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Abstract 

Endosymbiosis has been a major driver of evolutionary diversification of eukaryotes. 

However, symbiosis can create conflict between partners and symbiont density is 

often tightly regulated within hosts to ensure optimal functioning of the holobiont. 

The horticultural pest insects, citrus mealybugs, make an intriguing and potentially-

powerful case study for endosymbiosis, harbouring two obligate, nutritional, 

vertically-transmitted bacteria: Tremblaya princeps and Moranella endobia, in a 

nested mutualism. In this thesis, I examine the variation in the density of each of 

these obligate symbionts in citrus mealybugs under controlled environmental 

conditions, using qPCR, as well as the diversity of facultative symbionts that infect 

the mealybugs using next-generation sequencing and conventional targeted PCR. 

Citrus mealybugs were found to harbour Wolbachia, Spiroplasma, Cardinium and 

Rickettsia, which have been found to impact the fitness of their hosts in other insect 

species, whereas long-tailed mealybugs were not found to harbour any of these 

bacteria, but the symbiont communities in both species were found to be dominated 

by their obligate symbionts. The density of the two obligate symbionts varied by up 

to six-fold between different populations kept under identical environmental 

conditions and a hybridisation experiment indicated that M. endobia and T. princeps 

density may be controlled by symbiont and host genotype respectively. However, 

symbiont density was not found to correlate with life-history traits in the laboratory, 

the ability of mealybugs to exploit different plant species, or the susceptibility of the 

mealybugs to insecticide and artificial reduction of symbiont density by heat-stress 

also had no effect on host fitness. Citrus mealybugs harbour seemingly superfluous 

symbionts with no clear fitness costs or benefits.  
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“In the beginning the Universe was created. This has made a lot of people very angry 

and been widely regarded as a bad move.” 

― Douglas Adams 

  



 
1 

1 General Introduction 

 

1.1 Symbiosis as an evolutionary strategy and catalyst   

Symbiosis, in its broadest sense, is defined as a relationship between two species, 

whereby one participant is either partially or wholly dependent upon the other, but it 

is more commonly understood as an intimate relationship between members of 

different species (Lewin, 1982). Such relationships may be mutualistic (benefiting 

both parties), such as flowers and pollinating bees, commensal (benefiting one party 

with negligible or no cost to the other), such as a bird nesting in a tree hollow, or 

parasitic (beneficial to one party whilst detrimental to the other), such as the 

intestinal worms of mammals. However, the relationships between hosts and 

symbionts are often not so neatly pigeon-holed into these three categories, and 

instead reside along a dynamic and often context-dependent spectrum (Swain, 2012, 

Gerardo, 2015). Symbiosis is now understood to be an essential, prevalent and 

hugely diverse feature of ecological functioning and structure, with an estimated 

50% of all animal species being parasitic symbionts alone (Saffo, 1992, Price, 1980, 

Windsor, 1998).  

Endosymbiosis, where one organism resides inside another, often intracellularly, 

takes this relationship to a more extreme level. The ramifications of this process to 

life as we know it became clear in the latter half of the 20
th

 century, when it was 

discovered that mitochondria and chloroplast organelles are the descendants of free-

living prokaryotes encapsulated in eukaryotic cells (Schwartz and Dayhoff, 1978). 

Endosymbiosis allows eukaryotes to gain novel genetic information and has paved 
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pivotal steps in eukaryote evolution, such as the acquisition of nitrogen fixation and 

bioluminescence capabilities (Giobel, 1926, Yasaki, 1928, Peix et al., 2015). 

Endosymbiosis has thus been a major driver of evolutionary diversification (Moran, 

2007). Endosymbiosis within eukaryotic hosts holds several potential advantages to 

microbes, including a secure and homeostatic environment with a constant supply of 

nutrients, and thus such relationships have become abundant within the animal 

kingdom. Over 90% of cells in the human body, for example, are those of microbial 

symbionts, and the human gut is poor at extracting nutrition from food without its 

cohort of microbes (Hooper, 2002, Backhed, 2005, Ley, 2006). 

Endosymbionts are often reliant on specific environments provided by their hosts 

that cannot be easily mimicked for culturing in vitro, thus hampering research  for 

most of the 20
th

 century (Moran, 2001). However, the increasing availability, 

reliability and sophistication of molecular techniques have allowed an explosion in 

research in this field, leading to fascinating and useful insights in symbiosis. The 

remainder of this chapter will review the evolutionary patterns, conflicts and 

consequences of symbiosis, focusing on the microbes of insects, in particular the 

aphids and mealybugs, with case examples. It will then discuss the potential 

application of symbiosis for the management of pest insects and finally outline the 

aims of this thesis. 

 

1.2 The evolutionary consequences of endosymbiosis 

Endosymbiosis is a specialised mode of survival, and thus symbiotic bacteria will 

face different evolutionary pressures from those faced by free-living microbes. The 
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nature of the symbiont will influence these pressures and their impact on its 

physiology. All symbionts can be assigned into two broad categories:  

1. Obligate (a.k.a. primary), meaning a microbe where the relationship between 

it and its host is vital, either for the symbiont or for the host. These can be 

mutualistic, which tend to be vertically-transmitted, commensal, or parasitic, 

which can be horizontally and/or vertically-transmitted. 

2. Facultative (a.k.a. secondary), meaning a microbe which requires a host, but 

is not essential to the survival of its host and can switch to novel hosts. They 

can thus be mutualistic, commensal or parasitic (Baumann, 2005). 

Obligate, mutualistic symbionts tend to be transmitted vertically from parent to 

offspring, usually through the germline, although in some rarer cases they are 

efficiently transmitted horizontally to juveniles or acquired through ingestion (Frank, 

1996c, Kikuchi et al., 2007). Facultative symbionts can be transmitted vertically or 

horizontally, depending upon the species.  

The evolutionary impacts from these intimate associations, coupled with efficient 

vertical or horizontal transmission, can lead to coevolution of the partners, either as 

enemies in a Red Queen-style evolutionary arms race, or as allies (Moran and 

Telang, 1998). Mutualistic relationships can also lead to co-diversification, where 

speciation of the host is followed by speciation of the endosymbiont. Coevolution of 

a host and its mutualist endosymbiont can blur the boundaries between organism and 

organelle. Eventually, the relationship may become obligate, where both participants 

are unable to survive or reproduce without the other. Where the relationship is 

obligate for all members involved, it is increasingly being considered inappropriate 
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to consider a host and its endosymbiont/s as distinct organisms (Zilber‐Rosenberg 

and Rosenberg, 2008), and the term “holobiont”, which intends to encapsulate the 

symbiotic partners as a single super organism, is gradually being adopted by some 

scientists. However, this term itself could be considered to be inappropriate when 

host-symbiont conflict is taken into account (discussed later), which can still occur 

even in obligate relationships.   

Endosymbionts frequently experience dramatic genome reduction (Bennett and 

Moran, 2015, Moran and Bennett, 2014, McCutcheon and Moran, 2012, Moran and 

Wernegreen, 2000). This is a common consequence of the endosymbiotic lifestyle, 

which removes many of the selection pressures faced by free-living bacteria, and 

mutations in genes which would be required for independent survival may have 

accumulated and impeded their function. Furthermore, the bacteria are isolated from 

those residing in other hosts, preventing recombination and rendering them 

effectively asexual (Thao et al., 2002, Moran, 1996). This results in an irreversible 

process known as Muller’s Ratchet, which can “chip away” at the genome’s 

functionality (Lynch and Gabriel, 1990, Moran, 1996). The alterations to these 

genomes are drastic, as the ratchet has likely been exacerbated by bottleneck-caused 

selection. Bottlenecking is where only a small number of the bacteria cells are passed 

onto each new host generation. Noted changes include a high A+T content, increased 

rate of nucleotide substitution, amplification of the number of chromosomes residing 

in each cell from one to an average of 120, proliferation of plasmids and a loss of 

codon usage bias (the differences in the frequency of the occurrence of synonymous 



 
5 

amino acid-encoding codons in coding DNA)  (Moran, 1996, Clark et al., 1999, 

Komaki and Ishikawa, 1999, Moya et al., 2002). 

Despite the host and its symbionts living intimately as a “holobiont”, they are still 

genetically separate entities. They will thus be exposed to different selection 

pressures and will act selfishly, even in mutualistic associations where the benefits of 

the relationship outweigh the cost (Bennett and Moran, 2015). The host will be 

selected to maximise its own fitness, whereas the symbiont will be selected to 

maximise its transmission rate to new hosts. These two objectives do not always 

result in the same outcome, and accommodating a symbiont will always incur some 

cost to the host (Bronstein, 2001). Increasing the transmission rate of the symbiont 

may involve competing for resources provided by the host with other symbiont 

species, or even strains, within the host, whether or not those additional symbionts 

are beneficial for the host. This was found in the pea aphid, Acyrthosiphon pisum, 

when superinfected with two facultative but mutualistic symbionts, who reduced the 

fitness of the host, likely through their hostile interactions or increased energetic 

demand (Oliver et al., 2006). 

Much of this conflict can be resolved through efficient vertical transmission, which 

reduces the selection pressure to maximise horizontal transmission. Vertical 

transmission tends to result in a closer alignment of interests between host and 

symbiont, and more genetically homogenous symbionts within a host, both of which 

can select for lower virulence, such as is the case with organelles and the Uroleucon 

ambrosiae aphid symbionts (Frank, 1996a, Frank, 1996b, Smith, 2007, Birky et al., 

1983, Funk et al., 2000). However, vertical transmission may not pacify this conflict 
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if it is only maternal. For symbionts which are only transmitted maternally, 

transmission into male offspring is likely to be an evolutionary dead-end without 

fitness benefits for the symbiont, even if the male still benefits from the arrangement. 

An exception to this could be found in the maternally-transmitted Wolbachia, which 

often manipulates the reproduction of the host via inducing cytoplasmic 

incompatibility. In this case, infected males can only successfully reproduce with 

infected females, so female hosts not harbouring the symbiont will be at a 

disadvantage when finding a mate (Engelstädter and Hurst, 2009). Thus, transmitting 

Wolbachia to male offspring indirectly favours the spread of the symbiont. 

Wolbachia has been found to also skew the sex ratio of their offspring towards 

females, and Wolbachia, Spiroplasma and Rickettsia have each been found to 

selectively kill male offspring (Fialho and Stevens, 2000, Jiggins et al., 2000, 

Lawson et al., 2001, von der Schulenburg et al., 2001). 

 

1.3 Endosymbionts in the Insecta 

Insects are rife with cases of bacterial symbiosis, which influence their evolution and 

daily ecology on a species and individual-level (Moran, 2001). The roles and 

functioning of these bacteria are as diverse as their hosts (examples discussed later), 

but one major theme is the acquisition of nutrition. The Insecta have extremely 

variable nutritional requirements across their taxa (Dadd, 1985, Douglas, 2009) and 

have evolved to occupy a remarkable variety of niches. This includes detritivores, 

carnivores and herbivores, the latter of which may specialise on particular plant 

species or tissues. The acquisition of endosymbionts has most likely been highly 



 
7 

influential in the diversification of insects. The understood role of obligate 

nutritional mutualistic endosymbionts is to provide new metabolic capacities that 

allow the hosts to exploit niches (Douglas, 2009). This may be to ease digestion or 

detoxify food material, or involve the synthesis of essential nutrients that are scarce 

in the available diet, such as is the case with wood-feeding termites and blood-

feeding insects, such as tsetse flies (Breznak, 2000, Nakashima et al., 2002, 

Warnecke et al., 2007, Pais et al., 2008, Douglas, 2009). This is also the case for the 

endosymbionts of sap-feeding aphids (Hemiptera: Sternorrhyncha, Aphidoidea) and 

mealybugs (Hemiptera: Sternorrhyncha, Pseudococcidae), which have received 

much interest and are discussed in detail later.  

The Sternorrhyncha are a suborder of the Hemiptera (true bugs), which includes the 

aphids (Aphidoidea), whiteflies (Aleyrodiodea), psyllids (Psylliodea) and scale 

insects (Coccoidea). These are sap-feeding insects, and their lifestyle has led to the 

association of each of these taxa with obligate endosymbionts that originate from the 

γ-3 subdivision of proteobacteria (Munson et al., 1991b, Thao et al., 2000, Thao et 

al., 2002, Thao and Baumann, 2004b, Gruwell et al., 2007, Matsuura et al., 2009). 

Aphids and mealybugs (Pseudococcidae members of the Coccoidea) are significant 

agricultural and horticultural crop pests. They feed upon host plants by inserting 

their specialised stylet mouthparts into the plant tissue in search of phloem vessels. 

They not only cause physical damage by probing plants in order to receive sap, and 

thus weakening it, but they also serve as vectors for a number of plant pathogens 

(discussed later) (Edwards, 1963). However, although plant sap is rich in 

carbohydrates, it is deficient in essential amino acids, which cannot be synthesised 
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de novo by animals (Douglas, 2006, Douglas, 1998, Shigenobu and Wilson, 2011). 

Thus, aphids and mealybugs have each independently formed relationships with 

bacteria that synthesise these nutrients for them. Obligate endosymbionts located in 

other Hemiptera groups are summarised in (Baumann, 2005). Nutritional obligate 

endosymbionts are not exclusive to the sap-feeding Hemiptera. Blood-feeding 

insects, for example bed bugs, sucking lice, wingless dipterans and triatomines, have 

a diet deficient in vitamin B and possess endosymbionts believed to be used for its 

synthesis (Dasch et al., 1984) (cited in (Beard et al., 2002)), but these are outside the 

scope of this review. 

 

1.4 Ecology and etymology of aphids and Buchnera   

Aphids (Fig. 1.4.1.) and Buchnera are model organisms for obligate endosymbiosis 

and are the focus for insect-endosymbiont research. Aphids are a group comprised of 

around 4,400 species worldwide, and together are highly polyphagous, feeding on a 

wide range of plant taxa (Dixon et al., 1987) and transmitting 50% of known insect-

vectored viruses, including the damaging alfalfa mosaic virus, broad bean wilt virus-

1 and strawberry mottle virus (Ng and Perry, 2004, Nault, 1997), and the bacterium 

Pseudomonas syringae, which attacks a variety of economically important crops 

(Stavrinides et al., 2009). They have a reproductive cycle which involves both sexual 

phases and parthenogenetic phases (where a female asexually produces clone female 

progeny), allowing populations to increase in numbers rapidly whilst still reaping the 

benefits of chromosomal recombination during sexual encounters (Moran, 1992). 

Located within the abdomen of each aphid resides an organ named the bacteriome, 
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which contains around 60 to 80 specialised cells named bacteriocytes (Baumann et 

al., 1995). It is these cells which house the obligate endosymbiont of aphids, 

Buchnera, tens of thousands of which will be encapsulated in vesicles. The great 

majority of aphid species harbour B. aphidicola, although this has been substituted 

with a yeast-like endosymbiont from the subphylum Ascomycotina in the 

Cerataphidini aphids (Munson et al., 1991b, Fukatsu and Ishikawa, 1996). 

Transmission for all obligate endosymbionts is strictly vertical, from mother to 

offspring, by the infection of eggs or embryos (Wernegreen, 2002). 
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Fig. 1.4.1. Acyrthosiphon pisum pea aphid adults and juveniles in California, USA, 

(Wild, 2015). 
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Aphids and Buchnera are one of the best studied cases of obligate mutualistic 

symbiosis in current literature. The role of Buchnera to assimilate essential amino 

acids from phloem sap has been demonstrated empirically. For example, it was 

found in two studies that infected pea aphids A. pisum are able to survive when fed 

on artificial diets that omitted individual amino acids, indicating that they were being 

synthesised from other available compounds, possibly the non-protein amino acid 5-

methylmethionine, whereas cured A. pisum performed poorly in terms of growth 

(Akman Gündüz and Douglas, 2009, Febvay et al., 1999). In another study, the black 

bean aphid Aphis fabae cured of Buchnera infection showed stunted growth and a 

high mortality compared to infected A. fabae when fed on an amino-acid-poor 

artificial diet. Infected aphids in this study were able to assimilate essential amino 

acids from radiolabelled glutamic acid, whereas the uninfected aphids were not, 

signifying the role of this bacterium in nutrient synthesis (Douglas et al., 2001, Houk 

and Griffiths, 1980). The genomes of both B. aphidicola and A. pisum have now 

been sequenced (Shigenobu et al., 2000, Ra et al., 2010, The International Aphid 

Genomics Consortium, 2010), and the complementary nature of the symbiosis has 

become clearer. For example, A. pisum is unable to synthesise arginine, provided by 

B. aphidicola, yet remains able to produce some reactions in amino acid synthesis 

which are not covered by B. aphidicola (Wilson et al., 2010). The interlinking of 

metabolism reveals the antiquity and intimacy of the association, however, there is 

no evidence to suggest the horizontal transfer of functional genes from B. aphidicola 

to A. pisum (Ra et al., 2010, Nikoh et al., 2010). Horizontal gene transfer has been 

noted for the older mutualisms of aphids with mitochondria (Sunnucks and Hales, 

1996), further suggesting that B. aphidicola may still reside in the grey boundary 
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between organism and organelle, rather than reaching full organelle status. As more 

is understood about endosymbiosis and its evolutionary consequences and processes, 

the precise distinction between symbiont and organelle (symbionts which have 

persisted and become not only obligate, but so genetically and evolutionarily 

entangled with their hosts that they were barely considered to be organisms in their 

own right, such as mitochondria and chloroplasts) is tenuous and still debated 

(Keeling et al., 2015). The horizontal transfer of genes into the host genome was 

previously considered the hallmark of organelles, but is no longer considered unique 

(Keeling et al., 2015, Wilson and Duncan, 2015, Hallam and McCutcheon, 2015). I 

would suggest that symbionts and organelles are instead considered to be points on a 

spectrum, rather than discrete categories. 

B. aphidicola is also unable to produce some cell-surface components, regulatory 

genes and genes involved in the defence of the cell (Shigenobu et al., 2000). Features 

such as these may allow A. pisum to remain in metabolic control over its 

endosymbiont (Shigenobu et al., 2000, Ra et al., 2010). However, A. pisum has lost 

several genes involved in the IMD immune pathway (The International Aphid 

Genomics Consortium, 2010, Gerardo et al., 2010). The suppression or adjustment 

of immune responses is common in symbiont hosts, which must amend their strategy 

for dealing with internal bacteria (Wang et al., 2009a, Ratzka et al., 2013, The 

International Aphid Genomics Consortium, 2010, Gerardo et al., 2010, McFall-Ngai 

et al., 2010). A. pisum has been found to employ distinct regulatory mechanisms for 

its obligate and facultative symbionts by varying its dietary nitrogen levels, revealing 

that it still maintains sophisticated control over its internal bacteria and can adjust 
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their density selectively (Wilkinson et al., 2007). The infection intensity/density of a 

symbiont, such as B. aphidicola, must be efficiently balanced within its host to 

ensure optimal performance, and the ideal density may vary depending upon the 

context and life stage of the host (Kono et al., 2008, Laughton et al., 2014). Too few 

symbionts would result in a shortage of amino acids, whereas too many symbionts 

could result in a surplus of amino acids which have no use to the host, but were still 

energetically costly to produce. Some indication of this has been found in the 

decreasing of Buchnera densities as the host ages (Lu et al., 2014). Maternal age also 

holds an influence on the density of Buchnera in the offspring when they reach 

adulthood (Laughton et al., 2014). 

Buchnera may provide some additional non-nutritional benefits to aphids. A single 

nucleotide deletion in the B. aphidicola genome was found to disrupt a 

homopolymeric run within the transcriptional promoter for ibpA, a gene encoding a 

heat-shock protein (Dunbar et al., 2007). A. pisum individuals carrying the mutated 

bacterium suffered a complete reduction in fecundity following heat stress, 

compared to those carrying the wild type which did not. B. aphidicola also 

contributes to the pest status of aphids in a way other than nutrition aquisistion. The 

Buchnera-produced protein symbionin has been found to stabilise virus particles by 

preventing proteolytic degradation, and thus increase the efficiency of viral 

transmission by aphids into host plants. The application of the antibiotic 

chlortetracycline was found to counteract this by inhibiting bacterial protein 

synthesis and reducing viral transmission by over 70% (van den Heuvel et al., 1994).  
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Phylogenetic studies of aphids and their Buchnera strains indicate that this infection 

was a single event that occurred between 160 and 280 million years ago, around the 

same time as the origin of aphids, implying the significance of Buchnera in aphid 

ecology and evolution. The phylogenies show a mirroring of co-diversification with 

a strong congruence (Fig. 1.4.2.), reflecting the vertical transmission of this 

bacterium (Moran et al., 1993, Clark et al., 2000). 
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Fig. 1.4.2. Phylogenetic trees for aphids and corresponding Buchnera (here referred 

to as “symbiont trpB”), displaying the tight levels of congruence shared between host 

and symbiont. The Buchnera tree is based on partial sequences of trpB; the aphid 

tree is based on mitochondrial and nuclear sequences (Moran et al., 1999). Nodes 

resolved in the Buchnera tree are marked according to whether they match nodes on 

the aphid tree, are consistent, or contradict. Numbers on branches are bootstrap 

values for parsimony searches. Asterisk indicates taxa in which the trpB sequence 

contains an extra codon. Figure reproduced from (Clark et al., 2000). 
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Hundreds of millions of years of intracellular symbiosis have made the Buchnera 

genome highly specialised. It is one of the smallest bacterial genomes known, 

comprising of 0.64 megabase pairs, one seventh the size of that of one of its closest 

free-living relatives, Escherichia coli (Wilson et al., 2010). However, the study of 

genomes of Buchnera from three different species of aphid host revealed that despite 

their extreme reduction in size, the chromosomes have maintained a conservation of 

gene order and composition, whilst some genes had transferred onto the two 

residential plasmids (Latorre et al., 2005). It has been suggested that polyploidy in 

Buchnera, believed to be a result the loss of ability to divide outside of the 

eukaryotic cell and genomic reduction, may in fact have then countered the ratchet 

by providing “back-up” copies of genes and slowed down what would have been a 

considerable rate of gene alteration (Komaki and Ishikawa, 1999). Either way, this 

genome reduction is irreversible and Buchnera may only become more specialised. It 

has been proposed that this shrinkage could lead to a loss of symbiotic capacity in 

Buchnera and the complementation, or potentially replacement, by the facultative 

symbiont Serratia symbiotica, which is later described (Pérez-Brocal et al., 2006).  

 

1.5 Mealybugs and their ecology  

Mealybugs (Fig. 1.5.1) are a division of the scale insects (Coccoidea) and are 

comprised of around 2,000 species worldwide (Thao et al., 2002, Ben Dov, 2015). 

They pose a similar threat to horticulture as aphids in that they probe plants with 

their stylets in search of phloem sap, causing mechanical damage to the plant, and 

transmitting a range of plant pathogens. The production of honeydew also 
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encourages the growth of black sooty moulds, which may render some crops 

worthless (Jelkmann, 1997, Sether, 1998, Charles, 2006). The citrus mealybug, 

Planococcus citri (Risso), is one of the most destructive species. Despite its name, it 

is a highly polyphagous pest that can feed upon plants originating from dozens of 

families, including citrus, cocoa (Ackonor, 2002), coffee (Staver et al., 2001), 

grapevine (Cid et al., 2006) and other horticultural and ornamental crops inside 

greenhouses and conservatories worldwide (Laflin and Parrella, 2004). P. citri can 

transmit plant pathogens from more than three genera of viruses, which include 

grapevine leafroll-associated virus 3 (a.k.a. Ampelovirus) (GLRaV-3) (Cid and 

Fereres, 2010, Martelli et al., 2002), Badnavirus (Phillips et al., 1999), including 

piper yellow mottle virus (Lockhart et al., 1997), and grapevine virus A, B and D 

(a.k.a. Vitivirus) (Adams et al., 2004). Adult females are particularly difficult to 

control as they produce a waxy secretion that coats their bodies (hence the name 

mealybugs) and effectively shields them from insecticides, which remain the most 

common form of control (Gullan and Kosztarab, 1997, Franco et al., 2009). 

  



 
18 

Fig 1.5.1. (A) Planococcus citri citrus mealybug adult female and juvenile (Wild, 

2015); (B) ventral side of adult female P. citri, showing stylet and functional legs 

(Wild, 2015); (C) ovipositing adult female P. citri surrounded by juveniles and 

tended by yellow crazy ants (Anopolepis gracilipes) (Wild, 2015); (D) adult male P. 

citri (Osborne, 2010). 
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Unlike aphids, the P. citri mealybug reproductive cycle includes only sexual phases 

and lasts for around 30 days when maintained at 25°C (Fig 1.5.2.), with instars 

perishing when maintained below 12°C or above 37°C (Arai, 1996, Goldasteh et al., 

2009). Once hatched from their eggs, first instar nymphs begin life as mobile pink-

orange wingless oval-shaped crawlers around 0.3 mm in length (Griffiths and 

Thompson, 1957), which disperse from the ovisac in search of food, tending to 

prefer the safety of plant crevices, or the fleshy undersides of leaves, or twigs and 

fruit. Once a suitable site is found, they settle, feed upon plant phloem and increase 

in body size, where sexual differentiation becomes more apparent and males 

elongate and become darkened grey in colour. There is dramatic sexual dimorphism 

at adulthood: the males go through three instars before entering a pre-pupal stage, 

where they produce a waxy cocoon and pupate. Adult males are around 4.5mm in 

length, brown-grey in colour with a pair of white wax threads protruding from their 

abdomen, winged and live only for a few days after pupation (having no mouthparts, 

they are unable to feed). During this short period, they fly and crawl in search of 

females and mate multiple times. In contrast, adult females go through 4 instars, but 

never pupate. They are peadomorphic, remaining in an enlarged 3mm long nymphal-

like wingless state. They are grey in colour with a purple-grey dorsal stripe and 

coated with a thin layer of white wax. Adult females are mostly sessile and have 

relatively short legs, but will move when disturbed. Adult females can survive for up 

to several months whilst feeding upon the plant, waiting to be visited by males for 

mating. Once mated, females will commence oviposition, producing up to 600 

orange eggs over several days, which are bundled in wax threads of an ovisac. 
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During the oviposition period, the female will reduce in size dramatically and finally 

die when her internal resources are depleted (Kerns et al., 2001).  
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Fig 1.5.2. Planococcus citri citrus mealybug life cycle stages, displaying (A) 

paedomorphic adult female; (B) eggs which have been bundled together with wax 

threads during ovipoistion; (C-E) nymphs of both sexes; (F) female nymph; (G) male 

nymph; (H) winged adult male. Figure reproduced from (NCSU, 2015). 
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1.6 Citrus mealybugs and Tremblaya princeps and Moranella endobia 

Citrus mealybugs are an interesting model system for the study of symbiosis. Like 

aphids, they house an obligate, nutritional, endosymbiotic bacterium species, 

Candidatus Tremblaya princeps, within a bacteriome organ surrounding the gut. T. 

princeps is a member of the β-proteobacteria and has the unusual feature of serving 

as host to an additional obligate nutritional bacterium, Candidatus Moranella 

endobia, a member of the γ-proteobacteria (Thao et al., 2002, Keeling, 2011, 

McCutcheon and von Dohlen, 2011, Von Dohlen et al., 2001, Baumann et al., 2002) 

(Fig 1.6.1.). 
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Fig. 1.6.1. Cladogram of mealybugs and their obligate symbionts. Tremblaya is the 

sole symbiont in some lineages of mealybugs (e.g., P. avenae); however it was 

replaced with a symbiont from the Bacteroidetes in some lineages 

(e.g., Rastrococcus invadens; yellow line) and was itself infected with 

gammaproteobacteria in other lineages of mealybugs (red lines; e.g., with Moranella 

endobia in Planococcus citri). This figure is a composite from previous work 

(Buchner, 1965, Gruwell et al., 2010, Hardy et al., 2008, Thao et al., 2002). Figure 

reproduced from (Husnik et al., 2013). 
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Together, T. princeps and M. endobia synthesise amino acids which are deficient in 

the diet of mealybugs. This is the only known example of a bacterium infecting 

another bacterium and is another illustration of how the concepts of organism, 

endosymbiont and organelle are not clear cut. The literature often refers to M. 

endobia as a “secondary” endosymbiont, e.g. (Thao et al., 2002), however the term 

“secondary” endosymbiont is usually applied to facultative bacteria. M. endobia is 

obligate, a characteristic of “primary” endosymbionts, and so this term may be no-

longer appropriate in this case study. It could be argued that the categorisation of 

“primary” and “secondary” endosymbionts adds confusion to the understanding of 

symbiosis by failing to inform the function of the endosymbiont. For simplicity and 

a clearer understanding of the relationships between hosts and endosymbionts, it is 

suggested that the terms “obligate” and “facultative” would be more technically 

correct. Indeed, they are already widely used in the literature rather interchangeably 

with “primary” and “secondary” and so would not require a major transformation in 

terminology.  

Phylogenetic studies indicate a strong congruence of co-diversification between 

mealybugs and T. princeps, reflecting strict vertical transmission into five major 

clusters following a unique infection event between 100 and 200 million years ago 

(Thao et al., 2002, Downie and Gullan, 2005). However, although T. princeps is 

monophyletic, the situation of M. endobia is not as simple. These bacteria are also 

grouped into five clusters, but they are distinct from each other. Thus, it has been 

concluded that different precursors of M. endobia infected T. princeps multiple times 

before co-diversifying with their hosts (Fig. 1.6.2.).  
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Figure 1.6.2. Comparisons of the phylogeny of mealybugs with Tremblaya and 

Moranella. Tremblaya is monophyletic, suggesting a single infection of a mealybug 

ancestor followed by co-speciation with the insect host. Moranella is polyphyletic; 

the different clusters are more closely related to a variety of sternorrhynchal insect 

secondary symbionts than to each other. Maximum likelihood analysis, numbers at 

nodes represent % bootstrap values after 500 replicates; only nodes supported by 

70% or greater are shown. Host sequences are from (Downie and Gullan, 2004); 

Tremblaya and Moranella sequences are from (Thao et al., 2002). Figure reproduced 

from (Baumann, 2005). 
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The concentric arrangement of T. princeps and M. endobia has resulted in unusual 

physical and metabolic arrangements. Like other endosymbionts, these bacteria have 

reduced genomes, but T. princeps has taken this characteristic to the extreme. It 

possesses one of the smallest bacterial genomes known to science, at just under 

139kb in length with only 120 protein coding genes (Husnik et al., 2013). Even the 

reduced genome of M. endobia, at 538kb, is still almost four-fold larger, although it 

codes for only half the number of essential amino acid gene homologs as T. princeps 

(McCutcheon and von Dohlen, 2011, Lopez-Madrigal et al., 2011, López-Madrigal 

et al., 2013). It is hypothesised that T. princeps’ genome reduction may have been 

further exaggerated by it hosting a symbiont of its own and providing a second set of 

proteobacterial genes, rendering those in T. princeps redundant (McCutcheon and 

von Dohlen, 2011). The presence of functionally homologous M. endobia genes that 

complement the pseudogenes of T. princeps provide some evidence for this 

hypothesis (McCutcheon and von Dohlen, 2011). But much gene loss had already 

occurred before the acquisition of M. endobia, leading speculation that this 

arrangement may not be the major cause of the genomic reduction in T. princeps 

(Husnik et al., 2013). However, comparison of T. princeps against Tremblaya 

phenacola, the homologous symbiont of the Phenacoccinae mealybugs which lack 

M. endobia, found inconsistencies, with T. princeps having undergone concerted 

evolution of paralogous loci, suggesting that the atypical reductive evolution could 

be linked to M. endobia (López-Madrigal et al., 2015). Genetic comparison of T. 

princeps strains from five mealybug species of the M. endobia-harbouring 

Pseudococcinae revealed co-occurrence of concerted evolution, further supporting 
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the hypothesis that the acquisition of M. endobia is a major cause of this unusual 

evolution of T. princeps. 

T. princeps has lost a number of functional genes, some of which are essential for the 

control of gene expression and still found in the genomes of other obligate insect 

symbionts, including those for translational release factors, aminoacyl-tRNA 

synthetases, ribosome recycling factor, elongation factor EF-Ts and peptide 

deformylase (Nakabachi et al., 2006, Husnik et al., 2013, McCutcheon and von 

Dohlen, 2011). T. princeps also lacks cell-envelope-related genes, and is 

hypothesised to depend on host-sourced membranes to construct its own cytoplasm 

(Husnik et al., 2013). The further genetic intimacy of P. citri, T. princeps and M. 

endobia was revealed through sequencing where it was found that the synthesis of all 

essential amino acids could only occur through a fusion of genetic pathways from P. 

citri, T. princeps and M. endobia (Keeling, 2011, McCutcheon and von Dohlen, 

2011, Husnik et al., 2013). The P. citri genome also contains at least 22 functional 

horizontally-transferred bacterial genes from previous symbiotic relationships with a 

diverse array of bacteria, which may complement some of the genes lost in T. 

princeps and M. endobia (Husnik et al., 2013). Lysis of M. endobia may be the 

mechanism that allows the release of gene products out of the cell and into T. 

princeps, and it is predicted that facultative expression of the cell wall stability 

genes, murABCDEF and mltD/amiD, in the P. citri genome may control this event, 

with a reduction in expression leading to less stable M. endobia walls that are more 

prone to lysis (Koga et al., 2013, McCutcheon and von Dohlen, 2011, Husnik et al., 

2013).  
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The density/infection intensity T. princeps and M. endobia within the bacteriome 

varies depending upon the age and gender of the host (Kono et al., 2008). A study 

into these dynamics with the mealybugs Planococcus kraunhiae and Pseudococcus 

comstocki found that whilst females maintain their endosymbionts until they are 

beyond reproductive age, males lose their endosymbionts after they pupate into an 

adult. As adult males have no mouthparts and thus cannot feed, nutritional 

endosymbionts serve no further purpose to them, and it is hypothesised that they are 

likely broken down for energy (Kono et al., 2008). Interestingly, this loss of 

symbionts is decoupled, with M. endobia disappearing more quickly than T. 

princeps. A similar absence of endosymbionts in males has been noted in some other 

arthropods, for example the social aphid Colophina arma (Fukatsu and Ishikawa, 

1992), and the slender pigeon louse, Columbicola columbae (Fukatsu et al., 2007). 

 

1.7 What are facultative symbionts?  

Facultative endosymbionts differ from primary/obligate endosymbionts in that the 

relationship is not essential for the survival or reproduction of the host and the 

symbiont can survive in novel hosts, or even be free-living (Oliver et al., 2010). 

Facultative symbionts can be parasitic, commensal or mutualistic, however, in 

practise, they often do not slot into ridged categorical relationships, but instead fall 

on a multi-dimensional and context-specific spectrum. During particular 

circumstances, the symbionts may provide services that give the host an advantage 

over conspecifics without the relationship, or conversely, parasitic side-effects that 

maximise symbiont production to the detriment of the host or population. Facultative 
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symbionts are common in the Hemiptera, and one of the most intensely studied 

groups are the aphids, which harbour a wide range of species (Fig 1.7.1) (Oliver et 

al., 2010). The facultative symbionts of mealybugs, on the other hand, have only 

received a fraction of the same investigative scrutiny. The known or common 

facultative symbionts of aphids and other Hemiptera and mealybugs will now be 

described. 
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Fig. 1.7.1. Phylogenetic distribution of vertically-transmitted facultative and obligate 

bacterial symbionts of aphids. Frequencies are based on 97 aphid species surveyed in 

(Haynes et al., 2003, Russell et al., 2003, Sandström et al., 2001). Figure reproduced 

from (Oliver et al., 2010). 
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1.8 Facultative symbionts in aphids and other Hemiptera 

Facultative endosymbionts, including mutualistic, commensal and parasitic species, 

in aphids tend to reside in the haemolymph outside of the bacteriome in the syncytial 

or mycetocyte cells, although their location can also include several locations, such 

the ovaries and gut (Saridaki and Bourtzis, 2010, Koga et al., 2003, Sacchi et al., 

2010). They are vertically transmitted maternally, although phylogenetic studies of 

the three major facultative endosymbionts of aphids, Hamiltonella defensa (Moran), 

Regiella insecticola (Moan) and Serratia symbiotica (Moran) have revealed a lack of 

congruence indicating widespread horizontal transfer of these bacteria amongst the 

aphids and psyllids (Russell et al., 2003). This occurs most commonly between 

closely related species, perhaps indicating some level of species-specific intimacy.  

The interactions of facultative endosymbionts are more complex than that of 

Buchnera. Studies involving the curing of bacterial infection of individuals and 

transinfection of bacteria from infected into non-infected individuals are gradually 

and empirically demonstrating the roles of these endosymbionts in aphid ecology. 

Prokaryotes are able to produce a greater array of biologically active compounds, 

such as toxins, than eukaryotes, and thus can serve as a valuable asset in the defence 

against parasitoids and pathogens. Aphids have a limited encapsulation defence 

against parasitoids, particularly when under heat stress (Bensadia et al., 2006), and 

hence are especially vulnerable to parasitism. Genetic sequencing of A. pisum has 

identified the loss of genes integral to the IMD immune pathway, suggesting that A. 

pisum has a compromised immune system, and may be reliant on immune benefits 

from facultative endosymbionts (Ra et al., 2010).  
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Mealybugs have interacted with facultative symbionts in their evolutionary past, as 

the P. citri genome was found to contain several horizontally-transferred bacterial 

genes (Husnik et al., 2013). However, very little is known of their current 

associations with facultative bacteria. For example, the facultative bacterium 

Rickettsia (discussed later) has been observed in the mealybug, P. solenopsis, (Singh 

et al., 2013) and a Spiroplasma-like bacterium (discussed later) has previously been 

detected in the mealybug, Antonina crawii, (Fukatsu and Nikoh, 2000), but the 

ecological impacts of either of these relationships is hitherto unknown. 

 

 Hamiltonella defensa 1.8.1

H. defensa occurs in aphids and the whitefly, Bemisia tabaci (Gennadius) (Yu-Feng 

et al., 2015, Oliver et al., 2014, Guay et al., 2009). It is a member of the γ-

subdivision of the proteobacteria, previously named PABS (pea aphid Bemisia-like 

symbiont) or T-type symbiont, and can provide significant benefits to its host, but 

research into how it induces these phenotypic alterations has revealed a strong 

example of an illuminating aspect of endosymbiont evolution. H. defensa has been 

found to increase A. pisum resistance against the parasitoid wasp Aphidius ervi 

(Hymenoptera: Braconidae) (Oliver et al., 2003, Oliver et al., 2005, Ferrari et al., 

2004). This was through higher levels of parasitoid larval mortality, in one 

experiment reducing mummification by 22.5%, and fecundity of parasitized 

individuals infected by H. defensa was also significantly higher than uninfected 

parasitized individuals. Horizontal gene transfer plays a crucial role in the 

relationship between A. pisum and H. defensa, and A. pisum has acquired genes from 
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several other facultative symbiont species, including Wolbachia and Rickettsia 

(Oliver et al., 2010). It is now understood that the presence of a lysogenic lambdoid 

bacteriophage named APSE (A. pisum viral facultative symbiont), which encodes 

eukaryote-targeting toxins, is essential to the efficacy of H. defensa (van der Wilk et 

al., 1999, Oliver et al., 2009). Across A. pisum reside different numbered variants 

and strains of APSE that possess slightly different properties in their toxins (van der 

Wilk et al., 1999, Moran et al., 2005b). Lab strains of A. pisum can often lose their 

APSE, and experiments found that H. defensa-infected, APSE-infected aphids were 

90% more successful at countering the parasitoid A. ervi than H. defensa-infected, 

APSE-noninfected aphids (Oliver et al., 2009). Degnan and Moran (Degnan and 

Moran, 2008) hypothesise that APSE may allow the horizontal transfer of genetic 

material between endosymbionts in vivo. Indeed, genetic studies have uncovered 

evidence in APSE for horizontal gene transfer, recombination and transposition 

(Degnan and Moran, 2008). H. defensa has retained more free-living characteristics 

than B. aphidicola in its larger 2.1 megabase genome (Degnan et al., 2009). Despite 

being unable to produce several essential amino acids and being thus reliant on the 

obligate endosymbiont, it has maintained a greater ability to synthesise and regulate 

numerous cellular structures, possibly because its facultative nature requires a more 

robust genome. 

Even a facultative endosymbiont relationship that appears specialised for mutualism 

can switch to parasitism under certain environmental conditions. Caged populations 

of A. pisum with a moderate starting frequency of H. defensa significantly increased 

the proportion of H. defensa-infected individuals following exposure to the A. ervi 
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parasitoid (Oliver et al., 2008). However, when populations of A. pisum were not 

exposed to A. ervi, the proportion of H. defensa and S. symbiotica-infected 

individuals was reduced. Harbouring this endosymbiont may come at a cost to A. 

pisum that is only outweighed by the benefits of increased protection when 

parasitoids are a significant threat, demonstrating the parasitic aspect of this 

symbiosis when selection pressures are not in favour of the relationship. 

 

 Regiella insecticola 1.8.2

Facultative endosymbionts of aphids that provide parasite/parasitoid resistance can 

efficiently defend the host against a wide range of host-enemy species that will use 

diverse strategies and chemicals in their attacks. R. insecticola, another member of 

the γ-subdivision of the proteobacteria and previously named PAUS (pea aphid U-

type symbiont), has been found to increase survival of A. pisum infected by the 

Entomophthorales fungus Pandora (Erynia) neoaphidis, in one experiment by 

around 30%, through reducing sporulation frequencies by around 60% (Ferrari et al., 

2004, Scarborough et al., 2005). R. insecticola was also found to reside in a clone of 

the peach potato aphid, Myzus persicae, which was invulnerable to two parasitoid 

species, Aphidius colemani and Diaeretiella rapae (von Burg et al., 2008). A. fabae 

has been found to benefit from increased resistance to a third parasitoid species 

Lysiphlebus fabarum when infected with H. defensa (Vorburger et al., 2009). The 

relationship between host and endosymbiont may be complex and not revolve 

around the presence or absence of a single phenotypic trait. For example, R. 

insecticola has been additionally found to assist A. pisum host plant specialisation 
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(Tsuchida et al., 2004, Ferrari et al., 2007), perhaps fine-tuning the benefits provided 

by B. aphidicola.  

 

 Serratia symbiotica 1.8.3

S. symbiotica, a member of the γ-subdivision of the proteobacteria and previously 

named S-symbiont, PASS (pea aphid secondary symbiont) or R-type, was found to 

improve A. pisum tolerance of a very different threat: heat stress. Individuals 

artificially infected with this bacterium retained 48% of their fecundity following 

heat stress, compared to non-infected individuals who retained just 7% of their 

fecundity (Montllor et al., 2002). This endosymbiont has also been found to provide 

some defence against A. ervi (Oliver et al., 2003). That this endosymbiont provides 

both heat stress and parasitoid resistance is of particular interest as Hamiltonella 

defensa-infected aphid defences are less effective following heat stress (Bensadia et 

al., 2006). It would be illuminating to examine whether H. defensa display a greater 

heat-stress integrity in the presence of S. symbiotica.  

Sequencing could reveal the genes involved in these traits, and it would be 

enlightening to discover whether related genes are used for similar benefits exhibited 

by different endosymbionts. This would also uncover whether the traits have 

common evolutionary origins or have evolved independently, either using closely 

related genes in the same manner or developing unrelated genes to produce the same 

trait as forms of convergent evolution. The genome of R. insecticola, for example, 

has now been sequenced (Degnan et al., 2010). It was concluded that the common 

ancestor of this symbiont and its sister species, H. defensa, had evolved the 
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symbiotic lifestyle before these species diverged. This may suggest that genes 

involved in host defence may be homologous, although this is yet to be confirmed. 

Moreover, R. insecticola provides defence against a wide variety of parasites and 

parasitoids (Vorburger et al., 2010, Vorburger et al., 2009, Łukasik et al., 2013), but 

whether defence requires a single broad range immunity gene set or multiple gene 

sets specialised against specific enemies is still not yet known. As well as being of 

fundamental interest, a greater understanding of how and where these defences 

function may also assist more efficient biological control of pest species with 

parasites and parasitoids.  

 

 Rickettsia 1.8.4

Rickettsia species, a member of the α-subdivision of the proteobacteria and 

previously named PAR (Pea Aphid Rickettsia) when in aphids, have expanded to 

pathogenically infect a wide diversity of animals through either vertical or horizontal 

transmission (Weinert et al., 2009, Caspi-Fluger et al., 2012). Rickettsia can have 

negative effects on A. pisum host fitness and suppress B. aphidicola (Sakurai et al., 

2005). However, this endosymbiont still maintains a worldwide distribution in its 

hosts, and its prevalence may be due to effective horizontal/vertical transmission, or 

because of a not-yet understood advantage posed under certain situations (Sakurai et 

al., 2005). For example, they have been found to increase heat tolerance, parasitoid 

resistance and viral tolerance and resistance to insecticides in whiteflies (Brumin et 

al., 2011, HuiPeng and YouJun, 2012, Kontsedalov et al., 2008, Kliot et al., 2014). 

Rickettsia can also function as a reproductive manipulator, inducing parthenogenesis 
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in parasitoid wasps and male-killing in lady beetles (Lawson et al., 2001, von der 

Schulenburg et al., 2001, Giorgini et al., 2010), most likely because it is transmitted 

maternally and is being selected to maximise its own transmission at the expense of 

its hosts’ fecundity. Although many parasites do have a high prevalence, so this 

feature is not unusual in itself, understanding how this apparently parasitic 

endosymbiont has remained so common in the host population may have potential 

value in the application of symbiont-host relationship manipulation for pest control.  

 

 Wolbachia 1.8.5

Wolbachia is a facultative endosymbiont of the α-proteobacteria which is vertically 

maternally transmitted and tends to reside in the hosts’ reproductive organs where it 

influences reproduction, although it can also be found across the body where it is 

involved in non-sexual traits, including in the salivary glands, gut, fat bodies, 

Malpighian tubules, haemocytes, brain, muscle and retina (Saridaki and Bourtzis, 

2010). A meta-analysis predicted that around 66% of all insect species are infected 

by Wolbachia (Hilgenboecker et al., 2008), with a more recent independent study 

estimating it to be at a similar 61.9% (de Oliveira et al., 2015) and a maximum-

likelihood approach estimated the incidence in terrestrial arthropods to be 52% 

(Weinert et al., 2015). One of these studies also pointed out that the prevalence of 

Wolbachia can vary within a species, and that it tends to either be near fixation 

(greater than 90% of individuals infected) or very rare (less than 10% of individuals 

infected) (Hilgenboecker et al., 2008). Typical sexual consequences of infection can 

include cytoplasmic incompatibility, where an infected male is only able to produce 
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viable offspring when mated with an infected female, parthenogenesis, genetic male 

feminisation and male progeny-killing; the latter three can skew population sex 

ratios towards females (Fialho and Stevens, 2000, Weeks and Breeuwer, 2001, Negri 

et al., 2006, Watanabe et al., 2010, Hu and Li, 2015).  

Wolbachia has been of great interest for evolutionary and ecological research and 

pest management. Endosymbionts can persist in a host population either by 

providing fitness benefits to the host, or through parasitic adaptations that maximise 

symbiont production at the expense of the host population. This has been 

demonstrated in Rickettsia bellii, an endosymbiont which swept from rarity to near-

fixation in B. tabaci populations across Arizona within 6 years due to fitness benefits 

and a female biased sex ratio in offspring (Himler et al., 2011). Likewise, Wolbachia 

has become possibly the most prevalent endosymbiont in the Insecta (Hilgenboecker 

et al., 2008). It has been identified across the Hempitera, for example, in the aphids 

A. pisum, Cinara cedri and Sitobion miscanthi, Cixiidae planthoppers, the 

Triatomine insect Rhodnius pallescens, predatory bug Macrolophus pygmaeus, 

Drosicha giant scale insects, the catkin bug Kleidocerys resedae and small brown 

planthopper Laodelphax striatellus to name a few (Matsuura et al., 2009, Gomez-

Valero et al., 2004, Kikuchi and Fukatsu, 2003, Bressan et al., 2009, Espino et al., 

2009, Machtelinckx et al., 2009, Küchler et al., 2010, Zhang et al., 2010, Wang et 

al., 2009b, Gauthier et al., 2015). Wolbachia has not yet been found in P. citri 

(Jeyaprakash and Hoy, 2000, Zchori-Fein and Perlman, 2004), but these searches 

have been quite limited and Wolbachia have been found in closely related species. 

For example, two studies each concluded that Wolbachia does not reside in P. citri 
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after screening a total of just five individual insects (Jeyaprakash and Hoy, 2000, 

Zchori-Fein and Perlman, 2004). Whether or not Wolbachia occurs naturally in these 

species, the possibility of exploring transinfection as a way to benefit from 

Wolbachia-based pest control remains. Attempts to induce parthenogenesis in P. 

citri have not been successful (Borges da Silva et al., 2010), although it has been 

reported in laboratory populations of the related Phenacoccus solenopsis (Vennila et 

al., 2010). It would be interesting to test whether Wolbachia is influential in 

mealybug reproductive biology. 

Wolbachia is mostly transmitted maternally, and so has evolved to skew the sex 

ratios of its hosts’ progeny towards females to increase its abundance. This can be 

achieved either by killing male progeny (for example, as found in black flour beetles 

Tribolium madens (Fialho and Stevens, 2000)), inducing parthenogenesis (as found 

in the phytophagous mite Bryobia praetiosa (Weeks and Breeuwer, 2001)) or by 

feminising genetically male embryos. The latter feature has been noted in the 

leafhoppers Zyginidia pullula, where the presence of Wolbachia transforms male 

embryos into intersex functional females by interfering with genomic imprinting, 

resulting in changes in the expression of genes involved in sexual differentiation and 

development (Negri et al., 2009). These feminised males resemble and reproduce 

like females, with the exception of characteristically male small chitinous structures 

which they retain on their abdomens. If sex skew or parthenogenesis-inducing 

Wolbachia spreads into a host population, theoretically it could cause population 

reduction, and in the long term host extinction, a potential evolutionary dead end 

(Charlat et al., 2003). This is an exciting prospect for pest management, although it is 
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predicted that in these situations there will be a strong selection pressure towards 

female hosts who can produce males, possibly preventing disaster for the species. 

Cytoplasmic incompatibility can also increase the abundance of Wolbachia as it 

provides infected females with a reproductive advantage. Infected females can 

reproduce successfully with both infected and uninfected males, whereas uninfected 

females can only produce viable offspring with uninfected males, as Wolbachia 

modifies the males’ sperm (Clark et al., 2003). When the modified sperm enters the 

egg, the paternal chromosomes fail to decondense unless Wolbachia infection is 

present to rescue the sperm (Lassy and Karr, 1996). Wolbachia infection density was 

found to be correlated with cytoplasmic incompatibility in two plant hopper species 

Laodelphax striatellus and Sogatella furcifera (Noda et al., 2001) and the predatory 

bug Macrolophus pygmaeus (Machtelinckx et al., 2009). Finally, transinfection of 

Wolbachia from L. striatellus into the brown planthopper Nilaparvata lugens was 

found to induce cytoplasmic incompatibility (Kawai et al., 2009), establishing a solid 

link between Wolbachia and this trait. By manipulating its hosts’ reproductive 

system, Wolbachia has evolved into a successful parasite. 

Phylogenetic studies have indicated that Wolbachia may have used bacteriophages to 

undergo intracellular recombination with co-inhabiting Wolbachia cells within the 

same host (Bordenstein and Wernegreen, 2004, Jiggins et al., 2001, Malloch and 

Fenton, 2005). This provides Wolbachia with an evolutionary advantage over 

endosymbionts which do not show signs of recombination, as it could potentially 

counteract Muller’s Ratchet and retain a more viable genome. Although principally 

transmitted maternally, horizontal transfer of Wolbachia cells must occur in order to 
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invade new species of hosts, and indeed as already mentioned, this has been 

achieved artificially in the lab. Studies of the Wolbachia communities within B. 

tabaci, the planthopper Nisia nervosa, the flea beetle Phyllotreta sp. and the 

fleahopper Halticus minutus feeding upon the same pumpkin found evidence for 

horizontal transfer of the endosymbiont via the plant (Sintupachee et al., 2006), 

suggesting a mechanism by which horizontal transfer may occur in the wild. 

 

 Spiroplasma and Phytoplasma 1.8.6

Spiroplasma and Phytoplasma are small genome-endowed members of the 

Mollicutes class of Eubacteria, related to the gram-positive bacteria (Weisburg et al., 

1989). They include phytopathogens and occupy the sieve tube elements of plant 

hosts, vectored by Cicadellidae (leafhoppers), Fulgoridae (planthoppers) and, in 

some cases, Psyllidae (psyllids). Phytoplasma alone are causative of diseases across 

over 1,000 plant species in 98 families (McCoy et al., 1989, Gasparich, 2010)). The 

average lifecycle of the endosymbiont takes around 15-20 days. From the plant host, 

they invade the insect vector through ingestion where they multiply in the midgut to 

over 10
6
 individuals and then spread into the haemolymph and organs, including the 

salivary glands, where they are re-injected into the plant. In these situations, the 

endosymbiont detrimentally impacts on the insect vector, reducing longevity by up 

to two days (Garnier et al., 2001).  

Spiroplasma is a diverse and highly speciose group of actively motile and helical 

symbiotic bacteria and plant pathogens. They can be associated both extracellularly 

and intracellularly with a number of insect orders, including the Coleoptera, Diptera, 
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Hemiptera, Hymenoptera, Lepidoptera and Odonata, where they tend to occupy the 

epithelial cells of the gut lumen, but can also invade the haemolymph, ovaries, 

salivary glands, fat bodies and hypodermis (Gasparich, 2002, Regassa and 

Gasparich, 2006). Spiroplasma have also been associated with ticks and crustaceans 

(Taroura et al., 2005, Wang et al., 2005). They can be both horizontally and 

vertically transmitted, with transmission between plants and insects being mediated 

by the penetrating feeding mechanisms of sucking insects (Clark, 1982, Regassa and 

Gasparich, 2005).  

Their impacts on hosts are varied, tending to be commensal, but with some cases of 

mutualism and parasitism (Ammar et al., 2011, Gasparich, 2002, Clark, 1977). For 

example, Spiroplasma has been found to induce a male-killing phenotype in A. 

pisum, fruit flies, butterflies, planthoppers and ladybeetles (Simon et al., 2011, 

Montenegro et al., 2005, Kageyama et al., 2007, Jiggins et al., 2000, Oliver et al., 

2010). They can lead to reduced fitness in pea aphids (Fukatsu et al., 2001, 

Montenegro et al., 2005) but may be also correlated with increased resistance to the 

parasitoid A. ervi (Nyabuga et al., 2010). Spiroplasma kunkelii was found to increase 

the ability of the leafhopper, Dalbulus maidis, to survive cold temperatures (Ebbert 

and Nault, 1994). The shift in Spiroplasma from commensalism to parasitism tends 

to occur when Spiroplasma occupies host organs other than the gut lumen, such as in 

the case of bees (Regassa and Gasparich, 2006, Clark, 1977). Likewise, Spiroplasma 

is generally commensal when located on plant surfaces, but becomes pathogenic 

upon infection of internal plant tissues (Regassa and Gasparich, 2006). 
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 Other facultative endosymbionts in Hemiptera 1.8.7

Facultative endosymbionts have been far less intensely studied in other members of 

the sap-feeding Hemiptera; however the more gradually emerging pictures appear to 

indicate that such relationships are common. They occur in planthoppers, 

leafhoppers, other whiteflies and giant scale insects (Crotti et al., 2009, Skaljac et al., 

2010, Tang et al., 2010), although most of their functions are yet to be understood. 

Small pieces of information are being extracted; for example, the sweet potato 

whitefly Bemisia tabaci, one of the more studied members, also harbours Rickettsia, 

H. defensa, Arsenophonus, Cardinium and Fritschea, which correlate with biotype 

(Gottlieb et al., 2006, Chiel et al., 2007, Ahmed et al., 2010). This assortment also 

includes Wolbachia, a highly significant bacterium which is also the most prevalent 

facultative endosymbiont across all insect taxa. 

 

1.9 The potential application of endosymbionts in microbial resource 

management  

As more is understood about the ecology of agricultural pests and their 

endosymbionts, so potential chinks in their armour are exposed. These 

vulnerabilities can then be targeted by crop growers. By disrupting mutualistic 

relationships, or utilising new or existing parasitic relationships, a technique termed 

“Microbial Resource Management”, research in this field holds great potential for 

effective and sustainable integrated pest management, and may prove to be 

revolutionary (Verstraete et al., 2007, Read, 2011, Douglas, 2007b).  
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Wolbachia, in particular, holds great potential for pest management and human 

disease eradication, and there are exciting discussions as to how this can be achieved 

(Brownstein et al., 2003, Zabalou et al., 2004, Cook and McGraw, 2010, Hancock et 

al., 2011). Models have predicted that the release of Wolbachia-infected male 

individuals that are either sterile or cytoplasmically incompatible could artificially 

reduce wild host populations (coined as the Cytoplasmic Incompatibility 

Management (CIM) strategy) (Dobson et al., 2002). It has been found that a 

shortened lifespan, cytoplasmic incompatibility and a reduced viral transmission 

efficacy can be induced in Aedes aegypti mosquitoes which serve as the vector for 

viral dengue fever, by transinfecting them with avirulent wMel strains of Wolbachia 

(Walker et al., 2011). When released into wild populations, they will compete with 

uninfected wild-type males for matings with females and lead to a temporary 

reduction in offspring production during their lifetimes. Regular releases could serve 

as a novel form of long term pest management, with a reduced requirement for 

insecticides which necessitate management against the evolution of resistance (Elzen 

and Hardee, 2003, Atyame et al., 2015, Ferguson et al., 2015, Zhang et al., 2015, 

Ndii et al., 2015). Indeed, the CIM strategy is now being implemented in the field by 

Oxitec, although it is achieved by genetically engineering the mosquitoes rather than 

infecting them with Wolbachia (Lacroix et al., 2012). 

If similar features such as reduced longevity, cytoplasmic incompatibility and sex 

ratio distortion can be induced in sap-feeding Hemiptera pests, then it may contribute 

to sustainable agricultural and horticultural pest management. Although Wolbachia 

has not been yet observed in P. citri or A. pisum, it has been located in species of the 
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same families for both these pests (Jeyaprakash and Hoy, 2000, Zchori-Fein and 

Perlman, 2004). As mentioned previously, cytoplasmic incompatibility was induced 

in the brown plant hopper N. lugens following successful transinfection from another 

plant hopper species L. striatellus (Kawai et al., 2009). If transinfection can be found 

to induce cytoplasmic incompatibility in P. citri or A. pisum, then the possibility of 

releasing infected males amongst crops as a form of CIM could be explored. The 

greatest threat against this strategy would be strong selection preference for any 

Wolbachia-infected females, which could lead to an increase in their prevalence and 

thus render the CIM method useless, or for mechanisms that overcome cytoplasmic 

incompatibility to develop. These risks should be evaluated and monitored 

accordingly. If research yields other parasitic bacteria of Hemiptera, then, depending 

upon their properties, they may also serve as potential biocontrol agents. 

Non-Wolbachia based strategies may be a more viable option for growers with a 

rapid turnover of stock. Following my own discussions with greenhouse horticultural 

growers in Belgium, it is clear that the speed of pest control is essential. Pest 

populations are often introduced through new stock that has not been thoroughly 

inspected, a time-consuming process that may easily miss small or obscured insects. 

Infestations can spread rapidly across densely stored produce and individual plants 

may only be present for a relatively short period of time before being sold or 

transferred. Although offspring sex ratio-distorting strains of Wolbachia can serve as 

a long term strategy, it takes at least one generation of the pest insect to have passed 

before this bacterium’s impact is actualised, by which point the infested plant may be 

worthless for retail or have spread its burden to surrounding stock. Furthermore, 
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storing Wolbachia-infected males may not be practical when pest populations come 

and go with moving stock. Targeting and disrupting obligate mutualistic symbioses, 

perhaps directly through antibiotic spraying (modelling could clarify whether the 

evolution of resistance would pose a considerable risk in this scenario) or indirectly 

via specific bacteriophages, may have a more immediate impact. Hosts without their 

obligate nutritional symbionts should rapidly struggle to survive. Facultative bacteria 

that provide resistance against parasitoids and pathogens, such as H. defensa, could 

also be aggressively targeted to reduce their efficacy, before or whilst applying the 

parasitoid/pathogen insect control.   

Understanding the microbiota of pest insects in a given area may also offer indirect 

benefits to growers. For example, if H. defensa, alongside the APSE bacteriophage, 

is detected at moderate or high levels within pest aphids in a given field or 

greenhouse, the grower could be advised that parasitoid-based control would 

experience reduced efficacy. The grower could then focus their resources on 

implementing an alternative strategy that would not be hampered by the presence of 

H. defensa. As the world’s population has recently surpassed 7 billion (Lutz and 

Samir, 2010), agricultural and horticultural growers are under ever-increasing stress 

to produce greater yields, whilst simultaneously being expected to improve methods 

to use fewer resources and pesticides. The green revolution solution to this crisis is 

unlikely to be found in a single silver bullet strategy, but will be created from a 

combination of approaches developed with expertise across multiple disciplines of 

science working together. Targeting pest endosymbiosis and manipulating their 
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relationships for their control may form a significant part of the future of food 

supply. 

 

1.10 Aims 

Bacterial endosymbiosis is a fascinating and fundamental evolutionary process, and 

is an essential component of insect adaptation and ecology. Citrus mealybugs present 

an intriguing and potentially highly informative model system, with a twist. They 

harbour a nutritional obligate symbiont, which itself contains a second symbiont. 

Rarely in animals have three genetically distinct organisms been so intimately 

associated. This raises questions in symbiosis evolution, such as whether two 

symbionts can be regulated independently within a host when one inhabits the other. 

Citrus mealybugs are also stubborn pests of horticulture, which are difficult to 

control. Pesticides are the most commonly applied control strategy, but these tools 

are becoming increasingly restricted and regulated in the EU and globally. 

Understanding the relationship and dynamics between mealybugs and their 

symbionts could help to comprehend symbiotic systems better and potentially pave 

the way for symbiont-based pest control strategies. These questions can be 

approached by investigating the variation in the density/infection intensity of each 

symbiont in citrus mealybugs, whether the symbionts are under independent 

regulatory mechanisms and how symbiont density impacts host fitness. 

In my second chapter, I explore natural variation in the density of T. princeps and M. 

endobia in laboratory-reared citrus mealybug strains and whether this variation 

impacts life history. In my third chapter, I take this approach to a greenhouse setting, 
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where I investigate whether symbiont density impacts the hosts’ ability to exploit 

different food sources and resist pesticide application. In my fourth chapter, I use 

heat stress to artificially reduce symbiont density in mealybugs and observe how 

their fitness is impacted. In my fifth chapter, I hybridise mealybug strains in order to 

investigate the heritability of symbiont density and separate the controlling 

mechanisms behind each symbiont. In my sixth chapter, I explore the facultative 

symbionts of citrus and long-tailed mealybugs, using Next Generation Sequencing. 

In my final chapter, I collate my findings and discuss as a whole their implications 

for the evolutionary ecology of endosymbionts, and microbe-based pest 

management. 
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 “The entire universe has been neatly divided into things to (a) mate with, (b) eat, (c) 

run away from, and (d) rocks.”  

― Terry Pratchett 
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2 The More, the Merrier? Population Variance 

in Symbiont Density Holds No Clear Fitness 

Benefits in an Obligate Host-Mutualist 

System 

 

2.1 Abstract 

Symbiotic bacteria are highly diverse, play an important role in ecology and 

evolution, and are also of applied relevance because many pest insects rely on them 

for their success. However, the dynamics and regulation of symbiotic bacteria within 

hosts is complex and still poorly understood outside of a few model systems. One of 

the most intriguing symbiotic relationships is the obligate, tripartite nutritional 

mutualism in sap-feeding, economically-destructive mealybugs (Hemiptera: 

Sternorrhyncha: Pseudococcidae), which involves γ-proteobacteria hosted within β-

proteobacteria hosted within the mealybugs. Here, it is examined whether there is 

population variation in symbiont density (i.e. infection intensity, or titre) in the citrus 

mealybug, Planococcus citri (Risso), and how this impacts host life-history. 

Symbiont density is found to differ significantly between populations when reared 

under controlled environmental conditions, indicating that the density of symbiont 

infections is influenced by host or symbiont genotype. However, symbiont density 

changes in populations over multiple generations, indicating that symbiont densities 

are dynamic. Surprisingly, given that the symbionts are essential nutritional 

mutualists, the density of the symbionts does not correlate significantly with either 

host fecundity or development. Higher levels of symbionts had no clear benefit to 

hosts and therefore appear to be superfluous, at least under constant, optimised 
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environmental conditions. Excessive symbiont density may be an evolutionary 

artefact from a period of inefficient vertical transmission when the balance of 

conflict between host and symbiont was still being established. 
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2.2 Introduction 

Symbiotic bacteria are now understood to be highly diverse and influential players in 

eukaryotic ecology and evolution (Saffo, 1992, Moran, 2001, Douglas, 2009). They 

are fundamental to many aspects of life, having given rise to mitochondria and 

chloroplasts, as well as numerous other pivotal evolutionary steps, such as nitrogen-

fixation and bioluminescence (Yasaki, 1928, Peix et al., 2015, Giobel, 1926, 

Schwartz and Dayhoff, 1978). The impacts that symbionts have on their hosts can 

range from mutualistic, to commensal, to parasitic. However, rather than residing in 

strict categories, the relationships between hosts and symbionts exist on a dynamic 

spectrum, and may often be context-specific (Swain, 2012, Gerardo, 2015).  

Each member in a symbiotic relationship will ultimately evolve to maximise its own 

fitness rather than that of its partner, so conflict between host and symbiont may 

often occur, even in mutualistic associations (Bennett and Moran, 2015). The 

maintenance of beneficial symbionts will still incur some cost to the host, and the 

host should reduce symbiont density (i.e. infection intensity) when it is in excess, 

whereas the symbiont should seek to optimise its density to maximise the likelihood 

of its own transmission to new hosts (Bronstein, 2001, Falkowski et al., 1993, Rio et 

al., 2006, Wilkinson et al., 2007, Cunning and Baker, 2014, Laughton et al., 2014). 

Symbionts may also increase their virulence to compete with other strains and 

species of symbionts that they encounter (Smith, 2007, Birky et al., 1983, Frank, 

1996b, Funk et al., 2000). For example, superinfection of two facultative, mutualistic 

symbionts was found to impose substantial fecundity costs in pea aphids, 

Acyrthosiphon pisum, likely due to the increased bacteria load or interactions 
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between the bacteria (Oliver et al., 2006). Efficient vertical transmission of 

beneficial symbionts to host offspring may resolve this conflict for both partners and 

also reduces the chance of within-host competition between different strains of 

symbionts (Frank, 1996b). 

Facultative changes in symbiont density, according to the sex and life stage of the 

host have been documented in many insects. For example, infection density of a 

nutritional symbiont increases in the cereal weevil Sitophilus during larval 

development, the period in which the symbiont is most required, and then decreases 

afterwards when high symbiont levels no longer hold a benefit to the host (Vigneron 

et al., 2014). Similarly, the infection density of the obligate, nutritional, Buchnera 

symbiont in pea aphids tends to decrease with host age, while those of the 

intracellular symbiont Wolbachia are lower in male Aedes mosquitos compared to 

females (Lu et al., 2014, Tortosa et al., 2010). Host genetics may also play a role, 

with Wolbachia infection intensity in adzuki bean beetles Callosobruchus chinensis 

varying depending on host genotype, being linked to host genes conveying 

insecticide resistance in the mosquito Culex pipiens, and influencing the cost to the 

host of infection (Kondo et al., 2005, Duron et al., 2006, Berticat et al., 2002). 

Similar results  have been found in whiteflies, Bemisia tabaci, and their facultative 

symbionts (Ghanim and Kontsedalov, 2009). 

One of the most intriguing examples of symbiosis is found in the mealybugs 

(Hemiptera: Sternorrhyncha: Pseudococcidae). They harbour a remarkable, nested 

symbiont set-up believed to be unique to the Pseudococcidae (Thao et al., 2002, 

Baumann et al., 2002). Most mealybugs harbour two maternally-transmitted, 
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obligate, nutritional, bacterial endosymbionts in bacteriocytes, which comprise their 

bacteriome organ surrounding the gut. These are Candidatus Tremblaya princeps, a 

β-proteobacterium, and Candidatus Moranella endobia, a γ-proteobacterium which 

resides inside T. princeps in a Russian doll-like fashion (Thao et al., 2002). It is the 

only example known to science of one bacterium residing inside another bacterium 

(Von Dohlen et al., 2001, Keeling, 2011).  

The mealybugs Planococcus kraunhiae and Pseudococcus comstocki show changes 

in the density of both T. princeps and M. endobia, depending on host sex and life 

stage. The symbionts increase in infection intensity up until adulthood, and then 

become reduced in virgin females beyond reproductive age and lost in males 

completely post-pupation, probably because adult males do not feed and so break 

down the symbionts for energy (Kono et al., 2008). 

Although the obligate nature of the two mutualistic symbionts in mealybugs means 

that they are probably key to host survival and fitness, there has been little 

investigation of whether the infection density of symbionts varies across mealybug 

species, populations or genotypes, or whether any variation in infection intensity 

affects host fitness. In this study it is therefore examined whether there is population 

variation in symbiont densities (i.e. infection intensities) in adult and juvenile citrus 

mealybug, Planococcus citri (Risso), females. It is also investigated whether 

symbiont density may affect host life history, including fecundity, development rate 

and size at adulthood.  
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2.3 Methods 

 Sourcing and rearing of mealybugs 2.3.1

Thirteen populations of citrus mealybug, P. citri, were obtained from commercial 

greenhouses in Belgium (see Table 1 for full list of locations, original host plants, 

population abbreviations and which populations were included in each experiment) 

and maintained for six months under standardised laboratory conditions on white 

organic potato sprouts at 25°C and 50% relative humidity in constant darkness. 

 

 Population differences in obligate symbiont infection intensity 2.3.2

To determine the intensities of M. endobia and T. princeps infections, quantitative 

PCR with symbiont-specific primers and protocols were used (see below; (Parkinson 

et al., 2014)) Newly eclosed adult females from 13 populations (20 individuals from 

each) and 2
nd

 instar female juveniles from 12 of the populations (20 individuals from 

each) were randomly selected. Eight and 11 months after these samples were 

collected, additional sets of newly eclosed adult females were randomly selected 

from ten of the same populations (20 individuals from each) to examine whether 

symbiont densities were consistent over time.  DNA was extracted by crushing 

individual mealybugs in 100µl of 5% Chelex and heating to 99°C for 15 min, before 

centrifuging the extract at 2,326 g for 20 min. The DNA supernatant was diluted to 

1/10 in molecular grade water for use in qPCR reactions. Mean concentrations per 

mealybug of T. princeps and M. endobia were compared against the P. citri host 

control gene for three technical replicates using the comparative CT method to 

produce relative ∆CT values (Crotti et al., 2012) in a StepOnePlus
TM

 Real-Time PCR 
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System. Primers and probes for P. citri and T. princeps were designed using the 

software PRIMER3 (Whitehead Institute for Biomedical Research, Cambridge, MA, 

USA) and analysed using the software NetPrimer (Primer Biosoft International, Palo 

Alto, CA, USA). Primers and probes for M. endobia were designed using the 

software Primer Express v.3.0 (Life Technologies, Foster City, CA, USA). The 

GroEL (AF476091) gene of T. princeps was amplified using the primers TprincepsF 

5’-TCCAAGGCTAAATACCCACA-3’ and TprincepsR 5’-

ATACAAAAGGTACGCCGTCA-3’ and the 6FAM florescent probe TprincepsP 5’-

CGCGCATACGAACAGTCGGA-3’. The 16S and 23S rDNA (AF476107.1) region 

of M. endobia was targeted using the primers MendobiaF 5’-

GAGCACCTGTTTTGCAAGCA-3’, MendobiaR 5’-

CCCCTAGAGTTGTGGAGCTAAGC-3’ and the 6FAM florescent probe 

MendobiaP 5’-AGTCAGCGGTTCGATC-3’. The host control gene 28S rDNA 

(AY179451.1) was amplified using the primers PcitriF 5’-

TCCGAGGAGACGTGTAAAAGTTC-3’, PcitriR 5’-CCTAGCCGCCGAAACGA-

3’ and the 6FAM florescent probe PcitriP 5’-ACGGCGCGTGTCGA-3’. Volumes 

of 10 μl were used for qPCR reactions with reagent final concentrations of 150 nM 

of each primer, 50 nM of probe, and 1× of ABI Taqman Universal Master Mix II 

with UNG (Life Technologies, Foster City, CA, USA). The cycle was 50°C for 

2 min, 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and the annealing 

temperature (collection step) for 1 min. An annealing temperature of 60°C was used 

for Tremblaya princeps reactions and 64°C for P. citri and Moranella endobia 

reactions. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=AF476091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=AF476107.1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=AY179451.1
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 Population differences in life history traits 2.3.3

1) To determine if the fecundity of females differed between the populations, new 

adult females from all 13 populations (between 10 and 25 individuals per 

population) were placed with two males from the same population for 48 h to ensure 

mating. Females were then placed on individual potatoes for ten days, and the total 

number of eggs laid by each female during this time was counted.  

2) To determine if the development rate of mealybugs differed between the 

populations, eggs were collected < 24 h after being laid by 3-4 females from all 13 

populations (~150 eggs per population) using a fine paintbrush and transferred to a 

separate potato for observation. Emerging offspring were observed each day under a 

dissecting microscope. When an individual reached the adult instar (either as male or 

female), it was removed from the group and the day recorded (hatching day being 

designated as day 0). The number of days taken for surviving offspring to reach 

adulthood were analysed separately by sex.  

3) Finally, to determine whether mealybugs differed in size between populations, the 

dorsal surface of new adult females from 11 of the populations (between 15 and 30 

individuals per population; see Table 1 for which populations) were photographed 

under a dissecting microscope with a 1mm graticule. The dorsal surface area of each 

mealybug was then measured, using ImageJ software (Rasband, 2014). 
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 Statistical analysis 2.3.4

qPCR data was processed using the comparative CT method (Crotti et al., 2012). The 

CT data were analysed for T. princeps and M. endobia separately using a generalized 

linear model with a Gamma distribution and log-link function and the likelihood 

ratio χ
2
 statistic. This was to determine whether the 13 mealybug populations 

differed in symbiont density in adults at six months, and whether for ten of these 

populations, the density changed after eight and 11 months (with month and the 

interaction between month and population included in the model). We also 

determined whether symbiont density differed between 12 of the populations in 

juveniles at 6 months. The Spearman Rank Order Correlation was used to determine 

whether the symbiont densities in adults and juveniles were correlated across 

populations.  

The number of eggs laid by females (fecundity) and the number of days taken to 

reach adult instar (development rate), were compared between populations using 

generalized linear models with a Poisson distribution and loglinear link function. 

The fecundity data were overdispersed, which was corrected by incorporating a scale 

weight variable of 0.02. The dorsal surface area of females (size) was analysed using 

general linear models with a gamma distribution with a log-link function and the 

Likelihood ratio χ
2
 statistic.  

The mean infection density of each symbiont in adult or juvenile females from each 

population after six months of lab rearing were correlated against the fecundity, 

development rate and size of mealybugs in that population using Spearman’s 

correlations. All analyses were conducted in SPSS v.22 (Inc., 2013).  
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2.4 Results 

 Population differences in obligate symbiont infection intensity 2.4.1

The densities of T. princeps and M. endobia were found to differ significantly 

between the adult females of the 13 populations in the initial samples taken after six 

months under standard environmental conditions (χ
2
 = 146.5, d.f. = 12, P < 0.001; χ

2
 

= 151.1, d.f. = 12, P < 0.001, respectively), with populations differing by as much as 

six-fold for both symbionts (Figure 2.1). Symbiont densities also differed 

significantly between 2
nd 

instar juveniles of 12 of the populations, with populations 

differing by as much as 45- fold and 30-fold for T. princeps and M. endobia 

respectively (χ
2
 = 58.1, d.f. = 11, P < 0.001; χ

2
 = 296.1, d.f. = 11, P < 0.001, 

respectively). Symbiont density was also influenced by time, and the impact of this 

varied between populations (population*time interaction for M. endobia, χ
2
 = 351.2, 

d.f. = 18, P <0.001, and for T. princeps χ
2
 = 236.6, d.f. = 18, P <0.001) (Figure 2.2). 

However, neither the mean densities of M. endobia nor T. princeps correlated 

between adults and 2
nd

 instars across populations (rs = -0.231, P = 0.471; rs = 0.014, P 

= 0.966, respectively).  

 

 Population differences in life history traits 2.4.2

The fecundity, development rate and size of mealybugs all differed significantly 

between populations (fecundity: χ
2
 = 44.8, df = 12, P < 0.001; development rate: χ

2
 = 

96.0, df = 12, P < 0.001 for females and χ
2
 = 105.7 df = 12, P < 0.001 for males; 

size: χ
2
 = 29.5, d.f. = 10, P < 0.001). Fecundity varied between populations by up to 
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2.5-fold, development rate by up to 25% and 30% in females and males respectively 

and adult female size by up to 31% (Figure 2.3). 

 

 Relationship between life-history and symbiont density  2.4.3

There was no evidence of relationships between the densities of either symbiont and 

any of the host life-history traits measured (Supplementary Fig. S2.1). The mean 

densities of M. endobia and T. princeps in adults did not correlate across populations 

with the mean fecundity of females (rs = 0.313, P = 0.297; rs = 0.363, P = 0.224, 

respectively), the mean development rate for females or males (rs = 0.049, P = 0.181 

and rs = -0.04, P = 0.276 for females; rs = 0.027, P = 0.555 and rs = -0.045, P = 0.284 

for males, respectively), or the mean size of adult females (rs = 0.071, P = 0.219, rs = 

-0.501, P = 0.116, respectively). The mean densities of M. endobia and T. princeps 

in 2
nd

 instar juveniles also did not correlate across populations with the mean 

fecundity of females (rs = -0.178, P = 0.580, rs = -0.16, P = 0.961, respectively), the 

mean development rate for females and males (rs = 0.03, P = 0.926 and rs = -0.395, P 

= 0.204 for females;  rs = 0.38, P = 0.223, rs = -0.25, P = 0.938 for males, 

respectively), or the mean size of adult females (rs = -0.101, P = 0.796, rs = -0.43 P = 

0.248, respectively). 

 

2.5 Discussion  

The results show that citrus mealybug populations reared under controlled 

environmental conditions differ substantially in multiple life-history traits and also in 

the densities of infections with their obligate mutualistic symbionts, both for adult 
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females and 2
nd

 instar juveniles. However, symbiont infection density does not 

correlate significantly with any of the life-history traits measured, or between adults 

and juveniles, and was dynamic, changing in population-specific ways over an 8-11 

month period.  

The fact that the population differences are present when the mealybugs are kept 

under identical environmental conditions on the same host plant for six months (1 

month is ~ 1 generation) suggests that they may be due to host or symbiont 

genotypes. However, symbiont density also significantly changes for 40% of the 

populations studied after a further 8 and 11 months in constant laboratory-rearing 

conditions, indicating that another factor may be involved, or that genetic drift has 

since occurred within the laboratory populations. This would reflect findings that the 

host genotype is associated with symbiont infection intensity in adzuki bean beetles 

and Leptopilina heterotoma parasitic wasps (Kondo et al., 2005, Mouton et al., 

2007). Hybridisation experiments between citrus mealybug populations previously 

suggested a link between host genotype and symbiont density (Parkinson et al., 

2016). The host genotype often undergoes mutations and other modifications to 

genes associated with immunity after symbiont acquisition, for example the pea 

aphids have been shown to lose genes central to the IMD immune pathway (Gerardo 

et al., 2010, The International Aphid Genomics Consortium, 2010). Changes to 

symbiont density following laboratory rearing are not unusual. For example, 

laboratory rearing for multiple generations was found to reduce the variation in 

symbiont density in Drosophila and mosquitos, whilst also resulting in genome-wide 
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selective sweeps as the host adapted to the new environment (Correa and Ballard, 

2012, Dutton and Sinkins, 2004, Montgomery et al., 2010). 

 Symbiont densities in 2
nd

 instar female juveniles are more variable within 

populations than is the case in adults. This indicates that symbiont density may be 

more sensitive to influencing factors, such as environment or epigenetics, during 

development, before reaching a common target density at adulthood. The density of 

the γ-proteobacterial symbiont in females of the P. kraunhiae and P. comstock  

mealybugs has also been found to show wider variation in 2
nd

 instars compared to 

adults, although this did not appear to be the case for the β-proteobacterial symbiont 

in these species (Kono et al., 2008). Buchnera density also shows wide variation in 

pea aphid embryos with older mothers, with the impact of maternal age still 

influencing obligate symbiont intensity at adulthood (Laughton et al., 2014). 

Influences of host life stages such as these may partially explain why mean symbiont 

infection intensity did not significantly correlate across populations between 

juveniles and adults in the citrus mealybugs in this study. 

Surprisingly, despite these symbionts being obligate nutritional mutualists, there is 

no evidence of mealybugs benefiting or suffering from variation in symbiont density. 

These results contrast with aphids, in which reductions in their obligate nutritional 

mutualist Buchnera has fitness costs for the host, and also with the theoretical 

prediction that some benefit must accrue from each symbiont cell hosted because 

accommodating even a mutualistic symbiont will incur some cost to the host, 

(Bronstein, 2001, Sakurai et al., 2005, Koga et al., 2007). Heat-stress-induced 

symbiont loss in adult citrus mealybugs was also not found to impact fecundity 
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(Parkinson et al., 2014). Possibly, variation in symbiont density in these mealybugs 

is compensated for by facultatively adjusting the metabolic activity of the obligate 

symbionts, with symbionts in low numbers creating more products per symbiont and 

vice versa.  

The benefits of higher nutritional symbiont density may also be context-dependent, 

only becoming apparent under certain environmental conditions or when the host 

stressed. For example, the relative infection densities of facultative symbionts in 

whitefly Bemisia tabaci are influenced by the species of host plant on which the host 

is feeding (Pan, 2013), and the benefits of endophytic symbionts in Lolium 

multiflorum plants only become apparent when the plants are drought-stressed 

(Miranda et al., 2011). Mealybugs here are reared under standard conditions that do 

not expose them to environmental stresses, multiple host plants or the introduction of 

additional symbionts. Exposing mealybugs with different symbiont infection 

densities to these more stressful conditions could reveal their costs or benefits. 

There is little evidence for horizontal transmission of T. princeps or M. endobia 

since the inception of their symbiosis and their vertical transmission is efficient 

(Baumann, 2005). Efficient vertical transmission tends to result in homogenous 

symbionts of low virulence as the selection pressure for horizontal transmission is 

relaxed (Smith, 2007, Birky et al., 1983, Funk et al., 2000, Frank, 1996b), and so 

high infection densities of T. princeps and M. endobia would not hold an obvious 

benefit to these symbionts in terms of increased transmission rate or more efficient 

transmission. However, it is possible that the higher symbiont infection intensities 

observed in some citrus mealybug populations may be an evolutionary relic from a 
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period where high intensity carried some transmission advantage or may have 

evolved to outcompete other facultative symbionts. As increased symbiont infection 

intensity appears to hold no clear fitness costs to the host, this virulence would then 

not necessarily be removed by selection. 

The overall fitness of the holobiont should in theory require optimum regulation of 

the symbionts (Koga et al., 2003, Hoogenboom et al., 2010). Here, we have found 

that mealybug populations differ in the infection densities of their obligate 

symbionts, that this density can change dynamically even under standard 

environmental conditions, but that under standard conditions there is no clear fitness 

benefits to carrying more or fewer symbionts. The causes and consequences of high 

or low symbiont density therefore need to be investigated further to better understand 

the relationship between hosts and their symbionts. Not only will this be informative 

from an evolutionary ecology perspective, but also in terms of the potential 

application of microbial resource management to sustainable pest control. 
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2.6 Tables 

 Table 2.1.  2.6.1

List of the 13 populations of citrus mealybugs used in the study, with the location 

and host plant they were originally collected from, and whether they were used in 

each part of the study. 

   

 

Used in observation? 

Population 
Sourced 

location 

Original host 

plant 

6 

month 

qPCR 

2nd 

instar 

qPCR 

8 and 

11 

month 

qPCR 

Fecundity Developmental 

rate 

Size 

A 

Bloemisterji 

Bogaerts, 

Zoersel 

Gardenia 
species 

Yes Yes Yes Yes Yes Yes 

B 
De Meyst 
Werner 

Aeschynanthu
s species 

Yes Yes Yes Yes Yes Yes 

C Brico retailer 
Ficus 

benjamina 

Yes Yes Yes Yes Yes No 

D Floraliën 
Croton 

species 

Yes Yes Yes Yes Yes Yes 

E 
Proefcentrum 

voor Sierteelt 

Ficus 

benjamina 

Yes Yes No Yes Yes Yes 

F 
De Meyst 

Werner 

Schefflera 

species 

Yes Yes Yes Yes Yes Yes 

G Aquarella Ficus species 
Yes Yes No Yes Yes Yes 

H 
Scheppersinst

ituut 

Ficus 

benjamina 

Yes Yes Yes Yes Yes Yes 

I Aquarella 
Croton 

species 

Yes No No Yes Yes Yes 

J 
Proefcentrum 

voor Sierteelt 

Crassula 

species 

Yes Yes Yes Yes Yes Yes 

 

K 
Intratuin 

retailer 

Mandevilla 

species 

Yes Yes Yes Yes Yes Yes 

L 
Proefcentrum 

voor Sierteelt 

Maranta 

species 

Yes Yes Yes Yes Yes Yes 

M 
Thomas More 
Geel campus 

Ficus 
benjamina 

Yes Yes Yes Yes Yes No 
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2.7 Figures 

 Figure 2.1.  2.7.1

The infection densities of the M. endobia (A, C) and T. princeps (B, D) obligate 

mutualist symbionts in 12 populations of 2nd instar female citrus mealybugs (A, B), 

and 13 populations of adult females (C, D). Plots show mean infection densities 

(relative to the number of P. citri cells in each case), quartiles and 95th percentiles. 

Symbiont densities were calculated by qPCR. 

 

 

 

 

A

C

B

D
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 Figure 2.2.  2.7.2

The infection densities of symbionts in 10 populations of adult female citrus 

mealybugs: initially and 8 and 11 months later. Plots show mean infection densities 

(relative to the number of P. citri cells in each case), quartiles and 95
th

 percentiles of 

M. endobia (A) and T. princeps (B). Symbiont densities were calculated by qPCR. 
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A
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 Figure 2.3.  2.7.3

The mean, quartiles and 95th percentiles of (A) fecundity, (B) size, and development 

time of (C) females and (D) males from 12 populations of citrus mealybugs. 

Fecundity is measured as lifetime egg production of females, size as dorsal surface 

area of adult females in mm2, and development time as days from hatching to 

adulthood. 

 

 

A

C

B

D
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2.8 Supplementary information  

 Figure S.2.1  2.8.1

The relationships between the mean densities (relative to the number of host 

mealybug cells) of the M. endobia (1
st
 and 3

rd
 columns) and T. princeps (2

nd
 and 4

th
 

columns) obligate mutualist symbionts, in adult (A to H) and juvenile (I to P) 

females citrus mealybugs with the mean size (dorsal surface area), development rate 

of females, development rate of males, and fecundity of females (number of eggs 

laid across lifetime). 
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“I love fools’ experiments. I am always making them.” 

― Charles Darwin 
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3 Symbionts in excess? No effect of symbiont 

density on the ability of mealybug hosts to 

exploit plant species or tolerate insecticide 

stress    

 

3.1 Abstract 

The acquisition of obligate nutritional vertically-transmitted bacteria has been 

pivotal to the evolution and diversification of many insect taxa. Sap-feeding citrus 

mealybugs, Planococcus citri, pose a potentially powerful case study for obligate 

nutritional symbiosis, harbouring a pair of symbionts, Tremblaya princeps and 

Moranella endobia. Hosts can often vary in the densities of their symbionts and 

symbiont cells will inevitably carry some cost to the hosts, so it is hypothesised that 

a higher symbiont density will have some form of benefit to the host in order to 

outweigh this cost. Here, we examine whether populations of citrus mealybugs, with 

heritably different symbiont densities, differed in their abilities to exploit multiple 

plant species or to tolerate the stress from insecticide exposure. Plant species were 

found to significantly impact mealybug fitness, but higher symbiont densities did not 

compensate for reduced host-plant suitability and had no effect on susceptibility to 

insecticide treatment. P. citri harbour symbiont densities that do not appear to benefit 

the fitness of the host. This apparently sub-optimum symbiont density regulation in 

an otherwise intricate and tightly-knit tripartite symbiosis could be an evolutionary 

artefact of previous conflicts of interest. 
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3.2 Introduction 

Symbiotic associations between organisms from separate kingdoms have allowed the 

joint exploitation of niches (Saffo, 1992). From respiration and photosynthesis, to 

sulphur oxidisation, to bioluminescence and nitrogen-fixation, bacterial alliances 

with eukaryotes have repeatedly sparked their expansion and diversification (Giobel, 

1926, Yasaki, 1928, Schwartz and Dayhoff, 1978, Peix et al., 2015, Felbeck and 

Somero, 1982). In insects, an immensely diverse and ecologically important group of 

animals, the acquisition of a variety of specialised symbiotic bacteria with additional 

biosynthetic capacities have allowed them to gain sustenance from food sources that 

would otherwise be nutritionally-deficient (Moran, 2001, Douglas, 2009). For 

example, blood-feeding insects, such as the tsetse fly, use symbionts to acquire 

vitamins, symbionts of wood-feeding insects produce enzymes to degrade cellulose, 

and many phytophagous insects rely on bacteria to produce essential amino acids 

from plant sap (Akman et al., 2002, Wigglesworth, 1952, Tokuda and Watanabe, 

2007, Carpenter et al., 2010, Clark et al., 2010, Buchner, 1965, Douglas, 2009, 

Akman Gündüz and Douglas, 2009).  

Feeding upon plant material poses several challenges to insects. Plant tissues are 

generally nutritionally unbalanced for their requirements, and thus obligate and 

vertically-transmitted nutritional symbionts are often crucial to the survival of the 

host (Mattson Jr, 1980, Sandström and Moran, 1999, Douglas, 2009). The issue is 

complicated by the variation in chemical properties of plants across species and even 

the plant developmental stage (Wilkinson et al., 2001, Sandström and Moran, 1999, 

Karley et al., 2002, Fry et al., 2009). This variation impacts the fitness of the feeder 
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and selects for specialised digestive mechanisms which only target plant groups of a 

similar chemical composition. Thus, the symbionts of these insects have often 

experienced the preservation of essential nutrition-related genes particular to that 

host and plant type, whilst the rest of their genome becomes largely degraded and 

lost through the Muller’s Ratchet-effects, creating bacteria with reduced and highly 

specialised genomes for their task (Bennett and Moran, 2015). Hence, phytophagous 

insects can generally only feed from a narrow range of plants (Clark et al., 2010), 

often developing and mating on an individual plant, creating inbreeding. Such host 

plant specialisation via symbiosis could trigger speciation events, as observed in 

Hawaiian leafhoppers (Drès and Mallet, 2002, Via, 2001, Bennett and Moran, 2015, 

Bennett and O’Grady, 2012).  

Nutritional symbionts of different origins have adapted to meet the requirements of 

their particular host species. The Blochmannia symbiont of Camponotus ants has lost 

genes for the synthesis of arginine, possibly because this amino acid is not deficient 

in the host diet (Feldhaar et al., 2007). The weevil, Sitophilus linearis, lost its 

nutritional symbiont after a dietary shift from cereals to the more nutritious tamarind 

seed, reflecting that it was no longer required, and the ability of Megacopta spp stink 

bugs to exploit legumes is impacted by the genotype of its obligate gut bacteria 

(Delobel and Grenier, 1993, Zientz et al., 2004, Hosokawa et al., 2007). The most 

thoroughly studied example is Buchnera in the aphids. This genus of symbionts 

provides its hosts with essential amino acids that are deficient in phloem sap and is 

linked to a speciation event in these insects 200 million years ago (Moran et al., 

1993, Lai et al., 1994). Genetic studies have found that different species of aphids 
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host distinct strains of Buchnera which differ in their biosynthetic capacities, 

reflecting the dissimilar nutritional requirements of the hosts (Shigenobu et al., 2000, 

Pérez-Brocal et al., 2006, van Ham et al., 2003, Moran et al., 2008). Indeed, it is not 

unusual for herbivorous insects to have sympatrically split into distinct populations 

or strains that are adapted to particular plant hosts (Mopper and Strauss, 1998, Drès 

and Mallet, 2002).  

The genetic and epigenetic qualities of a symbiont thus impacts which plant species 

the insect can exploit, and an adaptable symbiont could potentially pose advantages 

to a host with a variable diet. However, despite its history of gene alteration to meet 

host requirements, Buchnera has a limited capability to alter gene expression over 

the lifetime of the host, being unable to adjust its biosynthesis rate to a shift in host 

diet or heat shock (Wilcox et al., 2003, Moran et al., 2003, Moran et al., 2005a, 

Wilson et al., 2006, Reymond et al., 2006). This is hypothesised to be due to its loss 

of transcriptional regulator genes, and is instead crudely compensated for by 

facultative alteration of symbiont cell quantity, as also observed in carpenter ants 

(Moran and Degnan, 2006, Bermingham et al., 2009, Stoll et al., 2009). For 

example, the density of Buchnera aphidicola was found to positively correlate with 

nitrogen quantity in the diet of its host, the pea aphid, Acyrthosiphon pisum 

(Wilkinson et al., 2007). 

The presence of both obligate and facultative symbionts can in some cases impact 

the fitness of pest insects in an anthropogenic feeding environment by providing 

pesticide degradation and detoxification capabilities. For example, Burkholderia 

provides resistance to the insecticide Fenitrothion in stinkbugs, symbiotic yeast 



 
79 

detoxify xenobiotics in cigarette beetles and fungal symbionts allow insects such as 

bark beetles, ambrosia beetles, long-horned beetles, termites, leaf-cutting ants, wood 

wasps and drug store beetles to variously metabolise or detoxify lignins, tannins, 

terpenes, esters, chlorinated hydrocarbons and other toxins (Kikuchi et al., 2012, 

Dowd, 1992, Dowd, 1989). These capabilities may be an extension of the plant 

toxin-neutralising capabilities of some microbial symbionts of herbivores 

(Domínguez-Bello, 1996, Després et al., 2007, Karban and Agrawal, 2002). 

Conversely, the presence of Candidatus Liberibacter asiaticus in Asian citrus 

psyllids increases their susceptibility to a range of insecticides (Tiwari et al., 2011). 

The mixture of symbionts present in a host is also of importance, for example, the 

resistance of whitefly biotypes to several insecticides is influenced positively and 

negatively by the presence/absence, density and combination of Arsenophonus, 

Rickettsia, Wolbachia, Hamiltonella and Portiera (Ghanim and Kontsedalov, 2009, 

Pan, 2013). 

Sap-feeding mealybugs pose a potentially powerful model system for understanding 

obligate nutritional symbiosis, harbouring a pair of nested symbionts, Tremblaya 

princeps and Moranella endobia, that work together in an entwined and 

complementary fashion in the biosynthetic pathways (Baumann et al., 2002, Husnik 

et al., 2013, Thao et al., 2002). The citrus mealybug, Planococcus citri, despite its 

name, is a highly polyphagous pest of horticulture, feeding upon dozens of plant 

species, indicating the versatility of their symbionts (Ben Dov, 2015). As is the case 

for aphids and carpenter ants, mealybug obligate symbionts are hypothesised to 

primarily control gene expression by altering symbiont density within the host (Kono 
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et al., 2008). However, a recent study found that laboratory populations of citrus 

mealybugs under identical environmental conditions differed from each other in their 

symbiont density, with this density being heritable, but there were no clear fitness 

benefits or costs associated with higher obligate symbiont density in terms of 

development, growth or fecundity (Parkinson et al. 2015; in prep).  

As symbiont density is adjusted in mealybugs as they age, it would suggest that there 

may be a fitness benefit associated with higher or lower symbiont densities in adults 

that is not apparent when the mealybugs are kept in constant and optimised 

conditions (Kono et al., 2008). Here, we test this hypothesis by rearing mealybug 

populations, known to differ in their T. princeps and M. endobia densities, on four 

different species of host plant that vary in their susceptibility to mealybug 

infestation. We then treat the infestations with Teppeki insecticide. By exposing the 

mealybug populations to suboptimal and stressful conditions, we aim to test whether 

there is a previously unseen fitness benefit to harbouring nutritional symbionts at a 

particular density. This is of interest to the field of host-symbiont dynamics and the 

factors influencing symbiont density, and also from a potential applied perspective in 

determining whether manipulating symbionts in mealybugs could serve as a pest 

control tactic. 

 

3.3 Methods 

 Sourcing and rearing of mealybugs 3.3.1

Ten citrus mealybug populations (labelled as 1 through to 10) were sourced from 

commercial greenhouses in Belgium and cultured in darkness at 25 °C and 20% r.h. 
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on white organic potato sprouts for 14 months until the start of the experiment. Adult 

females (virgin for qPCR reactions and gravid for host plant exploitation assessment) 

were randomly selected for use in experiments.   

 

 Symbiont infection density 3.3.2

The relative infection intensities of T. princeps and M. endobia were measured in 

individual newly-emerged adult virgin female mealybugs across the ten populations, 

using qPCR and the comparative CT method (Schmittgen and Livak, 2008), which 

quantifies the ratio of symbiont cells to host cells. The primers and protocols used 

were first described in (Parkinson et al., 2014). DNA was extracted from twenty 

randomly selected individuals from each population, by crushing mealybugs in 

100µL of 5% Chelex solution, heating the mixture to 99°C for 15min before 

centrifuging at 2,326 g for 20 min and pipetting off the extracted supernatant. All 

DNA supernatant was diluted to 10% in molecular grade water for use in qPCR 

reactions. Three technical replicates of each reaction were performed in a 

StepOnePlus
TM

 Real-Time PCR System to generate relative ∆CT values, which were 

processed and compared across populations. Primers and probes for host control P. 

citri (28S rDNA, AY179451.1) and symbiont T. princeps (GroEL, AF476091 gene) 

were designed using PRIMER3 software (Whitehead Institute for Biomedical 

Research, Cambridge, MA, USA) and analysed for the presence of hairpin structures 

and dimers with NetPrimer software (Primer Biosoft International, Palo Alto, CA, 

USA). Primers and probe for the symbiont M. endobia (16S and 23S 

rDNA, AF476107.1) were designed using Primer Express v.3.0 software (Life 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=AY179451.1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=AF476091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=AF476107.1
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Technologies, Foster City, CA, USA). The primers and probes are as follows: 

PcitriF 5’-TCCGAGGAGACGTGTAAAAGTTC-3’, PcitriR 5’-

CCTAGCCGCCGAAACGA-3’ and the 6FAM florescent probe PcitriP 5’-

ACGGCGCGTGTCGA-3’, TprincepsF 5’-TCCAAGGCTAAATACCCACA-3’,  

TprincepsR 5’-ATACAAAAGGTACGCCGTCA-3’ and the 6FAM florescent probe 

TprincepsP 5’-CGCGCATACGAACAGTCGGA-3’ and MendobiaF 5’-

GAGCACCTGTTTTGCAAGCA-3’, MendobiaR 5’-

CCCCTAGAGTTGTGGAGCTAAGC-3’ and the 6FAM florescent probe 

MendobiaP 5’-AGTCAGCGGTTCGATC-3’. Volumes of 10 μl were used for qPCR 

reactions with reagent final concentrations of 150 nM of each primer, 50 nM of 

probe, and 1× of ABI Taqman Universal Master Mix II with UNG (Life 

Technologies, Foster City, CA, USA). The cycle was 50°C for 2 min, 95°C for 

10 min, followed by 40 cycles of 95°C for 15 s and the annealing temperature 

(collection step) for 1 min. An annealing temperature of 64°C used for 

the P. citri and M. endobia reactions, and 60°C for T. princeps reactions. 

 

 Experiment 1: effect of symbiont density on plant exploitative ability 3.3.3

We set out to determine how successfully each of the ten mealybug populations 

could exploit different plant species. The experiment took place in a single research 

greenhouse at PCS, Ghent, maintained at 25°C at day and 20°C at night, 

commencing at the beginning of April 2015. Replicate host plant ‘islands’ were 

constructed, each containing a single potted plant of each of Phalaenopsis sp. (45 

weeks old, single stem), Aralia elegantissima (10 weeks old), Calathea roseopicta 
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(10 weeks old) and Fargesia murieliae (5 weeks old). These plants were selected 

because of their commercial value in horticulture and known variation in 

susceptibility to mealybug infestation. These plants were sourced from Microflor, 

Erwin De Baere and Denis-plants. A single gravid adult female mealybug was 

placed on each plant (one mealybug per plant and 4 plants per island, with 1 plant of 

each species on each island). The islands were composed of a plastic crate, covered 

with a layer of rag-wadding, on top of which was place an irrigated plastic tray 

within which the four potted plants were positioned. These islands were randomly 

distributed across 8 tables (one replicate island for each mealybug population per 

table, 8 replicates per population in total). The tables were flooded with water to 

prevent the spread of mealybugs from island to island. Movement of insects between 

plants on the same island was not inhibited. Plants were irrigated at regular intervals, 

depending upon soil moisture content. Two months after the experiment was 

commenced (around two P. citri generations at 25°C), the number of mealybugs 

above 2
nd

 instar were counted on each plant. 

 

 Experiment 2: effect of symbiont density on susceptibility to insecticide 3.3.4

In order to determine whether the different symbiont densities of the ten mealybug 

populations may affect their ability to tolerate the stress from exposure to an 

insecticide, half of the tables were sprayed after Experiment 1 with 10 litres/m
2
 of 

0.14g/l of Teppeki insecticide mixed with 0.5ml/l of Trend 90 adjuvant; the other 

half of the tables were untreated as controls. One month after the treatment was 

administered, the number of mealybugs above 2
nd

 instar were counted on each plant. 
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 Statistical analysis 3.3.5

The CT data of symbiont densities were converted into ∆CT values, as per the 

comparative CT method (Schmittgen and Livak, 2008), and analysed with a 

generalized linear model, with mealybug population as the factor, a Gamma 

distribution with a log-link function, and the likelihood ratio χ
2
 statistic.  

The numbers of mealybugs on the plants in Experiments 1 and 2 were analysed 

using generalized linear models with Poisson distributions and a log-link function. 

Mealybug population, plant species and, in Experiment 2, insecticide exposure was 

included as factors in the model, as well as their interactions. Data were corrected for 

over dispersion using a scale parameter and nonsignificant interaction terms were 

removed based on AIC values to obtain the minimum adequate models. Pairwise 

comparisons were performed using the Sidak correction to the Wald test. Spearman’s 

Rank-Order correlations were used to examine the relationships between symbiont 

density and number of mealybugs across the ten mealybug populations for each 

symbiont-plant species combination. All analyses were conducted in IBM SPSS 

22.0. 

 

3.4 Results  

The infection density of the M. endobia and T. princeps symbionts differed 

significantly between the ten mealybug populations (χ
2
 = 169.0, d.f. = 9, P < 0.001 

and χ
2
 = 111.2, d.f. = 9, P < 0.001, respectively). M. endobia and T. princeps 
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densities differed by up to 6.4-fold and 4.13-fold between populations, respectively, 

with Population 6 having a substantially higher density of M. endobia than the other 

populations, and Populations 4 and 6 having higher levels of T. princeps (Fig. 3.1).  

In Experiment 1, plant species was a highly significant determinant of the mealybug 

infestation intensity on a plant (χ
2
 = 530.0, d.f. = 3, P  < 0.001), but mealybug 

population was not (χ
2
 = 15.4, d.f. = 9, P = 0.081). There was no effect of the 

interaction between the mealybug population and plant species (χ
2
 = 23.7, d.f. = 27, 

P = 0.649). The most prolific mealybug infestations were on A. elegantissima, 

followed by Phalaenopsis sp., C. roseopicta and F. murieliae (Fig. 3.2). No 

significant correlations were found between the density of either of the symbionts 

and the number of mealybugs on any plant species (Fig. 3.3). 

In Experiment 2, there were no significant interactions between mealybug population 

and plant species, plant species and spray treatment, or mealybug population and 

spray treatment (χ
2
 = 29.5, d.f. = 27, P = 0.337; χ

2
 = 2.9, d.f. = 3, P = 0.413; χ

2
 = 

15.9, d.f. = 0.069, respectively). Overall, mealybug populations did not differ 

significantly in the number of mealybugs on plants (χ
2
 = 11.6, d.f. = 9, P = 0.238). 

Although the spray treatment did tend to reduce the numbers of mealybugs on plants 

slightly, this effect was not found to be significant overall (χ
2
 = 2.3, d.f. = 1, P = 

0.145). However, plant species was a highly significant determinant of the number of 

mealybugs on a plant (χ
2
 = 154.3, d.f. = 3, P < 0.001), with A. elegantissima again 

having most, and F. murieliae the least, mealybugs (Fig. 3.4). 
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3.5 Discussion 

Overall, the ten mealybug populations used in the experiment differed significantly 

in the density of each of their obligate nutritional symbionts. However, there was no 

overall difference across the mealybug populations in their ability to exploit the 

different host plant species. Nor did symbiont density affect the impact of the 

application of Teppeki on mealybug infestation levels on each plant species. 

However, mealybugs showed a clear preference for A. elegantissima and performed 

the most poorly on F. murieliae. 

It is surprising that mealybug populations with more symbionts, and hence in theory 

more nutritional resources at their disposal, did not perform better than those with 

fewer symbionts. This would imply that all of the mealybug populations harboured 

the maximum number of symbionts that could increase host fitness in these 

scenarios, and any additional symbionts were superfluous and benign, neither 

significantly benefiting nor costing the host. However, this result is supported by 

findings from a previous study which found that adult citrus mealybugs did not 

suffer reduced fecundity after their obligate symbiont density was halved using heat 

exposure (Parkinson et al., 2014). This contrasts with aphids, which suffer from 

lowered fitness if the density of their nutritional obligate symbiont, Buchnera, is 

reduced (Houk and Griffiths, 1980, Sakurai et al., 2005). 

The mealybug populations performed considerably better and grew more quickly on 

A. elegantissima than the other plant species tested, with F. murieliae proving to be 

the least suitable for citrus mealybug infestations. P. citri is a known pest of Aralia 

species, vectoring Schefflera ringspot badnavirus (Lockhart and Olszewski, 1996), 



 
87 

and caused significant wilting and discolouration in this experiment. On 

Phalaenopsis and C. roseopicta, the mealybugs had relatively low infestations after 

two months, but dramatically increased their numbers by the end of the third month. 

At this point, the mealybugs had established infestations on Phalaenopsis and C. 

roseopicta that were around half the size of the A. elegantissima infestations. 

Phalaenopsis and Calathea are also known to be susceptible to citrus mealybugs, 

however neither are listed as hosts on the ScaleNet or Invasive Species Compendium 

(CABI) databases (Booth, 2014, Ben Dov, 2015, CABI, 2015, Goodwin et al., 2000). 

We would suggest that these plant species are formally considered as hosts for P. 

citri.  

However, the mealybugs did not produce prolific infestations on F. murieliae, 

indicating that this plant species either does not meet the nutritional requirements of 

P. citri or contains physical or chemical defences that are effective against citrus 

mealybugs, in spite of the fact that P. citri is considered a pest of F. murieliae 

(Graciet, 2011). The mealybug populations with higher symbiont densities were not 

able to compensate for this unsuitable host plant and did not have greater 

infestations, demonstrating the limits of the benefits of this symbiotic association. 

The low quality of a host plant can hamper the ability of a nutritional symbiont to 

function; for example, the low concentration of amino acids in the phloem of 

Lamium purpureum reduces the ability of Buchnera to assimilate threonine for the 

aphid host (Wilkinson et al., 2001, Chandler et al., 2008).  

The application of Teppeki insecticide did not reveal any significant differences in 

the resilience of mealybug populations to this treatment as a stressor, nor did it 
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significantly impact the number of mealybugs on plants one month following 

treatment, except for on A. elegantissima. Facultative symbionts have been linked to 

insecticide resistance due to their compound-degrading capabilities in stinkbugs, and 

facultative symbiont density can increase in response to host insecticide resistance in 

whitefly and mosquito (Kikuchi et al., 2012, Pan, 2013, Duron et al., 2006, 

Echaubard et al., 2010, Berticat et al., 2002). Conversely, the presence of Rickettsia 

was correlated with insecticide susceptibility in whitefly (Kontsedalov et al., 2008). 

However, we are not aware of any examples of associations between obligate 

symbionts and insecticide resistance.  

In conclusion, this study finds that citrus mealybugs harbour obligate nutritional 

symbionts with no clear fitness benefits, and that even mealybugs with high 

symbiont densities will vary in their fitness based on the host plant species. This 

indicates that the obligate symbionts of citrus mealybugs are likely to be poor targets 

for the symbiont-mediated pest control known as Microbial Resource Management 

(Read, 2011, Verstraete et al., 2007, Douglas, 2007b). It also raises evolutionary 

questions as to why these insect hosts harbour seemingly excessive densities of 

obligate symbiont and why this does not impact their fitness. RT-qPCR of the 

symbiont genes involved with nutrition could help to reveal how T. princeps and M. 

endobia are functioning, for example, whether mealybugs with low symbiont density 

compensate by increasing their biosynthetic activity. This would help to better 

understand the dynamics of this tripartite symbiosis. 
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3.6 Figures 

 Figure 3.1.  3.6.1

The mean, quartiles, 95
th

 percentiles and individual data points of the densities of the 

(A) M. endobia and (B) T. princeps bacterial symbionts in adult citrus female 

mealybugs from populations 1 to 10. Symbiont density was measured using qPCR, 

calculated as relative to P. citri host control gene using the comparative CT method.  
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 Figure 3.2.  3.6.2

The Log10 mean and individual data points of the number of mealybugs on four plant 

species, Aralia elegantissima, Phalaenopsis sp. Calathea roseopicta and Fargesia 

murieliae. Data are for ten mealybug populations that differed in the densities of 

their obligate symbionts, after two months (two generations) on the plants.  
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 Figure 3.3.  3.6.3

Relationships between the mean number of mealybugs on four plant species, (A, E) 

Calathea roseopicta, (B, F) Aralia elegantissima, (C, G) Phalaenopsis sp. and (D, 

H) Fargesia murieliae, with the mean densities of the (A, B, C, D) M. endobia and 

(E, F, G, H) T. princeps bacterial symbionts relative to the host in adult citrus female 

mealybugs from populations 1 to 10. Symbiont density was measured using qPCR, 

calculated as relative to P. citri host control gene using the comparative CT method.  
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 Figure 3.4.  3.6.4

The mean and individual data points of the number of mealybugs across all ten 

mealybug populations on four  plant species, (A) Aralia elegantissima, (B) 

Phalaenopsis sp., (C) Calathea roseopicta and (D) Fargesia murieliae, after three 

months of development with or without (control) Teppeki treatment. 
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“It is paradoxical, yet true, to say, that the more we know, the more ignorant we 

become in the absolute sense, for it is only through enlightenment that we become 

conscious of our limitations. Precisely one of the most gratifying results of 

intellectual evolution is the continuous opening up of new and greater prospects.” 

― Nikola Tesla 
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4 Short-term heat stress results in diminution 

of bacterial symbionts but has little effect on 

life-history in adult female citrus mealybugs 

 

4.1 Abstract 

Mealybugs are sap-feeding insect pests that pose a serious threat to horticulture. The 

citrus mealybug, Planococcus citri (Risso) (Hemiptera: Pseudococcidae), like most 

other mealybug species, harbours two obligate maternally-transmitted bacterial 

endosymbionts, which are essential for nutrient acquisition and host survival. These 

are Tremblaya princeps, a member of the β-Proteobacteria, and Moranella endobia, 

a member of the γ-Proteobacteria. The density of symbionts in the hosts is now 

understood to be dynamic, being influenced by the age and gender of the host, and 

by environmental conditions during development. Here we examine the impact of 

short-term heat stress treatment on the obligate symbionts and life-history parameters 

of P. citri, using qPCR to measure changes in symbiont density. Heat stress killed 

juveniles and adult males, and significantly reduced levels of M. endobia and T. 

princeps in adult females. However, adult females were resilient to this and it did not 

affect their fecundity or brood survival, although the sex ratio of their brood was 

slightly, but significantly, more female biased. Our results suggest that T. princeps 

and M. endobia are not as essential to the fitness of adult mealybugs as they are to 

immature mealybugs and that heat treatment alone is unlikely to be effective as a 

disinfestation tactic. 
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4.2 Introduction 

Bacterial endosymbiosis is now appreciated to be a diverse, integral and influential 

aspect of insect ecology and evolution (Saffo, 1992), which has potential 

applications in sustainable pest management, known as “microbial resource 

management” (Douglas, 2007a, Verstraete et al., 2007, Read, 2011, Crotti et al., 

2012). Many insects harbour obligate bacterial symbionts which are essential for 

their survival, but the prevalence and density of symbionts is often dynamic, being 

influenced by the age and gender of the host and environmental conditions (Burke, 

2010, Chiel et al., 2007, Kono et al., 2008, Moran et al., 2008). 

Mealybugs (Hemiptera: Sternorrhyncha: Pseudococcidae) comprise around 2000 

species worldwide (Thao et al., 2002). These sap-feeding pests pose a persistent 

threat to horticulture due to mechanical damage, the transmission of a range of plant 

pathogens, and the excretion of honeydew which encourages the growth of black 

sooty mould (Jelkmann, 1997, Sether, 1998, Charles, 2006). The citrus mealybug, 

Planococcus citri (Risso), is one of the most economically destructive species of 

mealybug, being a polyphagous and cosmopolitan pest that can feed upon plants 

from dozens of families (Ben Dov, 2015) including citrus, cocoa (Ackonor, 2002), 

coffee (Staver et al., 2001), grapevine (Cid et al., 2006), and other horticultural and 

ornamental crops in greenhouses and conservatories (Brødsgaard and Albajes, 2000, 

Laflin and Parrella, 2004). P. citri is an international pest, native to Asia, but 

occurring across the tropics, Europe, Oceania, USA and Mexico, at outside 

temperatures ranging from 20-32 °C or in greenhouses (CABI/EPPO, 1999). 
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P. citri transmits plant pathogens such as grapevine leafroll-associated virus 3  

(GLRaV-3) (a.k.a. Ampelovirus), Grapevine Virus A, B and C (a.k.a. Vitivirus) and 

Badnavirus, including  piper yellow mottle virus (Martelli et al., 2002, Cid and 

Fereres, 2010, Phillips et al., 1999, Adams et al., 2004, Lockhart et al., 1997). 

Chemical application is the most common control strategy of mealybugs (Franco et 

al., 2009); however, they are difficult to eliminate due to their cryptic behaviour and 

waxy secretions which shield them from pesticides. Biological control strategies 

have been explored, including parasitoids, predators, nematodes and fungi, with 

mixed results (Odindo, 1992, Stuart, 1997, Davies et al., 2004, Ceballo and Walter, 

2005, Afifi et al., 2010, Demirci, 2011, van Niekerk, 2012). More effective and 

reliable strategies are needed. 

P. citri, like most mealybug species, harbours two obligate maternally-transmitted 

bacterial endosymbionts within the bacteriome. These are T. princeps and M. 

endobia, the latter residing within the former, a feature believed to be unique to the 

Pseudococcidae (Thao et al., 2002, Keeling, 2011, McCutcheon and von Dohlen, 

2011, Von Dohlen et al., 2001, Baumann et al., 2002). The mutualistic relationship 

between P. citri and these symbionts likely evolved because of the restricted diet of 

the host, a common characteristic in insect-endobacteria relationships (Douglas, 

2006). Mealybugs feed solely upon plant sap, which is deficient in essential amino 

acids that the insect cannot assimilate. Endosymbionts can compensate for these 

shortfalls with their wider metabolic capacity and thus provide nutrients for the 

hosts, allowing them to exploit otherwise impenetrable niches (Douglas, 2009). T. 

princeps and M. endobia are capable of synthesising the full range of required 
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essential amino acids through a fusion of genetic pathways (Keeling, 2011, 

McCutcheon and von Dohlen, 2011, Husnik et al., 2013). This biochemical 

complementation demonstrates the evolutionary specificity of these partners and 

why no successful in vitro culturing, nor aposymbiotic mealybugs (those lacking 

symbionts), have been reported. 

The ecological function of T. princeps and M. endobia may lead to variations in the 

density of infection based upon host requirements. The abundance of T. princeps and 

M. endobia alters, depending upon the age and gender of the host (Kono et al., 

2008). A qPCR study into these dynamics with the mealybugs Planococcus 

kraunhiae (Kuwana) and Pseudococcus comstocki (Kuwana) found that although 

females maintain their endosymbionts after maturity, they are at reduced levels and 

males lose their endosymbionts entirely after pupation, most likely because adult 

males do not feed (Miller, 1999) and therefore do not require nutritional symbionts. 

Despite their physical and biochemical connections, this loss of symbionts is 

decoupled, with M. endobia disappearing more quickly than T. princeps in males 

(Kono et al., 2008). 

Rearing temperature influences the life-history parameters of mealybugs. P. citri 

instars died below 12°C and above 37 °C, and the longevity of adult females is 

greatest at 18 °C, whereas fecundity is highest at 23 °C (Goldasteh et al., 2009). A 

constant temperature of 30 ºC as opposed to 25 ºC led to female-biased sex ratios in 

P. citri (Ross et al., 2011), whereas another study found sex ratios to be female-

biased at 15 – 30 ºC, but male-biased at 32 ºC (Goldasteh et al., 2009). Older mating 

ages and starvation also triggered this male bias (Varndell and Godfray, 1996, Ross 
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et al., 2011). Other species of mealybug show similar life-history patterns, with 

fecundity, longevity and adult weight peaking at species-specific optimum 

temperatures in Maconellicoccus hirsutus (Green) (Patil et al., 2011), Pseudococcus 

citriculus (Green) and P. kraunhiae (Arai, 1996), Paracoccus marginatus (Williams 

& Granara de Willink) (Amarasekare et al., 2008) and Pseudococcus longispinus 

(Targioni Tozzeti) (Santa-Cecília et al., 2011). Long-term exposure of juvenile and 

adult P. citri to 39 ºC led to dismantling of the mycetocytes, ultimately leading to the 

death of the hosts (Köhler and Schwartz, 1962). This demonstrates temperature as a 

limiting factor in mealybug growth and reproduction, and as an influential factor in 

sex determination. 

Short-term heat stress treatment has been found to lead to dramatic reductions in 

obligate symbiont density in the pea aphid Acyrthosiphon pisum (Harris), with an 

observed 80% loss of the bacterium Buchnera aphidicola Munson et al., which did 

not recover 96 h following treatment, unless the host was co-infected with the 

facultative symbiont Serratia symbiotica Moran et al. (Burke, 2010). It has yet to be 

studied whether short-term temperature stress could lead to the reduction of 

symbionts in mealybugs, affect life history or distort the sex ratio of offspring, which 

could potentially be applied as a pest control tactic. Here we examine the impact of 

short-term heat stress on the symbionts and life-history parameters of P. citri, using 

qPCR to measure changes in symbiont density.  
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4.3 Materials and methods 

 Sourcing and rearing of mealybugs 4.3.1

Individual P. citri were collected from the horticultural research centre Proefcentrum 

voor Sierteelt, Ghent, Belgium. These were sourced from a variety of host 

ornamental plants which had been brought in from commercial greenhouses from 

across Belgium and pooled into a single community. Mealybugs were reared in 

darkness at 25 °C and 50% r.h. on white organic potato sprouts. Offspring from this 

established 16 month-old laboratory stock were used in the experiment. Mealybug 

eggs laid by multiple females were collected and reared for 29 days until females had 

reached maturity, with pupating males being separated from females to ensure 

female virginity.  

 

 Heat stress treatment  4.3.2

At the end of the rearing period, half of the virgin adult females were maintained at 

25 ºC and 50% r.h. as controls, whilst the remaining females were exposed to heat 

stress treatment. This involved a 2 h period of gradually increasing the 

environmental temperature from 25 up to 50ºC, followed by a 2 h period at 50 ºC 

and finally a 2 h period of gradual reduction of environmental temperature from 50 

ºC back to 25 ºC, the r.h. was maintained at 50% throughout in a humidity-controlled 

incubator. Fifty degrees was chosen as the heat stress temperature because 

preliminary studies with this culture had found that 55 ºC caused mass mortality (JF 

Parkinson, unpubl.), and the aim was to test a sub-lethal treatment here. Virgin 

females were flash frozen in liquid nitrogen 48 or 72 h after treatment to examine 
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short and longer changes in symbiont density, and stored in absolute ethanol at -20ºC 

until use for qPCR analysis. A hundred second-instar juvenile mealybugs of mixed 

sex and 30 newly emerged adult male mealybugs were also exposed to the heat stress 

treatment. After treatment, the surviving individuals were counted. 

 

 Life-history study 4.3.3

Immediately following treatment, a subset of 40 adult virgin females from the treated 

group and 34 from the control group were separated out and mated with virgin males 

taken from the reared population. These females were exposed to two males each to 

ensure mating. The eggs laid by these females were counted, along with the 

offspring which then reached adulthood themselves under normal rearing conditions, 

and their sex ratio at adulthood was assessed. 

 

 Symbiont infection intensity study 4.3.4

We quantified the infection intensity of the two symbionts in heat-stressed and 

control mealybugs using qPCR with the comparative CT method and a host gene to 

control for DNA quantity (Schmittgen and Livak, 2008). qPCR primers and probes 

for the variable housekeeping 28S rDNA region of the host P. citri, and the 16S 

rDNA and 23S rDNA intergenic spacer region of the γ-proteobacterial symbiont M. 

endobia (Thao et al., 2002), were designed using the software Primer Express v.3.0 

(Life Technologies, Foster City, CA, USA). Primers and probe for the GroEL gene 

were developed for the P. citri strain of the β-proteobacterial symbiont, Tremblaya 
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princeps (Thao et al., 2002). These were designed using the software PRIMER3 

(Whitehead Institute for Biomedical Research, Cambridge, MA, USA) and analysed 

using the software NetPrimer (Premier Biosoft International, Palo Alto, CA, USA) 

(Table 4.1). DNA was extracted from 25 individual adult mealybugs per treatment at 

48 h after treatment, and 26 mealybugs at 72 h after treatment, by soaking each 

mealybug in distilled water before crushing in 100 µl of 10% Chelex and heating to 

99 ºC. The resulting product was centrifuged at 2326 g for 20 min and the 

supernatant was pipetted off. Inhibitors from this supernatant were removed using 

the OneStep96
TM

 PCR Inhibitor Removal Kit as per manufacturer’s instructions 

(Zymo Research, Irvine, CA, USA). DNA from individual mealybugs was diluted to 

1/10 in molecular grade water for use in qPCR reactions. Triplett qPCR reactions for 

individual mealybugs were performed in a StepOnePlus
™

 Real-Time PCR System. 

Volumes of 10 μl were used for qPCR reactions with reagent final concentrations of 

150 nM of each primer, 50 nM of probe, and 1× of ABI Taqman Universal Master 

Mix II with UNG (Life Technologies, Foster City, CA, USA). The cycle was 50 °C 

for 2 min, 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and the 

annealing temperature (collection step) for 1 min. An annealing temperature of 64 °C 

was used for P. citri and M. endobia reactions and 60 °C for T. princeps reactions. 

Mean concentrations of T. princeps and M. endobia were compared against 

the P. citri host control using the comparative CT method to produce relative 

∆CT values. These were compared between control and treatment groups to produce 

∆∆CT values, which were used to calculate fold differences. 
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 Statistical analysis 4.3.5

The numbers of eggs laid in the two treatments were tested for normality and 

homogeneity of variance, found to fit these assumptions, and then analysed using a 

General Linear Model. The percentages of surviving offspring and female offspring 

between treatments were analysed using a Generalized Linear Model with gamma 

distribution and log link function, using the likelihood ratio χ
2
 test statistic. The 

numbers of females in each treatment which failed to oviposit were analysed using a 

Fisher's Exact Test. qPCR data were processed using the comparative CT method 

(Schmittgen and Livak, 2008), which calculates the relative density between target 

gene and host control gene. Data for symbiont density were tested for normality and 

homogeneity of variance. The data were not found to fit these assumptions and were 

analysed using a Generalized Linear Model, again using a gamma distribution, log 

link function, and the likelihood ratio χ
2
 test statistic. All analyses were conducted in 

SPSS 20 (IBM-SPSS Statistics, Armonk, NY, USA).   

 

4.4 Results 

 Life-history  4.4.1

Both second-instar mealybugs of mixed sex and adult male mealybugs experienced 

100% mortality when exposed to the heat stress treatment. Two of 40 adult female 

mealybugs in the treated group died 1 h following the treatment. No further 

premature mortality was observed in this group, nor was any mortality observed in 

the 34 adult female mealybugs used in the control group. In the control group, two of 

34 females failed to oviposit and one female produced an egg sac devoid of eggs. In 
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the treated group, six of 38 surviving females failed to oviposit and one female 

produced an egg sac devoid of eggs (Fig. 4.1). These females which did not lay eggs 

were discounted further from the experiment. Neither the proportion of females 

failing to lay eggs, the number of eggs laid, nor the brood survival (%) to adulthood 

differed significantly between treatment and control mealybugs (Fisher's Exact Test, 

P = 0.32; F1,60 = 0.539, P = 0.47; and χ
2
 = 0.054, d.f. = 60, P = 0.88, respectively), 

However, the sex ratio of offspring produced did differ significantly (χ
2
 = 5.37, 

d.f. = 60, P = 0.020), with treated females producing progeny with a more female-

biased sex ratio at adulthood (Fig. 4.1). 

 

 Symbiont infection intensity  4.4.2

Heat-stressed mealybugs had significantly reduced levels of M. endobia DNA 

relative to control mealybugs 48 h (χ
2
 = 5.447, d.f. = 49, P = 0.020) and 72 h 

following treatment (χ
2
 = 11.332, d.f. = 49, P = 0.001), with heat-stressed densities 

of M. endobia being reduced by 52% after 48 h and 50% after 72 h (Fig. 4.2). Heat 

stress treatment was not found to cause a statistically significant difference in levels 

of T. princeps DNA 48 h following treatment (χ
2
 = 2.71, d.f. = 49, P = 0.10), 

although it did follow the same trend as M. endobia, being reduced by 40%. 

However, levels of T. princeps DNA 72 h following treatment were significantly 

reduced (χ
2
 = 8.338, d.f. = 50, P = 0.004), with a 58% decrease (Fig. 4.2).  
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4.5 Discussion  

The qPCR results showed that short-term heat stress at 50 °C led to reduced density 

of ‘Ca. Moranella endobia’ and ‘Ca. Tremblaya princeps’ DNA in P. citri. Absence 

of DNA indicates that the bacteria were digested or excreted by the host. This 

reflects a previous study, in which long-term heat stress at 39 °C physically damaged 

the symbiont system (Köhler and Schwartz, 1962). This may suggest that the heat is 

associated with cell death, or perhaps triggers an internal molecular mechanism or 

molecular cascade in P. citri which caused a host response to eradicate the symbiotic 

bacteria. However, in a previous study, the long-term heat treatment of 39 °C for 

20 days resulted in the premature mortality of the adult mealybugs (Köhler and 

Schwartz, 1962), which was not observed for our short-term intense treatment. 

Decoupling of the symbiont reduction reflects the results observed (Kono et al., 

2008), with M. endobia reducing more rapidly. It may be that M. endobia is of lesser 

importance, or that T. princeps may digest or eject M. endobia before rupturing 

itself. The first suggestion is unlikely and the other appears maladaptive, as the 

biochemical dependency of these partners is obligate (McCutcheon and von Dohlen, 

2011). Cell lysis has been suggested as a mechanism for the exportation of proteins 

from M. endobia to T. princeps (Husnik et al., 2013), and stressful conditions may 

disrupt this controlled event. 

Although previous studies have found that constant rearing temperatures, varying 

typically across studies between 12 and 37 °C (Varndell and Godfray, 1996, 

Goldasteh et al., 2009, Ross et al., 2011), are greatly influential to the life-history 

parameters and survivorship of mealybugs, adult virgin female P. citri displayed 
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strong physical resilience to the short-term intense heat stress treatment of 50 °C. 

This is despite this temperature killing 100% of second-instar and adult male 

mealybugs, and being only 5 °C less than the lethal temperature for adult females. 

Short-term heat stress did not impact the fecundity of the females, which suggests 

that key factors which determine the reproductive success of an individual occur 

during its development, and are only altered by environmental temperature 

experienced in immature stages. As the symbionts are necessary for amino acid 

synthesis (McCutcheon and von Dohlen, 2011), they are probably most needed 

during the growth stages of the host, and are of lesser importance in adults, 

remaining present for transmission to the next generation. It would be of interest to 

know whether symbionts remain at reduced levels in treated virgin mealybugs for the 

remainder of their life span compared to control mealybugs or whether the offspring 

of females with reduced symbiont levels also have fewer symbiont cells. Adult male 

mealybugs naturally lose their symbionts post-pupation (Kono et al., 2008), so the 

loss of symbionts via heat stress is unlikely to be the cause of their mortality. Both 

adult males and juveniles are smaller than adult females and will have a larger 

surface area to volume ratio, thus likely rendering them more vulnerable to 

desiccation, which may explain their higher mortality rates.  

Previous studies have shown that long-term exposure to raised temperatures during 

development can alter the sex ratio of mealybugs (Varndell and Godfray, 1996, 

Goldasteh et al., 2009, Ross et al., 2011). Our experiment has demonstrated that even 

a short transient exposure to higher temperatures can cause an effect. Females from 

both the control and heat stress treatment produced brood with a female-biased sex 
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ratio. However, the bias was slightly, but significantly, greater for treated females. 

This finding is in concordance with a previous study which found that hotter and 

more stressful conditions increased the prevalence of females in brood (Ross et al., 

2011). Crowded females are more likely to produce male-biased brood, and age at 

mating is a complex interacting factor (Ross et al., 2010a). Mealybugs can 

facultatively adjust the sex ratio of their offspring through paternal genome 

elimination in males (Schrader, 1921, Brown and Nelson-Rees, 1961, Ross et al., 

2010b, Ross et al., 2012), and is likely related to heterochromatic proteins (Buglia et 

al., 2009).  The adult sexes are dimorphic, males being winged and dispersing and 

females being paedomorphic and sessile. There may be adaptive reasons for 

adjusting sex ratios following heat stress, or temperature may non-adaptively alter 

the determination mechanisms. Conversely, male brood of heat-stressed females may 

have suffered a higher mortality rate than those of non-heat-stressed females, 

although we do not have any data to confirm this hypothesis. 

These results, along with the findings that symbiont density is reduced in post-

reproductive females (Kono et al., 2008), indicate that host physical deterioration, 

perhaps triggered by senescence or stress, sways the relationship between host and 

bacteria. Although these symbionts are essential for the overall survival of the host, 

cost is incurred with maintaining a symbiont, and some environmental conditions 

may initiate a purge. Conversely, stressful conditions and physical deterioration may 

render the host incapable of housing symbionts and meeting their requirements. 

Symbiont degradation caused by heat stress and that caused by host senescence may 

not necessarily occur via the same mechanism and it would be interesting to 
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investigate whether other environmental factors, such as food supply, cold exposure, 

and host plant species, can also alter the density of symbionts in mealybugs. This 

experiment provides only a snapshot of the dynamic relationship between mealybugs 

and their obligate symbionts, and it is possible that females could have recovered 

their symbionts after the qPCR measurements were taken. Such a recovery 

mechanism would imply that adult mealybugs are adapted to cope with symbiont 

fluctuation; hence, their reproductive fitness was unaffected. However, although 

fecundity was not affected, other fitness traits, such as immunocompetence or the 

ability to exploit different environments and host plants of other species, were not 

investigated in this study and may serve as significant factors when incorporated. 

High temperatures have been tested in combination with other short-term 

disinfestation treatments, such as hot water immersion and ozone fumigation, as 

control strategies for mealybug pests on horticultural plants (Hansen et al., 1992, 

Lester et al., 1995, Hara et al., 1996, Dentener et al., 1997, Hollingsworth and 

Armstrong, 2005). Although often effective, high-heat treatments usually involve 

another element and may not be practical methods for some plants. Our results 

indicate that short-term, sub-lethal heat stress alone would not be an effective control 

strategy against mealybug infestations populated with many adults, although it 

would be highly effective against immature mealybug stages and does provide a 

potential experimental method for manipulating symbiont densities. It would be of 

great interest to observe whether other aspects of fitness were impacted, and whether 

other stressors also result in diminished symbiont densities. 
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4.6 Tables 

 Table 4.1.  4.6.1

PCR primers and probes used in the study for Planococcus citri host control, β-

proteobacterial symbiont T. princeps, and γ-proteobacterial symbiont M. endobia. 

Target 

organism 

Target gene Olgio 

name 

Function Fluorescencea Oligo sequence 5’-3’ Product 

size (bp) 

P. citri 28S rDNA 

(AY179451.1) 

PcitriF Forward primer - TCCGAGGAGACGTGTAAAA

GTTC 

56 

PcitriR Reverse primer - CCTAGCCGCCGAAACGA 

PcitriP Probe FAM ACGGCGCGTGTCGA  

T. princeps GroEL 

(AF476091) 

TprincepsF Forward primer - TCCAAGGCTAAATACCCAC

A 

155 

TprincepsR Reverse primer - ATACAAAAGGTACGCCGTC

A 

TprincepsP Probe FAM CGCGCATACGAACAGTCGG

A 

 

M. endobia 16S and 23S 

rDNA 

(AF476107.1) 

MendobiaF Forward primer - GAGCACCTGTTTTGCAAGCA 64 

MendobiaR Reverse primer - CCCCTAGAGTTGTGGAGCTA

AGC 

MendobiaP Probe FAM AGTCAGCGGTTCGATC  

a
 6FAM, 6-fluorescein amidite 5′ dye. 
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4.7 Figures 

 Figure 4.1.  4.7.1

Mean and 95% confidence intervals of life-history parameters of adult female citrus 

mealybugs that were either exposed to short-term heat stress (50 °C) or control 

conditions: (A) Females (%) which failed to oviposit; (B) fecundity; and (C) brood 

survivorship to adulthood. The mean, quartiles, 95
th

 percentiles and individual data 

points of the sex ratios of adult brood laid by treated females (% female prevalence) 

(D). 
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 Figure 4.2.  4.7.2

Mean and individual data points of densities relative to host control gene of the M. 

endobia and T. princeps endosymbionts in adult female citrus mealybugs that were 

either exposed to short-term heat stress (50 °C) or control conditions, at (A) 48 h 

following treatment (both n = 25), or (B) 72 h following treatment (n = 25 for heat 

stressed, n = 26 for control). 
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 “Wisdom comes from experience. Experience is often a result of lack of wisdom.”  

― Terry Pratchett  
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5 Heritability of symbiont density reveals 

distinct regulatory mechanisms in a tripartite 

symbiosis 

 

5.1 Abstract 

Beneficial eukaryotic-bacterial partnerships are integral to animal and plant 

evolution. Understanding the density regulation mechanisms behind bacterial 

symbiosis is essential to elucidating the functional balance between hosts and 

symbionts. Citrus mealybugs, Planococcus citri (Risso), present an excellent model 

system for investigating the mechanisms of symbiont density regulation. They 

contain two obligate nutritional symbionts, Moranella endobia, which resides inside 

Tremblaya princeps, which has been maternally transmitted for 100-200 million 

years. We investigate whether host genotype may influence symbiont density by 

crossing mealybugs from two inbred laboratory-reared populations that differ 

substantially in their symbiont density to create hybrids. The density of the M. 

endobia symbiont in the hybrid hosts matched that of the maternal parent population, 

in keeping with density being determined either by the symbiont or the maternal 

genotype. However, the density of the T. princeps symbiont was influenced by the 

paternal host genotype. The greater dependency of T. princeps on its host may be 

due to its highly reduced genome. The decoupling of T. princeps and M. endobia 

densities, in spite of their intimate association, suggests that distinct regulatory 

mechanisms can be at work in symbiotic partnerships, even when they are obligate 

and mutualistic.  
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5.2 Introduction 

Symbiotic associations are extremely widespread in nature, and beneficial 

eukaryotic-bacterial partnerships have shaped the very foundations of plant and 

animal evolution (Schwartz and Dayhoff, 1978). Symbiosis creates an overlap of 

selective interests between partners, which will increase with the degree to which 

symbiont transmission is vertical rather than horizontal, and will be strongest in the 

hosts that vertically transmit the symbiont (usually females). However, even 

mutualistic symbiotic associations are inherently selfish, with benefits given only so 

long as they are reciprocated and, as well as selection for cooperation, there is also 

selection pressure to cheat and exploit the partnership (Bennett and Moran, 2015). 

As they coevolve, hosts will be selected to increase their own fecundity, with or 

without symbionts, whereas symbionts will be selected to maximise their 

transmission to new hosts, whilst simultaneously outcompeting other strains and 

species of symbiont for the limited resources provided by the host (Frank, 1996a).  

This conflict of selective interests between hosts and symbionts can in part be 

resolved by vertical transmission of the symbionts, and consequent dependency of 

the symbiont upon the host. Guaranteed vertical transmission to the next generation 

relaxes selection for horizontal transmission, leads to genetic homogeneity within 

hosts, and thus favours decreased virulence of symbionts (Smith, 2007, Frank, 

1996a). Evidence for this tendency to transition to avirulence and homogeneity 

within hosts can be observed in organelles (Birky et al., 1983), and the Uroleucon 

ambrosiae symbionts of aphids (Funk et al., 2000). Symbiont dependency upon the 
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host increases following symbiont genome reduction- a common result of the 

symbiont lifestyle (Bennett and Moran, 2015, Moran and Bennett, 2014).   

Even in the case of vertically-transmitted symbionts, strict regulation of symbiont 

density within the host is essential for the efficient functioning of the partnership 

(Rio et al., 2006, Laughton et al., 2014, Cunning and Baker, 2014, Falkowski et al., 

1993, Wilkinson et al., 2007). Too few symbiont cells will cause a deficiency of 

gene products for the host and inefficient vertical transmission for the symbiont, 

whilst too many cells will incur some cost to the host without a proportionate 

benefit. As accommodating a symbiont, even when it is beneficial, will always incur 

some cost to the host in terms of energy or resources (Bronstein, 2001), an excess of 

symbionts could also be metabolically-demanding to the host. Costs to the host could 

lead to long-term costs to the symbionts through reduced host fecundity and hence 

reduced vertical transmission. In terms of host fitness, the “optimum” within-host 

symbiont density will be complex and dynamic, being unlikely to be constant 

throughout the lifecycle of the host, or in every environmental situation that the host 

encounters, but will instead change depending on context, and be subject to multiple, 

possibly conflicting, selection pressures and host requirements. Facultatively 

manipulating symbiont density may prove to be costly to the host. Additionally, the 

symbiont will be selected to maintain at minimum the threshold density required to 

ensure vertical transmission, which may in itself vary throughout the life of the host. 

There may then be selection on both host and symbiont to maintain  a compromised 

symbiont density across environmental and physiological conditions (Kono et al., 

2008, Laughton et al., 2014, Rio et al., 2006).  
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Regulation of symbiont density can occur via the host or the symbiont. Symbionts 

may change their density by varying their replication rate to maintain or increase 

their density, whereas hosts can control symbionts using several mechanisms. 

Depending upon the method of transmission, a screening process can prevent 

unwanted symbionts from entering the host (Nyholm and McFall-Ngai, 2004). 

Antimicrobial peptides, in some cases symbiont-specific, can be deployed (Hooper et 

al., 2012, Balmand et al., 2011). Superfluous bacteria can in some cases be simply 

evicted (Ruby and Asato, 1993, Dimond and Carrington, 2008). Nutrient acquisition 

by the host is positively correlated with symbiont density in pea aphids and some 

corals, which may be a limiting factor in the proliferation of symbionts (Wilkinson et 

al., 2007, Falkowski et al., 1993, Muller-Parker et al., 1994, Snyder et al., 2010). 

Regulatory mechanisms may be linked, rather than acting in isolation, for example, 

the rates of degradation and expulsion of zooxanthellae by the  coral, Stylophora 

pistillata, are both triggered by starvation of the host (Titlyanov et al., 2000). 

Immune mechanisms in some host species still provide a sophisticated form of 

symbiont density control (Hinde, 1971, Falkowski et al., 1993, Bennett and Moran, 

2015). Indeed, maintaining a symbiont requires that the host amends its approach to 

dealing with internal bacteria, and suppresses or adjusts its immune responses (Wang 

et al., 2009a, Ratzka et al., 2013, McFall-Ngai et al., 2010). For example, the pea 

aphid Acyrthosiphon pisum, has lost genes involved in the IMD immune pathway 

(The International Aphid Genomics Consortium, 2010, Gerardo et al., 2010).  

Citrus mealybugs, Planococcus citri (Risso), are an intriguing and potentially 

powerful model system for investigating the roles of host and symbiont in regulating 
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symbiont density. Citrus mealybugs contain two maternally, vertically-transmitted 

obligate nutritional symbionts, a β-proteobacterium, Tremblaya princeps, and a γ-

proteobacterium, Moranella endobia, which reside in bacteriocytes in the bacteriome 

organ surrounding the host gut (Thao et al., 2002). These two symbionts have co-

evolved intimately, with M. endobia actually residing inside T. princeps, which was 

first acquired by the Pseudococcidae 100-200 million years ago (Thao et al., 2002, 

Baumann et al., 2002, Husnik et al., 2013). 

Both symbionts have reduced genomes (Husnik et al., 2013, Baumann et al., 2002), 

which could potentially compromise their ability to self-regulate their density within 

the host. Genome reduction is a common Muller’s Ratchet-type consequence of the 

relieved natural selection pressures experienced by intracellular bacteria (Moran and 

Bennett, 2014, McCutcheon and Moran, 2012). T. princeps holds one of the smallest 

bacterial genomes known to science, at just under 139kb (Husnik et al., 2013), whilst 

M. endobia carries a larger, yet still reduced, genome of 538kb (McCutcheon and 

von Dohlen, 2011). It is hypothesised that the dramatic gene loss experienced by T. 

princeps is partly due to it harbouring its own symbiont which can compensate for 

loss of genetic function (Husnik et al., 2013). 

T. princeps relies on both the mealybug host and M. endobia to counteract its loss of 

genes and their functions, which could render it dependent on these partners to 

regulate its density (McCutcheon and von Dohlen, 2011, Husnik et al., 2013, Sloan 

et al., 2014, Lopez-Madrigal et al., 2011). For example, genes involved in the 

construction of cell wall components are found horizontally transferred from other 

bacterial species into the mealybug genome and are highly expressed in the 
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bacteriocytes where T. princeps resides (Husnik et al., 2013), and translation-related 

genes no longer present in T. princeps are expressed in M. endobia (McCutcheon 

and von Dohlen, 2011). 

There is some evidence for genotypic differences in symbiont density within P. citri. 

Citrus mealybug populations have been found to differ in the density of both of their 

bacterial symbionts by over six-fold, even when cultured under standard laboratory 

conditions (JFP, BG & WOHH, unpubl. data). The consistency of differences in 

symbiont density between mealybug populations supports the case for genotypic 

variation in the propensity to harbour a high or low symbiont density in citrus 

mealybugs. However, it is not clear whether the differences between populations are 

caused by the genotype or epigenetics of the host or of the symbiont. In this study, 

we disentangle the effects of host genome from symbiont genome by crossing 

mealybugs from two inbred laboratory-reared mealybug populations that differ 

substantially in their symbiont density in order to create F1 hybrid daughters. These 

hybrid mealybugs host the symbionts from their maternal population because 

symbiont transmission is entirely maternal (Thao et al., 2002), but will have a 

genome that is derived from both paternal and maternal parents. Any significant 

deviation in symbiont density from the maternal population would therefore be 

attributable to the paternal genotype, and indicative of host genotype influencing 

symbiont density. Alternatively, a non-significant deviation in symbiont density 

from the maternal population would indicate that symbiont density is determined 

only by symbiont genotype (or maternally-specific genotypic effects such as via 

imprinting). 
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5.3 Methods 

Two mealybug populations (A and B) were used which had been obtained from 

commercial greenhouses in Belgium and cultured in darkness at 25°C and 20% RH 

on white organic potato sprouts for eight months (approximately eight generations). 

These populations had been found previously to differ approximately two-fold in the 

densities of both the M. endobia and T. princeps symbionts (Parkinson, Gobin & 

Hughes, unpubl. data). Newly emerged adult females from these populations were 

separated from their populations of origin and maintained on potato sprouts for five 

days. Any females which commenced oviposition in this time period were discarded 

(ca. 20% of females) to ensure virginity.  Adult males from the other population 

were then placed with the females for 48 h to allow for mating (males from 

Population A were placed with females from Population B and vice versa). This 

hybridisation process created two F1 generation hybrid populations: A♀B♂ and 

A♂B♀. When each female commenced oviposition, she was placed on an individual 

potato to lay eggs in isolation. The F1 hybrid offspring from each female were 

allowed to hatch and mature on these isolated potatoes, with all male offspring being 

removed to ensure the virginity of their sisters. F1 females were allowed to grow to 

maturity (~ 30 days post hatching). 

 

 Symbiont quantification 5.3.1

Newly emerged adult females from Populations A (n = 39) and B (n = 40) and the 

hybrid populations A♀B♂ and A♂B♀ (20 offspring per mother, n = 28 mothers for 
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A♀B♂, n = 29 mothers for A♂B♀) were crushed individually in 100µL 5% Chelex 

solution, heated to 99°C for 15 min and centrifuged at 2,326g for 20min. The 

supernatant was pipetted off and diluted 1:10 with molecular grade water for use in 

qPCR reactions. DNA from multiple offspring were pooled to create a single DNA 

sample per mother. 

Symbiont infection intensity was quantified by measuring gene copy number using 

qPCR with the comparative CT method, using the host 28S gene to control for DNA 

quantity (Schmittgen and Livak, 2008), as per (Parkinson et al., 2014). Primers and 

probes for the P. citri control gene, 28S rDNA and T. princeps GroEL gene were 

designed using PRIMER3 software (Whitehead Institute for Biomedical Research, 

Cambridge, MA, USA) and analysed using NetPrimer software (Primer Biosoft 

International, Palo Alto, CA, USA). Primers and probes for M. endobia 16S and 23S 

rDNA were designed using Primer Express v.3.0 software (Life Technologies, Foster 

City, CA, USA) (Table 1). To ensure that only a single PCR product would be 

amplified for M. endobia, the forward primer for M. endobia was checked against 

the M. endobia complete genome (Accession number CP003881.1), which was 

isolated from the citrus mealybug PCVAL strain, and found to match at only a single 

site (López-Madrigal et al., 2013). The forward primer also only matched a single 

site for the M. endobia complete genome (Accession number CP002243.1), which 

was isolated from the citrus mealybug PCIT strain (McCutcheon and von Dohlen, 

2011). To ensure that only a single PCR product would be amplified for P. citri, the 

forward primer for P. citri was checked against 28s rDNA GenBank sequences 

(Accession numbers GU134660.1, JF714181.1, JQ651165.1, JQ651169.1, 
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JQ651170.1, JQ651171.1, JQ651362.1, JQ651363.1, JQ651364.1, JQ651365.1) and 

found to match at only a single site (Sethusa et al., 2013, Beltrà et al., 2012, Malausa 

et al., 2011). The 28S rDNA gene has been used for several phylogenetic studies in 

mealybugs, with being present as a single copy in citrus mealybugs (Hardy et al., 

2008, Downie and Gullan, 2004). 10 µl reaction volumes were used for qPCR in a 

StepOnePlus
TM

 Real-Time PCR System (Applied Biosystems), with 150nM of each 

primer, 50 nM of probe, and 1× of ABI Taqman Universal Master Mix II with UNG 

(Life Technologies, Foster City, CA, USA). The cycle was 50°C for 2 min, 95°C for 

10 min, followed by 40 cycles of 95°C for 15 s and the annealing temperature 

(collection step) for 1 min. An annealing temperature of 64°C was used 

for P. citri and M. endobia reactions, and 60°C was used for T. princeps reactions. 

The densities  of T. princeps and M. endobia in individual mealybugs were 

determined by comparing symbiont gene copy number against the P. citri host 

control gene, using the comparative CT method, which standardises for differences in 

tissue quantities (Crotti et al., 2012, Schmittgen and Livak, 2008). All samples were 

run in triplicate and non-concordant replicates and samples were re-run or excluded. 

The CT values of all three target genes were measured for each mealybug. Then the 

difference in CT value between the symbiont genes and the host control gene for 

each mealybug were calculated and expressed as fold differences in the symbiont 

genes relative to the host genes by 2
-(symbiont CT – host CT)

. 
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 Statistical analysis 5.3.2

Analysis was conducted by converting relative ∆CT values into host-symbiont ratios. 

Symbiont densities in the different populations were analysed using a generalized 

linear model with a Gamma distribution and log-link function and the Likelihood 

ratio χ
2
 statistic. The sequential Bonferroni correction to the Wald test was used for 

pairwise comparisons of populations. Data for T. princeps and M. endobia were 

analysed separately. Differences in extraction and quantification efficacies for the 

two symbionts mean that the quantites cannot be compared between the symbionts. 

 

5.4 Results 

The qPCR data gave us the relative infection intensity of the two bacterial symbionts 

in the two parent populations of mealybugs and their hybrid daughters. The relative 

infection intensity of the M. endobia symbiont differed significantly between the 

mealybug populations (χ
2
 = 56.4, d.f. = 3, P < 0.001). Population B had on average 

58% fewer M. endobia cells per host cell than Population A (Fig. 1A). Pairwise 

comparisons reveal that the F1 hybrid populations differed significantly from their 

paternal populations (P < 0.001 in both instances), but not their maternal population 

(P = 0.892 for A♀B♂ and P = 0.141 for A♂B♀). 

The same pattern did not follow for the T. princeps symbiont (Fig. 1B). Symbiont 

density again differed significantly between mealybug populations (χ
2
 = 85.3, d.f. = 

3, P < 0.001), and Population B had on average 71% fewer T. princeps cells per host 

cell than Population A. However, pairwise comparisons revealed that both F1 hybrid 

populations differed significantly from not only their paternal populations (P < 0.001 



 
129 

in both instances), but also both their maternal populations (P = 0.010 for A♀B♂ 

and P < 0.001 for A♂B♀). Population A♀B♂ had a T. princeps density that was 

higher than either of its parent populations (185% greater than that of Population A), 

while Population A♂B♀ had a T. princeps density intermediate between those of its 

parent populations (51% of that of Population A; Fig 1B). 

 

5.5 Discussion 

In order to separate the effects of bacterial-derived versus host-derived regulation of 

symbiont density, we crossed two laboratory strains of citrus mealybug with 

consistently different infection intensities of the T. princeps and M. endobia 

symbionts to create two new hybrid strains. M. endobia densities in adult females 

from these hybrid strains were not significantly different from those of the maternal 

populations, indicating that M. endobia density was not affected by host paternal 

genotype. However, T. princeps densities in adult females from these hybrid strains 

were significantly higher than from those of their maternal populations, indicating 

that the paternal host genotype influenced the density of the symbiont, possibly in a 

non-additive way as the hybrid strain A♀B♂ had a T. princeps density that was 

higher than either of the parental populations. This may also have been a result of 

heterosis of the host genome, which may have enabled the host to harbour more T. 

princeps cells. Despite this, the hybrid strains still held a T. princeps density that was 

more similar to the maternal than the paternal line, so T. princeps may to some 

degree control its own density. 
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P. citri holds a logistical advantage for regulating its symbionts’ densities. T. 

princeps and M. endobia reside in specialised bacteriocytes which compose the 

bacteriome organ surrounding the gut of the host, a prime location for nutritional 

symbionts to function (Thao et al., 2002). Cordoning symbionts into a single location 

also eases organised density control and bacteriocytes often express high levels of 

antimicrobial peptides, such as observed in the rice weevil, Sitophilus oryzae, (Login 

et al., 2011). Bemisia tabaci whiteflies are less capable of effectively regulating 

symbionts that are situated outside of their bacteriocytes (Su et al., 2014). 

The decoupling of T. princeps and M. endobia densities suggests that, despite their 

intimate evolutionary association, distinct regulatory mechanisms are at work for the 

two symbionts. Decoupling of the two symbionts has been observed in adult male 

mealybugs, who lose M. endobia at a faster rate than T. princeps as they approach 

their aposymbiotic stage (Kono et al., 2008). Differential regulation pathways for 

obligate versus facultative symbiont density have also been found in the pea aphid, 

revealed by varying dietary nitrogen levels (Wilkinson et al., 2007), reflecting the 

distinct relationships that aphids share with different types of symbiont. However, T. 

princeps and M. endobia are both obligate nutritional mutualists and, moreover M. 

endobia resides inside T. princeps, so their inconsistent responses to hybridisation 

are surprising. 

The nested relationship of M. endobia inside T. princeps and their discrepancies in 

genome size may account for their different density regulatory mechanisms. T. 

princeps has a dramatically reduced genome, one of the smallest known to science 

with only 120 protein-coding genes, and relies on M. endobia and the host for much 
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of its function (Husnik et al., 2013). It is argued that in terms of gene number and 

genome size, T. princeps is more similar to an organelle than a symbiont 

(McCutcheon and Moran, 2012, Husnik et al., 2013). It could be argued that such 

dependence and efficient vertical transmission will mean that T. princeps may thus 

behave as a part of P. citri, rather than a separate organism within P. citri with its 

own conflicting evolutionary interests. However, even intra-genome conflict can 

occur, and the fitness requirements of one individual in a symbiotic relationship is 

unlikely to align flush with that of its partner (Herre et al., 1999, Eberhard, 1980). 

Even organelles can still conflict with their hosts, for example the Cytoplasmic Male 

Sterility (CMS) induced by mitochondria in some plant species (Chase, 2007). 

Uniparental transmission benefits hosts by preventing competition between unrelated 

organelles, but deems one of the sexes to be an evolutionary dead-end for the 

organelles (Law and Hutson, 1992, Hurst, 1995). 

T. princeps has lost functional genes for bacterial translational release factors, 

aminoacyl-tRNA synthetases, ribosome recycling factor, elongation factor EF-Ts 

and peptide deformylase (McCutcheon and von Dohlen, 2011). It is common for 

symbionts to lose genes associated with cell wall structure,  for example, T. princeps 

lacks cell-envelope-related genes and  relies on its host for the creation of a cell 

membrane (Husnik et al., 2013, McCutcheon and Moran, 2012, McCutcheon and 

von Dohlen, 2011). It could therefore be the case that the larger and more 

functionally complete genome of M. endobia gives it more control of its own 

regulation, than T. princeps. However, the expression of  murABCDEF and 

mltD/amiD genes in the host genome are believed to control the cell wall stability 
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and lysis of M. endobia, so even this symbiont may still be partially influenced by its 

host’s genotype (Husnik et al., 2013, Koga et al., 2013, McCutcheon and von 

Dohlen, 2011).  

In summary, the decoupling of M. endobia and T. princeps densities following 

crossing of mealybug lines with different symbiont infection intensities reveals that 

even nested intracellular symbionts can have different regulatory mechanisms. T. 

princeps provides an example of how the defined boundary between organism and 

organelle can be blurred, and, despite their antiquity, it may be more appropriate to 

consider organelles as part of the same evolutionary spectrum as symbionts rather 

than a discrete functional category (McCutcheon and Keeling, 2014). Understanding 

the density regulatory mechanisms behind bacterial symbiosis will be essential to 

understanding the functional balance between hosts and symbionts and how they 

have evolved to overcome their conflicts of interests.  
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5.6 Figures 

 Figure 5.1.  5.6.1

The mean, quartiles, 95
th

 percentiles and individual data points of the densities 

(relative to the host control gene) of the (A) M. endobia and (B) T. princeps bacterial 

symbionts in adult citrus female mealybugs from parental Populations A and B, and 

the hybrid offspring Populations A♀B♂ and B♀A♂. Symbiont density was 

measured using qPCR, calculated as relative to P. citri host control gene using the 

comparative CT method.  
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A.  

 

B.  
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“If nothing else works, a total pig-headed unwillingness to look facts in the face will 

see us through.” 

― General Melchett 
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6 Community-Profiling of the Symbiotic 

Microbiota of Citrus and Long-tailed 

Mealybugs 

 

6.1 Abstract 

Bacterial symbiosis is pivotal to the early evolution of eukaryotes, having given rise 

to mitochondria and chloroplasts. Our understanding of host-symbiont evolutionary 

ecology is largely based on obligate relationships, but the vast majority of symbiotic 

relationships are facultative. These facultative symbionts can nevertheless have 

profound effects on host biology, and so the characterisation of their occurrence and 

effects is essential for a full understanding of symbiosis and host evolution more 

broadly. Here, we characterise the communities of facultative symbionts in 

mealybugs, a group which serve as models for understanding obligate symbiosis, and 

which are also economically important pests. We examine citrus mealybugs 

Planococcus citri and long-tailed mealybugs Pseudococcus longispinus 

(Pseudococcidae), using metagenomic sequencing and targeted conventional PCR of 

specific symbionts. The symbiont communities of P. citri mealybugs differed 

significantly in their structure from those of P. longispinus, as did P. citri samples 

that came from different countries. The Alpha diversity for each library varied from 

1.4 to 2.4 in the Inverse Simpson Diversity Index and the number of number of 

OTUs varied from 27 to 69. Spiroplasma was found at low levels in all of the 

samples examined with metageonimcs, and conventional PCR-sequencing also 
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revealed the presence of Rickettsia in P. citri. This systematic census of facultative 

symbionts provides a deeper insight into the diverse bacterial biomes of mealybugs. 
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6.2 Introduction 

Bacterial symbiosis is now understood to be one of the fundamental pillars of the 

ecology and evolution of eukaryotes, (Saffo, 1992, Moran, 2001, Douglas, 2009). 

For example, mitochondria and chloroplasts are the descendants of once free-living 

prokaryotes engulfed and encapsulated by host eukaryotic cells, the human body 

contains ten-fold more cells of microbial origin than its own, and our gut bacteria are 

essential for healthy food digestion (Schwartz and Dayhoff, 1978, Ley, 2006, 

Backhed, 2005, Hooper, 2002). Symbiosis is such a successful strategy that it is 

estimated that more than 50% of all animal species are parasitic symbionts alone 

(Price, 1980, Windsor, 1998). Symbiotic interactions are also diverse. They can 

range from mutualistic relationships which benefit both partners, through commensal 

relationships which benefit one partner with negligible impact on the other, to 

parasitic relationships which benefit one partner at a cost to the other, but in practise 

symbiotic relationships often tend to fall along this continuum in a context-

dependent way rather than necessarily in neat and rigid categories (Swain, 2012, 

Gerardo, 2015).  

Although many fascinating and important symbionts form obligate relationships, 

facultative symbiotic relationships are also of great importance. Facultative 

symbionts are not essential for the survival of the host, and have evolved a diversity 

of strategies to maintain and expand their prevalence, such as horizontal transfer, 

sex-ratio distortion of the host, and induced cytoplasmic incompatibility (Russell and 

Moran, 2005, Russell et al., 2003, Weeks et al., 2003, Negri et al., 2006, Gotoh et al., 

2007). The diverse ecology of facultative symbionts has been studied in particular 
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depth in the aphids, most notably the pea aphid Acyrthosiphon pisum. Within this 

system, three major facultative symbiont species, amongst several others, have been 

identified. Infection by Hamiltonella defensa, in combination with a bacteriophage, 

is associated with parasitoid resistance (Oliver et al., 2003, Jiggins et al., 2000, 

Oliver et al., 2005, Wilcox et al., 2003), Regiella insecticola is associated with 

fungal resistance, parasitoid resistance and host plant specialisation (von Burg et al., 

2008, Vorburger et al., 2009, Jiggins et al., 2000, Scarborough et al., 2005, Tsuchida 

et al., 2004, Ferrari et al., 2007), and Serratia symbiotica is associated with heat-

shock resistance, and parasitoid resistance and in some cases may complement or 

replace the obligate symbiont Buchnera aphidicola (Oliver et al., 2003, Montllor et 

al., 2002, Moran et al., 1999). Understanding the dynamics of facultative symbiont 

infections in insects such as aphids is of applied, as well as fundamental, importance. 

As each of the three main facultative symbionts in pea aphids is associated with 

parasitoid resistance, their presence could negatively impact the efficacy of 

agricultural parasitoid biocontrol agents against aphids. Thus, information on the 

infection status of pest aphids in a field or greenhouse could prove crucial for a 

grower’s decision on pest control tactics.  

However, our understanding of the occurrence, dynamics and impact of facultative 

symbiont communities in most insects is still very limited. Here, we characterise the 

composition of facultative symbiont communities in mealybugs (Pseudococcidae), a 

group which are an important model in host-symbiont evolutionary biology, and 

which are also economically-important pests of agriculture and horticulture (Franco 

et al., 2004). Mealybugs possess a unique nested hierarchy of obligate symbionts. 
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The γ-proteobacterium Moranella endobia is nested within the β-proteobacterium 

Tremblaya princeps, which is in turn nested within the bacteriome organ 

surrounding the mealybug gut (Thao et al., 2002). The citrus mealybug genome 

contains several genes horizontally-transferred from facultative symbionts, revealing 

associations with these bacteria in its evolutionary past (Husnik et al., 2013), and 

Rickettsia and Spiroplasma-like bacterium have been detected in some other 

mealybugs (Singh et al., 2013, Hardy et al., 2008). However, what, if any, facultative 

symbionts infect mealybugs and what effect the facultative symbionts may have on 

the ecology of the host, is otherwise unknown. Here, we explore the microbiome of 

the citrus mealybug Planococcus citri (Risso) and long-tailed mealybug 

Pseudococcus longispinus (Targioni-Tozzetti) (Pseudococcidae), both common, 

polyphagous, globally distributed species (Ben Dov, 2015) using metagenomic 

sequencing of selected mealybug populations and larger-scale conventional PCR-

screening of targeted symbionts. 

 

6.3 Methods 

P. citri citrus mealybugs and P. longispinus long-tailed mealybugs were collected for 

metagenomic analysis from Belgian commercial greenhouses, and the PCS 

Ornamental Plant Research Centre in Ghent (Belgium) in 2011, Lisbon (Portugal), 

Cantania (Italy), and Bet Dagan (Israel) in 2012, and Oxford (UK) in 2013, for 

sequencing (Table 6.1). Adult female P. citri and P. longispinus individuals were 

collected for conventional PCR screening from Belgian commercial greenhouses in 

2012 and stored in absolute ethanol at -20°C until DNA extraction. Mealybugs were 
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cultured in darkness at 25°C and 50% relative humidity on white organic potato 

sprouts.  

 

 DNA isolation, PCR and gene library preparation for metagenomic 6.3.1

analysis 

DNA was isolated using a Zymo Research Tissue and Insect DNA Microprep
TM

 kit. 

DNA from mealybugs (15 populations, 8-20 mealybugs per population) was pooled 

into a single sample for each population. Three technical replicate 50 µL PCR 

reactions were conducted using 24µL molecular grade H2O, 10µL Promega GoTaq 

Flexi green buffer, 6.25µL MgCl2, 2.5µL dNTPs (2.5 mM each), 1µL forward 

primer, 1µL reverse primer, 0.25µL Promega GoTaq Polymerase and 5µL DNA. 

Forward primer F515 and reverse primer R806 targeted the V4 region of bacterial 

16S rRNA genes to produce a ~250bp amplicon (Munson et al., 1991a). As per the 

Earth Microbiome Project 16S rRNA amplification protocol version 4_13 (Wilson et 

al., 2006), the F515 was incorporated with a 5’ Illumina adapter, a forward primer 

pad and a forward primer linker and R806 was incorporated with a reverse 

complement of the 3’ Illumina adapter, a unique Golay barcode for each population, 

a reverse primer pad and a reverse primer linker (see Table 6.1 for details). 

 

The thermal cycle was as follows: 95°C 10 min, followed by 35 cycles of 95°C for 

30 s, 59°C for 30 s and 72°C for 30 s, followed by a final stage of 72°C for 7 min. 

PCR technical replicates were pooled and DNA concentration was measured using 

an Invitrogen Qubit
R
 Fluorometer 2.0. PCR products were purified using an 
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Ambion
R
 Magnetic Stand-96 as per manufacturer’s instructions. PCR products were 

measured for DNA concentration again and proportionally pooled in relation to 

concentration into a single library sample so that each population was equally 

represented. The library was run using gel electrophoresis on a 2% agarose gel at 

35V for 10 minutes, followed by 100V for 2 hours. For gel electrophoresis, 400µL of 

library, 80µL of New England Biolabs gel loading dye and 400µL of glycerol were 

used in combination in a single enlarged well. Gel was viewed under UV light and 

library band was removed using razor blades. Band was purified using a QIAquick
R
 

Gel Extraction kit, as per manufacturer’s instructions. DNA concentration was 

measured using an Invitrogen Qubit
R
 Fluorometer 2.0 and 260/280 ratio using a 

Nanodrop 2000 Spectrophotometer, until it met the requirements specified by the 

University of Oxford Wellcome Trust Centre for Human Genetics. There sequences 

were read with an Illumina MiSeq platform (Martinson, 2011).   

 

 DNA isolation and conventional PCR-screening for targeted symbionts 6.3.2

310 P. citri and 72 P. longispinus adult females from Belgian commercial 

greenhouses in 2012 were randomly selected and screened for specific bacterial 

symbionts Wolbachia, Rickettsia, Spiroplasma, Cardinium, Arsenophonus and 

Asaia. DNA was extracted by crushing individual mealybugs in 10% Chelex 

solution, boiling at 99°C for 15 min and centrifuging at 2,204 g for 20 min before 

pipetting off the supernatant for use in PCR reactions. Host control PCR reactions 

were performed to ensure the quality of DNA extraction, using the primers TL2-N-

3014 and C1-J-2183 (Simon et al., 1994); annealing temperature 55°C. PCR 
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reactions were performed with 4.8µL molecular grade H2O, 2µL Promega GoTaq 

Flexi green buffer, 1.25µL MgCl2, 2.5µL dNTPs (2.5 mM each), 0.2µL forward 

primer, 0.2µL reverse primer, 0.05µL Promega GoTaq Polymerase and 1µL DNA 

solution. The thermal cycle was 95°C for 2 min, followed by 35 cycles of 95°C for 

30 s, the annealing temperature for 30 s and 72°C for 1 min, followed by a final 

stage of 72°C for 7 min. PCR products were run on an agarose gel and viewed under 

a UV lamp. 

The following bacterial groups were screened for each mealybug alongside positive 

controls: Wolbachia (primers WSPF and WSPR (Kondo et al., 2002), annealing 

temperature 55°C), Spiroplasma (primers SpoulF and SpoulR (Montenegro et al., 

2005), annealing temperature 50°C), Rickettsia (primers 16SA1 (Fukatsu and Nikoh, 

1998) and Rick16SR (Fukatsu et al., 2001), annealing temperature 55°C), Cardinium 

(primers CF (Weeks et al., 2003) and CR (Singh et al., 2013), annealing temperature 

49°C), Arsenophonus (primers Ars23S-1 and Ars23S-2 (Thao and Baumann, 2004a), 

annealing temperature 62°C) and Asaia (primers Asafor and Asarev (Crotti et al., 

2009), annealing temperature 59°C). 

 

 Data processing and statistical analysis 6.3.3

We created V4 region 16S rRNA libraries for each of the mealybug populations 

studied. Sequences were read from each library from an Illumina MiSeq platform. 

Raw fastq files were processed with MORTHUR software (Windsor, 1998) into 

contigs files. Duplicate sequences and sequences longer than 275 bp were removed. 

The remaining sequences were aligned, filtered and pre-clustered into groups with a 
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maximum of two bp differences. Chimeras were removed using the UCHIME 

algorithm (Edgar et al., 2011). Sequences were then classified using a Bayesian 

classifier, and any sequences outside the scope of this study, i.e. those classed as 

chloroplast, mitochondria, archaea, eukaryote or unknown, were removed. The error 

rate was assessed against a mock group. Sequences were clustered into Operational 

Taxonomic Units (OTUs) to the level of order and classified (Table 6.2). Phinch 

software (Wild, 2015) was used to visualise the taxonomic structure of the samples. 

The total number of filtered reads and number of reads for major taxonomic 

composition (after the removal of γ-proteobacteria which made up 33.3% of reads 

across P. citri samples and 29.9% across P. longispinus samples) was recorded. 

A rarefaction curve was generated to display how sample diversity related to 

sampling effort as a collector’s curve; the figure was constructed in R v3.1.1, using 

the phyloseq package (Supplementary Fig. S.6.1) (Verstraete et al., 2007). The alpha 

diversity of samples was calculated using Inverse Simpson’s Diversity Index. A 

dendrogram was generated to display similarities in membership and structure across 

samples, using the jclass and thetayc calculators, and displayed in FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). In order to determine whether structure 

varied between subsets of the populations which varied in an aspect of interest (see 

Table 6.3 for selected samples), quantitative Unifrac weighted and qualitative 

Unifrac unweighted analyses were conducted. Sequence data was converted into 

biom format for further use (Gauthier et al., 2015). 

 



 
145 

6.4 Results 

The number of OTUs plateaued with increasing number of read sequences, 

indicating that our sampling depth was sufficient to provide a complete profile of the 

bacterial communities in the mealybugs (Supplementary Fig. S.6.1). The number of 

OTUs for each library varied from 27-69. The Alpha diversity for each library varied 

from 1.4 to 2.4 in the Inverse Simpson Diversity Index (Fig. 6.1). A dendrogram 

calculated at a 0.03 cut-off to display the clustering of community similarity across 

samples showed that clustering in membership and structure of library communities 

did not seem to be influenced by mealybug host species, host plant or location of 

origin. Most the populations cluster closely, except for three out-groups: PCK, PLD 

with PLN, and PCB (Fig. 6.2). Bar charts depicting the microbial community 

composition of each library showed that populations were mostly comprised of 

either Actinobacteria or Mollicutes, with the exception of PCF, which was 

dominated by Bacilli (Fig. 6.3). Following the exclusion of γ-proteobacteria, the 

most common bacteria found across the samples included Pseudomonas, 

Staphylococcus, Corynebacterium, Staphylococcaceae, Leucobacter, Acinetobacter, 

Nesterenkonia, Ochrobactrum, Tsukamurella, Oceanobacillus and Delftia (Table 

6.2). Venn diagrams calculated at a 0.03 cut-off showed that many of the bacterial 

OTUs were shared between P. longispinus collected from the same location with 

different host plant species, P. citri sourced from the same host plant species from 

different locations, P. citri sourced from different countries and wild versus 

laboratory-reared P. citri (Fig. 6.4). 
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P. citri microbial communities differed significantly in structure from P. longispinus 

microbial communities in a quantitative weighted Unifrac analysis (0.187, P 

<0.001), but not in a qualitative unweighted analysis (0.614, P = 0.156; Table 6.3). 

Pairwise comparisons did not find significant differences in either analysis for P. 

longispinus samples from different host plants at the same location, nor between P. 

citri samples from the same host plant from different locations (Table 6.3). 

Significant differences between P. citri samples from different countries were not 

found in unweighted analyses but were found in half of the weighted pairwise 

analyses (Table 6.3). The laboratory-reared P. citri library, when compared to wild-

collected P. citri samples from the same country of origin, was not found to differ 

significantly in weighted or unweighted analyses. 

None of the Wolbachia, Cardinium, Spiroplasma, Rickettsia, Arsenophonus or Asaia 

symbionts targeted in the conventional PCR-screening were detected in P. 

longispinus mealybugs. Arsenophonus and Asaia were also not found in P. citri 

mealybugs, however, Wolbachia and Cardinium were observed in P. citri at very 

low levels (0.96% and 2.25% of individuals respectively), whilst Spiroplasma and 

Rickettsia were detected in P. citri at higher levels of prevalence (5.2% and 11.3% 

respectively, Table 6.4, Fig. 6.5). 

 

6.5 Discussion 

Together, our metagenomic and conventional PCR screening revealed that citrus and 

long-tailed mealybugs contain diverse microbiomes, and harbour bacteria known to 

be common symbionts of insects, including Spiroplasma and Rickettsia, with 
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Wolbachia and Cardinium occurring at low levels. Some components of the 

microbiomes were affected by mealybug species, the plant they were feeding on, or 

their geographical origin, while other components of the microbiome appeared to be 

unaffected by these factors.    

The mealybug samples used in this study were found to have a far greater number of 

OTUs than a previous study of whole whitefly, aphid and psyllid-generated samples 

analysed by 16S rRNA V6-V7 pyrosequencing analysis, which observed just 3-7 

OTUs (Jing et al., 2014). This is despite mealybugs also being members of the 

Sternorrhyncha and phloem-feeders, and thus sharing very similar niches to these 

insects. Low microbial diversity is not unusual in insect studies, and has been 

observed in mosquito guts, tsetse flies, whole common bed bugs, and the abdominal 

tissues and guts of honeybees and bumblebees (Aksoy et al., 2014, Meriweather et 

al., 2013, Martinson, 2012, Moran, 2012, Martinson, 2011). However, another study 

examining pea aphid microbiota using the V4-5 region found 21 bacterial OTUs 

(Gauthier et al., 2015). It may be that these discrepancies are at least partly due to 

differences in the protocols used, and highlights the need for caution when 

comparing seemingly like-for-like microbiome studies. PCR bias in metagenomic 

studies can impact the overall results. Variation in protocols such as DNA extraction 

have been found to result in different PCR biases (and thus different reported 

compositions in microbiome communities) for identical original samples (Brooks et 

al., 2015). The samples in this study may have been subject to PCR bias, however, 

this is not a concern when comparing their microbiotas because all samples were 
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subject to the same protocols, and so any PCR bias would have been consistent 

between them. 

In our metagenomic study, the use of both Unifrac weighted and unweighted 

analyses can reveal interesting differences in population microbiome structure. In 

this case, P. citri and P. longispinus are not significantly different from each other in 

terms of which microbial taxa were present, but did differ in their relative 

abundances within their communities. P. citri samples located from different 

countries did not differ significantly in the presence/absence of OTUs but did differ 

significantly in composition in half of cases. Originating from the same host plant 

for P. citri, or the same geographical location for P. longispinus, seemed to result in 

microbial communities which were similar qualitatively and quantitatively in 

composition. It could be that inhabiting the same country provides sufficient shared 

ancestry, opportunities for horizontal transfer, or exposure to similar environmental 

microbes for mealybugs to maintain similar communities of facultative symbionts. 

This echoes a previous study in mosquitoes which found that gut microbiota would 

alter with diet, and a study in pea aphids which found bacterial community to be 

influenced by both host biotype and host plant specialisation (Martinson, 2011, 

Martinson, 2012, Gauthier et al., 2015).  

P. citri mealybugs in this study which had been reared in the laboratory over two 

years did not differ significantly from P. citri which were freshly collected from 

commercial greenhouses, indicating that lab-rearing had not lead to a significant loss 

of symbionts. Jing et al. (2014) also found that laboratory-reared and wild 

populations of whiteflies, aphids and psyllids did not differ significantly in their 
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richness or diversity. In fruit flies, in contrast, the microbial gut community 

composition can alter after periods of captivity (Chandler et al., 2011). It may be that 

the relatively constant plant sap diet of mealybugs results in them retaining their 

initial symbiont communities when moved to the laboratory, whereas the more 

substantial change in diet when other insects are moved to the laboratory results in 

their microbial communities changing more markedly. 

The metagenomics method used in this study holds the advantage of capturing a 

diverse range of bacterial taxa. However, caution should be taken when applying 

ecological diversity indices to 16S barcode reads, as bacteria are known to vary in 

gene copy number (Klappenbach et al. 2001). The presence of a bacterial taxon with 

high 16S rRNA gene copy number will skew the results of a diversity index. In order 

to compare the abundances of different bacterial taxa confidently, gene copy number 

must thus be taken into account and the data adjusted accordingly. 

Spiroplasma was found at low levels in all of the metagenomic samples studied, and 

in some of the conventional PCR samples. Spiroplasma are diverse bacteria found in 

several orders of insects, which can be horizontally and vertically transmitted, and 

can be insect symbionts and plant pathogens vectored by sap-sucking insects (Clark, 

1982, Gasparich, 2010, Gasparich, 2002, Regassa and Gasparich, 2005). 

Spiroplasma are generally commensal, usually occupying the gut lumen of insects, 

but can prove parasitic when they invade other tissues (Regassa and Gasparich, 

2006, Gasparich, 2002). They can lead to reduced fitness in pea aphids  and male-

killing in insects across different orders, such as fruit flies, butterflies, planthoppers 

and ladybeetles (Fukatsu et al., 2001, Montenegro et al., 2005, Kageyama et al., 



 
150 

2007, Jiggins et al., 2000). However, there have also been examples of Spiroplasma 

in mutualistic associations, including parasitoid resistance in pea aphids (Nyabuga et 

al., 2010). Thus, there are a variety of possible fitness impacts of Spiroplasma on P. 

citri and P. longispinus mealybugs, and further work will be needed to determine the 

effects of the symbiont in these hosts. 

The conventional PCR-screening revealed the presence of Rickettsia in just over 

11% of P. citri from Belgian greenhouse populations. Rickettsia have diversified to 

pathogenically infect a wide variety of animals with either vertical or horizontal 

transmission (Weinert et al., 2009, Caspi-Fluger et al., 2012). They negatively 

impact host fitness in pea aphids, induce male-killing in buprestid and lady beetles 

and parthenogenesis in parasitoid wasps (Sakurai et al., 2005, Lawson et al., 2001, 

von der Schulenburg et al., 2001, Giorgini et al., 2010). However, Rickettsia can also 

have beneficial effects, increasing heat tolerance in whiteflies, and parasitoid 

tolerance and resistance to viruses and insecticides in whiteflies (Brumin et al., 2011, 

HuiPeng and YouJun, 2012, Kontsedalov et al., 2008, Kliot et al., 2014). As with 

Spiroplasma, the wide-ranging effects of Rickettsia means that comparative life-

history experiments or experimental manipulations of the symbiont will be needed to 

determine whether it causes any fitness costs (or benefits) to mealybugs. 

This study provides the first in-depth bacterial community profiling of P. citri and P. 

longispinus mealybugs. Microbial communities varied quantitatively but not 

qualitatively, across mealybug species, host plant and geographic distribution. The 

reasons behind this warrant further study. The presence of Spiroplasma, Rickettsia, 

Wolbachia and Cardinium is of interest, but their presence alone does not necessarily 
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indicate they have a significant impact on these insect hosts, and further 

experimentation will be required to establish this. Spiroplasma in particular should 

be studied further in mealybugs, given its importance in plant health and insect 

ecology, and the prevalence of it across mealybug populations. This research will be 

important not only for understanding symbiont and mealybug ecology, but also for 

developing the potential for microbial resource management in integrated pest 

management. For microbial resource management to be implemented, a 

comprehensive knowledge of symbiont communities is needed, and this study 

provides the first step towards such an insight for two widespread and economically-

destructive mealybug species.  
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6.6 Tables 

 Table 6.1.  6.6.1

Mealybug populations used to generate libraries in this study, their species, location 

of origin, host plant (where known), number of individuals analysed and the reverse 

primer used (with a unique Golay barcode for each population) and the complete 

oligo sequence. The same forward primer, F515, was used for each population. The 

complete oligo sequence for F515 is 5’-

AATGATACGGCGACCACCGAGATCTACAC TATGGTAATT GT 

GTGCCAGCMGCCGCGGTAA-3’. 

 

Librar

y 

numbe

r 

Mealybu

g species 

Location Host 

plant 

Library 

abbrevia

tion 

No 

individua

ls used 

Reverse 

primer 

and 

Golay 

barcode 

Complete oligo sequence with 

unique Golay barcode 5’-3’ 

1 P. citri Lisben, 

Portugal  

- PCP 20 R806(AD

001) 

CAAGCAGAAGACGGCATACGAG

AT  TCGTGAT  AGTCAGTCAG CC 

GGACTACVSGGGTATCTAAT 

2 P. citri University 

of Oxford 

Botanic 

Garden, 

UK 

- PCO 20 R806(AD

002) 

CAAGCAGAAGACGGCATACGAG

AT  TACATCG  AGTCAGTCAG CC 

GGACTACVSGGGTATCTAAT 

3 P. citri Bet Dagan, 

Israel 

- PCI 20 R806(AD

003) 

CAAGCAGAAGACGGCATACGAG

AT  TGCCTAA  AGTCAGTCAG CC 

GGACTACVSGGGTATCTAAT 

4 P. citri Cantania, 

Sicily 

- PCS 20 R806(AD

004) 

CAAGCAGAAGACGGCATACGAG

AT   TTGGTCA   AGTCAGTCAG 

CC GGACTACVSGGGTATCTAAT 

5 P. citri Proefcentr

um Voor 

Sierteelt 

Belgium 

(laboratory 

stock) 

- PCL 20 R806(AD

005) 

CAAGCAGAAGACGGCATACGAG

AT  TCACTGT  AGTCAGTCAG CC 

GGACTACVSGGGTATCTAAT 

6 P. 

longispin

Ghent 

commercia

Dracaen

a species 

PLD 15 R806(AD

006) 

CAAGCAGAAGACGGCATACGAG

AT   TATTGGC   AGTCAGTCAG 
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us l grower 

(Roggema

n), 

Belgium 

CC GGACTACVSGGGTATCTAAT 

7 P. 

longispin

us 

Ficoplant-

Konaplant, 

Belgium 

Nolina 

species 

PLN 20 R806(AD

007) 

CAAGCAGAAGACGGCATACGAG

AT   TGATCTG AGTCAGTCAG CC 

GGACTACVSGGGTATCTAAT 

8 P. 

longispin

us 

De Meyst 

Werner, 

Belgium 

Hoya 

species 

PLH 8 R806(AD

008) 

CAAGCAGAAGACGGCATACGAG

AT  TTCAAGT   AGTCAGTCAG 

CC GGACTACVSGGGTATCTAAT 

9 P. citri Brico, 

Belgium 

Ficus 

benjami

na 

PCB 20 R806(AD

009) 

CAAGCAGAAGACGGCATACGAG

AT   TCTGATC   AGTCAGTCAG 

CC GGACTACVSGGGTATCTAAT 

10 P. citri Scheppersi

nstituut, 

Belgium 

Ficus 

benjami

na 

PCF 8 R806(AD

010) 

CAAGCAGAAGACGGCATACGAG

AT   TAAGCTA   AGTCAGTCAG 

CC GGACTACVSGGGTATCTAAT 

11 P. citri Thomas 

More 

Kempen, 

Belgium 

Ficus 

benjami

na 

PCK 20 R806(AD

011) 

CAAGCAGAAGACGGCATACGAG

AT   TGTAGCC   AGTCAGTCAG 

CC GGACTACVSGGGTATCTAAT 

12 P. 

longispin

us 

Meise 

National 

Botanic 

Garden, 

Belgium 

Phytolac

a species 

PLP 20 R806(AD

012) 

CAAGCAGAAGACGGCATACGAG

AT   TTACAAG   AGTCAGTCAG 

CC GGACTACVSGGGTATCTAAT 

13 P. 

longispin

us 

Meise 

National 

Botanic 

Garden, 

Belgium 

Calliand

ra 

species 

PLC 20 R806(AD

013) 

CAAGCAGAAGACGGCATACGAG

AT  GTTGACT   AGTCAGTCAG 

CC GGACTACVSGGGTATCTAAT 

14 P. 

longispin

us 

Meise 

National 

Botanic 

Garden, 

Belgium 

Guava 

species 

PLM 20 R806(AD

014) 

CAAGCAGAAGACGGCATACGAG

AT   CGGAACT   AGTCAGTCAG 

CC GGACTACVSGGGTATCTAAT 

15 P. 

longispin

us 

Meise 

National 

Botanic 

Garden, 

Belgium 

Lophoste

mon 

species 

PLL 20 R806(AD

015) 

CAAGCAGAAGACGGCATACGAG

AT   CTGACAT   AGTCAGTCAG 

CC GGACTACVSGGGTATCTAAT 
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 Table 6.2. 6.6.2

Total number of filtered sequence reads and OTUs (calculated with a 0.03 cut-off) 

for bacterial symbiont communities from 15 mealybug populations (PC = 

Planococcus citri and PL = Pseudococcus longispinus; the third letter indicates the 

geographical location or host plant), and the number of sequence reads for the most 

prevalent classified bacterial taxa after the removal of gamma proteobacteria, which 

made up the majority of readings. 

 

  

Library Sequence 
reads 

OTU
s 

Pseudo
monas 

Spiro
plas
ma 

Stap
hyloc
occu

s 

Coryne
bacteri

um 

Staphy
lococca

ceae 

Leuc
obac
ter 

Acin
etob
acter 

Nest
eren
koni

a 

Ochr
obac
trum 

Tsuk
amu
rella 

Ocea
noba
cillus 

Delft
ia 

PCB 753700 27 12 151 0 8 0 0 60 1 0 0 0 7 

PCF 501347 27 4 96 391 33 0 0 35 0 0 0 0 4 

PCI 693303 69 285 94 297 3213 519 383 67 173 191 177 25 4 

PCK 597846 36 8 113 5 8 2 2 77 0 0 0 0 25 

PCL 692452 54 19 143 583 3481 178 312 60 18 93 107 13 2 

PCO 740533 52 138 167 240 2439 189 97 78 11 25 17 9 4 

PCP 665817 51 1,326 120 110 2130 113 82 67 20 47 41 7 9 

PCS 642697 47 19 129 121 12390 181 99 58 23 6 9 9 3 

PLC 693841 43 6 141 406 980 147 33 81 27 0 0 38 15 

PLD 706968 41 10 154 5 24 6 3 103 0 1 0 1 16 

PLH 818458 52 33 168 5 13 1 1 122 0 0 0 0 53 

PLL 610566 46 43 115 106 349 75 16 65 8 2 1 10 7 

PLM 616690 40 9 119 538 1025 195 184 38 66 0 7 129 3 

PLN 757649 46 22 175 13 20 0 0 125 1 0 0 0 39 

PLP 386094 37 16 81 121 1123 211 135 36 44 0 0 20 4 
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 Table 6.3.  6.6.3

Metagenomic library groups for P. citri and P. longispinus (PC = Planococcus citri 

and PL = Pseudococcus longispinus; third letter indicates geographical location or 

host plant) selected for comparative quantitative Unifrac weighted and qualitative 

Unifrac unweighted analyses of microbial community composition. 

  Unifrac unweighted Unifrac weighted 

Groups Feature of interest Test statistic- UW Score P-value Test statistic- W score P-value 

All groups Different species 0.614007 0.156 0.187084 <0.001 

PLP, PLC, PLM, 

PLL   

Same location, different host 

plants     

 

  

  PLC-PLL 1 1.00001 1 0.235 

  PLC-PLM 1 1.00001 1 0.119 

  PLLL-PLM 1 1.00001 1 0.184 

  PLC-PLP 1 1.00001 1 <0.001 

  PLLL-PLP 1 1.00001 1 <0.001 

  PLM-PLP 1 1 1 <0.001 

PCB, PCF, PCK 
Different location, same host 

plant species         

  PCB-PCF 1 1.00001 1 0.596 

  PCB-PCK 1 1.00001 1 0.666 

  PCF-PCK 1 1 1 0.477 

PCP, PCO, PCI, 

PCS   
Different country of origin 

        

  PCI-PCO 1 1.00001 1 0.069 

  PCI-PCP 1 1.00001 1 0.024 

  PCO-PCP 1 1.00001 1 0.084 

  PCI-PCS 1 1.00001 1 0.049 

  PCO-PCS 1 1.00001 1 0.236 

  PCP-PCS 1 1 1 0.073 

PCL, PCB, PCF, 

PCK 

Wild versus laboratory-reared 

populations         

  PCB-PCF 1 1.00001 1 0.631 

  PCB-PCK 1 1.00001 1 0.696 

  PCF-PCK 1 1.00001 1 0.480 

  PCB-PCL 1 1.00001 1 0.247 

  PCF-PCL 1 1.00001 1 0.173 

  PCK-PCL 1 1 1 0.182 
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 Table 6.4.  6.6.4

Percentage infection rate of Wolbachia, Spiroplasma, Rickettsia, Cardinium, 

Arsenophonus and Asaia in 310 Planococcus citri and 72 Pseudococcus longispinus 

adult female individuals from commercial Belgian greenhouses based on targeted 

conventional PCR screening. 

 Infection rate (%) 

Bacterial groups Planococcus citri Pseudococcus longispinus 

Wolbachia 0.96 0 

Spiroplasma 5.16 0 

Rickettsia 11.29 0 

Cardinium 2.25 0 

Arsenophonous 0 0 

Asaia 0 0 
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6.7 Figures 

 Figure 6.1.  6.7.1

Inverse Simpson Diversity Estimates of the microbial communities for each 

mealybug population used in metagenomic symbiont screening (PC = Planococcus 

citri and PL = Pseudococcus longispinus; third letter indicates geographical location 

or host plant). 
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 Figure 6.2.  6.7.2

Dendrogram of the microbial communities for each mealybug population used in 

metagenomic symbiont screening (PC = Planococcus citri and PL = Pseudococcus 

longispinus; third letter indicates geographical location or host plant) with 0.03 cut-

off distance displaying clustering of microbial communities across mealybug 

populations, using the jclass and thetayc calculators. 
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 Figure 6.3.  6.7.3

Composition of the bacterial symbiont communities composition of 15 mealybug 

populations used in metagenomic symbiont screening (PC = Planococcus citri and 

PL = Pseudococcus longispinus; third letter indicates geographical location or host 

plant). (A) class level, with gamma-proteobacteria omitted, which consisted of the 

majority of reads, and unidentified bacterial groups removed, and (B) order level 

with only unidentified bacterial groups removed.  
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 Figure 6.4.  6.7.4

Venn diagrams displaying shared and unique microbial OTUs between mealybug 

populations: (A) PLP, PLL, PLC, PLM (Pseudococcus longispinus collected from 

different host plant species at the same geographical location); (B) PCS, PCO, PCI, 

PCP (P. citri collected from different countries); (C) PCL, PCF, PCB, PCK (wild 

versus laboratory-reared (PCL) P. citri); (D) PCB, PCF, PCK. (P. citri collected 

from the same host plant species but different geographical locations).  
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 Figure 6.5.  6.7.5

Percentage and 95% confidence intervals of the prevalence of: (A) Asaia spp.; (B) 

Arsenophonus spp.; (C) Cardinium spp.; (D) Rickettsia spp.; (E) Spiroplasma spp.; 

and (D) Wolbachia spp. bacterial symbionts in 310 Planococcus citri adult females. 
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6.8 Supplementary Figures 

 Supplementary Figure S.6.1.  6.8.1

Rarefaction curve displaying number of sequence reads against number of OTUs 

obtained of the microbial communities for each mealybug population used in the 

metagenomic symbiont screening (PC = Planococcus citri and PL = Pseudococcus 

longispinus; third letter indicates geographical location or host plant) with a 0.03 

distance. 
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HUHIUHIHIUHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHI 

“I may not have gone where I intended to go, but I think I have ended up where I 

needed to be.” 

― Douglas Adams 
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7 General Discussion 

 

This thesis aimed to investigate both the evolutionary ecology of endosymbiosis and 

the potential application of symbiont manipulation for pest control. I set out to 

examine the factors influencing, and fitness impacts of, variation in obligate 

symbiont density in citrus mealybug hosts, and determine whether disrupting the 

association between Planococcus citri and its symbionts, Moranella endobia and 

Tremblaya princeps, would reduce host fitness. I also explored the microbiota of P. 

citri in detail in search of common insect facultative symbionts that are known to 

affect host ecology. 

The density of T. princeps and M. endobia within P. citri, i.e. the number of 

symbiont cells relative to host cells, was chosen as a factor to examine the dynamics 

between this host and its symbionts. The quantity of mutualistic symbiont cells that a 

host requires will vary depending upon the situation, and regulation of symbiont 

density is thus essential for optimum host functioning (Rio et al., 2006, Laughton et 

al., 2014, Cunning and Baker, 2014, Falkowski et al., 1993, Wilkinson et al., 2007). 

Several host species, some of which are insects, have been found to adaptively adjust 

beneficial microbial endosymbiont density in certain scenarios or life stages 

(Vigneron et al., 2014, Rio et al., 2006, Hooper et al., 2012, Balmand et al., 2011, 

Ruby and Asato, 1993, Dimond and Carrington, 2008, Hinde, 1971, Falkowski et al., 

1993). Moreover, two mealybug species, Planococcus kraunhiae and Pseudococcus 

comstocki, were found to facultatively adjust their obligate symbiont density during 

their lifetime; for example, males lost their symbionts after pupation, most likely 
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because adult males are unable to feed and so assimilate the symbionts for 

sustenance (Kono et al., 2008).  

It is worth considering the suitability, consistency, accuracy and precision of qPCR, 

and the protocols used in this thesis, for the measurement of symbiont density within 

mealybugs and other insect hosts. It could be argued that the lack of correlation 

between mealybug fitness and symbiont density in this thesis was due to inaccurate 

and imprecise measurement of symbiont density by qPCR. However this is highly 

unlikely to be the case for two main reasons: first, qPCR is a widely used and 

accepted method of measuring gene copy number and second, if the qPCR 

measurements in this thesis were unreliable, then this would have created noise in 

the results, which was not the case (both discussed below). 

The measurement of gene copy number by qPCR (not to be confused with the 

measurement of gene expression by RT qPCR/qRT PCR) is a standard and 

commonly-used method for measuring bacterial symbiont density in insect and other 

eukaryotic hosts, whether fluorescence is emitted by a gene-specific molecular probe 

(used in this thesis) or a non-specific fluorescent dye, such as SYBR Green, (Kono et 

al., 2008, Correa et al., 2009, Luyten et al., 2006, Goffredi et al., 2007, Zhong et al., 

2007, Lu et al., 2012). Indeed, the qPCR assays used in this thesis were inspired by a 

qPCR assay used on other mealybug species (Kono et al., 2008). Studies have found 

that the data of symbiont gene copy number measurement by qPCR is well-

correlated with that by FISH and are often used or considered together, further 

supporting the suitability and reliability of qPCR (Loram et al., 2007, Mahadav et 

al., 2008, Kumar et al., 2015, Turnbaugh and Gordon, 2009, de Souza et al., 2009, 
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Epis et al., 2013). A study on human stool microbiota found that FISH was able to 

detect higher median levels of bifidobacteria than qPCR, however, this should not be 

of major concern to this thesis as the main interest was symbiont quantities in 

mealybugs relative to symbiont quantities in other mealybugs, rather than absolute 

symbiont numbers (titre) (Nakamura et al., 2009). In this thesis, qPCR also held the 

advantage over FISH in its ease of use when examining large numbers of samples. I 

optimised the qPCR assay with serial dilutions to ensure that amplification efficiency 

lay within the accepted boundaries of 95-105%. I also found symbiont densities to be 

consistent within laboratory populations of mealybugs, and there were consistent 

differences across mealybug populations for them to differ significantly from each 

other. Finally, an imprecision in the qPCR assays would affect all populations or 

treatments being compared similarly and result in increased noise in the data, but 

significant differences in symbiont density between mealybug populations were 

detected in Chapters 2 and 3, and a significant effect of heat-stress on symbiont 

densities in Chapter 4. This demonstrates that if the qPCR protocol resulted in any 

experimental noise, then the work had sufficient statistical power to handle it.  

Mealybug populations with higher symbiont densities did not perform significantly 

better than those with lower symbiont densities (either naturally or artificially 

reduced), which suggests that the majority of citrus mealybugs harbour mutualistic 

symbionts that do not increase or decrease host fitness (hence excessive T. princeps 

and M. endobia are commensal rather than beneficial). This raises the question as to 

why symbiont density varies so much in citrus mealybugs. It could be that it is non-

adaptive, and variation has persisted simply because it is unrelated to host fitness, 
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allowing excessive symbiont quantities to go unchecked by the host. Another 

possibility is that excessively high symbiont density is an evolutionary artefact. A 

key difference between selection on the host and selection on the symbiont is that the 

host is selected to maximise its fecundity, whereas the symbiont is selected to 

increase its transmission rate to new hosts, perhaps competing with other symbiont 

species or strains for the limited resources provided by the host (Frank, 1996a). In 

horizontally-transmitted symbionts, this could select for symbionts to maximise their 

density, but efficient vertical transmission resolves this conflict and leads to genetic 

homogeneity of symbionts (Smith, 2007, Frank, 1996a). Following the transition 

from horizontal to vertical transmission, the tendency of a symbiont to maximise its 

density could remain if it does not harm the fitness of the host. Although mealybugs 

differ in the density of their bacteria, the rate of synthetic activity of M. endobia and 

T. princeps was not investigated. It could be, for example, that mealybugs with low 

symbiont density compensate with bacteria with higher gene expression rates. This 

would be a worthwhile aspect to explore in the future by measuring the expression of 

T. princeps and M. endobia genes involved with amino acid synthesis, using RT 

qPCR.  

The results would seem to indicate that attempts to control citrus mealybugs in a 

field or greenhouse setting by targeting their obligate symbionts would likely prove 

ineffective, as mealybugs are resilient to even substantial reductions in symbiont 

densities. However, these symbionts are obligate to citrus mealybugs and do perform 

essential functions, so their complete removal should be fatal, or have significant 

fitness costs. I did not examine aposymbiotic mealybugs, and I am not aware of any 
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cases of mealybugs being completely purged of symbionts. It would be interesting to 

find the genetic link to symbiont density, and explore the possibility of symbiont 

oppression by using RNAi to target the host genome. For this, I would recommend 

targeting mRNA of the P. citri murABDEF genes with siRNA (Husnik et al., 2013). 

These genes are believed to be associated with the regulation of the cell wall stability 

of M. endobia, with a decrease in activity being expected to result in increased lysis 

of M. endobia (Husnik et al., 2013). It would also be interesting to confirm and 

clarify the role and activity level of these genes, as the results from the hybridisation 

experiment of Chapter 5 would suggest that it is the M. endobia genotype, rather 

than the P. citri genotype, that influences the density of this symbiont. It could be the 

case that the expression levels of murABDEF are not usually a limiting factor for M. 

endobia. If RNAi of these genes is successful, then the juveniles of P. citri would 

likely experience the greatest fitness costs, as essential amino acids will possibly be 

most needed by growing insects. 

Facultative symbionts can be highly influential in insect ecology and relevant to pest 

management, for example, Hamiltonella defensa and Serratia symbiotica in aphids 

(Russell et al., 2003, Degnan et al., 2009, Oliver et al., 2003, Oliver et al., 2005, 

Ferrari et al., 2004, Montllor et al., 2002). In Chapter 6, we used Next Generation 

Sequencing to identify the facultative bacteria present in citrus and long-tailed, 

Pseudocoocus longispinus, mealybugs. Wolbachia, Cardinium, Spiroplasma and 

Rickettsia were not found in P. longispinus, but were found with varying prevalence 

in P. citri. These bacteria have been found to have diverse impacts on their hosts, but 

their effects on mealybugs has not yet been established (Saridaki and Bourtzis, 2010, 
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Zchori-Fein and Perlman, 2004, Gasparich, 2002, Regassa and Gasparich, 2006, 

Fialho and Stevens, 2000, Jiggins et al., 2000, Lawson et al., 2001, von der 

Schulenburg et al., 2001). It would be interesting to examine the incidence of these 

symbionts in mealybugs further and their interactions with these hosts. 

In this thesis, T. princeps was consistently measured as being at a higher density than 

M. endobia. As all T. princeps cells will contain at least one M. endobia cell, and 

often more, this suggests that absolute M. endobia densities may have been 

consistently underestimated. The likely cause of this was the DNA extraction 

method, boiling crushed P. citri bodies and cadavers in Chelex, which was used in 

all the qPCR experiments in this thesis. Chelex DNA extraction protocols are widely 

used in insects and other arthropods to examine endosymbionts (Hansen et al., 2007, 

Benson et al., 2004, White et al., 2009, Graystock et al., 2013, Roberts and Hughes, 

2014). Adult female mealybugs are also soft-bodied, so breaking down a hard 

exoskeleton was not an issue, and Chelex-based extraction protocols also held the 

advantage that they are economical and simple to perform. The issue may have lain 

with the fact that two layers of bacterial cell wall would need to be punctured in 

order to extract M. endobia DNA: the cell wall of T. princeps and that of M. endobia. 

Chelex-based extraction may not have been sufficient to break 100% of M. endobia 

cell walls. With this information now apparent, I would recommend that additional 

measures are taken to extract DNA from mealybugs when intending to measure 

absolute densities of M. endobia. However, it is important to recognise that the 

underestimation of M. endobia would have been consistent, as the same protocol was 

used each time. The focus of this thesis was to determine how mealybugs varied 
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from each other in their symbiont density, rather than comparing the absolute 

densities (titre) of the two symbionts, and so the consistent underestimation of M. 

endobia density would not have impacted any of the conclusions in this thesis. 

Overall, this thesis has shown that citrus mealybugs will often harbour apparently 

excessive quantities of mutualistic symbionts at varying densities, that two distinct 

regulatory mechanisms exist for M. endobia and T. princeps, and that common insect 

facultative symbionts can infect P. citri. All the work presented here invites the 

prospect of further investigation, which I have described earlier, including the 

monitoring of gene expression rates in these symbionts, the targeting of P. citri 

genes to suppress M. endobia and the characterisation of Wolbachia, Cardinium, 

Spiroplasma and Rickettsia in P. citri. From an evolutionary ecology perspective, 

these results have revealed unusual dynamics in a bizarre tripartite symbiosis, and 

other symbiotic associations. From a pest control perspective, it shows that targeting 

M. endobia and T. princeps in a symbiont disruption method will likely be 

ineffective unless it can reduce these symbionts to below the critical threshold for 

efficient functioning. This does not close the door on Microbial Resource 

Management of citrus mealybugs, but means that further investigation will be needed 

to determine where this threshold lies.  
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