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Chapter 1

Introduction

1.1 The problem of baryogenesis

Although the existence of antimatter has been known since Dirac’s prediction of the

positron in 1928 — later confirmed by Anderson’s measurements in 1933 [1] —, it was

not until the later development of a coherent framework of relativistic quantum field the-

ories that the importance of these unusual particles came to be fully contemplated. For

it can be shown that a Lorentz invariant quantum theory is causal if, and only if, every

particle has a “mirror” partner with its same mass and spin but opposite charges. Thus,

rather than being mere accidents or artifacts of Dirac’s exotic equation, antiparticles must

be present in every self-consistent theory, and are therefore just as fundamental as the

particles themselves. In fact, each particle-antiparticle pair is a priori completely sym-

metrical, being excitations of one and the same quantum field, and as long as interactions

do not take place, the choice of what is to be called matter or antimatter is nothing but

a mere convention.

The picture might change when interactions are taken into account, since they could

favour the creation of a charge of a particular sign over its counterpart. And although the

electromagnetic and strong forces do not behave in such way, weak interactions do distin-

guish particles from antiparticles (see section 1.2). However, all experimental tests also

suggest that both baryon and lepton numbers are separately conserved in weak decays —

at least in those occurring at our high-energy machines —, leading to a certain scepticism

as to whether a baryonic excess could be generated this way. Still, a trivial question begs

to differ: why is a symmetry between matter and antimatter not observed in our everyday

life? Why is the world around us constituted almost exclusively of matter particles?

One a priori possible way to avoid the problem is to hypothesize that the predominance
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of matter over antimatter is only a local feature of our region of the Universe, which

could be compensated by an excess of antimatter elsewhere. But then the question that

naturally follows is: how close to us can the nearest antimatter-dominated region be?

Or, put another way, how big is this matter-dominated region we happen to live in? We

can safely state that it must be at least as big as the Solar System, for if there were

a significant amount of antimatter so close to the Sun, its annihilation with solar wind

particles would be the dominant source of γ-ray bursts in the sky [2]. Secondly, despite

numerous attempts, not a single antihelium nucleus has ever been found in direct cosmic

rays detection [3, 4], and the current accuracy of the measurements leads to an upper

limit of 10−7 for the fraction of antimatter over matter in the galaxy1. This negative

result in the search for heavy antinuclei cannot be underestimated: if a single anticarbon

were found in cosmic rays, this would be a confirmation that there is an anti-star fusing

antihydrogen and antihelium [2]. Finally, it has been shown that if the Universe were

indeed a patchwork of matter- and antimatter-dominated regions, they would inevitably

overlap some time between the recombination and structure formation epochs, and the

resulting annihilations would yield a cosmic diffuse gamma-ray spectrum incompatible

with the observations [5]. The conclusion is that this spectrum can only be as we observe

if the matter-dominated region is at least of the size of the whole visible Universe.

In fact, current measurements of the fraction of baryonic matter in the Universe [6, 7]

lead to a ratio of the net number of baryons per number of photons

nB
nγ
' 6.75× 10−10. (1.1)

This means that, on average, there was an excess of one baryon for every one billion

matter-antimatter annihilation events taking place in the early Universe.

Another attempt to avoid further theoretical difficulties would be to assume the asym-

metry to have always existed, taking a baryonic excess as an initial condition of our

Universe. However, apart from being theoretically unpleasing and unappealing to suppose

an asymmetrical initial state with no better reason than an ad hoc argument, such initial

asymmetry would be “diluted away” if we accept that the Universe underwent a period of

exponential inflation, resulting in a symmetric Universe soon after the rapid expansion [8].

A more appealing alternative is to assume that the Universe was initially symmetric,

and that the asymmetry was generated dynamically at some later stage of its history.

1The antiparticles found up to date in cosmic ray searches are positrons and antiprotons, which can be
explained as being secondary products in reactions occuring as the cosmic rays travel from their source to
the detector on the Earth.
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This is called baryogenesis, and it can only occur if the three Sakharov conditions are

satisfied [9], namely there must be (i) baryon number non-conservation; (ii) C and CP

violation; (iii) departure from thermodynamical equilibrium. The reason for the first

requirement is obvious. The second condition is needed if the interactions are to distinguish

between matter and antimatter. More specifically, if charge symmetry is conserved then

every process generating an excess of baryons would proceed with the same rate as the

charge-conjugate process generating an excess of anti-baryons. Similarly, if CP is an exact

symmetry of the model, the width of a process generating an excess of left-handed baryons

would equal that of the CP conjugate process generating an excess of right-handed anti-

baryons, and the net baryonic number (adding up the excess of left- and right-handed

baryons) would still vanish. Finally, the third condition is required because, by definition,

a state of thermodynamical equilibrium is such that the rate of any process equals that

of its reverse, in which case no net baryon asymmetry could be generated. Alternatively,

it could be noted that in thermodynamical equilibrium the number density of baryons

and anti-baryons is given by the Fermi-Dirac distribution (e−E
2/T 2

+ 1)−1, and the CPT

theorem ensures that particles and anti-particles have the same mass, implying the same

number density.

1.2 Baryogenesis in the SM

It is quite astonishing that the Standard Model of Particle Physics (SM) in principle

contains all these necessary ingredients to explain the cosmological problem of the baryon

asymmetry of the Universe. And, of course, all of them involve the weak interaction.

Starting with the requirement of violation of C-symmetry, note that all weakly-interacting

neutrinos are left-handed (and anti-neutrinos are always right-handed). Now, C conjuga-

tion takes a neutrino to an anti-neutrino (and vice-versa) without changing handedness, so

that the charge-conjugate of an existing operator involving a left-handed neutrino would

contain couplings to left-handed anti -neutrinos, and is therefore forbidden. For instance,

the charge-conjugate of the decay

π+ → µ+ + νµ,

in which the emitted neutrino is always left-handed, is never observed, and muonic decays

of π− are always associated with emission of a right-handed anti-neutrino.

This observation has initially led to the speculation that maybe weak interactions do

not preserve charge and parity (C and P) separately, but only their product, CP. However,
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this turns out not to be the case either, as CP is also violated in the SM due to the existence

of three fermionic generations. Indeed, let V u
L and V d

L be the 3× 3 unitary matrices that

rotate up- and down-type left-handed quarks from the flavour to their mass eigenstates.

After this basis change the charged weak interactions between quarks are governed by the

term

L ⊃ − g√
2
uL γ

µW+
µ (V u

L V
d †
L ) dL + H.c., (1.2)

where g is the SU(2)L coupling constant, uL and dL are fermionic triplets (accounting

for the three generations of up- and down-type quarks, respectively) and V u
L V

d †
L ≡ VCKM

is the so-called CKM matrix describing the mixing between different quark flavours [10,

11]. Being a 3 × 3 unitary matrix, VCKM contains one complex phase which cannot be

rotated away by field redefinitions [12], and which has the physical significance of inducing

CP violating effects, as experimentally confirmed by measurements of kaon and B-meson

properties [13] (for a review see ref. [14]).

As for the requirement of displacement from thermodynamical equilibrium, there are

a priori two potential sources for it in the SM, namely the expansion of the Universe,

which proceeds with a rate given by the Hubble parameter H, and the electroweak phase

transition (EWPT), the process through which the Higgs field acquires its vacuum expect-

ation value (VEV) and breaks the electroweak symmetry, giving mass to gauge bosons and

fermions and leaving a remnant electromagnetic symmetry unbroken.

To better understand this latter process first note that, since the Universe is expanding,

in earlier stages of its history all its content must have been enclosed in a much smaller

volume, resulting in a larger energy density and larger temperature (see ref. [15] for a

pedagogic review of the Hot Big Bang cosmology). At about 10−10 s after the Big Bang

the average temperature of the Universe was O(100 GeV), too hot even for quarks and

gluons to hadronize (which takes place at energies below ΛQCD ' 250 MeV [16]), and the

Universe was then pervaded by a plasma of SM particles. Under these conditions, part

of the energy released by the Higgs field as it gets a VEV must be spent in generating

the masses of these plasma constituents [17], and the larger the density of particles in the

plasma is, the smaller the VEV must be2 in order to minimize the system’s free-energy

after symmetry breaking. But beyond a certain critical temperature Tc the plasma is so

thick that more energy would be required to generate its mass than can be gained by

shifting the Higgs VEV, and electroweak symmetry breaking cannot occur spontaneously.

Thus electroweak symmetry is restored at high temperatures [18, 19].

2Recall that particle masses are proportional to the Higgs VEV.
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The Universe then starts from a stage in which the electroweak symmetry is preserved,

and, as it expands and its temperature drops below a certain Tc, a transition from the

symmetric to the broken phase can take place. The dynamics of this phase transition will

depend crucially on the details of the underlying model, especially on the particle content

and their interactions with the Higgs field. If the Higgs VEV varies discontinually in this

process, the phase transition is said to be of first order and it proceeds via nucleation of

bubbles of the broken phase in a “sea” of symmetry-preserving vacuum, much like boiling

water. This introduces a second time-scale of displacement from equilibrium, namely the

duration of the phase transition, i.e. the time it takes for the bubbles of broken phase to

fill the entire Universe.

Let us turn now to the requirement of baryon number violation. Although in the

SM both baryon and lepton number are accidental symmetries of the Lagrangian, and the

difference B−L is an exact symmetry of the theory, the sum B+L has an anomaly [20, 21]

leading to3

∂µJ
µ
B =

3

64π2
εµνρσ

(
g2F aµνF

a
ρσ − g′2BµνBρσ

)
, (1.3)

which relates baryon number to the instantaneous configuration of the gauge fields. Now

these gauge fields have infinitely many different vacuum states, all related among them-

selves by gauge transformations and thus having the same energy. But for SU(2) not

all of them are physically equivalent, since in this case gauge transformations may be-

long to different homotopy classes, so that some pairs of gauge related states are not

continuously obtainable one from the other by means of gauge transformations. A trans-

ition between these states would then involve an energy cost and would have physical

consequences [22, 23].

Indeed, it is possible to rewrite the r.h.s. of eq. (1.3) as a total divergence ∂µK
µ [24],

with

Kµ =
3

32π2
εµνρσ

[
g2
(
W a
ν F

a
ρσ −

g

3
εabcW a

ν W
b
ρ W

c
σ

)
− g′2Aν Bρσ

]
, (1.4)

where Wµ, Aµ are respectively the SU(2)L and U(1)Y potentials. To each gauge configur-

ation one can then associate a so-called Chern-Simons number,

NCS[W ] ≡ g2

32π2

∫
d3x εijk

(
W a
i F

a
jk −

g

3
εabcW a

i W
b
j W

c
k

)
,

nCS[A] ≡ g′2

32π2

∫
d3x εijkAiBjk,

(1.5)

3Here, the overall factor of 3 is the number of fermionic families, g and g′ are respectively the SU(2)L
and U(1)Y gauge couplings, while Fµν ≡ ∂µWν −∂νWµ− g [Wµ,Wν ] and Bµν ≡ ∂µAν −∂νAµ are the field
strength tensors for these two gauge groups.
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which are integer-valued at vacuum configurations — in fact nCS[Avac] = 0 since it is

proportional to the field strength itself —, and which characterize the homotopy class

to which this vacuum belongs. A transition from one vacuum to another with different

such integer then induces, through the anomaly, a corresponding change in the net baryon

number,

∆B =

[∫
d3xJ0

B

]t=+∞

t=−∞
=

∫
d4x ∂µJ

µ
B =

[∫
d3xK0

]t=+∞

t=−∞
= 3 ∆NCS. (1.6)

The probability for this to occur via tunneling at zero-temperature can be computed

from a semi-classical approximation [25] and is found to be O(e−16π2/g2
) ∼ 10−162 [26].

This prohibitively small number is the reason why B violation is never observed today.

However, at high temperatures the system may use the energy available in the surrounding

plasma to jump over the barrier instead of having to tunnel through it, and the process

is then much less suppressed, with a rate per unit volume in the broken phase given

by [27, 28]

Γbroken
sph ∼ T 4 exp

(
−4π

g

v(T )

T
B(T )

)
, (1.7)

where v(T ) = 2mW (T )/g is the Higgs VEV at temperature T and B(T ) ∼ O(1) is obtained

by computing the energy of the classical field configuration sitting on top of the energy

barrier separating the two vacua [29] (i.e. a saddle-point solution of the energy functional),

so-called a sphaleron4 [30]. In the unbroken phase the analysis is more complicated, as

there is no sphaleron solution around which to perform a semi-classical expansion, but

a statistical approach (confirmed by lattice simulations) leads to an unsuppressed rate

Γunbroken
sph ≈ α5

WT
4 [31, 32, 33].

The efficiency of these processes is measured by comparing their rate to the Hubble

expansion parameter H, which for a radiation-dominated Universe reads

H2 =
π2g∗T

4

90M2
Planck

, (1.8)

with g∗ ≈ 106.75 the number of effective degrees of freedom in the plasma. If the total rate

Γ/T 3 � H, the sphaleron process is effectively turned off, while Γ/T 3 � H implies that

the process is extremely efficient and proceeds in thermal equilibrium. This is clearly the

case in the unbroken phase for T . 1012 GeV, so that any asymmetry generated by B−L
conserving processes at an earlier epoch would be washed out afterwards [27]. Similarly,

4From ancient greek σφαλερóν, “likely to make one stumble, trip or fall”. Its Chern-Simons number
equals 1

2
, as expected from its being a configuration lying in-between vacua with ∆NCS = 1. Through

the anomaly one can also say it has 3
2

for baryon and lepton number, in the sense that the variation in
these quantum numbers in a transition from one vacuum to the sphaleron configuration is half the total
variation in a transition between two neighbouring vacua.
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no baryon asymmetry could result from the EWPT if the sphalerons are still efficient

after the transition takes place. Thus a necessary condition for successful electroweak

baryogenesis is that supercooling takes place, causing the sphalerons to be switched off in

the broken phase5, Γbroken
sph /T 3 � H, which then yields [34, 35]

vc
Tc
& 1.0 (1.9)

with vc ≡ v(Tc). Clearly the Higgs VEV must vary discontinuously, and from the fact

that there is a lower bound on this discontinuity one says that eq. (1.9) corresponds to a

requirement of a strongly first order electroweak phase transition.

We are now in a position to understand why the Standard Model actually can not

properly account for the baryon asymmetry of the Universe.

The first reason for this failure is that, in the SM, the electroweak phase transition

would be first order only for Higgs masses mh . mW [36, 37, 38, 39], well below the

observed valuemh ≈ 125 GeV measured by ATLAS [40] and CMS [41] in July 2012. In fact,

for this value of the Higgs mass the would-be “electroweak phase transition” is actually a

cross-over, i.e. a perfectly continuous process, and therefore does not introduce any new

source of displacement from thermal equilibrium apart from the Universe’s expansion.

Thus, whenever the B violating sphalerons are active, they are in thermal equilibrium,

and the net generated asymmetry is close to zero.

The other problem is the insufficient amount of CP violation provided by the CKM

matrix alone [42], due not only to the smallness of the Jarlskog invariant J ≈ 3.06 ×
10−5 [43, 44], but also aggravated by the huge suppression from the tiny Yukawa couplings.

Indeed, the amount of CP violation in the SM can be quantified by [45]

dCP = J (m2
t −m2

c)(m
2
t −m2

u)(m2
c −m2

u)(m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d), (1.10)

where the factors of quark mass differences appear because, if any two quarks of same

charge were degenerate, the CKM matrix could be made real by a suitable field redefinition

and no CP violation would take place. This dimensionful quantity should be compared

to the relevant energy scale of the problem, which for electroweak baryogenesis is the

temperature of the phase transition T ∼ O(100 GeV). The net baryon asymmetry can

then be roughly estimated as
nB
s
∼ dCP

g∗T 12
∼ 10−21 (1.11)

5It follows, in particular, that the expansion of the Universe cannot be the sole source of displacement
from equilibrium.
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where s is the entropy density in the Universe. That this is off the observed value by more

than 10 orders of magnitude is a strong indicative that CP violation in the SM is too small

for baryogenesis.

The above argument relies on the assumption that the plasma temperature is the

only relevant energy scale of the problem, so its conclusion could be circumvented by

elaborating a more intricate mechanism in which lower scales would also be relevant. This

was attempted in ref. [46], where coherent scattering of low-momentum (p � T ) quarks

against the bubble wall was considered as the main source of the baryonic asymmetry.

But this mechanism was ultimately dismissed, because damping in the plasma causes

low energy quarks to actually decohere, making it impossible for an inherently quantum

effect such as CP violation to manifest itself [42, 47]. The conclusion is that electroweak

baryogenesis requires additional sources of CP violation apart from the complex phase in

the CKM matrix [48]6.

1.3 Beyond the Standard Model

Together with the absence of a reasonable dark matter candidate — a stable, neutral

particle whose production and decay rates during the thermal evolution of the Universe

lead to the correct particle abundance as required by cosmological observations [51] —

and the fact that in the SM neutrinos are massless — in contradiction with measurements

of neutrino mixing —, the origin of the matter-antimatter asymmetry of the Universe is

therefore amongst the few experimentally-based motivations to look for physics beyond

the SM (BSM) below the Planck scale7.

A currently promising scenario for baryogenesis, which is also related to the solution

of the problem of neutrino masses, is via leptogenesis [54, 55]. Although massive neut-

rinos could easily be accomodated in the SM via the introduction of right-handed Dirac

neutrinos with tiny Yukawa couplings, this simplistic solution is usually frowned upon

for aggravating the naturalness problem in the flavour sector [56, 57]. A more plausible

alternative is that neutrinos be Majorana fermions, leading to a natural explanation for

the small masses due to the see-saw mechanism [58, 59], which could be tested in searches

6Other mechanisms to obtain the baryon asymmetry with just SM CP violation have also been proposed,
such as the so-called Cold Electroweak Baryogenesis, but a thorough investigation of their viability is still
an open issue [49, 50].

7At MPlanck ∼ 1019 GeV gravitational effects become relevant, which are not included in the SM since it
is still not known how to fit them in the framework of a quantum field theory (if this is at all possible). But
because MPlanck is many orders of magnitude above the TeV scale, this fundamental incompleteness of the
SM is hardly a concern for the study of the TeV scale phenomena accessible at modern colliders (except in
models with extra spatial dimensions, where the fundamental scale of gravity can be much lower [52, 53]).
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for lepton number violating effects such as neutrinoless double-β decays [60]. In fact,

lepton number violation is typically required in mechanisms for neutrino mass generation,

even in effective approaches via higher-dimensional operators in the Lagrangian. Now, at

temperatures below the mass of the right-handed Majorana neutrino, these lepton number

violating decays will be unidirectional — therefore out of equilibrium —, and due to CP-

violation in the leptonic mixing matrix a net lepton number excess is generated, which is

then converted to a baryon excess via sphalerons (recall that B−L is an exact symmetry).

This is the core of the leptogenesis mechanism [61].

Another very attractive scenario is electroweak baryogenesis. In this case displacement

from thermodynamical equilibrium is provided by the electroweak phase transition, which

must be strongly of first order as discussed in the previous section. As the bubbles of

true vacuum expand in the symmetric background, particles in the plasma scatter off the

bubble wall and, due to CP violation, a chiral excess is generated which is converted in a

baryonic excess via sphaleron processes [46, 62, 63, 64, 65, 66, 67]. In order to enhance

the SM prediction of the phase transition strength, as well as the amount of effective CP

violation, the BSM sector must couple rather strongly to the SM particles, in particular

to the electroweak symmetry breaking sector. Furthermore, its characteristic energy scale

must not be much larger than the electroweak scale in order for the new particles to

be abundant in the plasma during the phase transition. It follows that not only the

new physics introduced, but the whole mechanism of electroweak baryogenesis should be

testable at current and near-future collider experiments, which is what makes this proposal

especially attractive [68].

The nature of the electroweak phase transition, and the ensuing baryon asymmetry,

has been extensively studied in many BSM scenarios such as supersymmetric theories [69,

70, 71, 72, 73, 74, 75, 76] as well as in simpler extensions such as the SM with an extra

scalar singlet [77, 78, 79] and in two-Higgs-doublet models (2HDMs). In the latter it is

found that the correct value for the baryon asymmetry can be predicted in some simplified

cases [80, 81], for specific regions of its parameter space [63, 82, 83] and in a general CP-

violating scenario [84]. However, a general study of the dependence of the electroweak

phase transition with the various parameters of a 2HDM is challenging, due to the high

dimensionality of the parameter space — 14 free parameters in the most general case,

reduced to 10 when a softly broken Z2 symmetry is imposed, as discussed below.

The purpose of this work is precisely to shed some light on this still largely unexplored

issue. We perform a random scan over an extensive region of the 2HDM parameter space,
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looking for points with a strong first order electroweak phase transition in order to establish

the extent to which 2HDMs are viable candidates for baryogenesis, and which regions of

the parameter space are preferred for this purpose [85]. With this knowledge at hand, we

proceed to analyse what such a cosmological bound can teach us about the phenomenology

of the model, especially whether it could be used to indicate favourable search strategies

for testing these scenarios at collider experiments [86].

Granted, the simple addition of a second doublet to the scalar sector does not solve

many of the problems affecting the SM, such as the lack of gauge unification, the hier-

archy problem, the strong CP problem [87] or the flavour puzzle [88]. But the converse

is often true: scalar sectors with two Higgs doublets are well motivated, emerging nat-

urally in many SM extensions such as in supersymmetric [89, 90] and Composite Higgs

scenarios [91, 92], in many axionic solutions to the strong CP problem [93], GUT the-

ories, etc. Under an exact Z2 symmetry8 it could also provide a dark matter candid-

ate [94, 95] and allow for radiative generation of neutrino masses [96]. Finally, although

it is one of the simplest extensions of the SM, the 2HDM contains all the necessary

ingredients required for baryogenesis: (i) it modifies the scalar sector, introducing new

bosons coupling to the driver of the electroweak phase transition and thus likely enhan-

cing its strength; (ii) it can accomodate additional sources of CP violation, either explicit

or spontaneous. For all these reasons, 2HDMs are quite popular as an effective low en-

ergy scalar sector, and their phenomenology have been extensively studied in the literat-

ure [97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109]. The current work differs

from these in the cosmological motivation behind the benchmarks here analysed.

The general features of the model are introduced in chapter 2. Let us emphasize from

the outset that, because CP violation is not essential for the study of the electroweak

phase transition — which is the focus of the current work —, we will disregard this effect

for simplicity. This not only reduces the number of free parameters by one, but also

simplifies many analytic expressions, allowing us to explain our results in an easier and

more transparent way. Of course, for the actual computation of the generated baryon

asymmetry some CP violation has to be reintroduced. However, constraints from electron

and neutron EDMs will generally enforce any CP violating phase to be quite small, namely

O(10−2) [110, 111, 112], in which case their impact on the phase transition strength is

mild [113] and the results presented here are still valid9.

8In this case the model is also called Inert Doublet Model.

9Whether the required smallness of the CP violating phase still allows for the generation of the observed
baryon asymmetry is an issue worth of further investigation, but it lies outside the scope of this work.
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The most general Yukawa Lagrangian is presented in section 2.1, where it is shown

that the existence of two scalar doublets coupling to fermions leads to dangerous tree-

level flavour changing neutral currents (FCNC). We discuss how the harmful terms are

forbidden by imposing a Z2 symmetry which naturally enforces each fermion type to couple

to one doublet only. There are four possible combinations, and the model is categorized

accordingly as 2HDM Type I, II, X (also called Lepton Specific) and Y (Flipped). The

top quark has by far the largest coupling to the scalar sector, and so is chosen to always

couple to the same doublet in all four types just listed. We note in passing that the scalar

sector of the Minimal Supersymmetric Standard Model (MSSM) is a Type II 2HDM, this

being the reason why most works on 2HDMs have focused of this model type. Here we

will also look in detail into Type I, as this model type is much less constrained than the

other three.

Theoretical and experimental constraints on the model parameters are discussed in

section 2.4. Stability of the electroweak vacuum is required up to a cutoff Λ ' 10 TeV,

and tree-level unitarity is imposed on 2→ 2 scattering amplitudes, thus setting an upper

bound on the quartic couplings. From the experimental side, we ensure that the new

scalars’ contribution to loop-induced quantities such as electroweak precision observables,

FCNC processes (specifically B → Xsγ) and B meson mixing do not drastically alter the

SM predictions, which are in good agreement with the precision measurements. Finally, we

discuss the constraints imposed by direct searches for new scalars at collider experiments,

including the measured properties of the 125 GeV resonance recently observed.

For the evaluation of the phase transition strength the relevant mathematical tool is

the effective potential, which we compute perturbatively to 1-loop order in sections 2.3

and 3.1 (at zero and finite temperature, respectively). We will see that the contribution

from light particles, such as down-type quarks and leptons, is negligible due to their small

couplings to the scalar sector. This means that the phase transition strength is insensitive

to the specific structure of the Yukawa sector, being the same for all four types mentioned

above. In fact the model type will only have an impact on the constraints coming from

BR(B → Xsγ) and collider searches.

The details of our scan and our method for evaluating the phase transition strength

are presented in section 3.2, with results and analysis given in section 3.3. Our findings

point to a favoured region of the parameter space with a rather exotic phenomenology,

where the pseudoscalar decays largely into a Z boson and a heavy non-SM-like scalar.

These scenarios have been little explored in collider searches so far, as they are largely
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non-existent in supersymmetric extensions. A detailed analysis of the discovery prospects

for this decay channel is performed in chapter 4 for two benchmark points, where we find

that a 5σ discovery can be reached at 13 TeV with a luminosity L ∼ 20−200 fb−1, within

reach of the next LHC run.

Chapter 5 is reserved for our conclusions.
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Chapter 2

Two-Higgs-doublet models

Two-Higgs-doublet models (2HDMs) figure among the most minimalistic extensions of the

Standard Model, differing from it only by the addition of an extra scalar SU(2)L doublet

to its field content (hence the name of the model). The scalar sector of the theory is then

composed of

Φ1 =

ϕ+
1

ϕ0
1

 =
1√
2

 √2ϕ+
1

h1 + i η1

 , Φ2 =

ϕ+
2

ϕ0
2

 =
1√
2

 √2ϕ+
2

h2 + i η2

 , (2.1)

where the upper components of the doublets are charged under U(1)em, while the bottom

ones are neutral.

The most general renormalizable potential for two doublets Φ1 and Φ2 that is invariant

under SU(2)L × U(1)Y can be written as1

Vtree(Φ1,Φ2) =− µ2
1Φ†1Φ1 − µ2

2Φ†2Φ2 −
1

2

(
µ2Φ†1Φ2 + H.c.

)
+

+
λ1

2

(
Φ†1Φ1

)2
+
λ2

2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+

+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

1

2

[
λ5

(
Φ†1Φ2

)2
+ H.c.

]
+

+
{(

Φ†1Φ2

) [
λ6

(
Φ†1Φ1

)
+ λ7

(
Φ†2Φ2

)]
+ H.c.

}
,

(2.2)

where µ2, λ5, λ6 and λ7 can be complex, opening the possibility of having additional

sources of CP violation coming from the scalar sector. Note, however, that complex phases

in the parameters in the potential are not sufficient to guarantee CP violation. First,

because at least one complex phase can be absorbed by a field redefinition which cannot

alter the physics. Moreover, since the two doublets have the same quantum numbers, it

1The condition of invariance under the gauge group requires that the terms of the potential always
appear in products of the form Φ†Φ. Moreover, since we want the potential to be renormalizable, it can
only have up to quartic interactions, that is, terms of the form

(
Φ†Φ

) (
Φ†Φ

)
. The most general potential

is obtained when we consider all possible combinations of Φ1 and Φ2 for these quadratic and quartic terms.
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is a matter of choice whether we describe the system in terms of Φ1 and Φ2 or of linear

combinations thereof, and after such basis transformation the potential would still look

like eq. (2.2), albeit with different values for the parameters [114, 115, 116]. The sufficient

and necessary condition for the 2HDM potential to be explicitly CP conserving is that a

basis choice exists in which all parameters are real [117, 118].

Due to the gauge symmetries, a general minimum of this potential can always be

written as

〈Φ1〉 =
1√
2

 0

v cosβ

 , 〈Φ2〉 =
1√
2

 u

v sinβ eiξ

 , (2.3)

with u ∈ C. The case u 6= 0, when the charged component acquires a VEV, implies in

breaking of U(1)em and a consequent non-vanishing mass for the photon. This is of course

not realized in our Universe, so we will henceforth focus on u = 0 only. On the other

hand, the phase ξ can be shifted from the VEV to the parameters in the potential via a

redefinition Φ2 → e−iξΦ2.

In this case one can define the fields rotated to the so-called Higgs basis as

Φ′1 = cosβ Φ1 + sinβ Φ2

Φ′2 = − sinβ Φ1 + cosβ Φ1

 =⇒ 〈Φ′1〉 =
1√
2

 0

v

 , 〈Φ′2〉 = 0, (2.4)

so that Φ′1 behaves like the SM scalar doublet. This then means that

G+ = cosβ ϕ+
1 + sinβ ϕ+

2 (charged Goldstone), (2.5)

H+ = − sinβ ϕ+
1 + cosβ ϕ+

2 (charged Higgs), (2.6)

G0 = cosβ η1 + sinβ η2 (neutral Goldstone), (2.7)

hSM = cosβ h1 + sinβ h2 (SM Higgs), (2.8)

so that β plays the role of a mixing angle between the charged mass eigenstates (G+, H+).

Likewise, we can rotate the neutral flavour eigenstates to mass eigenstates Hi with a

rotation matrix R such that
H1

H2

H3

 =


1 0 0

0 c3 s3

0 −s3 c3




c2 0 −s2

0 1 0

s2 0 c2




c1 s1 0

−s1 c1 0

0 0 1




h1

h2

−sβ η1 + cβ η2

 =

=


c1c2 s1c2 −s2

c1s2s3 − s1c3 s1s2s3 + c1c3 c2s3

c1s2c3 + s1s3 s1s2c3 − c1s3 c2c3


︸ ︷︷ ︸

R


h1

h2

−sβ η1 + cβ η2

 , (2.9)
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where ci ≡ cos(αi) and si ≡ sin(αi).

In the particular case of CP conservation the real components of the scalar fields cannot

mix with the complex ones, so α2 = α3 = 0. The neutral physical states then read

A0 = − sinβ η1 + cosβ η2 (CP-odd Higgs),

h0 = cosα h1 + sinα h2 (lightest CP-even Higgs),

H0 = − sinα h1 + cosα h2 (heaviest CP-even Higgs),

with α ≡ α1 the mixing angle between the two CP-even scalars. Note that our definition

of α differs from the general 2HDM literature by an additive factor of π/2. We find our

choice more convenient, since the case when h0 = hSM corresponds here to α = β. In

general, however, the SM-like Higgs is an admixture of h0 and H0,

hSM = cos(β − α)h0 + sin(β − α)H0. (2.10)

In principle β − α ∈ [0, 2π), but it is easy to see that a shift β − α → β − α + π is

equivalent to a field redefinition (h0, H0) → −(h0, H0) in the CP-even sector and has no

physical consequence. Therefore we can restrict the range of this angle to the physically

relevant interval β − α ∈
[
−π

2
,
π

2

)
.

2.1 Yukawa sector

Turning now to the Yukawa interactions of fermions with the two doublets, let U and D be

fermion triplets, corresponding to the three families of up and down type quarks in their

flavour eigenstates, respectively (i.e., of positively and negatively charged quarks under

U(1)em)2. Likewise, let E and N be the triplets corresponding to the three families of

leptons and neutrinos. From the properties of the electroweak interaction we know that

the left-handed components of these spinors must form doublets under SU(2)L, which we

write as QL = (UL DL)T and LL = (NL EL)T , whereas the right-handed components

UR, DR and ER are singlets3. The most general Yukawa interactions of fermions with the

two scalar doublets can then be written as

LYukawa =−QL
(
Y D

1 Φ1 + Y D
2 Φ2

)
DR −QL

(
Y U

1 Φ̃1 + Y U
2 Φ̃2

)
UR + H.c.

− LL
(
Y E

1 Φ1 + Y E
2 Φ2

)
ER + H.c.,

(2.11)

where Y D,U,E
i are 3 × 3 Yukawa coupling matrices (acting on the flavour indices of the

spinors) and Φ̃1,2 ≡ iσ2Φ∗1,2.

2A suitable rotation in flavour space takes D → (d s b) and U → (u c t).

3We do not consider right-handed neutrinos.
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These Yukawa terms will give mass to the fermions when the neutral components of

the scalar doublets acquire VEVs, yielding

Lmass
Yukawa = −UL

(
Y U

1 〈ϕ0
1〉+ Y U

2 〈ϕ0
2〉
)
UR + H.c.+ (U → D,E). (2.12)

Clearly the diagonalization of the fermion mass matrix MF = Y F
1 〈ϕ0

1〉+ Y F
2 〈ϕ0

2〉 does not

imply diagonalization of the 3× 3 Yukawa coupling matrices Y F
1 and Y F

2 separately. This

means that, after rotating the quarks to their mass eigenbasis, there appear interaction

terms of the form

LFCNC = −dL yd1 ϕ0
1 dR − uL yu1

(
ϕ0

1

)∗
uR + 1→ 2 + H.c. (2.13)

with non-diagonal yd,ui , which describes interactions whereby the flavour of the quarks is

changed via an exchange of a neutral boson. As these flavour changing neutral currents

(FCNC) are highly suppressed in nature, the fact that such effect is present at tree-level

in our model is a rather undesirable feature of which we need to get rid somehow.

A particularly simple and convenient way to deal with this problem4, which is also most

widely adopted in the literature, is to consider that each type of fermion couples to one

doublet only [126]. This can be achieved by imposing a Z2 symmetry on the Lagrangian,

under which the fields transform as Φ1 → −Φ1, dR → ±dR and `R → ±`R, the others

remaining invariant. The top quark has by far the dominant coupling to the scalar sector,

and we can then use it as a reference to distinguish the two doublets. Put another way,

we can define Φ2 to be the doublet coupling to up-type quarks (so uR is even under Z2 by

construction). There are then four possibilities to couple down-type quarks and leptons

either to the same doublet that couples to the top or to the other one, and 2HDMs are

often categorized according to this choice as shown in Table 2.15.

For consistency, the scalar potential must also be symmetric under these transforma-

tions (otherwise the undesirable terms will reappear in the Lagrangian as renormalization

counter-terms), so we must have µ = λ6 = λ7 = 0. But in this case there can be no CP

violation in the scalar sector, neither explicit (since only λ5 would possibly have a complex

phase which could then be reabsorbed by field redefinitions) nor spontaneous [127]. Thus

4Other ways include Minimal Flavour Violation [119, 120, 121, 122], general Yukawa alignment [123]
and the so-called Yukawa texture Ansatz of Yij ∼

√
2mimj/v [124], to name a few. It is worth mentioning

that the Yukawa alignment hypothesis is not stable under radiative corrections [125], except in special
cases as the one we consider here, where the Yukawa Ansatz is imposed via — and therefore is protected
by — a discrete symmetry.

5In the 2HDM literature Type X is sometimes denoted Lepton Specific whereas Type Y is called Flipped.
It is also worth mentioning that the scalar sector of the Minimal Supersymmetric Standard Model (MSSM)
is a Type II 2HDM.
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Φ1 Φ2 uR dR `R

Type I − + + + +

Type II − + + − −
Type X − + + + −
Type Y − + + − +

Table 2.1: Z2 charge of scalar doublets and fermions in the different 2HDM Types.

an exact discrete symmetry is not really interesting for baryogenesis. A way out of this

is to allow for an explicit soft breaking of the Z2 symmetry with µ 6= 0 [128]. Because

the symmetry is thus broken only softly, there are still no significant FCNCs generated

thereby. And because the discrete symmetry is broken explicitly, there are no domain wall

problems when both doublets acquire a VEV [129, 130]. This is the case we will consider

from now on, so the tree-level potential has the form in eq. (2.2) with

λ6 = λ7 = 0. (2.14)

The full Yukawa Lagrangian can then be written as

LYukawa =− mf

v
Hi

(
yf,iff + ỹf,if i γ5 f

)
−H+ u

VCKM√
2v

[(
md yd,H+ −mu yu,H+

)
+ γ5

(
md yd,H+ +mu yu,H+

)]
d+ H.c.

−H+ me√
2v
ν ye,H+ (1 + γ5) e+ H.c. (2.15)

with the scalar-fermion couplings for Types I, II, X and Y summarized in the following

tables. Notice from Table 2.1 that Types I and X (resp. Types II and Y) are equivalent

as long as only quarks are taken into account, whereas for a purely leptonic case the

equivalence pairing is Type I ∼ Type Y and Type II ∼ Type X.

yu,i yd,i ỹu,i ỹd,i yu,H+ yd,H+

Type I/X Ri2/ sinβ Ri2/ sinβ −Ri3/ tanβ Ri3/ tanβ 1/ tanβ 1/ tanβ

Type II/Y Ri2/ sinβ Ri1/ cosβ −Ri3/ tanβ −Ri3 tanβ 1/ tanβ − tanβ

Table 2.2: Couplings of scalars to quarks.
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ye,i ỹe,i ye,H+

Type I/Y Ri2/ sinβ Ri3/ tanβ 1/ tanβ

Type II/X Ri1/ cosβ −Ri3 tanβ − tanβ

Table 2.3: Couplings of scalars to leptons.

2.2 Physical parameters

We have argued above that a physically plausible 2HDM potential must have a minimum

of the form

〈Φ1〉EW min =
1√
2

 0

v cosβ

 , 〈Φ2〉EW min =
1√
2

 0

v sinβ

 , (2.16)

in order to preserve U(1)em. At such minimum the gauge bosons have masses

m2
W =

g2v2

4
and m2

Z =
m2
W

cos2 θW
(2.17)

(with cos θW ≈ 0.8819 the cosine of the Weinberg angle), implying that at least one such

vacuum state must have v ≈ 246 GeV, which we shall henceforth call the electroweak

minimum.

The condition that this be indeed an extremum of Vtree allows us to write, for the CP

conserving and softly broken Z2-symmetric case,

2µ2
1 = v2

(
λ1 cos2 β + λ345 sin2 β

)
− 2M2 sin2 β,

2µ2
2 = v2

(
λ2 sin2 β + λ345 cos2 β

)
− 2M2 cos2 β,

(2.18)

where M2 ≡ µ2/ sin(2β) and λ345 ≡ λ3 + λ4 + λ5. We then exchange two bare mass

parameters in Vtree by the parameter M , which sets the overall scale for the masses of the

additional scalars, and the electroweak scale v, which is the natural scale for hSM as usual.

From the diagonalization of the mass matrix (see Appendix A) with the rotation R

defined in eq. (2.9) we also see that the quartic couplings can be written as

λ1 =
1

v2 cos2 β

(
m2
h0 cos2 α+m2

H0 sin2 α−M2 sin2 β
)
,

λ2 =
1

v2 sin2 β

(
m2
h0 sin2 α+m2

H0 cos2 α−M2 cos2 β
)
,

λ3 =
1

v2 sin(2β)

[ (
2m2

H± −M2
)

sin(2β)−
(
m2
H0 −m2

h0

)
sin(2α)

]
,

λ4 =
1

v2

(
M2 +m2

A0 − 2m2
H±
)
,

λ5 =
1

v2

(
M2 −m2

A0

)
,

(2.19)
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so that λ1−5 regulate the mutual splittings among the scalar masses, as well as how they

deviate from their base values v and M .

These relations allow us to use, as the defining physical parameters of the model, the

masses of the scalars (mh0 , mH0 , mA0 , mH±) and their mixing angles (β, α), together

with the overall scale of new physics M .

2.3 Zero temperature 1-loop effective potential

So far we have been dealing with the classical theory of two-Higgs-doublet models, having

obtained the properties of the scalar fields — the physical states, their masses and VEVs —

by inspection of the tree-level potential Vtree.

However, quantum mechanical fluctuations will cause these properties to deviate from

the expressions derived above, and must then be taken into account by computing the

contribution from all (1PI) loop diagrams to the relevant n-point correlation function.

Still it would be convenient if these computations could be summarized in an effective

potential, from which one could get the properties of the full quantum system by inspection,

in analogy to what we have previously done for the classical case. We will now show that

this can indeed be done [131, 132].

We start by recalling Dirac’s insight that the quantum mechanical amplitude for a

certain process is related to the classical action functional via Z ∼ eiS [133, 134]. The

relationship is not an equality because eiS is the amplitude for the process along a cer-

tain definite “path” only, and the superposition principle tells us that the full quantum

amplitude is the sum over all possible such contributions. More rigorously, the vacuum-

to-vacuum transition amplitude in the presence of an external current J reads

Z[J ] ≡ eiW [J ] ≡ 〈0+|0−〉J =

∫
Dφ ei(S[φ]+J ·φ), (2.20)

where for the moment we will use the simplified notation

J · φ ≡
∫
d4xJ(x)φ(x). (2.21)

Note that W is a functional of J , not of the field configurations (which have been integrated

over). In particular,
δW

δJ(x)
= 〈0+|φ(x)|0−〉J ≡ φcl(x), (2.22)

and φcl(x) can be interpreted as a classical field configuration in the presence of the current

J , since all quantum fluctuations have been averaged over6. But we can now perform a

6The terminology here, albeit adequate, can be misleading. φcl is “classical” in the sense that quantum
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Legendre transform to define a functional

Γ[φcl] ≡W [J ]− J · φcl (2.23)

depending only on the classical field configurations and such that Z[J ] = ei(Γ[φcl]+J ·φcl).

Comparing to Dirac’s initial insight7, we see that Γ[φcl] plays the role of an effective

quantum action, an action functional that encapsulates the sum over all possible quantum

fluctuations.

We can now expand Γ in powers of momentum and, in analogy to the classical case,

call the effective potential Veff the negative of all momentum independent terms in the

expansion, i.e.

Γ[φcl] =

∫
d4x (−Veff(φcl) +O(∂µφcl)) . (2.24)

On the other hand, it can be shown that the n-th derivative of Γ w.r.t. φcl are the 1PI

Green’s functions (including all loop diagrams) [135]. We therefore achieve our aim of

recovering the quantum properties of the system by taking derivatives of Veff in analogy

to the procedure we followed in the classical field theory.

Having laid down the general formalism, we now turn to the explicit computation of

the effective potential in the 2HDM. As usual this can be done only perturbatively, and

here we will focus only on the first quantum corrections (i.e. we compute the effective

action to next-to-leading order). One way of doing this is by directly calculating and

summing the contribution from all possible 1-loop diagrams with arbitrarily many external

legs [132]. We will take an alternative, but obviously equivalent route, and start from the

full path integral in eq. (2.20) [136]. In the spirit of variational calculus, we parametrize

the quantum fluctuations around the tree-level path as

φ(x) = φtree(x) + η(x). (2.25)

By definition φtree satisfies the classical equations of motion

δS

δφ

∣∣∣∣
φtree

+ J = 0, (2.26)

and this defines an implicit functional relationship between φtree and J . Being just a shift

by a constant (in field space), the Jacobian of the transformation in eq. (2.25) is trivial

and, after expanding S[φtree + η] in powers of η, the path integral reads

eiW [J ] = ei(S[φtree]+J ·φtree)

∫
Dη exp

[
i

2
η
δ2S

δη δη

∣∣∣∣
φtree

η + . . .

]
, (2.27)

effects have already been taken into account and averaged over — this is in fact how classicality emerges
out of a fundamentally quantum world. This is not to be confused with the configuration that extremizes
the classical action S, which provides only the leading order contribution to φcl.

7Note that, in the presence of an external current J , the classical action is shifted as S[φ]→ S[φ]+J ·φ.
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with the term linear in η vanishing by virtue of eq. (2.26), and the ellipsis representing

terms coming from higher order diagrams in perturbation theory. The remaining path

integral has a Gaussian form and can therefore be analytically solved, yielding

W [J ] = S[φtree] + J · φtree − i log
[
det
(
iD−1(φtree)

)−1/2
]

+O(2-loop), (2.28)

where we have defined the inverse propagator

iD−1(φtree) ≡ −
δ2S[φ]

δφ δφ

∣∣∣∣
φtree

= ∂µ∂
µ +m2(φtree). (2.29)

To get the effective action we now need to do a Legendre transform. From eq. (2.22),

φcl =
δW

δJ
=

(
δS

δφtree
+ J

)
δφtree

δJ
+ φtree +O(1-loop), (2.30)

which implies φtree = φcl +O(1-loop), the first term vanishing due to eq. (2.26). Plugging

this back into eq. (2.28) and again using eq. (2.26) finally yields

Γ[φcl] = S[φcl] +
i

2
Tr
[
log
(
iD−1(φcl)

)]
+O(2-loop). (2.31)

Note that, at tree-level, the effective action coincides with the classical action, thus

further justifying the nomenclature. To compute the first quantum correction we will

consider the case

φcl(x) = φcl ≡ constant, (2.32)

i.e. we will take the vacuum to be translation invariant. This is most of the time a realistic

assumption, and we will comment later on its implications and possible relaxation (see

section 3.1.2). The constancy of φcl makes the propagator invariant under translations,

which means that iD−1(φcl; k) is diagonal in momentum space. We can then write

Γ[φcl] = S[φcl] +
i

2
Tr
[
I log

(
−k2 +m2(φcl)

)]
+ . . .

= −
∫
d4xVtree(φcl) +

∫
d4x

∑
i

i

2

∫
d4k

(2π)4
log
(
−k2 +m2

i (φcl)
)

+ . . .

= −
[
Vtree(φcl) +

∑
i

1

2

∫
d4kE
(2π)4

log
(
k2
E +m2

i (φcl)
)

+ . . .

]∫
d4x

(2.33)

after a Wick rotation k0 → ik0. The sum is over all scalars in the theory. The spacetime

volume
∫
d4x is a consequence of the translation invariance of the propagator (or, equi-

valently, of the constancy of φcl). On the other hand, recalling the expansion in eq. (2.24)

of the effective action in powers of momenta, and that all terms O(∂µφcl) vanish, we see

that the coefficient in brackets is nothing but Veff(φcl), the effective potential we have been

looking for.
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The integral in the first quantum correction to the effective potential (henceforth called

V1(φcl)) can be analytically solved. The 4-dimensional volume element in spherical co-

ordinates is d4kE = |kE |3d|kE |dΩ3, and integration over the 3-dimensional solid angle

returns a factor of 2π2, so

V1(φcl) =
∑
i

1

16π2

∫ Λ

0
dkEk

3
E log

(
k2
E +m2

i (φcl)
)
, (2.34)

where Λ is the cut-off scale beyond which the theory ceases to be a good effective de-

scription of Nature, and at which some new physics described in terms of other degrees

of freedom kicks in. After integrating by parts and neglecting field-independent terms as

well as subdominant O(m2/Λ2) (since Λ� mi ∀ i) we arrive at

V1 =
∑
i

1

64π2

[
m4
i

(
log

m2
i

Λ2
− 1

2

)
+ 2Λ2m2

i

]
. (2.35)

The last step in the calculation consists in getting rid of the cut-off dependence by

absorbing them into the (unobservable) bare parameters of the tree-level potential via a

renormalization procedure. Put another way, we can say that the parameters appearing in

Vtree also depend on Λ in such a way that, in the full effective potential Veff = Vtree+V1+. . .,

all cut-off dependence cancels out [137]. The key point behind this procedure is that the

outcome of a measurement can only give information about the parameters of the full

quantum theory, and nothing can be known about their individual contributions from

each order in the perturbative expansion8.

That the mentioned cancellations can indeed take place follows from the fact that

Λ2
∑

im
2
i merely shifts the value of the bare mass parameters and therefore does not

introduce any new field dependence in the effective potential. Likewise, we can split

m4
i log

m2
i

Λ2
= m4

i log
m2
i

Q2
+m4

i log
Q2

Λ2
(2.36)

and the latter term simply shifts the values of the bare quartic couplings9. The scale

Q is introduced here on dimensional grounds to make the argument of the logarithms

dimensionless.

All in all, the bottom line is that the only genuinely new field dependence introduced

8A theory is said to be renormalizable when all cut-off dependence can be eliminated by fixing the
value of finitely many physical parameters — or, in other words, when only finitely many counter-terms
are needed to get rid of the cut-off dependence. Thus renormalizability is a fundamental requirement for
the theory to be predictive.

9Alternatively, note that
∑
im

2
i = Tr(M) and

∑
im

4
i = Tr(MM), where M is the squared mass matrix.

From the fact that these are gauge-invariant quantities involving only up to quartic powers of the fields,
it follows that they must have the general form of eq. (2.2).
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by the 1-loop diagrams come from the first term in eq. (2.36), so we can finally write

V1 =
∑
i

1

64π2
m4
i

(
log

m2
i

Q2
− 1

2

)
+ VCT. (2.37)

The factor of 1/2 is kept in by convention, whereas VCT has the same form as the tree-

level potential and accounts for possible cut-off independent terms which remain after the

cancellations just mentioned take place.

The calculation we have shown here gives only the contribution to the scalar fields’

effective potential coming from fluctuations of the scalar fields themselves, i.e. from dia-

grams with scalars running in the loops (since only the scalar fluctuations have been

integrated over). To get the full result, eq. (2.27) should be integrated also over all fer-

mions and vector fields. It turns out that each degree of freedom of these fields gives a

contribution of the same form of eq. (2.37), the contribution from fermions carrying also

a negative sign due to the fermionic loop [138]. Therefore the final result reads

Veff = Vtree +
∑
i

ni
64π2

m4
i

(
log

m2
i

Q2
− 1

2

)
+ VCT. (2.38)

The dominant contributions to the quantum correction are from the heavy particles in the

model, namely the gauge bosons (V = Z, W+ and W−, each with nV = 3 polarization

d.o.f), the top quark (nt = −1 × 2 × 2 × 3 for chirality, spin and colour d.o.f), and the

scalars themselves (nφ = 1). The masses entering eq. (2.38) are the particle masses at an

arbitrary point in field space, which read

m2
W,Z(φi) = m2

W,Z

(
Φ†1Φ1 + Φ†2Φ2

)
v2

, m2
t (φi) = m2

t

Φ†2Φ2

v2 sin2 β
, (2.39)

and the scalar masses are obtained by diagonalizing the mass matrix (see Appendix A).

Note that the Goldstone bosons’ masses vanish only at the minimum of the potential, but

not in general. Since we are working in Landau gauge, their contribution as loop mediators

must also be included in eq. (2.38), and is typically non-negligible.

Finally, the counter-terms in VCT are fixed by setting the physical parameters whose

experimental values will be used in defining the theory, as well as the energy scale Q at

which the experiments were carried out. This renormalization scale Q must be of the order

of the masses of the particles contributing to the 1-loop potential in eq. (2.38), to ensure

the smallness of the logarithmic terms so that the 1-loop quantum correction remains

subdominant with respect to the tree-level contribution — otherwise the validity of the

perturbative expansion at 1-loop order breaks down. Once these are fixed, the counter-

terms can be computed by e.g. requiring the tree-level value of the defining physical
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quantities to match the experimental value and demanding that the 1-loop contribution

does not modify them.

Here we will choose the masses of the SM particles as well as the physical parameters

described in section 2.2 (namely the scalar masses and their mixing angles) as the physical

observables defining the theory, and will take Q ≡ v/
√

2 ≈ mt. Following the prescription

just described, this means that the position of the electroweak minimum and the scalar

mass matrix at tree and 1-loop level are the same, i.e.

∂VCT

∂hi
+
∑
k

nk
32π2

m2
k log

(
m2
k

Q2

)
∂m2

k

∂hi
= 0 (2.40)

and

∂2VCT

∂φi∂φj
+
∑
k

nk
32π2

[
∂m2

k

∂φi

∂m2
k

∂φj

(
log

m2
k

Q2
+ 1

)
+m2

k log

(
m2
k

Q2

)
∂2m2

k

∂φi∂φj

]
= 0, (2.41)

where φi stands for the fields in the doublets.

But there is a caveat in carrying out the condition in eq. (2.41). For the Goldstone

bosons, the first term in eq. (2.41) is infrared divergent, so that trying to define the phys-

ical mass by taking derivatives of Veff actually yields unphysical results10. This happens

because, by definition, the effective potential takes into account only diagrams with van-

ishing external momenta, whereas the physical mass must be evaluated on-shell, with

p2 = m2. A rigorous solution to the problem has been developed in ref. [82]. Here we

choose to adopt the more straightforward approach of replacing the vanishing Goldstone

masses in the logarithmic divergent term by an IR cutoff at m2
IR = m2

h0 , which gives a good

approximation to the exact procedure of on-shell renormalization, as argued in ref. [84].

2.4 Constraints

We now turn to the constraints that the model has to satisfy both for theoretical consist-

ency as well as for agreement with experimental data.

2.4.1 Stability of electroweak vacuum

In order for the predicted values of the gauge bosons’ masses to agree with the experimental

data, it is necessary not only that the scalar potential have an electroweak minimum as

in eq. (2.16) with v ≈ 246 GeV, but also that this be the actually realized vacuum state

10At 2-loop order these IR divergences appear already in the first derivative of Veff , so that even the
minimization procedure of the potential is ill-defined. A rigorous way to handle these divergences is to
resum the problematic diagrams involving Goldstone bosons. However, the numerical impact of these
resummations in the final shape of the potential is very small [139, 140].
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of the scalar fields. This will not necessarily be the case if the electroweak vacuum is not

the global minimum of the potential, in which case the system has a finite probability of

tunnelling out of it. This is the well-known issue of stability of the electroweak vacuum.

Already in the SM this is a potential problem [141, 142, 143]. For even though at

tree-level the electroweak vacuum is guaranteed to be unique and thus stable, the negative

and non-negligible quantum corrections from the top quark will pull the effective potential

down towards negative values and may generate a potentially dangerous second minimum

at some large scale Λ � v. The electroweak vacuum is then said to be unstable if its

lifetime is shorter than the age of the Universe, in which case this Λ is interpreted as the

cutoff beyond which the SM is no longer a good effective theory. Else, it is said to be

metastable.

A näıve first approach to this problem is to check for these secondary minima by “brute

force” evaluation of the effective potential. However, this may require excursions into the

region of very large field values, φ ≈ Λ � v, for which the logarithms in eq. (2.38) will

be large and induce a breaking of the perturbative expansion, even if the couplings are

small. A proper way to deal with this problem is to resum these logarithms by computing

the running of the couplings and considering the RG improved potential [143, 144, 145].

Again, the top quark will yield a negative contribution to the β-function of the Higgs

quartic coupling λ and, depending on its magnitude, may cause this λ to become negative

at some scale. If this scale is above MPlanck then no problem arises, since the SM is not

expected to work in this regime. Otherwise, it is necessary to compute the lifetime of this

vacuum to ensure its metastability [146].

The results to a 2-loop approximation are depicted in fig. 2.1, which has been taken

from ref. [147]. On the left, the running Higgs quartic coupling λ is shown as a function

of the RGE scale for values of the top mass, the QCD coupling constant and the Higgs

mass varying by ±3σ around their central values. As discussed above, the larger the top

Yukawa coupling is, the sooner the quartic coupling becomes negative. But in any case

instability sets in only at scales Λ & 1010 GeV� v, thus justifying the need to resum

the logarithms, as stated above. To the right is a phase diagram indicating that, with

the currently known values of the SM parameters, the electroweak vacuum is in a rather

fine-tuned region of metastability.

Let us now turn to the 2HDM case. Recall that, if the electroweak vacuum is the

global minimum of the potential, then it is said to be stable. In a tree-level analysis, this

is the case only if the potential is bounded from below, i.e. if Vtree > 0 whenever the fields
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Figure 2.1: (Left) Running Higgs quartic coupling λ with the RGE scale. Results are shown for

various values of the top mass, the strong coupling and the Higgs mass, all varying by ±3σ. (Right)

Phase diagram showing the nature of the electroweak vacuum as a function of the top and Higgs

mass. The red dotted lines indicate the scale at which the the quartic coupling becomes negative.

For the current values of the SM parameters to within a 3σ precision, the electroweak vacuum is

metastable. Figures taken from ref. [147].

approach infinity in any direction. In this limit it suffices to analyse the quartic terms in

the potential, so the requirement of a bounded potential imposes bounds on the quartic

couplings λ1−5
11. Indeed, with a judicious choice of directions one can show that

λ1 > 0, λ2 > 0, λ3 > −
√
λ1λ2,

λ3 +λ4 − |λ5| > −
√
λ1λ2

(2.42)

are necessary conditions to guarantee boundedness from below, and for the Z2 symmetric

case it can be shown that they are also sufficient [148, 149].

Boundedness from below is itself necessary, but not sufficient, to guarantee stability

of the electroweak minimum. This is because, contrary to the SM case, in general the

2HDM scalar potential has a rich vacuum structure already at tree-level, with multiple

inequivalent stationary points, and it is then necessary to ensure that the electroweak

minimum will be the deepest among them.

This vacuum structure of the tree-level 2HDM potential has been extensively studied

in the literature [150, 151, 152], culminating in a fundamental theorem stating that, in the

most general 2HDM, Vtree can have at most two minima of any kind [153]. Two corollaries

follow from this.

11The condition that the quartic terms of the potential be positive definite at large field values in all
directions in field space, V4 > 0, is called a strong stability requirement, and is actually not satisfied by
some interesting models like the MSSM [97]. In these cases a milder requirement would be to demand
V4 ≥ 0, and that the quadratic terms in the potential be positive-definite in the directions where V4 → 0.
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First, if the potential has a minimum preserving U(1)em, as in the cases considered

in our study, then no other minima exist that break this symmetry [154, 155]. This is

because charge-breaking vacua always come in conjugated pairs12, so their coexistence

with an electroweak minimum would imply in Vtree having more than two extrema, in

contradiction with the theorem just mentioned. The models here considered are therefore

safe against spontaneous breaking of U(1)em at tree-level.

For the very same reason, a minimum that spontaneously breaks a discrete symmetry

(e.g. CP) cannot coexist with minima that preserve it.

But there is still the possibility that the potential has two charge- and CP-conserving

minima, the deepest one having norm 〈Φ†1Φ1 + Φ†2Φ2〉 6= v2 and thus yielding different

masses for the gauge bosons than those we observe. In a general Z2 symmetric (possibly

CP violating) 2HDM, a necessary and sufficient condition for this not to be the case, and

for the electroweak minimum to be the global minimum of Vtree, is that [156, 157][(
m2
H±

v2
+
λ4

2

)2

− |λ5|2
4

][
m2
H±

v2
+

√
λ1λ2 − λ3

2

]
> 0. (2.43)

Two notes are in order at this point. First, as already stated above, it is not strictly

necessary that the electroweak minimum be the global minimum of the potential, as long

as its lifetime is larger than the age of the Universe. However, computing this tunneling

effect in a multi-dimensional field space is a complicated task [156] which is beyond the

scope of this work, so that this possibility will not be considered.

Second, these conditions are the requirements for tree-level stability only, and it is ne-

cessary to verify that they are not spoiled by loop corrections. Since the effective potential

does not have a simple polynomial shape, no theorems similar to the ones presented above

have been proven at loop-level yet.

As in the above discussion on the SM case, one possible approach here is to work with

the RG improved potential, imposing that the running couplings satisfy eq. (2.42) all the

way up to a cut-off Λ beyond which we do not expect the 2HDM to be a good effective

theory, so that some additional UV physics may be needed to complete it. We choose

here Λ = 10 TeV. The fact that this is relatively close to the electroweak scale13 allows

us to use the simpler approach of demanding the effective potential to be positive definite

for field values up to φi ≈ Λ. Indeed, we have checked explicitly that both methods are

essentially equivalent.

12The value of the potential at a minimum of the form shown in eq. (2.3) remains the same under a
transformation u→ −u.

13Compare it to the stability cut-off in the SM, Λ & 1010 GeV.
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We also rule out the existence of a deeper minimum in the vicinity (within a radius of

1 TeV) of the electroweak vacuum by scanning for other minima of the effective potential

in this region and requiring them to lie above the electroweak one.

2.4.2 Unitarity

Another important constraint comes from the requirement that the S-matrix remain unit-

ary up to high energies, at least up to the scale Λ � v beyond which the model breaks

down or enters a strongly coupled regime [158]. This requirement is equivalent to the

so-called optical theorem, which relates the total cross section of a two-particle collision to

the imaginary part of the 2→ 2 forward scattering matrix element [135],

2
√
s |~p|

∑
n

σ2→n = ImM(s, θ = 0), (2.44)

with
√
s the centre-of-mass energy, ~p the momentum of one of the incoming particles and

θ the angle between the incoming and outcoming beams14, all measured in the centre-of-

mass frame. In the case of high energy collisions that we consider here, |~p| ≈ √s/2. Thus

the unitarity constraint effectively sets an upper bound on the 2 → 2 cross-section and,

consequently, on the associated coupling constants.

Indeed, the matrix element of a 2→ 2 scattering process can be decomposed in partial

wave components as

M(s, θ) =
∑
l

(2l + 1)Pl(cos θ) al(s) (2.45)

so that the 2→ 2 cross section in the high energy limit reads

σ =

∫
dΩ
|M|2
64π2s

=
1

16π s

∑
l

(2l + 1)|al(s)|2, (2.46)

where we have used the orthogonality of the Legendre Polynomials,∫ π

0
sin θ Pl(cos θ)Pn(cos θ)dθ =

2

2l + 1
δln. (2.47)

From eq. (2.44) together with σ ≤∑n σ2→n (the total cross section is greater than or

at least equal to the 2→ 2 cross section) one then obtains [158, 159]

16π Im(al) ≥ |al|2 = Re(al)
2 + Im(al)

2 ⇒

Re(al)
2 + [Im(al)− 8π]2 = (8π)2 ⇒

|Re(al)| < 8π ∀ l ∈ N.

(2.48)

14Note that there is no dependence on the azimuthal angle φ in a 2→ 2 scattering.
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Unitarity of the model is then ensured by computing the matrix elements of all possible

2 → 2 scattering processes and imposing that its largest eigenvalue be smaller than the

bound in eq. (2.48). The fact that unitarity can be a problem only in high energetic

scatterings allows us to concentrate on this case only, simplifying the analysis considerably.

Indeed, this assumption has already been used in writing |~p| ≈ √s/2 in eq. (2.44) as well

as in writing the differential cross section in the simple form of eq. (2.46). Furthermore,

in this limit:

• the s-wave amplitudes dominate the scattering process, so we only need to evaluate

the bound on a0;

• quartic interactions (with couplings Qijkl) dominate over trilinears, so |a0| = |Qijkl|;

• the bounds coming from scattering of transverse modes of gauge bosons are well be-

low those from their longitudinal components, so we can focus on the latter only [160];

• the equivalence theorem [160, 161, 162] states that the vectorial longitudinal com-

ponents scatter as the Goldstone bosons from which they originally sprang.

In summary, the unitarity analysis can be done by focusing solely on the scalar sector and

results in bounds on the quartic couplings of the scalar potential.

Unitarity constraints in 2HDMs have been worked out in refs. [159, 163, 164]. Since

for the unitarity analysis only the eigenvalues of the S-matrix are relevant, and since these

are unmodified by a change of basis, it does not matter whether we compute the matrix

elements using the flavour or the physical eigenstates. We choose the former for simplicity,

as in this case they will be very simple combinations of the λ1−5. Note, furthermore, that

for high-energetic scatterings the hypercharge Y and weak isospin σ are conserved, which,

together with the Z2 symmetry, simplifies the S-matrix to a block diagonal form, each block

no larger than a 2× 2 matrix. The eigenvalues of the scalar-scalar scattering matrices can

then be written in a closed analytic form as

Λodd
20 = λ3 − λ4,

Λeven
21± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4|λ5|2

)
, Λodd

21 = λ3 + λ4,

Λeven
01± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

4

)
, Λodd

01± = λ3 ± |λ5|,

Λeven
00± =

1

2

[
3(λ1 + λ2)±

√
9(λ1 − λ2)2 + 4(2λ3 + λ4)2

]
, Λodd

00± = λ3 + 2λ4 ± 3|λ5|,

and the constraints then read

max
(
|ΛZ2
Y σ±|

)
< 8π. (2.49)
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2.4.3 Electroweak precision observables

The existence of additional scalar particles running in the loops causes the gauge bosons’

two-point functions to receive corrections relative to their SM values, so-called “oblique”

corrections. As a consequence, some combinations of gauge boson masses and their coup-

lings, whose experimental values are known to agree with the SM prediction to great

accuracy, get extra contributions from the new physics introduced. It then becomes a

challenge for the model to predict a deviation that remains within the precision of the

experimental measurement. The best example is provided by the ρ parameter,

ρ =
m2
W

m2
Z cos2 θW

,

which is intimately related to the electroweak symmetry breaking sector of the theory, and

whose value is known to agree with the SM prediction to better than 0.4% at 2σ [165].

Because they contain only scalar doublets, 2HDMs predict ρ = 1 at tree-level (as in

the SM). At loop level, however, there are extra contributions with respect to the SM

ones15 [166, 167], and one has

∆ρ2HDM =
1

32π2v2

[
FH±,A0 + sin2(β − α)(FH±,h0 − FA0,h0)

+ cos2(β − α)
(
FH±,H0 − FA0,H0

)
+3 sin2(β − α)

(
FZ,H0 − FZ,h0 − FW,H0 + FW,h0

)]
,

(2.50)

with

Fx,y =
m2
x +m2

y

2
−

m2
xm

2
y

m2
x −m2

y

ln

(
m2
x

m2
y

)
. (2.51)

The condition that ρ ∼ ρSM ≈ 1 is satisfied only if there is an approximate mass degen-

eracy between the charged and one of the neutral scalars, which is related to the limit in

which custodial symmetry is recovered [168]. Indeed, it is easy to see, for instance, that

mA0 = mH± satisfies the constraint trivially when mZ = mW .

The ρ parameter is only an instance of observables that receive oblique corrections

in 2HDMs. For a general extension of the SM preserving the SU(2)L × U(1)Y gauge

structure, these corrections can be parametrized by the Peskin-Takeuchi parameters S, T

and U [169] and some higher-order extensions of them [170, 171]. Nevertheless it turns

out that for 2HDMs only ∆ρ ≡ ρ− 1 ≡ αEMT is relevant, since the experimental bounds

on the remaining parameters are hardly violated [168, 172].

15In the SM, custodial symmetry is violated by U(1)Y interactions and Yukawa couplings, but is preserved
by the scalar potential.
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Figure 2.2: Typical diagrams contributing to b→ sγ in the SM due to W± boson exchange.

Another important electroweak precision constraint, unrelated to the oblique paramet-

ers above, comes from Z → bb̄ decays [173, 101]. We checked explicitly that this constraint

is milder than the one coming from B0−B0 mixing, which we will take into account next.

2.4.4 Flavour constraints

The impact of flavour constraints on 2HDMs has been extensively studied in ref. [174].

For models with a Z2 symmetry and with tanβ . 10, the only relevant bounds come from

B0−B0 mixing and b→ sγ decays. Since these observables do not involve leptons in any

manner, they are equivalent in Types I and X (resp. Types II and Y).

The b → sγ decay is an FCNC process which, because of the Z2 symmetry, gets its

leading order contribution only at loop level. This is also what happens in the SM, with the

W boson mediating the b to s transition, as shown in fig. 2.2. In this case it can be shown

that, to NNLO order, the predicted branching ratio agrees well with the experimental

measurement (within theoretical and experimental uncertainties) [175]. In 2HDM there

are additional diagrams obtained by replacing the W± by a H± in fig. 2.2 (with vertices

b → tH± and tH± → s), and we must then ensure that the full radiative contributions

are still within the precision of the experiments.

The only 2HDM parameters involved in this decay process are mH± and tanβ (from

the couplings of H± to fermions). The constraints are of course milder for increasing mH± .

As for the dependence on tanβ, for Types I/X both vertices above mentioned enter with

a factor 1/ tanβ, so the 2HDM contribution to the amplitude scales with (tanβ)−2 and

the constraint is milder as tanβ grows. In Types II/Y, where one vertex contributes with

tanβ and the other with 1/ tanβ, the end result is essentially tanβ-independent.

A proper calculation and numerical implementation of the relevant observable, BR(B →
Xsγ), is quite involved and time consuming [176, 177, 178, 179]. Since the resulting ex-

clusion lines have already been computed by other studies, we borrow their results dir-

ectly [174, 179]. Note that for Types II/Y a recent study to NNLO constrains [179]

mH+ & 380 GeV at 95% C.L. (2.52)
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Figure 2.3: Diagrams of dominant contributions to B0 −B0 mixing in the SM. Additional contri-

butions from the 2HDM are obtained by exchanging one or both W ’s by a charged scalar H±.

The dominant SM contributions to B0 − B0 mixing are shown in fig. 2.3. Additional

contributions from 2HDMs come from exchange of charged scalars H± in place of one or

both W ’s in the diagrams shown. This constraint is type-independent, since only the top

Yukawa coupling enters the computation. The result can be found in refs. [180, 174].

The exclusion regions from these flavour constraints in Types I/X and Types II/Y are

shown in fig. 2.4.

Figure 2.4: Exclusion regions from B → Xsγ (red) and B0 − B0 mixing (yellow) in Types I/X

(left) and Types II/Y (right).

2.4.5 Collider constraints

Direct searches

Direct searches for scalar resonances at LEP, Tevatron and LHC also impose important

bounds on the model parameters. Whenever a search finds no resonances, the data can be

used to set 95% C.L. upper bounds on the cross section of the designated search channel,

and the model is then excluded (to this confidence level) if its prediction lies above this

experimental limit,

Rσ ≡
σ95% C.L.

σmodel
< 1. (2.53)

Due to the relatively low energy reach at LEP, searches for neutral scalars in these
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experiments have focused mainly on Hi → qq̄ and Hi → ττ [181], which are the dominant

decay modes for mHi . 2mW . In hadron colliders, on the other hand, the cleanest channels

are diboson (WW , ZZ) and diphoton decays [182, 183, 184, 185, 186, 187, 188], followed by

Zγ [189, 190] and, to a lesser extent, ττ [191, 192, 193, 194, 195]. Indeed, it is interesting

to note that the branching ratio of scalars into two photons is typically small, O(10−3),

due to its being a loop induced effect, but a γγ signal is so clear at the LHC that this has

actually been one of the main channels leading to the Higgs boson observation in 2012

and to accurate measurements of its properties [196, 197, 198]. The very opposite occurs

with the bb̄ final state: despite this being the dominant decay in the SM for mh . 2mW

and also in the 2HDM quite generally, a search in this channel at a hadron collider is

extremely disfavoured due to the overwhelming QCD background. The only possibility of

seeing this decay mode in such machines is to focus on associated production of the Higgs

with other particles (e.g. Higgs-strahlung) [199, 200, 201], whose tagging can be used to

distinguish the signal from the background. Recently, a search has also been performed

in the vector boson fusion (VBF) channel, with the two outgoing quarks tagged for the

mentioned differentiation, and the results show agreement with the SM prediction [202].

Other channels which are absent in the SM have also been scrutinized, mainly motiv-

ated by supersymmetric scenarios, e.g. Hi → invisibles [203, 204, 205, 206], H0 → h0h0

and A0 → Zh0 (with h0 behaving as the SM Higgs) [207, 208, 209].

It is also worth mentioning that direct searches for a charged Higgs boson at LEP have

placed a 95% C.L. model-independent bound

mH± > 79.3 GeV,

assuming only that H± decays exclusively into cs̄ and τ+ντ , which is realistic in the

2HDM for this mass range [210, 211, 212, 213]. Additional searches have been performed

at Tevatron and LHC via t→ H+b [214, 215, 216, 217] and H+ → tb̄ [218, 219], resulting

in tanβ-dependent bounds.

Computing the model predictions

In order to apply these constraints to the 2HDM parameters we need to compute the

predicted cross section for the various searched events mediated by a scalar S, σi→S→f .

For this purpose we restrict ourselves to the vastly simplifying narrow width approximation,

valid when the total decay rate of S is small compared to its mass, ΓS � mS . In this case

interference effects can be neglected and we can write σi→S→f = σS × BR(S → f), with
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σS the scalar’s production cross section and BR(S → f) its branching ratio into the final

products of that specific event. In our case, narrow width will mean ΓS . 0.2mS .

At an e+e− collider such as LEP the main production processes of neutral scalars are

Higgs-strahlung, VBF and pair production, shown in fig. 2.5. Note that production in

pairs is the only way of obtaining a charged Higgs at LEP (with V = W± in the diagram)

and also a pseudoscalar (in association with a CP-even scalar), since A0 does not couple to

gauge bosons in a CP-conserving scenario. The relevant couplings in this case (normalized

to a reference value g/2 cos θW ) are

ghAZ = sin(β − α), gHAZ = cos(β − α). (2.54)

But since LEP had a maximum energy reach of
√
s = 209 GeV, pair production would

only be possible if the scalars were moderately light, mS . 100 GeV, a situation not

contemplated in the present work.

On the other hand the coupling of the CP-even states to gauge bosons (normalized to

the SM values) are

ghV V = cos(β − α), gHV V = sin(β − α), (2.55)

so LEP constraints on H0 are mild for α ≈ β.

Z

e+

e−

Z

Hi

e+

e−

e+, νe

Hi

e−, νe

V

e+

e−

S

S

V

V

Figure 2.5: Neutral scalar production processes at LEP. (Left) Higgs-strahlung. (Centre) Vector

Boson Fusion. (Right) Pair production.

At a hadron collider, such as Tevatron and LHC, there are two other important pro-

duction processes, namely gluon-gluon fusion and top fusion, whose diagrams are shown

in fig 2.6 (left and right, respectively). Higgs-strahlung, VBF and pair production are also

possible, with diagrams analogous to the ones shown in fig. 2.5, but with quarks instead

of leptons in the external legs, and with W ’s also mediating associated production. Note

that, in a hadron collider, even in the alignment limit all neutral scalars are produced via

gluon-gluon and top fusion.

Whenever the process has an analog in the SM, we compute its cross section by simply

rescaling the SM values with the appropriate effective coupling (see ref. [220] for a review



35

q

g

g

Hi

g

g

t̄

Hi

t

t

t̄

Figure 2.6: Additional production processes of neutral scalars at hadron colliders such as Tevatron

and LHC. (Left) Gluon fusion. (Right) Top fusion.

on the state-of-the-art computation of SM cross sections). Thus, for Higgs-strahlung, VBF

and top fusion we have

σ(HiV ) ≡ g2
HiV V σSM(hV ), (2.56)

σ(VBF) ≡ g2
HiV V σSM(VBF), (2.57)

σ(tt̄Hi) ≡ (y2
u,i + ỹ2

u,i)σSM(tt̄h), (2.58)

with gHiV V given in eq. (2.55), and the top couplings yu,i and ỹu,i shown in Table 2.2.

For pair production, which is not present in the SM, the reference cross section is the

SM value for Higgs-strahlung off a vector boson, multiplied by an appropriate phase space

factor to account for the two spin zero particles in the final state [221].

The gluon-gluon fusion channel is more involved due to its being a loop process already

at leading order. Our approach in this case is to compute the effective ggHi vertex by

solving the quark loop and obtaining the corresponding form factor [221, 222]. This

means that the loop is effectively “shrunk” to a point and the same rescaling argument is

applicable.

Because mt � mb, the top loop is typically the dominant contribution to this process.

The only possible exception occurs in Types II/Y, where the top Yukawa coupling is

suppressed by a factor of tanβ whereas the bottom one is enhanced by the same factor.

This means that, if tanβ � 1, the large bottom Yukawa can compensate for the small

bottom mass (which leads to a suppression in the loop form factor), and the bottom loop

may become important. However, since we will concentrate on tanβ . 10, only the top

loop will be considered in what follows.

For the CP-even states the form factor is the same as in the SM and all diagrams scale

with the top coupling in the same way (including those of higher order corrections), so

that the cross section in this case is

σ(ggHi) ≡ y2
u,i σSM(ggh), Hi = h0, H0. (2.59)
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For the pseudoscalar we use the fact that the form factors also enter in the Hi → gg decay

width to define

σ(ggA0) ≡ Γ(A0 → gg)

ΓSM(h→ gg)
σSM(ggh). (2.60)

A caveat in this definition is that, although accurate at leading order, at NLO QCD

some diagrams are different for the decay and the production processes, most notably

those involving emission of additional soft gluons in the final state [221]. However, using

the public code SusHi 1.5.0 [223] we checked that our definitions for the gluon-gluon

fusion cross section deviate by no more than 8% from the full NNLO QCD + NLO EW

computation.

We turn now to the decay widths, which are calculated as following (see Appendix B):

• for decays into fermions, Hi → ff̄ and H± → ff̄ ′, we include up to O(α2
s) QCD

corrections [220, 221] as well as the off-shell decay H+ → t∗b̄ → W+bb̄ [224]. Most

QCD corrections are taken into account if we use the running quark mass mq(mHi)

in the computation of the width, rather than the pole or the MS mass mq(mq). We

therefore compute the running of αs [225] and of quark masses [225, 226] (including

matching conditions) to NNNLO16;

• decays into two off-shell massive gauge bosons, Hi → W ∗W ∗ and Hi → Z∗Z∗, are

calculated following ref. [227];

• Hi → γγ [228] and Hi → Zγ [221, 229] are computed at leading order (i.e. at

1-loop);

• for a CP-even decaying into two gluons, we simply rescale the tabulated SM width [230]

by the top coupling, y2
u,i. On the other hand A0 → gg is computed including NLO

QCD corrections for the simplest case of heavy top, mA0 � 2mt [231, 232];

• finally, decays into other scalars via Hi → HjV
∗, H+ → HjW

+∗ and Hi → HjHk

are included as in refs. [227, 233].

We cross-checked our computations with the codes hdecay 6.20 [234] and 2hdmc 1.6.4 [235],

finding excellent agreement. Even in the potentially worrisome case of A0 → gg for heavy

pseudoscalars, where our assumption of heavy top breaks down, our result deviates less

than 6% from the full computation performed in hdecay. While it is true that this chan-

nel is not particularly important for experimental searches — since the two gluons in the

final state cannot be disentangled from the huge QCD background produced in hadron

16That is, we consider the 4-loop RGE and 3-loop matching conditions.
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colliders, and because its impact in the total width (and therefore in the branching ratios)

is negligible —, it is nevertheless important that we have this degree of accuracy in the

computation of its width, as it enters in our definition of the pseudoscalar’s production

cross-section in eq. (2.60).

Finally, if mH± < mt the charged scalar can be produced via top decay t → H+b,

whose width we compute to leading order following refs. [221, 236].

With these theoretical predictions we can compute the ratio Rσ in eq. (2.53) for the

various searches performed at LEP, Tevatron and LHC. For this we use the code Higgs-

Bounds 4.2.0 [237, 238], which contains tabulated values of σ95% C.L. for a long list of

searches, so that it takes the model’s predictions for production cross sections and branch-

ing ratios as inputs, and returns the minimal Rσ as well as the most sensitive channel.

The model is excluded if min{Rσ} < 1.

The measured properties of the observed 125 GeV scalar resonance

Further constraints are imposed on the model by the observation of a neutral scalar res-

onance at LHC with mass mh ≈ 125 GeV [40, 41, 239, 240, 241], as it forces one of the Hi

to have properties matching those of the observed particle. Important among these are

the so-called signal strength modifiers for the various search channels, defined simply as

µf ≡
σ(pp→ Hi → f)

σSM(pp→ h→ f)
. (2.61)

So far the measurements agree with the expected from a SM Higgs boson, which means

that µf ≈ 1 within experimental errors for most channels [242, 243, 244].

In this work we will assume that the discovered resonance is the lightest among the

two CP-even states in the 2HDM, thus setting mh0 = 125 GeV. The SM-like behaviour

of the observed state will then impose rather stringent limits on β − α depending also on

the other parameters of the model, particularly on tanβ. This is because the coupling of

h0 to fermions can be written as

yu,h0 =
sinα

sinβ
= cos(β − α)− sin(β − α)

tanβ
, (2.62)

ye,h0 =

 yu,h0 , Type I/Y

cos(β − α) + tanβ sin(β − α), Type II/X
(2.63)

with the couplings to down-type quarks pairing with either of the above according to

Table 2.1. For small values of tanβ even a slight deviation from alignment will induce

a large deviation in the top coupling from its SM value, with a consequent enhance-

ment/suppression in the gluon-gluon and top fusion production cross section, thus affect-
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Figure 2.7: Allowed regions for α−β and tanβ taking into account the properties of the discovered

125 GeV Higgs.

ing the signal strength modifiers in all channels which have not been tagged for VBF or

Higgs-strahlung production. All models are therefore tightly constrained in the region of

very low tanβ. Conversely, for tanβ � 1, Type I tends to be less constrained (and the con-

straint becomes increasingly less tanβ-dependent), whereas Types II, X (Lepton Specific)

and Y (Flipped) are strongly disfavoured away from alignment due to large deviations in

the couplings to ττ and bb̄ final states. The contours delimiting the allowed regions are

shown in fig. 2.7, which is in good agreement with the findings of refs. [103, 245]. The

narrow disconnected allowed regions present in Types II, X and Y correspond to α ≈ β−π,

where the fermionic couplings have SM-like absolute values but carry a flipped sign (see

refs. [246, 247] for a phenomenological study of these scenarios).

Beyond the intricate dependence of the constrained regions with the model parameters,

a quite general result enforced by the SM-likeness of the 125 GeV Higgs is that

|β − α| . π

4
. (2.64)

This is because outside this domain the most SM-like scalar in the model is H0, for which

mH0 > mh0 = 125 GeV. An exception would be the case close to degeneracy, mH0 ≈ mh0 ,

which we do not consider here.

We use HiggsSignals 1.3.2 [248] to test the compatibility of the model with the signal

strength measurements. The input of the program are the same as for HiggsBounds,

from which it performs a χ2 analysis comparing the model’s predictions for the mass and

the signal strengths to the experimental data, returning the likelihood that one of the

scalars Hi in the model will generate the local peak observed at mh ≈ 125 GeV. We

consider the model to be excluded if the returned p-value is smaller than 5%.
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Chapter 3

The phase transition

In a cold, nearly empty Universe, spontaneous symmetry breaking takes places because the

energy of the Higgs self-interactions is minimized as the Higgs fields acquire non-vanishing

VEVs. But in the early Universe, when the scalar fields are surrounded by a plasma of

particles, the net free-energy of the entire system has contributions not only due to Higgs’

self-interactions but also due to interactions with this thermal bath. That is to say, the

effective potential becomes

V T
eff = Vtree + V1 + VT ≡ V0 + VT , (3.1)

with the zero-temperature part V0 given in eq. (2.38) and a thermal contribution VT to be

computed in section 3.1 below.

The net free-energy density of the scalar fields and the plasma at a given temperature

T in the broken phase is then

FT ≡ V T
eff(broken)− V T

eff(sym)

= F0 + VT (broken)− VT (sym)

≡ ∆u− T∆s,

(3.2)

where we have used the known thermodynamical definition of free-energy density in terms

of energy density u and entropy density s. The first contribution, ∆u ≡ F0 < 0, is the fixed

amount of energy density released by the scalar fields by breaking the symmetry. The latter

part, on the other hand, is always positive and monotonically increasing with temperature,

associated to the entropy change in the system as particles in the plasma acquire their

masses. As these particles grow more numerous, eventually a critical temperature Tc is

reached above which the maximum amount of energy available to be exchanged with the

system’s environment and thereby increase its entropy, given by F0, is not enough to

compensate for the entropy decrease in the system itself. The thermal part of the effective
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Figure 3.1: Thermal effective potential for various temperatures illustrating a strong first order

phase transition.

potential then dominates, FT > 0, and electroweak symmetry breaking cannot proceed

spontaneously.

This is illustrated in fig. 3.1, where the effective potential is shown for various temper-

atures in a fixed direction in field space. The symmetric phase is chosen as the reference

point, so V T
eff(0) = 0. In the next section we will discuss how the presence of a barrier

between the symmetric and the broken phase, as shown in the figure, is indicative of a first

order phase transition. Intuitively, this is because the barrier requires symmetry breaking

to proceed via tunneling, with a certain tunneling probability per unit volume [25, 29, 249].

The electroweak symmetry may then be broken in some regions of space while being pre-

served in others, resulting in a highly inhomogeneous space filled with bubbles of different

vacuum states.

3.1 Finite temperature 1-loop effective potential

In section 2.3 we have computed the 1-loop effective scalar potential at zero temperature,

when the system propagates in a vacuum with no particles. This choice was implicitly

made in eq. (2.33), where boundary conditions were imposed to calculate the Fourier

expansion of the inverse propagator — namely, all the boundaries were implicitly set at

infinity when all momentum components were taken to vary continuously. In particular

we assumed that there is an infinite time interval separating the “incoming”/unevolved

vacuum state |0−〉 in eq. (2.20) from the “outgoing” one1, |0+〉, and that the dynamics is

accurately described by the action S during all this period.

But when the system is surrounded by a thermal bath of particles these assumptions

become rather unrealistic, since the propagation of the scalars is now affected by collisions

1The terminology of “ingoing” and “outgoing” states is not fully appropriate here, since we are not
dealing with a scattering process.
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with the plasma. In this case the appropriate starting point is the thermal partition

function,

Z[J ] ≡ Tr(e−βH) =

∫
Dφ exp

(
−
∫ β

0
dτ

∫
d3x

[
LE + J(x)φ(x)

])
, (3.3)

with β−1 ≡ T the temperature of the system. Note that this can be obtained from the

zero-temperature case in eq. (2.20) by performing the usual Wick rotation t → iτ and

limiting the “time” interval to τ ∈ [0, β). Furthermore, because the partition function is

the trace of the thermal evolution operator e−βH , the initial and final state of the system

ought to be the same, which amounts to imposing periodic boundary conditions,

φ(τ,x) = φ(τ + β,x). (3.4)

Thus there is an effective “compactification of time τ” in this interval [0, β).

Consequently, the time-component of the 4-momentum is quantized as k0 = ωn,bos ≡
2πn/β for n ∈ Z, which are called Matsubara modes, and∫

d4k

(2π)4
→

∞∑
n=−∞

1

β

∫
d3k

(2π)3
. (3.5)

As in the zero-temperature case, each gauge boson degree of freedom yields the same

contribution as the scalars [138, 250]. For fermions, on the other hand, the boundary

conditions analogous to eq. (3.4) are anti -periodic as usual, so the Matsubara modes are

ωn,fer ≡ (2n+ 1)π/β, n ∈ Z.

From eqs. (2.33) and (3.5) the 1-loop contribution to the effective potential then be-

comes

V T
1 (φcl) =

∑
i

ni

∞∑
n=−∞

1

2β

∫
d3kE
(2π)3

log
(
ω2
n,i + k2

E +m2
i (φcl)

)
. (3.6)

The sum over the Matsubara modes can actually be performed analytically [138, 250],

yielding

V T
1 =

∑
i

ni

[∫
d3k

(2π)3

Ei
2

+
T 4

2π2

∫ ∞
0

x2ln
(

1∓ e−
√
x2+m2

i /T
2
)
dx

]
≡ V1 + VT , (3.7)

where E2
i = ~k 2 +m2

i and the sign inside the logarithm is − for bosons and + for fermions.

The first term is to be compared with the zero-temperature result obtained previ-

ously in eq. (2.35)2. The purely thermal part of the 1-loop contribution, VT , has a low

temperature expansion

V low T
T = −

∑
i=B,F

|ni|T 4
( mi

2πT

)3/2
e−

mi
T

(
1 +

15

8

T

mi

)
, (3.10)

2Indeed, we can rewrite the 1-loop zero-temperature contribution to the effective potential from



42

so that heavy particles are Boltzmann suppressed, as expected. On the other hand, at

high-temperatures [138]

V high T
T ≈

∑
B

nB

(
−π

2

90
T 4 +

1

24
T 2m2

B −
1

12π
Tm3

B −
m4
B

64π2
log

m2
B

cBT 2

)
+
∑
F

|nF |
(
−7π2

720
T 4 +

1

48
T 2m2

F +
m4
F

64π2
log

m2
F

cFT 2

)
,

(3.11)

with cF = π2exp
(

3
2 − 2γ

)
(γ ≈ 0.577216 is the Euler-Mascheroni constant) and cB = 16cF .

Note that the logarithmic terms partly cancel the ones from the zero-temperature effective

potential in eq (2.38). As we have already argued in the discussion on the counter-terms,

the terms
∑

im
2
i merely shift the bare mass parameters as

− µ2
i → −µ2

i +
T 2

24

(
6λi + 4λ3 + 2λ4 +

9

2
g2 +

3

2
g′2 + 6yt δi2

)
(3.12)

with i ∈ {1, 2}. Thus, at high enough temperatures, thermal corrections will cause these

parameters to become positive, and the potential will have a single minimum at the origin:

electroweak symmetry is restored.

3.1.1 Daisy resummation

Such a drastic change in the shape of the potential due to radiative corrections may be an

indicative of a possible breakdown of the perturbative expansion. Indeed, let λ denote a

general expansion parameter, such that the introduction of an extra vertex in a diagram

corresponds to the addition of an extra power of this coupling in the perturbative series.

Now, an extra loop adds not only an additional vertex but also an extra propagator, and

in the thermal case the latter comes with an extra factor of T due to the Matsubara

sums in eq. (3.5). Thus each additional loop comes with a factor of λT , so the relevant

expansion parameter (apart from numerical factors) is actually λT/meff , wheremeff is some

relevant mass scale introduced for dimensional reasons [250, 251]. Clearly, the perturbative

approach breaks down at high temperatures.

eq. (2.33) as

V1 =
∑
i

ni
2

∫
d3k

(2π)3

∫
dk0

2π
log
[
(k0)2 + E2

i

]
=
∑
i

ni
2

∫
d3k

(2π)3

∫
dk0

2π

∫
dEi

2Ei
(k0)2 + E2

i

,

(3.8)

ignoring field-independent constants. The integral in k0 can be performed by closing the contour in the
complex plane and using Cauchy’s integral theorem, yielding

V1 =
∑
i

ni

∫
d3k

(2π)3

∫
d

(
Ei
2

)
, (3.9)

which is the first integral in eq. (3.7).
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Related to this problem is the existence of an infrared divergence in eq. (3.6) for the

n = 0 bosonic Matsubara mode. This zeroth mode is responsible for the cubic term in

eq. (3.11), as can be seen by direct computation from eq. (3.6),

∂V T, n=0
1

∂m2
B

=
nB
2β

∫
d3kE
(2π)3

1

k2
E +m2

B(φcl)
= nB T

[
Λ

4π2
− mB

8π
+O

(
m2
B

Λ

)]
. (3.13)

Because the purely thermal contribution in eq. (3.7) is UV finite, there can be no temper-

ature dependence in UV divergences. Therefore the Λ-dependent term above should be

cancelled by contributions from the n 6= 0 modes, and we are left with

V T, n=0
1 = −

∑
B

nB
12π

Tm3
B (3.14)

as promised. That this non-analytic cubic term is intimately related to infrared divergences

is further emphasized by the fact that they do not arise from fermionic contributions, for

which the lowest Matsubara mode is non-vanishing and the limit mF → 0 is therefore

always well-defined.

As we go to higher orders in the perturbative expansion, other odd powers of m appear,

but it can be shown that they are all related to the n = 0 mode of bosonic contributions.

For instance, one trivial 2-loop contribution to the effective potential is

∼ λ
(∑

n

T

∫
d3k

(2π)3

1

4π2T 2n2 + k2 +m2
B

)2

= λ

(
1

mB

∂V T
1

∂mB

)2

T�mB≈ λ

(
T 2

12
− TmB

4π
+ . . .

)2

= λ
T 4

144
− λT

3mB

24π
+ . . .

with the same particle running in both loops and λ its quartic self-coupling. We see that

the linear term arises from crossing terms with even and odd powers of mB, i.e. from

diagrams where one loop corresponds to a zero mode, the other to a non-zero (heavy)

one [252]. Similarly, we can compute the contribution from a 3-loop diagram where one

zero mode loop (larger loop in diagram) is surrounded by two loops of heavy modes (smal-

ler loops),

∼ λ2

(
T 2

12
+ . . .

)2(
T

∫
d3k

(2π)3

1

(k2 +m2
B)2

)
= λ2 T

4

144

T

8πmB
+ . . .,

which diverges as mB → 0. Note, furthermore, that each order in this expansion gets a

contribution O(λT 2/m2
B), which becomes large in this IR limit.

We can therefore interpret these IR divergences as a side-effect of the breakdown of

this näıve perturbative expansion, as we have already indicated previously. And, indeed, it
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turns out that all these terms with odd powers of mB can be resummed to a closed analytic

form in what is called ring or daisy resummation, in such a way that the improved potential

is IR finite. This is equivalent to resumming all diagrams of the form shown in fig. 3.2,

with a loop of a zero Matsubara mode “dressed” by loops of heavy modes, resulting in a

modified propagator for the former.

= + + . . . + + . . .

� �
�

Figure 3.2: Resummation of daisy diagrams.

Note that this resummation is only relevant in the high-temperature (or, equival-

ently, low-mass) approximation, mB/T � 1, since only then can the lightest zeroth

mode be of any relevance. In this case the result is a thermal shift in the mass of

the bosonic zero modes, effectively obtained by absorbing the leading term of the high-

temperature expansion into the quadratic terms of the zero-temperature potential, in

analogy to eq. (3.12) [250, 251, 252, 253, 254]. And since only zero modes are affected,

the resummed mass should enter only in the cubic term, so that eq. (3.14) becomes

V T, n=0
1, resummed = −

∑
B

nB
12π

T

(
m2
B +

T 2

24
O(λ)

)3/2

. (3.15)

The effect is O(λ3/2), which means it is dominant with respect to ordinary 2-loop con-

tributions of O(λ2) and must be taken into account in any perturbative expansion going

beyond next-to-leading order.

More than that, these resummations also improve the 1-loop perturbative expansion,

as the expansion parameter at high temperatures is now [255]

λT

πmeff
∼ λT

πT
√
λ
∼
√
λ

π
, (3.16)

where we have introduced the numerical factor π−1 coming from loop integrations [256,

257, 250]. Thus, as long as the expansion parameter is small, the 1-loop thermal potential

is a good effective description of physics at high temperatures. The related problem of IR

divergences is also tamed by this procedure, since the limit mB → 0 can now be taken

even for zero modes, thus confirming that this problem was indeed merely a consequence

of the breakdown of perturbation theory.

According to the prescription delineated above, resummations modify the 2HDM scalar
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mass matrix as [84]

(MT )ij =
∂2

∂φ∗i ∂φj

(
Vtree +

T 2

24

∑
B

nBm
2
B +

T 2

48

∑
F

|nF |m2
F

)
. (3.17)

We do not consider resummation of the gauge bosons, as their effect is subdominant with

respect to the scalar contributions [83]. Moreover, including them would cause the mass

of gauge bosons’ transverse components to increase with temperature, thus enhancing the

non-convex cubic term in the effective potential and, consequently, the phase transition

strength. By neglecting this effect the latter is therefore underestimated, so that our

analysis is in fact conservative.

The problem of IR divergences will be most relevant for the Goldstone bosons, since

they are massless at the minima of the thermal effective potential. But there is also

another reason why the Goldstones must be handled with extra care, as in the zero tem-

perature case. Namely, in a large portion of the field space their squared masses are neg-

ative, m2
G < 0, in which case the thermal part of the effective potential, VT in eq. (3.7),

is not well defined. First, the result has a non-vanishing imaginary part which is not

related to instabilities, and in fact cannot have any physical significance since it is gauge-

dependent [139, 140]. Moreover, the integrand has poles in the integration interval when

|mG| > 2πT .

Both these problems can also be solved with daisy resummations, since for high enough

temperatures the thermal contributions will make all masses positive. But this requires

that thermal masses be implemented directly in the integral for VT in eq. (3.7), while

strictly speaking these corrections affect only the zeroth Matsubara mode and should enter

only in the cubic term, as in eq. (3.15). We choose nevertheless the former implementation

for definiteness [84], checking that it will result in an overestimation of the phase transition

strength by at most 15% as compared to the latter. The small impact of this choice on

the final result is expected: resummations are only relevant at high temperatures, and

their leading contributions to the phase transition strength comes from the cubic term,

since resumming the quadratic term of the high temperature expansion merely shifts the

potential by a field-independent quantity.

3.1.2 Nature of the phase transition and validity of 1-loop approxima-

tion

In computing the effective action in section 2.3 an important step was to take the Legendre

transform of W [J ] ≡ −i logZ[J ] in order to exchange the dependence from the current J
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to the field configuration φcl. Since a Legendre transform is a convex function, we would

expect that the graph of the effective potential would not have any “bumps” or barriers.

However, such barriers do eventually appear in the end result3, as shown in fig. 3.1, and the

effective potential then displays multiple local minima φicl. This can be seen as indicative of

a breakdown of the initial hypothesis, stated in eq. (2.32), of homogeneity of the classical

configuration. In these cases, the actual configuration of minimum energy would be a

spatially-dependent combination of these φicl which averages to φcl [135], i.e. one in which

space is filled with bubbles of different vacuum states. Therefore the existence of a barrier

in the effective potential points to a first order phase transition proceeding via nucleation

of vacuum bubbles at different points in space.

At this stage one could wonder whether the existence of the barrier is not a mere artifact

of the 1-loop approximation which disappears upon the inclusion of higher-order terms

in the perturbative expansion. This is known to happen in a pure λφ4 theory, where the

phase transition is actually of second order, in contradiction to the 1-loop prediction [251].

However, in non-abelian gauge theories, and especially in models with additional scalars

such as the MSSM, both the 2-loop perturbative analysis as well as lattice computations

typically yield a phase transition stronger than the 1-loop estimative [74, 251, 258, 259].

This means that our results are actually too conservative, and we could in fact relax

the bound on the condition defining a strong phase transition in eq. (1.9). For peace of

mind, we checked that our results are essentially unaffected if we use a modified criterion

(vc/Tc)relaxed & 0.7. However, it should be noted that the computation leading to eq. (1.9)

is far from being precise, and other bounds have sometimes been adopted in the literature,

depending on the exact determination of the sphaleron rate and how much baryon washout

is considered acceptable [260]. With all these uncertainties involved, we stick to vc/Tc & 1.0

as a good reference value for defining a strong phase transition for the purpose of the

present work.

But there is a yet stronger argument supporting the validity of our results, namely that

the thermal evolution of the system is to a large extent determined by the zero-temperature

potential. More specifically, the electroweak phase transition tends to be stronger as the

zero-temperature vacuum energy |F0| becomes smaller. For as |F0| decreases, so do the

thermal corrections necessary to uplift the electroweak minimum until it becomes degener-

ate with (and eventually less energetically favoured than) the symmetric one. This means

that the critical temperature Tc will tend to decrease with |F0|, while the critical VEV vc

3For instance, in the high temperature expansion the cubic term is non-convex.
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will approach the zero-temperature value v ≈ 246 GeV, thus increasing the ratio vc/Tc.

Because our zero-temperature loop expansion is well under control, we expect our

results to be trustworthy at least at a qualitative level. For greater quantitative precision

a computation of the full 2-loop effective potential would be required, which, although

definitely worth pursuing, is beyond the scope of the present work.

We note in passing that, for the purpose of studying the phase transition, it is pointless

to compute the effective potential to an accuracy better than three loops. This is because

the masses of the gauge bosons vanish at the symmetric minimum, leading to a non-

perturbative IR divergence which introduces uncertainties of the same order of magnitude

as contributions from four-loop diagrams [251].

3.2 Parameter Scan

In order to understand how the nature of the electroweak phase transition depends on

the parameters of the model, we perform a Monte-Carlo scan over an extensive region of

the parameter space, imposing the constraints discussed in section 2.4. Vacuum stability

is checked by directly searching for secondary minima of the effective potential up to

a cutoff Λ = 10 TeV, rather than by using the RG improved potential, as detailed in

section 2.4.1. We explicitly verified that the two methods are equivalent for about 99.4%

of the points, our method being more constraining for the remaining 0.6%. We also impose

a perturbativity bound on the scalar quartic couplings,

gijkl < 2π. (3.18)

The constraint is imposed on the self-couplings of the physical fields rather than on the

quartic couplings λ1−5 appearing in the potential, since it is the former that enters in

contributions from higher-order diagrams. Note that we require perturbativity and unit-

arity at tree-level only. A more stringent constraint would be to require these couplings to

remain small all the way up to the cutoff scale of the model [100, 105]. A rather thorough

treatment of this issue in 2HDMs showed that the bound stated above generally implies

perturbativity up to Λ ≈ 1.5 TeV [94].

In our scan, the lightest CP-even Higgs h0 is assumed to be the particle recently

discovered at the LHC, so that mh0 = 125 GeV. All other masses are required to lie below

1 TeV, in which case B0 − B0 mixing puts a type-independent lower bound tanβ > 0.8

(cf. fig. 2.4). Furthermore, the fact that the observed scalar behaves much like the SM

Higgs enforces |β − α| ≤ π/4, since outside this region it is the heavier H0 who is more
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SM-like. We therefore vary the physical parameters uniformly within the ranges

0.8 ≤ tanβ ≤ 10,

−π
4 < β − α ≤ π

4 ,

0 GeV ≤ M ≤ 1 TeV,

100 GeV ≤ mA0 , mH± ≤ 1 TeV,

130 GeV ≤ mH0 ≤ 1 TeV.

Eqs. (2.18) and (2.19) are then used to obtain the respective parameters of the potential.

A point passing all the constraints is said to be physical, and we proceed to evaluate

the phase transition strength. This we do first by increasing the temperature of the plasma

by small steps of Tstep = 1 GeV and computing the free energy FT of the broken phase,

eq. (3.2), until FT > 0 or until we hit a maximum temperature Tmax = 300 GeV beyond

which only exotic (e.g. two-stepped) phase transitions could be strongly first order, which

are not considered here. In the former case, the critical temperature is known to a precision

of Tstep. For greater accuracy, we then proceed to iterate the following process:

• define the interval [Tbelow, Tabove] 3 Tc and evaluate FT ′ for some T ′ in it;

• if FT ′ > 0 (resp. FT ′ < 0), set Tabove = T ′ (resp. Tbelow = T ′);

• iterate until Tc is found at which this vacuum energy difference is vanishing.

The strength of the phase transition is then defined as4

ξ =

√
〈Φ†1Φ1 + Φ†2Φ2〉c

Tc
.

Following the discussion leading to eq. (1.9), the phase transition is considered to be

strong if ξ > 1, in order to ensure that the baryon asymmetry generated during the phase

transition is not washed out afterwards. A point in the parameter space for which this

condition is satisfied will be called a “strong PT point”.

Impact of constraints

We have already mentioned in section 2.4.3 that only points with an approximate mass

degeneracy between charged and neutral scalars are expected to pass the ρ parameter test,

4Note that this evaluation of the phase transition strength, even though widely used in the literature,
does not yield a gauge invariant result [138, 260]. This is because the effective potential itself is gauge
dependent, and so are the positions of its minima. The critical temperature Tc also inherits a gauge-
dependence from the way it is computed, namely by evaluating the potential at the position of its minima
calculated in a fixed gauge. An appropriate gauge invariant evaluation of the strength of the electroweak
phase transition has been proposed in [260, 261]. However, the quantitative impact of the gauge choice
has been shown to be small [262], and this issue can be overlooked without incurring in significant errors
in the end result.
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so that varying the masses of all scalars independently is bound to be a very inefficient

scanning method. In fact, about 87% of points produced this way would be discarded due

to electroweak precision constraints alone. A natural criterion to quantitatively estimate

the size of the required degeneracy is to compare it to the electroweak scale, in which case

we expect that ∆ρ ≈ 0 will force mH± to lie in an interval of size O(v) around the mass of

some other scalar. Indeed, among the points that do pass the electroweak precision tests,

92% satisfy this condition5. Thus, in an attempt to optimize the yield of physical points

without biasing the scan towards a specific spectrum, we adopt the following procedure:

if a randomly generated point does not pass the electroweak precision constraints, we pick

a random neutral scalar s0 and set the charged mass such that |mH± −ms0 | < v/2; if the

constraints are still not satisfied, the attempt is repeated for a second neutral scalar, and

eventually for the third and last one, until the point is deemed physical or is discarded

altogether. This improved method increases the efficiency of our scan by 550%, with

approximately 72% of scanned points passing the electroweak precision constraints.

Perturbativity and unitarity bounds are responsible for excluding another 70.6% of

the initial sample, which is also due to the random nature of the scan6. Indeed, we have

already argued that the role of the quartic couplings is to regulate the splittings of the

scalars’ masses among themselves, as well as their deviation from their base values, given

by the two dimensionful parameters v and M ≡ µ/
√

sin(2β) — cf. eq. (2.19). Therefore

these couplings will be naturally large in a scan where the values of µ, tanβ and the masses

are all chosen independently. In particular, note that close to alignment eq. (2.19) reads

λ1 & tan2 β
m2
H0 −M2

v2
,

λ2 &
1

tan2 β

m2
H0 −M2

v2

(3.19)

so that small couplings requires tanβ ∼ 1 and mH0 ∼M ∼ v.

The Yukawa couplings to down-type quarks and leptons enter only in flavour and

collider constraints. Since flavour constraints cannot differentiate Types I and X (resp.

II and Y), and because the collider constraints look similar for Types II, X and Y (cf.

fig. 2.7), we will show here the results for Types I and II only, which are the most widely

studied cases. In Type I the collider bounds are not very constraining, and we observe

5For the remaining 8% the mentioned interval of degeneracy has a size ∼ 2v.

6Recently an alternative scanning method has been proposed to avoid this problem, where the scanned
parameters are mh0 ,mH0 , tanβ and β − α together with 3 additional self-couplings [263]. This has been
named the “hybrid basis”. Having mh0 , β − α and tanβ as inputs enables us to tune these quantities
towards the experimentally allowed regions, whereas using quartic couplings as inputs allows for better
control over perturbativity.
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Type Total EW precision
λi < 2π

Unitarity
Flavour

Collider bounds
Stability Strong PT

I
3.00× 108

(100%)

2.16× 108

(72.0%)

4.27× 106

(1.4%)

9.48× 105

(0.32%)

1.80× 105

(0.06%)

1.45× 104

(0.0048%)

II
2.78× 105

(0.09%)

4.99× 104

(0.017%)

4.18× 103

(0.0014%)

Table 3.1: Number of points of the initial sample that survive after each step of tests.

that 22% of points surviving previous constraints pass also the phenomenological bounds.

For Type II this rate is a meagre 6.5%, since the bounds are much tighter, as discussed in

section 2.4.5.

Among the surviving points, about 21.6% pass the stability test. Hence, for Type I

(resp. Type II) only 0.06% (resp. 0.017%) of the initial sample are physical points which

are tested for phase transition. Nevetheless, because we scan over a total of 3×108 points,

the number of physical points is still about 1.80 × 105 for Type I (resp. 4.99 × 104 for

Type II).

Finally, approximately 8% of these physical points have a strong phase transition, so

we end up with 1.45 × 104 points (resp. 4.18 × 103), which is large enough to provide

significant statistics concerning the general behaviour of the electroweak phase transition

with respect to the input parameters, as will be shown in Section 3.3.

Table 3.1 summarizes the discussion of this section.

3.3 Analysis and Results

The data will be presented as distributions of the number of physical and strong PT points

as functions of some given parameters. Since these distributions will of course depend

heavily on the priors of the scan, the actual information that interests us is encoded in

their ratio,

Pξ>1 ≡
# strong PT points

# physical points
, (3.20)

which indicates the probability of having a strong phase transition as a function of the

parameters under consideration. This quantity will be plotted in solid lines. Still, the

actual distribution of the counting rates is important, especially because Pξ>1 becomes a

less precise indicative of that probability, the smaller the number of physical points in a

given range.

We start by proving our previous statement that a small zero-temperature vacuum

energy plays a crucial role in leading to a strong phase transition. For convenience, we
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normalize the vacuum energy by the SM value at 1-loop, |FSM
0 | ≈ 1.26 × 108 GeV4.

Fig. 3.3 shows the distribution of physical points and the contours of the probability Pξ>1

as a function of the critical temperature and the vacuum energy. Clearly Tc decreases,

and the probability of having a strong phase transition increases, as |F0| → 0. Notice,

furthermore, that the phase transition is never strong for low enough vacuum energies,

namely F0 . −1.081×|FSM
0 |. This can be used as an effective criterion to judge the nature

of the phase transition, as it does not require the evalutation of the thermal potential (but

it is not used in what follows).
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Figure 3.3: Distribution of physical points and Pξ>1 contours in the (Tc, |F0|) plane.

At the risk of redundancy, we emphasize that the details of the temperature-dependent

part of the effective potential are obviously important for the thermal evolution of the sys-

tem. In fact, we can see already from fig. 3.3 that a few (≈ 16.3%) points with a moderately

uplifted vacuum energy, F0 & −0.8 × |FSM
0 |, still have a large critical temperature and

therefore a weak phase transition. For these points either the masses of the extra scalars

are too large, so their effect in the plasma is Boltzmann suppressed and their presence is

barely felt unless the temperature is also large, or there is a large mixing between the light

h0 and a rather heavy H0 which suppresses the phase transition strength, for reasons we

will discuss in the following paragraphs. Yet it is certainly true that, the smaller |F0| is,

the more likely it is for the phase transition to be strong. Our claim is simply that the

central features of our results can be understood in light of this general tendency.

The zero-temperature vacuum energy can be written as

F0 =FSM
0 − v2

8
sin2(β − α) (m2

H −m2
h)

+ ∆

∑
s 6=h0

m4
s

64π2

(
log
|m2

s|
v2
− 1

2

)+ counter terms,

(3.21)
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where ∆[. . .] is to be understood as the difference of the Coleman-Weinberg terms evalu-

ated at the electroweak minimum and at the origin7. The absolute value in the argument

of the logarithm ensures we evaluate only the real part of the potential.

Since away from alignment the vacuum energy gets a negative tree-level contribution

which increases with mH0 , we expect a strong phase transition to favour the alignment

limit, and the more so, the heavier H0 is. This behaviour can also be explained by

appealling to the fact that the phase transition is typically weaker when it is driven by

heavier particles [34]. In the general non-aligned case, where both h0 and H0 “share” the

VEV, the contribution of the lighter h0 to the phase transition is suppressed by a factor

of cos(β − α) whereas that from the heavier H0 grows with sin(β − α). In contrast, the

alignment limit is the optimal case, since it implies that only the light h0 gets a VEV,

thus behaving like the SM Higgs and being the sole driver of the phase transition.
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Figure 3.4: Distribution of physical points and Pξ>1 contours in the (α− β,mH0) plane.

These expectations are confirmed by the data, as shown in fig. 3.4. In both model

types the probability contours show that it becomes more difficult to have a strong phase

transition as mH0 grows, with alignment being increasingly more favoured. In fact, all

points with a strong phase transition satisfy mH0 . 650 GeV. This is not to say that a

strong phase transition is excluded for heavier H0, but that these cases are likely to be

very fine tuned, thus escaping our random scan. Note also that the narrowing of the Pξ>1

band around alignment is not due merely to physicality constraints, as there are many

points with α − β & 0.05π and mH0 & 300 GeV which are physical but do not yield

a strong phase transition. For Type II the lower bound mH± > 380 GeV from flavour

constraints tends to shift the masses of the additional scalars towards rather large values,

7The masses of the scalars do not vanish at the origin in general.
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which is why the physical points are mostly concentrated in the region mH0 & 300 GeV.

The region mH0 . 200 GeV is populated by only 2.3% of the total amount of physical

points, but they are all favoured by a strong phase transition requirement, thus explaining

the large Pξ>1 values there.

The overall scale M affects the vacuum energy via the loop correction term. Indeed,

close to alignment the scalar masses in the symmetric phase are m2
s(sym) ≈M2 − m2

h
2 .

This means that for M � max(mH0 ,mA0 ,mH±) the “∆-term” in eq. (3.21) is negative

and the phase transition strength is suppressed. Moreover, if M as well as the masses

of all additional scalars are large we approach the decoupling limit, recovering the SM

prediction of a cross-over.

The converse of this argument then leads to a strong phase transition being favoured by

a moderately light M , with at least some particles heavier than this scale. Alternatively,

we could argue that a strong phase transition typically requires some couplings to be

large, so that some large mass splittings are expected. But if M � v, then the large mass

splittings will quickly lead to negative couplings and therefore to an unstable potential (in

case the masses are smaller than M) or to a rapid blowup of the perturbativity bound.
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Figure 3.5: Distribution of physical points and Pξ>1 contours in the (M, |F0|) plane.

The distribution of physical points and the probability contours are shown in fig. 3.5

varying with M and the vacuum energy. In Type II the physical points are peaked around

slightly large mass values (compared to the electroweak scale), due to the lower bound on

mH± imposed by B → Xsγ constraints. But in both types a moderate uplifting of the

vacuum energy is achieved only if M . 400 GeV, with M → v as F0 → 0.

Now, we have already seen in eq. (3.19) that, close to alignment, a large mH0 −M
splitting is disfavoured by perturbativity constraints, whereas far from alignment a heavy
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mH0 suppresses the phase transition strength by pulling the vacuum energy towards more

negative values already at tree-level. As for the charged scalar, electroweak precision

observables forces it to pair with one of the neutral ones. This leaves A0 as the only

scalar whose mass is free to be large, and fig. 3.6 (top) confirms this as indeed the most

favoured scenario, with virtually all (98%) strong PT points lying above the lower bound

mA0 & 300 GeV. As for H± (fig. 3.6 (bottom)), in Type I we see two spikes corresponding

to the cases when the charged scalar aligns with H0 (mH± ≈ v) or with the heavier

A0. Clearly the latter is the most favoured scenario for a strong phase transition, since

the extra heavy scalar introduces yet another large coupling. Indeed, a rather heavy

mH± ≈ mA0 & 300 GeV is the only possibility for a significant vacuum energy uplift,

|F0| . 0.6× |FSM
0 |.
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Figure 3.6: (Top) Distribution of physical points and Pξ>1 contours in the (mA0 , |F0|) plane.

(Bottom) Same as above, now in the (mH± , |F0|) plane.

Finally, we show in fig. 3.7 the distribution of physical (green) and strong PT (yellow)

points varying with tanβ, as well as the ratio Pξ>1 in solid black lines. The yellow bars

have been rescaled by a factor of 5 for convenience. As shown in eq. (3.19), perturbativity

requirements tend to favour tanβ ≈ 1, and more pronouncedly so in Type II due to the
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Figure 3.7: Distribution of physical and strong PT points as functions of tanβ. The yellow bars

have been rescaled by a factor of 5 for convenience. The probability Pξ>1 is shown as a black line.

mass scales being typically larger in this case. The highly oscillatory behaviour of Pξ>1

for tanβ & 5, particularly for Type II, is a consequence of the small sample of physical

points in this region. But the wiggly data still allows us to conclude that, on average,

tanβ hardly influences the phase transition, if at all. And, when there is some preference,

it is for tanβ ≈ 1.

This is an excellent result from the baryogenesis perspective. For the computation of

the baryon asymmetry the important additional source of CP violation comes from the

variation of the particle masses along the wall of a vacuum bubble, whose complex parts

(emerging from the complex phase in the doublet VEVs) induce an asymmetrical particle-

antiparticle flow in and out of the bubble [113]. Due to its large mass, the top quark

gives by far the most relevant contribution to this process. However, for tanβ � 1 the

top coupling to the scalar sector is suppressed and this effect becomes rapidly negligible.

In fact, it can be shown that the net baryon number scales as nB ∼ (tanβ)−2 [264].

Therefore, the fact that tanβ ∼ 1 is not ruled out from the phase transition perspective

shows that there is no tension with the demand for sufficient additional CP violation.
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Chapter 4

Collider phenomenology

In the previous chapter we have investigated the regions of the 2HDM parameter space

that favour a strong first order phase transition, as required for solving the problem of

the matter-antimatter asymmetry of the Universe. With this information at hand, the

natural question that follows is: what can we say about the phenomenological predictions

of these models in collider experiments? Can a cosmological observable be used to point

at effective search strategies for new particles at the LHC? This chapter is devoted to

exploring this interface between particle cosmology and collider phenomenology. We will

answer these questions, showing that the 2HDM with a strong phase transition has a

rather exotic phenomenology which has been little explored in the current searches for

heavy scalars at the LHC [86]. For other theoretical works exploring exotic channels

without our cosmological motivation we refer the reader to refs. [107, 265].

4.1 Motivating a search via A0 → ZH0

We have seen in section 2.4.5 that searches for heavy scalars have focused mainly on the

diboson, diphoton and τ+τ− channels, not the least because these are the most relevant

modes to look for the SM Higgs at hadron colliders. For decays specific to the 2HDM,

searches have focused on H0 → h0h0 and A0 → Zh0 [207], mainly motivated by the

supersymmetric case, where the additional scalars can be rather heavy but are nearly

degenerate among themselves. In particular, note that

m2
h0 +m2

H0 −m2
A0 =

(
λ1 cos2 β + λ2 sin2 β + λ5

)
v2,

m2
h0 +m2

H0 −m2
H± =

(
λ1 cos2 β + λ2 sin2 β +

λ4 + λ5

2

)
v2,

m2
A0 −m2

H± =
λ4 − λ5

2
v2,

(4.1)
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and since SUSY requires that the quartic couplings be given by the gauge couplings ac-

cording to

λ1 = λ2 =
g2 + g′ 2

4
,

λ4 =
g2

2
, λ5 = 0,

(4.2)

it follows that

|m2
H0 −m2

A0 | = |m2
Z −m2

h0 | ≈ (85.5 GeV)2 < m2
Z ,

|m2
H0 −m2

H± | = |m2
Z +m2

W −m2
h0 | ≈ (29.1 GeV)2 < m2

W ,

|m2
A0 −m2

H0 | = m2
W .

(4.3)

This means that in supersymmetric scenarios a decay Si → SjV (with S = H0, A0, H±

and V = W,Z) is kinematically forbidden, and have for this reason been little explored

experimentally.

But we have seen in the previous chapter that a strong phase transition in 2HDMs

typically requires a large mA0−M splitting in order to induce large couplings in the scalar

sector. On the other hand, because H0 in general shares the electroweak VEV with the

lightest h0, its being heavy is largely disfavoured except in very special circumstances, e.g.

very close to alignment and for tanβ ≈ 1 to avoid non-perturbative couplings.

These results are put together in fig. 4.1, showing how the likelihood of a strong phase

transition varies with mH0 and mA0 . In both types it is clear that the favoured scenario

has a large splitting mA0 > mH0 + mZ , pointing to the A0 → ZH0 decay as a smoking

gun signature of a 2HDM with a strong phase transition.
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Figure 4.1: Distribution of physical points and Pξ>1 contours in the mH0 ×mA0 plane.

This is further reinforced by the fact that a strong PT also favours the alignment

limit, in which case the decays usually searched for are strongly disfavoured (including the
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important diboson channel) because gHV V ∼ gHhh ∼ ghAZ ∼ sin(β − α)1. On the other

hand, gHAZ ∼ cos(β − α) is unsuppressed.

Now, is it viable to study this decay at the LHC? To start answering this question note

first that, for a heavy pseudoscalar, the main competing channels are A0 → tt̄, which is

suppressed as (tanβ)−2, together with A0 → Zh0 and A0 →W±H∓ when available. The

former is subdominant close to alignment, as just discussed. As for the latter, recall that

H± has to be nearly degenerate with a neutral scalar to satisfy ∆ρ ≈ 1, so this decay will

be forbidden when mH0 ≈ mA0 . This is typically the case in Type II, as can be seen from

fig. 3.6, whereas in Type I a pairing with CP-even states is still possible and the decay

of the pseudoscalar into a charged Higgs is still open, thus reducing BR(A0 → ZH0) by

∼ 50%.

For a more detailed investigation of the detection prospects we will henceforth focus

on two benchmark points, representatives of the favoured scenarios discussed in chapter 3.

Based on fig. 3.6 we pick mA0 = 400 GeV and will consider mH± = mA0 for simplicity,

thus closing the competing decay into charged scalars. Since H0 has to be relatively light

we choose mH0 = 180 GeV, as well as µ = 100 GeV and a moderate tanβ = 2 (so that

M ≈ 111.8 GeV). Finally, the two benchmarks differ among themselves in that one (called

Benchmark A) is close to alignment, with α− β = 0.001π, whereas the other (Benchmark

B) has α − β = 0.1π (cf. fig 3.4). We will also assume Type I fermionic couplings, since

the other types are a lot more constrained to be close alignment (see fig. 2.7). These

values are summarized in Table 4.1. We checked that these points pass all the constraints

discussed in section 2.4 and that they both yield a strong phase transition.

Benchmark M tanβ mH0 mA0 mH± α− β Tc vc/Tc

A 111.8 2 400 400 180 0.001π 85.712 2.268

B 111.8 2 400 400 180 0.1π 86.748 2.201

Table 4.1: The two benchmark scenarios considered in our collider analysis. Mass parameters and

critical temperature are given in GeV.

The branching ratios of the pseudoscalar varying with mH0 are shown in fig. 4.2 (left)

for benchmarks A (solid lines) and B (dotted lines). In both cases A0 → ZH0 largely

dominates when mH0 . 200 GeV. As for the subsequent decays of H0, its branching

ratios are depicted in fig. 4.2 (right). Close to alignment the couplings of H0 to gauge

bosons are nearly vanishing, leaving bb̄ as the main decay mode. But the diboson channel

1In fact gHhh = sin(β−α)

v2 sin(2β)

{
sin(2α)

(
2m2

h0 +m2
H0

)
− 2M2

[
sin(β + α) cos(β − α) + sin(2α)

]}
.
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quickly dominates as the coupling grows, and we see that, for benchmark B, the heavy

CP-even scalar decays almost exclusively into W+W−.
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Figure 4.2: Branching ratios of A0 (left) and H0 (right) varying with mH0 . Solid and dotted lines

correspond to benchmarks A and B, respectively.

Focusing on the leptonic decays of gauge bosons, which are the cleanest and easiest

to detect, it follows that a 2HDM with a strong phase transition should leave its imprint

at the LHC in pp → A0 → ZH0 → ``bb̄ or 4` + /ET (where /ET is the missing transverse

energy corresponding to the neutrinos from the leptonic W decay).

4.2 Search for A0 in ``bb̄ and 4`+ /ET

We turn now to a more detailed analysis of the prospects for these searches in the next

LHC run at 13 TeV. For this purpose we implement the Type I 2HDM in Feynrules

1.6 [266] with a 5D effective operator [267, 228]

LggA ≡
αS
8πv

FggA
tanβ

(
GaµνG̃

aµνA0
)

(4.4)

to reproduce the gg → A0 production cross section at leading order. Here

G̃aµν ≡ 1

2
εµνρσGaρσ (4.5)

is the dual of the gluon field strength tensor and

FggA ≡
f(τ)

τ
, f(τ) ≡

 arcsin2(
√
τ), τ ≤ 1

−1
4

[
log τ+

√
τ−1

τ+
√
τ+1
− iπ

]
, τ > 1

(4.6)

(with τ ≡ m2
A0/4m

2
t ) is the form factor for the top quark loop.

Events are then generated with MadGraph5 aMC@NLO [268, 269], a program de-

signed for performing Monte-Carlo simulations at parton level. This means that its output

final states still involve isolated quarks. Due to confinement, long before they can reach
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the detector these quarks emit a myriad of gluons, which can also emit other gluons be-

fore all of them ultimately give rise to quark-antiquark pairs. This process is called parton

showering. Finally, the multitude of quarks and gluons thus generated eventually had-

ronize into colorless objects (mesons and baryons), so that the detector signature of a

single quark in the event final state is actually a jet of multiple hadrons. These showering

and hadronization processes are taken into account using Pythia [270], a code especially

designed for this task. Lastly, the events are passed to Delphes [271] for simulation of

detector effects such as b-tagging efficiency, i.e. the efficiency of the detector in recognizing

that a certain jet originated from a b quark.

Close to the alignment limit the dominant final state is ``bb̄, for which the main SM

backgrounds are (in order of relevance) (i) tt̄ production (with subsequent t→W+b→ `ν`b

and the conjugate process for t̄); (ii) Zbb̄ production; (iii) ZZ production and (iv) asso-

ciated production of a SM-like Higgs with a Z boson. We take NLO effects into account

by rescaling the signal and the two dominant backgrounds by K-factors. For the signal,

Ksignal ' 1.6 (computed with SusHi), whereas Ktt̄ ' 1.5 [272] and KZbb̄ ' 1.4 [273].

Signal tt̄ Z bb̄ ZZ Z h

Event selection 14.6 1578 424 7.3 2.7

80 < m`` < 100 GeV 13.1 240 388 6.6 2.5

Hbb̄
T > 150 GeV

H``bb̄
T > 280 GeV

8.2 57 83 0.8 0.74

∆Rbb̄ < 2.5, ∆R`` < 1.6 5.3 5.4 28.3 0.75 0.68

mbb̄, m``bb̄ signal region 3.2 1.37 3.2 < 0.01 < 0.02

Table 4.2: Cut-flow chart for ``bb̄ final state considering event selection and background reduction.

The NLO cross section (in fb) is shown after successive cuts for the signal A0 → ZH0 → ``bb̄ and

the dominant backgrounds tt̄ and Zbb̄, while ZZ and Zh are shown at LO.

We use standard event selection criteria, requiring the presence of two isolated same

flavour leptons and two b-tagged jets [274] in the final state, with minimum transverse

momenta p`1,b1T > 40 GeV, p`2,b2T > 20 GeV, and maximum pseudorapidities |ηb| < 2.5 and

|η`| < 2.5 (2.7) for electrons (muons). Demanding the two leptons to reconstruct the Z

mass eliminates most of the tt̄ background, whereas further cuts in HT ≡
∑
pT and on

the angular separation ∆R between the two jets or the two leptons help increasing the

signal to background ratio. Finally, the signal is defined by requiring the two b-jets to

reconstruct the H0 mass and ``bb̄ to reconstruct A0 (taking into account eventual losses
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Figure 4.3: Stacked distributions of mbb̄ (left) and m``bb̄ (right) for signal and backgrounds for

L = 20 fb−1 after applying all cuts.

due to hadronization effects),

mbb̄ = (mH0 − 20)± 30 GeV,

m``bb̄ = (mA0 − 20)± 40 GeV.
(4.7)

Table 4.2 shows the cross sections (in fb) of signal and backgrounds after the successive

cuts. The number of signal (S) and background (B) events are obtained by multiplying

the respective cross sections by the total luminosity L, from which we conclude that a

5σ statistical-only significance, S/
√
S +B = 5, is reached for L ∼ 20 fb−1. Systematic

errors can be estimated by marginalizing over a (conservative) 10% uncertainty in the

background prediction, yielding L ∼ 40 fb−1.

The invariant mass distributions for the final decay products are shown in fig. 4.3 for

a luminosity L = 20 fb−1 after all the cuts have been applied, from which a clear excess

can be seen in the signal region.

Away from alignment the ``bb̄ final state comes mostly fromA0 → Zh0, since BR(H0 →
bb̄) � 1 (fig. 4.2 (right)). But for mH0 . 250 GeV the pseudoscalar decay into the

light h0 is suppressed (see fig. 4.2 (left)), which renders the search in the ``bb̄ final state

challenging. As we have already argued, in this regime the characteristic signature is

pp→ A0 → ZH0 → ``W+W− → 4`+ /ET .

The main irreducible SM backgrounds in this case is diboson (ZZ) production with

ZZ → ````. Other backgrounds, such as Ztt̄, ZWW and Zh yield a combined cross

section which is < σsignal/4 after event selection. We follow the same selection and analysis

procedure as before, except for requiring the presence of four isolated leptons (in two same

flavour pairs) in the final state with p`1T > 40 GeV, p
`2,3,4
T > 20 GeV. Again, we require at

least one of the same flavour lepton pairs to reconstruct mZ within ∼ 20 GeV, and rescale
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the signal and dominant background by their respective K factors, KZZ ' 1.2 [275] and

KZtt̄ ' 1.35 [276].
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Figure 4.4: Stacked distributions of the defined invariant masses, m``
T (left) and m4`

T (right) after

event selection for an integrated luminosity of L = 40 fb−1.

In order to take into account the missing energy in the reconstruction of the decaying

particle’s mass, we define the following transverse mass variables(
m``
T

)2
=
(√

p2
T,`` +m2

`` + /pT

)2

− (~pT,`` + /~pT )2 ,

m4`
T =

√
p2
T,`′`′ +m2

`′`′ +
√
p2
T,`` +

(
m``
T

)2
,

(4.8)

(`′`′ are the two same flavour leptons most closely reconstructing mZ). The distribution

of the data in these mass variables is shown in fig. 4.4, from which we see that the region

of m4`
T > 260 GeV allows for extraction of a clean signal.

The NLO cross sections after event selection and this background selection is shown

in Table 4.3. A final signal cross section of 0.88 fb compared to a background of 1.39 fb

yields a 5σ significance with L ∼ 70 fb−1, which increases to L ' 200 fb−1 assuming a

10% systematic uncertainty on the background prediction.

Signal ZZ Rare

Event selection

80 < m`` < 100 GeV
1.49 6.72 0.34

m4`
T > 260 GeV 0.88 1.18 0.21

Table 4.3: Cut-flow chart for ```` final state considering event selection and the background re-

duction, showing the NLO cross sections (in fb) after successive cuts.

These are all very promising prospects, considering that the next LHC run at 13 TeV

is designed to reach up to 300 fb−1, in which case even our less favourable scenario could
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Figure 4.5: (Left) Observed 95% C.L. upper limits on H0/A0 → A0/H0 + Z → ``bb̄ cross section.

(Right) Signal strength limits for a theoretical value calculated with tanβ = 1.5 in a Type II

2HDM. Figures taken from ref. [277].

yield a 5σ discovery. Indeed, the results even suggest that the current 7− 8 TeV data set

can already be sensitive to these final states. Motivated by this, the CMS collaboration

has recently performed a search in H0/A0 → A0/H0 + Z → ``bb̄ and ``ττ , imposing

limits on the corresponding cross sections and signal strengths [277]. The results are

shown in figs. 4.5 and 4.6. For the signal strength modifiers, the theoretical value has

been computed considering a Type II 2HDM with tanβ = 1.5 and near alignment2, but

extending for other parameter choices is a straightforward exercise.
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Figure 4.6: (Left) Observed 95% C.L. upper limits on H0/A0 → A0/H0 +Z → ``ττ cross section.

(Right) Signal strength limits for a theoretical value calculated with tanβ = 1.5 in a Type II

2HDM. Figures taken from ref. [277].

2Note that their convention for β − α differs from ours by an additive factor of π/2.
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Chapter 5

Conclusions

The origin of the matter-antimatter asymmetry of the Universe figures among the few

experimental observations that the Standard Model of Particle Physics (SM) cannot ex-

plain. The reason is that the SM lacks enough CP violation as well as a strong source

of displacement from thermodynamical equilibrium occurring during the history of the

Universe. In this work we take a step further towards a broad study of the viability of

two-Higgs-doublet models (2HDM) as minimal alternatives for explaining baryogenesis.

Focusing on the CP conserving case for simplicity, we evaluate the strength of the elec-

troweak phase transition in an extended region of the model’s parameter space, showing

that the most likely scenario for successful baryogenesis has:

• a SM-like light Higgs (alignment limit);

• a rather heavy pseudoscalar, mA0 & 300 GeV;

• a large mass splitting between the pseudoscalar and the CP-even states,

mA0 −mH0 & v.

Altogether, the findings point to an exotic phenomenology which has been little ex-

plored in collider searches for heavy Higgs bosons so far. In particular, not only is the

decay A0 → ZH0 open, in contrast to supersymmetric scenarios, it is also among the most

favourable search channels, since decays of H0 into gauge bosons and of the pseudoscalar

into a light SM-like Higgs are suppressed near alignment. We have performed a detailed

analysis of the detection prospects of this proposed channel in the ``bb̄ and 4`+ /ET final

states, showing that a 5σ discovery could be achieved at the 13 TeV LHC run with a lu-

minosity of L ∼ 20− 200 fb−1, and with some sensitivity even with the current 7− 8 TeV

data, as proven by recent searches performed by the CMS collaboration.
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It is worth emphasizing that a search in the A0 → ZH0 channel, as proposed in this

work, has the potential to unveil valuable information about physics beyond the SM. If a

resonance is found in this channel, we would not only know that the symmetry-breaking

sector is non-SM like, but also that the UV complete theory is likely to be strongly coupled

at relatively low energies, Λ ∼ 10 TeV. In particular, supersymmetric scenarios would be

very much disfavoured, while Composite Higgs theories would be put in the spotlight as

promising candidates.

Of course, the most natural completion of this work would be to compute the actual ba-

ryon asymmetry generated during the phase transition. The first step in this direction is to

reintroduce the additional source of CP violation in the scalar sector, which have been neg-

lected in this first analysis. In the 2HDM this has the side effect of generating contributions

to electron and neutron electric dipole moments already at 2-loop level1 [110, 278, 279],

while in the SM they first appear at 4-loop and are therefore highly suppressed. Experi-

mental searches for these effects have consistently returned negative results [280, 281, 282],

thus putting tight bounds on the 2HDM CP violating phase [111, 112]. Preliminary stud-

ies indicate that the allowed values could be just enough to obtain the observed baryon

asymmetry, but a more detailed analysis taking into account the non-equilibrium hy-

drodynamical properties of the phase transition, such as the bubble profile, the particle

transport along its wall [113, 283, 284] as well as its expansion velocity [285, 286], is still

largely missing.

On the more field-theoretic side, it would be interesting to compute the 2-loop con-

tributions to the effective potential and investigate their impact on our results for the

phase transition strength. This becomes even more important as we advance into an era

of precision measurements of Higgs properties, with a consequent increasing relevance in

knowing more accurately the dependence of phenomenological observables on parameters

of the Higgs sector. The functions appearing in the computation of the relevant diagrams

(without assuming a high-temperature expansion, which is not always a valid approxim-

ation in our case) have been worked out in ref. [287], making the full 2-loop computation

in the 2HDM a bookkeeping exercise, albeit a time-consuming one.

From a more collider-oriented perspective, we plan to extend our previous analysis to

include more benchmark points and cover cases that we have not considered in this first

approach. In particular, we aim at exploring the rich phenomenology of the CP violating

2HDM. In this case the pseudoscalar A0 can also decay into gauge boson and scalar pairs,

1See Appendix C for the expressions of the electron, neutron and mercury EDMs in 2HDMs.



66

possibly altering its branching fractions significantly, even for small CP violating phases.

For other studies in this direction see refs. [112, 288, 289].

An extended analysis of the recent CMS data on A0 → H0Z, showing the exclusion

regions for various tanβ values, is already in preparation.
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Appendix A

Mass matrix of scalars

For the evaluation of the effective potential it is necessary to compute the masses of the

scalars at an arbitrary point in field space. Recall that, in a charge conserving case, a

gauge rotation can be performed to write the doublets in the form

Φ1 =
1√
2

 0

h1

 , Φ2 =
1√
2

 0

h2 + i η2

 . (A.1)

The squared mass matrix is given by the second derivative of the tree-level potential

with respect to the fields φi =
(
Re(ϕ+

1 ),Re(ϕ+
2 ), Im(ϕ+

1 ), Im(ϕ+
2 ), h1, h2, η1, η2

)
,

Mij =
∂2Vtree

∂φ∗i ∂φj
, (A.2)

whose eigenvalues are the scalars’ squared masses. The field array φi is organized in such

a way that Mij is block diagonal, each block a 4 × 4 symmetric matrix. For the charged

scalars the matrix elements are

2M±11 = −2µ2
1 + λ1h

2
1 + λ3 (h2

2 + η2
2), (A.3)

2M±22 = −2µ2
2 + λ3h

2
1 + λ2 (h2

2 + η2
2), (A.4)

2M±12 = −Re(µ2eiξ) +
[
λ4 + Re(λ5e

2iξ)
]
h1h2 − Im(λ5e

2iξ)h1η2, (A.5)

2M±13 = 0, (A.6)

−2M±23 = 2M±14 = Im(λ5e
2iξ)

(
v2 sinβ cosβ − h1h2

)
+
[
λ4 − Re(λ5e

2iξ)
]
h1η2. (A.7)

For the neutral scalars,

2M0
11 = −2µ2

1 + 3λ1h
2
1 + λ+

345 h
2
2 + λ−345 η

2
2 − 2 Im(λ5e

2iξ)h2 η2, (A.8)

2M0
22 = −2µ2

2 + λ+
345 h

2
1 + λ2 (3h2

2 + η2
2), (A.9)

2M0
33 = −2µ2

1 + λ1h
2
1 + λ−345 h

2
2 + λ+

345 η
2
2 + 2 Im(λ5e

2iξ)h2 η2, (A.10)

2M0
44 = −2µ2

2 + λ−345 h
2
1 + λ2 (h2

2 + 3η2
2), (A.11)
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and the off-diagonal elements,

2M0
12 = −Re(µ2eiξ) + 2λ+

345 h1 h2 − 2 Im(λ5e
2iξ)h1 η2, (A.12)

2M0
13 = 2 Re(λ5e

2iξ)h2 η2 + Im(λ5e
2iξ) (h2

2 − η2
2), (A.13)

2M0
14 = Im(λ5e

2iξ)
(
v2 sinβ cosβ − 2h1h2

)
+ 2λ−345 h1 η2, (A.14)

2M0
23 = 2 Re(λ5e

2iξ)h1 η2 − Im(λ5e
2iξ) (v2 sinβ cosβ − 2h1 h2), (A.15)

2M0
24 = 2λ2 h2 η2 − Im(λ5e

2iξ)h2
1, (A.16)

2M0
34 = −Re(µ2eiξ) + 2 Re(λ5e

2iξ)h1 h2 − 2 Im(λ5e
2iξ)h1 η2, (A.17)

where

λ±345 ≡ λ3 + λ4 ± Re(λ5e
2iξ) (A.18)

and µ1,2 are given by eq. (2.18) with λ345 → λ+
345.

In the CP conserving case, η2 = 0 = Im(λ5e
2iξ) and these matrices are themselves

block diagonal, each block a 2 × 2 matrix corresponding to the CP-even and CP-odd

sectors.
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Appendix B

Decay widths

We list here the expressions we use for calculating the scalar decay widths, as discussed

in section 2.4.5.

Hi → ff̄

The decay width of neutral scalars into a pair of fermions is given by [221]

Γ(Hi → ff̄) = NcmHim
2
f

√
2Gf
8π

[
β3
f |yf,i|2 (1 + ∆H) + βf |ỹf,i|2 (1 + ∆A)

]
(B.1)

with βf ≡
√

1− 4m2
f

m2
Hi

the phase space factor, mf the mass of the fermion and Nc the

color factor (3 for quarks, 1 for leptons). For quarks, most QCD corrections are taken into

account if we use the running quark mass mq(mHi) in the computation of the width, rather

than the pole or the MS mass mq(mq). We therefore compute the running of αs [225] and

of quark masses [225, 226] (including matching conditions) to NNNLO1. The remaining

QCD corrections are given by the ∆H,A factors.

For light quarks these corrections read [221]

∆light f
H = ∆qq +

(αs
π

)2
(

1.57− 4

3
log

mH

mt
+

4

9
log2 mf

mH

)
,

∆light f
A = ∆qq +

(αs
π

)2
(

23

6
− 2 log

mA

mt
+

2

3
log2 mf

mA

)
,

(B.2)

with αs ≡ αs(mHi) and the common term for both scalar and pseudoscalar [290, 220],

∆qq =
17

3

αs
π

+


≈35.9399612︷ ︸︸ ︷

10801

144
− 19

2
ζ(2)− 39

2
ζ(3)−nf

≈1.35865070︷ ︸︸ ︷(
65

24
− 1

3
ζ(2)− 2

3
ζ(3)

)(αsπ )2

+
(
164.14− 25.77nf + 0.26n2

f

) (αs
π

)3
.

(B.3)

1That is, we consider the 4-loop RGE and 3-loop matching conditions.
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On the other hand, for decays into top quarks the QCD corrections are [221]

∆top
H =

4

3

αs
π

[
A(βf )

βf
+

1

16β3
f

(3 + 34β2
f − 13β4

f ) log
1 + βf
1− βf

+
3

8β2
f

(7β2
f − 1)

]
,

∆top
A =

4

3

αs
π

[
A(βf )

βf
+

1

16βf
(19 + 2β2

f + 3β4
f ) log

1 + βf
1− βf

+
3

8
(7− β2

f )

]
,

(B.4)

with

A(βf ) = (1 + β2
f )

[
4Li2(xβ) + 2Li2(−xβ) + log xβ log

8β2
f

(1 + βf )3

]
− 3βf log

4β
4/3
f

1− β2
f

, (B.5)

where xβ ≡ (1− βf )/(1 + βf ).

H+ → ff̄ ′

The decay width of a charged Higgs boson into a pair of quarks can be written as [221]

Γ(H+ → ud̄) = NcmH±

√
2Gf
8π
|Vud|2

√
λ(xu, xd) (1 + ∆qq) ×[

(1− xu − xd)
(
|yd,H+ |2m2

d + |yu,H+ |2m2
u

)
+ 4
√
xuxdmumd yu,H+yd,H+

]
,

(B.6)

where xf ≡ m2
f/m

2
H± , Vud is the corresponding CKM matrix element, and the kinematic

factor

λ(x, y) ≡ (1− x− y)2 − 4xy

= 1 + x2 + y2 − 2x− 2y − 2xy.
(B.7)

For the H+ → tb̄ the off-shell contribution H+ → t∗b̄→W+bb̄ is also relevant and has

width [224]

Γ(H+ → t∗b̄→W+bb̄) =NcmH±
(
√

2Gf )2

64π3
|Vud|2m2

W ×

×
∫ 1−xW

0
dx1

∫ 1− xW
1−x1

1−xw−x1

dx2
F (x1, x2)

(1− x2 − xt + xb)2 + xtwt
,

(B.8)

with wt ≡ (Γtot
t /mH±)2 and

F (x1, x2) ≡ |yu,H+ |2m2
u xt

(
(1− x1)(1− x2)

xW
+ 2x1 + 2x2 + 2xW − 2xb − 3

)
+

+ |yd,H+ |2m2
d

[
x3

2 + x1x
2
2 − 3x2

2 − 2x1x2 + 3x2 + x1 − 1

xW

+ x2
2 + 2x1x2 − 4x2 − 2x1 − 2xW + 3

+xb

(
2xW − 2xb − 2x1 + 3 +

5x2 + x1 − 2x2
2 − x1x2 − 3

xW

)]
− 2
√
xbxtmumd yu,H+yd,H+

(
(x2 − 1)2

xW
− x2 − 2xW + 2xb + 1

)
.

(B.9)
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The decay of a charged Higgs into a lepton pair is given by eq. (B.6) with the appro-

priate adjustments, such that

Γ(H+ → `+ν`) = mH±

√
2Gf
8π

|y`,H+ |2m2
`

(
1− m2

`

m2
H±

)2

. (B.10)

Hi → W+W−, ZZ

The decay Hi → V ∗V ∗ into two offshell gauge bosons (V = Z,W ) which later decay into

into pairs of fermions is implemented as [227]

Γ(Hi → V V ) = δV

√
2Gfm

3
Hi

32π
|gHiV V |2×∫ m2

Hi

0

dp2
1

1

π

ΓVmV

(p2
1 −m2

V )2 + Γ2
Vm

2
V

∫ (mHi
−p1)

2

0

dp2
2

1

π

ΓVmV

(p2
2 −m2

V )2 + Γ2
Vm

2
V

×

×
√
λ

(
p2

1

m2
Hi

,
p2

2

m2
Hi

)[
λ

(
p2

1

m2
Hi

,
p2

2

m2
Hi

)
+ 12

p2
1 p

2
2

m4
Hi

]
, (B.11)

where mV is the mass of the gauge boson V , ΓV its total fermionic decay width and

δV = 2(1) for V = W (Z).

The on-shell decay width is obtained by taking the limit ΓVmV → 0 and recalling that

in this case
1

π

ΓVmV

(p2
i −m2

V )2 + Γ2
Vm

2
V

→ δ(p2
i −m2

V ), (B.12)

yielding

Γ(Hi → V V ) = δV

√
2Gfm

3
Hi

32π
|gHiV V |2

√
1− 4

m2
V

m2
Hi

(
1− 4

m2
V

m2
Hi

+ 12
m4
V

m4
Hi

)
(B.13)

for mHi ≥ 2mV .

Hi → γγ

The decay of a neutral Higgs to two photons is a loop mediated process with fermions, W

bosons and charged scalars H± as mediators. Denoting the corresponding amplitudes by

Af , AW and AH± , the decay width reads [228]

Γ(Hi → γγ) =

√
2Gfα

2
EWm

3
Hi

256π3

(
|Sγγi |

2
+ |P γγi |

2
)
, (B.14)

with

Sγγi =
∑
f

2NcQ
2
fyf,iAf(s)(τf ) + gHiWWAW (τW )− gHiH+H−

v2

m2
H±

AH±(τH±),

P γγi =
∑
f

NcQ
2
f ỹf,iAf(p)(τf )

(B.15)
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the amplitudes for the decay of the scalar and pseudo-scalar components of Hi, respect-

ively. Here τk ≡ m2
Hi
/(4m2

k) and the 1-loop form factors are

AW =
[
−2τ2 + 3τ + 3(2τ − 1)f(τ)

]
/τ2,

AH± = − [τ − f(τ)] /τ2,

Af(s) = [τ + (τ − 1)f(τ)] /τ2,

Af(p) = f(τ)/τ,

(B.16)

with f(τ) given in eq. (4.6).

Hi → Zγ

Similarly to the digamma decay channel, the decay into Zγ is given by [221] (see also [229])

Γ(Hi → Zγ) =
G2
f αEW m2

Wm
3
Hi

64π4

(
1− m2

Z

m2
Hi

)3(∣∣∣SZγi ∣∣∣2 +
∣∣∣PZγi ∣∣∣2) , (B.17)

with

SZγi =
∑
f

2NcQf
If3 − 2Qfs

2
W

cW
yf,iA

Zγ
f(s)(τf , λf )

+ gHiWW AZγW (τW , λW )− (2c2
W − 1) gHiH+H−

v2

m2
H±

AZγ
H±(τH± , λH±),

P γγi =
∑
f

2NcQf
If3 − 2Qfs

2
W

cW
ỹf,iA

Zγ
f(p)(τf , λf ),

(B.18)

for τi ≡ 4m2
i /m

2
Hi

and λi ≡ 4m2
i /m

2
Z . The 1-loop form factors in this case read

AZγf(s)(τ, λ) = I1(τ, λ)− I2(τ, λ),

AZγf(p)(τ, λ) = I2(τ, λ),

AZγW (τ, λ) = cW

{
4

(
3− s2

W

c2
W

)
I2(τ, λ) +

[(
1 +

2

τ

)
s2
W

c2
W

−
(

5 +
2

τ

)]
I1(τ, λ)

}
,

AZγ
H±(τ, λ) = I1(τ, λ),

(B.19)

with the functions

g(τ) = (1− τ)f ′(τ),

I1(τ, λ) =
τλ

2(τ − λ)
+

τ2λ

2(τ − λ)2

{
τ
[
f(τ−1)− f(λ−1)

]
+ 2

[
g(τ−1)− g(λ−1)

]}
,

I2(τ, λ) = − τλ

2(τ − λ)

[
f(τ−1)− f(λ−1)

]
.

(B.20)
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Hi → gg

Decays of a neutral scalar into pairs of gluons are mediated by quark loops, with a

width [228, 221]

Γ(Hi → gg) =

√
2Gfαs(µ)2m3

Hi

128π3


∣∣∣∣∣∣
∑
f

yf,iAf(s)(τf )

∣∣∣∣∣∣
2

Kgg
s +

∣∣∣∣∣∣
∑
f

ỹf,iAf(p)(τf )

∣∣∣∣∣∣
2

Kgg
p

 , (B.21)

where the renormalization scale is µ = mHi and Kgg are the relevant K-factors to account

for higher order corrections, which must be taken into account since they can alter the

result by up to 70%.

Expressions for the full NLO QCD corrections can be found in refs. [228, 221], but

the various integrals involved are computationally expensive to calculate. We adopt here

the alternative of implementing the K-factors obtained from an effective theory approach

with the top-quark taken to be heavy (more precisely, mHi � 2mt). In this approach we

can obtain the K-factors at NNLO [231, 232],

Kgg
s = 1 +

as(µ)

π

(
95

4
− 7

6
nf

)
+

(
as(µ)

π

)2
[

149533

288
− 121

16
π2 − 495

8
ζ3 −

19

4
log

(
mt(µ)

mHi

)
+ nl

[
−4157

72
+

11

12
π2 +

5

4
ζ3 −

4

3
log

(
mt(µ)

mHi

)]
+ n2

l

(
127

108
− π2

36

)]
,

Kgg
p = 1 +

as(µ)

π

(
97

4
− 7

6
nf

)
+

(
as(µ)

π

)2
[

51959

96
− 121

16
π2 − 495

8
ζ3 −

19

4
log

(
mt

mHi

)
+ nl

[
−473

8
+

11

12
π2 +

5

4
ζ3 − 2 log

(
mt

mHi

)]
+ n2

l

(
251

216
− π2

36

)]
,

where mt(µ) is the running top mass at µ = mHi and nl = 5 (since we are considering

a theory with 5 effective flavours, the top-quark being integrated out). In principle one

must be careful to use these expressions only in their region of validity, for Higgs masses

well below the top-quark threshold. But it turns out that this is a good approximation

for the full result for heavy scalars as well, with a mere 6% deviation when mHi = 1 TeV.

Decays into other scalars

The width for the decay of a scalar into another plus an off-shell gauge boson V is [233]

Γ(Si → SjV ) =
m3
i |gSiSjV |2
16πm2

V

∫ (1−
√
kH)2

0
dx

1

π

√
wV kV

(x− kV )2 + wV kV
λ3/2(kH , x), (B.22)



74

with wV = Γ2
V /m

2
Si

, kV = m2
V /m

2
Si

and kH = m2
Sj
/m2

Si
. For the decay Si → H±W∓ the

above result must be multiplied by 2 to include the two possible final states (H+W− and

H−W+).

As for the decay into two scalars, Hi → HjHk, we consider only the on-shell width [227,

221]

Γ(Hi → HjHk) =
gHiHjHk
32πmHi

√
λ(xj , xk), (B.23)

with xj,k ≡ mHj,k/mHi , neglecting cascade decays.
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Appendix C

Electric dipole moments

In the case of a CP violating scalar sector one must also ensure that the resulting EDMs of

particles, nucleons, atoms and molecules are still below the experimental bounds. In the

2HDM only six-dimensional effective operators can contribute to these effects, namely the

EDM and cEDM operators [278, 279] as well as the Weinberg three-gluon operator [112],

L ⊃ −i
∑
f

df
2
f̄σµνγ5fF

µν − i
∑
f

d̃f
2
gsf̄σµνγ5fT

aGµνa +
dW
6
fabcε

µνρσGaµλG
b λ
ν Gcρσ. (C.1)

It will be convenient to work with the dimensionless quantities

δf ≡
df
e

v2

mf
, δ̃f ≡ d̃f

v2

mf
, δW ≡ dW

v2

gs
. (C.2)

The Weinberg operator originates from the diagram in fig. C.1 (right), the dominant

contribution coming from a top running in the central loop, and its coefficient reads [112]

δW = − g2
s

256π4

∑
i=1,2,3

yu,i ỹu,i h

(
m2
i

m2
t

)
. (C.3)

The coefficients df , d̃f come from two-loop Barr-Zee diagrams shown in fig. C.1 (left

and centre, respectively). In the cEDM case there are only contributions from quarks

running in the loop and one has [278]

δ̃f = − g2
s

128π4

∑
q=t,b
i=1,2,3

yq,i ỹf,i f

(
m2
q

m2
i

)
+ ỹq,i yf,i g

(
m2
q

m2
i

)
. (C.4)

As for the effective EDM operator, the shaded blob in fig C.1 (left) represents effective

vertices hγγ and hZγ with contributions from quarks, W± or H± running in the loop, as

well as an effective vertex H∓W±γ. These vertices and their contributions to the EDM



76

f

γ

f ′ f

γ,Z,W± hi, H
∓

q,W±, H±

f

g

f

g

f

hi

q

hi

Figure C.1: Diagrams contributing to the fermionic EDM (left), cEDM (centre) and the Weinberg

operator (right) in the 2HDM.

coefficient df have been computed in [278], yielding

(δf )
q
hV γ = −gV ff

64π4

∑
q=t,b
i=1,2,3

NcQq gV qq

[
yq,i ỹf,if̂

(
m2
q

m2
i

,
m2
q

m2
V

)
+ ỹq,i yf,i ĝ

(
m2
q

m2
i

,
m2
q

m2
V

)]
,

(δf )
W
hV γ =

gV ff gVWW

256π4

∑
i=1,2,3

ỹf,i gHiWW

{[
6− m2

V

m2
W

+

(
1− m2

V

2m2
W

)
m2
i

m2
W

]
f̂

(
m2
W

m2
i

,
m2
W

m2
V

)

+

[
10− 3m2

V

m2
W

−
(

1− m2
V

2m2
W

)
m2
i

m2
W

]
ĝ

(
m2
W

m2
i

,
m2
W

m2
V

)}
,

(δf )
H±

hV γ = −gV ff gV H+H−

128π4

∑
i=1,2,3

ỹf,i

(
gHiH+H−√

2v

)
v2

m2
H±

[
f̂

(
m2
H±

m2
i

,
m2
H±

m2
V

)

− ĝ

(
m2
H±

m2
i

,
m2
H±

m2
V

)]
,

(δf )hH∓W± = − sf
512π4

∑
i=1,2,3

ỹf,i

[
gHiWW

g2

2
I4(m2

i ,m
2
H±) +

gHiH+H−√
2v

I5(m2
i ,m

2
H±)

]
,

with all the functions involved defined in eqs. (C.12) and (C.13) below and with the

couplings

gγff = eQf , gZff =
g (T3,f − 2Qf sin2 θW )

2 cos θW
,

gγWW = e, gZWW = g cos θW ,

gγH+H− = e, gZH+H− = g
2 cos2 θW − 1

2 cos θW
,

sf =

 −1, f = u, c, t

1, otherwise
.

(C.5)

To obtain the coefficient of the EDM operator one must then sum all these contributions,

δf = (δf )hH∓W± +
∑

V=γ,Z

[
(δf )qhV γ + (δf )WhV γ + (δf )H

±

hV γ

]
. (C.6)

To compute the neutron and atomic EDMs the coefficients in eqs. (C.4) and (C.6) must

be runned from the electroweak scale ΛEW ≈ v down to the nuclear scale Λn ' 1 GeV.
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Following [291] the RGEs read

d

d logµ


δf/Qf

δ̃f

δW

 =
αs
4π


32/3 −32/3 0

0 28/3 6

0 0 14 + 4nf (µ)/3




δf/Qf

δ̃f

δW

 . (C.7)

At µ = mb, we impose the matching conditions [112]

δ̃b(mb) = δ̃b −
1

8π2
log

ΛEW

mb

∑
i=1,2,3

m2
b(ΛEW)

m2
i

yd,i ỹd,i,

δ̃q(mb) = δ̃q −
g2
s

64π4

mb

mq

(
log

ΛEW

mb

)2 ∑
i=1,2,3

mb(ΛEW)mq(ΛEW)

m2
i

(yd,i ỹq,i + ỹd,i yb,i) ,

δW (mb) = δW −
αs(mb)

8π
δ̃b(mb), (C.8)

where the δ̃b(mb) entering in the last equation is the shifted value obtained from the first

one. These coefficients are then runned further from µ = mb down to µ = Λn.

Finally, the EDM of the neutron and mercury (Hg) can be written as [279, 112]

dn
e

= −(ζun δu + ζdn δd)− (ζ̃un δ̃u + ζ̃dn δ̃d) +
2

3

βWn
e
δW ,

dHg

e
= κS

2mn gA
Fπ

{(a0

e

)[
−η̃0

(
δ̃u + δ̃d

)
+

2γ0

3
δW

]
+
(a1

e

)[
−η̃1

(
δ̃u − δ̃d

)
+

2γ1

3
δW

]}
,

(C.9)

with [279]

ζun = 0.82× 10−21 cm, ζdn = −3.3× 10−21 cm,

ζ̃un = 0.82× 10−21 cm, ζ̃dn = 1.63× 10−21 cm,

βWn = 2.0× 10−20 e · cm, gA = 1.26,

κS · a0 = −2.8× 10−19 e · cm, κS · a1 = ∓5.6× 10−19 e · cm,

mn = 939.565379 MeV, Fπ = 186 MeV,

η̃1 = 2η̃0 = −4× 10−7, γ0 = γ1 = 2× 10−6.

(C.10)

The results should be compared to the experimental bounds for the EDMs of the

electron, neutron and Hg atom [280, 281, 282],

|de| < 8.7× 10−29 e · cm,

|dn| < 2.9× 10−26 e · cm,

|dHg| < 3.1× 10−29 e · cm.

(C.11)
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The functions involved in the computations above are

h(z) =
z4

2

∫ 1

0

dx

∫ 1

0

dy
x3y3(1− x)

[z2x(1− xy) + (1− x)(1− y)]
2 ,

f(z) ≡ z

2

∫ 1

0

dx
1− 2x(1− x)

x(1− x)− z log

(
x(1− x)

z

)
,

g(z) ≡ z

2

∫ 1

0

dz
1

x(1− x)− z log

(
x(1− x)

z

)
, (C.12)

I4(m2
H± ,m2

1,m
2
h) ≡

∫ 1

0

dx (1− x)2

(
x− 4 +

m2
H± −m2

h

m2
W

x
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× m2

1

m2
W (1− x) +m2

hx−m2
1x(1− x)

log

(
m2
W (1− x) +m2

hx

m2
1x(1− x)

)
,

I5(m2
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2
h) ≡ 2
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0

dx
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1x(1− x)2

m2
H±(1− x) +m2

hx−m2
1x(1− x)

log

(
m2
H±(1− x) +m2

hx

m2
1x(1− x)

)
,

and

f̂(x, y) ≡ x f(y)− y f(x)

x− y ,

ĝ(x, y) ≡ x g(y)− y g(x)

x− y ,

I4(5)(m
2
h,m

2
H±) ≡ m2

W

m2
H± −m2

W

[
I4(5)(m

2
H± ,m

2
W ,m

2
h)− I4(5)(m

2
H± ,m

2
H± ,m

2
h)
]
.

(C.13)

Notice that

lim
z→∞

f ′(z) = 0, (C.14)

so that

lim
y→∞

f̂(x, y) = f(x). (C.15)
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