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Abstract

On a traditional view of cognition, we see the agent acquiring stimuli,

interpreting these in some way, and producing behavior in response. An

increasingly popular alternative is the predictive processing framework.

This sees the agent as continually generating predictions about the world,

and responding productively to any errors made. Partly because of its

heritage in the Bayesian brain theory, predictive processing has generally

been seen as an inherently Bayesian process. The ‘hierarchical prediction

machine’ which mediates it is envisaged to be a specifically Bayesian de-

vice. But as this paper shows, a specification for this machine can also

be derived directly from information theory, using the metric of predic-

tive payoff as an organizing concept. Hierarchical prediction machines

can be built along purely information-theoretic lines, without referencing

Bayesian theory in any way; this simplifies the account to some degree.

The present paper describes what is involved and presents a series of

working models. An experiment involving the conversion of a Braiten-

berg vehicle to use a controller of this type is also described.

Keywords: predictive processing, predictive coding, hierarchical pre-

diction machine, Bayesian brain, information theory, cognitive informatics

1 Introduction

On a traditional view of cognition, we see the agent acquiring stimuli, inter-
preting these in some way, and producing behavior in response. An increasingly
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popular alternative is the predictive processing (also known as predictive cod-
ing) framework. This sees the agent as continually generating predictions about
the world, and responding productively to any errors made (Rao and Ballard,
1999; Lee and Mumford, 2003; Rao and Ballard, 2004; Knill and Pouget, 2004;
Friston, 2005; Hohwy et al., 2008; Jehee and Ballard, 2009; Friston, 2010; Huang
and Rao, 2011; Brown et al., 2011; Clark, 2016). Clark characterizes this as
‘the emerging unifying vision of the brain as an organ of prediction using a
hierarchy of generative models’ (Clark, 2013a, p. 185).1 Granting that we can
view actions as predictions put into a behavioral form, the proposal has the
effect of unifying interpretive and behavioral functionality (Brown et al., 2011;
Friston et al., 2009).2 The model is also well positioned to use information the-
ory (Shannon, 1948; Shannon and Weaver, 1949) as a way of explaining what is
achieved. By improving performance in prediction, the agent renders the world
less surprising, effectively gaining information (Cover and Thomas, 2006; Fris-
ton et al., 2012). The process can be seen as characteristically infotropic in this
way (Thornton, 2014).

Partly because of its heritage in the Bayesian brain theory (Doya, 2007),
predictive processing has generally been seen as an inherently Bayesian process.
The ‘hierarchical prediction machine’ that mediates it is seen to be a specifically
Bayesian mechanism. Processing is considered to be accomplished by inferential
calculations. Backwards inference (i.e., application of Bayes’ rule) is seen to
be the means by which probabilities travel ‘up’ hierarchical structures, and
forwards inference is the means by which they travel ‘down.’ Out of this bi-
directional process, all functionalities of the brain are assumed to grow,3 with the
predictions of the machine being encapsulated in the conditional probabilities
that connect one level of the hierarchy to another.

What the present paper draws attention to is an alternative way of specify-
ing a machine of this type. In addition to the Bayesian formulation, there is an
information-theoretic model, which is simpler in some respects. Key to this al-
ternative is the metric of predictive payoff. Using basic principles of information
theory, it is possible to measure the informational value of a prediction, pro-
vided we know the value of the outcome predicted and whether or nor it occurs.
We can measure the informational ‘payoff’ with respect to an event of known
value. This metric then gives rise to a way of building prediction machines. Any
network of inter-predicting outcomes in which evaluations are kept up-to-date
propagates information between outcomes in a machine-like way. The general

1The claim is part of a tradition emphasizing the role of prediction in perception and
cognition, however (e.g. von Helmholtz, 1860/1962; James, 1890/1950; Tolman, 1948; Lashley,
1951; Mackay, 1956).

2The assumption underlying this is that ‘the best ways of interpreting incoming information
via perception, are deeply the same as the best ways of controlling outgoing information via
motor action’ (Eliasmith, 2007, p. 7).

3The ‘pulling down’ of priors is considered particularly significant (Hohwy, 2013, p. 33).
As Clark comments, ‘The beauty of the bidirectional hierarchical structure is that it allows
the system to infer its own priors (the prior beliefs essential to the guessing routines) as it
goes along. It does this by using its best current model—at one level—as the source of the
priors for the level below’ (Clark, 2013a, p. 3).
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effect is that the machine transitions towards informational value. The network
behaves infotropically, in a way that replicates the inferential activities of a
Bayesian hierarchical prediction machine. The idea of predictive processing can
thus be framed in a purely information-theoretic way, without using Bayesian
theory.

The remainder of the paper sets out this alternative formulation in detail.
Section 2 introduces the metric of predictive payoff, and examines its relation-
ship to other measures from the Shannon framework. Section 3 shows how the
metric provides the basis for building an information-theoretic version of the
hierarchical prediction machine. Section 4 then demonstrates the behavior of
some sample machines, including one deployed as the control system for a Brait-
enberg robot. Section 6 discusses neurophysiological issues, and Section 7 offers
some concluding remarks.

2 Measuring predictive payoff

The theoretical foundation for the present proposal is Shannon information the-
ory (Shannon, 1948; Shannon andWeaver, 1949). At the heart of this framework
is the observation that certain events are well-behaved from the informational
point of view. Given a strict choice of outcomes (i.e., a set of events out of
which precisely one occurs), the informational value of the outcome that does
occur can be defined as

− log p(x)

where x is the outcome in question, and p(x) is its probability. As Shannon
notes, measuring the value in this way can be justified on a number of grounds.
For one thing, it ensures that more improbable outcomes have higher infor-
mational value, as intuition suggests they must. For another, the value then
corresponds to the quantity of data needed to signal the outcome. If we take
logs to base 2 and round the value up to an integer, it is also the number of
binary digits needed to signal what occurs.4 For this reason, the value is often
said to be measured in ‘bits’ (a contraction of BInary digiTS).5 More formally,
the quantity is termed the surprisal of the outcome (Tribus, 1961). Weather
events are a convenient way to illustrate use of the measure. If everyday it
rains with probability 0.25, but is fine otherwise, the informational value of the
outcome of rain is − log2 0.25 = 2 bits.

Given this way of measuring the informational value of individual outcomes,
it is straightforward to derive an average. Assuming we know the probability for
all outcomes within the choice, the average information gained from discovering
the result is

4For example, if event x has probability 0.25, we expect it to be drawn from a choice
of 1

0.25
= 4 alternatives, for which we will need − log2 0.25 = 2 binary digits to signal the

outcome.
5The term is original due to John Tukey.

3



−
∑

x

p(x) log2 p(x)

This formula defines the information gained on average from discovering the out-
come. We can also see it as the information that is expected to be gained from
discovering the outcome. More generally, we can see the quantity as the uncer-
tainty that exists with respect to the choice. Shannon notes this average plays
an important role in statistical mechanics, where it is termed entropy. Accord-
ingly, Shannon uses the term entropy as a description. Average information may
thus be termed entropy, expected surprisal, average surprisal, expected infor-
mation or uncertainty (Cover and Thomas, 2006; Mackay, 2003).6 The weather
illustration can be extended to show how entropy measurement is applied: if
everyday it rains with probability 0.2, snows with probability 0.1, and is fine
otherwise, the average informational value of an outcome is

−(0.2 log2 0.2 + 0.1 log2 0.1 + 0.7 log2 0.7) ≈ 1.15 bits

One difficulty with the framework is the status of the probabilities taken into
account. Whether they are objective (defined by the world), or subjective (de-
fined by a model possessed by the observer) is not specified.7 In practice, either
interpretation can be applied, and theorists tend to adopt whichever is appro-
priate for their purposes. Where entropy is seen as quantifying uncertainty,
probabilities are likely to be seen as subjective. Where the formula is seen as
quantifying generated information, they are likely to be seen as objective.8

Problems then arise if there is any difference between the two distributions.
To give a concrete example, imagine that every day it rains with probability
0.2, but that an observer predicts rain with probability 0.4. The observer’s pre-
diction gives rain a higher probability than it really has. Plugging the objective
probability into the formula, we find that the outcome generates a little over
0.7 bits of information. Using the subjective probability, the figure is nearly 1
bit. Without a distinction being made between subjective and objective prob-
abilities, the evaluation is ambiguous.

One way of dealing with this situation is simply to disallow it. The position
can be taken that the Shannon framework does not accommodate any deviation
between subjective and objective probabilities. More productively, we can view
the subjective distribution as a predictive model. On this basis, the predictions
that arise can be seen (and evaluated) as ways of acquiring the informational

6In developing the framework, Shannon was particularly concerned with problems of
telecommunication (Shannon, 1956). Events are conceptualized as messages sent from a sender
to a receiver by means of a communication channel. Theoretical results of the framework then
relate to fundamental limits on channel capacity, and the way statistical noise can be elimi-
nated by introduction of redundancy.

7The present paper makes no distinction between a subjective probability and a Bayesian
‘degree of belief’; whether there is a valid distinction to be made is unclear (cf. Ramsay,
1990).

8For example, for purposes of analyzing perceptual organization, van der Helm (2011)
takes probabilities to be inherently objective. For purposes of analyzing musical creativity,
Temperley (2007) takes them to be inherently subjective.
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value of an outcome before it occurs. The calculation is made as follows. A pre-
dictive model must give rise to particular predictions. Given the informational
value of a correct prediction must be the informational value of the correctly
predicted outcome, we can calculate the expected informational value of pre-
dictions with respect to an outcome that does occur. We can find out, in other
words, how much of the outcome’s informational value is obtained in advance,
by application of the predictive model.

Consider the following case. Imagine we are dealing with a choice of two
outcomes, α and β. Let α′ denote a prediction of outcome α, and β′ a prediction
of β. If the two events are objectively equiprobable, the informational value of
each is − log2

1
2 = 1 bit. If the predictive model gives rise to α′ alone, and α is

the outcome, we then have

I(α′) = I(α) = 1 bit

The value of the predictive model is 1 bit. Similarly, if the model gives rise to
β′ and β is the outcome, we have

I(β′) = I(β) = 1 bit

Again the model is worth 1 bit. If the model gives rise to both predictions
together, its informational value is zero by definition. Predicting both outcomes
is equivalent to making no prediction at all—the prediction merely recapitulates
the choice. Thus

I(α′ and β′) = 0

Since the informational value of predicting two events together must be equal
to the summed value of predicting them individually, it follows that

I(α′) + I(β′) = 0

From this we can deduce that

I(α′) = −I(β′)

The informational value of a predicted outcome that does not occur is, in this
case, the negative of the value it acquires if it does occur. If the two outcomes
are objectively equiprobable, the evaluations are 1 and -1 bits respectively. The
informational value of a predicted outcome—occurring or non-occurring—can
then be defined as

I(x′) =







1 if x occurs

−1 otherwise
(1)

Given I(x′) is the informational value of the prediction of x, we can then cal-
culate the expected value of a subjective distribution treated as a predictive
model. If Q is the distribution in question, and Q(x) is the asserted probability
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of outcome x, Q(x) can also be seen as the probability of the observer predicting
outcome x. The expected informational value of model Q with respect to the
outcome is then an average, in which the informational value of each predicted
outcome is weighted by the probability of being predicted:

I(Q) =
∑

x

Q(x)I(x′) (2)

This is the informational value of distribution Q (treated as a prediction gener-
ator) with respect to the outcome that occurs. It is the informational revenue
acquired implicitly by the model, in advance of the outcome’s occurrence. This
quantity is termed predictive payoff.

Notice the maximum predictive payoff is what we would expect—it is the
full informational value of the occurring event. This satisfies the requirement
that a veridical prediction acquires the predicted event’s value. Less intuitive
is the minimum payoff: this is the corresponding negative. Unexpectedly, the
payoff of a predictive model can be either a gain or loss.

The potential for a prediction to be loss-making seems counter-intuitive at
first. The process has an unexpected sting in the tail. But this turns out to
be perfectly in line with the way predictions are assessed in day-to-day life.
Weather forecasts again offer a good illustration. Say that a forecast gives only
a 20% chance (probability 0.2) of rain on a particular day, but that in the event
it does rain. This forecast would be judged positively misinformative, i.e., worse
than one giving a 50/50 chance of rain. The mathematical evaluation explains
why. Assuming just two equiprobable outcomes, the payoff is

0.2× 1 + 0.8×−1 = −0.6 bits

Given the actual outcome is rain, the forecast generates a loss of 0.6 bits. Ex-
amining alternative scenarios confirms that the calculation always reflects in-
formativeness in this way. If the forecast gives a 70% chance of rain and there
is rain, the judgement is ‘fairly informative’ and the payoff is a 0.4 bit gain. If
there is rain following a forecast giving only a 10% chance, the judgement is
‘highly misinformative’ and the payoff is a 0.8 bit loss. If the forecast gives a
50% chance of rain, the judgement is ‘completely uninformative’ and the payoff
is neither gain nor loss. Evaluations range from positive → zero → negative just
as judgements range from ‘informative’ → ‘uninformative’ → ‘misinformative.’9

2.1 The general measure

The definition of predictive payoff set out above deals with the simple case of a
choice encompassing two equiprobable outcomes. In general, a choice can have
any number of outcomes, and their probabilities may vary. We need to define

9Key to this match is isolation of the boundary between informative and misinformative
cases. As Gibson notes, the ‘line between the pickup of misinformation and the failure to pick
up information is hard to draw’ (Gibson, 1979, p. 244).
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the informational value of events (occurring and non-occurring) in a way that
takes account of this. The following revision achieves the required effect.

I(x′) =







− log2 P (x) if x = x⋆

P (x)
1−P (x⋆) log2 P (x) otherwise

(3)

Here, P (x) denotes the objective probability of outcome x, and x⋆ is the outcome
that occurs. In the case of there being two equiprobable outcomes, the formula
reduces to Eq. 1. It allows there to be any number of outcomes, however, and
for these to have varying probability. The definition uses the relative probability
of a non-occurring event,

P (x)

1− P (x⋆)

in order to normalize the non-occurring event’s negative contribution. This
ensures the summed negative contribution is equal to the positive contribution,
guaranteeing that a predictive model which distributes probability uniformly
over outcomes will have an informational value of zero, as logic requires.

Using this generalized metric, we can evaluate predictive payoff in arbitrarily
complex situations. Examining cases more widely confirms that, regardless of
the number of outcomes, informativeness and predictive payoff always remain in
step. If a model has positive payoff, it is judged informative. If the payoff is neg-
ative, the model is judged misinformative. If the payoff is zero, the model is seen
to be completely uninformative (i.e. neither informative nor misinformative).

Consider, for example, a doctor who gives a 75% chance of a certain test
producing a negative result, a 15% chance of it producing a positive result, and a
10% chance of it producing no result. Here, the indicated probabilities are 0.75,
0.15 and 0.1 respectively. Assuming the objective probabilities are uniform, the
informational value of an outcome is log2 3 ≈ 1.58 bits. If the outcome is a
positive result, the predictive payoff of the doctor’s forecast is then

0.15× 1.58−
0.75

0.85
× 1.58−

0.1

0.85
× 1.58 ≈ −0.43

Given the doctor’s strong prediction of a negative result, the outcome of a
positive result would lead us to judge the prediction as fairly misinformative.
The evaluation corroborates the judgement. The prediction is found to produce
a loss of around 0.43 bits in relation to the outcome.

Evaluation in the face of a four-way choice can also be illustrated. Imagine
a housing agent who gives a 60% chance of selling a property for more than
the asking price, a 10% chance of selling for the asking price, a 20% chance of
selling for less than the asking price, and a 10% chance of not selling at all.
The implied probabilities are then 0.6, 0.1, 0.2 and 0.1 respectively. Given the
objective probabilities are uniform, the informational value of each outcome is
log2 4 = 2 bits. In the case of a sale above the asking price, we would judge the
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forecast to be fairly informative—this is the outcome most strongly predicted.
Again, mathematical evaluation corroborates the judgement. Since

0.6× 2−
0.1

0.4
× 2−

0.2

0.4
× 2−

0.1

0.4
× 2 ≈ 0.93

The predictive payoff is found to be a gain of approximately 0.93 bits.

2.2 Relation to KL-divergence and other metrics

How does predictive payoff fit into the Shannon framework more generally?
What is the connection with quantities such as mutual information and con-
ditional entropy? The simplest assessment is to say that this metric bears no
relation to any existing measure. No existing measure allows a distinction to
be made between objective and subjective probabilities. And none gives rise to
negative values. Digging a little deeper, however, some general connections can
be made.

While no existing constituent of the Shannon framework distinguishes sub-
jective from objective probabilities, there are several which quantify relation-
ships between probability distributions. These offer a way of accommodating
the distinction. Mutual information is a case in point. This quantifies the
informational relationship between two random variables, taking into account
their individual distributions (Cover and Thomas, 2006). The measure quanti-
fies how much one distribution tells us about the other. Unfortunately, it also
references the joint distribution, which plays no part in the calculation of predic-
tive payoff. This distribution is not assumed to be known. Mutual information
and predictive payoff are incommensurable for this reason. The same applies
to conditional entropy and cross-entropy. The former is defined in terms of a
conditional distribution and the latter in terms of a set of observations. Neither
figure in the calculation of predictive payoff.

One measure that can be compared is Kullback-Leibler (KL) divergence.
This quantifies the relationship between two distributions without referring to
any additional data. Given probability distributions P andQ, the KL divergence
of P from Q is the information lost when Q is used to approximate P (Kullback
and Leibler, 1951).10 The KL divergence of distributions P and Q is

DKL(P ‖ Q) =
∑

i

ln

(

P (i)

Q(i)

)

P (i)

Distributions that are identical have a KL divergence of zero, and the value rises
to infinity as they diverge. A relationship with predictive payoff can then be
discerned. Taking the true distribution to be one which places all probability on
the occurring outcome, it will be seen that predictive payoff always decreases
as the predicted and true distributions diverge. KL divergence varies in the
opposite direction, decreasing as predictive quality increases.

10The measure has an intimate relationship with log loss. The log loss sustained by mis-
predicting a binary outcome is also the KL divergence of the suggested distribution from a
distribution which gives all probability to the realized outcome (Mackay, 2003).
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Figure 1: KL divergence v. predictive payoff.

Predictive payoff has as its maximum the informational value of the occurring
event, and as its minimum the corresponding negative. A value of zero also
identifies the special case of a neutral (uninformative) prediction. KL divergence
maps this range into zero to infinity, and inverts it. For purposes of measuring
predictive payoff, it has several drawbacks therefore. Values do not increase
with predictive quality as we would expect. The qualitative distinction between
good, bad and neutral predictions is not made. Critically, the quantity identified
is not the informational payoff attained. A relationship exists, but there are
significant differences. The graph of Figure 1 shows how values of KL divergence
and predictive payoff compare in the two-outcome scenario. The entropy of the
predicted distribution is also shown for comparison.

Beyond the Shannon framework, predictive payoff can be related to scoring
functions in decision theory.11 These are also a way of evaluating probabilistic
forecasts, and they behave much like KL divergence. Consider the situation
where a weather forecaster gives an 80% chance of rain, but there is no rain.
Since predictive payoff reflects the probability given to the true outcome, its
value in this case would be negative. We can also apply a scoring rule to
evaluate the forecast with respect to this outcome. We might use the Brier rule
(Brier, 1950) for example. This is defined by

11Potential links with psychological theories, such as (Dretske, 1981, 1983), are ignored,
here, partly in recognition of the degree to which they have fallen out of favour in recent
decades (Luce, 2003). As Haber noted some three decades ago, ‘Ten years ago, I briefly
reviewed the demise of information theory in psychology (R. N. Haber ’74), concluding that
it died for empirical reasons—it just did not work. Specifically, while it was generally easy
to calculate the amount of information in a stimulus or in a response, such calculations did
not correlate with any interesting or relevant behaviors of real perceivers, rememberers, or
thinkers’ (Haber, 1983, p. 71).
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BS =
1

N

N
∑

i=1

(pt − ot)
2

where N is the number of forecasts made, pt is the probability forecast at time
t, and ot is 1 if the forecasted outcome occurs and 0 otherwise. It will be seen
that, in the case of a single forecast, the Brier score also varies monotonically
with the probability given to the true outcome, with a score of 0 being awarded
in the best case (all probability allocated to the outcome that occurs) and a
score of 1 in the worst case (all probability given to the outcome that does
not occur). Again, the effect is to map predictive payoff onto a non-negative,
inversely varying quantity. Figure 2 shows how the two measures compare in
the two-outcome scenario.12
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Figure 2: Brier score v. predictive payoff.

3 Infotropic machines

It is possible to return now to predictive processing, and to the ‘hierarchical pre-
diction machine’ which is assumed to be its medium. The theoretical content of
the previous section relates to this in a specific way. The mathematics of predic-
tive payoff gives rise to a model of predictive processing that is independent of
Bayesian theory. Given a network of outcomes in which connections are predic-
tive probabilities, and evaluations are kept up-to-date, information given to one

12In practice, scoring functions are used to evaluate a series of forecasts with respect to
an observed probability distribution over events. A scoring rule is termed ‘proper’ if it is
maximized when forecasted probabilities are equal to true probabilities, and ‘locally proper’
if this maximum is unique.
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outcome ‘propagates’ to others in accordance with predictive relationships (i.e.,
from predicted to predicting outcome, and vice versa). Outcomes that predict
better acquire more informational value, ensuring information flows towards the
most fecund sources of prediction. Inferences then arise implicitly. At the same
time, a kind of error-correction is accomplished. Given outcomes are organized
in choices, any outcome that predicts poorly acquires a negative value, implic-
itly ‘switching’ the host choice to an outcome that predicts better. The general
effect is to replicate the behaviors of the hierarchical prediction machine in a
way that meets the predictive-processing mandate.

In more detail the scheme is as follows. Let a predictive network be a set
of outcomes in which any one outcome may designate a predictive model over
others, and in which evaluations are always kept up-to-date (i.e., any evaluation
that can be made, is made). A simple illustration is provided by Figure 3. This
depicts a predictive network of six outcomes, organized into three choices. Each
rounded rectangle represents a choice, with the enclosed circles being the choice’s
outcomes. Every choice has just two outcomes in this case. The value immedi-
ately adjacent to an outcome (e.g., 1.0) is the outcome’s present informational
value, and the label adjacent to that (e.g., d1) is the outcome’s name. The table
shows the predictive relationships that define the structure of the network, with
predicted outcomes tabulated vertically, and predicting outcomes horizontally.
The top two cells of the first column show the predictive model that outcome
H1 designates for the choice d1/d2. Notice this places all probability on d2.
The outcome in each choice with the highest informational value (and the one
to which the choice is implicitly resolved) is also filled for emphasis.

-1.0 H1  1.0 H2 

1.0 d1 -1.0 d2 -1.0 d3  1.0 d4 

H1 H2 

d1 0.0 1.0 

d2 1.0 0.0 

d3 1.0 0.0 

d4 0.0 1.0 

Figure 3: A simple predictive network. See text for details.

Given that evaluations are kept up-to-date, a network of this form has dy-
namic behavior of a particular type. If we give an outcome the value it has
when observed, any models which predict this outcome can then be re-evaluated.
Other outcomes may then acquire new informational values, giving rise to fur-
ther calculations in an ongoing way. Information given to one outcome prop-
agates through the network, travelling towards relevant sources of prediction.
But this processing is not under the control of any supervisory apparatus. The
sole driving force is evaluation of predictive payoff. With evaluations made
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whenever possible, the network becomes a kind of machine, whose behavior is
an ongoing transition ‘towards’ informational value. A network of this type is
an infotropic machine in this sense.

As an illustration of the processing that can be accomplished, consider the
effect of cueing outcomes d1 and d4. In this context, ‘cueing’ an outcome means
distributing informational value in a way that implicitly resolves the host choice
to the outcome in question. In this case, both choices have two outcomes. The
effect is thus achieved by giving d1 and d4 the relevant positive value (1.0 bit),
and d3 and d4 the corresponding negative (-1.0 bit). Following this input, there
is the potential to evaluate all models that predict the cued outcomes. Given
the (summed) predictive payoff for the models designated by H1 and H2, the
latter acquires a value 2.0 bits, and the former a value of -2.0 bits. The choice
is implicitly resolved to H2. At this point, no further evaluations can be made
and processing terminates.

The Bayesian interpretation of this processing can then be brought to light.
What is accomplished is essentially two applications of Bayes’ rule. More specif-
ically, it is an act of maximum a posteriori (MAP) inference. Viewing choices as
discrete variables, predicting outcomes as hypotheses, informational values as
(unnormalized) priors, and predicted probabilities as conditional probabilities,
the cueing of H2 can be seen to select the conditioning state with the highest
posterior. Implicitly, the machine performs MAP inference with respect to the
observation of d1 and d4. Given that the definition of predictive payoff is essen-
tially Bayes’ rule with information (rather than probability) used as currency,
this result is not unexpected. With uniform priors, the machine identifies H2 as
the best predicting entity for the same reason MAP inference does: this is the
outcome/hypothesis which places maximum probability on the observed data.
The difference is that, with information used as a currency, the combined value
of two predictions is a summation, not a multiplication. An infotropic machine
of this type thus avoids the problem that plagues Bayesian calculation, namely
the descent towards vanishingly small posteriors (Chater et al., 2006).13

This machine also replicates other characteristically Bayesian calculations.
The schematics of Figure 5 give some account of the behaviors that can be
elicited. Each of the four figures represents the state of the machine after a
particular processing sequence. Probabilities and outcome labels are omitted
to avoid clutter, but evaluations are shown. The diagram also uses arrows to
show the patterns of propagation that arise. Schematic (A) shows the effects
of cueing outcome H2. For both outcomes predicted by H2, it is then possible
to derive an expected value, based on the informational value of H2 and the
predicted probability of the outcome. Information propagates top-down to d1
and d4. These outcomes are cued in result. This replicates forwards Bayesian
inference, i.e., derivation of conditioned probabilities from relevant conditionals
and priors. The machine identifies d1 and d4 as the outcomes predicted by
H2.14

13This is one of the reasons Knill and Pouget remark that ‘unconstrained Bayesian inference
is not a viable solution for computation in the brain’ (Knill and Pouget, 2004, p. 718).

14Formally, top-down propagation is propagation from a predicting to a predicted outcome,

12



1.0 -1.0 0.0 1.0 

-1.0 1.0 

0.0 1.0 1.0 -1.0 

1.0 -1.0 

1.0 0.0 0.0 1.0 

-1.0 1.0 

0.0 1.0 1.0 0.0 

1.0 -1.0 

(A) (B)

(C) (D)

Figure 4: Propagational behaviors of a 3-choice infotropic machine.

Schematic (B) shows the complementary case involving the cueing of H1.
The knock-on effect of this is to cue d2 and d3 rather than d1 and d4. Schematic
(C) shows a more complex behavior involving one phase of bottom-up propa-
gation followed by one phase of top-down propagation. Initially d1 is cued.
Bottom-up propagation then cues H2, which gives rise to top-down propagation
that cues d4. This can be thought of as replicating a combination of forwards
and backwards inference. Alternatively, it can be thought of as implementing a
kind of schema completion. Cueing d1 cues the model that predicts d1, which
has the effect of cueing the other outcome that this model predicts. Schematic
(D) shows the corresponding case where d3 is cued initially. The knock-on effect
is to cue H1, and then d2.

What is found is that a suitably configured predictive network can repro-
duce the basic inferential operations we would expect of a hierarchical prediction
machine. The predictive processing that is accomplished can be given a sim-
plified, information-theoretic explanation accordingly. Rather than viewing the
behavior as the work of a Bayesian inferential apparatus, it can be seen to grow
out of information theory and the definition of predictive payoff. The Bayesian
account of predictive processing can be reduced to an information-theoretic ac-

while bottom-up propagation is propagation from a predicted to a predicting outcome. How-
ever, since all diagrams situate predicting outcomes above predicted outcomes, the terms can
also be interpreted as meaning ‘downwards’ and ‘upwards’.
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count, with fewer explanatory entities brought into play.

color 

context 

location 

noise 

1.0 red 1.0 green 

0.6 danger -0.8 safety 

-0.38 savannah 0.32 forest 

0.42 loud 0.18 soft 

danger safety 

red 0.8 0.1 

green 0.2 0.9 

loud 0.7 0.4 

soft 0.3 0.6 

savannah forest 

danger 0.3 0.8 

safety 0.7 0.2 

Figure 5: Bidirectional propagations.

3.1 Hierarchical machines

The capacity of a predictive network to reproduce the behaviors of a genuinely
hierarchical prediction machine—one with more than one level of representation—
is particular of interest. It is behaviors of this sort that are considered most
characteristic of predictive processing (Clark, 2016, 2013b). As an illustration
of the effects that can arise, consider the network of Figure 5. This uses the
schematic conventions of the previous diagram, but with choices given labels
(e.g., context). All choices have two outcomes as before, but here they are
named in a way that reflects implicational relationships between properties of
a simple ‘forest’ environment. For example, one of the conditional probabilities
encapsulated by the network is

P (danger | savannah) = 0.3

This can be seen as asserting that a situation of danger arises with probability
0.3, given a savannah location.15 Similarly, the probability

P (red | danger) = 0.8

asserts that a red color arises with probability 0.8 given a situation of danger.

15Strictly speaking, what is encapsulated by the network is the probability of danger pre-
dicted by a model designated by forest.
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The behaviors of this network can then be shown to reproduce the kinds
of multi-level inference we expect a hierarchical prediction machine to deliver.
Consider the state of Figure 5. This is the result reached after red is cued.
The immediate effect of cueing this outcome is to enable the outcomes of the
context choice to be evaluated. Information propagates bottom-up from color

to context, giving danger and safety the values 0.6 and -0.8 bits respectively.
The effect is to cue danger. Subsequently, outcomes in the other two choices
can also be evaluated. In the case of noise, loud and soft are found to have
the values 0.42 and 0.18 bits respectively. In the case of location, savannah
and forest acquire the values the -0.38 and 0.32 bits respectively. The cued
outcomes are then loud and forest. At this point, no source of information
remains unacknowledged. No further evaluations can be made and processing
terminates.

1.0 red 1.0 green 

-0.6 danger 0.8 safety 

 1.0 savannah 1.0 forest 

0.32 loud 0.48 soft 

danger safety 

red 0.8 0.1 

green 0.2 0.9 

loud 0.7 0.4 

soft 0.3 0.6 

savannah forest 

danger 0.3 0.8 

safety 0.7 0.2 

Figure 6: Top-down/bottom-up conflict resolution.

A troubling situation arises if top-down and bottom-up propagations come
together simultaneously at the same choice. In Bayesian terms, this is the prob-
lematic scenario where a ‘pulled-up posterior’ potentially contradicts a ‘pulled-
down prior.’ An illustration using the machine of Figure 6 can be set up as
follows. Assume that outcomes green and savannah are both cued. Outcomes
of the context choice can then be evaluated either top-down (from savannah)
or bottom-up (from green). In the latter case, the informational value of safety
is found to be 0.8 bits; in the former it is 0.7 bits. The bottom-up propagation
is thus preferable from the informational point of view. Subsequently, outcomes
in the noise choice can be evaluated top-down, as illustrated in Figure 6. The
values of loud and soft are found to be 0.32 and 0.48 bits respectively, making
soft the cued outcome. This processing can be conceptualized as multi-step
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inference. Alternatively, it can be seen to be a form of constraint satisfaction.
What is obtained are the outcomes most consistent with the cues originally
established.

0.07 red 0.63 green 

0.3 danger 0.7 safety 

 1.0 savannah 1.0 forest 

0.28loud 0.42 soft 

danger safety 

red 0.8 0.1 

green 0.2 0.9 

loud 0.7 0.4 

soft 0.3 0.6 

savannah forest 

danger 0.3 0.8 

safety 0.7 0.2 

Figure 7: Top-down revision across two levels.

Given the predictive content of the hierarchy in this example, the results
generated are most easily seen as inferences. But the quantitative aspect is also
salient. Consider the case where savannah alone is cued (Figure 7). Revisions
are then propagated top-down, cueing green. We can view this as the inference
that a green color can be inferred from a savannah location. Contrast this with
what happens when safety is cued. This also triggers top-down propagation,
with green being the result. But in this case, the cued outcome is at a level
immediately above that of green. The result is that green acquires the value
of 0.9 bits, as opposed to the lower value of 0.63 bits that it acquires when
savannah is cued.

Both savannah and safety produce green as an inference. But in the lat-
ter case, the inference is found to be have a higher informational value. The
outcome green is more confidently inferred from safety than from savannah.
This illustrates something resembling schema processing. Assertion of safety
has the effect of invoking savannah, green and soft. If these four outcomes are
viewed as comprising the savannah schema, the machine can be interpreted as
having implicitly completed the schema in question. Given the way predictive
relationships in this network represent implications in an idealized world, its be-
haviors can often be seen as inferential in character. But interpretations citing
constraint satisfaction and schema completion are also possible.
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3.2 Error correction

Inference is a vital element in the repertoire of the hierarchical prediction ma-
chine. The machine must be robust and consistent in the way it exploits the
patterns of implication that can arise in a hierarchical structure of predictive
models. Aside from this, the key functionality is error-correction. The machine
needs to be able to correct what is predicted where this is found to be in er-
ror. This capacity is particularly important, as it is assumed to be the means
of driving action. Bayesian theory itself provides no mechanism for correcting
prediction error. Even in simple scenarios, the task is less than straightforward.
But correcting predictions that stem from inferential processes operating in a
multi-level hierarchy of predictive models is more challenging still. This is a
credit-assignment problem of considerable complexity.

1.0 H1 -1.0 H2 

1.0 red -1.0 green 

blocked clear 

1.0 stop -1.0 go 

H1 H2 

red 1.0 0.0 

green 0.0 1.0 

blocked 0.5 0.0 

clear 0.5 1.0 

stop 1.0 0.0 

go 0.0 1.0 

Figure 8: Action from error-correction in an infotropic machine.

This is where the infotropic approach pays an additional dividend. An active
predictive network corrects its own errors automatically, without any additional
mechanism being involved. If the predictions of a cued outcome are inconsistent
with what is observed, evaluation will have the effect of cueing an outcome that
does a better job. Informational evaluation is an error-correction process in this
sense. A simple illustration of the effect is provided by the network of Figure 8.
This can be viewed as a machine which, by process of error-correction, prompts
an appropriate behavioral response in a simplified ‘traffic light’ scenario.

Outcome H2 predicts green, clear and go, while outcome H1 predicts red and
stop. Assume green, clear, red and blocked are all perceptual outcomes, while
stop and go are behavioral outcomes. The machine can be seen as a controller
producing a go action if green and clear are perceived, and a stop otherwise.
Imagine that H2 is the presently cued outcome. This predicts and thus elicits
a go action. As soon as red is perceived, the predictions stemming from H2 are
in error. The correction needed is then accomplished by process of evaluation.
Evaluation of H1/H2 awards greater value to H1. This is the outcome which
predicts and thus cues a stop. ‘Correction’ of error gives rise to appropriate
‘action’ in this way. The capacity of the hierarchical prediction machine to
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drive behavior through error-correction can also be reproduced by a predictive
network.

3.3 Simulating a Braitenberg behavior

Use of error-correction to drive behavior can also be illustrated in a more con-
crete way. This subsection describes an experiment involving a robot taken
from the Braitenberg collection, namely Vehicle 3a (Braitenberg, 1984, pp. 10-
12). The behavior of this robot is ‘slowing approach’, i.e., moving towards a
source of stimulation at decreasing speed, and stopping in front of it. This
is the behavior Braitenberg characterizes as ‘love’ (Braitenberg, 1984, p. 10).
The experiment carried out involved configuring the robot to use a predictive
network as its controller. (A video of the behavior achieved is available at
www.sussex.ac.uk/Users/christ/demos/bpp.mp4.)

Vehicle 3a is a two-wheeled robot equipped with two light sensors, as il-
lustrated in Figure 9. The robot is represented by the large rectangular shape.
The smaller rectangles represent the robot’s two wheels, and the cup shapes rep-
resent the sensors. The circle represents the sole stimulus in the environment.
This is assumed to be a light of some kind. In the original design, the robot used
direct sensor-motor connections with inhibitory damping. Configured with ‘un-
crossed’ connections, the robot was shown to move smoothly towards the sensed
stimulus at decreasing speed, eventually halting in front of it.

Figure 9: Vehicle 3a from the Braitenberg series (Braitenberg, 1984).

To illustrate the way implicit error-correction can drive behavior, the orig-
inal control system of the robot was replaced with an infotropic machine, as
illustrated in Figure 10. The general design of the machine was along the lines
of Figure 8. Each sensor was configured to generate either a high or low out-
come depending whether stimulation from the light source was high or low.
Specifically, the machine was given a left-input choice, with outcomes left-low
and left-high, and a right-input choice, with outcomes right-low and right-high.
The output side of the machine then took the form of a response choice, in
which the outcomes were five actions: stop, go, turn-left, turn-right, go-left and
go-right.
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To obtain the desired mapping from input to output, a state choice was
introduced, with the outcomes S1, L2, R1, S1, G1 and R2. Each of these was
configured to predict a particular pattern of sensory input, and the correspond-
ing behavioral response. Also added was a mode choice whose single outcome
(mobile) predicts G1 and thereby the go response. With this controlling appa-
ratus in place, the robot was found to produce a reasonable approximation of
the slowing-approach behavior. In the absence of sensory stimulation, the pre-
diction of G1 by mobile prompts a go action, causing the robot to move forward.
Any sensory stimulation then has the effect of correcting the state choice (i.e.,
cueing a different outcome), prompting the appropriate go or turn action. On
encountering high stimulation on both sensors at once, the cued outcome of the
state choice reverts to S1, prompting a stop response.

left-input 

right-input 

mode 

Response 

state 

left-low left-high 

right-low right-high 

stationary mobile 

go-left 
go-right 

go stop 
turn-left 
turn-right 

L1 
L2 
R1 R2 

G1 
S1 

mobile 

L1 0.0 

L2 0.0 

R1 0.0 

R2 0.0 

G1 1.0 

S1 0.0 

L1 L2 R1 R2 G1 S1 

left-low 1.0 0.0 0.0 

left-high 0.0 1.0 1.0 

go-left 1.0 0.0 0.0 0.0 0.0 0.0 

go-right 0.0 0.0 1.0 0.0 0.0 0.0 

go 0.0 0.0 0.0 0.0 1.0 0.0 

stop 0.0 0.0 0.0 0.0 0.0 1.0 

turn-left 0.0 1.0 0.0 0.0 0.0 0.0 

turn-right 0.0 0.0 0.0 1.0 0.0 0.0 

right-low 1.0 0.0 0.0 

right-high 0.0 1.0 1.0 

Figure 10: Infotropic controller for Vehicle 3a.

As the video (see www.sussex.ac.uk/Users/christ/demos/bpp.mp4) shows, the
behavior of the rewired robot was somewhat less smooth than in Braitenberg’s
original example. The robot moves towards the stimulus following a zig-zag
path. This is due to the fact that turns generally have the effect of eliminating
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stimulus from the side which produced the response, while replacing it with
stimulus on the side which did not. This problem can be addressed by use
of a more fine-grained sensory-motor system, e.g., one accommodating high,
medium and low sensory outcomes. By expanding the number of sensory/motor
outcomes, an arbitrarily smooth reproduction of the original behavior can be
obtained.

4 Discussion

The idea of predictive processing lies at the heart of what Clark describes as ‘the
emerging unifying vision of the brain as an organ of prediction using a hierarchy
of generative models’ (Clark, 2013a, p. 185). But the notion of the brain as a
hierarchical prediction machine also has roots in the Bayesian brain theory—
the claim that the brain computes by means of probability distributions (Doya,
2007).16 This heritage is one reason theorists have generally conceptualized the
hierarchical prediction machine in specifically Bayesian terms.

As has been seen, however, the Bayesian way of modeling the hierarchical
prediction machine is not the only possibility. Taking the metric of predictive
payoff into consideration, there is a purely information-theoretic alternative.
A predictive network in which evaluations are kept up-to-date is a predictive
mechanism with the functional characteristics we require. The specification is
simpler in some respects, and has the advantage of making information the ma-
chine’s internal currency, rather than probability. This avoids the need for a
way of translating between probabilities and information-bearing signals. The
prospect of the machine being a way of explaining ‘perception and action and
everything mental in between’ (Hohwy, 2013, p. 1) is then made more com-
pelling. Nevertheless, the infotropic prediction machine seems to be lacking
some important features that the Bayesian version possesses. The present sec-
tion works though a selection of these seemingly missing features, examining
how, where and why they are implicitly realized.

4.1 Where are the precisions?

A natural place to begin the review is with ‘precisions’. These are generally con-
sidered an important part of the predictive-processing mechanism. In Hohwy’s
view ‘assessments of prediction error are hostage to how confident the system
is that a prediction error is genuine and something worth minimizing’ (Hohwy,
2013, p. 65). From the formal point of view, precisions are considered to be ex-
pected uncertainties (Friston et al., 2013; Yu and Dayan, 2005). But what does
this mean in practice? One proposal states that precisions are implemented by
regulating the gain on prediction error (e.g. Feldman and Friston, 2010). On
this basis, a prediction with a higher precision has a higher gain, with the result

16More specifically, the assumption is that the brain represents ‘information probabilis-
tically, by coding and computing with probability density functions, or approximations to
probability density functions’ (Knill and Pouget, 2004, p 713).
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that it is given more weight during processing. Each prediction error is endowed
with an independent rating that establishes the confidence with which the error
is obtained. This then dictates the level of emphasis given to minimizing the
error.

The infotropic interpretation of predictive processing makes no mention of
precisions. In this account, the need for an independent confidence-rating mech-
anism is eliminated. Prediction error is measured in informational units, a cur-
rency that is itself a measure of certainty. When prediction error is calculated
this way, the values obtained are confidence ratings implicitly. A prediction
error calculated with zero confidence translates into an informational value of
zero bits, for example. The infotropic interpretation of predictive processing
combines precision and prediction-error in a single measurement.

This highlights the way in which precision and uncertainty are connected. A
mechanism able to mediate assertion of precision is also one which can handle
acknowledgement of uncertainty. The need for the latter has long been recog-
nized by theorists in the Bayesian brain tradition. As Knill and Pouget (2004, p.
718) comment, ‘The real test of the Bayesian coding hypothesis is in whether the
neural computations that result in perceptual judgements or motor behaviour
take into account the uncertainty available at each stage of the processing.’ The
moral they draw is that ‘neuroscientists must begin to test theories of how un-
certainty could be represented in populations of neurons’ (Knill and Pouget,
2004, p. 718). Given information is inherently a measure of uncertainty, the
infotropic machine offers a candidate solution.

4.2 Where are the error units?

Also seemingly missing from the infotropic prediction machine are ‘error units.’
These are generally seen to be the medium by which prediction error is com-
municated upwards, from one level of the hierarchy to the next. They are the
means of correcting error. This is considered significant from the explanatory
point of view, as it leads us to expect a particular form of neurophysiology. We
expect cells in the brain to be divided into two groups. There should be ‘two
functionally distinct sub-populations’ (Friston, 2005, p. 829), one comprising
the ‘error-detecting neurons that signal the difference between an input and
its prediction’ (Rao and Ballard, 1999, p. 84), and the other comprising the
representation units of the generative model.

Some theorists take the view that error units should not be taken too lit-
erally. Rasmussen and Eliasmith note that evidence for use of predictive pro-
cessing does not necessarily imply ‘a sharp division in the brain into these two
different sub-populations’ (Rasmussen and Eliasmith, 2013, p. 224). Func-
tional integration is seen as equally viable, given ‘units could be simultaneously
sensitive to both error and representation, and still perform the relevant com-
putations’ (Rasmussen and Eliasmith, 2013, p. 224; see also Eliasmith and
Anderson, 2003). More generally, it is acknowledged that predictive processing
might be implemented in a way that departs from the envisaged ‘duplex’ archi-
tecture (Knill and Pouget, 2004; Doya et al., 2007). In Muckli’s view, the ‘claim
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that the brain is a prediction machine might be true regardless of the precise
implementation of predictive coding mechanism’ (Muckli et al., 2013, p. 221).

Significantly, evidence for error cells in the brain remains inconclusive (Bu-
bic et al., 2010). As Clark comments, ‘direct, unambiguous neural evidence
for these crucial functionally distinct sub-populations is still missing’ (Clark,
2013a, p. 192). Further, Egner and Summerfield note that evidence support-
ing the concept of a duplex architecture is demonstrably lacking in the case of
visual cortex. As they say, ‘the proposition that there are simultaneous compu-
tations of prediction and prediction error signals carried out by distinct neural
populations in visual cortex is presently only poorly substantiated’ (Egner and
Summerfield, 2013, p. 211; see also Summerfield and Egner, 2009). In Clark’s
view, this disconnect between the idea of a duplex brain and the neurophysio-
logical evidence is ‘potentially problematic’ (Clark, 2013a, p. 188).

However this may be, the explanation for the lack of error units in an in-
fotropic machine is simple enough. They are redundant in this context. Predic-
tion error is considered to be indicated by negative informational value. Infor-
mational evaluations are implicitly measurements of error in this sense. Where
one outcome acquires relatively greater informational value than another, an
outcome that is relatively more laden with error is replaced with one that is
relatively less laden. The effect is to ‘correct’ error. The need for an explicit
signalling mechanism is avoided.

4.3 Where are the feedforward signals?

One of the attractions of the predictive-processing account is the way it explains
forward signaling in the brain. As Clark notes, the ‘information that needs to be
communicated “upward” under all these [predictive processing] regimes is just
the prediction error: the divergence from the expected signal’ (Clark, 2013a,
p. 183). Part of the appeal of this is that it tells us what feedforward signals
mean. But there remains the difficulty that error-signaling cells have not been
conclusively observed (see above). There is also the problem of semantics. If
feedforward signals mean ‘error’, what do feedback signals mean? The general
assumption is that they must represent predictions in some way (e.g. Clark,
2013a). Some theorists see this as too simplistic, however. Spratling comments
that Clark is wrong to assume ‘the feedforward flow of information solely con-
veys prediction error, while feedback only conveys predictions’ (Spratling, 2013,
p. 51). The way the infotropic account addresses the situation will already
be apparent. On this view, both feedforward and feedback signals encode in-
formational value. This is a language that can articulate both prediction and
error.

4.4 Where is the Bayesian inference?

Some of the ways an infotropic machine replicates Bayesian inference have al-
ready been noted. If we look at the behavior of a machine such as the one
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depicted in Figure 3, we see that it reproduces the effects of Bayesian MAP in-
ference. If we look at the underlying mathematics, we see why. Predictive payoff
is essentially Bayes’ rule rewritten to use information as a currency. But there
is also a more global sense in which an infotropic machine performs Bayesian
inference. If global states of the hierarchy are considered to represent individual
hypotheses, movement towards informational value is also movement towards
the most globally predictive state. This can be seen as converging on the hy-
pothesis that maximizes probability of the data. This is Bayesian inference
of a more general type. An infotropic machine can be considered to perform
Bayesian inference in this more abstract sense as well.

4.5 Where is the free energy?

A popular version of the predictive processing theory stems from the work of
Friston and colleagues (e.g. Friston, 2005; Hohwy et al., 2008; Friston, 2010;
Friston et al., 2012; Friston, 2013). In this ‘free energy’ variant, the mandate
to reduce prediction error is seen to derive from a still more fundamental im-
perative: minimization of informational surprise (Friston, 2013; Friston et al.,
2012). Minimization of surprise becomes the underlying objective—predictive
processing is the way it is achieved. As Friston puts it, ‘Predictive coding is a
consequence of surprise minimization’ (Friston, 2013, p. 32).17

On the assumption that informational surprise (entropy) cannot be mini-
mized directly, the variational method of (Dayan et al., 1995; Hinton and Zemel,
1994) is brought into play. Free energy—an upper bound on entropy—is mini-
mized by means of prediction-error observations, with the effect of minimizing
informational surprise within the bounds of feasibility. The default behavior of
an infotropic machine accomplishes something along these lines. The machine
automatically transitions towards informational value, which implies a reduction
of entropy. Accordingly, we might consider infotropic machines to be executing
a kind of free-energy minimization. But the match is less than perfect, since
different assumptions are made about how the informational value of a predic-
tive model is established. In the free energy framework, it is established by
minimizing free energy. In the infotropic account, it is established by Equations
2 and 3.

That being said, there is nothing to prevent making a connection at a more
abstract level. Optimizing an infotropic machine with respect to a particular
environment is certainly a possibility. The process would involve finding the
hierarchical structure which, for the data generated by the environment, yields
the greatest concentration of information, and thus the greatest predictive im-
pact. An optimization process of this form is arguably the natural counterpart of
free-energy minimization, albeit—confusingly—one which operates on an object
that itself fulfils the predictive-processing mandate. There is a kinship between

17More generally, minimizing sensory entropy is seen to be a fundamental imperative of
nature, counteracting the “thermodynamic forces” which increase physical entropy. The im-
perative to minimize sensory entropy is also seen to explain ‘our curious (biological) ability
to resist the second law of thermodynamics’ (Friston, 2013, p. 213).
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the present proposal and the free-energy account at some level. Tying them
together in a detailed way is challenging.

5 Concluding remarks

Bayesian probability theory has long been the framework of choice for work
which views the brain as a hierarchy of generative models. It is well suited to
this purpose. But information theory is an alternative worth considering. Once
the metric of predictive payoff is taken into account, a prediction machine can
be realized by a network of inter-predicting outcomes (subject to the rule that
evaluations are kept up-to-date). A hierarchical prediction machine can then be
just a predictive network with a hierarchical structure. This has the effect of
simplifying the account, since it does away with the need to differentiate error
units, error correction, precisions and Bayesian inference.

On the face of it, simplifying the machine in this way takes us away from
a tried and trusted methodology. But digging deeper, the conversion is not
quite as far-reaching as it seems. The driving force in the Bayesian machine is
Bayes’ rule. In the infotropic machine it is predictive payoff. But there is a close
relationship between the two formulae, as noted. It is not unlikely, then, that
the infotropic version of the hierarchical prediction machine will turn out to
be functionally if not mathematically equivalent to the Bayesian version. The
experiments described above seem to support this. More experimentation is
needed before any firm conclusions can be drawn; it is hoped future work will
make progress in this direction.
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Dretske, F. I. (1983). Précis of Knowledge and the Flow of Information. Be-
havioral and Brain Sciences, 6 (pp. 55-90).

Egner, T. and Summerfield, C. (2013). Grounding predictive coding models
in empirical neuroscience research. Behavioral and Brain Sciences, 36 (pp.
210-211).

Eliasmith, C. and Anderson, C. (2003). Neural engineering: Computation, rep-
resentation, and dynamics in neurobiological systems, MIT Press.

Eliasmith, C. (2007). How to Build a Brain: from Function to Implementation.
Synthese, 159 (pp. 373-388).

Feldman, H. and Friston, K. (2010). Attention, uncertainty and free-energy.
Frontiers in Human Neuroscience, 4, No. 215.

Friston, K. J., Daunizeau, J. and Kiebel, S. J. (2009). Reinforcement Learning
or Active Inference. PLoS One, 4, No. 7 (pp. 1-13).

Friston, K., Adams, R. A., Perrinet, L. and Breakspear, M. (2012b). Perceptions
as Hypotheses: Saccades as Experiments. Frontiers in Psychology, 3, No.
151.

Friston, K., Thornton, C. and Clark, A. (2012a). Free-energy Minimization and
the Dark Room Problem. Frontiers in Perception Science.

Friston, K. J., Lawson, R. and Frith, C. D. (2013). On hyperpriors and hypopri-
ors: comment on Pellicano and Burr. Trends in Cognitive Sciences, 17, No.
1 (pp. 1).

25



Friston, K. (2005). A Theory of Cortical Responses. Philosophical Transactions
of the Royal Society of London B: Biological Sciences, 360, No. 1456 (pp.
815-836).

Friston, K. J. (2010). The free-energy principle: a unified brain theory? Nature
Reviews Neuroscience, 11, No. 2 (pp. 127-138).

Friston, K. (2013). Active inference and free energy. Behavioral and Brain
Sciences, 36 (pp. 212-213).

Gibson, J. J. (1979). The Ecological Approach to Visual Perception, Boston:
Houghton Mifflin.

Haber, R. N. (1983). Can Information be Objectivized? Behavioral and Brain
Sciences, 6 (pp. 70-71).

Hinton, G. E. and Zemel, R. S. (1994). Autoencoders, minimum description
length and Helmholtz free energy. In Cowan and Alspector (Eds.), Advances
in Neural Information Processing Systems 6, Morgan Kaufmann.

Hohwy, J., Roepstorff, A. and Friston, K. (2008). Predictive Coding explains
Binocular Rivalry: An Epistemological Review. Cognition, 108, No. 3 (pp.
687-701).

Hohwy, J. (2013). The Predictive Mind, Oxford University Press.

Huang, Y. and Rao, R. (2011). Predictive coding. Wiley Interdisciplinary
Reviews: Cognitive Science, 2 (pp. 580-93).

James, W. (1890/1950). The Principles of Psychology (Vol. 1), New York:
Dover.

Jehee, J. F. M. and Ballard, D. H. (2009). Predictive feedback can account for
biphasic responses in the lateral geniculate nucleus. PLoS (Public Library
of Science) Computational Biology, 5, No. 5.

Knill, D. C. and Pouget, A. (2004). The Bayesian brain: the role of uncertainty
in neural coding and computation. Trends in Neuroscience, 27, No. 12 (pp.
712-19).

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Annals
of Mathematical Statistics, 22 (pp. 79-86).

Lashley, K. S. (1951). The Problem of Serial Order in Behavior. In Jeffries
(Ed.), Cerebral Mechanisms in Behavior (pp. 112-136), New York, NY:
John Wiley & Sons.

Lee, T. S. and Mumford, D. (2003). Hierarchical Bayesian Inference in the
Visual Cortex. Journal of Optical Society of America, A, 20, No. 7 (pp.
1434-1448).

26



Luce, R. D. (2003). Whatever Happened to Information Theory in Psychology.
Review of General Psychology, 7, No. 2 (pp. 183-188).

Mackay, D. (1956). Towards an information-flow model of human behaviour.
Br. J. Psychol, 43 (pp. 30-43).

Mackay, D. J. C. (2003). Information Theory, Inference, and Learning Algo-
rithms, Cambridge: Cambridge University Press.

Muckli, L., Petro, L. S. and Smith, F. W. (2013). Backwards is the way forward:
Feedback in the cortical hierarchy predicts the expected future. Behavioral
and Brain Sciences, 36 (pp. 221).

Ramsay, F. P. (1990). Truth and probability. In Mellor (Ed.), Philosophical
Papers (pp. 52-109), Cambridge University Press.

Rao, R. P. N. and Ballard, D. H. (1999). Predictive coding in the visual cor-
tex: A functional interpretation of some extra-classical receptive-field effects.
Nature Neuroscience, 2, No. 1 (pp. 79-87).

Rao, R. P. N. and Ballard, D. H. (2004). Probabilistic Models of Attention
based on Iconic Representations and Predictive Coding. In Itti, Rees and
Tsotsos (Eds.), Neurobiology of Attention, Academic Press.

Rasmussen, D. and Eliasmith, C. (2013). God, the devil, and the details: Flesh-
ing out the predictive processing framework. Behavioral and Brain Sciences,
36 (pp. 223-224).

Shannon, C. and Weaver, W. (1949). The Mathematical Theory of Communi-
cation, Urbana, Illinois: University of Illinois Press.

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System
Technical Journal, 27 (pp. 379-423 and 623-656).

Shannon, C. E. (1956). The Bandwagon. Transactions on Information Theory,
No. 3, Institute of Electrical and Electronics Engineers.

Spratling, M. W. (2013). Distinguishing theory from implementation in predic-
tive coding accounts of brain function. Behavioral and Brain Sciences, 36
(pp. 231-232).

Summerfield, C. and Egner, T. (2009). Expectation (and Attention) in Visual
Cognition. Trends in Cognitive Sciences, 13 (pp. 403-409).

Temperley, D. (2007). Music and Probability, Cambridge, Massachusetts: The
MIT Press.

Thornton, C. (2014). Infotropism as the underlying principle of perceptual
organization. Journal of Mathematical Psychology, 61 (pp. 38-44).

27



Tolman, E. C. (1948). Cognitive Maps in Rats and Men. Psychological Review,
55 (pp. 189-208).

Tribus, M. (1961). Thermodynamics and thermostatics: An introduction to
energy, information and states of matter, with engineering applications, D.
Van Nostrand.

Yu, A. J. and Dayan, P. (2005). Uncertainty, neuromodulation and attention.
Neuron, 46 (pp. 681-692).

van der Helm, P. A. (2011). Bayesian Confusions surrounding Simplicity and
Likelihood in Perceptual Organization. Acta Psychologica, 138 (pp. 337-
346).

von Helmholtz, H. (1860/1962). In Southall (Ed.), Handbuch der physiologis-
chen Optik, vol. 3, Dover.

28


