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ABSTRACT

Distributional models (DMs) are a family of unsupervised algorithms
that represent the meaning of words as vectors. They have been shown
to capture interesting aspects of semantics. Recent work has sought to
compose word vectors in order to model phrases and sentences. The
most commonly used measure of a compositional DM’s performance
to date has been the degree to which it agrees with human-provided
phrase similarity scores.

The contributions of this thesis are three-fold. First, I argue that ex-
isting intrinsic evaluations are unreliable as they make use of small
and subjective gold-standard data sets and assume a notion of simil-
arity that is independent of a particular application. Therefore, they
do not necessarily measure how well a model performs in practice.
I study four commonly used intrinsic datasets and demonstrate that
all of them exhibit undesirable properties.

Second, I propose a novel framework within which to compare
word- or phrase-level DMs in terms of their ability to support doc-
ument classification. My approach couples a classifier to a DM and
provides a setting where classification performance is sensitive to the
quality of the DM.

Third, I present an empirical evaluation of several methods for
building word representations and composing them within my frame-
work. I find that the determining factor in building word representa-
tions is data quality rather than quantity; in some cases only a small
amount of unlabelled data is required to reach peak performance.
Neural algorithms for building single-word representations perform
better than counting-based ones regardless of what composition is
used, but simple composition algorithms can outperform more soph-
isticated competitors. Finally, I introduce a new algorithm for improv-
ing the quality of distributional thesauri using information from re-
peated runs of the same non-deterministic algorithm.
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INTRODUCTION

Philosophers and cognitive scientists have long theorised about the
nature of language and how it can be used to convey meaning. More
recently, computers have offered the possibility of automating natural
language processing. However, machines are limited in their ability
to understand language expressions. As a result, interest in ways of
building and reasoning with computer representations of natural lan-
guage semantics has been increasing. Two major strands of work have
been investigated in the past. Formal semantics originates in logic
and makes heavy use of formal mathematical machinery. Focus is
on building logical representations of sentences, reasoning over these
and linking them to the real world. Distributional semantics assumes
meaning stems from language itself and is defined by how a word or
a phrase is used within a language (distributional hypothesis). Distri-
butional models have traditionally focused on lexical representations;
attempts to model syntactic structure are still comparatively new. Re-
cent computational research has made heavy use of this philosophical
line of work by translating it into a range of computer algorithms that
have been very successful in modelling certain aspects of meaning.
One of the main advantages of distributional algorithms is that they
offer a way of acquiring semantic representations without human in-
tervention, which makes them very appealing from an engineering
point of view.

This thesis aims to re-think how distributional models of semantics
(DMs) are evaluated. Currently the most commonly used measure of
performance is the degree to which DMs agree with human-provided
similarity scores between pairs of words or phrases. I will argue
that such evaluations are unreliable because they do not necessarily
measure the utility of different ways of instantiating DMs for down-
stream tasks. Another issue is the lack of clarity as to what “simil-
arity” means. Intrinsic gold-standard data sets assume there exists a
single notion of similarity that is independent of a particular applic-
ation. Further, the word similarity task is hard for human annotators
to do reliably, which casts doubt on the suitability of such data sets
for the evaluation of semantic models.
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To address these issues, I propose a novel framework within which
to compare distributional models in terms of their ability to support
document classification, a generic and challenging task of practical
importance. I also present several case studies of the kinds of qualit-
ative and quantitative understanding that can be obtained by evalu-
ating current state-of-the-art distributional models in my framework.
I specifically focus on a range of extensions to distributional models
which attempt to compose distributional phrase representations out
of word representations.

The rest of this chapter introduces formal and distributional se-
mantics at a high level and explains the contributions of this thesis in

more detail.

1.1 FORMAL SEMANTICS

The term “formal semantics” refers to a family of methods which
originate in mathematical logic and linguistics and attempt to sys-
tematically study 1) how semantic representation can be associated
with expressions in natural language, and 2) how these semantic rep-
resentations can be used for drawing conclusions (Manning, 2005). In
this section I briefly review some of the more influential approaches
proposed to date. I take the liberty of conflating a vast body of work
in order to emphasise some of the key properties and assumptions,
and in order to contrast it with distributional semantics, the main

subject of this thesis.

1.1.1  Montague semantics

Montague semantics is broadly in the tradition of Alfred Tarski and
was popularised (and named after) Richard Montague (Montague,
1970a,b, 1973). Its key idea is that no “important theoretical difference
exists between formal and natural languages” (Montague, 1970b). Mon-
tague semantics is denotational (or referential) in nature. The main
function of language is to allow us to talk about possible states of
affairs; meaning is grounded in, and originates from, the world.
Montague semantics is defined by several core principles. First, it is
truth-conditional. This means the meaning of a statement is a descrip-
tion of what the world would have to be like for the statement to be
true. The world therefore serves as the set of necessary and sufficient

conditions for the statement to be true. For example, the statement
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Domain Model

John j
Kathy k
tall {j}

likes  {(j,k), (kj)}

Table 1.1: A simple domain

“Brighton is north of London” is true if and only if the entity referred
to as “Brighton” is in a particular spacial relation to the entity named
“London”, and the relation is named “north of”. Note that the sen-
tence and the state of affairs in the world are separate. More formally,
a statement can be interpreted in many possible worlds, and it is only
true or false with respect to a particular possible world. This is re-
ferred to as “possible-world semantics”.

Another key property of Montague semantics is that it is model-
theoretic. A model is a abstract mathematical object that represents
the particular state of affairs in the world, which is expressed in a
metalanguage. Several alternative metalanguages have been proposed,
such as first order logic (FOL), linear logic (Girard, 1987) or frames
(Fillmore, 1982). Using FOL expressions has historically been particu-
larly popular as it is well-understood and has a clear semantics. There

are two kinds of valid expressions in FOL:

TERMS which intuitively correspond to domain objects. More form-
ally, they are said to have a corresponding denotation in the
metalanguage. Consider the simple domain given in Table 1.1.
The model constants j and k denote the real-world individuals
John and Kathy. The denotation of the property tall in the do-
main is the set of all metalanguage constants which possess that
property (John, assuming that John is tall and Kathy is not). The
denotation of relations such as likes is the set of ordered tuples
of constants which are in that relation. The model in Table 1.1
states that John likes Kathy and Kathy likes John.

FORMULAS which express statements that can be true or false, as

defined above.

The logical metalanguage serves as an intermediate step between
language and the real world, as both can be described in it. Sentences
in a natural language can be translated into a logical representation

because they are not merely strings, but also have an internal syn-
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John A% NP

likes Kathy

Figure 1.1: Constituency parse tree for “John likes Kathy”

tactic structure. Often the logical structure of a sentence mirrors its
syntactic structure. Let us translate the sentence “John likes Kathy”
into a logical form. First, we analyse the sentence syntactically (Fig-
ure 1.1). The translation of the word “John” is the constant j and
the translation of “Kathy” is k. The transitive verb “to like” is seen as
function that takes two arguments (constants), denoted in lambda cal-
culus as Ay.Ax.like(x,y). The semantic structure would be derived by
two function applications as follows (using the notation of Blackburn

and Bos (2005), where @ denotes function application):

Ay.Ax.like(x,y)@k = Ax.like(x, k)
Ax.like(x, k)@j = like(j, k)

This bottom-up approach of constructing a representation for com-
pound expressions is known as composition. The most cited formu-
lation of the underlying principle of compositionality states that “The
meaning of a compound expression is a function of the meanings
of its parts and of the way they are syntactically combined.” (Partee
1984, in Janssen, 2012b). Compositionality is one of the cornerstones
of formal semantics. However, it is a somewhat contested idea as ex-
amples can be produced where the meaning of the whole is not a
function merely of the parts and how they are combined, but also of
a third component such as linguistic or extralinguistic context. I will
return to the issues of composition in Chapter 2.2, where I will also
discuss composition in a non-Montague setting.

For computational semantics, the use of a meaning representation

language such as FOL has a number of benefits:

INFERENCE The rules of FOL allow us to infer new facts within
the model. For example, Mortal(Socrates) follows from Vx :
Man(x) = Mortal(x) and Man(Socrates)
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CONSISTENCY CHECKING Logical formulae that are satisfiable in at
least one model are called consistent. For example, short(John)
is not true when interpreted in the model in Table 1.1, but
may be true in some other models. In contrast, short(John) A
—short(John) is not satisfiable in any model and is said to be
inconsistent.

QUERYING Given a model and a FOL formula, is the formula satis-
fied in that particular model (Blackburn and Bos, 2005, p 20)?
This task has important practical applications as it allows us to
answer questions using the knowledge embodied in a model.

From a computational perspective, formal semantics is appealing
because it offers a well-studied set of components, from translation
of language into a logical form to querying and inference, which can
be combined into an end-to-end system, e. g. for the purposes of ques-

tion answering (Berant et al., 2013).

1.1.2  Minimal recursion semantics

Minimal recursion semantics (MRS) postulates that “the primary units
of interest for computational semantics are elementary predications
or EPs” (Copestake et al., 2005, p 2). An EP is “a single relation with
its associated arguments (for instance, beyond(x, y))”. The general
principle is that recursion is avoided and an EP never contains other
EPs, which creates a flat syntactic representation in the form of a list
of EPs. The motivation for this is that the binary nature of the logical
conjunction operator A creates undesirable spurious ambiguities. For
example, “fierce black cat” can be represented in logical form both as
cat(x) A (black(x) A fierce(x)) and (cat(x) A black(x)) A fierce(x) (Copes-
take et al., 2005, p 2). In the flat MSR representation the ambiguity
is removed by representing the phrase as a bag or predicates which
are implicitly conjoined: cat(x), black(x), fierce(x). A similar flattening
transformation is applied to the predicate representation of gener-
alised quantifiers, which intentionally leaves their scope underspe-
cified.

As Copestake et al. (2005) point out, “ [t]he point of MRS is not
that it contains any particular new insight into semantic representa-
tion, but rather that it integrates a range of techniques in a way that
has proved to be very suitable for large, general-purpose grammars”.
Practical applications of the theory include parsing, language genera-
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tion and machine translation (Copestake et al., 1995; Copestake, 1995;
Carroll et al., 1999).

1.1.3 Meaning-text theory

Meaning-text theory (MTT) originated in the Soviet Union in the
1960s (Mel’¢uk and Polguere, 1987, Mel’¢uk, 1999; Mili¢evié, 2006).
It is a global model in that it studies together all aspects of natural
language, from semantics to morphology and phonology. In contrast
to mainstream Western approaches to semantics, which are predom-
inantly analytic in nature, MTT focuses on synthesis of natural lan-
guage utterances. This is because its main tenet is that language is
above all used to express meaning, so any model of natural language
must start with the semantics as its main object of interest. In that
sense, MTT is a functional rather than a structural model of language.
The study of paraphrases therefore plays a central part in MTT.

The main object of MTT is not sets of objects but rather the rela-
tions between them. The most important such relation is the many-
to-many mapping between meanings and utterances. Although this
correspondence is bidirectional, MTT concentrates on the passage
from semantics to utterances (language generation) rather than vice
versa. That process involves several intermediate representations. At
the first level, semantics, utterances are represented as unordered se-
mantic networks, which capture their predicate-argument structure.
The next level of description is syntax, which is entirely modelled
as a dependency tree rather than a constituency tree. For morpholo-
gically complex languages morphological dependencies may also be
included to account for word declension. The final description is the
phonological one, where an utterance is modelled as a sequence of
phonemes. Representations are converted from one level to another
using a rich set of rules based on introspection. However, no claim is
made as to the psychological plausibility of such a model.

The lexicon plays a vital role in MTT, as any rule-based transform-
ation from semantic to syntactic representations relies on it. Lexico-
graphic work has therefore been very well represented in the area
(Mel’¢uk and Zholkovsky, 1984).
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1.1.4 Glue semantics

Glue semantics (Dalrymple, 1999) is theory of syntax-semantics in-
terface based on Lexical Function Grammar (Dalrymple , editor). Its
starting point is that phrase structure trees are not necessarily ap-
propriate for representing functional organisation. Therefore, glue se-
mantics uses two levels of representations: c-structure and f-structure,
and rules (projection functions) to convert from one to the other. The
role of the former is to model the constituency structure of a sentence,
while the latter represents its structural organisation and is reminis-
cent of syntactic dependencies. Semantic composition is “mainly de-
termined by syntactic relations such as subject-of, object-of, modifier-
of, and so on” (Dalrymple, 1999, p 8). The motivation for this is that
these may be realised differently in the c-structure across languages,
but are uniform in the f-structure.

The rules of composition are expressed in a logical language, which
serves as the glue (hence the name) for combining the meaning of
words. The particular logic used in glue semantics is linear logic (Gir-
ard, 1987), which is a modification of classical Boolean logic where
premises are viewed as resources and are consumed by the proof pro-
cess. For instance, both A and B can be deduced from the premises A
and A — B. In linear logic, the premises are consumed by the deduc-
tion and the only fact that can be derived is B. This is appealing for
linguistic purposes because the “semantic contributions [of words]
are occurrences of information which are generated and used exactly
once” (Dalrymple, 1999, p 15). Additionally, linear logic allows for
an intuitive treatment of modification, where a modifier consumes an
unmodified meaning and produces modified meaning.

In glue semantics, the meaning of a lexical entry is a formula in
linear logic, called a “meaning constructor”, which “specifies the “as-
sembly instructions” for combining the meaning contributions of the
syntactic arguments of the lexical entry to obtain the meaning con-
tribution of the whole entry” (Dalrymple, 1999, p 14). Consider the
following simplified example, which is due to (Dalrymple, 1999). The

meaning constructor for the verb “greet” would be

VX,Y.SUBJ ~» X ® OBJ ~» Y —o f5 ~~ greet(X,Y)
which is interpreted as

e if the subject (SUBJ) has meaning (~) X
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e and (®) the object OBJ has meaning Y
e then (—o) “greet” has meaning greet(X,Y)

In the above formula, it is assumed that the syntactic arguments
of a verb are linked to a semantic functions, i.e. that the subject of
the verb (syntax) is the agent (semantics) and the object (syntax) is
the patient (semantics). This information needs to be encoded in the

lexicon.

1.1.5 Lexical semantics

The discussion above, as well as the remainder of this thesis, is pre-
dominantly concerned with the issue of composition. However, lex-
ical semantics has also received significant attention in the past. In
this section, I will briefly review several influential theories.

Frame semantics (Fillmore, 1982) states that the meaning of a word
can only be understood in the context of a particular real-world situ-
ation, which is referred to as a frame. Formally, a frame is defined
as “a system of concepts related in such a way that to understand
any of them you have to understand the whole structure in which it
fits; when one of the things in such a structure is introduced into a
text [...] all of the others are automatically made available” (Fillmore,
1982, p. 111). For example, to understand the word breakfast “is to un-
derstand the practice in our culture of having three meals a day, at
more or less conventionally established times of the day, and for one
of these meals to be the one which is eaten early in the morning...”
(Fillmore, 1982, p. 118). A word is said to evoke or activate a semantic
frame. Words also serve a particular argument role in a frame, or fill a
slot. For example, the word “sell” evokes the commercial transaction
frame from the perspective of the seller, and “buy” activates it from
the perspective of the buyer. Other words that evoke the same frame
include “goods” and “money”. In the sentence “Abby bought a car
from Robin”, “Abby” fills the buyer slot of the frame, “Robin” fills
the seller slot and “car” fills the “goods” slot (Baker et al., 1998).

The Generative Lexicon presents theory of how “a core set of word
senses [...] is used to generate a larger set of word senses when
individual lexical items are combined with others in phrases and
clauses” (Pustejovsky, 1995, p. 2). This contrast to the static view
of word meaning, which Pustejovsky calls “sense enumerating lex-
icons”, where each word is characterized by a predetermined num-
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ber of word senses. The generative lexicon makes use of four levels
of representation: Lexical Typing Structure, which “determines the
ways in which a word is related to other words in a structured type
system”; Argument Structure, which “encodes the conventional map-
ping from a word to a function”; Event Structure, “identifies the par-
ticular event type for a verb or a phrase”, such as a State, Process or
Transition; and Qualia Structure, which “defines the essential attrib-
utes of objects, events, and relations, associated with a lexical item”.

For example, the argument structure of the verb “build” is

ARGy = animate_individual
ARGy, = artefact
ARGp = material

where ARGp is the default argument, which participates in the lo-
gical expression, but is not necessarily expressed syntactically (Puste-
jovsky, 1995, pp. 63-66).

The qualia structure is further subdivided into four categories, mod-
elling the origin, purpose and relations of an object to other objects
(Pustejovsky, 1995, ch. 6).

1.2 DISTRIBUTIONAL LEXICAL SEMANTICS

An alternative approach to language semantics is based on the idea
that one can discover the meaning of a word by inspecting its uses in
a corpus of text. Consider the following example, due to Lazaridou
et al. (2014):

We saw a cute little wampimuk sleeping in the tree.

A single example of the unknown word “wampimuk” being used
in context is sufficient for a reader to get an idea of what it might
mean. With additional examples, one might be able to fully (or suf-
ficiently well) characterise the meaning of “wampimuk”. This idea
has precursors in the later philosophy of Wittgenstein (“meaning is
use” hypothesis) and the Firthian school of linguistics — “You shall
know a word by the company it keeps” (Firth and Palmer, 1968). The
distributional hypothesis (Harris, 1954) states that similar words tend
to appear in similar contexts. Practical computer-based implementa-
tions date back to the work of Sparck-Jones (1965), Deerwester et al.
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(1990) and Grefenstette (1994). The meaning of a word is thus the set
of contexts it occurs in. If all possible contexts are ordered, each word
can be described by a vector’, enabling the use of a wide range of
tools from linear algebra. Notably, the distance between the vectors
corresponding to two words or phrases can be seen as a measure
of similarity between them. Another important property is that this
definition is effectively an algorithm for learning such representations
from data®. Also, enumerating the contexts of a word does not require
any annotated data or human intervention.

However, distributional semantics is not a silver bullet. Meaning is
assumed to be grounded in language and not in real-world objects,
which is a controversial view in philosophy and cognitive science. It
is debatable if one could really know what “wampimuk” is without
having seen, touched or smelled one. Additionally, word-level distri-
butional models cannot be directly applied to longer phrases because
phrases occur much less frequently, making it impossible to extract
reliable co-occurrence statistics. This problem of how to build up dis-
tributed representations for phrases, sentences and documents out
of word representation has seen increasing attention recently. Cur-
rent approaches are reviewed in detail in Chapter 2. The framework
proposed in this thesis can be used to evaluate both word-level and
phrase level distributional representations.

1.3 THESIS STRUCTURE AND CONTRIBUTIONS

The rest of this thesis is structured as follows. Chapter 2 presents the
background information necessary for reading this thesis. I begin by
introducing the area of distributional compositional semantics and
discussing the main open issues and trends in the literature. I de-
scribe several commonly used algorithms for learning distributional
representations of single words from unlabelled text. Next, I outline
recent attempts to perform composition in a distributional setting,
i. e. to combine word representations into phrase representations. Em-
phasis is on algorithms that deal with noun phrase and verb phrase
composition.

The second part of the chapter is concerned with how composi-

tional distributional models can be evaluated. By far the most com-

The terms “vector” and “embedding” will henceforth be used interchangeably to
refer to the distributional representation of words.

An example of how distributional representations can be derived from text and a
detailed description of algorithms for doing so are shown in Chapter 2.

10
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mon family of evaluation procedures currently are the so called in-
trinsic ones, which attempt to directly measure the “inherent” qual-
ity of a word or phrase representation. This often takes the form of
computing the extent to which a computational model agrees with
human-provided word or phrase similarity judgements. I argue that
these gold-standard data sets are too small and subjective to provide
a thorough measure of the utility of a distributional model for down-
stream natural language processing, and provide empirical evidence
to support that claim. Further, such evaluations assume there exists
a single gold-standard similarity score between a pair of words or
phrases, which is independent of any particular application.

Chapter 3 presents an empirical assessment of four commonly used
intrinsic data sets. I demonstrate all four evaluations exhibit undesir-
able properties such as being unable to detect if random noise is
added to word vectors. This motivates the introduction of a novel
procedure for assessing distributional models extrinsically through
text categorisation. It applies the principle of feature expansion from
information retrieval by training a statistical document classifier as
usual, but at test time replacing all phrases with their nearest neigh-
bours according to a distributional model. Intuitively, the classifier is
only allowed to view the contents of a document through the prism
of a distributional model. Classifier accuracy is therefore strongly de-
pendent on the quality of the distributional model. This framework is
independent of a particular distributional model and can be applied
to both word-level or phrase-level models. It also allows us to eval-
uate models against a different notion of similarity by plugging in a
different collection of documents for classification.

Chapter 4 presents an empirical comparison of several state-of-the-
art composition algorithms in the proposed framework. I highlight
the importance of training distributional models on clean unlabelled
data that matches the domain where the model is being applied. I
demonstrate simple methods for building phrase representations out
of word representations match or exceed the utility of more sophist-
icated proposals when dealing with noun phrases and verb phrases.
Finally, I present a simple procedure that uses information contained
in multiple comparable distributional models to reorder and improve
the nearest semantic neighbours of a noun phrase.

The contributions of this thesis are three-fold:

11



1.3 THESIS STRUCTURE AND CONTRIBUTIONS

1. Empirical evidence of the disadvantages of intrinsic evaluations,
which are still the predominant method for assessing distribu-
tional models;

2. A novel extrinsic evaluation framework based on document clas-

sification;

3. An evaluation of several popular distributional models in the
proposed framework.

12



LEARNING WORD AND PHRASE
REPRESENTATIONS

As discussed in Chapter 1, distributional models (DMs) are an attract-
ive approach to natural language semantics as they can be learnt from
unlabelled text without human supervision. This chapter introduces
the area in more detail; it is divided into four parts.

Section 2.1 describes existing algorithms for building distributed
representations of single words. I begin with an example of building
word vectors using an early instantiation of the distributional hypo-
thesis, which produces the so called counting vectors. Next, I formal-
ise the notion of counting vectors and contrast them with the recently
proposed family of neural-network algorithms.

Section 2.2 introduces composition, the process of combining word
representations into phrase representations. I review four broad types
of algorithms, based on element-wise operations, linear regression,
recursive neural networks and category-theoretical grammar.

Section 2.3 discusses two broad types of methods of evaluating the
quality of DMs. Intrinsic methods attempt to directly assess DMs,
typically by measuring the degree to which they agree with human-
provided word and phrase similarity scores. In contrast, extrinsic eval-
uations embed a DM in a practical task and look for improvement in
performance in that task.

Finally, Section 2.4 discusses several open questions in distribu-
tional semantics, which represent important directions for future re-
search.

Chapter 3 analyses four commonly used intrinsic evaluation data
sets and demonstrates all four exhibit undesirable properties such
as being unable to detect if random noise is added to word vectors.
This motivates the introduction of a novel procedure for assessing

distributional models extrinsically through text categorisation.

13
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2.1 WORD REPRESENTATIONS

To illustrate the basic premise of distributional semantics, let us con-
struct a vector representation for three words: “cat”, “dog” and “or-

ange”. Suppose the following corpus of free text is provided:

did not think  dog  owners should
a filthy street dog  ran towards
investigate recent  dog  bites
one even gave my  dog  a biscuit
a growl thatonlya  dog  would provide
accompanied by a  dog  ona leash
saw a thin little ~ cat  lapping milk
had a cat , a dusty little creature
she was called the  cat  because of her fierce manners
a nice fluffy  cat  ran my way
bought a tasty orange

Is this orange juice

an orange object hit the floor

The three words of interest will henceforth be referred to as entries;
the contexts that an entry is used in are its distributional features. Fea-
tures and entries are said to co-occur. For the sake of simplicity, this
example focuses on the three entries above and uses all other content
words occurring in the same sentence as features. Specifically, the fea-
tures of the entry “dog” in the second sentence above are “filthy”
and “street”. The set of contexts for all entries can be laid out as a
matrix (Table 2.1), where the rows correspond to entries, the columns
correspond to features and each cell corresponds to how often a fea-
ture has occurred in the context of an entry. Each row represents
the vector (distributional representation) for a particular entry, i.e.
the vector for cat is c—>at = [9,12,5,0,1,0,...] and the one for dog is
d_og> = [3,4,15,0,0,0,...]*. When entries are viewed as vectors, a wide

Formally, this is the definition of a point in Euclidean space, which is equivalent to
a vector whose initial point is the origin.

14



2.1 WORD REPRESENTATIONS 15

Features

filthy street bite tasty buy juicy

" dog 3 4 15
2 cat 9 12 5 1
Lﬁ orange 1 2 4 7 25

Table 2.1: Three entries and some of their distributional features. The num-
ber is this table are hypothetical and do not come from the ex-
ample corpus above.

range of tools from linear algebra can be leveraged. For instance, the

Euclidean distance between two vectors v and w is defined as

A7, W)= [Y (V- W)?

1

A number of other measures that exhibit desirable properties have

been proposed — refer to Weeds (2003) for a comprehensive study.
3 : " 7 H 3

The Euclidean distance between “cat” and “dog”, cos(dog, cat), is ap-

proximately 0.4, while cos(dog, orange) ~ 0.92. The information con-

tained in the distributed representation of the three entries is suffi-

cient to establish that “cat” is semantically closer to “dog” than to

“orange”.

2.1.1  Counting distributional models

The distributional representations above were built using a simple
instantiation of a class of DMs that Baroni et al. (2014) termed “count-
ing” algorithms, which were popularised by early work such as Sparck-
Jones (1965), Redington et al. (1993), Schiitze (1993) and Grefenstette
(1994). These models count the number of times a feature appears
in the context of a target entry. Features are typically taken to be
other words or short phrases. A feature is usually considered to be
in the context of an entry if the two occur within a distance of k
words in the same sentence. These are known as “proximity” or “win-
dow”features®. For example, in the sentence “John likes black cats”
the features of the entry “likes” would be the set {John, black} if us-
ing a symmetric window of size 1 and {cats, John, black} if using a

window of size 2 and single words as features. Alternatively, adja-

Another popular alternative, called “dependency features”, is discussed in Section
2.1.3
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cent bigrams can be used as features, in which case the features of
“likes” would be the set {black_cats}.

After counting how many times each feature and entry co-occur,
the resultant counts are typically weighted by a factor that reflects
their informativeness. This reflects the intuition that not all contexts
are equally important. For instance, given a large enough window,
most entries would have common words such as “the” and “a” as
features. Using the raw un-weighted counts would not account for
entries and features co-occurring by chance and would distort the
probability distribution of entries over possible contexts. Co-occur-
rences that are likely to have been observed by chance are not likely to
be informative and are therefore given a lower weight, and vice versa.
Common re-weighting schemes include (positive) pointwise mutual
information, log-likelihood ratio and x? (Evert, 2005). Pointwise mu-
tual information is a measure of association between an entry ¢ and
a feature f that accounts for the probability that they co-occur by
chance. It is defined as

P(e, f)

PMlI(e, f) =log Ple)P(f)
P(e) is the prior probability of the entry e occurring, which is the
ratio between the number of occurrences of e and the total number
of entry occurrences. P(f) is the prior probability of the feature f,
which is calculated in a similar fashion. P(e, f) is the joint probability
of e and f. A commonly used correction, which has been argued to
be superior (Evert, 2005; Bullinaria and Levy, 2007, 2012), is positive
PMI, defined as

PPMI(e, f) = 4 if PMI(e, f) <0

PMI(e, f) otherwise

The vectors that result from using a counting approach are inter-
pretable, as each dimension corresponds to a particular feature. How-
ever, these vectors are also often very high-dimensional. Because the
memory footprint and running time of common linear-algebraic al-
gorithms are a function of dimensionality, raw count vectors are often
impractical to work with. Dimensionality reduction (DR) techniques
such as Singular Value Decomposition (SVD) or Non-negative Tensor
Factorisation are commonly employed to address these practical is-
sues (Turney and Pantel, 2010). A secondary benefit of DR is that the

16



2.1 WORD REPRESENTATIONS 17

resultant entry vectors are more robust to noise in the input data and
thus perform better in evaluations. For example, a notable early ap-
plication of SVD to NLP is the work of Deerwester et al. (1990), which
performs SVD (over a term-document matrix) in an information re-
trieval system. A drawback of DR is that it makes the dimensions of
the resultant vectors harder to interpret, as each dimension becomes
a (potentially non-linear) combination of the original interpretable
distributional features. Also, reduced representations are only an ap-
proximation of the original embeddings; some information is lost in

the process.

2.1.2 Neural distributional models

Neural distributional models formalise the intuitions behind the count-
ing approach by encoding desirable properties of the resultant word
vectors explicitly as an objective function and using a neural net-
work to optimise that function. These models address the rigidity
of the counting approaches, which typically follow a count-reweight-
reduce process, with various heuristics applied at each step in an
attempt to endow the model with certain desirable properties. For
example, PPMI and context selection remove or reduce the weight of
non-informative contexts, SVD makes word vectors dense and low-
dimensional, and length normalisation accounts for frequency effects.
In contrast, neural models allow for these properties to be encoded
explicitly in the objective function and learnt jointly. Neural models
have become very popular in recent years. Thorough surveys can be
found in Schmidhuber (2015) and LeCun et al. (2015).

In this section I focus on two concrete neural semantic models,
called worp2vEC (Mikolov et al., 2013a) and GLOVE (Pennington
et al.,, 2014). These are selected because they are very efficient to train,
perform well in a range of tasks and offer free high-quality imple-
mentations. The details of these models are given below.

WORD2VEC starts off with a randomly initialised vector of fixed di-
mensionality for each entry. Mikolov et al. present two different form-
alisations of the notion of context, called continuous bag-of-words
(CBOW) and skip-gram (SG). CBOW maximises the probability of an

entry given the context it was observed in. In contrast, the SG model
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maximises the probability of the contexts an entry occurs in given the

entry. Formally, the objective function SG maximises is

1 Tl
Jse = 17 Y. logP(wyyj|w)
| | t=1 —c<j<c,c#0
where |T| is the size of the training corpus, ¢ is the size of the context
window, and wy is the t-th word in the corpus (the entry). The CBOW

objective function is

1 I
JcBow = 1Tl Z Z log P(w;|w; ;)
=1

—c<j<c,c#0

In both SG and CBOW, the probability of a word w; given another

word w, is defined in terms of their vector representations as

where k is an index into the list of entries contained in the model.
Maximising this probability amounts to maximising the similarity
(dot product) between an entry and the contexts it occurs in at the
expense of contexts it does not occur in. Intuitively, a high ratio en-
sures that words that appear together in the corpus have more similar
vectors than words that do not. Because the number of contexts an
entry does not occur in can be very high, the sum in the denominator
can range over a very large set, making learning impractical. To alle-
viate this problem Mikolov et al. use a technique known as negative
sampling, where the summation is over a small random sample of
all contexts. The end result is that if “cat” appears in the context of
“food”, then the vector of “food” is made more similar to the vector
of “cat” (as measured by their dot product) than the vectors of several
other randomly chosen words instead of all other words in language.

In its original formulation woORD2VEC is very similar to window-
based counting models. In fact, its objective function has been shown
to be equivalent to a counting-based approach with mutual inform-
ation weighting (Levy and Goldberg, 2014b). Since it was first in-
troduced, worD2VEC has been extended in several ways. Yu and
Dredze (2014) add a term to the SG objective function to encourage
words that are close in WordNet (Miller, 1995) to have similar em-
beddings. Similarly, Passos et al. (2014) propose an extension that
encourages the model to assign similar embeddings to words that ap-

18



2.1 WORD REPRESENTATIONS

pear in the same section of a gazetteer. Levy and Goldberg (2014a)
train a worD2VEC model that considers dependency features (Sec-
tion 2.1.3). Tang et al. (2014), Labutov and Lipson (2013) and Faruqui
et al. (2014) propose ways of adapting worD2VEC embeddings to a
particular domain, such as sentiment. Ling et al. (2015) add sensitivity
to word order to worRD2VEC, which results in improved performance
at part-of-speech tagging and dependency parsing.

WORD2VEC has been applied to a range of tasks. Fu et al. (2014)
build semantic hierarchies by identifying hypernymy, using word
vectors as input to a classifier. Mikolov et al. (2013b) learn a map-
ping between the vector spaces for a pair of languages and use it to
expand the phrase table of a machine translation system. Kageback
et al. (2014) use worD2VEC embeddings to identify similar sentences
and improve an existing extractive multi-document summarisation
algorithm. The key intuition of that work is that semantically similar
sentences do not contribute to the summary and should therefore be
removed.

GLOVE (Pennington et al., 2014) seeks to address some of the limit-
ations of WorRD2VEC. Its objective function is designed around three

considerations:

1. WORD2VEC only leverages information contained locally, within
a small window around a target entry. The potentially useful in-
formation provided by the global co-occurrence count between
features and entries is ignored.

2. WORD2VEC does not explicitly attempt to weight feature co-
occurences by informativeness. Pennington et al. note that non-
informative features w, are expected to co-occur with approx-
imately equal probability with words w; and w; for any choice
of u # i # j. The ratio P(w,|w;)/P(w,|w;) should therefore be
close to 1.

3. The distinction between an entry and a feature is somewhat
arbitrary, as any word can be both. The entry-feature matrix
should therefore be invariant to transposition. This is trivially
true for counting models without dimensionality reduction, but
neural models learn a latent low-rank approximation of that
matrix, which is not invariant to transposition. GLOVE addresses
that problem by assigning two vectors to each word w. When
modelled as an entry, w is assigned the vector E?, and when it
is viewed as a feature its vector is 70/

19



2.1 WORD REPRESENTATIONS

GLOVE’s objective function, which satisfies these desiderata is

W

]glove = Elf(ij) (wiTw]-/ + bi + b]/ — log XZ']')Z
ij=

where Xij is the co-occurrence count of words i and j, b is a bias term,
and f is a non-decreasing function such that f(0) = 0 and f(x) is
small for large values of x.

Note that both worD2vVEC and GLOVE are unsupervised, even

though their cost functions are optimised via supervised training.

2.1.3 Context

In the discussion so far, I assumed a particular definition of what
makes a feature. I used the so called proximity vectors, where two
words are considered to co-occur if they appear in the same sentence.
The advantage of this approach is that it requires little or no prepro-
cessing of the input text, and is therefore fast in practice. However,
words that appear in the same sentence are not necessarily closely
related.

DOBJ
NSUBJ AMO

7N
John likes black cats

Figure 2.1: Dependency analysis of “John likes black cats”.

Dependency features are a linguistically motivated alternative to
proximity features. One would first use a dependency parser to ana-
lyse the syntactic structure of the sentence. Dependency analysis is
a type of syntactic analysis that describes how pairs of words are
related grammatically in a sentence, instead of how the sentence de-
composes into sub-structures as in a constituency-based analysis. A
dependency analysis of the example sentence “John likes black cats”
according to the Stanford system (De Marneffe and Manning, 2008)
is shown in Figure 2.1. The tree encodes the following facts:

¢ “John” is the nominal subject (NsuBJ) of “likes”
* “cats” is a direct object (DOBJ) of “likes”

* “black” is an adjectival (AM0oD) modifier of “cats”

20



2.2 COMPOSITION

Dependency information can be used to extract more targeted fea-
tures for the entry “likes”, such as {has_nsubj_John, has_dobj_cats}.
More precisely, dependency-based distributional features take into
account that “black” is not directly grammatically related to “likes”
even though the two words are adjacent in the corpus. Additional in-
formation can be extracted in the form of second-order dependency
features (Weir et al., in press). For example, “likes” has a direct object
which in turn has “black” as an adjectival modifier. The feature that
captures that information would be dobj_amod_black.

Dependency features have been used both in counting (Lin, 1998;
Erk and Pado, 2008; Grefenstette et al., 2011) and neural algorithms
(Levy and Goldberg, 2014a). A practical consideration is that the
corpus needs to be parsed, which is computationally intensive and
cannot be done with perfect accuracy. A comprehensive overview of
other issues relating to word-level distributional models can be found
in Erk (2012) and Turney and Pantel (2010).

2.2 COMPOSITION

The distributional models considered so far are capable of learning
a representation of the meaning of single words. However, a com-
putational model of semantics needs to be applicable to phrases, sen-
tences, paragraphs and ultimately documents. However, longer phrases
occur much less frequently than single words regardless of the amount
of text available, and many plausible phrases may not occur at all.
Trivially extending the distributional models discussed so far to the
phrase level is not feasible.

The principle of compositionality provides a possible way of address-
ing this limitation. Modern formulations are widely attributed to 19-
th century German philosophers, most notably Frege (Janssen, 2012a).
In its most commonly used form, the principle states that “[t]he mean-
ing of a compound expression is a function of the meanings of its
parts and of the way they are syntactically combined” (Partee 1984,
in Janssen, 2012a). Composition is needed in order to model the mean-
ing of the vast number of phrases and sentences that can be built out
of a language’s vocabulary.

I will now detail four families of compositional distributional al-
gorithms (henceforth referred to as “composers”). I will return to the

philosophical issues relating to composition in Section 2.4.
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2.2 COMPOSITION

2.2.1 Pointwise compositional models

Mitchell and Lapata (2008) are the first to empirically evaluate and
compare a number of different distributional composers. These in-

clude:

ADDITIVE The phrase vector is the pointwise sum of the vectors of
the constituents: 7 = o + [57

MULTIPLICATIVE The phrase vector is the pointwise product of the
— =

vectors of the constituents: 7 =qyu -0
In this thesis, and often in the literature, « = = v = 1 for sim-
plicity. Such pointwise models are simple to implement and perform
well in practice (Mitchell and Lapata, 2008; Grefenstette et al., 2013).
Since addition and multiplication are commutative, these composers
are insensitive to word order, but are able to compose any phrase,

sentence or document regardless of grammatical structure.

2.2.2  Linear regression model

The adjective linear map model of Baroni and Zamparelli (2010) fo-
cuses on adjective-noun compounds and provides an empirical method
of exploiting the intuition that attributive adjectives are “functions
from the meaning of a noun onto the meaning of a modified noun”
(Baroni and Zamparelli, 2010, p 1183). The authors differentiate between
two units of meaning: nouns and noun phrases. The latter consist of
an adjectival modifier and a noun head. Vectors for both can be ob-
tained from a corpus. These are referred to as “observed vectors” and
are denoted below by % and b for a noun and modified noun re-
spectively. Adjectives are seen as functions from the former to the lat-
ter and are denoted as f : W — id. The authors assume the mapping
f is linear and can be represented as an n x n matrix, which trans-
forms n-dimensional noun vectors into n-dimensional noun phrase
vectors. The values of the matrix A, are specific to each adjective u
and are empirically set to minimise the squared difference between
the corpus-observed and the model-predicted noun phrase vectors.
The matrix is learnt via linear partial least squares regression and is

applied to a noun by means of matrix multiplication:

uo =A, v
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2.2 COMPOSITION

where 70 is the composed (predicted) vector for the phrase uv.

The algorithm does not require human supervision, but involves
a supervised learning step. Because corpus-observed vectors for bi-
grams are required, the model may have low coverage. Additionally,
n* parameters have to be learnt from a small amount of data. Later
work (Grefenstette et al., 2013; Paperno et al., 2014) attempts to ex-
tend this approach to other phrase types, such as verb-object and
subject-verb-object.

In this thesis I use the 2010 formulation of the algorithm and also
apply it to noun-noun compounds. I assume noun modifiers function
similarly to adjectival modifiers, therefore a matrix representation for
noun modifiers can be learnt similarly to how adjectival modifiers are

learnt.

2.2.3 Recursive neural network model

In its basic form, an auto-encoder is a three-layer feed-forward neural
network where the input and output layers are of size n and the hid-
den layer is of size m < n. Inputs are also used as targets and the
goal of the network is to learn to reconstruct its inputs after they have
passed through a small hidden layer. The activations of the hidden
layer can be seen as a more compact representation of the original
inputs. Auto-encoders operate in two stages — the inputs are first
encoded into a compact representation, which is then decoded into a
reconstruction. The parameters of the network are trained to minim-
ise the difference between an input vector and its reconstruction. This
is done in a supervised fashion via back-propagation, but no labelled
data is required as the inputs also serve as targets.

Socher et al. (2011) propose a compositional model based on the
recursive, bottom-up application of auto-encoder neural networks
along the nodes of a constituency parse tree. The process is best ex-
plained with an example. I will first explain the process at a high level
and will provide technical details later.

Suppose we wish to compose the sentence “x; x2 x3”, whose parse
tree is given by the blue nodes in Figure 2.2. A network is trained
to compress a pair of n-dimensional word vectors into a single n-
dimensional vector and to then reconstruct the original vectors. The
encoding process is applied bottom-up to pairs of words in the parse
tree that share an ancestor. For the tree in Figure 2.2, the vectors for

x7 and x3 are first encoded (using some yet unspecified operation W,)
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Figure 2.2: Unfolding recursive autoencoder, reprinted from Socher et al.
(2011). Blue nodes denote input word embeddings and grey
nodes are their reconstructions.

into a latent representation y;, which is then combined with x; (again
using W) to form y», the vector for the entire sentence. Note that at
each encoding step two vectors of size n are composed into one while
respecting the syntactic structure of the sentence.

Decoding is done similarly to encoding, but in reverse order. y; is
first expanded into x;/ and y1/ (using a decoding operator W), which
are the reconstructions of x; and y; respectively. y;/ is then recursively
decoded using W, into x»/ and x3/, the reconstructions of x; and xs.
The aim of the algorithm is to learn W, and W; such that, for each
x € {x1,x2,x3,1}, x is close to x/.

The technical details of the algorithm are as follows. First, nodes
are not atomic units, but n-dimensional vectors, which are held static
during training. Leaf nodes are word embeddings, and internal nodes
correspond to phrase representations. W, and W, are matrices of size
n x n, which are applied to word vectors via standard matrix multi-
plication. Encoding is performed using the standard neural network
technique:

yi = tanh(W,[¥3; X3])

where [x_z), x_g,)] denotes the concatenation of x—z> and x_g,> and tanh is a
non-linearity. Bias terms have been omitted for simplicity. Similarly,
decoding is defined as

[x17; y17] = tanh(W,3)

The goal is to learn W, and W; such that the reconstruction error

Y x|

xe{xy,x2,x3,51}

is minimised.

24



2.2 COMPOSITION

As with the work of Baroni and Zamparelli, training is supervised,
but no data is required beyond word embeddings, which can be ob-
tained using any of the algorithms in Section 2.1. Unlike Baroni and
Zamparelli, the algorithm of Socher et al. is applicable to complete
sentences of any syntactic structure. Note the same composition op-
eration is used for all nodes in the parse tree instead of an adjective-
specific linear map. The model is therefore less flexible3 as it has two
matrices available to store information about all complex pairwise
interactions between words. On the other hand, it is easier to train

because it has considerably fewer parameters to learn from data.

2.2.4 Category-theoretical models

Grefenstette and Sadrzadeh (2011) present a range of tensor-based al-
gorithms for composing simple transitive sentences such as “person
buys car” or “child likes fruit”. All of these represent nouns as vec-
tors, which is compatible with the rest of the models in this section.
Similarly to the work of Baroni and Zamparelli (2010), words that take
arguments are represented as higher-order tensors, and these repres-
entations are learnt from data. I consider four specific instantiations
of the tensor framework — copy-object, copy-subject, Frobenius Ad-
dition and Frobenius Multiplication, which all represent verb phrases
as vectors as opposed to matrices or tensors.

Copy-object composition is defined as

Subj Verb Obj = Subj (O)(Verb x Ob))

where ST>b] and O—>b] are the embeddings of the subject and object re-
spectively, O is pointwise multiplication and x is standard matrix
multiplication. The composition process is agnostic to how word vec-
tors are learnt. The verb representation Verb, for a verb v is learnt as

Verb, = Z ?@7

(s,0,0)€T

follows:

where 7 is the set of verb phrases (subject-verb-object tuples (s-v-0))
for v which occur in a corpus, s and 0 are the unigram vectors
corresponding to the subject s and object 0 and &) is tensor multiplic-

ation (Milajevs et al., 2014, Section 3). For example, if the only uses

This is arguable, as Socher et al.’s model is non-linear and Baroni and Zamparelli’s
is linear.
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of the verb “to buy” in a corpus are “person buy car” and “child buy
toy”, the representation of “buy” would be

buy = person (R) car + child () o)
and the vector for the unobserved VP “person buy toy” would be
e
person buy toy = person (+) (buy x toy)
Copy-subject composition is defined as
Subj Verb Obj = Obj () (Verb' x Subj)

Frobenius addition and multiplication are defined as the pointwise

sum or product of copy-subject and copy-object respectively.

OTHER MODELS In this chapter I have only reviewed those general-
purpose models that will be evaluated experimentally in Chapter 4.
Several other compositional models specifically targeting document
classification will be discussed in Chapter 3.6. Evaluating models by
Thater et al. (2010); Giesbrecht (2010); Dinu and Lapata (2010); Pa-
perno et al. (2014); Weeds et al. (2014b); Weir et al. (in press) is left to
future work.

2.3 EVALUATING DISTRIBUTIONAL MODELS

This section reviews existing evaluation routines for distributional
models, with an emphasis on compositional models. I group existing
proposals into two broad classes, intrinsic and extrinsic, and review
some of the fundamental properties of each. I will discuss the advant-
ages and disadvantages of each evaluation in Chapter 3 and argue
that intrinsic tasks are unreliable due to the subjective nature of the

task and the small size of the gold-standard datasets used to date.

2.3.1 Intrinsic evaluation

Sparck-Jones and Galliers (1995, p 19) define intrinsic evaluation cri-
teria as “those relating to a system’s objective”. I group existing in-
trinsic evaluations for distributional models into three categories, based
on word similarity, context prediction and selectional preferences re-

spectively. These are discussed separately below.
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Word 1 Word 2 Sim Word 1 Word 2 Sim
money cash o915 car automobile 100
tiger cat 73.5 cooking rice 74
doctor  nurse 70.8 carrot pepper 56
smart  stupid 58.1 hawk insect 42
five month 33.8 dog silver 18

Table 2.2: Examples of word pairs and their similarity from ws353 (left,
Finkelstein et al., 2001) and MEN (right, Bruni et al., 2014), nor-
malised to a scale from 1 to 100.

2.3.1.1  Word and phrase similarity

In the distributional literature, most intrinsic procedures attempt to
assess the quality of a distributional model by correlating its output
to human-provided word or phrase similarity annotations (Ruben-
stein and Goodenough, 1965; Miller and Charles, 1991; Finkelstein
et al., 2001; Huang et al., 2012; Luong et al., 2013; Bruni et al., 2014;
Hill et al., 2014). These evaluations are very direct in that they at-
tempt to measure if models capture what humans perceive as the
semantics of an utterance. Most datasets are at the word level, but
some present ambiguous words that can be disambiguated by con-
text — such tasks require some form of context representation, which
is a central problem in composition. Such context-dependent evalu-
ations are therefore commonly used to evaluate distributional mod-
els. Several examples of word similarity scores assigned by humans
are shown in Table 2.2.

A family of data sets explicitly focus on the similarity of relations
and ask questions such “London is to Britain as Paris is to what?
(answer: France)”. Some versions of the task offer a choice of can-
didate answers (Jurgens et al., 2012; Turney, 2012), while some are
open-ended (Mikolov et al., 2013a). The data set of Mikolov et al. also
contains a set of syntactic questions, where focus is on morpholo-
gical rather than semantic relatedness. The questions are of the form
“Kings is to king as houses it to what? (answer: house)”.

At the phrase level, several evaluation data sets are based on the
intuition that similar words or phrases are substitutable in context,
which involves both finding synonyms and disambiguating the con-
text. For instance, “bright” can be replaced by “talented” in the sen-
tence “She is a bright student” and by “well-lit” in “The room is east-
facing and is very bright in the morning” (McCarthy and Navigli,

2007). This task requires words with similar distributional representa-
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tions to be limited to synonyms and hypernyms in order to preserve
the truthfulness of the sentence. Also, unlike the word similarity data
sets discussed above, performing well at this task requires a notion of
context and therefore (likely) composition.

Mitchell and Lapata (2008) present a similar phrase-level intrinsic
evaluation data set that also requires an understanding of context.
The authors focus on intransitive verbs and their objects, and select
examples where the meaning of a polysemous verb can be disambig-
uated by its object. For instance, in the context of “fire”, “to glow” is
closer in meaning to “burn” than it is to “beam”. The opposite is the
case in the sentence “The face glows”. These requirements are quan-
tified by asking humans to provide a similarity judgement between
verbs in context. The similarity scores provided by a good composi-
tional model are expected to be strongly correlated with the human
judgements. Doing well at that task requires a grasp of composition
and the ability to compute the similarity of short phrases. The data
set was subsequently extended to transitive sentences (Grefenstette
and Sadrzadeh, 2011).

Erk and Pad¢ (2008) extract ambiguous target words and their con-
text, and aim to rank a predefined set of possible paraphrases of the
target word by appropriateness. For instance, in the sentence “By ask-
ing people who work there, I have since determined who he was.”
the best ranking of substitutes for “work” is “be employed” (4 votes),
“labour” (1 vote), “toil” (o votes) and “task” (o votes).

Kartsaklis et al. (2012) and Polajnar and Clark (2014) build datasets
of dictionary-like definitions such as “frequent = event happen many
time short time” and “coach = teacher sport”. The task is to compose
those definitions in a way that makes the correct definition of a term
more similar to the term than other definitions.

New word similarity data sets are still being published, with four
clear trends:

sIzE early data sets, e.g. (Rubenstein and Goodenough, 1965; Miller
and Charles, 1991) only contain several tens of pairs of words.
More recent work, e.g. Hill et al. (2014) and Bruni et al. (2014),
contain several thousand entries. The latter provide a more com-

prehensive test bed for distributional models.

CONTEXT In early work, human annotators saw single words out of
context, which made their tasks particularly challenging. It was

up to the subject to choose what sense of a word is intended.
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For instance, the river sense of “bank” is similar4 to “river”, but
the financial sense is not. More recent data sets, e.g. Luong et al.
(2013), show annotators an entire sentence and highlight the

target word, which provides some degree of disambiguation.

SIMILARITY VS RELATEDNESS Intrinsic data sets often contain
a mix of semantic relations, such as synonymy (“car—
automobile”), antonymy (“smart-stupid”), hypernymy
(“cat-tiger”), co-hypernymy (“hawk-insect”) and related-
ness (“cooking-rice”), which are all annotated with a high
similarity score. Hill et al. (2014) argue these qualitatively dif-
ferent relations should not be conflated. sSIMLEX999 therefore

contains only similar (and not related) words.

LONGER PHRASES Initial work was dominated by word-level data
sets, e. g. (Rubenstein and Goodenough, 1965; Miller and Charles,
1991). More recent tasks are starting to consider noun phrases,
verb phrases or entire sentences (McCarthy and Navigli, 2007;
Mitchell and Lapata, 2008; Turney, 2012). While these data sets
partly address the lack of context for the annotator, they are
still narrow in scope and coverage — the data set of Mitchell
and Lapata only contains 120 verb-object phrases. The issues
with word-similarity data sets will be discussed in more detail

in Chapter 3.1.

2.3.1.2 Context prediction

One theory as to what information phrase vectors should encode
states that “the meaning of a string is a vector representing contexts
in which that string occurs in a hypothetical infinite corpus” (Clarke,
2012). One should therefore be able to predict or infer those contexts
from the vector. In other words, a compositional model should pro-
duce phrase representations which are consistent with the represent-
ations one would have obtained directly from an infinite corpus.
Baroni and Zamparelli (2010) instantiate this idea by requiring phrase

representations derived through composition to be similar to corpus-

Under a particular interpretation of what “similar” means. The annotation
guidelines for ws353 (Finkelstein et al., 2001) do not provide a definition at all
and leave that decision to the annotator. The MEN guidelines (Bruni et al., 2014) also
do not provide an explicit definition, but suggest that holonyms (e. g. “wheels-car”)
are more similar than topically related words (e.g. “dog-race”). In Chapter 3 I will
argue that the tacit assumption that there exists a single notion of similarity, inde-
pendent of what one is trying to achieve, is one of the main shortcomings of existing
intrinsic data sets.
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observed ones. For instance, the result of composing the vectors for
“red” and “car”, r@r =f (r?gl , mf), and the observed vector for
the phrase “red car”, red_car, derived by treating all occurrences of
“red car” in a corpus as a single token, should be very similar. This
approach is attractive as it does not rely on information provided
by human annotators. However, it does not reliably scale beyond bi-
grams because of the sparsity of observed n-grams. Also, it might in-
correctly penalise over-predicted contexts, i.e. ones a compositional
model (correctly) believes are plausible for a given word or phrase,

but have never been observed in the corpus due to data sparsity.

2.3.1.3 Selectional preferences

Another approach to intrinsic evaluation is to verify that compos-
itional models learn to respect the selectional preferences of their
constituents. For instance, while the verb phrase “animal eats moun-
tain” is grammatical, mountains do not possess the “can-be-eaten”
semantic facet (Polajnar et al., 2014)>. The semantic representation of
that verb phrase should be qualitatively different to that of “animal
eats plant”.

Similarly, Vecchi and Baroni (2011) use an intrinsic evaluation based
on the notion of plausibility. The key idea is a phrase may not have
occurred in an unlabelled corpus for two reasons. First, the phrase
may be nonsensical, i. e. the head and argument may not match each
other’s selectional restrictions. An example of such a nonsensical
phrase is “residential steak” (Vecchi and Baroni, 2011). Second, the
phrase is not common enough or the corpus is too small. For example,
the phrase “blue rose” may not appear in a corpus but is it perfectly
plausible that a rose may be blue.

2.3.2 Extrinsic evaluation

Extrinsic evaluations incorporate distributional methods in a prac-
tical task and look for an improvement in performance at that task.
Authors typically view distributional models as an extra source of in-
formation that improves their model, and the focus is by and large
on performing better at the task. Often a single distributional model
with default parameter values is utilised (e.g. Berant and Liang, 2014;

Kiela and Bottou, 2014). There has been little work on comparing dif-

5 Perhaps with the exception of mountains of candy.
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ferent distributional models in terms of their ability to improve per-
formance at an external task.

Huang and Yates (2009) obtain considerably more accurate part-of-
speech taggers and chunkers by linking infrequent words to frequent
words through their distributional properties in a large unlabelled
corpus. The authors present distributional models as a smoothing
method that alleviates the sparsity problem faced by Conditional
Random Fields (Lafferty et al., 2001) trained on little data. Results
suggest that distributionally-augmented models require considerably
less training data to reach the same levels of accuracy. However, no
attempt is made to compare different ways of instantiating a distribu-
tional model.

Turian et al. (2010) improve their chunker/NER system through
word-level distributional information. The authors experiment with
a wide range of distributional models, but the differences are very
small — reported F1 scores on the test set range from 94% to 95.15%
for chunking and from 87.36% to 90.9% for NER (error bounds were
not reported). With differences that small it is difficult to meaning-
fully compare the value of different distributional models or to gain
qualitative insight into their properties. Also, all distributional mod-
els considered are word-level.

Weston et al. (2015) propose an extrinsic framework based on ques-
tion answering and cast a broad range of high-level semantic prob-
lems within it. The tasks range from basic factoid question answering
(“John is in the kitchen. Where is John?”) to induction (“Lily is a swan.
Lily is white. Greg is a swan. What colo[u]r is Greg?”). These tasks
are not necessarily directly addressable by the distributional methods
evaluated in this thesis, but they approach the problem of evaluation
of general-purpose semantic models methodically by testing different
aspects of a model within the same framework.

Milajevs et al. (2014) compare the effect of some of the paramet-
ers of distributional models on two large-scale tasks— dialogue act
tagging and paraphrase identification. The former task is concerned
with attaching a tag such as question or statement to each sentence
in a conversation. The latter is about deciding if a pair of sentences
with high lexical overlap are paraphrases or not.

Lastly, a number of authors have used composed phrase repres-
entations as input to another step in a pipeline. These models often
are designed to use additional task-specific labelled data (unlike the
models discussed in Chapter 2.2, which do not rely on labelled data).
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Socher et al. (2013b) and Hermann and Blunsom (2013) evaluate their
composers on the task of sentiment analysis. The models are trained
in a similar fashion to Socher et al. (2011), but also make use of a
dataset of phrases and sentences annotated for sentiment. A classifier
is trained to predict the sentiment a phrase expresses given its distri-
butional representation, which is learnt jointly with the parameters of
the classifier. Socher et al. (2013a) present a model that jointly learns
how to parse and to represent phrases as vectors. The common fea-
ture of those papers is that they learn a task-specific representation
that is not necessarily a general-purpose semantic model, but often

can be useful to some extent for other tasks.

2.4 DISCUSSION AND OPEN QUESTIONS

This section discusses several open questions in the distributional
semantic literature. These include: learning of vectorial representa-
tions from linguistic resources other than free text; learning multiple
context-dependent representations per word; using the same struc-
tures to model words, phrases and sentences; non-compositionality
and extra-linguistic knowledge. While this thesis does not deal with
these issues experimentally, they form an important part of the cur-
rent discourse in the area and illustrate important directions for fu-

ture research.

2.4.1 Alternative representations

DISTRIBUTED REPRESENTATIONS FErk (2012) differentiates be-
tween distributional and distributed representations. The former
refer exclusively to models relying on the distributional hypothesis
and representing words and phrases as a distribution over the con-
texts in which they may occur. In contrast, the latter is a more general
term that encompasses a range of continuous representations that do
not necessarily make use of the distributional hypothesis. One such
work is Faruqui and Dyer (2015), where a word is seen as a distribu-
tion over components of discrete lexical resources such as WordNet
(Miller, 1995) or FrameNet (Baker et al., 1998). The features of “adora-
tion” might include the binary indicators “is_synonym_of_love” and
“is_synonym_of_affair” (Faruqui and Dyer, 2015, Section 2), which
are derived from WordNet synsets. Similarly, McRae et al. (2005) rep-

resent words as a distribution over human-interpretable properties
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that relate to the real world. For instance, “airplane” has as features

/w7

“has_wings”, “is_fast” and “made_of metal”.

MULTIPLE REPRESENTATIONS  Recent distributional models also
break away from the traditional single-vector-per-word paradigm. For
instance, Socher et al. (2012) and Paperno et al. (2014) model words as
both a vector and a matrix. The vector captures the meaning of a word
when used as an argument, and the matrix when it is used as a pre-
dicate. The use of matrices and matrix-vector product “formalize[s]
argument slot saturation, operating on an argument vector represent-
ation through matrix by vector multiplication” (Paperno et al., 2014,
Section 2.1). These richer representations allow for the modelling of
the semantics of each word separately in each context and grammat-
ical function it can be used in.

In a similar vein, Reddy et al. (2011), Huang et al. (2012), Bartunov
et al. (2015) and Neelakantan et al. (2015) learn multiple vectors per
word, each corresponding to a distinct word sense in a particular con-
text. Baroni and Zamparelli (2010) assign a separate vector to each
word depending on its part-of-speech tag. This is a computationally
efficient way of achieving partial word sense disambiguation. For ex-
ample, “to bank” and “a bank” would be represented separately, but
the river and financial senses of “bank” when used as a noun are not
differentiated. I also adopt this method in Chapter 4.

2.4.2  Word, phrase and sentence space

Within the family of distributional models, the company a word keeps
is typically modelled as a vector. However, a number of other op-
tions have been proposed. Some authors argue that words that take
arguments, such as adjectives and verbs, should be represented as
higher-order tensors instead to better capture the complex interac-
tions between functions and arguments (Baroni and Zamparelli, 2010;
Socher et al., 2012; Grefenstette, 2013; Paperno et al., 2014). Others
use trees (Erk and Pad6, 2008; Weir et al., in press) or graphs (Hope,
2015).

Another open question is what the semantics of the sentence space
should be. Clarke (2012) subscribes to a “context-theoretic” view, where
the representation of a sentence is compatible with that of words and
models its possible contexts in a hypothetical infinite corpus. Kiros

et al. (2015) implicitly assume the same by building sentence vectors
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that can be used to predict surrounding sentences. In contrast, Coecke
et al. (2011, Section 4.1), Grefenstette et al. (2011, Section 2) and Clark
(2013, Section 4) present a two-dimensional truth-theoretic (plausib-
ility) space, which is spanned by TRUE and FALSE basis vectors. In
that framework, sentences are not continuous entities but true or false
(to a degree).

It is also unclear whether 1) phrases, sentences and words should
live in the same vector space, and 2) words of different types (e.g.
nouns, adjectives) should live in the same space.

Formal semanticists generally answer these question negatively. Dif-
ferent grammatical structures should not be comparable, because it is
meaningless to compare the meanings of, for example, noun and verb
phrases. Therefore, structures of different grammatical type should
not live in the same vector space in a distributional framework. How-
ever, classes of comparable structures exist. In many grammatical
formalisms structures are typed, and their types describe the kinds
of interactions these structures can participate in. For example in
category-theoretical grammar the type of a noun is N, and the type
of an attributive adjective in English is N/N, i.e. an adjective is a
function that takes a noun to the right and returns another noun-like
object. Syntactic types explicitly define classes of comparable struc-
tures. For instance, composed noun phrases and nouns are both of
type N and are therefore comparable. In distributional semantics, the
closest counterpart is the work of Baroni and Zamparelli (2010) and
Coecke et al. (2011), who model adjectives as matrices and nouns as
vectors. As a result, these two atoms are not comparable, but their
composition (a noun phrase represented as a vector) is comparable to
nouns.

However, some authors view non-comparability of grammatically
different structures as an undesirable side effect of using models
where “predicate arity is encoded in the order of the corresponding
tensor” (Paperno et al., 2014, Section 1.2). Later work by Baroni and
Zamparelli’s group takes a step towards addressing what they see as
a limitation of their 2010 model by representing each word as both
a vector and a set of matrices (Paperno et al., 2014). The motivation
for this decision is that “the same or similar items that occur in dif-
ferent syntactic contexts are assigned different semantic types with
incomparable representations” (Paperno et al., 2014, Section 1.2). The

introduction of multiple representations for each word makes it pos-
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sible to compare the meaning of a verb in transitive, intransitive and
passive uses.

A large proportion of the neural network literature, e.g. Le and
Mikolov (2014); Socher et al. (2011); Kusner et al. (2015) subscribes to
the idea that all words, phrases and sentences should live in the same
space. In practice, being able to compute the similarity between any
pair of constituents, regardless of their grammatical structure, turns
out to be beneficial. For instance, Socher et al. (2011) first compute
a vector representation for each subtree of a constituency parse of a
sentence and then use these vectors to compare every subtree from a
target sentence to every subtree in a candidate paraphrase sentence.
The model achieves state-of-the-art performance in paraphrase detec-
tion even though the word vectors it operates on can be improved
(Section 4.4.3)°.

It should be pointed out that while there are no explicit constraints
on what types of words and phrases should be comparable, in prac-
tice neural distributional models often learn a soft and implicit notion
of syntactic typing. For instance, Tables 4.16 and 4.17 show the nearest
distributional neighbours of nouns are predominantly other nouns,
and those of adjectives are mostly other adjectives, even though this
constraint is not explicitly encoded into the objective function of the
model.

This thesis argues for a compromise between the two extremes. On
one hand, imposing a hard constraint on what grammatical types of
words or phrases can be compared may result in loss of performance.
Imagine a topic classification task where one is trying to differenti-
ate between articles about war and articles about trade. Words and
phrases that identify the first topic can be of various syntactic types,
e.g. “a conflict”, “to destroy”, “destructive”, “collateral damage”, “to
fire on civilians”. Being able to compute a similarity score between
these would undoubtedly be beneficial.

However, just because one can compute the similarity of any pair
of phrases does not mean one should. In the war example above sim-

I'hypothesise this is due to the pooling layer, which performs a pairwise comparison
between all nodes in a sentence’s parse tree. Such approaches are driven by a desire
to do well at a task rather than by some underlying intuition about the nature of
language. This is indicative of a more general trend in the neural embedding literat-
ure, where little to no linguistic preprocessing is done and data quantity is favoured
over data quality. Papers in the area typically rely on having large amounts of un-
processed data as opposed to small(er) amounts of processed data. For example,
entries and features are commonly stemmed or lemmatised in the counting-based
representation literature to reduce data sparsity. In contrast, this is seldom done in
the neural embedding literature.
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ilarity scores are computed and make sense only in the context of a
task. How similar is the noun “dog” to the adjective “purple” to the
number “seven” outside of a particular context? The issue is it is un-
clear what steps one goes through to reach a conclusion. A possible
explanation is that one thinks of a “purple dog” and the plausibility
of that phrase. Another is that one considers the selectional prefer-
ences of both words and decides if they can be composed in any way.
A third option is one considers the ontological relationship between
words. For instance, “cat” is similar to “dog” as both are types of
animal, and “racket” is similar to “squash” as the competitive sport
is played with rackets. However, these intuitions do not hold when
comparing phrases of different syntactic types or at the phrase level.
It is unclear how one determines if “very” or “much faster” is similar
to “dog”.

2.4.3 Non-compositional and extra-linguistic meaning

In both formal and distributional settings, it is well-known that com-
positionality does not hold universally (Saeed, 2009). For example, in
the idiom “spill the beans” the verb “spill” takes on a new sense of
“reveal” and beans maps onto “meaning”. “Given that these senses
[...] are not readily available at the simplex level other than in the
context of this particular [multi-word expression], it seems fallacious
to talk about them composing together to form the semantics of the
idiom.” (Baldwin et al., 2003, p 1). The issue is complicated even fur-
ther by the fact that phrases can be used both literally and metaphor-
ically. While it is a less frequent use, “spill the beans” may literally
refer to slipping and dropping a can of beans on the floor.

Often the distinction between compositional and non-compositional
use is not clear cut. Phrases are typically thought of as lying in a “con-
tinuum of compositionality” (McCarthy et al., 2003). Baldwin et al.
(2003) identify three degrees of non-compositionality based on the
degree to which phrases admit syntactic variation. This view is so
widely held that a shared task was held in 2011 at CoNLL, where
phrases were annotated for degree of compositionality on a hundred-
point scale. Some examples of the data for the shared task are shown
in Table 2.3.

As Schubert (1986) points out, even though language is a system
governed by a set of intrinsic rules, it is “by no means free from

external influence”. A language is used by humans, who are embod-
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Phrase DoC Phrase DoC
reinvent wheel 5% small print  58%
raise bar 9% left hand  76%
lose sight 19% find way  91%

Table 2.3: Degree of compositionality (DoC) of several phrases from the 2011
CoNLL shared task (Biemann and Giesbrecht, 2011). The higher
the score, the more literal the meaning of the phrase is.

ied agents and experience the world through a range of senses. It is
natural that some of the language we use will refer to experiences
related to phenomena outside of language. In other words, it is likely
that a distributional model that defines meaning as use is unable to
fully model aspects of semantics that relate to our other senses. The
research community has recently started to recognise this and has
attempted to bridge language and visual (Frome et al., 2013; Bruni
et al., 2014, Kiela and Bottou, 2014; Kiros et al., 2014), olfactory (Kiela

et al.,, 2015) and auditory (Kiela and Clark, 2015) experiences.

CHAPTER SUMMARY

This chapter introduced the background material which will be re-
ferred to throughout the rest of the thesis. I reviewed existing meth-
ods for building word and phrase representations. At the word level,
I detailed two families of algorithms: counting-based, which count
feature-entry co-occurrences, re-weight them and perform dimension-
ality reduction, and neural algorithms, which define an explicit cost
function and learn vector representations that optimise it. I discussed
four types of compositional algorithms, based on pointwise vector
operations, linear regression, recursive neural networks and category
theory respectively.

I surveyed a range of methods that have been used to evaluate dis-
tributional models. The most popular types of assessments are the
so-called intrinsic ones, which typically correlate a DM’s prediction
to human-provided similarity scores. In contrast, extrinsic methods
embed DMs in an external task and assess their utility at that task.
Currently, intrinsic data sets are by far the more popular choice. In
the next chapter, I will present theoretical and empirical arguments
against intrinsic evaluation, and will introduce a novel extrinsic pro-

cedure.
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The previous chapter outlined current approaches to learning distri-
butional word representations and composing them into phrase rep-
resentations. I also discussed how distributional models (DMs) have
traditionally been evaluated. This chapter will critique existing in-
trinsic evaluations and will propose a novel extrinsic evaluation.

Section 3.1 argues that existing intrinsic evaluations are unreliable
as they make use of small gold-standard data sets and assume there
exists a single notion of similarity that is independent of a particu-
lar application. I consider four commonly used word similarity data-
sets and show empirically that inter-annotator agreement in these is
considerably lower than in extrinsic tasks. Further, three of the four
datasets fail to reliably detect the presence of random noise in word
vectors.

Section 3.3 proposes a novel extrinsic framework based on distribu-
tional feature expansion applied to document classification (DC). In
that framework, a document classifier is trained with a bag-of-phrases
representation. At test time, all document features are replaced with
their nearest neighbour according to a distributional model. Intuit-
ively, a classifier is not allowed to access the actual contents of a test
document, but can only view it through the prism of a DM. DMs that
better capture the meaning of words and phrases in the context of a
particular classification dataset provide better replacements. The ac-
curacy of the classifier when a particular DM is used provides a direct
measure of the DM’s quality. Chapters 3.4 and 3.5 show a detailed ex-
ample and discuss some aspects of the procedure that require careful
consideration.

Section 3.6 discusses alternative ways of utilising distributional
models for document classification. These present competing ways
of instantiating an evaluation through document classification.

Chapter 4 will present an evaluation of the methods for building
word representations and composing them introduced in Chapter 2
in the framework described below.
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3.1 ISSUES WITH INTRINSIC EVALUATION
3.1.1 Size of data set
One of the key issues with current intrinsic evaluation data sets is
their small size. This is a by-product of how laborious such resources
are to curate manually. Current data sets contain from 30 to 3000
word pairs (Table 3.1). Moreover, they only feature a “tidy” subset
of all naturally occurring words and phrases, free of spelling vari-
ation, domain-specific terminology and named entities. The focus is
predominantly on relatively high-frequency words.
Data set Size Unit
Miller and Charles (1991) 30 word pairs
Rubenstein and Goodenough (1965) 65 word pairs
Landauer and Dumais (1997) 80  multiple-choice questions
Finkelstein et al. (2001) 353 word pairs
Hill et al. (2014) 999 word pairs
Huang et al. (2012) 2003 word pairs
Luong et al. (2013) 2034 word pairs
Bruni et al. (2014) 3000 word pairs

Table 3.1: Sizes of popular word similarity data sets.

In contrast, typical distributional models “in the wild” have entries
for all words in an unlabelled corpus (possibly with an entry fre-
quency filter). The resulting vocabulary can be in the order of tens
of thousands of words. For instance, the 2010 copy of English Wiki-
pedia used in the next chapter contains 69K words that occur more
than 100 times. In such a large distributional model, it is not at all dif-
ficult to find an entry whose neighbours appear to be unreasonable.
Table 3.2 shows the top neighbours of several randomly selected uni-
gram entries in a worD2VEC model. Note that some of the entries
are common English words (“performer”), some are less common

s

(“pawnbroker”, “godmother”), and some appear to be proper names
(e.g. “amal”, “menuhin”, “roden”).

Intrinsic evaluation data sets do not always feature rare entries, so
the extent to which the model is sensible cannot be quantified fully.
For practical applications, users need to understand the entire DM,
not just the small fraction of it covered by an intrinsic evaluation.

An analogy to software engineering describes the issue well. Good
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quality unit tests have high coverage, i.e. they exercise all possible
paths through a program. Poor tests only cover the basic use cases

and fail to reveal corner cases which inevitably occur in practice.

Entry Neighbour 1 Neighbour 2 Neighbour 3

godmother betrothed lover spinster
performer musician artist entertainer
confiscation expropriation  forfeiture taking
amal al-amin mukhtar nasrallah
alms penitent passer-by sainthood
pawnbroker thrifty bookie yusuke
plas cupar vanden bodoni
menuhin yehudi caryl barenboim
parent mother family live-in
roden coy kempthorne orme

Table 3.2: Randomly selected entries from a distributional model and their
nearest neighbours.

3.1.2  Definition of Similarity

The notion of similarity is challenging to define precisely. The literat-
ure typically takes a what I call a “causal” definition, where reasoning
is from the world towards language. Words are seen as similar be-
cause the concepts they refer to have a relationship in the real world.
For instance, “car” and “automobile” are similar as they often de-
note the same physical object; “car” and “wheel” are similar because
real-world cars have wheels. In that frame of mind, words are inher-
ently similar or dissimilar; they can be deemed similar because they
are synonyms, antonyms, hypernyms, hyponyms, co-hyponyms, me-
ronyms, holonyms or topically related. However, with the exception
of SimLex-999 (Hill et al., 2014), none of the data sets discussed in
this thesis attempt to differentiate between similarity and relatedness,
or between different types of relatedness. In other words, intrinsic
evaluations typically assume that there exists a single gold-standard
similarity score between a pair of words or phrases. That score does
not usually reflect the reason two words are similar. As we saw in
Table 2.2, intrinsic data sets contain a mix of semantic relations such
as synonymy (“car-automobile”), antonymy (“smart-stupid”), hyper-

nymy (“cat-tiger”), co-hypernymy (“hawk-insect”) and relatedness
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(“cooking-rice”). While there has been some work attempting to dif-
ferentiate between those different types (e.g. Weeds et al., 2014a), the
problem is still largely unsolved.

In this thesis, I argue for an operational definition of similarity,
conditioned on and suited to a particular task. For example, “good
acting” and “cluttered set” are highly dissimilar in terms of the sen-
timent they express towards a theatrical play. However, they are very
similar in the context of detecting, in a multi-topic article stream,
news items related to the theatre, as both phrases are highly indic-
ative of theatre-related content. Lexemes are not inherently similar
or dissimilar, but only in the context of a particular task®. This ar-
gument parallels that of Von Luxburg et al. (2012), who argue that
“[d]epending on the use to which a clustering is to be put, the same
clustering can either be helpful or useless”. The quality of an unsu-
pervised algorithm can only be assessed with reference to a particu-
lar application. Optimising a DM’s correlation with a particular gold
standard should therefore be viewed as only one of many possible
tasks. For evaluation purposes, we require tasks which are not pre-
loaded with assumptions about what is and is not correct.

3.1.3 Relation between intrinsic performance and practical utility

To date, distributional algorithms have mostly been evaluated intrins-
ically by measuring the degree to which they agree with human-
provided word or phrase similarity scores. Such evaluations, how-
ever, do not necessarily measure how well a DM captures the kind of
information needed for practical applications. Socher et al. (2012, Sec-
tion 2.7) argue that “even with good correlation the question remains
how these models would perform on downstream NLP tasks”.

Even if one could reliably differentiate between the different types
of similarity conflated by the word similarity task, it is still hard to
come up with anything but basic intuitions as to how that informa-
tion can be effectively used in practice. For instance, a model of hyper-
nymy would probably be useful in textual entailment as “The cat ran
across the road” implies “The animal ran across the road”, but not
vice versa (Weeds et al., 2014a). Being able to differentiate between

synonyms and antonyms would probably be useful in information

The term context can be understood more generally than just language processing
tasks. It can include social context, the background knowledge a person possesses
or their sensory experiences. Humans often take context for granted because we use
language exclusively in one of those types of context.
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retrieval. A user searching for “white paint” would probably not be
interested in results for “green paint” or “white paintbrush”. How-
ever, these are only heuristics. In fact, part of the appeal of end-to-
end neural distributional models is that they learn what is needed to
solve a task without explicitly being told how to do so.

In contrast, in a framework where similarity is defined function-
ally (with respect to utility for a particular task), one does not need
design a hierarchy of relatedness types. The definition of similarity is
determined by the application domain and can be guided by labelled
data, if available.

3.1.4 Subjectivity and task difficultly

When human judges annotate word pairs for similarity, the distinc-
tions in meaning they are asked to make are often very subtle, es-
pecially in the absence of context. For instance, the similarity scores
provided by 13 annotators for the pair “tiger—cat” range from 50%
to 90% in ws353 (Finkelstein et al., 2001). This results in low inter-
annotator agreement even between native speakers. In this section I
compare the agreement score for the first 13 annotators of ws353
and the two authors of MEN (Bruni et al., 2014) to typical agreements
reported in the document classification literature. Results suggest the
word similarity task is considerably more challenging than document
labelling tasks.

Comparing inter-annotator agreement scores for word similarity
and document labelling tasks directly is not possible. Labels in the
former are on an ordinal scale, so agreement is measured using Spear-
man’s rho (p). In contrast, the labels used in the latter task are cat-
egorical; agreement is typically measured using Kohen’s kappa (k).
To circumvent this issue I convert word similarity scores to discrete
labels by placing the continuous scores into equally sized bins. For
example, the range of similarity scores in ws353 is [0,10], and
the bin boundaries are at [0,5,10] when using two bins and at
[0,3.33,6.66,10] when using three bins. The three-item continuous
labelling [2.1,5.8,7.9] is converted to [A, B, B] when using two bins
and to [A, B, C] when using three bins.

This conversion process suffers from two drawbacks. First, order
information is lost, so misplacing an item in bin A instead of in bin
B is considered as severe an error as misplacing an item from bin

A into bin F. This is less of an issue when the bin count is small.
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Second, the number of bins is a free parameter ranging between 1
(all items in the same bin) and 7 or 10 (all items in original bins)?.
k is a decreasing function of the number of bins because it becomes
harder for annotators to agree when there are a large number of bins
to choose from. In this analysis I remain agnostic as to how many
bins should be used and experiment with values between 2 and 5.

The inter-annotator agreement of ws353 and MEN (converted to
Kohen’s x) is shown in Figure 3.1. Because « is only applicable when
there are exactly two annotators, I report an average x over all pair-
wise comparisons?. A x score can be computed between each of the
91 pairs of judges, or between each judge and the mean across all
judges (as in Hill et al. (2014, Section 2.3)). These values are referred to
as “pairwise” and “to mean” respectively4. Mean agreement ranges
from k¥ = 0.21 to x = 0.625.

0.8

Kind
—a— WS353-pairwise
0.7 —=— WS353-to mean

MEN
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Figure 3.1: Inter-annotator agreement of ws353, measured in Kohen's «.
Shaded area shows the 68-th percentile. A confidence interval
is not shown for MEN as only the annotation of a single pair of
raters are available.

For comparison, Kim and Hovy (2004) report ¥ = 0.91 for a sentence-
level binary sentiment annotation task. Gamon et al. (2005) report a
pairwise k ranging from 0.7 to 0.8 for a three-way sentence-level sen-

ws353 was annotated on a 10-point scale, whereas MEN used a 7-point scale.
Averaging is only needed for ws353, which has been annotated by (at least) 13
judges. MEN only provides full annotations for two judges.

Computing agreement scores between a rater R and the mean of all annotators is
slightly disingenuous as the mean includes the annotations of R, so there is an ele-
ment of measuring agreement with oneself. This artificially inflates the agreement
score.

As a sanity check, I also compute inter-annotator agreement measured using Fisher-
corrected Spearman correlation. For ws353 agreement is p = 0.58 for the “pair-
wise” case and p = 0.74 for “to mean”, which is in line with the numbers reported
by Hill et al. (2014). For MEN that figure is p = 0.68
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timent task. McCormick et al. (2008) report x = 0.84 for a five-way
classification, where the task is to guess a patient’s smoking status
(e.g. smoker, past smoker, etc) based on a discharge summary written
by their physician. Wilson et al. (2005) report ¥ = 0.72 for a four-class
task where short expressions are annotated for sentiment. These are
up to a few words long and are shown in the context of a sentence.
Agreement rose to k = 0.84 when phrases that annotators marked
as “unsure” were removed from the data set. All these x scores are
considerably higher than those achieved by ws353 and MEN. These
results challenge the value of intrinsic data sets as a gold standard.

It is impossible to calculate agreement for a number of other classi-
fication data sets, e. g. those where users volunteer a product review
and therefore each review is only annotated by a single person. One
such example is the popular data set of Pang et al. (2002).

3.1.5 Sensitivity to Noise

A desirable property of any evaluation framework for word vectors is
that randomly generated word vectors result in random performance.
In this section I investigate if this is indeed the case for four word
similarity data sets— RG (Rubenstein and Goodenough, 1965), MC
(Miller and Charles, 1991), ws353 and MEN. A random model is
expected to achieve a correlation of p = 0 with the human-provided
intrinsic similarity scores.

A worD2VEC model is trained on either of two equally large un-
labelled corpora— all of GIGAWORD or 15% of WIKIPEDIA (Section
4.1). Uniform random noise U (—n,n) is added to all non-zero ele-
ments of all word vectors, where n ranges from 0 to 3. It should be
noted the vectors used in this section are dense, so most elements are
non-zero.

Performance at the task is measured in terms of Pearson p to the
gold standard similarities. A distributional model may contain no vec-
tor for some of the entries in an intrinsic data set. Low type coverage
is typical when small amounts of unlabelled data are used for vector
training. To account for this, I consider two different versions of this

assessment:

RELAXED out-of-vocabulary (OOV) words are ignored. This setting
may provide an unfair advantage to models trained on less data,

because their poor coverage is forgiven.
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sTRICT OOV entries are assigned a random similarity score.

The relaxed and strict evaluations only differ considerably when
very small amounts of unlabelled data are used (< 10% of WIKIPE-
D1A); this is due to coverage issues. Coverage of the intrinsic evalu-
ation corpora ranges from 50% for RG and 85% for ws353 at 1% of
WIKIPEDIA and increases rapidly to almost 100% at 15% of wiki-

PEDIA for all intrinsic datasets.
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Figure 3.2: Noise test with intrinsic evaluations (relaxed version). Shaded
region shows the 68-th percent interval centered at the mean,
estimated via bootstrapping (Chapter 4.1.4). Results for the strict
version are similar.

Results for the four data sets are shown in Figure 3.2. The two smal-
ler datasets, Mmc and RG, do not sufficiently capture the degradation
of vector quality as noise is added because p does not decrease mono-
tonically with n. The variance of the measurements is also very high.
ws353 and MEN’s performance is satisfactory, with tighter error bars
and correlation tending to zero as noise is added.

However, ws353 also exhibits undesirable behaviour upon closer
inspection. Figure 3.3 shows the mean p-value of Spearman’s p across
all bootstrap repetitions. P-values for both unlabelled data sets and all
labelled data sets increase rapidly after noise exceeds 0.8, meaning
that the correlation scores in Figure 3.2 may have been observed by
chance. The only labelled data set that performs reasonably is MEN.

These results challenge the statistical power of intrinsic data sets.
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Figure 3.3: Mean p-values across all bootstrap repetitions for Spearman’s
correlations in Figure 3.2.

3.1.5.1 Outlook

As we have seen above, intrinsic evaluations suffer from a range of
problems. Word similarity data sets assume the existence of a single
gold-standard similarity score between words, detached from a par-
ticular application. Performance at such intrinsic evaluations does not
necessarily correlate with practical utility. All four data sets above are
small in size. As a result, Mc, RG and ws353 fail to reliably detect
the presence of random noise in word vectors. More fundamentally,
the word similarity task is hard for human annotators to do reliably,
which casts doubt on the suitability of such data sets for the evalu-
ation of distributional models.

Despite this, intrinsic data sets are still the predominant paradigm
in the literature. There are few recent comparative evaluations of dis-
tributional compositional models that use extrinsic rather than in-
trinsic evaluations. This appears to be mostly for historical reasons,
as the end goal of a considerable amount of work in the 1990s was in
fact to learn thesaurus information (Lin, 1998). Intrinsic evaluations
were the first to emerge in the early days of distributional models
and have effectively become the norm®. The use of extrinsic evalu-
ation has been on the rise recently. This has been partly driven by
companies like Google and Facebook setting up research programs
in distributional semantics. The interest of those groups lies in do-
ing well at business-critical tasks. Distributional semantics therefore
became an important commercial tool rather than an academic un-

dertaking, and as a result evaluation has shifted towards task-based

In more than one talk I have attended, prominent researchers have verbally ex-
pressed the opinion that one is virtually required to include an intrinsic evaluation
of their method to get a paper accepted.
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approaches. However, this trend does not seem to affect intrinsic eval-
uation methods, which are still extremely common. To the best of my
knowledge, this thesis is the first work to openly criticise intrinsic
evaluation and present empirical evidence of its disadvantages.

3.2 INTRODUCTION TO DOCUMENT CLASSIFICATION

To address the limitations of intrinsic evaluations, I set out to design
an extrinsic evaluation framework that meets the following desid-
erata:

1. It can be easily adapted to a variety of different notions of sim-

ilarity.

2. It is agnostic to the method used to build word and phrase

representations.

3. It is sensitive to subtle differences in the quality of DMs; a ran-

dom DM results in random performance.

The main contribution of this thesis is an instantiation of such a
framework through document classification (DC). Note that improv-
ing on the state-of-the-art in DC is not an objective of this work. In-
stead, the aim is to compare different methods of building phrase rep-
resentations and their suitability for use in DC. To test my proposal I
focus exclusively on models for composing noun-noun and adjective-
noun compounds (henceforth collectively referred to as noun phrases
or NPs), and subject-verb-object compounds (verb phrases or VPs).

The rest of this section introduces the problem of document classi-
fication and outlines why the task is suitable for evaluating distribu-
tional models. I will only provide an overview of the properties that
make DC appealing for distributional models. A thorough review of
the DC literature can be found in Sebastiani (2002).

Document classification is the task of assigning text documents to
a set of predefined categories (also called classes or labels). The term
“document” is a generalisation and may be used to refer to anything
from short phrases to web pages containing thousands of words. Typ-
ical modern classification systems are statistical and supervised —
they make use of a labelled collection of documents to learn patterns
that correlate with a particular label. Some of the factors that make

DC a challenging problem in general are:
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SHORTAGE OF TRAINING DATA Many real-world DC data sets are
not sufficiently large for a classifier to reliably learn to differen-

tiate between the classes.

CONTENT DRIFT The language used to describe a category may
change over time. The performance of classifiers often degrades
with time in online-learning scenarios, often within the space of

several days.

CcLASS IMBALANCE There can be many classes in a data set, some
of which may be severely under-represented. A classifier that
performs well on the more frequent classes may fail at the less

common ones.

MULTI-LABEL CONTENT In some classification corpora a document
can belong to multiple classes. This may be because the classes
overlap semantically or because the document is large and

refers to multiple distinct topics.

Document classification possesses several key properties that make
it a good test bed for distributional semantics. These are:

VARIETY DC data sets come in a range of shapes and sizes. Differ-
ent kinds of knowledge are required to do well in each. The classes
a system is expected to distinguish can be defined by variation in
topic (Hersh et al., 1994; Lewis et al., 2004), sentiment (Pang et al.,
2002), emotion (Wicentowski and Sydes, 2012), presence of irony or
sarcasm (Gonzdlez-Ibafiez et al., 2011), relevance to a business (Lyra
et al., 2013), etc. The semantic distinctions between the classes in a
labelled dataset define a particular notion of similarity that is needed
to classify that corpus well. Therefore, a DM can be tested against

multiple types of similarity by using a different classification dataset.

BACKGROUND KNOWLEDGE  DC often requires knowledge that is
not necessarily contained in the training set. Suppose one is inter-
ested in recognising documents relevant to a particular topic, such
as “University of Sussex’s performance at the 2015 REF”. A typical
DC system requires a large amount of relevant documents in order to
correctly identify words and phrases that distinguish relevant from
irrelevant documents. In contrast, a human would be able to achieve
better performance using only a brief description of what “University
of Sussex” and “REF” are. Humans are able to transfer their exist-

ing knowledge of the world and the English language to the task at
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hand instead of learning from scratch each time. This is interesting
because DMs have recently shown promising performance in encod-
ing information about the world, such as ontological relations (Weeds
et al., 2014a), physical properties of objects (Fagarasan et al., 2015) or

factual knowledge (Gupta et al., 2015).

sizé  Unlike intrinsic data sets, it is possible to collect large and
coherent labelled document corpora with relatively little effort. An-
notating a document for topic or sentiment does not require special
linguistic training as humans can naturally identify such differences.
Often, explicit annotation is not required at all. For example, the
AMAZON corpus (Section 4.1.1) was built automatically by collecting
customer reviews that pertain to a particular product category. The
labelled document corpus is a by-product of a separate annotation
effort (creating a product ontology and matching products to categor-
ies in the ontology) and is essentially free for DC purposes. In other
cases users effectively volunteer the annotation effort by providing
a numerical rating for a product alongside their review or by post-
ing a comment in a sub-category of a web forum. For instance, the
TECHTC corpora (Davidov et al., 2004) were built by sampling mes-
sages from different sub-forums in a hierarchically organised mes-
sage board. In contrast, building even a small resource such as MEN
required a concentrated effort. Large expertly annotated resources
like the Penn Treebank (Marcus et al., 1993) took tens of person-years
of work by trained linguists.

There are, of course, some drawbacks to automated data collec-
tion procedures. The category labels assigned may be inconsistent or
noisy. Web forum communities are often not heavily moderated and
discussion of secondary issues appear frequently. For instance, users
of car forums sometimes discuss audio equipment or their music pref-
erences, which are not strictly related to cars. Also, topic boundaries
are sometimes difficult to define precisely, resulting in some disagree-
ment between annotations. Document-level annotation is not always
the most appropriate level of analysis. A film review may express
a positive sentiment towards one actor’s performance and a negat-
ive sentiment towards the musical score. In that domain a phrase or
sentence treatment may be more appropriate. This has been reflected
in recent work (Socher et al., 2013b) where fragments of sentences

are annotated instead of entire documents. This process still does not
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require expert annotators, but is significantly more laborious than

scraping web pages automatically.

3.3 PROPOSED METHOD

Traditionally, generative classifiers such as Naive Bayes classify docu-
ments based on the prior probability of the class and what has been
learned about the documents’ features’” from the labelled data. Fea-
tures are surface forms, and the link between test-time and train-time
features is based purely on these surface forms and not on their se-
mantics. In order to provide a way of evaluating DMs, I break that
direct link by making knowledge of learned features accessible only through
a DM.

In the context of this work a DM is expressed as a thesaurus, which
contains a list of the nearest distributional neighbours of each entry.
Word vectors are extracted from a large unlabelled corpus and sub-
sequently composed into phrase vectors. The thesaurus only contains
entries for NPs and VPs found in the testing section of the labelled
corpus (targets). Two constraints are placed on what can be a neigh-
bour of a target. First, neighbours are limited to those NPs, VPs, ad-
jectives, nouns and verbs that appear in the training section of the
labelled corpus. Second, neighbours may not overlap lexically with
the target, ensuring that it is not possible for a DM to succeed merely
by operating on surface forms. A thesaurus constructed in this man-
ner provides a mapping from a feature seen at test time (the target
NP or VP) to features that the classifier knows about (its neighbours).

Document classifiers are trained as usual using a bag-of-features
representation. At test time, however, every document feature is re-
placed with its k nearest neighbours from the thesaurus, where the
value of k is a free parameter. An example is provided in Section 3.4.
Classifiers are not allowed to access the actual contents of a test doc-
ument, but can only view it through the prism of a DM. Neighbours
thus act as proxies for the document feature they replace. DMs that
better capture the meaning of words and phrases in the context of a

particular classification dataset provide better replacements for target

In the DC literature, the features of a document are the words and phrases that occur
in it. A document is traditionally viewed as a distribution over these (“bag-of-words”
representation). Document features can in turn have a distributional representation,
as described in Chapter 2. The words and phrases a document feature co-occurs with
in an unlabelled corpus are its distributional features. Where there is no ambiguity
I will use the term “feature” to refer to document features.
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NPs or VPs. The accuracy of the classifier when a particular DM is
used provides a direct measure of the DM’s quality. Note the object-
ive is not to improve on the state-of-the-art in classification. Instead,
the task is used to measure the quality of the DM, focussing here on
comparing different methods of compositionally building NP and VP
representations.

In extracting the set of features contained in a document, I do not
perform any feature reweighting (e.g. TF-IDF) or selection (e.g. top-k
with Mutual Information scoring) on document vectors. However, I
discard all document features that do not have a distributional repres-
entation. Such features can neither be replaced nor be replacements
for other features and therefore do not affect the performance of the
classifier.

This evaluation framework allows a DM to be tested against mul-
tiple types of similarity by using a different classification dataset. This
is because the semantic distinctions between classes in a labelled data-
set define a particular notion of similarity that is needed to perform
well at that corpus.

The framework is also agnostic to how word and phrase representa-
tions are constructed or what these representations are, as long as the
nearest neighbours of an entry can be computed. For practical reas-
ons the rest of this thesis considers only DMs that model both words
and phrases as vectors, because their similarity can be calculated ef-
ficiently using a range of well-studied measures (Weeds, 2003). How-
ever, the evaluation framework does not impose any constraints on
how document features are represented. For instance, models where
adjectives are modelled as matrices can be evaluated within the same
framework by adapting the similarity measure. This can be done in a
number of ways, the simplest of which is to linearise matrices to vec-
tors (Baroni and Zamparelli, 2010). Similarly, models where phrases
are stored as trees can be evaluated by converting trees to vectors
(Weeds et al., 2014a).

Further, additional constraints can be trivially incorporated into the
framework. For example, Chapter 2.4.2 discussed whether the mean-
ing of words and phrases of different grammatical type should be
comparable. The models evaluated in this thesis theoretically allow
one to compute a similarity score between verb phrases and noun
phrases (although in practice these may have very different vectors
and are therefore seldom each other’s top neighbours). The frame-
work allows for explicit syntactic typing to be added in by limiting
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the potential neighbours of an entry to only those words and phrases
that match its grammatical type. The framework is agnostic as to
what grammatical formalism is used to assign types.

Lastly, the framework is can be transparent and interpretable. While
in theory the framework can be based on any classification algorithm,
in this thesis I use a Multinomial a Naive Bayes classifier (Metsis et al.,
2006). It is easy to reason why this classifier has made a particular
decision. Its class-conditional probabilities can be traced back to doc-
ument features and their replacements. There is only a single “layer”
of interaction inserted between a DM and how it affects a classifier

(the replacements).

3.4 EXAMPLE

Suppose a Naive Bayes (NB) classifier is trained to distinguish between
articles about seismology and articles about zoology, and no docu-
ment can be about both topics. For simplicity, assume these are the

only two labels that the classifier will ever encounter (i. e. it will never

be shown sports articles), and the topics do not change over time. Fur-
ther, suppose the top two documents in Table 3.3 have been provided

for training and the bottom two for testing.

Label Document

Vesuvius’s violent eruption

Seismology sends hot lava into the sky.

Zoology  Cat food is for small felines.

Reports of a violent eruption
spread around the world.

Table 3.3: An example training (top) and testing (bottom) classification cor-
pus

Documents are represented as a bag of words with adjectives, nouns
and NPs used as features at train time and NP features only at test
time. Table 3.4 shows the features extracted from the document col-
lection in Table 3.3.

During training, the classifier will learn a high value for the con-
ditional probability of violent_eruption occurring in a document
whose class is “Seismology”, because violent_eruption is a distinct
and informative document feature that is unlikely to appear often in

documents related to zoology. What would the decision of the clas-
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Label Features
Seismology {Yesuvius, erL.thion,
violent_eruption, lava, hot_lava}
Zoology {cat, fooq, cat_food, feline,
small_feline}
? {violent_eruption}

Table 3.4: Document features extracted from corpus in Table 3.3. Note only
NP features are extracted from the test corpus.

Neighbour 1 Neighbour 2 Neighbour 3

volcano hot lava food

Table 3.5: Thesaurus entry for “violent eruption”

sifier be when it is presented with the last document in Table 3.3?
In standard document classification decoding, violent_eruption is
an exact match for a known training feature and the document is
assigned the “Seismology” label.

The classification decision can be seen in two ways. In a sense, it
is logical to classify the new document as being about volcanoes be-
cause it contains a feature highly indicative of seismology. On the
other hand, no knowledge of the meaning of violent_eruption is
needed, only that it often occurs in volcano documents. As far as
the classifier is concerned, violent_eruption could as well have read
“wampimuk” — the meaning of a feature is unimportant as long as it
is correlated with one of the classes in the labelled corpus®. Of course,
this is not to say a DM truly “knows” the meaning of words, but
rather than a distributed representation can to some extent capture
that meaning.

In my framework, the distributional representation of
violent_eruption is used to build a thesaurus of words and
phrases that are similar to it (Table 3.5). This contains all train-time
features sorted by decreasing similarity. Using that thesaurus, the
violent_eruption is replaced by its nearest neighbour volcano. The
classifier is effectively told that observing violent_eruption in a
document is equivalent to encountering volcano. Because of the
small size of the training data the third neighbour is poor.

The classifier is able to make a correct decision because the

underlying thesaurus happens to contain a sensible replacement

Under this interpretation all knowledge the classifier relies must come from the
labelled data, which can be limited in size.
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for violent_eruption in the context of the particular classification
corpus. It would not have done as well if the top neighbour of
violent_eruption were feline. The observation that classifier per-
formance is sensitive to the quality of the provided thesaurus forms

the basis of my proposal.

3.5 OTHER CONSIDERATIONS

Several aspects of the framework require careful consideration. Firstly,
the main goal of this work is to provide a consistent framework
of evaluation that puts all competing methods on an equal footing.
However, the composers reviewed in Chapter 2.2 differ in the kinds
of phrases they can handle. For instance, the work of Baroni and
Zamparelli (2010) is only applicable to adjective-noun compounds,
whereas the additive model can be applied to any phrase regard-
less of grammar. To ensure a fair comparison between all composers,
I focus on their smallest common denominator. I experiment with
two grammatical types of features. Noun phrases (NPs) consist of
adjective-noun (AN) and noun-noun (NN) compounds, e.g. “large
cat” or “cat food”. Transitive sentences consist of transitive verbs and
their subject and object, e. g. “dog chases man” (Section 4.1.3). Recall
that here I refer to these as verb phrases (VPs) or subject-verb-objects
(SVOs). However, the framework is applicable to document features
of any grammatical type.

I build a thesaurus that contains an entry for each NP and VP in
a labelled classification corpus. Vector representations for these are
extracted from a large unlabelled corpus. The neighbours of an NP
entry are all adjectives, nouns and other NPs in the labelled corpus,
ranked by similarity to the entry as determined by a particular model
of composition. Similarly, the neighbours of a VP entry are nouns, ad-
jectives, verbs and other VPs. The thesaurus does not contain any
entries for nouns, adjectives or verbs. As a result, a NP or VP can be
replaced by a unigram at test time, but not vice versa. The purpose of
this is to focus on the quality of composition as opposed to the quality
of the unigram representations used, which has been studied extens-
ively (albeit largely using intrinsic evaluations) in the past. However,
the framework can be used to evaluate both word-level and phrase-
level distributional models.

Secondly, I do not allow an entry and its neighbours to have any

unigrams in common. For instance, “black cat”” cannot be a neigh-
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bour of either “small cat” or “black trousers”. This is referred to as the
“lexical overlap constraint”. The aim is to penalise pseudo-composers
that do not actually make use of distributional representations but
merely operate on surface forms, which would otherwise do very
well in my evaluation. An algorithm that generates neighbours for
an NP entry by randomly choosing other NPs that share the same
head would score well in a topical DC task as the head of an NP
is a strong indicator of its topic. Consider the task from Chapter 3.4.
Any cat would be a good replacement for “black cat” in the context
of telling animal-related documents from volcano-related ones. The
lexical overlap constraint discourages such strategies. As a side effect,
classification accuracy may suffer. However, the objective of this work
is not to improve on the state-of-the-art in document classification
but rather to provide a platform that allows researchers to compare
different methods of building NP and VP representations and their
suitability for document classification.

Replacing neighbours at test time requires one to compute the sim-
ilarity between a target entry and a set of candidate neighbours. If
the candidates are all possible phrases in a natural language the com-
putational cost of the method would be prohibitive. However, the
nature of my proposal permits certain optimisations which make my
algorithm feasible in practice. I only search for neighbours of the doc-
ument features that occur in the testing section of the labelled corpus.
Also, the pool of candidates that are ranked according to their simil-
arity to a target document feature only consists of features contained
in the training section of the labelled corpus. The results of any nearest
neighbour query are also cached to speed up retrieval.

Nearest neighbour search can be done in O(dN log N) using a KD-
tree, where d is the dimensionality of the vector representation and
N is the size of the candidate pool (Friedman et al., 1977). The use of
KD-trees is essential to being able to run the large number of experi-
ments in Chapter 4. However, they require a metric which satisfies the
triangle inequality. Widely-used measures of similarity such as cosine
distance, which have been shown to be appropriate for measuring se-
mantic similarity (Lapesa and Evert, 2014; Bullinaria and Levy, 2007),
are therefore not applicable here. Instead, I use Euclidean distance
throughout this thesis.
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3.6 RELATED WORK

The previous sections introduced a new framework for extrinsic eval-
uation of distributional models of semantics based on feature expan-
sion in document classification. Several other extrinsic methods, fo-
cusing on tasks such as part-of-speech tagging, chunking and named
entity recognition, were reviewed in Chapter 2.3.2. In this section I
will discuss extrinsic evaluations specifically looking at document
classification.

Standard document classifiers such as Naive Bayes expect a single
vector per document as input. This is at odds with distributional mod-
els, which typically output a vector per word or phrase. This section
describes several algorithms that aim to represent an entire document
as a single vector while preserving the distributional properties of its
contents. These can be viewed as alternatives to the framework de-
scribed above.

One family of algorithms do away with the idea of a single vector
per word and attempt to learn a document vector instead. These pro-
posals typically originate in the topic modelling and deep learning lit-
erature. Both fields are very active, with new papers being published
almost every week. This section will only discuss several represent-
ative algorithms — thorough and up-to-date surveys are available in
Schmidhuber (2015) and Blei (2012).

Topic models represent documents as a probability distribution
over a fixed number of latent “topics”, which in turn are distribu-
tions over words (Blei et al., 2003). Extensions have been proposed
that can induce topic hierarchies (Blei et al., 2004), incorporate ad-
ditional information into the topic distribution (McAuliffe and Blei,
2008; Andrzejewski et al., 2009; Steyvers, 2010) or allow for topics to
evolve over time (Blei and Lafferty, 2006). It is worth pointing out
that evaluation has become an important issue in the topic model-
ling community. Traditionally, topic models have been evaluated by
measuring how well a trained model fits a held-out set. However, Blei
(2012, p 83) points out that “there is no technical reason to suppose
that held-out accuracy corresponds to better organization or easier
interpretation [when topic models are used to organise, summarise,
and help users explore large corpora]”. One of the open questions
in topic modelling is therefore to “develop evaluation methods that
match how the algorithms are used” (ibid). This general argument is
one of key theses of this work.
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Le and Mikolov (2014) introduce an unsupervised method that ex-
tends worp2vEC (Mikolov et al., 2013a) by considering a context
window that spans longer pieces of text such as paragraphs or doc-
uments. Both words and paragraphs are modelled as fixed-length
dense vectors, initialised randomly. The vector representations for
several words and the paragraph they belong to are concatenated
and trained to predict the next word in the paragraph. For instance,
given the vectors for “the cat sat on the” and the vector for that para-
graph, the task is to predict the next word, e.g. “mat”. In this frame-
work, word vectors contribute local information and the paragraph
vector supplies global information. Kiros et al. (2015) present a re-
lated model, where a recursive neural network is applied sequentially
to the word vectors of each sentence. Given a sentence, the task is to
predict the preceding and following sentences in a novel. The under-
lying assumption is similar to the distributional hypothesis: sentences
that co-occur in the same book should have similar representations.

Kim (2014) presents a convolutional neural network model for sen-
tence modelling. The model is trained in a supervised fashion us-
ing pre-trained word embeddings, which can be obtained without su-
pervision. The convolutional filter is applied to a window of several
words in a sentence. The final layer is a softmax, meaning output is
a probability distribution over labels. The model allows embeddings
to be modified during training, essentially adapting them to the par-
ticular task. For instance, without task adaptation the neighbours of
“good” are “great” and “bad”, and with adaptation to a sentiment
data set they become “nice” and “decent”. This illustrates an import-
ant trend in the neural network literature — additional labelled data
can be leveraged to improve performance at specific tasks. Zhang
et al. (2015) present a similar model that does away with the notion
of a word and can be trained directly on characters. Provided with
a large labelled data set (in the order of several hundred thousand
documents), the model can achieve good performance without any
information about words or the syntactic structure of sentences.

Another family of algorithms keeps the idea of mapping each word
to a vector and seeks ways of reducing multiple word vectors to a
single document vector. My framework is one instance of such an ap-
proach. A popular method in the literature is to add or average all the
vectors of words contained in the document (Klementiev et al., 2012;
Lebret and Collobert, 2014). A variation of the same theme is to con-

catenate instead of add, but care needs to be taken to ensure the rep-
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resentation of all documents is of the same dimensionality regardless
of document length. Averaging and addition are insensitive to word
order and grammar and treat all words the same despite evidence
in the literature that function words should be treated differently to
content words (Sadrzadeh et al., 2013, 2014). However, it is probably
suitable for topic-based DC as including information about all words
in a document can characterise the topic (bag-of-words models tend
to work very well for such tasks). On the other hand, ignoring syn-
tax and grammar will inevitably fail to capture important relations in
the text such as negation. Such techniques would be expected to do
poorly at sentiment analysis.

An alternative is to model a document as a bag of vectors (Kriegel
and Schubert, 2004). The authors aim to capture different aspects of
the semantics of the object being modelled (websites, 3D objects, etc).
A training example (an entire website) contains multiple sentences
(web pages), each of which is reduced to a single vector using a stand-
ard bag of words approach. In a distributional semantic context, a
document could be represented as a bag of the distributed represent-
ations of the words it contains. The distances between each pair of
documents is computed using a sum of minimum distances measure
(Eiter and Mannila, 1997), and used in a k nearest neighbours (kNN)
classifier. The disadvantages of this strategy include its running time
(quadratic in the number of pages per site) and the fact that it is lim-
ited to kNN classification.

A recent instantiation of Kriegel and Schubert’s idea is word-mover
distance (Kusner et al., 2015). Documents are modelled as a bag-of-
words, and each word is embedded in a distributional space. The
distance between two documents is the sum of the total distance
all words in one document need to “travel” to match a word in the
other document. When the distance between each pair of documents
has been computed, a kNN classifier can be used. The algorithm is
attractive because it does not depend on a particular distributional
model, has no hyper-parameters and is interpretable. A naive imple-
mentation would be slow as it would involve computing the distance
between each pair of words in two given documents, and between
each pair of documents. Kusner et al. present a set of heuristics that
allow the number of word-to-word and document-to-document com-
parisons to be reduced significantly, resulting in up to 100x speed-ups
compared to the naive version.
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CHAPTER SUMMARY

This chapter argued that existing intrinsic evaluations are unreliable
as they make use of small gold-standard data sets and assume there
exists a single notion of similarity that is independent of a particular
application. Performance at such intrinsic evaluations does not ne-
cessarily correlate with practical utility. I demonstrated empirically
that the commonly used mc, RG and ws353 data sets fail to reliably
detect the presence of random noise in word vectors.

I showed that the word similarity task is inherently harder for hu-
man annotators than a range of document-level annotation tasks. Mo-
tivated by this result, I introduced a novel extrinsic evaluation frame-
work for distributional models based on distributional feature expan-
sion applied to document classification. In that framework, all test-
time document features are replaced with their nearest neighbour ac-
cording to a distributional model. The accuracy of the classifier when
a particular DM is used provides a direct measure of the DM’s qual-
ity.

The framework is agnostic to how word and phrase embeddings
are built; it can be used with words and phrases represented as vec-
tors, matrices or trees. Compositional algorithms that operate on any
grammatical structure can be evaluated within it.

The next chapter presents an evaluation of counting distributional
models, worD2VEC and GLOVE within my framework. I focus on

the problem of noun phrase and verb phrase composition.
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This chapter presents an evaluation of the methods for building word
representations and composing them introduced in Chapter 2 in the
framework introduced in Chapter 3. Specifically, the following ques-

tions are investigated:

* Which combination of word embedding algorithm and compos-
ition performs best for noun phrases and verb phrases?

e What is the impact of quantity and quality (domain and clean-
liness) of unlabelled data in determining the success of a distri-
butional model?

¢ Can the differences between multiple identical models trained

on similar data be used to improve performance?

¢ Would the findings of this chapter hold if the parameters of the
evaluation framework were set differently?

Results show that the determining factor in building word repres-
entations is data quality rather than quantity. In some cases only a
small amount of unlabelled data is required to reach peak perform-
ance. Neural word representation algorithms perform better than counting-
based ones regardless of what composition is used; simple additive
composition algorithms consistently outperform more sophisticated
competitors. These findings are consistent across a range of parameter
settings for the evaluation framework.

I also consider a different way of encoding documents as vectors,
which is based on vector quantization. The method achieves compar-
able accuracy with a significantly more compact document represent-
ation.

Finally, I introduce a new algorithm for improving the quality of
distributional thesauri using information from multiple identical dis-
tributional models trained on different samples of the same data set.

Code for all experiments is available at tinyurl.com/batchkarov.
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This chapter presents the results of a series of experiments, which
were designed to address the research questions above. At a high
level, the structure of an experiment is as follows. Word embeddings
are learnt using one of four algorithms from one of three unlabelled
corpora. Word vectors are composed into phrase vectors using one of
ten compositional algorithms, which are applicable to different gram-
matical structures. Word and phrase vectors then become entries in
a distributional thesaurus, which contains the nearest neighbours of
each entry. Thesauri are evaluated at one of three labelled classifica-
tion corpora using the framework introduced in Chapter 3. The rest
of this section provides more details about each of the stages outlined
above.

Distributional thesauri are built as follows. For each combination

of word embedding algorithm A, and compositional algorithm A,:

1. Extract the sets Ey;, Eyp and Eyp of all unigrams, NPs and VPs
that occur in a given labelled corpus (Section 4.1.1). Eyy only con-

tains nouns, adjectives and verbs.

2. Using an unlabelled corpus and A, obtain a vector for each uni-
gram in Ey; (Section 4.1.2).

3. Use A, to obtain a composed vector for each entry in Exp U Eyp

(Section 4.1.3).

4. Use composed vectors to build a thesaurus, whose entries are
Enp U Eyp. The neighbours of each entry are Exp U Eyp U Ey;
these are sorted by Euclidean distance to the entry. Euclidean
distance is used here instead of more popular alternatives such
as cosine distance because it is a proper metric and satisfies
the triangle inequality. It is therefore suitable for use with KD
Trees, which provide an efficient way of computing the nearest
neighbours of an entry (Section 3.5).

Each thesaurus is modified in two ways for a particular classifica-

tion experiment:

1. Thesaurus entries not contained in the testing section of the
labelled corpus are removed. These are not needed because the
thesaurus is only queried for those entries that appear in the
test set.
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2. Neighbours not contained in the training set are removed be-
cause they are not known to the classifier and therefore cannot

be used as replacements for test-time document features.

4.1.1  Labelled classification corpora

Classification experiments are carried out using three freely available
labelled corpora.

MAAS is a collection of 50K film reviews collected from IMDB, split
equally between the positive and negative classes (Maas et al., 2011).

R2 is a subset of the popular Reuters-21578 (Lewis et al., 2004). The
full data set contains 21578 news articles in 92 classes. It is common
to discard all but the 8 most frequent classes, which contain a total of
7674 documents. The distribution of documents across these 8 classes
is heavily skewed — the most frequent class accounts for 52% of all
documents. Dealing with the range of issues created by class imbal-
ance (Chawla et al., 2004) is beyond the scope of this thesis. I therefore
convert the 8-class data set to a two-class one by merging the seven
less frequent classes. Each document belongs to a single class only.
This results in a balanced data set, which is henceforth referred to as

R2. Some statistics are shown in Table 4.1.

Class Documents Tokens ANs NNs VPs
Earn 3923 202K 12K 30K 6K
Not earn 3751 376K 23K 49K 8K

Table 4.1: R2 data set statistics.

The AMAZON corpus is a newly constructed subset of the Amazon
product review data set (McAuley and Leskovec, 2013). Five product
categories (out of 33) with approximately 200K reviews each are selec-
ted. All reviews referring to the same product code are concatenated
into a single pseudo document. Documents containing less than 50
words and the longest approximately 10% of documents per category
are removed'. Some properties of the resultant data set are summar-
ised in Table 4.2.

Documents were removed to simplify the classification task and eliminate some of
the noise due to the automated nature of the collection process. Short documents
contain very few NPs and VPs and cannot be reliably classified by the system used
in this thesis. Some of the long documents were found to contain poorly stripped
HTML markup. Others were reviews for popular products, which attract spam and
general conversation that does not relate to the product.
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Class Documents Tokens ANs NNs VDPs

Automotive 28K 2M 154K 190K 18K
Beauty 20K 25M 218K 175K 21K
Patio 13K 1.7M 144K 135K 15K
Pet supplies 13K 22M 176K 149K 21K
Baby 5.8K 28M 205K 178K 21K

Table 4.2: Amazon data set statistics.

These corpora are selected because they pose different challenges
to a classifier. The classes in AMAZON and R2 are largely topic-based
and test a compositional algorithm’s ability to provide topically re-
lated neighbours. In contrast, the fine-grained propositional structure
of a document is more important than its topical content in MAAs. For
instance, in AMAZON it may be appropriate to substitute “good film”
for “bad acting” as both phrases refer to the topic of cinematography.
This substitution would not affect the decision-making process of a
classifier that has seen both of these phrases in training. In contrast,
the same substitution is likely to alter the decision of a classifier in a
sentiment classification corpus such as MmAAs.

All corpora are tokenised, sentence-segmented, lemmatised, part-
of-speech (PoS) tagged and dependency-parsed using Stanford Core-
NLP (Manning et al., 2014) and converted to lowercase. PoS tags are
converted to a coarser set (Table 4.3). English stopwords® and words
longer than 25 characters are removed. A Multinomial Naive Bayes
(McCallum and Nigam, 1998; Metsis et al., 2006) classifier3 is trained.
Documents are encoded using a bag-of-words representation with
either NP, noun and adjective features or VP, noun, adjective and
verb features at train time. At test time only NP or VP features are
extracted (Chapter 3.4). All features that are not composable by the
particular composer used in an experiment are removed. As a result,
some test documents may be left with no features. These are removed
from the test set.

4.1.2  Unigram vectors

Distributional representations for all unigrams contained in the la-

belled data are extracted from three large corpora. GIGAWORD is the

2 List of stopwords can be found at http://ir.dcs.gla.ac.uk/resources/
linguistic_utils/stop_words. Last visited 16 February 2016.
3 As implemented in sCIKIT-LEARN (Pedregosa et al., 2011)
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Coarse tag Fine-grained tags
N (noun) NN, NNS, NNP, NPS, NP
J (adjective) JJ, JIN, JJS, JIR

V (verb) VB, VBD, VBG, VBN, VBP, VBZ

Table 4.3: Fine-to-coarse part-of-speech tag mapping. Based on Petrov et al.
(2011).

AFP section of English Gigaword v4. It contains approximately 200
million tokens of news text. WIKIPEDIA is a mid-2011 copy of Eng-
lish Wikipedia, which contains approximately 1.5 billion tokens. Only
the body of each article is extracted. cwiIkI is a cleaned version of
WIKIPEDIA, provided by lateral.io%. The key intuition behind this
corpus is that Wikipedia contains a large number of automatically
generated articles, which are usually detrimental to model perform-
ance. However, these tend to attract little interest from human readers.
CWIKI therefore contains only those articles that were viewed more
than 20 times on a day in June 2015. The corpus contains 525 million
tokens.

All unlabelled corpora are pre-processed similarly to the labelled
ones. Each word is concatenated with its coarse-grained part-of-speech
tag. This provides a basic form of word sense disambiguation. For in-
stance, different vector representations will be learnt for “bank” when
used as a noun or a verb. A sample sentence from cwIkI reads as fol-
lows:

the/DET novel/N be/V also/RB release/V as/CON]J a/-
DET audiobook/N ./PUNCT

For dependency-based counting models (Chapter 2) the following
features are extracted:

NOUNs All adjectival modifiers and conjuncts for the target noun,
as well as all words for which the target noun serves as a dir-
ect object, subject, compound noun modifier or a prepositional
object.

ADJECTIVES All nouns the adjective modifies and all of its conjuncts.

VERBS all adverbial modifiers, subjects, objects and all prepositions
the verb is an object of.

Available at https://blog.lateral.io/2015/06/the-unknown-perils-of-mining-wikipedia/.
Last accessed 15 August 2015.
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The direction of each dependency relation is also recorded. For in-
stance, the noun feature “amod-DEP:romanian/]” indicates the target
noun has been the governor of an amod relation with “romanian” (had
an amod dependent). Some of the 6038 unique dependency features
of “population/N” are “dobj-HEAD:make/V” (197 times in WIKIPE-
p1A), “dobj-HEAD:have/V” (95946 times) and “amod-DEP:german/]”
(932 times). These unigram vectors are henceforth referred to as DE-
PENDENCY vectors.

For proximity counting-based models a window size of 7 words on
either side of the target unigram is used. Some of the 7460 features on
“population/N” in WIKIPEDIA are “town/N” (17324 times in WIKI-
PEDIA), “germany/N” (466) and “during/CON]J” (3220). The context
window of a word is not allowed to cross sentence boundaries. On
average across the corpus, the effective size of the window is about
5. These unigram vectors are henceforth referred to as wINDOW vec-
tors.

Only entries and features that appear more than 40 times in the
unlabelled data are kept in the model. For each entry, features that co-
occur with it less than 15 are removed for that entry, but not for other
entries. Vectors are re-weighted with PPMI and then reduced to 100
dimensions with SVD. Initial experiments suggested PPMI improves
vector quality considerably, while SVD results in minor reductions.
Despite this, SVD is used in all experiments below for practical reas-
ons — it would have been impracticable to run all of the experiments
in this chapter given the constraints of available resources and time.

In terms of neural models, I experiment with the algorithm of Miko-
lov et al. (2013a) as implemented in GENSIM (Rehtitek and Sojka,
2010). Embeddings were learnt using the skip-gram model with hier-
archical sampling, 100 dimensions, a window of size 5° and a min-
imum frequency of 50. This model will be referred to as worRD2VEC.

I use Pennington et al.’s C implementation of the GLOVE model®.
Parameters are VOCAB_MIN_COUNT=50, VECTOR_SIZE=100,
MAX_ITER=30 and WINDOW_SIZE=5.

I also use a pre-trained L2-normalised 100-dimensional version of
the embeddings proposed by Collobert and Weston (2008). These are
included with the code of Socher et al. (2011) (Section 4.1.3) and are

trained by Turian et al. (2010, Section 6) on 37 million words from

This is comparable to the effective window size for my implementation of counting
models.

Available at http://nlp.stanford.edu/projects/glove/. Last accessed 16 August
2015.
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the RCV1 newswire corpus. Throughout this thesis these vectors are
referred to as TURIAN. The embeddings are modified as follows.

The entries distributed by Socher et al. (2011) were not prepro-
cessed, so some some types are repeated. For instance, the tokens
“average”, “Average” and “averages” all have an associated vector. I
remove all punctuation tokens, then lowercase and lemmatise each
entry. Where multiple entries map to the same canonical form I select
the shortest original entry; ties are broken by giving preference to
words that are already lowercased. The lemma “average” is therefore
represented by the vector associated with the raw entry “average” (as
opposed to “Averages”). The resultant canonical entry forms do not
have an associated part-of-speech tag, which makes them incompat-
ible with the rest of the entries used in this chapter. I expand each ca-
nonical form to three PoS-tagged lemmata by appending an N, J and
V tag; all forms share the same vector representation. For example,
the canonical form “average” expands to “average/N”, “average/]”
and “average/V”, which all use the vector for the un-canonicalised
token “average”.

4.1.3 Composing unigram representations

Distributional representations for three types of phrases are built:

AN a noun phrase consisting of a noun and a single attributive ad-
jective, where an amod dependency relation (De Marneffe and
Manning, 2008) holds between the two. Noun phrases consist-
ing of multiple adjectives and a noun are treated separately, e.g.
“large black cat” is translated to “large cat” and “black cat”.
This is in line with most existing work in distributional compos-
itional semantics, where only noun phrases containing a single

adjectival modifier are considered for simplicity.

NN a noun phrase formed by two or more nouns, where a nn rela-
tions holds. These are broken down similarly to ANs.

svo/VP a transitive sentence consisting of a verb and its noun sub-
ject and object. An nsubj relation must hold between the verb
and the subject, and dobj between the verb and the object. In
a slight abuse of established terminology, I will interchange-
ably refer to such sentences as transitive verb phrases (VPs) or
subject-verb-objects (SVOs).
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I experiment with a number of compositional algorithms, which
are reviewed in detail in Section 2.2. The composers henceforth re-
ferred to as ADD and MULT implement pointwise addition and mul-
tiplication. SOCHER composes using a recursive autoencoder neural
network as introduced by Socher et al. (2011). I use Socher et al.’s
MATLAB implementation?, which is hardcoded to use TURIAN vec-
tors.

BARONTI utilises the algorithm of Baroni and Zamparelli (2010) to
learn a matrix for each modifier of a noun phrase. This approach
achieves state-of-the-art performance at NP composition when evalu-
ated intrinsically (Grefenstette et al., 2013). Matrices for both adjective

and noun modifiers are learnt as follows:

1. Construct a space containing the corpus-observed count vectors
for up to 200K most frequent nouns, 200K most frequent verbs
and 100K most frequent adjectives.

2. Reduce space to 100 dimensions using Singular Value Decom-
position. The number of dimensions is chosen such that the

model is compatible with the pre-trained TURIAN vectors.

3. Construct corpus-observed vectors for all NPs that appear at
least 50 times in the unlabelled corpus. Observed window vec-
tors for NPs are built similarly to these for unigrams.

4. Apply the SVD transformation learnt in Step 2 to all NP vectors
collected in Step 3.

5. Select all adjective and noun modifiers that appear at least once
in the labelled corpus and in at least 50 NPs in the unlabelled

corpus.

6. Learn a matrix® for each of the selected modifiers using the
selected NPs as training data.

GUEVARA (Guevara, 2010) is trained similarly to BARONTI, except a
single matrix is learnt for all adjectival and noun modifiers instead of
one per modifier.

COPYSUBJ, COPYOBJ, FADD and FMULT are the copy-subject, copy-
object, Frobenius Addition and Frobenius Multiplication category-
theoretical model from Section 2.2.4.

7 Available at http://tinyurl.com/socher2011. Last accessed 16 August 2015.
8 Using https://github.com/composes-toolkit/dissect with default settings.
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Additionally, six non-compositional baselines are used. RANDV as-
signs a random vector to each document feature. RANDN does not
assign a vector to phrases, but returns randomly selected train-time
features for each test-time feature. LEFT and RIGHT represent a noun
phrase with the vector of its leftmost and rightmost constituent re-
spectively (only applicable to NP composition). OBSERVED uses the
corpus-derived observed vector for an NP or VP. vErRB models a VP
using the vectors of its head. BOF is the traditional bag-of-features
model, where the features are NPs, VPs and unigrams at training
time and only NPs and VPs at test time.

Statistics about the sizes of various thesauri are shown in Table 4.4.

CHOICE OF COMPOSER In this chapter the choice of which com-
poser to apply to which word vectors is driven by both theoretical
and practical considerations. The ADD, MULT, LEFT and RIGHT com-
posers are henceforth referred to as “core” algorithms because they
can be applied to any grammatical structure and any unigram vec-
tors, regardless of how they were constructed. In contrast, cory-
OBJ, FADD and FMULT are only applicable to verb phrases and BAR-
ONI and GUEVARA are only applicable to noun phrases. BARONT,
GUEVARA and OBSERVED require corpus-attested (observed) vectors
for phrases to be extracted, which is easily done for count window
vectors and can in principle be done for worD2VEC and GLOVE.
SOCHER can only be applied to TURIAN embeddings as the code
needed to re-train SOCHER on a different set of word embeddings is
not publicly available.
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UNI NPs VPs UNI NPs VPs
Add o0.22 513 0.92 Add 0.69 7.85 1.28
Left o0.22 6.75 1.11 Left 069 8.47 1.34
Gue o0.22 3513 - Gue 0.69 7.85 -
Bar o0.22 1.12 - Bar 0.69 3.99 -
Obs o0.22 045 o0.01 Obs 0.69 156 0.01
Verb o0.22 - 137 Verb 0.69 - 141
CopyObj 069 - 098
(a) GiGAWORD windows (b) WIKIPEDIA windows
UNI NPs VPs UNI NPs VPs
Add 0.28 5.77 1.01 Add 0.82 8.13 1.30
Left 0.28 7.18 - Left 0.82 8.64 -
Right 0.28 7.65 - Right 0.82 8.95 -
Verb 0.28 - 1.38 Verb 0.82 - 1.39
CopyObj  0.28 - 060 CopyObj o0.82 - 1.00
() GIGAWORD WORD2VEC (d) WIKIPEDIA WORD2VEC
UNI NPs VPs UNI NPs VPs
Add 082 8.08 1.30 Add 032 5.80 0.99
Left o0.82 8.62 - Left o032 724 -
Right 0.82 892 - Right o032 764 -
Verb  0.82 - 1.40 Verb  0.32 - 1.36
Socher 0.32 4.92 0.82
(e) WIKIPEDIA GLOVE (f) TURIAN

Table 4.4: Number of document features that appear in any of the labelled

corpora and are also present in a particular DM. All figures are
divided by 10° for brevity. UNI, NPs and VPs stand for unigrams
(adjective, nouns and verbs), noun phrases (ANs and NNs) and
verb phrases (S5VOs) respectively. The maximum value in the UNI,
NPs and VPs column is 2.5, 9.53 and 1.43, for a total of 13.46
or 1.346M document features (adjectives, nouns, verbs, NPs and
VPs) across all labelled corpora. These can be used to calculate
percentage coverage. For example, TURIAN vectors with SOCHER
composition cover 4.92/9.53 = 51.6% of all NPs in the labelled
corpora. MULT is omitted as it has the same coverage as ADD.
COPYSUBJ, FADD and FMULT have the same coverage as cory-
OBJ.
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4.1.4 Measuring classifier performance

The performance of document classifiers is measured here in terms of
accuracy. Confidence intervals are estimated via bootstrapping (Efron
and Tibshirani, 1994, Chapter 13) as follows.

The labelled document collection is split randomly into a training
(80%) and evaluation (20%) section. The choice of a training and test
set is random, but it is kept the same throughout all experiments. A
classifier is trained (on the former) and evaluated (on the latter) once.
Its predictions for each document in the test set are recorded along
with gold standard labels. The predictions are resampled 500 times
with replacement, each time calculating an accuracy score. I report the
mean and 68% interval centered on the mean of the 500 accuracies.

An example of bootstrap estimation of confidence interval is shown
in Table 4.5. A model is trained and subsequently evaluated once on
a collection of 10 data points. The gold standard for the test set is
1111100000 and the predictions of the model are 0111100001, for an
accuracy of 0.8. Each time, a new sample of 10 items is selected with
replacement from the original test set (second column) and an accur-
acy score is computed for the sample (last column). The accuracies
are averaged over all samples. The distribution of bootstrap scores is
shown in Figure 4.1.

# Selected indices Accuracy

1 4632929578 0.7

2 3649189495 0.5

3 4012543459 0.6

4 0115285738 1.0

5 3406459291 0.6
10000 6759915579 0.7

Mean over 1000 samples 0.795

Table 4.5: Bootstrap estimation of model accuracy.

Confidence intervals are commonly estimated via bootstrapping
when evaluating systems with a fixed test set (Tjong Kim Sang and
De Meulder, 2003). This is because 1) it allows different systems to
be compared fairly as potential differences due to how the data is
partitioned are eliminated, and 2) other techniques such as k-fold

cross-validation can be computationally expensive. In my framework,
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I 1

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

Figure 4.1: Distribution of accuracy scores for a system, estimated via boot-
strap resampling. The solid black line denotes mean accuracy
over 50000 samples, which is .798. The dashed lines denote the
95% confidence interval, which is calculated by taking the 2.5-th
and 97.5-th percentile of the empirical distribution and spans the
range 0.5-1. The interval is so broad because of the small size of
the data set (only 10 data points).

a nearest-neighbour query is performed for each document feature in
the test set. Even with a KD tree, this process can be slow for high-
dimensional DMs or ones with many entries?. Bootstrapping reduces
the number of nearest neighbour queries and significantly improves

running time.

4.1.5 Significance testing

Significance tests are carried out via a randomised hypothesis testing
procedure, also known as a permutation test (Efron and Tibshirani,
1994, Chapter 15). This approach is preferred over other methods,
such as t-test or overlap in confidence intervals, because it is non-
parametric and has good theoretical guarantees.

Given two models M4 and M3, their predictions a and b and the
corresponding gold standard labels G4 and Gg, the null hypothesis
is that M, is not significantly different to Mp. If |a| denotes the size
of a, we require that |a| = |Ga| and |b| = |Gg|, but it is possible
that |a| # |b|. Recall that test-time documents with no features in a

For an 80-20 split of AMAZON an average of 1.4M queries are performed over a
pool of 200K-500K candidate neighbours. A single classification experiment takes
between several tens of minutes and a day. MAAs and R2 are significantly faster.
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4.1 EXPERIMENT DETAILS

particular distributional model are removed. Therefore, M4 and Mp
may be able to classify a different number of documents at test time.

Denote the difference in accuracy between Mp and M4 as A. The
aim is to test if A is statistically significant, i.e. if a value of the test
statistic as large as A could have been observed by chance. The al-
gorithm is best illustrated with an example. Suppose we are given
a test set of 4 documents, divided equally between two classes, and
that M4 and Mp can classify 4 and 3 of those documents respectively
(Table 4.6). The point estimates for the accuracies of the two systems
are 2/4 = 0.5 and 2/3 ~ 0.66 respectively, and A ~ 0.16. To perform
a significance test, both predictions and gold standard labels are con-
catenated (Table 4.6a). The rows of the resultant matrix are shuffled,
but the first column is always reset to its original state (Table 4.6b).
After shuffling, the accuracy of M4 and Mp is .75 and 0.33 respect-
ively. The value A = —0.42 is recorded and the data are shuffled again
(Table 4.6¢). Accuracies are now 0.5 and 0.66 and A = 0.16. When the
shuffling is repeated many times, typically in the order of hundreds
or thousands, the proportion of time where A decreased (compared
to the original value of 0.16) after shuffling is the p-value of the test.
When calculating the ratio, a smoothing factor of 1 is traditionally ad-
ded to the enumerator and denominator. In our example, A decreased
once and did not decrease once, so p = (1+1)/(1+2) ~ 0.66. There
is therefore insufficient evidence to reject the null hypothesis that Mp
is as good as M 4.

M G P M G P M G P
My o 1 My o o My, o 1
My o o My 1 o0 My, o o
My, 1 o My o o My, o o
My 1 1 My 1 1 My o 1
Mg o o Mg o 1 Mp 1 1
Mg o 1 Mg o 1 Mg 1 1
Mg 1 1 Mg 1 1 Mg 1 o

(a) System output (b) Permutation 1 (c) Permutation 2

Table 4.6: An illustration of randomised significance testing. M stands for
Method name and is used to identify the two methods being com-
pared. G is the Gold standard label for each of the documents,
i.e. the concatenation of G4 and Gg. P is the Prediction of each
system, i. e. the concatenation of 2 and b.
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4.2 NON-DISTRIBUTIONAL CLASSIFICATION RESULTS

The intuition behind randomised significance testing is simple. Sup-
posing Mg is genuinely better than M4, when a and b are shuffled
M3 would exchange some of its correct predictions for M4’s incorrect
predictions. The accuracy of Mp would decrease and the accuracy of
M4 would increase, resulting in a reduction in A. The larger the ori-
ginal difference, the higher the probability that the difference would
be reduced. Conversely, if M4 and Mp are not significantly differ-
ent, the shuffling would exchange M4’s predictions for approxim-
ately equally good predictions. The accuracies of M4 and Mg would
not change considerably, and A would increase or decrease with an
equal probability.

A NOTE ON TERMINOLOGY The term “significant” is used fre-
quently in the remainder of this chapter in the sense of “statistical
significance”. It refers to a difference between two models that is too
large to have been observed by chance. For instance, a model with
a mean accuracy of 0.72 &£ 0.0001 is significantly better than a model
that scores 0.71 £ 0.0001. However, while the difference may not be
due to chance, it is not large enough to be scientifically significant. Al-
though it may be statistically significant, an improvement of 0.01 is
too small to be of practical importance. In addition, I shall use the
term “considerable” to refer to cases where the difference subjectively
appears to be large, but I do not wish to make a statement about stat-

istical significance.

4.2 NON-DISTRIBUTIONAL CLASSIFICATION RESULTS

Table 4.7 shows the performance of several classifiers that do not
make use of distributional information, namely the BoOF, RANDN and
RANDV models described in Section 4.1.3. These should be viewed as
a strong baseline against which classifiers backed by a distributional
model can be compared.

Both random baselines achieve similar scores (Table 4.7). These are
indicative of the class balance in the data sets — R2 and MAAs are
balanced, whereas AMAZON is skewed in favour of Automotive and
Beauty product reviews. Comparing the three AMAZON experiments,
a reasonably high accuracy can be obtained with only NPs as features.
Adding unigrams at test time results in a moderate improvement.
However, using VPs instead of NPs results in a considerable reduc-

tion in accuracy. This is likely due to the sparsity of verb phrases
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Corpus Test features BOF RANDV RANDN

R2 NP 0.928  0.502 0.502
Maas NP 0.72 0.49 0.48
Amazon NP 0.845 0.218 0.218

Amazon J+N+NP 0.897  0.218 0.218
Amazon J+N+V+VP o0.732  0.218 0.218

Table 4.7: Accuracy of non-distributional classifiers. Bootstrap confidence in-
terval is less than < 0.02 around the mean, typically in the order
of 0.01.

(recall they are trigrams). Note that the performance of these models
is lower than published results (Maas et al., 2011) due to my use of a
fairly simple classification pipeline with no feature selection, feature
reweighting or dimensionality reduction and only a small subset of
all unigrams and bigrams as features at test time.

4.3 TASK VERIFICATION

One of the core requirements towards an evaluation framework is
that random vectors should result in random performance. Section
3.1.5 demonstrated only two of the four word similarity data sets
satisfy this requirement. This section answers the following research
question:

Is the extrinsic framework presented in Chapter 3 sensit-
ive to the quality of word vectors?

The evaluation is done as follows. Similarly to Section 3.1.5, uni-
form random noise U(—n,n) is added to all elements of all NP vec-
tors, where 7 is a free parameter. For the purposes of this example,
a WORD2VEC model with ADD composition trained on GIGAWORD
is used. The model is evaluated on the AMAZON corpus with noun,
adjective and NP features at train time and NP features only at test
time. Results are shown in Figure 4.2. The x axis corresponds to the
value of the parameter n. The black horizontal line is the RANDV
baseline. Performance degrades considerably as more noise is added.
There is a significant (p < 0.01) difference between each pair of adja-
cent data points in the graph with the exception of the very first pair
(noise levels 0 and 0.2). These results show the classification frame-
work meets the requirement above and can reliably detect degrada-
tion in vector quality.
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0.55
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Accuracy
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Noise

Figure 4.2: Effect of adding noise to vectors. Shaded area shows the 68%
confidence interval.

4.4 NOUN PHRASE EXPERIMENTS

This section compares different word embeddings and compositional
algorithms. I investigate how models of composition should be in-
stantiated in the context of document classification. Here the focus is
exclusively on noun phrases; verb phrases are considered in Section
4.5. All reported results are on the AMAZON labelled corpus (Section
4.1.1) unless stated otherwise. The reasons for this will become clear
in Section 4.4.2.

Note that even though this thesis focuses on models of composi-
tion, a lot of the discussion in this section is about word-level models.
This is because word embeddings are an essential component of any
compositional system. Also, the evaluation framework presented in
Chapter 3 can be use to evaluate both word-level and phrase-level

distributional models.

4.4.1 Embedding and composition algorithm

This section attempts to answer the following question:

Which combination of word embeddings and NP compos-
ition algorithm performs best for the AMAzON and Rr2

topical corpora?
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Figure 4.3 shows the performance of the four core compositional al-
gorithms when applied to WORD2VEC, GLOVE and counting unigram
embeddings trained on wikirEpIA. Counting models are not signi-
ficantly different to GLOVE in terms of classifier accuracy when LEFT
or RIGHT composition is used. However, window models perform
significantly better than GLOVE with MULT composition. The oppos-
ite is true for ADD composition. This suggests the quality of the uni-
gram vectors produced by both models is comparable, but GLOVE is
more amenable to additive than to multiplicative composition.

Window vectors are marginally but significantly better than de-
pendency ones, except in the case of MULT composition. I hypothes-
ise this is because dependency embeddings are sparser in general,
but also due to my use of only a subset of all dependency relations
of an entry.

WORD2VEC consistently and significantly outperforms GLoVE. This
contradicts the results of Baroni et al. (2014), who found the two mod-
els to be comparable in a range of word similarity tasks. I am unable
to offer an explanation for this result.

ADD composition outperforms MULT, and both are considerably
better than LEFT and RIGHT regardless of what unigram embeddings
are used. This is a general trend in all experiments in this chapter.
One possible explanation is that LEFT and RIGHT are inferior as they
discard half of the available distributional information. There is a pos-
sibility that MULT reverses the sign of elements of word embeddings,

which sends composed vectors far away in semantic space from their

constituents. For instance, if blaclt = [-1,-2], c_az>f = [-.1,—1] and
% —_—

democracy = [1,0.5], then black_cat = [-1,-2] ® [-.1,—-1] = [1,2],
which is closer to democracy than to either black or cat. The question

of why GLOVE embeddings are less suitable for multiplicative com-
position than woRD2VEC requires further investigation.

Table 4.8 shows the performance of all compositional algorithms
applicable to window word vectors. Again, ADD and MULT are the
top performers, closely followed by GUEVARA. BARONI performs
poorly and is not significantly different from a random baseline. I
hypothesise this is due to the interaction between the task setup and
BARONI’s poor coverage. Recall when replacing document features
with their distributional neighbours at test time, only those features
for which a vector can be derived by a particular model of composi-
tion are considered. Some documents may be left with very few fea-

tures, or only with features which are uninformative to a classifier.
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Figure 4.3: WORD2VEC Vs GLOVE vs counting models trained on wiki-
PEDIA and evaluated at AMAZON. Black horizontal line is the
RANDN baseline. Error bars span the 68% confidence interval.

This in turn results in low classification accuracy, even if the replace-
ments subjectively appear appropriate. The task therefore penalises
composers with poor coverage. BARONI can provide vectors for a
small subset of all NPs contained in the labelled data because of its
reliance on observed phrase vectors for training. With a threshold of
50 observed NP vectors per modifier only 2788 modifier matrices can
be learnt from WIKIPEDIA, which means BARONI can compose less
than 29% of all document features contained in the labelled corpora.
For GIGAWORD these figures are 456 and 9% respectively. The cov-
erage of other composers such as ADD is as much as 6 times higher
(Table 4.4).

Composer Accuracy Composer Accuracy
Add 0.44+0.01 Right 0.311+0.01
Mult 0.41£0.01 Observed 0.28+0.01

Guevara 0.39%0.01 Baroni 0.23%£0.01
Left 0.311+0.01 RandN  0.2240.01

Table 4.8: Window vectors with various composers. Each composer is sig-
nificantly better than the one following it in the table, with the
exception of 1) LEFT and RIGHT, and 2) BARONTI and the random
baseline. Throughout the rest of this chapter, £ denotes the range
of the (bootstrapped) empirical distribution of the mean. For ex-
ample, 0.31 & 0.01 means accuracy ranges from 0.3 to 0.32 with an
average of 0.31.
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Does model coverage relate to accuracy?

To empirically test the hypothesis that low coverage negatively cor-
relates with classifier accuracy, a series of experiments are conducted
where the coverage of a model X is “reduced to” that of another
model Y. A vector for a phrase is successfully returned by X only if
one would have been returned by Y'°. This is implemented by train-
ing X as usual and removing all vectors that do not occur in Y. Cover-
age reduction eliminates the advantage of a DM, which may be due
to better coverage, and isolates the effect of vector quality. Figure 4.4a
shows the accuracy of the four core composers when their coverage
is reduced to that of BARONI (trained on the same corpus). Accur-
acy decreases considerably for three out of the four composers, but
not as far as BARONI's original accuracy of 0.23. This suggests the
poor accuracy of BARONI can only partially be attributed to coverage
issues.

Conversely, the differences between worD2VEC and count win-
dow vectors in Figure 4.3 cannot be explained by coverage as the two
thesauri contain a comparable number of entries (Table 4.4). The res-
ults of reducing woRD2VEC’s coverage to that of count windows is
shown in Figure 4.4b. As expected, none of the differences are signi-

ficant.

4.4.2  Domain and size of unlabelled corpus

This section investigates the following question:

How is classification accuracy affected by qualitative and
quantitative differences in the unlabelled data used to con-

struct word embeddings?

I compare three worD2VEC models with identical parameter set-
tings, trained on 1) the entire GIGAWORD corpus, 2) 15% of WIKI-
PEDIA, which contains approximately the same number of tokens as
GIGAWORD, and 3) the entire WIKIPEDIA corpus. WIKIPEDIA-based
DMs perform considerably better than GiGAwoRrD-based DMs across
the board (Figure 4.5). Using a different corpus of equivalent size can
have a comparable or larger effect to increasing the amount of un-
labelled data sixfold (from 15% to 100% of wIkiPEDIA). Following

Note that reducing coverage in this way has no effect if the vocabulary of Y is a
superset of the vocabulary of X.
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(a) Core composers reduced to coverage of BARONI. Count windows vectors
trained on WIKIPEDIA.
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(b) Core composers using WORD2VEC embeddings reduced to coverage of core

composers using count windows.

Figure 4.4: Reduced coverage results. In both sub-figures, the left and right
bar correspond to accuracy before and after coverage is reduced
respectively. Significant differences (p < 0.01) are marked with
an asterisk. The black horizontal line is the RANDV baseline.

Pennington et al. (2014), who observe similar differences in perform-
ance between WIKIPEDIA and GIGAWORD, a plausible explanation is
that WIKIPEDIA captures a broader range of topics than GIGAWORD,
thus providing better coverage of the diverse range of topics in the
AMAZON data.

However, GIGAWORD consistently outperforms WIKIPEDIA across
all word embedding algorithms at the R2 corpus (Table 4.9). I hypo-
thesise this is because both GIGAWORD and Rr2 are newswire corpora
so the learnt word representations result in more appropriate replace-
ments for this particular classification task. GLOVE and dependency
window vectors are comparable, and both are worse than worRD2VEC
and count window vectors.

However, the confidence intervals at R2 are considerably larger

than they are at AMAzoN. This is because the data set is smaller,
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Figure 4.5: Gigaword vs Wikipedia as unlabelled corpus

and so is the train-time vocabulary. This has the potential to reduce
accuracy. At test time, a distributional model may only have a lim-
ited set of replacements to choose from. The list of candidate replace-
ments for a test-time feature can be empty, or it can contain only poor
neighbours (in the context of that particular classification task). The
smaller the set of candidates is, the higher the odds it contains no
good neighbours and the more sensitive accuracy is to the training-
time vocabulary. This causes accuracy to vary considerably when the
labelled data set is small, so it is harder to find significant differences
between DMs. For this reason most of the results reported in this
chapter are on the AMAZON corpus, which is large enough to ensure

accuracy does not vary much.

Embeddings  Unlabelled  Accuracy
WORD2VEC  GIGAWORD 0.741%£0.029
WORD2VEC  WIKIPEDIA 0.68010.032
WORD2VEC CWIKI 0.648+0.034
Windows GIGAWORD 0.7197£0.032
Windows WIKIPEDIA 0.669+0.037
Dependencies GIGAWORD 0.64110.035
Dependencies WIKIPEDIA 0.6141+0.036
GLOVE WIKIPEDIA 0.618+0.027

Table 4.9: Performance at rR2. Selected combinations of word embedding al-

gorithm and unlabelled corpus; ADD composer.
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Learning curves

This section seeks to better understand the behaviour of DMs when
adding more unlabelled data.

I train WORD2VEC on increasingly larger subsets of WIKIPEDIA.
Results are shown in Figure 4.6. The performance of all compositional
algorithms improves as extra unlabelled data is added, though gains
diminish quickly after around 600M tokens (about 40% of Wikipedia).
This is a modest amount of data compared to the tens of billions of
tokens sometimes used to train DMs of this kind (Pennington et al.,
2014). This result appears to contrast with the general finding that
more data consistently improves embedding quality. Also, vectors
trained on cwik1 perform considerably better than ones trained on
plain wikIPEDIA, highlighting the importance of good-quality unla-
belled data.

0.55

0.50

wiki-Add

- cwiki-Add

- wiki-Left

e wiki-Mult

wiki-Right
—— RandV

1N
NS
o

Accuracy

0.20

0.2 0.4 0.6 0.8 1.0 1.2 14
Tokens 1e9

Figure 4.6: worRD2VEC learning curve when trained on WIKIPEDIA and
cwiIkI. The minimum value on the x axis is 1.5M tokens. The
shaded region represents the 68% confidence interval around the
mean. The black horizontal line is the RANDV baseline.

The general shape of the learning curves can be explained by con-
sidering two distinct events that occur simultaneously as more unla-
belled data is added to a partly trained model:

VECTORS FOR NEW TYPES Type coverage improves as new word types
are encountered and embeddings are learnt for them.

BETTER VECTORS FOR KNOWN TYPES More occurrences of types that

were in the model initially are encountered.
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I hypothesise the initial performance gains in Figure 4.6 are due to
the DM acquiring coverage of the target domain, and subsequent im-
provements are due to improved embedding quality arising from the

availability of more training data.

Relative contribution of quantity and domain of unlabelled data

This section investigates the relative contribution of quantity and do-
main of unlabelled data. This can be measured empirically by isolat-
ing the influence of new types entering the system. The experiment
is designed as follows. Starting with a DM trained on the first N% of
WIKIPEDIA, remove from the model all vectors for words that do not
occur in the first M < N% of WikIPEDIA (reduce the coverage of the
former to the coverage of the latter, as in Section 4.4). The vocabulary
of the former is strictly a superset of the vocabulary of the latter.

Results are shown in Figure 4.7. The x axis corresponds to the value
of N, or the percentage of WIKIPEDIA used to train worD2VEC. Each
coloured curve corresponds to a different value of N. The top curve,
labelled M = 100% in the figure, corresponds to not placing any
constraints on the vocabulary of the DM (the same curve is labelled
wiki-Add in Figure 4.6).

Only a modest reduction in accuracy is observed between M =
100% and M = 10%. However, the difference between M = 100% and
M = 1% is considerably larger. This confirms the hypothesis that the
large initial gains in accuracy are due to improvements in the model
as vectors for new types are learnt, and subsequent modest improve-
ments are due to better signal for existing types. In other words, a
certain critical amount of unlabelled data is needed in order to reach
reasonable performance, and after that point returns diminish quickly.

I will refer to that amount as “critical threshold”.

Understanding the critical threshold

The critical threshold is a property of the unlabelled corpus used
to train distributional models, but also of the labelled corpus the
model is applied to. It is not a hard-and-fast boundary, but rather a
measure of how much of the unlabelled corpus needs to be ingested
before classification accuracy stops improving. For the WIKIPEDIA-
AMAZON corpus combination, the critical threshold is at about 200M
tokens (Figure 4.6). As we saw earlier, this value is closely related

to type coverage. The relationship between tokens ingested and type
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Figure 4.7: Learning curve with reduced coverage (WORD2VEC, ADD com-
position).

coverage is shown in Figure 4.8. The x axis corresponds to the num-
ber of WIKIPEDIA tokens used for training, and the y axis shows the
number of adjective, noun, verb and NP types which are covered by
the DM. The number of AN and NN types only includes those NPs
which are contained in AMAZON. The number of noun types tends
to grow linearly with the number of tokens, while the number of
new adjective and verb types grows sub-linearly. The number of NPs
covered by the DM grows rapidly until x = 200M, after which point
it levels off.

Qualitatively, the new types entering the system before the threshold
is exceeded are a mixture of different parts of speech and are what
one might consider the core vocabulary of English. The majority of
new entries after the critical threshold are proper nouns, which is
understandable given the encyclopaedic nature of wikiPEDIA. How-
ever, these do not necessarily occur in the labelled corpus. The num-
ber of composable NPs therefore grows slowly, which causes the

small improvements in classification accuracy seen in Figure 4.6.

4.4.3 Turian vectors

This section answers the following research question:
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Figure 4.8: Type coverage of WORD2VEC as a function of number of tokens
(from WIKIPEDIA) used for training.

Which NP composition algorithm performs best for TURIAN
word embeddings?

TURIAN Vvectors are considered separately from count, GLOVE and
WORD2VEC because they were built using a different labelled cor-
pus, and should therefore not be compared directly to other models
investigated in this chapter.

Empirical results are shown in Table 4.10. All compositional al-
gorithms perform only marginally better than a random baseline.
LEFT and RIGHT are not significantly better than random (p = 0.04

and p = 0.5 respectively).

Composer Accuracy Composer Accuracy
Add* 0.24+0.01 Left 0.23%0.01
Mult* 0.24+o0.01 Right 0.221+0.01

Socher*  0.24+o0.01 RandN  o0.22+0.01

Table 4.10: Accuracy of TURIAN embeddings. An asterisk indicates a model
is significantly better than the random baseline.

Given that TURIAN word vectors with SOoCHER composition achieved
a state-of-the-art result at the Microsoft Research Paraphrase task
(Socher et al., 2011), the question arises as to why they perform poorly
in this evaluation. There are several possible explanations for this.
First, the type coverage of TURIAN vectors is relatively lower com-

pared to WORD2VEC or GLOVE. Because of the computational cost
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associated with training the embeddings' there are only 50K word
embeddings available. After lowercasing and lemmatisation only 33K
word embeddings are left, some of which are for non-content words
such as “which” and “to”. The total number of nouns, verbs and ad-
jectives is approximately 23K, 6K and 2K respectively. Overall, SOCHER
is able to compose 801K of all document features contained in the la-
belled corpora, compared to over 1.3M for ADD or MULT composition
over count vectors (Table 4.4).

Second, TURIAN vectors were trained on an unlabelled corpus
which is an order of magnitude smaller than GIGAWORD, WIKIPEDIA
and CWIKI. WORD2VEC models trained on tens of millions of tokens
of unlabelled text (as opposed to hundreds of millions) also perform
poorly (Figure 4.6). Assuming the performance of TURIAN improves
similarly to that of worD2VEC, one would expect the model to be-
come significantly better with more data. However, training TURIAN
embeddings on hundreds of millions of tokens would be computa-
tionally prohibitive.

Third, TURIAN’s unigram embeddings subjectively appear to be
of lower quality compared to worD2VEC. Tables 4.11 and 4.12 show
the nearest neighbours of 12 randomly selected unigram entries pro-
duced by TURIAN and a wWORD2VEC model trained on 15% of Wiki-
PEDIA. While it seems to mix neighbours of different parts of speech
(c.f. “torrential”), it returns more appropriate neighbours than TURIAN
(c.f. “seize”, “claim”, “preventative”). The neighbours of “andrade”
(a common Portuguese surname) returned by TURIAN are other sur-

s

names from different regions, while worD2VEC has “souza”, “vives”
and “barros”, which are all common in Portugal and Galicia.

Figure 4.9 shows a 2D t-SNE projection (Van Der Maaten and Hin-
ton, 2008) of the vectors for several countries and their capitals, fol-
lowing Mikolov et al. (2013¢, Figure 2). Mikolov et al. suggest that the
semantic relation “is capital of” corresponds to a vector addition op-
eration; the relative position of a country and its capital in semantic
space is consistent across countries. Mikolov et al. (2013¢, p 5) show
that worD2VEC is able to “learn implicitly the relationships between
[concepts]”. The same applies to GLOVE vectors (Figure 4.9). How-
ever, the relation learnt by worD2VEC trained on GIGAWORD is con-
siderably less consistent compared to WIKIPEDIA. TURIAN vectors

perform even worse.

Turian et al. (2010, Section 6) report it took several weeks to train the embeddings
over only 37M words. In contrast, WoRD2VEC can be trained over 1.5B words of text
in several hours on commodity hardware.
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I hypothesise the good performance of SOCHER over TURIAN vec-
tors at paraphrase identification is at least partially due to the nature
of the problem. It is possible to achieve near state-of-the-art perform-
ance at that task by only considering lexical overlap features. The
SMWBCUNF baseline of Rus et al. (2014) achieves a F1 score of .819,
whereas Socher et al. (2011) score 0.836. It is therefore possible that
having vectors for content words and a sensible means of combining
those is more important than the quality of the vectors. Another pos-
sible explanation is that Socher et al. leverage information about the
content of entire sentences, as opposed to focusing on noun phrases

only.
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Entry Neighbours
andrade aslam, rahman, aguirre, weinstein, chandra
giant monopoly, retailer, group, utility, unit
seize dissolve, renew, suppress, restore, donate
fundamental inflationary, external, structural, speculative
affidavit organization, affair, squad, essay, audience
claim request, link, plan, challenge, drive
sikh gambian, tutsi, bugging, zairean, rioting
rest size, duration, bottom, end, depth
israel beijing, washington, bonn, pakistan, russia
arrow atlantic, mississippi, mall, iberian, caribbean
preventative periodic, disgrace, compensatory, conclusive
torrential ~ intermittent, severe, persistent, gusty, planting

Table 4.11: TURIAN neighbours of randomly selected words

Entry Neighbours
andrade souza, camilo, vives, leopoldo, barros
giant gigantic, legless, man-eating, serpentine, horned
seize capture, re-take, attack, demoralise, crush
fundamental principle, epistemic, objective, indeterminism
affidavit testimony, al-arian, subpoena, demjanjuk, minkow
claim allege, assert, believe, suggest, acknowledge
sikh sikhs, hindus, shi’ite, hindu, shiite
rest dais, keep, gorge, gibbet, parihaka
israel iran, palestine, al-sadr, gush, salafi
arrow bullet, quiver, gauntlet, upturned, sword
preventative preventive, prophylactic, life-saving, high-risk
torrential downpour, monsoonal, rainstorm, freezing, sleet

Table 4.12: woRD2VEC neighbours of randomly selected words
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Summary of noun phrase experiments

The results above suggest that the determining factor in building
word representations is data quality rather than quantity; in some
cases only a small amount of unlabelled data is required to reach
peak performance. This highlights the importance of training distri-
butional models on clean unlabelled data that matches the domain
where the model is applied. Another important factor is whether a
compositional model can provide a vector for a document feature.
Models with low coverage such as BARONI perform poorly in prac-
tice.

Neural algorithms for building single-word representations such
as WORD2VEC and GLOVE perform better than counting-based ones
regardless of what composition is used. Pointwise addition can match
or exceed the utility of more sophisticated compositional proposals.

4.5 VERB PHRASE EXPERIMENTS

Section 4.4 focused on noun phrase composition. However, signific-
ant progress has also been made in the area of transitive sentence
composition. This section evaluates several algorithms for composing
transitive sentences such as “person buy car” or “child likes fruit”,
which were introduced in Sections 2.2.1 and 2.2.4. The question ad-
dressed by this section is:

Which combination of word embeddings and VP compos-
ition algorithm performs best at topical document classi-
fication?

Experiment details

A total of six composition algorithms are considered. As before, ADD
and MULT compose by addition and multiplication respectively. VERB
is a baseline where each VP is represented by the vector of its head
(the verb). coryoBy, FADD and FMULT are the category-theoretical
models of Grefenstette and Sadrzadeh (2011)".

Category-theoretical composers are trained as described by Mila-

jevs et al. (2014). A verb must be used as the head of at least 3 distinct

12 [ also experimented with the multi-step regression model of Grefenstette et al. (2013)

but found its coverage to be extremely poor. Results for that model are not shown
because they are not significantly different from random.
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VPs in an unlabelled corpus in order to be represented as a matrix.
With that threshold matrices for 400-550 verbs can be learnt (Table
4.13). WIKIPEDIA has considerably better coverage than GiGAWORD
(27K VPs versus 10K). The distribution of VPs used to learn a verb
matrix Verb is highly skewed, with a mean of 50, a median of 10,
a mode of 3 and a maximum of 2.8K for WIKIPEDIA. Some of the
most frequent VP heads are “receive/V” (head of 859 distinct SVOs
in WIKIPEDIA), “contain/V” (791), “win/V” (1371) and “include/V”
(2898).

Unlabelled Embeddings SVOs Mean Verbs

WIKIPEDIA GLOVE 27K 50 547
WIKIPEDIA WORD2VEC 27K 50 542
GIGAWORD WORD2VEC 10K 25 408

Table 4.13: Statistics for category-theoretical models. “SVOs” stands for total
number of verb phrases which occur in both AMAZON and the re-
spective unlabelled corpus (WIKIPEDIA Oor GIGAWORD). “Mean”
stands for the mean number of SVOs per verb. “Verbs” is the
total number of verb matrices learnt.

Similarly to noun phrase experiments in Section 4.4, lexical overlap
between a VP and its replacements was not allowed. The document
features extracted at train time are adjectives, nouns, verbs and VPs.
At test time, only VP features are extracted. Adjectives and nouns
are added at train time because verbs and verb phrases are relatively
sparse (compared to noun phrases), so classification performance suf-
fers. When accuracy is close to the random baseline, it is difficult to
compare compositional algorithms. Please refer back to the discus-

sion in Section 4.4.2 for an explanation.

Results

Only two of the NP experiments are replicated with VPs. Figure 4.10
is analogous to Figure 4.3 and considers the effect of domain and
quantity of labelled data used to build word embeddings. Figure 4.11
is analogous to Table 4.8; it investigates the effect of the word embed-
ding algorithm.

The overall pattern of results is similar across NPs and VPs —
WIKIPEDIA is better than GIGAWORD, WORD2VEC is marginally bet-
ter than GLOVE and count window vectors, adding more unlabelled

data is beneficial and ADD is consistently the best composer. However,
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these trends are less pronounced due to lower overall accuracy, which
is in turn at least partially due to the low number of verb phrases in
the AMAZON corpus. It is therefore difficult to draw definitive conclu-
sions about the quality of composition as some combinations of word
vectors and compositional algorithms perform close to the random

baseline.

0.40
0.35
5, 0.30
2 0.25
5 0.20
8 0.15
< 0.10
0.05
0.00

Corpus
H Gigaw-100%
Bl Wiki-15%
= Wiki-100%

Add  Mult  Verb CopyObj FAdd FMult
Composer

Figure 4.10: Verb phrases: effect of size and domain of unlabelled data
(WorD2VEC embeddings).
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Figure 4.11: Verb phrases: effect of composition algorithm. Word embed-
dings trained on WIKIPEDIA.

Qualitative analysis and discussion

Table 4.14 shows the nearest neighbours of 14 randomly selected VPs
with and without the lexical overlap constraint. Two trends are appar-
ent. First, the neighbours are almost exclusively other VPs. Similarly,
the neighbours of verbs (not shown) tend to be other verbs. A similar
pattern is observed for ADD composition. Second, the lexical over-
lap constraint greatly affects neighbours. If overlap is allowed, the
top neighbours exhibit little lexical diversity. It is very tempting to
annotate phrases as similar because of they have words in common.
However, without lexical overlap it is hard to intuitively reason if
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the neighbours are appropriate. Our causal definitions of similarity
(Section 3.1.2) do not generalise beyond unigrams. One cannot con-
textualise or visualise a sentence the way one would visualise a noun.
This brings us back to the discussion of what space sentences live

in and whether different grammatical types are comparable (Section
2.4.2).
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46 EFFECT OF TASK SETUP

This section investigates the effects of various parameters of the eval-
uation task introduced in Chapter 3 on the conclusions in this chapter.
The following aspects are investigated:

EXTREME FEATURE EXPANSION In the framework above all docu-
ment features, regardless of whether they have been seen in the
training set, are replaced with nearest neighbours. This provides
a more comprehensive evaluation as a wider selection of the
distributional model is considered. Section 4.6.1 considers tradi-
tional feature expansion, where only features that do not occur

in the training data are replaced with their nearest neighbours.

TEST-TIME FEATURES I choose to consider only NP or VP features
at test time in order to focus on a model’s ability to find good
neighbours for phrases. Section 4.6.2 investigates the case where
both NP and unigram features are included at test time.

LEXICAL OVERLAP A phrase and its replacements are not allowed to

have a word in common, which prevents simple non-compositional

algorithms from doing well in my framework, but also poten-
tially reduces the accuracy of other models by placing further
constraints on what can be a neighbour of a document feature.

Section 4.6.3 considers the effect of allowing lexical overlap.

NUMBER OF REPLACEMENTS In all experiments above, a test-time
document feature was replaced by its k = 3 nearest thesaurus
neighbours. Section 4.6.4 studies the effect of varying the k para-

meter.

Results in this section are consistent with those presented in Section
4-4-

4.6.1  Extreme feature expansion

With the exception of the work of Lebret et al. (2013), distributional
models tend to be used as an additional source of information in a
machine learning pipeline rather than as the only source. This is typ-
ically done via feature expansion, either by replacing features with
nearest neighbours (Andreas and Klein, 2014) or by appending dis-

tributed features to existing representations (Turian et al., 2010).
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One non-standard feature of my framework is that all features at
test time are replaced. In contrast, traditional feature expansion mod-
els leverage distributional information at test time to expand (replace)
features that haven’t been seen during training. Table 4.15 shows the
performance of a document classifier with standard feature expan-

sion.

Composer  Accuracy

Bag-of-NPs 0.8510.01
Add 0.81t+0.01
Right 0.81+0.01
Left 0.80+0.01
Mult 0.774+0.01

Table 4.15: Standard feature expansion results on Amazon dataset
(WORD2VEC trained on WIKIPEDIA.)

First, the differences between different compositional algorithms
are smaller than in Section 4.4. This is because in a large corpus
such as AMAZON many features are encountered at both train and
test time so test-time features are expanded infrequently. Accuracy
is therefore largely determined by surface forms, while differences
between composers are not emphasized.

Second, all composers in this section perform significantly worse
than a non-distributional classifier. Preliminary experiments sugges-
ted distributional models are beneficial only when very little training
data (less than 50 documents) is available, which agrees with the res-
ults of Huang and Yates (2009) and Andreas and Klein (2014). An-
other way of improving performance is to specialise embeddings to
the task (Socher et al., 2013b). When training data is abundant per-
formance gains due to distributional information are typically very
modest or statistically insignificant (Turian et al., 2010; Andreas and
Klein, 2014).

4.6.2  Choice of test-time features

A second important aspect of my framework is that both unigram and
noun phrase document features are used for training, but only noun
phrase features are extracted at test time. This means a NP feature can
be replaced by another NP or by an unigram, but a unigram feature
cannot be replaced (because it is not extracted). This puts emphasis
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on the properties of composition algorithms rather than word embed-
dings. However, results would have been similar if unigram features
were included at test time. Figure 4.12 compares the accuracy of a
classifier with and without unigrams at test time. While overall ac-
curacy figures are higher with extra features, the general pattern is
identical to that of Figure 4.5. Vectors built on WIKIPEDIA are again
of better quality than ones built on GiGAwoRrD, and adding more
unlabelled data is also marginally beneficial.

It is worth noting that App and MULT benefit more from the in-
clusion of unigram features at test time. To understand this beha-
viour, consider the vectors involved in classifying the simple doc-
ument “black cat”. The three features that could be extracted are
“black_cat”, “black” and “cat”. When only NP features are extrac-
ted, both ADD and RIGHT have a single document feature to work
with. However, the two composers behave differently when unigram
features are also added. With ADD composition, the system gains
two extra vectors, 07; and black, which can be used to insert features
into the document. With RIGHT, one of the unigram vectors is not
really new, because black_cat = cat (by the definition of R1GHT). The
classifier is therefore gaining less information from the addition of

unigram features.

0.7 Composer = Add Composer = Mult
0.6
> 0.5
@
© 0.4
303
Q
<02
0.1
0.0 X feats
0.7 Composer = Left Composer = Right B [N+AN+NN
0.6 I AN+NN
> 0.5
@
© 04
303
Q
< 0.2
0.1
0.0
gigaw-100 wiki-15 wiki-100 gigaw-100 wiki-15 wiki-100
corpus corpus

Figure 4.12: Features used at test time. Legend: “J”=adjective, “N”=nouns,
“AN”=adjective-noun compound, “NN”= noun-noun com-
pound. In all cases J+N+AN+NN features are used at train time.

4.6.3 Lexical overlap

Lexical overlap refers to the constraint that an entry may not have
any words in common with its neighbours (Chapter 3). For instance,
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no noun phrase that contains the words “black” or “cat” is permit-
ted as a neighbour of “black cat”. This ensures that it is not possible
for a distributional model to succeed merely by operating on surface
forms. Consider a pseudo compositional algorithm which for each
NP returns a neighbour randomly selected out of the set of other NPs
that share the same head. The algorithm need not consider the mean-
ing of the NP, only the surface form of the words it contains. Such
an algorithm would likely do well in a topic-based classification task
such as AMAZON, because the head of a noun phrase characterises its
topic well. For example, any kind of windscreen would be a good re-
placement for “cracked windscreen” in the context of differentiating
documents related to cars from ones related to beauty products.

Figure 4.13 compares the performance of the classifier with and
without the lexical overlap constraint. As expected, accuracy improves
considerably when overlap is allowed, with ADD and MULT only 1.5
and 4.5 percentage points below the non-distributional classifier (sig-
nificantly different, p < 0.01). However, the overall pattern remains
the same — ADD outperforms MULT, and both are significantly better
that LEFT and RIGHT.

The high performance of ADD when overlap is allowed can be ex-
plained by qualitative analysis. In many cases, the vector for a NP
composed by addition remains very close to the vector of the head or
modifier. For instance, the nearest neighbour of “black cat” in many
models is “cat”. A possible explanation is that the vector of one of the
constituents of a NP is much longer than the vector of the other con-
stituent and it dominates the resultant NP vector. This is especially
common in count vectors where vector length is not regularised and
can be addressed by explicit normalisation (Polajnar and Clark, 2014).
As a result, a large number of NPs are replaced at test time by NPs
that share one of their constituents. Without an explicit constraint
to prevent this, the distributional model is effectively bypassed and
what we arrive at is a bag-of-words classifier with unigram features,
which is not surprisingly very close in accuracy to a bag-of-NPs one.

This issue is discussed again in Section 4.8.

4.6.4 Number of replacements

The final system parameter investigated is k, the number of nearest
neighbours inserted instead of a document feature at test time. In a

typical feature expansion scenario, e.g. Andreas and Klein (2014), a
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Figure 4.13: Effect of lexical overlap constraint (WORD2VEC trained on
WIKIPEDIA). The upper and lower horizontal lines denote a
bag-of-NPs and a random baseline respectively.

value of k = 1 is used. The motivation for using a different value
is that sometimes the best neighbour’> may not be ranked highest.
Also, thesaurus entries often have multiple plausible neighbours. Us-
ing more than just the top neighbour provides a more comprehens-
ive test environment, where entire neighbourhoods in semantic space
are considered instead of points. In a distributional model of reason-
able quality one would expect performance to increase initially with
k as appropriate neighbours are added to the document vector, thus
reducing sparsity and adding in good document features. As k is in-
creased further, one would expect poor neighbours to start entering
the system and accuracy to decrease as a result. In the extreme case
where k is equal to the number of document features the accuracy of
the classifier should match that of the random baseline. However, the
running time of the evaluation procedure increases quickly with k, so
it is impractical to verify this experimentally.

The empirical relation between k and accuracy for four composi-
tional algorithms is show in Figure 4.14. Accuracy increases consider-
ably until k = 50, after which it levels off. In the case of MULT accur-
acy begins to decrease rapidly as expected. However, the findings of
Section 4.4 hold for a wide range of k values.

One perhaps surprising aspect of that result is that accuracy does
not generally degrade considerably between k = 50 and k = 1000.
This suggests neighbours number 50 to 1000 are equally appropriate.
This can be explained qualitatively. Noun phrases, especially ones
composed with LEFT or RIGHT, and to a lesser degree with ADD,

13 In the context of a task
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tend to have a very large number of acceptable neighbours. I refer to
this property as “composer productivity”. For instance, suppose the
nearest neighbours of the unigram “vw” are “mercedes”, “audi” and
“bmw”. Any adjective followed by “mercedes” is a good neighbour
of “red vw” when using RIGHT composition. This makes is easy to
generate a large number of good neighbours for a NP by taking the
Cartesian product of the set of all adjectives in the labelled data with
the set of all unigram neighbours of the head. In practice, not all com-
binations would occur in the labelled data, but Figure 4.14 suggests

there can be as many as 1000 appropriate neighbours of a NP.

0.70

<
o
o

o
=)
S

o o
o o
o 9]

Accuracy
(=)
S
o

Composer

0.35 | === Add
—s— Mult

0.30 Left
Right

200 400 600 800 1000

Figure 4.14: Effect of k parameter (WORD2VEC trained on WIKIPEDIA)

The effect of composer productivity can be negated by not consid-
ering NP features at test time, but instead using only adjectives and
nouns. Results are shown in Figure 4.15. Accuracy increases initially,
but begins to decrease rapidly after k = 10 as expected. This sug-
gests each unigram has 10 appropriate neighbours on average for the
AMAZON data set.

The k parameter also controls the stability of the evaluation task on
small labelled data sets. As mentioned in Section 4.4.2, small labelled
data sets contain a smaller number of train-time document features,
which cause the evaluation task to be less reliable than it is for larger
data sets. Figure 4.16 shows a noise validation like those shown in
Figure 3.2 and 4.2 at the small R2 corpus. Note when k = 3 accuracy
is not a monotonically decreasing function of noise, which is undesir-
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Figure 4.15: Effect of k parameter with unigram features only (WORD2VEC
trained on WIKIPEDIA)

able. However, when the value of k = 30 is increased, accuracy begins
to degrade as expected as noise is added. The variance of the meas-
urement is still considerable, which suggests smaller corpora may
be inappropriate for the framework (see Section 5.2). The differences
between k = 3 and k = 30 suggest including multiple replacements
per document feature helps overcome the sparsity induced by using
a small labelled corpus, which results in a more reliable degradation

of accuracy as noise is added.
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Figure 4.16: Noise validation on R2 corpus
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Summary of Task setup section

All results of Section 4.4 are consistent with the figures reported in
this section. Embeddings trained on WIKIPEDIA outperform those
trained on GIGAWORD, and ADD composition is significantly better
than other competitors. This holds for a wide range of k values re-
gardless of whether or not unigram features are included at test time.

4.7 EXPLOITING MULTIPLE MODELS

The previous sections considered different ways of learning distribu-
tional representations, either from the same data set or from a differ-
ent one. The primary goal of those experiments was to identify the
single best distributional model. While some models perform better
than others, I hypothesise that the semantic representations learnt by
each DM are in fact complementary. Each DM can be thought of as a
distinct view into the same domain. The knowledge of an ensemble
of models may therefore exceed that of any single model in the en-
semble. This is related to boosting (Freund and Schapire, 1997) in
the machine learning literature. Another related field is multi-view
learning, where qualitatively different feature sets (variable groups)
are combined to improve performance (Xu et al., 2013). For example,
a document can be represented by 1) information describing its con-
tent such as bag-of-words or an LDA vector, 2) meta-information such
as author name, affiliation and human-provided keywords, and 3) a
citation network that represents related work. While views are in-
compatible', each of them may offer useful insight into the problem
space.

This section investigates an instantiation of the multi-view idea in
the context of word embeddings. The following questions are con-
sidered:

1. Is the utility of views trained on a different equally sized sample
of the same unlabelled corpus comparable (Section 4.7.1)?

2. Can the information obtained from multiple views be used to

improve classification accuracy (Section 4.7.2)?

Results suggest that thesauri built from different samples of the

same corpus achieve approximately equal classification accuracy when

14 In the sense that embeddings from one view cannot be compared to embeddings
from another view.
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Entry ID Neighbours

1 lenin/N, trotsky/N, bukharin/N, brezhnev/N
stalin/N 2 lenin/N, hitler/N, goebbels/N, kerensky/N
3 lenin/N, goebbels/N, neurath/N, kerensky/N
1 ibm/N, ms-do/N, linux/N, netware/N
microsoft/N 2 ibm/N, symbian/N, sdk/N, unix/N
3 linux/N, ms-do/N, ibm /N, unix/N
1 fugitive/], ex-slave/N, manumission/N
fugitive/N 2 escapee/N, fugitive/], convict/N, ill-treatment/N
3 convict/N, non-combatant/N, infiltrator/N
1 truck/N, motorbike/N, automobile/N
car/N 2 truck/N, motorbike/N, rear-engined /]
3 truck/N, motorbike/N, bike/N, lorry/N
1 marseille/N, brussels/N, saint-cloud /N
paris/N 2 brussels/N, aix-en-provence/N, angers/N
3 brussels/N, strasbourg/N, dijon/N, nice/N

1 mckay/N, robinson/N, fuller/N, moore/N
smith/N 2 taylor/N, jones/N, moore/N, bennett/N
3 taylor/N, jones/N, foster/N, miller /N

Table 4.16: Neighbours of several randomly selected unigrams in three dif-
ferent worD2VEC models. Each row shows the neighbours of
one run with identical parameter settings.

considered in isolation. However, a combination of multiple views
can outperform each individual view. I introduce a novel way of re-
ordering the nearest neighbours of an entry to rank more appropriate
neighbours higher.

4.7.1  Comparing views

Each unlabelled corpus has unique characteristics that affect the qual-
ity of the distributional models trained on it (Section 4.4.2). This is
also true for multiple distinct views of the same corpus. Consider
a small sample of three WorRD2VEC models, trained with identical
parameter settings on different 15% samples of wikiPEDIA (Table
4.16). While many (but not all) of the nearest neighbours of an entry

are the same, their order is often permuted. A natural question to
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ask, which is seldom considered in the literature, is whether these
differences affect the utility of a distributional model.

The degree to which neighbour sets differ can be evaluated numer-
ically using the Dice coefficient, which is defined for two sets A and
B as'>:

_ 2]ANB|
WA B) = A1+ 18]

For each pair of the three worD2VEC models trained on 15% of
WIKIPEDIA, I plot the distribution of Dice coefficients between the
top 100 neighbours of 5000 randomly selected unigrams (Figure 4.17.
The sample is selected such that all three views have a vector for each
entry in the sample. Overlap is low, with a mean of less than 0.3. This
suggests each of the three models is producing a different neighbour
set for each entry in the sample.

Views =1 & 2 Views =1 & 3 Views =2 & 3

0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

Dice Dice Dice

Figure 4.17: Distribution of Dice coefficient of top 100 neighbours of 5000
randomly sampled unigram entries across views.

The result raises the question if one of the three models is better
than the others. Qualitatively, the answer is no (Table 4.16). While
the embeddings (and therefore neighbours) learnt by worp2vEC do
vary between views, visual inspection of nearest neighbours suggests
all three views learn equally appropriate word representations. The
quality of each view can be measured using the framework described
in Chapter 3. The embeddings learnt by the three models are com-
posed with the four core composers and evaluated at the AmazoN
corpus. There are only small differences between the utility of the
vectors of each repetition (Figure 4.18). The first two views contain
unigrams of comparable quality (no significant difference), whereas

the third view in Figure 4.17 is significantly (p < 0.01) worse by about

Note this formulation ignores order information and only considers if neighbour
sets contain the same entries. An alternative measure that does not suffer from that
drawback is Spearman’s rank correlation coefficient. However, it is only applicable
in cases where all the neighbours of an entry are the same but in a different order,
which is not the case here.
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2 percentage points. These results suggest the utility of the top neigh-
bours for the AMAZON task is comparable, which renders their or-
dering unimportant. This result is in line with the finding in Section
4.6.4, which demonstrated that each NP has a large number of equally
appropriate neighbours (in the context of a particular classification
task).
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Figure 4.18: Performance of three views into the same domain (WORD2VEC,
15% WIKIPEDIA)

4.7.2  Combining views

Building on the idea that different views of the data contain com-
plementary information, this sections presents a comparison of two
methods for improving neighbour quality by using information con-
tained in multiple views. The first is addition of entry vectors across
views. There is empirical evidence in the literature that summing mul-
tiple vector representations of the same word is beneficial (Penning-
ton et al., 2014, Section 4.2). The theoretical reasons why this might
be valuable have not been studied extensively. It has been sugges-
ted that summation may reduce the variance of classifiers based on
neural distributed representations (Ciresan et al., 2012, Section 2.5).
Here I use averaging instead of summation, which effectively scales
all word vectors by a constant factor and does not affect the ordering
of nearest neighbours.

The second method of obtaining better neighbours is novel and
is based on the observation that high-quality neighbours tend to be
consistent across repeated runs of the same model. Table 4.17 shows
several entries that illustrate that pattern. Consistency is again meas-
ured using the Dice coefficient of the first 100 neighbours of each

entry, averaged over all pairs of views. For brevity only the first up
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to four neighbours from three independent views are shown. The
subjective quality of neighbours appears to correlate with the Dice
coefficient. I hypothesise the reason for this is that if the set of con-
texts an entry appears in is consistent, then WORD2VEC converges
on similar word clusters regardless of how the embeddings are ini-
tialised or what data is used for training. Conversely, if the “signal”
is not strong enough, the learnt word clusters are different each time.
The number of independently trained distributional models is a free
parameter — I experiment with values from 2 to 5.

Multiple views can also be understood in the context of the results
in Section 4.4.2. Recall a small batch of unlabelled data containing
only about 30% of WIKIPEDIA is sufficient to obtain good accuracy
in the classification task. The remaining 70% can be used as an extra
two batches of 35%, each sufficient to obtain good vectors, instead of
as one batch of 70%, which improves little over the first small batch.

105

Entry Dice Neighbours

transcaucasia/N, transoxiana/N, chalukyas/N
balkans/N 0.12  south-eastern/N, kastoria/N, interbellum /N

transcaucasia/N, apennines/UNK, peninsular/]J

empathic/J, self-efficacy /N, depersonalization/N

inborn/J  0.13  empathic/], self-concept/N, uninhibited /J
nonverbal/]J, salience/N, nde/N, self-harm/N

gay/]J, lesbian/N, transgender/]J, bisexual/]
lesbian/]  0.49 gay/], transgender/], transgendered /]

gay /], transgendered /], bisexual /N, transgender/N

pamphlet/N, monograph/N, poem/N, book/N
essay /N 0.65 book/N, pamphlet/N, poem/N, monograph/N
pamphlet/N, book/N, poem/N, monograph/N

Table 4.17: Neighbours of several unigrams in three identical wWorRD2VEC
models and mean Dice coefficient of the neighbour sets.

The intuition above can be used for feature expansion by combining
and reordering the neighbours of an entry provided by each view.
Neighbour lists are merged and sorted by 1) decreasing order of how
many of the lists a neighbour occurs in, 2) increasing sum of ranks in
the original lists, and 3) increasing sum of Euclidean distances to the

entry in all lists. Neighbours are returned in this sorted order.
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The neighbour reordering algorithm above is best illustrated with
an example. Three neighbour lists for a hypothetical entry are shown
in Table 4.18. The lists are merged into the set {a,b,¢,d, ¢, f}, which is
sorted according the criteria above. This yields the neighbour list in
the first columns of Table 4.19. The best neighbour is a and the worst
one is e.

Table 4.20 shows the nearest neighbours of “mercedes/N" returned
by three worD2VvEC models (views). The original neighbours are a

mixture of other car manufacturers (“citroen/N”, “lancia/N"), car

models (“gallardo/N”, “tipo/N”"), racing teams (“lola/N”, “panoz/N")

and race drivers (“alesi/N”, “nuvolari/N”). The reordered list of
neighbours (bottom row) is more coherent and contains only names
of other car manufacturers or models.

View Neigh1 Neigh2 Neigh3 Neigh 4

1 a(.1) b (0.3) ¢ (0.3) d (0.4)
2 f(1) a (0.2) e (0.4) c (0.5)
3 d (1) b (0.4) c (0.5) a (0.6)

Table 4.18: Three hypothetical neighbour lists for an entry. The numbers in
brackets indicate the Euclidean distance between each neighbour
and the hypothetical entry.

Neighbour Contained in X rank X euclidean

a 3 7
C 3 10 1.3
d 2 5
b 2 5
f 1 1 1
e 1 3 4

Table 4.19: Reordered list of neighbours for the entry in Table 4.18.
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View Neigh1  Neigh 2 Neigh 3 Neigh 4 Neigh 5

1 ascari/N citroen/N sauber/N gallardo/N lola/N
2 ferrari/N  lola/N  ducati/N tipo/N panoz/N
3 lancia/N  carrera/N ferrari/N alesi/N nuvolari/N

- ferrari/N lancia/N citroen/N carrera/N maserati/N

Table 4.20: Original and reordered lists of neighbours for “mercedes/N”".

The effect of the two methods for improving embedding quality on
the accuracy of a classifier is shown in Figure 4.19. Vector averaging
results in a small decrease in accuracy. Neighbour reordering consist-
ently and significantly improves accuracy by as much as 4 percentage
points when k (number of replacements for each test-time feature, Sec-
tion 4.6.4) is low. However, reordering does not significantly improve
accuracy when k is high.

A possible explanation for this is that when k = 3, a document
feature is less likely to be returned as a neighbour by multiple views
by chance. Those few features that do occur in multiple views are
likely to be of high quality; the reordering method pushes these to the
top of the list, resulting in improved performance. When k = 30 there
is considerably more overlap between the neighbour lists returned by
each view, so the first sorting heuristic becomes less useful.
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Figure 4.19: Effect of rebuilding embeddings (WorRD2VEC trained on 15%
of WIKIPEDIA). “std” stands for the approach from Chapter
3, where only a single view is used to obtain nearest neigh-
bours. “avg3” stands for averaging vectors for each entry across
three repetitions. “diceN” stands for consistency-based reorder-
ing using N worD2VEC models trained on different samples
of WIKIPEDIA.
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Section summary and further work

In this section, distributional models trained on different samples of
the same data were presented as distinct views into the same do-
main. Although views are qualitatively different, their individual util-
ity is comparable. However, a combination of multiple views based
on neighbour reordering can achieve higher classification accuracy
than each individual view alone. In contrast, averaging of embed-
dings does not improve performance.

The definition of what constitutes a view considered here is some-
what narrow. It would be interesting to experiment with combining
views built with different distributional or non-distributional (Section
2.4.1) models, or on different data sets. However, this work is beyond
the scope of the present thesis.

48 ALTERNATIVE DOCUMENT REPRESENTATION

This section explores a different way of using the information con-
tained in distributional word representations for document classific-
ation. Up to now, documents were encoded as a bag of words or
phrases and distribution information entered the system in the form
of discrete nearest neighbours of each word or phrase. In this sec-
tion, a document is represented as a distribution over phrase clusters,
which are built using a distributional model (Lebret and Collobert,

2014).

Description of method

The basis of the proposal is Vector Quantisation (VQ), which was
originally developed for lossy compression in the signal processing
literature (Gray, 1984). The key intuition is that a continuous vector
space can be divided into a fixed number of “prototypes”. As a result,
entire areas of the space, which contain an infinite number of points,
can be represented by the nearest prototype. The set of prototypes
is commonly referred to as the “code book”. The size of the code
book controls the balance between compression ratio and information
loss. Without any prior knowledge of the data being encoded, the
prototype vectors can be chosen uniformly from the entire space. If
knowledge of the domain is available, prototypes can be chosen in

areas where the data is dense so as to maximise the number of points
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that map to the same prototype, which improves compression and
minimises data loss. This is typically achieved through clustering.

In natural language processing, VQ has been used to reduce the
size of term-document matrices in feature classification (Baker and
McCallum, 1998; Lebret and Collobert, 2014). A necessary first step is
to represent the discrete units used in document classification, such
as words and phrases, as vectors. Baker and McCallum (1998) achieve
this by viewing a word as a probability distribution (vector) over class
labels. The set of words in a labelled corpus can be clustered; the
learnt cluster centroids form the code book. A document is represen-
ted as a distribution over centroids instead of as a distribution over
words. That representation is significantly more compact and only
results in a small loss of accuracy. A disadvantage of this approach
is that a labelled corpus is required to build word vectors. Also, be-
cause labelled corpora are typically small in size, most phrases oc-
cur very infrequently and may have skewed or uninformative vectors.
The work of Baker and McCallum is therefore practically limited to
unigram features only.

Lebret and Collobert (2014) extend the work of Baker and McCal-
lum by constructing word representations in an unsupervised way
using a distributional model. This enables the use of phrase repres-
entations via a composition operation. Lebret and Collobert use av-
eraging, which has been shown to perform well in practice (Mikolov
et al.,, 2013a). N-gram document features capture more information
about the content of a document, resulting in increased performance.

This section builds on the work of Lebret and Collobert by explor-
ing a wider range of composition algorithms. The focus is on noun
phrases only in order for results to be comparable to those in the
rest of this chapter. The distributed representations for all adjectives,
nouns and NPs contained in AMAZON are clustered using the mini-
batch k-means algorithm with k € [100, 200, . ..,2000]. Documents are
converted into vectors of dimensionality k as follows. Each cluster is
assigned a unique integer identifier from 0 to k. For each document
feature f and its corresponding cluster identifier i, the i-th position
of the k-dimensional document vector is incremented.

Empirical evaluation

The VQ document representation is also subjected to a noise valid-

ation by adding uniform random values U(—n,n) to each distribu-
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tional vector prior to clustering. Results are shown in Figure 4.20.
As with the extreme feature expansion document representation, VQ
exhibits the desirable property that accuracy tends toward that of a
random baseline as more noise is added.
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Figure 4.20: Noise validation of VQ task. worRD2VEC trained on GIGA-
WORD.

Table 4.21 shows the performance of several combinations of word
embedding algorithms and unlabelled corpora, when composed with
ADD and clustered with k = 100 clusters. As before, TURIAN vec-
tors perform worst, but the gap between them and other methods is
considerably smaller. cCWIKI vectors are marginally better than wiki-
PEDIA ones, which in turn are considerably better than GIGAWORD
vectors. WORD2VEC is outperformed by GLOVE by around 4 percent-
age points (p < 0.01).

Overall, accuracy is significantly higher when using VQ document
representation compared to extreme feature expansion. The best mod-
els in Table 4.21 approach an accuracy of 0.7, whereas the same vec-
tors with feature expansion only reach 0.55 without lexical overlap
(Figure 4.5) and 0.8 with lexical overlap (Figure 4.13). However, the
VQ models shown here should only be directly compared to models
where lexical overlap is permitted. This is because the lexical overlap
constraint is difficult to encode into the objective function of k-means,

so lexically overlapping entries can be placed in the same cluster.
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Embeddings Corpus Accuracy

TURIAN - 0.483710.005
WORD2VEC GIGAWORD 0.55310.005
WORD2VEC WIKIPEDIA 0.656%0.005
WORD2VEC CWIKI 0.67410.005

GLOVE WIKIPEDIA 0.6951+0.005

Table 4.21: Different corpora and embedding algorithms with ADD compos-
ition at AMAZON corpus, 100 clusters.

Figure 4.21 shows a comparison of ADD and MULT composition as
well as the effect of the number of clusters k. As before, ADD signific-
antly outperforms MuLT. However TURIAN vectors at k = 2000 are
almost on par with worp2vEC (0.73 vs 0.77). In all cases accuracy in-
creases considerably with k, which suggests being able to make more
fine-grained distinctions is beneficial for the AMAzoON task. Unfortu-
nately, the expected running time of k-means scales linearly with k, so
it is impractical to increase k further. It should be noted the limiting
case where k = ||V & 1.6 x 10°, i. e. each feature is placed in its own
cluster, is equivalent to the non-distributional bag-of-words approach,
which achieves an accuracy of 0.84. From a practical perspective the
best models shown here (WorRD2VEC and GLOVE with ADD compos-
ition) achieve a good trade-off between running time and accuracy.
These results are in line with those of Baker et al. and Lebret and
Collobert in that the VQ model achieves slightly lower accuracy than
a full-blown bag-of-words model using a more compact document

representation.

Accuracy
Accuracy
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—=— Add —=— Add
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(a) TURIAN word vectors (b) WORD2VEC, WIKIPEDIA

Figure 4.21: Effect of number of clusters on performance of VQ classifier.
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Figure 4.22 shows the learning curve of worD2VEC using VQ doc-
ument representation. Similarly to the feature expansion experiments
described above, peak accuracy is reached with vectors built on only
a small proportion of all available unlabelled data.
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Figure 4.22: wWoRD2VEC learning curve for VQ document representation
(ADD composition, 100 clusters, AMAZON/R2 labelled corpus)

Qualitative analysis

The high accuracy of VQ classifiers can be explained by qualitative
analysis. I visually inspected the clusters that form whena worD2VEC
model with ADD composition trained on WIKIPEDIA is clustered into
k = 2000 clusters. First, the clusters are large, with a mean size of 718.
They tend to contain a large proportion of noun phrases that share a
single unigram, which I will refer to as the “dominant” word of the
cluster. For example, the cluster that contains the NP “bad guy” has a
total of 934 entries, 726 out of which contain the modifier “bad”. The
entire cluster is dominated by “bad”. However, in the same cluster
there are 84 NPs containing the word “good”. In another cluster 1008
out of 1621 contain the word “good” (but also 105 NPs contain “de-
cent”, 149 contain “excellent” and 42 contain “perfect”. In a third
cluster, 830 out of 1328 entries contain the word “movie”. Interest-
ingly, the largest cluster (5752 entries) appears to contain only proper
nouns. Similar patterns are observed for other combinations of word
embeddings and composition algorithm, including TURIAN vectors

with SOCHER composition.
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It appears that while some clusters are sensible, others contain ant-
onyms (“amazing support”, “awful standard” and “boring majority”
are in the same cluster). However, the dominant factor that determ-
ines the content of a cluster is the fact that lexical overlap between
entries in the same cluster is permitted. This allows large clusters
dominated by a single word to form. We have already seen this prop-
erty of lexical overlap in Section 4.6.4, where an entry was shown
to have up to a thousand “sensible” neighbours because of lexical
overlap.

Consider the effect of clusters dominated by a single word on clas-
sifier accuracy. Recall that each dimension in the VQ document rep-
resentation corresponds to a cluster. In turn, each cluster effectively
(but not perfectly) corresponds to a single dominant word. The docu-
ment representation is therefore an approximate version of a bag-of-
words model with as many features as there are clusters. In light of
this, it is understandable why the performance of VQ is only slightly
lower than that of the bag-of-words models in Section 4.2. The two
models are comparable, but VQ introduces some error due to having
to compress a document to a comparatively low-dimensional vector.
This also accounts for the observed improvement in accuracy as the

number of clusters is increased.

Discussion: Lexical overlap and Lexical Diversity

Lexical diversity is an issue with phrase-level similarity. It is very
tempting to annotate phrases as similar because they have words in
common (Table 4.14). The compositional models investigated here
are not good at generating lexically diverse paraphrases — nearest
neighbours of a phrasal entry often overlap lexically with it. In this
thesis, I introduced an explicit constraint to circumvent that property.
It could be argued this is unfair as composers are forced to discard
as many as several hundred of their top neighbours. On the other
hand, if one thinks of neighbours as possible in-context substitutions
or paraphrases, then it is desirable that neighbours are lexically di-
verse. Replacing one of the words in a (compositional) phrase does
not produce a paraphrase for the entire phrase, but just for the word
that was replaced. In light of that, it might be beneficial to require
neighbours to be lexically diverse.

The results above also provide evidence to support my decision to

disallow lexical overlap. If overlap is allowed, one is not fully evaluat-
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ing the quality of a distributional model. The role of the DM is largely
reduced to something akin to feature selection (“selecting” the dom-
inant word in each cluster); the ability of a DM to place semantically

similar phrases in the same cluster is not truly evaluated.

Summary of VQ section

This section explored an alternative document representation scheme
based on vector quantisation. Results are generally consistent with
those in previous sections — ADD composition outperforms MULT,
and embeddings trained on cwiIkr are best for the AMAZON corpus.
Only a small amount of unlabelled data is needed to reach peak per-
formance. Upon closer inspection, the VQ model was found to be
remarkably similar to a bag-of-words model because the lexical over-

lap constraint is hard to enforce in the clustering step of VQ.

4.9 SENTIMENT ANALYSIS

This section attempts to answer the following question:

Which combination of word embeddings and composition
algorithm performs best for the MmAAs and MR sentiment

corpora?

Table 4.22 shows the accuracy of the best models at AMAZON when
evaluated at sentiment analysis. Two labelled corpora and two ways
of building document vectors are considered. Due to the small size
of MR, variance is considerably large than it is at MAAS or AMAZON.
Extreme feature expansion performs worse than VQ because VQ ef-
fectively permits lexical overlap. As before, increasing the number
of clusters for VQ improves accuracy. Overall, accuracy is consider-
ably lower than reported in the literature for these data sets, which
is 0.87-0.88 for maas and 0.87-0.9 for MR (Maas et al., 2011; Wang
and Manning, 2012). However, those figures are for models which
are not constrained to noun phrases only. A non-distributional model
with NP features at test time scores 0.72 at maas (Table 4.7), which
is close to the best distributional model. Using NP features for senti-
ment analysis is suboptimal as the classifier will not have a notion of

negation, regardless of how good its NP representations are.
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Labelled Method Embeddings Unlabelled  Accuracy

MR EFE WORD2VEC CWIKI 0.6111+0.058
MAAS EFE WORD2VEC CWIKI 0.56610.005
MAAS VQ-100 GLOVE WIKIPEDIA 0.62840.01
MAAS VQ-100 WORD2VEC WIKIPEDIA 0.62210.01
MAAS VQ-100 WORD2VEC CWIKI 0.621+0.01
MAAS VQ-500 WORD2VEC WIKIPEDIA 0.66210.01
MAAS VQ-2000 WORD2VEC WIKIPEDIA 0.688+t0.01

Table 4.22: Sentiment results. VQ-N stands for vector quantisation with N
clusters (Section 4.8), and EFE stands for extreme feature expan-
sion (Section 3.3).

Discussion

Sentiment analysis is a qualitatively different problem to topic-based
document classification. Unlike AMAZON, good performance at MAAS
and MR requires a model of the fine-grained propositional structure
of a document, including phenomena such as negation (“good” vs
“not good”) and gradation (“good” vs “very good”). It is well known
that general-purpose distributional models such as worDp2VEC do
not excel at sentiment analysis because of their tendency to learn sim-
ilar vectors for antonyms. Results above confirm this experimentally.
A growing body of literature is being developed that specialises em-
beddings for sentiment (Socher et al., 2013b; Kim, 2014). Sentiment
analysis is tackled here in my framework to demonstrate that the
framework allows one to easily test a distributional model against a
different notion of similarity. I do not claim non-specialised distribu-

tional models are appropriate in the context of sentiment analysis.
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CONCLUSION

This chapter summarises the main findings of the thesis, outlines the
limitations of the work described in previous chapters and outlines

directions for future work.

5.1 SUMMARY OF RESULTS

As distributional semantic models have gained popularity in recent
years, the importance of good evaluation methods has increased. How-
ever, the vast majority of current work uses intrinsic word similarity
evaluation. This thesis demonstrated empirically that three out of the
four word similarity data sets considered are unable to reliably detect
the presence of random noise in word embeddings. Further, I argued
that in addition to the practical problems above, the word similarity
task is fundamentally inappropriate because it assumes the existence
of a single notion of similarity, which is independent of a particular
application.

Motivated by these observations, I proposed a novel extrinsic frame-
work based on distributional feature expansion applied to document
classification (DC). In that framework, a document classifier is trained
with a bag-of-phrases representation. At test time, all document fea-
tures are replaced with their nearest neighbour according to a distri-
butional model. A classifier is not allowed to access the actual con-
tents of a test document, but can only view it through the prism of
a DM. The accuracy of the classifier when a particular DM is used
provides a direct measure of the DM’s quality.

I presented an evaluation of counting word embeddings algorithms
and the neural models of Collobert and Weston (2008), Mikolov et al.
(2013a) and Pennington et al. (2014). These were combined with point-
wise composition models as well as with the models of Grefenstette
and Sadrzadeh (2011) and Socher et al. (2011). Results suggest the
determining factor in building word representations is data quality
rather than quantity. In some cases only a small amount of unlabelled
data is required to reach peak performance. Neural word represent-
ation algorithms perform better than counting-based ones regardless
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of what composition is used, but simple pointwise addition consist-

ently outperforms more sophisticated competitors.

5.2 LIMITATIONS OF FRAMEWORK

The proposed evaluation framework suffers from the inherent sparsity
problem of natural language research. This is because the set of can-
didate neighbours for a target document feature is heavily constrained:

¢ All candidates must be contained in the training portion of the
labelled set, which can be very small’. This is a known issue of

models making use of feature expansion.

* Candidates must not share any unigrams with their target doc-

ument feature.

¢ Syntactic typing (postulating that, for example, verb phrases
and nouns are not comparable) imposes further constraints on

the neighbours of a document feature.

As a result, the list of candidate neighbours for a test-time docu-
ment feature may be empty, or it may only contain low-quality neigh-
bours, which would not have been selected in an unconstrained scen-
ario. The problem can be particularly pronounced with small labelled
data sets. In these, classification accuracy can vary by as much as 15
percentage points over cross-validation, which makes it hard to draw
definitive conclusions about the quality of distributional models.

The framework therefore works best with large labelled corpora.
This issue is what prompted the use of larger corpora such as AMAZON
and maas in Chapter 4. Because these are an order of magnitude lar-
ger than the next largest corpus I experimented with, results are more
stable.

Another criticism of my evaluation framework concerns its focus
on noun and verb phrases. State-of-the-art representation learning al-
gorithms explicitly or implicitly exploit latent lexical and syntactic in-
formation to abstract, relate and ultimately classify documents. Such
systems perform well because there is a lot of information contained
in a document that can be leveraged. By removing all but NPs or

VPs, my framework sacrifices a lot of that information. The question

Contrast that to the work of Dinu and Baroni (2014), whose set of candidate neigh-
bours for a given adjective-noun compound is the Cartesian product of all words in
the vocabulary.
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therefore remains if high-quality NP and VP composition will in fact
generalise and translate to an accurate full-blown classifier.

A third assumption of my framework is that embeddings, compos-
ition and classification are separate. Recent work tends to learn these
operations jointly and to specialise for a particular task, which res-
ults in increased performance. However, such models are treated as a
black box and therefore hard to study. Keeping composition separate
lets one import linguistic intuition into the process more easily.

5.3 FUTURE WORK

A software implementation of the extrinsic evaluation framework de-
scribed in Chapter 3 is provided under an open-source license. I be-
lieve the community would benefit from a unified software package
that enables researchers to easily evaluate their embeddings or com-
positional algorithms. I therefore plan to integrate and distribute a col-
lection of diverse freely available corpora into the software. My hope
is that the framework would become a part of researchers’ toolboxes
and would be used to assess and improve distributional algorithms
as the field moves forward. Even if the software fails to get traction, I
hope the empirical evidence against the word similarity task (Section
3.1) would push the community away from that task and towards
extrinsic evaluations.

A second direction for future work is to evaluate a wider range of
compositional algorithms that apply to different grammatical struc-
tures such as relative clauses, noun phrases with multiple modifiers,
intransitive verb phrases and eventually complete sentences.

Another strand of work involves using the qualitative insight gained
in Chapter 4 to improve performance at real-world classification prob-

lems. Chapter 4 suggests accuracy can be improved by:

¢ Using neural word embeddings trained on a clean unlabelled
corpus that matches the domain of the labelled data. Ideally,
a DM should be trained on the labelled data, or (in a semi-
supervised scenario) on data sampled from the same distribu-
tion as the labelled set.

¢ Using a large number of replacements (30-50) for each test-time
document feature.

* Sub-sampling frequent words (Mikolov et al., 2013c).
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I hypothesise accuracy would benefit from better heuristics to de-
cide which test-time features to replace. One possibility is the stand-
ard feature expansion rule, where only those test-time features that
do not occur in the training data are replaced with nearest neighbours.
However, this is inherently limited by the contents of the training set.
Another possible extension is to perform feature expansion at both
training time and test time in order to reduce sparsity. I believe some
form of feature selection at train time may also be beneficial. This
would remove uninformative features, so that they cannot be used as
replacements.

I am particularly interested in two issues that arise in supervised
document classification, namely learning with limited labelled data
and learning on-line. Both problems occur often in practice and can
potentially benefit considerably from distributional models. In this
thesis, and often in the literature, the focus in on large labelled cor-
pora. However, a labelled corpus containing hundreds of thousands
of documents has probably taken a long time to collect, which means
content drift is very likely. The issue I would like to address is that by
the time enough data has been labelled for a classifier to reach accept-
able performance, the document stream may have changed, rendering
that trained classifier irrelevant. Such massive data sets are therefore
of purely academic interest. A potential application of distributional
models to document classification is therefore to help speed up the
process of 1) annotating data, and 2) adapting classifiers to changing
content. One possible solution is to incorporate distributional inform-
ation into the active learning stage of a system like the one of Kober
and Weir (2015). The property that makes this problem particularly
suitable for DMs is that one can label features as well as documents.
Feature labels can then be used to specialise general-purpose word
and phrase embeddings for a particular classification task. A DM can
also be used to guide users towards more informative documents to

annotate.

CLOSING REMARKS

Distributional semantics has made tremendous progress in the past
two decades. As the field moves forward, the need for good evalu-
ation methods becomes more pronounced. This thesis argued against
the popular family of intrinsic evaluation techniques; presented a

novel extrinsic evaluation framework and made first steps towards
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understanding distributional models in that framework. This work
on extrinsic evaluation will hopefully inform and contribute to re-

search into the important topic of natural language semantics.
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