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Abstract
Three-body systems provide the perfect framework for studying the quantum me-
chanics of both atoms and molecules. These studies can probe the fundamentals of
particle interactions that underpin stability, reactivity and structure.
This thesis contains a series of studies into the stability of ground state three-body

systems. The focus of this thesis has been the high accuracy computation of three-
body systems without recourse to either the Born-Oppenheimer (BO) approximation
or approximation of the like-charged particle interaction, which for the case of atoms
corresponds to the electron correlation.
Principally the effects of mass and charge on the stability of systems is predicted.

The complex nature of coupled electronic interaction is studied to the purpose
of pursuing accurate electron correlation that underpins modern computational
chemistry.
The energies of three-body systems were calculated very accurately to typically

mJmol−1 accuracy or better whilst still producing reliable wavefunctions of which
all other properties of the system could be calculated accurately. The energies of
some of these systems are the lowest to date and all use the latest finite masses
as published by CODATA. Computational codes were developed to achieve this
accuracy using both numerical and computer algebra methods. These were designed
to be efficient, extendable and, importantly, to calculate highly accurate energies,
expectation values and wavefunctions.
The masses of any three particles in which there exists at least one bound state

below the lowest continuum threshold were identified. The importance of symmetry
breaking in a asymmetric system was made clear as the difference in the masses
become larger.
A new method was developed to identify the lowest charge of a nucleus that can

bind two electrons. This method is more effective then those previously available
as it produces a variational upper bound to the true minimum charge in a single
calculation. The method was employed to identify the minimum nuclear charge
required for binding two electrons in atoms of various nuclear masses. Additionally
the electronic structure of such systems was investigated by a judicious partitioning
that separates the two electrons into an inner and outer component relative to the
nucleus.
The electron correlation was calculated using the Löwdin definition and a highly

accurate Hartree-Fock (HF) implementation specifically designed for the task. The
effects this electron correlation has on various properties was quantified including
the coulomb hole. A second coulomb hole was found which was previously thought
to be an artefact but remains even with this highly accurate implementation.
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1. Introduction

The use of computations in chemistry is of growing significance. Compounds that are

too expensive, dangerous or difficult to be feasibly investigated by the experimentalist

can be examined at leisure by the computational chemist. However computational

calculations need to be as accurate as experiment, and give reliable “real-world”,

investigable results. A theoretical investigation should complement the experiment to

provide both matching analysis and deeper understanding and ultimately prediction.

Computational chemistry however is not always able to deliver, and is only as

good as its underlying mathematics, approximations and computational implemen-

tation. In theory, computational chemistry has the tools required to calculate

everyday chemical phenomena, however it does not always have the raw compu-

tational power to get the job done. To push the limits of feasible calculations

approximations are made typically in a proportional manner to the complexity of

the problem. Very large systems such as proteins require gross approximations such

as molecular mechanics (MM), whereas small molecules use the much more accu-

rate quantum mechanics (QM). Intermediate systems such as metal complexes may

use density functional theory (DFT) and even smaller compounds such as aromatic

rings, might use wavefunction based mechanics. Within QM in conventional com-

putational chemistry codes such as Gaussian and ADF, the implementations share

common approximations. These approximations include the Born-Oppenheimer or

fixed nucleus approximation and various approximations on the electron-electron

interactions. The Born-Oppenheimer and fixed nucleus approximations assume that

the nuclei are fixed and that the electrons move around them in their fixed field.

The nuclear and electronic motions are treated separately. [1]

Conventional commercial software such as Gaussian also assumes a simplified

approximation to the electron-electron interaction, such as that in Hartree-Fock
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1. Introduction

(HF) method, which treats each electron as a two-body system of nucleus and

electron moving in the average field of all other electrons. A great deal of effort is

then applied to recover the electron-electron interaction without losing too much of

the computational economy bought with this approximation. To go beyond these

approximations and observe how systems behave without approximation, requires

small systems. Three-body systems are the smallest systems in which the electron

correlation of an atom can be calculated and the smallest molecular system in which

it is possible to include nuclear motion. Three-body systems are ideal for these

accurate computations without approximations. They contain the most important

aspects that are often approximated away in conventional computational chemistry

codes and are sufficiently simple to calculate fully.

Three-body systems are defined in this work as any system constituted from three

particles. The particles can be whole nuclei, such as the helium nucleus or hadrons

such as protons (p+) or leptons such as electrons (e– ) and its heavier cousin the

muon (µ) and their anti-particles. Three particle systems have interesting properties

in their own right. For example the three-body system constituted from deuteron,

(D+) triton (T+) and muon (µ), is a molecular system but with the much heavier

muon particle instead of an electron. It is known to be able to catalyse nuclear

fusion at room temperature. [2–6] Since the muon is much heavier than an electron

the muonic molecular ions (µDT+, µH +
2 and so on) have a much shorter bond

distance, than for example DT+, and this catalyses the fusion between D+ and T+.

Use of muon catalysed fusion is restricted however by the energy required to create

the muons and the rate at which they are lost to processes such as muon decay and

the muons sticking to the He nucleus where it can not catalyse further reactions

until “unstuck”. [3,4,7] Early estimates suggested that ≈ 200 fusion reactions must

be catalysed before the muon is lost, to recover the energy required to form the

muon. However this value has been shown to be 12 to 15 times too small. [8–10]

Frolov et al. [10] calculated the probability of muons sticking to He and the required

fusion reactions to break even energetically using three-body calculations. Three-

body systems are interesting scientifically as they can be used to explain and probe

various aspects of chemistry many of which are still not well understood. One such

area where a better understanding would be useful is within the coulomb break-
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1. Introduction

up problem. [11–14] The chemical example of coulomb break-up is electron impact

ionisation, [13] where an electron impacts a one electron atom and knocks the bound

electron off. This problem has at least two asymptotic regions starting with one

electron at an asymptotic distance and ending with two electrons at asymptotic

distances. The asymptotic behaviour of three-body systems, that describe this

dissociation, is not exactly understood and can be quite complex. [15,16] The stability

of a three-body system to dissociation depends upon many factors which can be

investigated within three-body computations.

The work in this thesis explores various aspects of three-body systems with the

goal of achieving greater understanding of these interesting systems and aspects of

computational chemistry using the non-relativistic time independent Schrödinger

equation without the Born-Oppenheimer approximation and with explicit full inclu-

sion of the like-charge interaction. In the case of atoms this is the electron-electron

interaction. Performing computations so accurately without approximations has a

computational price. Calculations are much slower, however a much greater degree

of accuracy can be achieved. The computational cost can be significantly reduced

by a judicious use of Laguerre polynomial (Lm(x)) wavefunctions (ψ) with recur-

sions relations and series solution. Wherever possible this path is taken to minimise

computational cost, allowing for larger more accurate wavefunctions to be employed.

When the calculations are done in full, without approximations, it is possible to truly

understand the underlying assumptions used in other computational codes. The

results become more reliable and accurate properties can be investigated. Without

the Born-Oppenheimer approximation more complex interactions can be investi-

gated such as the mass effects on stability and the properties of exotic systems

such as the Positronium negative ion (Ps– - e–e–e+) where the Born-Oppenheimer

approximation is no longer valid.

1.1. Overview

This thesis calculates the energies, wavefunction and expectation values of three-body

systems with high accuracy, with energies typically calculated to the mJmol−1 or

better. In Chapter 4 these properties are calculated and presented. For some of the

3



1. Introduction

more exotic systems, these are the most accurate values of these properties available

to date. The computations are benchmarked and compared to available literature

and checks on the quality of the wavefunction such as the virial and cusp conditions

are performed. This is a vital first step to ensure that accuracy is achieved.

In Chapter 5, the first results chapter, the particle-in-motion design of this method-

ology permits the exploration of the stability of three-body systems with respect

to dissociation to two-body species and a free particle. The masses are shown to

affect stability of such a system and that some mass ratios are deemed unstable

whilst other ratios are identified as stable to dissociation. A general formula is given

to determine if a system has at least one bound state below the lowest continuum

threshold of a unit charge three-body system with any given two masses.

In the following Chapter 6 the stability of atoms with varying nuclear charge is

studied. A novel method of calculating the minimum nuclear charge to bind two

electrons to a nucleus is proposed, developed and implemented. The technique is

general and could be expanded to other atoms and molecules. This method has

several advantages over the previous methods including its variational nature and

its greatly improved computational cost. Additionally the inner and outer electrons

are probed using an interesting technique. This is the first time this technique has

been applied to a fully correlated wavefunction and it is used to give further insight

into how the electrons arrange themselves inside the atom with particular attention

to how the electrons behave upon detachment.

Chapter 7 contains one of the most interesting aspects in computational chemistry

that is only directly researchable with systems greater than two particles in size, the

electron correlation. To achieve this, in addition to our accurate, fully correlated,

three-body method, an uncorrelated method that is as accurate as possible is required

as a reference. In this chapter the Löwdin definition was used to define electron

correlation, meaning that HF is used as the reference method. To ensure these results

were as accurate as possible the HF method was implemented using a Laguerre

polynomial wavefunction with computational codes specially written for the task of

maximising accuracy. The methods were then sufficiently flexible to calculate electron

correlation over a wider range of systems including non-integer, low nuclear charge

systems, allowing for a more complete study of electron correlation and the effect of

4



1. Introduction

nuclear charge. Additionally, the effect of electron correlation on other properties

such as the electron-nucleus distance and probability densities were studied. The

coulomb hole in the singlet ground state of a two electron atom was categorised and

the presence of an additional, secondary, coulomb hole identified.

In Chapter 3 the programs written and used throughout this work are discussed, de-

tailing their operation and their design. The choices of methodologies and the impact

this has upon this work is outlined. In addition the various external codes that were

employed in this work are discussed explaining the benefits they brought to the work.

5



2. Theoretical Background

2.1. Atomic Units

To avoid carrying too many constants throughout the calculations and mathematical

discussions, a set of units introduced by Hartree called atomic units (a.u.) are used.

These units include most constants that appear time and time again when dealing

with atoms and molecules and so are often employed in computational chemistry.

The units are constituted from various combinations of atomic quantities such as

electron charge (e) and mass (me) and Planck’s constant (h), or more commonly,

the reduced Planck’s constant (~). The following is a list of these units. This is

not a definitive list but includes the units used in this work. A more complete

list can be found in Bethe and Salpeter. [17] For convenience the conversion to SI

units is also given. The conversion factors to SI units are from the latest (2010)

CODATA [18] recommended values for physical constants and are subject to change

as measurement techniques improve.

These first 4 constants are set to unity and all other units are defined using these.

Charge The charge of the electron is set to unity

(1 = e = 1.602 176 565(35)× 10−19 C [18])

Mass The mass of the electron is set to unity

(1 = me = 9.109 382 91(40)× 10−31 kg [18])

Coulombs Constant Coulombs constant is set to unity

(1 = ke =
1

4πε0
= 8.987 551 787× 109 Nm2 C−2 [18])

Reduced Planck Constant Reduced Planck constant is set to unity

(1 = ~ = h
2π

=1.054 571 726(47)× 10−34 J s [18])

6



2. Theoretical Background

These following units are derived from combinations of the above 4 constants in

atomic units.

Length The radius of the first Bohr orbit is unity

(1 a0= 1 ~2 me
−1 e−2 = 0.529 177 210 92(17)× 10−10 m [18])

Energy Twice the ionisation energy of an infinite nuclear mass H atom is unity

(1Eh= 1 e2 a0
−1= 4.359 744 34(19)× 10−18 J= 2625.49(96) kJmol−1 [18]) This

unit is called a Hartree

Using atomic units separates the results from the accuracy of the currently accepted

values of physical constants in terms of kg, metres and so on. Of course any conversion

from atomic to SI units must accept the SI values. These atomic units are used

throughout this thesis unless otherwise stated.

2.2. Eigenvalue Problem

The quantum state of a system may be described by a complex function called

the wavefunction (ψ). Each dynamical property of a system is represented with a

linear operator Â. [19] This operator is associated with the dynamic variable a. If

a particular property is measured experimentally, even under identical conditions,

the results would not necessarily be the same, and would have particular possible

values such as a0, a1, . . . , an. In quantum mechanics these are the eigenvalues of

the operator that represent the observable. With a normalised wavefunction an

eigenvalue problem is represented with the following equation. [19]

Âψn = anψn (2.2.1)

Since all results of measurement are real numbers this imposes certain conditions on

which operators describe physical properties. As a result, all operators that repre-

sent physical observables are Hermitian, but not all Hermitian operators represent

properties observable experimentally. [19]

In a more general case with a wavefunction that is not necessarily normalised the

generalised eigenvalue problem is given in Eq. (2.2.2), where Ŝ is the overlap, which
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defines the inter-relationship between a set of basis vectors of a quantum mechanical

system.

Âψn = anŜψn (2.2.2)

2.3. Schrödinger Equation

Erwin Schrödinger first proposed what is now known as the Schrödinger equation

in 1926. [20,21] The equation is fundamental to quantum chemistry as it contains the

information about the structure and energetics of a system. Although time can be

considered, it is almost always used in its time independent non-relativistic form. In

this time independent form stationary states are calculated, the properties of which

do not change with time. Stationary states are of prime importance in understanding

chemical properties. Such properties are independent of time; additionally excitations

are the transfer between stationary states. [22] This equation in its time independent,

non-relativistic form is as follows:

Ĥψ = Eψ (2.3.1)

The equation is visually simple but is incredibly useful. It contains the probable

particle positions in the ψ and the energy levels are contained in the eigenvalue E.

The operator Ĥ is the Hamiltonian operator and this is a combination of the kinetic

energy operator T̂ and the potential energy operator V̂ . [23]

Ĥ =T̂ + V̂ (2.3.2a)

T̂ =− 1

2

N∑
i=1

1

mi

∇2
i (2.3.2b)

V̂ =
N∑
i=1

N∑
j>i

ZiZj
|rij|

(2.3.2c)

|rij| is the distance between particles i and j.

N is the number of particles.

mi is the mass of the ith particle.
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∇2
i is the laplacian operator of the ith particle. In Cartesian coordinates it has the

following form:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.3.2d)

In quantum chemistry, typically the Schrödinger equation is discussed in terms of

electrons and nuclei. The motions of the electrons and the nuclei are separated into

two equations. The following form separates the kinetic and potential operators into

electrons and nuclei [23], in atomic units 1
me

is 1:

Ĥ =

Kinetic energy︷ ︸︸ ︷
−1

2

N∑
i=1

1

me

∇2
i︸ ︷︷ ︸

The electron’s
kinetic energy

−1

2

M∑
a=1

1

ma

∇2
a︸ ︷︷ ︸

The nuclei’s
kinetic energy

Potential energy︷ ︸︸ ︷
−

N∑
i=1

M∑
a=1

Za
|ria|︸ ︷︷ ︸

The electron-nucleus
potential energy

+
N∑
i=1

N∑
j>i

1

|rij|︸ ︷︷ ︸
The electron-electron

potential energy

+
M∑
a=1

M∑
b>a

ZaZb
|rab|︸ ︷︷ ︸

The nucleus-nucleus
potential energy

(2.3.3)

The terms in Eq. (2.3.3) are the terms of a Hamiltonian split in a chemist-like way

with the electrons and nuclei. The first term in red is the kinetic energy of the

electrons, whilst the second in purple is the kinetic energy of the nuclei. The third

term in blue is the electron nucleus potential energy this is the same term present in

a two-body atom. The third and fourth terms are the electron-electron and nuclear-

nuclear potential energy in green and orange respectively. Perhaps two of the most

commonly approximated of these terms are the purple nuclei kinetic energy terms

in the Fixed Nucleus and the green electron-electron potential energy terms in HF

and post HF methods.

2.4. Born-Oppenheimer Approximation

While the nuclear kinetic energy term in Eq. (2.3.3) explicitly accounts for the

motion of the nuclei, this motion is small compared to that of the electrons. For

example even a H+ nucleus has a mass ratio ≈ 1836 : 1 compared to an electron.

The electrons therefore move very far around the nuclei in the time it takes the

nuclei to move a short distance. The electrons “see” the heavy slow moving nuclei as

almost fixed charges. [1] In 1927 Max Born and J. Robert Oppenheimer [24,25] treated

9
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the nuclei as stationary with fixed nuclear repulsion between them and the electrons

moving through them as a fixed field of nuclear charge. This approximation proved

to be effective at reducing computational cost with a small loss in accuracy. The

nuclear-nuclear distances are treated parametrically, the nuclear mass is assumed to

be infinite resulting in the nuclear kinetic energy being treated as zero. This is the

integral part of Born-Oppenheimer (BO) and the Fixed Nucleus approximation, and

the nuclei positions are optimised to a minimum on the energy surface using various

optimisation techniques. The remaining electronic Hamiltonian becomes as follows:

Ĥ =

Kinetic energy︷ ︸︸ ︷
−1

2

N∑
i=1

1

me

∇2
i︸ ︷︷ ︸

The electron’s
kinetic energy

Potential energy︷ ︸︸ ︷
−

N∑
i=1

M∑
a=1

Za
|ria|︸ ︷︷ ︸

The electron-nucleus
potential energy

+
N∑
i=1

N∑
j>i

1

|rij|︸ ︷︷ ︸
The electron-electron

potential energy

+
M∑
a=1

M∑
b>a

ZaZb
|Rab|︸ ︷︷ ︸

The nucleus-nucleus
potential energy

(constant)

(2.4.1)

Rab is the fixed nuclear-nuclear distance between nuclei a and b it is not a variable

and therefore the nucleus-nucleus term can be treated as a constant for a particular

molecular structure.

2.5. Electron-Electron Coupling

The electron-electron potential energy term in Eq. (2.3.3) (green) is particularly

difficult to calculate and is almost always approximated, with varying degrees of

success. Conventional computational chemistry codes approximate by treating the

electrons as operating in individual spaces only “seeing” the other electrons in an

average way. The Hamiltonian is “decoupled” and the electron-electron interaction

approximated. This reduces the problem from an N electron Hamiltonian to one

which can be separated to N one-electron Hamiltonians.

Ĥ =

Kinetic energy︷ ︸︸ ︷
−1

2

N∑
i=1

1

me

∇2
i︸ ︷︷ ︸

The electron’s
kinetic energy

Potential energy︷ ︸︸ ︷
−

N∑
i=1

M∑
a=1

Za
|ria|︸ ︷︷ ︸

The electron-nucleus
potential energy

+
N∑
i=1

V (ri)︸ ︷︷ ︸
Approximated

electron-electron
potential energy

+
M∑
a=1

M∑
b>a

ZaZb
|Rab|︸ ︷︷ ︸

The nucleus-nucleus
potential energy

(constant)

(2.5.1)
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2.6. Variational Principle

A variational approach is often a powerful way of solving a problem, whereas other

methods such as perturbation theory may fail such as in He where the first term

of the perturbation expansion is insufficiently accurate and the higher terms are

difficult to calculate. [26] In the variational method any trial wavefunction (ψtrial) will

give an energy greater than or equal to the true ground state energy (Eexact). [19] The

better the wavefunction ψtrial matches that of the exact wavefunction (ψexact) the

more closely the trial ground state energy (Etrial) approaches Eexact.

If the trial wavefunction ψtrial exactly matches the true wavefunction ψexact then

Etrial would also match the true Eexact (Equation (2.6.1a)).

Dirac notation
〈
ψ | Â | ψ

〉
is commonly used throughout this work and is a conve-

nient shorthand for
∫
ψÂψ dτ where dτ is the appropriate volume element for all of

space with implied correct integral ranges for all of space. In some cases throughout

the thesis, it is further abbreviated to
〈
Â
〉
.

〈
ψtrial | Ĥ | ψtrial

〉
≥
〈
ψexact | Ĥ | ψexact

〉
= Eexact (2.6.1a)

In the event ψtrial does not equate to ψexact, then ψtrial may be expanded in terms of

a complete set of normalised orthogonal function ψtrial = ψtrial
0 , ψtrial

1 , . . . , ψtrial
n such

that:

ψtrial =
∑
n

anψ
trial
n (2.6.1b)

where ∑
n

anan = 1 (2.6.1c)

Substituting Eq. (2.6.1b) into Eq. (2.6.1a) leads to the following:

Ĥψtrial
n =Etrial

n ψtrial (2.6.1d)

Etrial =
∑
n

∑
n′

anan′

〈
ψtrial
n | Ĥ | ψtrial

n′

〉
(2.6.1e)

11
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The trial wavefunction is orthogonal in that
〈
ψtrial
n | ψtrial

n′

〉
= δn,n′ . As a result the

expanded terms of Eq. (2.6.1e) where n is not equal to n′ vanish and we are left

with:

Etrial =
∑
n

ananE
trial
n (2.6.1f)

The difference between Etrial and Eexact is thus expressed by:

Etrial − Eexact =
∑
n

anan
(
Etrial
n − Eexact) (2.6.1g)

Since an is positive or zero and
∑

n anan = 1 and also that Etrial
n is always greater

than or equal to Eexact [23] it follows that Eq. (2.6.1g) is always positive or zero and

that the following is true regardless of the wavefunction:

〈
ψtrial | Ĥ | ψtrial

〉
≥ Eexact (2.6.2)

No matter what wavefunction is used the energy will never be below the true

ground state energy. It is the nature of the Hamiltonian employed here that there

is always a lowest energy eigenvalue and so the eigenvalues are said to be bounded

from below. [23] This means that the possible eigenvalues do not extend to −∞, and

the lowest eigenvalue itself is said to be an upper bound to the true eigenvalue. [23]

2.7. Hartree-Fock Theory

The HF approximation is often the first approximation within wavefunction me-

chanics in computational codes such as Gaussian. The HF approximation treats

an N -electron system as N one-electron systems only interacting with the other

electrons in an average way. The Hartree method was introduced to make a simpler

but plausible wavefunction from the product of one electron wavefunctions. [27]

Ψ = ψ(1)ψ(2)ψ(3) · · ·ψ(n) (2.7.1)

12
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This is the Hartree product, not the HF process which we will discuss shortly and

is solved more efficiently, where Ψ is the function of all electrons, ψ(1) is a function

of the coordinates of the first electron and ψ(2) is a function of the coordinates

of the second electron and so on. Each of these ψ(i) are called either atomic or

molecular orbitals. The Hartree process [27] was to iteratively solve this system

by first optimising electron 1 in ψ(1) in the average field of all other electrons in

ψ(2), ψ(3), . . . , ψ(n) at this stage only ψ(1) is changed. After which electron 2 is

optimised in the field of electrons ψ(1), ψ(3), . . . , ψ(n) and so with all electrons up

to n which completes a single cycle. After all electrons are optimised the process

is started again and iteratively repeated until the electrons converge (in terms of

energy or orbital coefficients) and cease to change by some defined amount. [27]

The Hartree method has two flaws originating from its lack of treatment of electron

“spin”. One of the consequences of spin is that no more than two electrons can occupy

the same orbital. The other consequence is that when two electrons are exchanged

the wavefunction changes sign, the wavefunction is said to be antisymmetric to

exchange. However the Hartree wavefunction is symmetric to exchange as it does

not change sign. These are accounted for by the work of Slater and Fock. [27]

The Hartree product in Eq. (2.7.1) is a product of spatial wavefunctions. Slater’s

wavefunction however, also contains spin functions corresponding to an electron in

an up spin state (α) or a down spin state (β) to give two spin orbitals for each spatial

orbital. In the restricted HF model there are two electrons in any one spatial orbital.

Here we only discuss this restricted model and therefore in the discussion there are

2n electrons in n orbitals. The Slater wavefunction differs from the Hartree in that

it has these spin function but also in that it is not a simple combination of orbitals.

Instead the Slater wavefunction uses a determinant. [27]

Ψ =
1√
(2n)!

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(1)α(1) ψ1(1)β(1) · · · ψn(1)α(1) ψn(1)β(1)

ψ1(2)α(2) ψ1(2)β(2) · · · ψn(2)α(2) ψn(2)β(2)
... ... . . . ... ...

ψ1(2n)α(2n) ψ1(2n)β(2n) · · · ψn(2n)α(2n) ψn(2n)β(2n)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.7.2)

This is called a Slater determinant and enforces the Pauli exclusion principle, if any

two electrons had identical quantum numbers then two rows or columns would be
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identical and the determinant and the wavefunction would vanish. Switching two

electrons corresponds to switching of two rows and this handles the sign changes.

The HF energy is calculated with the following equation for n electron pairs and

M nuclei. In the following discussion τ1 is the appropriate coordinates and volume

for the one electron problem, and τ2 is appropriate coordinates and volume for the

two electron problem.

E =2
n∑
i=1

∫
ψ?i (1)Ĥ

core(1)ψi(1) +
n∑
i=1

n∑
j=1

ψ?i (1)
(
2Ĵj(1)− K̂j(1)

)
ψi(1) dτ1

(2.7.3a)

Ĥcore(1) =

(
−1

2
∇2

1 −
M∑
a=1

Za
ra1

)
(2.7.3b)

Ĵj(1) =

∫
ψ?j (2)

(
1

r12

)
ψj(2) dτ2 (2.7.3c)

K̂j(1)ψi(1) =

∫
ψj(1)ψ

?
j (2)

(
1

r12

)
ψi(2) dτ2 (2.7.3d)

Ĵ is the coulomb operator and represents the electrostatic repulsion between the

charge clouds of electrons. K̂ is referred to as the exchange operator. Although

no simple interpretation exists for K̂ like there is for Ĵ , K̂ can be thought of as a

correction to Ĵ arising from two electrons of the same spin avoiding each other more

and effectively reducing the electrostatic repulsion. [27]

Equation (2.7.3a) is not quite an eigenvalue equation but rather a sum of eigenvalue

equations. [27] To solve the problem as an eigenvalue equation the Fock operator is

used:

F̂ = Ĥcore(1) +
n∑
j=1

(
2Ĵj(1)− K̂j(1)

)
(2.7.4)

The Fock operator (F̂ ) can be used to solve HF equations as an eigenvalue problem.

F̂ operates on a total of n spatial orbitals each containing 2 electrons for a total of

14
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2n electrons. Each Fock operator calculates the energy of each spatial orbital [27]:

F̂ψ1(1) =ε1ψ1(1)

F̂ψ2(1) =ε2ψ2(1)

...

F̂ψn(1) =εnψn(1)

(2.7.5)

Equation (2.7.5) can be written in matrix form which is diagonalisable.

F̂


ψ1(1)

ψ2(1)
...

ψn(1)

 =


ε1 0 · · · 0

0 ε2 · · · 0
... ... . . . ...

0 0 · · · εn




ψ1(1)

ψ2(1)
...

ψn(1)

 (2.7.6)

The F̂ operator does not form a true eigenvalue equation because the operator de-

pends upon the wavefunction and is therefore what is referred to as a pseudo eigen-

value equation. [27] To solve this problem the equations are solved iteratively from

some guessed wavefunction until the wavefunction ceases to change by some reason-

able amount. The εi values are the energy levels of the system and not the total elec-

tronic energy. The total electronic energy is E =
∑n

i

(
εi +

〈
ψi(1)Ĥ

core(1)ψi(1)
〉)

.

Further details of this method are given in Chapter 7.

2.8. The Time Independent Schrödinger Equation for

3Body Systems

In this work the Schrödinger equation for a three-body system with particle masses

mi and charges of Zi is:

Ĥψ =Eψ (2.8.1a)

Ĥ =− 1

2m1

∇2
1 −

1

2m2

∇2
2 −

1

m3

∇2
3 +

Z1Z3

r1
+
Z2Z3

r2
+
Z1Z2

r3
(2.8.1b)

The centre of mass motion is separated off to give the interaction Hamiltonian. [17,28]

We take the origin to be at particle 3 which is the particle with the opposite sign
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charge to the other two.

Ĥ =− 1

2µ1

∇2
1 −

1

2µ2

∇2
2 −

1

m3

∇1 · ∇2 +
Z1Z3

r1
+
Z2Z3

r2
+
Z1Z2

r3
(2.8.2a)

where

µ1 =
m1m3

m1 +m3

, µ2 =
m2m3

m2 +m3

(2.8.2b)

(2.8.2c)

This is the Hamiltonian solved in this work. Further details on its separation and

solution are given in Chapter 4. This Hamiltonian explicitly includes all particles

masses and interactions, treating the Hamiltonian fully in the time independent

non-relativistic regime.

2.9. Summary

The wavefunction of a system can describe all dynamic properties of a system. For

the simplest of systems such as one electron non-relativistic atoms with infinite

nuclear mass exact solutions are known. For more complex systems, as in more

than one electron, an exact solution is unknown. With the use of approximations

however a practical and highly informative field of computational chemistry has

developed for these many electron systems. However these approximations need not

be made if the system is small enough for example an atom with two electrons can

be solved to a high degree of accuracy using the full time independent Schrödinger

equation (Eqs. (2.3.1) and (2.3.2)) by treating the mass of the nuclei as finite and

incorporating explicitly the inter electron distances.
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3.1. Introduction

Throughout this thesis various pieces of code were written to calculate all aspects

of the three-body systems that were investigated, including the recursion relations

eigenvalue problem and the expectation values. This chapter discusses the programs

and their design, first describing the C plus plus (C++) programs then the Maple

programs and bash programs. The main workhorse was a C++ program named

3Body. The 3Body program would create the matrices, diagonalise the eigenproblem,

optimise the non-linear variational parameters (NLPs) and calculate the energy and

the wavefunctions which would then be used elsewhere to calculate other desired

properties in other programs. This chapter provides the details of the programs

written and used.

During development the design philosophy was to make good use of the available

resources and not to “reinvent the wheel”. That is to say that external pieces of

codes such as numerical recipes, [29,30] Boost [31] and various other libraries were used

in the creation of this program. Doing so provided many benefits, these external

libraries are often faster and they have been optimised for efficiency and additionally

they are better maintained such that any bugs are tested for and reported by a

much wider audience and in general reduced the development time. This chapter

will detail where these pieces of code are used why they were used and how they

were brought together to create the various programs in this work.

To achieve the design philosophy of not writing the same piece of code twice the

3Body code is modular. It has two main layers the 3Body executable and the Eigen

library. These are the C++ codes and they shall be discussed first. The advantage of

this philosophy is best explained by an example. The 3Body program needed many
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components to calculate its eigenvalues from a series solution input. These included

reading an algebraic series solution recursion relation to create a matrix, and parsing

mathematical expressions to numerical values. These two capabilities are identical in

requirement to calculating expectation values with the program named Expectation.

The Expectation program also reads a series solution recursion relation to create

matrices and parse mathematical expressions to numerical values, for the purpose

of calculating the various expectation values given in Section 3.2.2. By writing

the separate Eigen library for the 3Body program when writing the Expectation

program, almost all of the code was already available. The Expectation program

uses the Eigen library and conducts it to do a different task. These two programs

share the same code. This means that if a bug is found in the library then fixing

that bug fixes it in both programs at the same time, it also reduces the sizes of the

programs as they both share the library, only needing one copy of the code between

them.

The flowchart in Figure 3.1.1 gives the operational procedure for the three-body

programs and codes.
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Key: Input or Output Procedure C++ Procedure Maple Procedure

Bash Procedure Decision

Start

Need to create
recursion relations for

chosen type of wavefunction?

Generate recursion relations
of the wavefunction type.

This is only ever done once
per wavefunction type and

is done using the
Maple program in Section 3.3.1

yes

Copy run script
to desired directory

This is the bash script
described in Section 3.4.1

no

Put the information
into the run script

The following information is needed:

• mi

• Zi

• Symmetry

• Wavefunction Type
Pekeris, AC etc

• Number of terms
in wavefunction

• How NLP’s are
handelled

• The values for
the NLP’s

Run this bash script
described in Section 3.4.1

This script sets up and runs
the 3Body C++ program

(See Section 3.2.1)

Extract results of calculation

The data that can
be extracted is

• Energy

•
〈
T̂
〉

•
〈
V̂
〉

• 〈η〉

• NLPs

Calculate expectation values? Stop
no

Calculate accurate wavefunction
Using the script in Section 3.4.1

yes

The new data that
can be extracted is

• Maple readable wave-
function

Use any of these methods to
calculated expectation values

Use CalcExpectation to calculate one of the follow-
ing expectation values (See Section 3.4.2)

〈
T̂
〉

,
〈
V̂
〉

,
〈η〉, 〈rni 〉, 〈δ(ri)〉, i = 1, 2, 3, n = −1, 0, . . . , 3

This script sets up and runs
the Expectation C++ program

(See Section 3.2.2)

Use CalcCusps to calculate
the cusps (See Section 3.4.2)

This script sets up and runs
a specialised Maple code

(See Section 3.3.2)

Use Calcdri to calculate
the following expectation

value 〈δ(ri − r)〉, i = 1, 2, 3, r >= 0
(See Section 3.4.2)

This script sets up and runs
a specialised Maple code

(See Section 3.3.2)

Extract results from the
expectation value calculations

The data that can
be extracted is

• Expectation values

Stop

Figure 3.1.1.: The program operation overview for calculating three-body energies,
wavefunctions and expectation values
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3.1.1. Programming Language

The language of choice was C++ an object orientated (OO) language and this object

orientation was put to good use. It is the scaffolding behind the modularity of the

code. Classes, inheritance, polymorphism, templates and specialisation which are

aspects of C++ and object orientation were employed. These concepts are explained

in the following discussion:

Class A class is the main unit of object orientation in C++ it is a collection of

methods, variables, operators and other components to perform a specified

task. These can be seen as complete units of code for a specific task. When

an object is created it conforms to general patterns but can be set up to

behave in a variety of ways. For example the class called Matrix can be set

up to use either mathematical expressions for its elements or numerical values,

leading to internal differences between them, but in both cases they have the

command GetElement(x,y) which will return the element at column x row y.

Calling GetElement will always give the same output despite the differences

between the methods. The classes, where appropriate, have operators defined,

for example the Matrix class has operators to add and subtract matrices etc.

The idea behind a class is to simplify code on a higher level. The programmer

need not worry about how a matrix is added just that it will do it when asked

and that the class handles all this internally in the appropriate way. An object

is a named instance of a class.

Class Example

1 class AClass{

2 string myText="I am AClass";

3 public:

4 void print(){

5 cout << myText << "\n";

6 }

7 }; //A simple class

8 AClass A; //Create an instance (object) of the class named A

9 A.print(); //Prints the text "I am AClass"
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Inheritance Classes can have children and also parents but do not necessarily have

either of these. The parent is referred to as the base class and this base class

usually contains the general purpose of the class, with default implementations.

The children classes referred to as the derived classes will be specialised versions

with all the capabilities, and are typically more complex. Take for example a

class named Element this is the base class and it contain the function GetValue.

In the base class this simply returns the value it has stored, but the derived

classes operate differently. One of these derived classes deals with converting

mathematical expressions into a value, when the method GetValue is called

this class takes different steps, it enters the variables into the expression and

evaluates it to a number. Whilst each class handles things differently internally

they all have this GetValue method which is dictated by the base Element

class. This base Element class guarantees that whatever the derived class does

it will at least do this. This leads us on to polymorphism.

Inheritance Example

1 class AClass{

2 string myText(){

3 return "I am AClass";

4 }

5 public:

6 void print(){

7 cout << myText() << "\n";

8 }

9 };

10 class BClass : public AClass{

11 string myText(){

12 return "I am BClass";

13 }

14 }; //B class is derived from AClass

15 AClass A;

16 A.print(); //Prints the text "I am AClass"
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17 BClass B; //Inherits all members, and functions of AClass including

print()↪→

18 //As print() calls myText() and myText() has been overridden it

instead prints:↪→

19 B.print(); //Prints the text "I am BClass"

Polymorphism When a Matrix class is initiated it is instructed to use one of the

Element classes but the programmer does not know at compile time which

one might get called at run time as it depends upon the users input. The

programmer could either create a complicated set of cases to capture all possi-

bility or exploit inheritance and polymorphism. These two work hand in hand

and are best employed together. Polymorphism is a complicated name for a

simple concept. When a pointer (a reference) to a base class is made it can

point to any of its derived classes instead of the base class. For example, if the

Matrix class is initiated with a derived Element class but with a base class

pointer, when the pointer is accessed and, for example, calls GetValue due to

polymorphism the derived class method is called even though the pointer is

of the base class type. Any derived class can fit into the pointer and so one

pointer can be used to access many variants of the method. As a final note

a pointer to a base class cannot access new aspects of the derived class only

the parts of the derived class shared with the base can be accessed. There are

however techniques to access specific aspects of the derived classes where we

recast the pointer by using for example dynamic_cast.

Polymorphism Example

1 class AClass{

2 string myText(){

3 return "I am AClass";

4 }

5 public:

6 void print(){

7 cout << myText() << "\n";
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8 }

9 };

10 class BClass : public AClass{

11 string myText(){

12 return "I am BClass";

13 }

14 }; //B class is derived from AClass

15 class CClass : public AClass{

16 string myText(){

17 return "I am CClass";

18 }

19 }; //C class is derived from AClass

20 AClass A;

21 A.print(); //Prints "I am A Class"

22 AClass B = BClass(); //Not polymorphism because a pointer wasn't

used↪→

23 B.print(); //Prints "I am A Class"

24 AClass* APointer = new BClass(); //Polymorphism because a pointer

was used↪→

25 APointer->print(); //Prints "I am B Class"

26 delete APointer; //Pointers need to be deleted explicitly

27 APointer = new CClass(); //Pointers can be reassigned

28 APointer->print(); //Prints "I am C Class"

Templates The C++ language has a technique called templating. In a template class

or method certain aspects are left undefined until compile time. In this work

we leave the type undefined. Therefore our data type could be integer, float,

double or even arbitrary precision at a moments notice. This fits in well with

the design philosophy of not repeating the same code twice by providing a

means to have one source code for all data types. Where possible all code was

written in a generic template with the type undefined and then at compilation

the types are decided and substituted into the classes. This leaves us with only

one set of code and one set of potential bugs to deal with for any arbitrary

23



3. Computer Programming

number of data types.

Template Example

1 template<typename T>

2 string NumtoStr(const T& Number) {

3 stringstream s; s.str(""); //Create a blank string stream

4 s << setprecision(2) << Number; //Set the stringstream precision

to 2 digits and converts the number to a string↪→

5 return s.str();

6 }

7

8 float mFloat = 1.23;

9 double mDouble = 4.56;

10 int mInt = 7;

11 string numberString = NumtoStr(mFloat);

12 cout << numberString << "\n"; //Prints "1.2"

13 numberString = NumtoStr(mDouble);

14 cout << numberString << "\n"; //Prints "4.5"

15 numberString = NumtoStr(mInt);

16 cout << numberString << "\n"; //Prints "7"

Specialisation While creating a generic template that is designed to be used for all

types it may become necessary to actually be more specific with certain types.

For example the function NumtoStr converts numbers to strings. The integer,

float and double types all convert in the same way using stringstreams

and the pipe operator, however the arbitrary precision type (mpreal, see

Section 3.2.1) is special and is converted in a more complex way. Therefore

this template type is specialised so that when the function NumtoStr is called

if the type is the arbitrary precision type a different specialised piece of code

is called.

Specialisation Example

1 template<typename T>

2 string NumtoStr(const T& Number) {
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3 stringstream s; s.str(""); //Create a blank string stream

4 s << setprecision(2) << Number; //Set the stringstream precision

to 2 digits and converts the number to a string↪→

5 return s.str();

6 }

7 template<>

8 string NumtoStr(const mpreal& Number)

9 {

10 return Number.toString("%.2f") //Converts to string with 2 digits

of precision↪→

11 }

12 float mFloat = 1.23;

13 mpreal mMpreal = 4.56;

14 string numberString = NumtoStr(mFloat);

15 cout << numberString << "\n"; //Prints "1.2"

16 numberString = NumtoStr(mMpreal);

17 cout << numberString << "\n"; //Prints "4.5"

In addition to C++ we also use Maple and Bash for our computational needs. Maple

handles the complex integrals that cannot be solved with series solution in C++ and,

the bash scripts handle the logging of the results and simplifies implementation and

repetitive tasks. The bash scripts can be considered one of the important parts of

the process as they ensure consistency. These scripts are designed to keep a clear

record of what has been calculated. This was particularly important in later work

as it ensured that original data could be examined and verified a long time after

calculation. The Maple program with its graphical user interface (GUI) in contrast

is not helpful in this manner. Maple can be run from both the GUI and the shell.

In the Maple GUI logs of the calculations are not kept on file and history is lost

when the Maple script is restarted. For this reason the procedure has been to create

and test the Maple script within the GUI, and when they are completed it is given

over to a bash script to run Maple from the shell. The bash scripts are designed to

log the results to a file and ensure good records are kept. The C++ programs are

also controlled via bash scripts and this removes some of the burdens on the user by
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helpfully laying out the options of the C++ programs.

Effort has also been devoted to increasing the speed of these programs to that

extent parallelisation, the process of breaking a task down to run on multiple cores

at the same time, has been employed. In the C++ programs Apple’s Grand Central

Dispatch [32] was used to achieve this as it is optimised for our mac deployment

environment. The Grand Central Dispatch is under the Apache License version 2.0

(See Appendix F.1).

3.1.2. Build Environment

The versions of the tools, programs and operating system given in this section are

the latest versions confirmed to run the codes written in this work, earlier versions of

these tools were used at earlier stages of development. The C++ codes in this project

were developed on a Mac Book Pro (15-inch, Mid 2012) with a 2.3 GHz Intel Core

i7 CPU and with 16 GB of 1600 MHz DDR3 RAM. The Mac operating system was

version 10.10.4 (14E46).

The programs and libraries were complied for architecture x86-64. The C++ dialect

was C++11 with the standard library LLVM C++ with C++11 support. The code

was optimised with -Os compiler flag that generates the smallest fastest build. The

integrated development environment (IDE) xCode was used at version 6.4 (6E35b).

The C++ programs were compiled and linked using clang++ Apple LLVM version

6.1.0. Additional post processing of the libraries was achieved using otool version

cctools-862.

Maple 2015.0, Maple build ID 1022128 was used to run the Maple codes. The

Bourne-Again shell (bash) shell scripts were run using bash version 4.3.39(1)-release.

3.2. C plus plus Programs

There are 3 C++ programs and 1 C++ Library written in this work these are called

3Body, Expectation, HF2e-Integrals and Eigen respectively. The Library Eigen

is shared between 3Body and Expectation and is the main work horse performing

the most complex steps of the program. A general overview of the library Eigen is

given but is not discussed in detail. The programs have many options and methods
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programmed into them, some of which will be briefly discussed. The philosophy of

adding code rather than replacing code was taken so as to ensure that if necessary

the code could be reverted back to a previous implementation. For example the

original code used a self coded mathematical expression to numerical value parser,

however this method was slow, inefficient, memory intensive and ultimately replaced

with the library mathpresso which is fast and more rigorously tested. However the

old expression parser is still present and can be re-enabled should the need arise, for

example if a future incompatibility with mathpresso arises.

3.2.1. 3Body

This program, named 3Body, calculates the energies, wavefunctions and a few expec-

tation values such as
〈
V̂
〉
and

〈
T̂
〉
. It is a command-line tool which means that it

is run from a terminal and a shell. Output is directed to standard out which may

either be the terminal itself, a file or another pipe. Like most command-line tools

the program is instructed through its arguments in what it should do. An example

of running 3Body with its command-line arguments is as follows:
Single Point Calculation

1 3Body Z1=-1 Z2=-1 Z3=1 m1=1 m2=1 m3=1 A=1 C=2 -r RR.rr -s 2856 -SYM

2

This calculates the Ps– system with the NLPs A and C set to 1 and 2 respectively.

The file containing the recursion relations is given with the -r option as RR.rr (the

3Body program can also take -m Matrix.m to load a matrix calculated in Maple

rather then loading the equations to form the matrix, this is however slower), the

number of terms in the wavefunction is specified with -s option as 2856 and the

symmetry is specified as symmetric with the -SYM option. The file with the recursion

relations (RR.rr) is created in Maple, the computer algebra program. This recursion

relation file contains the equations to create the matrices in the C++ program. These

equations have various undefined variables in this case these are Z1, Z2, Z3, m1,

m2, m2, A and C. The 3Body program is designed to read an arbitrary number of

variables into the equations. It can take any command-line argument with a “=” as

a variable.
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To perform an optimisation and minimise the non-linear variational parameters

we would pass the following arguments into the 3Body program:
Optimisation Calculation

1 3Body Z1=-1 Z2=-1 Z3=1 m1=1 m2=1 m3=1 A=opt=1 C=opt=2 -r RR.rr -s

2856 -SYM -bobyqa↪→

2

This code will calculate Ps– but will optimise the NLPs A and C using the routine

BOBYQA. [33,34] In Section 3.2.1 alternative optimisation routines are listed and

they are controlled by replacing the option -bobyqa with the appropriate option for

another routine as listed in Section 3.2.1.

The 3Body program itself is relatively simple as most of the code is written in the

separate Eigen library. We will explain each part of the code that has significance

in terms of design or when certain external libraries were used.

Precision Options

A C++ executable starts in the main block (int main(int argc, const char *

argv[])). In our code this main block is short and is a simple gateway to a template

function referred to here as the template main block. The template main block has

the data type left undefined. It uses a place holder for this data type of T. In this

template main block rather than writing double* Vector = new double[size];

it is written as T* Vector = new T[size];. The data type T is replaced with the

appropriate data type for the user requested precision.

The command-line option -arb NUM would request NUM digits of precision and set

precison to this number. The main block then decides the data type to use:
Setting up arbitrary precision and calling the template main block

1 if (precision >= 20) {

2 SetArbitaryDigits(precision); //Sets up the program to use

arbitrary precision↪→

3 main_templated<mpreal>(Args); //calls the templated main block

with the type mpreal↪→

4 }
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5 else if (precision >= 16) {

6 SetArbitaryDigits(19);

7 main_templated<long double>(Args); //calls the templated main block

with the type long double↪→

8 }

9 else {

10 main_templated<double>(Args); //calls the templated main block

with the type double↪→

11 }

If less than 16 digits of precision is requested or the command-line argument -arb

is omitted the data type double is used. For greater than 15 and less than 20 long

double is used. For precisions greater than 19 the arbitrary precision type mpreal is

used. The template main block is then called with the correct type for the designated

precision.

External Library mpfrc++: The data type mpreal is part of the external mpfrc++ [35]

library which is a C++ interface for the arbitrary precision data type of the exter-

nal library mpfr. [36] The number of digits in this data type are restricted solely

by the available memory. The mpfrc++ library used in this work is version 3.5.6

(Mercurial revision d8d1f40) under the General Public License (See Appendix F.2)

and the mpfr is version 3.1.2 and is under the lesser General Public License (See

Appendix F.3). The mpfr library is an excellent general purpose arbitrary preci-

sion data type however for certain cases such as 32 and 64 digits there exists more

optimised libraries with data types explicitly designed to handle these precisions

such as the qd library. [37] Future work would implement these libraries for increased

computational efficiencies.

Loading The Matrices

In the template main block the first step creates the matrices. There are 5 matrices

in the program. The 3 matrices that represent the operators T̂ , V̂ and Ŝ (see

Sections 2.2 and 2.3 on page 7 and on page 8) and two matrices labelled as hh

and ss that represent the left and right hand side respectively of the generalised
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eigenvalue problem Eq. (3.2.1).

(
T̂ + V̂

)
ψ = EŜψ (3.2.1)

The recursion relations generated in the Maple program (Section 3.3.1) (and

read into this program with the command-line option -r FILE or -m FILE) contain

the mathematical expressions to create all of these matrices. The 3Body program

was designed to have one general matrix class called Matrix. This class would

contain these mathematical expressions and would generate upon request any of the

5 matrices (T̂ , V̂ , Ŝ, hh or ss). This is the first example of the use of inheritance and

polymorphism. The base class Matrix is designed to return any of the matrices using

the function GetMatrix(MatrixPart Part) where Part tells it to return for example

the hh matrix. How this is done however depends on which derived class of the

Matrix class was used. The class Matrix_RR_JIT for example converts the recursion

relations to numerical numbers using the external library mathpresso [38] coupled

with just in time (JIT) compilation of the mathematical expression to assembled

machine code (ASM) for maximum speed. Whereas the class Matrix_RR_NOJIT does

it without JIT compilation which is slower but the only option for data types other

than double.

The class Matrix and its derived class handle the conversion of the mathematical

expressions to numerical data. All of the appropriate work is handled by the Eigen

library and all this program needs to do is create the appropriate class for the

desired method of solving these expressions. By default this is Matrix_RR_JIT for

the command-line argument -r and Matrix_JIT for the command-line argument -m.

To use the non-JIT matrix class the command-line options -NOJIT is supplied. The

following is an example of its use:
An example Use of the Matrix class and its Derived Classes

1 Matrix<T> *TheMatrix = nullptr;

2 VariableSet<string> InitVars;

3 InitVars.Add(Variable<string>("m1","1"));

4 InitVars.Add(Variable<string>("m2","1"));//and so on
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5 LMN::SymmType Symm = LMN::SymmType::Symmetric;//The wavefunction

symmetry. This is needed for the recursions relations↪→

6 MatrixRules* Rulesp = nullptr;//Rules for loading the Matrix parts

KE, PE, OV, etc from the Matrix class i.e. what markers are used

(See Section 3.3.1)

↪→

↪→

7 KERHS=false;

8 vector<string> WithT{"t"};

9 vector<string> WithoutT(0);

10 vector<string> WithV{"p"};

11 vector<string> WithoutV(0);

12 vector<string> WithO{"ss"};

13 vector<string> WithoutO(0);

14 Rulesp = new

MatrixRules(WithT,WithoutT,WithV,WithoutV,WithO,WithoutO, KERHS);↪→

15 long RR_MatSize = 1078;

16 TheMatrix = new Matrix_RR_NOJIT<T>(FileName, RR_MatSize, Symm, Rules,

InitVars); //Initialise the matrix to explicitly use the

recursion relation of the Laguerre polynomials (faster but

specialised to a Laguerre polynomial wavefunction)

↪→

↪→

↪→

17 //or

18 TheMatrix = new Matrix_MathJIT<T>(FileName,-1, Rules, InitVars);

//Initialise the matrix to read .m file without regard for the

recursion relations (slower but more general allowing any

eigenproblem to be diagonalised). A size of -1 is passed to read

the size from the file

↪→

↪→

↪→

↪→

19 VariableSet<string> Vars; //We can later add or change variables in

the following way↪→

20 Vars.Add(Variable<string>("A","1"));

21 Vars.Add(Variable<string>("C","2"));

22 TheMatrix->EnterVariables(VariableSet<string> Vars);

23 TheMatrix->GetMatrix(MatrixPart::HH)->Print(); //prints the HH matrix

to the terminal.↪→
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24 TheMatrix->GetMatrix(MatrixPart::SS)->Print(); //prints the SS matrix

to the terminal.↪→

External Library mathpresso: The library mathpresso, [38] or more specifically

the fork doublepresso (revision d4a8eb3) is an external library for evaluating alge-

braic mathematical expressions with a set of variables to a numerical value. This

external library is under the MIT license (See Appendix F.4). The library depends

upon ASMJit version 1.0 which is under the zlib license (See Appendix F.5). The

mathpresso library was chosen as it also incorporates JIT compilation to ASM.

This means that when the recursion relations are initialised in a mathpresso object

the mathematical expressions are converted into machine code this is a much faster

way of calculating these expressions then parsing the expression as tokens or strings.

When the 3Body program was first created I wrote a simple class as a parser to eval-

uate the mathematical expressions called MathString. The mathpresso equivalent

was several times faster and a much more developed library. This library is however

not optimised for arbitrary precision. Future work could be directed to using the

shunting yard algorithm [39] to create a mathematical parser optimised to work with

arbitrary precision and our eigenproblem.

Choosing the EigenSolver

In the next step the C++ program 3Body selects and prepares the algorithm to di-

agonalise the matrices and solve the general eigenproblem. Two algorithms have

been implemented in this code the QL algorithm (equally the QR algorithm could

have been used which uses the upper rather than lower quartile of the matrix but

is functionally equivalent as the algorithm requires a symmetric matrix) and the

multiple relatively robust representations (MR3) algorithm. The MR3 algorithm is

currently the fastest algorithm for symmetric matrices and was formulated in 2004.

The 3Body program has the base class EigenSolver this defines common methods

such as Cholesky Decomposition [29] and House Holder reduction. [29] An understand-

ing of these algorithms was derived from the Numerical Recipes books [29,30] but were

adapted to be able to run in parallel and to use templates and arbitrary precision.

32



3. Computer Programming

The Cholesky decomposition needs to have an overlap matrix matrix that is positive

definite. The Cholesky decomposition is not particularly well suited for a parallel

method due to the dependency order of the calculation steps. There is research in

the literature that attempts to make the Cholesky decomposition algorithm more

suited for parallel calculation that may be employed in future work. [40,41]

The two derived classes QL and MRRR operate in a relatively simple manner. At

initialisation it takes a reference to a Matrix object and then on demand it takes a

set of variables to enter into this matrix and solve the general eigenproblem. It uses

the function GetMatrix(MatrixPart Part) with Part equal to MatrixPart::HH

and MatrixPart::SS to generate the appropriate matrices to solve the eigenvalue

problem. The class QL implements the QL algorithm of Numerical Recipes. [29,30]

The class MRRR uses the MR3 algorithm provided by lapack using the accelerate

framework’s bindings. [42] Both the eigenvectors and the eigenvalues can be calculated

by the program. The QL algorithm will calculate all eigenvectors or none whilst the

MR3 can calculate specific eigenvectors as requested. The following is an example

of how to use these classes.
Examples uses of the EigenSolver class

1 EigenSolver<T>* TheDiagonaliser = nullptr;

2 TheDiagonaliser = new QL<T>(*TheMatrix); //For the QL method

3 \\or

4 TheDiagonaliser = new MRRR<T>(*TheMatrix); //For the MR3 method

5 ep2E<T> *EVConverter; //A class that tells the program how to

convert the eigenvalue (λ) to the desired final result↪→

6 EVConverter = new MassHamiltonian<T>(); //For the mass Hamiltonian

this is m2 =
−1
λ↪→

7 EVConverter = new ChargeHamiltonian<T>(); //For the charge

Hamiltonian this is Z3 =
−1
λ↪→

8 EVConverter= new ep2E<T>(); //For the energy Hamiltonian this is

E = −λ↪→

9 TheDiagonaliser->SetEVConverter(EVConverter);
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10 TheDiagonaliser->SetRoot(1); //We can ask the diagonaliser to give

us a specific root of the equation however in this thesis we only

used the first root. However the program is capable of looking at

any of the roots with the -root X option to study the Xth root.

↪→

↪→

↪→

11 VariableSet<string> Vars;

12 Vars.Add(Variable<string>("A","1"));

13 Vars.Add(Variable<string>("C","2"));

14 bool CalculateEigenVectors=true; //The diagonaliser is set to

calculate the eigenvectors too↪→

15 long NumberofEigenVectors=1; //Only calculate the first

eigenvector (if possible)↪→

16 EigenResults<T> Results = TheDiagonaliser-

>Solve(Vars,CalculateEigenVectors,NumberofEigenVectors);

//Calculate eigenvalues and save the results to EigenResults<T>

Results.

↪→

↪→

↪→

17 cout << "The eigenvalue was " << Results.LowestEigen().EigenValue <<

" with Energy of " << Results.LowestEigen().Energy << "\n";

//Print the results

↪→

↪→

External Library Numerical Recipes: The numerical recipes code comes from

Numerical Recipes in C (1st edition) [29] and Numerical Recipes in C++ (3rd edi-

tion). [30] These were useful reference materials as they detailed the general processes

that would be needed in writing the numerical Eigen solver classes. The Numerical

Recipes code is under a restrictive license which shall be referred to as the NR

License (See Appendix F.6).

External Library Lapack: The lapack routines are perhaps one of the best

known Eigen solver libraries. Written in Fortran 90 and ported into various other

languages, they provide efficient and effective routines to solve many linear algebra

problems including simultaneous linear equations, least-squares solutions of linear

systems of equations, eigenvalue problems, and singular value problems. lapack uses

BLAS (Basic Linear Algebra Systems) a set of routines for efficient matrix operations.
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In some cases manufacturers of machines include optimised variants of BLAS for their

machines, theses however were not used in this work but may be good future work.

The MR3 algorithm was called through the function dsyevr. This function was

exposed using the accelerate frameworks bindings. The accelerate framework is a

Mac only propitiatory framework and is only available on Mac OS. However in this

work only the bindings to lapack are used this could therefore be replaced with a

direct link to lapack or better still mpack [43] which is a C++ port that allows for the

use of arbitrary precision. This is however not a small task but is considered as good

future work. The lapack code is under a modified BSD license (see Appendix F.7).

Parameter Optimisation

There are 3 primary ways to find the optimum value of the NLPs:

Scan Scanning the NLPs involves calculating a series of equispaced points between

a range of a to b in steps of s. Where b > a and s < |b− a|. This optimisation

is implemented by the command-line argument A=scan=a,b,s.

Optimise When referring to optimising the NLPs this is the option being referred to.

The local minimum (or upon request the maximum) is located starting from an

initial guess value. In this work the guess values are always the formal asymp-

totic solution (see Section 4.2.7 on page 100). Optimisation is performed using

techniques such as quasi-Newton-Rapson and conjugate gradients. The opti-

misation is implemented by the command-line argument A=opt=startvalue

-OPTALGORITHM -tol OPTTOLERANCE. The optimisation routines came from ex-

ternal sources such as dlib [44] and numerical recipes. [29,30] Each different algo-

rithm will minimise the system in a different way and even their end condition

are not necessarily comparable. In most cases these algorithm’s end condition

is to reduce the gradient to below a specified tolerance or reduce the size of

the trust region to a specified size.

Genetic Algorithms Genetic algorithms have been implemented to calculate global

minimum in a range between a and b where b > a. This is done using the

external library GAlib which has an extensive list of genetic algorithms and

techniques. It is also a very well documented and modular object orientated
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piece of code. The command-line argument is A=GA=a,b -pop POPSIZE -ga

GENETICALGORITHM

To facilitate these different methods to find the minimum the program uses in-

heritance and polymorphism. A base class ParameterSearcher with a simple set

of general functions and properties was written. The actual work of optimisation

is handled by its derived classes Scan, Optimise and GA_Search. When the de-

rived classes are created they are set up with all necessary information unique to

their implementation. The Optimise and Genetic Algorithm (GA) methods require

some more in-depth explanation of their available options and their effects upon the

calculations.

Optimise The Optimise methods include the following algorithms sorted alphanu-

merically by their command-line argument that activates them.

-bfgs The Broydon-Fletcher-Goldfarb-Shanno algorithm. [45,46] The algorithm is pro-

vided from the external dlib library and is a quasi-Newton-Rapson method

for finding unconstrained minimum. Quasi-Newton-Rapson methods unlike

Newton-Rapson methods circumvent the need for second derivatives by ap-

proximating the second derivatives.

-bobyqa The Bound Optimisation BY Quadratic Approximation algorithm is an

algorithm written by Powell in 2009. [33,34] This algorithm is provided from

the external dlib library. This algorithm was found to be our most effective

method, capable of isolating a minimum more effectively than other methods

and in a shorter time. The method does not need any gradient information,

but must be given finite bounds in which the minimum will be located in

addition to an initial guess value. The bounds implemented in this program

are 1× 10−6 to 1× 104. A range that is almost certain to contain the minimum.

Later this optimisation method is discussed more deeply along with how it can

be combined with our second best algorithm -NROpt (Section 3.4.1).

-cg The Conjugate Gradient algorithm. [29] There are three different implementations

of the conjugate gradient algorithm in this program. This algorithm is also

provided by the external dlib library but this method unlike the other two
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algorithms was found to be the least effective being both slow and poor at

localising a minimum for reasons discussed later.

-lbfgs The limited-memory Broydon-Fletcher-Goldfarb-Shanno algorithm. [47] This

method approximates the Broydon-Fletcher-Goldfarb-Shanno algorithm and

is provided from the external dlib library. For a problem with many NLPs

ranging in the hundreds the full Broydon-Fletcher-Goldfarb-Shanno algorithm

would have a large memory requirement as it stores a large n× n approximate

Hessian matrix. This limited memory form instead has a much smaller memory

requirement. However typically the programs created and used in this work

have 2 NLPs and at most only 3 NLPs there has therefore never been need to

implement this optimisation routine other then to test its effectiveness.

-MacOpt This is a variant of a numerical recipes conjugate gradient routine written

by David MacKay. [48] This variant attempts to use the gradient information

more effectively to guess the step size of the conjugate gradient routine of

numerical recipes and also use the gradient information to more efficiently

bracket the minimum. The method relies on gradients being more easily

calculated than function evaluations.

-NROpt This was the first conjugate gradient routine implemented in this work and

it was implemented from numerical recipes C++ third edition 2007. [29,30] The

algorithm proved to be effective at finding minimum and will later be shown

how it was combined with the bound optimisation by quadratic approximation

(BOBYQA) algorithm to effectively locate minimum.

These algorithms differ in their effectiveness at locating the minimum. To identify

the most effective method a series of tests were performed. These tests were carried

out on a small 95 term wavefunction of Ps– and H +
2 . A small wavefunction was used

to help improve the accuracy of the timing data and reduce computational expense

during testing. The run times presented here averaged over 15 runs (Tables 3.2.1-a

and 3.2.1-b) are subject to change depending on the computer operating it and the

computers condition, and should only be taken as a general guide. The optimisation

tolerance in all of these was set to 3× 10−7.
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Algorithm NLP A NLP C Energy Run Time
BOBYQA 0.346 093 2 0.711 393 8 −0.262 004 670 746 1 s, 538 ms
MacOpt 0.346 359 4 0.711 349 5 −0.262 004 670 736 1 s, 838 ms
NROpt 0.346 353 2 0.709 056 1 −0.262 004 670 721 3 s, 552 ms
lBFGS 0.340 073 6 0.974 487 9 −0.262 004 471 026 5 s, 729 ms
BFGS 0.338 822 8 0.976 328 6 −0.262 004 469 284 5 s, 757 ms
CG 0.435 652 7 0.990 426 0 −0.262 002 299 869 1 m, 19 s, 238 ms

Table 3.2.1-a.: Results of the different optimisation methods sorted by energy. The
calculation run time is averaged over 15 runs. These are the calcula-

tions on a 95 term Ps– wavefunction.

Algorithm NLP A NLP C Energy Run Time
NROpt 4.023 358 1.459 111 −0.595 748 682 180 1 s, 784 ms
MacOpt 4.023 505 1.459 279 −0.595 748 682 162 1 s, 557 ms
lBFGS 2.993 662 1.584 131 −0.595 178 850 978 1 s, 397 ms
BFGS 2.993 672 1.583 577 −0.595 178 850 576 1 s, 944 ms
CG 1.471 473 1.866 864 −0.591 613 585 358 2 m, 395 ms

BOBYQA 0.933 022 9 2.157 164 −0.586 794 255 364 1 s, 143 ms

Table 3.2.1-b.: Results of the different optimisation methods sorted by energy. The
calculation run time is averaged over 15 runs. These are the calcula-

tions on a 95 term H +
2 wavefunction.

The energies of Tables 3.2.1-a and 3.2.1-b show that in both Ps– and H +
2 lBFGS,

BFGS and CG perform less well than the others with the exception of BOBYQA

which performed well with Ps– and not with H +
2 this will be explain shortly. The nu-

merical recipes algorithm (NROpt) and more gradient reliant counter part (MacOpt)

both perform reasonably similarly with the exception that MacOpt is typically faster.

This is because MacOpt uses the gradient information to perform less optimisation

steps so that even though each gradient request is expensive this is compensated by

its improved efficiency. However we found that MacOpt would sometimes take large

steps in the wrong direction during its calculation which made NROpt our preferred

choice (see Figures 3.2.1b and 3.2.1c). BOBYQA was always the best choice for

atomic systems.

Figure 3.2.1 show the path each algorithm takes to localise its minimum. NROpt

(Figure 3.2.1b, MacOpt (Figure 3.2.1c) and BOBYQA (Figure 3.2.1g) all isolate the

minima successfully. However the other algorithms fail to make head way and all

give up on finding the minimum fairly quickly. To understand why observe the final

gradients at the end points of the algorithms given in Table 3.2.2. The algorithms
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Algorithm ∂E
∂A

∂E
∂C

NROpt 1.721× 10−7 −3.152× 10−8

MacOpt 6.453× 10−8 4.190× 10−8

BFGS 1.660× 10−6 −2.620× 10−1

lBFGS 1.667× 10−6 −2.620× 10−1

CG 7.936× 10−6 −2.620× 10−1

BOBYQA 6.458× 10−8 −3.142× 10−8

Table 3.2.2.: The final gradients after optimisation for each algorithm with the
95 term Ps– wavefunction. The optimisation tolerance was 3 × 10−7.
BOBYQA algorithm does not require gradients to operate and so has

had its gradients calculated especially.

BFGS, lBFGS and CG as provided by the dlib library are only minimising one of

the coordinates gradient to less than the tolerance before quitting. This means that

the end condition is different to the others in that only one gradient is lowered below

the tolerance. In the NROpt and MacOpt algorithms they minimise the size of the

gradient in both directions to below the tolerance and so their end condition was

not achieved until later. The BOBYQA algorithm does not use gradients but uses

the trust region size as its end condition. It would not be a difficult task to edit the

source code of the algorithms BGFS, lBFGS and CG algorithms in the dlib library

to use a more suitable end condition but it was decided to instead move forward

with currently working algorithms NROpt, MacOpt and BOBYQA. Future work

may wish to implement these other algorithms with the correct end condition and

identify how they perform.
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seen as otherwise the surface appears flat.
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Figure 3.2.1.: The optimisation paths taken by the various algorithms, each node
denotes a calculation. The contour and surface were created using scan
data of increments 0.01, with the optimisation paths superimposed.

All data uses the 95 term Ps– wavefunction.
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The H +
2 case is more complex. As is shown in Figure 3.2.2a the molecular H +

2 has

multiple minima. It was discovered that this is the case with all molecular systems

in this work and therefore a greater deal of effort is put into minimising the NLPs of

molecular systems as discussed in Section 4.4.1 on page 110. The algorithms BFGS,

lBFGS and CG suffer from the same problems in their end condition and so are not

investigated on the H +
2 surface. The BOBYQA algorithm behaves differently to the

other algorithms when confronted with multiple minima and for this reason it has a

less stable energy for molecular cases than the other algorithms. In Figure 3.2.2 the

steps each algorithm follows is shown.

From the algorithm calculation paths in Figure 3.2.2 it can be seen that, for H +
2 ,

BOBYQA fails to locate the lowest minima, this is in contrast to the results of Ps–

where BOBYQA was the most effective at finding the lowest value. BOBYQA will

typically fall into the nearest minimum but will fall deeper into this minimum than

the other methods. For this reason BOBYQA in Table 3.2.1-b gave the least stable

energy due to the multi minima H +
2 surface but gave the best energy with the single

minimum surface of Ps– (Table 3.2.1-a).

The algorithms NROpt and MacOpt do considerably better than BOBYQA at

identifying a more stable minimum but they do not reach the lowest minimum. For

this reason in Chapter 4 a combination of scan and optimisation was used to achieve

the optimum NLPs values for molecular systems. Scans however are inefficient

and require a very large number of data points. For example the scan surface in

Figure 3.2.2a required 70 000 calculations which is infeasible for wavefunction with

many terms.

41



3. Computer Programming

2
4

6
8

1

2

3

−5

−4

−3

−2

−1

0
Start

Min

A

C

L
og

1
0
(E

(A
,C

)
−
E
m
in
)

H +
2 95 Terms
NROpt

BOBYQA
MacOpt

(a) Selected optimisation algorithms on a single plot for H +
2 , the z axis of the surface

has been adjusted with the transformation Log10 (E (A,C)− Emin) where Emin
is the lowest calculated energy. This adjustment enables the minimum of the

surface to be more easily seen as otherwise the surface appears flat.

Start
Min

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

A

C

(b) NROpt

Start Min

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

A

C

(c) MacOpt

Start Min

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

A

C

(d) BOBYQA

Figure 3.2.2.: The optimisation paths taken by the various algorithms, each node
denotes a calculation. The contour and surface were created using scan
data of increments 0.01, with the optimisation paths superimposed.

All data uses the 95 term H +
2 wavefunction.

42



3. Computer Programming

The following is an example of the code used to perform an optimisation with

these local minimum methods. The internal workings of Optimise makes further

use of polymorphism to select individual algorithms.
An example use of the Optimise Class

1 ParameterSearcher<T> *Method; //Create pointer to base class

Parameter searcher↪→

2 long tol = -3; //Set tolerance to 3× 10−3

3 VariableSet<string> InitVars;

4 InitVars.Add(Variable<string>("m1","1"));

5 InitVars.Add(Variable<string>("m2","1"));//and so on

6 OptVarSet<T> OptVars; //An object to hold the variables to be

optimised. This object keeps track of initial, current and final

values of the non-linear variational parameters

↪→

↪→

7 OptVars.Add(OptVar<T>("A",1);//Variable A is setup to optimise with

an initial value of 1↪→

8 OptVars.Add(OptVar<T>("C",2);

9 Method = new Optimise<T>(InitVars,OptVars,TheDiagonaliser,tol);

//Create the derived class Optimise↪→

10 Optimise<T>* OptMethod = dynamic_cast<Optimise<T>*>(Method);

//Dynamic cast the pointer to the Optimise class so that we can

access Optimise specific functions not available in the base

class ParameterSearcher

↪→

↪→

↪→

11 OptMethod->SetOptimisationMethod(NROpt); //Set the optimisation to

NROpt through the Optimise specific function↪→

12 //or

13 OptMethod->SetOptimisationMethod(MacOpt); //Set the optimisation to

MacOpt through the Optimise specific function↪→

14 //or

15 OptMethod->SetOptimisationMethod(dLib_bobyqa); //Set the

optimisation to BOBYQA through the Optimise specific function↪→

16 Method->Maximise(false); //Call this function to set it to maximise

of minimize↪→
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17 Method->TestEnergy(true); //By default the program will minimise the

Eigen parameter ε but if this function is called with true it

will optimise the result of applying the conversion from ε to E

according to the ep2E<T> class specified previously in the

EigenSolver class

↪→

↪→

↪→

↪→

18 EigenResults<T> Results = Method->Process(); //This function will do

all of the necessary steps to optimise the non-linear variational

parameters. Calling the appropriate optimisation algorithms and

calling TheDiagonaliser->Solve to solve the eigenproblem and

calculate numerical gradients if necessary

↪→

↪→

↪→

↪→

19 std::cout << "The eigenvalue was " <<

Results.LowestEigen().EigenValue << " with Energy of " <<

Results.LowestEigen().Energy << "\n"; //Print the results

↪→

↪→

External Library dlib: The library dlib is a general purpose open source C++

library. It is a collection of independent software components, and includes codes on

optimisation, networking, threads, linear algebra and machine learning. In this work

the numerical optimisation codes of dlib are used, particularly the BOBYQA code.

The code is well documented and uses object orientation. I modified the BOBYQA

algorithm into a template class for use with arbitrary precision. The dlib library is

under the Boost Software License (See Appendix F.8).

External Library Numerical Recipes: To implement the NROpt algorithm Nu-

merical Recipes in C (1st edition) [29] and Numerical Recipes in C++ (3rd edition) [30]

were used. The codes in these books, although written in a more procedural fashion

than an object orientated, have useful discussions as to function and design of the

procedures. The NROpt method refers to their Polax-Ribiere conjugate gradient al-

gorithm named as void frprmn(...) in the book. The algorithms in the book were

not copied exactly but rather adapted to make use of arbitrary precision through the

implementation of template classes and functions. This code is under a restrictive

License which shall be referred to as the NR License (See Appendix F.6).

44



3. Computer Programming

External Library Mackay Optimisation: The optimisation algorithm MacOpt

was written by David Mackay in 2004. The algorithm was designed to make up for

some deficiencies found in earlier Numerical Recipes conjugate gradient algorithms.

Including, using the gradient to determine the initial step size of the line minimiser

algorithm; using gradients in the line minimiser algorithm so that only two calcu-

lations are required to bracket a minimum; using interpolation once a minimum

has been bracketed to reduce computation costs. The code was modified to use

arbitrary precision with template classes. This code is under the lesser GPL license

(see Appendix F.9).

Genetic Algorithms The GA were implemented to find the global minimum in

the NLPs surface without having to perform many thousands of calculations to

describe the surface. The Genetic Algorithms work by first seeding the surface

with a population of Npop size which is done in a uniform fashion using the GAlib

function UniformInitializer(GAGenome & c). The population then goes through

successive generations where the best individuals are picked out and used to form

the next generation. How each population evolves over generations depends upon

the algorithm employed. In this work the best individuals are picked from a nor-

malised fitness score (using energy, where lower energy means fitter) using the GAlib

class GATournamentSelector. This selector picks two fitness proportional random

individuals and then picks the better of the two as the victor. Random mutations

are incorporated through the function int GARealGaussianMutator(GAGenome& g,

double pmut) this adds a random mutation based on a Gaussian distribution centred

on its current value.

There are several different Genetic Algorithms available in the GAlib library:

simple, steady state, incremental, crowding and DEME. These are all selected with

the command-line arguments -ga Simple, -ga SteadyState, -ga Incremental, -

ga Crowding or -ga DEME respectively. The following is a brief overview of each

algorithm as implemented in GAlib.

Simple This algorithm behaves as a traditional GA. [49] It takes the best individ-

uals and breeds them creating a whole new population. The old population

completely replaced.
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SteadyState This behaves in the same manner as Simple except that only part of

the population is replaced in the Eigen library this proportion is set to 60%.

Incremental Is a slow evolution, only the best individuals will breed and they will

replace the worse. Typically only two individuals are created per generation.

This is a slow evolution and will typically converge too soon for our purposes.

Crowding works in a similar way to steady state however rather then replacing the

worse individual it replaces the closest parent. It is designed to keep different

individuals unique and maintain diversity.

DEME This is the most complex algorithm it attempts to maintain multiple SteadyS-

tate populations. These populations mix once per generation where they ex-

change the best individuals. This method typically produces better results but

requires a very large number of individuals and is by far the most computa-

tionally expensive.

To discuss effectiveness of the GA the H +
2 surface is used in this discussion as

this surface has multiple minimum rather the single minimum atomic surfaces as

these are easily solved with the local minimum optimisation routines of NROpt and

BOBYQA. Table 3.2.3 gives a summary for the GA on the H +
2 surface it is sorted

in order of the most stable to least stable energy and includes the population size,

Genetic Algorithm and the optimisation method results.

From Figure 3.2.2 the ideal minimum is at A ≈ 5.15 and C ≈ 1.26 the optimisation

routines failed to locate this minima and so a successful GA will be one that locates

this minimum successfully without taking significantly longer than the optimisation

routines. With the exception of the Incremental algorithm most GA successfully

locate the minimum. The slowest algorithm was the DEME algorithm as it takes

the largest number of calculations to maintain its multiple populations. The Simple

algorithm with a larger population size performs well. It is worth noting that due

to the random nature of these algorithms the best algorithm is subject to the initial

population seed and the mutations that occur. Due to this random nature, greater

population sizes are not always better, especially when the energy begins to converge.

External Library GAlib: The library GAlib is a comprehensive piece of code
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Algorithm Npop A C Energy Time
Simple 150 5.150 1.272 −0.595 877 138 39 s, 328 ms
DEME 20 5.135 1.267 −0.595 876 959 59 s, 595 ms
DEME 10 5.130 1.254 −0.595 876 887 1 m, 2 s, 701 ms

Crowding 100 5.131 1.265 −0.595 876 884 30 s, 841 ms
Simple 200 5.162 1.281 −0.595 876 587 52 s, 542 ms
Simple 100 5.172 1.286 −0.595 876 011 26 s, 786 ms

Crowding 200 5.195 1.280 −0.595 874 885 45 s, 295 ms
Simple 20 5.203 1.292 −0.595 873 995 5 s, 162 ms
Simple 50 5.193 1.301 −0.595 873 476 12 s, 854 ms
DEME 150 5.256 1.316 −0.595 865 066 1 m, 33 s, 758 ms
DEME 200 5.245 1.329 −0.595 864 686 1 m, 44 s, 399 ms
Simple 10 5.261 1.336 −0.595 861 127 2 s, 948 ms

Crowding 150 5.275 1.278 −0.595 854 707 46 s, 616 ms
DEME 100 5.280 1.282 −0.595 853 972 1 m, 21 s, 785 ms

SteadyState 50 5.321 1.328 −0.595 847 627 8 s, 402 ms
Crowding 20 5.175 1.357 −0.595 847 160 6 s, 89 ms

SteadyState 200 5.261 1.384 −0.595 841 659 33 s, 404 ms
DEME 50 5.302 1.403 −0.595 831 245 1 m, 12 s, 27 ms

SteadyState 20 5.001 1.136 −0.595 823 400 3 s, 347 ms
Incremental 20 5.266 1.444 −0.595 797 564 1 s, 110 ms
Crowding 50 4.828 1.178 −0.595 776 889 15 s, 408 ms
NROpt N/A 4.023 1.459 −0.595 748 682 1 s, 882 ms
MacOpt N/A 4.024 1.459 −0.595 748 682 1 s, 882 ms

SteadyState 150 3.992 1.420 −0.595 746 469 2 s, 135 ms
Crowding 10 3.883 1.322 −0.595 710 301 3 s, 150 ms

SteadyState 100 5.614 1.424 −0.595 691 672 16 s, 627 ms
Incremental 200 4.291 1.632 −0.595 638 302 4 s, 900 ms
Incremental 100 5.163 1.045 −0.595 610 412 2 s, 817 ms
SteadyState 10 4.286 1.821 −0.595 585 401 1 s, 975 ms
Incremental 10 3.989 1.792 −0.595 532 833 925 ms
Incremental 150 6.267 1.126 −0.595 483 555 3 s, 763 ms
Incremental 50 4.368 2.124 −0.595 288 950 1 s, 602 ms
BOBYQA N/A 0.9330 2.157 −0.586 794 255 1 s, 654 ms

Table 3.2.3.: The performance of the genetic algorithms with the multiple minimum
surface of the 95 term H +

2 wavefunction. The optimisation algorithms
are also included for comparison.
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designed for the purpose of employing Genetic Algorithms. This was not the only

possible choice for a GA library available as other libraries including dlib have

Genetic Algorithms. The GAlib has the advantage of usability and a well documented

and modular design. The code was written by Dr Matthew Wall at Massachusetts

Institute of Technology for his PhD. Upon completion of his PhD the code was

released under the MIT license (see Appendix F.10).

Processing the Results

After calling the optimisation routine the calculations are now complete and the

next step of the program is to process the results. If the eigenvector was requested

it is saved into a file as specified by the command-line option -sv FILENAME. The

program calculates the expectation values
〈
T̂
〉
,
〈
V̂
〉
and 〈η〉 (virial condition see

Section 4.4.3 on page 124) routinely and prints them along with the optimised NLPs

and the energy. The final section of the 3Body program simply calls the appropriate

destruction operators on the classes to deallocate the memory and clean up the

program. The following is a simple example of this process:
Processing the Results

1 cout << "Energy=" << DtoStr(EigenResults.DesiredEigen().Energy) <<

"\n"; //DtoStr is a helper function that prepares the number for

printing by converting it to a string with the appropriate number

of significant figures displayed. DesiredEigen is the requested

root specified previously with TheDiagonaliser->SetRoot(1);

↪→

↪→

↪→

↪→

2 bool CalcedKE = false; bool CalcedPE = false;

3 T KE; T PE;

4 TheDiagonaliser-

>CalculateT_V(EigenResults,TheDiagonaliser->GetRoot());

//Calculate the expectation values 〈T 〉 and 〈V 〉. Where

TheDiagonaliser->GetRoot() is the requested root specified

previously with TheDiagonaliser->SetRoot(1);

↪→

↪→

↪→

↪→

5 //〈T 〉
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6 pair<bool,long> SearchResult =

EigenResults.DesiredEigen().ExpectationValues.HasExpectation

("<T>"); //Look to see if the expectation was calculated

successfully by the EigenSolver class. If it has then

SearchResult.first is set to true and SearchResult.second is set

to the index to that expectation value

↪→

↪→

↪→

↪→

↪→

7 if (SearchResult.first==true) {

8 KE = EigenResults.DesiredEigen().ExpectationValues[SearchResult

.second].Value; //Extract the expectation value↪→

9 cout << "<T>=" << DtoStr(KE) << "\n"; CalcedKE = true; //print the

result↪→

10 }

11 //〈V 〉

12 SearchResult =

EigenResults.DesiredEigen().ExpectationValues.HasExpectation

("<V>");

↪→

↪→

13 if (SearchResult.first==true) {

14 PE = EigenResults.DesiredEigen().ExpectationValues[SearchResult

.second].Value;↪→

15 cout << "<V>=" << DtoStr(PE) << "\n"; CalcedPE = true;

16 }

17 //Virial (η)

18 if ((CalcedKE==true) && (CalcedPE==true)) { // Both were calculated

successfully↪→

19 T Virial_2 = ((PE/KE)+2.0f); //Calculate the virial condition

20 cout << "<V>/<T>+2=" << Virial_2 << "\n";

21 }

22 //Save eigenvector

23 LMN *lmns = new LMN(LMN::Symmetric,TheMatrix->GetSize()); string

fileloc = "EigenVector.sv";↪→
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24 typename Eigen::EigenPair<T>::SaveTypes ST =

Eigen::EigenPair<T>::SaveTypes::Maple; //Specify that we will

save the eigenvector to a Maple readable format. This is the only

format currently programmed but other formats can be added later

if needed.

↪→

↪→

↪→

↪→

25 EigenResults.DesiredEigen().Save(fileloc, ST, Vars, *lmns); //This

will save the eigenvector with its variables and requires the LMN

class that contains the triple index scheme we use for the

Laguerre polynomials (See Appendix A).

↪→

↪→

↪→

3.2.2. Expectation

The second C++ program written was the Expectation program. This program

takes as input a recursion relation file as generated by Maple and the file with the

eigenvector as generated by the 3Body program (with the option -sv FILENAME) (this

eigenvector file will be referred to as a save vector (sv) file). The recursion relation

file is the specific recursion relation for the Laguerre polynomial wavefunction used

here to calculate certain operators. Not all operators have a recursion relation form

that enable the use of series solution but when they do it is ≈ 1000 times faster to

calculate using the series solution recursion relation in this program than it is to

calculate the expectation value in the Maple program using the int command. The

operators that can be calculated using this Expectation program and used in this

work includes:

• 〈T 〉

• 〈V 〉

• 〈η〉

• 〈rni 〉, where n = −1, 0 . . . 3, i = 1, 2, 3

• 〈δ(ri)〉, where i = 1, 2, 3

This C++ program is relatively simple, the majority of the work is done by the Eigen

library and unlike 3Body does not need to call the EigenSolver or ParameterSearcher
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classes. The Expectation program performs the following steps:

• Read the eigenvector (ui) and variables from the sv file.

• Create the matrices using series solution (M for the expectation value matrix

and S for the overlap matrix) using the recursion relations generated by Maple.

• Perform the linear algebra operation ui.M.ui
ui.S.ui

to give the expectation value.

• Process the results

The Expectation program is run from the command line with the following argu-

ments. Where “|” denotes “or” for arguments which need to be one of a specific

set.
Expectation program’s arguments

1 Expectation -r RecursionRelationFile.rr -sv SaveVetorFileFromCPP.sv

-sym|-asym|-antisym↪→

2

Read the Eigenvector

To read the eigenvector as generated by the 3Body program is incredibly simple from

the point of view of the Expectation program. It is done with a few lines of code.

The first step is to create the object to hold the eigenvalue and vector, the next step

creates another object to save the variables contained in the sv file. Then a call to

load the sv file is made.
Reading the SV File

1 string SaveVector = "SaveVetorFileFromCPP.sv"

2 EigenPair<T> EigPair(0); //Create object to hold eigenvalue and

vector↪→

3 VariableSet<string> Vars; //Create object to hold variables from the

sv file.↪→

4 Vars = EigPair.Load(SaveVector); //Load the sv file into the

EigenPair and read the variables into the VariableSet.↪→
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Create the Matrices

To generate the matrices in the Expectation program the same Matrix class used

in the 3Body program is used. As both programs link to the shared library Eigen

the code for the Matrix class is not repeated but reused. Two matrices are created

from the recursion relations the M matrix and S matrix as Matrix_RR_JIT classes.

The recursion relation has markers (see Section 3.3.1) to identify which matrix each

term in the recursion relation belongs. Markers are used to separate the left and

right side of the equation
〈
ψ | Â | ψ

〉
= a

〈
ψ | Ŝ | ψ

〉
where Â is an appropriate

operator and Ŝ is the overlap operator. In future it may be desirable to use instead

of markers a more rigorous separation of these terms such as separate files for greater

readability and ease of error tracing.
A Simplified Example of how Expectation Loads the Matrices

1 //Creating the rules

2 bool KERHS=false;

3 vector<string> WithT{""};

4 vector<string> WithoutT(0);

5 vector<string> WithV{""};

6 vector<string> WithoutV(0);

7 vector<string> WithO{"ss"};//Create a set of rules that inform the

Matrix class that anything marked with ss is the overlap matrix

(everything else will go into the expectation value matrix)

↪→

↪→

8 vector<string> WithoutO(0);

9 MatrixRules Rules =

MatrixRules(WithT,WithoutT,WithV,WithoutV,WithO,WithoutO, KERHS);↪→

10 LMN::SymmType Symm = LMN::SymmType::Symmetric;

11 Matrix_RR_JIT<T> M(FileName,(int)RR_MatSize, Symm, Rules, Vars);

//Create the Overlap Matrix↪→

12 ContiguousMemoryMatrix<T> ExpMatrix = M.GetMatrix(MatrixPart::HH);

//Create the numerical matrix from the algebraic matrix and save

it to a ContiguousMemoryMatrix class that stores the numbers in a

single array in row then column order.

↪→

↪→

↪→

13 ContiguousMemoryMatrix<T> OvMatrix = M.GetMatrix(MatrixPart::SS);

52



3. Computer Programming

Calculating the Expectation Value

The expectation value is then calculated using the following block of code that per-

forms the inner product of the eigenvector with the matrix and then the eigenvector

again. The expectation value is then ready to be printed to the terminal.
Calculating the eigenvalue from the Matrix and eigenvector

1 long RR_MatSize = M.GetSize();

2 T ExpValue = 0;

3 T OvValue = 0;

4 for (long x=0;x<RR_MatSize;x++)

5 {

6 for (long y=0;y<RR_MatSize;y++)

7 {

8 ExpValue+=Vec[x]*ExpMatrix[x][y]*Vec[y];

9 OvValue+=Vec[x]*OvMatrix[x][y]*Vec[y];

10 }

11 }

12 cout << "Expectation Value=" << DtoStr(ExpValue) << "\n";

13 cout << "Overlap Value=" << DtoStr(OvValue) << "\n";

14 cout << "<Exp>/<Ov>=" << DtoStr(ExpValue/OvValue) << "\n";

3.2.3. HF2e-Integrals

The HF two electron integrals in Chapter 7 were calculated using the C++ program

HF2e-Integrals. Compared to the other C++ programs discussed in this chapter

it is relatively simple. It calculates the HF two electron integrals analytically and

saves them to file using the maths described in Section 7.3.2 on page 215.

The core of this C++ code calculates the integrals in a quadruple for loop. These

for loops iterate over all combinations of p, q, r and s and if the unique integral for

that combination hasn’t been calculated it will calculate it and save it to the array

UniqueGTerms.
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The core for loop of HF2e-Integrals

1 long numberOfTerms=20; //This is set from the command line arguments,

but we set it to 20 in this example↪→

2 MODES MODE = MODES::CPU; //This is set from the command line

arguments, but we set it to CPU in this example↪→

3 PosIndex=0:

4 for (long p=1; p<=numberOfTerms; p++) { //We loop over all

combinations of p,q,r,s↪→

5 for (long q=1; q<=p; q++) {

6 for (long r=1; r<=numberOfTerms; r++) {

7 for (long s=1; s<=r; s++) {

8 long QuadIndex = QuadrupleIndex(p, q, r, s); //This

calculate a unique index from the quadruple index by

applying the equations detailed in Appendix A

↪→

↪→

9 if (HasIndex(UniqueGTerms, NumberofUniqueGTerms,

QuadIndex)==false) //We check that this hasn't already

been calculated

↪→

↪→

10 {

11 UniqueGTerms[PosIndex].QIndex.Index=QuadIndex;

12 UniqueGTerms[PosIndex].QIndex.p=p;

UniqueGTerms[PosIndex].QIndex.q=q;↪→

13 UniqueGTerms[PosIndex].QIndex.r=r;

UniqueGTerms[PosIndex].QIndex.s=s;↪→

14 //The main work is done by CalcIntegral which uses the

analytical integral discussed in Section 7.3.2 on

page 215

↪→

↪→

15 UniqueGTerms[PosIndex].value=CalcIntegral(p-1, q-1, r-1,

s-1,MODE);//zero based index so -1↪→

16 PosIndex++;

17 cout << "Calculated " << PosIndex << " of " << posMax << "

(" << round(PosIndex*100/posMax) << "%)\r";↪→

18 flush(cout);

19 }
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20 }

21 }

22 }

The function CalcIntegral calculates the HF two electron integral with the index

p, q, r and s. There are two modes in which this is calculated RAM and CPU. As

discussed in Section 7.3.2 on page 215 the RAM mode was used to calculate these

integrals however in this discussion we will deal only with the CPU method as it is

conceptually simpler. Mathematically the RAM and CPU methods are identical but

the method of implementation greatly effects the speed of calculation. The following

piece of code is a simplified example of the CPU method of calculation.
The CalcIntegral function using CPU intensive mode

1 mpreal CalcIntegral_CPU(long p,long q,long r,long s)

2 {

3 mpreal Result=0; mpreal Pi=atan(mpreal(1))*4;mpreal Pi2=pow(Pi, 2);

4 mpreal LinOp1;mpreal LinOp2;mpreal twopow; //Declared once and

reused to avoid reintialising the computationally expensive

mpreal type

↪→

↪→

5 //For full details on the maths in this code See Eq. (7.3.29) on

page 221↪→

6 //These for loops iterates over the sums
∑p

pi

∑q
qi

∑u
ui

∑v
vi

∑pi+qi
ai

∑ui+vi
bi

7 for (long pi=0; pi<=p; pi++) {

8 for (long qi=0; qi<=q; qi++) {

9 for (long ui=0; ui<=u; ui++) {

10 for (long vi=0; vi<=v; vi++) {

11 for (long ai=0; ai<=(pi+qi); ai++) {

12 for (long bi=0; bi<=(ui+vi); bi++) {

13 long tvar = ai+bi-pi-qi-ui-vi+1;

14 //Some calculations as they are repeated many times are

precalculated including 2n the result is accessed from the

array twopowtable

↪→

↪→

15 twopow=twopowtable[abs(tvar)];
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16 if (tvar<0){

17 twopow=1/twopow;

18 }

19 //The (−1)n is precalculated and saved to negonepowtable

20 LinOp1 =negonepowtable[(pi+qi+ui+vi+1)]*twopow*Pi2;

21 //a2i − 2aibi + b2i − p2 − 2piqi − 2piui − 2pivi − q2i − 2qiui − 2qivi − u2 −

2uivi − v2 + ai + bi − 7pi − 7qi − 7ui − 7vi − 10↪→

22 LinOp2 = sq(ai) -2*ai*bi +sq(bi) -sq(pi) -2*pi*qi -2*pi*ui

-2*pi*vi -sq(qi) -2*qi*ui -2*qi*vi -sq(ui) -2*ui*vi

-sq(vi) +ai +bi -7*pi -7*qi -7*ui -7*vi -10;

↪→

↪→

23 LinOp1*=LinOp2;

24 //(pi + qi + ui + vi − ai − bi)! (pi + qi)! (ui + vi)!p!q!u!v!

25 //Factorials are precalculated and saved to factab

26 LinOp1*=factab[(pi+qi -ai+ui+vi -bi)] *factab[(pi+qi)]

*factab[(ui+vi)] *factab[(p)] *factab[(q)]

*factab[(factab)] *factab[(v)];

↪→

↪→

27 //ui!2vi!2ui!2vi!2 (pi + qi − ai)! (qi + ui − bi)! (p− pi)! (q − qi)!

(u− ui)! (v − vi)!↪→

28 //(n!)2 is calculated with sqfac function which uses the saved

factorials in factab↪→

29 LinOp2=sqfac(pi)*sqfac(qi)*sqfac(ui)*sqfac(vi) *factab[(pi+qi

-ai)] *factab[(ui+vi -bi)] *factab[(p -pi)] *factab[(q

-qi)] *factab[(factab -ui)] *factab[(v -vi)];

↪→

↪→

30 LinOp1/=LinOp2;

31 Result+=LinOp1;

32 }

33 }

34 }

35 }

36 }

37 }

38 return Result;

39 }
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The code is relatively simple and performs the required arithmetic operations.

The code also has parallel implementation but this has been left out to enhance

readability.

3.2.4. Eigen

The Eigen library contains all the relevant pieces of code to run the three-body

calculations in C++. The code contains over 150 classes and over 70 000 lines of code.

A general idea of the usage and design of the code has been discussed in Sections 3.2.1

and 3.2.2 it will not be explicitly discussed here.

The Eigen library is where all of the calculations actually happen, it contains

a library of code which is generic to the eigenvalue problem. The Eigen library

has all the capabilities to load a series solution recursion relation, create matrices,

diagonalise them and optimise NLPs but has no idea of how it should do this, what it

should do first, and how it should organise the results. The 3Body program prepares

the library, tells it what it should load and in what order, and provides the relevant

instructions for output.

External Library Boost: Throughout the library Eigen in addition to those

mentioned already the Boost library collection (version 1.58.0) is used. The Boost

project is a collection of about 100 high quality peer reviewed libraries. The libraries

are designed to be of high quality to speed development of programs, reduce bugs

and “reduce reinvention-of-the-wheel”. 10 boost libraries have been accepted into

the TR1 C++ standards technical report [50] and are included in the C++11 standard

and most libraries have been proposed for inclusion into the TR2 report, and thus

are in line for standardisation into the C++17 standard. We use the following Boost

libraries all of which are under the Boost Software Licence (See Appendix F.8)

Algorithm Various functions in the library Algorithm were used to perform

string searches and manipulations such as boost::algorithm::to_lower, boost::-

algorithm::trim and boost::algorithm::starts_with.

Spirit Spirit is a OO recursive parser where it is possible to write grammars and

format descriptions for output. In this work it was used to parse text to numerical
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values.

3.3. Maple Code

The Maple codes are not as specialised or as fast as the 3Body program but they are

much more flexible and capable of performing more general mathematics without

significant programming effort. That is not to say that the code achieved here in

Maple could not be achieved elsewhere for example we could have used the C++

SymbolicC++ library [51] or the more interactive iPython [52] combined with SymPy. [53]

We use the Maple software because it is effective for our needs and works with

minimal setup. Unlike the other solutions however it is not freely available.

There is one primary piece of Maple code written for this work that generates all

the recursion relations and saves them to file for use by the C++ programs discussed

in Sections 3.2.1 and 3.2.2. In this section we will discuss the steps used to calculate

and save the recursion relations for the Hamiltonian only as the process for all other

recursion relations such as 〈rni 〉 are identical.

The other Maple codes employed in this work calculate operators that could not

be transformed into the Laguerre polynomial recursion relations and processed in

C++ with the programs in Sections 3.2.1 and 3.2.2. In these cases the calculations

were done in Maple but it is worth noting that future work could be devoted to

programming these integrals in C++ where they would be faster as for example

was done with the two electron HF integrals (See Section 7.3.2 on page 215 and

Section 3.2.3).

3.3.1. Maple Recursion Relations

The C++ programs in Sections 3.2.1 and 3.2.2 use the series solution recursion relations

generated by Maple to form the matrix elements in C++. The Maple program

calculates the recursions relations for the operators from the Laguerre polynomial

recursion relations. The details of these relations are given in Section 4.2.5 on page 96.

The Maple program has the following stages:

• Define the operators in triangular ri coordinates.
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• Convert the operators to perimetric and then scaled perimetric form (See

Section 4.2.1 on page 89).

• Apply the operator to the general form of the wavefunction basis e− 1
2
(u+v+w)

Ll(u)Lm(v)Ln(w).

• Apply the Laguerre polynomial recursion relations to eliminate derivatives and

powers of the coordinates.

• Save the 57 term recursion relation to a file the C++ programs can read.

These steps are now briefly explained in terms of the Hamiltonian operator but these

steps can apply to any operator that satisfies the Laguerre polynomial recursion

relations.

Define the Operator and Convert to Scaled Perimetric Coordinates

The Hamiltonian operator is defined in the following way. Both finite mass and the

like particle interaction are included (r3).
Assigning the Hamiltonian Operators

1 T:=psi->-h^2/2*(Sum(1/(mu[i]*r[i]^2)*Diff(r[i]^2*Diff(psi,r[i]),

r[i])+Sum(b[i,j]/(mu[i,j])*Diff(psi,r[i],r[j]),j=(i+1)..3),

i=1..3)):

↪→

↪→

2 V:=psi-> e^2/(4*Pi*epsilon[0])*Sum(Sum(Z[i]*Z[j]/r[i,j],

j=(i+1)..3),i=1..3) *psi:↪→

3 S:=psi->E*psi:

4 mu[1] := 1/(1/m[1] + 1/m[3]):

5 mu[2] := 1/(1/m[2] + 1/m[3]):

6 mu[3] := 1/(1/m[1] + 1/m[2]):

7

8 mu[1,2] := m[3]:

9 mu[1,3] := m[1]:

10 mu[2,3] := m[2]:

11

12 b[1,2]:=(r[1]^2+r[2]^2-r[3]^2)/(r[1]*r[2]):

13 b[1,3]:=(r[1]^2+r[3]^2-r[2]^2)/(r[1]*r[3]):
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14 b[2,3]:=(r[2]^2+r[3]^2-r[1]^2)/(r[2]*r[3]):

The coordinate transformation is applied with the Maple package PDETools,

that perform coordinate transformations on partial differential equations given a

set of coordinate transformations and their reverse transformation. These forward

transformation from ri to zi are stored in Ri and reverse in rRi. The Jacobian is

also calculated using the determinant of the Jacobi Matrix.
Transforming the Coordinates to Perimetric

1 R1:=(z[2]+z[3])/2:#Forward transformation

2 R2:=(z[1]+z[3])/2:

3 R3:=(z[1]+z[2])/2:

4 tr:={r[1]=R1,r[2]=R2,r[3]=R3}:

5 rR1:=-r[1]+r[2]+r[3]:#Reverse transformation

6 rR2:=r[1]-r[2]+r[3]:

7 rR3:=r[1]+r[2]-r[3]:

8 rtr:={z[1]=rR1,z[2]=rR2,z[3]=rR3}:

9 nv:={z[1],z[2],z[3]}:#New variable names

10

11 Jac:=Student['MultivariateCalculus']['Jacobian']([R1,R2,R3],[z[1],

z[2],z[3]],output=determinant);↪→

12 g:=r[1]*r[2]*r[3]*8*Pi^2: #This is the volume element of Cartesian

to triangular coordinate change.↪→

13 KE:=psi->T(psi):

14 PE:=psi->V(psi):

15 OV:=psi->S(psi):

16

17 wavefn:=psi(u,v,w): #The wavefunction is left undefined for now

18 KE:=expand(simplify(PDEtools[dchange](tr,(KE(wavefn)*g*Jac),nv,rtr)

)):↪→

19 PE:=expand(simplify(PDEtools[dchange](tr,(PE(wavefn)*g*Jac),nv,rtr)

)):↪→
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20 OV:=expand(simplify(PDEtools[dchange](tr,(OV(wavefn)*g*Jac),nv,rtr)

)):↪→

The same procedure is then applied to the coordinate transformation from zi to

u, v, w. Except PDETools now also requires the non-linear variational parameters

A, B, C but the reverse transformation is not required because the transformation

is simple.
Transforming the Coordinates to Scaled Perimetric

1 U:=A*z[1]:

2 V:=B*z[2]:

3 W:=C*z[3]:

4 NLP:={A,B,C}:

5 tr:={z[1]=solve(u=U,z[1]), z[2]=solve(v=V,z[2]),

z[3]=solve(w=W,z[3])}:↪→

6 nv:={u,v,w}:

7

8 Jac:=Student['MultivariateCalculus']['Jacobian']([solve(u=U,z[1]),

solve(v=V,z[2]),solve(w=W,z[3])],[u,v,w],output=determinant);↪→

9

10 KE:=eval(expand(simplify(PDEtools[dchange](tr,KE*Jac,nv,params=NLP)

))):↪→

11 PE:=eval(expand(simplify(PDEtools[dchange](tr,PE*Jac,nv,params=NLP)

))):↪→

12 OV:=eval(expand(simplify(PDEtools[dchange](tr,OV*Jac,nv,params=NLP)

))):↪→

Apply the Wavefunction and Recursion Relations

The next step informs the Maple program about the form of the wavefunction

and allows Maple to evaluate the differential terms with the non-linear variational

parameters in the wavefunction. As the Laguerre polynomials do not need to be

dealt with yet they are left in the form Fl,m,n(u, v, w) = Ll(u)Lm(v)Ln(w).
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Applying the Exponential Term

1 psi(u,v,w):=exp(-u/2-v/2-w/2)*F[l,m,n](u,v,w):

2 KE:=expand(simplify(calculate(KE))):

3 PE:=expand(simplify(calculate(PE))):

4 OV:=expand(simplify(calculate(OV))):

The appropriate markers for the C++ programs are then applied these are used to

extract the operators in the C++ programs from a single recursion relation expression.

These have no mathematical significance but are used to find terms for each operator

and work like a filter. A single term can have more that one marker. The markers

are as follows

hh For the terms that form the left hand side of the general eigenproblem.

ss For the terms that form the right hand side (overlap) of the general eigenproblem.

t For the terms that constitute the kinetic energy of the Hamiltonian.

p For the terms that constitute the potential energy of the Hamiltonian.

o For the terms that constitute the overlap of the Hamiltonian.

We apply these markers and then generate the recursion relations using a specially

written function (ApplyRecursionRelations) that is stored in the file RecursionRe-

altions.mpl.
Applying The Recursion Relations

1 Expr:=KE*t*hh+PE*p*hh+OV*o*ss:

2 Expr:=expand(simplify(-Expr)): #Our overlap matrix is negative

definite we need positive definite for Cholesky Decomposition

therefore multiple through by -1.

↪→

↪→

3

4 read "RecursionRelations.mpl":

5 RR:=ApplyRecursionRelations(Expr):
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RecursionRelations.mpl The code written in file RecursionRelations.mpl has the

function ApplyRecursionRelations this is a fairly useful generic function to apply

recursion relations to functions with Laguerre polynomial terms. Or more specifically

functions with the Fl,m,n(u, v, w) terms. It works by looping over every term searching

for differentials of F with respects to u, v or w, and for powers of u, v or w. The

code to perform this is quite complex and so shall not be detailed here. The output

is an expression with no differentials or powers of u, v or w. The function takes as

input whole expressions containing Laguerre polynomial terms such as ∂Fl,m,n(u,v,w)

∂u

and reduces them down to simple functions of the form Fl+dl,m+dm,n+dm without

any differentials or powers of u, v or w where dl, dm and dn are integers (for the

Hamiltonian operator these are in the set −2,−1, 0, 1, 2).

Save The Recursion Relations to File

These relations are then saved to file. The format of the file is fairly simple. It is in

text format with the following repeating format: |[dl,dm,dn],RecursionRelation.

Before saving the relation optionally a transformation to convert the wavefunctions to

either the A, AC, ABC, K or the Pekeris wavefunction is applied (See Section 4.2.8

on page 105).
Maple code to Save the Recursion Relations

1 SaveRRToFile:=proc(RR,FileName)

2 local Fterms, size, index, dl, dm, dn, Expr, fd:

3 Fterms := (indets(RR,function)):

4 size:=nops(Fterms):

5 fd:=fopen(FileName, WRITE, TEXT):

6 for index from 1 to size do

7 dl:=eval(op([0,1],Fterms[index]),[l=0,m=0,n=0]):

8 dm:=eval(op([0,2],Fterms[index]),[l=0,m=0,n=0]):

9 dn:=eval(op([0,3],Fterms[index]),[l=0,m=0,n=0]):

10 Expr:=coeff(RR,Fterms[index]):

11 fprintf(fd,"|[%A,%A,%A],%A",dl,dm,dn,Expr):

12 end do:

13 fclose(fd):
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14 end proc:

15

16 #ABC wavefunction

17 Transformation:=[]:

18 SaveRRToFile(expand(simplify(eval(RR,Transformation))),"ABC/RR.rr"):

19 #AC wavefunction

20 Transformation:=[B=A]:

21 SaveRRToFile(expand(simplify(eval(RR,Transformation))),"AC/RR.rr"):

22 #A wavefunction

23 Transformation:=[B=A,C=2*A]:

24 SaveRRToFile(expand(simplify(eval(RR,Transformation))),"A/RR.rr"):

25 #K wavefunction

26 Transformation:=[A=1,B=1,C=2,t=t*ss/hh,E=K*ep]:

27 SaveRRToFile(expand(simplify(eval(RR,Transformation))),"K/RR.rr"):

28 #PEKERIS wavefunction

29 Transformation:=[A=1,B=1,C=2,t=t*ss/hh,E=ep]:

30 SaveRRToFile(expand(simplify(eval(RR,Transformation))),

"PEKERIS/RR.rr"):↪→

This code is used to calculate the recursion relations for all the operators used in

the C++ programs in Sections 3.2.1 and 3.2.2. These operators include T̂ , V̂ , r̂i, r̂2i ,

r̂3i , ˆr−1
i , ˆδ(ri) τ̂i and f̂ . The program is not as efficient as it could be particularly

with the function ApplyRecursionRelations which is particularly slow with the

operators r̂3i because of the recursion involved and the number of terms. However

this is not an issue as once a recursion relation is calculated for a particular operator

it need not be calculated again and may be reused repeatedly for any particular type

of wavefunction that has been implemented in this work.

3.3.2. Other Maple Programs

The other Maple programs in this work calculate the operators that cannot be

fully reduced to a recursion relation and or used in series solution. These include

〈δ(ri − r)〉 (where r 6= 0), because with this expectation value the integrals do not

range over 0 to ∞ stopping the series solution from functioning correctly, and the
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cusps as calculated by
〈
∂ψ
∂ri

δ(ri)
〉

〈δri〉 , because the expression contains r−1
i terms that can

not be reduced by the Laguerre polynomial’s recursion relations.

Each of these programs is unique but follows a general design philosophy. First the

wavefunction is loaded into Maple from the C++ sv file. Any coordinate transforma-

tion is applied and the Jacobian of the transformation is assigned. The expectation

value is then calculated using Maple’s built in int command. The results are then

printed. If the expectation value produces a range of values such as that by 〈δ(ri − r)〉

when r is varied the values are saved to separate file named with the same name as

the sv file but with a small description appended to the name. For example _dr3 is

appended when calculating the expectation function 〈δ(r3 − r)〉.

The Maple GUI is not used for these Maple calculations because the Maple GUI

does not keep a record of the calculation results. Instead the command-line interface

for the Maple program is used and the output is appended to the log files from the

3Body programs to keep all results for a particular calculation together using the

command: maple -q MAPLESCRIPT >> LOGFILE.

Calculating the Cusps-Loading The Wavefunction

The following Maple code will calculate the cusps of a system. This is a good example

of the Maple codes that just calculate a single value.
The Calculation of the Cusps in Maple

1 Digits:=32: #Use 32 digits of precision

2 L:=LaguerreL:

3 u:=z1*A:v:=z2*B:w:=z3*C: #Convert scaled perimetric coordinates to

perimetric coordinates↪→

4 z1:=r2+r3-r1:z2:=r1+r3-r2:z3:=r1+r2-r3: #Convert perimetric

coordinates to internal triangular coordinates↪→

5

6 filename:="SAVEVECTOR": #The name of the sv file is set here

7 read filename: #The sv file is loaded. The variable 'F' now contains

the radial wavefunction.↪→

8 #Detect the wavefunction type

9 if (C = 'C') then #If C is undefined then set C to A+B
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10 C:=A+B: #AB psi

11 fi:

12 if (B = 'B') then #If B is undefined then set B to A

13 B:=A: #A

14 fi:

15 if (A = 'A') then #If A is undefined then we are using the PEKERIS

style wavefunctions↪→

16 A:=ep: #PEKERIS and K

17 fi:

The piece of code above is identical in all Maple codes for calculating expectation

values in this work and so will not be repeated again, in later examples. It loads the

wavefunction from the sv file and by doing so the variable F is assigned to the radial

part of the wavefunction as calculated by the C++ program 3Body. This radial part

has the general form:
∑

l,m,nCl,m,nLl(u)Lm(v)Ln(w).

This next part of the Maple code is unique to the expectation value being calculated.

Here the Jacobian is assigned and the expectation values integrated using Maple’s

built in int routine.
Calculating the Cusps-The Integrals

1 g:=4*Pi*r3*r2: #The Jacobian of the transformation involved in this

expectation value↪→

2

3 psi:=expand(simplify(exp(-u/2-v/2-w/2)*(F))): #The wavefunction as a

combination of the 'F' function as loaded from the sv file and an

exponential function that represents the asymptote of the

wavefunction (See Section 4.2.8 on page 105).

↪→

↪→

↪→

4

5 dpsi:=simplify(diff(psi,r1)): #This wavefunction is differentiated

6 v31:=int(eval(simplify(eval(psi*dpsi*g,[r2=r3])),r1=0),

r3=0..infinity): #The expectation value of
〈
∂ψ
∂r1

δ(r1)
〉

↪→
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7 dr1:=int(eval(simplify(eval(psi*psi*g,[r2=r3])),r1=0),

r3=0..infinity): #This is the expectation value of the Dirac

delta 〈δ(r1)〉

↪→

↪→

8

9 Nuclear_cusp:= v31/dr1:

10

11 printf("v31 Numerator: %A\n",v31):

12 printf("v31 Denominator: %A\n",dr1):

13 printf("v31 cusp value Scaled: %A\n",Nuclear_cusp):

The Maple scripts have this general form to calculate the two cusp values ν31 and

ν21. For the particle densities however a more complex code exists.

Calculating Particle Densities

In this work when calculating particle densities and radial distribution functions such

as 〈δ(ri − r)〉 and 〈4πr2δ(rin − r)〉 the Maple code grows in complexity. Each piece

of code generates a series of data points that are later used to form plots such as that

in Figure 3.3.1. These pieces of code loop over a series of values and save them to a

particle density (pd) file with the arbitrary extension .pd. The code also performs

some additional checks and calculation to ensure we obtain decent plots. First it

will check that the values have reduced to ≈ 100th of their maximum height and if

not the Maple code will calculate more points until the density reduces to 100th of

its maximum height. The Maple code will then locate the maximum value precisely

using Maple’s built in quadratic optimisation routine. While locating the maximum

it will log the steps it takes to find the maximum to the pd file this ensures that the

peaks on the plot have more points describing them, this will help any sharp peaks

to look smoother. In some cases the command fsolve is used to also identify the

full width half maximum of the peaks but this was not used in the work presented

in this thesis and so shall not be discussed.

In this first block of code a special function is defined to help perform the integration

named aint. This function will first attempt full analytical integration but when

this fails or numerical instabilities are identified this function will use approximate
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Figure 3.3.1.: An example particle density plot.

integration with Riemann sums with 100 000 partitions. This number of partitions

maintains an accuracy of at least 9 s.f. but usually more.
Calculation of 〈δ(r3 − r)〉-The Integration

1 partitions:=100000:

2 aint:=proc(f,range)

3 local val, infty:

4 infty:=20:

5 try

6 val:=int(f,range): #try full integration first in almost all

cases this succeeds↪→

7 if type(val, 'undefined') then #If full integration fails use

approximate ints using Riemann sums↪→

8 val:=ApproximateInt(f,eval(range,infinity=infty),

partition=partitions):↪→

9 elif type(val, 'numeric') then

10 if (abs(val/Z3)>1000) then #If the number is very large then

we have numerical instability and we recalculate with

approximate integration with Riemann sums

↪→

↪→

11 val:=ApproximateInt(f,eval(range,infinity=infty),

partition=partitions):↪→

12 fi:
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13 fi:

14 catch: #If an error occurs then use approximate ints with Riemann

sums↪→

15 val:=ApproximateInt(f,eval(range,infinity=infty),

partition=partitions):↪→

16 end try:

17 return val:

18 end proc:

19

20 gDirac:=4*Pi*r1*r2/(2*r3):

21 #Jacobian on u->ri conversion

22 gDirac:=gDirac/(2*C*A):

23

24 psi:=expand(simplify(exp(-u/2-v/2-w/2)*(F))):

25

26 r1:=(v/B+w/C)/2:r2:=(u/A+w/C)/2:r3:=(v/B+u/A)/2:

27

28 drval:=(r)->aint(int(eval(psi*psi*gDirac, v=2*B*(r-(u/(2*A)))),

w=0..infinity), u=0..2*A*r):↪→

The next block of code integrates r (in 〈δ(r3 − r)〉) over a series of values between

0 to 15 scaled by the charge. We scale by the charge because 〈δ(r3 − r)〉 scales with

charge in an atomic system [54,55] and this ensures we calculate the points efficiently.

The pd file is saved in a text format tabulated into a table of r and 〈δ(r3 − r)〉.
Calculation of 〈δ(r3 − r)〉-Tabulating the Data

1 #We set the pd file name based on the sv file name

2 PDFileName:=(cat(FileTools[Basename](SVFileName),"_dr3.pd")):

3 #The range we scaned by the function depends on the charge of the

wavefunction since as the charge tends towards infinity the plot

moves closer to zero and therefore needs more details nearer the

origin and smaller steps to better describe the density.

↪→

↪→

↪→

4 Min:=0.0/abs(Z3):
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5 Max:=15/abs(Z3):

6 Step:=0.05/abs(Z3):

7 printf("Calculating %delta(r_3-r) Particle Densities\nSaving to the

file %A\nFrom %A to %A in steps of

%A\n",PDFileName,Min,Max,Step):

↪→

↪→

8 fd := fopen(PDFileName, WRITE, TEXT):

9 fprintf(fd,"Calculated delta(r_3-r) v0.01a\n"):

10 fprintf(fd,"r\tdelta(r_3-r)\n"):

11 #Keeps track of the maximum values to help locate the maximum for

the optimisation function later↪→

12 maximumvalue:=-infinity: maximumr:=-infinity:

13 maximumDvalue:=-infinity: maximumDr:=-infinity:

14 for r from Min by Step to Max do

15 ExpVal:=drval(r):

16 fprintf(fd,"%A\t%A\n",r,ExpVal):

17 if (ExpVal>maximumvalue) then #This is used to locate roughly the

maximum of 〈δ(r3 − r)〉↪→

18 maximumvalue:=evalf(ExpVal):

19 maximumr:=r:

20 fi:

21 if (ExpVal*4*Pi*r^2>maximumDvalue) then #This is used to locate

roughly the maximum of
〈
4πr2δ(r3 − r)

〉
↪→

22 maximumDvalue:=ExpVal*4*Pi*r^2:

23 maximumDr:=r:

24 fi:

25 od:

The following code checks that after the range of values have been calculated that

the last value is approximately zero, where approximately zero is considered to be

100th of the maximum height. If not it will continue tabulating data until it is.
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Calculation of 〈δ(r3 − r)〉-Extending the Range

1 #is dr ≈ zero? if not keep plotting

2 #taking approximate zero to be 100th of the maximum value rounded

down to the nearest 1↪→

3 ZeroApproximate:=1*10^(floor(log[10](maximumvalue/100))):

4 if (ExpVal > ZeroApproximate) then #If the function is not yet

approximately zero keeping plotting until it is↪→

5 StepMultiplier:=10: ReachedZero:=false: LoopCounter:=1:

6 MaxExtentions:=20: #If this many extensions to the plot is

exceeded finish regardless↪→

7 while ReachedZero=false do

8 Min:=Max+Step:

9 Max:=Max+Step*StepMultiplier:

10 for r from Min by Step to Max do

11 ExpVal:=drval(r):

12 fprintf(fd,"%A\t%A\n",r,ExpVal):

13 FileTools[Flush](fd):

14 od:

15 if (ExpVal <= ZeroApproximate) then

16 ReachedZero:=true:

17 elif LoopCounter >= MaxExtentions then #Reached maximum number

of retries↪→

18 break:

19 else

20 LoopCounter:=LoopCounter+1:

21 fi:

22 od:

23 else

24 ReachedZero:=true:

25 fi:

The peaks of the particle density and the radial distribution function are calcu-

lated using the NLPSolve optimisation routine. While calculating these values the

intermediate steps are added to the pd file. This ensures that extra data points

71



3. Computer Programming

around the maximum are included to refine the shape of the maximum in any plots

made, that could otherwise appear sharp.
Calculation of 〈δ(r3 − r)〉-Refining the Maxima

1 printf("Refining maximum\n"): #Now locating the maximum using the

NLPSolve command and its quadratic optimisation routine↪→

2 maximummin:=maximumr-Step*5: maximummax:=maximumr+Step*5: #This will

roughly bracket the maximum based on previous calculations↪→

3 if maximummin < 0 then

4 maximummin:=0:

5 fi:

6 Logdr:=proc(r) #This function will log the expectation value to the

pd file and return the value the NLPSolve needs to calculate the

maximum

↪→

↪→

7 local val:

8 val:=drval(r):

9 fprintf(fd,"%A\t%A\n",r,val):

10 return val:

11 end proc:

12 Opted:=Optimization[NLPSolve](evaln(Logdr(var)),

var=(maximummin)..(maximummax), optimalitytolerance=3E-15, assume

= nonnegative, maximize=true):

↪→

↪→

13 rimax:=solve(Opted[2][1],var):

14 Drimax:=Opted[1]:

15 printf("Maxima located\n"):

16 printf("delta(r_3-r) max r=%A\n",rimax):

17 printf("delta(r_3-r) max probability=%A\n",Drimax):

18

19 #A similar maximum finding routine is also employed for
〈
4πr3δ(r3 − r)

〉
20

21 printf("Calculation of delta(r_3-r) Particle Densities was completed

in %A (s)\n",(time()-allst)):↪→

The Maple code described in this section is typical of the Maple code that calculates

particle densities and radial distribution functions. This style of Maple code was
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used to calculate the following expectation values: 〈δ(ri − r)〉, 〈4πr2δ(rin − r)〉 and

〈4πr2δ(rout − r)〉.

3.4. Shell Scripts

The command-line programs of both C++ and Maple are employed using Shell scripts.

This is because the Shell scripts can be created to produce a simple interface to

these programs and can process the output efficiently. In this work the Bourne-

Again shell (bash) is used in all scripts; specifically version 4.3.39(1). These scripts

are designed to reduce complexity of the tasks and aid in keeping records of the

calculations run. For example the main script used to run the 3Body program will

automatically calculate the expectation values if it saves the sv file, it then logs the

data to the system’s log file. These scripts also contain the appropriate defaults;

for example it will set the tolerance of the optimisation routines automatically

according to the number of digits requested in the calculation. The scripts also

perform more complex tasks and combine different optimisation techniques such as

BOBYQA and NROpt (see Section 3.2.1) in what is referred to as the Fork Method

(see Section 3.4.1).

In this section these scripts and their importance in this work is discussed.

3.4.1. Main Shell Scripts

These are the scripts that perform complex tasks such as the main run script that

deals with the 3Body program, the Fork method and recalculation of 16 digits

optimisation results with 32 digits of precision.

The Run Script

The main script that deals with the 3Body program is the run script. This script

contains all the default settings for the 3Body program and will set the program up

to use the correct non-linear variational parameters for the specified wavefunction,

to use the formal asymptotic solution of the wavefunction as the initial guess of the

non-linear variational parameters, and the method to optimise them. It will also

perform simple sanity checks such as ensuring that Z1 and Z2 are the same sign and
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the Z3 is the opposite sign. In the following we briefly describe this script in terms

of user input but not the more complex steps that follow this input.

The first section of the script chooses real-world variables such as the masses and

charges
Simplified Run Script-Choosing the System

1 #!/bin/bash

2

3 #Set the masses of the particles. We can use the symbols for example

p p mu and the program will correct it to, 1836.15267245,

1836.15267245, 206.7682843

↪→

↪→

4 m1="${e}"

5 m2="${e}"

6 m3="${infinity}"

7

8 #Set the charges

9 Z1=-1

10 Z2=-1

11 Z3=1

12

The next section of the script chooses the wavefunction, the number of terms and

the optimisation technique.
Simplified Run Script-Setting the wavefunction

1 MATRIXSIZE="2856"

2

3 Mode="OPT" #Select a mode. Possible modes are SP (single

point), OPT (optimisation) and SCAN (scan).↪→

4 MatrixType="AC" #possible values are A AC ABC K PEKERIS

5 SYMM="SYM" #This should be SYM ANTISYM or ASYM

6
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7 #This will calculate the square root of two-body energies of the

pairs m1m3 and m2m3 and save them to Eh1 and Eh2 respectively.

These are then used as the initial values of the non-linear

variational parameters (See Section 4.2.7 on page 100).

↪→

↪→

↪→

8 source CalcFormal ${m1} ${m2} ${m3} ${Z1} ${Z2} ${Z3}

9

10 #These are the non-linear variational parameters. In opt they are

the initial values and in scan they are the minimum values.↪→

11 A="1*${Eh2}"

12 B="1*${Eh1}"

13 C="${A}+${B}"

14

15 #Scan only variables. If scanning also set these variables. If not

scanning they are ignored↪→

16 A_Max=2

17 B_Max=2

18 C_Max=4

19 A_Step=0.1

20 B_Step=0.1

21 C_Step=0.1

22

23

Then some calculation details such as the tolerance of the optimisation how many

digits to use in the calculation and where to save the sv file are set up.
Simplified Run Script-Details

1 #This variable sets the tolerance to 3× 10tol

2 tol=-10

3

4 sv="FILENAME.sv" #Put in name of output eigenvector file if the

eigenvector should be saved, if blank the eigenvector file is not

created

↪→

↪→
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5 arb="32" #Blank means use default precision, this is double unless a

high tolerance is requested. If not blank it will use the given

number of digits.

↪→

↪→

6 OptType="-bobyqa" #Possible values are blank (use the default,

NROpt), -NROpt (From Numerical Recipes), -MacOpt (Use modified

Numerical Recipes), -bfgs (Use Broyden-Fletcher-Goldfarb-Shanno

algorith), -lbfgs (Similar to -bfgs but used when there are

hundereds of non-linear variational parameters and memory is

limited), -cg (The dlib variant of conjugate gradient), -bobyqa

(The BOBYQA algorithm by M.J.D. Powell excellent for optimising

with out derivatives)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

7

The rest of this script does not require any more input from the user. It will take

these values and prepare the appropriate settings to run the 3Body program. The

design behind this script was to allow users to interact with the 3Body program in a

more friendly and informative way then just through command-line arguments. This

script will also calculate the expectation values using the Expectation program if

the sv file was requested with the sv= setting.

In addition to this script there exist variants for the mass Hamiltonian (See Chap-

ter 5) and the charge Hamiltonian (See Chapter 6). These will not be discussed as

they are nearly identical to this script.

The Fork Method

While the run script is the most complete script for running a single methodology of

the 3Body program the Fork script, which combines multiple methodologies, was the

most used throughout this work. This method uses both the optimisation methods

BOBYQA and NROpt to perform an initial optimisation. At the end of both

calculations the program picks the better of the two methods in terms of most stable

energy and then runs a final BOBYQA starting from the best non-linear variational

parameters. Since two optimisation paths are followed and the algorithm takes the

better of the two paths, it is called the Fork method as in fork in the road. This is
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not to be confused with forking a program or source repository.

This method has the advantage of sampling more of the parameter space to find

the minimum values of the non-linear variational parameters. It was found that this

method is capable of locating the lowest minimum of the molecular systems. The

bash script itself is fairly straightforward. It starts two 3Body programs optimising

the non-linear variational parameters from their formal start value. In later versions

of this script GNU parallel [56] is used to run these two jobs in parallel. The best

results are then used to start a new BOBYQA optimisation to further optimise

the results. By starting the BOBYQA algorithm again the trust region size will

reset and this means that the algorithm will search the surrounding space for a new

minimum. Another algorithm such as MacOpt would not be appropriate as they

would test the gradient and decide the calculation is finished rather than search the

surrounding area but BOBYQA will always actively test the surrounding parameter

space since it uses no gradient information, further increasing the parameter space

searched.

The GA Fork Method

This next major script did not see much use in this project since the Fork method

was effective in almost all cases. This method, a combination of GA methods and the

Fork method, attempts to sample as much parameter space as possible and ensure

that the best non-linear variational parameters are located. This method is by far

the slowest but is the most reliable at finding the optimum non-linear variational

parameters. Like the Fork method the calculation starts with a parallel optimisation

using BOBYQA and NROpt. After this however a GA optimisation is performed

using the “Simple” algorithm (See Section 3.2.1) and a population size of 200. The

non-linear variational parameters ranges provided to the GA method are ±5 around

the best results from the BOBYQA or NROpt (which ever gave the lowest energy).

Once the GA optimisation completes a second parallel optimisation of BOBYQA

and NROpt is performed starting from the best GA results. Finally a BOBYQA

optimisation is performed with non-linear variational parameters starting from the

best of these two.

This method samples a lot of parameter space and incorporates a global minimum
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search routine. Its purpose it to identify the best non-linear variational parameters

for any system given to it. In this work it was used to test the Fork optimisation

routine of H +
2 to ensure that the correct minimum was located with a 2856 term

wavefunction.

Despite the complexity of this method, it is still an efficient method of locating

minima compared to a scan optimisation as it locates minima in an intelligent manner

with fewer steps.

Recalculating the Eigenvector

The final script discussed in this section is the ReCalcVector. This script was used

every time the eigenvectors and the expectation values were calculated. The purpose

of this script is to take the output of one of the above scripts in Section 3.4.1 and

take their optimised values and then recalculate the eigenvector (the sv file) using

more arbitrary precision. This script takes the following command-line arguments:
Running ReCalcVector

1 ReCalcVector --arb 32 LOGFILE

2

The 32 option can be changed to any digit but in this work the eigenvectors were

always recalculated with 32 digits. This script was used in every recalculation of

an eigenvector as it ensures that the calculation is performed always in an identical

manner and that it logs the calculation to the appropriate file. In addition this

script detects if the calculation uses the charge Hamiltonian, and in this case applies

the appropriate maths to extract the non-linear variational parameters. This is

needed because the charge Hamiltonian uses a Z3-scaled Hamiltonian meaning that

ri = Z3ri. When later using the standard Hamiltonian it is necessary to be mindful

of this implicit scale on the coordinates and reapply the scale using the non-linear

variational parameters. This script handles the conversion automatically and is

designed to recalculate an eigenvector in a fail-safe manner. Should any other such

considerations be necessary in future, this script should be adjusted to reflect these

considerations.

The script also has the capability to optimise the non-linear variational parameters
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starting from the values in the log file but with more digits and this is achieved using

the command-line option --opt. This was not used in the work presented in this

thesis but was used for the paper written by our group entitled “Uncorrelating the

correlated motion of two-electron atoms”. (In publication)

After the recalculation of the eigenvector this script recalculates the expectation

values that can be quickly calculated using the recursion relations and the C++

program Expectation.

3.4.2. Expectation Scripts

In addition to the above scripts there are a few simpler scripts that calculate the

expectation values that deserve a mention. This is because they kept the work

consistent and ensured that all calculations were appropriately logged. These scripts

include both the C++ program (Expectation) and the Maple methods of calculating

expectation values.

CalcExpectation

The first of these scripts to be discussed is CalcExpectation which calculates the

expectation values using the program Expectation.

The script CalcExpectation will take as input the expectation value name that

is to be calculated, the sv file, the symmetry of the wavefunction, and the optional

argument of desired precision of the calculation which defaults to 16 digits if omitted.
CalcExpectation Command-line Options

1 CalcExpectation ExpValName SVFILE sym|antisym|asym

PEKERIS|K|A|AB|AC|ABC [-arb <NUM>]↪→

2

Where ExpValName is the name of the expectation value, and “|” denotes “or”

where one option is required from the set of possible options and where arguments

in [ ] denote optional arguments. The possible expectation value names include all

expectation values that can be calculated with the C++ program Expectation:

ri Will calculate the expectation value of 〈ri〉 where i = 1, 2, 3
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ri∧ 2 Will calculate the expectation value of 〈r2i 〉 where i = 1, 2, 3

ri∧ 3 Will calculate the expectation value of 〈r3i 〉 where i = 1, 2, 3

ri∧-1 Will calculate the expectation value of
〈
r−1
i

〉
where i = 1, 2, 3

dri Will calculate the expectation value of 〈δ(ri)〉 where i = 1, 2, 3

E Will calculate the expectation value of
〈
Ĥ
〉

T Will calculate the expectation value of
〈
T̂
〉

V Will calculate the expectation value of
〈
V̂
〉

There are a few other expectation values not listed as they were not used in this

work but in essence this scripts sets up and calculates anything the Expectation

program calculates.

The program CalcExpectations takes slightly different arguments.
CalcExpectations Command-line Options

1 CalcExpectations LOGFILE sym|antisym|asym PEKERIS|K|A|AB|AC|ABC

[-arb <NUM>]↪→

2

This script will then calculate all the expectation values that the C++ program

Expectation can calculate and saves the results to the appropriate log file. This

script is used in the other scripts described in Section 3.4.1 to calculate the expec-

tation values, ensuring that all these programs calculate the expectation values in

the same manner and avoid repeated code that would have needed to be debugged

individually.

CalcCusps

The bash script CalcCusps takes only the log file as input (and assumes the sv has

the same name) and will calculate all the cusps using Maple. This includes both the

expansion method [57] and the Dirac method [58,59] of calculating the cusps. In this

work only the Dirac method results are reported as this method gave more accurate

results (For calculation details see Section 3.3.2).
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Calcdri

The script Calcdri is used to calculate the particle densities of our systems using

the Maple code in Section 3.3.2. The script is a good example of how these scripts

operate and so we shall examine it in further detail. It takes as input the following

arguments, where arguments in [ ] denote optional arguments:
Calcdri Command-line Options

1 Calcdri [-arb NUM] -pd r1|r2|r3 LOGFILE [MaxRange]

2

Or it can take the following instead:
Calcdri Alternate Command-line Options

1 Calcdri [-arb NUM] -pd r1|r2|r3 LOGFILE [MinRange] [MaxRange]

2

The argument -arb NUM will specify a numerical precision to run the calculation,

it is optional and if omitted it is set to 32. If -pd is omitted this script will calculate

〈δ(ri)〉 using the bash script CalcExpectation. In this section the -pd option is

discussed as it was used throughout this work for all particle densities and is more

complex.

The following is a brief guide to how the script operates:
Calcdri-Reading the Command-line

1 if [[ ${1} == "-arb" ]]

2 then

3 numarb=${2}

4 shift #Shifts the command line arguments along one such that ${2}

becomes ${1} and ${3} becomes ${2} and so on.↪→

5 shift

6 fi

7 if [[ ${1} == "-pd" ]] #If omitted calculate 〈δ(ri)〉 only

8 then

9 pd=1

10 shift
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11 fi

12 var=${1}

13 FileName=${2}

14 if [ -n "${4}" ] #if a min and a max range is provided do this

15 then

16 CustomMin=${3}

17 shift

18 fi

19 CustomMax=${3}

20

21 #Checks if the file name is a log or a sv file.

22 if [[ "${FileName}" == */* ]]

23 then

24 rootname="${FileName%/*}/"

25 else

26 rootname=""

27 fi

28 ffilename="${FileName#*/}"

29 extension="${ffilename#*.}"

30 ffilename="${ffilename%.*}"

31 ffilename=$(echo "${rootname}${ffilename}")

32

The bash script then prepares the output for appending if the log file was provided.

The script will not log to a file if the sv file is given instead of the log file. The sv

file was given only during testing whilst the log file was given for final production

calculations.
Calcdri-Preparing the Files

1 savevector=""

2 logfile=""

3 if [ ${extension} == "log" ] #If it is a log then try to find the sv

file↪→

4 then
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5 savevector=$(echo "${ffilename}.sv")

6 logfile=$(echo "${FileName}")

7 if [ ! -f "${logfile}" ]

8 then

9 echo "Error log file not found"

10 exit 1

11 fi

12 elif [ ${extension} == "sv" ] #If it is a sv file we will not be

logging the data to file this is not recommended↪→

13 then

14 savevector=$(echo "${FileName}")

15 logfile=""

16 else #If it is not a .log or a .sv file then an error is reported

17 echo "The file extention (${extention}) is not .log or .sv"

18 exit 1 #Exit with an error code of 1

19 fi

20

21 if [ ! -f "${svfile}" ]

22 then

23 echo "Error sv file not found"

24 exit 1

25 fi

26 #This block is used to instruct the script only to append the output

when the log file is given↪→

27 Append=""

28 if [ -n "${logfile}" ]

29 then

30 Append=$(echo " -a ${logfile}") #Append into the log file

31 echo "" >> "${logfile}"

32 else

33 Append=$(echo "/dev/null") #Append into the null file

34 fi

35
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The next part of the script will prepare the Maple code for calculation. The

template Maple script “drmv2.mpl” has several variables unassigned, specifically

“ARB”, “SAVEVECTOR” and “DVAR”. These variables are replaced with the desired

value using the program sed (which is a core utility) and its find and replace feature.
Calcdri-Adjusting the Maple Code

1 maplefile=$(sed "s|ARB:|${numarb}:|g" "drmv2.mpl")

2 maplefile=$(echo "${maplefile}" | sed

"s|SAVEVECTOR|${savevector}|g")↪→

3 maplefile=$(echo "${maplefile}" | sed "s|DVAR|${var}|g")

4 if [ -n "${CustomMin}" ] #Was a different minimum range requested?

5 then

6 maplefile=$(echo "${maplefile}" | sed

"s|Min:\=0.0/abs(Z3):|Min:\=${CustomMin}:|g") #Replace the

current minimum range with the requested one

↪→

↪→

7 fi

8 if [ -n "${CustomMax}" ] #Was request a different maximum range

requested?↪→

9 then

10 maplefile=$(echo "${maplefile}" | sed

"s|Max:\=15/abs(Z3):|Max:\=${CustomMax}:|g") #Replace the

current maximum range with the requested one

↪→

↪→

11 fi

12

Finally the prepared Maple code is run using maple -q as this enables quiet mode

and will not print anything unnecessary. As a final step the pd file that contains

the calculated particle densities is loaded and sorted into ascending order of r. This

sorting is necessary because when the Maple code searches for the maximum (see

Section 3.3.2) the data is not necessarily calculated in order. Sorting improves

readability and some of the plotting tools we use such as gnuplot require the data

be presorted.
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Calcdri-Calculating with Maple

1 maple -q <<< "${maplefile}" | tee ${Append} #Run the Maple code

2 if [ ${?} -ne 0 ]

3 then

4 exit 1 #If error occurred in maple then quit here

5 fi

6 PDFILE=$(echo "${ffilename}_dr1.pd")

7 numlines=$(grep -c ^ "${PDFILE}")

8 numlines=$(echo "${numlines}-2" | bc)

9 SORTED=$(tail -${numlines} "${PDFILE}" | sort -g) #Load the pd file

except the first two lines which are the header lines, and sort↪→

10 HEADER=$(head -2 "${PDFILE}") #Load the two header lines

11 SORTEDFILE=$(echo -e "${HEADER}\n${SORTED}") #Stick the header and

the sorted data back together↪→

12 echo "${SORTEDFILE}" > "${PDFILE}" #Save the sorted file

13

In addition to the command line options r1, r2 and r3 this script has been extended

by another member of the research group to include other more complex densities

such as angular densities. [60]

CalcInnerOuter

The final bash script to be mentioned is CalcInnerOuter. All of the expectation

values in this script are calculated in Maple. This bash script uses similar techniques

to those described in Section 3.4.2 with aspects of the Maple code being changed

with sed to adjust the parameters prior to calculation. This script was used to

calculate all inner and outer expectation values described in Chapter 6 and takes

the following arguments.
CalcInnerOuter Command-line Options

1 CalcInnerOuter r|r^2|r^-1|r1-r2|dr|all LOGFILE

2

The command-line arguments r, r^2 or r^-1 will calculate the expectations value
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of 〈rnin〉 and 〈rnout〉 while dr will calculate 〈δ(rin − r)〉 and 〈δ(rout − r)〉. With the

argument dr extra arguments to control the range are available.
CalcInnerOuter Command-line Options For dr

1 CalcInnerOuter dr LOGFILE [MaxRange]

2 CalcInnerOuter dr LOGFILE [MinRange] [MaxRange]

3

If the argument all is given then all the inner outer expectation values expect

〈δ(rin − r)〉 and 〈δ(rout − r)〉 are calculated as these take significantly longer. In this

work this script was used to calculate all inner and outer expectation values.

3.5. Conclusions

In this chapter the programs written to calculate the data in this thesis are discussed,

along with the philosophy and motivation of the programming choices implemented.

A combination of programming languages including C++, Maple and bash were used.

The C++ programs calculate the eigenvalues, eigenvectors and wavefunction of the

various systems and most of the expectation values. The Maple code calculates the

recursion relations and the remaining expectation values including the densities and

distribution functions. The bash programs are written to automate, simplify and

keep the calculations run using C++ and Maple consistent, simple and with clear

records. In this chapter we list the various libraries and pieces of code used to form

this work and why they were chosen and what they brought to this work. The licenses

of these codes are given Appendix F, the most restrictive of which is the numerical

recipes license and the MPFRC++ general public license. The C++ code implemented in

this work was designed to be flexible, using classes and polymorphism in a modular

way. The purpose of which was to reduce the code requirement of future extensions

to the program.
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4. The Non-Relativistic Ground State

Energies of Three-body Systems

4.1. Introduction

Within Quantum Mechanics the two-body problem is relatively well understood,

the problem can be treated exactly in both Schrödinger’s [21] non-relativistic and

Dirac’s [61] relativistic waveforms. In contrast the three-body problem that intro-

duces an additional particle has no exact solution and is still an active area of

research. [2,8,11,12,28,62] We use the term three-body (3Body) as a general term to de-

scribe systems with three particles interacting via a coulomb potential; these can

be any three particle with an arbitrary mass or charge. The third particle can be

difficult to deal with; in the case of atoms and atomic ions the third particle is an elec-

tron and this introduces complicated electron correlation and exchange. Three-body

systems are also under a triangular constraint, this means that the distances between

the particles are not independent of each other, although the inter-particle distance

is the most convenient way to incorporate electron correlation, this can complicate

integration if not treated appropriately. Hylleraas in 1929 [63,64] provided a method

to solve these three-body systems with the explicit inclusion of the inter electron

distance, or more generally by explicitly including the interaction of every particle

with every other particle. In this method the solution to the Schrödinger equation

is solved approximately, however it can still be more accurate than experimental

results, as in the case of He which has been solved by Nakashima et al. [65] to an

accuracy of 42 s.f. in Hartrees. This is in excess of experimental values such as the

ionisation energy which is known experimentally to be 24.587 41 eV. [66]

The variational approach of Hylleraas calls for an approximate wavefunction that
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always gives an energy greater than the exact energy of the true wavefunction

(details in Section 2.6 on page 11). There have been various different approximations

to the wavefunction with different degrees of success. A wavefunction with basis

functions that more closely represent the true wavefunction typically have energies

that converge faster. Certain terms have been identified as useful for a three-body

system in terms of convergence. Bartlett showed that the wavefunction of Hylleraas

is not a true solution of the exact wavefunction [67,68] and neither are square root

terms of the wavefunction and so that these do not improve convergence. Bartlett

did however show that natural logarithm terms of the form
(
ln
√
r21 + r22

)p
are a

true solution of the wavefunction and do increase the convergence rate. Indeed it is

the logarithmic terms in the works of Schwartz [62] and Nakashima et al. [65] that allow

for such highly converged energies. With these wavefunctions however the integrals

are harder to calculate and have an increased computational cost. The work of

Pekeris [69–71] took a different route and by employing an efficient methodology with

Laguerre polynomial functions, could achieve high accuracy with more terms rather

than fewer better suited terms. This method of Pekeris has been extended to include

non-linear variational parameters by various authors. [72–74]

As with any method that gives approximate answers, albeit, in this case very

accurate and informative approximate answers, the quality of the approximation

needs to be explored. The energy of the wavefunction, as with many other main-

stream methods is the primary measure by which the quality of the wavefunction

is measured. To this purpose, non-linear variational parameters are employed to

minimise the energy to the greatest extent possible. This chapter seeks to quantify

this process and to ensure that by employing these parameters the ability of the

wavefunction to calculate expectation values (See Section 4.4.3) representing physical

observables that may be measured, remain just as accurate as the energy of the

system under study.

This chapter aims to detail the wavefunction employed in this thesis. Discussing

its effectiveness to accurately determine not only energies and properties of known

well studied systems but also those that are less studied and more exotic such as

muonic atoms and molecules. The mathematical methods used in this thesis to study

three-body ground state systems are presented and choices of non-linear variational
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parameter (NLP) are explained, giving the reasons for including such parameters,

when they are best employed, and the effects they have upon a system. The quality

of the wavefunction is assessed by calculating a variety of properties in addition to

the energy some of which, such as the virial condition, are indicative of wavefunction

quality.

4.2. Method

This section presents the key theoretical concepts and the methodologies employed.

As a general overview, three-body systems were solved with the Schrödinger equation,

employing a wavefunction with an exponential term to represent the asymptotic

behaviour, and Laguerre polynomials to represent the radial component.

ψ (z1, z2, z3) =
∞∑

l,m,n=0

Cl,m,ne−Az1−Bz2−Cz3Ll (Az1)Lm (Bz2)Ln (Cz3) (4.2.1)

A maximum of 3 non-linear variational parameter denoted in Eq. (4.2.1) as A, B

and C were employed.

4.2.1. Perimetric and Triangular Coordinates

A relatively uncommon set of coordinates, the perimetric coordinates is used (4.2.2).

These have several advantages over the more commonly used triangular coordinates

that represent the inter-particle distances (Figure 4.2.1). Unlike the triangular

coordinates the perimetric coordinates are independent of each other, and range from

0 to infinity. These properties of the perimetric coordinates can greatly reduce the

calculation time compared to the inter-particle distance (or triangular) coordinates

(ri) and have been used in all calculations. They are however harder to interpret

and so in discussions, the triangular coordinates will primarily be referred to. The

following conversion can be applied to change between the two.

zi =rj + rk − ri (4.2.2a)

ri =
zj + zk

2
(4.2.2b)
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r1 r2

r3
m±Z1

1 m±Z2
2

m∓Z3
3

Figure 4.2.1.: Depicts triangular coordinates arranged in this work between three
particles of masses mi and charges Zi.

z2 z1

z3

m±Z1
1 m±Z2

2

m∓Z3
3

Figure 4.2.2.: Depicts perimetric coordinates, zi, the circle is the in-circle of the
triangle which partitions the ri coordinates to perimetric.

Where i, j, k are cyclic permutations of 1, 2, 3

4.2.2. Finite Particle Masses

In this work finite masses are used for all particles including the nuclei and other

exotic particles. The masses of these particles relative to the electron mass which,

is by definition 1, are given in Table 4.2.1.
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Particle Mass a.u.
p 1836.152 672
e 1
µ 206.768 284 3
τ 3477.15
d 3670.482 965
t 5496.921 527
He 7294.299 536

Table 4.2.1.: These are the finite masses used in this work in atomic units. These val-
ues come from the 2010 CODATA of recommend physical constants. [18]

4.2.3. General Theory

As discussed in Chapter 2 the Schrödinger equation in its time independent form is

as follows:

Ĥψ =Eψ (4.2.3)

Ĥ =T̂ + V̂ (4.2.4)

It is comprised of a kinetic energy part and a potential energy part labelled as

T̂ and V̂ respectively. For three-body systems with perimetric coordinates these

components take the form in Eqs. (4.2.5) and (4.2.7). Since the s-orbital like states

were of primary concern as they represent the ground state, the angular momentum

was separated off. The translational motion was separated off to give only the internal

energy between the particles. Atomic units were used throughout all calculations

unless otherwise stated (~ = me = e = 4πε0 = 1).

T̂ =−
3∑
i=1

(
νii

∂2

∂z2i
+ νi

∂

∂zi
+

3∑
j>i

νij
∂2

∂zi∂zj

)
(4.2.5)
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Where

νi =4
(
− (µi (zj + zk))

−1 − (µj (zk + zi))
−1 − (µk (zi + zj))

−1) (4.2.6a)

νii =µ
−1
1 + µ−1

3 + µ−1
3 − bijµ

−1
ij − bikµ

−1
ik + bjkµ

−1
jk (4.2.6b)

bij =
2 ((z1 + z2) (z2 + z3) (z3 + z1)− 2zizj (zi + zj))

(z1 + z2) (z2 + z3) (z3 + z1)
(4.2.6c)

νij =2
(
−µ−1

i − µ−1
j − µ−1

k − bijµ
−1
ij

)
(4.2.6d)

µ−1
i =m−1

i +m−1
3 i = 1, 2 (4.2.6e)

µ−1
3 =m−1

1 +m−1
2 (4.2.6f)

µ−1
12 =m−1

3 (4.2.6g)

µ−1
31 =m−1

1 (4.2.6h)

µ−1
23 =m−1

2 (4.2.6i)

V̂ =
2Z1Z2

z1 + z2
+

2Z2Z3

z2 + z3
+

2Z3Z1

z3 + z1
(4.2.7)

When solving the Schrödinger equation variationally the following relationship is

observed: 〈
ψtrial | Ĥ | ψtrial

〉
≥ Eexact (4.2.8)

This relationship states that any trial wavefunction will not have an energy lower

than the energy that would be obtained with an exact wavefunction. Since an exact

wavefunction is not known for three-body coulombic systems, trial wavefunctions are

used with the objective of lowering the energy. A prototypical example of solving the

Schrödinger equation involves operating the Hamiltonian upon the trial wavefunction,

integrating the expression to the form in Eq. (4.2.8), and finding the roots of the

equation. Each root of the equation represents a state of the system, where the

lowest root is the ground state energy and higher roots represent excited states.

This is one of the places where choosing perimetric coordinates is of benefit, since

Laguerre polynomials with an exponential term and an integration range of 0 to

infinity can be calculated quickly using recursion relations and series solution. When

discussing the workings of the calculations in this thesis the discussion will typically

be in terms of integrals, however in practise these integrals were instead avoided and
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evaluated by series solution. This is because series solution is computationally the

faster method.

The trial wavefunction used here is made up of a series of basis functions each

basis function has the following form:

φlmn (z1, z2, z3) = e−
1
2
(Az1+Bz2+Cz3)Ll (Az1)Lm (Bz2)Ln (Cz3) (4.2.9)

Where the wavefunction is then formed from a sum of these basis functions multiplied

by the coefficient, Clmn and where
∑
l,m,n

C2
lmn = 1.

ψ (z1, z2, z3) =
∞∑

l,m,n=0

Clmnφlmn (z1, z2, z3) (4.2.10)

Each Laguerre polynomial function of a particular order has a particular shape such

that combining different shapes together with an appropriate coefficient will allow

the wavefunction to have whatever shape is necessary to minimise the energy. The

appropriate coefficients are calculated by finding the eigenvectors associated with

the solutions to the Schrödinger equation. In an ideal world the wavefunction has

every possible combination of l, m and n available from 0 to infinity as this would

allow our wavefunction to use any shape from the Laguerre polynomial series. This

is not feasible and it is truncated to a finite range from 0 to k. The more terms that

are included the more accurate the energy that can be calculated. However it also

takes a significantly longer time.

The A, B and C in Eq. (4.2.9) are non-linear variational parameters, the wavefunc-

tion is in perimetric coordinates and these are harder to interpret then triangular

coordinates (See Section 4.2.1). It is often convenient then to discuss the non-linear

variational parameters in the triangular coordinates which are simply the distances

between particles. We denote α, β and γ to represent the non-linear variational

parameters when using triangular coordinates such that the exponential transforms

as:

e−
1
2
(Az1+Bz2+Cz3) = e−(αr1+βr2+γr3) (4.2.11)
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This is achieved using the following conversions:

α =
B + C − A

2
(4.2.12)

β =
C + A−B

2
(4.2.13)

γ =
A+B − C

2
(4.2.14)

To convert in the reverse direction the following transformation is applied:

A =β + γ (4.2.15)

B =γ + α (4.2.16)

C =α + β (4.2.17)

4.2.4. Laguerre Polynomials

The Laguerre polynomials (L) are a series of polynomials that are solutions of the

following expression:

xy′′ + (1− x) y′ +my = 0 (4.2.18)

Eq. (4.2.18) is satisfied when: y = Lm (x). The first four Laguerre polynomials have

the following form:

L0 (x) =1 (4.2.19)

L1 (x) =1− x (4.2.20)

L2 (x) =1− 2x+
1

2
x2 (4.2.21)

L3 (x) =1− 3x+
3

2
x2 − 1

6
x3 (4.2.22)

Each individual Laguerre polynomial can be generated using either of these following

forms for Lm (x) (where ( nk ) =
n!

k!(n−k)!). This is not an exhaustive list of generating
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functions for Laguerre polynomials: [75–78]

Lm (x) =
m∑
i=0

(−1)i

 m

m− i

 xi

i!
(4.2.23)

Lm (x) =
ex

m!

∂m

∂xm
(
e−xxm

)
=

1

m!

(
∂

∂x
− 1

)m
xm (4.2.24)

The Laguerre polynomials were chosen as the radial component of the wavefunction

since they are an orthogonal set and range from 0 to infinity as do the coordinates of

the chosen coordinate system. The Laguerre polynomials orthogonality relationship

is given in Eq. (4.2.25) and requires that the Laguerre polynomial be multiplied

by an exponential term. This is convenient since exponential terms were used to

represent the asymptotic part of the wavefunction as they “kill” the wavefunction

appropriately at long range i.e. when the inter-particle distances become large.

∫ ∞

0

e−xLm (x)Ln (x) dx = δm,n =

1 if m = n

0 if m 6= n

(4.2.25)

To solve the Schrödinger equation the wavefunction was operated upon and inte-

grated, (in practise this was converted to a series solution for rapid evaluation).

The above orthogonality relationship was used to integrate these expressions. This

makes the integration simple, as the expression evaluated to either 1 or 0. Although

when operating Ĥ on the wavefunction used here, terms such as e−xL′
m (x)Ln (x) are

generated that do not fit this relation and without further work would be difficult to

integrate. In Section 4.2.5 a method to resolve these forms of expressions such that

they fit the orthogonality relationship is presented (recurrence relations). Therefore

we can use this to speed up the calculation for the Hamiltonian and many other op-

erators. This relationship is beneficial in terms of simplicity and computational time

therefore the wavefunction is adjusted only in ways that did not lose this relationship,

leading to a consequence that will be discussed later in Section 4.2.9.
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4.2.5. Recurrence Relations & Series Solution

The Laguerre polynomials have a set of recurrence relations that can simplify the

calculations, these are: [75–77]

xLn (x) =− (n+ 1)Ln+1 (x) + (2n+ 1)Ln (x)− nLn−1 (x) (4.2.26a)

xL′
n (x) =nLn (x)− nLn−1 (x) (4.2.26b)

xL′′
n (x) = (x− 1)L′

n (x)− nLn (x) (4.2.26c)

From Eqs. (4.2.5) and (4.2.7), operating the Hamiltonian upon the wavefunction

(Ĥψ), results in an expression containing both first and second derivative Laguerre

polynomials. This Ĥψ causes Laguerre polynomial terms to appear that do not

conform to the orthogonality relationship in Eq. (4.2.25) (e.g. e−xL′
m (x)Ln (x)).

By applying the recurrence relations given in Eqs. (4.2.26a) to (4.2.26c) to Ĥψ the

second and first derivatives etc. can be converted to a form that conforms with the

orthogonality relationship and be easily integrated to either 1 or 0. This greatly

simplified the formation of the matrix that represents the problem. To improve the

calculation of this matrix further we can combine the recurrence relations to form

a new recurrence relation that represents the Schrödinger equation, by picking the

appropriate expression based upon the l, m and n indices. This process of picking

the expression is the series solution method and is an efficient method of the matrix

formation without performing integration explicitly.

Take for example the integral 〈r3〉 this can be solved using series solution in the

following way. For simplicity the non-linear variational parameters have been set to

1 and we ignore the Jacobian of transformations in this discussion.

∫ ∞

0

∫ ∞

0

∫ ∞

0

ψ?r3ψ dz1 dz2 dz3 (4.2.27)

Applying the conversion in Eq. (4.2.2b) to Eq. (4.2.27)

∫ ∞

0

∫ ∞

0

∫ ∞

0

ψ?
z1 + z2

2
ψ dz1 dz2 dz3 (4.2.28)
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Substituting in Eq. (4.2.10)

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
∞∑

lmn=0

Clmnφlmn (z1, z2, z3)

)
z1 + z2

2

×

(
∞∑

l′m′n′=0

Cl′m′n′φl′m′n′ (z1, z2, z3)

)
dz1 dz2 dz3 (4.2.29)

These equations are processed in matrix form where each individual matrix element

(Mi,j) has the following form, where i and j are indices

Mi,j =

∫ ∞

0

∫ ∞

0

∫ ∞

0

φlmn (z1, z2, z3)
z1 + z2

2
φl′m′n′ (z1, z2, z3) dz1 dz2 dz3 (4.2.30)

The φlmn expands into the following using Eq. (4.2.9) and some minor simplifications

Mi,j =
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(z1+z2+z3)Ll (z1)Lm (z2)Ln (z3) (z1 + z2)

× Ll′ (z1)Lm′ (z2)Ln′ (z3) dz1 dz2 dz3 (4.2.31)
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This is then expanded before applying the recursion relations of Eq. (4.2.26)

Mi,j =
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(z1+z2+z3) (Ll (z1)Lm (z2)Ln (z3) z1Ll′ (z1)Lm′ (z2)Ln′ (z3)

+Ll (z1)Lm (z2)Ln (z3) z2Ll′ (z1)Lm′ (z2)Ln′ (z3))

dz1 dz2 dz3 (4.2.32)

Mi,j =
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(z1+z2+z3)((− (l + 1)Ll+1 (z1) + (2l + 1)Ll (z1)

− lLl−1 (z1))Lm (z2)Ln (z3)Ll′ (z1)Lm′ (z2)Ln′ (z3)

+ Ll (z1) (− (m+ 1)Lm+1 (z2) + (2m+ 1)Lm (z2)

−mLm−1 (z2))Ln (z3)Ll′ (z1)Lm′ (z2)Ln′ (z3))

dz1 dz2 dz3 (4.2.33)

Mi,j =
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(z1+z2+z3)(− (l + 1)Ll+1 (z1)Lm (z2)Ln (z3)Ll′ (z1)

× Lm′ (z2)Ln′ (z3) + (2l + 1)Ll (z1)Lm (z2)Ln (z3)

× Ll′ (z1)Lm′ (z2)Ln′ (z3)− lLl−1 (z1)Lm (z2)Ln (z3)

× Ll′ (z1)Lm′ (z2)Ln′ (z3)− Ll (z1) (m+ 1)Lm+1 (z2)

× Ln (z3)Ll′ (z1)Lm′ (z2)Ln′ (z3) + Ll (z1) (2m+ 1)

× Lm (z2)Ln (z3)Ll′ (z1)Lm′ (z2)Ln′ (z3)− Ll (z1)m

× Lm−1 (z2)Ln (z3)Ll′ (z1)Lm′ (z2)Ln′ (z3)) dz1 dz2 dz3

(4.2.34)

By then applying the orthogonality relation of Eq. (4.2.25) we solve the series

Mi,j =
1

2
(− (l + 1) δl+1,l′δm,m′δn,n′ + (2l + 1) δl,l′δm,m′δn,n′ − lδl−1,l′δm,m′δn,n′

− (m+ 1) δl,l′δm+1,m′δn,n′ + (2m+ 1) δl,l′δm,m′δn,n′ −mδl,l′δm−1,m′δn,n′)

(4.2.35)

Equation (4.2.35) is the generic form for the entire series for our wavefunction. In

this case it has 6 terms but different operators have a different number of terms.
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The matrix is formed with certain variables such as mi and Zi unassigned to create

a generic reusable solution. The indices of the matrix i and j are converted into

l, m, n and l′, m′, n′ using the collapsed index scheme in Appendix A.

4.2.6. Machine Precision and Numerical Stability

Using Laguerre polynomials to form the wavefunction allowed for many simplifi-

cations of the calculation whilst retaining high accuracy. Additionally since the

integration is either one or zero, there are lots of terms in the matrix that become

zero. When a matrix has mainly zero elements it is known as a sparse matrix and

these can be numerically stable, since operating on zero elements does not introduce

rounding error. A numerically stable matrix is useful as it allows for many more

terms in the wavefunction without introducing machine error. Within most modern

computers IEEE 754 (Institute of Electrical and Electronics Engineer) [79] is the stan-

dard for computer data types. On standard compilers the most accurate built-in

data type is typically the double precision data type that has a maximum precision

of 16 s.f.. If an ill conditioned matrix is calculated i.e. where its condition number

(the logarithm of ratio between the largest to smallest eigenvalue) is larger than the

precision of the elements then results are unreliable. [80] The precision error is usually

resolved by using specially designed data types that have more significant figures.

Since the matrix used here is sparse it is numerically stable and is less likely to have

an error introduced by the machine precision even with large wavefunctions. The

process used to generate our wavefunctions through the Schrödinger equation was

numerically stable and the use of arbitrary precision, which can be very slow, was

not necessary. Instead the fast built-in types were used (in a later chapter it will be

shown that this is not sufficient for all operators). To take advantage of these benefits

of the Laguerre polynomials it was ensured at all times that the wavefunction basis

remains orthogonal so that Eq. (4.2.25) holds true.

With this method it is ensured that the process of solving the eigenproblem

and calculating the wavefunction is mathematically stable. Certain mathematical

operators however can be numerically unstable [81] requiring greater precision to

accurately calculate after the stable solution of the wavefunction. The Dirac deltas

discussed in Section 6.2.2 on page 173 are an example of this.
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As a result of this some features known to benefit three-body systems were not im-

plemented such as the logarithmic terms that have been proven to be useful [62,68,82,83]

for three-body systems. Later it will also be shown that it also limits our choice of non-

linear variational parameters when considering fermionic exchange (Section 4.2.9).

4.2.7. Asymptotic Behaviour

The Two-body Asymptotic Behaviour During this chapter the asymptotic nature

of the wavefunction will be referred back to at several points, and for this reason it

is useful to define the two particle asymptotic nature and how this can be extended

with some limitations to three-body systems. When this two particle asymptotic

nature is extended to the three particle system it is known as the formal solution [15–17]

and was used by Hylleraas [63,64] and other authors such as Pekeris [69] to form their

exponential term. A discussion of this solution can be found in Branston Joachain [84]

and Bethe and Salpeter. [17]

The following discussion explains briefly how the two particle asymptotic condition

can be derived. When considering the ground state of a two-body time independent

system, the wavefunction can be fully represented by the inter-particle distance

(r). In this case the Schrödinger equation has the following form (where E2b is the

two-body energy):

Ĥ (r)ψ = E2bψ (r) (4.2.36)

This is used to derive the asymptotic condition i.e. where r tends towards infinity

ψ (r) becomes the asymptotic solution. In this discussion the hydrogenic system

with atomic units and infinite nuclear mass is used.

(
Ĥ − E2b

)
ψ (r) =0 (4.2.37)

Ĥ =T̂ + V̂ (4.2.38)

V̂ =− Z

r
, (4.2.39)

T̂ =− 1

2

∂2

∂r2
+

2

r

∂

∂r
(4.2.40)

In the asymptotic region r tends towards infinity and when this occurs T̂ and V̂
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change in the following way:

as r → ∞, V̂ → 0, T̂ = −1

2

δ2

δr2
(4.2.41)

As a result the Schrödinger equation simplifies to:

− 1

2

δ2ψ (r)

δr2
− E2bψ (r) = 0 (4.2.42)

Solving this gives the asymptotic form. Generally the equation to be solved has the

form:

ay′′ (x) + by′ (x) + cy (x) = 0 (4.2.43)

Where a, b, and c are constants and the equation has distinct roots. [76,85] In this case

we have the following situation:

ay′′ (r) + cy (r) =0 (4.2.44)

a =− 1

2
(4.2.45)

c =− E2b (4.2.46)

Let D denote the derivative and D2 denote the second derivative and then solve as

a characteristic equation [76,85]

D =
δ

δr
(4.2.47)

−1

2
D2y (r)− E2by (r) =0 (4.2.48)(
−1

2
D2 − E2b

)
y (r) =0 (4.2.49)(

−D2 − 2E2b

)
y (r) =0 (4.2.50)

D is therefore:

−D2 =2E2b (4.2.51)

D2 =− 2E2b (4.2.52)

D =±
√
−2E2b (4.2.53)
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Therefore Dy (r) is:

Dy (r) =±
√
−2E2by (r) (4.2.54)

Since Dy (r) is the differential of y (r) then it follows that the integral of Dy (r) is

y (r)

.
δy (r)

δr
=±

√
−2E2by (r) (4.2.55)

1

y (r)

δy (r)

δr
=±

√
−2E2b (4.2.56)∫

1

y (r)
δy (r) =

∫
±
√

−2E2bδr (4.2.57)

ln y (r) =±
√
−2E2br + c (4.2.58)

At r = ∞, then y (r) = 0 and therefore c must be 0

y (r) =e±
√
−2E2br (4.2.59)

y (r) =ψ (r) (4.2.60)

ψ (r) =e±
√
−2E2br (4.2.61)

As the positive solution is physically inaccurate for bound coulombic systems and

energy is negative, this gives us the exact asymptotic nature of the two-body system

to be:

ψ (r) = e−
√
−2E2br (4.2.62)

In the case of the two-body system the energy E2b for atomic systems is known

exactly as:

E2b = Eij = −
Z2
i Z

2
j

2n2

mimj

mi +mj

(4.2.63)

For an atomic two-body system with infinite nuclear mass and a single electron this

becomes:

E2b = − Z2

2n2
(4.2.64)

Z is the nuclear charge and n is the principle quantum number. In the ground state

where n = 1 this asymptote becomes:

ψ (r) = e−Zr (4.2.65)

It is worth noting that the exponent is only −Zr within the infinite nuclear mass

approximation, for other masses where m1 , m3 are the masses of oppositely charged
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particles with charges Z1 and Z3 it is:

ψ (r) = e−
√

m1m3
m1+m3

|Z1Z3|r (4.2.66)

The Three-body Asymptotic Behaviour Extending this to 3 body systems is more

difficult as the repulsive interaction between the two like-charged particles is difficult

to deal with. It is possible to extend the two-body solution only when ignoring this

repulsive interaction, and assuming the non-interacting particle model between the

like-charged particles. There are 4 asymptotic regions for three-body systems, [8] and

here the same notation used in other papers will be used. [15,16] Ω0 denotes the first

asymptotic region where all inter-particle distances tend to infinity. In this region

the independent particle approximation would be valid since any particles would

be too far apart for interaction; Ω1, Ω2, Ω3 denote the other 3 regions and they

represent the systems where only one particle tends towards infinity, with Ω1 for

particle 1 tending towards infinity Ω2 for particle 2 and Ω3 for particle 3.

The Ω0 Region The region best described is that of Ω0 since the particles

are not interacting in this region. This allows for some useful simplifications and

approximations; (i), the interactions between the like-charge particles is negligible

and the inter-particle coordinate between the 2 like-charge particles can be ignored.

For this discussion let this coordinate be r3; (ii), the Hamiltonian becomes the

sum of two, two-body Hamiltonians one for the r1 coordinate and one for the r2
coordinate; [84] (iii), the energy becomes the sum of two, two-body energies, one for

r1 and one for r2 . [84] With these approximations we can calculate the asymptotic

nature for this region, in exactly the same way as the two-body system.

(
Ĥ − E3b

)
ψ (r1, r2) = 0 (4.2.67)

When assuming no interaction along the r3 coordinate, the energy becomes the sum

of two, two-body energies

E3b = E13 + E23 (4.2.68)

where Eij is the two-body E2b energy (See Eq. (4.2.63)) corresponding to the in-

teraction between particles connected by that coordinate i.e. for the oppositely
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charged particles connected by r1 the energy is E13 and for those connected by r2 it

is E23. The Hamiltonian is also the sum of two, two-body Hamiltonians. When all

inter-particle distances tend towards infinity this Hamiltonian reduces to the kinetic

energy, as in the two-particle case.

as r1 → ∞ and r2 → ∞ (4.2.69)

V̂ → 0 and T̂ = −1

2

δ2

δr21
− 1

2

δ2

δr22
(4.2.70)(

−1

2

δ2

δr21
− 1

2

δ2

δr22
− (E13 + E23)

)
ψ (r1, r2) = 0 (4.2.71)

Applying the same characteristic equations as before yields:

ψ (r1, r2) = e−
√
−2E13r1−

√
−2E23r2 (4.2.72)

This can be further simplified by assuming that the interaction of the two pairs of

attracting particles is the same, i.e. E13 = E23 this is valid for the two electron case

in the ground state when assuming no repulsive interaction. The expression then

becomes:

ψ (r1, r2) = e−
√
−2E13(r1+r2) (4.2.73)

This is in principle an exact form of the three-body asymptotic behaviour, for the

region Ω0.

The two-body energy (E13) can be expanded using Eq. (4.2.63) to give the full

particles in motion solution:

E13 =− Z2
1Z

2
3

2n2

m1m3

m1 +m3

(4.2.74)

e−
√
2E13(r1+r2) =e−

√
Z2
1Z

2
3

n2
m1m3
m1+m3

(r1+r2) (4.2.75)

By applying the conditions for an infinite nuclear mass atom i.e. where n =

1, Z1 = −1, Z3 = Z, m1 = 1, m3 = ∞. Then the fixed particle hydrogenic case is

acquired as:

ψ (r1, r2) =e−Z(r1+r2) (4.2.76)
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Some authors have found that when adding a NLP into the exponential term repre-

senting the asymptote, such a parameter is optimal when it approximately equals

Z. [84] This asymptotic form used by Pekeris has several limitations, firstly the asymp-

totic form of the wavefunction is only valid in the Ω0 region where all the particles

are infinitely far apart. This means that it is not valid for the other regions, where

only one particle is infinitely far apart from the other two (See work by Kim et al. [15]

and Alt et al. [16] for attempts to extend to all regions). When the majority of the

mass is on a single particle and the other two particles are the same, such as in He,

the system behaves much like the two-body asymptote upon which this asymptotic

form is based, i.e. when 2 particles can freely escape to infinity, in these cases the

formal solution should be a good approximation. In a case where two particles are

much heavier and one much lighter, such as in H +
2 , the asymptotic form here would

not be expected to perform well (this is shown in Section 4.4.1) since the two protons

would not be expected to move much relative to the electron. As a result it is much

harder to separate all particles uniformly to infinity. Additionally the r3 (this is the

proton−proton distance) interaction would be expected to be more significant.

The last limitation of our asymptotic form is that we assumed that E13 = E23.

This however is not always the case, particularly if, for example, one electron is

in a higher excited state. To demonstrate this, consider the full two-body (2Body)

energy for an atom with infinite nuclear mass.

E2b = − Z2

2n2
(4.2.77)

If the first electron is in the n = 1 ground state and the second in the n = 2 excited

state then E13 6= E23. In this case the asymptotic condition would instead have the

full form of:

ψ (r1, r2) = e
−
√

Z2

2×12
r1−

√
Z2

2×22
r2 (4.2.78)

4.2.8. Non-Linear Variational Parameters: The Wavefunction

Forms

The non-linear variational parameters in the wavefunction were chosen specifically

to alter the exponential of the wavefunction to increase the rate of convergence,
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whilst keeping the possibility of the system to choose the formal solution. Therefore

in this report the parameters will be referred to as being part of the asymptote.

However, as mentioned earlier, they appear in the definition of the coordinate system.

This exponential must always have a negative exponent to satisfy the orthogonality

relationship of Eq. (4.2.25), but also to ensure that the wavefunction does “die off”

at long range. When a particle has sufficient distance from the other two particles

it becomes unbound. This means that the exponent affects the asymptotic nature

of the wavefunction. Therefore appropriate non-linear variational parameters in

the exponent alter the point at which the particle becomes unbound. The original

wavefunction by Pekeris [71] had an exponent of the form:

e−
√
E(r1+r2) (4.2.79)

As discussed this is the formal solution for the Ω0 region with symmetric systems

when assuming no interaction on the r3 coordinate. There are no non-linear varia-

tional parameters, and the asymptote has no dependence on the r3 coordinate. The

wavefunction used by Cox et al. has an exponential of the form:

e−
√

E
K
(r1+r2) (4.2.80)

Both of these forms of the wavefunction were shown to give good energy convergence

for atom-like systems. [69–71,73,86,87] However for molecule-like systems the convergence

of the energy was not as pronounced. [88] Both of these wavefunction have been

implemented within this project and their performance is discussed later. In this

work the following three exponentials forms are implemented:

e−α(r1+r2) (4.2.81)

e−α(r1+r2)−γr3 (4.2.82)

e−αr1−βr2−γr3 (4.2.83)

In Eq. (4.2.76) it can be seen that the asymptote for the formal solution is directly

related to the charge of nucleus. The exponent in Eq. (4.2.81) was chosen to inves-

tigate this property. The wavefunction of Drake et al.’s [89] had an exponent with a

106



4. The Non-Relativistic Ground State Energies of Three-body Systems

form similar to this as e−αr1−βr2 , where they showed that in the Helium ground state

α has an optimum value of the charge (Z) and β an optimum value of charge minus

one (effective charge), which is the screened charge. This form was not possible for

symmetric systems in this methodology as will be discussed later, however it does

show for the atomic systems Drake investigated, that the exponential form has a

dependence on the nuclear charge as suggested by the formal solution. The exponent

in Eq. (4.2.81) still assumes that the interaction between the like-charged particles

is negligible. The exponent in Eq. (4.2.82) extends this by introducing this extra r3
coordinate into the asymptote; this was chosen to investigate r3 dependence on the

asymptote, particularly for systems where this coordinate is expected to be more

important such as in molecular systems. The exponent in Eq. (4.2.83) is suitable

for systems without fermionic exchange for reason explained in Section 4.2.9. This

form separates the asymptote of the like-charged particles.

4.2.9. The Effects of Fermionic Symmetry

When two particles are identical and have half integer spin the symmetry of the

system must be taken into account. Since two identical particles with half integer

spin undergo a process known as fermionic exchange [17,84] where fermionic particles

are antisymmetric with respects to exchange. To accommodate this the trial wave-

function takes on the following form where the z1 and z2 coordinates have been

interchanged:

ψ (z1, z2, z3) = ψ (z1, z2, z3)± ψ (z2, z1, z3) (4.2.84)

This expands to the following:

ψ (z1, z2, z3)± ψ (z2, z1, z3) =
∞∑

lmn=0

Clmn

(
e−

1
2
(Az1+Bz2+Cz3)Ll (Az1)Lm (Bz2)

× Ln (Cz3)± (1− δlm) e−
1
2
(Az2+Bz1+Cz3)Ll (Az2)

Lm (Bz1)Ln (Cz3)
)

(4.2.85)

When the sign is positive it is the symmetric case and when it is negative it is the

anti-symmetric case. States such as the 1S state are symmetric. By exploiting the

symmetry the number of terms in the wavefunction can be reduced. The symmetry
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rules lead to some of the eigenvalues being either degenerate, or zero. This has been

taken into account and as a result the symmetric and antisymmetric wavefunctions

have fewer terms in them than the asymmetric wavefunctions for the same Pekeris

shell (See Section 4.2.10).

Why the β parameter and fermionic exchange causes the loss of orthogonal-

ity When incorporating the β parameter into the symmetric wavefunction, the

orthogonality is lost. This can be seen when taking the symmetric basis function:

e−
1
2
(Az1+Bz2+Cz3)Ll (Az1)Lm (Bz2)Ln (Cz3)

+ e−
1
2
(Az2+Bz1+Cz3)Ll (Az2)Lm (Bz1)Ln (Cz3) (4.2.86)

and multiplying by itself to simulate ψ?ψ:

(
e−

1
2
(Az1+Bz2+Cz3)Ll (Az1)Lm (Bz2)Ln (Cz3)

+e−
1
2
(Az2+Bz1+Cz3)Ll (Az2)Lm (Bz1)Ln (Cz3)

)2
= e−(Az1+Bz2+Cz3)Ll (Az1)

2 Lm (Bz2)
2 Ln (Cz3)

2

+e−(Bz1+Az2+Cz3)Ll (Az2)
2 Lm (Bz1)

2 Ln (Cz3)
2

+2e−
1
2
((A+B)z1+(B+A)z2)−Cz3Ll (Az1)Ll (Az2)Lm (Bz2)Lm (Bz1)Ln (Cz3)

2

(4.2.87)

The last term in Eq. (4.2.87) no longer satisfies the Laguerre polynomial orthog-

onality relationship (Equation (4.2.25)) since the expression inside the Laguerre

polynomial terms for z1 and z2 (Ll (Az1)Lm (Bz1) and Ll (Az2)Lm (Bz2)) differ

from each other due to different non-linear variational parameters and those in the

exponent e− 1
2
(A+B)z1 , resulting in an expression that does not resemble the orthogo-

nality relationship. However when A = B, orthogonality is maintained. As a result

of this it is not possible to include an exponent with a B parameter in systems

with fermionic exchange whilst retaining the orthogonality relationship and series

solution. The non-linear variational parameter B can be used however in systems

without this exchange, such as HD+. when all particles differ from each other. In

these asymmetric cases all 3 non-linear variational parameters can be used with the

wavefunction shown in Eq. (4.2.83).

108



4. The Non-Relativistic Ground State Energies of Three-body Systems

l m n ω

0 0 0 0
0 0 1 1
0 1 0 1
0 0 2 2
0 1 1 2
0 2 0 2
1 1 0 2

Table 4.2.2.: The first few Pekeris shells for
symmetric systems

4.2.10. Pekeris Shell

Within this thesis the term Pekeris shell is on occasion used to define the number of

terms in the trial wavefunction. When the number of terms in the trial wavefunction

is increased it is done in whole Pekeris shell number. Each Pekeris shell (ω) defines

a set of l, m and n for a wavefunction where only l+m+ n ≤ ω are included in the

trial wavefunction. For further detail refer to the original paper by Pekeris et al. [71]

As an example Table 4.2.2 lists the first few Pekeris shells and their associated l, m

and n values for the symmetric case.

The number of terms in a complete Pekeris shell may be generated with the

following equations:

Number of terms asymmetric wavefunction

kasym =1 +
11

6
ω + ω2 +

1

6
ω3 (4.2.88)

Number of terms symmetric wavefunction

ksym =
15

16
+

17

12
ω +

5

8
ω2 +

1

12
ω3 +

1

16
(−1)ω (4.2.89)

Number of terms antisymmetric wavefunction

kantisym =
15

16
+

17

12
(ω − 1) +

5

8
(ω − 1)2 +

1

12
(ω − 1)3 +

1

16
(−1)(ω−1) (4.2.90)

4.3. Implementation

In this Chapter ground state variationally time independent energies were calculated

using the series solution method as described in detail in Section 4.2.5. The wave-

function was formed from a series of Laguerre polynomials in perimetric coordinates
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(Equation (4.2.1)). The coefficients of the wavefunction were determined by solving

the generalised eigenvalue equation. This was done by first forming a general matrix

using series solution that represents the integral
∫ ∞

0

∫ ∞

0

∫ ∞

0

ψ?Ĥψ dz1 dz2 dz3. By

general matrix it is meant that mi’s, Zi’s are left undetermined at said stage. Then

by using Cholesky Decomposition, followed by Householder reduction [29,30] and then

solving the eigenvalue problem, the eigenvalues and eigenvectors were acquired using

multiple relatively robust representations (MR3). [90,91] The non-linear variational

parameters were optimised to a minimum using the methods Numerical Recipes opti-

misation (NROpt) and bound optimisation by quadratic approximation (BOBYQA)

as described in Section 3.2.1 on page 35.

4.4. Results and Discussion

4.4.1. The Effect of the Non-Linear Variational Parameters

When the number of basis functions in a trial wavefunction is increased the energy

decreases. The energy of a variational calculation, as employed here, can never go

below the true energy that would be acquired with an exact wavefunction. [17,84,92]

Each additional basis function can be thought of as a corrective term that allows

the wavefunction to achieve a “shape” that better describes the system. The better

a wavefunction form describes the system, the fewer basis functions are required to

achieve a given energy. For this reason using non-linear variational parameters can,

with an appropriate value, allow the calculation of better energies for the system with

fewer basis functions and therefore in less time. With any trial wavefunction a point

will be reached whereby increasing the number of basis functions does not decrease

the energy calculated significantly. The definition of “significantly” depends on the

desired accuracy. At this point it is possible to say that the energy is converged. This

is one of the measures by which we compare our wavefunctions; a better wavefunction

will reach this convergence point with fewer basis functions.

In this section energies are presented that were calculated using each of the wave-

functions described above for various three-body systems as a function of the Pekeris

shell. The rate of convergence is studied for each of the wavefunctions. Different

systems such as atomic, molecular and exotic are expected to converge to different
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degrees for different forms of the wavefunction. An atomic system is defined as one

where the uniquely charged particle is much heavier than the other two. A molecular

system is defined as one with the two identically charged particles much heavier than

the uniquely charged particle; and the term “exotic” is used for the other systems in

between these extremes. They are named “exotic” as these systems usually involve

exotic particles such as muons (µ). In each of the following tables the digits that are

in bold are considered converged. Converged is defined as either matching to the

best literature data available or matching to the best higher order calculation when

literature data are not available. The benefits of including the non-linear variational

parameters on the convergence will be studied.

The following notations are used to describe each wavefunction and all of these

have been implemented in code in this work.

ψpekeris refers to the original Pekeris wavefunction with the exponential form in

Eq. (4.4.1). [69–71] The asymptote includes the
√
E. Unlike in the other wavefunction

we will discuss this wavefunction has no non-linear variational parameters. The

coordinate does however scale with
√
E.

e−
√
E(r1+r2) ≡ e−

1
2

√
E(z1+z2+2z3) (4.4.1)

ψcox refers to the wavefunction used by Cox et al. [73,86,87] with the exponential

form in Eq. (4.4.2). This has a single non-linear variational parameter where the

parameter space scales with
√

E
K
.

e−
√

E
K
(r1+r2) ≡ e−

1
2

√
E
K
(z1+z2+2z3) (4.4.2)

ψA will refer to the wavefunction with the exponential form in Eq. (4.4.3). This

wavefunction constitutes the first of the wavefunctions developed in this work (fol-

lowing the work of Galvez et al. [74,93]). It has one non-linear variational parameter

but does not scale with
√
E as the ψcox wavefunction does. ψA and ψcox theoretically

cover the same domain, and therefore a K value, along with the
√
E value, can be

inter-converted to the A value in this wavefunction.

e−α(r1+r2) ≡ e−
1
2
A(z1+z2+2z3) (4.4.3)
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ψAC refers to the wavefunction with the exponential form in Eq. (4.4.4). This is

the second wavefunction developed in this work and incorporates freedom for the r3
variable to appear in the wavefunction. When C = 2A in Eq. (4.4.4) then γ = 0 and

this wavefunction takes the same form as in Eq. (4.4.3).

e−α(r1+r2)−γr3 ≡ e−
1
2
(A(z1+z2)+Cz3) (4.4.4)

ψABC will refer to the wavefunction with the exponential form in Eq. (4.4.5). This

is the third wavefunction developed in this work and incorporates freedom for all 3

non-linear variational parameters to appear in the exponent with any real positive

value. Therefore all 3 inter-particle coordinates are given freedom to appear freely

in the asymptotic form. When A = B in Eq. (4.4.5) then this wavefunction takes

the same form as Eq. (4.4.4). Additionally when C = A+B then γ = 0 and when

A = B and C = A+B then this wavefunction takes the same form as Eq. (4.4.3).

e−αr1−βr2−γr3 ≡ e−
1
2
(Az1+Bz2+Cz3) (4.4.5)

In the following data, energy convergence is studied by comparing the performance

of the different wavefunctions. The first 3 wavefunctions conform to the formal

asymptotic solution designed for atomic systems with no r3 in the asymptote; they

perform well for such atomic systems, but as will be shown, perform less well for other

systems. The last two wavefunctions were designed for systems not adhering to the

formal solution, such as molecular systems. The α parameter in these wavefunctions

according to the formal solution in Eq. (4.2.73) would tend towards
√
−2E2b (for

an atom with infinite nuclear mass
√
−2E2b is Z3 in Eq. (4.2.76)) and this will be

discussed below.

The non-linear variational parameters form an energy surface and it will be shown

that for the molecular systems, this surface has more that one minimum. These

parameters are optimised using the NROpt or BOBYQA method described earlier

(Section 3.2.1 on page 35). All of these systems were calculated with the nucleus in

motion, and atomic units, unless otherwise stated. When comparing to literature it

is important to keep in mind that the literature values use the 2006 CODATA [94]

values of recommend physical constants for the masses of particles. However, in this
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work we use the 2010 CODATA [18] values, as a result the values reported here will

not necessarily match those reported else where depending on the significant figures

that changed between the 2006 and 2010 CODATA values.

The Atomic H– and Molecular H +
2 Case The two extremes of 3Body systems

namely atomic and molecular are presented first; atomic has a prototypical three-

body example in H– and molecular has the prototypical three-body example of H +
2 .

H– is defined as atomic, as the uniquely charged particle is much heavier whereas

H +
2 is molecular as the two identically charged particles are much heavier than the

uniquely charged particle.

Atomic The H– system is firmly an atomic system with a single, heavy, charged

particle. The data in Table 4.4.1 shows that all of the wavefunctions have a com-

parable energy convergence, and the α parameter is approximately the same as the

charge of the nucleus as described in the formal solution in Eq. (4.2.75). This shows,

that at least in these cases, the atomic systems do conform to the Ω0 asymptotic

region (Section 4.2.7). The He system also firmly conforms to the expected atomic

behaviour. It has an α parameter conforming to the Ω0 region and converges rapidly

with all types of wavefunction studied here.

The energies at their best have been converged to 11 s.f. for H– and 10 s.f. for

He. The best literature has this value converged to 33 s.f. and 42 s.f. respectively.

Although theoretically the wavefunctions discussed in this work, with sufficient

number of terms and numerical precision, could achieve such accuracy, following the

discussion by Schwartz, [62] such accuracies are deemed unnecessary for real-world

application, particularly when considering that these calculations do not include

relativistic effects that become important on such high accuracy levels. Additionally

the finite masses are only known to 6 s.f. to 12 s.f. and are subject to change upon

future revisions of their mass, thereby invalidating the higher accuracy calculations

with the older masses. Furthermore the computational time could prove untenable.

To understand the level of accuracy these degrees of convergence give, consider that

1Eh is 2625.499 64 kJmol−1 [18] and that an error on the 10th decimal place of H– in

Hartree represents an error of the order of 2.6× 10−7 kJmol−1 i.e. a tiny error.
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Molecular The molecular systems, which have two masses much heavier than

the third, behave in a contrasting fashion to the atomic. According to the results as

shown in Table 4.4.2, the wavefunctions with the r3 term in the asymptote (ψAC and

ψABC) had the best energy convergence. This is a pronounced difference to that in

the atomic case. In the atomic case the γ parameter was much smaller typically less

than one. The α parameter was also larger than expected according to Eq. (4.2.66),

as it should also have a value of 1. These results show that the formal solution of

the Ω0 asymptotic region is not appropriate in the molecular systems.

The results in Table 4.4.2 converged to 9 s.f. this is a great improvement over the

ψpekeris, ψcox and ψA wavefunctions. Highly accurate works in the literature have

converged these systems to 20 s.f.. [95,96]

The Systems Between Atomic and Molecular In the following discussion mass

ratio, refers to the ratio of the uniquely charged particle to the identically charged

particles. The following systems presented here, have mass ratios between the atomic

and molecular extremes in order to investigate the point at which the γ parameter

begins to have a significant effect. This is determined by accessing the rate of

convergence, and when the α parameter changes from the formal solution.

Atom-Like Table 4.4.3 contains the results of studies on the atom-like “exotic”

systems investigated in this chapter. The α parameter did not conform to the

solution of the asymptotic region of Ω0. The γ parameter, although not always zero,

had little effect on the convergence rate of the energy. Table 4.4.3 details the results

calculated for these atom-like systems.

Atom-like systems are not commonly found in nature. µH– is an exotic system in

that it has muons instead of electrons. The author is unaware of any experimental

data for such a species. However theoretically it has a bound state, as it is a symmet-

ric system. [97] The energy value is considerably larger than the other systems and

this is because the energy between two oppositely charged particles is proportional

to the reduced mass. This energy value matches that reported by Bhattacharyya

et al. [63] The muonium negative ion (Mu– ) was chosen as a lighter isotope of H–

to investigate the effect of reducing the mass ratios between the nucleus and the

electrons, these are ≈ 1
9
for µH– and ≈ 1

206
for Mu– .
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From Table 4.4.3 the ψA and ψAC wavefunctions perform noticeably better than

the ψpekeris type wavefunction, and slightly better than the ψcox wavefunction.

Molecule-Like The Positronium negative ion (Ps– ) is an exotic species and, with

all particles the same mass, it lies between both atomic and molecular. For reasons

detailed later in Section 5.4.1 and in the work by Mátyus et al. [100] it is considered as

a molecule-like species and therefore as a very light isotope of H +
2 with a mass ratio

of the nucleus to electron of 1:1. All of the wavefunctions performed well, achieving

good convergence. Unlike the molecule cases of H +
2 etc. the γ in the asymptotic form

of wavefunctions is close to zero and behaves like the atomic cases. For some cases

however the γ is large for example with Mu +
2 here the inclusion of γ benefits the

energy conversion by 3 s.f.. The d+t+µ– system is known to catalyse nuclear fusion

at room temperature. [13,14,64,66,101] However the inclusion of β parameter resulted in

no additional benefit to the convergence of the energy. This is of no surprise as the

mass ratios of d to t relative to d to µ are much smaller, leading to an anticipated

lack or deviation between the α and β parameters of this system, resulting in no

additional benefit to the rate of convergence. In Table 4.4.5 an example is given

of a system where β is important to the rate of convergence. This is a system of

importance in Chapter 5. In that chapter many systems with significantly different

α and β were determined. The details of these systems and why they were calculated

are given in Chapter 5.

118



4. The Non-Relativistic Ground State Energies of Three-body Systems

M
u

+ 2
En

er
gy

(a
.u
.)

N
o.

of
Te

rm
s

Pe
ke
ris

Sh
el
l(
ω
)

ψ
p
ek
er
is

K
ψ
co
x

α
ψ
A

α
,γ

ψ
A
C

95
8

−
0.

57
92

29
16

01
08

89
0.
25

−
0.

58
33

04
61

38
03

19
1.
52

−
0.

58
33

04
61

38
03

19
0.
71

,3
.0
0

−
0.

58
50

77
60

23
36

10

25
2

12
−

0.
58

18
31

36
87

21
10

0.
13

−
0.

58
48

91
16

24
54

87
2.
10

−
0.

58
48

91
16

24
54

87
0.
65

,5
.0
9

−
0.

58
5

12
6

05
34

28
67

71
5

18
−

0.
58

42
39

13
97

28
42

0.
10

−
0.

58
5

12
17

21
21

13
3

2.
41

−
0.

58
5

12
17

21
21

13
6

0.
74

,6
.1
4

−
0.

58
5

12
6

09
8

25
19

7

10
78

21
−

0.
58

46
34

83
02

18
53

0.
10

−
0.

58
5

12
56

19
89

21
3

2.
48

−
0.

58
5

12
56

19
89

22
0

0.
68

,4
.6
6

−
0.

58
5

12
6

09
8

25
23

4

28
56

30
−

0.
58

50
44

35
07

26
78

0.
08

−
0.

58
5

12
6

09
78

00
42

2.
69

−
0.

58
5

12
6

09
78

00
38

0.
66

,9
.3
7

−
0.

58
5

12
6

09
8

25
23

4

Li
te
ra
tu
re

−
0.
58

51
26

09
72

19
19

3[7
4]

µ
H

+ 2
En

er
gy

(µ
.a
.u
.)

N
o.

of
Te

rm
s

Pe
ke
ris

Sh
el
l(
ω
)

ψ
p
ek
er
is

K
ψ
co
x

α
ψ
A

α
,γ

ψ
A
C

95
8

−
0.

49
43

72
81

75
40

85
0.
43

−
0.

49
4

38
53

26
77

26
0

1.
07

−
0.

49
4

38
53

26
77

26
0

0.
63

,0
.7
0

−
0.

49
4

38
67

54
28

74
1

25
2

12
−

0.
49

4
38

60
48

22
25

6
0.
38

−
0.

49
4

38
6

80
89

64
21

1.
14

−
0.

49
4

38
6

80
89

64
21

0.
78

,0
.5
9

−
0.

49
4

38
6

81
21

52
87

71
5

18
−

0.
49

4
38

6
80

95
50

18
0.
32

−
0.

49
4

38
6

81
2

27
66

6
1.
23

−
0.

49
4

38
6

81
2

27
66

6
1.
00

,0
.5
6

−
0.

49
4

38
6

81
2

27
86

6

10
78

21
−

0.
49

4
38

6
81

20
24

76
0.
27

−
0.

49
4

38
6

81
2

27
88

9
1.
36

−
0.

49
4

38
6

81
2

27
89

0
1.
08

,0
.6
2

−
0.

49
4

38
6

81
2

27
92

6

28
56

30
−

0.
49

4
38

6
81

2
27

46
4

0.
19

−
0.

49
4

38
6

81
2

27
93

8
1.
25

−
0.

49
4

38
6

81
2

27
93

6
0.
85

,0
.4
5

−
0.

49
4

38
6

81
2

27
93

0

Li
te
ra
tu
re

−
0.
49

43
86

81
52

12
83

50
26

52
22

66
[8

]

Ps
–

En
er
gy

(a
.u
.)

N
o.

of
Te

rm
s

Pe
ke
ris

Sh
el
l(
ω
)

ψ
p
ek
er
is

K
ψ
co
x

α
ψ
A

α
,γ

ψ
A
C

95
8

−
0.

26
19

93
94

38
92

81
2.
17

−
0.

26
2

00
46

69
64

79
6

0.
35

−
0.

26
2

00
46

69
64

79
6

0.
36

,−
0.
01

−
0.

26
2

00
46

70
74

62
3

25
2

12
−

0.
26

2
00

48
76

47
63

6
1.
68

−
0.

26
2

00
5

05
94

07
51

0.
40

−
0.

26
2

00
5

05
94

07
51

0.
39

,0
.0
0

−
0.

26
2

00
5

05
94

09
58

71
5

18
−

0.
26

2
00

5
06

97
12

28
1.
20

−
0.

26
2

00
5

07
00

07
40

0.
47

−
0.

26
2

00
5

07
00

07
40

0.
43

,0
.0
4

−
0.

26
2

00
5

07
00

10
72

10
78

21
−

0.
26

2
00

5
07

01
79

33
1.
05

−
0.

26
2

00
5

07
01

82
97

0.
50

−
0.

26
2

00
5

07
01

82
97

0.
48

,0
.0
2

−
0.

26
2

00
5

07
01

83
05

28
56

30
−

0.
26

2
00

5
07

0
23

02
4

0.
75

−
0.

26
2

00
5

07
0

23
18

8
0.
59

−
0.

26
2

00
5

07
0

23
19

0
0.
29

,0
.2
2

−
0.

26
2

00
5

07
0

22
75

5

Li
te
ra
tu
re

−
0.
26

20
05

07
02

32
98

01
07

7[1
02

]

µ
D
T

+
En

er
gy

(µ
.a
.u
.)

N
o.

of
Te

rm
s

Pe
ke
ris

Sh
el
l(
ω
)

α
ψ
A

α
,γ

ψ
A
C

α
,β

,γ
ψ
A
B
C

16
5

8
1.
28

−
0.

53
85

75
21

17
86

84
0.
65

,1
.4
5

−
0.

53
8

59
48

99
13

40
6

0.
61

,0
.6
9,

1.
46

−
0.

53
8

59
4

90
50

47
87

45
5

12
1.
38

−
0.

53
8

59
48

58
17

06
1

0.
80

,1
.3
3

−
0.

53
8

59
4

97
04

83
22

0.
76

,0
.8
6,

1.
33

−
0.

53
8

59
4

97
04

83
22

13
30

18
1.
38

−
0.

53
8

59
4

97
04

70
80

1.
05

,1
.1
1

−
0.

53
8

59
4

97
0

52
71

2
1.
18

,0
.7
9,

1.
00

−
0.

53
8

59
4

97
0

52
70

9

20
24

21
1.
53

−
0.

53
8

59
4

97
0

52
61

3
1.
27

,0
.7
5

−
0.

53
8

59
4

97
0

52
71

7
0.
68

,0
.9
5,

1.
75

−
0.

53
8

59
4

97
0

52
71

5

54
56

30
1.
13

−
0.

53
8

59
4

97
0

52
71

0
0.
81

,0
.4
2

−
0.

53
8

59
4

97
0

52
71

7
0.
75

,0
.8
2,

0.
35

−
0.

53
8

59
4

97
0

52
71

1

Li
te
ra
tu
re

−
0.
53

85
94

97
17

09
48

07
30

[8
]

T
ab

le
4.

4.
4.

:
T

he
en

er
gy

an
d

no
n-

lin
ea

r
va

ria
tio

na
lp

ar
am

et
er

s
(α

,γ
w

he
re

α
=

B
+
C
−
A

2
an

d
γ
=

A
+
B
−
C

2
)

of
th

e
“m

ol
ec

ul
e”

lik
e

sy
st

em
s

w
ith

di
ffe

re
nt

nu
m

be
r

of
te

rm
s

in
th

e
w

av
ef

un
ct

io
n.

µ
.a

.u
.)

is
m

uo
n

at
om

ic
un

its
w

he
re

th
e

m
as

s
of

th
e

m
uo

n
is

un
ity

ra
th

er
th

an
th

e
el

ec
tr

on
.

C
om

pa
re

d
to

be
st

av
ai

la
bl

e
lit

er
at

ur
e

119



4. The Non-Relativistic Ground State Energies of Three-body Systems

p+
m

+
cr

e–
En

er
gy

(a
.u
.)

N
o.

of
Te

rm
s

Pe
ke
ris

Sh
el
l(
ω
)

α
ψ
A

α
,γ

ψ
A
C

α
,β

,γ
ψ
A
B
C

16
5

8
0.
47

−
0.
49
88

30
31
63

31
13

0.
50
,−

0.
03

−
0.
49
88

31
49
74

09
72

1.
00
,−

0.
00
,0
.0
0

−
0.
49
97

27
83
97

12
23

45
5

12
0.
37

−
0.
49
94

68
75
18

98
55

0.
50
,−

0.
13

−
0.
49
94

72
69
63

76
79

1.
03
,0
.3
0,

−
0.
30

−
0.
49
97

27
83
97

12
22

13
30

18
0.
29

−
0.
49
96

59
30
36

80
76

0.
50
,−

0.
22

−
0.
49
96

61
59
49

88
86

1.
02
,0
.3
4,

−
0.
34

−
0.
49
97

27
83
97

12
23

20
24

21
0.
26

−
0.
49
96

87
89
59

56
38

0.
50
,−

0.
24

−
0.
49
96

89
51
40

25
82

1.
03
,0
.4
5,

−
0.
45

−
0.
49
97

27
83
97

12
23

T
ab

le
4.

4.
5.

:
A

sy
st

em
w

he
re

th
e
β

pa
ra

m
et

er
is

im
po

rt
an

t
fo

r
th

e
co

nv
er

ge
nc

e
of

th
e

en
er

gy
.

T
hi

s
sy

st
em

us
es

th
e

co
nc

ep
t
m
cr

th
at

w
ill

be
de

sc
rib

ed
la

te
r

in
C

ha
pt

er
5

in
th

is
ca

se
th

is
m

as
s

is
≈

2.
21

a.
u.

120
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4.4.2. The Energy Surfaces of the Non-Linear Parameters

In this section the effects that the non-linear variational parameters have on the

energy is shown in a graphical form. These energy surfaces are displayed as contour

plots. The contour plots provide insight into how the parameters affect the energy

of the wavefunction, revealing patterns and general trends that can be used to best

decide how to find global minima. In the following contours the Z-axis is the same

used in Figures 3.2.1 and 3.2.2 (which is Log10 (E (A,C)− Emin)). This scales the

contours such that topological detail can be seen regardless of the apparent flatness

of the surface. The important aspect to this discussion is the different topologies

and not the absolute values of the Z-axis and therefore absolute contour values are

not shown.

Atom and Molecule Energy Surfaces It is seen that for atomic systems the energy

surfaces have a single minimum along the C = 2A line, where γ = 0 (this line is

shown in Figure 4.4.1a as a green line). In molecular systems this is a more complex

case with multiple minima away from the C = 2A line where γ 6= 0.

Atom: He Figure 4.4.1a is the contour plot of the A and C non-linear variational

parameters against energy on the x y and z axis respectively of helium. There is

only a single minimum on the surface. This minimum is found when C = 2A that

is when γ = 0. This energy surface is large and flat and continues to get flatter as

the number of terms in the wavefunction increases, as is shown in Section 4.4.2.

Molecule: H +
2 The molecular hydrogen cation is used as the prototypical exam-

ple of a molecule. Figure 4.4.1b shows that the energy surface is complex in contrast

to the He case (Figure 4.4.1a). Multiple minima are present over a range of values.

The lowest minimum is found to the right of the area where C = 2A and γ = 0.

This was found to also be the case for all molecular systems investigated. It became

necessary to take extra attention to minimise these values to their global minimum.

This minimisation was done using the steps outlined in Section 3.4.1 on page 76.

Exotic Systems The contour plots in the region between archetypal atoms and

molecules shows a progression from a single minimum; to multiple minima clustered
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Figure 4.4.1.: The A C contour plots of the He (a) and H +
2 (b) system, with a

1078-term wavefunction.
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Figure 4.4.2.: The A C contour plots of the µH +
2 system, with a 1078-term wave-

function.

together; to multiple minima spread out over a wide domain.

Molecule-Like: µH +
2 The molecule-like “exotic” case of the energy surface was

chosen as µH +
2 . Figure 4.4.2 is the 1078 A C contour plot of the energy. It behaves

similar to the molecule case seen in Figure 4.4.1b however this case has fewer minima

that are more closely packed towards the to origin.

The Effects of Number of Terms in the Wavefunction With the atom and atom-

like cases, increasing the number of terms in the wavefunction causes the A and C

to change only subtly. However in the molecule and molecule-like cases, a dramatic
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Figure 4.4.3.: The A C contour plots of the H +
2 system, with a different numbers

of term wavefunction.

change could be observed. The non-linear variational parameters would shift further

away from the C = 2A case as the number of terms increased. Figure 4.4.3 show this

for the cases of H +
2 . For example with a 95-term wavefunction the minimum for H +

2

is located at A ≈ 6.5, C ≈ 1.5, increasing the number of terms to 715 terms shifted

the A parameter to ≈ 9.5 whilst C remained the same and increasing the number

of terms again to 1078 terms shifted A to approximately 15. Exotic molecule-like

systems such as Mu– also have this shifting minima effect but with a slower, less

pronounced shift as the number of terms increased.

4.4.3. Quality of the Wavefunction and Expectation Values

In addition to the energy of a system, wavefunctions can be used to calculate a

variety of other properties. Operators such as the Hamiltonian are mathematical

constructs that can represent physical observables. Any two operators that commute
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4. The Non-Relativistic Ground State Energies of Three-body Systems

have a shared eigenstate or wavefunction. As a result of this, for any operator that

commutes with the Hamiltonian we can use the wavefunction calculated previously

to calculate the expectation value of the associated observable. These operators that

represent physical observables are self-adjoint and bounded. [103,104] Here the quality

of the ψAC and ψABC wavefunctions are investigated. These two wavefunctions are

looked into with greater detail because they are capable of calculating both atomic

and molecular systems alike. They are the most parametrised and therefore may be

sacrificing quality of the wavefunction for a lower energy.

Expectation Values To calculate observables, expectation values are used. The

resulting expectation value represents the average value of the observable should it

be measured with no errors an infinite number of times. This makes expectation

values an excellent measure, since they give the value experimentalists would, on

average, observe.

Expectation values are calculated with the following equation where Ω̂ represents

any operator of an observable and ω the measurable value of that observable.
〈
Ω̂
〉

is the shorthand notation for the expectation value of that operator:

〈
Ω̂
〉
=

∫
ψ?Ω̂ψ dτ∫
ψ?ψ dτ

= ω (4.4.6)

Having a wavefunction that produces good energy values does not necessarily

translate to a good wavefunction that can calculate accurately any expectation value.

There are a few indications that can be used to test the quality of the wavefunction

where a quality wavefunction is defined as giving good expectation values. The virial

condition is one of these tests.

The Virial Condition is a property of a bound state system that can be calculated

for any system with a kinetic and potential energy. The virial condition states that

the potential energy divided by the kinetic energy will have the following relationship:〈
V̂
〉

〈
T̂
〉 =

2

ν
(4.4.7)
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System Virial Value Virial Value +2

H– −2.000 000 000 005 35 −5.35× 10−12

He −2.000 000 000 006 13 −6.13× 10−12

H +
2 −1.999 999 999 397 95 6.02× 10−10

D +
2 −2.000 000 000 192 07 −1.92× 10−10

DT+ −1.999 999 999 999 83 1.71× 10−13

Mu– −2.000 000 000 003 98 −3.98× 10−12

µH– −2.000 000 000 003 10 −3.10× 10−12

Mu +
2 −1.999 999 999 997 09 2.91× 10−12

µH +
2 −2.000 000 000 001 09 −1.09× 10−12

Ps– −2.000 000 000 004 22 −4.22× 10−12

µDT+ −1.999 999 999 999 83 1.71× 10−13

Table 4.4.6.: The virial condition of various systems. A virial condition of −2 indi-
cates a good quality wavefunction. The last column (Virial Value +2)
(〈η〉) demonstrates difference between the virial condition calculated

here and the true virial value.

For a general potential of the form:

V̂ =
∑
i,j

aijr
ν
ij (4.4.8)

For the coulomb potential well, ν = −1. This means that for the systems investigated

here: 〈
V̂
〉

〈
T̂
〉 =− 2 (4.4.9)

Table 4.4.6 reveals the results of this test, which indicate that good quality wave-

functions are calculated and that accurate expectation values can be calculated in

principle.

Cusp Conditions In addition to the virial condition the cusp condition is another

measure of wavefunction quality employed in this work. The cusp is the gradient of

the wavefunction at the point of coalescence of two or more particles. In the inter-

particle coordinate system (ri) this occurs when ri = 0. This gradient has a known

calculable value. As the wavefunction approaches zero the potential energy becomes

singular [105] (as ZiZj
rk

), however it still must remain self-adjoint and bounded. [105]

Therefore the kinetic energy must compensate. Kato [105] used theorems based on a
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self-adjoint and bounded Hamiltonian to form a relationship between the potential

and the kinetic energy at this singularity. For further details, refer to the work by

Kato. [105] The cusp values have the notation νij where i and j denote that this is the

cusp where particles i and j coalesce. The exact cusp conditions can be calculated

with Eq. (4.4.10). [105]

νij = ZiZj
mimj

mi +mj

(4.4.10)

Where mi and mj are the masses of particles i and j and where Zi and Zj are

the charges. Kato [105] first derived the cusp condition (with a spherical average

restriction) to clarify some of the singularities of the He wavefunction. Bingel [106]

later refined this by integrating Kato’s condition and removing the spherical average

restriction. The cusps are calculated in two different ways. The expansion method

is one proposed by Pack and Byers Brown. [57] These authors extended the method

to finite mass systems where all particles are in motion and proposed an expression

of Bingel’s form of the cusp in the form of an expansion. The second method uses

Dirac deltas, from the generic description:

νij =
∂ψ

∂rij

∣∣∣∣
rij=0

(4.4.11)

Expressing this with Dirac deltas gives Eq. (4.4.12). (A detailed discussion of Dirac

deltas is given in Section 6.2.2 on page 173)

νij =

∫∞
0
ψ? ∂

∂rij
ψδ (rij) dτ∫∞

0
ψ?ψδ (rij) dτ

(4.4.12)

Table 4.4.7 shows the calculated cusp values for both methods. For each system

the exact cusp (from Eq. (4.4.10)) is given in the final column.

From Table 4.4.7 it can be seen that for atomic systems the cusp condition is well

defined and equates to the exact value to several significant figures. For molecular

systems however, the wavefunction fails to calculate the exact nucleus-nucleus cusp

with either method. The Dirac method is the more accurate of the two giving values

closer to the exact value. The cusps for the molecule systems and even the molecule-

like systems are difficult properties to calculate. [107] To the authors knowledge, no

accurate calculation of the cusps for such systems have been made. Frolov et al.
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discuss this difficulty and its implications in calculating related properties, such

as nuclear fusion. [107] To understand the reasons for inaccurate cusp values with

molecular systems but not atomic, the probability densities at the origin of the

coordinate are considered. The gradient of the wavefunction at the origin defines

the cusp and therefore a well defined probability density at the origin, theoretically,

will have a well defined cusp. The probability of finding the two like-charge particles

(protons) near each other in H +
2 and other molecular systems is low compared to

atomic systems (in this latter case the probability of two electrons being near each

other in a singlet state). [74,108] Therefore an approximate wavefunction need only be

accurate in the areas away from the origin to obtain a good energy. For the area at

the origin, the trial wavefunction can simply set this probability density to zero, as

for all intents and purposes it is zero to numerical precision. Frolov [109] shows that

the probability of coalescence is too high in current calculations as these values would

result in a much easier nuclear fusion than is found in reality. Conversely for atomic

ground state 1S systems, the probability density is located at the origin and therefore

the wavefunction needs to describe this region accurately to determine the energy

accurately. To conclude, the cusp indicates the quality of the wavefunction at the

origin. For atomic systems we describe this origin accurately. For molecular systems

however this region is not described accurately here or anywhere else. However as

can be seen from the probability densities [74,108] the origin is a relatively unimportant

region for molecular systems, except for nuclear fusion and other processes that are

based on coalescence of these particles.

Expectation Values A good quality wavefunction is defined here as being able to

calculate accurate expectation values. Therefore the accuracy of various expectation

values calculated here, against available literature, provide a direct measure of the

quality of the wavefunction. Table 4.4.8-a shows the calculated expectation values

compared to available literature. These expectation values are for a number of

inter-particle distances and for the probability of the particles coalescing, 〈δ (r1)〉

for the probability of particles 1 and 3 coalescing and 〈δ (r3)〉 for particles 1 and 2.

〈δ(r2)〉 is not included for symmetric systems as 〈δ(r1)〉 ≡ 〈δ(r2)〉 where mZ1
1 = mZ2

2 .

Tables 4.4.8-a and 4.4.8-b shows that the values calculated here are in excellent

agreement with available literature, over the complete range from atomic systems to
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molecular systems.

Quality of the Wavefunction The quality of the wavefunction from the 3 measures

we have given here, suggests that the wavefunction is of sufficient quality to calculate

expectation values and thus real-world quantities other than the energy. This means

that neither the ψAC or the ψABC wavefunctions sacrifice quality of the wavefunction

for a lower energy as far as can be determined and therefore both wavefunctions are

of sufficient quality for further use throughout this work.

4.5. Summary & Conclusions

In summary, the wavefunction used here unifies the treatment of molecular and

atomic systems with a single wavefunction that can accurately model both atomic

systems, molecular systems and, in addition, be used for the exotic systems in

between. This is done with the time independent Schrödinger equation with all

particles kept in motion in a translation-free internal coordinate representation.

It was found that the inclusion of a single non-linear variational parameter does

help the convergence of atomic species compared to the original work on Laguerre

polynomial wavefunctions by Pekeris. [69–71] It does not however benefit systems where

two particles are much heavier than the third, such as in H +
2 . For these this work

found that the inclusion of a second non-linear variational parameter γ results in

a significant increase in the rate of convergence of the energy, at most to be an

additional 7 s.f. better convergence. The third parameter β was shown to be of

importance for systems with significant difference between particle 1 and particle 2

(the like-charged particles). When there is little mass difference between these two

particles then the β parameter did not help the rate of energy convergence. Based on

the work of Drake et al. [12,62] however this β parameter may prove useful for excited

states.

The use of these wavefunctions has allowed us to calculate excellent energies and

wavefunctions for a variety of systems. The quality of the wavefunction has been

confirmed with three different measures. It was found that atomic systems have

a well-defined wavefunction over all regions tested including at coalescence. For

molecular systems there was some difficulty calculating the wavefunction at the
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4. The Non-Relativistic Ground State Energies of Three-body Systems

like charge particle coalescence accurately enough for the evaluation of the cusps.

However it was concluded that this region is of much less importance for molecular

systems as there is a low probability of finding the two heavy particles at coalescence.

Therefore the wavefunction used here is of appropriate quality to calculate other

properties and phenomena for three-body systems. In order to treat both atomic

and molecular systems equally throughout the ψAC wavefunction is used herein for

symmetric systems (where particle 1 equals particles 2) and the ψABC is used for

asymmetric systems (where particle 1 is not equal to particles 2).
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5. The Stability Domain for S-States

of Unit Charge Coulomb 3-Body

Systems

5.1. Introduction

Several investigators have attempted to predict the stability of coulombic three-body

systems based on their mass ratios. [28,97,114–122] Whereas some have attempted to use

mass ratios to predict the stability of specific exotic systems such as p+e+e– [116,117]

and p+µ–e– [114,121] others have focussed on developing a general understanding of

the role that mass ratios play in the binding energy of coulombic three-particle

systems. [28,97,117–119] Stability of a system in this work is defined as the existence of

at least one bound state below the lowest continuum threshold. [28]

Here, three-body systems of the form
{
m±

1m
±
2m

∓
3

}
are considered interacting via a

coulomb potential but without recourse to the clamped-nucleus or BO approximation.

In the case of three-body atoms or ions, there is a unique choice of a body fixed

coordinate system for states with angular momentum J = 0, namely, that in which

the three particles define a plane and the translation-free internal coordinates are

chosen to be the inter-particle distances. [73] (For details see Section 4.2 on page 89)

The helium atom and hydrogen molecule and their ions have been the “laboratory”

of quantum chemistry for over 80 years, driving attempts to accurately model the

correlated motion of electrons and the chemical bond.

The exact minimum mass required to bind a, unit-charged, particle to a hydrogen

atom was debated during the late 60’s; this mass will henceforth be called the

critical mass (mcr). Of particular interest was the possibility of binding a positron
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5. The Stability Domain for S-States of Unit Charge Coulomb 3-Body Systems

to a hydrogen to form the p+e+e– system. Early calculations could not confirm

this system as unstable, [123] in the early 70’s however it was proved as unstable. [124]

Recently computer resources and techniques have become available to calculate the

critical mass, which is the point between stable and unstable, to a much more reliable

value. [120] As shown in Chapter 4 we have a suitable technique for calculating accurate

energies and wavefunctions, for a variety of systems ranging over both atomic and

molecular types. We are therefore in a prime position to calculate the minimum

mass that will form a bound three-body species. A stability boundary, or zone,

is calculated in which all systems within this zone are deemed stable. This looks

at stability of three-body systems in terms of mass as a whole, detailing whole

ranges of masses as stable. Such zones have been calculated and refined over the

years by various authors. Poshusta’s work in 1985 [117] forms a stability zone using

perturbation theory under the infinite mass approximation. It shows an early zone

of stability, revealing that certain mass ranges can be deemed stable rather than

individual systems. However it is limited by the BO approximation and Poshusta

concludes that the BO method is not adequate to describe critical masses, but rather

provides interpretations for a generalised stability zone. In this work we use our

accurate methodology, and two different methods, to calculate the stability zone.

The comparison between these methods gives greater insight into the importance

of various factors on the stability of three-body systems. The first method labelled

as Method 1 (Section 5.2.5), was developed by Martin et al. [97] who in their 1992

paper used this method to approximate the stability boundaries. In this chapter, as

in our recent paper [125] we used modern wavefunctions and techniques to recalculate

these boundaries more accurately, before comparing to Method 2 (Section 5.2.6).

Rebane et al. [119,120,126–129] is the primary author of what will later be referred to as

Method 2. In this work however we use a different wavefunction, calculate critical

masses for different systems and provide different analysis to the data. Rebane

calculates critical masses using a flexible wavefunction with 60 non-linear variational

parameters, for three-body systems involving particles such as protons, deuterons,

tritons, muons, kauons and pions. These critical masses are the best currently

available in the literature and are used for comparison where possible. In addition

to these two methods one could also directly calculate the energy of a three-body
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system and also calculate its associated lowest continuum threshold energy then

change the mass of a particle until the system becomes unstable such that these

two energies are equal. Although this is an inefficient method it is perhaps the most

conceptually simple, and we label this Method 0 (Section 5.2.2). In 1992 Frolov [118]

calculated critical masses by varying the masses of the particles until they became

unstable using Method 0. Frolov used this method for 8 systems, most of which

do not exist and were chosen to best map out the stability zone in general. The

results were plotted on a normalised mass, ternary diagram. The ternary diagrams

used in this chapter are based on a different set of coordinate involving normalised

reciprocal masses as described in Section 5.2.1.

The critical mass also presents an intriguing problem for theoreticians to calculate.

Such a system lies on the border between stable and unstable. A wavefunction

that exactly represents this system would represent the unbound state, whereas our

approximate trial wavefunction represents bound states by definition.

Previously we discussed the importance of the interaction between the repulsive

particles in calculating the energy of any chemical system. The critical mass is a

prime example of this, for without this interaction all systems are stable and there

is no mcr. The results for the critical mass explain why all “normal” unit-charged

chemical three-body systems (i.e. comprised of protons and electrons) are stable and

why some of the more “exotic”, with different elementary particles are not necessarily

stable (i.e. with muons and tauons).

For a more comprehensive discussion of the stability of small systems one should

read the review article on the subject by Armour et al. [28] The review paper discusses

advances towards calculating the stability of both specific systems such as H +
2 , H–

and Ps– and a general stability zone. What will later be referred to as Method

1 (Section 5.2.5) is also described in this paper, as a method for determining the

complete stability zone for unit charge three-body systems.

The work in this chapter either enhances the previous results or provides an

interpretation not present in these other works. Here the stability domain is improved

by using more systems and calculating them as accurately as can be achieved with

our Laguerre polynomial based wavefunction, which is more accurate than any

previous study. This wavefunction was not used in these other works, and so we also
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measure this wavefunction’s performance for critical mass system. As can be seen

from Chapter 4, our Laguerre polynomial wavefunction is efficient, even at large

matrix sizes, and accurate for the more common symmetric systems.

This chapter aims to calculate a stability region for all unit-charge systems without

using the BO approximation to treat the complete range between molecular and

atomic. Two techniques are used to calculate the stability zone and this reveals the

importance of certain symmetric and antisymmetric terms on the critical mass. This

transition between the well-established norms of molecular and atomic behaviour

manifests itself is also investigated with respects to the least fractional binding

energy.

5.2. Method

A stable system is defined in this work as one in which there is at least one bound

state below the most stable continuum threshold. This means that it must have

a ground state energy lower (more stable) than the threshold energy. Three-body

systems are ideal for studying stability because their most stable continuum threshold

is the most stable two-body energy of its constituent parts (this is always the heavier

oppositely charged pair). Two-body energies are known analytically as [17]:

E2 body
ij = −

Z2
i Z

2
j

2n

1

m−1
i +m−1

j

(5.2.1)

For the ground state case that we are interested in n = 1. Higher integer n are

excited states. This threshold energy for a three-body system will be referred to as

Eth.

To understand why some combination of particles, for example p+µ−e−, are un-

stable, when all two-body combinations are stable, consider a two-body-like case

with no interaction between its like-charged particles. This will be referred to as

the non-interacting particle model. In this model the three-body energy is a trivial

matter to calculate as it is the sum of two sets of two-body energies:

Enon-interacting = −Z
2
1Z

2
3

2n

1

m−1
1 +m−1

3

− Z2
2Z

2
3

2n

1

m−1
2 +m−1

3

(5.2.2)
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With this model, all systems are stable as any system will have an energy more

stable than its Eth. The concept of a critical mass must therefore be a product of

the repulsive interaction between the like-charged particles.

5.2.1. Ternary Diagram Explanation

This chapter uses ternary diagrams and it is therefore important that we clearly

define them. A ternary diagram is a useful diagram on which to plot 3 quantities on

a single 2-dimensional (2D) plot if, and only, if (iff) these quantities are related in

such a way that the total of the three quantities sums to a single constant value. This

means that there are, in truth, only 2 independent quantities and that the third can

always be derived from the other two. Such diagrams are common in certain field of

chemistry such as in phase diagrams. [130–135] The energy of three-body systems, with

respect to either their mass or their charge, can be plotted on a ternary diagram

with a few considerations. To plot all masses, only one set of charges is used i.e. unit

charge of ±,±,∓. However to plot all charges, one set of masses is used e.g. e,e,∞.

This works because energy scales with both mass and charge (see Appendix B).

Therefore the energy of a system with masses
{
m±

1 ,m
±
2 ,m

∓
3

}
= {1±, 1±, 2∓} can

be used to find the energy of the system {10±, 10±, 20∓} by simply multiplying the

energy by the scale factor 10. By choosing the 3 ternary diagram coordinates as

normalised reciprocal masses that normalise to 1, we fulfil the condition that the

ternary diagram coordinates sum to a constant value (in this case 1). This allows us

to plot every mass, combination on a ternary diagram for a given charge. The same

is true for every charge combination, with a given set of masses. These three ternary

coordinates are as follows and are simply the three reciprocal masses normalised

such that their sum is 1:

ai =
m−1
i

m−1
1 +m−1

2 +m−1
3

, i = 1, 2, 3 (5.2.3)

The x and y axes of the ternary diagrams are defined as follows. The y axis is the

a3 axis and it runs down the centre of the a3 axis as shown in Figure 5.2.1. The x

axis runs perpendicular to this with positive values on right side of the triangle and

negative on the left. In terms of normalised reciprocal masses (ai) the x axis has the
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Figure 5.2.1.: Depicts the ternary diagrams coordinate system

coordinates of: x = a1−a2√
3

.

In this chapter the critical mass of systems with arbitrary, real, positive mass

and fixed unit charge are investigated. This means that the charges must be Z1 =

−1, Z2 = −1, Z3 = +1 or Z1 = +1, Z2 = +1, Z3 = −1 according to the inverse

charge invariance of the Hamiltonian (see Appendix B). These two sets of charges

for a given set of masses have the same energy and are identical wavefunctions.

Although any charge could have been chosen the unit charge case has more literature

available for comparison and this choice allows the use of a unique method for

calculating critical mass, detailed later as Method 1. Two completely different

methods to predict the critical masses of systems are used. These methods are

derived from the literature [97,119,120,125,126,128,136,137] but have not been applied to

any three-body wavefunctions composed of Laguerre polynomials prior to this work.

The performance of the Laguerre polynomials to calculate critical masses will be

informative from the aspect of Laguerre polynomial wavefunction performance. Prior

to this chapter only bound systems in which a wavefunction is clearly defined have

been studied. The critical mass lies on the boundary between two configurations of

bound and unbound, making it difficult to accurately describe. The performance of

the Laguerre polynomial wavefunction with the critical mass will judge its ability to
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describe unusual configurations in extreme cases.

Hill et al. [138,139] proved that all symmetric systems are stable and therefore all

systems of critical mass are asymmetric, as in m1 6= m2. Therefore we use the full

asymmetric wavefunction with all 3 non-linear variational parameters, as described

in Section 4.2.8 on page 105.

5.2.2. Method 0: Energy as a Function of Mass

The most conceptually simple method would be to take a known, stable, three-body

system such as the H– atom (also known as (a.k.a) e–e–p+, and reduce the mass of

an electron until the energy of the bound three-body system is lower than the lowest

continuum threshold. The following Figure 5.2.2. shows how for H– decreasing

the mass of m2 would effect the energy until it reaches the threshold energy (the

horizontal line).

In Figure 5.2.2 it can be seen that as the mass of m2 decreases the energy of the

system decrease until the mass reaches a critical point. At this point the energy

then plateaus. This occurs at threshold energy and is the critical point we have

been discussing as at this point the particle with mass m2 is no longer bound. This

method simply varies m2 until the energy is equal to the threshold energy, to the

desired number of digits. From Figure 5.2.2 it can also be seen that when the mass

of m2 goes below a value (mcr) that particle no longer contributes to the total energy.

From this critical mass and lower only the m1 and m3 particles contribute to the

total energy. This method is convoluted and requires multiple calculations for a

singlemcr. It is therefore not used in this chapter and the following two more efficient

methods are used.
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Figure 5.2.2.: The effect of changing the mass of m2 on the energy of “H– ” using a
1078-term AC wavefunction.

5.2.3. Excess Binding Energy

We will deal with the concept of stability at various stages throughout this thesis.

Indeed it is a central theme of 2 chapters. We therefore define a concept that is

convenient to describe the energy of a system (E0) relative to its threshold energy

(Eth). This is the fraction of extra binding over its threshold energy it is given the

symbol g. The threshold energy is the most stable continuum threshold. This is the

two-body energy of the heavier oppositely charged pair of particles.

g =
E0 − Eth

Eth
(5.2.4)

Equation (5.2.4) defines the fraction of extra energy gained by adding a third

particle. E0 is the three-body energy and Eth the threshold energy. With this g

value and the Eth value the energy can be calculated by a simple calculation of

E0 = (1 + g)Eth. Additionally g is indicative of the stability. For example a g of

zero means that there is no extra energy in the three-body system than that of the

continuum threshold and the system is lying on the boundary between stable and

unstable to dissociation of the third particle.
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5.2.4. Coordinate System

For future reference the r1, r2 and r3 are triangular coordinates that represent the

sides of the triangle as shown previously Figure 4.2.1 on page 90. Zi is the charge of

the particle with the mass of mi. For all three-body systems in this thesis m3 will be

the uniquely charged particle and m1 and m2 will have a charge with the same sign

i.e. m±
1m

±
2m

∓
3 . Symmetric systems are are defined as those that use the symmetric

wavefunction where particle 1 is identical to particle 2 in terms of both mass and

charge. Asymmetric is where particle 1 is not identical to particle 2.

5.2.5. Method 1: Mass Symmetry Breaking Using the

Symmetric Ground State Wavefunction

The first method, henceforth known as Method 1, is the method employed by Martin

et al. [97] with some changes to aspects such as the form of the fitting function and

the amount of data used to form it. One of the primary reasons many data points

are possible in the calculations is the speed of modern computation and the efficient

choice of methodology made possible by the Laguerre polynomial series solution

method. The method relies on the variational technique but does not calculate

critical mass directly. The method has several steps and it is based on the concept of

using the wavefunction of a symmetric wavefunction (in which m−1
1 and m−1

2 are the

average inverse masses of an arbitrary asymmetric wavefunction) as an approximate

upper bound to the true asymmetric wavefunction. This is possible because of the

convex nature of any property that enters the Hamiltonian linearly. [97,129,137] The

following discussion demonstrates how Method 1 works, why ternary diagrams are

so useful, and what makes it different from an exact method. In the first step of the

Method 1 we rearrange the Hamiltonian into a symmetric part and an asymmetric

part.

Ĥ =− ∇2
1

2m1

− ∇2
2

2m2

− ∇2
3

2m3

+ V̂ (5.2.5)

Ĥ =−
(

1

2m1

+
1

2m2

)
(∇2

1 +∇2
2)

2
−
(

1

2m1

− 1

2m2

)
(∇2

1 −∇2
2)

2
− ∇2

3

2m3

+ V̂

(5.2.6)
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Where V̂ is the same three-body potential energy seen previously. We can see that

this Hamiltonian can be broken into symmetric Ĥsym and asymmetric Ĥasym parts.

Ĥ =Ĥsym + Ĥasym (5.2.7)

Ĥsym =−
(

1

2m1

+
1

2m2

)
(∇2

1 +∇2
2)

2
− ∇2

3

2m3

+ V̂ (5.2.8)

Ĥasym =−
(

1

2m1

− 1

2m2

)
(∇2

1 −∇2
2)

2
(5.2.9)

When m1 = m2, as in the system is symmetric, then the Ĥasym becomes 0. Operating

only with the symmetric Hamiltonian Ĥsym on an arbitrary asymmetric system(
i.e.

〈
ψasym | Ĥsym | ψasym

〉)
would give the energy of a symmetric system where

1
m1

and 1
m2

are averaged. As the term Ĥasym serves only to lower the energy it must

therefore be that the energy of an arbitrary asymmetric system is lower than the

energy of a symmetric system in which the inverse of these asymmetric masses are

averaged. Therefore:

E (m1,m2,m3) ≤ E

(
1

1
2m1

+ 1
2m2

,
1

1
2m1

+ 1
2m2

,m3

)
(5.2.10)

This is where the use of ai and the ternary diagram become very useful. An average

of the ai is an average of the reciprocal masses. If the normalised reciprocal mass

of m3 is kept constant and we vary only a1 and a2 then due to the normalisation

constraint a1 + a2 + a3 = 1 the average of a1 and a2 must not change. If we plot all

ai on the ternary diagram in which the average mass does not change, then this line

is parallel with the x axis. This convenient concordance of average a1, a2 with the

x axis of our ternary diagram, when a3 is constant, makes plotting on the ternary

diagram useful for this method. Therefore if we take a symmetric system as a lower

bound to a critical mass we can calculate the critical mass by shifting along the x

axis by some unknown amount. The key is to find out how much we must move

along the x axis. We will call this amount critical delta (δcr).

To calculate δcr the energy of the symmetric system must be changed by varying the

masses until the energy is equal to the lowest continuum threshold. This following

discussions details the mathematics behind the methods for identifying critical masses
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in the method of Martin et al. [28,97]

E0 = Eth (5.2.11)

To facilitate this we first apply the following expression for the symmetric energy.

Esymmetric
0 = Esymmetric

th g (5.2.12)

The purpose of this is to allow us to express the symmetric average energy with a

two-body energy, for which an exact expression is known in terms of its masses. g

is the excess binding energy, as in the fraction of energy greater than the threshold

energy as defined in Section 5.2.3. Another useful expression is:

2E0
th

E0
th + E1

th

=
Eaverage
th

E0
th

(5.2.13)

Here we define E0
th as the first continuum threshold (two-body energy of particles

3 and 2), E1
th as the second continuum threshold (two-body energy of particles 3

and 1) and Eaverage
th as the first continuum threshold of the system with the averaged

reciprocal masses. The expression in Eq. (5.2.13) is useful because it behaves in the

way we desire i.e. is < 1 for systems with E1
th > E0

th or 1 when equal. Eq. (5.2.13)

is known analytically and can be expressed in normalised reciprocal masses (ai). By

using this Eq. (5.2.13) an expression for δcr is calculated.

E0 =Eth ≤ Eaverage
0 = Eaverage

th (1 + g) (5.2.14)

Eaverage
0 =Eth (1 + g)

Eaverage
th

Eth
(5.2.15)

Equations (5.2.14) and (5.2.15) represents a trivial change but it incorporates a
Eaverage
th

Eth
term which we know exactly in normalised reciprocal mass as the form:

Eaverage
th

Eth
=

1 + a3 − (a2 − a1)

1 + a3
(5.2.16)

Therefore:

E0 ≤ Eth (1 + g)
1 + a3 − (a2 − a1)

1 + a3
(5.2.17)
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It can been seen from this form that when:

(1 + g)
1 + a3 − (a2 − a1)

1 + a3
= 1 (5.2.18)

then the energy is ≤ Eth and that we have the critical mass condition. To calculate

the critical delta we rearrange Eq. (5.2.18) such that (a2 − a1) becomes the subject,

then substitute this into the general form of δ in Eq. (5.2.19).

δ =
2 |a2 − a1|√

3
(5.2.19)

δcr =
2g (1 + a3)√
3 (1 + g)

(5.2.20)

The symmetric energy can be used from any system to calculate a δcr. Then by

using this δcr we calculate the normalised reciprocal mass at this point to get critical

mass using a symmetric system’s energy.

5.2.6. Method 2: Variational Principle for the Critical Mass

The next method uses the true asymmetric wavefunction to calculate the critical

mass. The method is considerably simpler and relies upon accurate wavefunctions

for the case where one particle is only just bound. We will refer to this as Method

2. This method is as complete as can be made within the non-relativistic time

independent approximation, and with an exact wavefunction it will give an exact

critical mass. It is also variational, and like Method 1, provides an upper bound to

the critical mass. This method takes the Schrödinger equation and rearranges it as

described in the following discussion:

Ĥψ = Eψ (5.2.21)

The following equations show a simplified view of the rearrangement. However this

view is accurate in that only the complicated factors such as those associated with

the transformation to perimetric coordinates are left out.

• At the critical mass when the energy of the three-body system is identical

to that of the two-body system corresponding to the threshold energy (Equa-
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tion (5.2.1))

E = Eth =
1

2
Z2

1Z
2
3

m1m3

m1 +m3

(5.2.22)

• It then follows that the energy in the Schrödinger equation is not an unknown.

(
T̂ + V̂

)
Ψ = EthΨ (5.2.23)

• The mass m2 is defined as the unknown with the property that it ensures

E = Eth. This m2 is the value we desire to calculate. This m2 must be

lighter than m1 for the threshold condition therefore m1 ≥ m2. 1
m2

is made

the eigenvalue of the equation in place of the energy.

T̂i =− ∇2
i

2mi

(5.2.24)

T̂ =T̂1 + T̂2 + T̂3 (5.2.25)(
T̂1 −

∇2
2

2m2

+ T̂3 + V̂

)
Ψ =EthΨ (5.2.26)

• It is a simple matter to make 1
m2

the eigenvalue.

(
T̂1−

∇2
2

2m2

+ T̂3 + V̂

)
Ψ =EthΨ (5.2.27)(

T̂1 + T̂3 + V̂−Eth
)
Ψ =

∇2
2

2m2

Ψ (5.2.28)T̂1 + T̂3 + V̂ − Eth︸ ︷︷ ︸
Operator

Ψ =
1

mcr︸︷︷︸
Eigenvalue

∇2
2

2︸︷︷︸
Overlap

Ψ (5.2.29)

A simple rearrangement does not guarantee that an appropriate eigenproblem is

formed, however Rebane and Kuzminskii showed that this is a valid, self-consistent,

eigenproblem. [120] This method is superior in that it uses both the asymmetric

wavefunction and the Hamiltonian, and that for an exact wavefunction it calculates

the exact critical mass.
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5.3. Implementation

The above methodologies are implemented in both Maple and C++. Maple was used

to calculate the critical masses from energies as described in the Method 1 using

the formalism described in Section 5.2. C++ was used to calculate these energies

and to calculate the critical mass directly as described in Method 2 (Section 5.2.6).

The C++ method relies on a series solution that is generated in Maple as detailed

in the Programming Chapter 3. The same Laguerre polynomial-based AC or ABC

wavefunction, as described in Section 4.2.8, is used throughout and in this chapter

both the symmetric wavefunction and asymmetric wavefunctions are used. These

use different numbering schemes as described in Appendix A. The parameters in the

wavefunction are optimised using either the NROpt method or the BOBYQA method

to locate minima. In both methods we use the general eigen-solving techniques

as described in Section 4.2 on page 89. This involves the use of the Cholesky

Decomposition and the MR3 diagonalisation method.

Figure 5.3.1 shows the general work flow for both methods. Method 1 is a more

complicated procedure than Method 2. In this chapter both methods are investigated

for the purpose of comparison. For the remainder of this chapter it will always be

assumed that m2 ≤ m1. This is enforced by switching the labels of the particles in

the opposite case. This means that the lowest continuum threshold will now be the

two-body energy between particles m1 and m3, removing any ambiguity over which

two-body energy should be used for the threshold energy.
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Key:
Input or Output Procedure Decision

Method 1

Choose m1 and m3

m2 = m1

Calculate Symmetric Energy

Calculate g

Approximate symmetry breaking
affect using δcr Equation 5.2.20

Convert δcr to ai using 5.2.19

Finish

Method 2

Choose m1 and m3

Variationally determine critical
mass of m2 with mass

Hamiltonian (Equation 5.2.29)

The eigenvalue gives
the inverse of the critical

mass of m2 directly

Finish

Figure 5.3.1.: These flow charts detail the steps required for the computation of the
critical mass.
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5.4. Results & Discussion

5.4.1. Method 1: The Calculation of the Stability Domain

The wavefunction is used to calculate accurate energies, E0, for a wide range of

unit-charge, symmetric, three-body systems of the form
{
m±

1m
±
2m

∓
3

}
, involving the

particles listed in Section 4.2.2 on page 90. There are 36 distinct, symmetric, singly

charged ions ranging from the atomic to the molecular (72 including the anti-particle

counterparts which, by charge inversion invariance (See Appendix B), have the same

energy as those presented, e.g., E
(
p+p+e−

)
= E

(
p−p−e+

)
). Additionally, some

hypothetical mass systems are calculated to ensure an even distribution of data

points along the symmetric axis of the reciprocal mass fraction ternary diagram.

Accurate values of the fractional additional binding of g (see Section 5.2.3) are

calculated using these E0 values. The expression of Martin et al. [97] for the width of

the stability band (Equation (5.2.20)) is used to determine an accurate lower bound

to the stability zone of three-body coulomb systems, and the results are presented

on a ternary diagram. [97,137]

The ground state energy of a wide-range of symmetric systems of the form{
m±

1m
±
2 m∓

3

}
were calculated in a series ranging from {(m1 = m2) � (m3 = 1)}

to {m3 � (m1 = m2 = 1)}. For consistency, the charges on each particle were set

as
{
m−

1m
−
2m

+
3

}
, although reversing the charges would produce the same E0 due to

charge inversion invariance. The calculated energies for all the systems considered

are given in Table 5.4.1. To determine the stability of three-body systems, the lowest

energy threshold is considered. Using the g values directly, the lower bound of δcr
can be calculated using Eq. (5.2.20) for each a3 value forming the central axis and

the results presented on a mass fraction ternary diagram (Figure 5.4.1).

The general shape of a stability zone There exists a zone of stability for three-

body systems. [28,97,120] On the inverse normalised mass fraction ternary diagram it

is possible to deduce the basic shape of such a zone before any calculations. This is

useful as it can be used as a guide for the successful plotting of the diagram, ensuring

that we capture all regions of stability. Referring back to Section 5.2.1, any set of

three masses can be plotted onto the ternary diagram within the unit charge regime.
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System Energy (Eh) m1

m3
a3 g

∞+∞+e– −0.602 148 905 ∞ 1 0.204 286 537
t+t+e– −0.599 506 903 5.4969× 103 0.999 636 292 0.199 231 931
d+d+e– −0.598 788 784 3.6705× 103 0.999 455 409 0.197 903 841
τ+τ+e– −0.598 680 507 3.4772× 103 0.999 425 147 0.197 705 365
p+p+e– −0.597 139 063 1.8362× 103 0.998 911 951 0.194 928 550
µ+µ+e– −0.585 126 098 2.0677× 102 0.990 420 001 0.175 911 924
t+t+µ– −112.972 859 2.6585× 101 0.930 033 077 0.133 852 490
d+d+µ– −109.816 937 1.7752× 101 0.898 742 754 0.122 060 128
τ+τ+µ– −109.331 147 1.6817× 101 0.893 711 158 0.120 408 873

11.3 +11.3 +1 – −0.508 912 278 1.1300× 101 0.849 624 060 0.107 897 524
p+p+µ– −102.223 513 8.8802 0.816 180 581 0.100 118 955
6 +6 +1 – −0.466 087 497 6.0000 0.750 000 000 0.087 537 493 6

4.7 +4.7 +1 – −0.445 261 313 4.7000 0.701 492 537 0.079 995 526 3
3.7 +3.7 +1 – −0.422 360 557 3.7000 0.649 122 807 0.073 024 118 3

t+t+p– −734.528 908 2.9937 0.599 496 730 0.067 324 900 0
2.4 +2.4 +1 – −0.374 811 142 2.4000 0.545 454 545 0.061 964 903 1
d+d+p– −647.474 584 1.9990 0.499 875 907 0.058 052 104 3
τ+τ+p– −635.051 596 1.8937 0.486 351 733 0.056 991 143 3
t+t+τ – −1122.214 36 1.5809 0.441 476 486 0.053 785 891 2
t+t+d– −1158.683 73 1.4976 0.428 179 601 0.052 927 692 6
d+d+τ – −936.125 281 1.0556 0.345 464 277 0.048 526 893 0
τ+τ+τ – −911.030 930 1.0000 0.333 333 333 0.048 020 280 8
t+t+t– −1440.221 31 1.0000 0.333 333 333 0.048 020 280 8
e+e+e– −0.262 005 070 1.0000 0.333 333 333 0.048 020 280 8
µ+µ+µ– −54.174 338 8 1.0000 0.333 333 333 0.048 020 280 8
p+p+p– −481.081 310 1.0000 0.333 333 333 0.048 020 280 8
d+d+d– −961.685 147 1.0000 0.333 333 333 0.048 020 280 8
τ+τ+d– −935.260 852 9.4733× 10−1 0.321 419 184 0.047 558 670 6
d+d+t– −1150.610 15 6.6773× 10−1 0.250 300 147 0.045 591 012 4
τ+τ+t– −1113.316 62 6.3256× 10−1 0.240 284 132 0.045 430 702 2
p+p+τ – −627.929 517 5.2806× 10−1 0.208 880 332 0.045 137 029 2
p+p+d– −639.557 763 5.0025× 10−1 0.200 079 431 0.045 115 069 1
p+p+t– −719.649 173 3.3403× 10−1 0.143 114 052 0.045 703 543 4
1 +1 +5 – −0.436 497 015 2.0000× 10−1 0.090 909 090 9 0.047 592 835 3
µ+µ+p– −97.566 992 7 1.1261× 10−1 0.053 303 521 4 0.050 005 962 0
µ+µ+τ – −102.672 896 5.9465× 10−2 0.028 873 944 0 0.052 176 133 2
µ+µ+d– −102.991 921 5.6333× 10−2 0.027 394 749 0 0.052 325 179 0
µ+µ+t– −104.944 126 3.7615× 10−2 0.018 460 446 3 0.053 272 072 9
e+e+µ– −0.525 054 806 4.8363× 10−3 0.002 412 332 41 0.055 188 291 3
e+e+p– −0.527 445 881 5.4462× 10−4 0.000 272 234 379 0.055 466 274 1
e+e+τ – −0.527 589 838 2.8759× 10−4 0.000 143 775 251 0.055 483 136 3
e+e+d– −0.527 598 325 2.7244× 10−4 0.000 136 203 302 0.055 484 130 9
e+e+t– −0.527 649 048 1.8192× 10−4 0.000 090 951 730 3 0.055 490 076 0
e+e+∞– −0.527 751 017 0. 0. 0.055 502 033 1

Table 5.4.1.: Total energy (in electron atomic units), mass ratio
(
m1
m3

)
, reciprocal mass

of the uniquely charged particle (a3), and relative excess binding energy
(g), for some symmetric configurations of the form

{
m±

1 m
±
2 m

∓
3

}
.

149



5. The Stability Domain for S-States of Unit Charge Coulomb 3-Body Systems

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a
3a 1

a2

Figure 5.4.1.: The stability boundary as calculated by the data in Table 5.4.1

The central axis (symmetric systems) Certain points on the ternary diagram

are stable and have been observed in nature, for example e–e–p+, p+p+e– , e–e–e+,

d+d+e– , p+p+µ– . These points all lie along the central axis of the ternary diagram

(Section 5.2.1). Hill et al. [138] proved that all symmetric systems are stable. Therefore

the stability zone must contain the central axis of the ternary diagram.

Single crossing from stable to unstable Moving in a straight line from a point

on the central axis of the ternary diagram to a lower corner causes the system to cross

the boundary only once. Such a line will have a constant m1

m3
ratio for a line towards

the right corner and constant m2

m3
for the other. Moving along the line towards the

bottom right corner means that only m2 changes, to be precise the mass decreases

as we move closer to this corner. The definition of Eth does not depend upon m2

and therefore Eth does not change. However as the mass of m2 decreases the energy

of the three-body system increases. It follows then that such a line will only ever

cross the boundary between E0 ≥ Eth once.

The boundary is concave When two arbitrary points on the boundary (M ′ =

{a′1, a′2, a′3} and M ′′ = {a′′1, a′′2, a′′3}) are taken, the points between them are unstable.

This is discussed in more depth by Martin et al. [97] The concept will be briefly
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Figure 5.4.2.: The blue shaded region is stable with at least one bound state more
stable than the lowest continuum threshold.

discussed here. Taking two scaled inverse masses such that the threshold energy

remains the same (N ′ = {x′1, x′x, a′3} and N ′′ = {x′′1, x′′2, x′′3}), where xi = ai
a1+a3

. Any

system on the line between these two points can be represent with N(λ) where λ

is from 0 to 1 and N (λ) = λN ′ + (1− λ)N ′′. As λ shifts the inverse masses and

the inverse masses enters linearly into the Hamiltonian (See linear attributes of the

Hamiltonian Appendix C) then, from a general mathematical theorem [104] it follows

that:

E0 (λ) ≥ λE0 (1) + (1− λ)E0 (0) (5.4.1)

Since N ′ and N ′′ are on the boundary and the threshold energy does not change,

and the M → N transformation is conical, thus preserving straight lines in N space

when converting to M space then any system on the line between two arbitrary

boundary systems is unstable.

The stability domain From the above arguments, the entirety of the inside of the

boundary in Figure 5.4.1 is stable. This is shown in Figure 5.4.2 as the blue shaded

region. From the stability zone in Figure 5.4.2, it can be deduced that all systems

inside the blue shaded region are stable with respect to dissociation and therefore

contain at least one bound state. To characterise this stability zone a function was
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fitted to the g data along the a3 such that for a given a3 we predict a g value and

thus a δcr. This fitted function has the form:

g(a3) =
10∑
i=0

Ci(1− a3)
i
2 (5.4.2)

• c0 = 0.205 340 759

• c1 = −0.326 670 401

• c2 = −0.383 300 516

• c3 = −2.048 690 69

• c4 = 12.366 540 9

• c5 = −46.866 686 4

• c6 = 110.492 236

• c7 = −162.933 844

• c8 = 146.384 325

• c9 = −73.345 924 5

• c10 = 15.745 569 1

Using our data to describe the stability zone more accurately the stability zone

reaches the sides of the ternary diagram at a3 = 0.8292(1), corresponding to (m1 =

∞, m2 = 4.85(4), m3 = 1), and the lower edge of the stability zone at a3 = 0

corresponds to a mass ratio m1

m2
= 1.11(1), i.e., (m1 = 1.111,m2 = 1,m3 = ∞).

However, because δcr is a lower bound, the stability region may be larger.

Limitations of Method 1 The inaccuracies in the present result are due to under-

estimation of the width of the stability band. The lower limit of the stability band

(Equation (5.2.20)) is derived by rewriting the Hamiltonian as a sum of symmet-

ric terms (symmetric under 1 ↔ 2 exchange) and anti-symmetric terms, and then

applying the variational principle to this Hamiltonian using the symmetric ground

state wavefunction of the symmetric Hamiltonian as a trial wave function. [28,97] This
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Figure 5.4.3.: (a) Plot of g against a3 for a range of symmetric systems, (b) the
function g (a3) (red line) compared with the raw data of g versus a3

(green crosses)

underestimate would indicate that the anti-symmetric (symmetry-breaking) terms

are not small. [140] Clearly, a more accurate value could be obtained by solving the

Schrödinger equation for three unequal mass particles directly. [72] Section 5.4.2 uses

such a method to predict a more precise bound based on determining the value of

the third particle mass that corresponds to the critical binding energy, i.e., when

E0 = Eth.

The Atom to Molecule Transition A plot of g against a3 for a range of symmetric

systems yields the graph depicted in Figure 5.4.3(a). Particularly interesting is that

g (a3) does not decrease monotonically to a3 = 0 corresponding to ∞H– (as in

H– with infinite nuclear mass), but contains a minimum. Based on the data in

Table 5.4.1, this minimum is estimated to occur at a3 ≈ 0.2, which corresponds

to the system (p, p, d)±, with a mass ratio of ≈ 0.5. To investigate this further,

the data points listed in Table 5.4.1 and seven additional points having a3 values

between the data points (τ, τ, t)± and (p, p, t)± in increments of 0.01, were fitted

to a functional form, and the function differentiated to determine the minimum as

accurately as possible.

Minimum in g (a3) Differentiating the fitted function of g (a3) to determine the

minimum provides the symmetric system that has the least fractional binding energy

gained by association with a third particle. However, the minimum is sensitive to the

functional form and so additional data points were calculated about the minimum
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Figure 5.4.4.: Reprinted from “On the emergence of molecular structure” [100] by
permission of author Mátyus. Original caption read:Transition from
an atomic- to a molecular-type distribution of the a particles in
{a±, a±, b∓}-type coulombic systems. In each graph the normalized
density plot of ρa (R) is shown for R = (X,Y, 0) in terms of X,Y ∈
[−2, 2] Bohr. The assembled particles are specified as {a±, a±, b∓},
where ma and mb are the masses and mp = 1836.152 672 47 [94] in units
of the mass of an electron. The centre of mass is the centre of each

plot.

to estimate the accuracy. Based on this analysis, and comparing with alternative

functional forms, the minimum is estimated to occur at a3 = 0.197(1), corresponding

to the system (m1 = m2 = 1, m3 = 2.04(1)) which has a mass ratio of m1

m3
= 0.491(3).

Significance of the minimum in g (a3) function A recent study by Mátyus

et al. [100] into the emergence of molecular structure in coulombic three-particle sys-

tems considered the distribution of the identical particles in the ground state and

concluded that a node in the particle density at the centre-of-mass first appears when

0.4 < m1

m3
< 0.8. [100] It is suggested that such a transition in density distribution

could determine the crossover point between molecular and atomic behaviour. The

results presented here, suggest that this cross-over point causes a destabilisation and

thus corresponds to the system with the least fractional gain in binding energy by

association with a third particle.

5.4.2. Method 2: The Variational Stability Domain

The variational method described in Section 5.2.6 (Method 2) to determine the

critical mass of a system with a single calculation, was used to calculate the minimum

mass required of a third particle in order to bind to selected two-body atomic systems.

These are given in Table 5.4.2 in electron atomic units. The masses presented

are considered accurate to at least 2 s.f., with some cases reaching 3 s.f., and were
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calculated using, at most, the 8436-term wavefunction. The rate of convergence,

even for similar systems, is not uniform. This work has been published in the Journal

of Chemical Physics 2014. [136] In this paper, the masses were converged to 2 s.f. using

a 3654-term wavefunction.

Achieving Better Results More converged digits than those reported in the Jour-

nal of Chemical Physics paper [136] are obtainable by using a wavefunction with more

terms, as can be seen in Table 5.4.3 where we show the rate of convergence of the

critical mass and the energy side by side as the number of terms increases. The

accuracy of this type of method in which the mass is determined variationally is sev-

eral orders of magnitude less converged than that achieved for the energy using the

same methodology with much smaller matrices. This however is not an indication

of more error in the wavefunction just that the critical masses are more sensitive

to such error than the energies. Our results are well converged because we know

the energy is converged and because we achieve results on par with other literature

values. [120,128]

Therefore the data presented in Table 5.4.2 supersede those in the published work

and are more accurate to a maximum of 3 s.f., and were achieved, for some systems,

using a 8436-term wavefunction. For other systems however, due to limitations on

computational time, only the lower wavefunction sizes in the paper are presented

here. Critical mass for all possible combinations of particles in Section 4.2.2 on

page 90 have been determined to ensure an accurate stability boundary.

Comparison to Literature Values Rebane and Kuzminskii [120] had similar suc-

cesses to our own results in terms of convergence and reported critical mass values

to 3 s.f. with a significantly smaller and more flexible exponential basis, but with

many more (60) non-linear variational parameters. To ensure that our Laguerre

polynomial-based wavefunction was capable of producing values at least on par

with those of Rebane and Kuzminskii, [120] a larger wavefunction was used here

rather than the wavefunction used in the J. Chem. Phys. work. However because of

the quasi-orthogonality [141] of the wavefunction many non-diagonal elements of the

Hamiltonian and overlap matrices are zero and it is quite efficient to use a many term

Laguerre polynomial-based wavefunctions. Table 5.4.4 compares our results to those
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System Critical Mass (me) m1

m3

e–m –
cr t+a 0.796 0.000 181 920 007

e–m –
cr d+a 0.796 0.000 272 443 711

e–m –
cr τ+a 0.796 0.000 287 591 850

e–m –
cr p+a 0.796 0.000 544 617 022

e–m –
cr µ+a 0.796 0.004 836 331 66

µ–m –
cr t+a 165 0.037 615 287 6

µ–m –
cr d+c 165 0.056 332 718 7

µ–m –
cr τ+c 165 0.059 464 873 3

µ–m –
cr p+c 165 0.112 609 527

p–m –
cr t+c 1440 0.334 032 906

p–m –
cr d+b 1400 0.500 248 248

p–m –
cr τ+c 1400 0.528 062 543

τ –m –
cr t+c 2600 0.632 563 151

d–m –
cr t+c 2740 0.667 734 285

τ –m –
cr d+c 2460 0.947 327 650

e–m –
cr e+a 0.698 1.000 000 00

d–m –
cr τ+a 2530 1.055 600 99

t–m –
cr d+a 3470 1.497 601 70

t–m –
cr τ+a 3410 1.580 869 83

τ –m –
cr p+a 2020 1.893 715 08

d–m –
cr p+a 2090 1.999 007 50

t–m –
cr p+a 2580 2.993 717 03

p–m –
cr µ+a 397 8.880 243 31

τ –m –
cr µ+a 426 16.816 650 6

d–m –
cr µ+a 428 17.751 673 0

t–m –
cr µ+a 438 26.584 935 6

µ–m –
cr e+a 2.20 206.768 284

p–m –
cr e+a 2.21 1836.152 67

τ –m –
cr e+a 2.21 3477.150 00

d–m –
cr e+a 2.21 3670.482 97

t–m –
cr e+c 2.22 5496.921 53

a 8436-term wavefunction
b 5456-term wavefunction
c 3654-term wavefunction

Table 5.4.2.: The critical masses as calculated with Method 2

156



5. The Stability Domain for S-States of Unit Charge Coulomb 3-Body Systems

Omega Number of Terms Energy (Eh) mcr (me)
10 286 −0.527 750 986 748 39 2.268
15 816 −0.527 751 012 081 99 2.236
21 2024 −0.527 751 016 360 59 2.222
26 3654 −0.527 751 016 528 73 2.214
30 5456 −0.527 751 016 540 82 2.213
35 8436 −0.527 751 016 543 97 2.208

Literature: −0.527 751 016 544 37 [120] 2.203

Table 5.4.3.: A comparison of convergence between the energy (of ∞H– ) and the critical
mass. Omega refers to the Pekeris shell as discussed in Section 4.2.10.

System mcr (me) (this work) mcr (me) (literature) [120]

p–m –
cr e+a 2.208 2.203

p–m –
cr µ+a 396.6 395.8

e–m –
cr e+a 0.6983 0.6969

µ–m –
cr p+b 164.8 164.2

e–m –
cr p+a 0.7961 0.7950

a 8436-term wavefunction
b 3654-term wavefunction
Table 5.4.4.: A comparison of our results against the literature of Rebane and Kuzmin-

skii. [120]

of Rebane and Kuzminski. [120] We use these data to judge that our wavefunction is

converged to between 2 s.f. and 3 s.f..

The Stability Boundary of Method 2 A stability boundary was determined using

the values in Table 5.4.2 and plotted on a reciprocal mass ternary diagram (Fig-

ure 5.4.5, green shaded region). This is referred to here as the “exact” stability

boundary, as it is calculated using the exact threshold energy, with a precision de-

termined by the accuracy of the threshold mass calculated variationally. It is to

be compared with the lower bound stability calculated using the wavefunction of

the symmetric systems (Figure 5.4.2 blue shaded region). The proofs provided by

Martin and Armour, [28,97] as described in Section 5.4.1 regarding the topology of

the stability domain remain valid. Therefore all systems enclosed within the green

boundary (shaded green) are stable to dissociation.

Predicting the Stability of Any Three-body Unit Charge System a Priori Pre-

dicting the stability of a particular three-body system simply requires the calculation

157



5. The Stability Domain for S-States of Unit Charge Coulomb 3-Body Systems

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a
3a 1

a2

Figure 5.4.5.: The green shaded zone depicts the most accurate stability zone we
have calculated for unit charge systems. Systems in the zone have at

least one bound state.

of its position on the ternary diagram, using the definitions of the reciprocal mass

given in Eq. (5.2.3). If a three-body system falls within the stability domain it is

stable to dissociation. Given that the critical masses used to define the stability

boundary are converged to 2 s.f. to 3 s.f., the error on the boundary is at best ±0.0005

in scaled units. Within this accuracy, it would be useful to be able to determine the

threshold mass of the third particle for stability with any particle pair. In order to

do this, it is necessary to calculate the crossing point of the stability boundary with

the line of constant mass ratio for the three-body system (Figure 5.4.6).

The coordinates in the ternary diagram, are x = (a2−a1)√
3

and y = a3. Following the

procedure in Section 5.4.1, it is possible to fit the boundary to a function of a3, the

reciprocal mass of the uniquely charged particle, and express the line of constant

mass ratio a1
a3

in these coordinates, and solve simultaneously. However computing

the intercept between the line in Figure 5.4.6 and the boundary line in Figure 5.4.5

is difficult as the dependent value m2 is difficult to separate out of the ai coordinates.

Therefore, a much simpler method is to use the coordinate system, [120] x = m3

m1+m3

and y = m3

m2+m3
(as in barycentric coordinates for centre of mass of the two-body

masses), as this eliminates m2 from the independent variable. Using this coordinate
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Figure 5.4.6.: If m1 and m3 are kept fixed and m2 varied then tracing these systems
on the ternary diagram gives a straight line from the lower right
corner. This line on the ternary diagram represents the line with a
given constant m1

m3
mass ratio. Different values have different lines but

they are all straight and all go through the lower right corner. The
intercept of this line with the boundary gives the critical mass for a

specific mass ratio.
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Figure 5.4.7.: The stability boundary shown in barycentric coordinates, with the
fitted function in green and calculated known systems as black crosses.

system, the stability boundary is fitted to a function of the form used in Section 5.4.1,

i.e.

y = f (x) =
5∑
i=0

cix
i
2 (5.4.3)

This results in an excellent fit with an R2 value of 0.999 999 83. The optimised values

for this fit are:

• c0 = 0.310 672 03

• c1 = 0.677 996 13× 10−2

• c2 = 0.195 965 44

• c3 = −0.609 288 42× 10−1

• c4 = 1.359 881 3

• c5 = −0.812 377 64

The green line in Figure 5.4.7 is the fitted function and the crosses represent the

calculated data points showing that the fitted function portrays the data accurately

over the whole extent of the data. This boundary in Figure 5.4.7 shows much the same

shape in these barycentric coordinates as it does with normalised reciprocal mass

coordinates used with the ternary diagram in Figure 5.4.5. Substituting x = m3

m1+m3

into y = f (x) for a given mass pairm1 andm3 provides the lightestm2 mass possible
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for binding to the two-body system. This is the first instance the author knows of

where in which a simple formulae makes easy calculations of the prediction stability

for any unit charge system.

5.4.3. Comparison of Lower Bound and Variational Methods of

the Stability Domain

It is clear from Figure 5.4.5 that the lower bound stability underestimates the stability

width at large values of a3 as anticipated, [97] but also underestimates the width at

small values of a3. This is supported by the data in Table 5.4.4, which provides a3,

the height of the point from the horizontal axis, and a2−a1, which is proportional to

the distance from the central symmetry axis. Therefore this a2−a1 can be used as a

measure of stability. It indicates that molecular-like systems, i.e., m1, m2 � m3, are

less affected by the mass difference between the like-charged particles as the system

remains stable when m2 � m1, than are atomic-like systems, m1, m2 � m3.

5.4.4. Comparison to Literature: The Existence of e+e– p+

e+e–p+ doesn’t exist, or at least has not been observed in nature, and theory supports

it as unstable. [115–117,120] This does not mean that it is unimportant. For example

impacting a positron into a hydrogen atom causes its ionisation into a proton and

Positronium. [142–146] This occurs naturally in weakly coupled plasma, making it

important in understanding plasma and positrons in astrological processes. [144] For

our purposes however, confirming its instability, serves as a useful check point for

validating our methodology. Method 1 can not definitively calculate e+e–p+ as

unstable instead placing it outside the stability domain where it is known to be

stable, whereas Method 2 definitively predicts it as unstable as it calculates mcr

accurately to 2 s.f. to 3 s.f..

In Table 5.4.5 we give the critical mass of a particle required to bind with a

hydrogen atom to be ≥ 2.20(8) me. This, as in previous work, [115–117,120] disproves

the existence of a positron (e+) binding to a hydrogen. To compare this critical

mass to literature Rotenberg and Stein [115] calculated an upper bound for the critical

mass as being mcr ≤ 2.20me and more recently Rebane et al. [120] have calculated a
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Property Value
System p+ m +

cr e–

mcr 2.20(8)
Energy −0.499 727 840
Eth −0.499 727 840〈
T̂
〉

0.499 727 839〈
V̂
〉

−0.999 455 678

Table 5.4.5.: Our calculation of the critical mass of p+ m +
cr e– Using an optimised AC

wavefunction with 8436 terms.

lower bound mcr ≥ 2.20(3)me. We can see that our results are right on par with

the critical masses determined by other researchers.

5.5. Summary & Conclusions

The stability of a range of symmetric unit charge systems have been calculated to

high accuracy and used to predict the width of the stability band. This was done in

terms of the fractional additional binding, g, as a function of the reciprocal mass of

the uniquely charged particle, a3, using the method of Martin et al. [97] A functional

form of g (a3) is obtained by fitting to these data and is used to determine the

minimum value of g (a3), the point of least relative excess binding due to a third

particle. Mátyus et al. [100] discuss the emergence of molecular structure in three-

body systems in terms of the density at the centre of mass and calculate that the

transition from atom-like to molecule-like behaviour takes place within the interval

0.4 < m1

m3
< 0.8. The results presented here indicate that the transition from atom-

like to molecule-like behaviour occurs when the system has the least energetic gain

by association with the third particle.

The upper bound of the particle mass, corresponding to the exact threshold energy

for a given two-body system, was calculated using the variational principle. [120] The

generalised eigenvalue equation was solved using a series solution method for the

three-particle system in translation-free internal coordinates using a wave function

expanded in a triple orthogonal set of Laguerre polynomial functions with three

non-linear variational parameters. This work demonstrates the utility of the series

solution method, but indicates that the wavefunction, so successful in energy cal-
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culations, does not adequately capture the physics of the variational mass problem,

resulting in very slow convergence. However this is also true with others work [120]

and seems to be a property of calculating critical mass variationally. The “exact”

stability boundary of Method 2, with a precision of (2 to 3) s.f., was used to compare

with the lower bound to stability recently calculated using Method 1. The shape and

increased region of stability was discussed and the latter attributed to the important

anti-symmetric terms in the Hamiltonian. Finally, a functional fit to the data in a

judicious choice of mass coordinates provided a simple analytical expression for the

calculation of the critical mass of a third particle required for stable binding to any

two-body system.

With regards to future work, the surface of this work has only just been tapped

upon. Perhaps of particular interest are the critical masses of the excited states of

three-body systems. It is possible using Method 2 to generate a complete stability

boundary for an excited state with little adaptation. In this boundary, not all

symmetric systems are stable as it is known that H– has no excited state. [139]

Another avenue that could also be combined with an excited states extension would

be non-unit charge systems. A new stability zone could be found for any combination

of charges.

There also exist other ways of analysing our data on the ternary plot. Our current

boundary shows the line at which E0 = Eth. There is no reason not to plot the

boundary where E0 = 1.1Eth or any other factor. Doing this would describe a contour

plot of the energy surface for all unit charge, three-body systems. Furthermore the

function that plots this surface exactly would be the exact solution of the energy

of three-body systems as a functions of mass for unit charge. Although we could

not find that function using these contours, we can investigate how it behaves as in

where it peaks, where its minima are and what is its general shape on the ternary

diagram. This information could be used in a variety of ways including providing

information as to the nature of an appropriate wavefunction for future work.

Work performed in this chapter has been published in the Journal of Chemical

Physics. [125,136]
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6. The Stability of 1S-States for

Coulomb 3-Body Atoms as a

Function of Charge

6.1. Introduction

In addition to the mass of the particles (Chapter 5), charge also influences the stability

of a system consisting of three particles, under Coulomb interactions. Charge and

mass constitute two key factors governing stability of a three-body system, whilst the

third is the state the system is in. Three-body systems are again ideal for studying

this stability. As discussed in Chapter 5, the energy of the lowest continuum threshold

of a three-body system can be calculated from the two-body energy, which is known

exactly for the non-relativistic time independent case as explained in Eq. (5.2.1).

Three-body systems are relatively small compared to those found in conventional

computational chemistry. However this allows for very accurate calculations of the

energy and the wavefunction as described in Chapter 4. These calculations include

non-adiabatic and correlation effects associated with the particles motion. In the

present chapter the role of charge on the stability of two electron atoms and ions is

considered.

The role of nuclear charge is shown in this chapter to have an effect on how

electrons behave in terms of their spatial separation, with high charge causing the

two electrons to have relatively small separations, and low charge causing them to

separate. At a sufficiently low charge one of the electrons becomes unbound and

the other behaves together with the nucleus like a two-body system. In such a

spatial separation of electrons, these will be referred to as the inner and the outer
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electron and calculations will be performed using a method not previously applied

to wavefunctions with explicit r3 interactions, finite mass or arbitrary charges.

The studies in this chapter can be used to describe the effect of electron shielding.

On reduction of the nuclear charge, Z3, until one electron becomes unbound, this

unbound electron is lost because the attraction of the nucleus has been shielded

by the other electron, leaving only the repulsive force of the other electron. This

electron is unbound when E ≤ Eth (E is the ground state energy of a three-body

system and Eth is the lowest continuum threshold energy of the same system). When

this occurs, addition of an electron to a two-body system causes no gain in energy.

However the work of Estienne et al. [147] suggests a shape resonance below critical

nuclear charge (Zcr) where the electron remains localised to the nucleus.

Charge is an important factor for the effective computation of chemistry. It

dictates the attractive and repulsive forces that make up the world of atoms and

indeed molecules, and whilst some special cases of masses can be approximated as

infinity, charge can not be. Of particular interest to a chemist is the nuclear charge

and the effects of screening of that charge. Partial charges are not an unfamiliar

topic for a chemist, with phenomena such as screening reducing the effective nuclear

charge. Therefore the methodology employed with complete control of charge can

study interesting effects caused by different charges directly as the computational

approach allows the inclusion of non-integer charges.

The concept of critical charge has been discussed by various authors over the years,

more recently there has been debate over the correct value for two electron atoms

with various methods calculating different results. For example, the earlier work

by authors such as Baker [148] are disputed by later work by Turbiner et al. [149] and

by Zamastil. [150] Baker performed variational calculations on the 1
Z3

expansion to

determine an accurate Zcr value. This critical charge was calculated with perturba-

tion theory with 400 terms in the expansion. Guevara and Turbiner calculated the

critical charge as 0.910 85 e and Zamstil calculated it as 0.9021 e. These numbers

are significantly different from each other whilst claiming to be accurate to the num-

ber of digits reported. To resolve this contradiction Estienne et al. [147] calculated a

definitive Zcr as 0.911 028 224 077 255 73 e resolving contradiction in literature, and

supporting the earlier work by Baker et al. In addition Estienne explored the elec-
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tronic structure and behaviour of the outer electron as Z3 → Zcr. This was done

using the Hellman-Feynman theorem and 1
Z3

expansion. This Zcr value was calcu-

lated using the 1
Z3

expansion as in previous work. The work of Estienne et al. was

performed using a very accurate variational double and triple basis set method as

described in the work by Drake et al. [89,113]

In this work we developed, programmed and implemented a method for direct

computation of the critical charge. This method is variational and in contrast to all

previous work, calculates the critical charge in a single computation for any given set

of masses. All other methods by the authors noted above required many calculations

of energy as a function of nuclear charge. In this work we consider finite mass, critical

nuclear charges, some of which have not been previously considered. We also look into

the properties of the critical charge system investigating its characteristics. These

properties and this method are unique and have not been studied or implemented

elsewhere.

Inner and Outer Electrons In this chapter the characteristics of systems with

critical nuclear charge are studied. One such characteristic that was considered

interesting was the individual properties of each electron for the purpose of studying

electron detachment. To accomplish this, the electrons were separated into an inner

and an outer component, a technique not widely used but useful for calculating

certain properties such as effective nuclear charges. Hylleraas [63,64,151] first developed

the variational method of including the r3 coordinate explicitly (r3 is sometimes

referred to as r12 in the literature), developing a technique used by a variety of

authors including this one. Hylleraas studied a number of concepts, properties

and phenomena with this method including the effective charge that an outer and

an inner electron experiences. To do this Hylleraas broke the integral domain of

Hylleraas coordinates into an inner and an outer component. These domains form

the base for the inner and outer electron properties, which will be discussed in this

chapter. In addition, with the He wavefunction, Hylleraas introduced the concept of

anti shielding, where the outer electron forces the inner electron closer to the nucleus

causing an apparent increases in effective charge to values greater than that of the

nuclear charge. As will be shown later this effect is also observed in this work. Koga

et al. [152–159] has done the most in-depth work on the separate distributions of inner
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and outer electrons. Unlike in earlier work, that focused on effective nuclear charge,

in which inner and outer electrons are tools for probing certain quantities, Koga

et al. [152–159] studied the inner and outer electrons themselves. These include inner

and outer electron properties such as their radial distances (〈rni 〉) and their probability

densities. Koga showed various relationships between these properties that we will

explain in depth in Section 6.2.2. The work of Koga et al. was performed with the

multi-configurational Hartree-Fock (MCHF) method, a technique that calculates

energies in a more successful manner than traditional Hartree-Fock (HF). For

example the energy for He is calculated as −2.903 033Eh
[160,161] as opposed to the

true value of −2.903 724Eh. Koga et al. has studied relatively large systems, such as

atoms with d and f shells, and the effects inner electrons have on these outer shell

electrons.

This work explicitly investigates the properties of the inner and outer electrons for

atomic three-body systems. The inner and outer electrons are used to investigate in

particular the “detachment” of an electron as the charge is decreased to and below

the critical nuclear charge. This work is also the first to calculate the inner and

outer electron properties with explicit inclusion of r3 and electron correlation effect

as well as the first to include the correlated motion effect.

This chapter aims to introduce a novel, effective and efficient method developed to

directly calculate critical charge. This method is then used to calculate the critical

charge of both infinite and finite mass two-electron atoms to establish the minimum

charge required to hold two electrons and have at least one bound state below the

continuum threshold. The electronic structure is also revealed using a technique that

separates inner and outer electrons by applying various operators to these inner and

outer electrons. This shows the effect of nuclear charge on the electron behaviour of

two fully correlated electrons.

6.2. Method

Chapter 5 demonstrated the stability of three-body systems as a function of mass

but with fixed charge. This chapter determines the stability of three-body systems

as a function of nuclear charge for two electron systems. A stable three-body system
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is defined as having at least one bound state more stable than the lowest continuum

threshold, which in the present chapter corresponds to electron detachment.

6.2.1. Critical Charge

In this chapter a novel approach to calculating the minimum charge required by a

nucleus to bind two electrons is presented. This will be referred to as the critical

nuclear charge (Zcr). Within this chapter, any reference to the critical charge

will be reference to the critical nuclear charge of the nucleus only. Here this is

the critical nuclear charge of Z3. Unlike the other methods mentioned above this

approach calculates the critical nuclear charge as an eigenvalue, in much the same

way as was calculated the critical mass (mcr) in Chapter 5 under “Method 2”. This

critical nuclear charge method is variational, bounded from below, and an exact

wavefunction calculates this charge exactly. The trial wavefunction described in

detail in Section 4.2.8 on page 105 was used to variationally determine the critical

charge. In Section 6.4.2 it will be shown that the rate of convergence of the critical

nuclear charge is relatively rapid in stark contrast to the convergence rate of the

critical mass. The rate of convergence for the critical nuclear charge was found to

be much more comparable to the rate of convergence of the energy than that of the

mass.

Rebane and Kuzminskii [120] showed that the lowest eigenvalue λ0 corresponds to

minK(φ) where

K(φ) =

∫
φ?P̂ φdV∫
φ?Q̂φ dV

(6.2.1)

Here P̂ is a self-consistent operator bounded from below and Q̂ is a positive definite,

self-conjugate operator. [120] The computational method employed in this work has to

have Q̂ as a positive definite operator or else the Cholesky decomposition as described

in Chapter 3 fails to resolve with a fatal computational error. The eigenvalues λj
are the extremals of K, satisfying the equation

P̂ψj = λjQ̂ψj, j = 0, 1, 2, . . . (6.2.2)

which arises from the requirement that the first variation vanishes, i.e. δK ≡ 0. [120]

This algorithm can be applied to the calculation of the threshold value of the
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nuclear charge. The Schrödinger equation in atomic units for a two-electron atom

of the form
{
e−e−mZ3+

3

}
, where m3 is the mass of the nucleus and Z3 is the nuclear

charge, is as follows (m3 and Z3 are used to be consistent with the numbering schemes

in other chapters):

(
−1

2
∇2

1 −
1

2
∇2

2 −
1

2m3

∇2
3 −

Z3

r1
− Z3

r2
+

1

r3

)
ψ = Eψ (6.2.3)

where r1 and r2 are the distances of the first and second electron from the nucleus,

respectively, and r3 is their mutual separation, as described in Section 4.2.1 on

page 89. A scaling of the coordinates ri by Z3 results in the following Z-scaled

Schrödinger equation:

(
−1

2
∇2

1 −
1

2
∇2

2 −
1

2m3

∇2
3 −

1

r1
− 1

r2
+

1

Z3

1

r3

)
ψ =

E

Z2
3

ψ (6.2.4)

The purpose of such a scaling is to facilitate the rearrangement to make Z3 the

eigenvalue in the following steps. At the stability threshold (the beginning of the

essential spectrum of the operator), the wavefunction satisfies Eq. (6.2.4) with at

the threshold E ≡ Eth. This Eth is known analytically as follows (the general form

for Eth is given in Section 5.2 on page 136):

E ≡ Eth = −Z
2
3

2

1

1 +m−1
3

(6.2.5)

Where Eth is the ground state hydrogen-like, electron-nucleus, two-particle system

that corresponds to the energy of the lowest dissociation threshold, which in this

case is electron detachment. Therefore,

(
−1

2
∇2

1 −
1

2
∇2

2 −
1

2m3

∇2
3 −

1

r1
− 1

r2
+

1

Z3

1

r3

)
ψ =

Eth
Z2

3

ψ (6.2.6)

Rearranging Eq. (6.2.6) gives a particular case of Eq. (6.2.2), giving the operators

of P̂ and Q̂ for the critical charge.
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First substitute Eq. (6.2.5) into Eq. (6.2.6) and simplify

(
−1

2
∇2

1 −
1

2
∇2

2 −
1

2m3

∇2
3 −

1

r1
− 1

r2
+

1

Z3

1

r3

)
ψ =

−Z2
3

2
1

1+m−1
3

Z2
3

ψ (6.2.7)(
−1

2
∇2

1 −
1

2
∇2

2 −
1

2m3

∇2
3 −

1

r1
− 1

r2
+

1

Z3

1

r3

)
ψ =− Z2

3

2
(
1 +m−1

3

)
Z2

3

ψ

(6.2.8)(
−1

2
∇2

1 −
1

2
∇2

2 −
1

2m3

∇2
3 −

1

r1
− 1

r2
+

1

Z3

1

r3

)
ψ =− 1

2
(
1 +m−1

3

)ψ
(6.2.9)

Then rearrange to make all terms with Z3 on the right hand side, and all else on the

left hand side.(
−1

2
∇2

1 −
1

2
∇2

2 −
1

2m3

∇2
3 −

1

r1
− 1

r2
+

1

2
(
1 +m−1

3

))ψ =− 1

Z3

1

r3
ψ (6.2.10)

When E = Eth then Z3 = Zcr. Giving the critical charge operators.(
−1

2
∇2

1 −
1

2
∇2

2 −
1

2m3

∇2
3 −

1

r1
− 1

r2
+

1

2
(
1 +m−1

3

))︸ ︷︷ ︸
P̂

ψ = − 1

Zcr︸ ︷︷ ︸
Eigenvalue

1

r3︸︷︷︸
Q̂

ψ

(6.2.11)

P̂ =− 1

2
∇2

1 −
1

2
∇2

2 −
1

2m3

∇2
3 −

1

r1
− 1

r2
+

1

2(1 +m−1
3 )

(6.2.12)

Q̂ =
1

r3
(6.2.13)

These definitions of the operators satisfy the requirement that P̂ is bounded from

below (c.f. the standard assumption that the Hamiltonian operator is bounded below

in the variational principle [28]) and that Q̂ is a positive, definite, self-conjugate oper-

ator. [120] The lowest eigenvalue (which we label as λ0) corresponds to the threshold

charge of the nucleus, i.e.,

λ0 = − 1

Zcr
(6.2.14)

The higher eigenstates (i.e. λ1, λ2, λ3, ...) correspond to the critical nuclear charge
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of higher excited states. However the excited states are not the focus of this chapter,

but with the program developed in this work such states are calculable and will be

considered in future work.

The value of Zcr corresponds to the nuclear charge for which the system is still

stable. In the limit when the trial wavefunction tends to the exact solution of

Eq. (6.2.6), this value tends to the exact value of the critical nuclear charge (Zcr).

The generalised eigenvalue problem, Eq. (6.2.2), with the operators as defined in

Eqs. (6.2.12) and (6.2.13) is solved to give the critical nuclear charge of a three-body

system of the form
{
e−e−mZ3+

3

}
where m3 is the mass of the nucleus and Z3(= Zcr)

is the critical nuclear charge for binding. The lowest eigenvalue, corresponding

to the singlet ground state, is acquired using the symmetric trial wavefunction as

shown in Eq. (6.2.15) (Described in more detail in Section 4.2.9 on page 107). This

wavefunction uses Laguerre polynomials of the form Ln (x) (Described in more detail

in Section 4.2.8 on page 105). Perimetric coordinates are used and the problem was

solved using the series solution method (with 57 terms) which allows for efficient

calculation by avoiding integration. The wavefunction has 2 non-linear variational

parameters A and C for reasons discussed in Chapter 4 meaning that the non-linear

variational parameter B equals A. The symmetric wavefunction corresponds to the

singlet ground state and is symmetric with respect to exchange of the r1 and r2

coordinate.

ψ(z1, z2, z3) = e−
1
2
(Az1+Bz2+Cz3)

∑
l,m,n

A (l,m, n) (Ll (Az1)Lm (Bz2)Ln (Cz3)

+ (δl,m − 1)Ll (Az2)Lm (Bz1)Ln (Cz3))

(6.2.15)

In this work, determinants of order 1078, 2856 and 4389 are considered, which

correspond to wavefunctions represented by complete polynomials of order ω = 21,

30 and 35, respectively, in the scaled, perimetric coordinates, in which l+m+n ≤ ω

and the numbering takes advantage of the preserved symmetry. [71,73] These are

referred to as Pekeris shells as described in Section 4.2.10 on page 109.

As discussed in Chapter 4 for the symmetric case, the constraint A = B is imposed

to take advantage of the orthogonal [141] character of the wave function. However C
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is allowed to vary independently to allow for an explicit dependence on r3 in the

exponential behaviour at large r, which may be important at non-integer low Z3.

When C = A + B = 2A the exponent in the wave function models, in principle,

the correct asymptotic behaviour of the solution of the Schrödinger equation for

two-electron atoms at large r1 and r2 [63,64] (See Section 4.2.10 for a more in-depth

discussion on the non-linear variational parameters, and Section 4.2.7 on page 100

for a detailed discussion of the “correct asymptotic” behaviour).

6.2.2. Distinguishing the Electrons: Inner and Outer Electrons

This chapter investigates the effect of decreasing the charge of a nucleus until an

electron is no longer bound. To determine how the detachment occurs for a three-

body system, as described by the wavefunction used here, a method of observing the

“detachment” was developed. To do this it was necessary to distinguish between the

two electrons, that, under conventional operators such as 〈r1〉 and 〈r2〉, are identical

due to symmetry and fermionic exchange. For this purpose the electron-nucleus

coordinates of the wavefunction were separated into inner and outer distances. This

is to say the electrons were spatial split into one electron that is closer to the nucleus

(rin) and one that is further away (rout). Either particle 1 or particle 2 is considered

as inner or outer at any moment as no distinction is made between the two particles.

It was later discovered that this type of inner and outer electron separation had

previously been investigated using multi-configurational Hartree-Fock (MCHF) type

wavefunctions by Koga et al. [153,154,159,162]

To consider operators composed of rin and rout such as 〈rin〉 the following conditions

were imposed upon the wavefunction:

ri ≤ rj where i = 1, 2 and j = 1, 2 but i 6= j (6.2.16)

These conditions give us the ability to probe the spatial separation of two electrons

under correlated motion. That is to say that any such correlated electrons would

preferential prefer to separate in order to minimise electron repulsion. We define

rin as the inner electron distance from the nucleus, and rout as the outer electron

distance from the nucleus.
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To enforce the conditions of Eq. (6.2.16) the Dirac delta function is used. The

Dirac delta function is strictly speaking not a function but a distribution. However

here it is referred to as a function to conform to convention. [163–168]

Dirac Delta Function The Dirac delta function δ (x) was used to impose the

condition within Eq. (6.2.16) upon the integral over the inter-particle distances. The

Dirac delta is a distribution that is zero everywhere except at its origin. [85,163,167–169]

The origin of the delta function is undefined except that the area under its curve is

equal to 1. These “functions” therefore cause the wavefunction to vanish everywhere

expect at zero. [170] More specifically, the Dirac delta behaves as follows: [77,169–171]

Note the definition of exclusive or (⊕) where A⊕B is true when A or B is true but

not when A and B are true. [172]

∫ b

a

δ (x) dx =



1 if 0 ∈ ]a, b[

1

2
if a = 0⊕ b = 0

0 otherwise

(6.2.17)

∫ b

a

f (x) δ (x) dx =



f (0) if 0 ∈ ]a, b[

f (0)

2
if a = 0⊕ b = 0

0 otherwise

(6.2.18)

∫ b

a

f (x) δ (x− c) dx =



f (c) if x− c = 0 ∈ ]a, b[

f (c)

2
if a− c = 0⊕ b− c = 0

0 otherwise

(6.2.19)

∫ b

a

f (x) δ (g (x)) dx =



∑
xi

f (xi) +
∑
xj

xj
2

if roots of g (x) exist in [a, b]

where xi is all roots of g (x),x∈ ]a, b[

and xj is all roots of g (x),x∈{a, b}

0 otherwise

(6.2.20)
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Equation (6.2.20) is the most complex but perhaps the most useful of the Dirac

delta forms. In the most simple case when g(x) = x then Eq. (6.2.18) is obtained.

When g(x) = x − c then Eq. (6.2.19) is obtained. More interesting cases of Dirac

deltas exist when g(x) = 0 for more than one value of x.

The following two cases describe how the Dirac delta behaves to give discrete

points. This form is used to give us the probability densities of the wavefunction at

certain distances along the coordinate and will later be used to calculate probability

densities in Section 6.4.4. In the following examples of such cases a = 0, and b = ∞.

Case 1 When g(x) = x2 − 1 then g(x) = 0 when x = −1 and x = 1 in this case:

∫ ∞

0

f(x)δ(g(x)) dx = f(−1) + f(1) (6.2.21)

Case 2 When g(x) = sin(x) then g(x) = 0 when x = 0, π, 2π, ...:

∫ ∞

0

f(x)δ(g(x)) dx = f (0) + f (π) + f (2π) + ... (6.2.22)

The following case evaluates to to a continuous range. This could also be represented

as a Heaviside function. When g(x) gives ranges that are zero, the Dirac delta gives

a continuous range as in the following case.

Case 3 When g(x) =

0 when x > c and x < d where c > 0 and d > c

1 otherwise

∫ ∞

0

f(x)δ(g(x)) dx =

∫ d

c

f(x) dx (6.2.23)

Inner and Outer Operators To calculate operators of the wavefunction such as

the average distance the inner electron is from the nucleus, the inner and outer

distances need to be defined. There are multiple definitions possible but here rin
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and rout are defined as:

rin =min(r1, r2) (6.2.24)

rin =
1

2
(r1 + r2 − |r1 − r2|) (6.2.25)

rout =max(r1, r2) (6.2.26)

rout =
1

2
(r1 + r2 + |r1 − r2|) (6.2.27)

In this case the integral becomes:

〈rin〉 =
∫ ∞

0

∫ ∞

0

∫ |r1−r2|

|r1−r2|
ψ?

1

2
(r1 + r2 − |r1 − r2|)ψ dr3 dr2 dr1 (6.2.28)

This form can be integrated by applying the following:∫ ∞

−∞
|x| dx =

∫ ∞

0

x dx+

∫ 0

−∞
−x dx (6.2.29)

In practise these inner and outer operators are easier to apply than it would first

seem as they can be evaluated simply as:

〈rin〉 =
∫ ∞

0

∫ r1

0

∫ |r1+r2|

|r1−r2|
ψ?r2ψ dr3 dr2 dr1 +

∫ ∞

0

∫ ∞

r1

∫ |r1+r2|

|r1−r2|
ψ?r1ψ dr3 dr2 dr1

(6.2.30)

To help understand these integrals and the inner and outer concepts we change the

coordinate system. The following coordinate systems allow us to apply Eq. (6.2.29)

to Eq. (6.2.28) where |r1 − r2| can be represented as |x|. There is already a coordinate

system used for such purposes, referred to as Hylleraas coordinates, and these are

discussed in the following discussion.

Inner and Outer Coordinates: Hylleraas Coordinates The discussion of inner

and outer electrons has been in terms of ri coordinates, however the calculations were

performed in perimetric coordinates for the computational advantages associated

with an independent coordinate system. Later in Section 6.3 the details of how

this coordinate system is transformed, specifically for inner and outer electrons, to

perimetric coordinates will be explained.

In the following discussion we use a coordinate system more natural to inner and
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outer electrons, namely the Hylleraas coordinates defined as:

s =r1 + r2

t =r1 − r2

u =r3

(6.2.31)

The integrals for including all of space in this coordinate system are as follows:

∫ ∞

0

∫ ∞

−∞

∫ s

|t|
f (s, t, u) du dt ds (6.2.32)

In this coordinate system, the definition of rin becomes much simpler:

rin =
1

2
(s− |t|) (6.2.33)

For rout:

rout =
1

2
(s+ |t|) (6.2.34)

For some function of rin or rout (that we shall call f (s, t, u)) when integrated over all

of space, the absolute function in the rin or rout is integrated by applying Eq. (6.2.29)

which gives the following:

∫ ∞

0

∫ ∞

0

∫ s

|t|
f (s, t, u)||t|=t du dt ds+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
f (s, t, u)||t|=−t du dt ds (6.2.35)

This gives the r1 ≥ r2 sub-domain:

∫ ∞

0

∫ ∞

0

∫ s

|t|
f (s, t, u) du dt ds (6.2.36)

With the following as r2 ≥ r1 sub-domain:

∫ ∞

0

∫ 0

−∞

∫ s

|t|
f (s, t, u) du dt ds (6.2.37)

From this we can immediately see that Eq. (6.2.36) covers precisely half of all

of space, and that Eq. (6.2.37) also covers exactly half, or more specifically, the

other half of all of space. Therefore when we apply an operator such as δ (rin − r)

provided that we use both integrals Eqs. (6.2.36) and (6.2.37) are used all of space
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is integrated over.

In a symmetric wavefunction the system is symmetric to exchange of the two

electrons. From this we can take Eq. (6.2.37) and exchange r1 and r2. When this is

done we obtain Eq. (6.2.36), the following demonstrates:

Starting from Eq. (6.2.37)

∫ ∞

0

∫ 0

−∞

∫ s

|t|
f (s, t, u) du dt ds (6.2.38)

Due to fermionic exchange r1 ↔ r2. In Hylleraas coordinates this is applied by

transforming t to t′ where t′ = r2 − r1∫ ∞

0

∫ 0

−∞

∫ s

|t′|
f (s, t′, u) du dt′ ds (6.2.39)

To tranform back to t, the sign of t′ is reversed such that t = −t′. As the sign of the

integral coordinate is reversed the domain is also reversed giving Eq. (6.2.36)

∫ ∞

0

∫ ∞

0

∫ s

|t|
f (s, t, u) du dt ds (6.2.40)

Therefore with a system that is symmetric with respect to exchange, it is possible to

calculate the full integral by taking only the first integral Eq. (6.2.36) and multiplying

the result by 2. Indeed in Hylleraas’s paper, [63,64,151] he simplified the calculation of〈
Ĥ
〉
by taking only the r1 ≥ r2 domain and multiplying the resulting energy by 2.

Inner and Outer Relations The inner and outer electrons are related to the inter-

particle distances through a set of relationships. Here these relations will be ex-

plained.

Relationship 1 The first relationship states that the sum of the inner and outer

electron radial distances from the nucleus gives the sum of the r1 and r2

distances.

〈rin〉+ 〈rout〉 = 〈r1〉+ 〈r2〉 (6.2.41)

This relation is true because to calculate the inner and outer radial distances

177



6. The Stability of 1S-States for Coulomb 3-Body Atoms as a Function of Charge

the integral ranges used to calculate 〈r1〉 and 〈r2〉 are split in half. Where the

inner half of 〈r1〉 and 〈r2〉 are given to 〈rin〉 and 〈rout〉 is assigned the outer

half.

Since an integral range
∫ b
a
f(x) dx can be split to the following

∫ c
a
f(x) dx +∫ b

c
f(x) dx, c ∈]a, b[ and evaluate to the same value. Then adding inner and

outer distances completes the integral range in much the same manner and

sums to give 〈r1〉+ 〈r2〉.

This can be seen mathematically for a generic operator A (ri) in Hylleraas

coordinates as:

〈A (r1)〉 =
∫ ∞

0

∫ ∞

−∞

∫ s

|t|
ψ?A (r1)ψ du dt ds (6.2.42)

This can be split into the following two integrals

〈A (r1)〉 =
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?A (r1)ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?A (r1)ψ du dt ds (6.2.43)

〈A (r2)〉 similarly splits

〈A (r2)〉 =
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?A (r2)ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?A (r2)ψ du dt ds (6.2.44)

The inner and outer equivalents simply take different combinations of these

〈A (rin)〉 =
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?A (r2)ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?A (r1)ψ du dt ds (6.2.45)

〈A (rout)〉 =
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?A (r1)ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?A (r2)ψ du dt ds (6.2.46)
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Summing rin + rout gives the following

〈A (rin)〉+ 〈A (rout)〉 =
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?A (r2)ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?A (r1)ψ du dt ds

+

∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?A (r1)ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?A (r2)ψ du dt ds (6.2.47)

This trivially rearranges to

〈A (rin)〉+ 〈A (rout)〉 =
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?A (r1)ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?A (r1)ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?A (r2)ψ du dt ds

+

∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?A (r2)ψ du dt ds (6.2.48)

Finally substituting in Eqs. (6.2.43) and (6.2.44) gives the relationship

〈A (rin)〉+ 〈A (rout)〉 =〈A (r1)〉+ 〈A (r2)〉 (6.2.49)

Relationship 2 The second relationship states that the inner and outer electron

radial distances can be calculated from the 〈r1〉 distance ± the average distance

between r1 and r2 (〈|r1 − r2|〉). Where the negative combination gives rin and

the positive combination gives rout.

〈rin〉 = 〈r1〉 − 〈|r1 − r2|〉 (6.2.50)

〈rout〉 = 〈r1〉+ 〈|r1 − r2|〉 (6.2.51)

This relation only holds for symmetric systems where 〈r1〉 = 〈r2〉, as this means

that 〈rin〉+ 〈rout〉 = 2 〈r1〉 and that 〈rin〉+〈rout〉
2

= 〈r1〉. Under these conditions

〈r1〉 lies half way between rin and rout. The average distance between r1 and

r2 can be calculated using 〈|r1 − r2|〉 this is equivalent to the average distance

between rin and rout. Therefore half of this average distance can be used to

get from 〈r1〉 to 〈rin〉 or 〈rout〉.
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This can be seen mathematically as follows:

〈r1〉 =
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?r1ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?r1ψ du dt ds (6.2.52)

〈rin〉 =
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?r2ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?r1ψ du dt ds (6.2.53)

〈|r1 − r2|〉 =
∫ ∞

0

∫ ∞

−∞

∫ s

|t|
ψ? |r1 − r2|ψ du dt ds (6.2.54)∫ ∞

−∞
|x| dx can be evaluated into the following∫ ∞

−∞
|x| dx =

∫ ∞

0

x dx+

∫ 0

−∞
−x dx (6.2.55)

And as |r1 − r2| = |t| then Eq. (6.2.54) becomes:

〈|r1 − r2|〉 =
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ? (r1 − r2)ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ? (r2 − r1)ψ du dt ds (6.2.56)

This is simplified in much the same way as in Eqs. (6.2.38) to (6.2.40) due to the

fermionic exchange of r1 ↔ r2

〈|r1 − r2|〉 =
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ? (r1 − r2)ψ du dt ds

+

∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ? (r1 − r2)ψ du dt ds (6.2.57)

=2

∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ? (r1 − r2)ψ du dt ds (6.2.58)

Using the sum rule of integration to give

〈|r1 − r2|〉 =2

(∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?r1ψ du dt ds

−
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?r2ψ du dt ds

)
(6.2.59)

〈|r1 − r2|〉
2

=

∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?r1ψ du dt ds

−
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?r2ψ du dt ds (6.2.60)
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It follows that Eq. (6.2.52) subtract Eq. (6.2.60) gives

〈r1〉 −
〈|r1 − r2|〉

2
=

∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?r1ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?r1ψ du dt ds

−
∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?r1ψ du dt ds

+

∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?r2ψ du dt ds (6.2.61)

=

∫ ∞

0

∫ ∞

0

∫ s

|t|
ψ?r2ψ du dt ds

+

∫ ∞

0

∫ 0

−∞

∫ s

|t|
ψ?r1ψ du dt ds (6.2.62)

Finally substituting in Eq. (6.2.53) gives the relationship

〈r1〉 −
〈|r1 − r2|〉

2
= 〈rin〉 (6.2.63)

6.3. Implementation

All computational methods for solving eigenproblems in this chapter including the

novel method for calculating the critical nuclear charge used the efficient series

solution method that can avoid integration and thus reduce computational cost.

The repulsive interaction of the like-charged particles was included explicitly from

the beginning, and all particles were kept in motion unless otherwise stated. Atomic

units are used throughout unless otherwise stated.

The non-linear variational parameters (A,C) were optimised using the method

bound optimisation by quadratic approximation (BOBYQA) as described in Sec-

tion 3.2.1 on page 35. All optimisations were performed in double precision (16-digit)

for systems that are converged, in terms of energy, to less than 12 s.f.. However

quadruple precision (32-digit) was required for the accurate calculation of expecta-

tion values involving Dirac delta functions discussed in Section 6.2.2. The particle-

electron mass ratio for the helium nucleus (taken as the alpha particle), proton,

muon and tauon were taken directly from the latest CODATA. [18] For Z3 ≥ 3 the

experimental atomic masses, M(amu), for the most abundant isotope with Z3 ≥ 3,

were taken from the Atomic mass evaluation 2012, [173] and converted to atomic units

via the relationship M(au) = M(amu) ×mu/me. The value of the unified atomic
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Initial System Nuclear mass, m3 (a.u.)
Ps– 1
Mu– 206.768 284 3
Tau– 3477.15

1H 1836.152 672 45
4He 7294.299 536 1
7Li+ 12 786.3918

9Be2+ 16 424.2047
11B3+ 20 063.7360
12C4+ 21 868.661 82
14N5+ 25 519.0423
16O6+ 29 148.9456
19F7+ 34 622.9703

20Ne8+ 36 433.9889
∞H– ∞

Table 6.3.1.: Atomic systems described in the chapter and their nuclear masses. All
of these systems contain two electrons and a single nucleus of finite
mass. Ps– , Mu– and Tau– are exotic species with nucleus’s of e+,
µ+ and τ+ respectively. The masses for these exotic nuclei and for
the H– and He nuclei were taken from CODATA 2012 [18] and have
been given in Appendix B. The nuclear masses for the other atoms
were taken from the Atomic Mass Evaluation (AME) 2012 [173] and the

appropriate number of electrons removed.

mass constant is mµ = 1.660 538 921(73)× 10−27 kg, and the mass of the electron

me = 9.109 382 91(40)× 10−31 kg. [18] The nuclear masses in atomic units were then

obtained by removing the appropriate number of electrons, and are provided in

Table 6.3.1. All the systems listed in Table 6.3.1 are stable in their ground state and

can be used as initial systems to determine the boundary of the region of stability

for each system of a given mass, m3, as the charge Z3 decreases. Note that due to

the mass scaling rule these results also determine analogous systems with the same

particle-mass ratios.

Implementation of the Dirac Delta To implement the Dirac Delta functions given

in this chapter, each integral with a Dirac delta had to be explicitly evaluated as the

computer algebra package Maple, with its built in “Dirac” function was incapable of

handling these correctly or efficiently. In most cases the built in function returned

unevaluated, only succeeding with the simpler cases. Therefore the Dirac deltas were

first simplified by hand. For example the integral representing the particle densities
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along r1 is given by 〈δ(r1 − r)〉:

〈δ(r1 − r)〉 =
∫ ∞

0

∫ ∞

0

∫ |r1+r2|

|r1−r2|
ψ?δ(r1 − r)ψ dr3 dr2 dr1 (6.3.1)

By applying the Dirac delta definition in Eq. (6.2.19) this then reduces as follows:

〈δ(r1 − r)〉 =
∫ ∞

0

∫ |r+r2|

|r−r2|
ψ?ψ|r1=r dr3 dr2 (6.3.2)

With this form Maple is then capable of evaluating the integral effectively.

The Effects of Exchange on Implementation of the Inner and Outer Electrons

The inner and outer average radial distances are calculated using the following

expression.

〈rin〉 =
∫ ∞

0

∫ r1

0

∫ |r1+r2|

|r1−r2|
ψ?r2ψ dr3 dr2 dr1

+

∫ ∞

0

∫ ∞

r1

∫ |r1+r2|

|r1−r2|
ψ?r1ψ dr3 dr2 dr1 (6.3.3)

Equation (6.3.3) can also be written as follows as this also imposes the appropriate

conditions (take note of the order of integration):

〈rin〉 =
∫ ∞

0

∫ r1

0

∫ |r1+r2|

|r1−r2|
ψ?r2ψ dr3 dr2 dr1

+

∫ ∞

0

∫ r2

0

∫ |r1+r2|

|r1−r2|
ψ?r1ψ dr3 dr1 dr2 (6.3.4)

The form of the average inner electron-nucleus distance shown in Eq. (6.3.4)

is useful, since in atomic systems containing two electrons, the wavefunction is

symmetric with respect to interchange of r1 and r2 (See Section 4.2.9 on page 107).

As a result, the first and second terms of Eq. (6.3.3) integrate to an identical value.

As was explained in Section 6.2.2 this means that in principle only one half of the

integral range need be evaluated for systems with 2 identical particles.

The Probability Densities This chapter is the first to discuss the systems in

terms of their probability densities. These expectation values, (See Section 4.4.3

on page 124 for further explanations of expectation values) denoted by 〈δ (ri − r)〉
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represent the probability of coordinate ri having the distance r. These were obtained

by applying a Dirac delta to the probability with the following integral.

〈δ (r1 − r)〉 =
∫ ∞

0

∫ ∞

0

∫ |r1+r2|

|r1−r2|
ψ?δ (r1 − r)ψ dr3 dr2 dr1 (6.3.5)

Applying this Dirac delta gives the following equation that can then be evaluated in

Maple:

〈δ (r1 − r)〉 =
∫ ∞

0

∫ |r+r2|

|r−r2|
ψ?ψ|r1=r dr3 dr2 for r 6= 0 (6.3.6)

A significant technical detail in the implementation of Eq. (6.3.6) lies in its integral

ranges. This function now integrates over the range r2 and r3 only and r1 has become

a single given value. This greatly simplified the evaluation of these expectation values

and as a result, it became a simple matter to plot the probability density for many

values of r. The case when r = 0 is special because at this point r3 = r2 and the

second integral vanishes. This can be seen by inspecting the range
∫ |r+r2|
|r−r2| for when

r = 0 this reduces to the trivial
∫ |r2|
|r2| . Therefore 〈δ (r1)〉 becomes:

〈δ (r1)〉 =
∫ ∞

0

ψ?ψ|r1=0,r3=r2
dr2 (6.3.7)

Equation (6.3.7) is simple to evaluate with the wavefunction used here and can be

evaluated entirely with recursion relations and series solution. Therefore the special

case of this probability density, at coalescence, is computed in the much faster C++

code (Section 3.2.2 on page 50) rather than within Maple (Section 3.3.2 on page 67).

Extending to Perimetric coordinates The wavefunction is in perimetric coordi-

nates as these are easier to calculate as an independent set of coordinates ranging

from 0 to ∞.

So far we have discussed the expectation values of probability densities and the

inner and outer electrons in terms of ri coordinates. However by converting these

expectations values to scaled perimetric coordinates it was found to be more efficient

in computation, being some 2 to 5 times faster, as the integral ranges remain simpler

with no |r1 − r2| component. The relevant integrals of the expectations values in ri
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coordinates are as follows, which will then transform to scaled perimetric coordinates:

〈δ (r1 − r)〉 =
∫ ∞

0

∫ |r−r2|

|r−r2|
ψ?ψ|r1=r dr3 dr2 (6.3.8)

〈rin〉 =
∫ ∞

0

∫ r1

0

∫ |r1+r2|

|r1−r2|
ψ?r2ψ dr3 dr2 dr1

+

∫ ∞

0

∫ ∞

r1

∫ |r1+r2|

|r1−r2|
ψ?r1ψ dr3 dr2 dr1 (6.3.9)

〈δ (rin − r)〉 =
∫ ∞

r

∫ |r1+r|

|r1−r|
ψ?ψ|r2=r dr3 dr1 +

∫ ∞

r

∫ |r+r2|

|r−r2|
ψ?ψ|r1=r dr3 dr2

(6.3.10)

The scaled perimetric coordinates are applied

r1 =
v

2B
+

w

2C
(6.3.11)

r2 =
u

2A
+

w

2C
(6.3.12)

r3 =
u

2A
+

v

2B
(6.3.13)

Applying these to Eq. (6.3.8) we note that when

r1 =r (6.3.14)
v

2B
+

w

2C
=r (6.3.15)

This is first rearranged to make either v or w the subject. Arbitrarily, w was chosen.

w =2C
(
r − v

2B

)
(6.3.16)

Therefore we subsitute for w instead of r1 (leaving integral ranges out for this step)∫ ∫
ψ?ψ|w=2C

(
r− v

2B

) dv dw (6.3.17)
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The integral domains must cover all of space for their coordinate. For u this remains

0 to ∞, however, for v, we must consider the effect it has on w. According to

Eq. (6.3.16) if v becomes larger than 2Br then w would be negative. w must remain

within its original domain of 0 to ∞ therefore v is limited to the range 0 to 2Br.

This gives the integral for 〈δ (r1 − r)〉

〈δ (r1 − r)〉 =
∫ ∞

0

∫ 2Br

0

ψ?ψ|w=2C
(
r− v

2B

) dv dw (6.3.18)

A similar process is employed to calculate the other integrals.

r1 ≥r2 (6.3.19)
v

2B
+

w

2C
≥ u

2A
+

w

2C
(6.3.20)

v

2B
≥ u

2A
(6.3.21)

v ≥Bu
A

(6.3.22)

〈rin〉 =
∫ ∞

0

∫ ∞

Bu
A

∫ ∞

0

ψ?
( u

2A
+

w

2C

)
ψ dw dv du

+

∫ ∞

0

∫ Bu
A

0

∫ ∞

0

ψ?
( v

2B
+

w

2C

)
ψ dw dv du (6.3.23)

〈δ (rin − r)〉 =
∫ 2Ar

0

∫ ∞

Bu
A

ψ?ψ|w=2C
(
r− u

2A

) dv du
+

∫ 2Br

0

∫ ∞

Av
B

ψ?ψ|w=2C
(
r− v

2B

) du dv (6.3.24)

These integrals in scaled perimetric coordinates were implemented in Maple and

used to calculate the various properties of the wavefunction. It is worth noting

that here, the series solution was not applied and so these integrals were 2000 times

slower compared to the other expectation values calculated in C++ such as 〈r1〉. For

example, calculating 〈r1〉 using Maple took 2.5 hours compared to 5 seconds in C++

for a 2856-term wavefunction.

6.4. Results and Discussion

6.4.1. Energy as a function of nuclear charge

The calculated energies for systems such as He and H– are known to be of good

quality, as described in Chapter 4 on page 87, and are in excellent agreement with the
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Figure 6.4.1.: Ground-state energy of
{

e−e−mZ3+
3

}
, with mass m3 = ∞, as a func-

tion of Z3.

most recent high accuracy values reported in the literature. [65,174] It is worth noting

that the agreement between the finite masses used here, and those in the literature,

is no greater than 8 s.f. for Z3 ≥ 3. The energies for systems with the nucleus in

motion are less negative than those with a fixed nucleus. The energy difference is of

the order of 10−4 a.u. for H– to Be2+ and 10−3 a.u. for B3+ to Ne8+ and so increases

from less than 1 kJmol−1 to about 7 kJmol−1. The effect of nuclear motion on the

total energy of the system becomes smaller as the nuclear mass increases, as expected

(See Appendix C about concave functions of the energy for parameters entering the

Hamiltonian linearly).

In Figure 6.4.1, the energy of the ground state of two-electron atoms, corresponding

to the two-electron Hamiltonian with m3 = ∞, is shown for a range of integer and

non-integer values of Z3. A general theorem exists stating that the energy is a concave

function of any parameter entering the Hamiltonian linearly. [104] The ground state

energy is therefore a concave function of the charge, Z3. It is clear from Figure 6.4.1

that, as expected, the energy continues to be a continuous function of Z3 for non-

integer low Z3 values.

6.4.2. Critical Charge required for binding

The critical nuclear charge required for binding was determined using the variational

method described in Section 6.2.1 with a range of nuclear masses from 1 to infinity
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Initial System Zcr (a.u.)
Ps– 0.921 802 4(4)
Mu– 0.911 392 7(8)
Tau– 0.911 050 1(6)

1H 0.911 069 7(3)
4He 0.911 038 6(9)
7Li+ 0.911 034 2(0)

9Be2+ 0.911 032 8(8)
11B3+ 0.911 032 0(3)
12C4+ 0.911 031 7(2)
14N5+ 0.911 031 2(2)
16O6+ 0.911 030 8(5)
19F7+ 0.911 030 4(3)

20Ne8+ 0.911 030 3(2)
∞H– 0.911 028 2(3)

Table 6.4.1.: Bound on the critical nuclear charge, Zcr, for two-electron systems,
calculated using a 2856-term basis with two non-linear variational pa-
rameters; the digit given in parenthesis is not considered converged.

(Table 6.4.1). Additionally, to check this new method, the total energy for each{
e−e−mZ3+

3

}
system was calculated using the standard Hamiltonian in Eq. (6.2.3),

and compared with the threshold energy, Eth = −Z2
31/2(1+m

−1
3 ) for that particular

Z3 to determine if the three-body system remained bound. Given that the variational

energy calculations provide an upper bound to the true energy, the smallest value

of Z3 for which the calculated energy lies below the electron detachment threshold

is an upper bound to the exact value of the critical nuclear charge (Zcr). Similarly,

the variational method for the direct determination of Z3 described in Section 6.2.1

provides an upper bound. Convergence behaviour was determined by evaluating the

energy and critical Z3 as a function of basis set size. The convergence of Z3 near

the boundary of stability was slower than the energy convergence (Table 6.4.2). It

was found that both methods, the variational method for the direct determination

for Zcr and the energy comparison method, provided the same value for Zcr to the

reported accuracy for a given basis set size but the new method provided the value

in a single calculation reducing the computational effort significantly.

Using the series solution method with a 2856-term wavefunction, it is found that

Zcr = 0.911 028 2, which is in excellent agreement with the most recent literature

value of Zcr = 0.911 028 224 077 255 73(4) using a multiple basis set method with up
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No. of Terms, N Energy of ∞He (a.u.) ∞Zcr (a.u.)
1078 -2.903 724 377 026 604 0.911 028 431 8
2856 -2.903 724 377 034 010 0.911 028 235 5
4389 -2.903 724 377 034 099 0.911 028 227 1
8924 -2.903 724 377 034 104 0.911 028 224 4

Table 6.4.2.: Rate of convergence with basis set size (number of basis functions N).
Converged digits are in bold. The energy convergence of the helium
atom is compared with the charge convergence for Zcr. In both cases,

the nuclear mass is taken as infinite.

to 2276 terms. [147] Additional converged digits are obtained by going to larger basis

set sizes (Table 6.4.2). Additionally, the results presented here using a Laguerre

polynomial-based single basis set method, further support the results obtained by

Estienne et al. [147] regarding the contradictory values in the literature.

The minimum (critical) charge of the third particle/nucleus required to bind two-

electrons is given in Table 6.4.1 starting from the stable systems
{
e−e−mZ3+

3

}
with

finite nuclear masses, m3, ranging from the mass of a positron = 1 to the mass of a

neon nucleus = 36 433.9889. Rebane [126] has calculated the regions of unconditional

stability and instability of Coulomb systems with varying particle charges for fixed

ratios of the particles masses and reports values starting from Ps– and Mu– of

0.9296 and 0.9174, respectively. The results in Table 6.4.1 for these systems improve

on these upper bounds (0.921 802 4 and 0.911 392 7, respectively) and are the most

accurate reported to date. Furthermore, to our knowledge, this is the first time the

upper bound on the critical value of the charge has been reported for a range of

systems with heliogenic nuclear masses. The data reveal that as the mass decreases,

a greater nuclear charge is required to ensure binding. The difference in nuclear

charge for the helium isoelectronic sequence is of the order of 4× 10−5, but as the

mass is reduced from that of a proton to that of a positron, the difference in the

critical charge for binding is much greater at 1× 10−2. This is attributed in a

physical sense to the increased nuclear motion of a light particle requiring a greater

attractive nucleus-electron interaction to trap the second electron and overcome the

electron-electron repulsion. In an energetic sense the Ps– has less fractional excess

binding energy (g) (as discussed in Section 5.4.1 on page 153) and was therefore

closer to the critical threshold to start with.

It would seem from these results that by reducing the mass of m3 relative to m1
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and m2 the critical charge rises. It was thought however that instead of always

increasing it would again begin to diminish as m3

m1
ratio becomes less than 1 and

we enter the molecular domain. This is for the same reasons outlined in Chapter 5

and due to the quadratic nature of the fractional excess binding energy (g) as a

function of the m3 mass. Using the novel method for efficient calculation of Zcr, it

was possible to quickly calculate many critical nuclear charges for many systems

with masses between H– to Ps– and investigate the effect m3 mass has on the

critical charge. Even systems that do not correlate to known particles were included

in order to explore the entire domain. As energy is a concave function of charge

then the amount of charge needed to be lost to reach the critical point (E = Eth)

is proportional to the amount of fractional excess binding energy i.e. how close in

terms of fractional excess binding energy the energy is to 0. Figure 6.4.2 shows a plot

of Zcr and the fractional excess binding energy of unit charge systems, demonstrating

this relationship. The fractional excess binding energy values were calculated using

the g function we published on this matter in J. Chem. Phys (2013) [125] this is

also laid out in Section 5.4.1 on page 153. The masses in Figure 6.4.2 are given in

normalised reciprocal mass (ai) where ai = m−1
i

m−1
1 +m−1

2 +m−1
3

, i = 1, 2, 3 as described in

Section 5.2.1 on page 137. All of these new points were calculated with a relatively

small wavefunction of 1078 terms. This smaller wavefunction, although not as

accurate as the large 2856+ wavefunctions still gives converged Zcr values to 4 s.f.

and is therefore perfectly adequate for the scale of the figure.
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6.4.3. Bound state properties as a function of nuclear charge

To determine the quality of the solutions obtained, various expectation values have

been calculated using the best 2856-term wavefunction in each case. The properties

presented in Table 6.4.3 include the expectation values of the inter-particle distances

ri, and various powers, r−1
i and r2i , the two-particle Dirac delta functions, δ(ri), and

the two-particle cusps, νi. In this table, the subscript 1 refers to the nucleus-electron

interaction and the subscript 3 refers to the electron-electron interaction.

As discussed in Section 4.4.3 on page 123 these properties can determine the quality

of the wavefunction. The extent to which the virial condition
〈
V̂
〉
= −2

〈
T̂
〉

is

satisfied provides a measure of the quality of the solution. It was found that for all

systems, including at Zcr, the factor η defined in Eq. (6.4.1) were calculated to be

less than 5× 10−11, which is close to the exact value of zero.

η =

∣∣∣∣∣∣
〈
V̂
〉

〈
T̂
〉 + 2

∣∣∣∣∣∣ (6.4.1)

Where
〈
V̂
〉
and

〈
T̂
〉
are the expectation values of the potential and kinetic energy,

respectively.

Expectation values of the inter-particle coordinates for the systems considered in

Table 6.4.1 are in very good agreement with the values reported by Frolov [111,175] for
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the helium isoelectronic sequence; the He and H– values are provided in Table 6.4.3.

To judge the quality of the wavefunction at non-integer Z3 the value of
〈
r−1
3

〉
at

Zcr was compared with that reported in the literature for the infinite nuclear mass

system. Estienne et al. [147] used the Hellman-Feynman theorem

dE

d(1/Z3)
=

∫
ψ?

∂Ĥ

∂(1/Z3)
ψ dv =

〈
1

r3

〉
(6.4.2)

where Ĥ is the Hamiltonian of the system and ψ the wave function, to confirm the

accuracy of their value calculated as the slope of a linear extrapolation of infinite

nuclear mass energy against reciprocal nuclear charge Z3. In this work, the calculated

value of
〈
r−1
3

〉
at Zcr using the Z-scaled Hamiltonian is 0.2451(9) which agrees well

with their reported value of 0.245 189 063 9(1). However, a wavefunction calculated

using a Z-scaled Hamiltonian will give Z-scaled expectation values. Therefore,

rather than the Z-scaled Hamiltonian in Eq. (6.2.4), the true expectation value, as

in that which could be measured experimentally, is calculated using the standard

Hamiltonian (Equation (6.2.3)), which yields a value of
〈
r−1
3

〉
= 0.2233(7). In

practise the Z-scaled expectation value reported previously can be unscaled with

the appropriate factor or an unscaled wavefunction can be obtained by recalculating

the system and using the Hamiltonian of Eq. (6.2.3) and expectation values could

then by calculated using this unscaled wavefunction.

The two-body cusp ratios were determined using [105,111]:

νi = 〈ν̂i〉 =

〈
δ(ri)

∂
∂ri

〉
〈δ(ri)〉

(6.4.3)

The exact value of ν1, the nucleus-electron cusp, is −Z3m3

1+m3

[105] which reduces to −Z3

for the infinite nuclear mass systems, and the exact value of ν3, the electron-electron

cusp, is 1
2
. The values in Table 6.4.3 indicate that the cusp values at Zcr are not

quite as good as those for helium and the hydride ion but are quite reasonable.

Expectation values of the inter-particle coordinates 〈r1〉 and 〈r3〉 as a function

of nuclear charge Z3 are shown in Figure 6.4.3. There is no appreciable difference

between the figure for mass m3 = ∞ and when taking the finite mass equal to that of

a proton, i.e., M = 1836.152 672 45 a.u., as the values differ only in the 4th or 5th s.f.,
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Figure 6.4.3.: Expectation values 〈r1〉 and 〈r3〉 with m3 = mp = 1836.152 672 45, as
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Large values of ri (i.e. > 100 a0) are considered as ∞ on the scale of

three-body atoms and molecules.

therefore only the latter is shown. For Z3 < 1 (see inset of Figure 6.4.3), the electrons

appear to remain weakly bound to just below Zcr and then there is an abrupt jump to

large values of 〈ri〉 as the nuclear charge is no longer sufficient to bind the electrons.

No such jump is observed in the total energy (Figure 6.4.1) at this point. Figure 6.4.3

indicates that close to Zcr (i.e., at Z3 ≈ 0.910) the electrons remain localised, even

though the total energy is above the lowest continuum threshold. Complete electron

detachment occurs at Z3 < 0.910. Estienne et al. [147] observed that their non-linear

variational parameter describing the asymptotic behaviour of the outer electron does

not tend to zero as Z3 → Zcr as would happen if the outer electron moved to infinity

at the critical point. They attributed localisation of the wavefunction at a finite

distance from the nucleus below the critical point to the existence of resonances

induced by the shape of the atomic potential. It would appear that these shape

resonances, at 0.9 < Z3 < Zcr, are detectable in the data presented in Figure 6.4.3,

and that the behaviour is independent of the nuclear motion.

To further elucidate the electronic structure near the critical nuclear charge, the

probability distribution for the electron-nucleus distance, r1(= r2) and for the
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These figures are indistinguishable from those with m3 = ∞.

electron-electron distance r3 have been calculated using:

〈δ(ri − r)〉 =
∫ ∞

0

∫ ∞

0

∫ |r1+r2|

|r1−r2|
ψ?(r1, r2, r3)δ(ri − r)ψ(r1, r2, r3) dr1 dr2 dr3 (6.4.4)

The probability distribution for the helium atom (Z3 = 2) is compared to that of the

hydride ion (Z3 = 1) and the critical nuclear charge system (Z3 = Zcr) in Figure 6.4.4.

Again, there is no discernible difference between the data for the infinite nuclear

mass systems and that for the finite nuclear mass systems, where the nuclear mass

at Zcr is taken as the proton mass. This is because changes due to nuclear motion

appear in the 4th significant figure. The nucleus-electron probability density, often

referred to as the single-particle density, and the electron-electron probability density,

often referred to as the intracule density, show that all three systems have the same

basic profile. The expected “cusp” condition of the nucleus-electron probability

distribution is much less pronounced in the anionic systems, due to the reduced

nuclear charge. A maximum occurs in the electron-electron distribution for all three

systems but the density is greatly diminished and the maximum shifts to greater

electron-electron separation for the anionic systems. Furthermore, as the charge

decreases the probability distribution goes to zero much more slowly. It is clear from

these figures that the excess negative charge dominates the interactions, resulting

in the electron density becoming more diffuse, diminishing electron density close to

the nucleus.

195



6. The Stability of 1S-States for Coulomb 3-Body Atoms as a Function of Charge

6.4.4. Inner and Outer Electrons

Particle Densities The particle densities such as those in Figure 6.4.4 give electron-

nucleus distances which represent the probability of finding either of the two electrons

at distance r from the nucleus. These probabilities can be further investigated using

the inner/outer electron separation technique discussed previously. At any one

moment, one electron is closer to the nucleus than the other, except when r1 = r2.

The closer electron is able to “shield” the other from the nucleus. Of course the

inner electron may not be shielding the other electron from the nucleus at all times

even if the electron is closer to the nucleus. For instance if the electrons are on

opposite sides of the nucleus, the picture is more complex as particles are just as

much waves, and behave in a probabilistic fashion. We are therefore talking about

the probability of finding the particles on opposite sides of the nucleus. It should

also be pointed out that “shielding” is something of a misnomer as nothing in the

non-relativistic time independent Schrödinger equation stop the coulomb force from

being experienced by the other particles even if they are being directly shielded.

The integral for inner and outer electrons employed here as shown in Eq. (6.2.28)

ranges over all possible r3 distances and that means we consider complete spheres of

probability. Thus we are considering all cases where electrons are on identical and

opposite sides of the nucleus thus investigating the combined effect of all positions

an inner electron imposes upon an outer electron. Here the particle densities, plotted

for the inner and outer electrons, measure the probability of the electron being at a

certain distance. This is multiplied by its spherical shell to get the true probability

density. This quantity is labelled D and is calculated as.

〈D (r)〉 =
∫ ∞

0

∫ ∞

0

∫ |r1+r2|

|r1−r2|
4πr2δ (ri − r) dr3 dr2 dr1 (6.4.5)

Here ri is the desired coordinate, for example r1, or rin. Figure 6.4.5 (a), (b) and

(c) show the inner and outer probability densities for He, H– and Zcr respectively.

In the case of He, the difference between the inner and outer electron probability

density is smallest. On comparing He to H– and Zcr, it is evident that there is excess

nuclear charge even after shielding. This causes the two electrons to be pulled closer

together despite their repulsion. As the charge of Z3 increases, the inner and outer
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Figure 6.4.5.: Inner and outer radial distributions (D) of (a) He, (b) H– , (c) Zcr.

electrons are pulled closer together. This is shown in Figure 6.4.6 where it can be

seen that as Z3 increases the inner and outer electron probability densities have an

increasing overlap and are pulled closer together. This figure also shows that the

amount of overlap between the inner and outer electrons converges to a maximum.

This theoretically correlates to a maximum amount of electron-electron interaction,

whereby even after increasing the charge of the nucleus the degree of electron overlap

does not increase significantly and no longer significantly increases interaction.

The H– and Zcr in Figure 6.4.5 exhibit much of the same behaviour where the

outer electron is distant from the inner. This is not surprising as it is known that

H– only has a single bound state and has a difference in charge of only ≈ 0.089 from

the critical nuclear charge, indicating that H– is only just stable. In Chapter 7 it

will be shown that even high precision HF incorrectly calculates H– as unstable as
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Figure 6.4.6.: Inner and outer radial distributions, these have been normalised in
the same manner used by Thakkar et al. [55] such that they can be
viewed on a single graph. The systems included, moving from left to
right in peak heights, are Fm98+, Ca18+, Ne8+, F7+, O6+, N5+, C4+,

B3+, Be2+, Li+, He and H–

it overestimates the important electron correlation.

At charge Z3 = 0.9 the outer electron effectively becomes unbound. This can be

seen in Figure 6.4.7 where the outer electron probability is effectively zero. In this

figure the inner electron radial distribution behaves exactly like the two-body radial

distribution. To show this, the probability density of the two-body radial distribution

is plotted on the same graph as the inner electron density plot in Figure 6.4.8.

The inner electron probability densities of Zcr and H– also resemble the two-body

probability densities. However, in these cases, the inner electron is forced closer

to the nucleus compared to the two-body wavefunction. This is because the outer

electron is constraining the inner electron to be closer to the nucleus to better avoid

the outer electron. Hylleraas referred to such an effect as anti-shielding. [63,64]

Radial Distances To the authors knowledge we are the first to explicitly calculate

the properties of inner and outer electrons using a wavefunction and Hamiltonian

that explicitly includes the r3 term. The author does note that Koga et al. have

calculated the inner and outer electron properties for a multi configurational HF

wavefunction of atomic systems from H– through to Kr. We however explicitly

incorporate the electron-electron interaction through r3. We perform the inner and

outer integrals for systems with finite and infinite mass and for interesting systems
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Figure 6.4.7.: Inner and outer radial distributions (D) of an atom with m3 = ∞ and
Z3 = 0.9. Here Inner and (Inner+Outer) completely overlap as the
outer electron density is zero (in the distribution of outer is of the
scale 1 × 10−15 which we consider to be zero to the precision of the

machine).

below Z3 = 1, where significant differences between outer and inner electrons are

observed.

The data presented in Table 6.4.4 gives the radial distances in other words the

average distances the electrons are from the nucleus. It can be seen that for Zcr

the outer electron is still relatively well localised. However for Z3 = 0.9 the outer

electron effectively resides at infinity relative to the inner electron.
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Figure 6.4.8.: Inner and outer radial distributions (D) of atoms with m3 = ∞ and
charges of Z3 = 0.9 (a), Zcr (b) and 1 (c), with the two-body (hydro-
genic) radial distribution for comparison. In (a) Inner and two-body

densities completely overlap.

Element 〈rinner〉 (a0) 〈router〉 (a0)
0.9 1.669 148 962 184.169 352 3
Zcr 1.621 049 048 6.672 249 851
H– 1.427 714 520 3.992 642 027
He 0.602 359 419 1.256 585 171
Li+ 0.380 512 966 0.765 035 334
Be2+ 0.278 005 362 0.550 561 294
B3+ 0.218 990 285 0.430 121 204
C4+ 0.180 638 706 0.352 949 031
N5+ 0.153 716 532 0.299 268 270
O6+ 0.133 777 667 0.259 765 875
F7+ 0.118 417 171 0.229 478 402
Ne8+ 0.106 220 610 0.205 517 571

Table 6.4.4.: The average distance the inner and outer electrons are from the nucleus,
for a variety of atomic systems all with infinite mass.
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6.5. Summary & Conclusions

A variational method for the direct calculation of the stability threshold to electron

detachment has been introduced and proven to be very effective compared to standard

methods. This method calculates the critical charge with a single computation and,

for an exact wavefunction, gives an exact critical charge. This was done using our

series solution method and therefore integration was avoided resulting in an efficient

calculation even with a large number of terms in the wavefunction.

The minimum charge required for binding two electrons has been calculated both

with (i) infinite nuclear mass and (ii) explicit consideration of nuclear motion for

a range of finite nuclear masses. Taking account of the relative motion of all the

particles in the system, and the non-adiabaticity and correlation effects associated

with this motion, Zcr changes by at most 4× 10−5 for the heliogenic mass systems,

but these effects become more significant, 1× 10−2, when the masses are reduced to

those of “exotic” particles such as positrons and muons. Furthermore, very quickly

the nuclear charge becomes insufficient to hold a bound state. This amount of charge

required to reach the critical charge was found to follow the trend of fractional excess

binding energy (g) as shown in Figure 6.4.2. This is the same g that was discussed

in Section 5.2.3 on page 140.

The ∞Zcr and finiteZcr for heliogenic nuclear masses agree to 4 s.f. and take the

value of 0.9110 e, which is very close to the nuclear charge of 1 in the real system,

H– . Particularly, interesting is that the energy remains smooth and continuous as

Z3 → 0, but the expectation values of the inter-particle coordinates in the system

contain a jump to large distance at just below Zcr. These results indicate a transition

of the system from a bound state to a shape resonance, as the nuclear charge goes

through the critical point, before electron detachment. This has been published in

Physical Review A. [176]

A method was conceived for the separation of the inner and outer electrons that

could then be applied to various operators such as probability densities and electron-

nucleus distances. This method facilitated the observation of electron detachment,

that is otherwise not possible using conventional operators and the symmetric wave-

function used here as they cannot separate the two electrons. This is because they

are under fermionic symmetry and therefore have identical 〈X (r1)〉 and 〈X (r2)〉
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values (where X (ri) is an operator depending only on the ri coordinate). This

inner outer separation method has not been applied before to wavefunctions with

explicit electron-electron interaction (r3) and also not for systems with all particles

in motion.

The inner and outer electron densities were calculated for a variety of systems.

As the charge was increased, the difference between the inner and outer electrons

became less pronounced as the two electrons began to overlap to a greater degree.

As the charge was decreased from Z3 = 2 (He) the outer electron probability began

to broaden and became less associated with the nucleus, whilst the inner electron

probability began to represent the two-body solution. When the charge was reduced

to below this discontinuous jump, the outer electron density became flat i.e. zero

probability of finding the electron anywhere, and the inner electron completely

modelled the two-body hydrogenic wavefunction’s probability density. This work

has been submitted for publication.

Work performed in this chapter has been published in Physical Review A. [176]
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7. Electron Correlation in Two

Electron Atoms

7.1. Introduction

Three body systems constitute the smallest systems in which electron correlation

can be observed. Electron correlation is the instantaneous interaction between two

electrons. Three-body atoms such as H– , He and their isoelectronic series have two

interacting electrons in the presence of a nucleus, and represent the smallest model for

such complex interactions. Electrons, being like-charged particles, repel each other.

However, due to the attractive force of the nucleus, they are kept close together. The

electron correlation is the complex interaction caused by these repulsive forces. These

interactions are not easily calculated and many approximations exist that reduce

this electron correlation to a more manageable form. [177–181] It is the effects of these

approximations that we are interested in. An exact solution for three-body systems is

not known, but a variational approach can be employed to obtain accuracies greater

than that which would be needed to investigate electron correlation in mainstream

quantum chemistry.

Electron correlation (Ecorr) can be defined as the difference between the energy

calculated using a method in which the electron correlation is included (EFC) and

that calculated from a method without the electron correlation included (EHF ),

calculated with an infinite basis set. Here we use the Löwdin definition [182,183] where

the method without electron correlation is the HF method, as it is neglects certain

electron correlation and correctly describes the effects of spin. [184] EFC is the energy
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of a fully correlated system within the non-relativistic domain.

Ecorr = EFC − EHF (7.1.1)

Electron correlation has several effects upon a system. These include (i) the

coulomb hole in which opposite-spin electrons repel each other when close and cause

a small reduction in the electron probability near the nucleus. (ii) The Fermi hole

in which electrons having the same spin stay far apart from each other due to the

Pauli principle. In this case the electrons will not occupy the same space. [54,184–186]

The electron correlation affects the separation between electrons and changes the

probability of one electron being a certain distance from another.

Early work on electron correlation was directed at describing the coulomb and

Fermi holes. Maslen [185] calculated the shape and size of the Fermi hole in 1956.

The Fermi hole was found to have an important influence on the energy of a system

particularly in metals. [184] The Fermi hole is a result of the Pauli exclusion principle

and is a quantum mechanical phenomenon. The coulomb hole as reported by Coulson

and Nielson [184] is a classical phenomena arising from the coulomb repulsion. The

coulomb hole occurs with all electrons including with opposite spin particles where

the Pauli principle has no direct influence. The coulomb hole manifests itself as an

area around the electron coalescence point (as in r3 = 0) where the probability of

finding the other electron is reduced relative to the reference electron. To completely

quantify the coulomb hole, electron correlation needs to be turned off. This is

where theory is a very useful technique as it allows us to switch on and off electron

correlation to quantify its effects. Coulson and Nielson calculated the coulomb hole

for He using the Hylleraas wavefunction, and various other wavefunctions, compared

to HF. This was reported as the first numerical calculation of the coulomb hole.

To calculate the coulomb hole Coulson and Nielson [184] calculated the probability

of finding r3 at a specific distance. Coulson and Nielson [184] did not use the Dirac

delta as used, in this and other chapters, to calculate particle densities (Section 6.3

on page 183) and instead fixed r3 to a specified value and integrated r1 and r2

over the ranges where r3 has this value. This is identical to using the Dirac delta

function. [85,170] The Dirac delta function may be regarded as a shorthand way of

describing this manner of integration. When we discuss the probability of r3 being
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a specific value we will use the Dirac delta notation where r is the value r3 is to be

fixed to. Coulson and Nielson concluded that the coulomb hole is 1.1 a0 wide; has

a minimum at 0.54 a0 and moves 0.047 e of charge (the charge moved is the area of

the hole). From the value 0.047 e it is evident how much smaller the coulomb hole

is than the Fermi hole, as the Fermi hole has a charge displacement (area) of 1.0 e.

Recently Gill et al. [187] discovered a second coulomb hole for the He atom [187] and

electrons in a sphere. [188] Previously thought to be due to an artefact of accuracy, Gill

et al. have shown that it remains even with accurate wavefunctions. The primary

hole at small r stabilizes the system by reducing the coulombic repulsion, however

it does so at the expense of increasing the kinetic energy. In other words electron

correlation allows electrons to avoid each other but to do so they must move more

quickly. [187,189] Gill et al. [187,189] found that with the second hole the reverse is true

where the kinetic energy is lowered at the expense of increased coulombic repulsion.

In 1975 Colle and Salvetti [190] created an approximate electron correlation func-

tional using one and two-electron density matrices of He using the HF method. This

functional has been used to great effect in density functional theory (DFT) with the

functional LYP. [191] The Colle and Salvetti functional has also been used in a few

other DFT correlation functionals. [192,193]

When investigating the effects of nuclear charge on the electron correlation of a

system, the isoelectronic series provides an experimentally observable set of systems

that can be investigated. The isoelectronic series of He is H– , He, Li+, Be2+, B3+,

C4+ and so on. Infinite mass is usually used through the literature, [194–196] and

although our fully correlated three-body method is not limited to infinite mass,

our HF implementation is. Therefore we use infinite nuclear mass throughout this

chapter.

This work lies in the non-relativistic time independent regime and in this regime it

has been shown that for atoms greater than carbon, the electron correlation effects

plateau. [197–199] This is because the repulsion of the electrons could not be overcome

with increasing charge on the nucleus. However it should be noted that within

the relativistic regime, this is not the case. Styszyński et al. [196] investigated the

relativistic He isoelectronic series’s electron correlation from Z = 1 to Z = 26 using

Hylleraas configuration-interaction (Hy-CI). Whilst Peska and Tatawaki et al. [200]
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looked into the electron correlation with a greater variety of methods, from Z = 1

to Z = 118, including the 4 component, multi-configurational Dirac Fock (MCDF)

method. [194,200] They have shown that with relativistic effects the repulsion of the

electrons is overcome and the electron correlation energy continues to change. Peska

and Tatawaki et al. [200] report with Hy-CI and MCDF that the relativistic electron

correlation energy has a more complex structure with a minimum at Z = 20 and a

maximum at Z = 68 before rapidly decreasing. However the relativistic regime is

not as simple to explore as the boundary conditions are not as well defined. [194,200]

In Chapter 4 it was shown that accurate energies for a wide range of three-body

systems not limited by the Born-Oppenheimer (BO) or clamped nucleus approxima-

tion are effectively and efficiently calculated. We were also able to calculate good

quality wavefunctions as indicated by the virial condition, cusps, and other factors.

In this work we will use the distribution known as the Dirac Delta function

to calculate particle densities affected by electron correlation, such as is the case

with coulomb holes. This is still a complex problem to be handled even on modern

computers. However our choice of wavefunction, using Laguerre polynomial functions,

has a set of recursion relations that simplify the task. As noted above, there has been

work to calculate a functional for electron correlation in particular work by Colle

and Salvetti, [190] however these functionals are not made from accurate variational

calculations with full electron correlation but by analysis of HF density matrices.

The work presented here uses accurate and full calculations to acquire the electron

correlation. We can also investigate the effects of charge upon the electron correlation,

including partial charges in ranges previously unexplored.

This chapter aims to create an accurate HF wavefunction made from the Laguerre

polynomial series because of the speed of computation when using series solution

and their correct cusp representation (See Section 7.2.1), calculating the analytical

2 electron integrals and developing programs and codes to effectively and efficiently

create accurate HF wavefunctions. This is then used to calculate accurate electron

correlation energies, by taking the fully correlated three-body energies as our EFC and

using the Löwdin definition for the He isoelectronic series and for non-integer charges.

The effect electron correlation has on physical properties, such as average nucleus-

electron distance is investigated. This includes the effects on the probability densities,
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which allow us to observe the coulomb hole, and the more recently discovered second

coulomb hole.

7.2. Method

Calculating accurate electron correlation requires the full three-body wavefunction,

as discussed in detail in Chapter 4 and an accurate reference wavefunction without

correlation, in this case HF. In this section the detail of the HF methodology will

be given in a concise manner. We use a generic wavefunction of the form:

Ψ(i) =
n∑
u=0

cuϕu(i) (7.2.1)

Where ϕu(i) forms the basis which will be specified later, cu are weighting coefficients

and n is the number of basis functions.

7.2.1. The Hartree-Fock Method

The HF wavefunction [101,201–203] treats every electron as existing in its own space

with the nuclei. It only sees other electrons in an average way. This was chosen

as the reference wavefunction as it is widely used and unlike a wavefunction with

no electron-electron interactions it includes exchange. [203] Note that there is no

exchange for 1S states of two electron atoms. More details on the general theory of

Hartree-Fock are given in Chapter 2.

The Hartree-Fock Operators The HF Hamiltonian that describes the two electron

atom with the interaction between the electrons treated in an average way has 4

operators. The first three are the standard kinetic energy T̂ , potential energy V̂ and

overlap Ŝ operators of a two-body system.

T̂ (i) =− 1

2

(
∂2

∂r2i
+

2

ri

∂

∂ri

)
(7.2.2)

V̂ (i) =
−Z3

ri
(7.2.3)

Ŝ(i) =1 (7.2.4)

207



7. Electron Correlation in Two Electron Atoms

The fourth operator Ĝ deals with the coulomb and exchange interactions and treats

the electron-electron interaction in an average way. These equations are in internal

triangular coordinates (r1, r2, r3) and not Cartesian, and therefore have a Jacobian

of the coordinate transformation when performing the integrals of 4πr2i . The angular

momentum is separated off and the 6 Cartesian coordinates of the two electrons,

relative to the nucleus, are transformed to 3 internal coordinates in a plane. When

using these coordinates some aspects must be considered.

First The orbitals are limited to having no orbital angular momentum. This means

only the S-orbital is included in our wavefunction. However as we only consider

the ground state of two electron atoms, this is perfectly valid.

Second We are limited to atoms. This is because, in the HF implementation, only

the electrons are allowed free movement. Molecules are treated in a different

fashion under the BO or fixed nuclei approximation.

The fourth operator is divided into two parts, the coulombic part Ĵ and the

exchange part K̂

Ĝ(i) =
N∑
j=1

2Ĵj(i)− K̂j(i) i 6= j (7.2.5)

This Ĝ operator gives the average interaction of electron i with every other N − 1

electrons. The Ĵ is relatively simple, however the K̂ operator is best described by

operating upon its wavefunction.

Ĵj(i) =〈Ψj(j) |
1

rij
| Ψj(j)〉 (7.2.6)

K̂j(i)Ψi(i) =

(
〈Ψj(j) |

1

rij
| Ψi(j)〉

)
Ψj(i) (7.2.7)

With these operator the integral contains the r3 (= r12) coordinate and the Jacobian

is 8π2r1r2r3.

Fock Operator In HF theory, the system is treated as sets of one electron functions,

“seeing” the other electrons in an average way. A Fock matrix F̂ is created and

diagonalised to obtain the energy and wavefunction of a single electron inside a

two-body system. The Fock matrix is the sum of the T̂ , V̂ , Ĝ and −Ŝ matrices. To
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calculate the full electronic energy of two electron atom we use the Fock operator.

The Fock operator gives the energy of a single electron plus the energy of the average

electron-electron interaction with every other electron. For two electrons in the same

orbital we double the Fock operator’s energy. However when we double the Fock

operator we also double this electron-electron interaction. Therefore the electron

repulsion energy is double counted. To obtain the full electronic energy, the energy

calculated by the Fock operator is doubled then the double-counted electron-electron

interaction energy (as calculated by Ĝ operator) is removed.

The SCF Cycle With HF methodology, the Fock operator is used to calculate the

wavefunction. However, the electron-electron interactions described in the Ĝ operator

require the coefficients from the wavefunction. There is therefore a dependency issue,

as the Ĝ operator requires the wavefunction and the wavefunction requires the Ĝ

operator. This is resolved with the use of an iterative cycle known as the Self

Consistent Field (SCF) cycle. A guessed wavefunction is used to calculate a guessed

Ĝ operator that in turn calculates a new guessed wavefunction that in turn calculates

a new guessed Ĝ operator. This cycle repeats until the energy of the wavefunction

converges to a specified tolerance. More detail of the exact procedure is given in

Section 7.3.

Hartree-Fock Methods

In this chapter three methods are used to calculate the HF energies. The first method

uses the commercial computational chemistry code known as Gaussian. [204] The other

two implementations use the computer algebra program Maple [205] running code

written by the author with either a Gaussian wavefunction or a Laguerre polynomial

wavefunction.

Gaussian Program The Gaussian program [204] was used to calculate HF energies

in addition to the Maple implementation. This is commercial software specifically

designed for calculating the properties and behaviours of atoms, molecules, their

chemical processes such as reaction pathways and a large variety of other aspects.

For our purposes Gaussian was used as the benchmark for the Maple implementation.

Gaussian is able to calculate complex systems and interactions, however we limit
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ourselves to two electron atoms with the clamped nucleus approximation. The largest

Gaussian basis set available was used to acquire the most accurate results. In some

cases this meant using basis sets from the basis set exchange. [206,207]

Maple Program With the computer algebra package Maple, two wavefunctions

were implemented, namely a wavefunction made from Gaussian functions and one

made from Laguerre polynomial functions. The Gaussian wavefunction was used

to test the validity of the implementation prior to using the Laguerre polynomial

method. This validity was confirmed by comparing the results between the Gaussian

wavefunction and the Gaussian program. As the Gaussian program uses Gaussian

functions, and since the wavefunction’s coefficients and NLPs are available pre-

optimised, we used the same coefficients and NLPs used in the Gaussian program to

ensure that the results would be comparable for testing of the HF method implemen-

tation. The Laguerre polynomial wavefunction would, after testing of the Gaussian

wavefunction, be used for the HF results reported here.

Comparisons The Gaussian program and wavefunction will both have a limita-

tion in their accuracy as they both use pre-calculated coefficients and non-linear

variational parameters (α). We could have continued to use these Gaussian-based

methods and improve them with more Gaussian functions and optimised non-linear

variational parameters. However, because these Gaussian-function based wavefunc-

tions have problems such as in calculation of their cusps, we chose to use Laguerre

polynomials as our basis function of choice. [208] Unlike Gaussian functions, Laguerre

polynomials can better represent the cusp behaviour and so better represent the

true wavefunction that has a cusp upon coalescence of particles. [105,208] For most

purposes the use of Gaussian functions in the Gaussian program improves speed and

still calculates energies accurately. However, in this work we desire more accurate

HF wavefunctions and energies at the HF limit and also optimised wavefunctions

for non-integer charges. Therefore another wavefunction was needed. A Laguerre

polynomial wavefunction was chosen because Laguerre polynomials have recursion

relations that can eliminate the need for some integrals; they are also the functions

used in the full three-body wavefunction and so meant that minimal changes needed

to be made to existing code.
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7.3. Implementation

As descried in Section 7.2.1 there are three method for calculating a HF energy used

in this work, namely the Gaussian program, and two implementations within Maple

using a Gaussian wavefunction and a Laguerre polynomial wavefunction.

7.3.1. Gaussian Program

The Gaussian Program used version 09 rev D.01. [204] This revision allows for arbitrary

nuclear charge and so could be used to calculate electron correlation energies for

systems of non-integer charge. Details of this type of arbitrary charge calculation

can be found in Appendix D using the Znuc command. The following is a simple

Gaussian script used for running a calculation (will also be referred to as a “com

file”) for calculating an atom.
The Gaussian com file for H–

1 %chk=H^-.chk

2 #p hf/aug-cc-pV6Z scf=VeryTightLinEq Integral=(Acc2E=8)

3

4 IsoElectronic -1

5

6 -1 1

7 H 0.00000000 0.00000000 0.00000000

8

9

7.3.2. Maple Program

A Maple program for calculating the HF energy for an infinite massed atom with

arbitrary nuclear charge was created. The Gaussian wavefunction has the following
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generic form and it consists of normalised Gaussian functions.

ψ (i) =
∑
k

Ckφk (i) (7.3.1)

φk (i) =
∑
l

Gaussian (i, ckl, αkl) (7.3.2)

Gaussian (i, c, α) =c

(
2α

π

) 3
4

e−αr2i (7.3.3)

The following is the aug-cc-pV6Z wavefunction for He [209] from the basis set ex-

change. [206,207]

φ1 (i) = Gaussian (i, 0.0000006, 4785) +Gaussian (i, 0.0000047, 717)

+Gaussian (i, 0.0000244, 163.2) +Gaussian (i, 0.0001012, 46.26)

+Gaussian (i, 0.0003486, 15.1) +Gaussian (i, 0.0009841, 5.437)

+Gaussian (i, 0.0021631, 2.088) +Gaussian (i, 0.0034905, 0.8297)

+Gaussian (i, 0.003466, 0.3366) +Gaussian (i, 0.0011519, 0.1369) (7.3.4)

φ2 (i) =Gaussian (i, 1, 5.437) (7.3.5)

φ3 (i) =Gaussian (i, 1, 2.088) (7.3.6)

φ4 (i) =Gaussian (i, 1, 0.8297) (7.3.7)

φ5 (i) =Gaussian (i, 1, 0.3366) (7.3.8)

φ6 (i) =Gaussian (i, 1, 0.1369) (7.3.9)

φ7 (i) =Gaussian (i, 1, 0.04473) (7.3.10)

Equations (7.3.4) to (7.3.10) reveals a few key aspects of these Gaussian based

wavefunctions. The non-linear variational parameters α are all pre-optimised and

do not change during the calculation. This decreases the computational expense but

does limits us to wavefunctions that have been pre-calculated without creating a

piece of code to optimise the non-linear variational parameters. The φ1 (1 1S) orbital

has multiple Gaussian functions describing this function in contrast to other higher

order φi functions corresponding to 2 1S, 3 1S, . . ., etc. This wavefunction is not

flexible it will only represent the orbitals for which it has been optimised.
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General Steps The Maple program to perform the HF calculation has the fol-

lowing steps.

Step 1 Choose a charge and define the wavefunction with any associated non-linear

variational parameters.

Step 2 Calculate the one electron integrals and assign them to matrices.

Step 3 Diagonalise the one electron integrals as a secular equation of the form
(
T̂ + V̂

−Ŝ
)
ψ = 0. This matrix does not have electron-electron interactions and

therefore does not require the SCF. We know the answer analytically for this

as E = −2Z2

2n
m1m3

m1+m3
. For the ground state with an infinite mass approximation

it simplifies to −Z2. The coefficients from this become the initial guess in the

following steps.

Step 4 Use the initial guess coefficients to create the two electron integral matrix.

Step 5 Create the Fock matrix as the sum of the one electron and two electron matrices.

Step 6 Diagonalise the Fock matrix as a secular equation F̂ = 0 to acquire new

coefficients.

Step 7 Calculate the two electron integral matrix with the new coefficients.

Step 8 Repeat the previous 3 steps until the coefficients stop changing. I.e. the SCF

has converged (our tolerance for converged is 3× 10−15). The SCF optimisation

is performed using Direct Inversion of Iterative Space (DIIS), by implementing

this procedure the SCF cycle converged more reliably and faster.

Step 9 Calculate the HF energy.

Step 10 If any NLPs are being optimised change them and return to Step 2, until the

NLPs are at an optimum value (again with a tolerance of 3× 10−15). This

value is found through the inbuilt Maple optimisation routine.

The Laguerre polynomial (Lm(x)) wavefunction was implemented in a similar
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manner. It has the following form.

ψ (i) =
∑
k

Ckφk (i) (7.3.11)

φk (i) =e
−Ari

2 Lk (Ari) (7.3.12)

A single non-linear parameter A is employed. In the implementation the coordinate

is changed to u = Ari and the appropriate Jacobian and coordinate transformations

are applied to the integral. The Jacobian is
(
1
A

)
. We do not explicitly mention the

parameter in the mathematics to follow, as it is implicit in this scaled coordinate.

The initial guess for the parameter is set to the formal solution of the asymptote

(see Section 4.2.7 on page 100), that is, the exponential is set to e−
√
Eri .

Atomic units are used throughout, unless otherwise specified. HF was completely

calculated in 32 digit arbitrary precision whilst full, three-body systems were op-

timised in 16 digit and then recalculated in 32 digit as a single point for accurate

wavefunctions and expectation values.

The One Electron Integrals

When using a Laguerre polynomial-based wavefunction the one electron integrals

of potential energy, kinetic energy and overlap can be calculated more easily by

series solution. For example the series solution method takes a very short amount

of time and with a 100-term wavefunctions the computation of the integrals in the

entire matrix takes less than a second. By comparison the Gaussian wavefunction

without series solution takes approximately ≈ 30 seconds with a smaller 16 Gaussians

wavefunction. The Laguerre polynomial series solution method is possible because

the coordinates range from zero to infinity and the orthogonality relationship in

Eq. (7.3.13) is satisfied (after the recursions relations Eq. (4.2.26) on page 96 are

applied).

∫ ∞

0

e−xLp (x)Lq (x) dx = δp,q (7.3.13)

The method for calculating the recursion relations and performing the series solution

is the same as in Section 4.2.5 on page 96. A recursion relation for the kinetic energy,
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potential energy and overlap are all calculated and these have 8 terms, 5 terms and

12 terms respectively.

Using these we can calculate the energy of He as if there was no interaction between

the electrons. This value is known analytically to be −4Eh.

Two Electron Integrals

The two electron integrals are however more of a challenge. This is because the

integrals do not range from 0 to ∞ (Eq. (7.3.14)), and when converted to peri-

metric coordinates, the expression is not suitable for the series solution method

(Equation (7.3.15)), as the orthogonality condition is not fulfilled.

∫ ∞

0

∫ ∞

0

∫ |r1+r2|

|r1−r2|
e−r1−r2Lp (r1)Lq (r1)

1

r3
Lr (r2)Ls (r2) dr3 dr2 dr1 (7.3.14)

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−
1
2
(z1+z2)−z3Lp

(
1

2
(z2 + z3)

)
Lq

(
1

2
(z2 + z3)

)
1

1
2
(z1 + z2)

Lr

(
1

2
(z1 + z3)

)
Ls

(
1

2
(z1 + z3)

)
dz3 dz2 dz1

(7.3.15)

In the two electron integral matrix each element is calculated with the following

formula (n is the number of basis functions)

Guv =
n∑
p=0

n∑
q=0

CpCq(2〈ϕu(1)ϕv(1) |
1

r3
| ϕp(2)ϕq(2)〉

− 〈ϕu(1)ϕp(1) |
1

r3
| ϕv(2)ϕq(2)〉) (7.3.16)

There are two abbreviations in common use for the two electron integral’s expectation

value
〈
φu (1)φv (1) | 1

r3
| φp (2)φq (2)

〉
the physicist’s notation 〈up | vq〉 and the

chemist notation (uv | pq). Both represent the same integrals; however in the

chemist’s notation the bra contains all the basis functions on coordinate one and the

ket all the functions on coordinate two. Throughout this report we use the chemist’s

notation.

Integral Symmetry The minimum number of integrals, not taking into account any

symmetry, is n4 where all combinations pquv are used. Fortunately there are many

repeated integrals. For example in (uv | pq) the u and v can be switched without
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affecting the integrals; p and q can be switched without affecting the integral; and

finally the uv and pq can be switched as a set without affecting the integral. In this

implementation we therefore only calculate unique integrals. For more detail on how

we chose which integrals to calculate see Appendix E.

Computational Bottleneck Even after calculating only the unique integrals, there

are 1
8
n (n+ 1) (n2 + n+ 2) two-electron integrals to calculate. This is greater than

the number of one electron integrals. It also scales much faster with number of terms,

and these integrals are slower to calculate with no series solution. These integrals

are by far the biggest computational bottleneck. Therefore to reduce computational

time, the calculation of these integrals has been optimised.

Although the integral in Eq. (7.3.15) cannot be performed using the series solution

method it can be evaluated analytically using the known analytical integral [210] in

Eq. (7.3.17).

∫ ∞

0

xne−ax dx =Γ (n+ 1) a−n−1 a > 0, n ≥ 0 (7.3.17)

To use this integral we must expand our Laguerre polynomials. This is done using

the closed form of the Laguerre polynomials in Eq. (7.3.18).

Ln (x) =
n∑

ni=0

(−1)ni

n

ni

 xni

ni!
(7.3.18)

Substituting Eq. (7.3.18) into Eq. (7.3.15) gives the following:

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−
1
2
(z1+z2)−z3

p∑
pi=0

(−1)pi

p

pi

 ( z2+z32

)pi
pi!

q∑
qi=0

(−1)qi

q

qi

 ( z2+z32

)qi
qi!

2

z1 + z2

u∑
ui=0

(−1)ui

u

ui

 ( z1+z32

)ui
ui!

v∑
vi=0

(−1)vi

v

vi

 ( z1+z32

)vi
vi!

dz3 dz2 dz1

(7.3.19)
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We can then collect all the zi variables and combine the sums to give:

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−
1
2
(z1+z2)−z3

p∑
pi

q∑
qi

u∑
ui

v∑
vi

(−1)(pi+qi+ui+vi)

p

pi

q

qi

u

ui


v

vi

 ( z2+z32

)pi+qi
pi!qi!

(
z1+z3

2

)ui+vi
ui!vi!

2

z1 + z2
dz3 dz2 dz1

(7.3.20)

We then use the binomial expansion (Eq. (7.3.21) on the inner most factors to get

the expression in the form of the analytical integral in Eq. (7.3.17).

(x+ y)n =
n∑
k=0

n
k

xn−kyn (7.3.21)

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−
1
2
(z1+z2)−z3

p∑
pi

q∑
qi

u∑
ui

v∑
vi

(−1)(pi+qi+ui+vi)

p

pi

q

qi

u

ui

v

vi


∑pi+qi

a=0

∑ui+vi
b=0

pi + qi

a

ri + si

b

( z2
2

)pi+qi−a ( z3
2

)a+b ( z1
2

)ui+vi−b
pi!qi!ui!vi!

dz3 dz2 dz1

(7.3.22)

In the next step we apply the Jacobian 2π2r1r2r3 which removes the 2
z1+z2

≡ 1
r3

term

and incorporates a 2π2
(
z1+z3

2

) (
z2+z3

2

)
≡ 2π2r1r2. To deal with this the Jacobian

is expanded to 1
2
π2(z1z2 + z1z3 + z2z3 + z23). However the next few steps have long

expressions so we first change the form of the integral to:

p∑
pi

q∑
qi

u∑
ui

v∑
vi

(−1)(pi+qi+ui+vi)

p

pi

q

qi

u

ui

v

vi

 1

pi!qi!ui!vi!∫ ∞

0

∫ ∞

0

∫ ∞

0

f (p, q, u, v, pi, qi, ui, vi) dz3 dz2 dz1 (7.3.23)
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f (p, q, u, v, pi, qi, ui, vi) =e−
1
2
(z1+z2)−z3

pi+qi∑
a=0

ui+vi∑
b=0

pi + qi

a

ri + si

b

(z2
2

)pi+qi−a
×
(z3
2

)a+b (z1
2

)ui+vi−b
(7.3.24)

We then focus on just dealing with the f (p, q, u, v, pi, qi, ui, vi) component as it is

the only part with the variables from now on the rest are removed as constants. To

continue we multiple this through by the Jacobian.

e−
1
2
(z1+z2)−z3

pi+qi∑
a=0

ui+vi∑
b=0

pi + qi

a

ri + si

b

((z2
2

)pi+qi−a (z3
2

)a+b)(z1
2

)ui+vi−b
× 1

2
π2
(
z1z2 + z1z3 + z2z3 + z23

)
(7.3.25)

The expression is expanded to give:

e−
1
2
(z1+z2)−z3

pi+qi∑
a=0

ui+vi∑
b=0

1

2
π2

pi + qi

a

ri + si

b

(z2
2

)pi+qi−a+1 (z3
2

)a+b (z1
2

)ui+vi−b+1

+
(z2
2

)pi+qi−a (z3
2

)a+b+1 (z1
2

)ui+vi−b+1

+
(z2
2

)pi+qi−a+1 (z3
2

)a+b+1 (z1
2

)ui+vi−b
+
(z2
2

)pi+qi−a (z3
2

)a+b+2 (z1
2

)ui+vi−b
(7.3.26)

At this stage we use the analytical integral in Eq. (7.3.17) on Eq. (7.3.26). Only

f (p, q, u, v, pi, qi, ui, vi) need be integrated as the rest of the expression does not
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contain any coordinates and so can be taken out as a constant.

∫ ∞

0

∫ ∞

0

∫ ∞

0

f (p, q, u, v, pi, qi, ui, vi) dz3 dz2 dz1 =
1

2
π2

pi+qi∑
a=0

ui+vi∑
b=0

pi + qi

a


×

ri + si

b

(1

2

)pi+qi−a+1

Γ (pi + qi − a+ 2)
1

2

−(pi+qi−a+2)
(
1

2

)a+b
Γ (a+ b+ 1)

×1−(a+b+1)

(
1

2

)ui+vi−b+1

Γ (ui + vi − b+ 2)
1

2

−(ui+vi−b+2)

+

(
1

2

)pi+qi−a
×Γ (pi + qi − a+ 1)

1

2

−(pi+qi−a+1)
(
1

2

)a+b+1

Γ (a+ b+ 2) 1−(a+b+2)

(
1

2

)ui+vi−b+1

×Γ (ui + vi − b+ 2)
1

2

−(ui+vi−b+2)

+

(
1

2

)pi+qi−a+1

Γ (pi + qi − a+ 2)
1

2

−(pi+qi−a+2)

×
(
1

2

)a+b+1

Γ (a+ b+ 2) 1−(a+b+2)

(
1

2

)ui+vi−b
Γ (ui + vi − b+ 1)

1

2

−(ui+vi−b+1)

+

(
1

2

)pi+qi−a
Γ (pi + qi − a+ 1)

1

2

−(pi+qi−a+1)
(
1

2

)a+b+2

Γ (a+ b+ 3) 1−(a+b+3)

×
(
1

2

)ui+vi−b
Γ (ui + vi − b+ 1)

1

2

−(ui+vi−b+1)
)

(7.3.27)

To get the complete analytical integral we insert Eq. (7.3.27) into Eq. (7.3.23):

p∑
pi

q∑
qi

u∑
ui

v∑
vi

(−1)(pi+qi+ui+vi)

p

pi

q

qi

u

ui

 1

pi!qi!ri!si!

v

vi

 1

2
π2

×
pi+qi∑
a=0

ui+vi∑
b=0

pi + qi

a

ri + si

b

(1

2

)pi+qi−a+1

Γ (pi + qi − a+ 2)
1

2

−(pi+qi−a+2)

×
(
1

2

)a+b
Γ (a+ b+ 1) 1−(a+b+1)

(
1

2

)ui+vi−b+1

Γ (ui + vi − b+ 2) +

(
1

2

)pi+qi−a
×Γ (pi + qi − a+ 1)

1

2

−(pi+qi−a+1)
(
1

2

)a+b+1

Γ (a+ b+ 2) 1−(a+b+2)

(
1

2

)ui+vi−b+1

×Γ (ui + vi − b+ 2)
1

2

−(ui+vi−b+2)

+

(
1

2

)pi+qi−a+1

Γ (pi + qi − a+ 2)
1

2

−(pi+qi−a+2)

×
(
1

2

)a+b+1

Γ (a+ b+ 2) 1−(a+b+2)

(
1

2

)ui+vi−b
Γ (ui + vi − b+ 1)

1

2

−(ui+vi−b+1)

+

(
1

2

)pi+qi−a
Γ (pi + qi − a+ 1)

1

2

−(pi+qi−a+1)
(
1

2

)a+b+2

Γ (a+ b+ 3) 1−(a+b+3)

×
(
1

2

)ui+vi−b
Γ (ui + vi − b+ 1)

1

2

−(ui+vi−b+1)
)

(7.3.28)
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This finally gives us the complete 2 electron integral (Eq. (7.3.14)) in analytical

form which can be used to calculate Eq. (7.3.16). The results of this integral have

been compared to the result Maple gives with its built in integration routines, and

they agree exactly. It is however not a simple integral, it contains many factorials

and summations. As a result it scales poorly with size of the wavefunction. In

implementing this in Maple we see a calculation time improvement of approximately

10 seconds (12.5%). To improve this speed further a C++ program was developed to

calculate these integrals in a generic form and save them to disk. This would mean

they only needed to be calculated once and could be reused, allowing us to use much

larger wavefunctions as the C++ program can be made much more efficient.

2 Electron Integrals in C++ The C++ program for calculating the two electron

integrals had a lot of effort devoted to optimisation. The problem however is that

the integral uses factorials, and these factorials become very large very quickly. The

largest factorial is (4n+ 4)! where n is the number of terms in the wavefunction.

For a 20-term wavefunction this is 84! which contains 127 digits. This is beyond

the accuracy for built-in data types such as “double”. Therefore, we use arbitrary

precision, floating point and integer arithmetic using the C++ libraries gmp [211] and

mpfr [36] (details of these libraries are in Section 3.2.1). With big number arithmetic

it is important to perform as few operations as possible as all operations are slow.

Consider the integral (12 12|12 12). Within Maple this integral takes approximately

80 seconds. Using the mathematics in the previous section this integral originally

took 70 seconds in C++. This was far from ideal and so a series of optimisations was

performed with the target of reducing the computational time:

• The code was profiled for CPU time using XCode instruments and it was

discovered that a lot of CPU time was devoted to the creation and destruction

of the arbitrary precision floating point numbers. This was resolved by reusing

the variables, rather than recreating them, in the main for loops that represent

the sums.

• The next optimisation reduced the binomial and gamma functions to factorials

and made the mathematics simpler with fewer operations (The new expression

is given in Eq. (7.3.29)).
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• We also precomputed all of the factorials and saved them in an array for look

up in the calculations.

The two electron integral now has the form:

p∑
pi

q∑
qi

u∑
ui

v∑
vi

pi+qi∑
ai

ui+vi∑
bi

2ai+bi−pi−qi−ui−vi+1 (−1)pi+qi+ui+vi+1 π2
(
a2i − 2aibi

+b2i − p2 − 2piqi − 2piui − 2pivi − q2i − 2qiui − 2qivi − u2 − 2uivi − v2 + ai

+ bi − 7pi − 7qi − 7ui − 7vi − 10) (pi + qi + ui + vi − ai − bi)! (pi + qi)! (ui + vi)

× !p!q!u!v!

ui!2vi!2ui!2vi!2 (pi + qi − ai)! (qi + ui − bi)! (p− pi)! (q − qi)! (u− ui)! (v − vi)!

(7.3.29)

In this form there are fewer operations to perform. It is worth noting that if

faster computation of the two-electron integral is required, this form can be further

factorised to reduce the number of operations.

The CPU time was now approximately 15 seconds. As a final step the code was

made to run in parallel with multiple cores, reducing the CPU time to 8 seconds,

achieving a 10-fold speed increase. This is the time required to calculate one two-

electron integral. For a twenty-term wavefunction there are, in total, 22 155 two-

electron integrals. The time required to calculate all these integrals therefore is still

significant and justifies further optimisation.

When calculating all unique two electron integrals, for a 12 term wavefunction,

we iterate over all unique combinations of the complex integrals in (pq|uv) for

p, q, u, v less than 12. When calculating the integral (12 12|12 12) almost all of

the mathematics for the lower integrals i.e. (6 6|6 6), (1 2|1 1) and so on are also

performed. It follows then that we can drastically reduce the computational expense

by performing the largest integral first and reusing the numbers it calculates by

saving the intermediate steps to memory. This does however need a substantial

amount of RAM. A 20 term wavefunction uses 10 GB of RAM in this method, which

is near the maximum of our available resources. However the method was over 20

times faster then calculating all the integrals individually.

This concludes the description of the optimisation techniques developed to max-

imise the performance of the two-electron integral calculations. More optimisations
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are possible that may be pursued at a later date. For example it should be possible

to combine the loops calculating all combinations of (pq|rs) with the loops that

represent the sums. By doing so it would be possible to get most of the benefits of

the RAM-intensive mode without saving as much to the RAM. This would however

require a major rewrite and careful planning.

Even after calculating all unique two electron integrals in C++, a significant amount

of time is still required to load these integrals into Maple and assign the integrals to

their correct positions in the Ĝ matrix. Therefore a final optimisation was made to

the Maple program to save the final Ĝ matrix to disk. This file is still fully generic

and reduces the calculation time for subsequent calculations from the first time it is

performed. The largest number of terms currently calculated by C++ for the Laguerre

polynomial wavefunction is 25 terms. Calculating the two-electron integrals for the

25-term wavefunction took significantly longer than for the 20-term wavefunction.

It also took significantly longer to load the two-electron integrals into Maple and

assign into the Ĝ matrix. This was because the memory requirements exceeded the

limit of the computer (16GB). Therefore the largest wavefunction used in this work

has 20 terms. Unless otherwise stated all Laguerre polynomial wavefunctions have

20 terms.

To summarise, three methods were used to calculate HF wavefunctions and ener-

gies, (i) using the Gaussian program, (ii) using the Maple program with Gaussian

wavefunctions and (iii) using the Maple program with Laguerre polynomial wave-

functions. The Laguerre polynomial wavefunction was our best choice for calculating

accurate wavefunctions for a variety of reasons including correct behaviour when the

particles coalesce (the cusps). The one-electron integrals are calculated efficiently

with series solution and the two-electron integrals are calculated efficiently with an

optimised C++ code.

7.4. Results & Discussion

The HF wavefunction is the reference wavefunction for calculating electron corre-

lation effects. For this purpose the HF wavefunction needs to be as accurate as

possible. Therefore we performed benchmarks to validate the methods including
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checking the convergence and comparing to known systems such as H– , He and other

members of the helium isoelectronic series under the infinite mass approximation.

Using the methods described in Sections 7.2 and 7.3 the Hartree-Fock energies were

calculated with the single non-linear variational parameter Laguerre polynomial

based wavefunction (Method A), with the Gaussian wavefunction (Method B) and

the Gaussian program (Method C).

7.4.1. Method Comparison

In Section 7.2.1 Method B was said to be a test of the Maple program method

for calculating HF energies. This test would be passed successfully if Method B

could match the energies predicted by the commercial Gaussian program (Method C).

When the above method was able to achieve these results, we would then use our own

Laguerre polynomial-based wavefunction (Method A). Here we provide the results of

this testing. In Table 7.4.1, the results of each method are presented and compared

to the numerical HF results for H– and He. The numerical HF method [212,213] is

equivalent to an infinite basis set approach, and is accurate up to the limit of the

integration grid and numerical precision.

The energies calculated with Method B matched that of Method C to 9 s.f., the

differences arising from the SCF procedure, as the Gaussian program used quadratic

convergent optimisation [216] whilst the Maple implementation used DIIS. Addition-

ally Method B produced the same eigenvalues as Method C and the same eigenvectors.

Method A was then developed and found that with 20 terms in the wavefunction

it matched the numerical HF results and gave significantly more accurate energies

than the Gaussian HF energies. From here on we do not provided Method B results,

using instead Method C when a Gaussian comparison is required as it has all the

Gaussian wavefunctions preloaded and ready to use.
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Species Method Energy

H–

A −0.487 929 734 369
B −0.487 909 650 178
C −0.487 909 650 182

Numerical HF [214] −0.487 929 734 72

He

A −2.861 679 995 612
B −2.861 673 128 997
C −2.861 673 128 997

Numerical HF [215] −2.861 679 995 612

Table 7.4.1.: A comparison of the different methods for calculating HF energies.
Method A, Laguerre polynomial wavefunction using Maple. Method B,
Gaussian wavefunction using Maple. Method C, Gaussian wavefunction

using the program Gaussian.

7.4.2. Convergence

Method A was capable of achieving numerical HF with 20 terms. This means the

wavefunction has already achieved our best benchmark. To identify how many

more digits we have calculated beyond the numerical HF results, we studied the

convergence rate of the wavefunction. In Table 7.4.2 the convergence rate of the

energy is provided for He, compared to numerical HF results.

The results of Table 7.4.2 shows that the energy converges towards the exact

numerical HF value, to all significant figures available, with only 16 terms in the

wavefunction. It can be seen that the rate of convergence of the Hartree-Fock

energies is much greater than that of the full, three-body systems with the explicit

r3 interaction. In the full three-body calculations, energy convergence to 8 digits

requires ≈ 715 terms in the wavefunction, whilst the Hartree-Fock wavefunction

requires only ≈ 10 terms in the wavefunction.

From these data and that in Table 7.4.1 we can therefore confidently say that we

can calculate accurate HF energies with this method.
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7.4.3. Non-linear Variational Parameters

Method A has a single, non-linear variational parameter (NLP). The effects this

NLP has on the energy, and the degree to which we can find the optimum values, of

the NLP are important for the energy provided by the calculation. Table 7.4.3 shows

the effect of the value of the NLP on the HF energy with a value of 1, Z3 (which

is 2 for He) and optimised (which can be any real positive number) with 10 and

20-term He wavefunctions. When the NLP has a value of 1 the wavefunction has the

exponent of e−r; when it is Z3 then the exponent becomes e−rZ3 (for He it is e−2r).

In this case the exponent represents the asymptotic solution for the non-interacting

particle model, as discussed in Section 4.2.7 on page 100.

Table 7.4.3 shows that the value of the NLP is very important in order to achieve

the accuracy of the numerical HF results as it greatly improves the energy of the

wavefunction. The 10-term wavefunction gained an additional 4 digits and 20 terms

gained 5 additional converged digits matching the literature.

It is therefore important that we optimise the parameter as much as is possible

to achieve the best energies with the smallest wavefunction. Figure 7.4.1 shows the

scan of the NLP for the 10-term wavefunction, and it shows that it is relatively

flat. Flat surfaces are typically difficult to optimise to a definitive minimum. The

first optimisation routine we used was the conjugate gradient routine (built into

Maple). This routine failed to optimise the NLP to the bottom of the well. After

trying various optimisation routines it was found that the Quadratic Interpolation

routine achieved the best optimisation. To demonstrate this, Figure 7.4.2 shows how

effective the routine is at reaching this minimum by zooming in at the minimum of

Num of terms in ψ NLP HF Energy (a.u.)

10
1 −2.852 188 594 931
2 −2.861 664 390 672
4.997 241 294 −2.861 679 993 922

20
1 −2.861 643 004 528
2 −2.861 679 942 413
5.581 838 558 −2.861 679 995 612

Numerical HF N/A −2.861 679 995 612

Table 7.4.3.: The effect of the non-linear variational parameter on the energy of a
10 and 20-term He wavefunction.
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Figure 7.4.1.: This is the effect the NLP has on the energy of the He system with a
10-term wavefunction.

Figure 7.4.1. This method require finite bounds on the minimum as input. The values

we provided were 0.1 to 3Z2
3 . Figure 7.4.2 is a small region of Figure 7.4.1 the cross

represents where the results of the optimisation method. The cross in Figure 7.4.2

shows that the optimised point is near the very bottom of the energy surface. We

therefore use this quadratic optimisation method in all HF NLP optimisation.

227



7. Electron Correlation in Two Electron Atoms

-2.861679994

-2.861679993

-2.861679992

-2.861679991

-2.861679990

-2.861679989

-2.861679988

-2.861679987

4.6 4.7 4.8 4.9 5 5.1 5.2 5.3

NLP

En
er
gy

(a
.u
.)

Figure 7.4.2.: This is a small region of the Figure 7.4.1 it shows the optimisation
result as a cross

7.4.4. Hartree-Fock Energies

The energies calculated using the HF wavefunction are used in Section 7.4.6 to

calculate the electron correlation of the system. In this section we evaluate the

accuracy of this energy by comparing to literature HF energies of the He isoelectronic

series. Methods A and C are compared in Table 7.4.4 to these literature values.

From Table 7.4.4 we know that the energies from Method A are very accurate

achieving the numerical Hartree-Fock values to the digits reported. Method C

energies however are accurate to at most 7 s.f.. With Method C, 7 s.f. is more than

enough for most needs. However, in this work we will be looking at less-studied

theoretical systems with arbitrary nuclear charge. At these arbitrary charges, given

the pre optimised nature of the basis sets, it will be difficult to maintain accuracy

with Method C for non-integer unit charges as there are no readily available basis

sets specialised for these arbitrary charges. The values calculated here with Method

A agree with the numerical HF results. As Method A is very accurate, and with its

non-linear variational parameter, it is flexible and will be the primary method in the

following work.
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Species Hartree Fock Energy (au)
Method A Method C Literature HF

H– −0.487 929 734 369 2 −0.487 909 7 a −0.487 929 734 372 [214]

He −2.861 679 995 612 −2.861 673 1 a −2.861 679 995 6 [217]

Li+ −7.236 415 201 452 −7.236 384 5 b −7.236 415 201 431 42 [218]

Be2+ −13.611 299 430 62 −13.611 251 5 b −13.611 299 430 604 [219]

B3+ −21.986 234 466 82 −21.986 231 1 a −21.986 234 466 814 1 [219]

C4+ −32.361 192 875 72 −32.361 188 3 a −32.361 192 875 710 1 [219]

N5+ −44.736 163 964 94 −44.736 157 8 a −44.736 163 964 935 6 [219]

O6+ −59.111 142 701 91 −59.111 134 8 a −59.111 142 701 907 8 [219]

F7+ −75.486 126 406 26 −75.486 116 5 a −75.486 126 406 255 1 [219]

Ne8+ −93.861 113 519 23 −93.861 101 3 a −93.861 113 519 195 7 [219]

Na9+ −114.236 103 072 5 −114.232 789b −114.236 103 1 [220]

Mg10+ −136.611 094 432 9 −136.607 555b −136.611 094 4 [220]

Al11+ −160.986 087 168 8 −160.983 784a −160.986 087 2 [220]

Si12+ −187.361 080 975 9 −187.358 377a −187.361 081 0 [220]

P13+ −215.736 075 633 6 −215.733 129a −215.736 075 6 [220]

S14+ −246.111 070 977 8 −246.107 892a −246.111 071 0 [220]

Cl15+ −278.486 066 884 2 −278.482 892a −278.486 066 9 [220]

Ar16+ −312.861 063 256 8 −312.857 854a −312.861 063 3 [220]

a Calculated using aug-cc-pV6Z
b Calculated using aug-cc-pVQZ

Table 7.4.4.: The Hartree-Fock energies calculated here compared to best literature
available
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7.4.5. Low Nuclear Charge Hartree-Fock

To demonstrate that the Gaussian wavefunction of Method C fails to maintain its

accuracy at low nuclear charge, we calculated the energies using methods A and C at

the critical nuclear charge (Zcr = 0.9110282) in Table 7.4.5 (see Chapter 6 for details

on critical charge). With the full three-body wavefunction this nuclear charge of

Zcr gives an energy equal to the two-body energy as it lies at the lowest continuum

threshold. With the HF wavefunction, according to Table 7.4.5, a system with this

charge gives an energy less stable than the two-body energy (−0.414 986Eh) and is

therefore already unstable with respect to the lowest continuum threshold, as in this

corresponds to electron detachment. In Section 7.4.9 we will show how the critical

nuclear charge for the HF method is higher than that in a fully correlated method.

Table 7.4.5 reveals that Method C, has a more positive energy than Method C in as

few as the 4th s.f.. The HF wavefunction is variational (see Section 2.6 on page 11 for

details on variational principle) and therefore the most negative energy is the most

stable energy and the most accurate value. As we are interested in accurate energies

and accurate expectation values of the wavefunction, the 4th s.f. is not accurate

enough for our needs.

Low Z3 Convergence The arbitrary nuclear charge energies have no literature

reference by which to judge the accuracy of our code. We know that for the He

isoelectronic series we have very accurate energies at the HF limit. Does this extend

to charges lower than unity and if not, at what point does the accuracy drop

significantly? To answer this question we performed a convergence study with

charges 1, 0.9, 0.8, 0.5, 0.2 and 0.1 with wavefunctions containing 20, 16, 12, 8 and

4 terms. In Table 7.4.6, we can see that the convergence rate rapidly drops as the

nuclear charge decreases. When Z3 = 1 we achieve 9 s.f. of convergence with the

Wavefunction HF Energy Electron Correlation
Method A −0.373 904 785 0.041 081 438 7
Method C −0.373 709 945 0.041 276 279 0

Table 7.4.5.: The HF energies for a charge of Zcr using Method A and C. This
demonstrates that Method C is not the best choice for such non-integer

charges.
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Z Terms HF Energy Z Terms HF Energy

1

4 −0.487 494 422 733 26

0.5

4 −0.051 455 832 250 40
8 −0.487 929 420 478 26 8 −0.053 545 582 831 15
12 −0.487 929 728 147 82 12 −0.053 470 675 489 69
16 −0.487 929 734 257 90 16 −0.053 440 234 665 00
20 −0.487 929 734 369 18 20 −0.053 425 905 116 87
Lit [214] −0.487 929 734 372

0.9

4 −0.360 244 491 909 96

0.2

4 0.003 086 197 285 25
8 −0.360 886 611 825 98 8 0.003 562 665 730 44
12 −0.360 888 381 644 19 12 0.003 679 232 222 64
16 −0.360 888 402 143 18 16 0.003 727 592 405 19
20 −0.360 888 403 143 57 20 0.003 752 590 335 34

0.8

4 −0.253 078 124 310 81

0.1

4 0.006 295 019 883 54
8 −0.254 177 026 783 66 8 0.002 773 834 911 73
12 −0.254 204 267 742 55 12 0.002 410 889 973 13
16 −0.254 217 315 751 26 16 0.002 438 246 397 61
20 −0.254 245 116 965 40 20 0.002 451 177 471 85

Table 7.4.6.: HF energies and electron correlations for low Z

20 term wavefunction and match literature to 10 s.f.. From the convergence and

comparison to literature we can see that the significant figures that are not changing

between 16 and 20 terms indicates that we are converged to 9 s.f.. When Z3 has a

charge of 0.9 this reduces to 8 s.f. and when Z3 = 0.8 convergences rapidly reduces to

4 s.f.. We therefore conclude that energies are not sufficiently reliable below Z3 = 0.9.

Energies We are now in a position to calculate HF energies for low values of Z3.

For this purpose we calculated the energies of systems with Z3 ranging from 0.99

to 0.90. The following graph shows the HF energy (EHF ) as a function of Z3. This

graph includes low values of Z3 where the HF wavefunction is unstable with respect

to its lowest continuum threshold.

From Figure 7.4.3 the HF energy calculated using Method A moves smoothly to

zero as the charge tends towards zero. This is the correct behaviour for HF energies.

These energies will be used to calculate electron correlation energies in the following

sections.
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Nuclear Charge Z3 HF Energy
0.99 −0.474 317 036
0.98 −0.460 905 894
0.97 −0.447 696 415
0.96 −0.434 688 716
0.95 −0.421 882 929
0.94 −0.409 279 199
0.93 −0.396 877 687
0.92 −0.384 678 575
0.919 −0.383 469 804
0.918 −0.382 263 059
0.917 −0.381 058 340
0.916 −0.379 826 352
0.915 −0.378 654 983
0.914 −0.377 456 345
0.913 −0.376 259 735
0.912 −0.375 065 152
0.911 −0.373 872 597
0.91 −0.372 682 070
0.909 −0.371 462 042
0.908 −0.370 275 235
0.907 −0.369 090 452
0.906 −0.367 907 693
0.905 −0.366 726 959
0.904 −0.365 548 249
0.903 −0.364 371 564
0.902 −0.363 196 904
0.901 −0.362 024 269
0.9 −0.360 853 659

Table 7.4.7.: HF energies for low Z3
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Figure 7.4.3.: Graph of HF energy (EHF ) against nuclear charge (Z3). Showing how
the HF energy changes as Z3 tends towards zero

7.4.6. Total Electron Correlation Energies

We next investigate Ecorr. The Löwdin definition of electron correlation [182,183] is that

electron correlation is the difference between the HF energy and the exact energy,

which is taken here as the fully correlated, three-body energy with infinite nuclear

mass under the non-relativistic regime. We abbreviate this fully-correlated energy

as FC energy. The electron correlation at Zcr can be found in Table 7.4.5. The FC

energies required to calculate the electron correlation for the clamped nucleus, helium

isoelectronic series were calculated with a 2856-term wavefunction. Comparison

of these to the HF energies given in Section 7.4.4 gives the electron correlation.

Additionally the non-integer charges were investigated around Zcr.

Tables 7.4.8 and 7.4.9 gives the total electron correlation of three-body infinite

nuclear mass systems with varying nuclear charge. High charge systems such as Ca18+

have the smallest fraction of electron correlation compared to the total energy whilst

lower charge systems such as H– has the most electron correlation as a fraction of the

total energy. It is shown in Table 7.4.8 that H– Hartree-Fock energy is greater than

its lowest continuum threshold of −0.5Eh and is therefore according to Hartree-Fock

theory unstable (for more detail on stability as a function of charge see Chapter 6).
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7.4.7. Effect of Correlation on Expectation Values

Using the Laguerre polynomial-based wavefunction for the Hartree-Fock calculations,

in addition to full three-body calculations, meant that expectation values could be

calculated with existing techniques. Expectations values for the Hartree-Fock system

were therefore calculated with 32 digits of precision using the HF wavefunction. From

this the effect of correlation on the physical properties of the system in addition to

the energies can be observed.
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7. Electron Correlation in Two Electron Atoms

In the non-relativistic domain the effects electron correlation has on the expectation

value depends on the value in question. However, in general, the effects of correlation

upon the expectation values are least pronounced in high charge systems and these

effects converge towards a unique value. As nuclear charge increases and the nucleus

draws the two electrons closer, the influence of the correlation between the two

electrons becomes smaller and smaller. At this point the nuclear attraction has

become the dominant force pulling the electrons closer together and the electrons

are no longer unable to move away from each other significantly.

In previous chapters the expectation values 〈η〉 and 〈ν31〉 have been a guide to the

quality of a wavefunction (Section 4.4.3 on page 123). The value of 〈η〉 indicates a

high quality wavefunction when 〈η〉 = 0. This is the virial condition and indicates

the quality of the wavefunction over all regions of space. The expectation value 〈ν31〉

is ideal when it equals Z3, which is the cusp condition, indicating the quality of

the wavefunction around the cusp, and is one of the harder properties to accurately

describe as it is a divergent point in the wavefunction. [105] Both of these conditions

can indicate that the wavefunctions is of good quality when fulfilled. Tables 7.4.10-a

to 7.4.10-e gives these values and reveals that both the full three-body and the HF

wavefunctions fulfil these conditions well.

As another indicator of quality, we consider the expectation values compared to

literature. In Table 7.4.11 the HF expectation values are compared to literature

(See Chapter 4 for discussion of the FC wavefunctions literature comparison). Not

many accurate expectation values are available for the HF wavefunction, however the

following Table 7.4.11 shows those available and are compared to those calculated

here. The agreement with this work is very good indicating that the wavefunctions

can accurately describe physical properties. Except in the case of H– the energies

calculated here are lower (more stable) than the literature values. As the HF

method is variational, this means we have the best energies and therefore the best

wavefunctions for calculating the expectation values.
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System Property This work Literature

H–

〈r1〉 2.503 959 636 938 2.5221 [222]〈
r−1
1

〉
0.685 672 155 949 0.6847 [222]

〈r21〉 9.411 097 448 798 9.6970 [222]

〈δ(r1)〉 0.154 597 341 126 0.154 64 [222]〈
Ĥ
〉

−0.487 929 734 369 −0.487 929 734 [214]

He

〈r1〉 0.927 273 404 731 0.927 273 [223]〈
r−1
1

〉
1.687 282 215 281 1.6875 [224]

〈r21〉 1.184 828 479 909 1.1848 [222]

〈δ(r1)〉 1.797 959 103 761 1.797 980 73 [219]〈
T̂
〉

1.430 839 997 806 1.430 856 4 [225]〈
V̂
〉

−2.861 679 995 612 −2.861 696 35 [225]〈
Ĥ
〉

−2.861 679 995 612 −2.861 679 995 537 [219]

Li+

〈r1〉 0.572 366 815 001 0.5720 [222]〈
r−1
1

〉
2.687 419 466 644 2.6858 [222]

〈r21〉 0.445 320 566 922 0.445 18 [222]

〈δ(r1)〉 5.761 536 977 650 6.837 02 [222]〈
T̂
〉

3.618 207 600 726 3.618 109 5 [225]〈
V̂
〉

−7.236 415 201 452 −7.336 316 5 [225]〈
Ĥ
〉

−7.236 415 201 452 −7.236 415 2 [218]

Table 7.4.11.: A comparison of calculated HF expectation values against available
literature
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7.4.8. Electron Densities and Electron Holes

The ground state electron density of a system can completely describe that system.

This is the basis for density functional theory (DFT). [84,92,226–228] The difference

between the electron density calculated using HF theory and that calculated using

the FC method is a measure of the effects of electron correlation on the electron

density. These effects include the coulomb hole, [184,229–232] which is caused by the

instantaneous repulsive interaction between electrons. This decreases the probability

of finding electrons near each other in the FC calculations but is not seen in the

average repulsion model of the Hartree-Fock method. This effect has been know

since before the 1960’s. In recent literature, [187] as the accuracy of computations has

increased, a second, smaller, coulomb hole may have been isolated by Gill et al. [187]

This second coulomb hole requires very accurate particle densities in order to detect

its presence. The wavefunctions used here should be accurate enough to also observe

such an effect.

In this section the calculated radial distribution functions along the r3 coordinate

are presented in Figure 7.4.4, for a few systems, using HF and FC methods. The

difference between these two methods (∆) represents the coulomb hole. The radial

distribution functions are calculated using Eq. (7.4.1)

D (r) = 4πr2 〈δ (r3 − r)〉 (7.4.1)
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Figure 7.4.4.: The electron densities of (a) H– (b) He using both the FC method
and the Hartree-Fock method. The difference between the two is also

displayed and this shows the presence of the Coulomb hole.

The coulomb holes labelled in Figure 7.4.4 constitute the “no fly zone” for elec-

trons. Here the coulomb repulsion between the two electrons keeps them apart from

each other. Such a feature is only observable when comparing wavefunctions with

and without electron correlation. The holes calculated here match those in the

literature in terms of area, minima and root. [187,231] To investigate the presence of

a second hole [187] we need an accurate HF and full three-body wavefunction. From

Sections 7.4.2, 7.4.4 and 7.4.7 we know that we have accurate HF wavefunctions and

Section 7.4.4 verified the accuracy of our three-body wavefunctions. Particularly of

importance is the cusp condition as this indicates the quality of the wavefunction as

a measure of particle density at the origin. Figure 7.4.5 shows that our wavefunction

also reveals the presence of this second coulomb hole. This Figure 7.4.5 is an enlarged

Figure 7.4.4b.
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Figure 7.4.5.: The coulomb hole for He as given in Figure 7.4.4b but with the second
coulomb hole brought into the forefront.

The second coulomb hole in Figure 7.4.5 matches that in the literature as shown

in Table 7.4.12. This is important because, as noted in the original reference, this

second coulomb hole may be a numerical artefact. The closely matching values

from two separate methods suggests that this may be a physical phenomenon. To

fully confirm this however we would require a convergence study of the hole itself to

determine the rate of convergence of these values.

The area displaced by the coulomb hole corresponds to the charge displaced. [184]

We can see that the second coulomb hole only moves a small amount of charge

compared to the first, emphasising how small a contribution this hole makes to the

effects of correlation on the electron density.

As a final note on this additional coulomb hole, Gill et al. [187] postulated that

additional coulomb holes may exists. In the He wavefunction between the ranges

0 a0 to 20 a0 a total of 3 coulomb holes were identified, each with a maximum following

it to give a total of 5 roots in the wavefunction. However these values cannot be

confirmed without a convergence study as they are particularly tiny. It does suggest

that the electron correlation effect has a repeating pattern of a minimum, followed

by a root then a maximum. The characteristics of this are considered as interesting

future work.
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Value
Z3-Scaled
Value

Z3-Scaled
Lit. Value [187]

Min 3.582 7.163 7.170
Root 4.086 8.171 8.170
area 4.777× 10−4 9.554× 10−4 1.220× 10−3

Table 7.4.12.: The second He coulomb hole values compared to literature

7.4.9. Hartree-Fock Critical Nuclear Charge

In Chapter 6 it was shown, that when a second electron attempts to bind to a

two-body atom, there is a minimum nuclear charge for which binding is possi-

ble. [28,126,147,176] We present here the critical charge of an atom (with infinite nuclear

mass) for a Hartree-Fock wavefunction. This HF critical nuclear charge was cal-

culated using a direct computation of the ionisation energy and changing Z3 until

this ionisation energy is zero, using the built-in Maple routine fsolve. This routine

solves an expression to zero, numerically, to the desired number of digits (in this

case 31). Here it, numerically, solved the expression EHF − Eth = 0 in terms of Z3.

The critical nuclear charge and a variety of expectation values of such a system are

given in Table 7.4.13. For an atom with two electrons under the clamped nucleus

approximation the lowest continuum threshold is the two-body hydrogenic energy.

This is known exactly as (for a ground state system n is 1):

Eth =
−Z2

2n
(7.4.2)

For the fully-correlated system the critical nuclear charge is 0.911 028 (Chapter 6).

We already know that the critical binding charge within HF is higher than this

because the first continuum threshold for H– according to Eq. (7.4.2) is −1
2
, and the

exact HF is −0.487 929 734. [218] From the exact HF energies and the two-body energy

formulae it is evident that Zcr is greater than 1 and lower than 2. This value differs

from the critical nuclear charge given in Chapter 6 due to the absence of dynamic

coulomb electron correlation effects in HF. The HF wavefunction underestimates

the energy of a system by over estimating the effect of electron repulsion. As a result

more nuclear charge is required to bind these electrons. According to Table 7.4.13

the critical charge is greater than unity and H– is therefore unstable with respect to
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Property Value
Z3 1.031 177 528

〈HHF 〉 −0.531 663 547
〈HH〉 −0.531 663 547
〈r1〉 2.372 691 816
〈r21〉 8.370 837 14〈
r−1
1

〉
0.717 056 38

〈T 〉 0.265 831 774
〈V 〉 −0.531 663 547
〈ν31〉 −1.031 210 773

〈δ (r1)〉 0.173 489 974

Table 7.4.13.: Properties of the critical nuclear charge system according to Hartree-
Fock theory. 〈HH〉 is the hydrogenic energy, which corresponds to the

threshold energy
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Figure 7.4.6.: Graph of EHF −Eth against Z. The crossing point on the x-axis is the
critical nuclear charge for binding according to HF theory

the energy of the lowest continuum threshold energy. Since in reality H– is stable,

the importance of accurate electron correlation energy is made clear, even though,

as we saw in Section 7.4.6, this correlation energy is only a small proportion of the

total energy.

The HF Zcr can be seen graphically as a function of EHF (Z)− Eth(Z) as shown

in Figure 7.4.6. The Zcr is the crossing point on the x-axis of this graph.

7.5. Conclusion

To conclude, we have created an accurate HF wavefunction using Laguerre polynomi-

als as our basis functions. This produced accurate HF wavefunctions with accurate
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energies in agreement to the literature of 10 s.f. or more. This was combined with

our own three-body wavefunction to calculate the effect dynamic electron correla-

tion (Ecorr) has on our systems. For low-charged systems, this electron correlation

constitutes a substantial fraction of the total energy, but this fraction decreases as

charge increases. We also calculated the effect correlation has on expectation values

where the inclusion of Ecorr causes the electrons to move closer to the nucleus. For

more complex properties such as the cusp, when the nucleus and electron coalescence

it was found that low charges, as in He and below, the probability of coalescence

was less likely in FC than in the HF method. At nuclear charges greater than two,

the reverse was true with FC theory predicting greater chances of coalescence. From

this we conclude that at low nuclear charge, the electrons in the FC method keep

away from each other, but in the HF method they cannot since there is no dynamic

correlation. At high nuclear charge the electrons in the FC method are found closer

than in a HF calculation by using dynamic correlation to avoid each other but cannot

in the HF method.

We characterised the coulomb hole of He and H– , identifying aspects such as

minima, root and area, where area corresponds to charge displaced by this hole. For

the case of He we also confirmed the existence of the second coulomb hole and the

possible existence of further holes beyond this in a repeating pattern of minimum,

root, then maximum, and again root. The sequence then cycles back to minimum

with decreasing magnitude as the cycle permutes. These other holes however require

a deeper characterisation and accuracy study.

These results show us the effects dynamic electron correlation has on the electron

density. In DFT this component is approximated, and this work like that of Colle

and Salvetti, [190,191] with more work may be able to be used to formulate a new

functional. Such a formulation would benefit from modern accurate data including

non-integer charges that would help to give greater detail on electron correlation

behaviour at low nuclear charge. This formulation is considered interesting future

work.

Finally we presented the critical nuclear charge of the HF wavefunction as in the

lowest charge where two electrons can bind to an infinitely massed nucleus. This

charge is higher than the charge of H– and exemplifies the importance of electron
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correlation to predict real-world results.
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8. Summary and Conclusions

The focus of this thesis has been the high accuracy computation of three-body

systems without recourse to either the Born-Oppenheimer (BO) approximation or

approximation of the like-charged particle interaction, which for the case of atoms

corresponds to the electron correlation.

To pursue the best possible results and maximise performance, programs in various

languages were developed uniquely for this work. These were designed to be efficient,

extendable and, importantly, to calculate highly accurate energies, expectation values

and wavefunctions. This was confirmed in Chapter 4.

The primary focus has been upon the stability of these three-body systems which

has been facilitated by the full treatment of particles in motion, allowing for the

effects of mass to be fully investigated. A complete stability boundary for any

unit charge, three-body, system was presented using our accurate methodology. A

possible emergence point from atomic to molecular structure was identified as the

system with least fractional excess binding energy. This lies in the range identified

by the centre-of-mass particle densities of Mátyus. [100]

The minimum nuclear charge required to bind two electrons to an atom, for various

nuclear masses, was elucidated using a new variational method. This method is more

efficient then any previous method in that it requires only one calculation to find this

critical nuclear charge. An exact wavefunction would give the exact minimal charge,

whereas any approximate wavefunction gives an upper bound to this charge. The

nature of the electron as it becomes unbound was studied with a partitioning of the

particle densities to separate out inner and outer electrons. This is the first time such

partitioning has been performed using an accurate, fully correlated wavefunction and

the first time it has been applied for the purpose of studying electron detachment at

the critical charge. At the critical nuclear charge, it was shown that the inner electron
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behaved almost exactly like an uncorrelated hydrogenic wavefunction but the outer

electron still appears to be bound at a large radial distance of approximately 6 a0.

An accurate Hartree-Fock (HF) methodology was implemented as a reference

function for the purpose of extracting accurate electron correlation (Ecorr). In most

cases the HF energies were found to be at or near the HF limit as determined

by available literature numerical HF data. The accurate model was developed

such that non-integer low Z3 nuclear charges could be calculated to determine

electron correlation for a wider range of systems than is typically calculable with the

integer charge isoelectronic series. The effects of electron correlation on the energies

and the expectation values such as 〈r1〉, the electron-nucleus average distance, was

studied. For low charge systems, as in Z3 < 2, where the electron-electron interaction

dominates over the attractive nucleus-electron interaction, the amount of electron

correlation energy relative to the total energy was high. At these low charges

the electron density was more diffuse in the fully correlated system where the full

inclusion of dynamic correlation meant that the electrons could better avoid each

other. The electrons typically stay further away from the nucleus than in HF

calculations which do not include dynamic correlation. For high charge systems, as

in Z3 > 2, where the nuclear-electron attraction dominates over the electron-electron

repulsion, the relative electron correlation becomes smaller as the charge increases

until it converges as Z −→ ∞. With high nuclear charge systems, where it is more

advantageous for electrons to be as close to the nucleus as possible the fully correlated

system with dynamic electron correlation was able to demonstrate the electrons get

closer to the nucleus than in the HF system in which this dynamic correlation is

absent. Therefore dynamic correlation allows a system to respond by giving it the

flexibility needed to minimise the energy by balancing becoming further from the

other electron and closer to the nucleus as required by the nuclear charge.

The coulomb hole was also identified using our accurate methodology of a fully

correlated wavefunction and an accurate HF reference wavefunction, where the

difference between the two densities of these methods allowed us to characterise the

coulomb hole accurately. Interestingly we also observed a secondary coulomb hole

as recently first calculated by Gill, confirming its presence even with highly accurate

methodologies. In accordance with Gill’s prediction we also observed possible third
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and fourth coulomb holes at the edge of detection accuracy.

The work here provides an understanding of the nature of three-body systems as

the smallest unit capable of modelling both atomic and molecular systems. Electron

correlation, the effects of electron detachment, stability as a function of mass and

many other properties were elucidated for the purpose of being both interesting

and providing accurate, usable results that may prove useful for the computational

modeller and the chemist.
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A. Numbering Scheme

Three reduced index schemes are used in this work. They collapse the indices of the

Laguerre polynomials in the wavefunction as l, m and n to a single index. In its

most general case it collapses all combinations of l, m and n to a number. In the

other two forms it takes account of wavefunction symmetry such that switching l

and m does not change the number. The wavefunctions and matrices are ordered

such that the i th term or row/column corresponds to the l, m and n given by the

reduced index. These reduced indices are calculated as follows:

f(c, r) =

c+ r − 1

r

 (A.0.1a)

w =l +m+ n (A.0.1b)

For the general asymmetric wavefunction case

kasym(l,m, n) =f(l +m+ n, 3) + f(l +m, 2) + f(l, 1) + 1 (A.0.1c)

For the symmetric wavefunction case

ksym(l,m, n) =
1

24
w(w + 2)(2w + 5) +

19

16
− 1

16
(−1)w +

3

2
l +

1

2
m

+
1

4
(l +m)2 − 1

8
(−1)l+m (A.0.1d)

For the antisymmetric wavefunction case

kantisym(l,m, n) =w(w + 2)(2 ∗ w − 1)
1

24
− 1

16
+ (−1)w

1

16
+ l(m+ n) +m

(A.0.1e)
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B. Energy Scaling and Charge

Inversion

The coulomb Hamiltonian scales with various changes to the system in a predictable

manner. For example scaling all particles masses by 10 scales the energy of the

Hamiltonian by the same amount. Consider the typical coulomb Hamiltonian:

Ĥ =
∑
i

∇2
i

2mi

+
∑
i<j

qiqj
rij

(B.0.1)

If all masses are multiplied by m, all charges by q and the distances scaled by r the

kinetic energy gains the factor m−1r−2 and the potential energy gains q2r−1. As a

result the energy scales by the factor ε = mq4. Since charge scales the energy by

q4 charge inversion will not change the energy and therefore a system with charges

of Z1 = 1, Z2 = 1, Z3 = −1 and of Z1 = −1, Z2 = −1, Z3 = 1 will have the same

energy. For a deeper discussion consult the review article by Armour et al.. [28]
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C. Concavity of the Ground State

As noted by Armour et al. [28] and by Richard and Korobov [140] any property (λ) that

enters the Hamiltonian linearly is a concave function of the energy in the ground

state. The second order derivative, as given by perturbation theory of the energy of

a system, is always negative. Although this doesn’t always hold, such as in radical

excitations, it does hold for the ground state. [28]
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D. Arbitrary Nuclear Charge in

Gaussian

This method in the Maple implementation using arbitrary non-integer charge is

a trivial matter as any value of Z can be specified with no difficulties. However

the Gaussian program makes several checks and assumptions which would normally

forbid non-integer Z. In Gaussian 09 revision D.01 an additional keyword was adding

called Znuc which allowed for the specification of non-integer Z. It is worth noting

however that the Gaussian program fails to correctly calculate the initial guess for

systems with non-integer Z. In cases with non-integer Z it crashes during initial guess

assignment with an error stating that the charge and number of electrons are in

disagreement. This however can be circumvented by reading the initial guess directly

from a previously calculated check point file. This check point file is generated from

a calculation in which the Znuc keyword is not used. The following is an example

com file of a Znuc calculation:
The Gaussian com file for arbitrary nuclear charge of H–

1 %oldchk=H^-.chk

2 %chk=H^-_ZNuc.chk

3 #p hf/aug-cc-pV6Z guess=read scf=VeryTightLinEq Integral=(Acc2E=8)

4

5 IsoElectronic -1 ZNuc=0.9

6

7 -1 1

8 H(ZNuc=0.9) 0.00000000 0.00000000 0.00000000

9

10
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E. HF 2 Electron Integral Symmetry

This combined index takes u, v, p and q and returns a unique index for each unique

integral. This is done by considering the indices to be the indexes of a 4-dimensional

symmetric matrix where we extract only one half of this symmetric matrix.

r =
u(u+ 1)

2
+ v (E.0.1)

s =
p(p+ 1)

2
+ q (E.0.2)

UniqueIndex(u, v, p, q) =
r(r + 1)

2
+ s (E.0.3)

The number of two electron integrals to calculate is reduced to n(n+1)(n2+n+2)
8

by this

technique. In this step these rules are used to calculate all two electron integrals

and store them for later use.
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F. Licences

F.1. Grand Central Dispatch - Apache License

Copyright (c) 2008−2013 Apple Inc. All rights reserved.

Licensed under the Apache License, Version 2.0 (the ”License”);

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE−2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an ”AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

See the License for the specific language governing permissions and

limitations under the License.

F.2. MPFRC++ - General Public License

MPFR C++ (MPREAL): Multiple precision floating point arithmetic library for

C++.

Thread−safe, cross−platform (MSVC, GCC, ICC), one−header C++ library.

Supports C++11 features if available, C++03 compatible otherwise.

Thin wrapper for MPFR: http://mpfr.org
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Project homepage: http://www.holoborodko.com/pavel/mpfr

Contact e−mail: pavel@holoborodko.com

Copyright (c) 2008−2015 Pavel Holoborodko

Contributors:

Dmitriy Gubanov, Konstantin Holoborodko, Brian Gladman,

Helmut Jarausch, Fokko Beekhof, Ulrich Mutze, Heinz van Saanen,

Pere Constans, Peter van Hoof, Gael Guennebaud, Tsai Chia Cheng,

Alexei Zubanov, Jauhien Piatlicki, Victor Berger, John Westwood,

Petr Aleksandrov, Orion Poplawski, Charles Karney, Arash Partow,

Rodney James, Jorge Leitao.

Licensing:

(A) MPFR C++ is under GNU General Public License (”GPL”).

(B) Non−free licenses may also be purchased from the author, for users who

do not want their programs protected by the GPL.

The non−free licenses are for users that wish to use MPFR C++ in

their products but are unwilling to release their software

under the GPL (which would require them to release source code

and allow free redistribution).

Such users can purchase an unlimited−use license from the author.

Contact us for more details.

GNU General Public License (”GPL”) copyright permissions statement:

*************************************************************

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or
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(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

F.3. MPFR - lesser General Public License

Copyright 1999−2015 Free Software Foundation, Inc.

Contributed by the AriC and Caramel projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 3 of the License, or (at your

option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY

or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General

Public

License for more details.

You should have received a copy of the GNU Lesser General Public License

along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see

http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,

51 Franklin St, Fifth Floor, Boston, MA 02110−1301, USA. */
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F.4. Doublepresso - MIT License

Copyright (c) 2008−2009, Petr Kobalicek <kobalicek.petr@gmail.com>

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the ”Software”), to deal in the Software without

restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following

conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY

KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,

ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE

USE OR

OTHER DEALINGS IN THE SOFTWARE.

F.5. ASMJit - Zlib License
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AsmJit − Complete x86/x64 JIT and Remote Assembler for C++

Copyright (c) 2008−2015, Petr Kobalicek kobalicek.petr@gmail.com

This software is provided ’as−is’, without any express or implied warranty. In no

event will the authors be held liable for any damages arising from the use of this

software.

Permission is granted to anyone to use this software for any purpose, including

commercial applications, and to alter it and redistribute it freely, subject to the

following restrictions:

The origin of this software must not be misrepresented; you must not claim that

you wrote the original software. If you use this software in a product, an

acknowledgment in the product documentation would be appreciated but is not

required.

Altered source versions must be plainly marked as such, and must not be

misrepresented as being the original software.

This notice may not be removed or altered from any source distribution.

F.6. Numerical Recipes Personal Single-User License

The following license terms and the Disclaimer of Warranty, below, apply to

individual purchases of the Numerical Recipes Code download product, and to

purchases of the Numerical Recipes Code CD−ROM.

By purchasing this disk or code download, you acquire a Numerical Recipes

Personal Single−User License. This license lets you personally use Numerical

Recipes code (”the code”) on any number of computers, but only one computer at

a time. You are not permitted to allow anyone else to access or use the code. You

may, under this license, transfer precompiled, executable applications

incorporating the code to other, unlicensed, persons, providing that (i) the

application is noncommercial (e.g., does not involve the selling or licensing of the

application for a fee or its use in developing commercial products or services), and
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(ii) the application was first developed, compiled, and successfully run by you,

and (iii) the code is bound into the application in such a manner that it cannot be

accessed as individual routines and cannot practicably be unbound and used in

other programs. That is, under this license, your application user must not be able

to use Numerical Recipes code as part of a program library or ”mix and match”

workbench.

Businesses and organizations that purchase this disk or code download, and that

thus acquire one or more Numerical Recipes Personal Single−User Licenses, may

permanently assign those licenses, in the number acquired, to individual

employees. Such an assignment must be made before the code is first used and,

once made, it is irrevocable and can not be transferred. In many cases, business

and organizations may instead wish to purchase Numerical Recipes institutional

subscriptions (see below), which have more flexibility.

F.7. Lapack - Modified BSD License

Copyright (c) 1992−2013 The University of Tennessee and The University

of Tennessee Research Foundation. All rights

reserved.

Copyright (c) 2000−2013 The University of California Berkeley. All

rights reserved.

Copyright (c) 2006−2013 The University of Colorado Denver. All rights

reserved.

Additional copyrights may follow

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

− Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
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− Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer listed

in this license in the documentation and/or other materials

provided with the distribution.

− Neither the name of the copyright holders nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

The copyright holders provide no reassurances that the source code

provided does not infringe any patent, copyright, or any other

intellectual property rights of third parties. The copyright holders

disclaim any liability to any recipient for claims brought against

recipient by any third party for infringement of that parties

intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS

”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,

BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
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AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

F.8. Boost Software License

Boost Software License − Version 1.0 − August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization

obtaining a copy of the software and accompanying documentation covered by

this license (the ”Software”) to use, reproduce, display, distribute,

execute, and transmit the Software, and to prepare derivative works of the

Software, and to permit third−parties to whom the Software is furnished to

do so, all subject to the following:

The copyright notices in the Software and this entire statement, including

the above license grant, this restriction and the following disclaimer,

must be included in all copies of the Software, in whole or in part, and

all derivative works of the Software, unless such copies or derivative

works are solely in the form of machine−executable object code generated by

a source language processor.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON−

INFRINGEMENT. IN NO EVENT

SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE

266



F. Licences

SOFTWARE BE LIABLE

FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT,

TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE

OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

F.9. MacOpt - lesser General Public License

Copyright (c) 2002 David J.C. MacKay and Steve Waterhouse and Mark Gibbs

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

GNU licenses are here :

http://www.gnu.org/licenses/licenses.html

Author contact details are here :

http://www.inference.phy.cam.ac.uk/mackay/c/macopt.html mackay@mrao.cam.

ac.uk
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F. Licences

F.10. GAlib - MIT License

Copyright 1995−1996 Massachusetts Institute of Technology (MIT)

all rights reserved

Copyright 1996−1999 Matthew Wall (the Author)

all rights reserved

Permission is hereby granted, free of charge, to any person obtaining a copy of

this software and associated documentation files (the ”Software”), to deal in the

Software without restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,

and to permit persons to whom the Software is furnished to do so, subject to the

following conditions:

You may copy and distribute the source code and/or library/executable code for

GAlib in any medium provided that you conspicuously and appropriately give

credit to the author and keep intact all copyright and disclaimer notices in the

library.

Any publications of work based upon experiments that use GAlib must include a

suitable acknowledgement of GAlib. A suggested acknowledgement is: ”The

software for this work used the GAlib genetic algorithm package, written by

Matthew Wall at the Massachusetts Institute of Technology.”

The author of GAlib and MIT assume absolutely no responsibility for the use or

misuse of GAlib. In no event shall the author of GAlib or MIT be liable for any

damages resulting from use or performance of GAlib.
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