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Abstract  

Time-delay feed-forward Artificial Neural Networks are examined for gasoline engine 

cylinder pressure reconstruction using both measured crank kinematics obtained 

from a shaft encoder, and measured engine cylinder block vibrations obtained from 

a production knock sensor. Initially, the study focuses on the information content 

associated with measured data, which is considered to be of equal importance to 

the particular network architecture and the training methodology. Several 

hypotheses are constructed, which when tested, reveal the influence of the data 

information content on the reconstruction potential and limitations.  These 

hypotheses are tested on real data from a 3-cylinder (DISI) engine. Three distinct 

ideas emerge through this testing process, which are combined to produce a single 

pressure reconstruction methodology. Reconstruction results obtained via this 

methodology, applied to crank kinematics associated with steady-state engine 

operation, show a marked improvement over previously published reconstruction 

accuracy. Moreover, in steady-state engine operation, the application of this 

methodology to acceleration measurements of cylinder block vibration, obtained 

from a knock sensor, show very significant improvements over previous attempts. 

But the direct application of this same reconstruction methodology to transient 

engine operation, proves to be problematic. However, a novel generalisation of the 

approach in the form of a time-dependent feed-forward neural network is proposed 

and the required adaptation made to the use of the Levenberg-Marquardt training 

algorithm. This time-dependent approach has been tested under limited transient 

conditions and shown in the thesis to give good results, therefore offering 

considerable potential for use with real engine operation.  Overall, the thesis shows 

that by careful processing of measured engine data, standard neural network 

architectures and standard training algorithms can be used to reconstruct engine 

cylinder pressure.    
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Chapter 1  

Introduction  
 

 

 

 

1.1 Summary 

Since the development of the Internal Combustion (IC) engine in the 19th century, 

IC engines have become essential in nearly every facet of modern life.  Their uses 

range from stationery power production to light aircraft, from heavy duty machinery 

and to large marine applications.  But the most significant use of IC engines is within 

automotive applications, with over 12.5 million automobiles being sold within Europe 

in 2014 and increasing yearly.  Owing to the growth in the number of IC engines 

over the last 40 years, and to the greater understanding of their impact on the 

environment, there has been a drive to reduce overall emissions through legislation 

and emission standards, especially within the automotive industry. These standards 

have been formulated primarily by the European Union and the United States 

Environmental Protection Agency.  This legislation aims to reduce carbon dioxide 

and harmful exhaust emissions including, unburned hydrocarbons, NOx, and 

particulate matter, alongside improving overall vehicle efficiency.   

 

Most of the recent developments in reducing emissions within the automotive 

industry have been through improvements in exhaust after-treatment and within the 

combustion process, namely fuel injection.  After-treatment developments within the 

10 years has been significant; however it has led to adopting of large, heavy and 

expensive equipment, motivating researchers to focus more on reducing harmful 

emissions during combustion. The improvements in the combustion process have 

been promising, within research environments, with regard to increased 

understanding and decreasing emissions. However, these improvements are limited 

with the current technology level and only small improvements can be seen for IC 

engine's operation in real world scenarios.  To enable these advancements to be 

applied and maximised, it is necessary to gain greater control over the combustion 
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process and to create closed-loop combustion control, which is only possible when 

cylinder pressure is known in or near real time. 

 

The most common solution to measuring cylinder pressure is through the cylinder 

pressure transducer, whether it is a standalone transducer or a spark plug mounted 

transducer.  However, there are significant questions over the use of these 

transducers within a production IC engine. The questions mainly surround the price 

and durability of the transducers.  Even though there has been considerable work 

done on trying to reduce the cost and improve durability, by both spark plug and 

pressure transducer manufacturers, these questions are still present.  The actual 

price of in-cylinder pressure transducers can vary depending upon different 

specifications, but they can cost up to £1,500 each.  These are especially expensive 

for cars within B and C segments, but also, if transducer durability is not sufficient to 

last the life of the vehicle, then these transducers would become a serviceable part.  

This would then significantly increase the maintenance cost of the vehicles and 

potentially impact on sales and long term profitability.  Alternatives to using cylinder 

pressure transducers are being researched. This thesis aims to put forward just 

such a robust alternative methodology to reconstruct cylinder pressure. 

 

This thesis will demonstrate the reconstruction of cylinder pressure through the use 

of Artificial Neural Networks (ANN) and existing sensors that are currently fitted to 

production engines.  Artificial Neural Networks are a form of mathematical model 

that can be trained to recreate a complex physical model. When trained, an ANN 

can be treated simply as a black box model.  This modelling technique has been 

used for reconstructing cylinder pressure from both crank kinematics, via a crank 

shaft encoder, and cylinder block vibration, via the knock sensor.  This thesis will 

also demonstrate how to optimise Artificial Neural Network capabilities and signal 

processing techniques required, as well as investigating the complexities involved 

when going from training in steady state conditions to training with transient data. 

 

1.2 Cylinder Pressure and Cylinder Pressure 
Measurement 

1.2.1 Cylinder Pressure   
The class of automotive engines where cylinder pressure reconstruction would be 

most advantageous, and indeed the engine type examined within the project, are 
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naturally aspirated four stroke gasoline engines.  These engines follow the Otto 

cycle developed by Nikolaus Otto in the 19th century, i.e. depending upon the 

engine's configuration, a simple set of processes shown in Figure 1.1, as follows: 

first, an air and fuel mixture is drawn into the cylinder; this mixture is compressed 

adiabatically by the vertical movement of the piston.  When the piston reaches top 

dead centre (TDC), a sparkplug ignites the air/fuel mixture which rapidly burns, 

increasing cylinder pressure.  This increased pressure accelerates the piston 

downward, to bottom dead centre (BDC), adiabatically expanding the combustion 

gases, producing a significant amount of energy.  The final stage involves heat 

rejection from the combustion gases and their expulsion from the cylinder as the 

piston returns to TDC.  

 

Figure 1.1: Ideal Otto Cycle (Ideal Otto Cycle, n.d) 

 
 

This simple thermodynamic model of internal combustion engines is very effective in 

understanding the basic principles and is used extensively within idealised 

calculations.  However, neither this model nor more contemporary models, have the 

ability to accurately or repeatedly determine cylinder pressure within real engines.  

In reality, cylinder pressure varies with crank angle as a result of cylinder volume 

change, combustion, heat transfer to the chamber walls, flow into and out of crevice 

regions and leakage (Heywood, 1988).  However, these variables also depend upon 

numerous other factors.  For example, combustion depends on air volume, density 

http://en.wikipedia.org/wiki/Nikolaus_Otto
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and mass, fuel mass and dispersion, and turbulent in-cylinder air motion which is 

determined by the dynamics of the inlet and exhaust air.   

  

Even though there are large numbers of variables, knowing cylinder pressure is a 

great advantage in terms of overall performance, increasing efficiency by ensuring 

complete combustion and reducing engine noise, vibration and harshness (NVH). 

Typical information that can be obtained through knowledge of the cylinder pressure 

includes maximum combustion pressure, indicated mean effective pressure (IMEP), 

and ignition timing.  These three are the most useful when optimising engine 

performance, and achieving efficiency and emission goals.  The remaining 

information can be used for various activities, such as calculating the rate-of-change 

of pressure, knock and misfire detection, cylinder balancing and reduction of cycle-

to-cycle variation to improve NVH characteristics.  This information, in addition to 

heat release, can be used to control multiple systems; exhaust gas recirculation 

(EGR) and after treatment processes, for example.  

 

Some of the above mentioned activities, namely knock and misfire detection and 

EGR control, as well as some more general combustion control, is achieved using 

straightforward feedback from external sources, such as knock and lambda sensors.  

However, to successfully control all of the above parameters, and maybe more, it is 

necessary to have a methodology to determine the pressure inside the cylinder 

robustly for use in a closed-loop combustion control strategy.  These closed-loop 

combustion control strategies have been researched in great detail and have 

demonstrated that a significant improvement can be obtained in all of the pre-

established areas, especially within emissions and NVH (Kolbeck, 2011).  This type 

of control strategy has also improved the engine performance across a wide range 

of operating conditions when running in less than standard operating conditions 

such as following cold starts (Rackmil and McKay, 2010).  

 

1.2.2 Direct Cylinder Pressure Measurement  
The direct measurement of cylinder pressure is the most common method within the 

research environment, owing to the accuracy and reliability of the measurement 

signal. Ideally, the methodologies and techniques used would be transferred into 

production engines for use in the market. However, most of the direct measurement 

techniques have serious limitations with regards to durability and cost.  There are 

however, numerous direct cylinder pressure measurement techniques available. 

Three of the most significant and heavily researched methods include: use of 
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piezoelectric crystals, fibre optics strain and ion sensing. The first two both rely on 

material deformation, where ion sensing relies on the properties of the cylinder 

gases.  

 

Use of piezoelectric crystals is the most common method for directly measuring 

cylinder pressure. These piezoelectric crystals are electromechanical materials that 

react to mechanical compression. Owing to their physical properties, they tend to be 

fairly robust and stable at high temperatures. They have an amplitude range which 

allows them to sense both small and large pressure fluctuations. They also have the 

ability to operate in extreme conditions making them ideal for use within the internal 

combustion engine.   

 

There are two separate methods in which piezoelectric crystals can be utilised.  The 

first is in a dedicated cylinder pressure transducer.  This type of transducer is 

located independently within the cylinder head and is flush-mounted to the interior of 

the cylinder.  These have proven to be more accurate and durable, but they do 

increase the complexity of the cylinder head and may restrict the use of other 

technologies to improve efficiency and performance. The second type is spark plug 

or glow plug mounted pressure transducers. The piezoelectric crystals are contained 

within the plug and are easier to integrate within an engine.  However, this ease of 

integration is played off against the accuracy and durability of the integrated 

pressure transducer. 

 

There are however, significant limitations to the use of piezoelectric pressure 

transducers in production engines: namely the cost and the durability. Regarding 

durability, piezoelectric pressure transducers have been proven to work efficiently 

and reliably under engine test conditions. However, they have not been proven to 

work for extended periods of time on production gasoline engines in real world 

conditions.  The question about their actual lifetime has yet to be answered for spark 

ignition engines (SI) however, glow plug mounted pressure transducers are currently 

being used on mid-range and high-end compression ignition engines (CI).  The 

application of glow plug mounted pressure transducers will be discussed in section 

1.3.2 including examples of current automotive manufacturers using pressure 

transducers on compression ignition engines.  The questionable durability within 

spark ignition engines also ties in closely with the concerns over cost. The cost of 

piezoelectric pressure transducers pastly has been high where each transducer 
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could typically cost in excess of £1000 and the associated electronics, such as 

charge amplifiers, could also be of a similar price.  This would result in the price of 

four piezoelectric pressure transducers and its electronics being many times more 

expensive than the overall cost of the engine, in a small vehicle.  In recent years the 

price has started to decrease to the point where the mass production cost could be 

reduced to £100 to £200 each, but would still cost in the region of £1000 for the 

system and would be a significant portion of the overall engine cost.  These costs on 

their own may be justified if there is a significant improvement in efficiency and the 

reduction of overall emissions but if the durability is in question, these transducers 

may result in being a serviceable part and be a significant cost to the consumer, 

which would become a concern for engine manufacturers. Some additional 

limitations include the integration into existing designs or adaption to new designs 

when additional cooling is required and the required frequency of calibration. This 

calibration is essential to overcome phenomena such as thermal sensitivity and zero 

shift. These are shifts in the pressure transducer's responses due to either the 

prolonged or significantly high temperatures and could result in erroneous results 

(Nysæther et al., 1998). 

 

The two technologies that are currently being extensively researched for measuring 

cylinder pressure include ion current sensing and fibre optic based sensors. Out of 

these two new cylinder pressure technologies ion current sensing, is in principle, the 

simplest and most cost effective method of measuring cylinder pressure.  Ion current 

sensing utilises the existing components, namely spark plugs, within spark ignition 

engines and the electrical properties of the combustion gas to achieve the cylinder 

pressure measurement.  Within this technique, an electric potential is applied across 

the spark plug producing an electric field during the period of non-sparking.  Owing 

to the ion species that are created during the combustion process, current is 

generated as they move between the two electrodes of the spark plug.  Using a 

simple electric circuit the voltage across a resistor can be measured and this voltage 

is proven to be useful in determining combustion characteristics (Rivara et al., 2009) 

(Grasso et al, 2013). 

 

The second method, fibre optic based sensors, has been in existence for over two 

decades within the research environment because of the accuracy and ease of 

integrating them into internal combustion engines. However, owing to the relatively 

high cost and durability questions, it has not progressed into the production 
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environment.  Most fibre optic based pressure sensors of this type are based on the 

fibre-optic Fadry-Perot interferometer (FFPI). Simplistically, these sensors contain a 

set of mirrors, which at rest, are a fixed length apart. Light from a semiconductor 

laser is transmitted down the length of the fibre-optic, and a portion is reflected by 

the mirrors and captured by a photodetector. When the pressure increases, even by 

a small amount, the distance between the mirrors will vary and will result in a 

variation in the signal from the photodetector.  The advantages of using fibre optic 

based sensors for cylinder pressure measurement are numerous.  They include 

extremely high sensitivity, capabilities of operating at elevated temperatures for 

extended periods of time, and being mechanically flexible and rugged (Lee and 

Taylor,1998). 

 

1.2.3 Indirect Cylinder Pressure Reconstruction 
As discussed in the previous section, there are a number of direct cylinder pressure 

measurement methods that can produce accurate results.  However, the limitations 

of these methods predominantly relate to the cost and durability implications.  

Therefore there has been a drive to discover and develop a methodology to 

measure cylinder pressure accurately, cheaply, and be durable for the lifetime of the 

engine. Taking these three criteria into account, it is possible to determine which 

regions and characteristics are the most likely to produce results.  With respect to 

durability and accuracy, it would be necessary to find an engine characteristic that is 

related to the cylinder pressure but in not such close proximity that the higher 

temperatures and pressures would impact on a sensor's durability.  With respect to 

cost, it would be best to either use existing sensors or sensors that are economically 

priced.  It has been established that the two most significant and those of most 

interest is crankshaft kinematics and engine block acceleration.  The physics of 

each of these, as well as the measurement methodologies, will be discussed in 

detail in later chapters. However, a brief overview will now be given.  

 

Using crankshaft kinematics to reconstruct cylinder pressure has been the approach 

that many have undertaken in the previous two decades.  It is based on inverting a 

parametric engine model, which models engine acceleration from cylinder pressure, 

and then using this inverted model with measured crankshaft kinematics (obtained 

via a standard or upgraded shaft encoder) to reconstruct cylinder pressure.  

However, this type of analytical approach encounters numerous complications, 

namely in modelling engine friction and modelling manufacturing defects. The most 

significant complication is in the sine component of the acceleration equation, given 
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later in Chapter 2, which these engine models are based upon. The complication 

arises at top dead centre (TDC) and bottom dead centre (BDC), where the 

acceleration reduces to zero.  This issue creates a singularity within the data at 

these points when inverting and results in significant difficulties during the 

reconstruction. 

 

With respect to the engine block acceleration, parametric models are much more 

complex owing to the configuration of modern production engines and the complex 

geometries. Engine block acceleration reconstruction is based on structural 

vibrations measurements which have been generated by cylinder pressure 

fluctuations and transmitted throughout the engine block.  These vibrations would 

either be measured using one or more accelerometers, or by using pre-existing 

knock sensors. There are numerous methods and approaches to reconstructing the 

cylinder pressure from engine-block acceleration, which will be discussed later. The 

main starting point for most approaches is using finite element methods (FEM) and 

identifying structure characteristics as a result of cylinder pressure.  Then, differing 

methods are applied to invert and reconstruct.  This approach has the benefit of not 

needing to model engine friction and does not rely on torque variations.  However, 

the complex nature of production engine block geometries and the number of other 

vibration sources, both within and external to the engine, cause great difficulty in 

filtering and reconstruction. 

 

Both of the approaches covered show great possibilities for indirect cylinder 

pressure reconstruction but there are considerable restrictions when using 

parametric models (Potenza et al., 2007) (Vulli, 2006).  Alternative modelling 

approaches have also been examined, including machine learning, specifically 

artificial neural networks (ANN). Artificial neural networks have been used across a 

broad range of industries and applications and will be discussed in greater detail 

later. Artificial neural networks have been used on both crankshaft kinematic and 

engine block acceleration based reconstructions, with some success.  Artificial 

neural networks have the benefit of, in principle, being able to map and model the 

behaviour between two or more related data sets with no need to model individual 

characteristics and do not need to understand the physics at work.  With a correct 

methodology and the theoretical power of artificial neural networks, the prospect of 

indirect cylinder pressure reconstruction being successful is high. 
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1.3 Legislation and Applications of Cylinder 
Pressure Transducers 

Legislation surrounding exhaust emission standards over the previous two decades 

have become increasingly severe, with the aim of reducing the production of 

pollutants and improving air quality.  Owing to the globally increasing concern over 

automotive emissions, many of the regulators such as the EU, American, Australian 

and Japanese standards are converging to improve global environmental issues.  

The latest set of regulations within the EU, called Euro 6, took effect in September 

2014 and is the most recent in a series of emission standards starting with Euro 1 in 

1993.  Over the years, as a result of these standards, exhaust emissions of 

production vehicles sold in Europe have reduced significantly.  Table 1.1 outlines 

the basic Euro 6 standards for both gasoline and diesel passenger vehicles. These 

are stringent standards, but those being currently constructed and put forward for 

Euro 7, are expected to be much stricter on carbon emissions and will take effect 

between 2020 and 2025. 

 

Table 1.1: Euro 6 Emissions Standards 

 

 

 

 

 

 

 

 
 

 

 

The most significant recent transformation in the emission standards was achieved 

with the launch of Euro 5 in January 2013. The recent push for stricter regulations, 

with regards to particulate matter (PM) size and number, was within diesel engines 

and led to manufacturers investing significantly in research to minimise it. As a 

result, certain new Euro 5 and Euro 6 approved diesel vehicles were fitted with glow 

plug mounted pressure transducers.  These include the larger diesel engines, of the 

order of 2.0L, within VW Jetta, Audi A8 and Vauxhall Zafira.  It is believed that their 

implementation was purely a result of the need to reduce particulate matter, not as a 

 Gasoline Emission Limits Diesel Emission Limits 

CO 1.0 g/km 0.5 g/km 

HC 0.10 g/km 0.17 g/km (inc. NOx) 

NOx 0.06 g/km 0.06 g/km 

PM 
0.005 g/km 

6.0x10^11/km 

0.005 g/km 

6.0x10^11/km 
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method to enable closed-loop combustion control. These glow plug mounted 

cylinder pressure transducers can be used in a similar fashion to knock sensors.  

They can used in conjunction with the engine management system to prevent the 

engine cylinder pressure from entering regions where particulate matter production 

is extensive, in a similar way that knock sensors restrain the combustion parameters 

from causing knock. Current use of the glow plug mounted cylinder pressure 

transducers has little additional impact on performance or emission owing to fidelity 

issues.  

 

1.4 A Literature Survey of Indirect Cylinder Pressure 
Reconstruction Methods 

A review of the literature surrounding the theme of indirect cylinder pressure 

reconstruction, is essential to properly understand the topic and where the current 

research sits within this field. Owing to the limited number of publications that deal 

specifically with cylinder pressure reconstruction that use artificial neural networks, a 

range of similar publications will be discussed. These include articles that discuss 

the differing cylinder pressure reconstruction techniques and publications that 

discuss artificial neural network applications for estimating engine metrics. This 

literature review is divided into two sections:  the first section will discuss in detail 

the most relevant research undertaken using crankshaft kinematic based 

reconstruction.  The selection of articles reviewed will contain publications covering 

an analytical approach, publications that use artificial neural networks, and 

additional articles deemed relevant to reconstruction using other machine learning 

techniques.  Block acceleration based reconstruction publications are then reviewed 

in the same manner as the first section. In addition to reviewing the approaches and 

achievements of each publication, the review will attempt to identify the manner in 

which the data is applied to the various models. 

 

1.4.1 Crankshaft Kinematic based Reconstruction  
One of the first publications to examine crankshaft speed fluctuations and relate 

them to engine characteristics from a modelling approach, was reported by (Rizzoni, 

1989).  Rizzoni's objective was to develop a deterministic model for the dynamics of 

an SI engine by identifying the applied torques that act on the crankshaft inducing 

the speed fluctuations. Rizzoni constructed mathematical approximations for the 

applied torques and mechanical quantities. These approximations have been 
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deemed to be analogous, by the author, to electrical components and circuits.  This 

electrical circuit analogy was then tested experimentally.  The experimental set up 

used in the model verification was a 4 cylinder in-line SI fuel injected 1.5L FIAT 

engine driven by an electric dynamometer.  The crank kinematics or engine angular 

position was measured using both an optical shaft encoder and an inexpensive 

magnetic based encoder.  Alongside engine torque measurements, the cylinder 

pressure was also obtained using a flush mounted piezoelectric sensor.  With 

respect to the treatment of the input data, there is no detailed quantitative 

description other than stating that the low-pass filtering and analogue differentiation 

of the signal was undertaken.  The experimental results were across a range of 

different steady-state engine speeds, from 1500 rpm to 3500 rpm, and at five 

different load points.  The majority of the results were graphically presented. 

Therefore, determining the effectiveness of the system is difficult, however the 

correlation coefficient of a regression line (which was generated for comparison 

between measured and reconstructed torque at 25 steady-state conditions) was 

found to be 0.998.  A test of the electrical analogy for transient conditions however, 

produced no quantitative error. The qualitative results provided for this method 

appeared good for reconstructing crankshaft torque however, the reconstruction of 

cylinder pressure using the electronic analogy has greater complexity. 

 

Both (Shiao and Moskwa, 1994) and (Lim et al., 1994) continued to research 

deterministic models. Although each of these publications has a slightly different 

approach to reconstructing cylinder pressure, they both rely on the same 

fundamental parameters, and produce similar levels of error during reconstruction.  

For example, they both rely on parametric methods for reconstructing cylinder 

pressure. Shiao and Moskwa 1994 also attempted to use the analytical approach for 

misfire detection.  Lim et al 1994 uses crankshaft dynamics associated with the first 

principles of a single-degree-of-freedom model, for system energy including energy 

in the crankshaft assembly, in the camshaft, the engine load, friction and vibration, 

and the pressure in the cylinder.  The dynamic model was created for a four stroke 

four cylinder multipoint injection engine which has a capacity of 1.495L.  The engine 

is installed with flush mounted piezoelectric pressure transducers in each cylinder.  

Conversely, Shiao and Moskwa 1994 uses a Sliding Observer methodology to 

reconstruct cylinder pressure.  The details of how the sliding observer works are not 

discussed here, but these methods are created from a parametric engine model and 

therefore can be comparable to Lim et al 1994. Shiao and Moskwa 1994 model is 
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for a considerably larger engine, i.e. a 4.6L V8 engine. Other information regarding 

the engine, the sensing data acquisition, or data handling methodology was not 

given in either article. Both methods produce significant errors at TDC.  The limited 

results in Shiao and Moskwa 1994 paper show instantaneous errors as high as 30% 

of the peak pressure over a range of different speeds from 2000 rpm to 4500 rpm. 

When using the standard single dimension engine model, similar results were 

produced however Lim et al 1994 did further work on friction.  They measured 

engine friction at idle over 100 cycles, computed the average torque, and included 

this within the model. This produced slightly lower error values for peak pressure, 

averaging around 15%, however, there is a large distribution, some errors as high 

as 30%, with the large amount of data presented.  Both methods are limited by the 

same factors identified by Lim et al 1994, namely friction.  Friction is an integral part 

of dynamic engine models and estimations of this, using a singular theoretical value 

(as in Shiao and Moskwa 1994 model and the Lim et al 1994 first model), has grave 

consequences on cylinder pressure reconstruction.  Even though the Lim et al 1994 

approach of measuring friction levels is adequate for significantly improving the 

cylinder pressure reconstruction, the friction levels at idle are significantly different 

from high-speed friction levels and much more complex than can be described in a 

single value.  Also these methods rely on measuring engine parameters and feeding 

them back into the model, and therefore have considerable limitations: namely, they 

do not take into account friction changes associated with engine wear or the model's 

transferability due to friction differences between the same class of engine.  

 

(Gu et al., 1996) was one of the first publications that successfully used machine 

learning techniques to model engine dynamics.  It used a radial basis function (RBF) 

neural network model to reconstruct the cylinder pressure of an internal combustion 

engine.  Instead of using either pre-existing engine parametric model-based 

approaches, or pure pattern recognition techniques, a neural network was used.  

These neural networks combined both the pattern recognition features as well as 

the interpretation, and can be considered a non-parametric model of the engine 

process.  This paper covers efforts on both parametric model description and radial 

basis function neural network structure in general.  Other than stating that this RBF 

neural network was trained on and validated with a four cylinder direct injection 

diesel engine, it had a high performance pressure transducer fitted to cylinder one, 

and the instantaneous speed was obtained at the flywheel, no other information was 

given regarding to how the data had been handled. There was little information 



 13   

 

regarding the exact size of the RBF neural network, other than stating that it was 

large.  The network trained on a reasonably sized data set including 39 different test 

points with 100 rpm and 20 Nm divisions, which included data that was divided for 

the purpose of testing the neural network on generalised data.  However, it was not 

stated whether the results given were the training results or generalised results, but 

it was reported that the difference in peak pressure was ±0.3 MPa with a standard 

deviation of 9.29%.  It was reported that the indicated mean effective pressure 

(IMEP) average error, generated by RBF neural networks reconstruction, was just 

above 10% at ± 0.046 MPa.  It was also noted that this type of approach worked 

well for fault diagnosis, as evidence of misfiring was seen in the reconstructed data.  

This approach shows good results, but owing to the large neural network size, the 

practicality is questionable in both training with the required large data sets and the 

computational effort for real time reconstruction. 

 

(Jacob et al., 1999) and (Gu et al., 1999) form a two-part series on non-parametric 

models for reconstructing cylinder pressure and other combustion parameters.  Part 

one (Jacob, 1999), discusses the theoretical approach and sets out the model 

architecture in great detail.  The work proposed used a radial basis function neural 

network to model nonlinear engine processes.  It considers the differences between 

parametric and non-parametric models for this application, including the creation of 

a conventional parametric model and discusses its limitations. The paper then 

discusses the architecture and creation of a radial basis function neural network for 

this application.  Part two (Gu, 1999), takes the theoretical approach examined in 

part one, and applies the model to an internal combustion engine.  The engine used 

within this application was a production four cylinder Ford diesel engine with a 

capacity of 2.5 L, and direct injection.  A flywheel mounted magnetic pickup had 

been installed to record the crankshaft angular velocity and flush-mounted pressure 

transducer installed on cylinder 1. The same method was used for acquiring data, 

and for training the neural network as in (Gu, 1996). A total of 390 data items were 

collected at 39 different test points between 1000 rpm and 2600 rpm, with intervals 

of 100 rpm, and 20 Nm.  Each pressure and crank velocity data pair was measured 

simultaneously but with different sampling rates and with 216 samples windowed 

over 160°CA around TDC, and 54 samples windowed over 180°CA around TDC.  

With respect to the accuracy of the cylinder pressure reconstruction, the results 

were reasonable, with the average error at peak pressure being 5%, with similar 

results of the other combustion parameters, namely IMEP, and a location of peak 
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pressure being ± 2°CA.  Similar conclusions have also been made to the findings in 

(Gu, 1996).   

 

An alternative approach to cylinder pressure reconstruction was undertaken by 

(Hamedović et al., 2005), alongside an estimation of indicated-mean-effective-

pressure (IMEP) using engine speed fluctuations and a single cylinder pressure 

sensor.  This method of using a single cylinder pressure sensor has the advantage 

of reducing the overall cost along with improving accuracy and having the possible 

means of adapting to changing conditions.  The cylinder pressure was reconstructed 

via a model based approach with a combination of torque approximation and 

parametric pressure model. No information was provided with regards to the 

experimental setup or sensors used on the four cylinder SI engine. The results 

presented show a good reconstruction capability of a model based approach, when 

compared with others that do not use a single cylinder pressure sensor. Most of the 

error results are presented in the form of histograms with average peak pressure 

error in the range of 6% and position of peak pressure which had an average error 

of 3°CA.  

 

(Potenza et al., 2007) describes an approach for reconstructing the cylinder 

pressure trace for multi-cylinder engines.  This approach is based on the use of 

NARX neural network architectures in addition to examining two different fully-

recurrent training algorithms and validating on a real engine.  The experimental data 

was collected from a production 1.12 L three-cylinder direct injected gasoline 

engine, fitted with a spark plug mounted pressure transducer on all cylinders. Crank 

kinematics was measured with a digital incremental encoder. The first training 

methodology used was a back-propagation-through-time algorithm (BPTT) and the 

second was training via the extended Kalman filter (EKF).  Each method has 

disadvantages but both aim to reduce the training time for NARX neural network 

architectures, which can be significant.  This paper is also one of only a few that 

mentions how they apply the data to the neural network.  The networks have 

numerous inputs including crankshaft position, crankshaft acceleration, delayed 

crankshaft acceleration, and a feedback loop containing previous reconstructed 

cylinder pressure.  The output is cylinder pressure, but what makes this different 

from most other attempts where multiple cylinders are reconstructed, is that a 

separate neural network is created for each cylinder.  Owing to the complexity and 

long training times of NARX neural networks, a single steady-state engine operating 



 15   

 

condition was selected; at 1500 rpm and 25.5 Nm.  As a consequence of this issue, 

a relatively small network was created and only 6 cycles of data was used 

throughout.  It contained 8 neurons in the hidden-layer and 49 weights/biases in 

total.  The training and generalisation results for both approaches are fairly 

promising where, for most cases, the root mean squared error was below 2%. 

However, in some localised regions, the error increased to a level as high as 25% 

and the results became unstable.  The most significant result from this use of NARX 

neural network architectures is that even with training algorithms that are efficient, 

the training time is significant.  It is reported that the training time (with a 

representative computer at the time i.e. a Pentium 4 PC), was measured in tens of 

hours. For example, the NARX model trained using the back-propagation-through-

time algorithm was reported to take 42 hours. 

 

Work using recurrent neural networks was continued by (Saraswati and Chand, 

2010) to attempt to reconstruct cylinder pressure for an SI engine.  This uses the 

same basic approach which has previously been discussed with one signif icant 

step.  Where most previous studies train the model or neural network on large sets 

of experimental results, gathered on an engine test bed, the approach outlined 

aimed to use a different modelling philosophy to minimise the size of the 

experimental results.  This new philosophy uses a combination of engine test data 

with a phenomenological two zone model to generate more data for training and 

validating black box models i.e. artificial neural networks.  This two zone model for 

generating additional data sets was optimised using Levenberg-Marquardt method 

which is an iterative technique used for locating minima of functions with multiple 

variables (Haykin, 2008). The Levenberg-Marquardt method is a combination of the 

gradient decent and Newton method and approximates the Hessian matrix using the 

Jacobian matrix.  This is described in detail in section 3.5.2. This method can be 

seen to be successful for the small amount of data presented.  This data along with 

actual experimental data is used to train a recurrent neural network.  The details 

surrounding the training are however inconsistent. The Levenberg-Marquardt 

method is again mentioned and consequently it will have to be assumed that a 

'teacher forcing' methodology has been used.  The small number of results 

presented seems fairly consistent, with a relatively good accuracy, i.e. within 10%, 

however there is no indication as to the number of cycles trained or whether the 

data is generalised or not.  The paper does not address the proportion of results that 

are produced from training using experimental results or training from the two zone 
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model. This ratio is important in determining whether or not the network has over-

trained to the two zone model and the overall effectiveness of this approach. 

 

In this more recent work by (Mocanu and Taraza, 2013), several different 

combustion parameters were estimated using crank shaft speed fluctuations.  This 

article aimed to estimate the cylinder pressure trace, including peak pressure, 

position of peak pressure and ignition delay. The work used two model based 

approaches. The first approach was a complex fully-dynamic model that included 

flexibility of the crankshaft. This approach was first applied to a single cylinder test 

engine, which had a capacity of 0.7L, and was fitted with both a pressure transducer 

and shaft encoder.  The estimated cylinder pressure traces shown in the paper are 

somewhat limited, and are also only at a single steady-state condition with no 

quantitative error values given. Given the limited results however, the fully dynamic 

engine model seems promising.  A simpler model, called the 'direct approach', was 

also examined which only takes account of the inertial torque and omits several 

variables namely, crankshaft flexibility and friction. As a result, the capability of 

estimating cylinder pressure is diminished and results have significant errors. The 

use of both of these methods was also attempted on a larger 4 cylinder VM Motori 

2.5L engine, again fitted with both a pressure transducer and shaft encoder.  The 

general results using the more complex model were poor and owing to the 

complexity of the model, it was deemed not possible to run in real time. With regards 

to the comparison between the two models, a further reduction in quality of the 

reconstruction was observed when using to the simpler model. This is consistent 

with the observations for the single cylinder tests. This paper highlights several 

important limitations for model-based reconstruction, specifically the intricacies of 

crank shaft flexibility and friction levels and the complexity of going from a single 

cylinder test engine up to a four cylinder production engine. The most significant 

limitation is the larger and more complex the model, the greater computational 

efforts required, and the more difficult it is to reconstruct cylinder pressure in real-

time.  

  

(Taglialatela et al., 2013) took a distinctly different approach in determining 

combustion parameters than those discussed in the other papers presented.  Where 

previously, crank kinematics have been used to reconstruct entire cylinder pressure 

traces, this paper uses the crank kinematics only to reconstruct the magnitude of 

peak pressure and the angular location of peak pressure.  The validation of the 
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neural network models was produced using a single cylinder research engine; it was 

a port fuel injected (PFI) turbocharged gasoline engine with a flush mounted 

piezoelectric pressure transducer fitted.  It was also fitted with a high precision crank 

angle optical encoder that was used for instantaneous crank kinematic 

measurements with the precision of 0.1°CA crank angle.  Data was acquired over a 

range of engine speeds from 1000 to 2000 rpm with 200 rpm increments and at 

each of the operating conditions 400 consecutive cycles were gathered. The neural 

network selected for this application was a Multi-Layer-Perceptron (MLP) network 

with two inputs; crankshaft speed and crankshaft acceleration, and two outputs; 

peak pressure and location of peak pressure. Each MLP neural network trained was 

restricted to a hidden layer containing 30 neurons and the activation function was 

selected to be arctan. The training of the neural network was undertaken within, and 

taking advantage of, the Matlab neural network library. The training algorithm used 

was a Bayesian regularisation owing to its proposed guarantee of satisfactory 

generalisation capabilities, avoiding over-fitting issues.  With the significantly 

reduced model, only extracting two combustion parameters, it would be expected 

that gains would be made with regards to the reconstruction performance.  This 

however, has not been seen in the results, with the lowest relative error for the 

magnitude of peak pressure being greater than 4% and reaching as high as 20%. 

The angular location of peak pressure had similar results with the relative error and 

varying between 1.66° and 5.20°. As defined later in the objectives, the average 

target error for the overall reconstruction is below 4% with the angular position of 

peak pressure averaging below 2°. From these results it can be seen that there are 

no significant advantages of using neural networks to reconstruct combustion 

parameters directly instead of reconstructing the entire pressure trace.  

 

1.4.2 Block Acceleration based Reconstruction  
A novel approach to reconstructing cylinder pressure was taken by (Villarino and 

Böhme, 2003) using engine block vibrations.  The method takes block vibrations and 

uses the expectation–maximization algorithm to estimate cylinder pressure. The 

expectation–maximization algorithm (most commonly known as the EM algorithm) is 

a statistical model which uses an iterative process to estimate its parameters using 

maximum likelihood.  This research creates a statistical model for cylinder pressure 

estimation using engine block vibrations.  The paper extensively covers an analytical 

method for the decomposition of the engine block acceleration as well as the 

application of the EM algorithm. The experimental data was collected from a four 

cylinder, 1.8 L, turbocharged spark ignition engine on a test bed. Spark plug 
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mounted pressure sensors were used in all cylinders, as well as four accelerometers 

mounted just below the cylinder head, each one aligned with the axis of one of the 

cylinders.  Only one condition for the estimated results was presented at relatively 

high engine speed, i.e. 4000 rpm.  This method heuristically combined 100 misfires 

and 500 normal combustions to produce three curves relating to a parametric 

pressure model.  The reconstructed cylinder pressure was then formed from these 

three profiles.  The results show relatively good reconstruction of the correlation 

coefficient of 0.9.  However, when expanding to over 1000 cycles, generalised 

results drop significantly with a correlation coefficient of 0.68. Combustion misfires 

can however be seen to cluster, within the model results, making this method a 

possible candidate for misfire detection.  The advantage of this method is that it is 

not required to understand the physics in detail since it relies on extracting statistical 

patterns. However, the inability of the method to expand to larger data sets and to 

produce sufficient accuracy may be a serious limitation. 

 

(Johnsson, 2006) has taken, modified and combined several different techniques for 

cylinder pressure reconstruction.  The reconstruction is based on a combination of 

both engine block vibration and crankshaft speed fluctuations.  Both were used with 

the hypothesis that both the high frequency and low frequency information content 

would be available respectively. These are applied to a complex radial basis 

function network model.  This publication is different from the other papers 

discussed in that not only is there a combination of inputs, but these inputs are 

presented to the neural network in a different form, i.e. the output from a Fourier 

transform.  It was reported that the primary reason for using the Fourier transform is 

that different frequency regions of the signals are used for the reconstruction 

process, also that it is an easy method of reducing the amount of information used 

as an input to the RBF Network.  The experimental measurements were carried out 

on a 9 L, 6-cylinder, inline, four stroke, turbocharged, ethanol powered diesel 

engine.  The cylinder pressure was measured using a transducer mounted on 

cylinder one, with the accelerometer mounted to a head bolt on cylinder one, and 

crankshaft speed measured using an angle sensor with 1800 pulses per revolution.  

Measurements were taken at 39 different conditions with speeds between 800 rpm 

and 2000 rpm, from 10% to 90% load.  During training the optimum neural number 

was found to be 39.  The results presented were rather extensive and comparable 

with the error in maximum cylinder pressure being within ± 6 bar for 100 bar cylinder 
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pressure, i.e. an average error of 3.5%.  The location of peak pressure had an 

average error of 1.5°CA under generalisation conditions.  

  
Engine vibration signals was the focus for (Yong et al., 2010) and approaching the 

problem of reconstructing cylinder pressure using artificial neural networks.  This 

work attempts to use the vibration signals produced at the cylinder head in the belief 

that excitations consist of a series of instantaneous responses with frequencies and 

amplitudes at different levels.  Furthermore, it was reported that by analysing 

combustion signals of multiple periods, there is an obvious impacting response near 

to the combustion dead point, which results from cylinder pressure.  There is little 

detail on the system used to acquire the data other than stating it was collected on a 

6 cylinder 4 stroke diesel engine fitted with a vibration and pressure sensor on 

cylinder No.6.  There is no mention of the speed at which the data or the exact 

torque values are gathered but it does state the load as a percentage. Again, little 

information was provided regarding the size of the artificial neural network 

architecture or training results.  It states that a back propagation model has been 

utilised for a Multi-Layer-Perceptron architecture.  This paper reveals that instead of 

applying data to the neural network in a time series approach (i.e. reconstructing a 

single cylinder pressure value at a time), this approach uses 140°CA around TDC 

for the cylinder head vibration inputs and reconstructs 140°CA around TDC for the 

cylinder pressure.  The quantitative results for reconstruction of cylinder pressure 

appear to be very good, but with rather limited results presented at a single 

condition, producing a peak pressure error of 1.8% and a position error of up to 

5˚CA.  Again, this paper does not state whether these results were obtained for 

training or generalised data and gives no indication on the average or maximum 

errors produced using this neural network. 

 

(Bizon et al., 2011) attempts to construct an effective and robust method of 

determining cylinder pressure, from vibration signals, using artificial neural networks.  

This work also aimed to create a model that would be robust with changing engine 

parameters as well as with respect to changes in the nature of fuel. For this 

application a radial basis function (RBF) artificial neural network was selected.  The 

experimental data was collected from a single cylinder four stroke diesel research 

engine.  This engine was fitted with the piezoelectric pressure transducer as well as 

a low cost capacitive accelerometer glued directly to the cylinder, just below the 

cylinder head.  The data for six test conditions, ranging from 1000 rpm to 2000 rpm 

using a variety of fuels, was acquired with a number of consecutive combustion 
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cycles varying from 209 to 600 cycles depending on the operating condition.  In this 

research, RBF feed-forward neural networks were trained using pre-existing MatLab 

functions, using 100 cycles of data. Comparisons were made between differing 

architectures.  It was found that during generalisation there is little difference in the 

network's performance, between an architecture with 5 neurons and one with 50 

neurons.  However, even though there is no mention of how the vibration data is 

applied to the network, the manner in which the data is collected and the neural 

network architecture is discussed. It could be interpreted that all 60° of vibration data 

is applied producing an output of 60° for the reconstructed cylinder pressure.  The 

models produced were very accurate, producing a peak pressure error less than 

2.7%, and location of peak pressure, root-mean-squared error, less than 1.45°.  The 

results discussed in this paper appear to be the best examples of neural network 

based cylinder pressure reconstruction.  However, the position of the accelerometer 

is unrealistic for production applications and it is unlikely that this method would 

produce similar results if directly applied to a production multi cylinder engine. 

 

A method of pattern recognition was demonstrated by (Zhao, Cheng and Wang, 

2014) using measured vibration signals to extract cylinder pressure responses.  This 

method essentially uses a pattern recognition model to describe the reciprocating 

inertia force excitation (RIFE).  As the cylinder block vibration consists of the RIFE 

and cylinder pressure information, the subtraction of the RIFE from cylinder block 

vibration produces content that closely resembles the rate of cylinder pressure rise.  

The data in this paper was acquired from a single cylinder diesel engine with the 

piezoelectric cylinder pressure sensor and piezoelectric vibration velocity sensor 

mounted directly to the surface of the cylinder.  Numerous conditions were tested 

with speeds ranging from 800 rpm to 1400 rpm, and loads from 0 to 50 Nm.  It was 

also noted that the signals were converted from the time domain to the crank 

domain in order to overcome difficulties in pressure estimations at different speeds.  

The paper presents comparisons between the vibration velocity, and the vibration 

velocity with the RIFE removed, shown against rate of cylinder pressure rise.  The 

metric used to compare the two methods was a correlation coefficient between the 

rate of cylinder pressure rise and the vibration velocities.  It shows at low speed, i.e. 

800 rpm, and zero torque that raw vibration velocity produces a correlation 

coefficient of 0.77 compared to processed results which produce a value of 0.86.  

However, the most noteworthy results from this paper come at a higher speed of 
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1200 rpm and load of 10 Nm.  The role vibration velocity produces a correlation 

coefficient of 0.01 compared to processed results of 0.93.   

 

1.5 The Objectives of the Thesis  

From the literature review, it can be seen that the use of non-parametric models, 

such as artificial neural networks, appear to be the most promising methods for 

reconstructing cylinder pressure. However, there are several key areas which are 

either only partially resolved or not resolved at all.  These include a clear 

determination of the best performing network architecture and the corresponding 

training algorithm to use. Moreover, one of the most challenging aspects of cylinder 

pressure reconstruction is the reconstruction of transient engine operation.  The aim 

of this project is to not only attempt to resolve these areas but also to break through 

an apparent limit on the reconstruction capability, as seen in the literature.  It has 

been demonstrated that, with the methodologies undertaken, there has not been a 

single case where the error for the generalised reconstruction of peak cylinder 

pressure has been consistently below 4%, and the position of peak cylinder 

pressure within ± 2°CA. This improvement maybe found either within the network 

architecture, or within the training algorithm, or it may be established that the above 

results are actually at the limit of the ability of the reconstruction. However, there is 

one aspect which should not be overlooked and that is the role the data plays in the 

application of machine learning methodologies (such as artificial neural networks).  

From the research in the broad field of machine learning (Haykin, 2008), one key 

idea is reiterated many times: that the successful application is not solely or 

significantly dependent on the algorithm used, but rather is equally shared in 

importance between the use of effective algorithms and the correct use of the data.  

It is believed that disproportionate weighting has been given to the algorithmic 

approach over the data and its use.  The underlying theme within this thesis will be 

keeping faithful to the idea that both algorithms and data are equally important for 

machine learning applications.  With this philosophy foremost in the drive to improve 

cylinder pressure reconstruction for production engines, the following objectives of 

the work can be stated: 

   

1. To find the most promising artificial neural network architecture and training 

algorithm for cylinder pressure reconstruction.  



 22   

 

2. To improve the understanding of the relationship between cylinder pressure, 

crankshaft kinematics and engine block vibration. 

3. To develop a methodology aimed at improving cylinder pressure 

reconstruction under steady state conditions by extracting maximum 

information content from the data.   

4. To optimise an artificial neural network architecture and to reconstruct 

cylinder pressure using crankshaft kinematics and engine block acceleration, 

with the aim of producing generalised results with an error of less than 4% 

for peak pressure error and a position of peak pressure within 2°. 

5. To further develop the methodology that allows successful cylinder pressure 

reconstruction for fully transient engine operation. 

 

1.6 Overview of Thesis Structure   

A breakdown of the thesis structure is given below:  

 

Chapter 1 gives an overview of the current state of the art with regards to direct and 

indirect cylinder pressure measurement. It also provides a concise evaluation of 

recent literature followed by the thesis objectives.     

 

Chapter 2 is dedicated to examining the physics of cylinder pressure reconstruction 

and engine dynamics. The initial portion of this chapter examines both the crank 

kinematics from first principles, including a single cylinder model to demonstrate the 

relationship between cylinder pressure and both crank kinematics. The chapter also 

describes the process (and difficulties) of inverting the model to reconstruct cylinder 

pressure, which is key to this application. The chapter concludes by discussing the 

basic modelling techniques used when reconstruction via engine block vibrations.   

 

Chapter 3 provides a concise overview of artificial neural networks and their 

associated training algorithms. It includes the origins and basic structure of simple 

neural networks alongside more relevant architectures, such as multilayer 

perceptrons and recurrent structures. It also goes into detail about the training 

algorithms for each architecture, as well as investigating the suitability of different 

training algorithms for differing applications.  
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Chapter 4 gives an overview of the engine testing and data acquisition. A 

description of the facilities is also given, including the engine, the dynamometer and 

test cell. The details of the data acquisition system are outlined including the 

required post processing of the data.  It then describes some issues that had been 

found by other researchers and the solutions that have been put in place to enable 

reliable data acquisition. The last part of the chapter outlines tests undertaken by 

other researchers and the tests which formed part of the current research.   

 

Chapter 5 is dedicated to examining the optimisation of the artificial neural network 

architecture, training algorithm and signal processing, with the main focus on using 

crank kinematic based reconstruction. Initially this involves comparing and 

establishing the best artificial neural network architecture and training algorithm. The 

remainder of the chapter is dedicated to understanding (from the point of view of the 

reconstructed data) the dynamics of the system. Three significant ideas of how the 

signal processing of the input can achieve substantial improvements in the 

reconstruction are examined.   

 

Chapter 6 details the neural network results for crank kinematic based cylinder 

pressure reconstruction. The results for the time-delay network architecture and 

Levenberg-Marquardt algorithm using the three signal processing methodologies, is 

presented. It shows the results at a number of significant steady state test points 

precisely across the operating range this project is designed for.   

 

Chapter 7 draws on the findings of Chapter 5 and Chapter 6 and applies these to 

block vibration based cylinder pressure reconstruction. Additional work is then 

demonstrated to optimise for block vibration, including alterations to the time-delay 

network internal architecture, and the signal processing methods. The remainder of 

the chapter then presents the results for block vibration reconstruction at the same 

steady state test points as described in Chapter 6. 

 

Chapter 8 pursues the aim of reconstructing cylinder pressure for transient 

conditions. Initial work within this chapter attempts to construct a single neural 

network to achieve this. Additional methods of reconstruction are then examined 

including the use of multiple neural networks. The final attempt at reconstructing 

cylinder pressure for transient conditions uses a non-autonomous neural network. 
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This has been developed from the knowledge gathered within this project. Results of 

all the methods are presented.  

 

Chapter 9 draws appropriate conclusions found within the preceding chapters. It 

also offers suggestions of where the project and application can make progress in 

the future.    
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Chapter 2  

IC Engine Physics Including Forward 
and Inverse Modelling 
 

 

 

 

2.1 Motivations and Background 

This chapter is dedicated to examining the relationship between cylinder pressure 

reconstruction and engine dynamics. It is undertaken mainly with respect to crank 

kinematics but also briefly considers the dynamics of engine block acceleration. The 

most effective approach to understanding the problem of cylinder pressure 

reconstruction is to analyse engine dynamics and to construct a physical model 

using established methods. As well as aiding understanding, a model will enable the 

testing of different artificial neural network architectures and training algorithms on 

controlled data. Furthermore, this approach is used to highlight the fundamental 

differences between the forward and inverse models. It will also, more importantly, 

enable the resolution of intrinsic issues highlighted later in the thesis. The 

approaches outlined are not the entire extent of the use of these physical models 

because they can also be useful in understanding operational and time-varying 

issues, as well as engine parameter optimisation.  

 

Most established methods of mathematically modelling engine dynamics and 

analytical approaches to cylinder pressure reconstruction, are based on the same 

concept. They construct parametric models using torque balancing equations. By 

equating pressure, inertia, and friction induced torques, a model can be constructed 

that can be effective. Numerous papers have been published using this basic 

concept to model for multi-cylinder engines namely (Shiao and Moskwa, 1994), (Lim 

et al., 1994) and (Larson and Schagetberg, 2004) as well as single cylinder engine 

models (Mocanu and Taraza, 2013) and (Shadloo et al.,2015). However, these 

physical models have significant limitations with respect to the inversion of the 

model as well as inherent problems with calibration. These issues will be examined 

and discussed in detail as this chapter progresses.  
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The initial portion of this chapter will examine engine crank kinematics from first 

principles for the forward model. This section will cover the basic principles of 

parametric engine models using torque balancing equations and describe both the 

principles and limitations in induced torque estimations for pressure, inertia, and 

friction. It will then develop a simplified single cylinder model to demonstrate the 

relationship between cylinder pressure and crank kinematics. This model will then 

be translated into a multi-cylinder (3 cylinder) model, using the test engine geometry 

and data, to develop additional understanding of the complexity of multi-cylinder 

pressure reconstruction. The chapter will then describe the process of, and 

difficulties in inverting a physical model to reconstruct cylinder pressure, which is 

fundamental to this application. The chapter will end by examining engine block 

acceleration for the forward model and discussing inversion difficulties. 

 

2.2 Theory and Description of Crank Kinematic 
Forward Models  

2.2.1 Principles of Parametric IC Engine Modelling and 
Torque Balancing Equations 
There are two primary modelling approaches to explicitly describe the behaviour of 

crank kinematics for IC engines. These include the use of the Lagrange approach 

(Ranjbarkohan et al, 2011) (Weißenborn et al, 2011), and most frequently used, 

torque balancing (Rizzoni, 1989) (Mocanu and Taraza 2013).  The Lagrange 

approach is based on principles of work and energy. This has advantages and is 

considered a simpler methodology conceptually, owing to not needing a unified 

coordinate system in complex assemblies, and it can be applied to wide ranging 

problems. However, even though the use of the Lagrange equations to model IC 

engine crank kinematics can be shown to be an equal to the torque balancing 

approach, the latter is preferred by most researchers. This preference stems from 

errors otherwise generated through the lumped-mass approximation and the 

possibility of the final model having inaccuracies. The abstract nature of the final 

parametric equation has a considerable impact on the understanding of the model, 

and the significance of key variables. From the torque balancing methods (Rizzoni, 

1989), the more basic approach, using Newtonian laws and a common coordinate 

system, creates a model which clearly makes the model dependencies explicit and 

gives a better insight into modelling IC engine dynamics. 
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As stated, torque balancing methods are based on Newton's laws of motion, namely 

Newton's second and third laws.  Newton's second law can be simplified to the sum 

of all external forces applied to a body equating to the product of the body's mass 

and its acceleration, shown in equation 2.1.  

 

                                                                       

and                                                    

 

                                                                       

                                                 

Equation 2.1 is the standard form of Newton's second law for linear motion where 

  is the force applied to the body,   is mass of the body and   is the acceleration of 

the body. Equation 2.2 is the application of Newton's second law for rotary motion 

and is used in constructing the parametric model; where   is the torque applied to 

the body,    (or   depending on convention) is the mass moment of inertia of the 

body and   is the angular acceleration of the body (   is the second derivative of 

angular position). 

 

Equation 2.2 is used in conjunction with the Newtonian third law of motion, which 

states that for every action, there is an equal and opposite reaction to construct the 

torque balancing equation. The net torque applied to the crankshaft,   , is equal to 

the sum of all the independent torques which are applied to the crankshaft, i.e.:    

 

                                                                     

where 

                                                                     

                                                   

Each torque term on the left-hand-side of equation 2.4 represents a parameter that 

directly impacts on the dynamic behaviour of the engine crankshaft. The definition of 

each torque is as follows:    is the indicated torque or gas pressure torque,    is the 

reciprocating torque,    is the torque generated by friction and losses,    is the load 

torque.    is the torque generated by other effects, discussed in greater detail in 

Section 2.2.4. This includes valvetrain and auxiliary components, dependent on 

engine age and configuration, plus the oil, water, and air conditioning pumps, 

alternators, superchargers and other hydraulic systems.  When considering these 
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applied torques with respect to the general form of the torque balancing equation, 

equation 2.3, it can be seen that the net torque applied is equal to the product of the 

moment of inertia of the engine  , and the angular acceleration   . The final forward 

model for determining crankshaft behaviour and the inverse model for reconstructing 

cylinder pressure, will be discussed later in the chapter. It is useful to briefly show 

the general form of each of these models alongside the description of the torque 

balancing equation.    

        
  
 
                                                                      

 

                                                                                

 

Equation 2.5 is the general form for the forward model using the net torques and 

engine inertia to generate the kinematic behaviour, whereas equation 2.6 presents 

the required structure for inverting the crankshaft kinematics and gives an indication 

of the key parameters required to reconstruct cylinder pressure.  

 

One key aspect to make clear at this point, is that all modelling undertaken with 

respect to crankshaft kinematics will only be considering vertical loading on the 

piston crown, assuming negligible side thrust. This was considered appropriate 

owing to the engine geometry, to be discussed in chapter 4, and also because the 

impact of this on the crankshaft kinematics is more closely related to friction, than 

gas pressure, or reciprocating torque, and can therefore be considered together. 

 

2.2.2 Gas Pressure Induced Torque 
 
The torque generated by in-cylinder gas pressure variations is conceptually quite 

simple, i.e. based on the use of a crank-slider mechanism. The gas within the 

cylinder exerts a force onto the piston crown and rings, in proportion to the in-

cylinder pressure, either a result from compression or the combustion. This force is 

transmitted through the connecting rod and to the crankshaft generating a torque 

relative to the gas pressure. However, as mentioned in the introduction, 

reconstructing gas pressure is a highly complex process with numerous variables. 

As a result, there are several key principles and effects that need to be mentioned 

which relate to this crank-slider mechanism and the gas pressure. These relate to, 

and are better described alongside, the theory.   
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Figure 2.1: Diagram of Crank-Slider Mechanism for Gas Pressure Torque 
Calculations (left) and Effective Crank Radius and Resolution (right) 

 

The most straightforward of these is the geometry of the crank-slider mechanism, 

shown in Figure 2.1. Although the geometry is simple, piston offset has a significant 

effect on the gas pressure induced torque. The primary motivation for using a 

significant amount of piston offset is in respect to NVH; however, piston offset plays 

a significant role when understanding the relationship between cylinder pressure 

and crank kinematics. The offset of the small end bearing, relative to the centreline 

of the cylinder, has a considerable effect on the torque, effectively shifting its phase. 

This is also closely related to another key principle, namely resolution, which will be 

described alongside offset. Resolution relates to the effect of the gas pressure 

torque on the crankshaft as the shaft rotates. The term effective radius, which will be 

used throughout the thesis, is defined as the horizontal component of the crank pin 

motion, shown in Figure 2.1. As the crankshaft rotates, the effective radius of the 

crank varies, varying the gas pressure torque with respect to the crank angle,  , 

also shown in Figure 2.1. This torque variation has a considerable impact on the 

transmission of the gas pressure force when the piston moves through TDC and 

BDC. This effect can be clearly demonstrated in equation (2.16) which describes 

resolved crank force   . In the regions that crank angle approaches 0/180/360 

degrees, the gas pressure induced force reduces to zero. Understanding the 
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principle of how the gas pressure induced force and as a result torque is crank angle 

dependent is important in the modelling of the crank kinematics. It is especially 

important later in the thesis when considering the inverse kinematics.       

 

   
 Figure 2.2: Piston Offset Comparison at Top Dead Centre. (Solid grey line - 

zero piston offset. Dashed black line - 0.01 m piston offset.)  

 

 

To further explain the relationship between the piston offset and resolution, it is 

necessary to consider two situations: one with zero piston offset, and one with 

substantial piston offset. If an engine has zero piston offset, assuming the peak 

pressure within the cylinder occurs at or near TDC, the resultant torque is massively 

compromised. This would be caused by the effective crank radius reducing to zero, 

resulting in a negligible transfer of energy from the combustion gases to the 

crankshaft and a loss of information relating to the maximum pressure. However, 

this effect is not limited to TDC, it also has a significant impact for a period 

immediately before and after TDC owing to the relationship to the crank angle, 

Figure 2.1. In contrast, if an engine has a considerable piston offset, again assuming 

the peak pressure within the cylinder occurs at or near TDC, the resultant torque is 

less compromised in comparison. This is a result of the effective radius at TDC, 

shown in Figure 2.2. It can be seen that with significant piston offset, TDC occurs 

later in the cycle, effectively shifting its phase, resulting in the crank angle being 

larger than zero at TDC. This delayed TDC, relative to having zero piston offset, 

also delays the occurrence of the ignition and as a result peak pressure within the 
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cycle. This delay produces a small effective crank radius, generating gas pressure 

related torque and imparting information relating to the maximum pressure to the 

cranktrain.  

 

 

Another important principle to identify is the domain used to describe the gas 

pressure torque i.e. whether time, or crank angle domain. The gas pressure torque, 

  , and the crank angle,   will shortly be demonstrated. However, the gas pressure 

described in the introduction, is also obviously related to the gas pressure torque, 

and is predominantly best described within the time domain. Examples of this 

include the in-cylinder air motion, the fuel injection durations, the fuel burn rate and 

combustion related pressure rise. Consequently, the gas pressure torque is in a 

combination of both time and crank angle domain. Again, the importance of this is 

not evident at this stage but the effects of this will be examined fully.    

 

With respect to modelling the gas pressure induced torque, the starting point is at 

the interaction between the cylinder gases and the piston ring pack (piston and 

piston rings). This interaction is central to the function and effectiveness of the IC 

engine. This can be described using a simple relationship of force on the piston ring 

pack (gas pressure force,     with the gas pressure,   , and cylinder area,   , are 

given by:   

 

                                                                           

and 

        
  

 
                                                                 

 

Where the cylinder area can be expressed in terms of the cylinder bore, b. 

 

This section concentrates on examining the transfer of the piston force to the 

crankshaft via the connecting rod.  Figure 2.1 is the representation of the crank-

slider mechanism that is used in the construction of the model and defines the most 

important variables. These variables include:  , the angle between the crankshaft 

and vertical plane,   the angle between the connecting rod and vertical plane,   the 

radius of the crank,   the length of the connecting rod, and    the piston offset. Other 

important definitions also include     and    which are the forces acting on the crank 

and the tangential force acting on the crankshaft.  These use trigonometric identities 
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to expand and simplify a relationship between the motion of the crankshaft and the 

connecting rod. Using Figure 2.1, the kinematic equation associated with crank pin 

is: 

 

                                                                   

and 

      
      

 
   

  

 
                                                      

then 
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This trigonometric relationship can be used to find the vertical force acting on the 

crank. The crank pin force is given by: 

    
  
    

                                                               

and using equation (2..12) is: 

      
   

  

 

    
  

  
         

 
           

  
  
 
  

                                 

 

This resolved crank force    is given by:   

 

                                                                  

or 

                                                                    

or 

    
  

    
                                                                                                         

which expands to : 
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The resolution of the tangential crankshaft force    , from the crank force, equation 

(2.15), can be produced using the illustration in Figure 2.1. Equations (2.17) to 

(2.19) show the expansion and simplification of equation (2.16) to produce an 

equation which relates the tangential force to cylinder pressure, engine geometry 

and crank angle.   

 

The final solution of the gas pressure induced torque is:  

 

         
  

 
 

 

 
     

      
 

   
  
 
  

    
  

  
         

 
 
          

  
  
 
  

      

 

                       

 

This is formed by the multiplication of the tangential crankshaft force and the crank 

radius. This solution is more complex than others (Bennett, 2014) as it includes the 

piston offset which has been shown to have a significant impact on the gas pressure 

torque. 

 

Figure 2.3 is a worked example of the gas pressure induced torque calculation. This 

was undertaken using the engine geometry and data used in this thesis, a 4-stock I3 

gasoline engine (see Chapter 4). This was calculated from a test condition at 1000 

rpm and 10 Nm. The figure shows both the gas pressure torque for Cylinder-1 and 

the combined gas pressure torque from all three cylinders. 
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Figure 2.3: Gas Pressure Torque for Cylinder 1 (black dashed line) and 
Combined Gas Pressure Torque for Three Cylinders (grey solid line). 

 

 

2.2.3 Reciprocating Inertia Forces and Torque 
The reciprocating inertia forces and torque generated by the piston ring pack and 

the connecting rod, behave in a similar way to the gas pressure torque in that they 

are periodic, with primary variables including crank angle and engine geometry. The 

key difference is the increased frequency. Owing to the relationship between the 

frequency of the combustion and engine speed, the frequency of the reciprocating 

inertial forces are double that of the combustion frequency. These forces are 

generated through the cyclic vertical motion of the piston ring pack and the 

connecting rods, which results in reciprocating inertia torques. This acceleration is 

produced by the sinusoidal motion of the piston assembly, where the vertical 

component of the speed at TDC and BDC reduces to zero and at its maximum mid-

stroke. Another significant variable, which ties in closely with the acceleration, is the 

engine speed. Higher engine speeds generate greater acceleration of the piston 

assembly at TDC and BDC.  
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Figure 2.4: Diagram of Crank-Slider Mechanism for Reciprocating Inertia 
Forces and Torque Calculations 

 

The approach to the reciprocating inertia calculations is initially similar to the gas 

pressure torque calculations. The basic equations are formed using Figure 2.4 and 

straightforward trigonometric relationships. These equations are then differentiated 

twice with respect to the crank angle to generate the acceleration. This is then used 

in combination with Newton's second law and resolved for the tangential force. The 

reciprocating inertia torque can then be found. This approach will be demonstrated 

separately for both the piston ring pack and the connecting rod. 

 

Piston Ring Pack Inertial Torque 

The vertical displacement of the piston ring pack is given by: 

 

                                                                        

 

and using equations (2.10) and (2.11): 
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Equations (2.21) and (2.22) are the equations found through resolving the vertical 

displacement,         , of the piston relative to the crank axis. The vertical 

displacement of the piston was then differentiated twice. The first derivative was 

found through standard techniques. However, owing to the complexity of the second 

differential, this derivative was computed using the MatLab symbolic calculator 

MuPAD: 
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Equation (2.23) is the first differential of piston displacement, piston velocity          , 

and equation (2.24) is the second differential of piston displacement, piston 

acceleration,         .  

 

Using Newton's second law and including the gravitational force of the piston ring 

pack, the force exerted through the crankshaft,   , can be found.  This force can be 

resolved for the tangential crankshaft,   , force using Figure 2.1.  

 

                                                                                 

and 
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Equations (2.25) to (2.27) show the development of the final solution for the 

reciprocating inertial torque generated by the piston ring pack,     . 

 

Connecting Rod  Inertial Torque 

The vertical displacement of the connecting rod centre of gravity is given by: 

 

                                                                          

 

The connecting rod reciprocating inertial torque is found using the same approach 

as the piston ring pack inertia. Again, the basic equations are formed using Figure 

2.4 and straightforward trigonometric relationships, equation (2.28). The structure of 

equation (2.28) closely resembles that of equation (2.21), apart from the use of   in 

place of  , where   is the distance between the crank axis and the connecting rod's 

centre of gravity. The detailed development of the connecting rod reciprocating 

inertial torque will not be provided in this section, see appendix A. This is owing to 

the similarities between the initial equation and the use of the same approach: 

finding the second differential of the connecting rod's centre of gravity vertical 

displacement, using Newton's second law, resolving for the tangential force and 

then the reciprocating inertial torque,     . 
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 Figure 2.5: Combined Piston Inertia Torque (black dashed line) and Piston 
Inertia Torque for Three Cylinders (grey solid lines). 
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Figure 2.6: Combined Connecting Rod Inertia Torque (black dashed line) and 
Connecting Rod Inertia Torque for Three Cylinders (grey solid lines). 

 
 
 

Figure 2.5 and 2.6, are worked examples of both the piston ring pack and 

connecting rod reciprocating inertial torque calculation. This was undertaken using 

the same engine geometry and data used within section 2.2.2. Figure 2.5 shows the 

combined piston inertia as well as the individual piston inertias. Figure 2.6 shows the 

combined connecting rod inertia as well as the connecting rod inertia for all three 

cylinders individually.  

 

Giving the equations in this form brings forward one important characteristic of the 

particular engine: the connecting rod inertial torque is significantly larger than the 

piston inertia. This was not anticipated, but an explanation for this can be described 

with respect to equation (2.29) and the description of the engine in Chapter 4.  

Firstly, the mass of the connecting rod is significantly larger than the piston, ≈1.5 

times greater. The second reason is the ratio of the crank radius to the length of the 

connecting rod,    . However, in equation (2.27), the connecting rod length,  , term 

is replaced by the connecting rod centre of gravity position  . As a result of   being 

a fraction of  , the     ratio causes the connecting rod inertia torque to be greater 

than the piston inertia torque.  
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2.2.4 Friction Torque and Other Losses 
This section is divided into two distinct areas. The first is concerned with the engine 

friction, and the second focuses on the issue of additional mechanical losses that 

would impact on the modelling of the crank kinematics. The following will be used as 

reference, but will not be used in the single or multi-cylinder models owing to the 

complexity and because it relates to specific engine units. 

 

Engine friction is one of the most complex areas in IC engine development 

especially within the field of engine modelling. IC engine friction losses also account 

for up to 5% of total engine power. Figure 2.7, shows a breakdown of the losses in a 

typical engine. This section will cover the fundamentals and basic calculation 

methods for the key sources of friction.      

 

 

Figure 2.7: Energy Dispersion within a Typical IC Engine (IC Engine Energy, 
2005) 

 
 

There are numerous sources of friction in an IC engine. The largest of these include 

the piston rings and skirt, the big end bearing and main journal bearings. Other less 

important examples include the small end bearing, the camshaft and auxiliaries. A 

list of auxiliaries is contained later in the section. Each of these sources of friction 

will be described in turn.            

 

With respect to the friction, the piston rings and skirt are the most complex 

components to model. There are many variables that impact on the piston rings, 
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skirt operation, and friction. These can include engine speed and load, magnitude of 

piston slap, tolerances, oil type and condition, engine wear and temperature.  

 

The simplest approach to friction prediction is through a thermodynamic approach, 

using Newton’s law of viscosity. An example of this approach is given in (Abu-Nada 

et al.,2008). Where Abu-Nada et al state that piston friction work, in the combustion 

chamber, consists of two major parts, i.e. the skirt friction and pressure ring friction.  

The irreversible friction work can be expressed in terms of piston speed, the skirt 

clearance, the clearance between the liner and the pressure ring, the oil dynamic 

viscosity, and the distance from top dead centre.  

 

Examples of friction modelling methods with increased complexity include (Sutaria 

et al. 2009) and (Bedajangam et al., 2013). Figure 2.8 gives the friction force 

variation of the piston rings and piston skirt though one cycle for a single cylinder.    

 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8: Variation of Upper Piston Ring Friction Force and Oil Film 
Thickness during an Engine Cycle (Rakopoulos et al, 2007) 

 
 

The next four main sources of dampling all behave similarly as they are located in 

the journal bearing; the main journal bearings, the camshaft bearing and the big and 

small end bearings.  Journal bearings (or plain bearings) consist of a shaft or journal 

which rotates in a supporting metal sleeve or shell. These are used over other 
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bearing types in IC engines owing to the distribution of the applied load over a 

relatively wide area, where the load is cyclical as a result of varying gas pressure. 

The bearings liable to be under the greatest loads are the main journal bearings, the 

big and small end bearings, as they directly transfer the varying gas pressure load. 

However, the load on the camshaft bearings still varies cyclically but is more 

predictable with respect to engine speed.   

 

Journal bearings may produce better distributed load than other types but friction in 

the bearing is significantly dependent on the surface roughness. Therefore, 

lubricants are used to substantially reduce the friction. Hydrodynamic lubrication, 

shown in Figure 2.9 and 2.10, results from high rotation speed and relatively low 

load, generating a thin film of lubricant h, greater than the surface roughness Ra. 

However, the variation in the loads on the bearings involved, can result in various 

regimes of lubrication occurring, including boundary (h>Ra), mixed (h≈Ra) and 

hydrodynamic lubrication (h<Ra). Varying lubrication regimes, not only cycle-to-

cycle but also varying within a cycle, is a source of complication for modelling 

journal friction in IC engines.   

 

Figure 2.9: Stribeck Diagram for Journal Bearing (Haywood, 2010) 

 

The Stribeck diagram, Figure 2.9, shows the lubrication regimes where the 

coefficient of friction  , for a journal bearing is plotted against a dimensionless duty 

parameter     , where   is the dynamic velocity of the lubricant, N is the rotational 
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speed, and    is the loading force per unit area (Haywood,  2010).  The coefficient of 

friction can be expressed as: 

 

                                                                

 

where    is the metal-to-metal coefficient of dry friction,    is the hydrodynamic 

coefficient of friction and   is the metal-to-metal contact constant, varying between 0 

and 1. 

 

Figure 2.10: Hydrodynamic Journal Bearing (Kopeliovich, [no date])  

 

 

Below is a summary of the variables that may cause a reduction in the oil film 

thickness causing direct contact between the bearing and journal surfaces 

(Kopeliovich, n.d.) and need to be considered when modelling. 

 

 oil starvation, high loads;  

 low rotation speed;  

 low viscosity oil;  

 elevated temperature 

additionally decreasing the oil 

viscosity;  

 roughness of the bearing and 

shaft surfaces;  

 oil contaminants;  

 geometrical distortions and 

misalignments. 
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Another consideration needed when modelling the friction of journal bearings within 

IC engines is its variation with respect to time. All journal bearings are at risk of 

wear, which could either increase or decrease relative friction levels, and the 

formation of cavities through cavitation, which would impact surface roughness 

negatively.  

 

To demonstrate the complexity of fiction models, a series of equations (Kamil et 

al.,2013) are explained fully in Appendix A. These are equations for the calculating 

the friction mean effective pressure (FMEP) for the crankshaft, the reciprocating and 

the valvetrain friction.  

 

The large numbers of variables that affect both the piston ring pack and journal 

bearing friction levels, alongside the friction generated by the numerous auxiliary 

components attached, leads to the modelling becoming extremely complex.  Within 

this thesis, the task of accurately modelling the I3 would be large, unnecessary and 

will not be undertaken. However, use of parametric equations to model either engine 

kinematics or inverse torque models to reconstruct cylinder pressure; the friction 

plays a considerable part. Therefore, it would be necessary to generate a 

comprehensive model for      containing as many of the variables, outlined above, 

containing the ability to adapt to wear and manufacturing tolerances.        

 

In addition to friction losses in IC engines, there are noteworthy energy losses from 

internal operations such as pump and camshaft load, and from auxiliary devices 

necessary for engine operation, such as hydraulic, electricity harvesting and air 

conditioning. Pumping losses are generated by the piston drawing in and expelling 

gases within the cylinder during the inlet and exhaust strokes. Camshaft torque 

comes from the force required to open valves, from inertia and from transmission of 

power (belt or chain).  There are numerous hydraulic systems in an automobile that 

draw energy. These include the oil and water pump, steering, and braking systems.  

 

2.2.5 Engine Inertia Calculations Including 
Consideration of the Dynamometer and Engine Couple  
 
The previous three sections have focused on the different torques generated and 

lost through the engine, with respect to equation (2.3) and (2.4). These torques have 

been shown to be straight forward to calculate of an ideal engine, as are the mass 

moment of inertia of an ideal engine even with complex geometries i.e. the 
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crankshaft. However, difficulties arise when calculating the torque and the inertias 

for real engines with production defects, tolerance issues and wear. These would 

only be able to be determined accurately through experimentation which is not 

possible with the final application; production vehicles.  

 

 

 

Figure 2.11: Illustration of I3 Engine Including Dynamometer  
 
 

Fortunately, the exact values for the crankshaft, flywheel and dynamometer inertia 

are known for the I3 DISI engine used in this research. The known values for the 

crankshaft and flywheel are 0.02579 kgm^2 and 0.12021 kgm^2. However, to be 

thorough and to demonstrate the effort required to find the inertia of a crankshaft for 

the single cylinder model, the basic equations are set out in appendix A. The work 

into determining moments of inertia with complex shapes was undertaken by Hajderi 

and Hajdari and is the basis for the following equations (Hajderi and Hajdari, 2012). 

 

So far this chapter has only considered 1 degree of freedom models. The extension 

to a 2 degree of freedom model is conceptually simple as can be seen in equation 

(2.31) and (2.32).  It is the same basic form used in equation (2.3) and (2.4). 

However, it also contains two additional terms,    for the torque losses from the 

couple stiffness and    for the torque losses from the couple damping.  

 

Engine 

Dynamometer 
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Figure 2.13: Illustration of a 1-Cylinder engine coupled to a dynamometer 2-
DOF model (Potenza, 2006) 

 
 

Simple 2 degree of freedom single cylinder engine model:  

 

                                                                   

 

                                                                       

 

Where the T subscript i represents is the indicated torque, r the reciprocating torque, 

f the friction, l the dynamometer load, o other losses, K the stiffness of the coupling 

and D the damping of the coupling. As a result of the difficult in isolate all of these 

values for the I3 engine, they will not be included in the single cylinder or multi-

cylinder models. 

2.3 Single Cylinder and Multi-Cylinder Model 

The construction of the single cylinder equations was undertaken for a 1- degree-of-

freedom (DOF) model, assuming no torque losses as a result of friction or auxiliary 

components and a solid coupling between the engine and the dynamometer.   

 

       
            

  
                                                             

 

The model takes the general form of equation (2. 33). The complete 1 DOF 

frictionless model is presented in appendix A. Figure 2.14 shows the theoretical 

acceleration for the single cylinder engine model. The cylinder pressure and 
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dimensions used in this example were taken from the I3 engine geometry. Where 

necessary, the values were adjusted to match the single cylinder example, namely 

crankshaft inertia. This model was not created for accurately modelling crankshaft 

acceleration or to reconstruct cylinder pressure, using parametric models. Its 

primary use was to formulate a sound understanding of engine dynamics. This 

included understanding the factors that influence the cylinder pressure / crankshaft 

kinematic relationship, as well as highlighting fundamental characteristics of IC 

engines that may limit the cylinder pressure reconstruction potential.        

 

 
 

Figure 2.14: Single Cylinder Model Theoretical 1 DOF Frictionless Example  

 

The development of the multi-cylinder equations, 3 cylinders in this example, was 

undertaken again for a 1 degree of freedom (DOF) model, with the same 

assumptions: no friction or auxiliary components and a solid coupling. Similar to the 

single cylinder model, this three cylinder model also helped formulate a sound 

understanding of the engine dynamics. However, the three cylinder model had 

additional benefits. The three cylinder model helped realise the connection between 

the cylinders and the cross over points with regards to individual cylinder 

dominance. The three cylinder model also helped in formulating key strategies and 

will be used throughout this thesis, including the concatenation of the pressure data 

(Section 2.5) and the training approaches (Chapter 5). 
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The single cylinder model used the gas pressure torque, reciprocating piston and 

connecting rod torques and moment of inertia, in phase with a single crankshaft 

angle. With the three cylinder model, these torques will be considered for each 

cylinder with independent gas pressures and phased correctly. The three cylinder 

model takes the general form;  

 

       
           
 
        

  
                                                  

 

where torques for each cylinder is incorporated. The complete three cylinder 1 DOF 

frictionless model is also presented in appendix A. 

 

 

Figure 2.15: Three Cylinder Model Theoretical 1 DOF Frictionless Example 
(Dashed black) and Measured Three Cylinder Acceleration (Solid grey)  

 

 
Figure 2.15 shows a theoretical prediction of the acceleration from the three cylinder 

engine model alongside the I3 engine measured results previously obtained by 

Bennett  (Bennett, 2014) . Even though there is some agreement with regards to the 

phasing and the relative position of the three peaks in each, the differences are 

notable. These differences include reduced maximum and minimum values, more 

irregular profiles and the accelerations are more distributed in the measured data 

compared to the larger localised accelerations in the model. This was expected 

owing to the assumptions of no friction or auxiliary components and a solid coupling, 
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but as stated, the aim of this thesis was not to accurately model crankshaft 

acceleration parametrically. The modelling of the friction and other complex non-

linear aspects will be undertaken within the non-parametric models selected later in 

the thesis. 

 

2.4 Theoretical Inverse Kinematic Modelling and 
Inherent Complexities 

The primary aim of this thesis is to reconstruct cylinder pressure through the inverse 

torque modelling of the crankshaft kinematics and engine block acceleration. The 

forward models presented in this chapter are useful to demonstrate the difficulty and 

complexity in producing accurate parametric models for crankshaft kinematics. 

However, there are additional complications in inverting these models. 

 

To demonstrate the most important complication in the inversion of the parametric 

engine model, a simpler gas pressure related crankshaft kinematics equation was 

used (2.30), ignoring piston offset and reducing the smaller terms to zero (Bennett, 

2014).  

          
  

 
        

      

 
                                             

                                  

    
   

  
  

      
   

      
    

                                             

 

Equation (2.36) is the inverse of the simplified gas pressure related crankshaft 

kinematics equation. Both examples of the forward and inverse models are 

presented in Figure (2.16).  
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Figure 2.16: Inverse Model using Simple Pressure Torque Model (black 

dashed line) and Measured Cylinder Pressure (grey solid line).   

 

The reconstructed gas pressure in Figure (2.16) shows an event that is not present 

in the gas pressure data. Surrounding TDC, the reconstructed gas pressure spikes 

producing a large error. This spike results from the        term in the inverse model, 

equation (2.36).  Inverting      forms a significant issue for the reconstruction at 

both TDC and BDC, where crank angle   is 0˚ and 180˚, the inverse of       

becomes infinite.  This causes problems when reconstructing as these large errors 

are present four times per cycle for each cylinder. Methods have been created to 

overcome this problem at TDC for parametric models, e.g. (Chen and Moskwa, 

1997) and (Gao and Randall, 1999). These methods show improved capabilities in 

inverting the model at TDC but still do not adequately correct the reconstructed gas 

pressure. This is linked to the effective crank radius reducing to zero and a lack of 

information surrounding TDC. Even though the effective crank radius and the        

term have the greatest impact at TDC, they both have an effect before and after 

TDC. The magnitude of this impact plays a significant role in the reconstruction 

performance and will be an important focus of the thesis.  

 

In addition to the inverse of the sine in the gas pressure component of the model, 

the same issue will arise in other areas which vary sinusoidally. One area where the 

inverse of the sine term could impact significantly, is within friction modelling. There 

are other broader areas not taken into consideration in the models presented which 
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could impact on the inversion. These may include the inversion of the hydraulic 

systems, inversion of superchargers and other auxiliaries.  

 

The final consideration with regards to parametric models and their inversion is the 

practical role of noise in the reconstructed pressure. As in all automotive systems, 

noise can play a considerable role. However, the noise within the context of 

crankshaft angular acceleration is more critical.  As the measurement will be taken 

with respect to angular position, any noise within the measurements will be 

magnified when differentiated twice. This increased noise could result in additional 

high frequencies and unrealistic results within the reconstructed gas pressure, using 

the parametric models.    

  

Apart from the limitations of inverting the parametric models, one key aspect 

needing consideration is the application of the inverted model with respect to the 

gas pressure. The strategy used for the gas pressure is important as it dictates the 

accuracy of the final model. Within the forward multi-cylinder model, the pressure 

from each cylinder is used independently to produce a single output, crankshaft 

angular acceleration. When inverting the model, there is only one key input, the 

crankshaft angular acceleration, which in principle holds information on the gas 

pressure in every cylinder. However, there is no way of determining how the 

pressure from each cylinder impacts the total acceleration when considering the 

inverse model.  As a consequence of this, the pressures from all cylinders can only 

be considered as one, the total pressure required to drive the engine. Therefore, the 

pressure from all cylinders can either be summed or concatenated to form the target 

pressures when testing both parametric and non-parametric models.   
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Figure 2.17: Cylinder Pressures for I3 Engine Summed (Black dashed line) and 
Concatenated (Grey solid line)  

 

 

2.5 Theory of Engine Block Acceleration Forward 
Models 

The focus so far in this chapter has been on crankshaft kinematic based parametric 

modelling. This stems from the relative ease of creating a simplified kinematic 

models as well as aiding in the explanation of key ideas. The main difficulty in 

developing parametric model for engine block acceleration is the complexity of 

engine block geometry. Engine block acceleration models do not rely on the 

displacement or rotation of components; it is purely the transmission of pressure 

waves from the cylinder through the engine block. Therefore, with the complex 

profile of modern engine blocks with numerous cavities, a generic parametric model 

(similar to equation (2.20)) cannot be constructed.    

 

There is an approach undertaken by many researchers, as detailed in the literature 

review, which has had some success in parametric modelling of engine block 

acceleration; i.e.: finite element modelling. These models are used to examine high 

frequency vibration transmitted through the engine block. With finite element models 

it is also possible to model different dynamic events such as injector-pulse-forces, 

valve-impact forces, and piston-slap induced forces (Vulli, 2006). 
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However, there are significant limitations to using finite element models with respect 

to both the size of the model, and inverting the model. The size issue is a result of 

the high frequencies in the block acceleration. To accurately model these high-

frequency, low-wavelength accelerations, particularly small elements are required. 

The requirement of small element size and the complex geometry, drives the need 

for an extremely large model.      

 

When inverting a finite element model of engine block acceleration, there are two 

key interconnecting factors; the size and the nature of what is being asked. The size 

plays a significant role in the inability to accurately invert the model. These models 

are set up in such a way that the cylinder pressure is applied to a large area 

containing several hundred nodes. However, most often, only one node is used to 

measure block acceleration. The idea, that a single input to a model can contain 

sufficient information to suggest the pressure being applied to several hundred 

nodes, is difficult. This idea is comparable to the discussion on concatenating the 

pressure data; generally within parametric models, a single input cannot distinguish 

between several outputs. For this very reason the techniques predominantly used in 

reconstructing cylinder pressure from engine block acceleration are not parametric 

or statistical models such as using the EM algorithm by (Villarino and Böhme, 2003).   

 

All the limitations of inverting physical parametric-based models discussed have 

caused researchers to investigate non-parametric methods of modelling the 

reconstruction of cylinder pressure. One type of non-parametric model is discussed 

in detail in Chapter 3, i.e. Artificial Neural Networks. 
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Chapter 3  

Artificial Neural Networks and their 
Application  
 

 

 

 

3.1 Motivations and Background 

The complexity and limitations of using parametric models to create and fit an 

inverse model for the purpose of reconstructing cylinder pressure has been proven. 

Therefore, it is necessary to use other types of models and modelling techniques to 

achieve the desired accuracy.  A model would need to be non-parametric with the 

capability of describing highly complex non-linear behaviour. Consideration has to 

be given to the operation of the model in the final system. It has been suggested 

that the models most likely to meet all these criteria are Artificial Neural Networks 

(ANNs). The use of these models has been shown with some success in similar 

applications, in (Gu et al., 1999) and (Potenza et al., 2007). But the overall accuracy 

and efficiency needs to be significantly improved. 

    

This chapter will introduce ANNs from their conception through to the challenges in 

their applications. The chapter will start by discussing the general area of machine 

learning and the origins of ANNs. This is followed by introducing the most basic form 

of ANN, the perceptron. The chapter then describes four of the most commonly 

used ANNs classified with respect to architecture: (i) the single layer feed-forward 

network, (ii) the multilayer perceptron, (iii) the radial basis network, (iv) recurrent 

neural networks. The most popular training methodologies will then be described 

briefly, followed by a detailed examination of the Levenberg-Marquardt algorithm, 

used extensively in training the feed-forward neural networks used in this thesis. 

The penultimate section of this chapter will discuss key considerations in training, as 

well as the approach required for the optimisation of ANNs.  The final part of the 

chapter will review automotive applications of ANNs.  
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3.2 Machine Leaning and Artificial Neural Networks 

Machine learning is an extremely broad area of computer science. It involves the 

development of programs that learn and act without being explicitly programmed. 

Machine learning applications include internet search engines, spam filters, 

recommender systems, advertisement placement, credit scoring, fraud detection, 

stock trading and drug design. More recently has covered self-driving cars, practical 

speech recognition, and as a tool to greatly improve the understanding of the human 

genome. Machine learning is also widely considered to be the most likely route to 

produce human-level Artificial Intelligence (AI). Machine learning has become 

increasingly attractive, avoiding the need to manually construct programmes to 

undertake these complex tasks, and has grown in popularity in computer science, 

engineering and in the physical and life sciences.  

 

The extremely broad area of machine learning comprises a number of different 

approaches depending upon the application. These approaches include decision 

trees, inductive logic programming, support vector machines, clustering, Bayesian 

networks, and genetic algorithms (GA). Machine learning and the approaches 

mentioned can also be classed in three additional ways namely: supervised, 

unsupervised, and reinforcement learning. Supervised learning is the learning of a 

function from labelled data where the input and output data is defined. Unsupervised 

learning is the learning of an unknown function from unlabelled data, where the input 

data is defined but output is not, and reinforcement learning is the learning of 

behaviour from labelled sequential data. However, one of the most researched 

machine learning approaches, and the approach used in this thesis, is the 

supervised learning of Artificial Neural Networks, which more recently has been 

rebranded as 'Deep Learning'. 

 

As described in (Haykin, 2008), artificial neural networks have been motivated by 

the design of the human brain. The human brain can be described as a highly 

complex, nonlinear, and parallel computer with the capability of organising its 

structural constituents, i.e. neurons, to perform computations many times faster than 

the fastest digital computers in existence today. These computations can include 

pattern recognition, perception, and motor control.  One of the most remarkable 

characteristics of the human brain is its ability to learn. At birth, the human brain has 

an adequate amount of structure to preserve life, but also has the potential to learn 

extremely complex relationships, through "experiences", at a remarkable rate.   
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Figure 3.1: the Human Neuron  
 

Figure 3.1 illustrates a human neuron. A neuron is an electrically excitable cell that 

processes and transmits information by electro-chemical signalling. The average 

human brain has about 100 billion neurons and each neuron may be connected to 

up to 10,000 other neurons, passing signals to each other via as many as 1,000 

trillion synaptic connections. Estimates of the human brain’s memory capacity vary 

wildly from 1 to 1,000 terabytes of data (by comparison, the 19 million volumes in 

the US Library of Congress represents about 10 terabytes of data).  

 

Artificial neural networks attempt to mimic this ability through a computational 

model, which contains a series of interconnected neurons that are trained to 

undertake tasks. The aim is to take advantage of this potentially large processing 

power and maximise its capabilities. These include the ability to be either linear or 

non-linear, depending on the structure, and the ability to undertake input-output 

mapping through supervised learning and to adapt to environmental changes.  

 

The history of artificial neural networks is relativity long compared to other types of 

machine learning approaches. The first concept of an artificial neural network was 

proposed in order to describe how neurons in the brain might work and modelled 

using electrical circuits by neurophysiologist Warren McCulloch and mathematician 

Walter Pitts in 1943. A neural network was first applied to a real world problem in 

1959 by Bernard Widrow and Marcian Hoff. They developed two models, that are 
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comparable to current models, which they called "ADALINE" and "MADALINE." 

ADALINE was developed to recognise binary patterns so that if it was capable of 

reading streaming bits from a phone line, it could predict the next bit, and 

MADALINE was developed to eliminate echoes on phone lines using an adaptive 

filter (which is still in commercial use). Artificial neural networks have grown 

enormously since their development in the 1980's, particularly as computational 

power has increased.    

 

3.3 The Perceptron  

The human brain organises its structural constituents called neurons, to undertake 

certain tasks. Similarly, ANNs are constructed with smaller components, namely the 

artificial neuron, commonly referred to as just a neuron. The best method of 

describing how neurons (and ANNs in general) work is first to describe a basic ANN.  

The simplest ANN structure consists of a single neuron called the perceptron.   

 

 

Figure 3.2: The Perceptron 
 

Figure 3.2 shows a perceptron, where it can be seen that there are several key 

elements, some of which are analogous to human neurons. The network has 

multiple inputs which are connected to the neuron through synaptic connections. 

These synaptic connections are individually weighted similar to the synapse of the 

human brain. These weighted inputs are then added, along with an additional 

weighted input, called the bias. The value of the bias is nominally 1 which applies an 

affine transformation to the inputs, which produces a translation of the summed 

inputs. This value is referred to as the induced local field and is analogous to the 

axon's signal (in Figure 3.1). This then passes through an activation function which 

is used to transform the activation level of a neuron into an output signal, also 
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referred to as a squashing function. The most common activation functions are 

shown in (Figure 3.3). The resultant signal is the output of the ANN, and is 

analogous to the synaptic terminals in the human neuron.  

 

Mathematically the processing of the information passing into a neuron is given as: 

 

         

 

   

                                                                

and 

                                                                           

 

Equation (3.1) and (3.2) are basic equations of a perceptron ANN. The network 

inputs are represented by variable     and the input synaptic weights are represented 

by   ,    is the neuron bias with    being the induced local field,    is the activation 

function, and   the network output.  

 

The activation function of a neuron, equation (3.2), uses the induced local field value 

to determine the output of the neuron. These transfer functions can take several 

forms depending upon network structure and requirements of the model, and can be 

linear or non-linear. Examples of the most common activation functions include the; 

threshold function (Heaviside function), the sigmoid function, the piecewise linear 

function and the Gaussian function. Figure 3.3 shows the graphical representation 

for some common linear and sigmoid activation functions.  Figure 3.6, in section 

3.4.3, presents a graphical representation of a Gaussian activation function.  

 

 

 

Figure 3.3: Transfer Functions 
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Since the basic structure of the perceptron has been described, it is now possible to 

describe, in simple terms, the method in which these perceptron structures can 

adapt and learn to undertake tasks. Equation (3.1) and (3.2) show the mapping of 

inputs    to output  . The ability of the mapping to be accurate for a given activation 

function is dependent upon the values of the input weights and the bias. Varying 

these values will change the outputs from the perceptron. This dependence on the 

weights and the bias is key to producing an accurate model using an ANN. The 

objective is to find a combination of the weights and bias that will produce the 

required mapping capability. This is generally undertaken using an optimisation 

algorithm as described in Section 3.5.   

 

The examination of the perceptron is important to describe both the basics of the 

artificial neuron, and ANNs in general. However, apart from very few examples, the 

use of the perceptron is limited, since it does not have the capability to be used 

practically for mapping, pattern recognition or prediction. Therefore, in order to 

increase the capability of an ANN, neurons are grouped together to form a network. 

The greater the complexity of these interconnected neurons the greater the 

capability to be able to model highly complicated non-linear systems. But an 

increase in the number of neurons is not the only method of improving an ANN's 

capability. The arrangement of these neurons, as well as the types of connections 

between them, can have a significant on training efforts. A description of four ANN 

architectures is now given.  

 

3.4 Artificial Neural Network Architectures 

The development of the ANN has been rapid and, as a result, there are a large 

number of network architectures, for a variety of applications. However, only four 

different ANN architectures have been proven to work successfully on a wide range 

of applications, including some success on reconstructing cylinder pressure. These 

architectures include the single-layer feed-forward, the multilayer perceptron, the 

radial basis, and recurrent neural networks. Time-delay neural networks will also be 

discussed within the multilayer perceptron sub-section, owing to their similarity. This 

section will describe each network, including the approach required, highlighting the 

network's limitations, ultimately to assist in the selection of an appropriate neural 

network.  
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3.4.1 Single Layer Feed-Forward Network 
The single-layer feed-forward neural network is the simplest structure out of the four 

that will be discussed. As the name suggests, the network consists of a single layer 

of neurons with n inputs and equal number of neurons and k outputs. The 

connectivity of the network is relatively simple since each input is connected to all 

neurons, producing n x k connections, and the output is directly obtained from each 

neuron. The network is 'feed-forward' because the information is considered to flow 

in the forward direction. There is no specific rule in the choice of activation function 

for a single-layer feed-forward neural network. However, for most applications, 

threshold functions are used. In general the output of a single-layer feed-forward 

network is given as: 

 

 

 

 

 

 

 

 

 

Figure 3.4: Single Layer Perceptron Network Architecture  

 

            

 

   

                                                            

 

Where the network inputs are represented by     and the input synaptic weights are 

represented by    .    is the neuron bias with   being the activation function,    the 

network output, and k is the neuron number.  

 

The training time of any neural network can vary significantly depending upon the 

number of neurons. However, its relatively small size and few connections has the 

benefit of quick and reliable training. But the architecture's small size, prevents the 

network from representing complex relationships. For example, this network does 

not generally lend itself to the solution of time series problems. In principle, the 

ability to undertake exceptionally simple time series tasks can be improved by using 

the time-delay approach as now discussed.        
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3.4.2 Multilayer Perceptron and Time-Delay Networks 
The multilayer perceptron and time-delay networks will be discussed together as the   

time-delay network is a variant of the multilayer perceptron network. They share the 

same basic structure and equations, with only the different being the inputs 

designation. The more general multilayer perceptron network will be discussed first. 

The multilayer feed-forward neural network, or more commonly known as the 

multilayer perceptron (MLP) neural network, is the frequently used network which 

forms the fundamental structure of many architectures. The basic form of an MLP is 

shown in Figure 3.5, comprising multiple layers of neurons, with n inputs with k 

neurons in multiple layers and outputs. 

 

 

Figure 3.5: Multilayer Perceptron Network Architecture (2 hidden layers and n 
neurons) 

 

There is no restriction on the number of layers or outputs in a MLP network. The 

final layer of an MLP network is called the output layer. Conventionally, the 

preceding layers are referred to as 'hidden' layers, labelled 1 to l. The example in 

Figure 3.5 has 2 hidden and 1 output layer with a single output. The connectivity of 

the network is the same as the single layer feed-forward network architecture, with 

the additional connections between each layer in the forward direction. Similarly, 

there is no specific rule in the choice of activation functions for MPLs. However, for 

most applications, linear activation functions are used for the output layer and a 

sigmoid function is generally used for the neurons in the hidden layers. The 

selection of different activation functions produce networks with differing 

characteristics and can require fundamentally different approaches, namely training.    

 

The mathematical description of a multilayer perceptron network with a single 

hidden layer is given by: 
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The network inputs are represented by  , the synaptic weights are represented by 

 .   is the neuron bias with    being the activation function of the hidden layer,    

is the activation function of the output layer, and   is the network output, where k is 

the neuron number. l is the layer number.  

 

This network architecture is suitable for a wide range of complex problems, such as 

mapping, pattern recognition, or prediction. This ability to handle complex problems 

is highly dependent upon the number of neurons and the number of hidden layers. 

Increasing both should expand the potential. However, the increased size and 

number of connections impacts the speed and reliability of training. Therefore, this 

network does not generally lend itself to the solution of time series problems as it 

does not have the capacity for internal memory, thus has no perception of time 

variations. This network architecture does, however, have the ability to do some 

fairly complex time series tasks by using time-delays, as now explained.  

 

Time-Delay Neural Networks   

Fundamentally, time-delay neural networks are structured the same as the 

multilayer perceptron. The difference lies in the approach to using the network. In 

general, MLP networks use a number of different inputs which are normally not time 

dependent, whereas time-delay networks use a series of inputs comprising a single 

variable, along with previous states. This effectively produces a network with a 

short-term memory (depending on the number of delays) which is simulated in 

practice using a 'tapped delay line'.  Figure 3.6 shows the structure of a time-delay 

neural network. It is identical to the structure of the MLP in Figure 3.5 with the 

exception of the different input designations. 
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Figure 3.6: Time-Delay Network Architecture 
 

The use of a time-delay network approach has significant advantages over the MLP 

network as it is much more suited to solving time series problems, without 

significantly increasing the network size or training effort. However, even with the 

short-term memory gains, there may be, in some instances, difficulties in training 

complex problems with longer-term memory. Chapter 5 addresses this question in 

connection with reconstructing cylinder pressure. 

 

3.4.3 Radial Basis Function Network 
As stated, the multilayer perceptron network is the basis for numerous other 

networks; the radial basis function (RBF) network is one of them. The RBF network 

structure and connectivity is fundamentally the same as the MLP. The difference is 

the choice of activation function used, i.e. a non-linear RBF activation function of the 

form:   

 

      
 
   

   
  

                                                                         

 

This is example uses the Gaussian function where the activation function output is 

 , the input to the function is  , the centre of the function    for  th input data point 

and    is a measure of the width of the  th function. In the MLP and time-delay 

neural networks, the activation function used for the hidden layers is the sigmoid 

function, which is the same for all neurons. In an RBF network this is not the case 

because the RBF 'centres' (c in equation (3.5)). The RBF takes the form of a 

Gaussian function centred at a predetermined point. Figure 3.7 shows two RBF 

functions with different centres.  
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Figure 3.7: Radial Basis Function for 2 Centres, c. (Black line c = 0.75, grey 
line c = 3.25) 

 

RBF networks take advantage of these variable activation functions to model high 

level problems. With the previous architectures, the training is carried out in a single 

step; involving optimisation of the weights and biases. RBF networks also require 

optimisation of the weights and biases but prior to this, the centres for each neuron 

require defining. The two most accepted methods of  defining the centres is either 

by setting them to a random subset of the input vectors or by using 'k-means 

clustering'. k-means clustering is an unsupervised method for clustering n inputs into 

k clusters, and is used extensively in machine learning and signal processing 

applications.  

 

The added layer of complexity through the use of the radial basis function and the 

centre selection is beneficial in the modelling of numerous problems, including time 

series approximations, clustering, and control. With respect to the computational 

effort, the training time for the weights and biases is comparable to MLP networks of 

similar size and the additional level of optimisation using k-means clustering is 

related to the training data size. 

 

3.4.4 Recurrent Neural Network 
Recurrent neural networks (RNNs) are commonly adopted network structures for 

time series approximations with numerous variations where the fundamental 
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structure is similar to the MLP network. Again, as can be seen in Figure 3.8, the 

network consists of multiple layers of neurons with n number of inputs and with k 

neurons in numerous layers and outputs. The final layer of an RNN is the output 

layer, conventionally the preceding layers are the hidden layers, labelled 1 to l.  

 

Figure 3.8: Recurrent Neural Network Architecture (with single feedback) 

 

The connectivity is usually the same as the MLP network architecture with the 

connections between each layer in the forward direction, but with additional 

connections. These additional connections come in the form of delayed feed-backs; 

from the output to the input, see Figure 3.8.  These additional connections create 

neural networks with the ability to have an extended memory, critical in certain time 

series applications. The feed-back connections are weighted and optimised in the 

same manner as the neuron connections. Similarly, there is no strict rule in the 

choice of activation function for multilayer perceptron neural networks. However, for 

most applications, linear activation functions are used for the output layer, and 

sigmoid functions are generally used for the neurons of the hidden layers. 

 

The RNN architecture is suitable for a wide range of complex time series problems 

owing to its internal memory. A recurrent neural network architecture that is 

particularly suited to time series approximations is the nonlinear autoregressive 

exogenous (NARX) model. The 'autoregressive' portion refers to the output variable 

which depends linearly on its own previous values (i.e. feed-back connections) and 

the 'exogenous portion refers to a change that comes from outside the model (i.e. 

input connections). This is the particular recurrent architecture depicted in Figure 

3.8. However, the addition of the feed-back connections creates significant issues in 

the training. The increased complexity of the training impacts on the speed and 
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reliability of the training owing to stability difficulties. More of the difficulties regarding 

the training are discussed now in section 3.5. Chapter 5 discusses the limitations of 

this approach in reconstructing cylinder pressure.  

 

3.5 Artificial Neural Network Training Methodologies 

3.5.1 Fundamentals of Artificial Neural Network 
Training 
As described in the previous sections, there are numerous ANN architectures, each 

with different training requirements. Examples of these include; the different 

approaches for supervised and unsupervised learning and the different approaches 

in training feed-forward and recurrent ANNs. For this application, supervised 

learning is required, and regardless of the specific ANN architecture selected, the 

basic approach is the same. Supervised learning is a method of training where, for 

every input (training vector) used, there is a corresponding desired response. The 

desired response represents the ideal action to be performed by an ANN. The 

process of weight and bias optimisation is achieved through an examination of the 

difference between the desired and actual response; namely the network error. 

Adjustments are iteratively made with the aim of eventually making the ANN 

emulate the desired responses (Haykin, 2008).   

 

This section briefly covers the most common methodologies for training both feed-

forward and recurrent ANNs, and includes the methodology used extensively 

throughout this thesis, namely the Levenberg-Marquadt algorithm (LMA). The 

Levenberg-Marquadt algorithm will be explained in full including the governing 

equations, uses, and limitations. Although the LMA is used extensively, the other 

methods covered in this section have also been examined and tested. However, as 

the focus of this thesis is on the application of the data with more simplified 

structures and algorithms, they have not been detailed in the results. The additional 

training methodology covered is Back Propagation (BP) with Gradient Descent (GD) 

as well as two less common approaches; particle swarm optimisation (PSO), and 

extreme learning machines (ELM).  For these, as well as the remaining algorithms 

and optimisation approaches, a brief description will be given along with their 

general limitations and the reason why they have not been used in this work. Three 

different recurrent training methodologies will be mentioned including Back-

Propagation-Through-Time (BPTT), "teacher forcing" and RAGD methods.   
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3.5.2 Levenberg-Marquadt Training Algorithm  
The Levenberg-Marquadt algorithm (LMA) is second-order method which means 

that it works with only function evaluations and gradient information. Even though 

this method is commonly used for non-linear least-square problems, it also has a 

wide range of applications and works extremely well in training ANNs. It is an 

iterative technique used for locating minima of functions with multiple variables 

(Haykin, 2008).  

 

The LMA can be considered as a compromise between two other well established 

optimisation methods; the Newton method and the gradient descent method. The 

Newton method converges rapidly during the optimisation when near a local 

minimum however there is potential for it to diverge.  The gradient descent does not 

have a significant divergence risk and is almost guaranteed to converge but as a 

result, is significantly slower (Haykin, 2008). Equation 3.6 is the general form of the 

LMA and the optimum adjustment,    between iterations, is given by: 

 

                                                                             

 

where   is the Hessian matrix,   is the gradient vector,   is the identity matrix and   

is a regularising parameter. The following set of equations define the gradient vector 

and Hessian matrix in relation to ANN training (Haykin, 2008). For example the 

gradient vector is the derivative of the cost function        with respect to the weight 

vector   i.e.: 

 

     
       

  
      

 

 
                   

 

   

 
          

  
                       

where the cost function is: 

       
 

  
                   
 

   

                                          

 

and where   is the length of the training sample,   is the desired output, and 

       is the approximating function realised by the network with   being the input 

vector. A Hessian matrix associated with the cost function (equation (3.8)) can be 

defined as: 
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The Hessian is used to describe the local curvature of a multi-variable function 

necessary for ANN training. Equation (3.9) shows the complexity of the Hessian 

which, in practice, is extremely difficult to compute. As a result, approximations have 

been developed to obtain an estimate of the Hessian matrix. One such 

approximation uses the Jacobian matrix  : 

 

   
          

  
                                                             

 

Equation (3.10) appears frequently within the Hessian equation, equation (3.9). As a 

result of the practical difficulty of constructing the Hessian matrix, the second term in 

equation (3.9) is ignored, and the Jacobian is inserted to approximate the Hessian 

matrix, namely:   

 

                                                                         

 

producing an approximate optimum adjustment w as follows: 

 

                                                                            

 

The LMA has been selected for the training owing to the relatively easy way of 

implementation producing highly accurate training, and good generalisation 

capability. However, it has been noted that the LMA may only find a local minimum. 

As a result, several networks with different initial conditions, may need to be trained 

to find the global minimum, (see section 3.6).  Sample Matlab code for the LMA and 

a test function is given in Appendix B. The code was created for the Non-

Autonomous Neural Network which will be discussed in Chapter 8.  

 

3.5.3 Other Optimisation Approaches 
Back Propagation (BP) is a specific technique used for implementing gradient 

descent in feed-forward ANN architectures (Haykin, 2008). BP computes the partial 
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derivatives of an approximation, produced by the network, which depends on both 

the inputs and the weights. The Gradient Descent optimization algorithm is then 

used to find a local minimum for the partial derivatives within the gradient vector, 

see equation (3.7). There are two key stages in the implementation of the BP 

algorithm. First, a forward pass, or computation, is undertaken to compute the local 

fields and function signal. Second, a backward pass, or computation, is undertaken 

to compute the local gradients at each neuron. The weights are then updated using 

the delta rule, namely: 

 

 

       
          
       

   
              
         

 
     

      
        

     
    

            
           

     
            

 

Back Propagation with gradient descent is a powerful method of training networks 

relatively quickly, and is ideal for simple pattern recognition and mapping tasks. 

However, the results are limited in the generalisation of the cylinder pressure 

reconstruction, a time series problem. 

 

There are two different optimisation approaches which are notably different from the 

methods described so far. They are Particle Swarm Optimisation and Extreme 

Learning Machines. They both apply the same basic approach of supervised 

learning however, one uses a highly parallel approach whilst the other takes 

advantage of the random nature of the weight and bias initiation, and of the power of 

the other training methodologies already discussed.    

  

Particle Swarm Optimization (PSO) is an evolutionary computation technique 

(Eberhart and Kennedy,1995). In the PSO algorithm, potential solutions, known as 

particles, are obtained by ‘‘flowing’’ through the problem space by following the 

current optimum particles (Zhang et al., 2007). The PSO optimisation is iterative, 

and works by examining the best value of each particle’s in the previous iterations, 

and the best value obtained by all the particles previously. These are then used, 

alongside additional parameters, to update the value for each particle to reach the 

global optimum. The advantage of using this methodology is that it is relatively easy 

to implement and guarantees an optimum will be reached. However, if the additional 

parameters are not appropriately set, the search will become very slow near the 

global optimum (Zhang et al., 2007). Also, it has a disadvantage of easily getting 

into a local optimum and owing to the highly parallel approach of using numerous 

https://en.wikipedia.org/wiki/Algorithm


 70   

 

particles computationally, it is expensive. Both of these disadvantages were 

experienced when training for cylinder pressure reconstruction, therefore it was not 

selected for this application, and was not considered further.  

 

Extreme learning machines (ELM) are a very powerful, and yet a simple approach to 

training ANNs. Fundamentally, whereas all the preceding training methodologies 

attempt to optimise every weight and bias within a network, the ELM approach does 

not. The ELM approach optimises every weight and bias in the output layer, 

however, the hidden layer weights and biases are not optimised; they are fixed at 

the random initial values. The remaining weights and biases can be trained using 

any other optimisation approach. The fixed random weights and biases ensure the 

universal approximation capability and makes it very efficient in training. This 

approach also leads to better generalization performances and alleviates the 

problem of over-fitting and overtraining (Huang et al., 2015). Over-fitting and 

overtraining are discussed in section 3.6. Practically, ELMs are implemented by 

using significantly more neurons in the hidden layers to ensure adequate accuracy 

but this does not influence the training efficiency as these are fixed. The results are 

extremely good when testing with cylinder pressure reconstruction during training 

however, the LMA performance (of section 3.5.2) was actually better in 

generalisation for this application.  

 

3.5.4 Recurrent Training 
Back-Propagation-Through-Time (BPTT) is a popular method of training recurrent 

neural networks and is an extension of the BP method. The BPTT method 

essentially unfolds the temporal operation of a network into a layered feed-forward 

network. Consider a recurrent network with a single feedback. The value of the 

current feedback at time t is equal to the network output at time t - 1. This recurrent 

network can be reorganised, duplicating and combining the network into a feed-

forward network, as the output from the network is one of the inputs at the next time 

step. Therefore, when considering all the time steps in a training set, it is possible to 

consider the recurrent network as one large feed-forward network with size n∙S, 

where n is the number of time steps, and S is the size of the recurrent network. With 

the recurrent network arranged in the feed-forward configuration, the BP algorithm 

can be implemented.  The BPTT method has the same advantages as the BP 

method except that the training time is significantly longer. This is because the 

network is significantly bigger. As a result, the training time is expected to be n (the 

number of time steps) times longer than a feed-forward network of equivalent size to 
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the recurrent. BPTT was not used for this application because the training 

requirement would make training impractical.  

 

The complexity and computational effort experienced by others with BPTT training 

was the motivation behind developing faster methods to train recurrent networks. 

One such method is called "teacher forcing". This approach to training recurrent 

networks is simple and extremely fast in comparison to BPTT. Essentially, it 

recognises that in training, the optimum values for the feedbacks are already known, 

i.e. the target values from the previous test points. It is therefore possible to break 

the feedback, creating a feed-forward network, and use the knowledge of the 

desired feedbacks as additional inputs to the network. This feed-forward structure 

can then be trained using any type of feed-forward training algorithm. This method 

forces the network to train on the correct feedbacks. The advantages have been 

outlined, namely the reduced computational effort required. There is one major 

disadvantage in using "teacher forcing" and that is the instability of the network 

when the feedbacks are reconnected and the network is tested. This is owing to the 

small errors present in the network's output which is fed back into the network; a 

condition that the network has not be trained for. Consecutive errors can be 

compounded and destabilise the results. This was selected when comparing the 

difference between recurrent and time-delay networks as a result of the simplicity of 

the implementation. However, the stability of the network was closely examined prior 

to the comparison.  

 

An alternative training methodology used to train recurrent network architectures for 

the reconstruction cylinder pressure, is the Robust Adaptive Gradient Descent 

(RAGD) algorithm (Bennett, 2014). This method is an adaptive hybrid learning 

method. It is employed to optimize the convergence speed and make an optimal 

trade-off between the real-time BP and RTRL training strategies, to maximize the 

learning speed (Song et al., 2008). Owing to the extensive work undertaken by 

Bennett, and the complexity of optimising the algorithm parameters, this method 

was not employed. 
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3.6 Optimising an Artificial Neural Network 
Structure and Training  

This section explains the general approaches and practical considerations in 

constructing and training Artificial Neural Networks. The main aim of this section is 

to explain this key issue, once both the architecture and training algorithms have 

been selected, in optimising and training of an ANN. Some of the points described in 

this section form the foundation of the thesis and are expanded in Chapter 5. This 

section will conclude with a summary of the ANN architecture, training algorithm and 

general constrains which have been selected and that will be used throughout the 

research.   

 

With the ANN architecture selected, one of the biggest difficulties is in the 

optimisation of the network structure. There are four main variables with regards to 

the structure: the number of inputs, the feedbacks, the neurons and the hidden 

layers. For optimisation, in deciding the number of neurons and hidden layers, there 

is, in general, no standard method. The basic rule is that the more complex the 

application, the more layers are needed and the more detailed or precise the ANN is 

required to be, the more neurons are needed. Ultimately, the exact number for these 

can only be found through an iterative process. However, literature on similar ANN 

applications can provide neuron and layer numbers, or at least a reasonable starting 

point for the optimisation. In the main, for the structure optimisation, the number of 

inputs and feedbacks can be considered the same. The number of inputs for any 

ANN is again application specific; literature could be a starting point but an iterative 

process is the only valid solution. Also, especially for time-series applications, the 

number of inputs or delays depends on the information content and the values of the 

data as well as the application limitations. The key reason behind finding the 

optimum structure for the ANN is time and computational effort. In principle two 

different ANNs with the same architecture and training algorithm, can produce the 

same result even though one has more inputs, feedbacks, neurons or hidden layers. 

The only difference is the time taken for the training. The greater any of these 

variables are, the longer the training time. Therefore, the goal is to produce an ANN 

large enough to train sufficiently but not too large to make the computational effort 

excessive.   

 

Similarly, the selection of the activation function is application specific and literature 

can be used in the selection. However, unlike the optimisation of the inputs, 
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feedbacks, neurons or hidden layers, in general, their selection is not critical to the 

success of the network, owing to the universal approximation theorem (Cybenko, 

1989). The universal approximation theorem ensures that, in principle, an ANN 

using the same data will train the same regardless of the activation function 

selected. As a result, any activation function can be selected as it has no significant 

effect on time series feed-forward application. However, the ability of the activation 

function to be differentiated is useful for certain training algorithms.   

 

Prior to commencing training of an ANN, the weights and biases require 

initialisation. This is the process of defining the initial values of the weights and 

biases and the convention is to randomise these values using a normal distribution 

around 0 with a standard deviation of 1. One thing to note is that, depending on the 

training algorithm selected, the initial values may affect the network performance. If 

a training algorithm is selected which has a tendency to only find local minima and if 

the random initialisation results in the network being close to a local minimum, then 

there is little chance of a global minima being reached during training. As a result, it 

may be necessary to train multiple networks, with different initial values for the 

weights and biases, to ensure the global minimum of the network is reached 

(Lawrence et al., 1997).   

 

As described previously, the basic principle of training a time-series ANN is to 

optimise weights and biases, for both the input layer and hidden layers, to model, 

cluster, or predict. This process is iterative. At each iteration (or epoch), the training 

algorithm assesses the performance of the network, evaluates how much each 

weight or bias impacts on the performance, then produces a new set of weights and 

bias. This process repeats until one or more of the targets are met, then the training 

is terminated. These can include the performance goal, maximum epoch number, 

and the gradient. It is important to note that there are additional variables within 

training algorithms that are also used as limits. For the Levenberg-Marquadt 

algorithm, the parameter μ is often given an maximum limit, defined prior to training, 

to control the accuracy of the training. If this limit is reached the training will also 

terminate.    

 

Within all areas of machine learning, and especially ANN the ultimate goal is the 

successful training of the ANN, and the implementation of the model. This usually 

involves using the trained network on unseen or generalised data. However, the 
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successful training of an ANN does not determine the network's ability to generalise. 

Very accurate training results, can sometimes, worsen the ability of the network to 

generalise. This stems from the behaviour known as overtraining. As mentioned, in 

ANN training, data is used to optimise the weights and biases. This method 

essentially trains the ANN to recreate the pattern which links the inputs to the 

outputs. However, if the training is too long, or the goals and limits are too severe, 

then the network may not just learn the general pattern but will over-fit to the training 

data. An overtrained ANN will tend to produce very good results when using the 

training data but it will most likely produce poor results for anything not in the 

training set.  

 

Another important factor in preventing overtraining is the selection of the training, 

validation, and generalisation data. The training data is the data used to train the 

ANN. In an ideal situation, ANNs would be trained on every possible combination of 

inputs and outputs to avoid overtraining. Although this is not possible in practice, 

because either the quantity of states is too big to be computed and trained using the 

technology available, or there is no way of determining all possible states within an 

application. Therefore, the approach is to train on a subset of all possible states, 

which must be used to give adequate results when generalised. An important 

consideration in the sourcing and handling of the training data is to make it 

representative of the application. It is possible to select training data which appears 

to be typical of the application. However, without a study of the statistical properties 

of the data, there is no guarantee provided. The validation data is the data used 

within the training methodology. This data is not used to train the network but as a 

check on the network's generalisation capability. The validation data tends to be a 

fraction of the size of the training data set. Similarly, the validation data must be 

representative of the application. The generalisation data is not used as part of the 

training. It is used after the training is complete to determine the final performance of 

the network. To do an accurate test of a network's performance, the generalised 

data must not have been seen by the network during the training.  This is the 

ultimate test of the success of the training and of the network itself.   

 

Similarly, there is no standard process in deciding the size of the training, validation 

and generalisation data sets. Ideally, for improved performance, as much training 

data as possible should be used. The more training data used, in general, the better 

the generalisation results will be. The validation size can be any proportion of the 
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training data but in general, 20% is a good starting point. These sizes, again can be 

improved iteratively, but the size of the generalisation results are also application 

specific.    

 

The main task then, for constructing ANNs, is to produce a training methodology 

which takes into account the selection of the epoch number, the performance 

function, the goals and other limits, and a suitable training set that produces an ANN 

that performs well when generalised. 

 

 

Conclusions 

This chapter has discussed a number of different ANN architecture and training 

algorithm that are used across many applications of ANN's including several that 

have previously been used for reconstructing cylinder pressure. These include 

multilayer perceptron, radial basis function and recurrent network architectures and 

Levenberg-Marquadt and gradient decent training algorithms. Examining all of these 

architectures and training algorithms would require extensive work and as some of 

them have previously been researched in detail, this would not be necessary. 

Therefore, a single ANN architecture and training algorithm was selected for the 

main focus of the research; time-delay neural network and Levenberg-Marquadt 

training algorithm. A recurrent architecture would be used on one occasion, early in 

Chapter 5, but only as a means of comparison and to assess the potential of the 

time-delay neural network. This time-delay architecture was selected as it has not 

yet been examined within this line of research and was believed to have the 

capacity to handle complex time series modelling without the added complexity of 

the feedbacks, which the recurrent networks had. The Levenberg-Marquadt training 

algorithm was selected because of its robustness in training ANN's for many 

different applications including cylinder pressure reconstruction (Saraswati and 

Chand, 2010). This research also follows the optimisation practice for both the 

structure and training given in this section. The specific architecture, structure and 

training constraints are given with each test undertaken in the later chapters.   
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Chapter 4  

The Engine Testing Facilities and Data 
Acquisition System  
 

 

 

 

4.1 Introduction 

The theoretical background to cylinder pressure reconstruction, and the methods 

used to construct and successfully train an ANN, have been described in Chapters 2 

and 3. Therefore prior to developing a ANN for this application, it is necessary to 

discuss the data used in the training of the networks. There are several approaches 

to obtaining training data for cylinder pressure reconstruction, namely, using 

simulation model-based approaches (Potenza et al., 2007), measurements from real 

systems (Gu et al., 1996) and (Potenza et al., 2007), or a combination of both 

(Saraswati and Chand, 2010). However, when considering the limitations of the 

models discussed in Chapter 2, and an ANNs dependence on reliable data to train 

successfully, the model based approaches, even though fast, are a false economy. 

The only practical method of producing accurate data for training, which is capable 

of reconstructing cylinder pressure, is through the acquisition of real data from an 

engine.   

 

The focus of this thesis is to examine the application of data to ANNs, its structure, 

and then to develop methodologies to successfully reconstruct cylinder pressure. 

Again, this relates to understanding the information content within the data which is 

a key limitation to successfully training an ANN. It is not just the accuracy of the data 

that is in question. The focus of this thesis is not to develop or improve a data 

acquisition system for generating engine test data, as this was undertaken by a 

previous researcher (Bennett, 2014). This chapter will describe the engine test 

facilities and summarise the robust data acquisition system developed by Bennett, 

and how this system overcame numerous problems in order to produce accurate 

data.  
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This chapter will start with a description of the engine, and the test facilities used to 

generate test data. It will also include a description of the instrumentation used. 

Then, the data acquisition system hardware is summarised followed by an outline of 

the software implementation. The chapter then describes the method used to 

process the data. The penultimate section discusses the most significant problems 

arising from both the overall acquisition process and the hardware. The chapter 

ends by describing the tests undertaken initially by Bennett, plus additional tests.     

 

4.2 The Engine 

The engine selected to generate test data for the cylinder pressure reconstruction 

ANN model training was a 4-stroke 3-cylinder inline gasoline direct injection spark 

ignition (DISI) engine. This was a prototype of a production engine model, designed 

and developed by the Ford Motor Company and Yamaha. However, it did not go into 

production. It was supplied to the University of Sussex by Ford. Even though the 

engine was supplied more than a decade ago, it is still very relevant to current 

engine developments. The 3-cylinder design in particular is beneficial because 

current thinking and developments, within the automotive industry, is that smaller 

engines are better. Therefore, there has been a push for smaller (downsized) highly-

boosted engines with fewer cylinders which produce a similar performance to the 

original larger engine it will replace. The 3-cylinder engine design actually increases 

the likelihood of creating an ANN model that successfully reconstructs cylinder 

pressure. This is because the successive firing cylinders are spaced 120˚ crank 

angular displacement apart. The larger the spacing between firing events (with 

smaller overlaps in cylinder pressures) the easier it becomes to extract trends within 

the crankshaft kinematic and block vibration data. As discussed earlier, the better 

the data is (i.e. with the correct information content) the more effective the machine 

learning process becomes.  

 

Figure 4.1 shows a photograph of the engine on a 130 kW dynamometer in the test 

cell. The head and block are aluminium, with 4 valves per cylinder. The valve 

arrangement involves 2 valves for the intake, and 2 valves for the exhaust. The 

valve train is belt driven. This engine also contains swirl control valves on the inlet, 

which aids inlet air turbulence and an exhaust gas recirculation (EGR) system to 

reduce the in-cylinder temperature and NOx emissions. The numbering of the 

cylinders is important later in the thesis; therefore it is essential to define them: 
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Cylinder-1 is at the nose of the engine, Cylinder-2 is in the middle of the engine and 

Cylinder-3 is nearest to the flywheel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Ford 3-Cylinder 4 Stroke Direct Injection Spark Ignition (DISI) 
Engine in Test Cell 

 
 
 

With respect to this application and the engine dynamics, there are three important 

attributes of this engine that need to be stated. First, there is a torsional vibration 

damper fitted to the engine, which could cause issues when modelling the finer 

cylinder pressure details. Second, there is no clutch fitted to the test rig, which may 

also cause issues with the application of this technology in a vehicle. Finally, the 

dynamometer is connected directly to the engine flywheel via a compliant torsional 

coupling. This compliant torsional coupling may generate additional excitations to 

the crankshaft and engine block at critical frequencies. Table 4.1 gives key 

parameter values for the engine.  

 

Cylinder 3 

Cylinder 2 

Cylinder 1 

Knock Sensor 

Accelerometer 

Crankshaft 

Encoder 
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Table 4.1: Ford 3-Cylinder Specifications 

 

Engine Kinematic Parameters  Value 

Number of Cylinders 3 Inline  

Bore 79.0 mm 

Stroke 76.5 mm 

Swept Volume 1125 cc 

Connecting Rod Length 137 mm 

Piston Pin Offset 0.8 mm 

Compression Ratio 11.5 

Piston Mass 270 g 

Connecting Rod Mass 395 g 

Crankshaft Primary Inertia  0.02579 kgm
2 

Flywheel Inertia 0.12021 kgm
2
 

 

The exact torsional characteristics values of this production engine, dynamometer, 

and coupling system are difficult to define. It is difficult to minimise the torsional 

effect entirely in either the crankshaft kinematics or engine block vibration, although 

identifying the natural frequency of the system and testing at frequencies well away 

from it when acquiring the data, will improve the quality of the results.     

The undamped natural frequency of the engine and drive line system is given as   

 

    
 

   
  

      
      

                                                              

 

Where   and    are the inertias of the engine and drive line and   is the stiffness of 

the compliant torsional coupling. The natural frequency of this particular test engine, 

dynamometer and coupling system is 16.5 Hz. When converted, this results in an 

engine speed of 990 rpm. This, however, does not take into account the dominant 

excitation of the system. As the engine has 3 cylinders and it is a reciprocating 

engine, the excitation of the system occurs 1.5 times every rotation. This leads to 

the systems critical speed being 660 rpm. It is crucial to run the engine at a 
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significant distance away from this speed, at least 200 to 300 rpm, to enable the 

accurate acquisition of the data and prevent long term reliability issues.  

 4.3 The Test Facilities and Instrumentation 

This section discusses two key areas: the engine test facilities, and the 

instrumentation installed on the engine. The 3-cylinder engine is installed in the 

gasoline research laboratory and connected to a McClure 130kW / 7000 rev/min DC 

dynamometer, which is controlled by a Eurotherm control cabinet. 

 

Table 4.2: McClure DC Dynamometer Specifications 

 

Dynamometer Parameters  Value 

Maximum Absorption Power  130 kW 

Maximum Motoring Power 100 kW 

Maximum Speed 7000 rpm 

Armature Inertia 0.87 kgm
2
 

Coupling Torsional Stiffness 1260 Nm/rad 

 

Table 4.2 gives key parameter values associated with the dynamometer shown in 

Figure 4.2. The dynamometer was mounted in a rotating frame and torque 

measurements were taken by a load cell on a moment arm. The engine can be 

controlled manually by either setting the speed or load first and then varying the 

throttle angle. For all tests undertaken, the load was set at a constant and as a 

result of varying the, throttle the engine speed fluctuated. Alongside the engine 

speed and dynamometer load, both the water and oil temperatures were monitored.  

 

Numerous sensors were installed on the test engine including cylinder pressure 

transducers, a shaft encoder, a knock sensor, and an accelerometer. There were 

additional sensors attached which were not used in this thesis, however, they will be 

summarised after discussing the main sensors in detail.    
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Figure 4.2: McClure DC Dynamometer in Test Cell 

 

The cylinder pressure sensors used were Kistler type 6117BCD36 spark plug 

integrated transducers which have the advantage of easy installation owing to there 

being no need to modify the cylinder head. These cylinder pressure sensors have 

an operational range of 0 to 150 bar and are connected to Kistler type 5044 charge 

amplifiers via low noise charge cables. The inputs are individually set to the 

transducer's charge sensitivities and the output gain set to 10 bar/volt (Bennett, 

2014). The sensor serial numbers corresponding to particular cylinders are shown in 

Table 4.3. 

 

Table 4.3: Kistler Spark Plug Integrated Transducer Serial Numbers 

 

Cylinder Numbers Serial Number 

1 1282636 

2 1346612 

3 1346611 
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The crankshaft kinematics (crankshaft position) are collected through a crankshaft 

nose 360 pulse encoder with TDC marker. The encoder installed is a Kistler type 

2614A1 optical encoder which is installed on the nose of the engine and securely 

fixed to the cylinder block to prevent excessive noise in the crank kinematic signal 

being caused by vibration and motion of the engine. The low inertia of the encoder's 

rotational element allows for increased sensitively in the crankshaft kinematics. The 

signal is passed through a Kistler type 2614A4 pulse multiplier and results in two 

output signals. The first is a 1 pulse for each rotation which can be used as the TDC 

marker when aligning the rising edge of the TTL signal equal to TDC. The second 

signal produces 360 or 3600 pulses for each rotation where the first pulse equates 

to the TDC signal. The encoder is constructed to actually produce 360 physical 

pulses per revolution (1° resolution) but the Kistler equipment has the capability to 

produce a 3600 pulse per revolution signal (0.1° resolution). Through 

experimentation Bennett found that the additional resolution were equally spaced, 

which suggests the use of linear extrapolation within the encoder's core 

hardware/software with no means to modify. The limitations and reliability of the 

3600 pulse per revolution signal will be discussed in section 4.5. In addition, in 

section 4.5, the general issues using the encoder will be discussed; namely the 

errors in the angular displacement.  

 

The application of a standard knock sensor to reconstruct cylinder pressure from 

engine block vibrations is very appealing as they are now already installed on the 

majority of gasoline production engines. In (Vulli, 2006) it was found that using the 

pre-existing knock sensor on the 3-cylinder engine was problematic, owing to the 

insufficient signal strength for both the ECU and the data acquisition. Therefore, an 

additional standard Bosch A-261-231-114 knock sensor was fitted to the intake side 

between Cylinder-2 and Cylinder-3. This position was selected primarily for 

convenience, as the optimum position for cylinder pressure reconstruction may 

differ. However, it might be concluded that the location and quality of the signal, 

optimum for the reconstruction, may not coincide with the optimum for detecting 

knock. In this case, an additional sensor may be required.  

 

In addition to the engine block accelerations measurements obtained with the knock 

sensor, a piezo-electric accelerometer was also fitted. The standard knock sensor 

may also include internal filters that could restrict the desired signal. Therefore an 

instrument quality Sensonics PZP1 piezo-electric sensor was fitted to record 



 83   

 

unmodified accelerations. This was fitted to the exhaust side and mounted in a bolt 

boss, again for convenience. The accelerometer frequency, and g load range are: 0-

29 kHz and 0-600 g respectively.  

 

The cylinder pressure sensors, crankshaft encoder, knock sensor and 

accelerometer were used extensively in this thesis. There are two additional sensors 

fitted which have been examined by other researchers in relation to cylinder 

pressure reconstruction. The lesser of the two sensors was the inlet air pressure 

sensor or MAP (manifold air pressure) sensor. The inlet air pressure is believed to 

be a valuable indicator, however has not yet been utilised. The second is an 

inductive probe which is targeted at the teeth   of the flywheel to gain additional 

crank kinematic data. This sensor has two key functions. First, it was used to 

conclude the degree of angular twist in the crankshaft across the desired speed 

range, which is vital in understanding crankshaft based reconstruction. The 

kinematics gathered through the inductive probe were compared to the encoder 

data and found to include negligible twist (Bennett, 2014). Second, the successful 

reconstruction using the inductive probe would help the transition of this technology 

from the research environment to production. The crankshaft encoder, even though 

accurate, has several limitations when considering its use in production engines. 

The most significant is the cost which is many times that of existing lower resolution 

production crankshaft position sensors. In addition there are concerns over the 

robustness of the encoder and packaging issues. The inductive probe has none of 

these problems as it is similar to the production position sensor used by the ECU.   

 

4.4 Data Acquisition System  

The data acquisition setup has been fully described by (Bennett, 2014). This section 

will briefly describe the hardware used and important setup decisions that have 

impacted the work in this thesis. The hardware selected for the data acquisition 

system was made by National Instrument (NI), and the software used was 

LabVIEW.  
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Figure 4.3: National Instruments Data Acquisition System  
 

The hardware used for the acquisition system was a NI PXI system which consists 

of a NI PXI-1031 chassis and a NI PXI-8331 interface for Windows PC connectivity. 

This system contained two input modules; the NI PXI-6133 analogue input module 

and the NI PXI-6602 counter or timer module. The NI PXI-6133 analogue input 

module has 8 channels with 14-bit synchronous sampling. The analogue inputs 

were connected using low noise co-axial cables via a TB-2709 terminal block with 

max sampling rate of 2.5 MHz and max input amplitude of 10V. The NI PXI-6133 

module's high sampling rate and dynamic range is particularly suited for this 

application as it is comparable with other engine combustion analysis systems. This 

module was used to acquire the data from all of the inputs except the crankshaft 

encoder owing to it using a TTL signal. The NI PXI-6602 counter or timer module is 

used for the crankshaft encoder signal and has a 32-bit with a maximum source 

frequency of 800 MHz. Again, this signal is transmitted through low noise co-axial 

cables and then into a BNC-2121 terminal block.  

 

The LabVIEW program created to read the data from the hardware, to synchronise 

the signals and format it appropriately is shown in Appendix C. The details of this 

have also been comprehensively described by (Bennett, 2014), along with the data 
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acquisition rates, noise suppression and pegging of the cylinder pressure signals; 

therefore it is not necessary for further explanation.   

 

There is however, one important subject in the setup of the data acquisition system, 

which is covered by Bennett, which will be shown to have an effect on the cylinder 

pressure reconstruction. This effect will be presented in Chapters 5 and 8, and 

relates to the basis of the acquisition: time or crank angle based acquisition. The NI 

PXI-6133 module allows for both time based and crank based acquisition depending 

on the application requirements. Within most combustion analysis systems, the data 

is commonly acquired in the crank domain; with constant crank angle. However, 

Bennett determined that this would not be adequate as the sampling frequencies 

would vary with engine speed and as there was no aliasing protection, there would 

be little confidence in producing uncorrupted low frequency data. Bennett also came 

to the conclusion that the ANNs would train more successfully using time based 

data rather than crank angle based data. The selection of time based data 

acquisition would remove the need for re-sampling.  However, the main concern 

with using time domain sampling is the synchronisation between the analogue 

inputs and the TTL signal from the crankshaft encoder. Bennett (2014) overcame 

this by using the TDC pulse from the encoder to trigger the acquisition of all the 

inputs for each cycle. This method removes any drift in the acquisition data which 

could be compounded over many cycles. Bennett describes this method fully 

(Bennett, 2014).   

    

4.5 Data Acquisition Issues for Engine Tests  

The main data acquisition difficulties in both the hardware and software, along with 

their solutions, have been covered by Bennett (Bennett, 2014). However, it is useful 

to describe the two most significant issues relating to the data acquisition hardware 

as it may later impact the results. The biggest issue is the error associated with the 

crankshaft encoder and its need for calibration. The second is the non-physical 0.1˚ 

resolution of the Kistler crankshaft encoder.  

 

Regarding the error in the encoder, this arises from significant high frequency noise 

on the crankshaft encoder signal which appeared to be cyclical (Bennett, 2014). The 

hypothesis was that the tolerance of the slits on the rotating disc was such that the 

actual angle between each slit was not exactly 1˚.  For the typical uses of this 
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encoder (i.e. for measuring angular position) this is acceptable. However, the effect 

of the variability increases significantly when it is numerically differentiated to obtain 

angular velocity, which increases even more when it is again numerically 

differentiated to obtain angular acceleration. There was a need therefore for the 

encoder to be calibrated. Bennett described two different techniques (Bennett, 

2014): First, an electric motor was considered. However, owing to small speed 

fluctuations, it was decided that electric motors would not be appropriate. The 

second technique, and indeed the method chosen for the calibration, was to use a 

large inertia disc. The disc and encoder were spun up to speed and allowed to 

coast, only restricted by encoder bearing friction, which was considered to be 

uniform. This method was extremely successful and minimised a significant amount 

of the crankshaft kinematic noise (Bennett, 2014). However, some noise still 

remained owing to the inherent problem with numerically differentiating measured 

data.     

 

With respect to the non-physical 0.1˚ encoder issue, there was some uncertainty as 

to how the optical encoder used the 360 slit disc to achieve 3600 reference points, 

especially as there was no information in Kistler's literature (Bennett, 2014). Tests 

were undertaken and it was found that the encoder did not actually have a resolution 

of 0.1˚. Bennett found that the additional resolution between the 1° pulses were 

equally spaced and suggested that the two previous positions were used and 

extrapolated forward assuming little had changed. As a result, there was little useful 

information in the additional data and therefore was not recorded.  

 

4.6 The Acquired Test Data Sets  

The engine test condition selection for acquiring the data is important first to 

represent real operating conditions, and second to fit within the restrictions of the 

applications, i.e. the ANN model. In fact, the application of the cylinder pressure 

reconstruction ANN model has no restrictions as it can, in principle, work across any 

operational range of an engine. The engine test condition selection was influenced 

by Jaguar Land Rover, who partly funded the project. They believed that this 

technology would be most useful in low speed and low load reconstruction 

conditions. This is motivated by the high cycle-to-cycle variability at these 

conditions, which makes cylinder pressures less predictable. The higher variability 

links with the discussion in Chapter 1 on cylinder pressure and its dependencies. 
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One of the factors that impact the cylinder pressure is in-cylinder air motion. This 

motion helps determine the quality of the air-fuel mixture. The better and more 

consistent the in-cylinder air motion is cycle-to-cycle, the less variability and greater 

the prediction accuracy. At high speed and load conditions, when the throttle is wide 

open, the air flow into the engine is more uniform, producing more consistent air 

motion and less variability. However, at lower speed and load conditions, when the 

throttle is partially open and the volumetric efficiency decreases, the air flow into the 

engine is compromised. This compromised air flow leads to inconsistent in-cylinder 

air motion cycle-to-cycle. Therefore, the ability to reconstruct the cylinder pressure 

at low speed and low load conditions would greatly benefit engine emissions 

through better control.     

 

The initial tests undertaken (Bennett, 2014) were at both steady-state conditions and 

speed ramps to represent transient conditions. Three different speed conditions 

were selected (1000, 1500 and 2000 rpm) along with three different torques (10, 20 

and 30 Nm). For the speed ramps, the torque was fixed at 20 Nm and the throttle 

position was varied to increase the speed from 1000 rpm to 1500 rpm, and 1000 

rpm to 2000 rpm over a 60 second period. Each of the tests were undertaken twice 

to create a reasonably large set of data to train and test the ANNs.  

 

The data produced was sufficient for the previous ANN training and testing (Bennett, 

2014) and was also sufficient for the initial work on steady-state conditions within 

this thesis. In Chapter 8, the need for a more comprehensive set of data will be put 

forward. This more comprehensive set of data was still within the same operating 

condition restrictions; between 1000 and 2000 rpm and at 10, 20, and 30 Nm. The 

difference is in the number of speed conditions used. Instead of the 500 rpm 

difference between each test, the new data would require a much finer speed 

increment of only 100 rpm speed difference.  

 

There was also a need for more speed ramps to represent additional transient 

conditions. These included ramp-up and down in speed over the same 60 second 

period as well as more complex speed variations. The increased speed variations 

included speed ramps-up and down, as well as down and up. This was carried out 

within the same 60 second period to recreate more complex engine behaviour such 

as overrun conditions.  
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Chapter 5  

Creation of a Methodology for Cylinder 
Pressure Reconstruction  
 

 

 

 

5.1 Introduction 

All the previous effort put into using feed forward and recurrent networks has not, 

unfortunately, delivered the accuracy and robustness required (see Literature 

review). This chapter creates a methodology through a series of systematic 

examinations that overcomes the shortcomings of previous methods. The 

identification of a single reconstruction methodology involved the testing of NARX 

networks and standard Time-Delay networks. This led to a deeper understanding of 

how an ANN reconstructs, with the discovery of a reason for its failure. The standard 

Time-Delay networks were applied to the reconstruction of cylinder pressure from 

engine block vibrations and compared with the crankshaft kinematic reconstruction 

results. This knowledge laid the foundations for the creation of a methodology for 

the reconstruction of cylinder pressure, comprising of three main concepts; the 

impact of inertia on the reconstruction accuracy, the filtering of the input data and 

the reconstruction of individual cylinders.    

 

The initial area to be discussed in section 5.1 will focus on the quantitative limitation 

of recurrent neural networks and an alternative, time-delay neural networks, using 

crank kinematics. In section 5.2 and 5.3 early proposals are put forward as to the 

possible causes for the errors using crank kinematics. In section 5.4, the focus 

switches to block acceleration, where a significant aspect, inertia, which appears in 

both crank kinematics and block acceleration is identified, causing a re-examination 

of crank kinematic based reconstruction in section 5.5.  Sections 5.6 through to 5.8 

develop and test three concepts that collectively improve the reconstruction 

performance. The final section, 5.9, will combine the knowledge and processes 

developed into a single methodology that will be shown to significantly improve the 

reconstruction of cylinder pressure.   
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5.2 Recurrent Versus Time-Delay Network 
Comparison  

5.2.1 The Limitations of Recurrent Neural Networks 
Prior to optimising different ANN architectures, training algorithms, and signal 

processing techniques for reconstruction, it is necessary to understand the 

limitations of previously examined ANNs. The dominant network architectures 

examined to date have been recurrent neural networks. This section will go into 

detail about the limitations of recurrent neural networks, as well as the previous 

reasons for their selection, from the point of view of ANN training and application. A 

modification from the current view is suggested, namely that recurrent neural 

networks are not the most suitable architectures for this application. Examination of 

a different ANN architecture is therefore undertaken.  

 

Efforts had been made in testing more complex ANN architectures and associated 

training algorithms, but with no significant steps forward in the ANN generalisation 

performance see Table 5.1. Table 5.1 and Figure 5.1 show the typical results 

obtained when using recurrent neural networks in both the training and 

generalisation for the cylinder pressure reconstruction. Figure 5.1 shows is a trend 

towards good reconstruction in the lower pressure regions but there are significant 

errors in some high pressure regions which is typical of most of the results published 

in the papers highlighted. These errors in the high pressure regions will be 

described and investigated later in the chapter. 

 

 

Table 5.1 Previous training and reconstruction results when compared with 
measured cylinder pressure 

 

 Training Root-Mean-
Squared Error  

Generlised Root-Mean-
Squared Error  

Potenza et al., 
2006 

4.96 % 5.12 % 

Vulli, 2006 6.52 % 8.19 % 

Bennett, 2014 2.6 % 4.8 % 
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Figure 5.1: Illustration of Previous Results with RMSE = 2.6648% (Potenza, 
2006) 

 

Results obtained by other researchers also show good cylinder pressure 

reconstruction in some regions when using the generalised data. However, there is 

a tendency for the reconstruction model to become unstable with only a small 

chance of stability returning. These areas of poor reconstruction at high pressure, 

along with the stability issues using recurrent neural networks, are two of the main 

limitations to achieving the desired goals. It is noted that there are diminishing 

returns in optimising recurrent neural networks; the more time spent optimising on 

training data, the smaller the increase in reconstruction generalisation performance. 

The suggestion that simple network architectures and associated training algorithms 

may not be able to identify or interpret less dominant dynamics present in the data 

(Vulli, 2006) and therefore be the limiting factor to the ANN's reconstruction 

capability, was examined; yet they failed to have the desired effect. 

 

In this thesis, a hypothesis is proposed, namely that the complexity of the ANN 

architecture and associated training algorithm are independent of the limitations to 

reconstruct, and may cause unjustified complexity. This position can be reasoned 

from the use of the universal approximation theorem (Cybenko, 1989), and 

supported by the significant number of previous attempts at optimising ANNs. The 
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universal approximation theorem states "that simple neural networks can represent 

a wide variety of interesting functions when given appropriate parameters". With the 

large number of recurrent network architectures trained by different researchers 

using complex training algorithms and large numbers of training iterations, an ANN 

should have been able to successfully reconstruct cylinder pressure; especially if all 

the "appropriate parameters" or information content is available. The failure to train 

an ANN to successfully generalise for this application, calls into question the need 

for complex recurrent architectures and associated training algorithms.  

  

This hypothesis that the complexity of recurrent architectures and associated 

training algorithms is not necessarily required for this problem, is examined 

throughout this chapter and throughout the remainder of the thesis. This will be 

achieved using relatively simple network architectures with simple standard training 

algorithms. Moreover, not only are there concerns with the use of recurrent neural 

networks from a training point of view, but they have additional limitations when 

considering their practical application of cylinder pressure reconstruction. The initial 

justification for the use of recurrent neural networks is however sound.  

 

To recap, the data requirement, in general, for recurrent neural network 

architectures consists of two types of inputs where each has their own task. The first 

type, the cylinder pressure feedback (recurrent connection), is intended to increase 

the reconstruction capability, as previously reconstructed pressure can give some 

indication as to the magnitude of subsequent cylinder pressure values. These inputs 

also facilitate noise reduction of the reconstructed pressure signal and provide a 

form of internal memory. The second type, involving delays of the crankshaft 

kinematics or engine block vibration, is believed to be more critical in reconstructing 

cylinder pressure. These delays capture significant changes in either the crankshaft 

or engine block behaviour, that inversely relate to the cylinder pressure. The use of 

the cylinder pressure feedback may certainly have a positive impact on the ANN's 

ability to reconstruct. But this idea can be shown to be flawed in one of the most 

significant regions within the combustion process; at the point of ignition. The 

ignition point is particularly important with regards to reconstructing cylinder 

pressure as from this time forward, within a combustion event, the cylinder pressure 

can vary significantly cycle-to-cycle.  
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Figure 5.2: Pressure Event Diagram 
 

The best way to explain the reason why the recurrent neural network architecture is 

limited within this application, is to break down the reconstruction of the cylinder 

pressure into different regions within the combustion event. When considering a 

cycle under steady state conditions, it must be examined in four parts: the 

reconstruction prior to the ignition, the reconstruction at the point of the ignition, the 

reconstruction immediately after the ignition, and reconstruction at a significant 

period of time after the ignition. These have been illustrated in Figure 5.2. 

 

First, prior to ignition, the cylinder pressure is relatively consistent, cycle-to-cycle, as 

the compression process is nearly identical under steady-state conditions. 

Therefore, the pressure feedback delays would have little significance on the 

reconstruction in this region. Second, at the point of the ignition, the crankshaft 

kinematics or block vibration has not yet started to alter as the cylinder pressure 

rises would be extremely small in magnitude at this stage. The feedback delays 

would again have no relevant information related to the ignition process as it is only 

presenting the information pertaining to the compression process. Directly after the 

start of ignition, the crankshaft kinematics or engine block vibration would vary as 

the cylinder pressure rises. The pressure feedback delays would then have only 

partial ignition process information, the rest pertains to the compression process. 

Finally, at a significant period after ignition, both the crankshaft kinematics or block 
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vibration variation, should be fully developed and the cylinder pressure feedback 

delays should contribute to the reconstruction. 

 

It is therefore proposed that, within certain regions of the reconstruction, the cylinder 

pressure feedbacks would have either little importance or be unnecessary for the 

reconstruction. The ANN would then essentially become a time-delay network 

(discussed in Chapter 3). Even though feedbacks would be useful for reconstruction 

in the second half of the combustion event, they may generate reconstruction errors 

early in the combustion event, which may induce subsequent errors and cause 

instabilities within the recurrent neural network. For the reasons outlined, the use of 

recurrent networks is considered problematic within this application. The fact that at 

certain points within the reconstruction these networks can be simplified to time-

delay networks, suggests that pressure feedback may inadvertently be the source of 

some of the reconstruction problems.  

 

5.2.2 A Test Using a Time-Delay Neural Network  
This section examines the use of time-delay neural networks as an alternative to 

recurrent networks for reconstructing cylinder pressure. Each test will be undertaken 

with the same architecture size, number of neurons and delays, and the same 

training algorithm, and the same number of epochs and performance targets. Prior 

to carrying out three independent tests using the time-delay network, an optimisation 

will be undertaken to obtain the best number of neurons and delays to ensure the 

best performing network. Tests will be carried out at three different steady state 

conditions, as outlined in Table 5.1. 

 

Table 5.1: Engine Test Conditions 
 

 Engine Speed  
(rpm) 

Engine Load  
(Nm) 

Data name 

Condition-1 1000 10 1000_10_01p_jun2010 

Condition-2 1000 20 1000_20_01p_jun2010 

Condition-3 1000 30 1000_30_01p_jun2010 

 

 
To follow the proposal that recurrent neural networks may be too complex for the 

proposed application, a simpler training algorithm was selected that has a proven 

history of being robust with multilayer perceptron architectures and time-delay 
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neural networks. The standard training algorithm used is the Levenberg–Marquardt 

algorithm (LMA) which will take place using MATLAB, which has a pre-existing LMA 

training algorithm within the Neural Network Toolbox. Table 5.2 shows an example 

of the initial settings and goals which have been outlined. 

 
Table 5.2: Neural Network Settings and Training Goals 

 

 

 
The data for the three test points was selected from the database of training 

gathered over the past several years. These three test points were chosen to show 

the reconstruction for a number of steady state conditions. The output data, cylinder 

pressure, for the entire test, was processed using the same approach. The pressure 

data from each cylinder was concatenated into a single data string without the need 

for filtering. The input data, crank kinematics, had a minimal amount of low-pass 

filtering to remove the high frequency noise content. The crank kinematics were then 

converted into a structure required for the training of a time-delay network. This 

included the kinematics for the current time step as well as the delays, which is the 

set number of previous kinematic points.  

Network 
Name 

Net_TD_Test1 0 Network           
Architecture 

Time-
Delay 

0 Test Data 1000_10_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

1  Speed (rpm) 
/ Load (Nm) 

1000/10 

Cost Function Mean Squared 
Error 

 Neurons 
Number  

15  Time/Crank    
Domain 

Time 

Training Goal 1E8  Delay Number 60  Time/Crank 
Step 

0.0001 s 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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The optimisation of the network's neuron and delay numbers are important for the 

following reasons. First, if there are too few delays, the information content 

presented to the network may not be sufficient. However, if there are too many 

delays, the network would be presented with too much information which may lead 

to difficulties in training and generalisation. Second, if there are too few neurons 

then the network may be too restricted, and will be prevented from successfully 

training. Finally, if there are more neurons or delays than necessary, the size of the 

network can increase significantly, leading to a considerably longer training time and 

increased computational requirements. The optimisation of the neuron and delay 

numbers was undertaken through a brute force analysis, by training and testing a 

range of networks with a varying number of neurons and a varying number of 

delays, at a single steady-state condition.  

 
Figure 5.3: Optimisation of Neuron Number and Delay Number. Each line 
represents a different number of input delays and each point on the line 

represents a different number of neurons. 

 

Figure 5.3 shows the generalised performance of the network against the 

computation time for a number of differing networks, with different numbers of 

neurons and delays. The optimum network is selected by weighing up the 

performance and computation time. The best architecture is the one with very good 

performance but not excessive computation time. It was seen that the best neural 

network architecture had between 10 to 15 neurons in the hidden layer, and around 
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120 delays. From the literature review, and the efforts of previous researchers, the 

number of neurons found to be optimum was expected, but the optimum number of 

delays was greater than anticipated, and previously unseen. The number of delays 

was actually found to be important and the significance of this will be discussed later 

in the thesis.    

 

The next series of figures show both the results of training and generalisation at 

three engine test conditions. The networks were trained using the same architecture 

with 10 neurons. However, in order to find the best network possible, numerous 

ANNs were trained with different initial conditions, meaning that only 60 delays were 

selected owing to the computational requirements. There was little difference in 

performance from the optimum number of 120. Further examinations were 

undertaken to find the number of delays within time-delay neural networks. The 

following figures present the typical training and generalisation results for these 

three test conditions using a time-delay neural network. Generalisation refers to test 

the ANN on data which has not been used during the training to assess the 

performance of the ANN.   

 

Test 1 Training Results 

Figures 5.4 and 5.5 show the training results for condition-1 (1000 rpm and 10 Nm). 

Figure 5.4: Condition-1 Training Results. Target pressure (grey continuous 
line) and predicted pressure (dotted line). 
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Figure 5.5: Condition-1 Training Results. Left shows training peak pressure 

error and right shows training position of peak pressure error.  

 

 

 

 

Test 1 Generalisation Results 

Figures 5.6 and 5.7 show the generalised results for condition-1 (1000 rpm and 10 

Nm). 

Figure 5.6: Condition-1 Generalised Results. Target pressure (grey continuous 
line) and predicted pressure (dotted line). 
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Figure 5.7: Condition-1 Generalised Results. Left shows training peak 
pressure error and right shows training position of peak pressure error 

 

 

 

Test 2 Training Results 

Figures 5.8 and 5.9 show the training results for condition-2 (1000 rpm and 20 Nm). 

 

Figure 5.8: Condition-2 Training Results. Target pressure (grey continuous 
line) and predicted pressure (dotted line). 
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Figure 5.9: Condition-2 Training Results. Left shows training peak pressure 
error and right shows training position of peak pressure error 

 

 

 

Test 2 Generalisation Results 

Figures 5.10 and 5.11 show the generalised results for condition-2 (1000 rpm and 

20 Nm). 

Figure 5.10: Condition-2 Generalised Results. Target pressure (grey 
continuous line) and predicted pressure (dotted line). 
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Figure 5.11: Condition-2 Generalised Results. Left shows training peak 
pressure error and right shows training position of peak pressure error 

 

 

 

Test 3 Training Results 

Figures 5.12 and 5.13 show the training results for condition-3 (1000 rpm and 30 

Nm). 

Figure 5.12: Condition-3 Training Results. Target pressure (grey continuous 
line) and predicted pressure (dotted line). 
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Figure 5.13: Condition-3 Training Results. Left shows training peak pressure 
error and right shows training position of peak pressure error 

 

 

 

Test 3 Generalisation Results 

Figures 5.14 and 5.15 show the generalised results for condition-3 (1000 rpm and 

30 Nm). 

Figure 5.14: Condition-3 Generalised Results. Target pressure (grey 
continuous line) and predicted pressure (dotted line). 
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Figure 5.15: Condition-3 Generalised Results. Left shows training peak 
pressure error and right shows training position of peak pressure error 

 
 

 

 
Table 5.3: Mean of the Training and Generalisation Results 

 

 Mean Training 
Peak Pressure 

Error (%) 

Mean Training  
Peak Pressure 
Position Error 

(Deg) 

Mean Generlised 
Peak Pressure 

Error (%) 

Mean Generlised 
Peak Pressure 
Position Error 

(Deg) 

Condition-1 9.13 5.63 10.32 5.91 

Condition-2 11.19 5.82 10.67 7.60 

Condition-3 4.72 4.92 4.93 4.33 

 
 
 
 

Table 5.4: Standard Deviation of the Training and Generalisation Results 
 

 Standard 
Deviation of    

Training Peak 
Pressure Error 

(%) 

Standard 
Deviation of    

Training Peak 
Pressure Position 

Error  (Deg) 

Standard 
Deviation of    
Generlised 

Peak Pressure 
Error (%) 

Standard 
Deviation of    

Generlised Peak 
Pressure Position 

Error (Deg) 

Condition-1 12.68 7.48 12.77 6.85 

Condition-2 12.24 7.44 13.30 9.56 

Condition-3 6.40 6.69 6.35 5.45 
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Discussion of the Test-1, Test-2 and Test-3 Results 

The results for the three test conditions show a variety of both successful and 

unsuccessful generalised reconstructed cylinder pressure events. The results shown 

in Figures 5.4 to 5.15, as well as the tables 5.3 and 5.4, show several notable 

features; predominantly, the large difference between the performance of the higher 

load test, condition-3, and the other two tests. The exact reason for this difference is 

unclear. However, there is one possible explanation for this, which can be explained 

from either the perspective engine behaviour or the ANN training but fundamentally 

is concerning the variability of the dynamics and size of the training data. The 

dynamics of condition-1 and condition-2 are affected significantly by additional 

factors which are also present in condition-3 but are not as dominant. The most 

notable are the relative increase in friction and inertia for condition-1 and the 

retarded ignition by the engine management system for condition-2. These are 

factors which should easily be overcome by the ANN with the right data but the size 

of the training data used for these test was restricted through practicality. Even 

though the later work uses more comprehensive data, the following observations are 

still present. One observation is the consistency of the errors in both the training and 

generalisation results. This is a sign that the network is not over-training and this is 

particularly promising for this architecture and training algorithm, in this application.  

Another noteworthy feature is the poor generalised reconstruction at the extremes, 

i.e. at the high and low pressures. However, with more constant pressure events 

and less cycle-by-cycle variability, the generalised reconstruction capabilities are 

outstanding. This is observation is believed to be of most importance as at this stage 

there appears to be little understood about the cause of this or any suggestion about 

methods to remove or reduce this affect.   

 

5.2.3 A Comparison between Recurrent and Time-Delay 
Neural Networks 
To adequately test the hypothesis that a time-delay network would do a better job at 

reconstructing cylinder pressure than a recurrent neural network, it was necessary 

to produce a recurrent network for comparison. A similar approach to section 5.2.2 

was undertaken but with the recurrent architecture, specifically the NARX 

architecture, and trained via 'teacher forcing' using the Levenberg–Marquardt 

algorithm. The results produced show a clear resemblance to the work previously 

undertaken by others (Potenza, 2006) and the characteristics of the reconstruction 

in both training and generalised data. 
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NARX Training Results 

Figures 5.16 and 5.17 show the training NARX results for condition-1 (1000 rpm and 

10 Nm). 

Figure 5.16: Recurrent Training Results via Teacher Forcing. Target pressure 
(grey continuous line) and predicted pressure (dotted line). 

 

 
 

 
Figure 5.17: Condition-3 Training Results. Left shows training peak pressure 

error and right shows training position of peak pressure error 
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NARX Generalisation Results 

Figures 5.18 and 5.19 show the generalised NARX results for condition-1 (1000 rpm 

and 10 Nm) 

Figure 5.18: Recurrent Generalised Results. Target pressure (grey continuous 
line) and predicted pressure (dotted line). 

 
 
 
 

 
Figure 5.19: Recurrent Generalised Results. Left shows training peak pressure 

error and right shows training position of peak pressure error 
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Discussion of NARX Results  

The time-delay network results can be seen to have similar characteristics to the 

recurrent network in the areas of good and poor cylinder pressure reconstruction in 

Figures 5.16 to 5.19. The similarities go even further in that the errors generated, 

not only occur in a similar position, but they are also of the same magnitude. A direct 

comparison between a recurrent neural network and a time-delay network is shown 

in tables 5.5.and 5.6 as well as Figure 5.20.      

 

 

 

Table 5.5: Comparison of Mean for both Time-Delay and Recurrent Networks 

 

 Mean 
Training Peak 

Pressure 
Error (%) 

Mean Training  
Peak Pressure 
Position Error 

(Deg) 

Mean 
Generalised 

Peak Pressure 
Error (%) 

Mean Generalised 
Peak Pressure 
Position Error 

(Deg) 

Time-
Delay 
Network 

9.13 5.63 10.32 5.91 

NARX 
Network 

0.04 0.55 12.89 6.02 

 

 

 

Table 5.6: Comparison of Standard Deviation for both Time-Delay and 
Recurrent Networks 

 

 

Standard 
Deviation of    

Training Peak 
Pressure Error 

(%) 

Standard 
Deviation of    

Training Peak 
Pressure 

Position Error  
(Deg) 

Standard 
Deviation of    
Generalised 

Peak Pressure 
Error (%) 

Standard 
Deviation of    

Generalised Peak 
Pressure Position 

Error (Deg) 

Time-
Delay 
Network 

12.68 7.48 12.77 6.85 

NARX 
Network 

0.05 0.82 17.59 8.28 
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Figure 5.20: Comparisons between Time-Delay and Recurrent Network 
Generalised Results. Target pressure (black continuous line), predicted with 

time-delay network pressure (grey continuous line) and predicted with 
recurrent network pressure (dotted line). 

 

 
The similarities between the time-delay and recurrent networks, figure 5.20, shows 

that highly complex ANN architectures and training algorithms are not necessarily 

required to reconstruct cylinder pressure to the pre-established level. What has also 

been evident in the training of numerous recurrent networks, is a tendency for the 

reconstruction in generalised conditions to become unstable. Figure 5.21 is an 

extreme example of the unstable nature of recurrent neural networks. This would 

appear to be as a result of high frequency noise within the input data; however this 

is not necessarily the case. The most likely reason could be that the dynamics of the 

engine are distinctly different to the training data in this region causing the 

destabilisation of the ANN feedbacks and the reconstruction. 
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Within that trained network, the instability occurs very quickly and does not recover. 

However, there are examples of recurrent networks becoming unstable, to a lesser 

extent than shown in Figure 5.21, and recovering. The capacity of the recurrent 

neural network to become unstable is evident, but also unpredictable when 

generalising, causing questions to be asked of the efficacy of this architecture. 

 

             Figure 5.21: Unstable Recurrent Network Generalised Results. Target 
pressure (grey continuous line) and predicted pressure (dotted line). 

 

Alongside the stability issues, the use of these complex network architectures and 

training algorithms may have masked the underlying problem preventing the 

successful reconstruction. Furthermore, the suggestions and subsequent research 

paths undertaken in improving the neural networks performance by mastering the 

architectures and training algorithms, could have underestimated other influential 

factors. 
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remainder of this chapter, to determine what overriding aspect has been overlooked, 

in the successful application of ANNs in reconstructing cylinder pressure. 

 

5.3 Over and Under Cylinder Pressure 
Reconstruction  

Two key principles have been demonstrated which indicate the research direction. 

The first is the fact that the level of complexity of both the neural network 

architectures and training algorithms appears to have negligible impact on the 

performance of the cylinder pressure reconstruction. The second is the large 

number of network iterations required (Lawrence,1997). These ideas, alongside the 

universal approximation theorem (Cybenko,1989), support the proposal that the 

neural networks within section 5.1 should have trained and be able to reconstruct 

the cylinder pressure accurately. The failure of the networks and training algorithms 

to do this, demonstrates that the networks must not have been “given appropriate 

parameters" to be able to train sufficiently. This observation then brings us to the 

idea that the key to improving the network's performance lies more in the data, and 

application of the data, rather than the network architectures or training algorithms. 

This direction was therefore pursued further. 

 

The initial work undertaken in section 5.1, where the inability to successfully train 

both recurrent and time-delay neural networks was presented, posed considerable 

doubt on the viability of accurately reconstructing cylinder pressure. Subsequent 

work was undertaken with the aim of improving the reconstruction capabilities by 

focusing more on the content of the crankshaft kinematic data sets, and the way 

they are presented to ANNs.      

 

One of the proposals was the manipulation of the input data to aid in the ANN's 

training effectiveness. The reasoning was that if some known and measurable 

physical characteristic of the input data could be removed, modified or presented 

differently, the training might be more successful. Examples of the presentation of 

the data differing from the crank velocity, solely used at that point, include crank 

position, crank acceleration and the third derivative of position: crank jerk. The 

methodology was put forward with the belief that the ANN could focus more of its 

computational effort and on the complex and unknown nonlinear aspects of the 

crank kinematics, when reconstructing cylinder pressure. Many tests were 
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undertaken with a combination of manipulations to the data. These tests produced 

no significant improvement with regard to the ANN's reconstruction performance 

and therefore are not presented in any more detail. However, improvements were 

established in reducing the time required for training and computational effort. It 

appeared that these manipulations aided in reducing the void between the input and 

output, similar to the work done with regression problems, but did not overcome the 

crucial problem. These tests prove that the missing or masked portion of the data is 

much more ingrained in the crank kinematics; therefore simple manipulations will 

have little effect on the reconstruction capability. 

 

It has therefore been established, that the difficulty in reconstructing cylinder 

pressure lies more with the crankshaft kinematics and the method by which this data 

is presented to the ANN. The identification of this problem and the solution to this 

was not obvious. By reviewing the results within the later part of section 5.1, a trend 

became apparent. There was seemingly a pattern of reconstruction surrounding 

TDC, where some combustion events were significantly higher than measured: i.e. 

over reconstructed, and some combustion events were significantly lower than 

measured: i.e. under reconstructed. This pattern presented itself in the form where a 

higher peak pressure combustion event preceded a significantly lower peak 

pressure combustion event, the reconstruction appeared to over reconstruct. The 

reverse was also true, that where a lower peak pressure combustion event 

preceded a significantly higher peak pressure combustion event, the reconstruction 

appeared to under reconstruct. Both of these can be seen in Figure 5.22 and 5.23 

respectively. 
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Figure 5.22: Over reconstruction. Seen at combustion event 2 and 4. Target 
pressure (grey continuous line) and predicted pressure (dotted line). 

 

Figure 5.23: Under reconstruction. Seen at combustion event 2, 3 and 6.  
Target pressure (grey continuous line) and predicted pressure (dotted line). 
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idea was not unexpected owing to the nature of the application. However, it was 

believed that the use of ANNs and their inherent nonlinear modelling capabilities, 

could surmount this. It was then theorised that alongside the inertial influence, there 

may be some information surrounding TDC that was either missing or being masked 

within the crankshaft kinematics, reducing the ability to reconstruct the cylinder 

pressure successfully.     

 

To test the second hypothesis, further testing was needed, involving a time-delay 

neural network at a number of differing engine conditions. A single engine speed 

was initially selected, as it was believed focusing on a single speed would allow for 

better evaluation. The speed of 1000 rpm, was selected, as it had the most 

significant cycle-by-cycle variability and it was believed that if the neural network 

managed to reconstruct the cylinder pressure at this condition, then the network 

should reconstruct under any degree of cycle-by-cycle variability. A further set of 

tests involved examining at varying engine speeds corresponding to: 1000 rpm, 

1500 rpm, and 2000 rpm. These tests were carried out in the same manner as 

described in section 5.1. A separate network was created for each condition which 

was then optimised individually. Figures 5.24 to 5.26 show the generalised results at 

condition-1, 4 and 6 (1000, 1500 and 2000 rpm at 10 Nm)  

 

Figure 5.24: 1000 rpm reconstruction results. Target pressure (grey 
continuous line) and predicted pressure (dotted line). 
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Figure 5.25: 1500 rpm reconstruction results. Target pressure (grey 
continuous line) and predicted pressure (dotted line). 

 

 
Figure 5.26: 2000 rpm reconstruction results. Target pressure (grey 

continuous line) and predicted pressure (dotted line). 
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The results shown in Figures 5.24 to 5.26 have one significant attribute that has not 

previously been seen.  They show that at the higher power (speed) conditions, high 

speed and load, there is significantly better reconstruction of the cylinder pressure.   

 

Discovering the reasons behind this failure to reconstruct the cylinder pressure 

successfully at lower power conditions around TDC, had the potential to lead to a 

greater understanding of the problem. The inability to translate the crank kinematics 

into cylinder pressure has previously been hypothesised, as an issue of inertia 

dominance and decreasing crank torque, as the piston approaches TDC. A neural 

network's nonlinear modelling potential was believed to have the capability to 

circumvent these issues. However, through extensive consideration of the test 

results, one attribute of the engine's kinematics had been overlooked. This was the 

friction, and the frictional changes that occur at TDC to the piston assembly, and its 

effects on the relationship between crankshaft kinematics and cylinder pressure. 

The frictional changes of the piston assembly, which include the piston and piston 

rings, are significant at TDC and BDC. Also, the decreasing crankshaft torque as the 

piston approaches TDC reduces the effect of cylinder pressure on varying the crank 

kinematics. The occurrence of these frictional changes, together with decreasing 

crank torque, could lead to substantial losses of information within the crankshaft 

kinematics. This substantial loss of information would result in difficulties in training 

a neural network successfully given the current approach.  

 

To further explain the decreasing crank torque effect on the losses of information, an 

analogy can be put forward to illustrate this. Consider a large force (generated by 

pressure within this application) striking the piston crown at exactly TDC. Because 

the crank torque is zero at this point, the large force applied to the piston has no 

impact on the crank kinematics. This example illustrates that the energy imparted to 

and extracted from the system, at or around TDC, has little or no effect on the 

crankshaft kinematics. Therefore, the addition of energy, through combustion, and 

the subtraction, through frictional forces, forms a complex system of energy changes 

which ANNs struggle to model with the current information presented. 
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Figure 5.27: Engine friction variation with crank angle (Rakopoulos et al., 
2007) 

 

The above analysis describes why there is difficulty in reconstructing cylinder 

pressure but not why the higher power conditions reconstruct better than lower 

power conditions.  Part of this difficulty maybe the result of different levels of 

variability but also could be the impact of additional factors.  Some of these factors 

can be revealed through a better understanding of the friction of the piston 

assembly. The friction between the piston, piston rings and cylinder wall can, in 

simple terms, be best described at hydrostatic. This is due to the friction between 

the components varying with piston velocity. At higher velocities, the friction level is 

less than that at lower velocities, see Figure 5.27 upper piston ring friction force, and 

this relationship between the velocity and the friction level could explain the better 

reconstruction. The sinusoidal motion of the piston dictates the fiction level between 

it and the cylinder wall. The friction is greater at the extremes of the motion, i.e. TDC 

and BDC, and lesser friction mid-stroke. The higher the engine speed and the 

greater the mid-stroke velocity of the piston results in lower instantaneous friction.  

Even though the peak instantaneous friction at TDC and BDC would be similar at 

different operational speeds, as the piston velocity will always reduces to zero at 

these points, the average friction tends to decrease with increased engine speeds. 

The next step in proving the impact of the combined inertia and friction on the 

crankshaft kinematics with certainty, would involve a considerable empirical study of 

the engine. This would not be practical and it would be counter to the objectives of 

the study, which were designed to use ANNs to model and reconstruct cylinder 
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pressure and not use an analytical model that has significant limitations. The 

detailed study of the engine in terms of the inertia and friction would only result in 

such a model. Other than accepting the impact on the combined inertia and friction, 

within the crank kinematics, as highly probable, the only possible remaining direction 

was believed to examine other sources for the reconstruction, namely engine block 

acceleration.  

 

5.4 Reconstruction Using Engine Block Vibrations 

The limitations of using crankshaft kinematics outlined in section 5.2, necessitated 

the change in direction from crank kinematics to engine block vibration based ANN 

cylinder pressure reconstruction.  

 

The approach to this new area of interest was similar to that of the previous, in that 

the most gains, with regards to the capability of engine block acceleration based 

reconstruction, would be through the training and testing of ANNs. Time-delay 

neural networks were still used for the same reasons highlighted in section 5.1 and 

the same training algorithm was selected, Levenberg–Marquardt. The only 

difference was in the method in which the data was formatted prior to it being 

presented to the ANN. Previously, there was a degree of low pass filtering to 

remove unrelated frequencies that had no relationship to the crankshaft kinematics 

and is believed to be a result of a small amount of noise within the experimental 

setup, that is magnified by the numerical differentiation. However, when considering 

the engine block acceleration, the frequency range is large and it is highly likely that 

there is relevant information from low frequency, near engine speed, up to higher 

frequencies, where content such as engine knock is measured (around 6 kHz). For 

this reason, it was decided that there should initially be no filtering of the 

acceleration until a greater understanding of the engine block acceleration was 

found.    

 

The initial results produced using engine block acceleration are shown in Figure 

5.28. Both the detailed setup of the ANN and results are covered within appendix D. 

Similar to the crank kinematics results within generalisation, there was good 

agreement between the measured cylinder pressure and the reconstructed cylinder 

pressure.  However, there were also similarities with regards to the erroneous 

sections of cylinder pressure reconstruction and there appeared to be a greater 
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correspondence between engine block acceleration reconstruction and crank 

kinematics reconstruction than expected.  

Figure 5.28: 1000 rpm 10 Nm acceleration generalisation results. Target 
pressure (grey continuous line) and predicted pressure (dotted line). 

 
 

Figure 5.29: 1000 rpm 10 Nm acceleration generalisation results. Target 
pressure (grey continuous line), reconstructed with crankshaft kinematics 

(black dash dot line) and block vibration (black dotted line). 
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Figure 5.30: 1000 rpm 10 Nm acceleration generalisation results. Target 
pressure (grey continuous line), reconstructed with crankshaft kinematics 

(black dash dot line) and block vibration (black dotted line). 
 
 

The comparison between the normally independent engine block acceleration based 

and the crankshaft kinematics based reconstruction, actually show significant 

similarities. Not only are there similarities in the position of the errors, but as can be 

seen in Figure 5.29 and 5.30, the magnitude of these errors are similar, which 

implies that there is some previously unknown commonality between these two 

ANNs and the data sets.  

 

Through extensive experimentation using differing ANNs and training algorithms, 

alongside the previous work and Lawrence et al.,1997, it can be confidently stated 

that this issue is not network dependent. Therefore, the similarity between the two 

different results must originate from the input data, when considering the universal 

approximation theorem.  For both engine block acceleration and the crankshaft 

kinematics results to be so similar, there must be some common feature of the 

engine's kinematics or dynamics that is affecting both reconstructions. 

 

A study was undertaken into which features of engine dynamics affect both sets of 

input data. It was determined that the only possible rationale to explain the 

similarities was, if the engine block acceleration picked up some aspect of the 

crankshaft kinematics, because the mechanism required to do the reverse 
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operation, crank kinematics influenced by engine block acceleration, is too complex 

and believed to be unlikely. This led to deconstructing the differing modes of the 

crank kinematics to find sources which could influence the engine block acceleration 

and lead to the reconstruction similarities. 

 

Through this process, the differing modes which could have caused this engine 

block acceleration were reduced and the most apparent source was the connecting 

rod inertia. The mechanism by which the connecting rod inertia impacts on the 

engine block acceleration is as follows: the elliptical motion of the connecting rod's 

centre of gravity, shown in Figure 5.30, generates a lateral force component at some 

distance from the crank axis, generating moment about the crank axis. To further 

complicate the rolling moment, the moment about the crankshaft axis varies with 

crank angle due to the change in distance between the crank axis and the 

connecting rod's centre of gravity. This variation induces a complex rolling moment 

within the engine block about the crank axis and in turn, this accelerates the engine 

block both laterally and vertically. However, as only the lateral acceleration is 

measured, we are only concerned with the lateral component.      

 

Figure 5.31: Connecting rod position with respect to crank angle. The position 
of the big end (black), the small end (black dot dash) and the connecting rods 

centre of gravity (grey).  
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To provide reasonable support to this, the connecting rod inertia and resulting 

acceleration was reconstructed theoretically using the known engine component 

sizes, weights and estimations of component inertias. First, a relationship between 

the connecting rod inertia and the crank angle was formulated. Using the geometry 

of the engine block, an estimation was then made of the rolling moment, as defined 

previously, and the resultant engine block acceleration.  

 

                                                                      

 

The position of the small end bearing,    , is given by:  

 

                
                                                 

 

where the x displacement for the small end bearing is zero. The position of the 

connecting rod's centre of gravity is: 

 

                                                                                  

The rolling moment,  , is found by the multiplication then summation of all three 

connecting rod's mass at their centre of gravity    , their lateral acceleration and 

the distance between the connecting rod's centre of gravity and crank axis.    

 

       
        

   
       

       
                                            

 

The basic equations for calculating the rolling moment are given in equations 5.1 to 

5.4 and use the same definition described in Chapter 2, when the position of the big 

end bearing,    , in cartesian coordinates, is given by equations 5.1. The resulting 

solutions show clearly a significant link between the theoretical connecting rod 

inertia and the engine block acceleration. The result is even more evident when 

examining both sets of data in the frequency domain. The magnitude for each data 

set is shown in Figure 5.33 after taking a Fourier transform. It can be seen that there 

is a significant response present in both the connecting rod inertia (50Hz), and the 

engine block acceleration (100Hz), which is a third order response, at three times  

the engine speed; 1000 rpm or 16.7 Hz. 
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Figure 5.32: Connecting rod moment (top) and engine block acceleration 
(bottom) 

 

Figure 5.33: Connecting rod inertial and engine block acceleration frequency 
domain comparison 
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The similarity between the two results within the frequency domain and the 

dominance of one key frequency within both, can only lead to one conclusion. It 

shows that the apparent over and under reconstructing, previously seen in the 

cylinder pressure reconstruction, using  engine block acceleration,  must be linked to 

the inertia of the system and not solely to the cylinder pressure. 

 

This confirmation of the link between the engine block acceleration and the inertia of 

the system and the subsequent impact on the cylinder pressure reconstruction, has 

serious implications on the crankshaft kinematics. Earlier, it was hypothesised that 

the errors in the reconstruction with crankshaft kinematics, the over and under 

reconstruction, was a combination of system inertia and friction fluctuations at TDC, 

section 5.2. This hypothesis, alongside the conclusion that there was a commonality 

between crankshaft kinematics and engine block acceleration and that the engine 

block acceleration is dominated by the crankshaft inertia, can only lead to one 

conclusion. The partial confirmation of the hypothesis that the crankshaft kinematics 

is solely dominated by the inertia of the system and therefore, the resulting cylinder 

pressure reconstruction would only reconstruct from crankshaft inertia.  

 

This conclusion can now better explain the difference in the reconstruction 

capabilities at differing engine speeds and load conditions. At high power conditions, 

the fluctuations in the inertia of the system are more consistent and as such, the 

performance of the reconstruction is greater. However, at low power conditions the 

fluctuations in the inertia of the system are erratic, which leads to more over and 

under reconstructions, reducing the overall performance. Further implications of this 

finding and an additional study of the crank kinematics are now discussed in Section 

5.5. 

    

5.5 A Re-examination of Crankshaft Kinematics 

Within the previous section 5.4, a significant relationship between the inertia of the 

system and the crankshaft kinematics was found, which had considerable 

implications for the effectiveness of using crankshaft kinematics for cylinder 

pressure reconstruction. This breakthrough meant that the reconstruction using 

engine block acceleration could be temporarily suspended and allowed a re-

investigation of the crankshaft kinematics for reconstructing cylinder pressure.   
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Through this re-investigation of the crankshaft kinematics, several areas were 

focused on with the most effective and the most productive being by deconstructing 

the torque loads being applied to the cranktrain. This was not just an identification of 

the loads but also the time and duration.  

 
Figure 5.34: Torque loads by the 3 cylinder (Grey solid line) and system inertia 

(Black dot dash line).  

 

One aspect of this re-investigation that produced a greater understanding is shown 

in Figure 5.34 and directly relates to the discovery in section 5.4. This figure breaks 

down both the torque related to cylinder pressure and associated with the overall 

inertia of the system. It can be seen that the load on the crankshaft from the inertia 

is relatively consistent throughout the cycle. However, the loading on the crankshaft 

from the cylinder pressure is only intermittent. Although this was already 

established, when presented with the cylinder pressure below, and taking into 

account the consistency of the inertial load, the data being applied to the neural 

network has little information regarding cylinder pressure changes.       

 

The errors in reconstruction can be further explained by way of what is actually 
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cylinder pressure, but also suggested that this method of using crankshaft 

kinematics may never work successfully owing to the lack of pressure related 

information surrounding TDC.     

 
Figure 5.35: The dominance of the inertia relative to the cylinder pressure. 

Black dot dash line is the normalised crankshaft torque.  Grey solid line is the 
normalised cylinder pressure torque.  
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significantly better reconstructions.    

 

Current ANNs use delays which only cover the 60 degrees prior to the reconstructed 

pressure. As can be seen, the information content within the 60 degrees prior to 

TDC, and surrounding TDC, is primarily inertial based, resulting in the poor 

reconstruction of the cylinder pressure. Also, the portion of the data that contains 

information pertaining to the cylinder pressure is firstly, only concerned with the 

compression stroke which varies little in steady state conditions and secondly, this is 

a significant period before TDC. The only relevance this information will give to the 

330 340 350 360 370 380 390 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
rc

e
n
ta

g
e
 D

o
m

in
a
n
c
e
 (

%
)

Crank Position (deg)



 125   

 

ANN is to state the initial conditions of the system prior to combustion, but has no 

information relating to the combustion process.       

 

As the relevant information content prior to TDC has been deemed to be of little use 

in reconstructing the cylinder pressure, the only remaining content is after TDC. This 

information, 60 degrees after TDC, would still contain inertia information but would 

also contain information regarding the cylinder pressure changes post combustion. 

This information, alongside the compression information before TDC, would contain 

the initial and final conditions of the system and may result in improved 

reconstruction capabilities.   

 

On the understanding that this approach would affect the real time nature of the 

application, it is believed to be the best method to reconstruct cylinder pressure. The 

real time nature will be discussed in greater detail in the next section but the primary 

focus was on the verification of this method in the short term.  

 

5.6 Optimisation of the Delay for Crank Kinematic 
Based Reconstruction 

The suggestion that the past information within the crankshaft kinematic data had 

little knowledge in aiding the cylinder pressure reconstruction and that only future 

crank kinematic data, which is ahead of the point of reconstruction, is significant. 

The use of past and future in this context refers to a certain amount of data that is 

either acquired before the point of reconstruction or acquired after the point of 

reconstruction. As a result, this application will not be able to produce real time 

cylinder pressure reconstruction; it would be delayed by the same number of 

degrees as the amount of future information required. 

 

If proven, this hypothesis could lead to substantial improvements in the ability of an 

ANN to carry out cylinder pressure reconstruction. So far, this idea has been 

explained purely in terms of the effective radius, the system inertia and the lack of 

information at TDC; namely the issues surrounding the significant changes in 

friction. However, it can be explained in a more generalised manner for any 

application where the system and the transfer of energy is time dependent. It can be 

simply put that there is a time element to the transfer of energy from one part of the 

system to another; cause and effect. Within any system with time dependant 
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changes in energy, the cause always precedes the effect. In this application, 

ignoring the effective radius, there is a delay between the cylinder pressure rising, it 

acting on the piston crown, it overcoming the inertia and kinematic changes 

occurring. This idea may seem simple and obvious, but it has not be recognised or 

applied within this application. With the exception of researchers using the pattern 

recognition approach (Gu et al., 1996), the time-series approaches have 

predominately used only the current and past crank kinematic data with no 

reference to using future crankshaft kinematics.  

 

It is important to note that just because the future kinematic data may hold more 

relevant information, it does not mean that the past kinematics is irrelevant. 

Referring back the description using energy, the past kinematics describes the initial 

energy of the system at the beginning of the combustion event and the future 

kinematics describes the resultant energy once the combustion event has finished. 

Using both should enable the ANN to construct a model that will take account of not 

only the total energy imparted to the cranktrain by the cylinder pressure, but also 

using multiple delays, recognise how the energy is distributed across the 

combustion event.   

 

This hypothesis was tested in the same way as the previous hypotheses. The ANN 

architecture was a Time-Delay neural network and training was achieved using the 

Levenberg–Marquardt algorithm. Previously, there has been some success using 

delays encompassing 60 degrees of past kinematics. Therefore 60 degrees of past 

kinematics was again selected and to give symmetry, 60 degrees of future 

information was selected for the initial training attempts. Below are both the training 

and generalisation results for this hypothesis.    
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Future and past training results 

 

Figure 5.36: Future and Past Training Results. Target pressure (grey 
continuous line) and predicted pressure (dotted line). 

 

 

 

 
Figure 5.37: Future and Past Training Results. Left shows training peak 
pressure error and right shows training position of peak pressure error 
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Future and past generalisation results 

 

Figure 5.38: Future and Past Generalised Results. Target pressure (grey 
continuous line) and predicted pressure (dotted line). 

 

 

 

 
Figure 5.39: Future and Past Generalised Results. Left shows training peak 

pressure error and right shows training position of peak pressure error 
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With the apparent success of using this technique visible in the training and 

generalised results in Figures 5.36 to 5.39, a comparison between the future and 

past and the past inputs was undertaken 

 

 

Table 5.7: Comparison of the Training Results for both Future and Past and 
Past Approaches  

 

Training 
Results 

Past Delays Only Future and Past Delays 

 Root-Mean-
Squared Error 

Standard 
Deviation  

Root-Mean-
Squared Error 

Standard 
Deviation  

Overall 
Performance 

3. 38 % 3.38 % 1.82 % 1.82 % 

Normalised 
Peak Error  

10.9 % 8.23 % 5.13 % 3.33 % 

Peak 
Pressure 
Position 
Error (deg) 

3.79 2.44 2.29 1.51 

 

 
 
 

Table 5.8: Comparison of the Generalisation Results for both Future and Past 
and Past Approaches 

 

Generalisation  
Results 

Past Delays Only Future and Past Delays 

 Root-Mean-
Squared Error 

Standard 
Deviation  

Root-Mean-
Squared Error 

Standard 
Deviation  

Overall 
Performance 

3.49 % 3.49 % 2.15 % 2.15 % 

Normalised 
Peak Error  

12.6 % 9.27 % 5.58 % 3.74 % 

Peak 
Pressure 
Position Error 
(deg) 

3.45 2.06 2.54 1.64 
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Figure 5.40: Comparisons between the Future and Past (black dotted line), the 
Past (black dash dot line) Generalised Results and Target pressure (grey 

continuous line).   
 

The above results, using a combination of future and past inputs, and the 

comparison between the future and past delays and the previous, show significant 

gains. The overall performance improvements from 3.49 % to 2.15 % for the 

generalised RMSE as well as a qualitative improvement seen in Figures 5.36 to 

5.40, give an indication of the potential for accurately reconstructing cylinder 

pressure; where the over and under reconstruction shown in the earlier test is no 

longer present and the generalised results accuracy is exceptional. As stated, the 

tests described used ± 60° for the inputs of the ANN.  These values were selected 

based on the combination of previous optimisation for the delay number and 

convenience.  As the methodology was developed, it was prudent to undertake a 

new optimisation for the number of delays, taking into account both future and past 

inputs.  

 

The results from the optimisation of the delay number were similar to the previous 

optimisation; the best results were produced with 120° of past inputs in addition to 

120°of future inputs.  In the previous optimisation discussion, the significance of the 

120°of inputs was stated. The fact that the optimum total number of delays: i.e. 

240°, is equal to a third of a cycle and the exact length of a combustion event, is not 

coincidental.  Generally, when modelling any time-series problem, the greater the 

amount of data, the better the accuracy. However, within certain systems there is a 
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limit to the amount of useful information available before other unrelated and 

potentially problematic content may have a negative impact. This result for the 

optimum delay number can be best explained through considering the influence 

cylinder pressure has on the crankshaft kinematics.  Through an individual cylinder's 

240° combustion event, the majority of crankshaft kinematic variations will be as a 

direct result of the firing cylinder. The influences by the other cylinders will be 

relatively small and consistent cycle-to-cycle.  However, the crankshaft kinematics 

outside of the 240° window of the combustion event will be greatly influenced by 

either the compression or exhaust strokes of the other cylinders. These delay 

numbers will not be examined in detail in this chapter, they will be combined with the 

other developments made and tested in depth, using both crankshaft kinematics in 

chapter 6 and cylinder block vibrations in chapter 7.  The exact implementation for 

each approach will be described in detail within each chapter.  

 

The general evidence for using both future and past inputs has been proven, with 

substantial improvements in the reconstruction results both qualitatively and 

quantitatively.  However, there are still some problems in the reconstruction which 

appear to be independent of the ANN architecture, training algorithm and the 

optimum input arrangement.  The next task therefore was to examine the processing 

of the data prior to its application to the ANN; namely the filtering.  

 

5.7 Filtering Crankshaft Kinematics 

Up to this point, little has been discussed regarding the filtering of the data in 

general, with the exception that a small amount was required on the crankshaft 

kinematics in order to remove high frequency noise.  This noise is believed to be 

relatively insignificant within the acquisition of the crankshaft position.  However, this 

noise has been magnified as a result of numerically differentiating the position to get 

crankshaft velocity. The numerical differentiation was carried out within the same 

code that converted the raw data from the LabVIEW environment to the Matlab 

environment, implemented the corrections for the shaft encoder and collated the 

data. This process was previously carried out on the earlier data acquired with none 

of the original raw LabVIEW data retained. To maintain consistent data acquisition 

procedures this method was continued with the newly acquired data, discussed in 

Chapter 8. A Fast Fourier Transform (FFT) method has been used to remove the 

higher frequencies up until this point within the thesis.  It was believed, with little 
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gains being made through additional examination of the ANN architecture, training 

algorithm and the optimum input arrangement, further improvement might have 

been found by using a less indiscriminate means of filtering the data.  Using the FFT 

might have been filtering out more obscure data with relevant information pertaining 

to cylinder pressure. 

 

A series of experiments were undertaken examining the cylinder pressure and 

crankshaft kinematics in both the time and frequency domain.  Each experiment 

aimed to find important frequencies in both that in some way related one to the 

other.  One of the most significant observations made was seen when examining the 

cylinder pressure in the frequency domain.  The aim of this particular test was to 

determine when filtering out high frequency content, what was the critical frequency 

that the cylinder pressure signal would start to deteriorate when returned to the time 

domain.  This was carried out using 200 engine cycles of data.  Results from this 

test proved that extremely large number of frequencies are required to successfully 

reconstruct the signal in the time domain.  It was also apparent that the filtering used 

previously to minimise the high frequency content, had the effect of degrading the 

signal notably in this test.  A comparison between the raw measured cylinder 

pressure and current filtering method is shown in Figure 5.41. 

Figure 5.41: A comparison between the raw measured cylinder pressure and 
current filtering method. Measured pressure (grey continuous line) and 

filtered pressure (dotted line). 
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This result led to reconsidering the purpose of the filtering and the application. There 

are numerous nonlinear processes that occur within an IC engine. Some of these 

are cyclical, namely bearing fiction, but most are not. The most significant in this 

application is the inlet air flow dynamics and in particular the engine used for 

acquisition has an EGR system installed. The dynamics of systems like these are 

not contained and do not significantly vary within a single cycle, they vary across 

many. Therefore, the behaviour and control of the whole engine is dependent on the 

dynamics of the numerous previous cycles. This creates an issue when attempting 

to filter out the high frequencies in the data. As the behaviour of the engine is in 

some way affected by dynamics outside of the time window the data is acquired; this 

can be considered as a non-stationary signal. Therefore, the use of a FFT for 

filtering out high frequency content in its entirety would be problematic and could 

cause the notable errors, seen in Figure 5.41.  The result is that through using the 

filtering techniques across a number of cycles, a portion of valuable information 

could be lost. 

Figure 5.42: A comparison between the raw measured cylinder pressure and 
new filtering method. Measured pressure (grey continuous line) and filtered 

pressure (dotted line). 
 
 

The use of different filtering techniques was considered.  However, as a substantial 

amount of the nonlinear effects appeared to vary cycle-to-cycle, a different approach 

was preferred.  Instead of filtering across numerous cycles, it was proposed that a 

piecemeal approach could be used by filtering within a single cycle, where the non-

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6 Raw and New Filtered Cylinder Pressure

C
y
lin

d
e
r 

P
re

s
s
u
re

 (
P

a
)

Crank Angle (rad)



 134   

 

cyclical effects were minimised and little information would be lost.  This method 

assumes the input data is stationary and to some extent disregard some of the 

nonlinear aspects within the data, which seem to be more prominent when 

examining numerous cycles.  Figure 5.42 shows a comparison between the raw 

measured cylinder pressure and individual cycle filtering method.  This method 

appears, in the initial comparisons, to be successful in minimising degradation of the 

signals whilst still filtering a significant proportion of the higher frequency noise.  The 

next series of figures and tables present the results from tests using this new 

filtering approach.  Again, it was undertaken using the same ANN architecture and 

training algorithm used in the previous sections.   

 

 

 

Individual Filtered Training Results 

 

Figure 5.43: Individually Filtered Training Results. Target pressure (grey 
continuous line) and predicted pressure (dotted line). 
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Figure 5.44: Individually Filtered Training Results. Left shows training peak 
pressure error and right shows training position of peak pressure error 

 

 

 

Individual Filtered Generalisation Results 

 

Figure 5.45: Individually Filtered Generalised Results. Target pressure (grey 
continuous line) and predicted pressure (dotted line). 
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Figure 5.46: Individually Filtered Generalised Results. Left shows training 

peak pressure error and right shows training position of peak pressure error 
 

 

With the success of using individually filtered cycles evident in the training and 

generalised results in Figures 5.43 to 5.46, a comparison between the filtering 

techniques inputs was undertaken. 

 

 

Table 5.9: Comparison of the Training Results for both Individually Filtered 
and Group Filtered Approaches  

 

Training 
Results 

Group Filtered Individually Filtered 

 Root-Mean-
Squared Error 

Standard 
Deviation  

Root-Mean-
Squared Error 

Standard 
Deviation  

Overall 
Performance 

3.38 % 3.38 % 2.29 % 2.29 % 

Normalised 
Peak Error  

10.9 % 8.23 % 5.98% 4.02 % 

Peak 
Pressure 
Position Error 
(deg) 

3.79 2.44 1.95 1.32 
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Table 5.10: Comparison of the Generalisation Results for both Individually 
Filtered and Group Filtered Approaches 

 

Generalisation  
Results 

Group Filtered Individually Filtered 

 Root-Mean-
Squared Error 

Standard 
Deviation  

Root-Mean-
Squared Error 

Standard 
Deviation  

Overall 
Performance 

3.49 % 3.49 % 2.53 % 2.53 % 

Normalised 
Peak Error  

12.6 % 9.27 % 6.53 % 4.46 % 

Peak 
Pressure 
Position Error 
(deg) 

3.45 2.06 1.95 1.28 

 
 
 

 
Figure 5.47: Comparisons between the Individually Filtered and Group Filtered 

Generalised Results. Target pressure (grey continuous line), predicted with 
past approach (black dash dot line) and predicted with Individually Filtered 

approach (black dotted line). 
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a time. The overall performance improved from 3.49 % to 2.53 % for the generalised 

RMSE result. This approach appears not to filter out the nonlinear cycle-by-cycle 

effects but at the same time improves the quality of the signal. The over and under 

reconstruction is still present, as the future delays have not been used in this test. 

Within the above results, the approach's additional computational requirement was 

relatively small.  However, the exact method used to filter within a cycle may have to 

be modified when considering the practical application of this technology. This 

approach will be combined and tested with the developments made in optimising the 

delay in Chapters 6 and 7. 

 

5.8 Independent Cylinder Reconstruction 

As described in the introduction, the ultimate goal for reconstruction is for the ANN 

to adapt to not only different engines, but also to changing engine dynamics as a 

result of excessive journal bearing wear. The subtle differences in manufacturing 

tolerances and increased friction from engine to engine may seem negligible 

however, it can lead to substantial differences.  So far, what has not been 

considered is the difference between individual cylinders within the same engine. 

The differences can be caused by the different tolerances of components such as 

pistons, piston rings and connecting rods.  They can be from different friction and 

wear rates, injector tolerances or the condition of the spark plug.  They can even be 

a result of the different geometries of the inlet and exhaust manifolds for each 

cylinder.  All of these differences cylinder to cylinder, along with different wear rates, 

could significantly impact the overall performance of the reconstructed cylinder 

pressure.  Therefore, using the same premise that different engines require different 

ANNs with a degree of adaptively to produce accurate reconstruction, different 

cylinders within the same engine also require subtly different ANNs to achieve the 

best reconstruction possible. The following results show the tests of this hypothesis, 

again using the same ANN architecture and training algorithm used in the previous 

sections. The next series of figures show the results from the training and 

generalisation from an ANN trained only on crankshaft kinematics and cylinder 

pressure from one of the three cylinders.  
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Individual Cylinder Training Results 

 

Figure 5.48: Individual Cylinder Training Results. Target pressure (grey 
continuous line) and predicted pressure (dotted line). 

 

 

 
Figure 5.49: Individual Cylinder Training Results. Left shows training peak 

pressure error and right shows training position of peak pressure error 
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Individual Cylinder Generalisation Results 

 

Figure 5.50: Individual Cylinder Generalised Results. Target pressure (grey 
continuous line) and predicted pressure (dotted line). 

 
 

Figure 5.51: Individual Cylinder Generalised Results. Left shows training peak 
pressure error and right shows training position of peak pressure error 

 

 

With the success of using individual cylinders for training and generalisation shown 
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Table 5.11: Comparison of the Training Results for both Individual 
Cylinder and Multiple Cylinder Approaches  

 

Training 
Results 

Multiple Cylinder Individual Cylinders 

 Root-Mean-
Squared Error 

Standard 
Deviation  

Root-Mean-
Squared Error 

Standard 
Deviation  

Overall 
Performance 

3.38 % 3.38 % 2.34 % 2.34 % 

Normalised 
Peak Error  

10.9 % 8.23 % 9.57% 5.66 % 

Peak 
Pressure 
Position 
Error (deg) 

3.79 2.44 3.35 2.04 

 

 
 
 
 
 

Table 5.12: Comparison of the Generalisation Results for both Individual 
Cylinder and Multiple Cylinder Approaches 

 

Generalisation  
Results 

Multiple Cylinders Individual Cylinder 

 Root-Mean-
Squared Error 

Standard 
Deviation  

Root-Mean-
Squared Error 

Standard 
Deviation  

Overall 
Performance 

3.49 % 3.49 % 2.49 % 2.49 % 

Normalised 
Peak Error  

12.6 % 9.27 % 10.8 % 6.78 % 

Peak 
Pressure 
Position Error 
(deg) 

3.45 2.06 3.10 1.91 
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Figure 5.52: Comparison between Individual Cylinder and Multiple Cylinder 
Generalised Results. Target pressure (grey continuous line), predicted with 
past approach (black dash dot line) and predicted with Individual Cylinder 

approach (black dotted line). 
 

Similar to the last two sections, this approach detailed in this section, showed a 

notable improvement in both the training and generalised results; although not to the 

extent of the other sections.  The overall performance improved from 3.49% to 

2.49% for the generalised RMSE result.  Even though this approach requires more 

training, one ANN for each cylinder, practically it would require more computational 

effort to run and adapt. The over and under reconstruction and filtering issues are 

still present as the previous schemes have not been utilised in this test. 

 

5.9 Conclusions of Chapter 5: Combined 
Methodology  

This chapter shows that complex recurrent neural networks are not necessary for 

the accurate reconstruction of cylinder pressure - a more simple architecture could 

be used to produce the same level of accuracy.  It was also found that by examining 

both crankshaft kinematics and engine block vibration reconstruction results, key 

information about the cylinder pressure was being missed through the training.  This 

missing information was deemed to be the result of several main factors; the 
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variation of the effective radius, the variation in friction at TDC and more importantly, 

the dominance of the inertia. 

 

One of the key solutions developed to overcome the problems identified, was a 

different approach to the ANN input organisation; the use of both future and past 

delays.  This method examined the crankshaft kinematics prior to and after TDC, 

which successfully overcame the majority of the above mentioned issues.  Two 

additional solutions were found to solve some additional inaccuracies in 

reconstructing cylinder pressure.  These included a less indiscriminate method of 

filtering crankshaft kinematics in order not to eliminate useful information and 

creating an ANN for each cylinder, which will take into account the variability 

between the different cylinders. The combination of these three solutions into a 

single methodology, along with the use of a time-delay neural network and 

Levenberg-Marquardt algorithm, should prove to be the solution to overcoming the 

reconstruction difficulties. 

 

Chapter 6 will take the conclusions from this chapter and apply them directly to 

crankshaft kinematic cylinder pressure reconstruction. Chapter 7 will also apply this 

methodology and discuss slight modifications needed in order to successfully 

reconstruct from engine block vibration.  Once the successfulness of this 

methodology has been established, using the steady-state conditions, work will then 

focus on applying the methodology to transient conditions.  
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Chapter 6  

Crankshaft Kinematics Based Cylinder 
Pressure Reconstruction Results  
 

 

 

 

6.1 Introduction  

Chapter 6 presents the final and most significant results using the methodology 

discussed in Chapter 5 with crankshaft kinematics to reconstruct cylinder pressure 

for the Ford 3-cylinder engine. Chapter 5 only examined each part of the 

methodology in isolation; this chapter examines the complete methodology. Owing 

to the complexity of transient engine dynamics, this chapter will only focus on 

steady-state reconstruction. The first objective of this chapter is to demonstrate the 

capability of using simple ANN architectures and training methodologies, namely 

Time-Delay neural networks and Levenberg-Marquardt algorithm.  Second, this 

chapter will aim to show that the trained and generalised cylinder pressure 

reconstruction results are significantly improved and within the desired performance 

goal.  The final objective is to show how the training and generalisation performance 

vary depending on the test condition.  

 

Initially, the method used to process the data from its raw state to the form required 

for its application to the ANN, will be discussed and will summarise the methodology 

developed in Chapter 5.  The remainder of this chapter will present the training and 

generalised results of a range of test conditions, compare each condition and 

discuss the implications. Some important observations will also be highlighted, 

which will have a significant impact on work undertaken in later chapters , namely 

the reconstructing cylinder pressure under transient conditions. 
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Table 6.1: Test Conditions used for Assessing the Performance of the 
Developed Methodology and ANNs  

 

 Engine 
Speed  
(rpm) 

Engine 
Load  
(Nm) 

Training Data File 
Name 

Generalised Data File 
Name 

Condition-1 1000 10 1000_10_01p_jun2010 1000_10_02p_jun2010 

Condition-2 1500 10 1500_10_01p_jun2010 1500_10_02p_jun2010 

Condition-3 2000 10 2000_10_01p_jun2010 2000_10_02p_jun2010 

Condition-4 1000 20 1000_20_01p_jun2010 1000_20_02p_jun2010 

Condition-5 1500 20 1500_20_01p_jun2010 1500_20_02p_jun2010 

Condition-6 2000 20 2000_20_01p_jun2010 2000_20_02p_jun2010 

Condition-7 1000 30 1000_30_01p_jun2010 1000_30_02p_jun2010 

Condition-8 1500 30 1500_30_01p_jun2010 1500_30_02p_jun2010 

Condition-9 2000 30 2000_30_01p_jun2010 2000_30_02p_jun2010 

 
 
 

In total, 9 separate test conditions were examined and an ANN was trained for each, 

shown in Table 6.1.  However, this chapter will only be presenting 3 of the test 

conditions in full; the remaining 6 are presented in Appendix E. The 3 test conditions 

selected were condition-1, condition-5 and condition-9. These conditions 

demonstrate a broad range of variability and potentially a significant difference in the 

reconstruction performance. At each test condition, full details will be given 

regarding the network structure, training limits and training data selected. The 

results for both the network training and generalisation will be presented and 

analysed. The presented results will be classified as best, average or worst. These 

are classified statistically by ranking each cycle of data using three metrics; mean 

squared error, peak pressure error and position of peak pressure error. The best 

results are the reconstructions cycles with the highest rank in each metric. The worst 

is the lowest ranked cycle and average is the average ranked cycle. The chapter will 

conclude with a discussion on the overall performance of the ANN architecture, 

training algorithm and the methodology developed in Chapter 5. 
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6.2 Test Data Preparation  

In this section, the preparation and processing of the data used for the training of all 

test conditions will be discussed and will be identical in both Chapter 6 and 7.  The 

preparation, described below, will cover every step undertaken for reading the raw 

data acquired, to the form required for training and generalisation testing. All 

processing was undertaken within Matlab. 

 

The first step in processing the data was to prepare the cylinder pressures. This was 

done by concatenating the pressure from each cylinder separately.  This process 

truncates the 720° cylinder pressure signal to the 240° surrounding TDC and then 

combines into a string of pressure events.  This process ensures that firstly, only the 

relevant and measurable pressure data is used and secondly, it guarantees that the 

reconstruction undertaken only takes into account the cylinder pressure and input 

data from the current combustion event. The remainder of the processing involved 

the input data, namely crankshaft kinematics.  The first step in preparing the 

crankshaft kinematics was to isolate each cycle so that the successive steps could 

be undertaken more accurately and efficiently.  This was carried out by using the 

TDC marker that was acquired from the crankshaft encoder.  As described in 

Chapter 4, the current data acquisition system has been set up to acquire data in 

the time domain.  However, for this work it was believed that the crank angle domain 

would have the most success in reconstructing cylinder pressure. The samples per 

cycle in the time domain vary depending on speed with ~1200 samples per cycle at 

1000 rpm to with ~600 samples per cycle at 2000 rpm. The samples per cycle in the 

crank domain remains constant at 720 per cycle. It is there for necessary to use 

interpolation for the conversion from the time domain to the crank domain. At higher 

speeds the difference between the time and crank domain samples per cycle is 

relatively small resulting in negligible potential loss in information during the 

conversion. However, at lower speeds the difference in samples per cycle is greater 

leading to a significant chance of aliasing or the distortion of the signal when 

sampled. To attempt to negate some of this effect during the conversion cubic 

interpolation was selected in place of linear interpolation. Instead of assuming a 

linear change between each sample, cubic interpolation uses a spline to describe 

the difference between each sample, with a third-degree polynomial. This more 

accurate form of interpolation hopes to reduce some of the aliasing effect, even 

though it is impossible to guaranty without using anti-aliasing filter. This conversion 

https://en.wikipedia.org/wiki/Spline_(mathematics)
https://en.wikipedia.org/wiki/Polynomial
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was applied to both the crankshaft kinematics and the cylinder pressure; this was 

the last process to take place regarding the cylinder pressure. 

 

The final stage in processing the data, prior to arranging the data, was filtering the 

higher frequencies contained within the crankshaft kinematics.  The exact 

frequencies and methodology used has been described in detail within Chapter 5.  

The practical filtering was carried out using the Matlab Fast Fourier Transform (FFT) 

function for each cycle of crankshaft kinematics independently.  This independence 

reduced errors generated because of the cyclic nonlinearity and time dependent 

phenomena.  

 

The remainder of the processing was concerned with the final arrangement of the 

data so that it could be presented to the ANN for training and assessing 

generalisation capabilities.  The first stage was to arrange the delays for the input 

which relate to specific cylinder pressure, second to randomise the order and finally 

to select the training and validation sets.  

 

The input was arranged in a matrix form where each column related to a different 

cylinder pressure and in each column there were 240 crankshaft kinematic data 

points, 120 prior to the particular pressure and 120 subsequent to the pressure.  The 

cylinder pressures were simply arranged into vectors, the same length as the input 

matrix. To note, crankshaft kinematics were not concatenated.  As a result, the 

crankshaft kinematics taken outside the 240° window, at the beginning and end of 

the combustion event, were not associated with the adjacent combustion events; 

they were from the kinematics associated with the combustion events from the other 

cylinders at that specific instance. As the adjacent combustion events in this context 

relates to the previous combustion in the same cylinder and not the previous firing 

event. 

 

These combustion events were then randomised in order to prevent the over-

training of the ANN and to eliminate any other time dependent phenomena which 

might be trained.  Similarly, the training and validation sets were also selected 

randomly to prevent over-training.  The data was then presented in this form to the 

ANN for training purposes and generalisation. 
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6.3 Results - Test Condition-1  

6.3.1 Data and Network Configuration  
The first test condition used measured data from running the engine at steady-state 

with a speed of 1000 rpm and a load of 10 Nm.  This test condition was selected as 

it was the lowest power condition acquired and as a result should contain the most 

cylinder pressure variability cycle-to-cycle.  Both the training and generalisation data 

sets underwent the same data process using the steps covered in section 6.2.  The 

ANN used was a time-delay network with one hidden-layer of 15 neurons.  The ANN 

had 200 input delays, where 100 were dedicated to the 'past' inputs and 100 were 

dedicated to the 'future' inputs.  The Levenberg-Marquardt training algorithm was 

used with a mean squared error cost function and a maximum epoch number of 

1000.  More information regarding the setup of the training is given in Table 6.2. 

 

 

 

 

 

 
Table 6.2: ANN Training Setup for Test Condition-1 

 

 
 

Network 
Name 

Net_TD_CK_Test1 0 Network           
Architecture 

Time-
Delay 

0 Test Data 1000_10_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

1  Speed 
(rpm) / 
Load (Nm) 

1000/10 

Cost 
Function 

Means Squared 
Error 

 Neurons 
Number  

15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

240  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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6.3.2 Training Results 
This subsection presents the results from training the ANN using data from 

condition-1 (1000 rpm and 10 Nm). In total, 10 ANNs different initial conditions were 

trained with the overall performance of the ANNs ranging from 0.98% to 1.91% 

RMSE.  The best performing ANN was selected, which trained in 1719 seconds 

(0.4775 hours) and 121 epochs. Figures 6.1 to 6.3, present training results for best, 

average, and worst regions of cylinder pressure reconstruction. Each of these 

regions have been evaluated and compared against the mean values to rank their 

degree of success.  

 

Figure 6.1: Condition-1 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 0.64%.  
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Figure 6.2: Condition-1 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 0.95%.  
 

Figure 6.3: Condition-1 Training Results - Worst. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 1.36%.  
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Figure 6.4: Condition-1 Normalised Peak Error Training Results (left). 

Condition-1 Position of Peak Error Training Results (right) 
 
 

Figure 6.4 presents the normalised peak error and the peak position error between 

the measured cylinder pressure and training results for 180 cycles of data. The 

following table, Table 6.3, presents the root-mean-squared error and the standard 

deviation for 3 key parameters; the overall error, the normalised peak pressure error 

and the position of peak pressure error. 

 

 
Table 6.3: Condition-1 Root-Mean-Squared Error (RMSE) and Standard 

Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance   0.98 % 0.98 % 

Normalised Peak Error  2.1 % 1.4 % 

Peak Pressure Position 
Error (deg) 

2.01 1.30 
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6.3.3 Generalisation Results 
The data used for the generalisation tests was from the same condition (1000 rpm 

and 10 Nm). However, it was acquired separately from the training data and has not 

been used by the ANN for training. Figures 6.5 to 6.7, gives generalisation results 

for best, average, and worst regions of cylinder pressure reconstruction. Each of 

these regions again, have been evaluated and compared against the mean values 

to rank their degree of success. 

 

Figure 6.5: Condition-1 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 0.57%.  
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Figure 6.6: Condition-1 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.25%.  

 

 

 

Figure 6.7: Condition-1 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.56%.  
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Figure 6.8: Condition-1 Normalised Peak Error Generalisation Results (left). 
Condition-1 Position of Peak Error Generalisation Results (right) 

 
 

Figure 6.8 shows the normalised peak error and the peak position error between the 

measured cylinder pressure and generalised results for 180 cycles of data. Table 

6.4, gives the root-mean-squared error and the standard deviation for 3 key 

parameters: the overall error, the normalised peak pressure error and the position of 

peak pressure error. 

 

Table 6.4: Condition-1 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 1.14 % 1.14 % 

Normalised Peak Error  2.8 % 1.8 % 

Peak Pressure Position 
Error (deg) 

2.24 1.45 

 

 

6.3.4 Discussion of Test Condition-1 Results 
The training results at condition-1 (1000 rpm and 10 Nm) were very promising and 

are significantly better than predicted. It was expected that the high cylinder 

pressure variability, caused by part-throttle low power conditions, would create 

difficulties in training.  One notable observation from the training results was that the 

overall error is still present, i.e. an RMSE = 0.98%, and more work could be done to 

improve the training results by more neurons, more stringent limits, and a lower 
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threshold on the training goal.  This approach would require more epochs and have 

greater effect on the computational effort, which at present, is fairly minimal. Figure 

6.1 and 6.2 show examples of best, and average, cylinder pressure reconstruction. 

These training results are very promising and the latter shows better than expected 

reconstruction with a high degree of variability.  Even Figure 6.3, which shows an 

example of worst reconstruction, is acceptable given the significant variation. The 

generalisation results are also considerably better than previous attempts, with an 

RMSE value equal to 1.14% over 200 cycles; well below the targeted error of 4%.  

Another positive result from the training at this condition, is that there is a relatively 

small difference between the training and generalisation performances which gives 

a reassurance that the ANN is not over-training. Figure 6.5 and 6.6 demonstrate that 

this ANN is good at generalisation with only relatively small errors being generated 

at higher variability, as shown in Figure 6.7.  However, across both the training and 

generalisation, the position of peak pressure is fairly poor with a mean of 2.01°and 

2.24°.  

 

6.4 Results - Test Condition-5  

6.4.1 Data and Network Configuration 
The next test condition used measured data taken when running the engine at 

steady-state with a speed of 1500 rpm and a load of 20 Nm.  This test condition was 

selected as it was in the middle of the power range of interest.  Both the training and 

generalisation data sets underwent the same data process using the steps covered 

in section 6.2. The ANN used was a time-delay network with one hidden-layer of 15 

neurons.  The ANN had 240 input delays, where 100 were dedicated to the 'past' 

inputs and 100 were dedicated to the 'future' inputs. The Levenberg-Marquardt 

training algorithm was used with a mean squared error cost function and a 

maximum epoch number of 1000.  More information regarding the configuration for 

training is given in Table 6.5. 
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Table 6.5: ANN Training Setup for Test Condition-5 

 

 

 

 

6.4.2 Training Results 
This subsection gives the results from training the ANN using data from condition-5 

(1500 rpm and 20 Nm).  In total, 10 ANNs different initial conditions were trained 

with the overall performance of the ANNs ranging from 1.31% to 1.52% RMSE. The 

best performing ANN was selected which trained in 1142 seconds (0.32 hours) and 

65 epochs. Figures 6.9 to 6.11, gives training results for best, average, and worst 

regions of cylinder pressure reconstruction. Each of these regions have been 

evaluated and compared against the mean values to rank their degree of success.  
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Figure 6.9: Condition-5 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 0.77%.  

 

 

Figure 6.10: Condition-5 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.19%.  
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Figure 6.11: Condition-5 Training Results - Worst. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 1.33%.  

 

 
Figure 6.12: Condition-5 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
 

 

Figure 6.12 gives the normalised peak error, and the peak position error between 

the measured cylinder pressure, and training results for 180 cycles of data. Table 

6.6, gives the root-mean-squared error and the standard deviation for 3 key 

parameters: the overall error, the normalised peak pressure error, and the position 

of peak pressure error. 
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Table 6.6: Condition-5 Root-Mean-Squared Error (RMSE) and Standard 

Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.19 % 1.19 % 

Normalised Peak Error  2.3 % 1.3 % 

Peak Pressure Position 
Error (deg) 

1.87 1.25 

 

 

6.4.3 Generalisation Results 
The data used for the generalisation tests was from the same condition (1500 rpm 

and 20 Nm). However, it was acquired separately from the training data and has not 

been used by the ANN for training. The following series of figures, Figures 6.13 to 

6.15, present generalisation results for best, average and worst regions of cylinder 

pressure reconstruction.  Each of these regions again, have been evaluated and 

compared against the mean values to rank their degree of success. 

 

Figure 6.13: Condition-5 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 0.71%. 
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Figure 6.14: Condition-5 Generalisation Results - Average. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). RMSE = 0.79%. 

 

 

Figure 6.15: Condition-5 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.59%.  
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Figure 6.16: Condition-5 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right). 
 
 
 

Figure 6.16 gives the normalised peak error and the peak position error between the 

measured cylinder pressure and generalised results for 180 cycles of data. Table 

6.7, gives the root-mean-squared error, and the standard deviation, for 3 key 

parameters: the overall error, the normalised peak pressure error, and the position 

of peak pressure error. 

 

Table 6.7: Condition-5 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 

 

Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 1.21 % 1.20 % 

Normalised Peak Error  2.6 % 1.6 % 

Peak Pressure Position 
Error (deg) 

1.91 1.29 

 

 

 
6.4.4 Discussion of Test Condition-5 Results 
The training results at condition-5 (1500 rpm and 20 Nm) are again promising, and 

are significantly better than previously seen. Similarly, the training overall error was 

not insignificant, RMSE = 1.19%.  The same methods could be used as discussed 

when commenting on test condition-1. However, this could impact considerably on 
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the ANN's chances of over-training, which the trained ANN has not shown, as can 

be seen by the small difference between the training and generalisation overall 

performances. Figure 6.9 and 6.10 show examples of best and average cylinder 

pressure reconstruction. These training results are very promising and the latter 

shows better than expected reconstruction with limited variability.  However, Figure 

6.11 shows more significant variation and as a result produces a slightly poorer 

reconstruction. The generalisation results are also considerably better than previous 

attempts, with an RMSE value equal to 1.21% over 200 cycles. Figure 6.13 and 6.14 

demonstrate that this ANN is extremely good at generalisation. However, there is a 

significant unexplained error in the first combustion event of Figure 6.15, and again, 

the position of peak pressure error is relatively large for both the training and 

generalisation.  

 

6.5 Results - Test Condition-9  

6.5.1 Data and Network Configuration 
The final test condition used measured data taken when running the engine at 

steady-state with a speed of 2000 rpm and a load of 30 Nm.  This test condition was 

selected as it was in the highest power condition acquired and should have more 

consistent cylinder pressures.  Both the training and generalisation data sets 

underwent the same data process using the steps covered in section 6.2. The ANN 

used was a time-delay network with one hidden-layer of 15 neurons.  The ANN had 

240 input delays where 100 were dedicated to the 'past' inputs, and 100 were 

dedicated to the 'future' inputs. The Levenberg-Marquardt training algorithm was 

used with a mean squared error cost function and a maximum epoch number of 

1000.  More information regarding the setup of the training is given in Table 6.8. 
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Table 6.8: ANN Training Setup for Test Condition-9 

 

 

 

 

 

6.5.2 Training Results 
This subsection presents the results from training the ANN using data from 

condition-9 (2000 rpm and 30 Nm).  In total, 10 ANNs different initial conditions were 

trained with the overall performance of the ANNs ranging from 1.17% to 1.44%  

RMSE. The best performing ANN was selected which trained in 523 seconds (0.15 

hours) and 30 epochs. Figures 6.17 to 6.19, gives training results for best, average, 

and worst regions of cylinder pressure reconstruction. Each of these regions have 

been evaluated and compared against the mean values to rank their degree of 

success.  
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Figure 6.17: Condition-9 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line).  

RMSE = 0.76%.  

 

 

 

Figure 6.18: Condition-9 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.17%.  
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Figure 6.19: Condition-9 Training Results - Worst. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 1.42%.  

 

 
Figure 6.20: Condition-9 Normalised Peak Error Training Results (left). 

Condition-9 Position of Peak Error Training Results (right). 
 
 

Figure 6.20 presents the normalised peak error, and the peak position error between 

the measured cylinder pressure and training results for 180 cycles of data. Table 

6.9, gives the root-mean-squared error, and the standard deviation for 3 key 

parameters; the overall error, the normalised peak pressure error, and the position 

of peak pressure error.  
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Table 6.9: Condition-9 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.15 % 1.15 % 

Normalised Peak Error  1.91 % 1.25 % 

Peak Pressure Position 
Error (deg) 

1.45 0.92 

 

 

6.5.3 Generalisation Results 
The data used for the generalisation tests was from the same condition (2000 rpm 

and 30 Nm). However, it was acquired separately from the training data and has not 

been used by the ANN for training. Figures 6.21 to 6.23, gives generalisation results 

for best, average, and worst regions of cylinder pressure reconstruction.  Each of 

these regions again, have been evaluated and compared against the mean values 

to rank their degree of success. 

 

Figure 6.21: Condition-9 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 0.87%.  
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Figure 6.22: Condition-9 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.24%.  

 

 

Figure 6.23: Condition-9 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.47%.  
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Figure 6.24: Condition-9 Normalised Peak Error Generalisation Results (left). 

Condition-9 Position of Peak Error Generalisation Results (right). 
 
 

Figure 6.24 gives the normalised peak error and the peak position error between the 

measured cylinder pressure and generalised results for 180 cycles of data. Table 

6.10, gives the root-mean-squared error, and the standard deviation for 3 key 

parameters; the overall error, the normalised peak pressure error, and the position 

of peak pressure error. 

 

Table 6.10: Condition-9 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 1.24 % 1.23 % 

Normalised Peak Error  2.08 % 1.28 % 

Peak Pressure Position 
Error (deg) 

1.55 0.95 

 

 

6.5.4 Discussion of Test Condition-9 Results 
The training results at condition-9 (2000 rpm and 30 Nm) are equally promising. It 

was believed that the high power conditions with the decreased pressure variability 

would create the best performing ANN. Again, improvements could be made on 

training but again this may have the effect of over-training the ANN, which has not 

been seen in any of the 9 trained test conditions using the methodology outlined. 
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The key difference between this test condition and the two previously covered, is 

that for all three different reconstruction regions (best, average and worst) the 

results are extremely good.  These can be seen in Figure 6.17, 6.18, and 6.19. Even 

the statistically poorest series of reconstructions is a great deal better than 

previously seen. The generalisation results for both the best and average regions 

are as accurate as the training results; Figure 6.21 and 6.22 respectively. However, 

the worst results shown in Figure 6.23 do contain significant errors. Again, it can be 

seen in Tables 6.9 and 6.10 that the position of peak pressure error is relatively 

large for both the training and generalisation. 

 

6.6 A Comparison and Overall Discussion of Results  

This section will compare and discuss the generalised results from the trained ANNs 

for all 9 test conditions.  It includes the 3 conditions discussed in detail as well as the 

other 6.  All 9 ANNs were trained and tested using the same methodology and the 

additional results are provided in Appendix E.  Initially, all 9 test conditions are 

compared with regard to the overall RMSE performance, the normalised peak 

pressure error and the position of peak pressure error. The range of the cylinder 

pressure reconstruction results will then be discussed, including notable results.  

Finally, this section will make some more general conclusions regarding the 

capability of reconstructing cylinder pressure using crankshaft kinematics, the ANN 

architecture, the training methodology, and most significantly, the successfulness of 

the methodology developed in Chapter 5. 
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Table 6.11: Mean Generalised Performance of 9 Test Conditions  

 

 Test 
Condition 

Power  

Overall 
Performance 

(RMSE) 

Normalised 
Peak Error 

Peak Pressure 
Position Error 

(deg) 

Condition-1 1.05 kW 1.14 % 2.80 % 2.24 

Condition-2 1.57 kW 1.32 % 1.76 % 1.65 

Condition-3 2.09 kW 1.24 % 1.52 % 1.64 

Condition-4 2.09 kW 1.15 % 2.48 % 3.08 

Condition-5 3.14 kW 1.21 % 2.60 % 1.91 

Condition-6 4.19 kW 1.34 % 1.84 % 1.73 

Condition-7 3.14 kW 1.32 % 2.56 % 1.78 

Condition-8 4.71 kW 1.30 % 2.86 % 2.24 

Condition-9 6.28 kW 1.24 % 2.08 % 1.55 

 

Prior to the development and testing of the ANNs for reconstructing cylinder 

pressure using crankshaft kinematics, it was believed that one of the limits to 

achieve optimum reconstruction was the variability of the cylinder pressure.  This 

stems from the idea that high levels of variability, which appears to be random, may 

be unpredictable and may not significantly impact crankshaft kinematics.  With this 

assumption, it was believed that at low power conditions where the variability is 

greatest, successful training of an ANN may be difficult.  Table 6.11 shows the mean 

performance for all 9 test conditions including the power at each condition.  It can be 

seen that the normalised peak pressure error appears to be fairly random and has 

no discernible pattern with increasing power, contrary to what was seen by 

examining just 3 conditions.  Similarly, the results shown for the position of peak 

pressure error for the 3 conditions discussed in detail prove the assumption to be 

correct.  However, when examining all 9 conditions there again is no discernible 

pattern with increasing power.  This also applies to the overall RMSE performance. 

 

The results shown in Table 6.11 provide strong evidence that the variability does not 

impact on the reconstruction capability.  Each individual ANN has no knowledge of 

other test conditions or the degree of variability present in the training data.  The 

ANN only has knowledge of the information presented to it, and if it contains 
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information pertaining to the cylinder pressure, the variability compared to other test 

conditions is irrelevant.  The ANN and its training methodology will extract the 

optimum information from each condition. The results verify that the success of any 

given ANN, trained at a single test condition, is only limited by the optimisation and 

methodology used. 

 

Figure 6.25 to 6.26 gives some of the best and worst performing generalised regions 

of the 9 ANNs trained, giving an overall perspective of the successfulness of using 

time-delay neural networks, the Levenberg Marquardt algorithm and the 

methodology developed in Chapter 5. They also include generalised cylinder 

pressure reconstruction results that are noteworthy. 

 

 

Figure 6.25: Best Performing Generalisation Results - Condition-1. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). RMSE = 0.57%.  
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Figure 6.26: Worst Performing Generalisation Results - Condition-5. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). RMSE = 1.59%.  
 
 
 

Figure 6.25 and 6.26 show the best region of generalised reconstruction and the 

worst region of reconstruction across all 9 ANNs and test conditions.  The 

performance of each is 0.7% and 2.1% RMSE.  The errors within the results in 

Figure 6.25 are negligible and demonstrate that the cylinder pressure can be 

reconstructed to a high degree of accuracy under general conditions using 

crankshaft kinematics.  What is also evident in Figure 6.26 is that the significant 

errors are not restricted to just the peaks of the cylinder pressure; the errors are 

distributed along the whole cylinder pressure profile.  This proves that the use of 

'future' and 'past' inputs, described in Chapter 5, have the desired effect in 

reconstructing, based on the cylinder pressure rather than system inertia.  

 

 

 

 

 

 

 

 

646 648 650 652 654 656
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6 Results - 1500/20 Set 2

C
y
lin

d
e
r 

P
re

s
s
u
re

 (
P

a
)

Crank Angle (rad)



 173   

 

Figure 6.27: Notable Generalisation Results - Condition-8. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.73%.  

 

 

Figure 6.28: Notable Generalisation Results - Condition-5. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.07%.  
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Figure 6.27 and 6.28 gives two noteworthy reconstruction results.  Each figure 

shows the ability of the ANN to reconstruct the cylinder pressure from abnormal or 

uncommon combustion events. In Figure 6.27 the reconstruction of interest is the 

third combustion event, and in Figure 6.28, it is the first. In these cases, the ANNs 

do not necessarily reconstruct the most accurate cylinder pressure but they do 

recognise that the combustion event differs from the average and produces a 

reasonable reconstruction.  Both Figure 6.27 and 6.28 show combustion events with 

an appreciably late ignition.  

 

Considering the reconstruction of cylinder pressure using crankshaft kinematics 

more generally, the results are very promising.  The overall results for generalised 

reconstruction are much improved on previous published results and present very 

little evidence of the instability or significant peak pressure errors.  This is believed 

to be the result of the methodology developed in Chapter 5.  These results have 

also demonstrated that for independent ANNs, trained at different test conditions, 

that cycle-by-cycle cylinder pressure variability has no effect on the accuracy of 

cylinder pressure reconstruction. With respect to the training time and computational 

effort required, this efficient performance was unexpected.  The resultant training 

times using on average 240 inputs, 15 neurons with 3,631 weights and in excess of 

30,000 data points the ANNs, on average, trained within 0.5 hours using a Pc with 

an Intel i7 quad core processor with 12Gb ram and solid-state drive.   

 

Conclusions of the Findings in Chapter 6. 

The results presented in Chapter 6 validate the use of crankshaft kinematics for 

reconstructing cylinder pressure as results are well within the target.  The targeted 

error was consistently below 4% for the generalised reconstruction and depending 

on the test condition, the results ranged between 1.14% and 1.34%.  There is still 

some room for improvement, but it is believed this is only possible if considerably 

more cycles of data are used to train the ANNs; from the current number of 200 

cycles to several 1000 or more cycles.  However, this would compromise the time 

and computational effort of training and require significantly more engine testing and 

data acquisition.  This chapter demonstrates that reconstructing cylinder pressure 

can be achieved very successfully on steady-state data.  However, the ultimate 

proof of the success of this technology is next to test it on engine block vibrations 

under steady-state conditions, and more vitally, to test it on transient engine 

conditions.  
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Chapter 7  

Engine Block Vibration Based Cylinder 
Pressure Reconstruction Results 
 

 

 

 

7.1 Introduction  

The success of using the combined methodology developed in Chapter 5 using 

crankshaft kinematics, has meant that creating a robust and adaptive system for 

reconstructing cylinder pressure is one step closer.  The key to producing an 

adaptive system is to have two independent sources of reconstruction. This chapter 

presents detailed results using engine block vibrations to reconstruct cylinder 

pressure (using data obtained from the Ford 3-cylinder engine).  Again, owing to the 

complexity of transient engine dynamics, this chapter will only focus on steady-state 

reconstruction. It will use the same basic methodology developed and aim to show 

that the trained, and generalised, cylinder pressure reconstruction results are 

significantly improved.  However, some modifications will be required to achieve the 

same level achieved using crankshaft kinematics. The chapter will also show how 

the training and generalisation performance can vary depending on the test 

condition. 

 

Initially, the modifications required to the methodology, will be discussed following 

the same structure as in Chapter 6. The chapter will then present the training and 

generalised results for a range of test conditions, comparing each condition and 

discussing the implications.  
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Table 7.1: Test Conditions used for Assessing the Performance of the 
Developed Methodology and ANNs 

  

 

 

Engine 
Speed  
(rpm) 

Engine 
Load  
(Nm) 

Training Data File 
Name 

Generalised Data File 
Name 

Condition-1 1000 10 1000_10_01p_jun2010 1000_10_02p_jun2010 

Condition-2 1500 10 1500_10_01p_jun2010 1500_10_02p_jun2010 

Condition-3 2000 10 2000_10_01p_jun2010 2000_10_02p_jun2010 

Condition-4 1000 20 1000_20_01p_jun2010 1000_20_02p_jun2010 

Condition-5 1500 20 1500_20_01p_jun2010 1500_20_02p_jun2010 

Condition-6 2000 20 2000_20_01p_jun2010 2000_20_02p_jun2010 

Condition-7 1000 30 1000_30_01p_jun2010 1000_30_02p_jun2010 

Condition-8 1500 30 1500_30_01p_jun2010 1500_30_02p_jun2010 

Condition-9 2000 30 2000_30_01p_jun2010 2000_30_02p_jun2010 

 
 
 

Table 7.1 shows the same 9 separate test conditions examined (as in Chapter 6) 

where an ANN is trained for each.  However, this chapter will only present 3 of the 

test conditions in full; the remaining 6 are presented in Appendix F. The 3 test 

conditions selected are condition-1, 5, and 9.  Even though the belief has been 

disproven that a broad range of variability would result in significant differences in 

the reconstruction performance using crankshaft kinematics, variability may still be a 

factor when using engine block vibrations. At each test condition, full details will be 

given regarding the ANN structure, training limits, and training data selected. The 

results for both the ANN training and generalisation will be presented and analysed. 

The presented results will be classified as best, average or worst. These are 

classified statistically by ranking each cycle of data using three metrics; mean 

squared error, peak pressure error and position of peak pressure error. The best 

results are the reconstructions cycles with the highest rank in each metric. The worst 

is the lowest ranked cycle and average is the average ranked cycle. The chapter will 

conclude with a discussion of the overall performance of the ANN architecture, 

training algorithm, and the methodology developed in Chapter 5. 
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7.2 Methodology and ANN Structure Modifications  

The methodology developed for crank kinematics has been shown to work 

successfully in Chapter 6.  With modifications, the same methodology and ANN 

structure could, in principle, also be applied to the reconstruction of cylinder 

pressure using engine block vibrations.  The three basic ideas developed in the 

methodology described in Chapter 5 are: i) the use of future and past delays, ii) 

filtering the data within a cycle, and iii) the training of an ANN for each cylinder.  The 

reasons behind this methodology also apply to engine block vibration.  The 

hypothesis is that greater signal is contained in the signal subsequent to the point of 

reconstruction, because pressure-related vibrations will have to travel for a relatively 

significant period of time, prior to reaching the measurement point (e.g. via an 

accelerometer). There is equivalence between this idea and the use of delays within 

the crankshaft based reconstruction to extract information from a gap in the data. 

Similarly, the differences in the path travelled by each grouping of pressure related 

vibration waves, from each of the three cylinders to the accelerometer, is 

considerable.  Therefore even though the filtering within the cycle is still appropriate 

for engine block vibration reconstruction, the frequencies to be filtered require more 

consideration.  

 

Filtering Frequencies  

As the relationship between the cylinder pressure and crank kinematics is relatively 

straightforward, the frequencies in both are fairly similar. As a result, a simpler low-

pass filter is used with a cut-off frequency equivalent to the largest significant 

cylinder pressure frequency, to achieve a high degree of success.  However, as the 

relationship between the cylinder pressure and engine block vibration is significantly 

more complex, and the frequencies related to cylinder pressure have been shown to 

be significantly higher (Vulli, 2006), a modification to the cut-off frequency selection 

is required.  A considerable amount of work has been carried out on the 

identification of events surrounding IC engine operation within vibration signals i.e. 

valve opening and closing, and injector timing (Vulli, 2006).  It is not unexpected for 

vibration frequencies within the engine to exceed 10 kHz.  The amount of 

information held within the engines vibration frequencies is significant and without 

undertaking the training of an ANN with a very large number of neurons to handle 

high frequencies, the training using the raw vibration data is not practical.  The 

selection of the cut-off frequency is therefore critical for successful training and 

reconstruction.  It is chosen by considering the typical frequencies of different 
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combustion characteristics; i.e. the engine knock frequency. The test engine is set 

up to run below the critical frequencies that knock occurs, typically above 6 kHz.  

Engine knock frequency is dependent on the speed of sound of the combustion 

gases and the engine cylinder bore. Given that the knock frequency is mainly a 

geometric constraint varying engine speeds will have little effect on this frequency. 

The knock frequency is also significantly above typical engine speeds used within 

this research; which are between 16 Hz and 34 Hz for engine speed between 1000 

and 2000 rpm. As a result of filtering above 6 kHz, there should not be any 

significant cylinder pressure related vibration information at or above the knock 

frequency and this was selected as the low-pass filter cut-off frequency.  Filtering 

will be tested in the following sections.  

 

A second modification was required but this time, to the ANN structure, not the 

developed methodology.  The tests in Chapters 5 and 6 have all used the same 

basic structure: a single hidden layer with 15 neurons.  As described in Chapter 3, 

the number of hidden layers and neurons are dependent on the complexity of the 

problem.  The complexity of the crank kinematic and cylinder pressure relationship 

is relatively simple compared to ANNs in general.  Therefore, only a relatively small 

ANN size is required.  The relationship between engine block vibrations and cylinder 

pressure is significantly more complex.  As a result, the size of the ANN needs to be 

large and will take significantly more time to train successfully.  A similar brute force 

analysis, as demonstrated in section 5.2.2, was used. This was done by training and 

testing a range of networks with a varying number of neurons, layers and a varying 

number of delays. It was found that by increasing the number of hidden layers to 

two, and having 15 neurons in each, was optimum without the need to significantly 

increase the training time.  

 

7.3 Results - Test Condition-1  

7.3.1 Data and Network Configuration 
The first test condition used measured data taken from running the engine at 

steady-state with a speed of 1000 rpm and a load of 10 Nm.  This test condition was 

selected as it was the lowest power condition acquired and as a result, should 

contain the most cylinder pressure variability cycle-to-cycle.  Both the training and 

generalisation data sets underwent the same data processing, using the steps 

covered in section 7.2.  The ANN used was a time-delay network with one hidden-
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layer of 15 neurons.  The ANN had 240 input delays, where 120 were dedicated to 

the 'past' inputs, and 120 were dedicated to the 'future' inputs.  The Levenberg-

Marquardt training algorithm was used with a mean squared error cost function, and 

a maximum epoch number of 1000.  More information regarding the setup of the 

training is given in Table 7.2. 

 

 

 

 
Table 7.2: ANN Training Setup for Test Condition-1 

 

 

 

7.3.2 Training Results 
This subsection presents the results from training the ANN using data from 

condition-1 (1000 rpm and 10 Nm). In total, 10 ANNs different initial conditions were 

trained, with the overall performance of the ANNs ranging from 2.18 % to 2.98 % 

RMSE. The best performing ANN was selected, which trained in 1891 seconds 

(0.53 hours) and 55 epochs. Figures 7.1 to 7.3, show training results for best, 

average, and worst regions of cylinder pressure reconstruction. Each of these 

regions have been evaluated and compared against the mean values to rank their 

degree of success.  

Network 
Name 

Net_TD_BA_Test1 0 Network           
Architecture 

Time-
Delay 

0 Test Data 1000_10_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

2  Speed 
(rpm) / 
Load (Nm) 

1000/10 

Cost 
Function 

Mean Squared 
Error 

 Neurons 
Number  

15/15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

240  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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Figure 7.1: Condition-1 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 1.28%.  

 

 

Figure 7.2: Condition-1Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.92%. 
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Figure 7.3: Condition-1Training Results - Worst. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 4.22%.  

 

 

Figure 7.4: Condition-1 Normalised Peak Error Training Results (left). 
Condition-1Position of Peak Error Training Results (right) 

 

Figure 7.4 shows the normalised peak error, and the peak position error, between 

the measured cylinder pressure and training results for 180 cycles of data. Table 

7.3, gives the root-mean-squared error, and the standard deviation for 3 key 

parameters; the overall error, the normalised peak pressure error and the position of 

peak pressure error. 
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Table 7.3: Condition-1 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance   2.18 % 2.15 % 

Normalised Peak Error  7.04 % 4.62 % 

Peak Pressure Position 
Error (deg) 

2.25 1.23 

 

 

7.3.3 Generalisation Results 
The data used for the generalisation tests was from the same condition (1000 rpm 

and 10 Nm). However, it was acquired separately from the training data and has not 

been used by the ANN for training. Figures 7.5 to 7.7, gives generalisation results 

for best, average, and worst regions of cylinder pressure reconstruction.  Each of 

these regions again, have been evaluated and compared against the mean values 

to rank their degree of success. 

Figure 7.5: Condition-1 Generalisation Results - Best. Measured Pressure 
(Grey Solid Line). Acceleration Reconstructed Pressure (Black Solid Line). 

Crank Reconstructed Pressure (Black Dashed Line). RMSE = 1.40%. 
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Figure 7.6: Condition-1 Generalisation Results - Average. Measured Pressure 
(Grey Solid Line). Acceleration Reconstructed Pressure (Black Solid Line). 

Crank Reconstructed Pressure (Black Dashed Line). RMSE = 2.07%. 

 

Figure 7.7: Condition-1 Generalisation Results - Worst. Measured Pressure 
(Grey Solid Line). Acceleration Reconstructed Pressure (Black Solid Line). 

Crank Reconstructed Pressure (Black Dashed Line). RMSE = 4.76%. 
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Figure 7.8: Condition-1 Normalised Peak Error Generalisation Results (left). 

Condition-1 Position of Peak Error Generalisation Results (right) 
 

Figure 7.8 gives the normalised peak error, and the peak position error between the 

measured cylinder pressure and generalised results for 180 cycles of data. Table 

7.4 shows the root-mean-squared error and the standard deviation for 3 key 

parameters; the overall error, the normalised peak pressure error and the position of 

peak pressure error. 

 

Table 7.4: Condition-1 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 2.72 %   2.71 % 

Normalised Peak Error  9.69 % 6.19 % 

Peak Pressure Position 
Error (deg) 

2.16 1.81 

 

 

7.3.4 Discussion of Test Condition-1 Results 
The training results at condition-1 (1000 rpm and 10 Nm), showed regions where the 

reconstruction was promising and were significantly better than previously achieved. 

However, even in the training results, there are some poor regions, shown in Figure 

7.3.  Even though the overall performance of the training is within the desired range, 

RMSE = 2.18%, this is large for training and the magnitude of the normalised peak 

error is significantly large at 7.04%.  These errors were constant through the 10 

training attempts and suggested that there was a more fundamental issue.  Figure 
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7.1 and 7.2 show examples of best, and average, cylinder pressure reconstruction. 

These training results were very promising where the latter shows better than 

expected reconstruction with a high degree of variability. The generalisation results 

were also considerably better than previous attempts with an RMSE value equal to 

2.72%, and reasonable position of peak error over 200 cycles. Again there are 

poorer regions, Figure 7.7, shows large errors, where the normalised peak error is 

9.69%. This demonstrates an inability for this ANN to accurately reconstruct a 

sizable portion of the data to the same accuracy as the crankshaft kinematics for 

this condition. Similarly at this condition, there is a relatively small difference 

between the training and generalisation performances, which gives a reassurance 

that the ANN is not over-training. Again Figure 7.5 and 7.6 demonstrate that this 

ANN is good at generalisation with only relatively small errors. As the reconstruction 

errors are frequent, there seems to be no consistent correlation between the errors 

generated in the acceleration and crank kinematic based reconstructions. However, 

within isolated results for this condition, when there is a small error in the crank 

kinematic data the corresponding in the acceleration base reconstruction's error is 

large. This is not true in reverse; with acceleration based errors there in no 

significant crank based errors. The results from the following will reveal whether this 

is true for all conditions or just coincidental.  

 

7.4 Results - Test Condition-5  

7.4.1 Data and Network Configuration 
 
The next test condition used measured data taken from running the engine at 

steady-state with a speed of 1500 rpm and a load of 20 Nm.  This was selected as it 

was in the middle of the power range that is of interest.  Both the training and 

generalisation data sets underwent the same data process using the steps covered 

in section 7.2. The ANN was a time-delay network, with one hidden-layer of 15 

neurons, and 240 input delays, where 120 were dedicated to the 'past' inputs and 

120 were dedicated to the 'future' inputs.  The Levenberg-Marquardt training 

algorithm was used with a mean squared error cost function, and a maximum epoch 

number of 1000.  More information regarding the setup of the training is given in 

Table 7.5. 
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Table 7.5: ANN Training Setup for Test Condition-5 

 

 

 

 

7.4.2 Training Results 
This subsection gives the results from training the ANN using data from condition-5 

(1500 rpm and 20 Nm).  In total, 10 ANNs different initial conditions were trained 

with the overall ANN's performance ranging from 2.00% to 3.34% RMSE.  The best 

performing ANN was selected which trained in 1691 seconds (0.47 hours) and 38 

epochs.  Figures 7.9 to 7.11, gives training results for best, average, and worst 

regions of cylinder pressure reconstruction.  Each of these regions have been 

evaluated and compared against the mean values to rank their degree of success.  
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Figure 7.9: Condition-5 Training Results - Best. Measured Cylinder Pressure 

(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 
RMSE = 0.71%.  

 

 
Figure 7.10: Condition-5 Training Results - Average. Measured Cylinder 

Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 
Line). RMSE = 2.16%.  
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Figure 7.11: Condition-5 Training Results - Worst. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 4.89%. 

 

 

Figure 7.12: Condition-5 Normalised Peak Error Training Results (left). 
Condition-5 Position of Peak Error Training Results (right) 

 
 

Figure 7.12 gives the normalised peak error and the peak position error between the 

measured cylinder pressure and training results for 180 cycles of data. Table 7.6, 

presents the root-mean-squared error and the standard deviation for 3 key 

parameters; the overall error, the normalised peak pressure error and the position of 

peak pressure error. 
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Table 7.6: Condition-5 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance   2.01 % 1.99 % 

Normalised Peak Error  7.63 % 5.91 % 

Peak Pressure Position 
Error (deg) 

4.50 3.86 

 

7.4.3 Generalisation Results 
The data used for the generalisation tests was from the same condition (1500 rpm 

and 20 Nm). However, it was acquired separately from the training data and has not 

been used by the ANN for training. Figures 7.13 to 7.15, gives generalisation results 

for best, average, and worst regions of cylinder pressure reconstruction.  Each of 

these regions again, have been evaluated and compared against the mean values 

to rank their degree of success. 

Figure 7.13: Condition-5 Generalisation Results - Best. Measured Pressure 
(Grey Solid Line). Acceleration Reconstructed Pressure (Black Solid Line). 

Crank Reconstructed Pressure (Black Dashed Line). RMSE = 1.37%. 
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Figure 7.14: Condition-5 Generalisation Results - Average. Measured Pressure 

(Grey Solid Line). Acceleration Reconstructed Pressure (Black Solid Line). 
Crank Reconstructed Pressure (Black Dashed Line). RMSE = 2.82%.  

 

 

Figure 7.15: Condition-5 Generalisation Results - Worst. Measured Pressure 
(Grey Solid Line). Acceleration Reconstructed Pressure (Black Solid Line). 

Crank Reconstructed Pressure (Black Dashed Line). RMSE = 4.47%.  
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Figure 7.16: Condition-5 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right) 
 

Figure 7.16 gives the normalised peak error, and the peak position error, between 

the measured cylinder pressure and generalised results for 180 cycles of data. 

Table 7.7, gives the root-mean-squared error, and the standard deviation for 3 key 

parameters; the overall error, the normalised peak pressure error and the position of 

peak pressure error. 

 

Table 7.7: Condition-5 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance   2.61 % 2.60 % 

Normalised Peak Error  8.60 % 5.97 % 

Peak Pressure Position 
Error (deg) 

1.71 1.49 

 

7.4.4 Discussion of Test Condition-5 Results 
The training results at condition-5 (1500 rpm and 20 Nm) are not dissimilar to the 

results at condition-1. The overall error in the training results was again significant, 

RMSE = 2.01%. Figures 7.9 and 7.10 show examples of best, and average cylinder 

pressure reconstruction, and these training results are generally very promising. 

However, Figure 7.11 shows more significant variation and delayed ignition, which 

results in poorer reconstruction. The generalisation results are also considerably 

better than previous attempts with an RMSE value equal to 2.61% over 200 cycles. 

Figure 7.13 and 7.14 demonstrate that this ANN is good at generalisation, even 
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though the latter shows a significant spike in the reconstructed pressure in the 

second combustion event. There are significant unexplained errors present in Figure 

7.15. With regards to the position of peak pressure error, it is unusually large, 4.50˚, 

within the training data but is consistent in the generalised results, of 1.71˚. Similar 

to the previous condition, there seems to be no consistent correlation between the 

errors generated in the acceleration and crank kinematic based reconstructions. 

However, when there is a small error in the crank kinematic data the corresponding 

in the large acceleration base reconstruction error still occurs.  

 

7.5 Results - Test Condition-9  

7.5.1 Data and Network Configuration 
The last test condition used measured data taken from running the engine at steady-

state with a speed of 2000 rpm and a load of 30 Nm.  This test condition was 

selected as it was in the highest power condition acquired and should have more 

consistent cylinder pressures.  Both the training and generalisation data sets 

underwent the same data process using the steps covered in section 7.2.  The ANN 

used was a time-delay network with one hidden-layer of 15 neurons.  The ANN had 

240 input delays, where 120 were dedicated to the 'past' inputs and 120 were 

dedicated to the 'future' inputs.  The Levenberg-Marquardt training algorithm was 

used with a mean squared error cost function and a maximum epoch number of 

1000.  More information regarding the setup of the training is given in Table 7.8. 
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Table 7.8: ANN Training Setup for Test Condition-9 

 

 
 
 
7.5.2 Training Results 
This subsection shows the results from training the ANN using data from condition-9 

(2000 rpm and 30 Nm).  In total, 10 ANNs different initial conditions were trained 

with the overall performance of the ANNs ranging from 1.48% to 1.61% RMSE.  The 

best performing ANN was selected, which trained in 878 seconds (0.24 hours) and 

18 epochs.  Figures 7.17 to 7.19, present training results for best, average, and 

worst regions of cylinder pressure reconstruction.  Each of these regions have been 

evaluated and compared against the mean values to rank their degree of success.  

 

 

 

 

 

 

 

 

Network 
Name 

Net_TD_BA_Test9 0 Network           
Architecture 

Time-
Delay 

0 Test Data 2000_30_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

2  Speed 
(rpm) / 
Load (Nm) 

2000/30 

Cost 
Function 

Mean Squared 
Error 

 Neurons 
Number  

15/15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

240  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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Figure 7.17: Condition-9 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 0.95%.  
 
 

Figure 7.18: Condition-9 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.25%.  
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Figure 7.19: Condition-9 Training Results - Worst. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 2.37%.  
 

 
 

Figure 7.20: Condition-9 Normalised Peak Error Training Results (left). 
Condition-9 Position of Peak Error Training Results (right) 

 

Figure 7.20 gives the normalised peak error and the peak position error between the 

measured cylinder pressure and training results for 180 cycles of data. Table 7.9, 

gives the root-mean-squared error, and the standard deviation for 3 key parameters; 

the overall error, the normalised peak pressure error, and the position of peak 

pressure error.  
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Table 7.9: Condition-9 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall    1.47 % 1.46 % 

Peak Error (%) 3.11 % 1.89 % 

Peak Pressure Position 
Error (deg) 

0.59 0.36 

 

7.5.3 Generalisation Results 
The data used for the generalisation tests was from the same condition (2000 rpm 

and 30 Nm). However, it was acquired separately from the training data and has not 

been used by the ANN for training. Figures 7.21 to 7.23 gives generalisation results 

for best, average and worst regions of cylinder pressure reconstruction.  Each of 

these regions again, have been evaluated and compared against the mean values 

to rank their degree of success. 

 

Figure 7.21: Condition-9 Generalisation Results - Best. Measured Pressure 
(Grey Solid Line). Acceleration Reconstructed Pressure (Black Solid Line). 

Crank Reconstructed Pressure (Black Dashed Line). RMSE = 1.21%.  
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Figure 7.22: Condition-9 Generalisation Results - Average. Measured Pressure 
(Grey Solid Line). Acceleration Reconstructed Pressure (Black Solid Line). 

Crank Reconstructed Pressure (Black Dashed Line). RMSE = 1.48%. 
 

Figure 7.23: Condition-9 Generalisation Results - Worst. Measured Pressure 
(Grey Solid Line). Acceleration Reconstructed Pressure (Black Solid Line). 

Crank Reconstructed Pressure (Black Dashed Line). RMSE = 7.06%.  
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Figure 7.24: Condition-9 Normalised Peak Error Generalisation Results (left). 

Condition-9 Position of Peak Error Generalisation Results (right) 
 
 

The reconstruction error in the second combustion event, in Figure 7.23, would 

appear to be as a result of high frequency noise within the input data. However this 

is not the case as this would also affect the first and third combustion event. The 

reason could be that the dynamics of the engine are distinctly different to the training 

data in this region or the most likely reason is that there is a small abnormality within 

the data causing the destabilisation of the reconstruction. Figure 7.24 gives the 

normalised peak error and the peak position error between the measured cylinder 

pressure and generalised results for 180 cycles of data. The following table, Table 

7.10, presents the root-mean-squared error and the standard deviation for 3 key 

parameters; the overall error, the normalised peak pressure error and the position of 

peak pressure error.   

                                                                                                                                           

Table 7.10: Condition-9 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall    1.98 % 1.97 % 

Peak Error (%) 3.14 % 2.11 % 

Peak Pressure Position 
Error (deg) 

1.06 0.95 
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7.5.4 Discussion of Test Condition-9 Results 
The training results at condition-9 (2000 rpm and 30 Nm) were much better than 

seen in the previous test conditions. The key difference between this test condition, 

and the two previously covered, is that in all three different reconstruction regions 

(best, average and worst) the training results were extremely good.  These can be 

seen in Figure 7.17, 7.18 and 7.19 with a RMSE = 1.47%, and a normalised peak 

pressure error of 3.11%. Even the statistically poorest series of reconstructions is a 

great deal better than previously seen. The generalisation results for both the best, 

and average regions, are as accurate as the training results; Figure 7.21 and 7.22 

respectively. However, the worst results shown in Figure 7.23 contain significant 

errors, and seem to become unstable within the second combustion event. It can be 

seen in table 7.9 and 7.10 that the position of peak pressure error is significantly 

lower than any other condition examined for both engine block vibrations, and crank 

kinematics in training and generalisation; i.e. 0.59 and 1.06 deg respectively. Similar 

to the previous condition, there seems to be no consistent correlation between the 

errors generated in the acceleration and crank kinematic based reconstructions. 

However, unlike the previous conditions the corresponding large acceleration based 

errors and small crank base errors do not occur in condition- 9. These errors were 

also not seen with enough frequency within the other test conditions to prove the 

link. Therefore, no relationship can be established between the errors and 

similarities perceived may have just been coincidental.  

 

7.6 A Comparison and Overall Discussion of Results 

This section will compare and discuss the generalised results from the trained ANNs 

for all 9 test conditions.  It includes the 3 conditions discussed in detail as well as the 

other 6.  All 9 ANNs were trained and tested using the same methodology and the 

additional results are provided in Appendix F.  Initially, all 9 test conditions were 

compared with regard to the overall RMSE performance, the normalised peak 

pressure error and the position of peak pressure error. The range of the cylinder 

pressure reconstruction results will then be discussed including notable results.  

Finally, this section will make more general conclusions, regarding the capability of 

reconstructing cylinder pressure using crankshaft kinematics, the ANN architecture 

and training methodology, and most significantly, the successfulness of the 

methodology developed in Chapter 5. 
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Chapter 6 highlighted and dismissed the idea that the reconstruction potential, when 

using crank kinematics, is limited to the degree of cylinder pressure variability.  

Within the results presented in this chapter, there is no significant evidence that the 

variability impacts on the reconstruction accuracy as successful results are not 

dependent on the high or low power conditions. This can be shown in Table 7.11.  

However, it can be seen from these results that the performance of the ANNs seems 

to be condition dependent.  Similar load or speed conditions can give significantly 

different results.  It is believed that this is the result of excessive noise in the input 

data, which can vary from condition to condition, and not a fundamental flaw in the 

reconstruction methodology.  

 
 

Table 7.11: Mean Generalised Performance of 9 Test Conditions  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figures 7.25 to 7.28 show some of the best and worst performing generalised 

regions of the 9 ANNs trained, giving an overall perspective of the successfulness of 

using time-delay neural networks, the Levenberg Marquardt algorithm and the 

methodology developed in Chapter 5.  It will also include generalised cylinder 

pressure reconstruction results that are noteworthy. 

 
 
 
 

 Test 
Condition 

Power  

Overall 
Performance 

(RMSE) 

Normalised 
Peak Error 

Peak Pressure 
Position Error 

(deg) 

Condition-1 1.05 kW 2.72 % 9.69 % 2.16 

Condition-2 1.57 kW 1.32 % 3.14 % 1.31 

Condition-3 2.09 kW 1.94 % 3.68 % 1.57 

Condition-4 2.09 kW 3.46 % 13.2 % 5.01 

Condition-5 3.14 kW 2.61 % 8.60 % 1.71 

Condition-6 4.19 kW 2.02 % 2.99 % 0.91 

Condition-7 3.14 kW 1.88 % 5.17 % 1.83 

Condition-8 4.71 kW 4.33 % 14.1 % 4.79 

Condition-9 6.28 kW 1.98 % 3.14 % 1.06 
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Figure 7.25: Best Performing Generalisation Results - Condition-9. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). RMSE = 1.21%.  

 

 

Figure 7.26: Worst Performing Generalisation Results - Condition-8. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). RMSE = 61.7%.  
 

Figure 7.25 and 7.26 show the best region of generalised reconstruction, and the 

worst region of reconstruction accordingly, across all 9 ANNs and test conditions.  
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The performance of each is 1.21% and 61.7% RMSE. The reconstruction results 

produced in Figure 7.26 could cause some concern with the use of block vibration. 

However, it was found that this instability of the reconstruction was the result of an 

abnormality within the data. This was included to highlight two points. There is a 

chance of instability when abnormal data is used with an ANN. But most importantly, 

the use of a time-delay network has enabled the reconstruction to stabilise where 

through experience the previously used recurrent ANNs would have great difficulty 

and often would not. The errors in the results in Figure 7.25 are negligible, and 

demonstrate that the cylinder pressure can be reconstructed successfully under 

general conditions, using engine block vibration.  It is also evident in Figure 7.26, 

that the significant errors are not restricted to just the peaks of the cylinder pressure; 

the errors are also distributed along the whole cylinder pressure profile and not 

confined to the peak pressure.  This confirms that the use of 'future' and 'past' 

inputs, described in Chapter 5, have the desired effect in accurately reconstructing 

cylinder pressure, based on the block vibrations  

 

 

Figure 7.27: Notable Generalisation Results - Condition-8. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.07%.  
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Figure 7.28: Notable Generalisation Results - Condition-5. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.54%.  

 

Figure 7.27 and 7.28 give two noteworthy reconstruction results.  Each figure shows 

the ability of the ANN to reconstruct the cylinder pressure from abnormal or 

uncommon combustion events. In Figure 7.27, the reconstruction of interest is the 

second combustion event and in Figure 7.28, it is the first. In these cases, the ANNs 

do not necessarily reconstruct the most accurate cylinder pressure but they do 

recognise that the combustion event differs from the average, and produces a 

reasonable reconstruction.  Both Figure 7.27 and 7.28 show combustion events with 

an appreciably late ignition.  

 

Considering the reconstruction of cylinder pressure using engine block vibration 

generally, the results show good promise.  The overall results for generalised 

reconstruction are much improved on previous published results and give very little 

evidence of the instability or significant peak pressure errors.  This is believed to be 

a result of the methodology developed in Chapter 5.  With respect to the training 

time and computational efforts required, this performance was unexpected.  The 

resultant training times using on average 240 inputs, 15/15 neurons with 3,631 

weights and in excess of 30,000 data points the ANNs, on average, trained within 

0.73 hours using a Pc with an Intel i7 quad core processor with 12Gb ram and solid-

state drive.  
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The results given in Chapter 7 validate the use of engine block vibration for 

reconstructing cylinder pressure, as results are mostly within the target error except 

for condition-8.  The targeted error was 4% consistently for the generalised 

reconstruction and depending on the test condition, the results ranged between 

1.32% and 4.33%. There is still room for improvement and it is believed this is 

possible, if an even more indiscriminate method of filtering is used. 

 

An observation made when comparing crankshaft kinematics and engine block 

vibration results; the crankshaft kinematic results reconstructed the magnitude of the 

peak pressure more accurately, whereas the engine block vibration reconstructed 

the phase of the maximum pressure more accurately.  This can be explained by 

referring back to the conclusions made in Chapter 5.  When reconstructing using 

crankshaft kinematics, the major problem is the combination of cranktrain inertial 

dominance and a reduction in the information content surrounding TDC. To 

accurately reconstruct, it was necessary to use a combination of future and past 

inputs.  This provided information directly pertaining to the energy imparted to the 

cranktrain, and then allowed accurate reconstruction of the pressure's magnitude.  

However, due to the lack of information surrounding TDC, pinpointing the position of 

peak pressure was more difficult.  As there is no information loss with engine block 

vibrations, the opposite is true; the position of peak pressure accuracy is good.  

However, the engine block vibration peak pressure reconstruction accuracy is 

poorer because of the increase in noise.  To accurately reconstruct both the 

magnitude and position of peak pressure, a combination of the two approaches may 

be required.  This can be seen when examining tables 6.11 and 7.11. 

 

This chapter demonstrates that reconstructing cylinder pressure can be done 

successfully on steady-state data.  However, again, the ultimate proof of the 

success of this technology is to test on transient conditions.  
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Chapter 8  

Reconstruction of Cylinder Pressure for 
Transient Engine Operation 
 

 

 

 

8.1 Introduction and Motivation   

So far in the thesis, the primary focus has been on the reconstruction of cylinder 

pressure from both crankshaft kinematics and engine block vibrations under steady 

state conditions.  The use of steady-state conditions contains simpler dynamics and 

is ideal for proving the efficacy of this technology.  However, the long term use of 

steady-state conditions is limited and solely testing in this condition provides no 

guarantee that the approach will be successful under more complex transient 

conditions.  The reason that work on transient reconstruction is important is because 

the majority of real world automotive IC engine operations are transient.  There are 

some exceptions within the automotive industry, including series hybrid vehicles with 

range extenders, which are designed to run mainly at fixed steady-state speeds and 

loads.  Outside the automotive industry, steady-state running of IC engines can 

include stationary power generation and large marine applications.  The potential 

difficulties in reconstructing cylinder pressure under transient conditions are not 

limited to simple engine load and speed fluctuations. There are certain 

characteristics of engine dynamics that appear only in transient conditions.  These 

can include heavy fuelling and retardation of the ignition for rapid acceleration, and 

overrun conditions, when the throttle is closed rapidly.  

 

The majority of work previously undertaken on reconstructing cylinder pressure has 

been carried out at transient conditions, with little success.  One approach attempts 

to train a single ANN for reconstructing both steady-state and transient conditions.  

This chapter will examine this approach in addition to two other approaches, which 

have been developed for this thesis.  The chapter will attempt to identify key 

differences in the training abilities at both steady-state and transient conditions, by 

testing on a combination of slow and rapid changes in engine conditions.   
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The chapter is divided into three sections. Section 8.2 will examine the training of a 

single ANN on a series of steady-state conditions for the transient reconstruction.  It 

will also include effects of training on load of varying conditions and speed varying 

conditions independently. In section 8.3, multiple ANNs will be trained at different 

speeds and used to attempt to reconstruct transient cylinder pressure.  Section, 8.4, 

will cover the development of a new ANN structure, which is capable of training on, 

and reconstructing transient directly, including an adaptation of the Levenberg-

Marquardt algorithm for transient operation. 

8.2 Transient Reconstruction with a Single ANN   

8.2.1 A Load and Speed Varying ANN 
This section examines the capability of using a single ANN which is trained across 

numerous steady-state conditions for the transient reconstruction of cylinder 

pressure. As mentioned in Chapter 3, the number of different possible transient 

conditions and engine dynamics that might occur is vast.  It has been seen in 

Chapters 6 and 7, the degree of variability in cylinder pressure under steady-state 

conditions, where some of the key characteristics of engine dynamics are all 

constant i.e. engine speed, load, air temperature, and air pressure.  Under transient 

conditions, these additional variables increase the number of possible states the 

system is in. As a result, the training of an ANN on every possible condition is 

computationally extremely expensive and not practical.  Therefore, the ideal solution 

is to use a select number of test points for training the ANN which will give the 

optimum reconstruction for the majority of transient conditions. 

 

The method used to test this approach for reconstructing transient conditions is as 

follows: crank kinematics was selected as the input to the ANN, motivated by the 

considerable improvements that have been made, as highlighted in Chapter 6.  

Owing to inconsistency and higher levels of noise, the use of engine block vibration 

has been dismissed for transient reconstruction. The same ANN architecture, 

training algorithm and processing methodology was used as described in Chapter 6.  

Initially, the number of neurons, layers, and inputs remained the same, with the aim 

of undertaking a new optimisation once this method had been shown to hold some 

promise.  All 9 test conditions, previously discussed, with speeds ranging from 1000 

to 2000 rpm, and torque from 10 to 30 Nm, are used in the training and 

reconstruction.  The data is collected, configured and then ordered randomly to 

prevent both over-training of the ANN, and biasing of the training, to favour one 
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condition over another. Previous attempts at reconstructing cylinder pressure using 

recurrent network architectures do not randomly order the input data. Recurrent 

networks contain within them a memory and the ability to reconstruct depends 

heavily on the previous reconstruction attempts. As a result, reordering the data 

would have a negative effect on the reconstruction. Time delay networks do not 

have the internal memory; they are not dependant on previous states and treat each 

reconstruction point independently. Therefore, randomising the data will have no 

effect on the reconstruction and is a prudent method of ensuring a cross section of 

data is used for training. The collated data was then used to train the single ANN 

with the same limits on the reconstruction; namely the same number of epochs and 

the same performance goal. 

 

Determining the success of this approach is undertaken in two parts.  First, the new 

data is used to test the generalised performance of the reconstruction for each of 

the steady-state conditions it is trained on.  Second, transient data is then tested on 

the ANN to prove its validity.  The selection of the transient conditions to be tested 

was important.  Initially, a relatively slow speed ramp was selected as the transient 

test condition because it is not too dissimilar (in some regions) to the steady-state 

data and contains few transient-only engine dynamics but still has varying speeds 

and loads.  The speed ramp selected was from 1000 to 2000 rpm, which occurred 

within a 30 second period.  Owing to the control arrangements fitted in the engine 

test cell, a true transient, i.e. where full control is exercised over both speed and 

load is not possible.  This means that there is not an accurate value of the load 

through the transient, as it could not be fixed. However, prior to commencing the 

speed ramp, the load was initially set at 20 Nm so any fluctuations would be within 

10 - 30 Nm data range; the same range as the steady-state data. 

 

 The training of the ANN took significantly longer than previously observed because 

of the increased size of the training set.  The ANN trained in 14942 seconds (4.15 

hours) in 105 epochs. Figures 8.1 to 8.6 show a select number of generalised 

results from the steady-state reconstruction using the same ANN.  
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Figure 8.1: Steady-State Condition-1 - 1000 rpm and 10 Nm. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 
 
 

Figure 8.2: Steady-State Condition-5 - 1500 rpm and 20 Nm. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 
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Figure 8.3: Steady-State Condition-9 - 2000 rpm and 30 Nm. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 
 
 

Table 8.1: Overall Results for Steady-State Testing on a Single ANN Trained 
on Multiple Conditions. 
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The 3 conditions, given in Figures 8.1 to 8.3, show broadly the results for 

reconstructing steady-state cylinder pressure from a single ANN trained on multiple 

conditions. Generally, the results at 1500 and 2000 rpm are accurate, and closely 

resemble the results presented in Chapter 6.  However, the results across all loads 

at 1000 rpm are poor.  Within these results, there is no clear explanation for the 

errors at low speed; further examination was required.  The initial reasoning lays the 

blame for the poor reconstruction with one of two explanations surrounding the 

crankshaft kinematics.  First, it could be a result of the different degrees of variability 

between each speed.  Even though the variability had been dismissed with regards 

to training a single ANN with a single condition, the variability may have had an 

impact when considering multiple conditions.  The minimal variability at higher 

speeds resulted in more consistent crankshaft kinematics which created a significant 

portion of training data that was similar.  Conversely, low speeds contain significant 

variations which can create training data that can be dissimilar.  Even though an 

attempt was made to distribute the data randomly for all conditions, the inherently 

similar, higher speed training data, may result in the ANN favouring higher speed 

conditions.  The second possible explanation, and the one that is believed to be 

most likely, is that as speed increases, the time dependent features, which occur in 

both the cylinder pressure and crankshaft kinematics, can shift and vary.  These 

inconsistent variations across the transient range could make the ANN, in its current 

form, incapable of reconstructing all the conditions.  Therefore as a result, the ANN 

trains on data that is easier to reconstruct, i.e. the higher speed conditions. 

 

Even though the results were not ideal, the ANN was tested on the transient results. 

Figure 8.4 to 8.6, and table 8.2, shows the results for the transient reconstruction 

from a single ANN. 
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Figure 8.4: Transient Region 1 - 1000 to 2000 rpm. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 

 

 

 

Figure 8.5: Transient Region 2 - 1000 to 2000 rpm. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 
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Figure 8.6: Transient Overall Results. Normalised Peak Error Training Results 

(left) and Position of Peak Error Training Results (right) 
 
 

Table 8.2: Overall Results for Transient Testing on a Single ANN Trained on 
Multiple Conditions. 

 
 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 13.71 %   12.63% 

Normalised Peak Error  36.5 % 26.4 % 

Peak Pressure Position 
Error (deg) 

14.8 13.6 

 

 

The generalised transient results from a single ANN show three significant trends.  

The same differences in the reconstruction ability at different speeds, shown earlier 

with the steady-state generalisation, still occur in the transient results and can be 

seen clearly in the reduced error later on in the data (at a higher combustion 

number) in Figure 8.6.  Generally, across the whole speed ramp, there was a 

decrease in the overall reconstruction performance.  The final observation seen was 

that at typically transient events, such as overrun, even though poorer than at other 

points, the reconstruction results show that the cylinder pressure has varied 

significantly. The performance of the ANN in reconstructing transient events shows 

promise, but with the significant difference in the reconstruction at differing speeds, 

this approach cannot be categorised as being a success.  Further work was required 

to separately examine reconstruction at different loads and speed. This was now 

undertaken. 

0 100 200 300
0

20

40

60

80

100

Combustion Number

N
o

rm
a

lis
e

d
 E

rr
o

r(
%

)

Peak Pressure Error

0 100 200 300
0

20

40

60

80

100

120

Combustion Number

P
o

s
it
io

n
 E

rr
o

r(
d

e
g
)

Peak Pressure Position Error



 213   

 

 

8.2.2 A Load Varying ANN 
This part of the chapter examines the capability of using a single ANN to train 

across numerous steady-state load conditions, with constant speed, to find the root 

cause behind the limitations presented in section 8.2.1.  It was expected that the 

results from the constant-speed varying-load ANN training, would be consistent 

because there would be no variation in the time dependent features, and the only 

change would be to the magnitude of combustion. The generalised reconstructed 

results should have minimal errors, similar to the results in Chapter 6.   

 

The method used to test this approach was the same method used in Section 8.2.1. 

Crank kinematics was selected owing to the considerable improvements made, as 

highlighted in Chapter 6.  The same ANN architecture, training algorithm, and 

processing methodology are used.  Initially the number of neurons, layers and inputs 

remains the same.  However, only 3 test conditions at 1000 rpm, and torque ranging 

from 10 to 30 Nm, are used in the training and reconstruction.  The data was 

collected, configured, and then ordered randomly, to train the single ANN with the 

same limits on the reconstruction. 

 

To determine the success of this approach, new data was used to test the 

generalised performance of the reconstruction for each of the steady-state 

conditions it was trained on.  However, this section will not present the reconstructed 

cylinder pressure in transient conditions for two reasons.  First, the experimental 

setup was not designed successfully to run load transients.  Second, the aim of this 

section was not to determine the ability to reconstruct using a load varying ANN, but 

to determine whether a significantly different approach was needed for 

reconstructing cylinder pressure with varying loads. Figures 8.7 to 8.8 and Table 8.3 

show a select number of generalised results from the steady-state reconstruction, 

using a single ANN. 

.  
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Figure 8.7: Steady-State Condition-1 - 1000 rpm and 10 Nm. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 

 

 

Figure 8.8: Steady-State Condition-2 - 1000 rpm and 20 Nm. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 
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Figure 8.9: Steady-State Condition-3 - 1000 rpm and 30 Nm. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 
 
 

Table 8.3: Overall Results for Steady-State Testing on a Single ANN Trained 
on Constant Speed Varying Load Conditions. 

 
 
 
 
 
 
 
 
 
 
 

 

The 3 conditions shown in Figures 8.7 to 8.9 broadly show the results of 
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expected, with the load having no relevance to successful transient reconstruction of 

cylinder pressure, the rest of this section will focus on the source of the problem: i.e. 

varying speeds. 

 

8.2.3 A Speed Varying ANN 
The previous subsection examined the impact on reconstructing using a single ANN 

with varying load.  The next part examines the capability of using a single ANN to 

train across numerous steady-state speed conditions, with constant load.  The 

results of this examination were expected to be similar to the ones presented in 

section 8.2.1.  Two of the main reasons why significant errors were expected, based 

on the results in section 8.2.1, were the time dependent aspects of cylinder pressure 

reconstruction and the variation in the additional loads.  One example of an 

additional load that significantly varies with engine speed is friction.  As most of the 

internal damping can be ideally thought of as hydrodynamic, because of this, the 

lower the speed of the individual components, the greater the level of damping.  One 

explanation for the different reconstruction accuracies at different speeds was that 

as speed increases, the time dependent features, which occur in both the cylinder 

pressure and crank kinematics, can shift and vary, and as a result, make the ANN 

incapable of reconstructing across various speeds. 

 

The method used to test this approach was the same method used in section 8.2.1. 

Crank kinematics was selected owing to the considerable improvements that had 

been made, as highlighted in Chapter 6. The same ANN architecture, training 

algorithm and processing methodology was used.  Initially, the number of neurons, 

layers and inputs remained the same.  However, only 3 test conditions at 10 Nm, 

and speed ranging from 1000 to 2000 rpm, were used in the training and 

reconstruction.  The data was collected, configured, and then ordered randomly to 

train the single ANN with the same limits on the reconstruction. 

 

To determine the success of this approach, new data was used to test the 

generalised performance of the reconstruction for each of the steady-state 

conditions it was trained on. Again, this section will not present the reconstructed 

cylinder pressure in transient conditions because the objective was only to 

determine whether a significantly different approach was needed for reconstructing 

cylinder pressure with varying speeds. Figures 8.10 to 8.12 and Table 8.4 show a 

select number of generalised results from the steady-state reconstruction, using a 

single ANN.  
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Figure 8.10: Steady-State Condition-1 - 1000 rpm and 10 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 

Figure 8.11: Steady-State Condition-5 - 1500 rpm and 10 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
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Figure 8.12: Steady-State Condition-9 - 2000 rpm and 10 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
 

Table 8.4: Overall Results for Steady-State Testing on a Single ANN Trained 
on Constant Load Varying Speed Conditions. 

 
 

 
 
 
 
 
 
 
 
 
 

 

The 3 conditions given in Figures 8.10 to 8.11 shows broadly, the results of 

reconstructing steady-state cylinder pressure from a single ANN trained on varying 

load conditions only.  These results were for an engine speed of 1000, 1500 and 

2000 rpm with a load of 10 Nm.  The results produced for the single ANN show 

exactly the same type of errors as seen in section 8.2.1; at higher speeds 

reconstruction is very good, whereas at low speed, there is a significant problem in 

reconstructing cylinder pressure.  These results are evident in the other loads as 

well. The results from the other loads (20 and 30 Nm) are given in Appendix G, and 

show the same outcome.  As expected, the speed had a significant impact on 
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successful reconstruction of cylinder pressure in transient conditions.  However, the 

results do not highlight the reasons behind the poor reconstruction. The aim of the 

remainder of this chapter is to identify the source of the problem and to find a 

solution for reconstructing within varying speeds. 

 

8.3 Transient Reconstruction with Multiple ANNs   

The work presented in Section 8.2 shows a significant issue with reconstructing 

cylinder pressure at varying speeds, using a single ANN of the size currently used.  

A  new optimisation way undertaken to improve the performance of the ANN by 

increasing the size. However this failed to have the desired effect. Instead of using a 

single ANN, the new approach trains multiple ANNs at different conditions to 

successfully reconstruct cylinder pressure in transient conditions.  The results from 

Section 8.2 show, that because of the changing physics as the engine speed 

increases, the gulf between the different speed conditions, i.e. 1000 rpm, is too big 

for a single ANN to train and generalise successfully.  The proposed solution was to 

train multiple ANNs, of the same size and type, across two adjacent speed 

conditions where there would be minimal differences in time dependent features.  

This would generate numerous ANNs, each responsible for reconstructing cylinder 

pressure within separate speed ranges. For transient conditions, reconstruction 

would require transferring from one ANN to another, as engine speed varies. This 

would significantly increase the amount of work required to train and to reconstruct, 

but it is believed that this is the best solution for reconstructing transient conditions. 

 

Again, the basic method used to test this approach and train the ANNs was the 

same method used throughout Chapter 8. Crankshaft kinematics was selected and 

the same ANN architecture, training algorithm, and processing methodology was 

used. The initial number of neurons, layers and inputs remained the same.  The only 

difference was that multiple ANNs were trained with closer speed differences i.e. 

100 rpm, which required significantly more engine test data.  The current engine test 

data was acquired at three different speed and load conditions; with a 500 rpm and 

10 Nm intervals.  The current speed intervals could produce significantly different 

engine dynamics and would not be sufficiently close to test the proposed approach.  

However, as found in Section 8.2.2, the load conditions would be adequate as it is 

believed to be independent of the transient reconstruction issues.  Therefore, a 

considerable amount of the new test data was acquired; i.e. 120 sets of data.  These 
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included 11 different steady-state conditions, where the speeds selected were within 

the 1000 to 2000 rpm range with 100 rpm intervals.  The acquisition for each speed 

was 30 seconds long, repeated twice and at four different load conditions; motored, 

10, 20, and 30 Nm.  This produced a total of 88 steady-state data sets. The 

remaining 32 data sets were additional transient conditions to increase the database 

of measured engine test data. The data was collected, configured, and then ordered 

randomly to train each ANN with the same limits on the reconstruction.  Each ANN 

was trained on a pair of adjacent speed conditions; for example 1000 to 1100 rpm, 

1100 to 1200 rpm, 1200 to 1300 rpm.  

 

Figures 8.13 to 8.17 show a select number of generalised results from the steady-

state reconstruction, using one of the multiple ANNs. The ANN selected was ANN-1 

which was trained on data from 1000 and 1100 rpm at 20 Nm.  

 

Figure 8.13: Steady-State Condition-1000 rpm and 20 Nm Using ANN-1. 
Measured Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder 

Pressure (Black Dashed Line). 
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Figure 8.14: Steady-State Condition-1100 rpm and 20 Nm Using ANN-1. 
Measured Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder 

Pressure (Black Dashed Line). 
 

Table 8.5: Overall Results for Steady-State Condition Using ANN-1. 
 
 
 
 
 
 
 
 
 
 

 

The 2 conditions given in Figures 8.13 to 8.14 show the results from reconstructing 

steady-state cylinder pressure from one of the ANNs.  The ANN was trained on the 

same engine speed; 1000 and 1100 rpm at 20 Nm.  The results for both engine 

speeds is good and are comparable to the individual ANNs trained for each 

condition in Chapter 6.  The results from the other speed ranges show a similar 

outcome. These multiple ANNs were then tested on transient conditions.  This was 

carried out by splitting the transient into 10 different regions, with 100 rpm intervals, 

and presenting each to the trained ANNs. Figures 8.15 to 8.17 and table 8.6 show 

the results for the reconstruction using the same transient condition examined in 

section 8.2; 1000 to 2000 rpm speed ramp. 
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Figure 8.15: Transient Region 1 Using Multiple ANNs. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 
 
 

Figure 8.16: Transient Region 2 Using Multiple ANNs. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 
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Figure 8.17: Transient Overall Results. Normalised Peak Error Training 

Results (left) and Position of Peak Error Training Results (right) 
 
 

Table 8.6: Overall Results for Transient Testing Using Multiple ANNs. 
 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 7.70 %   7.63% 

Normalised Peak Error  15.4 % 10.4 % 

Peak Pressure Position 
Error (deg) 

4.69 3.26 

 

The results generally show an improvement for both the steady-state reconstruction 

and the transient speed ramp, compared to the results produced using a single ANN 

for all conditions. Figures 8.15 to 8.17 and Table 8.6 show that even though there is 

a general improvement, in certain regions, errors are still significant.  The most 

common region for this is where transient dynamics are most apparent i.e. overrun.  

It can also be stated that generally the transient reconstruction is still poorer than the 

results seen, when reconstructing steady-state cylinder pressure.  The progress 

made from a single ANN to the use of multiple speed dependent ANNs is notable, 

and confirms that speed dependent training is necessary for producing an ANN that 

successfully reconstructs transient cylinder pressure. 

   

8.4 Transient Reconstruction using a Dynamic ANN   

The initial approach using a single ANN failed to satisfactorily reconstruct cylinder 

pressure at varying speeds.  However, the results presented in Section 8.3 have 
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shown significant advances in reconstructing transient conditions by using multiple 

ANNs; an ANN for each 100 rpm.  Using ANNs that vary with speed appears to be 

the direction showing the most promise.  Practically, multiple ANNs have the same 

architecture and structure.  This enables all the weights and biases to be mapped 

for each specific speed condition, and when reconstructing, the weights and biases 

would be updated once the engine speed exceeded a predetermined range.  

However, use of the individual values for each discrete speed, failed to reconstruct 

the transient-only dynamics with significant speed fluctuations. The idea that each 

weight and bias, within the ANN structure, could be described by a series of values, 

leads to a new approach using a novel ANN architecture.  Instead of using a string 

of values to describe a weight or bias, a continuously variable function could be 

used which would generate a time varying ANN, or more accurately, a Non-

Autonomous Neural Network. This NANN architecture was developed during the 

course of this research; no publication has been found to date putting forward this 

particular architecture. The NANN would have an additional input, which would be 

time dependent, or within this application, engine speed.  However, this additional 

input would not be used in the same way as either the crankshaft kinematics or 

engine block vibrations.  It would be used to adapt each weight and bias according 

to their individual functions. This architecture should enable the training and 

successful reconstruction of any function where time-dependence is significant.  

Within this application, it would also allow the direct training of the ANN, using 

transient data and should enable the successful reconstruction of transient-only 

dynamics. Figure 8.18 shows the configuration of a Non-Autonomous Neural 

Network. 

 

Figure 8.18: Illustration of a Non-Autonomous Neural Network, where Z is the 
additional input. 
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The solution is to use a polynomial to describe each speed-dependent function.  The 

use of a polynomial has one distinct advantage; it can be described simply by a 

series of coefficients.  This has two benefits. First, the physical size of the model 

(number of weights and biases) can be reduced significantly when comparing to the 

multiple ANN method.  Second, the use of coefficients still allows for, with some 

adaption, the use of numerical optimisation techniques for training the ANN i.e. 

Levenberg-Marquardt algorithm.  The class of polynomial selected for this 

application was the Chebyshev polynomials. These are used extensively as an 

approximation to a least-squares-fit, and have proven to be robust.  Below is the 

equation for the definition of the Chebyshev polynomial of the first kind,   , and the 

first 5 Chebyshev polynomials: 

 

                                                                       

 

   

 

and  

                                     
                                    

         
                   

          

               
          

 

where      is the result of the function,    is the coefficients and        is the 

Chebyshev polynomials. The Chebyshev polynomial of the first kind to the 5th 

degree was selected to prevent the NANN becoming too large and taking a 

significantly long time to train, whilst still retaining the accuracy of the polynomial.  

As previously stated, it is still possible to train this new ANN architecture using 

numerical optimisation techniques. The practicality of training the NANN was very 

much the same as training any of the previous ANNs; it was still trained iteratively 

using the Levenberg Marquardt algorithm.  Previously, the Levenberg-Marquadt 

algorithm was used to train each weight and bias but this is not possible with the 

new architecture.  Instead, the Levenberg-Marquardt algorithm was used to train the 

coefficients of the Chebyshev polynomial for each weight and bias and 

simultaneously trained the NANN.  This would significantly increase training time 

and computational requirements that should guarantee that this new method was 

fully trained. Sample code for the LMA and a test function for the NANN are given in 

Appendix B. 
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Again, the basic method used to test this approach and train the ANNs was the 

same method used throughout Chapter 8. Crankshaft kinematics was selected and 

the same processing methodology was used with the new ANN architecture and 

approach to training. The initial number of neurons, layers and inputs remained the 

same. The only difference was that instead of each weight and bias being described 

as single values, they were described by 5 coefficients.  The training data selected 

was transient, and was collected, configured and then ordered randomly to train the 

NANN in the same way as previously described.  With regards to the inputs, the only 

difference was the additional input used, i.e. the weight and bias functions.  This 

additional input was the mean engine speed, as it was required to be time 

dependent. Figures 8.18 to 8.25 are selected results for the transient training 

reconstruction from a NANN. 

 

Figure 8.19: Transient Training Results Using NANN. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 
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Figure 8.20: Transient Training Results Using NANN. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 
 
 
 
 

Figure 8.21: Transient Training Results Using NANN. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). 
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The 3 pressure traces given in Figures 8.19 to 8.21 shows broadly the training 

results for reconstructing transient cylinder pressure from the NANN.  Generally, the 

results at speeds surrounding 1000 and 2000 rpm are fairly accurate and closely 

resemble the results presented in Chapter 6.  However, the results where the speed 

variation was significant (overrun) were poorer than the other regions, but the 

performance was reasonable. Increased training time and training data set size 

could possibly improve this significantly. This was not undertaken owing to time and 

computational restrictions. 

 

Even though the results were not ideal, the NANN was still tested on other transient 

data sets to determine the viability of this approach. Figure 8.22 to 8.25 and table 

8.7 show the results for additional transients. 

 

Figure 8.22: Transient Generalisation Results Using NANN. 2000 to 1000 rpm.  
Measured Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder 

Pressure (Black Dashed Line). 
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Figure 8.23: Transient Generalisation Results Using NANN.  2000 to 1000 rpm. 
Measured Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder 

Pressure (Black Dashed Line). 

 
Figure 8.24: Transient Generalisation Results Using NANN. 1000 to 2000 to 

1000 rpm. Measured Cylinder Pressure (Grey Solid Line). Reconstructed 
Cylinder Pressure (Black Dashed Line). 
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Figure 8.25: Transient Generalisation Results Using NANN. 1000 to 2000 to 
1000 rpm.  Measured Cylinder Pressure (Grey Solid Line). Reconstructed 

Cylinder Pressure (Black Dashed Line). 
 
 

The above results generally show, for both the training and generalised transient 

reconstruction, more potential than using a single ANN or multiple ANNs in transient 

specific conditions. Figures 8.22 to 8.25 show that there is reasonable agreement in 

some regions and better detection of certain combustion characteristics i.e. delayed 

combustion in Figure 8.24. However, errors are still significant and there are regions 

where the reconstruction fails, more work is required to improve the accuracy. But 

most notably, given these types of transient conditions have never been presented 

to the NANN during training, the network can still identify significantly delayed 

combustion. in Figure 8.23 The errors most often occurred where transient 

dynamics were most apparent i.e. overrun.  It can also be stated that, generally, the 

transient reconstruction is still poorer than the results seen when reconstructing 

steady-state cylinder pressure.   

 

This architecture would allow the weights and biases to vary, as the speed 

dependent dynamics involved in reconstructing cylinder pressure evolve.  From the 

results gathered, there is reasonable evidence that with more computational power, 

this approach could prove to be the solution to successfully reconstructing transient 

cylinder pressure.  
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Chapter 9  

Conclusions 
 

 

 

 

 

 

 
This thesis aimed to develop a robust alternative methodology to reconstruct 

cylinder pressure through the use of Artificial Neural Networks (ANN) and existing 

sensors currently fitted to production engines. This methodology reconstructed 

cylinder pressure from both crank kinematics, via a crank shaft encoder, and 

cylinder block vibration, via the knock sensor. An aspect that had been overlooked 

within published literature was the significance the data had in the application. One 

key idea, reiterated many times in the machine learning literature, is that the 

successful application is not solely or significantly dependent on the algorithm used, 

but rather is equally shared in importance between the use of effective algorithms, 

and the correct use of the data. It is believed that disproportionate weighting had 

previously been given to the algorithmic approach, over the data, and its use.  The 

underlying theme in this thesis was keeping faithful to the idea that both algorithms 

and data are equally important for machine learning applications.  

 

Progress was made in the reconstruction of in-cylinder pressure for a 3-cylinder IC 

production engine under steady-state conditions. This was undertaken primarily with 

crank kinematics and resulted in the creation of a methodology that overcomes the 

shortcomings of using recurrent architectures and only past delays. Also, an 

improvement in the understanding of the cylinder pressure reconstruction, and the 

limitations in both the previous approaches used.  

 

The initial area examined the quantitative limitations of recurrent neural networks, 

and alternative, time-delay neural networks, when using crank kinematics. First, this 

chapter showed by back-to-back comparisons that complex recurrent neural 

networks were not necessary for the accurate reconstruction of cylinder pressure; a 

more simple architecture could be used to produce the same level of accuracy.  It 

was also found that through examining both crankshaft kinematics and engine block 

vibration reconstruction results, key information about the cylinder pressure around 



 232   

 

TDC was not present within the training.  This missing information was deemed to 

be a result of several main factors; the variation of the effective radius, the variation 

in friction at TDC, and more importantly, the dominance of the inertia.  

 

One of the key solutions developed to overcome the problems identified, was a 

different approach to the ANN input organisation; the use of both future and past 

delays.  This method examined the crankshaft kinematics prior to, and after TDC, 

which successfully overcame the majority of the issues mentioned.  Two additional 

solutions were found to solve some additional inaccuracies in reconstructing cylinder 

pressure.  These included a less indiscriminate method of filtering crankshaft 

kinematics in order to ensure that useful information was not eliminated, and 

creating an ANN for each cylinder to take into account the variability between the 

different cylinders. The combination of these three solutions into a single 

methodology, along with the use of a time-delay neural network and Levenberg-

Marquardt algorithm, proved to be the solution to overcoming the reconstruction 

difficulties. 

 

The developed methodology was first tested on the crankshaft kinematics based 

reconstruction using Time-Delay neural networks and the Levenberg-Marquardt 

algorithm. The overall results for generalised reconstruction were much improved on 

previous published results and presented very little evidence of the significant peak 

pressure errors or the observed instability seen with recurrent networks. These 

results have also shown that for independent ANNs, trained at different test 

conditions, the cycle-by-cycle cylinder pressure variability has no effect on the 

successful cylinder pressure reconstruction. These results validated the use of crank 

kinematics for reconstructing cylinder pressure, as results were well within target.  

The targeted cylinder pressure error was 4% consistently for the generalised 

reconstruction and depending on the test condition, the results ranged between 

1.14% and 1.34%.  This chapter demonstrated that reconstructing cylinder pressure 

can be achieved successfully on steady-state data.   

 

The adapted methodology was then tested on the engine block vibration based 

reconstruction, again using Time-Delay neural networks and the Levenberg-

Marquardt algorithm. The results from the reconstruction made similar achievements 

to the crank kinematics. The overall results for generalised reconstruction were 

much improved on previous published results using the time-series approach.  
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However, there was some evidence of the instability and peak pressure errors with 

the generalised reconstruction results which ranged between 1.32% and 3. 46%.  

These results have again disproven that for independent ANNs, trained at different 

test conditions, the cycle-by-cycle cylinder pressure variability has no effect on the 

successful cylinder pressure reconstruction.  The results presented validated the 

use of engine block vibration for reconstructing cylinder pressure, as the results 

were within the targeted range for steady-state conditions.   

 

An observation was also made when comparing the crank kinematics and engine 

block vibration results. The crank kinematic results accurately reconstructed the 

magnitude of the peak pressure, whereas the engine block vibration accurately 

reconstructed the position of the maximum pressure.  Crankshaft kinematics most 

significant limitation, when reconstructing, is a combination of cranktrain inertial 

dominance and a reduction in the information content surrounding TDC.  To actually 

reconstruct cylinder pressure, it was necessary to use a combination of future and 

past inputs.  This provided information directly relating to the energy imparted to the 

cranktrain and allowed accurate reconstruction of the pressure magnitude.  

However, owing to the lack of information surrounding TDC, pinpointing the position 

of peak pressure was more difficult.  But there was no information loss with engine 

block vibrations; in fact the opposite is true; the accuracy in the position of peak 

pressure is good.  However, the engine block vibration peak pressure reconstruction 

accuracy is poorer because of an increase in noise.  To accurately reconstruct both 

the magnitude and position of peak pressure, a combination of the two approaches 

may be required. 

 

The final focus was on creating a methodology for reconstructing cylinder pressure 

during transient engine operation, using crank kinematics. Three different 

approaches were examined; the first used a single ANN which was trained on 

multiple steady-state conditions across a given range and then tested on a simple 

transient: a speed ramp.  It was found that, when reconstructing on either the same 

generalised steady-state conditions or on transient conditions, there was a 

significant difference in the performance when speed increased. By suitable testing, 

the load variation was dismissed as the cause of the problem. The performance at 

mid to high speed (1500 to 2000 rpm) conditions was good, and comparable with 

the individually-trained ANNs presented.  However, at low speed, there were 

significant issues in reconstructing cylinder pressure accurately.  It was reasoned 
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that there are two possible explanations: that the inherently-similar training data may 

result in an ANN favouring the higher speed conditions, or the time-dependent 

features could change significantly with speed.  The second approach attempted to 

resolve the issue of the biasing of the training and time dependence, by using 

multiple ANNs. Each ANN was trained on a different pair of adjacent conditions with 

a 100 rpm interval. The results for both the steady-state reconstruction and the 

transient speed ramp were improved. However, the overall performance of the 

transient reconstruction was not sufficiently accurate, especially in the transient 

specific regions. The direction taken from the first approach to the second, in 

creating ANNs that vary with speed, showed some, but not enough, improvement. 

Therefore, a new approach was developed, continuing further in this direction 

including the development of a new ANN architecture. This new architecture was a 

continuously variable ANN, where the weights and biases are time dependent; 

called a Non-Autonomous Neural Network (NANN).  Each weight and bias would be 

represented by a Chebyshev polynomial, where it would vary with the speed instead 

of a constant value. Using a polynomial allows the Levenberg-Marquadt algorithm to 

be used, with minor alterations. This architecture allows the weights and biases to 

vary as the speed dependent dynamics involved in reconstructing cylinder pressure 

vary. From the results gathered, there is reasonable evidence that, with time and 

significant computational power, this could offer a solution to successfully 

reconstructing transient cylinder pressure.  

 

To summarise, this thesis has demonstrated that the key to reconstructing cylinder 

pressure does not lie in the complexity of the ANN architecture or training algorithm, 

as previously believed.  Rather it lies in understanding the importance that the input 

data and the development of a methodology that is sufficiently robust.  It has been 

verified that by using a combination of future and past inputs, more targeted filtering, 

and reconstructing for individual cylinders, it is possible to successfully reconstruct 

cylinder pressure from both crank kinematics and engine block vibrations. The 

thesis also demonstrates several possible methods for reconstructing cylinder 

pressure in transient conditions and has developed a new ANN architecture which 

shows significant promise.   
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Future Work 

There are several key aspects that need to be examined in future work to help 

advance this technology.   

 

 With respect to crankshaft kinematic based reconstruction, the accuracy 

seen in this thesis was greater than expected and it is believed that there is 

little room for improvement in steady-state.  However, to make the 

methodology more desirable, further work will be needed to explore the use 

of a less accurate and lower resolution crank encoder, similar to production 

encoders, and achieving comparable reconstruction accuracy.  

 

 With respect to engine block vibration based reconstruction, similar to the 

use of crankshaft kinematics, the results were better than expected. More 

work could be put into the use of production specification sensors and a 

more indiscriminate method of filtering would be required to improve the 

accuracy of the reconstruction.   

 

 One of the most significant areas for further work is refining the 

reconstruction under transient conditions. Whether the methodology 

developed in this thesis is used or another one is created, the key to 

reconstructing transient conditions is, in significantly increasing the amount 

of training data used. As a result, the computational needs would be 

increased and a system would need to be created to manage this with the 

possible addition of a live demonstrator to prove reconstruction accuracy in 

real time. 

 

 As two independent methods are now available for steady-state engine 

conditions, and the prospect looks promising for transient conditions, work 

can commence with the creation of a fully adaptive methodology to 

reconstruct and to account for engine wear, significant changes in operating 

conditions and different fuels. 
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Appendix A 

Connecting Rod Inertial Torque Calculations  
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Friction model equations - (Kamil et al., 2013) 

 

Crankshaft friction: 

           
 

  
 
   

     
     

     
  

     
             

    
     
  

        

 

 

 

 

 

 

Reciprocating friction: 

              
 

  
 
   

 
        

   

 
  

 

  
           

       
 

  
 
    

     
     

                                                                          

 

 

 

 

Valvetrain friction: 

           
 

  
 
   
     

             
   

 
  

  
   

      
   
   

 

     
 

  
 
     
         
    

        
   

 
  
       
   

                        

 

 

 

 

The constants     ,    ,     and     in the valvetrain term in equation (A.10) are 

dependent of the valvetrain configuration being considered in the model. 

 

 
   Bearing 

diameter 
     Number of 

bearings 
   Cylinder bore 

  Oil 
viscosity 

     Number of 
cylinders 

    Main journal 
bearing constant 

   Reference 
viscosity 

    Engine stroke     Main journal  
bearing with seal 
constant 

   bearing 
length 

    Engine speed    

    Mean piston 
speed 

      Piston friction 
constant 

     Piston rings 
constant 

   Number of 
valves 

      Peak valve lift  
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Table A.1: Constants for Valvetrain Friction Terms (Kamil et al., 2013) 

 

 

 

 
Crankshaft moment of inertia calculations 

 

The moment of inertia of the crankshaft,   , can found through the summation of the 

individual inertias: 

 

                                                                      

 

Where    represents the moment of inertia of the main journal: 

 

     
 

  
   

    
                                                   

 

    represents the moment of inertia of the crankpin to main journal: 

 

       
 

  
   

    
     

 

 
   

    
     

  
 

  
  
                        

 

  represents the moment of inertia of crankshaft web: 

 

      
 

 
    

     

  
 
  

 
  

 

 
  
  
    

 

 
     

                        

 

    is the moment of inertia of the counterbalance of the crankshaft.  
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Figure A.2: Illustration of Crankshaft Crank (Hajderi and Hajdari, 2012). 

 

 

Single cylinder model 1 DOF model - final simplified solution 

 

       
            

  
                                               

       
       

  
       

      
  

 
     

       

   
 
    

      

       
 
         

     
 

                                                         
     

    
    

 
 
     

 
                

                              

 

 
Multi-cylinder model (three cylinder) 1 DOF - final simplified solution 
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(A.19) 

 

Where n is the cylinder number (1-3) 
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Appendix B 

Sample Levenberg-Marquadt Algorithm (for NANN) 

clear all, close all, clc 

  
i=240;                                      %Number of Inputs 
n=15;                                       %Number of Neurons 
k=5;                                        %Chebyshev Degree 

  
siw=n*i*k;                                  %Input Layer Weights 

Size 
sib=n*k;                                    %Input Layer Bias Size 
slw=n*k;                                    %Hidden Layer Weights 

        Size 
slb=1*k;                                    %Hidden Layer Bias Size 

  
L=siw+sib+slw+slb;                          %Total Weight/Bias Size 

  
I=eye(siw+sib+slw+slb);                     %Identity Matrix 
m=0.001;                                    %Mu 
d=0.000001;                                 %Constant for Jacbian   

  
l=length(Inputd1);                          %Length/Normalisation 

        Constants 
l1=min(min(Input1(:,1:l))); 
l2=max(max(Input1(:,1:l)-min(min(Input1(:,1:l))))); 
l3=min(min(Output1(:,1:l))); 
l4=max(max(Output1(:,1:l)-min(min(Output1(:,1:l))))); 

  
x=(Input1(:,l1)-l1)/l2;                     %Input Normalisation 
xz=(Input2(:,l1)-l1)/l2;                    %Additional Input  

        Normalisation 
t=(Output1(:,l1)-l3)/l4;                    %Output Normalisation 

  
x2=xz.^2;                                   %Additional Input  

        Constants 
x3=xz.^3; 
x4=xz.^4; 

  
Wa=randn(L,1);                              %Weight/Bias   

        initialisation  
erro=1e10; 

   
for e1=1:100                                %Epoch Loop 

     
    y11=testnncheb(Wa,x,i,n,xz,k,x2,x3,x4); %Test1 ANN (Chebyshev) 
    y1=repmat(y11',1,length(Wa));           %Restructure ANN Results 

  
    parfor b=1:length(Wa)                   %Adjusted Test Using d 

  
        Wa2=Wa;Wa2(b)=Wa2(b)+d;             %Adjusted Weights 
        y2(:,b)=testnncheb(Wa2,x,i,n,xz,k,x2,x3,x4); %Tes2t ANN  

         (Chebyshev) 

  
    end 
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    J=((y1-y2)/d)';                         %Jacobian Matrix 
    H=J*J';                                 %Hessian Matrix 
    g=J*(y1(:,1)-t');                       %Gradient Vector  
    dw=(H + m*I)\g;                         %Weight Adjustments 

  
    Wa=Wa+dw;                               %Update Weights 

  
    Er=sqrt(mean((y1(:,1)-t').^2));         %RMSE 

  
    if erro>Er                              %Mu Update 
        m=m*5;  
    else 
        m=m/5; 
    end 

  
    erro=Er; 

  
end 

 

 

Sample Test Function (for NANN) 

function [y ]=testnncheb(wa,x1,i,n,z1,k,x2,x3,x4) 

  
C1=reshape(wa,[k,length(wa)/k])';           %Reshape Weigths 
S=size(x1); 
for q=1:S(2)                                %Calculation Loop 

     

Wn1(:,1)=C1(:,1)*1 +...                     %Chebyshev degree 1 
    C1(:,2)*z1(:,q) +...                    %Chebyshev degree 2 
    C1(:,3)*(2*(x2(:,q)) - 1) +...          %Chebyshev degree 3 
    C1(:,4)*(4*(x3(:,q)) - 3*z1(:,q)) +...  %Chebyshev degree 4 
    C1(:,5)*(8*(x4(:,q)) - 8*(x2(:,q)) + 1);%Chebyshev degree 5 

  
siw=n*i;sib=n;slw=n;slb=1;                  %ANN Weight Organisation 
iwn=Wn1(1:siw); 
iwn(1:2); 
ibn=Wn1(siw+1:siw+sib); 
lwn=Wn1(siw+sib+1:siw+sib+slw); 
lbn=Wn1(siw+sib+slw+1:siw+sib+slw+slb); 
s13n=reshape(iwn,[n,i]); 

  
                                            %ANN Results 
y(q)=sum((1./(1+exp(-2*(s13n*x1(:,q) + ibn)))-

1).*lwn(:,1))+lbn(:,1); 

  
end 
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Appendix C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure C.1: Large Scale LabVIEW Program for Data Acquisition  
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Table C.1: Data Acquisitions Analogue Connectivity  

 

 
 

 

 

 

 

 
Table C.2: Data Acquisitions Digital Connectivity  

 

 
 

 

 

 

 

 

 

 

  

Label Analogue Module Sensor 

1 AI 0 Cylinder-1 Pressure Transducer 

2 AI 1 Cylinder-2 Pressure  Transducer 

3 AI 2 Cylinder-3 Pressure  Transducer 

4 AI 3 Accelerometer  

5 AI 4 Knock Sensor 

6 AI 5 Encoder TDC Marker 

7 AI 6 Manifold Air Pressure 

8 AI 7 Flywheel Inductive Probe 

Digital Module Sensor 

CTR 0 Encoder 360˚ Position Marker 

CTR 1 Encoder TDC Marker 
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Appendix D 

 

Acceleration Reconstruction Test  

 
The test condition used measured data from running the engine at steady-state with 

a speed of 1000 rpm and a load of 10 Nm.   

 

Table D1.1: ANN Training Setup for Test Condition-2 

 

 

 

 

Training Results 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 2.33% to 2.47% RMSE. The best performing ANN was selected which 

trained in 1266 seconds (0.35 hours) and 57 epochs.  

 

 

 

 

Network 
Name 

Net_TD_BA_Test1 0 Network           
Architecture 

Time-
Delay 

0 Test Data 1000_10_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

1  Speed 
(rpm) / 
Load (Nm) 

1000/10 

Cost 
Function 

Means Squared 
Error 

 Neurons 
Number  

15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

60  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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Figure D1.1: Acceleration Training Results. Measured Pressure (Grey Solid 
Line). Reconstructed Pressure (Black Dashed Line).  

 

 

 

 

Figure D1.2: Acceleration Training Results. Measured Pressure (Grey Solid 
Line). Reconstructed Pressure (Black Dashed Line). 
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Figure E1.3: Acceleration Normalised Peak Error Training Results (left). 
Acceleration Position of Peak Error Training Results (right) 

 

 

 

 
Table E1.2: Acceleration Root-Mean-Squared Error (RMSE) and Standard 

Deviation for the ANN Training 
 
 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 4.58 % 4.58 % 

Normalised Peak Error  12.1 % 8.09 % 

Peak Pressure Position 
Error (deg) 

5.02 3.37 
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Generalisation Results 

 

Figure D1.4: Acceleration Generalisation Results. Measured Pressure (Grey 
Solid Line). Reconstructed Pressure (Black Dashed Line).  

 

 

Figure D1.5: Acceleration Generalisation Results. Measured Pressure (Grey 
Solid Line). Reconstructed Pressure (Black Dashed Line).  
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Figure D1.6: Acceleration Normalised Peak Error Generalisation Results (left). 
Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table E1.3: Acceleration Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 5.35 % 5.35 % 

Normalised Peak Error  14.7 % 10.2 % 

Peak Pressure Position 
Error (deg) 

4.42 2.88 
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Appendix E 

Crank Kinematics based Reconstruction Results 

 

Test Condition-2 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 1500 rpm and a load of 10 Nm.   

 

Table E1.1: ANN Training Setup for Test Condition-2 

 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 1.33% to 1.47% RMSE. The best performing ANN was selected which 

trained in 1266 seconds (0.35 hours) and 57 epochs.  

 

Network 
Name 

Net_TD_CK_Test2 0 Network           
Architecture 

Time-
Delay 

0 Test Data 1500_10_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

1  Speed 
(rpm) / 
Load (Nm) 

1500/10 

Cost 
Function 

Means Squared 
Error 

 Neurons 
Number  

15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

240  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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Figure E1.1: Condition-2 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 0.82%.  

 

 

 

Figure E1.2: Condition-2 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.02%.  
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Figure E1.3: Condition-2 Training Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.97%.  

 

 

 

 
Figure E1.4: Condition-2 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
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Table E1.2: Condition-2 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.38 % 1.38 % 

Normalised Peak Error  2.15 % 1.55 % 

Peak Pressure Position 
Error (deg) 

1.57 0.99 

 

 

 

Generalisation Results 

 

Figure E1.5: Condition-2 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 0.79%.  
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 Figure E1.6 Condition-2 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.43%.  
 
 
 
 

Figure E1.7: Condition-2 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.70%.  
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Figure E1.8: Condition-2 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table E1.3: Condition-2 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 1.32 % 1.32 % 

Normalised Peak Error  1.76 % 1.04 % 

Peak Pressure Position 
Error (deg) 

1.65 1.00 
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Test Condition-3 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 2000 rpm and a load of 10 Nm.   

 

Table E2.1: ANN Training Setup for Test Condition-3 

 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 1.16% to 6.22% RMSE. The best performing ANN was selected which 

trained in 693 seconds (0.19 hours) and 36 epochs.  

 

Network 
Name 

Net_TD_CK_Test3 0 Network           
Architecture 

Time-
Delay 

0 Test Data 2000_10_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

1  Speed 
(rpm) / 
Load (Nm) 

2000/10 

Cost 
Function 

Means Squared 
Error 

 Neurons 
Number  

15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

240  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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Figure E2.1: Condition-3 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 0.58%.  
 

 

 

 

Figure E2.2: Condition-3 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.04%.  
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Figure E2.3: Condition-3 Training Results - Worst. Measured Cylinder 

Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 
Line). RMSE = 1.58%.  

 

 

 

 
Figure E2.4: Condition-3 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
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Table E2.2: Condition-3 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.15 % 1.15 % 

Normalised Peak Error  1.47 % 0.08 % 

Peak Pressure Position 
Error (deg) 

1.61 1.05 

 

 

Generalisation Results 

 

 

Figure E2.5: Condition-3 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 0.75%.  
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 Figure E2.6 Condition-3 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.12%.  
 
 
 
 

Figure E2.7: Condition-2 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.35%.  
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Figure E2.8: Condition-3 Normalised Peak Error Generalisation Results (left). 
Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table E2.3: Condition-3 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 1.24 % 1.24 % 

Normalised Peak Error  1.52 % 0.85 % 

Peak Pressure Position 
Error (deg) 

1.61 0.98 
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Test Condition-4 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 1000 rpm and a load of 20 Nm.   

 

Table E3.1: ANN Training Setup for Test Condition-4 

 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 1.16% to 1.56% RMSE. The best performing ANN was selected which 

trained in 645 seconds (0.18 hours) and 36 epochs.  

 

Network 
Name 

Net_TD_CK_Test4 0 Network           
Architecture 

Time-
Delay 

0 Test Data 1000_20_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

1  Speed 
(rpm) / 
Load (Nm) 

1000/20 

Cost 
Function 

Means Squared 
Error 

 Neurons 
Number  

15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

240  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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Figure E3.1: Condition-4 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 0.79%.  
 
 
 
 

Figure E3.2: Condition-4 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.19%.  
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Figure E3.3: Condition-4 Training Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.25%.  
 
 
 

 
Figure E3.4: Condition-4 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
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Table E3.2: Condition-4 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.09 % 1.09 % 

Normalised Peak Error  2.37 % 1.57 % 

Peak Pressure Position 
Error (deg) 

2.67 1.89 

 

 

Generalisation Results 

 

Figure E3.5: Condition-4 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 0.81%.  
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 Figure E3.6 Condition-4 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.09%. 
 
 
 
  

Figure E3.7: Condition-4 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.59%.  
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Figure E3.8: Condition-4 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table E3.3: Condition-4 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 1. 15 % 1.15 % 

Normalised Peak Error  2.48 % 1.61 % 

Peak Pressure Position 
Error (deg) 

3.08 2.21 
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Test Condition-6 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 2000 rpm and a load of 20 Nm.   

 
Table E2.1: ANN Training Setup for Test Condition-6 

 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 1.36% to 1.48% RMSE. The best performing ANN was selected which 

trained in 498 seconds (0.14 hours) and 27 epochs. 

 

 

 

 

 

 

 

Network 
Name 

Net_TD_CK_Test6 0 Network           
Architecture 

Time-
Delay 

0 Test Data 2000_20_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

1  Speed 
(rpm) / 
Load (Nm) 

2000/20 

Cost 
Function 

Means Squared 
Error 

 Neurons 
Number  

15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

240  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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Figure E4.1: Condition-6 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 0.77%.  
 
 
 
 

Figure E4.2: Condition-6 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.03%.  
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Figure E4.3: Condition-6 Training Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.33%.  
 
 
 
 

 
Figure E4.4: Condition-6 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
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Table E4.2: Condition-6 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.29 % 1.28 % 

Normalised Peak Error  1.92 % 1.26 % 

Peak Pressure Position 
Error (deg) 

1.43 0.89 

 

 

 

Generalisation Results 

 

Figure E4.5: Condition-6 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 0.84%.  
 
 
 
 

512 514 516 518 520 522
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6 Results - 2000/20 Set 2

C
y
lin

d
e
r 

P
re

s
s
u
re

 (
P

a
)

Crank Angle (rad)



 277   

 

 Figure E4.6 Condition-6 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.13%.  
 
 
 
 

Figure E4.7: Condition-6 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.48%.  
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Figure E4.8: Condition-6 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table E4.3: Condition-6 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 1.34 % 1.33 % 

Normalised Peak Error  1.84 % 1.25 % 

Peak Pressure Position 
Error (deg) 

1.73 1.13 
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Test Condition-7 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 1000 rpm and a load of 30 Nm.   

 

Table E5.1: ANN Training Setup for Test Condition-7 

 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 1.18% to 1.35% RMSE. The best performing ANN was selected which 

trained in 1747 seconds (0.48 hours) and 114 epochs.  

 

Network 
Name 

Net_TD_CK_Test7 0 Network           
Architecture 

Time-
Delay 

0 Test Data 1000_30_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

1  Speed 
(rpm) / 
Load (Nm) 

1000/30 

Cost 
Function 

Means Squared 
Error 

 Neurons 
Number  

15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

240  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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Figure E5.1: Condition-7 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 0.75%.  
 
 
 
 

Figure E5.2: Condition-7 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.16%.  
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Figure E5.3: Condition-7 Training Results - Worst. Measured Cylinder 

Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 
Line). RMSE = 1.59%.  

 
 
 
 
 

 
Figure E5.4: Condition-7 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
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Table E5.2: Condition-7 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.17 % 1.17 % 

Normalised Peak Error  2.06 % 1.34 % 

Peak Pressure Position 
Error (deg) 

1.61 1.02 

 

 

 

Generalisation Results 

 

 

Figure E5.5: Condition-7 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 0.83%.  
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 Figure E5.6 Condition-7 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.30%.  
 
 
 
 

Figure E5.7: Condition-7 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.54%.  
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Figure E5.8: Condition-7 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table E5.3: Condition-7 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 1.32 % 1.31 % 

Normalised Peak Error  2.56 % 1.51 % 

Peak Pressure Position 
Error (deg) 

1.78 1.10 
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Test Condition-8 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 1500 rpm and a load of 30 Nm.   

 

Table E2.1: ANN Training Setup for Test Condition-8 

 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 1.26% to 1.62% RMSE. The best performing ANN was selected which 

trained in 1649 seconds (0.46 hours) and 95 epochs.  

 

Network 
Name 

Net_TD_CK_Test8 0 Network           
Architecture 

Time-
Delay 

0 Test Data 1500_30_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

1  Speed 
(rpm) / 
Load (Nm) 

1500/30 

Cost 
Function 

Means Squared 
Error 

 Neurons 
Number  

15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

240  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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Figure E6.1: Condition-8 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 0.74%.  
 
 
 

Figure E6.2: Condition-8 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.21%.  
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Figure E6.3: Condition-8 Training Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.75%.  
 
 
 
 
 

 
Figure E6.4: Condition-8 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
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Table E6.2: Condition-8 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.19 % 1.19 % 

Normalised Peak Error  2.25 % 1.52 % 

Peak Pressure Position 
Error (deg) 

2.25 1.70 

 

 

 

Generalisation Results 

 

Figure E6.5: Condition-8 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 0.72%.  
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 Figure E6.6 Condition-8 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.21%.  
 
 
 

Figure E6.7: Condition-8 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.73%.  
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Figure E6.8: Condition-8 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table E6.3: Condition-8 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 1.30 % 1.29 % 

Normalised Peak Error  2.86 % 1.72 % 

Peak Pressure Position 
Error (deg) 

2.24 1.53 
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Appendix F 

Engine Block Vibration based Reconstruction 
Results 

 

Test Condition-2 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 1500 rpm and a load of 10 Nm.   

 

Table F1.1: ANN Training Setup for Test Condition-2 

 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 1.54% to 1.91% RMSE. The best performing ANN was selected which 

trained in 681 seconds (0.19 hours) in 39 epochs.  

 

 

Network 
Name 

Net_TD_BA_Test2 0 Network           
Architecture 

Time-
Delay 

0 Test Data 1500_10_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

2  Speed 
(rpm) / 
Load (Nm) 

1500/10 

Cost 
Function 

Means Squared 
Error 

 Neurons 
Number  

15/15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

240  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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Figure F1.1: Condition-2 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 1.16%.  
 
 
 
 
 

Figure F1.2: Condition-2 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.56%. 
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Figure F1.3: Condition-2 Training Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.93%.  
 
 
 

 
Figure F1.4: Condition-2 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
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Table F1.2: Condition-2 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 

 

Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.55 % 1.54 % 

Normalised Peak Error  2.45 % 1.46 % 

Peak Pressure Position 
Error (deg) 

1.00 0.71 

 

 

 

Generalisation Results 

 

Figure F1.5: Condition-2 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.47%.  
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 Figure F1.6 Condition-2 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.92%.  
 
 
 
 
 

Figure F1.7: Condition-2 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.54%.  
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Figure F1.8: Condition-2 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table F1.3: Condition-2 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 1.32 % 1.32 % 

Normalised Peak Error  3.14 % 1.71 % 

Peak Pressure Position 
Error (deg) 

1.31 0.86 
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Test Condition-3 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 2000 rpm and a load of 10 Nm.   

 

Table F2.1: ANN Training Setup for Test Condition-3 

 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 1.61% to 2.67% RMSE. The best performing ANN was selected which 

trained in 935 seconds (0.26 hours) in 26 epochs.  

 

 

 

 

 

 

 

Network 
Name 

Net_TD_BA_Test3 0 Network           
Architecture 

Time-
Delay 

0 Test Data 2000_10_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
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Function 
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Figure F2.1: Condition-3 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 1.03%.  
 
 
 
 
 

Figure F2.2: Condition-3 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.54%.  
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Figure F2.3: Condition-3 Training Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.95%.  
 
 
 

 
Figure F2.4: Condition-3 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
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Table F2.2: Condition-3 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.61 % 1.60 % 

Normalised Peak Error  3.20 % 1.64 % 

Peak Pressure Position 
Error (deg) 

1.40 0.83 

 

 

 

Generalisation Results 

 

 

Figure F2.5: Condition-3 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.30%.  
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 Figure F2.6 Condition-3 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.04%.  
 
 
 
 
 

Figure F2.7: Condition-2 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.49%.  
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Figure F2.8: Condition-3 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table F2.3: Condition-3 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 1.94 % 1.93 % 

Normalised Peak Error  3.68 % 1.99 % 

Peak Pressure Position 
Error (deg) 

1.57 0.88 
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Test Condition-4 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 1000 rpm and a load of 20 Nm.   

 

Table F3.1: ANN Training Setup for Test Condition-4 

 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 2.68% to 4.25% RMSE. The best performing ANN was selected which 

trained in 2177 seconds (0.60 hours) in 33 epochs.  
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Figure F3.1: Condition-4 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 1.23%.  
 
 
 
 
 

Figure F3.2: Condition-4 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.71%.  
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Figure F3.3: Condition-4 Training Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 4.53%.  
 
 
 
 

 
Figure F3.4: Condition-4 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
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Table F3.2: Condition-4 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 2.71 % 2.71 % 

Normalised Peak Error  4.76 % 3.49 % 

Peak Pressure Position 
Error (deg) 

2.77 1.49 

 

 

 

Generalisation Results 

 

Figure F3.5: Condition-4 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.54%.  
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 Figure F3.6 Condition-4 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.66%.  
 
 
 
 

Figure F3.7: Condition-4 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 5.49%.  
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Figure F3.8: Condition-4 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table F3.3: Condition-4 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 3.46 % 3.44 % 

Normalised Peak Error  13.2 % 8.84 % 

Peak Pressure Position 
Error (deg) 

5.01 3.36 
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Test Condition-6 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 2000 rpm and a load of 20 Nm.   

 

Table F4.1: ANN Training Setup for Test Condition-6 

 
 

 
 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 1.69% to 1.86% RMSE. The best performing ANN was selected which 

trained in 1057 seconds (0.29 hours) in 15 epochs.  
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Figure F4.1: Condition-6 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 1.31%.  
 
 
 
 
 

Figure F4.2: Condition-6 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.69%.  
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Figure F4.3: Condition-6 Training Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.39%.  
 
 
 
 

 
 

Figure F4.4: Condition-6 Normalised Peak Error Training Results (left). 
Condition-5 Position of Peak Error Training Results (right) 

 

 

 

 

 

412 414 416 418 420 422

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6 Results - 2000/20 Set 1

C
y
lin

d
e

r 
P

re
s
s
u

re
 (

P
a

)

Crank Angle (rad)

0 50 100 150 200
0

2

4

6

8

Combustion Number

N
o

rm
a

lis
e

d
 E

rr
o

r(
%

)

Peak Pressure Error

0 50 100 150 200
0

0.5

1

1.5

2

Combustion Number

P
o

s
it
io

n
 E

rr
o

r(
d

e
g
)

Peak Pressure Position Error



 312   

 

Table F4.2: Condition-6 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.69 % 1.66 % 

Normalised Peak Error  2.77 % 1.61 % 

Peak Pressure Position 
Error (deg) 

0.91 0.63 

 

 

 

Generalisation Results 

 

Figure F4.5: Condition-6 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.59%.  
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 Figure F4.6 Condition-6 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.03%.  
 
 
 
 

Figure F4.7: Condition-6 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.48%.  
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Figure F4.8: Condition-6 Normalised Peak Error Generalisation Results (left). 
Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table F4.3: Condition-6 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 2.02 % 1.96 % 

Normalised Peak Error  2.99 % 1.86 % 

Peak Pressure Position 
Error (deg) 

0.91 0.62 
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Test Condition-7 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 1000 rpm and a load of 30 Nm.   

 

Table F5.1: ANN Training Setup for Test Condition-7 

 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 1.88% to 1.97% RMSE. The best performing ANN was selected which 

trained in 859 seconds (0.24 hours) in 32 epochs.  
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Figure F5.1: Condition-7 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 1.07%.  
 
 
 
 
 

Figure F5.2: Condition-7 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.74%.  
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Figure F5.3: Condition-7 Training Results - Worst. Measured Cylinder 

Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 
Line). RMSE = 2.56%. 

 
 
 
  
 

 
Figure F5.4: Condition-7 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
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Table F5.2: Condition-7 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 1.88 % 1.87 % 

Normalised Peak Error  5.17 % 2.79 % 

Peak Pressure Position 
Error (deg) 

1.83 1.12 

 

 

 

Generalisation Results 

 

Figure F5.5: Condition-7 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 1.33%.  
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 Figure F5.6 Condition-7 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.15%.  
 
 
 
 
 

Figure F5.7: Condition-7 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 3.25%.  
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Figure F5.8: Condition-7 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table F5.3: Condition-7 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation  

Overall Performance 2.27 % 2.26 % 

Normalised Peak Error  5.19 % 3.07 % 

Peak Pressure Position 
Error (deg) 

2.03 1.28 
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Test Condition-8 

 
The first test condition used measured data from running the engine at steady-state 

with a speed of 1500 rpm and a load of 30 Nm.   

 

Table F6.1: ANN Training Setup for Test Condition-8 

 

 

 

 

Training Results 

 

In total 10 different ANNs were trained with the overall performance of the ANNs 

ranging from 3.48% to 3.72% RMSE. The best performing ANN was selected which 

trained in 2577 seconds (0.72 hours) in 112 epochs.  

 

 

 

 

 

 

Network 
Name 

Net_TD_BA_Test8 0 Network           
Architecture 

Time-
Delay 

0 Test Data 1500_30_01p 

_jun2010 

Network 
Training 
Algorithm 

Levenberg–
Marquardt 

 Hidden 
Layers 
Number  

2  Speed 
(rpm) / 
Load (Nm) 

1500/30 

Cost 
Function 

Means Squared 
Error 

 Neurons 
Number  

15/15  Training to 
Validation 
Ratio 

60:40 

Training Goal 1E8  Delay 
Number 

240  Crank Step 1 Deg 

Maximum 
Epoch 

1000  Transfer 
Function 
Layer 1 

Sigmoid  Number of        
Iterations 

10 

Weights         
Initialisation 

Randomised  Transfer 
Function 
Layer 2 

Linear  
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Figure F6.1: Condition-8 Training Results - Best. Measured Cylinder Pressure 
(Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed Line). 

RMSE = 2.16%.  
 
 
 
 

Figure F6.2: Condition-8 Training Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 3.16%.  
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Figure F6.3: Condition-8 Training Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 7.40%.  
 
 
 
 

 
Figure F6.4: Condition-8 Normalised Peak Error Training Results (left). 

Condition-5 Position of Peak Error Training Results (right) 
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Table F6.2: Condition-8 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Training 

 

 Training   Root-Mean-
Squared Error 

Training  Standard 
Deviation  

Overall Performance 3.18 % 2.91 % 

Normalised Peak Error  7.21 % 4.58 % 

Peak Pressure Position 
Error (deg) 

2.46 2.00 

 

 

 

Generalisation Results 

 

Figure F6.5: Condition-8 Generalisation Results - Best. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 2.79%.  
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  Figure E6.6 Condition-8 Generalisation Results - Average. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 3.59%.  
 
 
 
 

Figure E6.7: Condition-8 Generalisation Results - Worst. Measured Cylinder 
Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black Dashed 

Line). RMSE = 61.7%.  
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Figure E6.8: Condition-8 Normalised Peak Error Generalisation Results (left). 

Condition-5 Position of Peak Error Generalisation Results (right) 

 

 

 

Table F6.3: Condition-8 Root-Mean-Squared Error (RMSE) and Standard 
Deviation for the ANN Generalisation 

 

 

 

 

 

 

 

 

 

 

 
  

 
Generalisation Root-
Mean-Squared Error 

Generalisation 
Standard Deviation 

Overall Performance 4.33 % 4.19 % 

Normalised Peak Error 14.1 % 13.72 % 

Peak Pressure Position 
Error (deg) 

4.79 4.13 
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Appendix G 

 

Additional Load Varying Results  

Test Condition-2, 5 and 8 - 1500 rpm 

 
Table G1.1: Overall Results for Steady-State Testing on a Single ANN Trained 

on Constant Speed Varying Load Conditions 

 

 

 

 

 

 

 

 
 

 

. Figure G1.1: Steady-State Condition-2 - 1500 rpm and 10 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
 
 
 

 Overall 
Performance 

(RMSE) 

Normalised 
Peak Error 

Peak Pressure 
Position Error 

(deg) 

Condition-2 1.47 % 2.12 % 1.98 

Condition-5 1.44 % 3.43 % 2.62 

Condition-8 1.48 % 2.94 % 2.90 
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Figure G1.2: Steady-State Condition-5 - 1500 rpm and 20 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
 
 
 
 
 

Figure G1.3: Steady-State Condition-8 - 1500 rpm and 30 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
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Test Condition-3, 6 and 9 - 2000 rpm 

 

Table G1.2: Overall Results for Steady-State Testing on a Single ANN Trained 
on Constant Speed Varying Load Conditions. 

 

 

 

 

 

 

 

 

 

 Figure G1.4: Steady-State Condition-3 - 2000 rpm and 10 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
 

 Overall 
Performance 

(RMSE) 

Normalised 
Peak Error 

Peak Pressure 
Position Error 

(deg) 

Condition-3 1.33 % 2.08 % 1.63 

Condition-6 1.30 % 1.16 % 1.48 

Condition-9 1.36 % 2.29 % 1.51 
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Figure G1.5: Steady-State Condition-6 - 2000 rpm and 20 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
 
 
 
 

Figure G1.6: Steady-State Condition-9 - 2000 rpm and 30 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
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Additional Speed Varying Results  

Test Condition-2, 5 and 8 - 20 Nm 

 

Table G2.1: Overall Results for Steady-State Testing on a Single ANN Trained 
on Constant Speed Varying Load Conditions. 

 

 

 

 

 

 

 

 

 

Figure G2.1: Steady-State Condition-4 - 1000 rpm and 20 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 

 Overall 
Performance 

(RMSE) 

Normalised 
Peak Error 

Peak Pressure 
Position Error 

(deg) 

Condition-4 2.89 % 9.45 % 6.93 

Condition-5 2.13 % 9.09 % 3.07 

Condition-6 1.60 % 3.24 % 1.49 
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Figure G2.2: Steady-State Condition-5 - 1500 rpm and 20 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
 
 
 
 
 

Figure G2.3: Steady-State Condition-6 - 2000 rpm and 20 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 

302 304 306 308 310 312 314

0

0.5

1

1.5

2

2.5

3

3.5

x 10
6 Results - 1500/20 Set 2

C
y
lin

d
e
r 

P
re

s
s
u
re

 (
P

a
)

Crank Angle (rad)

52 54 56 58 60 62

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6 Results - 2000/20 Set 2

C
y
lin

d
e
r 

P
re

s
s
u
re

 (
P

a
)

Crank Angle (rad)



 333   

 

Test Condition-7, 8 and 9 - 2000 rpm 

 

Table G2.2: Overall Results for Steady-State Testing on a Single ANN Trained 
on Constant Speed Varying Load Conditions. 

 

 

 

 

 

 

 

 

 

 

 Figure G2.4: Steady-State Condition-7 - 1000 rpm and 30 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
 

 Overall 
Performance 

(RMSE) 

Normalised 
Peak Error 

Peak Pressure 
Position Error 

(deg) 

Condition-7 2.50 % 4.41 % 2.25 

Condition-8 1.82 % 4.39 % 2.06 

Condition-9 1.52 % 3.55 % 1.46 
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Figure G2.5: Steady-State Condition-8 - 1500 rpm and 30 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
 
 
 
 
 

Figure G2.6: Steady-State Condition-9 - 2000 rpm and 30 Nm. Measured 
Cylinder Pressure (Grey Solid Line). Reconstructed Cylinder Pressure (Black 

Dashed Line). 
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