixed with 
an equal volume of protein sample buffer and the pellet boiled in the same volume of protein 
sample buffer. The proteins were separated by SDS-PAGE and a western blot for Zta is shown. 
The antibody used here was anti-FLAG. A Cell lytic reagent with the addition of benzonase to the 
second round of extract attempt for extraction of transfected cellular FLAG-tagged proteins B 
Nuclear extract with the addition of benzonase to the second and third round of extract attempt 
for extraction of transfected cellular FLAG-tagged proteins. SN refers to supernatant, P refers to 
Pellet 
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The transfected host and FLAG-tagged viral proteins displayed a similar profile 

between the two extraction methods with the addition of benzonase on repeat 

extractions (Figure 3.6). NFκB is extracted into the first supernatant using the cell 

lytic reagent and the nuclear extract. The remaining proteins stay within pellet, 

some being solubilised into the supernatant. Some p53 is extracted into the first 

supernatant, with the equivalent protein amount remaining in the pellet. The viral 

proteins (BMRF1 and BGLF4) are again very well expressed and extracted into 

the first supernatant and subsequent supernatants, with some protein still 

remaining in the pellet, BMRF1 and BGLF4 are extracted into the supernatant 

well with some protein remaining in the cell pellet. 

 

As the addition of benzonase releases some of Zta from the pellet and may be 

aiding the other transfected proteins here to be extracted, the concentration of 

benzonase and the temperature of extraction were altered in order to determine 

a more optimal environment for the extraction methods. It was also decided to 

continue with only the cell lytic reagent as the method of extraction, as currently 

the extraction results were comparable to the nuclear extract protocol. 

 

The benzonase stock is a 250U/μl (Units/μl) solution and this was diluted 

accordingly with cell lytic reagent 1:10 in order to obtain a 25U/μl benzonase 

stock solution. Cell lytic reagent extraction was performed on ice, at room 

temperature or at 37°C on six sets of U2OS cells transfected with Zta wild type 

only. Six different conditions were investigated, varying the benzonase 

concentration and temperature of the extraction method of cell lytic reagent. The 

Zta transfected cell pellets were lysed with cell lytic reagent before a second 

extraction attempt with benzonase (Figure 3.7). Some Zta was extracted into the 

first supernatant at 4°C for the addition of 25U, 125U and 250U of benzonase to 

the cell lytic reagent.  Benzonase was added to the second round of extraction 

for these conditions but mostly Zta remained in the cell pellet. The first round of 

extraction was repeated at 4°C before a second round of extraction using 1250U 

of benzonase. This higher amount of benzonase completely released the Zta 

from the cell pellet into the second supernatant at this benzonase concentration 

and temperature. 
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Figure 3.7 Changing benzonase conditions for cell lytic reagent extraction. U2OS cells were 
transfected with Zta. Cells were harvested after 72 hours and lysed with the cell lytic reagent with 
the addition of benzonase and lysate and pellet was run on a protein gel. The benzonase 
concentration was altered and shown per Unit and the temperature altered between 4°C, room 
temperature and 37°C. The proteins were separated by SDS-PAGE and a western blot for Zta 
performed. The antibody used here was BZ1. 
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The addition of 125U of benzonase during a second cell lysis extraction, 

incubating the lysis at room temperature, efficiently extracts Zta. Performing the 

second extraction with 125U benzonase at 37°C allowed some Zta to be 

extracted into the second supernatant but some Zta remains in the pellet, 

perhaps due to precipitation into an insoluble pellet. The addition of 125U of 

benzonase condition added to 100µl of cell lytic reagent at room temperature is 

the most optimal condition here to efficiently extract Zta proteins from the nucleus 

into the supernatant. The addition of 10 times more benzonase at 4°C produced 

a similar outcome for extraction, therefore using the lower concentration of 125U 

benzonase at room temperature was chosen as the optimal approach of 

extracting cellular and transfected proteins using the cell lytic reagent.  

 

3.2.2. Establishing histidine-tag Zta pull down conditions 

The ability of histidine-tagged Zta to interact with nickel affinity gel was assessed. 

Histidine tagged Zta was transfected into U2OS cells, these were lysed using the 

cell lytic reagent protocol with the optimal benzonase digestion conditions 

described. This extract was applied to and incubated with equilibrated nickel 

agarose beads, and the unbound extract was kept for analysis. The beads were 

washed three times with wash buffer before being mixed with an equal volume of 

protein sample buffer. A western blot was performed to detect hisZta from the 

extract, unbound sample and protein bound to the gel (Figure 3.8). It can be seen 

here that hisZta was extracted into the supernatant input). This supernatant was 

applied to the gel, where some hisZta bound and some did not. Therefore, the 

equilibrated gel, and wash conditions allowed the extracted hisZta to bind to the 

gel. 

 

This was repeated to determine if there are any non-specific interactions with the 

nickel affinity gel (Figure 3.9). Actin was considered as an indicator of a readily 

detectable protein that may bind to the nickel agarose beads non-specifically. By 

probing the western blot for actin, presence in the gel sample would indicate if 

this protein binds to the nickel without a histidine tag. If this protein binds non-

specifically then other cellular proteins may bind as well. The harvested 

transfected cells were processed into cell protein extracts and the pull down was 
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repeated as previously. The input, unbound and gel samples were mixed equally 

with protein sample buffer and separated by SDS-PAGE. 

In this experiment, hisZta binds to the nickel agarose beads as demonstrated 

previously (Figure 3.9). Actin does not bind to the nickel agarose beads although 

the actin signal in the input is quite minimal compared to the hisZta signal.  

 

To minimize any non-specific binding to the gel by cellular proteins that have an 

affinity for nickel or agarose, it is recommended to use imidazole in washes and 

even for elution of histidine-tagged proteins. Imidazole has an affinity for the 

nickel agarose gel and is a metal ion ligand therefore this may help minimize non-

specific binding. The imidazole concentration investigated to minimise non-

specific binding was either a concentration of 0mM or 10mM within the wash 

buffer (Figure 3.10). 

 

Two volumes of cell extract were also compared to assess whether the binding 

sites on the nickel affinity gel are saturated. 250µl and 50µl of the cell extract 

were used. Using the larger volume of cell extract resulted in more hisZta protein 

binding, which shows that the gel capacity for binding is not saturated by 250µl 

(Figure 3.10).  Actin is present in the gel sample without imidazole present in the 

wash buffer. Using 10mM imidazole in the wash buffer decrease the non-specific 

binding of actin to the gel.  

 

In order to further minimise non-specific binding, the NaCl concentration was 

altered in the wash buffer and up to 1000mM can tolerated. As imidazole 

minimises the non-specific binding of actin to the gel, the difference between 

10mM and 20mM was further investigated in the wash buffer. Therefore, either 

300mM or 1000mM of NaCl was included in the wash buffer, with 10mM or 20mM 

imidazole. The western blot and quantitation from the pull down is shown relative 

to the input sample (Figure 3.11). 
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Figure 3.8 Preliminary histidine-tag Zta pull down to demostrate hisZta can bind to nickel 
affinity gel. U2OS cells transfected with pCDNA3 control and hisZta. After 72 hours, cell lytic 
extract was prepared and applied to nickel affinity gel (Sigma) and bound at room temperature. 
The unbound extract was retained and after washing agarose. The supernatant was mixed with 
an equal volume of protein sample buffer and the pellet boiled in the same volume of protein 
sample buffer. The proteins were separated by SDS-PAGE and a western blot for Zta performed. 
The antibody used here was BZ1. 

 

 

 

 

 

Figure 3.9 Histidine-tag Zta pull down and assessment of actin binding to the nickel affinity 
gel. U2OS cells transfected with hisZta. After 72 hours, cell lytic extract was prepared and applied 
to nickel affinity gel (Sigma) and bound at room temperature. The unbound extract was retained 
and after washing agarose. All samples were mixed with an equal volume of protein sample 
buffer. The proteins were separated by SDS-PAGE and a western blot for Zta performed 
Antibodies used here BZ1 and α-actin. 
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Figure 3.10 Histidine-tag Zta pull down with varying imidazole concentration and cell 
extract volumes. U2OS cells transfected with pCDNA3 control and hisZta. After 72 hours, cell 
lytic extract was prepared and applied to nickel affinity gel (Sigma) and bound at room 
temperature. 50μl or 250μl of extract was applied and the agarose gel washed with or without 
10mM imidazole. The unbound extract was retained and after washing agarose. All samples were 
mixed with an equal volume of protein sample buffer. The proteins were separated by SDS-PAGE 
and a western blot for Zta performed Antibodies used here BZ1 and α-actin. 
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Figure 3.11 Histidine-tag Zta pull down with varying imidazole concentration and NaCl 
concentration in the wash buffer. A U2OS cells transfected with pCDNA3 control and hisZta. 
After 72 hours, cell lytic extract was prepared and 100μl  applied to nickel affinity gel (Sigma) and 
bound at room temperature. The agarose gel washed with 10mM or 20mM imidazole and 300mM 
or 1000mM NaCl. The unbound extract was retained and after washing agarose. All samples 
were mixed with an equal volume of protein sample buffer. The proteins were separated by SDS-
PAGE and a western blot for Zta performed Antibodies used here BZ1 and α-actin..B Quantitation 

of Zta bound to the gel 
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There was no significant difference in the binding of Zta or actin by increasing 

NaCl concentration from 300-1000mM or varying the imidazole from 10-20mM. 

Therefore 20mM of imidazole and 300mM NaCl in the wash buffer were used 

routinely here after. 

3.2.3. SILAC labelled histidine-tagged Zta pull down and mass 

spectrometry 

A common method to investigate protein-protein interactions includes coupling a 

pull down assay with mass spectrometry. This approach for interacting proteins 

can be used to initially direct an investigation into proteins that interact with the 

tagged protein of interest. It is possible to pull entire protein complexes out of the 

solution sample and identify interacting proteins through mass spectrometry. 

Progress within this field of proteomics has included the use of metabolically 

labelling the proteins with amino acids of varying molecular mass. This has 

enabled the quantitation of proteins in experiments when they are differentially 

labelled. 

 

Stable isotope labelling of amino acids in cell culture (SILAC) was utilized for the 

next step in the experiments to investigate potential interacting partners with Zta. 

SILAC coupled to mass spectrometry analysis allows a quantitative method of 

detecting protein abundance from samples. 

 

The U2OS cells were labelled as demonstrated by the schematic diagram (Figure 

3.12). A minimum of 5 passages of cells in cell culture ensures that at least 97% 

the cells are metabolically labelled with the chosen isotope labels. Through cell 

doublings and new protein synthesis allows an efficient incorporation of these 

labelled amino acids (Ong & Mann 2006). 

 

The most naturally occurring normal isotopes for carbon and hydrogen were 

incorporated into arginine and lysine in the control media. These were chosen as 

the control, named pCDNA3 R0K0. Media containing arginine as L-Arginine-

13C6 Hydrochloride and lysine as L-Lysine-4,4,5,5-D4 Hydrochloride were used 

for the transfected hisZta cells. These were named hisZta R6K4. A total of three 

large T175 flasks each were transfected and harvested into cell pellets after 72 
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hours (Figure 3.12). 

 

Fractions of these SILAC labelled cells were investigated for of actin and hisZta 

(Figure 3.13). The cells were lysed as previously described using cell lytic buffer 

and benzonase and a fraction of the extract was resuspended in an equal volume 

of protein sample buffer. The proteins were separated by SDS-PAGE. The actin 

levels for all six samples were equivalent. Expression of hisZta was demonstrated 

in all three samples that were transfected with hisZta. These SILAC labelled cell 

fractions would be used for future histidine-tag pull down experiments.  

 

A consecutive histidine-tagged Zta pull down using the same SILAC labelled 

extracts was attempted using the optimised pull down protocol established. A 

schematic diagram of a consecutive histidine-tagged Zta pull down is illustrated 

(Figure 3.14). Three consecutive pull downs were then performed as described 

to attempt and maximise binding of hisZta from cell extracts. 
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Figure 3.12 SILAC labelling of U2OS cells schematic diagram. Using light (R0K0) and 
medium (R6K4) media (Dundee Cell) U2OS cells are passaged 1:3 using the media volume 
shown. A minimum of 5 passages to ensure all of the cells are metabolically labelled. The cells 
are transfected with control or hisZta and harvested after 72 hours for further study 
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Figure 3.13 Expression of transfected control and hisZta in SILAC labeled U2OS cells. 
Three flasks (1,2,3) transfected with either pCDNA3 or hisZta for 72 hours. The cells were 
harvested and a fraction were lysed in cell lytic reagent and cell extract. A fraction of the 
supernatants were mixed with an equal volume of protein sample buffer. The proteins were 
separated by SDS-PAGE and a western blot for Zta performed Antibodies used here BZ1 and α-
actin. 
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Figure 3.14 Schematic of consecutive histidine-tagged Zta pull down using SILAC labelled 
extracts. After attempting a histidine-tag pull down in 1, the unbound extract is applied to another 
gel in 2, and this unbound extract is then applied to the final gel in 3. Upon western blot of all 
samples, identification of the amount of hisZta binding to the gel from the same extract 
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Figure 3.15 Consecutive histidine-tag Zta pull down using the same extract throughout the 

assay. A Histidine-tag Zta pull down using cell lytic extract in １. Unbound extract from  pull down 

1 was applied to the gel in 2. This unbound extract was applied to the pull down in 3. All samples 
were mixed with an equal volume of protein sample buffer. The proteins were separated by SDS-
PAGE and a western blot for Zta  Antibodies – BZ1, α-actin, B Quantitation of consecutive 

histidine-tag Zta pull down using the same extract throughout the assay. 
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The control and hisZta transfected samples were applied to the gel as outlined 

by the schematic diagram (Figure 3.14). The samples were separated by SDS-

PAGE after being boiled in protein sample buffer. The protein hisZta binds to the 

nickel affinity gel throughout the assay (Figure 3.15A). The unbound supernatant 

was kept for a second and third consecutive pull downs and the bands were 

quantitated relative to the input (Figure 3.15B). HisZta bound to the nickel affinity 

gel after incubation and washing in the first round of incubation. The western blot 

was detected for actin and actin did not bind non-specifically to the gel. Therefore, 

these SILAC labelled samples were taken forward for further investigation. 

 

Both control and hisZta pull down samples were visualized by SimplyBlue stain 

(Figure 3.16A). It would be expected that if any non-specific proteins bind to the 

gel, the same non-specific proteins would bind to both the control gel and hisZta 

gel. Within the hisZta pull down, hisZta will bind through its polyhistidine tag 

interaction with the nickel, as well as any additional proteins through the binding 

of cellular proteins to hisZta. There are proteins present in both control and hisZta 

treated cells (Figure 3.16A). A perfect experiment would see no proteins present 

in the control sample, and hisZta bound to the nickel gel in the hisZta sample, 

other proteins present in this sample would be due to hisZta binding to any 

interaction partners. A western blot of the samples considered for mass 

spectrometry were included (Figure 3.16B) 

 

The control and hisZta transfected samples (Figure 3.16B) were sent to the 

University of Bristol Proteomics facility for mass spectrometry analysis. The two 

samples were combined equally and separated by SDS-PAGE. The gel was cut 

into three gel slices before being processed into peptides for mass spectrometry. 

Trypsin was used to cleave the proteins into peptides. The use of trypsin to digest 

proteins into peptide chains is a common proteolytic enzyme. It is very specific 

for SILAC studies as the protein can cleave at the carboxyl-termini of lysine and 

arginine residues. Trypsin is the standard enzyme to use to digest protein 

mixtures that have been SILAC labelled (Olsen et al. 2004). 
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Figure 3.16 Sample confirmation before mass spectrometry analysis at University of 
Bristol. A The control and hisZta agarose gel boiled 1:1 in sample buffer and 2μl loaded onto a 
protein gel. Evidence of protein bands after SimplyBlue safestain (Invitrogen). B Histidine-tag Zta 
pull down using cell lytic extract in 1 (Figure 3.14A). The control and hisZta agarose gel boiled 
1:1 in sample buffer and 2μl separated onto a protein gel. The proteins were separated by SDS-
PAGE and a western blot for Zta performed. The antibody used here was BZ1.  
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The peptides were analysed using a LTQ-Orbitrap Velos mass spectrometer and 

the files were analysed using a Proteome Discoverer software (Thermo 

Scientific). 

 

With the introduction here of the quantitative SILAC method to label the samples, 

the non-specific proteins that are pulled down and detected by mass 

spectrometry in both samples will effectively cancel each other out. Therefore, 

proteins that are in equal abundance between the two samples will return with a 

SILAC ratio of 1.0 after mass spectrometry analysis and quantitation. Interacting 

proteins with Zta will then have a SILAC ratio of greater than 1.0. A minimum 

threshold of speculative interactions can be applied to peptide hits and the 

number of SILAC peptides identified and the SILAC ratio score, in order to be 

more confident of any possible direct interactions. 

 

The data from the University of Bristol Proteomics facility was returned as a 

Microsoft Excel spreadsheet containing proteins that were identified using 

peptides that the Proteome Discoverer program had recognised. Some peptides 

could not have a SILAC ratio attributed to them and these were not considered 

for analysis. A total of 3414 proteins were identified. 2546 proteins were identified 

with a SILAC ratio. These proteins were detected in either control or hisZta 

transfected sample pull downs, or just one sample. For a more illustrative analysis 

of these ratios, GraphPad Prism (V6.0) was utilised.  A representation of the 

SILAC U2OS proteins returned from mass spectrometry identification was 

illustrated using a log2 value of the SILAC ratios. This allows a calculation of all 

the data points to be between -6.64 (Log2(0.01)) and 6.64 (Log2(100.0)).  

 

Non-specific, experimental contaminants, cluster in a Gaussian (normal) 

distribution centred at the log2 ratio of ~0 (which corresponds to a SILAC ratio of 

~1.0). A normal distribution should be centred on a log2 value of exactly 0. Any 

environmental contaminants will have a log2 ratio value of less than -1.0, and 

possible interaction partners of hisZta will have a log2 ratio value greater than 

1.0. 
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These SILAC ratios were then converted by myself into log2 ratios and entered 

into GraphPad Prism software (v6.0). A histogram was created to enable a 

representation all of the SILAC proteins (Figure 3.17). Most of the data returned 

centred on a log2 value of zero. This meant that all of the non-specific proteins 

that were identified with a SILAC ratio of ~1.0 have a log2 value of zero. The 

proteins with a log2 value below -1.0 may be environmental contaminants, many 

were detected with a log2 value of -6.64 (log2(0.01)). The proteins with a log2 

ratio of greater than 1.0 up to 6.64 (log2(100.0)) represent proteins that may 

interact with Zta. Anything with a ratio greater than 1.2 would suggest that the 

increase in protein abundance may be due to the presence of Zta. There are 41 

proteins that were only identified from the hisZta sample with a SILAC that was 

set to 100.0 by the analysis software. 

 

After the visualisation of the complete dataset, the proteins were individually 

examined in greater detail. Proteins identified in the data were ranked by peptide 

spectrum matches (PSM) from 100 PSMs and above (Table 3.1). This allowed 

an understanding of the most abundant peptides identified. Many tubulins were 

identified such as tubulin beta chain with the highest PSM value of 259. Heat 

shock proteins, structural proteins and other proteins were also identified. 

 

To determine any possible non-specific interactions that may have bound to the 

nickel affinity gel, data from a user-submitted database was accessed and 

applied to the proteins detected here. False positives can be removed in protein-

protein interaction studies (Mann 2006). The Protein Frequency Library (PFL) 

created by the Lamond laboratory at the University of Dundee (Boulon et al. 2010) 

was used. This user submitted database allows data to be collated about what 

non-specific proteins were detected from affinity purifications; various cell lines 

and matrices are presented as parameter options. This database can be 

accessed and a list of submitted proteins can be cross-referenced against the 

proteins already present, for the parameters selected. This enables a way to filter 

any non-specific interactions with the parameters established. 
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Figure 3.17 Histogram representation of log2 SILAC ratio from data returned from 
University of Bristol mass spectrometry analysis. Histogram of all proteins identified by mass 

spectrometry. Proteins pulled down with a ratio above 1.000 may be enriched by Zta. 
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Table 3.1 Most abundant proteins identified by mass spectrometry analysis of U2OS SILAC 
hisZta pull down.  Proteins ordered by peptide spectrum matches. Heat shock proteins and 

tubulins were most richly identified. 

  

Protein ID Description # PSMs 
P07437 Tubulin beta chain  259 

P68371 Tubulin beta-2C chain  249 

Q13885 Tubulin beta-2A chain  229 

Q9BVA1 Tubulin beta-2B chain  225 

P68363 Tubulin alpha-1B chain  194 

P04350 Tubulin beta-4 chain  188 

Q9BQE3 Tubulin alpha-1C chain  188 

Q71U36 Tubulin alpha-1A chain  183 

P21333 Filamin-A  182 

Q15233 Non-PU domain-containing octamer-binding protein  176 

E7EUY0 Uncharacterized protein  168 

Q13509 Tubulin beta-3 chain  167 

P08670 Vimentin  158 

Q13748 Tubulin alpha-3C/D chain  155 

Q9BUF5 Tubulin beta-6 chain  149 

P07355 Annexin A2  149 

P04406 Glyceraldehyde-3-phosphate dehydrogenase  149 

P02545 Prelamin-A/C  147 

P14866 Heterogeneous nuclear ribonucleoprotein L  146 

A8MUB1 Tubulin, alpha 1 (Testis specific), isoform CRA_a  138 

P68104 Elongation factor 1-alpha 1  138 

P08107 Heat shock 70 kDa protein 1A/1B  137 

O43707 Alpha-actinin-4  131 

Q14315 Filamin-C  127 

Q3BDU5 Rhabdomyosarcoma antigen MU-RMS-40.12  120 

P11142 Heat shock cognate 71 kDa protein  118 

P12814 Alpha-actinin-1  116 

P23246 Splicing factor, proline- and glutamine-rich  113 

Q5TCI8 Lamin A/C  112 

Q9Y490 Talin-1  111 

Q92616 Translational activator GCN1  110 

P08238 Heat shock protein HSP 90-beta  106 

P14618 Pyruvate kinase isozymes M1/M2  106 

B3KPW9 Tubulin, alpha 8, isoform CRA_b  104 

P04264 Keratin, type II cytoskeletal 1  103 

A6NMY6 Putative annexin A2-like protein  101 
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The protein list above SILAC ratio 1.0 was cross-referenced against the PFL for 

any matches of non-specific proteins. The parameters included U2OS cells and 

agarose gel matrix. Proteins that matched were excluded as non-specific 

interactions. The proteins that remained and were not excluded were considered 

for further analysis (Table 3.2 and Table 3.3). 

 

Some SILAC proteins were only identified from the heavy labelled Zta extract and 

these were attributed a SILAC ratio of 100.0. The proteins that were only 

identified in the heavy labelled hisZta pull down were then ranked by PSM value 

(Table 3.2). Transfected hisZta was only identified in this sample and not in the 

control sample, which is to be expected. The PSM value for hisZta was 24 and 

was the most abundant protein only identified in the hisZta transfected sample 

(Table 3.2).  

 

The protein list was investigated for each protein and each accession number 

searched within the UniProt database. Proteins with transcriptional function were 

initially targeted for potential further analysis, as the cell line studied here is EBV 

negative. Zta may be interacting with other transcription factors and forming 

transcriptional complexes, in addition to interactions contributing to replication 

function. 

 

The majority of the proteins that were identified only had one peptide attributed 

to them. These proteins were identified to only be in the hisZta pull down sample. 

The program that processes the raw mass spectrometry data has based the 

identification of these proteins on one peptide identified. 
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Table 3.2 SILAC proteins only identified from the heavy labelled Zta pull down sample with 
an attributed ratio of 100.0. These proteins including hisZta, were identified only from the pull 
down sample containing hisZta. This indicates that these cellular proteins may have an interaction 
with hisZta. 

 
  

Accession Description # PSM
SILAC 

Ratio

hisZta sp|hisZta|HisZta 24 100.0

Q9P2P6 StAR-related lipid transfer protein 9 2 100.0

Q99797 Mitochondrial intermediate peptidase 2 100.0

Q96NJ3 Zinc finger protein 285 2 100.0

Q9BWV3 Cytidine and dCMP deaminase domain-containing protein 1 1 100.0

Q8TCF0 LBP protein 1 100.0

Q8NI99 Angiopoietin-related protein 6 1 100.0

Q8IYK2 Coiled-coil domain-containing protein 105 1 100.0

Q8IXL1 ELK4, ETS-domain protein (SRF accessory protein 1) 

(Fragment) 

1 100.0

Q8IWJ2 GRIP and coiled-coil domain-containing protein 2 1 100.0

Q7L0J3 Synaptic vesicle glycoprotein 2A 1 100.0

Q6P4Q7 Metal transporter CNNM4 1 100.0

Q5T2Q4 Cyclin-Y-like protein 2 1 100.0

Q587J7 Tudor domain-containing protein 12 1 100.0

Q14573 Inositol 1,4,5-trisphosphate receptor type 3 1 100.0

P36575 Arrestin-C 1 100.0

B7ZLE7 DAPK1 protein 1 100.0

B4DS81 cDNA FLJ57186, highly similar to ARF GTPase-activating 

protein GIT1 

1 100.0
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Two proteins only identified from the hisZta pull down sample were initially 

considered for further analysis after their functions were assessed. The proteins 

chosen for further analysis were ZNF285 and ELK4. 

 

ZNF285 is a nuclear zinc finger (ZNF) transcription factor. The ZNF family is a 

diverse group of proteins that have many cellular functions (Laity et al. 2001). 

ZNF285 may play a role in transcriptional regulation and bind DNA. Zinc finger 

proteins have been shown to be essential for EBV lytic replication as previously 

stated in Chapter 1, ZBP89 is also known as ZNF148, which is essential for lytic 

replication (Baumann et al. 1999). 

 

ELK4 is also known as ETS-domain protein (E26 transformation-specific) or SRF 

accessory protein 1. ETS factors can act as transcriptional activators or 

repressors (Sharrocks 2001). ETS factors do interact with other proteins to 

facilitate DNA binding (Verger & Duterque-Coquillaud 2002). ELK4 has also been 

demonstrated to interact with BRCA1 (Chai et al. 2001). These two proteins were 

considered with other potential proteins outlined below. 

 

Proteins identified with a SILAC ratio of above 1.0 could be considered to be 

making an interaction with Zta, a minimum threshold SILAC ratio of 1.2 was 

chosen as a baseline to start investigation of cellular proteins that may interact 

with hisZta (Table 3.3). Proteins that returned a SILAC ratio greater than 1.2 were 

ordered here by SILAC ratio. 
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Table 3.3 SILAC proteins identified with an attributed ratio greater than 1.2. An increase in 

SILAC ratio indicates a possible interaction with Zta. 

 
  

Accession Description Zta/Control 
Zta/Control 

Count 

Q9P2X0 Dolichol-phosphate mannosyltransferase subunit 3  2.68 1 

O15360 Fanconi anemia group A protein  2.59 1 

Q9NZ45 CDGSH iron-sulfur domain-containing protein 1  1.85 1 

Q8IYB3 Serine/arginine repetitive matrix protein 1  1.84 2 

P50895 Basal cell adhesion molecule  1.82 1 
Q8NBT2 Kinetochore protein Spc24  1.52 2 
O60885 Bromodomain-containing protein 4  1.52 6 
A2RRP1 Neuroblastoma-amplified sequence  1.48 1 
Q86SK9 Stearoyl-CoA desaturase 5  1.47 2 
Q96FZ7 Charged multivesicular body protein 6  1.45 1 

Q07954 Prolow-density lipoprotein receptor-related protein 1  1.44 1 

Q9H9T3 Elongator complex protein 3  1.42 2 

P52948 Nuclear pore complex protein Nup98-Nup96  1.42 5 

P10586 Receptor-type tyrosine-protein phosphatase F  1.40 1 

P98172 Ephrin-B1  1.34 2 
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The protein list was investigated and each accession number searched within the 

UniProt database. Again, proteins with transcriptional function were initially 

targeted for potential further analysis, as the cell line studied here is EBV 

negative. Zta may be interacting with other transcription factors and forming 

transcriptional complexes, in addition to interactions contributing to replication 

function. Also possible replication factors were considered. Three more proteins 

with a SILAC ratio between greater than 1.2 were therefore considered for further 

analysis. 

 

Fanconi anaemia complementation group A protein (FANCA) is a DNA repair 

protein. This protein had a SILAC ratio of 2.59. The FANC group of proteins are 

recognised to play a role in post-replication repair of DNA. The FANCA protein 

interacts with members of the FANC family and also BRCA1 (Folias et al. 2002). 

 

Bromodomain-containing protein 4 (BRD4) is a member of the bromodomain and 

extra terminal domain family (Zeng & Zhou 2002). This protein had a SILAC ratio 

of 1.52. BRD4 can act to remodel chromatin has been shown to promote gene 

transcription through protein interactions aiding RNA polymerase II (Itzen et al. 

2014), as well as being essential for some DNA virus replication (Wang et al. 

2012). 

 

Elongator complex protein 3 (ELP3) is a histone acetyltransferase subunit of RNA 

Polymerase II and may be able to remodel chromatin (Hawkes et al. 2002). This 

protein had a SILAC ratio of 1.42. ELP3 also regulates the transcription of the 

HSP70 gene (Han et al. 2007; Li et al. 2011). 

 

Antibodies were purchased from AbCam and western blots of pull downs 

between control and hisZta transfected samples were performed. This attempted 

to try to assess whether the proteins interact with Zta.  
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3.2.4 Attempt to identify host protein interactions with Zta. 
 

The investigation of the proteins chosen for follow up analysis was repeated 

several times using multiple transfections for both EBV negative U2OS cells and 

EBV positive HEK293-BZLF1-KO cells. The HEK293 EBV positive cells contain 

the EBV genome that does not contain the BZLF1 gene, therefore lytic cycle is 

only possible with transfection with Zta (Feederle et al. 2000). Pull down assays 

were repeated using cell extracts from these cells after confirmation that Zta was 

expressed by western blot and Zta initiated the lytic cycle by qPCR. 

 

The replication activity of hisZta in HEK293-BZLF1-KO cells was assessed after 

transfection using a qPCR assay, before being used in a pull down for EBV 

positive cells. HEK293-BZLF1-KO cells were harvested after 96 hours after 

transfection of empty vector or hisZta. Zta initiates lytic replication of the EBV 

genome. A sample of cells was used for a western blot to confirm the expression 

of transfected hisZta and to check actin expression levels (Figure 3.18A). 

Genomic DNA was extracted from harvested cells and this was processed for 

qPCR analysis. 

 

A qPCR assay was performed for new viral copy numbers after DNA replication. 

This was measured using primers for the viral DNA polymerase gene BALF5. 

Primers for β-globin were used to standardise the samples. A control transfection 

detected the baseline EBV genome present. A transfection with hisZta led to lytic 

replication, an increase in the level of EBV genome (Figure 3.18B). 

 

The qPCR results confirmed that lytic replication was initiated upon hisZta 

transfection. These cells were used for subsequent pull down assay after lysis 

with cell lytic buffer with benzonase. 
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Figure 3.18 HEK293-BZLF1-KO transfection and qPCR of EBV genome load. HEK293-
BZLF1-KO were transfected with empty vector or hisZta. After 96 hours cells were lysed in cell 
lytic reagent or genomic DNA extracted. A Western blot of actin and hisZta expression. The 
proteins were separated by SDS-PAGE and a western blot for Zta performed. The antibody used 
here was BZ1. B Quantitative Real Time PCR (QPCR) was used to detect the presence of the 

EBV genome and beta-globin. Results were standardised by the amount of betaglobin present。
qPCR repeated in triplicate and the standard error displayed between the experiments. 
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A hisZta pull down with elution was performed to investigate if there is a FANCA 

interaction with hisZta first using transfected U2OS extracts. Fanconi Anemia 

Complementation Group A (FANCA) protein had a SILAC ratio of 2.59. The 

predicted band size of FANCA is 130kDa. In U2OS cells, the antibody recognizes 

3 prominent bands in both control and hisZta input, none of which are in this 

range, with multiple bands at various molecular weights (Figure 3.19A). Two of 

these protein bands were detected in both the control and Zta pull down sample 

between 39kDa and 64kDa using the FANCA antibody (Figure 3.19A). A repeat 

of the pull downs were performed using HEK293-BZLF1-KO cells that were also 

transfected with hisZta (Figure 3.19B). Four distinct bands were identified in both 

control input and pull down sample input between 64Kda and 28kDa, none of 

these were at the expected molecular weight.  

 

In addition, one band was seen in the control and Zta pulldown that corresponds 

with a FANCA detected band (Figure 3.19B). This unique protein band was 

detected in the Zta pull down sample between 64kDa and 51kDa. This band is 

not present in the control pull down. Many bands recognised by the antibody not 

at the predicted protein molecular weights, the epitope for the antibody was 

investigated. 
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Figure 3.19 Histidine-tag Zta pull down for FANCA using transfected EBV negative and 
EBV positive cell extracts. Cells were transfected control or Zta vector. After 72/96 hours cells 
were lysed in cell lytic reagent. 100μl of supernatant was added to 25μl of HIS-select gel (Sigma) 
and bound at room temperature (RT). After washing, agarose was mixed 1:1 with Sample buffer 
and run on a protein gel for a western blot. Antibodies (ab5063) for FANCA and BZ1 for Zta. A 
U2OS cells B HEK293-BZLF1-KO cells 
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Figure 3.20 BLASTP search using UniProtKB database against the FANCA epitope 
recognised by the antibody. The amino acid sequence corresponding to amino acids 995 - 
1009 of Human FANCA was used in a BLASTP search against the homo sapien UniProtKB 
database (release 2015_08 of 22-Jul-2015). Three proteins were returned that had a match on 
the amino acid epitope sequence recognised by the antibody. Graphical overview of the matches 
on query sequence and location of the epitope match on the protein sequence 

 

 
 
 
 

 
Table 3.4 Proteins identified from the BLASTP search of FANCA amino acid sequence 
(995aa – 1009aa) epitope. 

 

 

 

 

 

 

 

Accession Description kDa Length (aa)

H3BS84 Fanconi anemia group A protein (Fragment) 20.6 182

O15360-3 Isoform 3 of Fanconi anemia group A 159 1424

O15360 Fanconi anemia group A protein 163 1455
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A BLASTP search was performed to compare a protein query sequence against 

a protein sequence database. The epitope amino acid sequence recognized by 

the chosen antibodies was searched against the UniProtKB database (Figure 

3.20). The amino acids 995-1009 of FANCA contain the epitope of where the 

antibody recognizes. The BLASTP search returned three proteins with an exact 

match for the query amino acid sequence recognised by the antibody (Figure 

3.20). One of these proteins (FANCA_HUMAN) was the reported protein 

recognized by the antibody, O15360 at 163kDa. The location of the epitope 

match on the protein sequence is also displayed. The three proteins were ordered 

with their amino acid sequence length from smallest to largest, as found in Figure 

3.20 using the UniProt database for the proteins identified from the BLASTP 

search (Table 3.4). The other two proteins returned include a fragment and also 

an isoform of FANCA. Isoform O15360-3 molecular weight is 159kDa; H3BS84 

molecular weight is 21kDa. 

 

By using these molecular weights of the proteins as a potential guide, cross-

referencing against the western blot for the U2OS and HEK293-BZLF1-KO 

extract pull downs would indicate if the antibody may be binding to other epitopes 

located within proteins. The bands on both western blots do not match with these 

reported molecular weights. 
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A hisZta pull down with elution was performed to investigate if there is a BRD4 

interaction with hisZta first using transfected U2OS extracts. BRD4 had a SILAC 

ratio of 1.53.  The predicted band size for BRD4 is 152kDa. In U2OS cells, two 

distinct bands were identified using the BRD4 antibody both pull down samples 

(Figure 3.21). Being the highest most dominant band this band between 191kDa 

and 97kDa this was taken as BRD4.  

 

Two distinct bands were identified in both control and pull down sample using the 

BRD4 antibody. There is more BRD4 present in the hisZta gel sample than the 

control pull down sample (Figure 3.21A). The upper band is located between 

191kDa and 97kDa and this was quantitated. The quantitative value given by 

ImageStudio (Li-cor) for the upper band in the control gel sample was 0.429 and 

in the Zta pull down sample was 1.02. This was a fold change of 2.4. The SILAC 

ratio for BRD4 was 1.53. 

 

Investigating BRD4 in EBV positive cells was also performed. Only one distinct 

band was identified in both control and pull down gel sample between 191kDa 

and 97kDa (Figure 3.21B). There is more BRD4 present in the control gel sample 

than the Zta pull down sample in this pull down. 

 

As a lower molecular weight band was also observed (Figure 3.21A), a BLASTP 

search was performed to compare a protein query sequence against a protein 

sequence database as outlined before for FANCA antibody. The amino acids 

150-250 of BRD4 contain the epitope that the antibody recognizes. The epitope 

amino acid sequence recognized by the BRD4 antibody was searched against 

the UniProtKB database. The BLASTP search returned nine proteins with an 

exact match for the amino acid sequence (Figure 3.22). One of these proteins 

was the reported protein recognized by the antibody (BRD4_HUMAN). The other 

proteins returned include fragments and also isoforms of varying sequence length 

and molecular weights, which are displayed with the amino acid sequence length 

(Table 3.6). 
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Figure 3.21 Histidine-tag Zta pull down for BRD4 using transfected EBV negative and EBV 
positive cell extracts. Cells were transfected control or Zta vector. After 72/96 hours cells were 
lysed in cell lytic reagent. 100μl of supernatant was added to 25μl of HIS-select gel (Sigma) and 
bound at room temperature (RT). After washing, all samples were then mixed 1:1 with protein 
sample buffer and run on a protein gel. This was western blotted with BZ1 for Zta and BRD4 
antibodies. A U2OS cells B HEK293-BZLF1-KO cells 
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Figure 3.22 BLASTP search using UniProtKB database against the BRD4 epitope 
recognised by the antibody. The amino acid sequence corresponding to Human BRD4 aa 150-
250 was used in a BLASTP search against the homo sapien UniProtKB database (release 
2015_08 of 22-Jul-2015). Nine proteins were returned that had a match on the amino acid epitope 
sequence recognised by the antibody. 

 

 
 
 

 
Table 3.5 Proteins identified from the BLASTP search of BRD4 amino acid sequence 
(150aa-250aa) epitope 

 
 
 
 
 
 

Accession Description kDa Length (aa) 

O60885 Bromodomain-containing protein 4 152 1362 

Q6PIS5 BRD4 protein (Fragment) 61 548 

Q6NXE4 BRD4 protein (Fragment) 61 548 

Q05BM2 BRD4 protein (Fragment) 61 549 

Q5BJ26 BRD4 protein (Fragment) 61 550 

M0QZD9 Bromodomain-containing protein 4 63 572 

A0A024R7H8 Bromodomain containing 4, isoform CRA_b 88 794 

O60885-3 Isoform B of Bromodomain-containing protein 4 88 794 

O60885-2  Isoform C of Bromodomain-containing protein 4 80 722 
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By using these molecular weights of the proteins as a potential guide, cross-

referencing against the western blot in Figure 3.21 would indicate if the antibody 

binds to other proteins containing the epitope recognised by the antibody.  

 

The upper band on the western blot is between 191kDa and 97Kda for both U2OS 

cells and HEK293-BZLF1-KO cells. The only protein within this molecular range 

is the reported BRD4 protein at 152kDa; therefore this protein band may be most 

likely to be BRD4 detected by the antibody. This may indicate an interaction, but 

BRD4 binds to the control affinity gel. 

 

The lower band on the western blot is between 97kDa and 64kDa for both U2OS 

cells and HEK293-BZLF1-KO cells. Three proteins that match this molecular 

weight are shown (Table 3.6). These include isoform CRA_b of BRD4 

(A0A024R7H8) at 88kDa, Isoform B of BRD4 (O60885-3) at 88kDa and Isoform 

C of BRD4 (O60885-2) at 80kDa. Therefore, these may be variants of BRD4 

observed by the antibody (Table 3.6). 

 

A hisZta pull down with elution was performed to investigate if there is an ELK4 

interaction with hisZta first using transfected U2OS extracts. ELK4 had a SILAC 

ratio of 100.0 therefore the protein should be only in the Zta pull down sample. 

The predicted band size is 40kDa for ELK4.  In U2OS cells, one distinct band 

was identified using the ELK4 antibody that was not the predicted molecular 

weight. The band recognised by the antibody was above 97kDa (Figure 3.23A). 

The protein hisZta bound to the gel. 

 

Investigating ELK4 in EBV positive cells was performed and only one distinct 

band was identified in both control and pull down sample as seen in U2OS cells. 

No bands were detected in the pull down here (Figure 3.23B). Protein bands 

corresponding to ELK4 were not readily detected in both the control and Zta pull 

down sample. The protein hisZta bound to the gel. 
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Figure 3.23 Histidine-tag Zta pull down for ELK4 using transfected EBV negative and EBV 
positive cell extracts. Cells were transfected control or Zta vector. After 72/96 hours cells were 
lysed in cell lytic reagent. 100μl of supernatant was added to 25μl of HIS-select gel (Sigma) and 
bound at room temperature (RT). After washing, all samples were then mixed 1:1 with protein 
sample buffer and run on a protein gel. This was western blotted with ELK4 antibodies and BZ1 
for Zta. A U2OS cells B HEK293-BZLF1-KO cells 
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Figure 3.24 BLASTP using UniProtKB database against the ELK4 epitope recognised by 
the antibody. The region corresponding to internal sequence amino acids 382-431 of Human 
ELK4 (NP_689567) was used in a BLASTP search against the Homo sapiens UniProtKB 
database (release 2015_08 of 22-Jul-2015). Three proteins were returned that had a match on 
the amino acid epitope sequence recognised by the antibody. 

 
 

 
Table 3.6 Proteins identified from the BLASTP search of ELK4 amino acid sequence 
epitope 

  

Accession Description kDa Length (aa)

A0A024R9C2 ELK4, ETS-domain protein 47 431

P28324 ETS domain-containing protein 47 431

Q8IXL1 ELK4, ETS-domain protein 56 521
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The amino acids 382-431 of ELK4 are the site of epitope of where the antibody 

recognizes. The BLASTP search returned three proteins with an exact match for 

the amino acid sequence (Figure 3.24). One of these proteins was the reported 

protein recognized by the antibody (ELK4_HUMAN). The other proteins returned 

include isoforms that were 47kDa and 56kDa that also do not correspond to the 

band seen between 191kDa and 97kDa. 

 

A hisZta pull down was performed to investigate if there is an interaction between 

hisZta for ELP3 first using transfected U2OS extracts. ELP3 had a SILAC ratio of 

1.42. The predicted band size is 62kDa for ELP3. Protein bands corresponding 

to the molecular weight of ELP3 were detected in both the control and Zta pull 

down sample input (Figure 3.25). In addition, multiple bands were identified here 

in the sample 

 

In U2OS cells, protein bands corresponding a band at about 62kDa (between 

64kDa and 51kDa) were detected in both the control and Zta pull down sample 

input. The protein hisZta did bind to the gel and a band between 64kDa and 

51kDa was demonstrated in the hisZta pull down only using the ELP3 antibody 

(Figure 3.25A) 

 

Investigating ELP3 in EBV positive cells was also performed. Three distinct 

bands were identified in both control and pull down sample. No bands were 

detected in the pull down here. The protein hisZta bound to the gel (Figure 3.25B). 

 

The amino acids 240-445 of ELP3 contain the epitope of where the antibody 

recognizes. The BLASTP search returned seven proteins with an exact match for 

the amino acid sequence (Figure 3.26). One of these proteins was the reported 

protein recognized by the antibody (ELP3_HUMAN). The other proteins returned 

include isoforms of ELP3. By using these molecular weights of the proteins as a 

potential guide, these were cross-referenced against the western blot in Figure 

3.25. 
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Figure 3.25 Histidine-tag Zta pull down for ELP3 using transfected EBV negative and EBV 
positive cell extracts. Cells were transfected control or Zta vector. After 72/96 hours cells were 
lysed in cell lytic reagent. 100μl of supernatant was added to 25μl of HIS-select gel (Sigma) and 
bound at room temperature (RT). After washing, all samples were then mixed 1:1 with protein 
sample buffer and run on a protein gel. This was western blotted with BZ1 for Zta and ELP3 
antibodies. A U2OS cells B HEK293-BZLF1-KO cells 
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Figure 3.26 BLASTP seacrh using UniProtKB database against the ELP3 epitope 
recognised by the antibody. The amino acid sequence corresponding to a region within amino 
acids 240 - 445 of Human Elp3 (NP_060561) was used in a BLASTP search against the homo 
sapien UniProtKB database (release 2015_08 of 22-Jul-2015). Seven proteins were returned that 
had a match on the amino acid epitope sequence recognised by the antibody. 

 
 

 

 
Table 3.7 Proteins identified from the BLASTP search of ELP3 amino acid sequence (240aa 
– 445aa) epitope 

 
 

 

Accession Description kDa Length (aa)

Q9H9T3-4 Isoform 3 of Elongator complex protein 3 49 428

B4DXV1 cDNA FLJ58642, highly similar to Homo sapien ELP3 48 418

B4DPB7 cDNA FLJ58601, highly similar to Homo sapien ELP3 52 455

Q9H9T3-5 Isoform 4 of Elongator complex protein 3 52 455

B4DKA4 Elongator complex protein 3 54 475

Q9H9T3-2 Isoform 2 of Elongator complex protein 3 61 533

Q9H9T3 Elongator complex protein 3 62 547
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The band identified between 64kDa and 51kDa (Figure 3.25A and B) may be one 

of 5 proteins with the identical epitope recognised by the antibody (Table 3.7). 

This is most likely to be ELP3 (Q9H9T3), the protein identified by the antibody at 

62kDa. This band is only present in the Zta pull down in U2OS cells (Figure 

3.25A), this may indicate an interaction with Zta but this is not present in HEK293-

BZLF1-KO cells. The band between 51kDa and 39kDa (Figure 3.25A, Figure 

3.25B) may correspond to the proteins with 49KDa or 48KDa (Table 3.7). 

 

A hisZta pull down was performed to investigate if there is an interaction between 

hisZta for ZNF285 using transfected U2OS extracts. ZNF285 had a SILAC ratio 

of 100.0. Therefore there should be only in the Zta pull down sample. The 

predicted band size is 68kDa for ZNF285. 

 

Three distinct bands were identified using the ZNF285 antibody, as well as other 

non-specific bands in the control and hisZta input (Figure 3.27) Although hisZta 

binds to the nickel affinity gel, there are no bands recognised by the ZNF285 

antibody (Figure 3.27). 

 

The amino acids 288-337 of ZNF285 contain the epitope of where the antibody 

recognizes. The BLASTP search returned five proteins with an exact match for 

the amino acid sequence (Figure 3.28). One of these proteins was the reported 

protein recognized by the antibody (ZNF285_HUMAN). The other proteins 

returned include fragments and also isoforms of varying sequence length and 

molecular weights. Again, these proteins were collated with their amino acid 

sequence length, as found in Figure 3.27 using the UniProt database for the 

proteins identified from the BLASTP search (Table 3.8). 

 

A ZNF285 isoform Q96NJ3-2 has a molecular weight of 50kDa. Another ZNF285 

isoform Q6B0D6 has a molecular weight of 51kDa. One of these proteins may be 

the protein band observed by the antibody between 51kDa and 39kDa (Figure 

3.27). 
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Figure 3.27 Histidine-tag Zta pull down for ZNF285 using transfected EBV negative cell 
extracts. U2OS cells were transfected control or Zta vector. After 72 hours cells were lysed in 
cell lytic reagent. 100μl of supernatant was added to 25μl of HIS-select gel (Sigma) and bound at 
room temperature (RT). After washing, all samples were then mixed 1:1 with protein sample buffer 
and run on a protein gel. This was western blotted with BZ1 for Zta and ZNF285 antibodies. 
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Figure 3.28 BLASTP search using UniProtKB database against the ZNF285 epitope 
recognised by the antibody. The region corresponding to internal sequence amino acids 288-
337 of Human ZNF285 (NP_689567) was used in a BLASTP search against the homo sapien 
UniProtKB database (release 2015_08 of 22-Jul-2015). Five proteins were returned that had a 
match on the amino acid epitope sequence recognised by the antibody. 

 

 

 
Table 3.8 Proteins identified from the BLASTP search of ZNF285 amino acid sequence 
(288aa - 337aa) epitope 

 

 

 

 

Accession Description kDa Length (aa)

K7EIK6 Zinc finger protein 285 69 597

Q96NJ3 Zinc finger protein 285 68 590

B7ZLR9 ZNF285A protein (Fragment) 71 614

Q96NJ3-2 Isoform 2 of Zinc finger protein 285 50 435

Q6B0D6 ZNF285A protein (Fragment) 51 446
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 Discussion 

The first obstacle was to extract hisZta from transfected cells successfully for 

further application and investigation. Initially a cell lytic reagent was compared 

against a nuclear extract protocol. There was difficulty in extracting Zta from cells 

while known cellular partners of Zta could be extracted into the supernatant. The 

addition and optimization of benzonase to the cell lysis reagent allowed the 

extraction of Zta to be released into the supernatant. Therefore the ability to 

extract Zta into a suitable buffer for downstream applications was identified. The 

cell lytic reagent supernatant that was created was compatible with the nickel 

affinity gel, and this allowed the establishment of binding of the histidine tagged 

protein from the cell lysate 

 

After the successful extraction of Zta from transfected cells it was determined 

whether hisZta could bind to the nickel affinity gel (Figure 3.8). This attempt to 

bind hisZta to an affinity gel in its native form was accomplished. Histidine has a 

high affinity for immobilized metal ions including nickel. Poly-histidine tagged Zta 

was demonstrated to bind to the gel using the incubation period and wash buffers, 

and the investigation of non-specific binding was important for the determination 

of interacting partners (Figure 3.10). The addition of imidazole minimized actin 

binding to the gel as imidazole also prevents non-specific binding of proteins to 

the affinity gel (Porath 1992).  

 

The NaCl concentration was investigated as salt concentration affects the ionic 

strength and the binding of non-specific proteins to the affinity gel by minimizing 

hydrophobic interactions with the gel matrix (Bornhorst & Falke 2000). The 

conditions to find the optimal binding for Zta was established with the use of 

300mM of NaCl and 20mM of imidazole in the wash buffer (Figure 3.11). These 

conditions were taken forward for hisZta to bind to the nickel affinity gel and non-

specific binding of proteins minimized. 

 

An attempt to identify novel interacting partners of Zta was performed using 

SILAC affinity purification. EBV negative cells were labelled with SILAC light 

media (R0K0) and SILAC medium media (R6K4) before being transfected with 
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control and hisZta expression vectors respectively. Protein extracts of these cells 

were produced from the extraction method outlined and the extracts were applied 

to the nickel affinity gel under the binding conditions established. The gel bound 

proteins were boiled from the gel and sent for mass spectrometry at the University 

of Bristol to allow a proteomics analysis of possible protein interactions. 

Comparing the control extract pull down to the Zta extract pull down allowed the 

quantitation of proteins identified from the pull down. The data returned from the 

University of Bristol Proteomics facility indicated an abundance of proteins with 

potential interactions with hisZta. These proteins were filtered against the user 

submitted database Protein Frequency Library (PFL) (Boulon et al. 2010). This 

filtered non-specific proteins that have been shown to bind to affinity matrices and 

remove contaminants. This allows SILAC pull down assays to identify lower 

abundant or less tightly bound protein complexes that may be overlooked in the 

background of non-specific binding. 

 

This allowed a quantification of host proteins that had a high abundance in the 

Zta pull down sample. The large dataset returned from the mass spectrometry 

analysis did display many proteins of interest that may have potential interactions 

with Zta. These proteins had an increased SILAC ratio in the Zta pull down; Zta 

may be interacting with these proteins. 41 proteins were only identified in the Zta 

pull down sample which included Zta itself. 197 proteins had a SILAC ratio above 

1.2, which indicates that Zta is forming an interaction or is part of a larger 

complex. Both sets of these higher quantitated proteins were considered for 

further investigation, taking into account their SILAC ratio, PSM number, and 

medium to light peptide count. Proteins with interesting functional properties were 

also considered within these categories. 

 

Zta interacts with a number of cellular proteins, and these interactions have been 

published. The dataset was searched for these published interactions and only a 

few of these proteins were identified within the dataset. They were not abundant 

in the Zta pull down. DNA topoisomerase I and RecQL1 can associate with Zta 

(Wang 2009) but DNA topoisomerase I and RecQL1 had SILAC ratios of 0.924 

and 0.660 respectively. The proteomic pull down assay here could not indicate 

this interaction. 
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The proteins of interest that remained in the data were investigated in further pull 

down experiments using specific antibodies. The proteins chosen for further 

study were FANCA, BRD4, ELP3, ELK4 and ZNF285. Repeated pull downs and 

western blots were attempted to confirm these possible protein interactions from 

Zta transfections of either EBV negative cells (U2OS) or EBV positive cells 

(HEK293-BZLF1-KO). 

 

FANCA is a DNA repair protein. There have not been studies on FANCA and the 

contribution to EBV lytic cycle.  FANCA also is known to interact directly with 

RNF8. RNF8 is an ubiquitin-binding protein, and FAAP20 links RNF8-mediated 

ubiquitination to the Fanconi anemia DNA repair network (Yan et al. 2012). A 

recent publication indicates RNF8 colocalises to EBV replication compartments 

(Yang et al. 2015). It may be possible that a protein complex containing FANCA 

is present in EBV lytic replication compartments. The Fanconi anemia pathway 

is linked to the activation of the ATM pathway (Yamamoto et al. 2008). Fanconi 

anemia (FA) pathway maintains genomic stability, and ATM and FA genes 

function in parallel for genome stability (Kennedy et al. 2007). ATM has also been 

induced by Zta alone, prior to EBV replication (Wang’ondu et al. 2015). DNA 

damage response (DDR) activation markers were induced even in the absence 

of EBV lytic replication compartments and γH2AX induction was necessary for 

optimal expression of early EBV genes. This suggests that markers of DDR are 

activated in this microenvironment of viral gene expression (Wang’ondu et al. 

2015). It may be possible that Zta interacts with FANCA and recruits this factor 

for viral genome replication or viral gene expression. A hisZta pull down for the 

interaction of FANCA returned an observed band in the hisZta sample pull down, 

not seen in the control pull down (Figure 3.19B). The molecular weight was 

between 64kDa and 51kDa. This band was not at the expected molecular weight 

of FANCA, therefore the isoforms and variants of the target proteins were 

investigated. 

 

BRD4 is a chromatin reader that can recognise acetylated histones. BRD4 has 

been investigated as being important for DNA virus replication. BRD4 plays a key 

role in Merkel cell polyomavirus DNA replication (Wang et al. 2012). Recruitment 
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of BRD4 to the human papillomavirus type 16 DNA replication complex is 

essential for replication of viral DNA (Wang et al. 2013). It has not been shown if 

BRD4 plays a role in EBV lytic cycle. EBV can already interact and utilize BRD4 

in latency. The EBNA1 protein of Epstein-Barr virus functionally interacts with 

BRD4; BRD4 localises to the FR enhancer regulated by EBNA1 and aids the 

transcription of other EBV latency genes (Lin et al. 2008). Also KSHV latency-

associated nuclear antigen 1 (LANA-1) plays a role in G1 cell cycle arrest and 

interacts directly with BRD4 (Ottinger et al. 2006) (Ottinger 2006). BRD4 is also 

recruited to latent Cp, and is required for EBNA2 –activated transcription 

(Palermo et al. 2011) 

 

BRD4 reproducibly observed two higher molecular weight bands and the upper 

band was between 191kDa and 97kDa, the molecular weight range for BRD4 

(152kDa). There were bands in the control pull down sample; therefore this 

protein could not be indicated as an interaction with Zta by pull down analysis. 

As seen in Figure 3.19 for FANCA and Figure 3.21 for BRD4, the protein bands 

observed by the antibody were in high abundance in the control pull down gel. 

The upper molecular weight band observed using the BRD4 antibody in Figure 

3.21A was in higher abundance in the hisZta pull down sample than the control 

sample. This may point towards Zta being the factor for a greater abundance of 

BRD4 in this sample. 

 

ELP3 is a catalytic histone acetyltransferase subunit elongator protein and this 

subunit was purified and characterized as part of the human elongator complex 

(Hawkes et al. 2002). The subunit aids transcription by directly interacting with 

RNA polymerase II. ELP3 displays an observed band between 64kDa and 51kDa 

(Figure 3.25A and B), ELP3 molecular weight is 62kDa. There was a band 

observed only in the EBV negative Zta pull down sample (Figure 3.25A), but this 

could not be confirmed in the EBV positive Zta pull down sample (Figure 3.25B). 

 

ZNF285 may play a role in transcriptional activation. A zinc finger protein ZBP89 

is essential for lytic replication (Baumann et al. 1999). ZNF285 could not be 

confirmed in this study. ELK4 is a member of the Ets family of transcription 

factors. This accessory protein has been shown to bind to c-fos serum response 
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elements (SREs), recruited by serum response factor (Dalton 1992 Cell). ELK4 

could not be confirmed in this study. The pull downs and western blot 

investigation of ELK4 returned inconclusive results. The protein observed by the 

antibody was not at the expected molecular weight, and the isoforms that 

contained the same epitope region recognized by the antibody did not match this 

molecular weight either. 

 

The antibodies utilized to observe the proteins of interest detected multiple bands 

within the input samples. For FANCA, ELK4 and ZNF285 the protein bands 

observed were not at the molecular weight expected. The epitope of the 

antibodies were explored. 

 

BLASTP searches of the epitope that the antibody recognizes allowed a 

comparison of proteins sharing this same epitope. Most of these proteins were 

isoforms and variants at varying molecular weights. Some of the protein bands 

that the antibody observed were at the molecular weights of some isoforms. From 

the UniProt BLAST search these included BRD4 isoforms (Table 3.6), may be 

recognized between 97kDa and 64kDa in Figure 3.21. For ELP3 bands observed, 

the band between 51kDa and 39kDa (Figure 3.25A, Figure 3.25B) may 

correspond to the proteins with 49KDa or 48KDa (Table 3.5).  

 

A major issue that was apparent through many pull down attempts was the 

protein of interest would have a non-specific attraction for the nickel affinity gel. 

Although BRD4 and ELP3 did include bands observed by the antibody that were 

of the expected molecular weights. 

 

The limitations of this study included the observation of multiple bands and non-

specific binding of the proteins of interest to the nickel affinity gel. Although some 

protein interactions show promise, these could not be shown in confidence. The 

majority of western blots repeats were inconclusive to assess if the interactions 

were true. Zta would also bind to the nickel affinity gel but was inconsistent 

between assays. The particular antibodies would detect bands at varying 

molecular weights for FANCA, BRD4, ELP3, ELK4 and ZNF285. 
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It was decided that to further investigate novel protein interactions then another 

method would be attempted in Chapter 4. In order to indicate an interaction 

between Zta and the cellular proteins the issue of non-specific protein interactions 

with the nickel agarose gel needs to be addressed. The variability of the histidine 

tagged Zta binding to the nickel affinity column and sensitivity of detection was 

reflected upon. An adaptation of the pull down method was also considered.  

 

Established ChIP conditions allow cross-linking of cellular proteins and DNA 

before being precipitated. This approach was explored and adapted under 

denaturing conditions for further investigation of novel proteins that may interact 

with Zta. 
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4. Identify novel interacting partners of Zta using 

denaturing conditions 

 Introduction 

The question addressed here was whether novel interaction partners could be 

identified in EBV positive cells using an alternative approach to Chapter 3.  

Histidine tagged Zta was demonstrated to bind to the nickel affinity gel in Chapter 

3, and although some potential interactions were investigated the overall binding 

efficiency of Zta to the gel and non-specific binding was inconsistent. Repeated 

attempts at assessing these protein interactions with Zta were unsuccessful 

although there were indications of these interactions from the proteins examined. 

 

Therefore an alternative investigation into protein-protein interactions was 

applied. Conventional chromatin immunoprecipitation protocols include cross-

linking of proteins to proteins and DNA. Sonication of cross-linked extracts allows 

DNA to be fragmented and sheared into pieces. The proteins in solution remain 

bound to DNA and interacting proteins (Collas 2010). 

 

As the histidine tag located on the N-terminus of Zta may be buried within the 

structure and so impair binding of hisZta to the nickel affinity gel. By denaturing 

cell extracts we propose that the histidine tag would become freely exposed and 

so would be able to bind to the nickel affinity gel (Figure 4.1). 

 

A denaturing method combined with cross-linking of proteins to preserve 

immediate interactions was optimized. The use of formaldehyde, urea, and 

sonication was investigated to extract of proteins from transfected cells. These 

extracts were optimized for binding to the nickel affinity gel in a denatured form. 
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Figure 4.1 hisZta Histidine-tag buried. It is possible to extract hisZta from transfected cells with 
cell lytic reagent (Sigma). The binding efficiency to nickel affinity agarose beads may not be 
efficient between pull downs as the 6-histidine tag may be buried or not exposed. This may impair 
binding of hisZta to the agarose gel. With the addition of 8M urea to the cell lytic reagent, the 
protein extract may be denatured and all proteins including hisZta will be unfolded, exposing the 
histidine-tag. 
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 Results 

4.2.1. Establishing denaturing conditions to extract Zta and interacting 

partners 

The protein hisZta transfected and expressed in HEK293-BZLF1-KO cells will 

initiate the lytic cycle from latency and form transcription and replication 

complexes. It has been determined that transfected hisZta and other cellular 

proteins can be extracted in native form from cells using the cell lytic reagent 

supplemented with benzonase.  However, the binding efficiency to nickel affinity 

gel may not be efficient between pull downs. The histidine tag may be buried or 

not be as exposed each time between extractions and this may impair any binding 

of hisZta to the agarose gel. By denaturing cell extracts then the histidine tag may 

become freely exposed and be able to bind to the nickel affinity gel. 

 

A schematic diagram represents how the histidine tag may be masked by Zta 

itself or by other proteins while in a native complex (Figure 4.1). Denaturing the 

protein extract leads to the loss of the tertiary structure thus exposing the poly-

histidine tag to bind to nickel affinity gel. 

 

An attempt to denature HEK293-BZLF1-KO cell extracts transfected with hisZta 

was performed. The first aim was to identify if the histidine tagged protein could 

bind to the nickel affinity gel in a denatured form. The cell extracts were lysed in 

the cell lytic reagent with benzonase as previously described but the reagent was 

supplemented with 8M urea. The denatured extract was applied to the nickel 

affinity gel and incubated together. Each gel was then washed with the wash 

buffer, containing different concentrations of imidazole between 0 and 50mM and 

the bound proteins were separated by SDS-PAGE (Figure 4.2). The input was 

investigated alongside the gel samples that included the transfected control gel 

and transfected hisZta gel. 
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HisZta was successfully extracted using the cell lytic reagent containing 8M urea, 

as seen in the input. HisZta bound efficiently. We note that actin binds to the gel 

in both the control and hisZta samples here. Previously, it was determined that 

the use of imidazole reduces non-specific binding of proteins to the nickel gel. 

Using 10mM imidazole in the wash buffer removes the non-specific actin binding 

and the other band recognised by the BZ1 antibody in the hisZta sample. 20mM 

imidazole in the wash buffer sees a slightly reduced amount of hisZta bound to 

the gel compared to 10mM imidazole wash. Using 50mM imidazole in the washes 

minimised hisZta binding to the gel, this imidazole concentration may compete 

and elute the protein from the gel. It was determined that hisZta protein binds to 

the nickel affinity gel in a denatured form, while the use of a low concentration of 

imidazole (10mM) in the gel washes minimises non-specific binding of proteins 

as seen by the absence of actin. 

 
 

 

 

 

Figure 4.2 Histidine-tag Zta pull down with denatured extract. HEK293-BZLF1-KO cells were 
transfected with hisZta. After 96 hours cells were harvested and denatured extract produced from 
cell lytic reagent containing 8M urea. 100μl of extract was applied to 20μl of agarose per imidazole 
condition and incubated at room temperature. After varying imidazole concentration in the 
washing, agarose was mixed 1:1 with protein sample buffer and run on a protein gel. The proteins 
were separated by SDS-PAGE and a western blot for Zta and actin performed. The antibodies 
used were BZ1 and anti-actin. 
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4.2.2. Establishing crosslinking  and pull down conditions for denatured 

Zta  

By denaturing cell extracts, all of the protein in the sample will lose its tertiary 

structure and therefore lose the function of protein domains. Therefore protein 

complexes will fall apart as proteins will lose any possible interactions with each 

other. Taking from established ChIP assays where proteins and DNA are cross-

linked, we considered crosslinking proteins within cells before creating denatured 

extracts. This enables the preservation of any interactions between proteins 

through formaldehyde cross-linking. 

 

A schematic diagram of a cross-linked denatured cell extract pull down is 

illustrated (Figure 4.3). HEK293-BZLF1-KO would be transfected with control or 

hisZta and then cross-linked. Cell extracts would be prepared and denatured. 

The extract applied to the nickel affinity gel to bind hisZta and cross-linked 

interacting proteins. Then hisZta and associating proteins would then be eluted 

from the beads for further analysis 
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Figure 4.3 Schematic of denatured cross-linked extract pull down. HEK293-BZLF1-KO cells 
would be transfected with empty vector or hisZta, cross-linked, harvested after 96 hours and then 
denatured extract prepared. The histidine-tagged Zta would be cross-linked to interacting proteins 
and able to freely bind the nickel agarose gel. The non-specific proteins can be washed away 
from the agarose. Elution of the nickel bound hisZta will pull down cross-linked proteins for further 
analysis. NS nonspecific. X interacting protein 
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The cross-linking conditions were adjusted to determine what percentage of the 

cross-linking reagent would be optimal. HEK293-BZLF1-KO cells were 

transfected with hisZta and harvested after 96 hours to initiate EBV lytic 

replication. The cells were cross-linked with 0%, 0.1% or 1% formaldehyde before 

being harvested. The cells were then lysed using the native extract, or denatured 

with cell lytic reagent and 8M urea before protein extract collected. The cross-

linked extracts were applied to nickel affinity gel and attempted to bind hisZta in 

native form or denatured form as a comparison. The input and gel samples were 

separated by SDS-PAGE (Figure 4.4). 

 

Without cross-linking the cells, hisZta can bind to the nickel affinity gel as 

previously demonstrated in Chapter 3, displaying a similar binding profile. The 

native cross-linked extracts were not extracted efficiently here, implying that that 

the crosslinking of proteins impairs extraction. Therefore the amount of hisZta 

that was free to bind the gel was minimal, demonstrated by a lack of binding to 

the nickel affinity gel, possibly by being buried in a complex. 

 

 

 

Figure 4.4 Native vs denatured pull down with varying formaldehyde percentage 
crosslinking. HEK293-BZLF1-KO cells were transfected with hisZta. After 96 hours, cells were 
treated with varying formaldehyde percentages of 0%, 0.1% and 1%. The cells were harvested 
and extract produced either by normal cell lytic reagent conditions or cell lytic reagent containing 
8M urea, to produce native or denatured conditions. Xμl of extract was applied to 25μl of agarose 
and incubated at room temperature. After washing, agarose was mixed 1:1 with protein sample 
buffer and run on a protein gel. The proteins were separated by SDS-PAGE and a western blot 
for Zta and actin performed. The antibody used here was BZ1 and anti-actin 
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By denaturing the extracts, hisZta is readily extracted into the supernatant, as 

seen in the inputs. It is clear that denaturing the extracts allows the release of 

more Zta into supernatant. The protein binds to the nickel affinity gel without any 

crosslinking, and hisZta binds to the gel more readily at 1% cross-linking than 

0.1% cross-linking. It was decided that 1% cross-linking conditions would be used 

for denaturing pull down assays.  

 

Cross-linking cells using 1% formaldehyde and denaturing the extracts were 

taken forward and an optimal elution of hisZta began to be attempted.  The cross-

linked denatured cell extract of HEK293-BZLF1-KO transfected with hisZta was 

applied to nickel affinity gel and an elution was attempted (Figure 4.5A). The 

previous conditions for the pull down were repeated and the bound protein on the 

gel was then washed with 10mM imidazole in the wash buffer. After washing the 

gel, the gel was split into two. One half was mixed 1:1 with 2X sample buffer; the 

other half was subjected to elution with elution buffer containing 250mM 

imidazole. This was performed to try to elute hisZta and interacting proteins from 

the gel using the elution buffer containing a differing pH supplemented with this 

concentration of imidazole. The elution fraction could then be concentrated for 

further analysis, including comparing bound protein against eluted protein  

 

HisZta was extracted from cells as shown previously. This extract bound to the 

nickel affinity gel as shown by analysis of half of the gel (Figure 4.5B). After an 

elution attempt by washing the gel with elution buffer containing 250mM 

imidazole, some of the bound hisZta protein was removed from the gel compared 

to the boiled gel fraction. The eluted hisZta was not present here in the elution 

fraction. 
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Figure 4.5 Cross-linked denatured pull down of histidine-tag Zta. HEK293-BZLF1-
KO cells were transfected with hisZta. After 96 hours, cells were treated with 1% 
formaldehyde. A The cells were harvested and extract produced with cell lytic reagent 
containing 8M urea, to produce extract under denatured conditions. Extract was applied 
to 25μl of agarose and incubated at room temperature. Affinity gel was split into 2 
fractions, one for gel analysis the other elution with one round with 250mM imidazole 
elution. B After washing, elution and gel fractions was mixed 1:1 with protein sample 
buffer and run on a protein gel. The proteins were separated by SDS-PAGE and a 
western blot for Zta performed. The antibody used here was BZ1. 
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After multiple attempts to repeat this method and elute hisZta from the nickel 

affinity gel, the protocol developed was reviewed. Throughout the binding 

procedure of histidine-tagged proteins to nickel affinity gels, imidazole is 

recommended throughout in order to minimize any non-specific binding to the 

gels and to enable the histidine-tagged protein to bind efficiently. Imidazole has 

been used in the lysate, wash buffers and elution buffers. It may be possible that 

imidazole in the elution buffer in a denatured pull down may be detrimental and 

interfere with the elution of hisZta from the nickel affinity gel in a denaturing assay. 

 

It was investigated to see if imidazole has a disadvantageous effect when 

included in the wash and elution buffers when an elution from the gel is 

performed. A denatured pull down assay was performed using cross-linked 

control or hisZta transfected HEK293-BZLF1-KO cells, with or without 10mM in 

the elution buffer. One gel set was to be eluted without imidazole in the elution 

buffer, versus the other set being eluted with imidazole in the elution buffer. This 

is illustrated and explained as a flow diagram (Figure 4.6A). The pull down was 

performed using control or hisZta denatured extracts without imidazole in the 

elution buffer.  The affinity gel was split into two groups for analysis and elution.  
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Figure 4.6 Schematic of pull down with and without imidazole (20mM) in the elution buffer. 
A Crosslinked cell extracts to be applied to the gel. The gel is then split in half where one half is 
mixed equally with sample buffer to assess binding. The other half of the gel is eluted with elution 
buffer with or without 20mM imidazole in the elution buffer. B Pull down with 0mM imidazole in 
the elution buffer C Pull down with 20mM imidazole in the elution buffer. Both the proteins were 
separated by SDS-PAGE and a western blot for Zta performed. The antibody used here was BZ1. 
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The pull down performed using control or hisZta denatured extracts with 

imidazole in the elution buffer was repeated the same way. The affinity gel was 

split into two groups for analysis and elution (Figure 4.6B, Figure 4.6C). The 

hisZta protein binds to the gel here clearly as demonstrated by the half gel sample 

that did not have any elution buffer applied (Figure 4.6B). The other half of the 

affinity gel was subjected to an elution using elution buffer with imidazole (Figure 

4.6B). It can be seen in the elution lane that some hisZta was removed from the 

affinity gel. The gel that had the elution applied to it shows most hisZta is still 

bound. 

 

The gel washed with 20mM imidazole bound in Figure 4.6C. The other half of the 

affinity gel was subjected to an elution using elution buffer with imidazole. It can 

be seen in the elution lane that there is no hisZta removed from the affinity gel. 

The gel that had the elution applied to it shows some hisZta is still bound. The 

elution buffer elutes proteins based on pH. It was decided to continue to attempt 

optimization of the elution from the gels using the elution buffer without imidazole 

due to the minimal binding of Zta with imidazole present. The elution were to be 

optimized without imidazole present. 

 

Another pull down attempt was made to confirm the observation made In Figure 

4.6. The denatured, cross-linked, hisZta transfected HEK293-BZLF1-KO cells 

were applied to the nickel affinity gel. An elution attempt on the whole affinity gel 

was performed (Figure 4.7A). The protein extract was incubated with the gel, the 

gel was washed with wash buffer and the gel was then eluted in elution buffer for 

a longer incubation period. The input, gel and elution were mixed 1:1 with 2X 

sample buffer and separated by SDS-PAGE for western blot analysis. 
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Figure 4.7 Pull down attempts without imidazole in the elution buffer. Cross-linked hisZta 
extract was applied to Nickel agarose gel after being denatured. The extract was applied to 50µl 
of beads. This was washed with wash buffer and eluted using elution buffer without imidazole. All 
samples were mixed with an equal amount protein sample buffer and run on a protein gel for: A 
Western blot analysis using BZ1 antibody for Zta and Anti-actin for actin.  B Quantitation of the 
protein bands detected by the BZ1 antibody 
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The protein hisZta did bind to the nickel affinity gel with very minimal actin binding 

to the gel. After the single round of elution with elution buffer for a longer 

incubation period, more hisZta is evident in the elution, implying that the hisZta is 

closer to all of the protein being eluted and into the elution buffer. This was 

quantitated and more Zta is evident in the elution when related to input (Figure 

4.7B). As this was only one round of elution then it may be possible to apply 

multiple elutions to the single gel and collect all of the elution fractions together. 

This should elute the majority of bound hisZta from the gel, in multiple stages. 

 

A pull down attempt was repeated as previous in Figure 4.7, but with five elutions 

applied to the gel instead of just one. This would investigate if the gel to which 

denatured hisZta is bound to can be eluted from the gel in succession. By eluting 

the protein five times this would determine if all of the protein could be removed 

from the affinity gel. A flow diagram of the protocol performed is illustrated (Figure 

4.8A). This demonstrates the multiple elutions steps performed. The western blot 

after the assay was completed shows that with multiple elutions of the gel allowed 

some but not all of hisZta to be eluted from the gel (Figure 4.8B). The protein 

hisZta did elute into the first, second and third elution fractions while very minimal 

in the fourth and fifth elution attempts. Some hisZta did remain on the affinity gel. 
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Figure 4.8 Pull down attempt with five elution stages of the gel. A Cross-linked hisZta extract 
was applied to Nickel agarose gel after being denatured. The extract was applied to 50µl of beads. 
This was washed with wash buffer and eluted using elution buffer without imidazole for five elution 
steps. This was done to try to elute of Zta from the beads. B All samples were mixed equally with 
protein sample buffer and run on a protein gel for western blot analysis. The proteins were 
separated by SDS-PAGE and a western blot for Zta performed. The antibody used here was BZ1. 
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The cumulative protocol includes cross-linking cells before cell lysis. The extracts 

are denatured in cell lytic reagent including 8M urea. The extract is applied to 

equilibrated nickel affinity gel, before being washed with wash buffer containing 

10mM imidazole. Successive multiple elutions with elution buffer without 

imidazole demonstrates most of hisZta is eluted from the beads. It was attempted 

to repeat the pull down assay and combine the multiple elution fractions, this 

would combine the eluted hisZta into one sample and protein precipitation can 

be performed to concentrate this eluted protein sample. 

 

As the cross-linking procedure applied to cells before harvesting links most of the 

proteins and DNA in close proximity together, the protein-protein interactions 

would be strengthened as well as protein-DNA interactions. The DNA would 

remain cross-linked to the proteins that recognise these specific DNA sequences. 

Benzonase will have no impact as it will be denatured in the presence of 8M urea. 

Although hisZta was shown to bind to the nickel affinity gel in the presence of 

intact DNA (Figure 4.2), it was considered that the presence of intact cross-linked 

DNA might interfere with the binding capacity of the nickel affinity gel. Therefore, 

sonication of the sample was introduced and a pull down assay performed. The 

cross-linked HEK293-BZLF1-KO transfected cells were subjected to 10 pulses of 

10 seconds sonication at 30% amplitude during being denatured in cell lysis 

buffer containing 8M urea. The sonicated denatured extracts were applied to 

nickel affinity gel (Figure 4.9), to identify if hisZta binds after sonication of the 

sample. 
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Figure 4.9 Pull down attempt with elution of the gel with sonication of protein extract.Cross-
linked hisZta extract was applied to Nickel agarose gel after being denatured and sonicated. The 
extract was applied to 50µl of beads. This was washed with wash buffer and eluted using elution 
buffer without imidazole three times. The elutions were pooled and subject to acetone 
precipitation before being resuspended in protein sample buffer. All samples were mixed equally 
with protein sample buffer and the proteins were separated by SDS-PAGE and a western blot for 
Zta and actin performed. The antibody used here was BZ1 and anti-actin. 
 

 

The binding profile of hisZta to the nickel affinity gel displays a similar binding to 

Figure 4.8, where some hisZta is left bound to the gel after elution (Figure 4.9). 

After elution with elution buffer, some hisZta is eluted from the nickel affinity gel. 

It was chosen to include the sonication step in the protocol for further analysis.  

 

A pull down was attempted with extracts applied to nickel affinity gel. A 

transfected hisZtaAAA sample was also included here in addition to the control 

and hisZta cell extracts. SILAC multiplex experiments can also be performed 

using multiple SILAC labels, light, medium and heavy. Three treated cell 

populations can be analysed together in a single experiment, therefore it was 

chosen to include another level of analysis here with hisZtaAAA transfection 

 

The cross-linked denatured cell extracts were sonicated and applied to the nickel 

affinity gel. The gel was eluted five times with elution buffer and then the elutions 

were combined together. This elution mixture was subjected to acetone 

precipitation to concentrate the proteins present. The protein pellet that formed 

from protein precipitation was resuspended into protein sample buffer and all of 

the samples were separated by SDS-PAGE for western blot analysis or 

coomassie staining of the gel. 
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Figure 4.10 Pull down and elution attempt with sonication of protein extract. pCDNA3, 
hisZta, hisZtaAAA. Cross-linked hisZta extract was applied to Nickel agarose gel after being 
denatured and sonicated. The extract was applied to 50µl of beads. This was washed with wash 
buffer and eluted using elution buffer without imidazole. The samples were eluted five times and 
elutions combined, before precipitation with acetone and resuspended in protein sample buffer.  
All samples were mixed equally with protein sample buffer and run on a protein gel for: A The 
proteins were separated by SDS-PAGE and a western blot for Zta performed. The antibody used 
here was BZ1 B Coomassie staining. 
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The input, gel and eluate were analysed by western blot (Figure 4.10A). The 

hisZta protein applied to the gel displays minimal binding after elution. The 

consecutive elution of hisZta and hisZtaAAA from the gel was successful, after 

being processed and concentrated by acetone precipitation. The protein band for 

hisZta in the elution is more prominent compared to the gel in Figure 4.9 

suggesting that the majority of protein bound to the affinity gel here is eluted from 

the gel. A small amount of the samples were separated independently by SDS-

PAGE and this gel was analysed by coomassie staining. This demonstrated the 

overall protein abundance of the proteins present in each sample. The input for 

each of the cell extracts showed a high abundance of proteins, which is to be 

expected. However the proteins in the elution and gel samples were extremely 

minimal, including hisZta and hisZtaAAA. Although these proteins display a 

strong band when analysed by western blot these proteins are barely visible on 

coomassie staining. 

 

To ask if protein or the nickel affinity gel were a limiting factor, a varied amount 

of protein was assessed. When scaling up this experiment it is possible to use a 

greater volume of protein extract against the affinity gel. By scaling up a pull down 

experiment to maximize the amount of protein to be subsequently analysed, a 

pull down assay was compared using the same volume of beads but a small and 

large extract volume. This was performed to maximize the amount of hisZta that 

could bind to the gel. An extract volume of 100µl or 900µl was applied to 50µl of 

nickel affinity gel. The gel was washed with wash buffer and then the gel was 

boiled in 2X sample buffer before all of the samples were analysed by western 

blot after being separated by SDS-PAGE (Figure 4.11). It was evident that using 

a greater volume of cell extract onto the same volume of affinity gel gives more 

protein binding and so the amount of nickel affinity gel was not a limiting factor.  
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Figure 4.11 Pull down attempt with varying extract volume to the gel with protein extract. 
pCDNA3 and hisZta. Cross-linked hisZta extract was applied to Nickel agarose gel after being 
denatured and sonicated. The either 100µl or 900µl of extract was applied to 50µl of beads. This 
was washed with wash buffer boiled in protein sample buffer. All samples were mixed equally 
with protein sample buffer and the roteins were separated by SDS-PAGE and a western blot for 
Zta performed. The antibody used here was BZ1. 

 

 

Figure 4.12 Denatured BSA precipitation using acetone and BSA solubility in urea. 200ng 
of BSA was denatured from elution buffer containing 0M to 8M urea and subjected to acetone 
precipitation. Three conditions were compared: ‘A’ Elution buffer without urea (0M) ‘B’ Elution 
buffer with 8M urea ‘C’ Elution buffer diluted to 4M urea. The precipitated samples were 
resuspended in protein sample buffer and separated by SDS-PAGE before staining the gel with 
SimplyBlue safestain 
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To determine if the presence of urea would have a detrimental effect on the 

precipitation of proteins from the elution buffer, BSA was placed into varying 

elution buffers with different buffer conditions. 200ng of BSA was added to elution 

buffers containing 0M Urea, 8M urea or elution buffer diluted to 4M urea. All three 

samples were precipitated using acetone and the protein pellet was resuspended 

in 2X protein sample buffer. The BSA present in each condition from the acetone 

precipitation was separated by SDS-PAGE and analysed by coomassie staining 

(Figure 4.12).  

 

It can be seen that a protein pellet was present throughout the conditions here. 

After resuspending and boiling the protein pellet in 2X sample buffer and 

separation by SDS-PAGE, the stained gel shows that BSA was present in each 

sample. Other bands were detected by the staining. It was decided that the 

conditions developed and implemented here would be taken forward and 

executed towards a SILAC labeled pull down experiment, with the proteins eluted 

from the affinity gel to be analysed by mass spectrometry proteomics. 

 

4.2.3. SILAC labeled histidine-tagged Zta pull down and elution 

In order to perform an informative and successful pull down experiment to 

analyse hisZta protein interactions SILAC was utilized. Using SILAC labeled cells 

enables a quantitative level of analysis during mass spectrometry evaluation. A 

labeling schematic diagram illustrates how HEK293-BZLF1-KO would be labeled, 

transfected, harvested and cross-linked before being denatured and applied to 

nickel affinity gel (Figure 4.13). 

 

The HEK293-BZLF1-KO cells were labeled with SILAC media. Flasks of cells 

were prepared for each transfection. The ‘light’ SILAC labeled cells were 

transfected with pCDNA3 (control, latent). The ‘medium’ SILAC labeled cells 

were transfected with hisZta (lytic). The ‘heavy’ SILAC labeled cells were 

transfected with hisZtaAAA (Unable to initiate lytic replication). After 96 hours the 

cells were cross-linked with 1% formaldehyde and harvested. A fraction of these 

cells were taken for analysis to determine if the transfection was successful and 

the early phase of lytic replication was initiated. The cells were lysed in cell lytic 
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reagent and sonicated before a fraction of the cell extract supernatant was mixed 

1:1 with 2X protein sample buffer, and separated by SDS-PAGE for western blot 

analysis. A western blot for the transfected flasks demonstrates hisZta and 

hisZtaAAA were both readily expressed in the transfected cells, and lytic protein 

BMRF1 was also expressed by transfection of both hisZta and hisZtaAAA (Figure 

4.14A). A qPCR was performed on a fraction of the transfected HEK293-BZLF1-

KO cells for the presence of the EBV genome. Only hisZta initiated the lytic cycle 

and replication of the virus (Figure 4.14B). This demonstrated that the 

transfection was successful and these cells were put forward for further analysis, 

the cells extracts were taken forward for a larger scale pull down assay. 
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Figure 4.13 SILAC labelling schematic of HEK293-BZLF-KO cells for transfection Using light 
(R0K0), medium (R6K4), heavy (R10K8) media (Dundee Cell) HEK293-BZLF-KO cellsare 
passaged 1:3 using the media volume shown. Minimum of 5 passages to ensure all of the cells 
are metabolically labelled. The cells are transfected with control, hisZta or hisZtaAAA for 96 hours. 
Cells are crosslinked with 1% formaldehyde and then harvested for further study. 
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Figure 4.14 Western blot and qPCR to confirm the expression of transfected proteins and 
induced viral replication. A HEK293-BZLF-KO were transfected with pCDNA3 (R0K0 media), 
hisZta (R6K4 media) and hisZtaAAA (R10K8 media) and crosslinked after 96 hours. Proteins 
were run on a protein gel for western blot analysis. The antibodies used were BZ1, anti-BMRF1 
and anti-actin B Quantitative Real Time PCR (qPCR) was used to detect the presence of the EBV 
genome and beta-globin. Results were standardised by the amount of beta-globin present. qPCR 
repeated in triplicate and the standard error displayed between the experiment. 
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A schematic diagram of the larger scale SILAC labeled pull down assay is 

illustrated (Figure 4.15). The HEK293-BZLF1-KO cells were grown in SILAC 

media, transfected and then cross-linked after 96 hours incubation. The cells 

were lysed in cell lytic reagent containing 8M urea and then sonicated, and 

protein expression demonstrated from a fraction of the cells (Figure 4.14A). 

These cell lysates were applied to a large volume of equilibrated nickel affinity 

gel and incubated. The gel was washed and then eluted in five successions 

before the multiple elutions were precipitated together. The pelleted protein was 

resuspended in protein sample buffer. The proteins would then be analysed by 

mass spectrometry proteomics analysis. 

 

The pull down was performed to the method illustrated (Figure 4.15). The hisZta 

bound gel was washed and eluted and the protein buffer precipitated with 

acetone. The pellet that was formed from the acetone precipitation formed a large 

aggregate. The samples in the tube were resuspended in 10µl of 2X protein 

sample buffer but the pellet precipitate was too large to be resuspended in that 

volume of buffer. 40µl of sample buffer was added to make a total volume of 50µl 

(Figure 4.16). This was added to the pellet and the mixture transferred to a 1.5ml 

tube for western blot and coomassie analysis. 
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Figure 4.15 Diagram of large scale denatured crosslinked SILAC labelled pull down of cell 
extracts. 
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Figure 4.16 Attempt of resuspending of the protein pellet after acetone precipitation. The 
pull down was performed as illustrated by Figure 17. The hisZta bound gel was washed and eluted 
and the protein buffer precipitated with acetone. The pellet that was formed from the acetone 
precipitation formed a large aggreagate. The samples in the tube were to be resuspended in 10µl 
of 2X protein sample buffer but the pellet precipitate was too large to be resuspended in that 
volume of buffer. 40µl of sample buffer was added to make a total volume of 50µl. This was added 
to the pellet and the mixture transferred to a 1.5ml tube. 
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Figure 4.17 Large scale pull down western blot and coomassie staining results. The pull 
down was performed as previously described. The samples were boiled in protein sample buffer 
and a fraction of each sample separated by SDS-PAGE and analysed. A Western blot was 
performed on a small fraction of the the control, hisZta and hisZtaAAA pull down samples. The 
antibodies used were BZ1 for hisZta and hisZtaAAA detection and anti-actin. B A Coomassie 

staining was performed on a gel of the same samples analysed by western blot. 
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The results of the attempted pull down experiment were displayed in a western 

blot and coomassie stained gel (Figure 4.17). The input that was applied to the 

nickel affinity gel was reconfirmed again (Figure 4.17A). The protein samples 

were separated by SDS-PAGE here but there were no specific protein bands 

detected by the antibody. A small amount of sample should display hisZta or 

hisZtaAAA if they are bound, eluted and precipitated from the gel. 

 

The same samples were also analysed by coomassie staining of a separate gel 

after separation by SDS-PAGE (Figure 4.17B). Again, the samples did not display 

evidence of protein here without any protein bands being stained, which suggest 

that the pull down, elution, precipitation or resuspension of the sample was not 

successful. 

 Discussion 

The question asked was to identify interaction partners in EBV positive cells with 

an alternative approach. This was attempted using a denaturing method 

combined with cross-linking of proteins to preserve immediate interactions. 

Histidine tagged Zta was demonstrated to bind to the nickel affinity gel in Chapter 

3, and although some potential interactions were investigated the overall binding 

efficiency of Zta to the gel was inconsistent. 

 

The first obstacle included denaturing cell extracts. This was performed by 

developing the cell lytic reagent to contain a concentration of 8M of urea. After 

applying the denaturing cell lysis buffer to cells the supernatant was taken for 

analysis. The transfected protein hisZta could bind to the nickel affinity gel in 

denatured form. The addition of imidazole to the wash buffers minimized non-

specific binding observed by actin binding, and increasing imidazole in the wash 

buffer reduced the binding of Zta. As these extracts were denatured, the proteins 

would lose their tertiary shape and function of protein domains, ultimately losing 

all protein interactions. Therefore the cells and proteins were cross-linked to 

preserve these interactions 

 

The cross-linking of transfected cells was optimized between 0.1% and 1% 

formaldehyde, while native and denatured conditions were compared. It was 
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established that hisZta could bind to the nickel affinity gel under denatured 

conditions while cross-linked with 1% formaldehyde (Figure 4.4). Cross-linking of 

cells up to 1% is routinely used in ChIP assays. Here the application of 

formaldehyde allows the freezing of the cell in an intact but non-functional state 

(Vasilescu 2004).  

 

After the establishment of cross-linked, denatured hisZta binding to the affinity 

gel, it was decided to attempt to elute the complexes from the beads using 

250mM imidazole in the elution buffer. The addition of 250mM imidazole in the 

elution buffer minimised hisZta to bind to the nickel affinity gel. It was detrimental 

to Zta binding to the affinity gel (Figure 4.5); therefore it was decided to attempt 

to elute the complexes from the beads using only a low pH buffer, without any 

imidazole. The low pH alters the affinity of the histidine tagged proteins with the 

affinity gel (Gordon et al, 2000), therefore eluting his-tag proteins 

 

A multiple elution stage was combined and precipitated using acetone. An 

optimal pull down assay was performed, where the proteins were resuspended 

in protein sample buffer and shown to be eluted from the affinity gel. 

 

The maximal amount of protein in EBV positive cells was to be applied to the 

nickel affinity gel, and after an elution the proteins would be referred for mass 

spectrometry analysis. The optimal conditions for the pull down were determined 

while labelling HEK293-BZLF1-KO cells with SILAC media. The final scaled up 

assay including SILAC labelled transfected extracts was unsuccessful. There 

were no proteins bands observed using the antibody and a coomassie stain of 

the separated proteins did not observe any bands. Therefore it was clear that far 

more starting material is required to be optimal to the bead volume. 
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5. Interpretation of cellular components associated with 

the EBV lytic replisome through SILAC gel filtration 

 Introduction 

Protein complexes control most cellular processes. Many proteins have been 

identified and their functions determined which include transcription, translation, 

protein folding, degradation and replication. Through protein network analyses of 

single cell organisms, identification of stable protein complexes allowed some of 

these functions to be determined with protein-protein interactions (Gavin et al. 

2006; Krogan et al. 2006). 

 

Analysis of human protein-protein interactions allowed a database of protein 

features including post-translational modifications to be created. Isoforms of 

proteins are also included (Mishra et al. 2006). The genomic, transcriptomic and 

proteomic data is being more finely characterized each year. Proteins of all sizes 

interact with many others of varying size and larger proteins may preferentially 

interact with much smaller proteins (Wong et al. 2008). 

 

Understanding EBV proteins interacting with the host has been previously 

attempted. EBV-human interactome network from yeast two-hybrid screening 

displayed many interactions with the host in viral latency and lytic cycles 

(Calderwood et al. 2007). It has been previously outlined in Chapter 1 that viral 

proteins interact with the host proteome in order to facilitate viral replication. As 

these protein interactions contribute to maintaining the viral genome within the 

host environment, and then facilitating lytic viral replication, the question of what 

molecular protein complexes are formed during lytic replication? The protein 

subunits that may be recruited to EBV viral replication compartments have not 

been fully identified but studies have begun to identify components and the 

architecture with viral proteins ((Daikoku et al. 2005; Amon et al. 2006; Kudoh et 

al. 2009; Sugimoto et al. 2011). 

 

To analyse a complex mixture of proteins, fast protein liquid chromatography can 

be utilized. Size exclusion chromatography (SEC) separates proteins and 
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complexes by molecular weight and size. A chromatography column can 

separate these protein samples into eluates that can be further analysed.  

 

The AKTA purifier system (GE Healthcare) can contain a pump to move the 

chosen buffer through the system. The sample can be injected into the injection 

loop, before being passed into the SEC column. This buffer transfers a protein 

sample through the column. A protein concentration detector measures the 

absorption of ultraviolet (UV) light by the complexes at 280nm, to obtain 

absorbance data of the components of the elution. The protein fractions can be 

collected in equal volumes as an eluate, for further analysis. A schematic diagram 

represents the size exclusion chromatography system (Figure 5.1) 

 

 

 

Figure 5.1 Diagram of the Akta purifier system connected to a size exclusion 
chromatography column. Samples are injected into the infection loop, before a buffer is applied 
to the equilibrated column and the sample can pass through. Proteins in the sample are separated 
by size as larger proteins or complexes can pass through the matrix, smaller proteins are delayed 
by pores in the matrix. Larger complexes elute first from the column, smaller complexes elute 
later. 
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Size exclusion chromatography of protein complexes coupled to mass 

spectrometry have been employed previously to identify interactions (Kirkwood 

et al. 2013). Their study included soluble protein complexes that included 

elongator factors, isolated from U2OS cells and characterised across multiple 

fractions.  

 

A native size-exclusion chromatography experiment with proteomic analysis was 

designed and aimed to characterize soluble protein complexes isolated from 

transfected EBV negative and EBV positive cells. Targeting differences between 

a control cell population, cells undergoing full lytic replication and cells that begin 

the lytic cycle but not viral replication using mass spectrometry may indicate 

towards proteins that contribute to EBV lytic replication. 

  



144 
 

 Results 

5.2.1. Structure, transcription and replication function of Zta and Zta 

mutants 

Zta is a protein composed of 245 amino acids. The protein contains a 

transactivation domain located within the N-terminal half of the protein Zta 

contains a DNA binding domain and a bZIP domain located before the C-terminus 

(Figure 5.2). The C-terminus is essential for lytic replication. Mutations in the C-

terminal region of Zta is defective for EBV replication (Bailey et al, 2009). Making 

alterations to coding sequence of the wild type protein has enabled mutant Zta 

proteins to be produced. A six-histidine tag was engineered onto the N-terminus 

of all Zta proteins (Bailey et al 2009, Q Karlsson). The wild type and mutant 

proteins have been studied here and their transactivation and replication 

properties assessed. One mutant protein has the last three amino acids of the C-

terminal domain mutated to alanine to assess its role in replication (Q. Karlsson). 

Another mutant starts at amino acid 134 that shortens the protein by removing 

the transactivation domain. The DNA binding domain, bZIP domain and C-

terminus remain unaffected but this protein cannot initiate lytic replication 

because it is unable to activate transcription of lytic genes. Zta wild type and the 

AAA mutant’s abilities to perform their functions were investigated further. 

 

The transcriptional activity of Zta and the Zta mutant were assessed in a 

transactivation assay. The ability of wild type protein and mutant to activate the 

BHLF1 promoter sequence placed before a luciferase gene. The BHLF1 

promoter contains four Zta response elements (ZREs) that Zta is known to bind 

strongly to. The mutation promoter sequence has these sequences mutated to 

CCCCTT, a sequence Zta cannot recognize to bind. (Figure 5.3A). 
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Figure 5.2 Schematic of Zta demonstrating transactivation and replication domains. A six-
histidine tag is located on the N-terminus of hisZta and mutants. Zta contains a transactivation 
domain (purple), DNA binding domain (red), bZIP domain (blue) and C-terminus (yellow). The 
hisZtaAAA mutant has the last three amino acids mutated to alanine. 
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Figure 5.3 Transcription activity of hisZta and hisZta mutants. Transactivation assay to 
assess the transcriptional activity of Zta mutants. U2OS cells were transfected and harvested 24 
hours later before luciferase levels were detected A The BHLF1 promoter ZRE sequence were 
used in a luciferase assay with these sequences mutated for BHLF1mut sequence. B Both hisZta 
wild type and hisZtaAAA are transcriptionally competent. The wild type protein and hisZtaAAA 
mutant can activate the BHLF1 promoter in a luciferase assay system. The standard error is 
shown here after the experiment performed in triplicate. C Western blot for hisZta and mutant 
expression. The proteins were separated by SDS-PAGE and a western blot for Zta and actin 
performed. The antibody used here was BZ1 and anti-actin. Actin was detected as loading control. 
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U2OS cells were co-transfected with expression vectors for hisZta and 

hisZtaAAA and luciferase vectors and harvested 24 hours later. Half of the cells 

were processed for luciferase activity using a luciferase assay system. The 

remaining cells were processed for western blot protein expression.  The 

luciferase levels were detected in triplicate and plotted together. 

 

Both hisZta and hisZtaAAA activate the wild type BHLF1 promoter (Figure 5.3B). 

None of the proteins activated the BHLF1 mutant. 

The western blot shows the abundance the expression of hisZta and mutant 

proteins (Figure 5.2C). There was more expression of hisZtaAAA than hisZta but 

the luciferase levels were similar. This demonstrates the activity of transactivation 

by hisZta and hisZtaAAA. 

 

Zta can also act as a replication factor to reactivate EBV from latency into lytic 

cycle. We asked whether ZtaAAA mutation impacts on this using HEK293-

BZLF1-KO cells (Feederle et al. 2000). These cells contain a stable transfection 

of the EBV genome that does not contain a functional BZLF1 gene. As Zta is 

essential for the activation of lytic cycle, EBV within these cells always remain in 

latency. Transfection of Zta is required to initiate the EBV lytic cycle and 

replication of the EBV genome. 

 

Using this cell system, the replication activity of hisZta and the hisZtaAAA. 

hisZtaAAA and were assessed after transfection using a qPCR assay. Cells were 

harvested after 96 hours after transfection to allow the initiation of lytic replication 

of the EBV genome. A sample of cells was used for western blot to confirm the 

expression of the transfected proteins. The remaining cells were processed for 

qPCR (Figure 5.4). 
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Figure 5.4 hisZta and hisZta mutants’ ability to initiate genome replication by qPCR. 
HEK293-BZLF1-KO cells were transfected with hisZta or mutants and qPCR was used to detect 
the presence of the EBV genome and β-globin after 96 hours. A Only hisZta wild type can initiate 
lytic replication. hisZtaAAA can initiate BMRF1 expression but the mutant cannot replicate the 
EBV genome. The standard error is shown here. B Western blot for hisZta and mutant expression. 
Proteins were separated by SDS-PAGE. The antibodies used here were BZ1, anti-BMRF1 and 
anti-actin. 
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A qPCR assay was performed to detect the level of virus genome. This was 

measured using primers for the viral DNA polymerase gene BALF5. Primers for 

β-globin were used to detect the human genome copy numbers. This was used 

to standardise the samples. 

 

Transfection with hisZta into these cells led to lytic replication, an increase in the 

level of EBV genome (Figure 5.4A). There was no increase in EBV genome levels 

with transfection of hisZtaAAA. The EBV genome levels are similar to the 

background control with transfection of pCDNA3 control. This baseline level is 

the detection of the latent viral genome copies already present in the cell. The 

fold change between control and viral load for these cells was 19.3.  

 

A western blot for protein detection from transfected cells with hisZta and 

hisZtaAAA was performed (Figure 5.4B). The transfected proteins were readily 

expressed. BMRF1, the viral early lytic protein is also detected here suggesting 

that the beginning of lytic cycle is induced by both hisZta and hisZtaAAA, although 

lytic replication of EBV is not present with the hisZtaAAA transfection. As both 

hisZta and hisZtaAAA contain the transactivation domain, the lytic gene for the 

DNA processivity factor BMRF1 is expressed upon both hisZta and hisZtaAAA 

transfection. The hisZtaAAA mutant protein can transactivate at least one of the 

lytic genes, but cannot promote replication of the EBV genome. Therefore the 

last three amino acids of the C-terminus are essential for EBV genome 

replication. 

 

The transactivation and replication functions were classified here and were then 

taken forward for further analysis in the context of EBV lytic replication. Size 

exclusion chromatography was then used to investigate the molecular complexes 

formed in these transfected cells undergoing full lytic cycle and lytic cycle without 

viral genome replication. A comparison between the lytic and defective lytic 

samples would indicate whether cellular and viral Zta-complexes differ in cells 

when they undergo EBV lytic cycle. 
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5.2.2. Superose 6 10/300GL size exclusion column calibration and 

determination of molecular weight standards 

The Superose 6 10/300 GL (GE Healthcare) column is used for high performance 

size exclusion chromatography of protein samples. The separation range is from 

5,000Da to 5,000,000Da. This column is easy to manipulate for the separation of 

molecular complexes. It is chemically stable in most common buffers and pH 

ranges, and connects readily to ÄKTA purifier systems (GE Healthcare). 

 

To determine the column performance control, molecular weight standards were 

applied to the column. The column was connect to an ÄKTA purifier and washed 

with dH2O to remove 20% ethanol the column is stored in. The column was 

equilibrated in two column volumes of 20mM Tris 100mM NaCl at pH 8.0 buffer. 

This supports protein stability and avoid non-specific ionic interactions with the 

column gel. Molecular weight standards were injected into the system and 

separated by size exclusion. 

 

The elution profile of these standards with the UV absorbance units is displayed 

in milli Absorbance unit (mAU) (Figure 5.5). The first peak at fraction H4/13ml is 

thyroglobulin, followed by conalbumin and a large peak at 17.5ml for ovalbumin. 

RibonucleaseA elutes last from the column at 19ml. This profile agrees with the 

instruction protocol provided by GE Healthcare. This demonstrated that the 

column is functional and will perform as expected to the manufacturers’ 

standards. 
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Figure 5.5 Determination of Superose 6 10/300 GL elution profile using molecular weight 
standards. Molecular weight standards to identify the molecular weight of fractions eluted from 
the column. Thyroglobulin 669,000Da at eluted 13ml, Conalbumin 75,000Da eluted 16ml, 
Ovalbumin 43,000Da eluted 17.5ml, RibonucleaseA 13,700Da eluted at 19ml. The standards 
included thyroglobulin 669,000Da at 5mg/ml, conalbumin 75,000Da at 3mg/ml, ovalbumin 
43,000Da at 4mg/ml, ribonucleaseA 13,700Da at 3mg/ml. 
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5.2.3. Determination of the elution profile of Zta in U2OS cells 

It was not known where Zta would elute from if a cell sample extract expressing 

Zta would be separated through a size exclusion chromatography column. By 

transfecting EBV negative cells with Zta expression vector, and passing a cell 

lysate through a column and collecting the elution, it is possible to identify what 

fraction Zta elutes into. The control, hisZta and hisZtaAAA expression vectors 

were transfected into U2OS cells and incubated for 72 hours. These cells were 

harvested and checked for protein expression including actin and Zta expression 

levels (Figure 5.6). The cells were transfected successfully and the cells from this 

transfection were kept for future analysis. These were applied to size exclusion 

chromatography studies. 

 
 

 

Figure 5.6 Protein expression of hisZta and mutants in U2OS cells. U2OS cells were 
transfected with control expression vector, hisZta, and hisZtaAAA and harvested after 72 hours. 
Cells were lysed in cell lytic buffer and mixed with protein sample buffer before being run on a 
protein gel. The proteins were separated by SDS-PAGE and a western blot for Zta performed. 
The antibodies used here were BZ1 and anti-actin. 
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U2OS cell transfected with hisZta expression vector were demonstrated to have 

hisZta wild type and mutant protein expression (Figure 5.6). These cells were 

used to create a protein extract. As detailed in Chapter 3, Cell Lytic reagent 

including phosphatase inhibitors and benzonase were used for extraction. The 

supernatant was then taken and applied to the ÄKTA purifier connected to the 

equilibrated Superose 6 10/300GL column. The 0.5ml elution fractions from the 

column were then combined afterwards, every four fractions totalling to 2mls. 

These fractions were subjected to acetone precipitation overnight at -20c before 

being centrifuged and the protein pellet resuspended in protein sample buffer. 

The elution profile of hisZta and hisZtaAAA was processed as a western blot 

(Figure 5.7). The first fraction hisZta eluted into was B5-B9 at 8 to 10mls and 

eluted into consecutive fractions until C9-C12 at 16.5ml to 18.5ml. The peak actin 

eluted between C9-C12. The elution profile of hisZta across multiple fractions 

suggests that Zta is forming various complexes within the cell of different 

molecular weights ranging between 1MDa and 43kDa. The function and 

components of these complexes is unknown but as the cells here are U2OS cells 

that are EBV negative, the complexes may be linked to transcription rather than 

replication. 
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Figure 5.7 Elution profile of hisZta and hisZtaAAA transfected into U2OS cells. U2OS cells 
were transfected with hisZta or hisZtaAAA and harvested after 72 hours. Cell extract was applied 
to the Superose 6 column and 0.5ml fractions were eluted. Every 4 fractions were combined and 
subjected to acetone precipitation before being resuspended in sample buffer. These proteins in 
sample buffer were then separated by SDS-PAGE and detected by western blot for where hisZta 
eluted. Heavier molecular weight fractions eluted first and lighter molecular weight fractions later. 
The antibody used here was BZ1. 

 

 

 

 

hisZta

hisZtaAAA

Peak Protein

Heavy Light

m
A

U

0

50

100

150

5.0 10.0 15.0 20.0 25.0 30.0 35.00



155 
 

A fraction of the proteins were separated by SDS-PAGE. The mAU profile of both 

cell lysates as an overlap is shown (Figure 5.7). Both hisZta and hisZtaAAA cell 

lysates follow a near identical mAU elution profile. The first proteins detected are 

eluted in the same fractions and the peak protein also elutes in the same fraction. 

 

This data demonstrates that hisZta elutes into multiple fractions, suggesting 

hisZta forms multiple protein complexes of varying molecular weights. HisZtaAAA 

follows a similar elution profile here and may be forming similar molecular 

complexes to hisZta. 

 

5.2.4. Determination of the elution profile of Zta in HEK293-BZLF1-KO 

cells 

EBV positive cells (HEK293-BZLF1-KO) that contain the EBV genome without a 

functional BZLF1 gene were transfected with hisZta or hisZtaAAA. Only hisZta 

can activate the full lytic cycle, hisZtaAAA cannot activate full lytic cycle. 

 

HEK293-BZLF1-KO cells were transfected with control vector, hisZta or 

hisZtaAAA expression vector and harvested after 96 hours to allow the 

reactivation of EBV from latency. The proteins separated by SDS-PAGE analysis 

on a fraction of the cells to detect protein expression hisZta and hisZtaAAA 

(Figure 5.8). Both hisZta and hisZtaAAA were expressed readily and BMRF1 was 

expressed in both sets of transfections. Cells from this transfection were taken 

forward for further size exclusion analysis. 

 

The same protocol from U2OS cells was followed to look at the elution profile 

hisZta and hisZtaAAA in HEK293-BZLF1-KO cells, hisZta then hisZtaAAA run 

through the column directly afterwards. This would enable a comparison of the 

elution between the wild type and mutant proteins of hisZta and determine if 

there are any differences in molecular complexes formed, associated with Zta 

or ZtaAAA. 
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Figure 5.8 Expression of transfected hisZta and hisZtaAAA in HEK293-BZLF1-KO cells. 
HEK293-BZLF1-KO cells were transfected with control vector, hisZta or hisZtaAAA vector and 
harvested after 96 hours. Cells were lysed in cell lytic reagent and proteins were separated by 
SDS-PAGE. Western blot was performed to detect hisZta and hisZtaAAA expression, and actin 
and BMRF1. The antibodies used here were BZ1, anti-BMRF1 and anti-actin. 

 

 

The transfected HEK293-BZLF1-KO cell pellets for hisZta and hisZtaAAA were 

lysed in cell lytic reagent as before and the supernatant applied to the Superose 

6 column before being collected into 500μl fractions as previous. The 500μl 

fractions were pooled into 2ml and acetone precipitation performed before the 

protein pellet was resuspended in sample buffer. A fraction of the proteins were 

separated by SDS-PAGE. Figure 5.9 shows the mAU profile of both cell lysates 

overlapping. Both hisZta and hisZtaAAA cell lysates follow a near identical mAU 

elution profile. The first proteins detected are eluted in the same fractions and the 

peak protein also elutes in the same fraction. From fraction 10-12ml the elution 

profile is delayed slightly for hisZtaAAA. 

 

The western blot demonstrates that hisZta transfected into HEK293-BZLF1-KO 

cells displays a similar profile of elution in U2OS cells but Zta eluted into a more 

prominent extra higher molecular weight complex between 6-8ml. This 

prominence was not present within U2OS cells. Also hisZtaAAA does not elute 

with the same extra complex. The hisZtaAAA elution is concentrated into a 

heavier molecular weight fraction. 
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Figure 5.9 Elution profile of hisZta and hisZtaAAA transfected into HEK293-BZLF1-KO cells 
HEK293-BZLF1-KO cells were transfected with control vector, hisZta or hisZtaAAA vector and 
harvested after 96 hours. Cell extract was applied to the Superose 6 column and 0.5ml fractions 
were eluted. Every 4 fractions were combined and subjected to acetone precipitation before being 
resuspended in sample buffer. The proteins were then separated by SDS-PAGE and hisZta, 
hisZtaAAA and BMRF1 were detected by western blot. Antibodies used were BZ1, anti-actin and 
anti-BMRF1. 
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BMRF1 was expressed herein in both hisZta and hisZtaAAA transfected cells, 

and as this protein is a replication factor the western blots were probed for this 

protein to see what fraction the protein elutes into. BMRF1 was detected in the 

heavier molecular weight fraction with most of the protein concentrated in the 

second and third fractions for hisZta transfected cells. BMRF1 was only detected 

prominently in one fraction for hisZtaAAA transfection here. 

 

It is interesting to see the heavier molecular weight fraction in cells undergoing 

lytic cycle. This fraction elutes earlier than the largest molecular weight standard, 

indicating that this fraction may contain a very high molecular weight complex. 

The proteins contained within this elution fraction may contribute towards lytic 

replication of the virus 

 

5.2.5.  A more detailed fractionation of molecular complexes eluted in 

HEK293-BZLF1-KO cells 

A transfected hisZta HEK293-BZLF1-KO cell lysate was separated using the 

Superose 6 column and elutions were collected into 500μl fractions. These 

fractions were processed into protein pellets by acetone precipitation and the 

pellets were resuspended in protein sample buffer.  As the region of where Zta 

elutes has been determined, only a selection of fractions were separated by SDS-

PAGE. This was performed as a preliminary investigation to see the elution profile 

of all proteins by coomassie staining. A coomassie stain of a gel enabled a 

visualisation of the overall elution profile of the proteins present in the sample 

(Figure 5.10). This meant that the proteins could be processed as 500μl fractions 

to have a more detailed insight into where hisZta elutes.  
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Figure 5.10 Coomassie stain of transfected HEK293-BZLF1-KO cells with hisZta 
expression vector. Fractions were separated into 500μl and stained with SimplyBlue safestain 
to visualise the overall elution profile of the proteins present in the sample. The transfected 
HEK293-BZLF1-KO cell pellets for a control, hisZta and hisZtaAAA were lysed in cell lytic reagent 
as before and the supernatant applied to the Superose 6 column before being collected into 500μl 
fractions as previously performed. The 500μl fractions were processed into protein pellets by 
acetone precipitation before being resuspended in protein sample buffer 
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Figure 5.11 Western blot of elution profile of hisZta and hisZtaAAA in transfected HEK293-
BZLF1-KO cells. HEK293-BZLF1-KO cells were transfected with A hisZta or B hisZtaAAA vector 
and harvested after 96 hours. Cell extracts were processed and was applied to the Superose 6 
column and 0.5ml fractions were eluted. Acetone precipitation of elution fractions before proteins 
were resuspended in protein sample buffer. A fraction of these samples were separated by SDS-
PAGE before western blot analysis. Antibodies used were BZ1, anti-actin and anti-BMRF1. A 
hisZta transfected cells B hisZtaAAA transfected cells  
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Fractions between A13/6.5ml and C6/18ml were separated by SDS-PAGE 

(Figure 5.11). The western blot shows the elution profile of the precipitated 

control, hisZta and hisZtaAAA for Zta, actin and BMRF1 expression. 

 

HisZta itself eluted into two distinct populations of heavier and lighter molecular 

weight fractions, 7.5ml – 10.0ml and 13.5ml – 17.0ml. The elution was less 

prominent between these two populations. BMRF1 stayed relatively constant in 

elutions from heavy to light molecular weight fractions but more prominent 

between 7.5ml – 10.0ml. 

 

HisZtaAAA eluted into mainly a lighter molecular weight fraction, some protein 

eluting into two of the heavier molecular weight fractions, 7.5ml – 8.0ml and 

13.5ml – 16.5ml. The elution was minimal between these two populations. 

BMRF1 was more intermittent in elution across all fractions. It was noted that the 

higher molecular weight region between fraction B1 and B3 was of significance 

as the abundance level of hisZtaAAA was not as high as hisZta. Also in fraction 

B1 for the hisZtaAAA sample, BMRF1 is not present at the same level as the wild 

type sample.  

 

5.2.6. SILAC labelling and determination of the elution profile of Zta in 

SILAC labelled HEK293-BZLF1-KO cells 

To identify the proteins that eluted into the heavier fractions, SILAC proteomics 

with mass spectrometry was used. By using mass spectrometry on eluted 

fractions, it would be possible to begin to identify what proteins are present in 

these fractions. SILAC labelling of these cell lysates will allow a quantitative 

analysis of proteins between samples of the same elution fractions from mass 

spectrometry analysis. 

 

HEK293-BZLF1-KO cells were labelled with SILAC media for 5 passages before 

transfection. Control cells were labelled with R0K0 (light) media (Dundee Cell). 

Transfected hisZta that allowed the initiation of the lytic cycle were labelled with 

R6K4 (medium) media. Transfected hisZtaAAA that were unable to activate the 

lytic cycle were labelled with R10K8 (heavy) media. The light media containing 
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unlabelled arginine and lysine amino acids (R0K0), medium media containing 

13C labelled arginine and 2D labelled lysine amino acids (R6K4), the heavy 

media containing 13C and 15N labelled arginine and 13C and 15N labelled lysine 

(R10K8). This allows a mass shift of peptides to be detected by mass 

spectrometry analysis. 

 

As there were three samples with three SILAC labels, the SILAC ratio analysis 

enables three ways to determine any differences between the samples: 

hisZta/Control, hisZtaAAA/control and hisZta/hisZtaAAA. 

 

SILAC labelled HEK293-BZLF1-KO cells were transfected with control vector, 

hisZta or hisZtaAAA expression vectors and harvested after 96 hours to allow the 

reactivation of EBV from latency. Figure 5.12 represents an SDS-PAGE analysis 

on a fraction of the cells to assess protein expression. HisZta and hisZtaAAA 

were expressed readily and BMRF1 was expressed in both sets of transfections. 

Cells from this transfection were taken forward for further size exclusion analysis. 

 

 

  

Figure 5.12 SILAC labelling of HEK293-BZLF1-KO cells and detection of transfected hisZta 
and mutant proteins. HEK293-BZLF1-KO cells were labelled with R0K0 (for control expression), 
R6K4 (for hisZta expression) and R10K8 (for hisZtaAAA expression). After labelling, the cells 
were transfected with control vector, hisZta or hisZtaAAA vector and harvested after 96 hours. 
Cell extracts were processed into cell lytic reagent supernatant and an equal volume of each 
transfection was mixed together. A fraction of these samples were separated by SDS-PAGE 
before western blot analysis. Antibodies used were BZ1, anti-actin and anti-BMRF1. 
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The SILAC labelled transfected HEK293-BZLF1-KO cells transfected with 

control, hisZta and hisZtaAAA were combined equally before being lysed with cell 

lytic reagent as described previously. A fraction of the combined cell lysates was 

separated by size exclusion chromatography for further analysis. 

 

The transfected SILAC HEK293-BZLF1-KO cell pellets for hisZta and hisZtaAAA 

were lysed in cell lytic reagent as before and the supernatant applied to the 

Superose 6 column before being collected into 500μl fractions as previous. The 

500μl fractions were processed into protein pellets by acetone precipitation 

before being resuspended in protein sample buffer. 

 

The proteins eluted in the hisZta sample can be compared against the eluted 

proteins in the control sample. Any proteins that have a higher ratio could be 

attributed to the presence of Zta or located in a complex with Zta, or that specific 

complex is present in the fraction could be due to Zta inducing the lytic cycle.  

 
 
 
 

 
 

Figure 5.13 SILAC transfected HEK293-BZLF1-KO cell extracts were combined at an equal 
ratio and separated by FPLC. HEK293-BZLF1-KO cells were labelled with R0K0 (for control 
expression), R6K4 (for hisZta expression) and R10K8 (for hisZtaAAA expression). After labelling, 
the cells were transfected with control vector, hisZta or hisZtaAAA vector and harvested after 96 
hours. Cell extracts were processed into cell lytic reagent supernatant and an equal volume of 
each transfection was mixed together. This mixed cell extract was applied to the Superose 6 
column and 0.5ml fractions were eluted. Every fraction was subjected to acetone precipitation 
before being resuspended in sample buffer. The proteins were then separated by SDS-PAGE 
and detected by western blot for hisZta, hisZtaAAA and actin. Antibodies used were BZ1 and anti-
actin. 
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A fraction of the resuspended SILAC labelled proteins was separated by SDS-

PAGE (Figure 5.13). The western blot was probed for Zta and actin proteins. The 

fractions from Figure 5.11 indicated that elution fractions B1 and B2 were a 

distinct difference between hisZta and hisZtaAAA. There was more hisZta protein 

in B1 than hisZtaAAA in B1; and BMRF1 present in the hisZta B1 fraction and 

hardly any BMRF1 protein in hisZtaAAA B1. It was proposed to follow a mass 

spectrometry analysis on fraction B1 and B2.  

5.2.7. Mass spectrometry of SILAC labelled elutions performed at the 

University of Sussex 

As SILAC labelled fractions B1 and B2 had been previously processed into 

protein sample buffer, the samples were again separated by SDS-PAGE, along 

with a BSA control (Figure 5.14). Both fractions B1 and B2 were cut into 5 slices 

each, with BSA protein band cut into one slice. These bands were processed as 

described previously into peptides before being analysed by mass spectrometry. 

 

I processed the peptides from the five slices of the B1 and B2 fractions on an 

LTQ-OrbitrapXL at Sussex University. Maxquant was utilized here. Maxquant can 

be used as a tool for analysis of mass spectrometry data (Cox et al. 2009). The 

.RAW output files were processed using Maxquant software based on the 

parameters entered. This returned a list of proteins formulated from the peptides.  

 



165 
 

 

 

 

 

Figure 5.14 Fractions B1 and B2 from FPLC processed for mass spectrometry analysis. 
7.5μl of elution B1 in protein sample buffer and 7.5μl of elution B2 in protein sample buffer were 
loaded onto a protein gel. The gel was stained with SimplyBlue safestain. The lanes containing 
B1 and B2 were cut into 5 gel pieces each before being processed for mass spectrometry. BSA 
was also analysed as a single band. 

 

 

 

 

 

kDa

97

39

64

51

28

19

191



166 
 

 

Table 5.1 Data returned from mass spectrometry performed at University of Sussex of 
Fraction B1. Fraction B1 was processed into peptides and analysed by MaxQuant. NaN here 

stands for ‘Not a Number’, representing an undefined value. A non-quantifiable ratio. 

Accession Protein

Unique 

peptides

Ratio  Zta / 

Control 

normalized

Ratio ZtaAAA

/ Control 

normalized

Ratio 

ZtaAAA / 

Zta

normalized

P08670 Vimentin OS 35 1.0406 0.96934 0.90718

P13645 Keratin, type I cytoskeletal 10 OS 22 NaN NaN NaN

P35527 Keratin, type I cytoskeletal 9 OS 20 NaN NaN NaN

P04264 Keratin, type II cytoskeletal 1 OS 18 NaN NaN NaN

P35908

Keratin, type II cytoskeletal 2 

epidermal OS 16 NaN NaN NaN

P68363 Tubulin alpha-1B chain OS 13 0.87219 0.94791 1.0174

P38159 RNA-binding motif protein 8 0.7805 0.60235 1.1777

P63261 Actin, cytoplasmic 2 OS 6 1.011 1.0771 0.89108

P10809

60 kDa heat shock protein, 

mitochondrial OS 5 0.90357 1.0431 1.1045

P02533 Keratin, type I cytoskeletal 14 OS 5 NaN NaN NaN

>P00761 TRYP_PIG Trypsin - Sus scrofa (Pig). 5 NaN NaN NaN

Q5JP53 Tubulin beta chain OS 4 0.69983 0.79312 1.1174

P08107 Heat shock 70 kDa protein 1A/1B OS 4 0.9204 1.3186 1.4421

Q99879 Histone H2B type 1-M OS 3 0.9495 0.98108 1

Q07065 Cytoskeleton-associated protein 4 OS 3 NaN NaN NaN

P52272

Heterogeneous nuclear 

ribonucleoprotein M 3 NaN NaN NaN

P68371 Tubulin beta-4B chain OS 2 NaN NaN NaN

P13647 Keratin, type II cytoskeletal 5 OS 2 NaN NaN NaN

K7EMV3 Histone H3 OS 2 0.82972 0.83334 0.99349

F8W079

ATP synthase subunit beta, 

mitochondrial (Fragment) OS 2 NaN NaN NaN

C9J0D1 Histone H2A OS 2 NaN NaN NaN

S4R373

YTH domain-containing family protein 

3 OS 1 NaN NaN NaN

Q9Y6R1

Electrogenic sodium bicarbonate 

cotransporter 1 OS 1 NaN NaN NaN

Q9BVC6 Transmembrane protein 109 OS 1 NaN NaN NaN

Q8AZJ5 LF1_EBVB9 Uncharacterized LF1 1 NaN NaN NaN

Q86YZ3 Hornerin 1 NaN NaN NaN

Q6ZN08 Putative zinc finger protein 66 1 NaN NaN NaN

Q401N2

Zinc-activated ligand-gated ion 

channel 1 NaN NaN NaN

Q04941 Proteolipid protein 2 OS 1 NaN NaN NaN

P81605 Dermcidin OS 1 NaN NaN NaN

P17066 Heat shock 70 kDa protein 6 OS 1 NaN NaN NaN

P07196 eurofilament light polypeptide 1 NaN NaN NaN

O75164 Lysine-specific demethylase 4A OS 1 NaN NaN NaN

O60282 Kinesin heavy chain isoform 5C OS 1 NaN NaN NaN

O43790 Keratin, type II cuticular Hb6 OS 1 NaN NaN NaN

H7BZ69 Protein PTHB1 (Fragment) OS 1 NaN NaN NaN

H0Y565

Glycerophosphocholine 

phosphodiesterase GPCPD1 

(Fragment) OS 1 NaN NaN NaN

F5H6Y5

Nuclear mitotic apparatus protein 1 

(Fragment) 1 NaN NaN NaN

E9PBF6 Lamin-B1 OS 1 NaN NaN NaN

A0A075B6E

2 40S ribosomal protein S19 OS 1 NaN NaN NaN

>P12763 Alpha-2-HS-glycoprotein precursor 1 NaN NaN NaN

F8W0C6

Keratin, type II cytoskeletal 5 

(Fragment) OS 0 NaN NaN NaN
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Table 5.2 Data returned from mass spectrometry performed at University of Sussex of 
Fraction B2. Fraction B2 was processed into peptides and analysed by MaxQuant. NaN here 

stands for ‘Not a Number’, representing an undefined value. A non-quantifiable ratio. 

 

Accession Protein

Unique 

peptides

Ratio  

Zta / 

control

Ratio 

ZtaAAA

/ 

Control

Ratio 

ZtaAAA

/ Zta

P08670 Vimentin OS 33 1.0491 0.97949 0.98118

P13645 Keratin, type I cytoskeletal 10 OS 22 NaN NaN NaN

P04264 Keratin, type II cytoskeletal 1 OS 16 NaN NaN NaN

P35527 Keratin, type I cytoskeletal 9 OS 16 NaN NaN NaN

P35908 Keratin, type II cytoskeletal 2 epidermal OS 14 NaN NaN NaN

Q13813 Spectrin alpha chain, non-erythrocytic 1 14 1.0914 1.1083 1.1775

P08107 Heat shock 70 kDa protein 1A/1B OS 6

0.9524

5 1.2446 1.2158

P10809 60 kDa heat shock protein, mitochondrial OS 6

0.9453

6 1.0168 0.97957

P06576 ATP synthase subunit beta, mitochondrial OS 5

0.8832

5 1.1863 1.4786

>P00761 5 NaN NaN NaN

Q5JP53 Tubulin beta chain OS 4

0.7611

4 0.96369 1.0442

E7EMV2 Neurofilament medium polypeptide 4 NaN NaN NaN

Q01082 Spectrin beta chain, non-erythrocytic 1 OS 4 NaN NaN NaN

P68363 Tubulin alpha-1B chain OS 2

0.8717

7 0.92494 1.0449

P68371 Tubulin beta-4B chain OS 2 NaN NaN NaN

Q99880 Histone H2B type 1-L OS 2

0.8135

1 0.75806 0.89261

P48047 ATP synthase subunit O, mitochondrial OS 2 NaN NaN NaN

O75947 ATP synthase subunit d, mitochondrial OS 2 NaN NaN NaN

P12270 Nucleoprotein TPR 2 NaN NaN NaN

D6RDI7 Coiled-coil alpha-helical rod protein 1 (Fragment) OS 1 NaN NaN NaN

Q6P0N6 DST protein 1 NaN NaN NaN

P02533 Keratin, type I cytoskeletal 14 OS 1 NaN NaN NaN

K7EQH4

ATP synthase subunit alpha, mitochondrial (Fragment) 

OS 1 NaN NaN NaN

Q71U36 Tubulin alpha-1A chain OS 1 NaN NaN NaN

M0R0F0 40S ribosomal protein S5 (Fragment) OS 1 NaN NaN NaN

Q5VTE0 Putative elongation factor 1-alpha-like 3 OS 1 NaN NaN NaN

F5H6Y5 Nuclear mitotic apparatus protein 1 (Fragment) 1 NaN NaN NaN

Q5QNZ2 ATP synthase F(0) complex subunit B1, mitochondria 1 NaN NaN NaN

E2QRG8

Receptor expression-enhancing protein 5 (Fragment) 

OS 1 NaN NaN NaN

E9PPJ0 Splicing factor 3B subunit 2 OS 1 NaN NaN NaN

G3V5X4 Nesprin-2 1 NaN NaN NaN

A0A075B7

85

LisH domain and HEAT repeat-containing protein 

KIAA1468 OS 1 NaN NaN NaN

P07196 Neurofilament light polypeptide OS 1 NaN NaN NaN

P62269 40S ribosomal protein S18 OS 1 NaN NaN NaN

P81605 Dermcidin OS 1 NaN NaN NaN

Q401N2 Zinc-activated ligand-gated ion channel 1 NaN NaN NaN

Q4V328 GRIP1-associated protein 1 OS 1 NaN NaN NaN
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Table 5.1 and Table 5.2 show the results of all proteins identified from fractions 

B1 and B2. The majority of proteins identified did not have a SILAC ratio attributed 

and were abundant proteins such as actin and tubulins, with some heat shock 

proteins and histone H3 and H2B. The limited numbers of proteins identified here 

were reviewed. Previously in Chapter 3, the proteomics results from the pull down 

obtained from the University of Bristol proved to return an abundant list of 

proteins. The remaining samples for the B1 and B2 fraction were sent to the 

University of Bristol Proteomics Facility. 

 

5.2.8. Mass spectrometry of SILAC labelled elutions performed at the 

University of Bristol 

The protein samples B1 and B2 were sent to the University of Bristol Proteomics 

facility for mass spectrometry analysis. These were run separately on a protein 

gel processed for mass spectrometry by in-gel digestion. The peptides were 

analysed by an LTQ-Orbitrap mass spectrometer and processed by Proteome 

Discoverer (Thermo Scientific) software at a false discovery rate (FDR) of 5%. 

 

The data was returned for both fractions B1 and B2. Proteins identified in the 

fraction B1 were investigated first.  A total of 1553 proteins with at least one 

peptide were identified from fraction B1. The amount of proteins that were 

identified here were in a much greater number compared to the data that was 

returned from my analysis at the University of Sussex. 

 

The most abundant proteins identified for fraction B1 are ranked by PSM value is 

displayed (Table 5.3). 
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Table 5.3 Most abundant proteins identified by mass spectrometry analysis from fraction 
B1 at the University of Bristol. Proteins were ordered by the number of peptide spectrum 

matches. Heat shock proteins and tubulins were most abundantly identified. 

 

 

 

 

 

 

 

 

 

Accession Description # Total PSMs

P08670 Vimentin 249

F8VUJ7 Tubulin beta chain 135

P68371 Tubulin beta-4B chain 128

Q13813 Spectrin alpha chain, non-erythrocytic 1 124

Q9BVA1 Tubulin beta-2B chain 111

Q13885 Tubulin beta-2A chain 109

P08107 Heat shock 70 kDa protein 1A/1B 88

B2RBD5

cDNA, FLJ95457, highly similar to Homo sapiens tubulin, beta, 4 

(TUBB4), mRNA 81

Q01082 Spectrin beta chain, non-erythrocytic 1 76

Q07065 Cytoskeleton-associated protein 4 71

P35908 Keratin, type II cytoskeletal 2 epidermal 68

P12270 Nucleoprotein TPR 65

B4DVQ0 cDNA FLJ58286, highly similar to Actin, cytoplasmic 2 63

H6VRF8 Keratin 1 63

H6VRG2 Keratin 1 62

A5YM63 NEFM protein 58

P13645 Keratin, type I cytoskeletal 10 58

P20700 Lamin-B1 57

Q0QEN7 ATP synthase subunit beta (Fragment) 56

Q86UP2 Kinectin 55

E9PKE3 Heat shock cognate 71 kDa protein 55

B2RCQ9

cDNA, FLJ96225, highly similar to Homo sapiens heat shock 

70kDa protein 1-like (HSPA1L), mRNA 50
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Vimentin was the most abundant protein identified in fraction B1 with a PSM value 

of 249. Many structural proteins were identified including tubulins, and 

cytoskeletal-associated proteins. 

 

Three comparisons were made between the proteins identified because three 

SILAC labels were used to label control, hisZta and hisZtaAAA transfected cells. 

The hisZta sample can be compared to control; this can show the abundance of 

proteins that are present only because of hisZta or the presence of lytic cycle. 

The hisZtaAAA sample can be compared to control this can show the abundance 

of proteins that are present only because of hisZtaAAA or onset of lytic cycle that 

cannot replicate the viral genome. The third comparison includes hisZta 

compared to hisZtaAAA so the abundance of proteins present here are specific 

to lytic cycle and the presence of viral genome replication in the cell. 

 

The proteins identified in fraction B1 were ranked by SILAC ratio comparing 

hisZta and control sample (Table 5.4). They were identified with one or more 

SILAC peptides attributed to the protein. Proteins were identified with a SILAC 

ratio of 100.0 to 1.0. Proteins identified with a SILAC ratio between 2.0 and 100.0 

were ranked by SILAC ratio (Table 5.4A). Proteins identified with a SILAC ratio 

between 1.0 and 2.0 were ranked by SILAC ratio (Table 5.4B). 
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Table 5.4 Proteins identified from B1 mass spectrometry analysis from the University of 
Bristol showing the difference in abundance of hisZta and control. Proteins returned that 
had a SILAC ratio from 1.00 to 100.00, and with greater than or equal to one SILAC peptide 
between hisZta and Control. A Proteins with a SILAC ratio greater than 2.0 B Proteins with a 
SILAC ratio greater than 1.0 to 2.0 
 

 
 
  

Accession Description

Zta/

Control

Zta/

Control 

Count

H0YEX1 Cytoplasmic dynein 2 heavy chain 1 (Fragment) 100.00 1

H7BYV1 Interferon-induced transmembrane protein 2 (Fragment) 47.78 1

J3QRU4 Vesicle-associated membrane protein 2 42.61 1

H7C4M4 Protein HEG homolog 1 (Fragment) 12.79 1

E7EU96 Casein kinase II subunit alpha 4.88 2

Q9BWJ5 Splicing factor 3B subunit 5 3.32 2

A8KA50 cDNA FLJ78617 (Fragment) 2.70 4

H0YJ40

SRA stem-loop-interacting RNA-binding protein, 

mitochondrial (Fragment) 2.36 2

Accession Description

Zta/

Control

Zta/

Control 

Count

Q59HB8 Nuclear mitotic apparatus protein 1 variant (Fragment) 1.85 1

A6NDZ3 SAM domain and HD domain-containing protein 1 1.73 1

B3KYB6

Phosphatidylinositol transfer protein beta isoform 

(Fragment) 1.50 1

Q14151 Scaffold attachment factor B2 1.28 1

Q8WVW9 Similar to signal recognition particle 9kD (Fragment) 1.24 1

Q96NC0 Zinc finger matrin-type protein 2 1.23 1

Q96CS3 FAS-associated factor 2 1.14 1

Q4LE61 SYMPK variant protein (Fragment) 1.12 1

Q86TR6

Full-length cDNA 5-PRIME end of clone 

CS0DF014YL24 of Fetal brain of Homo sapiens 

(human) (Fragment) 1.00 2

A

B
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The protein with the highest SILAC ratio was cytoplasmic dynein 2 heavy chain 

1. This was only identified in in the Zta fraction when compared to the control, 

therefore the SILAC ratio was 100.0 Proteins with more than one SILAC peptides 

identified and a high SILAC ratio included Casein kinase II alpha, with a ratio of 

4.88, Splicing factor 3B subunit alpha, with a ratio of 3.32, cDNA fragment 

FLJ78617 (53BP1) with a ratio of 2.70 and SRA stem-loop-interacting RNA 

binding protein, mitochondrial, with a ratio of 2.36. 

 

The proteins identified in fraction B1 were ranked by SILAC ratio between 

hisZtaAAA and control sample (Table 5.5). They were identified with one or more 

SILAC peptides attributed to the protein. Proteins were identified with a SILAC 

ratio of 100.0 to 1.0. Proteins identified with a SILAC ratio between 2.0 and 100.0 

were ranked by SILAC ratio (Table 5.5A). Proteins identified with a SILAC ratio 

between 1.0 and 2.0 were ranked by SILAC ratio (Table 5.5B). Splicing factor 3B 

subunit 5 was identified with the highest difference and this was only identified in 

the hisZtaAAA sample (SILAC ratio 100.0). 

 

Some of the same proteins were identified as seen in Table 5.4. Cytoplasmic 

dynein 2 heavy chain 1 was identified with a SILAC ratio of 25.67, Casein kinase 

II alpha, with a ratio of 3.42 and SRA stem-loop-interacting RNA binding protein, 

mitochondrial, with a ratio of 2.36. 

 

The proteins identified in fraction B1 were ranked by SILAC ratio between hisZta 

and hisZtaAAA sample (Table 5.6). They were identified with one or more SILAC 

peptides attributed to the protein. Proteins were identified with a SILAC ratio of 

100.0 to 1.0. Proteins identified with a SILAC ratio between 100.0 and 10.0 were 

ranked by SILAC ratio here. 
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Table 5.5 Proteins identified from B1 mass spectrometry analysis from the University of 
Bristol showing the difference in abundance of hisZtaAAA and control. Proteins returned 
that had a SILAC ratio from 1.00 to 100.00, and with greater than or equal to one SILAC peptide 
between hisZtaAAA and Control. A Proteins with a SILAC ratio greater than 2.0 B Proteins with 
a SILAC ratio greater than 1.0 to 2.0. 

 

 

 

 

Accession Description

ZtaAAA/

Control

ZtaAAA/

Control 

Count

Q9BWJ5 Splicing factor 3B subunit 5 100.00 1

H0YEX1 Cytoplasmic dynein 2 heavy chain 1 (Fragment) 58.67 1

H0YJ40

SRA stem-loop-interacting RNA-binding protein, 

mitochondrial (Fragment) 4.83 2

E7EU96 Casein kinase II subunit alpha 3.42 2

Accession Description

ZtaAAA/

Control

ZtaAAA/

Control 

Count

A6NDZ3 SAM domain and HD domain-containing protein 1 1.14 1

Q969I0 KRT8 protein (Fragment) 1.08 2

H7BYV1

Interferon-induced transmembrane protein 2 

(Fragment) 1.00 1

J3QRU4 Vesicle-associated membrane protein 2 1.00 1

H7C4M4 Protein HEG homolog 1 (Fragment) 1.00 1

A

B
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Table 5.6 Proteins identified from B1 mass spectrometry analysis from the University of 
Bristol showing the difference in abundance of hisZta and hisZtaAAA. Proteins returned that 
had a SILAC ratio from 1.00 to 100.00, and with greater than one or equal to one SILAC peptide 
between hisZta and hisZtaAAA. SILAC ratios here were reversed by 1÷(hisZtaAAA/hisZta). 

 

  

Accession Description

Zta/

ZtaAAA

Zta/

ZtaAAA

Count

D6RAX2 C-terminal-binding protein 1 (Fragment) 90.59 1

B4DJA5 Ras-related protein Rab-5A 69.63 1

B4DWS6

cDNA FLJ61181, highly similar to Homo sapiens 

hydroxysteroid (17-beta) dehydrogenase 12 (HSD17B12), 

mRNA 61.25 1

Q04941 Proteolipid protein 2 55.97 1

Q15717 ELAV-like protein 1 52.41 1

J3QRU4 Vesicle-associated membrane protein 2 42.61 1

Q96HX3 Similar to ribophorin I (Fragment) 28.74 4

B4DYW3

cDNA FLJ56752, highly similar to 28S ribosomal protein S15, 

mitochondrial (S15mt) 24.60 1

Q53GE7 Tetratricopeptide repeat domain 1 variant (Fragment) 24.38 1

J3QSX4 Mitotic checkpoint protein BUB3 20.44 1

Q9UI09

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 

subunit 12 14.73 1

B7Z2F4 T-complex protein 1 subunit delta 13.49 2

H7BYV1 Interferon-induced transmembrane protein 2 (Fragment) 13.01 2

H7C4M4 Protein HEG homolog 1 (Fragment) 12.79 1

B4DR63 26S protease regulatory subunit 4 12.11 2

B4E2C0 Secreted glypican-4 10.41 1

Q9NQ51 Putative ATPases 10.39 1

Q86TR6

Full-length cDNA 5-PRIME end of clone CS0DF014YL24 of 

Fetal brain of Homo sapiens (human) (Fragment) 10.00 2

Q6FG43 FLOT2 protein 10.00 2
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The original data returned from the analysis included hisZtaAAA/hisZta, or the 

heavy/medium sample. To analyse the proteins in abundance with reference to 

hisZta to give a hisZta/hisZtaAAA the SILAC ratios returned were divided into 

one. (1 / hisZtaAAA/hisZta). 

 

C-terminal-binding protein 1 (fragment) had the highest ratio of 90.59. Proteins 

with a peptide count greater than one included a protein similar to ribophorin 1 

(fragment) with a ratio of 28.74. T-complex protein 1 subunit delta with a ratio of 

13.49. Interferon-induced transmembrane protein 2 (fragment) with a ratio of 

13.01 and 26S protease regulatory subunit 4 with a ratio of 12.11. 
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Table 5.7 Most abundant proteins identified by mass spectrometry analysis from sample 
B2 from the University of Bristol. Proteins were ordered by the number of peptide spectrum 
matches. Heat shock proteins and tubulins were most richly identified. 
 

 

 

 

 

Accession Description 
# Total 

PSMs 

Q13813 Spectrin alpha chain, non-erythrocytic 1  313 

P08670 Vimentin  293 

Q01082 Spectrin beta chain, non-erythrocytic 1  209 

P12270 Nucleoprotein TPR  176 

B4DTV8 cDNA FLJ61399, highly similar to Spectrin alpha chain, brain  164 

F8VUJ7 Tubulin beta chain  151 

Q9UG16 Putative uncharacterized protein DKFZp564P0562 (Fragment)  144 

P68371 Tubulin beta-4B chain  140 

Q9BVA1 Tubulin beta-2B chain  132 

Q13885 Tubulin beta-2A chain  129 

P04350 Tubulin beta-4A chain  110 

P08107 Heat shock 70 kDa protein 1A/1B  107 

Q13509 Tubulin beta-3 chain  90 

P20700 Lamin-B1  87 

A5YM63 NEFM protein  86 

Q15075 Early endosome antigen 1  82 

P11142 Heat shock cognate 71 kDa protein  81 

G3V1U9 Tubulin alpha-1A chain  72 

Q14980 Nuclear mitotic apparatus protein 1  70 

B3KPS3 
cDNA FLJ32131 fis, clone PEBLM2000267, highly similar to Tubulin 

alpha-ubiquitous chain  
70 

Q07065 Cytoskeleton-associated protein 4  64 

B3GQS7 Mitochondrial heat shock 60kD protein 1 variant 1  60 

Q0QEN7 ATP synthase subunit beta (Fragment)  56 

Q59HB8 Nuclear mitotic apparatus protein 1 variant (Fragment)  53 

Q86UP2 Kinectin  53 

B7Z4V2 cDNA FLJ51907, highly similar to Stress-70 protein, mitochondrial  52 

B2RCQ9 
cDNA, FLJ96225, highly similar to Homo sapiens heat shock 70kDa 

protein 1-like (HSPA1L), mRNA  
52 
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The data was returned and the most abundant proteins identified for fraction B2 

ranked by PSM value is displayed (Table 5.7). 

 

Spectrin alpha chain, non-erythrocytic 1 was the most abundant protein identified 

in fraction B2 with a PSM value of 313. Vimentin was again identified like fraction 

B1, here the second most abundant protein with 293 PSMs. Many structural 

proteins were identified including tubulins, and cytoskeletal-associated proteins. 

 

Again, three comparisons were made between the proteins identified because 

three SILAC labels were used to label control, hisZta and hisZtaAAA transfected 

cells. The hisZta sample can be compared to control; this can show the 

abundance of proteins that are present only because of hisZta or the presence 

of lytic cycle. The hisZtaAAA sample can be compared to control this can show 

the abundance of proteins that are present only because of hisZtaAAA or the 

initiation of lytic cycle without viral replication. The third comparison includes 

hisZta compared to hisZtaAAA so the abundance of proteins present are specific 

to the presence of viral replication. 

 

The proteins identified in fraction B2 were ranked by SILAC ratio comparing 

hisZta and control sample (Table 5.8). They were identified with one or more 

SILAC peptides attributed to the protein. Proteins were identified with a SILAC 

ratio of 100.0 to 1.0. Proteins identified with a SILAC ratio between 2.0 and 100.0 

were ranked by SILAC ratio (Table 5.8A). Proteins identified with a SILAC ratio 

between 1.0 and 2.0 were ranked by SILAC ratio (Table 5.8B). 
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Table 5.8 Proteins identified from B2 mass spectrometry analysis from the University of 
Bristol showing the difference in abundance of hisZta and control. Proteins returned that 
had a SILAC ratio from 1.00 to 100.00, and with greater than or equal to one SILAC peptide 
between hisZta and Control. A Proteins with a SILAC ratio greater than 2.0 B Proteins with a 

SILAC ratio greater than 1.0 to 2.0 

 

 

 

 

Accession Description Zta/

Control

Zta/

Control 

Count

Q5T851 Novel protein (Fragment) 100.00 1

Q15542 Transcription initiation factor TFIID subunit 5 100.00 1

O75197 Low-density lipoprotein receptor-related protein 5 100.00 1

Q9BQN1 Protein FAM83C 46.46 1

O00264
Membrane-associated progesterone receptor 

component 1 
24.70 1

E7EU96 Casein kinase II subunit alpha 24.56 1

E5RHG8
Transcription elongation factor B polypeptide 1 

(Fragment) 
21.22 1

H7BZ50 Mitotic-spindle organizing protein 2B (Fragment) 11.73 1

B4DMA8
cDNA FLJ53841, highly similar to Kinesin-like protein 

KIFC1 
7.66 2

Q96GX3 KIAA0118 protein (Fragment) 6.89 1

B2REB1
Spastic ataxia of Charlevoix-Saguenay (Sacsin) 

(Fragment) 
5.69 2

P62304 Small nuclear ribonucleoprotein E 5.27 2

O96011 Peroxisomal membrane protein 11B 2.68 2

C9J6L4 Probable serine carboxypeptidase CPVL (Fragment) 2.54 2

Accession Description Zta/

Control

Zta/

Control 

Count

Q9HCD5 Nuclear receptor coactivator 5 1.25 1

B4DUG4 cDNA FLJ51308 1.13 1

F5GWR1 Coiled-coil domain-containing protein 91 (Fragment) 1.10 1

B4DMJ8
cDNA FLJ52116, highly similar to Rho-related GTP-

binding protein RhoB 
1.06 1

B3KPC1
cDNA FLJ31582 fis, clone NT2RI2002117, highly 

similar to Protein pelota homolog 
1.04 1

H0YDB2 Stromal interaction molecule 1 (Fragment) 1.02 1

Q5CZB5 Putative uncharacterized protein DKFZp686M0430 1.00 2

A

B
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A protein with 100.0 SILAC ratio included a novel protein (Q5T851) identified as 

Poly (A) RNA polymerase, mitochondrial, TAF5, and Low-density lipoprotein 

receptor-related protein 5. These were only identified in the hisZta sample 

compared to the control. 

 

Proteins with more than one SILAC peptides identified and a high SILAC ratio 

included cDNA FLJ53841 similar to KIFC1, with a ratio of 7.66, Sacsin with a ratio 

of 5.69, Small nuclear ribonucleoprotein E with a ratio of 5.27, Peroxisomal 

membrane protein 11B with a ratio of 2.68, Probable serine carboxypeptidase 

CPVL (Fragment), with a ratio of 2.54. 

 

Interestingly, Casein Kinase II alpha was also detected in fraction B2 with a 

SILAC ratio of 34.56. 53BP1 was not found in this fraction. 

 

Proteins that were identified in fraction B2 were also ranked by SILAC ratio 

between hisZtaAAA and control sample (Table 5.9). They were identified with 

one or more SILAC peptides attributed to the protein. Proteins were identified 

with a SILAC ratio of 100.0 to 1.0. Proteins identified with a SILAC ratio between 

2.0 and 100.0 were ranked by SILAC ratio (Table 5.9A). Proteins identified with 

a SILAC ratio between 1.0 and 2.0 were ranked by SILAC ratio (Table 5.9B). 
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Table 5.9 Proteins identified from B2 mass spectrometry analysis at the University of 
Bristol showing the difference in abundance of hisZtaAAA and control. Proteins returned 
that had a SILAC ratio from 1.00 to 100.00, and with greater than or equal to one SILAC peptide 
between hisZtaAAA and Control. A Proteins with a SILAC ratio greater than 2.0 B Proteins with 

a SILAC ratio greater than 1.0 to 2.0 

 

 

 

 

 

 

 

 

 

 

Accession Description ZtaAAA

/Control

ZtaAAA/

Control 

Count

O75197
Low-density lipoprotein receptor-related protein 

5 
100.00 1

E7EU96 Casein kinase II subunit alpha 26.75 1

E9PH24 Glutamate receptor delta-2 subunit 3.54 1

P62304 Small nuclear ribonucleoprotein E 3.13 2

Accession Description ZtaAAA

/Control

ZtaAAA/

Control 

Count

H7C2B5 Telomere-associated protein RIF1 (Fragment) 1.99 1

D6RAA2 GTP-binding protein SAR1b (Fragment) 1.51 1

Q5JPU0 Pyruvate dehydrogenase (Lipoamide) alpha 1 1.19 1

A0PJ47 SAFB2 protein (Fragment) 1.01 1

Q5T851 Novel protein (Fragment) 1.00 1

Q15542 Transcription initiation factor TFIID subunit 5 1.00 1

Q9BQN1 Protein FAM83C 1.00 1

O00264
Membrane-associated progesterone receptor 

component 1 
1.00 1

E5RHG8
Transcription elongation factor B polypeptide 1 

(Fragment) 
1.00 1

H7BZ50
Mitotic-spindle organizing protein 2B 

(Fragment) 
1.00 1

Q96GX3 KIAA0118 protein (Fragment) 1.00 1

A

B
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Proteins with more than one SILAC peptides identified and a high SILAC ratio 

included only Small nuclear ribonucleoprotein E, with a SILAC ratio of 3.13 

A protein with 100.0 SILAC ratio included low-density lipoprotein receptor-related 

protein 5. Proteins with more than one SILAC peptides identified and a high 

SILAC ratio included small nuclear ribonucleoprotein E with a ratio of 3.13. Again, 

Casein Kinase II alpha was detected here with a SILAC ratio of 26.75. 

 

The proteins identified in fraction B2 were ranked by SILAC ratio between hisZta 

and hisZtaAAA sample (Table 5.10). Proteins were identified with a SILAC ratio 

of 100.0 to 1.0. Proteins were identified with one or more SILAC peptides 

attributed to the protein. The original data returned had the ratio orientated with 

hisZtaAAA / hisZta. In order to show this data with a high ratio representing the 

abundance of protein due to hisZta, the ratios were divided into 1. 
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Table 5.10 Proteins identified from B2 mass spectrometry analysis at the University of 
Bristol showing the difference in abundance of hisZta and hisZtaAAA. Proteins returned that 
had a SILAC ratio from 1.00 to 100.00, and with greater than one or equal to one SILAC peptide 
between hisZta and hisZtaAAA. SILAC ratios here were reversed by 1÷(hisZtaAAA/hisZta). 

 
 

Accession Description

Zta/

ZtaAAA

Zta/

ZtaAAA

Count

Q5T851 Novel protein (Fragment) 100.00 1

Q15542 Transcription initiation factor TFIID subunit 5 100.00 1

Q6MZH3 Putative uncharacterized protein DKFZp686I05132 100.00 1

B7Z462

cDNA FLJ58016, highly similar to Polypeptide N-

acetylgalactosaminyltransferase2 (EC 2.4.1.41) 100.00 1

Q108N2

Acyl-CoA synthetase long-chain family member 1 isoform 

c (Fragment) 100.00 1

B0AZP7 Synaptic vesicle membrane protein VAT-1 homolog 91.01 1

B3KXZ9

cDNA FLJ46477 fis, clone THYMU3025118, highly similar 

to Cell surface glycoprotein MUC18 71.78 1

F5H7X1 26S proteasome non-ATPase regulatory subunit 9 66.51 1

A8K2R3

cDNA FLJ75083, highly similar to Homo sapiens amine 

oxidase (flavin containing) domain 2 (A 59.13 1

Q53T09 Putative uncharacterized protein XRCC5 (Fragment) 50.11 1

Q9BQN1 Protein FAM83C 46.46 1

B7ZBQ1

Mediator complex subunit 20 subunit 20Trf (TATA binding 

protein-related factor)-proximal homolog (Drosophila) 

(Fragment) 43.96 1

B4DWZ5 Mitochondrial carnitine/acylcarnitine carrier protein 41.81 1

Q9HD33 39S ribosomal protein L47, mitochondrial 38.61 1

O00264

Membrane-associated progesterone receptor component 

1 24.70 1

E5RHG8 Transcription elongation factor B polypeptide 1 (Fragment) 21.22 1

B4DMA8

cDNA FLJ53841, highly similar to Kinesin-like protein 

KIFC1 20.80 2

Q5VV42 Threonylcarbamoyladenosine tRNA methylthiotransferase 19.11 1

B0QYA5

Eukaryotic translation initiation factor 3 subunit D 

(Fragment) 14.97 1

B3KMS5

cDNA FLJ12482 fis, clone NT2RM1001085, highly similar 

to CTTNBP2 N-terminal-like protein 14.48 2

Q96S55 ATPase WRNIP1 13.10 2

H7BZ50 Mitotic-spindle organizing protein 2B (Fragment) 11.73 1

P32856 Syntaxin-2 10.63 1

B2REB1

Spastic ataxia of Charlevoix-Saguenay (Sacsin) 

(Fragment) 10.22 2

F8VRD8

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 

subunit 12 10.15 2

Q5CZB5 Putative uncharacterized protein DKFZp686M0430 10.00 2

O60762 Dolichol-phosphate mannosyltransferase 10.00 2
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The protein with the highest ratio identified with 100.0 was Novel protein 

(Fragment) identified as Poly(A) RNA polymerase, TAF5, Putative 

uncharacterized protein DKFZp686I05132, cDNA FLJ58016, highly similar to 

Polypeptide N-acetylgalactosaminyltransferase2 (EC 2.4.1.41), and Acyl-CoA 

synthetase long-chain family member 1 isoform c (Fragment). 

 

Proteins with more than one SILAC peptides identified and a high SILAC ratio 

included: cDNA FLJ53841 similar to KIFC1, with a ratio of 20.80, Eukaryotic 

translation initiation factor 3 subunit D (Fragment) with a ratio of 14.97, cDNA 

FLJ12482 fis, clone NT2RM1001085 highly similar to CTTNBP2 N-terminal-like 

protein with a ratio of 14.48, ATPase WRNIP1 with a ratio of 13.10. Sacsin with 

a ratio of 10.22, NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 

12. Putative uncharacterized protein DKFZp686M0430 and Dolichol-phosphate 

mannosyltransferase both had a ratio of 10.00 

 

5.2.9. Attempt to determine elution positions of proteins identified from 

the mass spectrometry proteomics analysis 

From the SILAC analysis, casein kinase II alpha is more abundant in fractions B1 

and B2 for both hisZta and hisZtaAAA compared to control cell extracts. Casein 

kinase II alpha was chosen because it changed two to five fold in fraction B1, and 

twenty-four to twenty-six fold in fraction B2 by both Zta and ZtaAAA. Mitochondrial 

Poly(A) RNA polymerase (Q5T851) protein was identified in fraction B2 and most 

abundant in the hisZta transfected elution, and not in the control or hisZtaAAA 

transfected elution. Mitochondrial Poly(A) RNA polymerase was chosen because 

it is Zta specific in fraction B2. These two proteins were initially chosen to follow 

up the elution profile, to attempt to confirm their abundance by western blot 

analysis. 

 

First, Casein Kinase II alpha was chosen from fraction B1 and its presence in 

fraction B2. A new transfection of cells were prepared into cell lytic buffer as 

previous and fractionated by the Superose 6 column separately. Elution fractions 

from A14 to B4 for control, hisZta and hisZtaAAA were processed by acetone 

precipitation and resuspended into protein sample buffer. This range was chosen 
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to cover elution fractions B1 and B2. The proteins were separated by SDS-PAGE. 

From the SILAC data returned in Table 5.4, casein kinase II alpha had a 

Zta/control ratio of 4.88. In Table 5.5 casein kinase II alpha had a ZtaAAA/Control 

ratio of 3.42. There should be more abundance of this protein in fraction B1 in 

both hisZta and hisZtaAAA transfected fractions compared to the control. From 

the SILAC data returned in Table 5.8, casein kinase II alpha had a Zta/control 

ratio of 24.56. In Table 5.9 casein kinase II alpha had a ZtaAAA/Control ratio of 

26.75. There should be more abundance of this protein in fraction B2 in both 

hisZta and hisZtaAAA transfected fractions compared to the control. 

 

A western blot of the eluted fractions was performed (Figure 5.15A). The input for 

each sample was included and fractions A14-B4 were separated, hisZta and 

hisZtaAAA were detected, casein kinase II alpha and actin in the input by 

antibodies. The presence of casein kinase II alpha was detected and two protein 

bands are present. Both of these bands were investigated as upper and lower 

because it was not possible to distinguish if casein kinase II alpha was being 

phosphorylated, resulting in possibly a protein with a higher molecular weight on 

the gel. 
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Figure 5.15 CKII alpha abundance in both hisZta and hisZtaAAA fractions between A14 
and B4 elutions. A new transfection of HEK293-BZLF1-KO cells were transfected with either 
control, hisZta or hisZtaAAA expression vectors. These cells were harvested after 96 hours and 
lysed in cell lytic reagent. Cell extracts were processed and was applied to the Superose 
610/300GL column and 0.5ml fractions were eluted. Acetone precipitation of elution fractions 
before proteins were resuspended in protein sample buffer.  A A fraction of these samples were 
separated by SDS-PAGE before western blot analysis. Antibodies used were BZ1 and anti- 
Casein Kinase II alpha. B Upper Casein Kinase II alpha band quantitation. Lower Casein Kinase 

II alpha band quantitation. Quantitation performed using ImageStudio (Licor). 
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There is slightly more protein abundance in the hisZta B1 fraction compared to 

control fraction in fraction B1 for the upper band quantitated (Figure 5.15B). There 

is more casein kinase II alpha in the hisZtaAAA B1 fraction. Both of these bands 

agree with the trend mass spectrometry data. There is slightly more protein 

abundance in the hisZta B1 fraction compared to control fraction in fraction B1 

for the lower band quantitated (Figure 5.15B). There is more casein kinase II 

alpha in the hisZtaAAA B1 fraction. Both of these bands agree with the trend 

mass spectrometry data. 

 

There is slightly more protein abundance in the hisZta B2 fraction compared to 

control fraction in fraction B1 for the upper band quantitated (Figure 5.15B). There 

is more casein kinase II alpha in the hisZtaAAA B2 fraction. Both of these bands 

agree with the trend mass spectrometry data. There is slightly more protein 

abundance in the hisZta B2 fraction compared to control fraction in fraction B1 

for the lower band quantitated (Figure 5.15B). There is more casein kinase II 

alpha in the hisZtaAAA B2 fraction. Both of these bands agree with the trend 

mass spectrometry data. 

 

From the SILAC analysis Poly(A) RNA polymerase (mitochondrial) was also 

chosen to follow up the elution profile as this protein was present in B2 mass 

spectrometry analysis identified as novel protein Q5T851. A new transfection of 

cells were prepared into cell lytic buffer and fractionated by the Superose 6 

column separately. Elution fractions from A14 to B4 for control, hisZta and 

hisZtaAAA were processed by acetone precipitation and resuspended into 

protein sample buffer. The proteins were separated by SDS-PAGE. From the 

SILAC data returned (Table 5.8), Poly(A) RNA polymerase (mitochondrial) had a 

Zta/control ratio of 100.0. The protein was only in the hisZta transfected sample 

compared to control. Also Poly(A) RNA polymerase (mitochondrial) had a 

Zta/ZtaAAA ratio of 100.0 (Table 5.10). The protein was only in the hisZta 

transfected sample compared to hisZtaAAA. Poly(A) RNA polymerase 

(mitochondrial) is present in all B2 fractions, with more protein abundance in 

hisZtaAAA B2 (Figure 5.16). Also Poly(A) RNA polymerase (mitochondrial) is 

only in hisZtaAAA B1 fraction and not in hisZta B1 or control B1 fractions. 
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Figure 5.16 Poly(A) RNA polymerase (mitochondrial) abundance in both hisZta and 
hisZtaAAA fractions between A14 and B4 elutions. A new transfection of HEK293-BZLF1-KO 
cells were transfected with either control, hisZta or hisZtaAAA expression vectors. These cells 
were harvested after 96 hours and lysed in cell lytic reagent. Cell extracts were processed and 
was applied to the Superose 610/300GL column and 0.5ml fractions were eluted. Acetone 
precipitation of elution fractions before proteins were resuspended in protein sample buffer.  A A 
fraction of these samples were separated by SDS-PAGE before western blot analysis. Antibodies 
used were BZ1 and anti- Poly (A) RNA Polymerase (mitochondrial) B Poly (A) RNA Polymerase 
(mitochondrial) band quantitation. Quantitation performed using ImageStudio (Licor). 
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A western blot of the eluted fractions was performed (Figure 5.16A). The input for 

each sample was included and fractions A14-B4 were separated, hisZta and 

hisZtaAAA were detected and poly(A) RNA polymerase (mitochondrial) in the 

input by antibodies. The presence of poly(A) RNA polymerase (mitochondrial) 

was in detected and one protein bands are present. 

 

Poly(A) RNA polymerase (mitochondrial) is not present in control or hisZta B1 

fraction, but present in hisZtaAAA B1 (Figure 5.16A). Although there is slightly 

more protein abundance in the control B1 fraction compared to hisZta fraction in 

fraction B1 this may be background levels of quantitation (Figure 5.16B). There 

is more poly(A) RNA polymerase (mitochondrial) in the hisZtaAAA B1 fraction.  

The protein was chosen for to be investigated based on fraction B2. Poly(A) RNA 

polymerase (mitochondrial) should only be in the hisZta B2 fraction (Table 5.8a, 

Table 5.10). 

 

Poly(A) RNA polymerase (mitochondrial) was present in all eluted B2 samples 

here. There is slightly more protein abundance in the control B2 fraction 

compared to hisZta fraction in fraction B2 for the lower band quantitated (Figure 

5.16B). There is more Poly(A) RNA polymerase (mitochondrial) in the hisZtaAAA 

B2 fraction. This abundance does not agree with the trend mass spectrometry 

data. 

 

Further analysis of the mass spectrometry data returned indicated 53BP1 

(A8KA50) might be implicated to be changing abundance.  The protein was 

identified and had an increased SILAC ratio of 2.70 in the hisZta B1 fraction 

compared to control B1 fraction (Table 5.4A). Also the SILAC ratio for 53BP1 

(A8KA50) between hisZta and hisZtaAAA was 5.62. Therefore, this protein 

should be increased in abundance only for hisZta sample. 
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Figure 5.17 53BP1 abundance in both hisZta and hisZtaAAA fractions between A14 and B4 
elutions. A new transfection of HEK293-BZLF1-KO cells were transfected with either control, 
hisZta or hisZtaAAA expression vectors. These cells were harvested after 96 hours and lysed in 
cell lytic reagent. Cell extracts were processed and was applied to the Superose 610/300GL 
column and 0.5ml fractions were eluted. Acetone precipitation of elution fractions before proteins 
were resuspended in protein sample buffer. A  Afraction of these samples were separated by 
SDS-PAGE before western blot analysis. Antibodies used were BZ1 and anti- 53BP1. Antibodies 
used were BZ1 and anti- 53BP1 B 53BP1 band quantitation. Quantitation performed using 

ImageStudio (Licor). 
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Another size separation of transfected HEK293-BZLF1-KO cells was performed. 

The elutions were acetone precipitated and resuspended in protein sample buffer 

before being separated by SDS-PAGE. A western blot of the eluted fractions was 

performed (Figure 5.17A). The input for each sample was included and fractions 

A14-B4 were separated, hisZta and hisZtaAAA were detected and 53BP1 in the 

input by antibodies. The presence of 53BP1 was in detected as a high molecular 

weight protein. Two distinct bands are present. 

53BP1 is present in control, hisZta and hisZtaAAA B1 fraction, (Figure 5.17A). 

Although there is slightly more protein abundance in the control B1 fraction 

compared to hisZta fraction in fraction B1 (Figure 5.17B). There is more 53BP1 

in the hisZtaAAA B1 fraction. This abundance does not agree with the trend mass 

spectrometry data.  

 

 Discussion 

It was decided to investigate protein complexes associated with Zta that may play 

a contributing role in EBV lytic replication. This study demonstrates that combined 

SEC/MS analysis can be used for the analysis of protein complexes and to predict 

potential interactions.  

 

First, the function of transcription and replication of Zta and Zta mutants were 

demonstrated. The transcriptional activity of Zta was validated and activated the 

BHLF1 promoter. The ZtaAAA protein could also activate the BHLF1 promoter. 

The distal C-terminal region is not required for transactivation function of Zta in 

vivo (Schelcher et al. 2007). This study demonstrates that the last three amino 

acids mutated to alanine have no effect on the transactivation of the BHLF1 

promoter, while the mutant maintains the ability for transactivation of genes. 

 

The initiation of EBV genome replication was assessed by qPCR. Zta was 

demonstrated to initiate the lytic cycle in HEK293-BZLF1-KO cells, ZtaAAA could 

not initiate the lytic cycle in these cells (Figure 5.4). Although the early lytic 

protein, BMRF1 was expressed from cells transfected with Zta or ZtaAAA, 

therefore ZtaAAA retains its transactivation activity but cannot replicate the viral 

genome. The deletion of the final three carboxyl-terminal amino acids of Zta can 
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abolish EBV genome replication in the same cell system (Bailey et al. 2009). The 

ZtaAAA mutant agrees and follows an identical profile here with the published 

data, where the viral genome is not initiated for lytic replication. The final three 

amino acids of Zta are leucine, asparagine and phenylalanine (LNF). The 

expression vector for ZtaAAA contains three alanine substituted into these 

positions. Leucine and phenylalanine are non-polar amino acids, whereas 

asparagine is polar. The X-ray crystal structure of the Zta dimerization and DNA 

binding domains bound to DNA revealed that Zta amino acids in the C-terminus 

from Pro223 fold back against the coiled coil (Petosa et al. 2006). Cross-linking 

experiments demonstrate that the entire C-terminal region lies adjacent to the 

zipper, amino acids 221 to 230 enhance the stability of the coiled coil (Schelcher 

et al. 2007). Residues in the zipper region of Zta are essential (McDonald et al. 

2009). The ZtaAAA proteins final amino acid region is important for the stability 

of Zta structure, and the mutant used in this study agrees with the literature here. 

 

The Superose 6 10/300GL size exclusion column function was calibrated before 

its use. A suitable buffer was chosen and size exclusion molecular weight 

markers were placed in this buffer and eluted from the column. This enabled 

molecular weights to be applied to the elution fractions. The native molecular 

weight determination by gel filtration from cell extracts was performed and the 

elution profiles determined. Zta and the EBV lytic cycle has not been studied by 

size exclusion chromatography before. The single stranded DNA binding protein 

BALF2 has been assessed previously for its function with the viral DNA 

polymerase by size exclusion chromatography but not in the context if lytic 

replication (Tsurumi 1993). 

 

A successful elution of hisZta and proteins from cell extracts were stable in the 

buffer for elution and capable of being precipitated in acetone and resuspended 

in protein sample buffer. This established suitable gel filtration conditions for Zta 

cell extracts. A suitable buffer, and acetone precipitation of elutions was 

developed. Also the elution profile of Zta and cellular proteins was determined. 

This was repeatable and consistent across multiple transfected cell extracts 
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Zta elutes in same fractions as U2OS cells, displaying a near identical elution 

profile in HEK293-BZLF1-KO cells, between 8-10ml and 16-18ml. A heavier 

fraction was evident for hisZta cells undergoing lytic replication, between 6-8mls 

(Figure 5.9). This region became a region of interest as this was not evident in 

the hisZtaAAA elution profile. HisZtaAAA did first elute into the 8-10ml fraction 

with a lower abundance until 16-18ml. An extremely low abundance of Zta can 

be seen within the 6-8ml elution in U2OS cells, this is more prominent in HEK293-

BZLF1-KO cells. From the inputs, there was an equivalent of hisZta and 

hisZtaAAA. Therefore the difference seen in the heaviest fraction may be a lytic 

cycle difference with virus undergoing lytic replication, the molecular complexes 

may not be fully formed in EBV negative cells, but in EBV positive cells 

undergoing lytic replication these proteins are present. Therefore this elution 

region was investigated further.  

 

A finer elution of the fractions were processed and separated. The one large 

elution fractions were separated into four fractions each for a greater resolution. 

The region where Zta first elutes into sees an abundance of Zta (7.5ml, Figure 

5.11A). BMRF1 is also present across all fractions, and is prominent from the 

7.5ml fraction. 

 

The presence of hisZtaAAA in 7.5ml may be a slight shift into this fraction, as the 

abundance of BMRF1 is very minimal here (Figure 5.11B). ZtaAAA is prominent 

in 8.0ml fraction, which agrees with the previous data. The abundance is minimal 

until the 14ml fraction where the high abundance returns. The first fraction 

indicated a difference between lytic replicating and non-lytic replicating cells. 

Therefore fractions B1 and B2 were used as a focus point for distinguishing 

differences between control, hisZta and hisZta expressed in HEK293-BZLF1-KO 

cells. 

 

HEK293-BZLF1-KO cells were labelled with SILAC light, medium and heavy 

media for control, hisZta and hisZtaAAA transfection respectively. Mass 

spectrometry of fractions B1 and B2 gave a high data set from the University of 

Bristol. The mass spectrometry attempt at the University of Sussex could not 

allow any meaningful conclusions from the data. 
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HisZtaAAA that is unable to initiate EBV lytic replication, so this allows another 

level of analysis. The proteins that are present in the elutions will not be present 

due to viral replication, and may be present due to interactions with the 

transactivation domain of Zta, or from the onset of lytic cycle. Some lytic genes 

can still be expressed by hisZtaAAA. A difference in protein abundance was 

identified from the control, hisZta and hisZtaAAA samples indicated by a SILAC 

ration. The abundance changed for some proteins for all conditions. 

 

The proteins present in the elution fraction may not be directly interacting with 

Zta, but associating with elements related with EBV lytic replication. These may 

be forming protein complexes or associating with proteins interacting with Zta. 

Proteins were investigated for having a high SILAC ratio in the hisZta sample and 

a low SILAC ratio in the control and hisZtaAAA sample. For fraction B1, these 

were casein kinase II alpha, 53BP1, which were found in high abundance in the 

hisZta sample against the control. Casein kinase II alpha also had a high ratio for 

hisZtaAAA against control sample. 

 

For fraction B2, mitochondrial Poly(A) RNA polymerase was only detected in the 

hisZta fraction. Casein kinase II alpha was also shown to have a high abundance 

in the hisZta and hisZtaAAA fractions, as seen in fraction B1. Although the protein 

abundance was much higher in fraction B2. 

 

An attempt to determine elution positions of the proteins identified from the mass 

spectrometry analysis was made. The western blot results trying to assess the 

mass spectrometry data were mixed, as the abundance of the target proteins 

were quantitated and there was some differences from the mass spectrometry 

analysis. These are outlined below. 

 

Casein kinase II alpha was assessed first. There is slightly more casein kinase II 

alpha abundance in the hisZta B1 fraction compared to control fraction in fraction 

B1 for the upper band quantitated (Figure 5.15B). There is more casein kinase II 

alpha in the hisZtaAAA B1 fraction. Both of these bands agree with the trend 

mass spectrometry data. 
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Figure 5.18 Protein-protein interaction networks of casein kinase II alpha. Taken from 

STRING v10 (Szklarczyk et al. 2015) 

The proteins may still form protein complexes or interact with proteins identified 

in the elution fraction. Casein kinase II alpha can interact with a number of 

proteins, as outlined in Figure 5.18.  The STRING database allows a visualisation 

of known protein interactions and complexes (Szklarczyk et al. 2015). These 

proteins were cross-referenced in the SILAC dataset for both B1 and B2 fractions. 

From the 10 proteins that Casein kinase II alpha is reported to interact with, only 

2 were found in fraction B1: CSNK2B and HDAC1. CSNK2B was the only protein 

found in fraction B2. Casein kinase II subunit beta and HDAC1 all had SILAC 

ratios of less than 0.6 for the Zta/Control analysis, indicating that there was less 

abundance of this protein in the Zta sample because the ratio was below 1.0. 

There was a more abundance of these proteins in the hisZta sample than the 

hisZtaAAA sample, but these SILAC ratios ranged from 1.2 to 1.68. 
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The function of casein kinase II alpha may play importance towards the initiation 

of the lytic cycle. Zta itself is phosphorylated at casein kinase II sites and is 

important for lytic cycle control (El-Guindy & Miller 2004). This is important for 

repressing Rta activation of late lytic genes. Also the viral kinase BGLF4 targets 

the nucleus and binds to nuclear pore complex proteins. This study also predicted 

the structure of BGLF4 based on the known structure of casein kinase II alpha, 

indicating sequence homology between the viral kinase and this host protein of 

interest (Chang et al. 2012). 

 

The other protein identified from the mass spectrometry analysis was poly(A) 

RNA polymerase (mitochondrial). Poly(A) RNA polymerase (mitochondrial) is not 

present in control or hisZta B1 fraction, but present in hisZtaAAA B1. There is 

more poly(A) RNA polymerase (mitochondrial) in the hisZtaAAA B2 fraction. This 

abundance does not agree with the trend mass spectrometry data. 
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Figure 5.19 Protein-protein interaction networks of poly(A) RNA polymerase 
(mitochondrial). Taken from STRING v10 (Szklarczyk et al. 2015) 

Again, the proteins that may interact with this protein in a complex were 

investigated in the dataset (Figure 5.19). TFAM was in the B1 fraction with a 

Zta/control ratio of 0.662 and NUP107 was in the B2 fraction with a Zta/control 

ratio of 0.710. There was a marginal increase in abundance of these proteins in 

the Zta sample compared to the ZtaAAA sample in B1 and B2. Again the protein 

that may interact with poly(A) RNA polymerase (mitochondrial) were not detected 

at a matching abundance levels. 

 

The function of poly(A) polymerase (mitochondrial) includes the Polyadenylation 

of RNA. This is essential for the regulation of translation of mRNAs, by completing 

the stop codon of RNA. These poly(A) tails formed contrastingly lead to histone 

mRNA degradation by this protein (Mullen & Marzluff 2008) 
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The final protein assessed was 53BP1. This protein is present in control, hisZta 

and hisZtaAAA B1 fraction, (Figure 5.17A). There is slightly more protein 

abundance in the control B1 fraction compared to hisZta fraction in fraction B1 

(Figure 5.17B). There is more 53BP1 in the hisZtaAAA B1 fraction. This 

abundance does not agree with the trend mass spectrometry data 

 

 

 

 

Figure 5.20 Protein-protein interaction networks of 53BP1. Taken from STRING v10 
(Szklarczyk et al. 2015) 

 

Investigating 53BP1 interactions (Figure 5.20), only a BRCA1 (Fragment) had 

peptide coverage in fraction B2 that may have an interaction with 53BP1, but as 

no SILAC ratios were determined for this protein this protein could not be 

considered as part of any complex detected. 
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53BP1 is involved in binding p53 and regulates the cellular response to DNA 

double stranded breaks promoting non-homologous end-joining-mediated DSB 

repair (Panier & Boulton 2014). Zta has been demonstrated to interact with 

53BP1 and 53BP1 is essential for EBV lytic replication (Bailey et al. 2009). A 

recent insight into the role of Zta and 53BP1 in the DNA damage response 

indicates Zta causes the mis-localisation of DNA damage proteins to site of 

damage sites (Yang et al. 2015). This impairment may play a role in altering the 

localisation of host proteins to facilitate EBV lytic cycle. 

 

Follow up experiments would include attempting to analyse more fractions across 

from B1. Also a finer analysis of more gel slices would give a greater sensitivity. 

Once a protein is identified, the fractions can be finer eluted into smaller fractions 

and investigate potential complexes and their contribution to lytic cycle. 

 

Overall there was insight into size exclusion fractions from EBV positive cells 

undergoing full lytic cycle compared against latency and cells that could not 

replicate the viral genome.  
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6. Analysis of the viral proteome during lytic replication 

 Introduction 

Large-scale proteomic based approaches have previously been attempted to 

provide a means of understanding of the proteomes in cells infected with 

Herpesviruses. The viral proteins have numerous interactions with the host cell 

and this may alter the cellular proteome to assist the life cycle of the virus. It is 

understood that the change in mRNA abundance does not reflect the expression 

at protein level (Wynne et al. 2014). Numerous studies have demonstrated that 

EBV has a significant effect on the cellular transcriptome, whereas there has not 

been a focus on the cellular proteome.  

 

Many groups have attempted to dissect the role of EBV lytic proteins and how 

they contribute to lytic cycle. Analysis of the EBV virion composition identified 

viral and cellular proteins by mass spectrometry (Johannsen et al. 2004). EBV 

follows the model other herpesvirus with respect to virion formation, with cellular 

proteins included in the virion, such as heat shock proteins, actin and tubulins 

that tightly associate with the viral capsid. Several previously uncharacterized 

genes have also been validated at both transcript and protein levels in mass 

spectrometry analysis of KSHV and EBV in virally infected cells (Dresang et al. 

2011). For KSHV, heat shock chaperones were identified in the viral tegument 

playing important roles in the structure of the virion, possibly also playing a part 

in early infection (Zhu et al. 2005; Rozen et al. 2008) 

 

By taking a whole cell proteomics approach to address the change in proteome 

in the context of EBV, I undertook an experiment to identify whether there is a 

difference in protein expression between latency and lytic cycle. An attempt to 

identify changes in cellular and viral expression from latency to lytic cycle was 

performed. I used a mass spectrometry based proteomic approach to enrich a 

population of cells undergoing lytic cycle coupled with SILAC labelling. Mass 

spectrometry was performed to identify and quantitate proteins from the total cell 

lysate to attempt to determine any differences between latent and lytic protein 

expression of host and viral proteins. 
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 Results 

6.2.1. Cell system to enrich cells undergoing EBV lytic cycle and 

proteomic analysis of EBV lytic cycle 

Akata cells (Burkitts Lymphoma cell line) carry the EBV genome, but only one to 

two percent of EBV-positive cells are in lytic cycle and express lytic proteins 

(Takada et al. 1991). Even after the induction of lytic cycle with anti-IgG, this only 

rises to ten to twenty percent. In order to study the lytic cycle an engineered Akata 

cell system to enrich cells undergoing EBV lytic replication was utilised 

(Ramasubramanyan et al. 2015). 

 

Akata cells that contain a bi-directional promoter sequence to express Zta, green 

fluorescent protein (GFP) and nerve growth factor receptor (NGFR) upon 

treatment with doxycycline were used (Ramasubramanyan, et al, 2015). A control 

cell line contained the Zta sequence in reverse orientation within the bi-directional 

promoter sequence (Figure 6.1). 

 

The Akata control cells were metabolically labelled with R0K0 SILAC media (light) 

and the Zta inducible cells were labelled with R6K4 SILAC media (medium). The 

cells were passaged for five cell divisions to ensure all cells were efficiently 

metabolically labelled with the isotopes in each media. In the R0K0 labelled 

media, the amino acids arginine and lysine contain normal carbon (C) and 

hydrogen (H) isotopes. In the R6K4 media labelled media, amino acids arginine 

and lysine contain 13C arginine and 2H lysine amino acids. This slight difference 

in mass is differentiated using mass spectrometry when the samples are 

combined together and analysed. The differences in peptide mass can be 

identified and quantitated from all peptides that uptake the labelled amino acids. 
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Figure 6.1 Inducible cell system initiating lytic cycle in Akata cells. A Diagram that 
represents the bidirectional promoter within the expression vector for Zta under doxycycline 
regulation. The control vector contains the same Zta sequence in the opposite direction.  B Akata 
cells were SILAC labelled control (latent) and Zta expressing cells (lytic) were enriched by 
magnetic beads coupled with anti-NGFR (62% control and 57% Zta-expressing cells by FACS 
analysis). The isolated cell populations were combined equally and mass spectrometry 
performed. 
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The addition of doxycycline to both SILAC labelled control (light) and Zta 

expression cells (medium) leads to the expression of GFP, NGFR from both the 

control and Zta inducible cell lines. Upon the addition of doxycycline, Zta was 

expressed in the Zta expressing cell line (Figure 6.1B). The cells that express 

NGFR were then selected by immunomagnetic selection, using anti-NGFR 

antibodies coupled to magnetic beads (Figure 6.1B). To identify how many cells 

were isolated, the GFP expression was assessed. Fluorescent activated cell 

analysis (FACS) of positive GFP expression of these cells of the enriched control 

and Zta-expressing population showed isolated populations of 62% control and 

57% Zta-expressing cells. (Ramasubramanyan, et al, 2015) 

6.2.2. Mass spectrometry results of SILAC labelled Akata cells performed 

at the University of Sussex 

The control and Zta-expressing cells was first processed myself within the 

University of Sussex mass spectrometry centre. The control sample and Zta-

expressing sample were initially separated by SDS-PAGE and stained with 

SimplyBlue safestain (Invitrogen). 200ng and 500ng of BSA were also separated 

and run in parallel with the SILAC samples. These samples were cut for quality 

control (Figure 6.2A). The two samples were subjected to western blot analysis 

to quantitate expression of actin and Zta. Zta was expressed after activation of 

the promoter by the addition of doxycycline (Figure 6.2B). The actin bands were 

quantitated using ImageStudio (Licor v3.1.4). The actin in the cell samples 

detected here were equivalent in the western blot. 

 

For the analysis, an equal amount of each sample was mixed together. 7.5μl of 

control sample and 7.5μl Zta-expressing cells were separated by SDS-PAGE 

(Figure 6.3A). These were joined with 200ng BSA and 500ng BSA bands that 

were cut previously (Figure 6.2A). Bands were cut and processed for mass 

spectrometry analysis. The ten gel slices were separated by SDS-PAGE (Figure 

6.3A).  The gel was stained with SimplyBlue stain and ten sections of equal size 

were cut and subjected to trypsin in-gel digestion. The final peptides were 

analysed at University of Sussex mass spectrometry. A brief summary of the in 

gel digestion protocol performed is demonstrated (Figure 6.3B). 
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The LTQ-OrbitrapXL instrument is quality controlled itself by running an internal 

BSA control before loading any sample. After the instrument was optimised for 

use, the 500ng BSA processed peptide sample was the first sample applied to 

the LTQ-OrbitrapXL instrument. This acts as a quality control for the in-gel 

digestion. The mass/charge ratio peptides were analysed by the Mascot search 

engine (Perkins et al. 1999). A screenshot of the BSA data returned using the 

Mascot software is shown (Figure 6.4). The BSA obtained a score of 66. The 

threshold here is set at 36 for a P>0.05. As the BSA score (66) is above the 

threshold it can be said that BSA peptides were detected by the mass 

spectrometer.  

 

 

 

 

Figure 6.2 Control samples prepared for mass spectrometry analysis and western blot to 
check protein expression A Cellular proteins were separated by SDS-PAGE and analysed by 
Coomassie blue staining. Total cell extracts were prepared in protein sample buffer. 7.5μl of 
control sample and 7.5μl of Zta-expressing cells were run on a protein gel with 200ng BSA and 
500ng BSA. Bands within the white boxes were cut and removed for mass spectrometry 
processing. B Western blot to confirm the expression of Zta of the control and Zta –expressing 
cells. Zta is expressed after induction with doxycycline and detected by BZ1 antibody. Actin is 
shown as a loading control and is detected by α-actin antibody. 
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Figure 6.3 SILAC labeled proteins combined for mass spectrometry analysis and protocol 
flow diagram. A Latent and lytic cells sorted by NGFR expression were combined equally and 
separated by SDS-PAGE before coomassie staining. 10 sections were cut, shown by the white 
boxes, and these were processed for mass spectrometry as in B. B Flow diagram of in gel 

digestion performed on the gel slices. 
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Figure 6.4 Mascot data of BSA peptide analysis.  A quality check of digested peptides of the 
500ng BSA (control) was performed using the Mascot Server database. A Peptide score 
distribution. The peptide score threshold was 36. B Score distribution for the proteins identified. 
The threshold protein score was 36 for P>0.05. C Quantitation overview of the two proteins 
identified. BSA was detected at Mascot score of 66. The threshold protein score was 36 for 
P>0.05. 
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The 10 gel slices processed by in gel digestion were individually analysed by 

mass spectrometry. The .raw output files are generated for each gel slice by the 

Xcalibur program (v2.0). These .raw files were applied to Maxquant (v1.5.3.) 

software (Cox & Mann 2008). The parameters included an FDR of 1% for protein 

detection from the peptides identified. 

 

The data returned from the mass spectrometry analysis at University of Sussex 

revealed a limited amount of data from the samples. SILAC labelled proteins with 

a ratio between 1.2 and 100.0 shown in Table 6.1A. EBV lytic proteins BMRF1, 

BALF2, BaRF1 and BFRF1 were identified to have an increased SILAC ratio 

between 16.67 and 4.23. BMRF1 was the protein identified that most changed in 

abundance between the two samples, with a ratio of 16.67. Cellular proteins that 

were identified included four histones variants and ribonucleoproteins. 

 

Proteins that decreased in abundance from latent to lytic cycle were displayed 

(Table 6.1B). The SILAC ratio ranges from 0.80 and below to 0.0. Interestingly, 

HLA class II histocompatibility antigen gamma chain (CD74) was identified to 

have a SILAC ratio of 0.50. This protein has been identified to be downregulated 

upon lytic cycle upon Zta expression in lytic cycle (Zuo et al, 2011). The mass 

spectrometry data here would agree with this statement. 

  



207 
 

 

Table 6.1 Identification of proteins by MaxQuant through University of Sussex mass 
spectrometry analysis. The MaxQuant analysis included a false discovery rate FDR 1% (0.01) 
A Proteins that were identified with a SILAC ratio greater than 1.2. These proteins were identified 
to have an increased expression in lytic cycle. B Proteins that were identified with a SILAC ratio 

less than 0.8. These proteins were identified to have a decreased expression in lytic cycle 

 

 

 

Protein names

# Proteins 

identified Peptides

SILAC 

Ratio

EBV BMRF1 3 9 16.67

EBV BALF2 3 8 12.77

EBV BaRF1 3 2 10.40

EBV BFRF1 3 4 4.23

Protein disulfide-isomerase 8 2 1.41

Histone H2B 12 2 1.35

Polyubiquitin-C 23 1 1.35

T-complex protein 1 subunit alpha 3 2 1.31

PC4 and SFRS1-interacting protein 11 2 1.31

Heterogeneous nuclear ribonucleoprotein U 2 2 1.31

Histone H3.2 10 2 1.30

Heterogeneous nuclear ribonucleoprotein Q 6 4 1.30

14-3-3 protein zeta/delta 11 2 1.28

Elongation factor 1-alpha 1 5 6 1.28

Histone H4 1 9 1.28

10 kDa heat shock protein, mitochondrial 4 3 1.25

Multifunctional protein ADE2 4 4 1.24

Myosin-9 2 2 1.21

Core histone macro-H2A.1;Histone H2A 7 3 1.21

14-3-3 protein epsilon 6 2 1.21

Protein names

# Proteins 

identified Peptides

SILAC 

Ratio

RNA-binding protein Raly 6 4 0.79

Ezrin 6 3 0.78

Isocitrate dehydrogenase [NADP] 6 3 0.73

60S ribosomal protein L6 7 9 0.72

Cytochrome c oxidase subunit 6C 1 2 0.69

Heterogeneous nuclear ribonucleoprotein A/B 7 3 0.66

Medium-chain specific acyl-CoA dehydrogenase, 

mito 6 2 0.54

HLA class II histocompatibility antigen gamma chain 7 2 0.50

Tumor necrosis factor receptor superfamily member 

16 2 4 0.20

Serine/threonine-protein kinase 36 3 1 0.03

A

B
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A total of 375 proteins were identified from this study. Overall, the Maxquant 

analysis performed by myself at the University of Sussex identified some lytic 

proteins that increased expression in lytic cycle but only a few viral proteins were 

identified. This study was decided to be not in-depth or detailed enough to draw 

any conclusions. For further analysis, the remaining total cell extracts were sent 

to University of Bristol where a similar investigation was performed. 

 

6.2.3. Mass spectrometry results of SILAC labelled Akata cells performed 

at the University of Bristol 

The two SILAC labelled Akata samples (Control and Zta-expressing) were sent 

to University of Bristol Proteomics facility where they were mixed together equally 

and run on a protein gel. The proteins were cut from the gel into 6 bands and 

processed using in gel digestion. The peptides were applied to a LTQ-Orbitrap 

Velos mass spectrometer under Xcalibur software control. The .raw data was 

processed using Proteome Discoverer software (v1.2) and finalised into an Excel 

file including SILAC ratios for identified proteins.  

 

There was an abundance in proteins identified by the mass spectrometry 

performed at the University of Bristol. 3016 proteins were identified with a SILAC 

ratio. Some of the proteins from this study and some of the proteins were 

investigated further. 

 

These SILAC ratios were then converted by myself into Log2 ratios and entered 

into GraphPad Prism software (v6.0). A histogram and a Gaussian distribution 

graph were created to illustrate the total outline of the data between the latent 

and lytic proteins identified (Figure 6.5). A global view of the proteins shows the 

distribution of the proteins decreased slightly giving a normal distribution just 

below zero (Figure 6.5A). Some proteins had a very low Log2 ratio, which 

indicated they were only identified in latency and not cells undergoing lytic 

replication, or were quite possibly environmental contaminants. Some proteins 

had a very high Log2 ratio, which indicated they were only identified in lytic cycle 

and not expressed in latency (Figure 6.5B). 
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Figure 6.5 Representation of SILAC Akata proteins returned from mass spectrometry 
identification from the University of Bristol using log2 of the SILAC ratios Akata lytic / 
latent. A Frequency distribution curve of all proteins identified by mass spectrometry. Proteins 
had increased or decreased expression in lytic cycle. A distribution around -0.5 to 0 was observed 
B Histogram of all proteins identified by mass spectrometry. Proteins had increased or decreased 

expression in lytic cycle. Some proteins were identified to be only in latent cells or only lytic cells.  

Downregulated 

Upregulated 

A 

B 
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6.2.4. Cellular proteins identified by the mass spectrometry analysis 

The most abundant proteins identified with a SILAC ratio were determined by the 

number of peptide spectrum matches (PSMs) from the data (Table 6.2). The PSM 

value is a total count where the experimental peptides spectra are compared with 

a theoretical spectrum of the specific peptide sequence. The most abundantly 

identified peptides corresponded to heat shock protein HSP 90-beta with a PSM 

value of 330. Nine other proteins were identified with a PSM value above 210. 

These included three heat shock proteins and six tubulins. Heat shock proteins 

play multiple roles in the cellular response including acting as chaperones, 

stabilizing unfolded proteins or transporting proteins throughout the cell (Lindquist 

& Craig 1988). Six tubulin variants were also identified. The cytoskeleton is 

composed of many structural proteins including an abundance of tubulins. 

 
 
 

  

Table 6.2 Most abundant proteins identified by University of Bristol mass spectrometry 
analysis. SILAC labelled proteins were ordered by peptide spectrum matches. Heat shock 
proteins and tubulins were most abundantly identified. 

  

Protein ID Cellular protein name PSM #

SILAC 

Ratio

P08238 Heat shock protein HSP 90-beta 330 0.71

P07437 Tubulin beta chain 296 0.68

P68371 Tubulin beta-4B chain 294 0..730

P11142 Heat shock cognate 71 kDa protein 268 0.78

Q9BVA1 Tubulin beta-2B chain 263 0.62

P07900 Heat shock protein HSP 90-alpha 262 0.74

Q13885 Tubulin beta-2A chain 261 0.66

P10809 60 kDa heat shock protein, mitochondrial 224 0.72

P04350 Tubulin beta-4A chain 211 0.64

Q13509 Tubulin beta-3 chain 210 0.71
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To investigate the expression of the heat shock proteins between latent and lytic 

cycles, a western blot was performed to determine Heat shock protein HSP 90-

alpha expression (Figure 6.6). This protein had a PSM value of 262 and a SILAC 

ratio of 0.74.  

 

Total cell extracts of control Akata cells and Zta-expressing Akata cells after 

induction with doxycycline were assessed. This allowed the activation of lytic 

cycle compared to cells in latency. The Heat shock protein HSP 90-alpha showed 

similar expression levels between the two life cycles. The western blot agreed 

with the mass spectrometry data. A quantitation of the HSP90 protein bands was 

performed using ImageStudio (Li-cor, v3.1.4.). The quantitation levels for Heat 

shock protein HSP90-alpha was 1.99 for latent Akata cells and 1.35 for lytic Akata 

cells. The ratio of expression between these is 0.68. The SILAC mass 

spectrometry ratio was 0.74; indicating the expression of this protein reduces or 

the protein is targeted for degradation upon lytic cycle. 

 

 
Figure 6.6 Heat shock protein HSP90-alpha abundance Total cell extracts of control Akata 
cells and Zta-inducible Akata cells were created after cells were induced with doxycycline after 
24 hours. An equal amount of samples were separated by SDS-PAGE. A SILAC ratio and PSM 
value for Heat shock protein HSP 90-alpha identified from the mass spectrometry data. B Western 
blot to confirm heat shock protein HSP90-alpha (P07900) expression. The quantitation levels for 
Heat shock protein HSP90-alpha is 1.99 for latent Akata cells and 1.35 for lytic Akata cells. HSP90 
is detected by α-HSP90 (ab13492, Abcam) Zta is detected by BZ1 antibody. Actin is shown as a 
loading control and is detected by α-actin antibody (Sigma).  
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P07900 Heat shock protein HSP 90-alpha  262 0.74 
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Table 6.3 The most abundant proteins identified only in lytic cycle. Cellular proteins that 
were identified with a SILAC ratio of 100.0 ordered by peptide spectrum matches. These proteins 
were only identified in the Zta-expressing cells.  

 

  

Protein ID Protein

PSM

#

SILAC

Ratio

Q58FF6 Putative heat shock protein HSP 90-beta 4 46 100.0

Q14568 Putative heat shock protein HSP 90-alpha A2 35 100.0

Q14222 EEF1A protein (Fragment) 37 100.0

A0A024RAC9 Zinc finger, UBR1 type 1, isoform CRA_c 4 100.0

Q5M9N0 Coiled-coil domain-containing protein 158 3 100.0

B4DNN8

cDNA FLJ60025, highly similar to Mus musculus PR 

domain containing 6 (Prdm6), mRNA 2 100.0

A0JP10

Excision repair cross-complementing rodent repair 

deficiency, complementation group 6 3 100.0

O94986 Centrosomal protein of 152 kDa 2 100.0

P78363 Retinal-specific ATP-binding cassette transporter 2 100.0

B2RUU2 ATP-binding cassette, sub-family A (ABC1), member 1 2 100.0

F8WC62 Protein FAM71F1 2 100.0

H0Y9K5 Latrophilin-3 (Fragment) 2 100.0

Q6UXR4 Putative serpin A13 2 100.0

Q9UHB4 NADPH-dependent diflavin oxidoreductase 1 2 100.0
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The mass spectrometry data included proteins that were only identified in lytic 

cycle. These proteins were detected only within the Zta-expressing, EBV lytic 

phase of the cell (Table 6.3). The proteins were ranked by PSM value and all 

proteins were given a SILAC ratio of 100.0 as only R6K4 labelled peptides were 

identified. The top two proteins with the most PSM values of 46 and 35 were 

Putative heat shock protein HSP 90-beta 4 (Q58FF6) and Putative heat shock 

protein HSP 90-alpha A2 (Q14568). The third most abundant protein identified 

with a PSM value of 37 and a SILAC ratio of 100.0 was the elongation factor 

EEF1A (Q14222). The heat shock proteins were of significant interest as some 

HSP have been implicated in facilitating lytic proteins in the lytic pathway 

(Kawashima et al, 2013). Also heat shock proteins can interact with the viral 

protein kinase BGLF4 and this interaction is important for the kinase to 

phosphorylate proteins essential for lytic replication (Sun et al, 2013). 

6.2.5. Heat shock proteins that were identified only in lytic cycle 

All of the heat shock proteins identified were collated together from a range of 

100.0 to 0.44 SILAC ratios (Table 6.4). The data was ranked from 100.0 SILAC 

ratio being the highest ranked protein identified. Some proteins were abundantly 

identified with some PSM values over 200. As the highest ranked heat shock 

proteins returned were heat shock protein HSP 90-beta 4 and heat shock protein 

HSP 90-alpha A2 (Both with a SILAC ratio of 100.0, these were investigated 

further. 
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Table 6.4 All heat shock proteins identified including proteins identified in only lytic cycle. 

Proteins were ranked by SILAC ratio with 100.0 the highest ratio obtained. 

  

Protein ID Protein # PSMs

Lytic/

Latent 

Ratio

Q58FF6 Putative heat shock protein HSP 90-beta 4 46 100.00

Q14568 Putative heat shock protein HSP 90-alpha A2 35 100.00

Q0VDF9 Heat shock 70 kDa protein 14 5 0.92

P08107 Heat shock 70 kDa protein 1A/1B 79 0.82

Q12931 Heat shock protein 75 kDa, mitochondrial 88 0.81

B2R6X5

cDNA, FLJ93166, highly similar to Homo sapiens heat 

shock 70kDa protein 6 (HSP70B') (HSPA6), mRNA 52 0.81

P11142 Heat shock cognate 71 kDa protein 268 0.78

P07900 Heat shock protein HSP 90-alpha 262 0.74

P10809 60 kDa heat shock protein, mitochondrial 224 0.72

A0A024R3X7

Heat shock 10kDa protein 1 (Chaperonin 10), isoform 

CRA_d 31 0.72

P08238 Heat shock protein HSP 90-beta 330 0.71

A0A024RDQ0 Heat shock 105kDa/110kDa protein 1, isoform CRA_a 81 0.69

P34932 Heat shock 70 kDa protein 4 109 0.64

B3KNQ9

cDNA FLJ30200 fis, clone BRACE2001455, highly 

similar to HEAT SHOCK FACTOR PROTEIN 1 1 0.53
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Due to the limited availability of specific heat shock protein antibodies and the 

similarity in amino acid sequences of heat shock proteins, the Abcam antibody 

used previously for HSP90 (P07900) was investigated for reactivity with the HSP 

of interest. The HSP90 protein is a heat shock protein of 732 amino acids in 

length, of about 85kDa molecular weight.  The amino acid sequence of HSP90 

(P07900) was retrieved from Uniprot database 

(http://www.uniprot.org/uniprot/P07900) (Figure 6.7). The antibody epitope was 

retrieved from the manufacturers’ website (http://www.abcam.com/hsp90-

antibody-ac88-ab13492.html). The antibody epitope region occupies amino acids 

604aa-697aa. The epitope for the AbCam HSP90 antibody (ab13492) used 

previously for the western blot (Figure 6.6) was mapped to the amino acid 

sequence and displayed in red (Figure 6.7).  

 

Once the antibody epitope was identified then the amino acid sequences of the 

three proteins investigated were compared. The amino acid sequences of 

HSPO90AA1 HSP90AB4P and HSP90AA2 were retrieved from the NCBI 

database and later compared using NCBI BLAST (Figure 6.8). HSP90AB4P is 

an HSP of 505 amino acids in length and 58kDa molecular weight. HSP90AA2 is 

an HSP of 343 amino acids in length and 39kDa molecular weight. These differ 

significantly from the larger HSP90 (P07900). The sequences were compared 

using NCBI blast. 

 

  

http://www.uniprot.org/uniprot/P07900
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Figure 6.7 Amino acid sequence of HSP90 (P07900) and where the selected antibody 
epitope identifies. The Abcam P07900 antibody (ab13492) epitope has been mapped to amino 

acid residues 604-697 of the human Hsp90 sequence highlighted in red. 

  

 10         20         30         40         50 

MPEETQTQDQ PMEEEEVETF AFQAEIAQLM SLIINTFYSN KEIFLRELIS  

        60         70         80         90        100 

NSSDALDKIR YESLTDPSKL DSGKELHINL IPNKQDRTLT IVDTGIGMTK  

       110        120        130        140        150 

ADLINNLGTI AKSGTKAFME ALQAGADISM IGQFGVGFYS AYLVAEKVTV  

       160        170        180        190        200 

ITKHNDDEQY AWESSAGGSF TVRTDTGEPM GRGTKVILHL KEDQTEYLEE  

       210        220        230        240        250 

RRIKEIVKKH SQFIGYPITL FVEKERDKEV SDDEAEEKED KEEEKEKEEK  

       260        270        280        290        300 

ESEDKPEIED VGSDEEEEKK DGDKKKKKKI KEKYIDQEEL NKTKPIWTRN  

       310        320        330        340        350 

PDDITNEEYG EFYKSLTNDW EDHLAVKHFS VEGQLEFRAL LFVPRRAPFD  

       360        370        380        390        400 

LFENRKKKNN IKLYVRRVFI MDNCEELIPE YLNFIRGVVD SEDLPLNISR  

       410        420        430        440        450 

EMLQQSKILK VIRKNLVKKC LELFTELAED KENYKKFYEQ FSKNIKLGIH  

       460        470        480        490        500 

EDSQNRKKLS ELLRYYTSAS GDEMVSLKDY CTRMKENQKH IYYITGETKD  

       510        520        530        540        550 

QVANSAFVER LRKHGLEVIY MIEPIDEYCV QQLKEFEGKT LVSVTKEGLE  

       560        570        580        590        600 

LPEDEEEKKK QEEKKTKFEN LCKIMKDILE KKVEKVVVSN RLVTSPCCIV  

       610        620        630        640        650 

TSTYGWTANM ERIMKAQALR DNSTMGYMAA KKHLEINPDH SIIETLRQKA  

       660        670        680        690        700 

EADKNDKSVK DLVILLYETA LLSSGFSLED PQTHANRIYR MIKLGLGIDE  

       710        720        730  

DDPTADDTSA AVTEEMPPLE GDDDTSRMEE VD   
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Figure 6.8 Amino acid sequences of heat shock proteins retrieved from NCBI database. A 
HSP90AA1 B HSP90AB4P C HSP90AA2   

FASTA Sequence for HSP90 protein P07900 

http://www.ncbi.nlm.nih.gov/protein/P07900 

 

>sp|P07900|HS90A_HUMAN Heat shock protein HSP 90-alpha  

OS=Homo sapiens GN=HSP90AA1 PE=1 SV=5 

 

MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKI

RYESLTDPSKLDSGKELHINLIPNKQDRTLTIVDTGIGMTKADLINNLGTIAKSGTKAF

MEALQAGADISMIGQFGVGFYSAYLVAEKVTVITKHNDDEQYAWESSAGGSFTVRT

DTGEPMGRGTKVILHLKEDQTEYLEERRIKEIVKKHSQFIGYPITLFVEKERDKEVSD

DEAEEKEDKEEEKEKEEKESEDKPEIEDVGSDEEEEKKDGDKKKKKKIKEKYIDQEE

LNKTKPIWTRNPDDITNEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFVPRR

APFDLFENRKKKNNIKLYVRRVFIMDNCEELIPEYLNFIRGVVDSEDLPLNISREMLQ

QSKILKVIRKNLVKKCLELFTELAEDKENYKKFYEQFSKNIKLGIHEDSQNRKKLSELL

RYYTSASGDEMVSLKDYCTRMKENQKHIYYITGETKDQVANSAFVERLRKHGLEVIY

MIEPIDEYCVQQLKEFEGKTLVSVTKEGLELPEDEEEKKKQEEKKTKFENLCKIMKDI

LEKKVEKVVVSNRLVTSPCCIVTSTYGWTANMERIMKAQALRDNSTMGYMAAKKHL

EINPDHSIIETLRQKAEADKNDKSVKDLVILLYETALLSSGFSLEDPQTHANRIYRMIKL

GLGIDEDDPTADDTSAAVTEEMPPLEGDDDTSRMEEVD 

FASTA Sequnce for HSP90  Q58FF6 

http://www.ncbi.nlm.nih.gov/protein/Q58FF6 

 

>sp|Q58FF6|H90B4_HUMAN Putative heat shock protein HSP 90-beta 4  

OS=Homo sapiens GN=HSP90AB4P PE=5 SV=1 

 

MSLIINTFYSNKEIFLQELISNASDALDKIRYESLTDPSKLDGGKELKIDIIPNPRECIL 

TLVNTGIGMTKADLINNLGAIAKSGTEAFMEAFQSCAEISMIGQFGVGFYSAYLVAE

KVAITKHNDEEQYSWVSSAGSSFTLHVDHGEPIDRDTKVILHLKEDQTEYLEERWV

KEVVKKHPQFIGCLIAVYLEKEPEKEISDDEEEKGEKEEEDKDDKEKPKTEDVGSDE

EDDTDKNNKKKTKKIKEKYTDREELNQTKPIWTRNPDDITQEECGEFYKSLTSAWE

DHLAVKQFPVEEQEENEQLCVHHVWIMDSFDDLMPEYVGFVREDKENNKKLDEVF

SKISWLGIHEDSINWRHLSELLWSHTFQSGDEMTSLSEYVSCMKEAQKSICDIIGEC

KEQVANSAFVEQEWKKGFEVIYMSEPIDEYCVQQLKEFDGKSLLSVTKEGLELPED

EEEKKIMEESNVKFENLCRLMKEILDKKVERVTISSRLVSSPCRIVTSTYS 

FASTA Sequnce for HSP90  Q14568 

http://www.ncbi.nlm.nih.gov/protein/Q14568.2 

 

 

>sp|Q14568|HS902_HUMAN Putative heat shock protein HSP 90-alpha A2  

OS=Homo sapiens GN=HSP90AA2 PE=1 SV=2 

 

MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDK

IWYESLTDPSKLDSGKELHINLIPNKQDQTLTIVDTGIGMTKADLINNLGTIAKSGTKA

FMEALQAGADISMIGQFGVSFYSAYLVAEKVTVITKHNDDEQYAWESSAGGSFTV

RTDTGERMGRGTKVILHLKEDQTEYLEEQRIKEIVKKHSQLIGYPITLFVEKECDKEV

SDDETEEKEDKEEEKEKEEKESKDKPEIEDVGSDEEEEKKDGDKKKKKTKEKYIDQ

EELNKTKPIWTRNPDDITNEEYGEFCKNLTNDWEDHLAVKHFSVEGQLEFRALLFV

P 

 

A 

B 

C 
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Figure 6.9 BLAST search comparing HSP90AB4P against HSP90 (P07900). The BLAST 
search showed a sequence similarity of 63% between HSP90AB4P against HSP90 (P07900). 
There is no overlap with the 604-697 amino acid antibody epitope region 

ANTIBODY 
EPITOPE 

A 
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Figure 6.10 BLAST search comparing HSP90AA2 against the HSP90 (P07900). The BLAST 
search showed a sequence similarity of 96%. There is no overlap with the 604-697 amino acid 
antibody epitope region. 
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The HSP90AB4P amino acid sequence was entered into the NCBI BLAST 

against the amino acid sequence of HSP90 (P07900). The two proteins were 

compared to identify if they had any similarity, focused on the epitope region the 

antibody identifies. The BLAST between the two sequences, the two proteins 

have a sequence similarity of 63% (Figure 6.9). HSP90AB4P is composed of 505 

amino acids with a BLAST search against HSP90 (P07900) of 732 amino acids. 

Unfortunately, there is no overlap region with the 604-697 amino acid sequence 

recognised by the antibody (ab13492). 

 

The HSP90AA2 amino acid sequence was entered into the NCBI BLAST against 

the amino acid sequence of HSP90 (P07900). The two proteins were compared 

to identify if they had any similarity, focused on the epitope region the antibody 

identifies. After the BLAST search between the two sequences, the two proteins 

have a sequence similarity of 96% (Figure 6.10). HSP90AA2 is composed of 343 

amino acids with a BLAST search against HSP90 (P07900) is 732 amino acids. 

Again, there is no overlap region with the 604-697 amino acid sequence 

recognised by the antibody (ab13492). 

 

The proteins HSP90AB4P and HSP90AA2 amino acid sequences were 

investigated against other potential antibody candidates. An extensive search 

was performed for heat shock antibodies and the epitope they recognise. The 

majority of antibodies available that recognised a HSP90 protein recognised 

P07900 only. 

 

Therefore, the conclusion was that the heat shock proteins that were identified 

from only the lytic induced cells could not be followed up with any available 

antibodies. The sequences and proteins were searched on antibody databases 

and it was not possible to identify an available antibody. 
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6.2.6. Epstein-Barr virus proteins identified in lytic cycle 

In addition to the cellular proteins that were identified by mass spectrometry, viral 

peptides were also detected and identified. 40 lytic Epstein-Barr virus proteins 

were identified in this study from the mass spectrometry performed at University 

of Bristol. Table 6.5 represents the data returned from the analysis. 

Some of these proteins have been identified in previous studies (Johannsen et 

al. 2004; Dresang et al. 2011; Koganti et al. 2015). The most abundant EBV 

protein identified here was the major DNA-binding protein BALF2 with a PSM 

value of 164. Other replication factors identified include BMRF1 (PSM 69), BALF5 

(PSM 21), BBLF3 (PSM 22), BZLF1 (PSM 5) and BSLF1 (PSM 1). 

Other capsid proteins and tegument proteins were identified that include the 

major capsid protein, major tegument protein, envelope glycoprotein B, capsid 

proteins VP23 and VP26, and packaging proteins. Proteins that manipulate the 

cellular response to replication and posttranslational modification of cellular and 

viral proteins include the serine/threonine kinase BGLF4, apoptosis regulator 

BHRF1 and the EBV uracil-DNA glycosylase BKRF3. 
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Table 6.5 All EBV proteins only identified in lytic cycle.  Proteins ranked by SILAC ratio. 40 
EBV lytic proteins were identified by mass spectrometry analysis. 31 proteins had a SILAC ratio 
of 100.0.  

Protein ID Description # PSMs SILAC ratio

P03227 Major DNA-binding protein 164 100

P03191 DNA polymerase processivity factor BMRF1 69 100

P03190 Ribonucleoside-diphosphate reductase large subunit 60 100

P03226 Major capsid protein 47 100

P03185 Virion egress protein UL34 homolog 39 100

P03177 Thymidine kinase 35 100

P0CAP6 Ribonucleoside-diphosphate reductase small chain 32 100

P13288 Serine/threonine-protein kinase BGLF4 34 100

Q04360 mRNA export factor ICP27 homolog 25 100

P03198 DNA polymerase catalytic subunit 21 100

P03179 Major tegument protein 15 100

Q8AZJ7 Putative BBLF3 protein (Fragment) 22 100

Q66541 scaffold protein BdRF1 13 100

P03217 Shutoff alkaline exonuclease 19 100

P03182 Apoptosis regulator BHRF1 10 100

P03186 Deneddylase 3 100

P03188 Envelope glycoprotein B 9 100

P25214 Triplex capsid protein VP23 homolog 9 100

P03206 Trans-activator protein BZLF1 5 100

P14348 Capsid protein VP26 5 100

P03210 Tegument protein BRRF2 6 100

P03195 Deoxyuridine 5'-triphosphate nucleotidohydrolase 5 100

P03187 Triplex capsid protein VP19C homolog 2 100

P03207 Transcriptional activator BRRF1 2 100

P0CK53 Capsid-binding protein UL16 homolog 2 100

P03224 Probable membrane antigen GP85 2 100

P03193 DNA primase 1 100

P03200-2 Isoform GP220 of Envelope glycoprotein GP350 2 100

P29882 Virion egress protein UL7 homolog 2 100

P0CK49 Tegument protein BSRF1 1 100

P03205 Glycoprotein 42 1 100

P03197 Tegument protein BLRF2 5 77.217

P0CK47 Virion egress protein BFLF2 5 50.953

P03184 Packaging protein UL32 homolog 3 48.533

P12888 Uracil-DNA glycosylase 5 39.089

P03231 Envelope glycoprotein H 1 10.272

P0C727 Uncharacterized protein LF3 1 0.159

P30119 Uncharacterized protein BTRF1 1

Q8AZJ5 Uncharacterized LF1 protein 1

P03233 Virion-packaging protein UL25 homolog 1
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Figure 6.11 Western blot to confirm expression of lytic protein BALF5 and BMRF1. The 
DNA polymerase BALF5 is only expressed in lytic cycle after induction with doxycycline. The DNA 
processivity factor BMRF1 is only expressed in lytic cycle after induction with doxycycline. BALF5 
is detected by α-BALF5 antibody, BMRF1 is detected by α-BMRF1 (ab30541, Abcam) antibody,  
Zta is detected by BZ1 antibody. Actin is shown as a loading control and is detected by α-actin 
antibody (Sigma). 

 
 
 
 

 
Figure 6.12 SILAC MS analysis of proteins EBV proteins detected in Akata cells during 
lytic cycle from (Traylen et al, unpublished). The EBV proteins identified are shown in relation 
to previously published studies. BZLF1 is marked with*, its expression is driven by the doxycycline 
induced expression vector in these cells. The other studies include Johannsen et al 2004, 
Dresang et al, 2011 and Koganti et al, 2015. 
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To demonstrate the expression of some the lytic proteins expressed in lytic cycle, 

a western blot for the DNA polymerase processivity factor BMRF1 was performed 

(Figure 6.11). Also a western blot for the DNA polymerase BALF5 was performed 

(Figure 6.11). The expression of both the DNA polymerase and processivity 

factor agrees with the mass spectrometry data of only being detected in the Zta-

expressing cells. This would be expected, as these two proteins are expressed 

in the lytic cycle, they are components of the replisome, and are essential for 

efficient lytic replication of EBV. 

 

Proteins that were not previously identified by mass spectrometry analysis 

include the virion egress protein BFLF1. BFLF1 is an early lytic protein that is a 

homolog of HSV1 UL32 and may play a role in cleavage and packaging of the 

viral genome (Granato et al, 2008). UL32 is involved in the efficient localisation 

of capsids to nuclear DNA replication compartments (Lamberti & Weller 1998). 

The BFLF1 gene has been shown to be essential for the correct packaging of 

DNA into virion particles, as a knockout virus for the gene shows defective 

packaging of viral DNA (Pavlova et al. 2013). 

Another protein only detected in this study was BBRF2 is a homolog of the HSV1 

virion egress protein UL7 (Figure 6.12). HSV UL7 is present within the tegument 

layers of mature virions, and that the viral protein is localized cytoplasmic 

domains of infected cells, although it is also detected transiently in the nucleus 

(Nozawa et al. 2002). 

 Discussion 

A SILAC mass spectrometry based proteomic approach was implemented to 

identify and quantitate viral and host proteins from a total cell lysate.  Using an 

enriched population of cells undergoing lytic cycle coupled with SILAC labelling 

of the cells, mass spectrometry was performed to determine any differences 

between latent and lytic protein expression of host and viral proteins. 

 

This global proteomics view aimed to detect differences in protein abundance in 

EBV lytic cycle. SILAC labelled BL cells that could be inducible for Zta expression 

by this bidirectional inducible cell system allowed the induction of the EBV lytic 
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cycle. Zta was expressed from the bi-directional promoter with NGFR and GFP. 

These cells were sorted for NGFR expression to isolate cells undergoing the lytic 

cycle (Ramasubramanyan et al. 2015).  

 

SILAC proteomics of sorted cells were performed to indicate the expression of 

viral and cellular proteins by mass spectrometry. Their abundances were 

quantitated and given a SILAC ratio. The data from the University of Sussex mass 

spectrometry analysis that I performed was not in depth enough to draw a 

conclusion. This attempt returned proteins that included some abundant EBV lytic 

proteins but overall the dataset was limited. Identified CD74 expression agreed 

with published data. This led to the samples being sent to the University of Bristol 

Proteomics facility to attempt the in gel digestion and peptide analysis. The 

samples sent to the University of Bristol Proteomics facility for analysis returned 

many proteins with significant differences. The results from the study from 

University of Sussex identified the same abundant lytic proteins as the University 

of Bristol analysis.  But the analysis from University of Sussex was nowhere near 

the same level of specificity concerning the protein abundance of PSM detected 

or SILAC ratio. This was either due to a more efficient processing of the sample 

or a more sensitive detection. The experimental results identified many cellular 

proteins and also identified half of the EBV lytic proteins characterised as open 

reading frame expressed during the lytic cycle.  

 

Many abundant cellular proteins were abundantly identified. These included heat 

shock proteins that were only identified after the expression of Zta and the 

subsequent initiation of the lytic cycle. Heat shock proteins were shown to be 

components of the tegument of the EBV virion (Johannsen 2004). The heat shock 

proteins enriched in lytic cycle included HSP90AB4P and HSP90AA2. An attempt 

at confirming these two most abundant cellular proteins only identified in the Zta-

expressing samples was not possible. There were no commercial antibodies that 

were able to identify HSP90AB4P and HSP90AA2. It would be interesting to 

assess if these individual proteins contribute to the lytic cycle through further 

studies, whether they are only expressed in the lytic cycle, part of the virion or 

aiding viral protein folding or packaging. 
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A number of EBV lytic proteins were identified in this study. Some of these 

proteins have been identified in previous proteomics studies (Johannsen et al. 

2004; Dresang et al. 2011; Koganti et al. 2015). Many of the EBV lytic genes 

and proteins are homologous to the other members of the Human Herpesvirus 

family, where HSV is used as the reference genome. The identification of some 

EBV lytic proteins has not been demonstrated at the protein level. This study 

identified two lytic proteins that had not previously been identified by any 

proteomics study and mass spectrometry, BFLF1 and BBFR2. Therefore this 

study was successful by being able to confirm with confidence that these 

proteins are expressed in vivo. (Traylen et al, submitted). This proteomics study 

identified proteins that were previously undetected by MS and shown to be 

expressed at the protein level. 
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7. Discussion 

A novel approach to understand interactions of a key lytic EBV gene and the host 

during the lytic cycle was undertaken here. An extraction method that was 

compatible with affinity chromatogaphy and size exclusion chromatography, 

coupled to SILAC proteomics was developed to attempt to study Zta interactions 

with potential cellular partners.  

 

Firstly, polyhistidine tagged Zta was transfected into cells and stably expressed. 

Attempts at extracting this transfected protein from cells using a nuclear extract 

protocol revealed that the majority of the protein remained in the final pellet. This 

extraction method was optimized using the addition of a nuclease (benzonase). 

This allowed the release of the protein into the supernatant. The polyhistidine tag 

binding to the nickel agarose allowed some protein to be purified.  

 

Optimization of the pull down coupled with SILAC allowed quantitated proteins to 

be identified after mass spectrometry. The targets of interest returned some 

promising results. Many repeated pull downs were attempted to confirm these 

interactions.  

 

FANCA and BRD4 and ELP3 western blots displayed possible isoform variants 

when probed with the antibody. These were not at the correct molecular weight 

for the protein therefore it was not possible to assess an interaction with Zta.  

ELP3 was identified at the expected molecular weight in EBV negative cells but 

this could not be confirmed in EBV positive cells. 

 

Repeated pull downs with various conditions demonstrated that the attempt to 

pull down interacting proteins was challenging. The two proteins may interact and 

perform a vital function in EBV lytic cycle, but to discover the optimal pull down 

condition where the protein of interest does not bind to the control affinity gel, and 

only be present in the target protein affinity gel sample proved to be difficult. 

 

As poly-histidine tagged proteins also interact with nickel agarose under 

denaturing conditions, I explored whether this could aid the affinity purification 
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step. In order to find Zta interacting proteins a cross-linking step was required. I 

successfully optimised this process on a small scale. An attempt to scale up this 

approach revealed a problem with the elution conditions, identifying the next step 

of optimisation that would be required. 

 

Zta interactions with the host proteome under denaturing conditions to identify 

potential interactions in EBV positive cells undergoing lytic replication. Although 

the optimization of this technique was found on a small scale, where hisZta was 

eluted and precipitated successfully, an attempt to maximize the protein recovery 

from the pull down sample was not successful in a large scale pull down effort. 

 

Once a potential protein interaction is assessed with confidence to interact with 

Zta, a development of this SILAC method could be taken further. Protein 

interaction screening by quantitative immunoprecipitation combined with 

knockdown (QUICK) is a tool that takes the SILAC principle with RNA 

interference and co-immunoprecipitation. This would attempt to identify 

endogenous proteins that may interact together through a knockdown of the 

target protein (Selbach & Mann 2006). This method could be used to investigate 

other cell types where EBV is undergoing lytic cycle. 

 

In a separate approach, analysis of protein complexes by size exclusion 

chromatography for EBV negative cells transfected with Zta indicated that Zta 

was associating with multiple complexes of varying molecular weight. Compared 

against the ZtaAAA mutant, which is replication-defective, different complexes 

are formed. Mass spectrometry revealed different sub-sets of proteins. This 

suggests Zta and ZtaAAA are forming different complexes through the C-terminal 

domain. ZtaAAA may not be able to interact with as many proteins as the wild 

type Zta, therefore not being able to form complexes essential for lytic replication 

(Figure 5.9, Figure 5.11) 

 

The elutions with the heaviest complexes were investigated EBV positive cells 

remaining latent as a control, undergoing lytic cycle with hisZta expression or 

undergoing the beginning of lytic cycle with viral genome replication with 

hisZtaAAA expression were investigated. The results of further size exclusion 
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chromatography experiments were interesting. The abundance of casein kinase 

II alpha indicates that this protein is part or forms complexes that are of different 

molecular weight via interactions with Zta in lytic cycle, and also with ZtaAAA 

during the initiation of lytic cycle. This suggests that casein kinase II alpha may 

facilitate lytic replication, by being part of a complex or phosphorylating proteins 

important for viral lytic replication or transcription. In contrast, the relative complex 

size of Poly (A) RNA polymerase (mitochondrial) western blot did not agree with 

the mass spectrometry results, while the detection of 53BP1 in the Zta elution 

fraction was interesting, the western blot did not agree with the mass 

spectrometry results. 

 

A systematic approach to further answer the global question includes identifying 

proteins that may interact through either a SILAC labelled immunoprecipitation 

assay or SILAC labelled size exclusion chromatography for native complexes. 

After a confirmation by western blot these potential interactions may be assessed 

through further assays that can contribute to the model of EBV lytic replication. 

 

 

 

In order to identify changes in the proteome of cellular and viral genes during the 

EBV lytic cycle, a SILAC whole cell proteomics approach was performed, utilizing 

an enrichment method of cells undergoing the lytic cycle. This provided evidence 

for the detection of two viral proteins by mass spectrometry for the first time. This 

enrichment method was previously proven to isolate cells expressing Zta and 

therefore cells undergoing lytic cycle (Ramasubramanyan et al. 2015). The 

proteins identified in this study included BBRF2, a homologue of the HSV1 virion 

egress protein UL7. UL7 plays a role in linking tegument proteins of HSV1, 

therefore BBFR2 may have a similar function for EBV tegument proteins. The 

identification of BFLF1 protein supports the involvement of BFLF1 protein in 

cleavage and packaging of the viral genome (Granato et al. 2008). Interestingly, 

SILAC IP / 
SEC 

Identify 
Targets 

Confirmation 
by WB 

siRNA knockdown 
 

Further IP using 

identified protein 

 

Map interactions 

Model 



230 
 

BFLF1 is a homologue of the HSV1 UL32 gene, which plays a role in HSV1 

encapsidation (Lamberti & Weller 1998). 

 

The definitive identification of 40 EBV proteins in BL cells undergoing EBV 

replication strengthens the understanding of EBV lytic replication and may 

highlight different targets for future strategies to enable the development of 

therapeutic interventions to manipulate EBV replication. 

 

A limitation of interpreting a global proteomics study is that some proteins do not 

generate peptides that can be unambiguously identified. Transcriptome analysis 

of the viral genes transcribed has identified highly abundant EBV mRNAs (eg 

BMRF1, BMLF1 and BHRF1) (Dresang et al. 2011; O’Grady et al. 2014; Tierney 

et al. 2015) but some proteins are not identified from any mass spectrometry 

study performed for EBV analysis (BBFR2, BFLF1). 

 

Overall this study attempted to study the lytic cycle including Zta at a fine detail 

through direct protein-protein interactions, and then investigating at protein 

interactions at a protein-complex level. A novel approach began to investigate 

this are of interest. A whole cell proteomics analysis did identify proteins that had 

not been previously identified by mass spectrometry before, giving confidence to 

these proteins are expressed in the lytic cycle, while confirming and agreeing with 

the current literature about these viral genes.
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