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Summary

This thesis introduces a general framework for model-free discretisation-invariant

swaps. In the first main chapter a novel design for swap contracts is developed

where the realised leg is modified such that the fair value is independent of the

monitoring partition. An exact swap rate can then be derived from the price a

portfolio of vanilla out-of-the-money options without any discrete-monitoring or

jump errors. In the second main chapter the P&Ls on discretisation-invariant

swaps associated with the variance, skewness and kurtosis of the log return dis-

tribution are used as estimators for the corresponding higher-moment risk pre-

mia. An empirical study on the S&P 500 investigates the factors determining

these risk premia for different sampling frequencies and contract maturities. In

the third main chapter the dynamics of conventional and discretisation-invariant

variance swaps and variance risk premia are compared in an affine jump-diffusion

setting. The ideas presented in this thesis set the ground for many interesting

and practically relevant applications.
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Chapter 1

Introduction

Global financial markets are subject to continuous change and evolution as market

participants look out for new and profitable investment opportunities. In order

to improve the risk and return properties of their portfolios investors constantly

scan the economy for risk premiums and diversification potential, accessing a

wide range of asset classes and derivative instruments. Simultaneously, as the

market environment matures investors develop more sophisticated risk preference

profiles, and more powerful tools become necessary to match demand and supply

of financial assets in an effective and robust manner.

In the base model for most financial markets, returns are assumed to be nor-

mally distributed and independent over non-overlapping investment periods. Nat-

urally, neither of these assumptions holds in practice and the academic literature

1
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has brought forward and analysed a plethora of stochastic jump-diffusion mod-

els that match more closely frequently observed real world phenomena, such as

volatility clusters or the familiar volatility skew. While jump components allow

one to model non-normal short-term return distributions, non-normality in long-

term distributions can result from stochastic volatility and more complex patterns

of serial dependence.

Those models have been very useful for the pricing of a variety of financial

derivatives and also contribute to the understanding of basic market mechanisms,

for example the leverage effect.1 However, they all impose assumptions on the

underlying price process and any kind of time series analysis may be biased as

soon as the assumptions do not hold. In the literature the uncertainty about these

assumptions is referred to as model risk, and the pricing and hedging of path-

dependent derivatives is particularly affected. It appears that for the purpose of

statistical estimation a model-free approach, based only on the assumption of no

arbitrage, is more suitable.2

Sound theoretical prices for complex financial instruments help to preclude ar-

bitrage opportunities, and they are especially important during turbulent periods

when liquidity dries up and there is no reliable market price. The events lead-

ing up to the great financial crisis of 2008-9 illustrate the importance of accurate

theoretical prices when, following a turning point in the escalating demand for

collateralised debt obligations, the failure of market participants to agree on a

1The leverage effect refers to the inverse relationship between asset returns and asset volatility
in stock markets. It is a stylysed fact that negative returns trigger an increase in volatility, which
reflects the investment behavior of risk-averse market participants.

2Arbitrage is a risk-less opportunity to make profit, and in its strong form a profit is guaran-
teed. The no-arbitrage principle is fundamental to financial and economic theory, and to asset
and derivatives pricing in particular.
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fair value for these products precipitated a credit crunch. More recently it is not

so much credit derivatives as volatility derivatives related to variance swaps that

are raising concerns in the financial press.

Variance swaps were introduced over-the-counter in the 1990’s and are popular

instruments for trading variance risk premia by exchanging a floating realised

variance with a fixed swap rate, based on some notional amount. A risk-neutral

market participant can offer this premium to speculators or risk-averse investors

who hedge their exposure to realised variance. When a bank issues a variance

swap that pays realised variance, with payment settled at maturity, the rate it

charges should be determined so that it expects a small profit after hedging its

exposure to realised variance. A theoretical, fair-value variance swap rate provides

an indicative quote for the rate actually charged. However, most theoretical swap

rates rely on model assumptions that may not hold in practice, and particularly

under changing market conditions.

Swap rates have been available from broker dealers for many years and the

fair-value rates are normally within the bid-ask spread of market rates, indicating

an active market where banks may not be hedging all their exposures in order to

charge competitive rates. However, during times of financial distress market rates

can be significantly greater than their fair-values. Nowadays, variance swaps and

their futures, options, notes, funds and other derivatives are being actively traded

on exchanges. Currently, data from the Chicago Board Options Exchange (CBOE)

show that about $3-$6 bn notional is being traded daily on CBOE Volatility

Index (VIX) futures contracts alone and on stock exchanges around the world

even small investors can buy and sell over a hundred listed products linked to
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volatility futures such as exchange traded funds (ETFs) and exchange traded

notes (ETNs).3 The most popular of these is Barclay’s VXX note (iPath S&P 500

VIX Short-Term Futures ETN), with a market cap of around $1 trillion as of 31

December 2013. More recently investors have also developed interest in investment

opportunities and diversification potential linked to the higher-moments of the

return distribution. A variety of indices – such as the CBOE SKEW index – has

been developed to meet this demand. These indices are based on options prices

and represent higher-moments of the implied probability distribution.

Non-normality can be observed under the risk-neutral measure, where option

prices commonly imply a pronounced volatility smile, but also under the physical

measure, e.g. in terms of the well-studied leverage effect. In order to illustrate the

latter empirically, Table 1.1 displays the standard deviation, skewness and kurtosis

of daily, weekly and monthly log returns on S&P 500 futures over two separate 9-

year periods. In each case the weekly and monthly observed moment is compared

with the moment derived from daily returns under the i.i.d. assumption, where

the standard deviation scales with the square root of the horizon, skewness scales

with the inverse square root and kurtosis scales with the inverse of the horizon,

in accordance with the derivations for the aggregation over time of standardised

moments in the Appendix.

The observed values for standard deviation are roughly the same as those ex-

trapolated using the i.i.d. assumption; however, the observed skewness is greater

in magnitude than expected, especially during the second period which is influ-

3The VIX is an index that captures the 30-days implied volatility of the Standard & Poor’s
500 Stock Market Index (S&P 500). It is seen as an important fear barometer for the equity
markets. Futures and options written on the VIX have been traded for about a decade.
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Return (trading days) daily (1) weekly (5) monthly (20)
obs obs i.i.d. obs i.i.d.

Stdev
1996-2004 0.012 0.025 0.028 0.047 0.055
2005-2013 0.013 0.028 0.030 0.056 0.060

Skewness
1996-2004 -0.120 -0.073 -0.054 -0.053 -0.027
2005-2013 0.002 -1.275 0.001 -2.021 0.000

Kurtosis
1996-2004 5.7 4.6 1.136 3.4 0.284
2005-2013 16.7 16.8 3.334 14.1 0.834

Table 1.1: Moments of S&P 500 futures: observed vs. predicted under i.i.d.

enced by the positive autocorrelation in negative returns during the financial crisis

of 2008–9. This finding agrees with Neuberger [2012], although it is much less pro-

nounced during the earlier period. Now, heteroscedasticity is a more ubiquitous

feature of financial returns than autocorrelation and, just as autocorrelation in-

creases skewness, volatility clustering increases kurtosis. Indeed, the observed

kurtosis is much greater than expected in the i.i.d case during both periods.

For the pre-crisis time period, and looking at the option implied distribution

rather than realised returns, Carr and Wu [2003] observe a similar effect. The

volatility smile does not flatten out for long maturities, as would be expected

from the central limit theorem (CLT) under the assumption of independent re-

turns, indicating serial dependence under the risk-neutral measure. In fact, before

the crisis this effect is stronger under the risk-neutral measure than under the ob-

jective measure. Wu [2006] reconciles these observations by modeling the tails of

a distribution using what he terms the ‘exponentially dampened power law’.

Standard definitions of the realised third and fourth moment as well as their

normalised versions – realised skewness and kurtosis – are based solely on a single

underlying price or return process and disregard the presence of autocorrelation or
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any other kind of serial dependence. In the idealised case of continuous monitor-

ing, these realised characteristics only capture moments of the jump distribution.

However, under the assumption of i.i.d. period returns, the CLT implies that the

long-term distribution is approximately normal. In other words, the short-term

jump distribution is mostly irrelevant for long-term investors and serial depen-

dence becomes the predominant feature.

The above analysis clearly shows the presence of serial dependence and il-

lustrates that short-term higher-moments are not suitable for forecasting higher-

moments of long-term returns. This should also be reflected in the definition of

realised moments. Hence, a new realised kurtosis based on aggregating higher-

moment characteristics which makes feasible the accurate measurement of long-

horizon kurtosis from short-horizon returns is important. The phenomena de-

scribed above also indicate that the analysis of higher-moment risk premia, which

explain the shift between the physical and risk-neutral probability measure, is an

important and promising field of study. Notably, the joint estimation of P and

Q parameters for asset pricing models has attracted attention in recent literature

(see e.g. Bardgett et al. [2015]).

This thesis introduces a comprehensive theory for discretisation-invariant (DI)

swap contracts written on multiple assets that have exact fair-values, provided

only that the no-arbitrage assumption for forward prices holds. That is, swap

rates are model-free in a strong sense, and they do not depend on the monitoring

frequency of realised cash flows. The definitions of the realised legs take serial de-

pendence into account and link long-term risk with short-term returns on futures

and option portfolios. Our theory encompasses a wide variety of DI pay-offs, in-
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cluding those corresponding to higher-moments of the log return distribution and

bi-linear functions of vanilla options prices. Based on these new definitions, we

expect market swap rates to be closer to their theoretical values and within the

no-arbitrage range, particularly in times of financial distress.

In the three main chapters of this thesis we take complementary perspectives

on DI swaps. First, we discuss the design and pricing of swap contracts that can

be associated with the higher-moments of a log return distribution, and that can

be perfectly hedged in discrete time. Second, we conduct a model-free empiri-

cal analysis of higher-moment risk premia in the US equity market using these

contracts. Our favourable DI design results in exact fair-values for swaps and con-

sequently unbiased risk premium estimates, even when monitoring is performed

along a discrete partition. Finally, we compare conventional and DI variance

swaps in the context of affine stochastic volatility models with and without jumps

in order to illustrate the structure and composition of risk premia as well as their

relationship with latent variables. The following paragraphs provide an overview

of the focal papers, while secondary papers are reviewed in detail in the beginning

of each chapter.

The second chapter builds on recent ideas from Neuberger [2012] and Bon-

darenko [2014], who suggest an alternative definition of realised variance that

results in an exact and model-free swap rate. Neuberger [2012] further includes

option portfolios in the definition of the realised leg to define a realised third

moment. Starting from the analysis of both model-dependent and discretisation

errors that arise when pricing a conventional variance swap, we discuss a variety

of alternative DI definitions for the realised leg that are related to higher-moments
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of the log return distribution of a single asset and allow for exact pricing via the

replication theorem of Carr and Madan [2001]. Dynamic trading strategies in a

small number of vanilla-style contingent claims, such as the volatility, cubic and

quartic contracts discussed in Bakshi et al. [2003], allow to hedge DI swaps in

a model-free manner and make higher-moment risk accessible to investors. Our

framework also applies to a multivariate setting where the realised leg incorpo-

rates the prices of a large number of tradable assets, facilitating the design of

covariance swaps.

The third chapter follows the empirical studies by Carr and Wu [2009] and

Kozhan et al. [2013], who analyse the variance risk premium in the US equity

market, using the profit and loss (P&L) on a variance swap as an estimator for

the premium. While Carr and Wu [2009] calculate the floating leg using a model-

dependent definition of realised variance, the study of Kozhan et al. [2013] applies

the DI definition from Neuberger [2012] in order to avoid the propagation of a

pricing bias into the estimator. Kozhan et al. [2013] also analyse the skewness risk

premium, using the P&L on a swap based on the DI third-moment characteristic

from Neuberger [2012] as an estimator, and find that it is highly correlated with

the variance risk premium.

According to their results, it is not possible to make profits on a skewness

swap once the variance risk is hedged away. However, this conclusion relies on the

specific choice of the third moment characteristic. When we apply our framework

to a large sample of S&P 500 options prices, we find that DI higher-moment

swaps exhibit relatively low correlation with the negative variance risk premium,

particularly for higher monitoring frequencies. In contrast with previous research
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by Kozhan et al. [2013] our empirical results suggest that significant new risk

premia become tradable via the use of DI third and fourth moment swaps as

well as frequency swaps that exchange two floating legs at different monitoring

frequencies. They also point towards interesting new investment opportunities

and diversification potential associated with higher-moments. We conclude our

empirical analysis by relating higher-moment risk premia to the standard risk

factors introduced by Fama and French [1993] and Carhart [1997] and discover

interesting new patterns.

The fourth chapter provides derivations for explicit swap dynamics in affine

stochastic volatility models. Specifically, we compare the fair-value price process

of a conventional variance swap with Neuberger’s variance swap as well as our DI

variance swap in the Heston [1993] model and study the impact of jumps in the

price and variance process under the stochastic volatility with contemporaneous

jumps (SVCJ) model proposed by Duffie et al. [2000]. The chapter also discusses

the market price of risk as well as the change of measure from risk-neutral to

physical. These explicit solutions may be helpful for the specification analysis

and estimation of affine asset pricing models, as e.g. performed in Egloff et al.

[2010] and Bardgett et al. [2015].

Chapter five concludes by summarising the mains results and providing an

overview of topics for further research. The Appendix contains a range of tools

that are used throughout this thesis: Itô’s formula for jump-diffusion processes,

Girsanov’s change of measure for one and more dimensions, the replication the-

orem by Carr and Madan [2001] and finally a review of the aggregation of stan-

dardised and non-standardised moments of a distribution over time.
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Chapter 2

Discretisation-Invariant Swaps

Demand for volatility derivatives as a diversifier, a hedge or purely for speculation

has increased very significantly during the last few years. However, there is no

exact theoretical value for the underlying (the variance swap rate) and for this

reason market rates can deviate significantly beyond the approximation used for

the no-arbitrage range. For instance, during the turbulent year surrounding the

Lehman Brothers collapse in September 2008, market rates for variance swaps

written on the Standard & Poor’s 500 Stock Market Index (S&P 500) were very

often 5% or more above the CBOE Volatility Index (VIX) formula which is com-

monly used as an approximation for their theoretical value.

In the first main part of this thesis, we illustrate that most pricing problems

are already rooted in the definition of the realised leg of conventional variance

11
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swaps. We examine the variety of error terms that common practice is facing,

discuss existing approaches to modify realised variance in order to improve the

pricing accuracy and then present a fundamental condition for swaps that assures

perfect replicability in discrete time. We solve this condition for arbitrary higher-

moments, providing a state-of-the-art framework for trading higher-moment swaps

and measuring higher-moment risk and the associated risk premia. Our frame-

work facilitates the design of swap contracts where the definition of the floating

leg encompasses information about serial dependence and hence allows to link

short-term returns to moments of the long-term return distribution. Swap rates

are model-free and can be derived exactly from vanilla out-of-the-money (OTM)

option prices.

For this purpose we present an exhaustive literature review on the pricing of

variance and higher-moment swaps, with particular emphasis on the recent work

of Anthony Neuberger. We then generalise Neuberger’s aggregation property

(AP) and introduce the notion of a discretisation-invariant (DI) swap. We also

provide dynamic trading strategies that can be used to hedge DI swaps perfectly

in discrete time.

2.1 Literature Review

The terms and conditions of a conventional variance swap define the floating leg,

realised variance, as the average squared daily log-return on some underlying,

commonly an equity index, over the life of the swap. With this definition of re-

alised variance the conventional fair-value variance swap rate calculation proceeds

under the assumptions: (i) the forward price of the underlying follows a pure mar-
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tingale diffusion under the risk-neutral measure; (ii) the floating leg is monitored

continuously; and (iii) vanilla options on the underlying with the same maturity

as the swap are traded at a continuum of strikes. As Demeterfi et al. [1999] show,

the fair-value swap rate – which under assumption (ii) becomes the expected

quadratic variation of the log-price – can then be derived from the market prices

of these vanilla options.1 However, in practice none of these assumptions hold

and there is a large literature analysing the biases caused by making these false

assumptions.

2.1.1 Pricing Conventional Variance Swaps

In an arbitrage-free market, as introduced by Harrison and Kreps [1979], the bank

issuing a variance swap to a representative investor will compute this expected

pay-off under a risk-neutral measure. According to Breeden and Litzenberger

[1978] the risk-neutral measure for a representative investor corresponds to the

market implied measure in a complete market. In this case a unique fair value for

the variance swap rate can be derived as the expectation of realised variance under

the market implied measure. Yet, markets are usually incomplete in the presence

of jumps, when assumption (i) is violated. An underlying price process can still

be consistent, which is by definition the case if the model prices of all European

options match observable market quotes, although the prices of Exotic derivatives

may differ. Britten-Jones and Neuberger [2000] derive a simple condition for a

continuous process to be consistent and show that all consistent price processes

1An alternative derivation as well as further details on the implementation can be found in
Jiang and Tian [2005], who then promote the ‘model-free implied volatility’ as a direct test of
market efficiency.
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imply the same, model-free volatility.2 Unfortunately, expected realised variance

as defined in a conventional variance swap is model-dependent.

Carr and Wu [2009] discuss the idealised case where assumption (ii) holds but

not assumption (i), i.e. continuous monitoring is possible but the underlying price

process need not be continuous. Under the assumption of a generic decomposition

of the underlying process into a pure jump and a pure geometric diffusion compo-

nent they apply the replication theorem of Carr and Madan [2001] to find that the

fair-value swap rate is a weighted integral over a continuum of European OTM

option prices, corrected for a model-dependent ‘jump error’ term. The replica-

tion theorem allows for a general European style claim on some underlying to be

represented as the integral over a continuum of put or call options. This theorem

is closely related to the spanning approach to derivative pricing by Bakshi and

Madan [2000], who state that the characteristic function of a martingale price

process and option prices for a continuum of strike prices are interchangeable rep-

resentations of the claims they span. Accordingly, since any European claim can

be expressed in terms of the characteristic function, it is also spanned by put and

call options.

Carr and Lee [2009] prove that relaxing assumption (ii) leads to a ‘discretisa-

tion bias’ that is related to the third moment of returns so it can be very large

during excessively volatile periods; Jarrow et al. [2013] investigate the conver-

gence of the discretely-monitored swap rate to its continuously-monitored coun-

terpart and derive discretisation error bounds that get tighter as the monitoring

2The theory of consistent processes extends the idea of local volatility models where the
instantaneous volatility is only a function of time and the current underlying price – introduced
simultaneously by Dupire [1994] and Derman and Kani [1994] and developed further by Gatheral
[2006] – to the more general case where volatility can be driven by idiosyncratic risk factors.
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frequency increases; Bernard et al. [2014] generalise these results and provide

conditions for determining the sign of the discretisation bias; and Hobson and

Klimmek [2012] derive model-free discretisation error bounds and super- and sub-

replication strategies for hedging variance swaps. Under a variety of stochastic

volatility diffusion and jump models, Broadie and Jain [2008b] derive fair-value

swap rates for discretely monitored variance swaps, claiming that for most real-

istic contract specifications the discretisation error is smaller than the error due

to violation of assumption (i). Bernard and Cui [2014] extend this analysis to

include a much wider variety of processes by considering the asymptotic expan-

sion of the discretisation bias. Rompolis and Tzavalis [2013] derive bounds for the

so-called ‘jump error’ and demonstrate, via simulations and an empirical study,

that price jumps induce a systematic negative bias which is particularly apparent

when there are large downward jumps. Thus, when the term of the swap includes

a particularly turbulent period the jump bias and the discretisation bias work in

the same direction to substantially under-estimate the fair-value swap rate.

The uncertainty about discretely-monitored realised variance is discussed in

Barndorff-Nielsen and Shephard [2002] for the general case when the underlying

process follows a semimartingale. The authors derive rates of convergence for

continuous monitoring as well as asymptotic distributions for a general class of

stochastic volatility models. They further remark that realised variance is quite an

accurate estimator when volatility is low while the measurement error can become

very large during periods of high volatility (see p.472). Hence, they consider it

crucial to control this measurement error.

Also, in practice the integral over a continuum of European OTM options,
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which is well defined according to (iii), must be estimated using the prices of

vanilla options that are actually traded. So there is a third bias arising from

the numerical computation of the fair-value rate, which is typically based on a

restricted range of quoted strikes because deep-OTM (and deep-in-the-money)

options lack sufficient liquidity for reliable prices. In fact, beyond a certain mon-

eyness level there are no price quotes at all and the only ways forward are extrap-

olation – which constitutes an implicit model assumption – or truncation. Jiang

and Tian [2005] address the problems attendant to assumption (iii) and derive

upper bounds for the ‘truncation error’. Also based on a finite number of traded

strikes, Davis et al. [2014] derive model-free arbitrage bounds for continuously-

monitored variance swap rates and claim that market rates are surprisingly close

to the lower bound.

In a recent working paper, Le and Yang [2015] analyse the impact of truncation

on replication portfolios for the implied higher-moments introduced by Bakshi

et al. [2003]. The authors state that the truncation error increases with the

order of the estimated moment, i.e. the impact of truncation is stronger for

skewness than it is for variance and it is even stronger for kurtosis. They detect

weaknesses in the linear extrapolation approach taken by Jiang and Tian [2005]

and the domain symmetrisation approach by Dennis and Mayhew [2002] and

argue that the implied volatility, the truncation level (i.e. the range of available

strikes) and the strike domain asymmetry are important factors that influence the

estimation procedure. Le and Yang [2015] show how this information can be used

to successfully stabilise moment estimators.

Alexander and Leontsinis [2011] further show that variance swap rates are
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subject to systematic biases which depend on the model assumptions underlying

the theoretical fair-value formula, the representation chosen for implementing this

formula as well as the numerical integration technique. While jump and discreti-

sation biases are usually negative, the error introduced by the common use of

Riemann sums is positive. Consequently, it becomes difficult to disentangle the

contribution of potentially erroneous model assumptions from biases that relate

to technical details of the implementation. The authors develop an analytical in-

tegration technique, based on spline interpolation, which alleviates the drawbacks

of the standard approach significantly. Indeed, there is a whole plethora of meth-

ods for generating a fine grid of European option prices from the finite sample

of traded options available for the purpose of numerical integration across the

strike dimension. An easy-to-implement spline-smoothing algorithm is described

by Fengler [2009], who also demonstrates how the estimation method precludes

arbitrage opportunities across both the strike and time-to-maturity dimension.

Excluding calendar arbitrage is particularly important for the estimation of risk

premia, since the effects of both phenonema accrue over time and may therefore

distort one another.

Based on a no-arbitrage argument Broadie and Jain [2008a] develop dynamic

hedging strategies that allow to replicate other volatility derivatives using vari-

ance swaps and a discrete set of European options, where the optimal number of

hedging instruments is determined numerically. Sensitivities as well as replication

errors are provided. More recently, Keller-Ressel and Muhle-Karbe [2013] present

exact and approximate methods for pricing options on both discretely and con-

tinuously monitored realised variance in different Lévy models, laying the ground

for similar approaches using affine models.
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The errors associated with assumptions (i), (ii) and (iii) have distorted market

prices and posed challenging questions to academics for many years. However, it

has now been recognised that the model dependence of variance swaps is essen-

tially rooted in the conventional definition of the realised leg as the sum of squared

log-returns. In particular, it turns out that the straight-forward generalisation to

higher-moment swaps – using higher powers of the log-return for the realised leg,

see e.g. Schoutens [2005] – amplifies the effects of model-dependence, making such

products unattractive for investors aware of model risk.

2.1.2 Modifying the Floating Leg

More recently, alternative definitions for the realised variance have been explored

which result in swap contracts that are easier to price and hedge than standard

variance swaps. Martin [2013] advocates the use of a sum of squared ‘simple’

returns, rather than log-returns, arguing that with this modification both jump

and discretisation biases are minimised. His results are explained and extended by

Bondarenko [2014]. Likewise, the gamma swaps described by Lee [2010a] weight

the realised variance in such a way that replication and valuation are relatively

straightforward under the continuous semimartingale assumption. Bondarenko

[2014] and Lee [2010b] derive generalised variance swap pay-offs that are also

based on weighting functions.

The concept of swap contracts that are based on a generalisation of quadratic

variation has recently been presented by Carr and Lee [2013]. Their definition

of a share-weighted G-variation swap encompasses conventional variance swaps

and gamma swaps (see Lee [2010a]) as special cases, which can be priced by
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multiples of a log and an entropy contract, respectively, under very general model

assumptions. Since the weighting function of a gamma swap is proportional to the

asset price, it puts more emphasis on upside- than on downside-variance. Choe

and Lee [2014] define a third and fourth realised moment based on the quadratic

(co-)variation of the log-price and squared log price processes. However, neither

do these processes represent investible assets, nor do the authors justify their

assumption that the log-price process has no drift. Also, the authors illustrate

(see p.8) that the risk-neutral expectation of either of these realised legs is subject

to a model-dependent jump error term of third order.

Based on the very general definition of divergence by Bregman [1967], Schnei-

der and Trojani [2015a] propose a comprehensive, model-free framework for di-

vergence swaps which can be statically hedged by means of synthetic options

portfolios, and independent from a specific trading frequency. The authors also

promote the notion of ‘divergence indices’ as a benchmark for testing asset pricing

models. Schneider and Trojani [2015b] build on these ideas when they propose

divergence swaps as a means of trading risk premia associated with investors’ fear

in an incomplete market setting. A common feature in all these approaches is that

they only re-define the realised leg of a swap based on changes in the underlying,

ignoring the possibility to use implied characteristics from option prices to define

higher realised moments.

In his recent path-breaking research Neuberger [2012] re-defines the realised

variance and introduces a new skewness characteristic in such a way that exact,

model-free fair-value variance and skewness swap rates can be calculated. In

addition, the same rate applies whether the floating leg is based on intra-day,
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daily, weekly or monthly returns – in fact, the monitoring does not even have to

be regular. Neuberger introduces the AP as a fundamental condition which must

be satisfied by the characteristic used to calculate the floating leg. Following the

intuition that long-term skewness is mainly caused by the correlation between

changes in the underlying and changes in (implied) variance, Neuberger takes the

original step of including implied characteristics into the definition of a realised

third moment characteristic which satisfies the AP and therefore has a fair-value

swap rate that can be priced and hedged exactly, independently of its monitoring

frequency, under the minimal assumption of no arbitrage. In this context the

log contract, originally introduced by Neuberger [1994] as a model-free volatility

trading instrument, gains new importance as an implied characteristic.

A step into a similar direction is taken by Torricelli [2013] who, based on

Fourier techniques in a stochastic volatility setting, shows how joint claims on

the underlying and its realised variance can be priced, providing a general partial

differential equation that the price process of such a derivative must satisfy. Ex-

ample claims are target volatility options, double digital European options and

volatility-capped or -struck options.

The motivation for Neuberger [2012] is to propose a definition of the realised

third moment that is computed from high-frequency returns and vanilla option

prices which provides an unbiased estimate of the true third moment of long-

horizon returns. He demonstrates that, far from diminishing with horizon as

would be the case if returns are independent and identically distributed (i.i.d.),

“....skewness actually increases with horizon up to one year, and its magnitude

is economically important.” We reproduce this finding in the introduction to this
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thesis and extend the story to comprise a similar argument for the fourth stan-

dardised moment. Neuberger concludes his work on realised skewness by stating

that “[...] it would also be nice to be able to extend the analysis to higher-order

moments. This would not be straightforward; [...] the set of functions that possess

the aggregation property is quite limited; the way forward here may be to include

other traded claims, in addition to those on the variance of the distribution.”

2.2 Theoretical Results

Pursuing these ideas, we here extend Neuberger’s theoretical results to fourth-

and higher-order moments. Indeed, we provide a general theory for DI swaps,

using the term to refer to any swap of some realised characteristic for a corre-

sponding implied characteristic which has a fair value that does not depend on

the monitoring frequency. We develop a holistic framework, based only on the

assumption that the forward price of the underlying is a martingale, which allows

the theoretical fair-value rate of a DI swap for any moment of the log-return (or

price) distribution to be derived exactly from vanilla option prices. To this end

we introduce a canonical set of option-implied ‘fundamental contracts’ of similar

ilk to the log contract introduced by Neuberger [1994] and the higher-moment

contracts in Bakshi et al. [2003]. Using these contracts DI swaps can also be

hedged perfectly under any partition for monitoring and rebalancing. Our theory

extends to DI swaps which are not even linked to moments and with fair values

that are simple bi-linear functions of traded vanilla option prices (without the

need for integration), swaps based on forward moment characteristics and swaps

trading on systematic differences in risk premia.
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2.2.1 Errors in Variance Swap Rates

The conventional daily, realised variance may be written:

RV :=
T∑
t=1

(xt − xt−1)2 , (2.1)

where xt := lnFt and Ft denotes the forward price of the underlying at time

t. In practice, the floating leg of a variance swap is set equal to the average

realised variance during the lifespan of the swap rather than the total variance as

in (2.1). However, including this level of detail would only add an unnecessary

level of complexity to our analysis. As demonstrated in the preceding literature

review, this definition of realised variance entails errors associated with the model

assumptions for the underlying price process, the discrete monitoring and the

numerical integration over option strikes.

For the idealised case where continuous monitoring is possible and (2.1) can

be replaced by the quadratic variation 〈x〉
T
, Carr and Wu [2009] assume a generic

decomposition of the underlying process into a pure jump and a pure geometric

diffusion component to then apply the replication theorem of Carr and Madan

[2001] and prove that,

EQ [〈x〉
T
] = 2

ˆ
R+

k−2q(k)dk + ι,

where q(k) denotes the price of a vanilla OTM option with strike k and maturity

T . When k ≤ F0 the option is a put and when k > F0 the option is a call.

This choice of separation strike is standard in the variance swap literature, e.g. in
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Bakshi et al. [2003]. When the underlying price follows a pure diffusion the ‘jump

error’, ι, is zero. The operator EQ denotes the risk-neutral expectation.

An important source of error in the theoretical fair-value swap rate stems from

the fact that the realised leg of the swap is monitored only at discrete points in

time. This ‘discretisation error’ may be written

ε := EQ [RV− 〈x〉
T
] . (2.2)

Both the discretisation and jump errors affect the theoretical price of the fixed

leg. For instance, with the realised variance (2.1) and the generic jump-diffusion

setting of Carr and Wu [2009] the fair-value variance swap rate may be written

EQ [RV] = 2

ˆ
R+

k−2q(k)dk + ι+ ε. (2.3)

By ignoring these errors the risk-neutral expectation of the pay-off becomes ι+ ε

rather than zero and therefore, under the standard variance swap pricing formula,

the estimator for the variance risk premium (VRP) is biased.

In addition to this model-dependent bias, the way in which the Chicago Board

Options Exchange [2009] and other exchanges implement the integral in (2.3) is

subject to an approximation error due to the numerical integration over actually

traded strikes:

δ := 2

ˆ
R+

k−2q(k)dk − 2
∑
i

k−2
i q (ki) ∆ki, (2.4)

where ki, i = 0, . . . , n denote the traded strikes for maturity T and ∆ki :=

(ki+1 + ki−1) /2 for i = 1, . . . , n−1 as well as ∆k0 := k1−k0 and ∆kn := kn−kn−1.



24 CHAPTER 2. DISCRETISATION-INVARIANT SWAPS

We have

EQ [RV] = 2
∑
i

k−2
i q (ki) ∆ki + ι+ ε+ δ. (2.5)

The integration error δ stems from two practical restrictions. Firstly, and most

importantly, deep-OTM options lack sufficient liquidity for reliable prices (in other

words k0 >> 0 and kn << ∞) so truncation or extrapolation of the integral be-

come necessary, the latter making further model assumptions necessary. Secondly,

there is only a small number of strikes available within the traded range. This

problem is often tackled by using linear or cubic spline interpolation over strikes.

2.2.2 The Aggregation Property

We consider only one maturity date, T , but various partitions of the interval

Π := [0, T ], e.g. the ‘daily’ partition Π
D

:= {0, 1, . . . , T}. The increments along

a partition are denoted using a ‘carat’. We use EQt [.] := EQ[.|Ft] to denote

the expectation conditional on a filtration Ft at time t, under the risk-neutral

measure and write EQ[.] := EQ
0

[.]. Univariate martingale processes are denoted

in upper-case and non-martingales in lower-case: e.g. s := {st}t∈Π denotes the

price process underlying the variance swap and F := {Ft}t∈Π denotes the fair-

value price process of a forward contract on s, i.e. Ft := E
Q
t [s

T
]. As before

x := {xt}t∈Π denotes the log forward price process, i.e. xt := lnFt.

In the following we relate realised characteristics to an n-dimensional stochastic

process z := {zt}t∈Π ∈ Rn. Given some function φ : Rn → R, the ‘realised φ-

characteristic’ of z w.r.t. a partition Π
N

= {ti}i=0,...,N over the swap’s lifespan Π
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is defined as ∑
Π
N

φ (ẑi) :=
N∑
i=1

φ
(
zti − zti−1

)
. (2.6)

Let {Π
N
}N=1,2,... denote a sequence of partitions such that 0 = t0 ≤ t1 ≤ . . . ≤

tN = T . If maxi∈{1,...,N} [ti − ti−1] → 0 as N → ∞ we write written Π
N
→ Π. If

it exists we define the ‘φ-variation’ of z as the continuously monitored limit of the

realised characteristic, i.e.

〈z〉φ
T

:= lim
Π
N
→Π

∑
Π
N

φ (ẑi) . (2.7)

In the following we only consider characteristics φ with φ(0) = 0, so the limit

(2.7) can be finite. The φ-variation is a theoretical construct that, if it exists,

can be used to derive a fair-value swap rate by taking its expected value based on

some assumed process for the underlying. This is the approach taken by Jarrow

et al. [2013] and several other papers that analyse the discrete monitoring error

for variance swaps.

But we do not need to assume that the φ-variation exists because it does

not preclude the definition of a ‘φ-swap’ as a financial contract that exchanges a

realised φ-characteristic (2.6) with a fixed value, called the ‘φ-swap rate’. As long

as the φ-variation exists and is finite the discrete monitoring error for a φ-swap

under the partition Π
N

may be written

ε
N

(φ, z) := EQ

∑
Π
N

φ (ẑi)− 〈z〉φT

 . (2.8)

For instance, with z := x and φ(x̂) := x̂2 the definition (2.7) corresponds to the
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quadratic variation of the log-price and the discrete monitoring error is given by

Equation (2.2).

Our focus is on those combinations (φ, z) for which the swap satisfies

EQ

∑
Π
N

φ (ẑi)

 = EQ
[
〈z〉φ

T

]
, (2.9)

for all partitions Π
N

. If (2.9) holds ∀ Π
N

then it holds for the trivial partition

Π1 = [0, T ], for which the above becomes: EQ [φ (z
T
− z0)] = EQ

[
〈z〉φ

T

]
. But

φ (z
T
− z0) = φ

(∑
Π
N

ẑi

)
hence (2.9) implies:

EQ

∑
Π
N

φ (ẑi)

 = EQ

φ
∑

Π
N

ẑi

 , (2.10)

for all Π
N

. The right hand side of (2.10) may also be written EQ [φ (zT − z0)] .

The lack of path-dependence in this ‘implied characteristic’ shows that that the

jump error ι must also be zero. Thus, when the discrete monitoring error is zero

under all partitions then, even if investors differ in their views about jump risk in

an incomplete market, they would still agree on the fair-value φ-swap rate.

Neuberger [2012] calls (2.10) the aggregation property (AP).3 The AP does

not hold for (φ, x) when φ (x̂) := x̂2 is the realised characteristic for a conven-

tional variance swap, but Neuberger finds two alternative generalised variance

3Another variation of Neuberger’s property, namely

E
Q

[
N∑
i=1

φ̃
(
Fti , Fti−1

)]
= E

Q
[
φ̃ (F

T
, F

0
)
]
,

is discussed in Bondarenko [2014]. This property is less general than ours in that only one
dimension is considered, but more general in that the function need not be defined on increments
only, i.e. φ̃

(
Fti , Fti−1

)
6= φ

(
Fti − Fti−1

)
necessarily.
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characteristics: The log characteristic

λ (x̂) := 2
(
ex̂ − 1− x̂

)
(2.11)

for which the AP holds when x is the log of any martingale; and the entropy

characteristic

η (x̂) := 2
(
x̂ex̂ − ex̂ + 1

)
(2.12)

which satisfies the AP under the additional assumption of independent increments.

Using Taylor expansion about the origin, one can see that both λ and η may be

associated with the second moment of the distribution of x̂, because they satisfy

limx̂→0 ψ (x̂) /x̂2 = 1 for ψ ≡ λ and ψ ≡ η. Then vψt := vλt = E
Q
t [λ (x

T
− xt)]

and vψt := vηt = E
Q
t [η (x

T
− xt)], called the log and entropy variance processes

because they are closely related to the log contract, which pays x
T
, and the entropy

contract, which pays s
T
x
T

at maturity, respectively.

Neuberger [2012] finds more characteristics by including the conditional vari-

ance process vt or other conditional processes vψt in z. He first examines the

two-dimensional stochastic process z := (F, v)′ with v := {vt}t∈Π being the con-

ditional variance process

vt := EQt
[
(F

T
− Ft)2] ,

and proves that the set A of all functions φ which satisfy (2.10) for z is given by

A :=
{

(α, γ) ẑ + ΩF̂ 2 + h
(
F̂ 3 + 3F̂ v̂

)}
, (2.13)
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for α, γ,Ω, h ∈ R. He calls this the arithmetic world of price changes and then

turns towards what he calls the geometric world of log-returns. There we have

z :=
(
x, vψ

)′
with vψ :=

{
vψt

}
t∈Π

being a generalised conditional variance process

of the form

vψt := EQt [ψ (x
T
− xt)] ,

which must satisfy the condition limx→0 ψ(x)/x2 = 1 in order for vψ to be associ-

ated with (implied) variance. The set G of all functions which satisfy (2.10) for

this z is given by

G :=
{
γ ′ẑ + β

(
ex̂ − 1

)
+ Ω

(
2x̂− v̂ψ

)2
+ h

(
2x̂+ v̂ψ

)
ex̂
}
, (2.14)

for β,Ω, h ∈ R and γ ∈ R2, subject to the following constraints:

if Ω 6= 0, h = 0 and ψ = λ as defined in (2.11),

if h 6= 0, Ω = 0 and ψ = η as defined in (2.12),

if Ω = h = 0, ψ can be any generalised variance.

(2.15)

The log characteristic corresponds to the parameterisation γ1 = −β = −2 and

γ2 = Ω = h = 0 of G. Since the log characteristic is an AP-characteristic w.r.t.

the log of any martingale, x, one can change the definition of the floating leg of a

variance swap from (2.1) to
∑

Π
D
λ (x̂t), and the result will be a log variance swap

whose fair-value swap rate can be derived from the replication theorem of Carr
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and Madan [2001] without any discrete monitoring error or jump error terms:4

EQ

λ
∑

Π
D

x̂t

 = 2

ˆ
R+

k−2q(k)dk.

Within the set G of pay-off functions Neuberger further identifies the character-

istic

3v̂ψ
(
ex̂ − 1

)
+ τ (x̂) ,

with τ (x̂) := 6
(
x̂ex̂ − 2ex̂ + x̂+ 2

)
, which corresponds to the parameterisation

γ1 = 6, β = −12, γ2 = −3, Ω = 0 and h = 3, and argues that it approximates

the third moment of log returns since limx̂→0 τ (x̂) /x̂3 = 1. However, the first

term does not vanish under expectation for partial increments even if F follows

a martingale. In fact it measures the covariance between returns and changes in

implied variance. For the fair-value swap rate we have

EQ
[
3
(
vψ
T
− vψ

0

) (
exT−x0 − 1

)
+ τ (x

T
− x0)

]
= E [τ (x

T
− x0)] ,

which is dominated by the higher-order terms of τ for sufficiently large x
T
− x0 .

Therefore the association of either the floating or the fixed leg of this swap with

the third moment is questionable.

The subsequent empirical study by Kozhan et al. [2013] shows that the risk

premium associated with this swap is strongly correlated with the VRP. The

4See Neuberger [2012], p.7: “If the measure is a pricing measure, it says that the fair price
of a one-month variance swap computed daily (a swap that pays the realised daily variance over

a month) is the same as the price of a contingent claim that pays (S
T
− S0)

2
. Indeed, because

the relationship holds under any pricing measure (because the process is a martingale under
any pricing measure), it also implies that a variance swap can be perfectly replicated if the
contingent claim exists (or can be synthesised from other contingent claims) and the underlying
asset is traded.”
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flexibility to define a great variety of swaps with potentially diverse risk premia

motivates our more general class of (φ, z) for which (2.10) holds, and from hence-

forth we refer to (2.10) as the AP.

2.2.3 Discretisation Invariance

Consider a multivariate stochastic process z ∈ Rn which contains only determin-

istic functions of the forward prices F := {Ft}t∈Π ∈ Rd of d tradable assets, or

derivatives on these assets, in an arbitrage-free market. For instance, the pro-

cess z may contain forward prices and/or the logs of these prices. We make the

minimal no-arbitrage assumption only to ensure that the forward prices follow a

multivariate Q-martingale. We define a DI swap to be any φ-swap on z for which

the AP (2.10) holds. Two trivial DI swaps are: (a) if φ is linear, say φ(ẑ) = α′ẑ

for some α ∈ Rn, then (2.10) holds for any process z because
∑

Π
N

ẑi = z
T
− z0 ;

(b) if z contains only constant processes then ẑi = 0 ∀i ∈ {1, . . . , N}, so (2.10)

holds for any function with φ(0) = 0. Note that (2.9) also holds in both cases: in

(a) because 〈z〉φ
T

= z
T
− z0 and in case (b) because 〈z〉φ

T
= 0, provided φ(0) = 0.

In what follows we only consider characteristics φ ∈ C2 (and for which φ(0) =

0). Let ∆ ∈ Rn×d and Γ ∈ Rn×d×d denote the first and second partial derivatives

of z w.r.t. F and denote by J (ẑ) ∈ Rn the Jacobian vector and H (ẑ) ∈ Rn×n the

Hessian matrix of first and second partial derivatives of φ w.r.t. ẑ.

Theorem 1: Equivalence of the Aggregation Property

If (φ, z) is such that either the AP (2.10) holds, or the φ-variation of z exists and

(2.9) holds, then the following second-order system of partial differential equations
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holds:

[J (ẑ)− J (0)]′ Γ + ∆′ [H (ẑ)−H (0)] ∆ = 0. (2.16)

Further, when F follows a diffusion with finite φ-variation then (2.9), (2.10) and

(2.16) are equivalent.

Proof: Let the forward price process F follow the Q-dynamics dFt = σtdWt

where σ = {σt}t∈Π ∈ Rd×d and W = {Wt}t∈Π ∈ Rd is a multivariate Wiener

process with T−1〈W〉t = I, the identity matrix. Then d〈F〉t = σtσ
′
tdt is the

quadratic covariation process of F. 5 Let ∆ := ∇′
F
z ∈ Rn×d and Γ := ∇′′

F
∆ ∈

Rn×d×d denote the first and second partial derivatives of z w.r.t. F where ∇
F

:=(
∂
∂F1

, . . . , ∂
∂Fd

)′
. Then, applying Itô’s Lemma and the cyclic property of the trace

operator, we have

dzt = ∆tdFt + 1
2
tr (Γtd 〈F〉t) , (2.17)

and the quadratic covariation process of z follows the dynamics

d〈z〉t = ∆tσtσ
′
t∆
′
tdt. (2.18)

Since we want the discrete monitoring error to be zero for all possible forward

price processes, it must hold in particular for any specific martingale. We can

therefore derive a necessary condition for the functions spanning F by starting

from the assumptions that (2.9) holds w.r.t. (φ, z) and that z follows the dynamics

specified in (2.17).

5The quadratic covariation is a straightforward generalisation of the quadratic variation for
multivariate processes and is defined as 〈z〉

T
:= limΠ

N
→Π

∑
Π

N
ẑiẑ
′
i =
´
Π
dztdz

′
t. Note that

the quadratic covariation 〈z〉 is a matrix while the φ-variation 〈z〉φ is a scalar.
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Denote the Jacobian vector of first partial derivatives of φ by J (ẑ) := ∇zφ (ẑ) ∈

Rn and the Hessian matrix of second partial derivatives of φ by H (ẑ) := ∇′
z
J (ẑ) ∈

Rn×n where ∇z :=
(

∂
∂ẑ1
, . . . , ∂

∂ẑn

)′
. Then Itô’s Lemma yields

φ (z
T
− z0) =

ˆ
Π

J′ (zt − z0) dzt + 1
2
tr

ˆ
Π

H (zt − z0) d〈z〉t. (2.19)

Similarly,

∑
Π
N

φ (ẑi) =
N∑
i=1

{ˆ ti

ti−1

J′
(
zt − zti−1

)
dzt + 1

2
tr

ˆ ti

ti−1

H
(
zt − zti−1

)
d〈z〉t

}
=

ˆ
Π

J′
(
zt − zm(t)

)
dzt + 1

2
tr

ˆ
Π

H
(
zt − zm(t)

)
d〈z〉t, (2.20)

where m(t) := max{ti ∈ Π
N
|ti ≤ t}. Taking the limit as Π

N
→ Π yields the

φ-variation

〈z〉φ
T

=

ˆ
Π

J′dzt + 1
2
tr

ˆ
Π

Hd〈z〉t, (2.21)

where J := J (0) and H := H (0). With (2.19) and (2.21), the condition (2.9) is

equivalent to

EQ
[ˆ

Π

[J (zt − z0)− J]′ dzt + 1
2
tr

ˆ
Π

[H (zt − z0)−H] d〈z〉t
]

= 0. (2.22)

Substituting (2.17) and (2.18) in (2.22), and using E [dFt] = 0 yields that (2.9) is

equivalent to

trEQ
[ˆ

Π

{
[J (zt − z0)− J]′ Γt + ∆′t [H (zt − z0)−H] ∆t

}
σtσ

′
tdt

]
= 0. (2.23)
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Now consider the spectral decomposition

[J (zt − z0)− J]′ Γt + ∆′t [H (zt − z0)−H] ∆t =: EtΛtE
′
t, (2.24)

where Λt = diag {λ1t, . . . , λdt} is a diagonal matrix of eigenvalues and Et is an

orthogonal matrix of eigenvectors. In order to derive a necessary condition for

(2.9) we select the particular volatility process:

σt := exp
{

1
2
ξEtΛtE

′
t

}
,

where ξ ∈ R is an arbitrary constant. Because exp {EΛE−1} = E exp {Λ}E−1

for Λ,E ∈ Rd×d we have

σtσ
′
t = Et exp {ξΛt}E′t. (2.25)

Now inserting (2.24) and (2.25) into (2.23) and differentiating w.r.t. T , then using

the cyclic property of the trace yields

EQ [tr (Λt exp {ξΛt})] = 0.

Differentiating once w.r.t. ξ and evaluating the equation at ξ = 0 yields the

condition

EQ
[
tr
(
Λ2
t

)]
=

d∑
i=1

EQ
[(
λit
)2
]

= 0,

which implies that all eigenvalues in Λt must be equal to zero. Hence we know

that both sides in (2.24) are zero and, given that this must hold for all Ft and z0,
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we can write

[J (ẑ)− J]′ Γ + ∆′ [H (ẑ)−H] ∆ = 0, (2.26)

where F and ẑ are independent variables. We have derived this d × d system

of partial differential equations based on the assumption that F follows a par-

ticular martingale diffusion, so it represents a necessary condition for the more

general case where F can be any martingale diffusion. However, since (2.26) is

also sufficient for (2.23) to hold, the two conditions are equivalent.6

For given z the system in Theorem 1 may be solved numerically to yield the

characteristics that define a DI swap on z. However, in order to define realised

characteristics that can be monitored in practice we are only interested in analytic

solutions of (2.16). The following Theorem is proved by solving (2.16) for a

particular z and then showing, by straightforward evaluation of (2.9), that the

necessary condition is sufficient:

Theorem 2: Discretisation-Invariant Characteristics

Let F follow any d-dimensional martingale process and set z = (F,x)′ with x :=

ln F. Then the solutions to (2.16) form a vector space over R, defined by:

F :=
{
φ : Rn → R

∣∣∣φ (ẑ) = α′F̂ + F̂′ΩF̂ + β′
(
ex̂ − 1

)
+ γ ′x̂

}
,

where α,β,γ ∈ Rd, Ω′ = Ω ∈ Rd×d.

6The proof can be performed analogously, this time assuming the AP, by substituting (2.19)
and (2.20) into condition (2.10) which yields the same solution (2.26). This version does not
require the existence of the φ-variation. Furthermore, if we relax our assumption that F follows
a diffusion and allow any martingale then (2.26) still represents a necessary condition for (2.23).
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Proof: When z = (F,x)′ we have ∆(F) = (I, diag(F)−1)
′ ∈ R2d×d and Γ(F) =

(0,−diag3(F)−2)
′ ∈ R2d×d×d where diag3(F) denotes a three dimensional tensor

with the elements of F on the diagonal and zeros everywhere else. We shall further

use the following decompositions:

[J (ẑ)− J (0)] =

 J
F

(ẑ)

Jx (ẑ)

 ∈ R2d

and

[H (ẑ)−H (0)] =

 H
FF

(ẑ) H
Fx

(ẑ)

H
Fx

(ẑ)′ Hxx (ẑ)

 ∈ R2d×2d.

Then (2.26) may be written:

−Jx (ẑ)′ diag3(F)−2 + H
FF

(ẑ) + H
Fx

(ẑ) diag(F)−1

+diag(F)−1H
Fx

(ẑ)′ + diag(F)−1Hxx (ẑ) diag(F)−1 = 0

and multiplying from left and right with diag(F) yields

−diag(Jx (ẑ)) + diag(F)H
FF

(ẑ) diag(F)

+diag(F)H
Fx

(ẑ) + H
Fx

(ẑ)′ diag(F) + Hxx (ẑ) = 0.

Since this condition must be fulfilled for all martingale Itô processes F (and for

F = 1 in particular) this implies H
FF

(ẑ) = H
Fx

(ẑ) = 0 as well as Hxx (ẑ) =

diag(Jx (ẑ)). Therefore the solution must be of the form

φ (ẑ) = α′F̂ + F̂′ΩF̂ + β′
(
ex̂ − 1

)
+ γ ′x̂,
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where α,β,γ ∈ Rd and Ω′ = Ω ∈ Rd×d is a symmetric matrix.

Swaps associated with α are DI since limΠN→Π

∑
Π
N
α′F̂i = α′ (F

T
− F0)

even without expectation for any process. The same holds for swaps associated

with γ. For the swaps associated with Ω we can apply

E

 lim
ΠN→Π

∑
Π
N

F̂′iΩF̂i

 = E

 lim
ΠN→Π

∑
Π
N

tr
(
ΩF̂iF̂

′
i

)
= trE

Ω lim
ΠN→Π

∑
Π
N

(
Fti − Fti−1

) (
Fti − Fti−1

)′
= trE

Ω lim
ΠN→Π

∑
Π
N

(
FtiF

′
ti
− Fti−1

F′ti−1

)
= trE

[
Ω
(
F
T
F′
T
− F0F

′
0

)]
= trE

[
Ω (F

T
− F0) (F

T
− F0)

′]
= E

[
(F

T
− F0)

′Ω (F
T
− F0)

]
,

where the only requirement is that F follows a martingale (not necessarily an Itô

process). Finally, for all swaps associated with β we have

E

 lim
ΠN→Π

∑
Π
N

γ ′
(
ex̂ − 1

) = E
[
γ ′
(
ex

T
−x0 − 1

)]
= 0.

Therefore, if z = (F,x)′, the necessary condition (2.26) is sufficient for all mar-

tingales. We can assume w.l.o.g. that Ω is a symmetric matrix because F̂′ΩF̂ is

a quadratic form.

Using Theorem 2 we may define realised characteristics for DI swaps based on
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a wide variety of underlying variables F. For instance, we can include the log

contract Xt := Et [x
T
] or the fair-value price process of any other European pay-

off in F. Note that with z = (F,X, x)′, X = {Xt}t∈Π, we can relate many of the

characteristics introduced by Neuberger [2012] to specific characteristics in F. For

instance, when we set F = F , the log characteristic can be obtained by choosing

α = 0, Ω = 0, β = 2 and γ = −2.

We next consider the replication of the value process V φ :=
{
V φ
t

}
t∈Π

of a

φ-swap, i.e. V φ
t := Et

[∑
Π
N
φ (ẑi)

]
− vφ

0
, where vφ

0
:= E [φ (z

T
− z0)] denotes the

fair-value swap rate at inception. Note that V φ
0

= 0 by definition. When hedging

the swap we seek to replicate V̂ φ
t := V φ

t − V
φ
t−1, for which the following is useful:

Theorem 3: Replicating Discretisation-Invariant Swaps

For t ∈ Π
N

the increments in the value process of any DI swap may be written

V̂ φ
t = φ (ẑt) + v̂φt , (2.27)

where v̂φt := vφt − v
φ
t−1 and vφt := Et [φ (z

T
− zt)] denotes the fair-value swap rate

for the residual time-to-maturity. Further, when z = (F,x)′ as in Theorem 2 we

have

V̂ φ
t = α′F̂t + tr

(
Ω
[
Σ̂t − 2Ft−1F̂

′
t

])
+ β′

(
ex̂t − 1

)
+ γ ′X̂t,

where Σ̂t := Σt − Σt−1 with Σt := Et
[
F
T
F′
T

]
and X̂t := Xt − Xt−1 with

Xt := Et [x
T
]. The corresponding fair-value φ-swap rate at inception is vφ

0
=

tr
(
Ω
[
Σ0 − F0F

′
0

])
+ γ ′ (X0 − x0).
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Proof: With the value process of a DI swap being defined as

V φ
t := Et

∑
Π
N

φ (ẑi)

− vφ
0
,

the increments of the value process along the partition Π
N

are given by

V̂ φ
i = V φ

ti − V
φ
ti−1

= Eti

∑
Π
N

φ (ẑĩ)

−Eti−1

∑
Π
N

φ (ẑĩ)


=

i∑
ĩ=1

φ (ẑĩ) +Eti

 N∑
ĩ=i+1

φ (ẑĩ)

− i−1∑
ĩ=1

φ (ẑĩ)−Eti−1

 N∑
ĩ=i

φ (ẑĩ)


= φ (ẑi) +Eti [φ (z

T
− zti)]−Eti−1

[
φ
(
z
T
− zti−1

)]
= φ (ẑi) + v̂φi

where v̂φi = vφti − vφti−1
and vφt = Et [φ (z

T
− zt)]. Combining the above with

Theorem 2 yields

v̂φi = Eti
[
α′ (F

T
− Fti) + (F

T
− Fti)

′Ω (F
T
− Fti)

+β′
(
ex

T
−xti − 1

)
+ γ ′ (x

T
− xti)

]
−Eti−1

[
α′
(
F
T
− Fti−1

)
+
(
F
T
− Fti−1

)′
Ω
(
F
T
− Fti−1

)
+β′

(
ex

T
−xti−1 − 1

)
+ γ ′

(
x
T
− xti−1

)]
= Eti

[
F′
T
ΩF

T
+ γ ′x

T

]
− F′tiΩFti − γ ′xti

−Eti−1

[
F′
T
ΩF

T
+ γ ′x

T

]
+ F′ti−1

ΩFti−1
+ γ ′xti−1

= tr
(
ΩΣ̂i

)
+ γ ′X̂i − F′tiΩFti + F′ti−1

ΩFti−1
− γ ′x̂i

where Σ̂i = Σti−Σti−1
, Σt = Et

[
F
T
F′
T

]
as well as X̂i = Xti−Xti−1

, Xt = Et [x
T
].
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Thus

V̂ φ
i = α′F̂i +

(
Fti − Fti−1

)′
Ω
(
Fti − Fti−1

)
+ β′

(
ex̂i − 1

)
+ γ ′x̂i + v̂φi

= α′F̂i + tr
(
Ω
[
Σ̂i − 2Fti−1

F̂′i

])
+ β′

(
ex̂i − 1

)
+ γ ′X̂i.

The fair-value swap rate becomes

vφ
0

= E [φ (z
T
− z0)] = E

[
α′ (F

T
− F0) + (F

T
− F0)

′Ω (F
T
− F0)

+β′
(
ex

T
−x0 − 1

)
+ γ ′ (x

T
− x0)

]
= E

[
(F

T
− F0)

′Ω (F
T
− F0) + γ ′ (x

T
− x0)

]
= E

[
tr
(
Ω
[
F
T
F′
T
− F0F

′
0

])
+ γ ′ (x

T
− x0)

]
= tr

(
Ω
[
Σ0 − F0F

′
0

])
+ γ ′ (X0 − x0) .

Theorem 3 characterises the realised profit and loss (P&L) which accrues to the

issuer of a DI swap who pays the fixed swap rate E
[∑

Π
N
φ (ẑi)

]
= E [φ (z

T
− z0)]

and receives the floating leg defined by the realised characteristic. The decompo-

sition (2.27) separates the change in the realised characteristic from the change

in the implied characteristic. While the value process follows a Q-martingale, the

two components are generally not Q-martingales by definition.

Theorem 3 also shows that DI swaps are replicable in discrete time using a

static trading strategy in Σ := {Σt}t∈Π and X := {Xt}t∈Π and a dynamic trading

strategy in F. For instance, the realised P&L for a swap on the log characteristic is

V̂ λ
t = 2

(
ex̂t − 1− X̂t

)
so, for t ∈ Π

N
, V λ

t = 2
∑t

i=1 F
−1
i−1F̂i − 2 (Xt −X0) . Hence

this swap can be hedged by buying two log contracts at time zero and shorting

2F−1
t−1 forward contracts from time t− 1 to t.
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We now introduce a canonical choice of implied fundamental contracts for

F that are related to the log-return distribution of a single underlying forward

contract with price F , denoting by X(n) =
{
X

(n)
t

}
t∈Π

, X
(n)
t := Et

[
xn
T

]
the n-th

power log contract (n ≥ 2).7 According to the replication theorem of Carr and

Madan [2001], this expectation can be expressed in terms of vanilla OTM options:

X
(n)
t = xnt +

ˆ
R+

γn(k)qt(k)dk, (2.28)

where γn(k) := n(ln k)n−2k−2 [n− 1− ln k] and qt(k) denotes the time-t forward

price of a vanilla OTM option with strike k and maturity T . We may also consider

the alternative replication scheme:

X
(n)
t = xn

0
+ nxn−1

0

(
Ft
F0
− 1
)

+

ˆ F0

0

γn(k)Pt(k)dk +

ˆ ∞
F0

γn(k)Ct(k)dk,

where Pt(k) and Ct(k) denote the time-t forward prices of vanilla put and call

options with strike k and maturity T . The difference between the two replication

schemes is that (2.28) is, at any point in time, based only on OTM options because

they are more liquidly traded. But due to the stochastic separation strike Ft this

portfolio would require continuous rebalancing between puts and calls. The al-

ternative replication scheme involves options that are OTM only at inception but

this portfolio describes buy-and-hold strategies that require no dynamic rebalanc-

ing. From a theoretical perspective the two representations are interchangeable.

However, the OTM scheme may be favorable for computing the fair-value swap

7For reasons of space we now focus only those pay-offs that are related to what Neuberger
calls the ‘geometric world’ of log-returns. We have experimented with various DI moment swaps
related to the ‘arithmetic world’ of prices or such contracts that combine prices with log-returns
(e.g. the entropy swap). Our theoretical and empirical results, available upon request, suggest
that the relevant risk premia are already accessible in the geometric setting.
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rate while the alternative scheme may be preferred for hedging. By construction,

the price process of any n-th power log contract follows a Q-martingale and can

therefore be included in F.

For the next result we suppose that F contains power log contracts whose

corresponding replication portfolios may be derived from (2.28). For instance, for

the first four power log contracts we have:

log contract: Xt = xt −
ˆ
R+

k−2qt(k)dk,

squared log contract: X
(2)
t = x2

t + 2

ˆ
R+

(1− ln k) k−2qt(k)dk,

cubed log contract: X
(3)
t = x3

t + 3

ˆ
R+

ln k (2− ln k) k−2qt(k)dk,

quartic log contract: X
(4)
t = x4

t + 4

ˆ
R+

(ln k)2 (3− ln k) k−2qt(k)dk.

Theorem 4: DI Moment Swaps on the Log Return

Let Ft =
(
Xt, X

(2)
t . . . , X

(n−1)
t

)′
for some n ≥ 2 and consider the parameters

α = β = γ = 0 and Ω = Ω(n) :=



ω
(n)
1

1
2
ω

(n)
2 . . . 1

2
ω

(n)
n−1

1
2
ω

(n)
2 0 . . . 0

...
...

. . .
...

1
2
ω

(n)
n−1 0 . . . 0


with

ω
(n)
i := Xn−1−i

0

n∑
j=i+1

(
n
j

)
(−1)n−j = −Xn−1−i

0

i∑
j=0

(
n
j

)
(−1)n−j = 0
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since
∑n

j=0

(
n
j

)
(−1)n−j = 0 for i ∈ {1, . . . , n− 1}. Then vφ

0
= v(n)

0
where

v(n)
0

:= E [(x
T
−X0)

n] =
n∑
i=1

(
n
i

)
(−X0)

n−iX(i)
0

+ (−X0)
n

denotes the n-th (central) moment of the log-return distribution of F .

Proof: Starting with

Σ0 − F0F
′
0

=


X(2)

0
−X0X0 . . . X(n)

0
−X0X

(n−1)
0

...
. . .

...

X(n)
0
−X0X

(n−1)
0

. . . X(2n−2)
0

−X(n−1)
0

X(n−1)
0


for some n ≥ 2 we apply Theorem 3 as follows:

vφ
0

= E [φ (z
T
− z0)] = tr

(
Ω(n)

[
Σ0 − F0F

′
0

])
=

n−1∑
i=1

ω
(n)
i

(
X(i+1)

0
−X0X

(i)
0

)
= ω

(n)
n−1X

(n)
0

+
n−1∑
i=2

(
ω

(n)
i−1 − ω

(n)
i X0

)
X(i)

0
− ω(n)

1 X2
0

= X(n)
0

+
n−1∑
i=2

(
n
i

)
(−X0)

n−iX(i)
0

+ (1− n) (−X0)
n

=
n∑
i=1

(
n
i

)
(−X0)

n−iX(i)
0

+ (−X0)
n = E

[
n∑
i=0

(
n
i

)
(−X0)

n−i xi
T

]
= E [(x

T
−X0)

n] = v(n)
0
,

where we have used ω
(n)
n−1 = 1 and ω

(n)
1 = (−X0)

n−2 (n− 1) in the third line.
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2.2.4 Higher-Moment Swaps

We now present specific examples of φ-swaps on z where the characteristic is

related to the n-th moment of the log-return distribution. For ease of exposition

from henceforth we use the daily partition Π
D

in the text while proofs remain for

general Π
N

.

Example 1: Variance Swap. As opposed to squared log-returns, squared price

changes in the log contract represent a DI variance characteristic. Let n = 2

and consider the characteristic X̂2 which corresponds to Ω = Ω(2) = 1. By

construction the fair-value swap rate is v(2)
0

= E
[
(x

T
−X0)

2] where X0 = E [x
T
]

and X
T

= x
T

at maturity. We can write the swap rate in terms of fundamental

contracts, i.e. v(2)
0

= X(2)
0
−X2

0
. Now, according to Theorem 3, the P&L on this

swap may be written V̂
(2)
t = X̂

(2)
t − 2Xt−1X̂t. Hence, this swap can be hedged by

selling a squared log contract and dynamically holding 2Xt−1 log contracts from

time t−1 to t. We can observe empirically that the risk premium on this variance

swap is very highly correlated with that for Neuberger’s variance swap.

Example 2: Third-Moment Swap. Let n = 3, i.e. F =
(
X,X(2)

)′
, and

consider the characteristic F̂′Ω(3)F̂ where

Ω(3) =

 −2X0

1
2

1
2

0

 .
The fair-value swap rate is v(3)

0
= E

[
(x

T
−X0)

3] = X(3)
0
− 3X(2)

0
X0 + 2X3

0
. By

Theorem 3, V̂
(3)
t = X̂

(3)
t − h

(3)
2t X̂

(2)
t − h

(3)
1t X̂t with h

(3)
2t := 2X0 + Xt−1 and h

(3)
1t :=
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X
(2)
t−1 − 4X0Xt−1. Hence, the swap can be hedged by selling a cubed log contract

and dynamically holding h
(3)
2t squared log contracts as well as h

(3)
1t log contracts

from time t− 1 to t.

Example 3: Fourth-Moment Swap. Let n = 4, i.e. F =
(
X,X(2), X(3)

)′
, and

consider the characteristic F̂′Ω(4)F̂ where

Ω(4) =


3X2

0
−3

2
X0

1
2

−3
2
X0 0 0

1
2

0 0

 .

Then v(4)
0

= E
[
(x

T
−X0)

4] = X(4)
0
− 4X(3)

0
X0 + 6X(2)

0
X2

0
− 3X4

0
and V̂

(4)
t =

X̂
(4)
t −h

(4)
3t X̂

(3)
t −h

(4)
2t X̂

(2)
t −h

(4)
1t X̂t with h

(4)
3t := 3X0 +Xt−1, h

(4)
2t := −3X2

0
−3X0Xt−1

and h
(4)
1t := X

(3)
t−1 − 3X0X

(2)
t−1 + 6X2

0
Xt−1 and the swap can be hedged by selling a

quartic log contract and holding h
(4)
3t cubed log contracts, h

(4)
2t squared log contracts

and h
(4)
1t log contracts from t− 1 to t.

Example 4: Alternative Fourth-Moment Swap. Let F =
(
X,X(2)

)′
and

consider the characteristic F̂′Ω̃
(4)

F̂ where

Ω̃
(4)

:=

 X(2)
0

+ 3X2
0
−2X0

−2X0 1

 .
It is easy to show that the fair-value swap rate is v(4)

0
as in Example 3. Now, by

Theorem 3, V̂
(4)
t = X̂

(4)
t −4X0X̂

(3)
t − h̃

(4)
2t X̂

(2)
t − h̃

(4)
1t X̂t with h̃

(4)
2t := −X(2)

0
−3X2

0
+

2X
(2)
t−1 − 4X0Xt−1 and h̃

(4)
1t := −4X0X

(2)
t−1 + 6X2

0
Xt−1 + 2X(2)

0
Xt−1. Hence, the

alternative fourth-moment swap can be hedged by selling a quartic log contract,
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buying 4X0 cubed log contracts and dynamically holding h̃
(4)
2t squared log contracts

as well as h̃
(4)
1t log contracts from time t− 1 to t. This swap has the advantage of

not requiring dynamic trading in the cubed log contract.

Later we find empirically that the correlation between risk premia on the swaps

defined by Examples 1, 2 are 3 can be quite low but, not surprisingly, the two

fourth-moment swaps in Examples 3 and 4 have very highly correlated risk premia.

Indeed, there are many other DI moment characteristics which readers can define

using different parameterisations and payoff profiles in Theorem 2, but all our DI

swaps of the same order moment are essentially capturing the same risks.

Also, similar to the standardisation of the third-moment swap in Kozhan et al.

[2013], we standardise an n-th moment swap by dividing the change in both

realised and implied by the corresponding power of the implied variance of the

log-return, i.e.

V
(n̄)
t = V

(n)
t

(
X(2)

0
−X2

0

)−n/2
. (2.29)

In particular we define a skewness and a kurtosis swap on the log-return distri-

bution by setting V
(3̄)
t = V

(3)
t

(
X(2)

0
−X2

0

)−3/2
and V

(4̄)
t = V

(4)
t

(
X(2)

0
−X2

0

)−2
.

The results in our empirical study will shed an interesting new light on the differ-

ence between the risk premia associated with standardised and non-standardised

moment characteristics.

One of the challenges faced by issuers of standard variance swaps is to hedge

the realised variance through dynamic rebalancing of an options portfolio which is

tilted towards the low strike options via the weight k−2 in the replication formula

for the fundamental contracts. These are the illiquid and expensive deep-OTM
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put options for which demand much exceeds supply during market crashes, be-

cause they provide insurance for risk-averse investors. The illiquid market in such

options on single-name equities during the financial crisis of 2008-9 is the main

reason why equity variance swaps are now focussed mainly on indices, rather than

individual stocks. One way to circumvent this problem is to use power contracts

on the price rather than the log price, which is consistent with analysing the

‘arithmetic’ world of price related swaps. The corresponding replication formula

lacks the strong tilt present in power log contracts, putting more emphasis on

high-strike options, the OTM calls where transactions costs are lower and the

market is more liquid.

2.2.5 Strike-Discretisation-Invariant Swaps

All the examples of DI swaps considered so far have fair values which require

integration over a continuum of strikes, but in practice options are traded on a

relatively small number of discrete strikes. We now introduce strike-discretisation

invariant (SDI) swaps that can be priced and replicated exactly based only on the

available option prices. Like all other DI swaps they have the same fair value,

independent of the partition Π
N

, which is free from both discrete monitoring and

model-specific (e.g. jump) error. These swaps can also be hedged exactly without

having to replicate the log or any other fundamental contract.

Let F = (P,C)′ where P := {Pt}t∈Π and C := {Ct}t∈Π describe the forward

price processes of d vanilla put options and d vanilla call options, with identical,

traded strikes k, on an underlying with maturity T , so Pt := Et
[
(k− s

T
1)+] and

Ct := Et
[
(s

T
1− k)+] where 1 := (1, . . . , 1)′ ∈ Rd. Assume w.l.o.g. that the
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traded strikes k := (k1, . . . , kd)
′ ∈ Rd are ordered such that k1 < k2 < . . . < kd,

and denote by P̂ and Ĉ the increments in P and C, respectively, along some

partition of [0, T ]. Let Ω̃ ∈ Rd×d be a lower triangular matrix and set

α = β = γ = 0, Ω :=

 0 1
2
Ω̃

1
2
Ω̃
′

0

 ∈ R2d×2d

Since strikes are in ascending order either the put or the call has zero pay-off, so

E
[
z′
T
Ωz

T

]
= E

[
P′
T
Ω̃C

T

]
= E

[
(k′ − s

T
1′)

+
Ω̃ (s

T
1− k)+

]
= 0.

Now by Theorem 2: vφ
0

= E
[
(F

T
− F0)

′Ω (F
T
− F0)

]
= −P′

0
Ω̃C0 . Therefore an

exact swap rate can be derived based only on the current prices P0 and C0 of

traded vanilla options with strikes k, without using the replication theorem of

Carr and Madan [2001]. Next, by Theorem 3, the P&L on this swap is

V̂
[k]
t =

[
α′

C
−P′t−1Ω̃

]
Ĉt +

[
α′

P
−C′t−1Ω̃

′]
P̂t

where α = (α
P
,α

C
)′. Hence, the swap can be hedged exactly by dynamically

holding
[
C′t−1Ω̃

′ −α′
P

]
j

puts and
[
P′t−1Ω̃−α′

C

]
j

calls with strike kj for j =

1, 2, . . . , d.

Example 5: Straddle Swap. Let P := {Pt}t∈Π and C := {Ct}t∈Π describe the

forward price processes of a vanilla put and a call option with the same strike k,

i.e. Pt := Et
[
(k − s

T
)+] and Ct := Et

[
(s

T
− k)+] . Then F = (P,C)′ follows a

Q-martingale and φ (ẑ) = P̂ Ĉ is a DI characteristic. Furthermore E [P
T
C
T
] = 0
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so that the corresponding fair-value swap rate E [(P
T
− P0) (C

T
− C0)] = −P0C0

can be determined solely based on the price of the put and the call option at

inception. By Theorem 3, V̂
[k]
t = −Pt−1Ĉt − Ct−1P̂t and the swap can be hedged

exactly by dynamically holding Ct−1 puts and Pt−1 calls from time t− 1 to t.



Chapter 3

Model-Free Moment Risk Premia

The variance risk premium (VRP) is a measure of how much investors are ready

to pay in order to avoid exposure to changes in variance. It is commonly defined

as the difference between some realised variance characteristic and its risk-neutral

expectation. As we have illustrated in depth in the previous chapter, the standard

characteristic – sum of squared log-returns – entails a variety of theoretical and

practical problems. We have further shown how a modification of the realised

leg can alleviate these problems and allow for a straight-forward generalisation of

the swap and risk premium concept to higher-moments of the return distribution.

Our higher-moment swaps are model-free and the corresponding fair-value swap

rate does not depend on the monitoring scheme. This design makes it possible

to analyse unbiased variance- and higher-moment risk premia at any frequency.

49
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Accordingly, to the best of our knowledge, we can provide the first time series

analysis based on daily risk premia and detect new empirical effects that are not

apparent at lower frequencies. A comprehensive overview of statistical methods

applied to financial market data is provided by Alexander [2001].

In the second main part of this thesis we make an important empirical con-

tribution to the literature on variance and higher-moment risk premia in equity

markets. We show that, even though fair values are the same whatever the mon-

itoring partition, the salient features and in particular asymmetries and code-

pendencies between risk premia on discretisation-invariant (DI) swaps depend

on the frequency at which they are sampled. Our empirical study uses unbi-

ased estimates of Standard & Poor’s 500 Stock Market Index (S&P 500) variance

and higher-moment risk premia (and risk premia associated with other univariate

discretisation-invariant (DI) swaps) analysed at the daily, weekly and monthly

frequencies over an 18-year period. We find strong evidence of asymmetric re-

sponses to market shocks in variance, skewness and kurtosis risk premia when

sampled at the daily frequency. Their correlations also decrease markedly as the

sampling frequency increases. These findings are relevant for hedge funds and

other diversifiers with short-term investment horizons.

3.1 Literature Review

Most empirical literature on moment risk premia focusses on the variance risk

premium (VRP) in the US equity market, where Carr and Wu [2009] provide the

benchmark study. They suggest a method for measuring the VRP – based on

squared log-returns and a portfolio of vanilla out-of-the-money (OTM) options
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– and perform a historical market analysis for five stock indices and 35 indi-

vidual stocks. According to the authors, this premium is on average negative for

stock indexes under both bullish and bearish market conditions. Although mostly

negative, the premiums on individual stocks show large cross-sectional variation.

On the basis of this observation, Carr and Wu assume that there is a common

stochastic variance risk factor in the stock market that causes negative risk premi-

ums. They show that there is indeed a significant negative impact of the so-called

‘variance-beta’ on the logarithm of the VRP, analogue to the systematic market

risk in the capital asset pricing model (CAPM).

3.1.1 Determinants of the Variance Risk Premium

The existence of variance risk premia raises the question whether these can be

explained by one or more of the standard equity risk factors which have emerged in

the asset pricing literature over the past decades. The most important framework

includes the excess return (ER) on the market; the ‘small minus big’ (size) and

the ‘high minus low’ (growth) factors introduced by Fama and French [1993];

and the ‘up minus down’ (momentum) factor introduced by Carhart [1997]. The

size factor relates to the firm size and represents the historical excess returns of

an investment in small firms over the investment in big firms. Historical excess

returns of growth stocks over value stocks (as distinguished by the book-to-market

ratio) are reflected in the growth factor. According to Fama and French [1993]

(p.4), these two factors also cover leverage and earnings-price-ratio effects. Finally,

the momentum factor represents a momentum strategy and measures the excess

returns of firms that performed well during the last time period over those who
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performed badly.

It is sensible to assume that the well-studied leverage effect, i.e. the negative

correlation between returns and return variance in stock markets, propagates the

positive equity risk premium (ERP) to variance risk. For the German stock mar-

ket, Hafner and Wallmeier [2007] document the presence of a negative VRP as

well as a leverage effect. However, the analysis of Carr and Wu [2009] reveals

that the equity premium can only account for part of the VRP in the US market.

Other common sources of uncertainty such as firm size, book-to-market value or

bond market indicators turn out not to have a significant impact on the premium.

Kozhan et al. [2013] confirm these results. When analysing the determinants of

the VRP for different maturity horizons, Nieto et al. [2014] find that variance risk

exposure is not only suitable for portfolio diversification and speculation purposes,

but that it can also provide a hedge against economic influence factors.

Carr and Wu [2009] also address the question whether the VRP is constant.

By means of hypothesis testing, they provide evidence for a time varying VRP

that is correlated with the variance swap rate. They conclude by proving the

robustness of their results, stressing various assumptions made throughout the

analysis. In particular, they show how the payoff to a continuously monitored

variance swap is affected by jumps in the underlying process using a jump diffusion

model with stochastic volatility as previously discussed in Bates [1996] and Bakshi

et al. [1997]. Their findings further remain the same when they take transaction

costs and possible asymmetries of the bid and ask quotes around the mid price

into account. Finally, a subsample analysis shows that the VRP is negative under

very different market conditions.
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3.1.2 Asymmetry and Skewness Risk Premium

In economic terms, a negative VRP can be explained in the presence of risk-

averse investors and it is well accepted in literature that representative agents in

equity markets are actually risk-averse. Duan and Zhang [2014] estimate the risk-

aversion via the generalised method of moments (GMM), using the VRP as well

as implied higher-moments of the cumulative return distribution. The authors

discuss skewness and kurtosis under the physical distribution as well as the im-

pact of the central limit theorem (CLT). Chabi-Yo [2012] analyses the impact of

risk aversion and skewness preference on the VRP. He fits a polynomial function

of the market return to the empirical pricing kernel and then extends the func-

tion to incorporate skewness and kurtosis as additional stochastic variables. The

partial equilibrium model he develops represents an attempt to solve the absolute

risk aversion puzzle by taking into account the non-linear nature of empirically

observable risk premia. This question leads naturally to the third main chapter

of this thesis, where we develop non-linear pricing kernels for stochastic volatility

asset pricing models.

In order to tackle the inconsistencies between the traditional CAPM the-

ory and empirical observations Kraus and Litzenberger [1976] propose a three-

parameter CAPM which includes the squared excess return as an additional ex-

planatory variable. They find that, in addition to the previously detected risk

aversion, investors have a preference for positive skewness, reflecting their fear of

negative extreme events. When estimating this model using monthly equity data,

Carr and Wu [2009] find no evidence for an asymmetric response of the VRP to

market excess returns. However, as will be demonstrated later in this thesis, this
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finding depends strongly on the frequency of measurement.

Based on high-frequency S&P data, Dufour et al. [2012] perform an analysis

which distinguishes between the leverage effect and the volatility feedback ef-

fect. They confirm the presence of an asymmetric impact of returns on volatility

and the VRP and discuss possible causalities for this behaviour. An analysis of

lagged variables shows that implied volatility has a considerable feedback effect

and therefore market implied expectations are indeed a reasonable forecast of fu-

ture volatility. More specifically, a positive shock on volatility has about twice the

impact of a negative shock on the first day and the effect decays to zero within

five days. The analysis is based on a jump-diffusion process as well as squared

high-frequency log-returns.

Following the methodology of Carr and Wu [2009], but using the model-free

realised characteristics introduced by Neuberger [2012] for the floating leg of a

swap, Kozhan et al. [2013] perform a model-free analysis of the variance and

skewness risk premia on the S&P 500. They propose a variance swap and a

skewness swap that can each be replicated perfectly using hedging strategies in the

futures and options markets, thus deriving unbiased estimates for the associated

risk premia. Their monthly data leads to the conclusion that the equity skew and

VRP are very highly correlated. This study is particularly interesting because it

provides the first evidence for a significant skewness risk premium.

The empirically observable long-term skewness in financial market returns can

be associated with high default correlations and systemic risk. Engle [2011] at-

tributes this phenomenon to asymmetric volatility in short-period returns, which

themselves may even be symmetrically distributed. He concludes that short- and



3.1. LITERATURE REVIEW 55

long-term skewness are autonomous indicators for risk and equally important

for the purpose of risk management. However, the standard view on short-term

skewness as cubed short-period log-returns essentially incorporates the same in-

formation as short-term variance or in fact any power of short-term log returns.

By taking the autocorrelation of returns and more sophisticated patterns of serial

dependence into account, the methodology used by Kozhan et al. [2013] provides

a set of trading strategies that are more effective for managing skewness risk.

3.1.3 Trading and Model Specification

When it comes to trading variance swaps, an important practical consideration

is the optimal timing of the dynamic replication strategy. Bondarenko [2014]

analyses the impact of non-optimal rebalancing times on the VRP on the S&P 500

index and argues that knowledge about the considerable deviations are relevant

for exchanges, traders and regulators. In fact, financial derivatives have been

developed that exploit risk premia between different monitoring and rebalancing

schemes and those who trade, clear or certify such products have to be aware of

the risks involved. Bondarenko [2014] compares results for the standard squared

log-return characteristic with those for squared simple returns and Neuberger’s

discretisation-invariant variance characteristic.

While one branch of the literature experiments with different definitions of

the realised leg used for defining a swap, more recent studies of variance risk

premia such as Egloff et al. [2010] and Konstantinidi and Skiadopoulos [2014]

employ market quotes (i.e. CBOE Volatility Index (VIX) futures prices) rather

than synthetic variance swap rates for the fixed leg. This is because the latter are
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subject to a significant bias, as documented by Aı̈t-Sahalia et al. [2015] and many

others. The empirical relationship between the realised variance of the S&P index

and the VIX index is discussed in Hsu and Murray [2007]. However, no market

quotes are yet available for skewness, kurtosis and higher-moment swap rates.

Again following the methodology of Carr and Wu [2009], Ammann and Buesser

[2013] analyse the VRP in the foreign exchange market. The authors detect a

significant negative premium for intraday realised variance at a low-frequency,

however, the picture becomes blurred when they analyse high-frequency data.

Both the VIX index and the T-Bills – Eurodollar (TED) spread do have an impact

on the VRP. Yet, there are considerable residual premia that are strongly time-

varying. This confirms some main results from Guo [1998] who documents a

significant, time-varying VRP in the foreign exchange market. Since a rise or

drop in the exchange rate can be good news to the one and bad news to the other

market participant, unlike with equities, there is no leverage effect in the foreign

exchange markets. As a result, the VRP can not be explained by the premium

paid for the underlying exchange rate risk. Although Ammann and Buesser [2013]

claim that their methodology is model-free, they implicitly assume continuous

monitoring and a pure diffusion process for the exchange rate by using squared

log-returns for the floating leg of the swap. Also in the foreign exchange market,

Bakshi et al. [2008] develop a stochastic discount factor model for the exchange

rate triangle spanned by the US Dollar, British Pound and Japanese Yen which

takes the variability of return skewness into account. Both the global and the

currency-specific risk premia are stochastic and exhibit individual reactions to the

economic environment. The authors find that negative, country-specific shocks

yield the highest risk premia while global shocks are less priced and upward moves
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remain widely ignored.

Broadie et al. [2007] discuss model specification issues for the equity market

based on a large sample of S&P 500 futures and options prices. In particular, the

authors find evidence for jumps in the futures and the volatility process and anal-

yse how these risk factors are priced in the market. They argue that “intuitively,

volatility jumps should induce positive skewness and excess kurtosis in volatility

increments” (p.1454) and propose a statistic for estimating the phenomenon of

jumps in volatility. They conclude that, while introducing price jumps into a

stochastic volatility model always yields significantly higher pricing performance,

there is an interference between jumps in volatility and the risk premium associ-

ated with the volatility of price jump.

When analysing the contribution of jumps to the VRP in the equity market

based on high-frequency data, Bollerslev and Todorov [2011] find that more than

50% of the premium can be associated with tail risk. They further report an

asymmetry between jumps under the physical and jumps under the risk-neutral

measure and attribute the large proportion of downside risk premium to investor

fear of extreme negative market events. A new Investor Fear Index, as opposed to

the VIX index, distinguishes clearly between common variance uncertainty and

investors’ fear. Using a new class of discrete-time models, Christoffersen et al.

[2012] find that the risk premium associated with uncertainty about the jump

intensity has a stronger impact on option prices than the VRP. Their approach

allows for time-varying conditional skewness and kurtosis, which both depend on

the jump intensity. The affine dynamic the authors use for modelling the pricing

kernel is consistent with power utility for a representative investor. The impact
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of jump fears on the time-varying VRP is also addressed in Todorov [2010], who

shows that investors’ expectations about jumps change considerably after a market

crash.

Although the direct way of getting exposed to variance risk is to trade variance

swaps, a delta-hedged options portfolio is an important benchmark strategy. The

main difference is the directional risk which is not present in the case of a variance

swap investment. Bakshi and Kapadia [2003] compare the VRP with the average

returns of such a hedged position and find that excess returns are less negative

for OTM than for ATM options and more negative in times of financial distress.

Essentially, the gains or losses on the options position depend on the VRP and

the (model-dependent) portfolio vega.

3.1.4 Term Structure of the Variance Risk Premium

The study of variance risk premia in different markets is not restricted to its size,

variation and determinants. In a recent working paper, Aı̈t-Sahalia et al. [2015]

perform a model-dependent analysis of the term-structure of variance risk premia,

revealing a downward trend of the premium with increasing time to maturity

of a contract. According to their results obtained from a principal component

analysis, the two main factors driving the VRP term structure are the level and

the slope, accounting for approximately 99.8% of all variance. By making model

assumptions, the authors circumvent the lack of complete time series data for

deep-OTM put (and call) options with a fixed strike and time to maturity. They

also evaluate the effect of a jump risk component on the premium and try to

explain how crash scenarios influence investors’ behaviour for different investment
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horizons. All results are based on the sum of squared log-returns.

Egloff et al. [2010] also analyse the term-structure of variance swap rates for

the S&P 500 index and deduce profitable trading strategies. They demonstrate

that the term-structure of variance swap rates can take a variety of shapes, from

contango to backwardating to inverse smile-like structures and argue that the two

relevant drivers are the short and the long end of the term structure, which in fact

covers the same range of variations as the approach taken by Aı̈t-Sahalia et al.

[2015], referring to the short end as the ‘instantaneous variance rate variation’ and

to the long end as the ‘central tendency factor’. According to their findings, it is

on average more profitable for investors to sell long-term variance swaps than to

sell short-term variance swaps (p.12). The inclusion of variance swap investments

into the asset allocation improves the investment performance in- and out-of-

sample and significantly reduces the necessity of dynamic hedging since variance

risk is linearly spanned by the portfolio constituents. It is intuitive to model this

linear structure using a general affine jump-diffusion model based on the theory

of Duffie et al. [2000]. Like the majority of studies on the subject, this study uses

squared log-returns as a measure of realised variance, which – as we discuss in the

previous chapter of this thesis – is not consistent with using VIX quotes for the

swap rate when the underlying process can jump. Egloff et al. [2010] conclude

by remarking that, in order to distinguish between the effects of jumps in the

underlying and stochastic volatility, academic literature either assumes constant

volatility or pure diffusions and that “integrating these two dimensions can be a

challenging but interesting direction for future research” (p.1308).

More recently, Filipović et al. [2016] calibrate a quadratic model for the vari-
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ance swap rate term structure to S&P market data, proving the compatibility of

the model with both upward- and downward-sloping term structures while out-

performing some of the standard affine jump-diffusion models. The DI framework

introduced in the previous section of this thesis provides academics with a tool

that allows us to analyse the effects of stochastic volatility without making any

further model assumption, be it the continuity of paths or a specific shape of the

VRP term structure.

The term structure of variance swap rates can be used as a predictor variable

for the equity premium, the VRP or interest rates, i.e. the bond premium for

different maturities. After showing using principal component analysis (PCA)

that three main factors, namely level, slope and curvature across maturities, ex-

plain 97% of the variation in variance swap rates, Feunou et al. [2014] show that

two factors are crucial to explain the interdependence of the three premiums. An

extension of the predictor variables to skewness and kurtosis yields no significant

increase in explanatory power, which the authors explain via the argument that

“the predictive content available from the term structure of different risk mea-

sures is broadly overlapping” (p.150). This conclusion may change when looking

at higher-moment risk premia rather than swap rates.

3.1.5 Integration of the S&P and VIX Market

Bardgett et al. [2015] use S&P 500 and VIX data to estimate the affine jump-

diffusion model previously applied by Egloff et al. [2010] and evaluate the informa-

tion content of both data sets. They detect complementary information on jumps

as well as the mean reversion level of stochastic volatility. Further, in times of
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market distress, S&P and VIX options contain conflicting information on implied

volatilities. They estimate the model parameters for both the physical and the

risk-neutral measure and define a set of risk premiums that are based on the dif-

ferences in P- and Q-parameters. It turns out that the ‘central tendency’ of the

variance term structure improves the fit of the return distribution while jumps in

the volatility process allow to explain the upper tail of the variance distribution,

i.e. the upward jumps in volatility when prices fall, thus facilitating the joint fit

of both sources of information. Accordingly, there is a strong impact of jumps in

volatility on the VRP.

The VRP in the VIX market, i.e. the difference between realised and implied

VIX variance – the latter extracted from options on the VIX index – can also

be understood as a ‘variance of variance’ risk premium on the underlying S&P

500 index. Using squared simple returns as their measure of realised variance,

Barnea and Hogan [2012] determine the sign and size of the VRP in the VIX

market. They report a negative VRP that exhibits occasional upward shocks.

In particular, it is more negative, on average, than the VRP on the S&P and

less time-varying. Trolle and Schwartz [2010] further find significantly negative

VRP for energy commodities, crude oil and natural gas in particular. This is

intriguing since commodity markets are commonly subject to an inverse leverage

effect (that is, volatility increases as prices rise) because market participants are

often companies that depend on commodities as an input and therefore high prices

are bad news.
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3.2 Empirical Results from the S&P Index

This section analyses the risk premia on S&P 500 DI swaps over an 18-year period

from January 1996 to December 2013 using term-structure time series of different

constant-maturity realised and implied characteristics. Our main purpose is to

investigate the common factors influencing the term structure of variance and

higher-moment risk premia. In contrast to most previous studies, with the notable

exception of Kozhan et al. [2013], we examine the risk premia based on DI realised

characteristics. This is because we can derive unbiased estimates of DI risk premia

from their fair-value swap rates, i.e. we do not need to rely on market quotes which

are anyway not currently available. We find empirical features in these DI risk

premia which depend on their monitoring frequency, unlike their fair-value swap

rates.

Most previous studies distinguish the sampling frequency of the data from the

monitoring frequency of the realised characteristic, typically employing monthly

or weekly data on a daily-monitored characteristic.1 By contrast, we construct

our data to match the sampling and monitoring frequencies, using daily data on

daily-monitored characteristics, weekly data on weekly-monitored characteristics

and monthly data on monthly-monitored characteristics (assuming 5 trading days

per week and 20 trading days per month). This way, we can make inference on

the properties of risk premia that are relevant for investors who monitor and

rebalance positions every few days (e.g. hedge funds) as well as mutual fund and

large institutional investors that typically have longer-term investment horizons.

1For instance, Kozhan et al. [2013] uses monthly data on daily-monitored skew swaps and
Egloff et al. [2010] use weekly data on daily-monitored variance swaps.
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Most previous work concerns the second category of investor, but here we are also

interested in the potential benefits of short-term diversification and the immediate

response of risk premia to market shocks that one can only investigate using daily

(or higher frequency) data.

We present results for daily, weekly and monthly monitored characteristics

with 30, 90 and 180 days to maturity: by varying the maturity we infer some

interesting stylised facts about the term structure of implied moment character-

istics; and different monitoring frequencies allow for comparison of daily, weekly

and monthly statistical distributions of risk premia.

3.2.1 Data

Following Carr and Wu [2009], Todorov [2010] and others we generate observations

on risk premia as the difference between the observed realised characteristic under

the physical measure and its synthetic fair value under the risk-neutral measure.

As previously mentioned, much previous research on the empirical behaviour of the

VRP has used synthetic rates which yield biased estimates. An advantage of our

theory is that synthetic swap rates do now yield unbiased estimates of risk premia.

However, this typically comes at the cost of including fundamental contacts in our

definitions of the realised characteristic and, as a result, the realised moments are

not only based on the underlying futures time series but also on option price data.

We obtain daily closing prices Pt and Ct of all traded European put and call

options on the S&P 500 between January 1996 and December 2013 and eliminate

quotes that fulfil any of the following criteria: less than seven calendar days to

maturity, more than 365 calendar days to maturity, zero trading volume, mid-
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price ≤ 0.5 or an implied Black Scholes volatility ≤ 1% or ≥ 1. For each trading

day, we further delete all quotes that refer to the same maturity if less than three

different strikes are traded. The forward price is backed out via put-call-parity

for each maturity from the pair of quotes whose strike minimises |Pt − Ct|. This

forward price is also used as the separation strike between OTM put and call

options, i.e. we use the put price for k < Ft and the call price for k ≥ Ft.

In order to preclude static arbitrage between strikes of the same maturity,

and between options of different maturities, we apply the cubic spline interpola-

tion algorithm developed by Fengler [2009]. For each day spanned by our sam-

ple this interpolation produces an equally distributed grid of OTM option prices

with 2000 different strikes for each expiry date.2 These data are then integrated

numerically w.r.t. k to derive time series of daily prices (2.28) for the power

log contracts, n = 1, ...4. For example, the log contract is approximated by

Xt ≈ xt−
∑2000

j=2 k
−2
j qt (kj) (kj − kj−1) and similar approximations apply for X

(n)
t .

Next, using the parameterisation of Theorem 4 for DI moment swaps, we apply

Theorem 3 (for the special case of power log contracts) to compute trading day,

weekly and monthly increments in both the realised and implied characteristic on

the r.h.s. of (2.27). Besides the daily partition Π
D

, we include increments along

the partitions Π
W

and Π
M

, reflecting swaps that are monitored on a weekly and

monthly basis. This way the time series on risk premia have the same frequency

as the monitoring of the swap.

Alternative methodologies for constructing a synthetic time series of risk pre-

2The strikes are equally distributed across a six-σ-range around the forward price, σ being
the average implied volatility on that day, at a given maturity. Outside the domain of the spline
we assume the implied volatility is constant and equal to the implied volatility at the closest
strike.
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mia over the entire 18-year sample period include: (a) hold a swap until just

before maturity and then roll over to another swap with the same initial matu-

rity, tracking observations on its realised characteristic and swap rate; (b) linearly

interpolate synthetic constant-maturity swap rates and calculate the correspond-

ing realised characteristic on every monitoring period; or (c) hold a swap for one

monitoring period, then roll over to another swap with the same initial matu-

rity.3 The risk premia obtained using method (a) have a systematically varying

maturity. Method (b) is good when the data frequency matches the maturity

of the characteristic, but autocorrelation appears as an unwanted artefact when

time series of higher frequencies are constructed. We use method (c) because it

best facilitates an investigation of the relationship between risk premia, monitor-

ing frequency and maturity. Because linear interpolation between prices produces

synthetic constant-maturity contracts which are not truly reflective of investable

returns, it is necessary here to apply linear interpolation to the daily, weekly or

monthly value increments between the two adjacent traded maturities, as proved

by Galai [1979].4

3Kozhan et al. [2013] (p.2184) follow (a), stating that ”Our empirical analysis concentrates
on trading strategies that run for a month, from the first trading day after one option expires to
the next month’s expiration date.” Carr and Wu [2009] (p.1319) choose the construction method
(b): ”At each date t, we interpolate the synthetic variance swap rates at the two maturities to
obtain the variance swap rate at a fixed 30-day horizon. [...] Corresponding to each 30-day
variance swap rate, we also compute the annualised 30-day realised variance [...].”

4Thus, the change in price from time t − 1 to time t of a contract Φ with constant time-

to-maturity τ is Φ̂t := (Tu − Tl)−1
[
(Tu − t− τ) Φ̂lt − (Tl − t− τ) Φ̂ut

]
where Φ̂lt and Φ̂ut denote

the increments in the prices of the contracts with fixed maturity dates Tl and Tu. Note that
increments refer now to daily, weekly or monthly increments in the constant-maturity time
series, rather than the fixed-maturity series that we have used for developing the theory.
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3.2.2 Risk Premia on S&P Moment Swaps

By construction, under the risk-neutral measure

E
[
F̂t

]
= E

[
X̂t

]
= E

[
X̂

(n)
t

]
= E

[
V̂ φ
t

]
= E

[
V̂

(n)
t

]
= E

[
V̂

(n̄)
t

]
= E

[
V̂

[k]
t

]
= 0,

∀t ∈ Π
N
, n ≥ 2. However, under the physical probability measure the average

increment (profit and loss (P&L)) on these contracts and swaps need not be zero,

in the presence of a risk premium. Table 3.1 presents annualised estimates of

the risk premia on different DI swaps, based on the entire 18-year sample period.

The potential variation in P&L decreases as monitoring frequency increases, so to

enable comparison between daily, weekly and monthly monitoring each premium is

standardised by dividing the average increment (F̂ , X̂, V̂ (2), etc.) by its standard

deviation.

F X V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

ΠD 0.24 0.36 -0.55 0.32 0.79 -0.13 -0.56 0.34 0.44 0.61
τ = 30 ΠW 0.25 0.38 -0.73 0.38 1.12 -0.23 -0.90 0.41 0.60 1.19

ΠM 0.23 0.37 -0.54 0.31 0.17 -0.23 0.01 0.23 0.20 0.37

ΠD 0.23 0.34 -0.33 0.10 0.02 0.04 0.23 0.20 0.30 0.46
τ = 90 ΠW 0.25 0.37 -0.50 0.19 0.34 -0.03 -0.07 0.44 0.63 0.88

ΠM 0.22 0.36 -0.43 0.25 0.12 -0.17 0.06 0.26 0.27 0.36

ΠD 0.23 0.34 -0.22 0.06 -0.49 0.01 0.79 0.23 0.29 0.36
τ = 180 ΠW 0.24 0.35 -0.33 0.09 0.05 0.02 0.15 0.39 0.44 0.58

ΠM 0.21 0.35 -0.35 0.19 0.14 -0.12 -0.02 0.20 0.25 0.34

Table 3.1: Standardised risk premia between January 1996 and December 2013 on
30-day, 90-day and 180-day constant-maturity contracts based on daily, weekly and
monthly monitoring, for: the forward F and log contract X, moment swaps on the log
price V (n), the skewness swap V (3̄), the kurtosis swap V (4̄) as well as straddle swaps
with strikes k1 = 1000, k2 = 1100 and k3 = 1200.

The premia for the variance swap are negative while those for the forward,



3.2. EMPIRICAL RESULTS FROM THE S&P INDEX 67

log contract and third-moment swap are positive. The pattern is less clear for

skewness, fourth-moment and kurtosis swaps. Straddle swaps exhibit positive

risk premia for all maturities and monitoring frequencies.5 The risk premium

associated with a DI moment swap on the S&P 500 tends to decrease in magnitude

as the monitoring frequency increases, indicating an upward sloping moment-

term-structure of the statistical return distribution. But also, the variance of

the associated realised characteristic decreases when the monitoring frequency

increases. Hence, the standardised risk premia in Table 3.1 exhibit no systematic

pattern with respect to monitoring frequency. However, some of the risk premia do

display a systematic pattern with respect to swap maturity. For instance, at each

monitoring frequency the standardised risk premium on a 30-day variance swap is

greater in magnitude than the corresponding premium on a 90-day variance swap

which, in turn, is greater in magnitude than the 180-day swap risk premium.

Similar remarks apply to the third-moment and fourth-moment swaps.

Figure 3.1 depicts the cumulative risk premia for 30-day constant-maturity

moment swaps over the entire sample period. In each case the total risk premia

on the right is disaggregated into realised and implied components, using Theorem

3. These graphs illustrate the dependence of moment risk premia on the moni-

toring frequency of the realised leg, which is the same as the rebalancing of the

implied leg. We use a black line for daily, purple for weekly and red for monthly

monitoring. The implied component of the VRP does not depend on the rebal-

ancing frequency.6 The very small variation evident in the top centre graph is due

5We do not list the risk premia on all fundamental contracts here since they are very similar.
The main difference is that the price of each power log contract operates on its individual scale,
implied by the order of the contract. Further results for power contracts as well as moment
swaps on the price distribution are available from the author on request.

6That is, when the replication basket of options is rebalanced daily to constant 30-day matu-
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Figure 3.1: Time series of cumulative 30-day variance, third-moment, skewness, fourth-
moment and kurtosis risk premia based on daily (black), weekly (purple) and monthly
(red) monitoring. The secondary axis on the right refers to the 30-day forward contract
plotted in grey. The first and second column of graphs depict the decomposition of
the total cumulative risk premia into realised and implied components according to
Equation (2.27).

to variation in the separation strike of the replication portfolio. It is the realised

variance which drives the dependence of the VRP on the monitoring frequency.

rity and valued by marking-to-market (i.e. the black line), the cumulative change in the implied
component is approximately the same as if the rebalancing and valuing happens weekly (purple)
or monthly (red).
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Overall, the VRP becomes smaller and less variable as monitoring frequency in-

creases.7 It is usually negative but during periods of equity market turmoil (such

as the collapse of Lehman Brothers in September 2008 and the breaking news in

August 2011 of a European sovereign debt crisis) it is, briefly, highly positive.

By contrast, the third-moment premium is usually positive, but falls sharply

during crisis periods when the negative skew in realised returns on equities be-

comes especially pronounced. This is driven by the large jump down in the realised

component during September 2008 (in the left graph in the second row). More

generally this premium is dominated by the implied component depicted in the

central graph. The effect of rebalancing the separation strike is more evident here

than it is in the implied variance. For instance, in the monthly-monitored (red)

time series the failure to rebalance the separation strike every day implies using

higher-priced in-the-money calls in the replication portfolio during an upwards

trending market, or higher-priced in-the-money puts in the replication portfolio

during a downward market. A similar but opposite effect is evident in the im-

plied component of the fourth-moment risk premium. As expected, given that the

fourth moment captures outliers in a distribution, this premium is dominated by

jumps in the index and is strongly positive during crisis periods.

The standardised third and fourth moment swaps have common features with

their non-standardised counterparts. In particular, the direction of the realised

and implied legs as well as the dependence on monitoring frequency are the same.

7This too is clear empirically, from Figure 3.1. Theoretical results to support these observa-
tions are model dependent. For instance, when dFt = µFt + σFtdWt where Wt is a Brownian
motion it is straightforward to show that the risk premium associated with the conventional
realised variance over a regular partition of [0, T ] into N elements is µ

(
µ− σ2

)
T 2N−1 and the

variance of this realised variance is 2σ4T 2N−1+4µ2σ2T 3N−2. Further model-dependent results
confirm the statement for some other processes and DI variance characteristics.
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However, at the daily and weekly monitoring frequency the standardised premia

are much less volatile, indicating that changes in the non-standardised higher-

moments usually coincide with changes in variance. At the monthly frequency,

both the realised and implied leg as well as the risk premium are dominated by

the two aforementioned extreme events. The standardised swaps exhibit an inert

reaction towards changing market conditions, which is rooted in their construc-

tion since the implied volatility used for standardisation is always lagged by one

monitoring period.

Figure 3.2 provides information on the term-structure of higher-moment risk

premia using a black line for the cumulative risk premia on 30-day DI moment

swaps, blue for 90-day swaps and green for DI swaps with 180 days to maturity.

The implied component (top-centre graph) does not much depend on the time to

maturity, so the term structure of implied variance is typically rather flat between

30-days and 180-days. And it is only during excessively volatile periods that the

realised variance appears to increase with maturity. If we had used Neuberger’s

log variance characteristic here, which only depends on the underlying and not on

any implied characteristic, then the realised leg would not depend on maturity at

all. Note that realised characteristics depend on maturity because they include

fundamental contacts, whose values are derived from options of that maturity.

The skewness and kurtosis risk premia exhibit similar but opposite effects in both

their implied and their realised components, both components become smaller

in magnitude as maturity increases, and the implied component dominates the

overall risk premium. The 30-day skew premium (black line) tends to be positive,

except during turbulent market crises periods. The skew premium at 90 days

(blue) is much smaller and close to zero and at 180 days (green) it tends to be
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Figure 3.2: Time series for daily-monitored 30-day (black), 90-day (blue) and 180-day
(green) variance, third-moment, skewness, fourth-moment and kurtosis cumulative risk
premia. The secondary axis on the right refers to the 30-day forward contract plotted in
grey. Again, these graphs depict the decomposition of the total cumulative risk premia
into realised and implied components according to Equation (2.27).

negative. Similar features are evident in the kurtosis premium but with opposite

signs: it is typically negative at 30 days, but sharply increases during periods

leading up to a market crisis. Indeed, a fourth-moment swap may be replicated

by adding a quartic contract to the portfolio (see Examples 3 or 4) and the

quartic contract places even greater weight on the relatively low cost low-strike
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put options which become attractive to risk-averse investors seeking insurance

against a market crash – before it happens. The kurtosis premium is much smaller

(near zero) at 90 days and also small but positive at 180 days. Standardising by

the implied variance as in (2.29) highlights the concentration of skewness and

kurtosis in the very short-term implied distribution. Again it is only when the

basket of options are re-balanced back to 30-day maturity on a monthly basis

that we observe a difference in behaviour of the implied leg; the daily- and weekly

rebalanced portfolios behave very similarly, just as in the skewness case.

3.2.3 Calendar, Frequency and Straddle Swaps

Given that risk premia can exhibit a strong term-structure pattern, as in Fig-

ure 3.2, the question arises whether systematic risk premia could be traded by

entering a floating-floating ‘calendar swap’ which exchanges two realised char-

acteristics, monitored at the same frequency, but with different maturities. For

example, a 180-for-30-day calendar variance swap pays the forward realised vari-

ance, from 30 days after inception of the contract up to 180 days, in exchange for

the corresponding fair-value swap rate, which equals the difference between the

180-day and 30-day swap rates.

Table 3.2 summarises the risk premia on some floating-floating swaps. For ease

of comparison each premium is standardised by dividing by its standard deviation

and annualising (as one does for the Sharpe ratio). The top panel exhibits the

standardised risk premia obtained on 180-for-30-day calendar swaps monitored at

three different frequencies. The incremental time series are shown in Figure 3.3.

As expected from the very different features of the skewness and kurtosis risk
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Calendar V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

[τ = 180]
–[τ = 30]

ΠD -0.05 0.02 -1.30 0.01 1.12 0.16 0.18 0.20
ΠW -0.03 0.02 -1.54 0.04 1.20 0.25 0.22 0.20
ΠM -0.02 0.10 -0.18 -0.08 -0.02 0.05 0.18 0.12

Frequency V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

τ = 30 -0.63 0.37 -0.66 -0.41 0.59 0.27 0.16 0.45
τ = 90 ΠM −ΠD -0.52 0.53 0.31 -0.54 -0.11 0.37 0.30 0.28
τ = 180 -0.46 0.48 1.60 -0.61 -1.77 -0.09 -0.04 0.07

Table 3.2: Standardised risk premia between January 1996 and December 2013 on daily,
weekly and monthly monitored 180-for-30-day calendar swaps (above) and 30-day, 90-
day and 180-day constant-maturity monthly-daily frequency swaps (below), where the
swap rates are exchanged for: moment swaps on the log price V (n), the skewness swap
V (3̄), the kurtosis swap V (4̄) as well as straddle swaps with strikes k1 = 1000, k2 = 1100
and k3 = 1200.

premia displayed in Figure 3.2, the skewness (kurtosis) calendar swaps exhibit

large negative (positive) premia at the daily and weekly monitoring frequencies.

No other calendar swaps display significant results. The lower panel in Table

3.2 displays standardised risk premia on ‘frequency swaps’ which exchange two

realised legs of the same maturity that are monitored at different frequencies, and

the corresponding incremental time series are shown in Figure 3.4.

For instance, a monthly-daily variance frequency swap receives monthly and

pays daily realised variance. Conveniently, the aggregation property (AP) implies

that the fair-value rate on this type of swap is zero, by definition, but the risk

premium may be positive or negative depending on the sample period and un-

derlying characteristic. These frequency swaps tend to give larger risk premia in

general and the skewness and kurtosis frequency swaps in particular have large

risk premia (1.60 and −1.77 respectively) at the 180-day maturity.

Figure 3.5 depicts the time series of risk premia on straddle swaps with strikes
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Figure 3.3: Time series of incremental 180-for-30 day constant-maturity variance, third-
moment, skewness, fourth-moment and kurtosis calendar risk premia based on daily
(black), weekly (purple) and monthly (red) monitoring.

k1 = 1000, k2 = 1100 and k3 = 1200 when monitored at different frequencies.8

The risk premium on these swaps can be large and negative during a crisis, e.g.

in September 2008 and August 2011. Otherwise, the risk premium is small and

positive and greater for straddle swaps that are monitored weekly or monthly than

8The choice of strike here allows us to investigate the behaviour of the swaps over the 18-year
sample period because call and put options at these strikes were traded most of the time. We
exclude strangle swaps from this analysis since they are more expensive to trade, due to the
concentration of liquidity at the money, but results are available from the authors on request.
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Figure 3.4: Time series of incremental monthly-daily variance, third-moment, skewness,
fourth-moment and kurtosis frequency risk premia based on 30 (black), 90 (blue) and
180 (green) days constant maturity.

for straddle swaps that are monitored daily.

3.2.4 Diversification of Risk Premia

How diverse are the risk premia obtainable through trading DI moment char-

acteristics? Tables 3.3, 3.4 and 3.5 present the correlations between daily (top

panels), weekly (mid panels) and monthly (bottom panels) monitored risk premia
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Figure 3.5: Time series for the cumulative risk premia on 30-day constant-maturity
straddle swaps with strikes k1 = 1000, k2 = 1100 and k3 = 1200, denoted by V [k1],
V [k2] and V [k3] and defined as in Example 5. Black, purple and red lines refer to swaps
with realised characteristics that are monitored on a daily, weekly and monthly basis,
respectively. Since the implied leg of a straddle swap is always zero, the risk premium
is driven entirely by the realised component.

on the DI swaps that we have previously examined for a constant maturity of 30,

90 and 180 days, respectively. In each panel the two rows at the top present the

correlations between the S&P 500 forward and log contract with the moment and

straddle swaps described earlier; the middle sub-matrix presents cross-correlations

between the moment swaps; and the right column presents the correlations with

the straddle swaps from Example 5.

As expected from the empirical study of Duffie et al. [2000] and many others

since, the correlation between the daily changes in the S&P 500 forward and the

variance swap in the top panel of Table 3.3 is around −0.6; the same holds for

the correlation between the log contract and the variance swap. Both correla-

tions decrease in magnitude, but only marginally, with the monitoring frequency,

reaching the values −0.48 and −0.51 under monthly monitoring in the bottom

panel, respectively. At the 180 days maturity horizon, this relationship between

correlation and monitoring frequency inverts yet remains at the same overall level,

as can be seen in Table 3.5. Thus, as is also evident from Figure 3.1, variance

swaps compensate the investor for downward shocks in the forward by a strongly

positive realised variance. Further, the VRP is negatively correlated with the
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Π
D

X V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

F 0.98 -0.61 0.60 0.74 -0.45 -0.52 0.27 0.35 0.41
X 1 -0.66 0.69 0.71 -0.53 -0.49 0.24 0.30 0.33

V (2) 1 -0.88 -0.54 0.87 0.46 -0.50 -0.44 -0.35
V (3) 1 0.41 -0.96 -0.32 0.19 0.15 0.15
V (3̄) 1 -0.33 -0.92 0.35 0.40 0.44
V (4) 1 0.27 -0.23 -0.12 -0.09
V (4̄) 1 -0.35 -0.39 -0.40

V [k1] 1 0.80 0.39
V [k2] 1 0.70

Π
W

X V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

F 0.98 -0.53 0.57 0.69 -0.45 -0.47 0.38 0.44 0.39
X 1 -0.59 0.66 0.67 -0.53 -0.45 0.39 0.43 0.35

V (2) 1 -0.89 -0.53 0.93 0.46 -0.77 -0.71 -0.46
V (3) 1 0.45 -0.97 -0.35 0.62 0.58 0.33
V (3̄) 1 -0.39 -0.95 0.45 0.52 0.47
V (4) 1 0.31 -0.66 -0.59 -0.30
V (4̄) 1 -0.40 -0.47 -0.43

V [k1] 1 0.91 0.46
V [k2] 1 0.69

Π
M

X V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

F 0.98 -0.48 0.56 0.57 -0.44 -0.50 0.42 0.44 0.48
X 1 -0.51 0.61 0.58 -0.48 -0.51 0.45 0.45 0.48

V (2) 1 -0.90 -0.86 0.94 0.85 -0.94 -0.91 -0.87
V (3) 1 0.90 -0.96 -0.87 0.92 0.90 0.85
V (3̄) 1 -0.84 -0.99 0.91 0.94 0.94
V (4) 1 0.82 -0.92 -0.89 -0.81
V (4̄) 1 -0.89 -0.93 -0.94

V [k1] 1 0.98 0.89
V [k2] 1 0.95

Table 3.3: Correlations between 30-day constant-maturity risk premia (τ = 30) based
on daily, weekly and monthly monitoring over the full sample from January 1996 to
December 2013.

third-moment, skewness and straddle-swap risk premia and positively correlated

with the fourth-moment and kurtosis premia at all monitoring frequencies and ma-
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turity horizons. Given its strong positive performance during crisis periods when

large losses accrue to short variance swaps positions, the third-moment swap could

even be attractive to variance swap issuers as a partial hedge.

ΠD X V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

F 0.98 -0.61 0.53 0.73 -0.35 -0.51 0.35 0.37 0.36
X 1 -0.69 0.62 0.71 -0.44 -0.49 0.29 0.28 0.26

V (2) 1 -0.92 -0.63 0.84 0.53 -0.42 -0.34 -0.29

V (3) 1 0.50 -0.95 -0.42 0.17 0.10 0.09

V (3̄) 1 -0.37 -0.93 0.50 0.47 0.43

V (4) 1 0.33 -0.11 -0.06 -0.05

V (4̄) 1 -0.45 -0.43 -0.39

V [k1] 1 0.77 0.49

V [k2] 1 0.77

ΠW X V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

F 0.97 -0.61 0.58 0.73 -0.43 -0.47 0.45 0.48 0.41
X 1 -0.69 0.69 0.71 -0.53 -0.45 0.42 0.42 0.34

V (2) 1 -0.92 -0.63 0.88 0.50 -0.67 -0.59 -0.42

V (3) 1 0.51 -0.96 -0.39 0.41 0.35 0.23

V (3̄) 1 -0.40 -0.91 0.62 0.63 0.51

V (4) 1 0.32 -0.35 -0.27 -0.18

V (4̄) 1 -0.52 -0.55 -0.43

V [k1] 1 0.87 0.54

V [k2] 1 0.81

ΠM X V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

F 0.98 -0.56 0.63 0.64 -0.47 -0.54 0.49 0.50 0.50
X 1 -0.60 0.70 0.65 -0.53 -0.55 0.50 0.50 0.49

V (2) 1 -0.92 -0.86 0.91 0.86 -0.93 -0.90 -0.85

V (3) 1 0.85 -0.94 -0.82 0.84 0.82 0.76

V (3̄) 1 -0.73 -0.99 0.92 0.93 0.89

V (4) 1 0.72 -0.80 -0.76 -0.69

V (4̄) 1 -0.92 -0.93 -0.89

V [k1] 1 0.98 0.91

V [k2] 1 0.96

Table 3.4: Correlations between 90-day constant-maturity risk premia (τ = 90) based
on daily, weekly and monthly monitoring over the full sample from January 1996 to
December 2013.
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Results for the skew and kurtosis risk premia are quite novel.9 There is a

strong positive correlation between the forward and the skew risk premium which

increases with monitoring frequency: It is 0.74 at the daily frequency but falls

to 0.57 at the monthly frequency, when considering the 30 days maturity hori-

zon. Again, the relationship between monitoring frequency and correlation inverts

when looking at the 180 days horizon yet remains at the same overall level. The

correlations between the skew and kurtosis premia are strongly negative for all

monitoring frequencies and maturities, ranging from−0.88 under daily monitoring

and for 180 days to maturity (see Table 3.5) to −0.99 under monthly monitoring

for 30 and 90 days to maturity (see Tables 3.3 and 3.4). This indicates that skew-

ness is clearly picking up the asymmetry in the tails of the distribution, rather

than asymmetry around the centre. At the monthly frequency, the correlation of

−0.86 between the P&L on the variance and skewness swaps is in line with the

findings of Neuberger [2012] and Kozhan et al. [2013].10

However, our more granular analysis allows for a more discerning conclusion,

i.e. that standardised moment risk premia behave quite differently from their non-

standardised counterparts when monitored at a higher frequency. The correlation

between variance and the third-moment premiums remains almost as high at the

daily frequency as it is at the monthly frequency (and similarly for the correlation

between variance and the fourth moment). However, the correlation between the

9They are similar to the non-standardised third-moment and fourth-moment risk premia,
respectively, so we confine our observations to skew and kurtosis.

10See Neuberger [2012], p.19: “Both the second and third moments, whether realised or
implied, [. . . ] are very highly (negatively) correlated with each other, with correlations in excess
of −0.9.” See also Kozhan et al. [2013], p.13, Table 2, Panel B: The correlation between excess
returns on the variance and cubic swap is 0.874 where the positive sign comes from the fact
that, in their setting, a writer of the cubic swap receives fixed an pays floating. The correlation
between the variance and skewness swap is even stronger (0.897).
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ΠD X V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

F 0.97 -0.53 0.40 0.52 -0.23 -0.34 0.26 0.24 0.17
X 1 -0.62 0.50 0.53 -0.32 -0.36 0.22 0.18 0.10

V (2) 1 -0.91 -0.64 0.79 0.56 -0.37 -0.26 -0.18

V (3) 1 0.52 -0.95 -0.44 0.15 0.06 0.01

V (3̄) 1 -0.37 -0.88 0.52 0.40 0.26

V (4) 1 0.36 -0.07 -0.01 -0.01

V (4̄) 1 -0.45 -0.36 -0.25

V [k1] 1 0.73 0.36

V [k2] 1 0.66

ΠW X V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

F 0.97 -0.60 0.52 0.66 -0.35 -0.50 0.34 0.34 0.30
X 1 -0.69 0.64 0.66 -0.47 -0.50 0.31 0.27 0.22

V (2) 1 -0.91 -0.67 0.83 0.61 -0.49 -0.40 -0.31

V (3) 1 0.53 -0.96 -0.48 0.21 0.12 0.09

V (3̄) 1 -0.40 -0.96 0.55 0.49 0.38

V (4) 1 0.38 -0.13 -0.05 -0.07

V (4̄) 1 -0.51 -0.45 -0.37

V [k1] 1 0.84 0.48

V [k2] 1 0.75

ΠM X V (2) V (3) V (3̄) V (4) V (4̄) V [k1] V [k2] V [k3]

F 0.98 -0.58 0.58 0.73 -0.37 -0.61 0.50 0.51 0.48
X 1 -0.64 0.67 0.73 -0.45 -0.61 0.49 0.49 0.47

V (2) 1 -0.91 -0.81 0.83 0.80 -0.85 -0.83 -0.77

V (3) 1 0.71 -0.93 -0.68 0.64 0.63 0.60

V (3̄) 1 -0.51 -0.98 0.88 0.87 0.80

V (4) 1 0.50 -0.50 -0.49 -0.47

V (4̄) 1 -0.88 -0.88 -0.82

V [k1] 1 0.97 0.87

V [k2] 1 0.95

Table 3.5: Correlations between 180-day constant-maturity risk premia (τ = 180)
based on daily, weekly and monthly monitoring over the full sample from January 1996
to December 2013.

skew (kurtosis) premium and the VRP decreases in magnitude from −0.86 (0.85)

under monthly monitoring, to−0.53 (0.46) with weekly monitoring, and it remains

at this level under daily monitoring. Another source of diversification is provided
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by the straddle swaps. They exhibit relatively low, positive correlations with the

forward and the third moment, a strong negative correlation with variance and a

relatively small negative correlation with the fourth-moment swaps.

3.2.5 Determinants of Moment Risk Premia

Following the study by Carr and Wu [2009] on the determinants of variance risk

premia, we now question whether significant common factors influencing our mo-

ment risk premia can be found among standard equity risk factors, namely: the

excess return on the market (ER); the ‘small minus big’ (size) and the ‘high mi-

nus low’ (growth) factors introduced by Fama and French [1993]; as well as the

‘up minus down’ (momentum) factor introduced by Carhart [1997].

Using monthly data on the VRP in the S&P 500 market from January 1996

through February 2003, Carr and Wu [2009] find no significant effect for anything

other than the market excess return as a driver of the VRP. They also add a

squared market factor as explanatory variable, as in the three-moment CAPM of

Kraus and Litzenberger [1976], but find no evidence of an asymmetric response

to market shocks. Our data construction methodology allows us to investigate

the same phenomenon using higher frequency data. Given that Engle [2011] and

others document the importance of an asymmetric response in volatility to market

shocks at the daily frequency, it seems likely that daily or even weekly data would

be sufficient to detect this effect. Using monthly data over the same period as Carr

and Wu [2009], we also find no empirical evidence for an asymmetric response in

the VRP. However, using daily data over the same period the regression coefficient

on the squared market factor is significantly different from zero at 0.1%. This
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finding leads us to question whether similar asymmetric responses are evident in

third and fourth moment, and skewness and kurtosis risk premia, when measured

at the daily frequency.

Figure 3.6 presents time series on daily changes in the S&P 500 30-day constant-

maturity synthetic futures price (in grey, measured on the right-hand scale) with a

black line (measured on the left-hand scale) depicting daily changes in the 30-day,

daily-monitored, DI VRP (above), skewness risk premium (middle) and kurtosis

risk premium (below). The DI VRP displays the well-known features common to

the standard VRP: it is typically small and negative but occasionally large and

positive, in particular during the onset of a period of market turbulence. Notably,

it has returned to very small levels ever since the Eurozone crisis in August 2011

– not dissimilar to its behaviour during the credit boom period of mid-2003 to

mid-2007. By contrast, the skew risk premium is typically small and positive,

but occasionally takes large negative values. For instance, on 27 February 2007 it

reached −22.26. On that day the S&P 500 index fell by 3.5%, its biggest one-day

fall since March 2003. The same day also marked a significant jump in the kur-

tosis risk premium, when it exceeded 160. Otherwise, like the VRP, the kurtosis

risk premium is usually small and negative. However, unlike the VRP, the kurto-

sis risk premium has clearly increased in variability during the latter part of the

sample.
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Figure 3.6: Time series for the daily incremental risk premia on 30-day constant-
maturity swaps. The black bars refer to variance, skewness and kurtosis, respectively,
while the grey bars represent the 30-day constant-maturity futures.

Following Carr and Wu [2009] we now specify the regression model:11

V̂ = α + β
ER
ER + β

ER2ER
2 + βssize + βggrowth + βmmomentum, (3.1)

where V̂ denotes the daily change in the 30-day risk premium under consideration.

We estimate this model using daily data on risk factors from Kenneth French’s

website but also present results for a restricted model where βs = βg = βm = 0.

We perform the analysis for the entire sample and separately for the financial crisis

11No significant autocorrelation is observed in the dependent and independent variables. Neu-
mann and Skiadopoulos [2013] do observe autocorrelation in daily data – on risk-neutral higher-
moments, as opposed to higher-moment risk premia – but it is not sufficiently significant to be
exploitable after transactions costs.
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period between July 2008 and June 2009. We standardise all time series to make

coefficients commensurate in size. As a result the intercept cannot be interpreted

as an expected risk premium, but the beta coefficients can be interpreted as the

number of standard deviations a risk premium is expected to change per standard

deviation change in the corresponding factor.

96-13 Variance 3rd Moment Skewness 4th Moment Kurtosis

α
-0.14 -0.14 0.04 0.04 0.06 0.06 -0.08 -0.08 -0.07 -0.07

(-13.45) (-13.57) (3.73) (3.74) (5.76) (5.71) (-6.10) (-6.10) (-5.40) (-5.17)

β
ER

-0.61 -0.63 0.65 0.65 0.70 0.74 -0.49 -0.50 -0.48 -0.52
(-62.73) (-61.06) (57.90) (56.20) (68.00) (68.91) (-39.97) (-38.28) (-37.71) (-39.39)

β
ER2

0.14 0.14 -0.04 -0.04 -0.06 -0.06 0.08 0.08 0.07 0.07
(42.33) (42.38) (-11.74) (-11.67) (-18.13) (-17.84) (19.21) (19.07) (17.01) (16.16)

βs
0.06 -0.07 -0.02 0.05 -0.03

(6.43) (-6.56) (-2.14) (4.10) (-2.21)

βg
-0.09 0.12 0.03 -0.11 -0.07

(-8.89) (10.68) (2.43) (-8.51) (-4.86)

βm
0.00 -0.05 0.14 0.05 -0.14

(0.39) (-4.31) (12.79) (3.93) (-10.52)
R2 0.567 0.581 0.439 0.469 0.528 0.544 0.309 0.331 0.280 0.298
F (50.1) (83.8) (56.0) (50.9) (40.0)

08-09 Variance 3rd Moment Skewness 4th Moment Kurtosis

α
-0.65 -0.76 0.30 0.44 0.10 0.11 -0.52 -0.65 -0.10 -0.11

(-4.61) (-5.66) (2.01) (3.22) (2.88) (2.91) (-2.99) (-3.95) (-2.97) (-3.09)

β
ER

-1.04 -1.24 1.40 1.69 0.37 0.36 -1.23 -1.53 -0.23 -0.23
(-18.64) (-16.19) (23.63) (21.62) (25.72) (17.01) (-17.60) (-16.13) (-16.94) (-11.68)

β
ER2

0.15 0.17 -0.05 -0.07 -0.03 -0.04 0.10 0.12 0.03 0.03
(11.84) (13.76) (-3.49) (-5.35) (-10.28) (-10.35) (6.16) (7.89) (9.66) (9.87)

βs
0.26 -0.22 -0.05 0.22 0.04

(3.68) (-3.10) (-2.43) (2.46) (2.05)

βg
0.30 -0.38 -0.00 0.47 0.02

(3.16) (-3.94) (-0.04) (3.97) (0.73)

βm
-0.07 0.13 -0.01 -0.07 0.01

(-0.72) (1.38) (-0.42) (-0.66) (0.22)
R2 0.658 0.704 0.694 0.750 0.753 0.756 0.579 0.639 0.600 0.603
F (13.7) (19.6) (2.0) (14.8) (1.6)

Table 3.6: Estimates and t-statistics (in brackets) as well as adjusted R2 and F-test
(in brackets) on joint significance for the restricted and unrestricted regression of the
constant 30-days-to-maturity moment risk premia from January 1996 to December 2013
as well as for the crisis period from July 2008 to June 2009.
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Being based on more than 4500 observations, our analysis over the entire

period provides some highly significant results. The first blocks of both panels in

Table 3.6 report our results for the VRP. The linear and quadratic excess return

factors have highly significant loadings, the negative β̂
ER

being compensated by

a positive β̂
ER2 . Thus the VRP increases more when there is a negative market

return than it decreases when there is a positive return of the same size. This

asymmetric response is particularly pronounced during the financial crisis period

(bottom panel). Over the whole 18-year period (top panel) the coefficients on the

size and growth factors are small but significant, indicating that firm size has a

positive impact and firm growth a negative impact on the VRP, respectively. The

addition of the Fama-French factors only marginally increases the adjusted R2

from 0.567 to 0.581 but the F -statistic for addition of these factors is significant.

During the financial crisis the R2 increases considerably relative to its value

over the full sample as the VRP becomes more sensitive to market shocks. The

Fama-French factors, however, remain only marginally significant. Of these only

the size factor has a significant coefficient of the same sign as for the full sample

estimate. The change in sign of the coefficient on growth underlines the fact that

July 2008 – June 2009 represents a very particular market regime. The momentum

factor appears to be irrelevant for both periods considered.

The second column block of Table 3.6 displays estimates for the third-moment

risk premium. Here, the directional effects of the linear and quadratic factors are

opposite to those observed in the variance premium regression: a market shock

now has a greater impact on the third-moment premium when positive than when

negative. The contribution of the size and momentum factors is relatively small
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but the growth factor has a significant positive effect which again changes sign

during the financial crisis. Conclusions regarding the skewness premium (in the

third column block of the table) are similar, except that it is momentum rather

than growth that has a positive effect on the skewness premium. It is remarkable

that the explanatory power during the crisis period for the third moment is as

high as 0.694 (0.750 for the unrestricted model) and even higher (0.753) for the

skewness risk premium. In fact, during the financial crisis the Fama-French and

Carhart factors have almost no impact on the skewness premium: the F-statistic

for joint significance is only 2.0. The fourth and fifth column blocks of Table 3.6

analyse the determinants of the fourth-moment and kurtosis risk premia. The

much lower R2 here indicates that these premia may be driven, to a large extent,

by so far unknown risk factors. Otherwise the conclusions drawn are similar to

– yet weaker than – those drawn about the variance premium. Apart from the

excess market return the only consistently significant effect is exhibited by the

growth factor for the fourth-moment risk premium and by the momentum factor

for the kurtosis risk premium, where the signs of the corresponding coefficients

are opposite to those for the regression on the third-moment and skewness risk

premia.



Chapter 4

Variance Swaps in Affine Models

The purpose of the third main part of this thesis is to derive the dynamics of

variance swaps in affine stochastic volatility (SV) models as well as variance risk

premia that result from different Q- and P-parameterisations. We compare the

risk premia for standard variance swaps with those based on Neuberger’s alterna-

tive definition of realised variance as well as the squared changes in the price of

the log contract we use in the empirical section.

After giving an overview of the existing literature on such model-dependent

evaluations, we derive explicit formulae for the Heston model as well as a stochas-

tic volatility model with contemporaneous jumps in the underlying and variance

process. We discuss the impact of the diverse model parameters of both the

risk-neutral and the physical price process on the dynamics of a variance swap

87
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as well as the variance risk premium (VRP). Particular attention is given to

the effect of jumps in the underlying process, which have a different impact on

the discretisation-invariant characteristic we use and the standard characteristic,

squared log returns, which does not satisfy the aggregation property.

We further provide an explicit derivation for the joint characteristic function of

the price and volatility processes in the Heston model, which makes it possible to

analytically evaluate the prices of power log contracts other than the log contract.

These prices can be used to derive similar analytic expressions for higher-moment

swap dynamics and risk premia. However, we spare the reader from displaying

these rather bulky formulae. The main references for all technical derivations are

Cont and Tankov [2004], Hull [2009], Jacod and Shiryaev [2003], Oksendal [2003]

and Shreve [2004].

4.1 Literature Review

Besides the evaluation of empirically observable risk premia, a considerable body

of literature is concerned with the implications of model assumptions for the

underlying process on the pricing and hedging of variance swaps. The objects of

interest are the risk-neutral and physical dynamics of both the realised leg and

the premium paid for a swap contract as well as the swap rate and implied higher-

moments.1 The purpose of this literature review is to summarise existing results

1The traditional derivatives pricing literature develops models under a risk-neutral measure
for the purpose of pay-off valuation, based on no-arbitrage considerations, and calibrates them
to a snapshot of options data. By contrast, mainstream asset pricing literature looks at (possibly
cross-sectional) time-series data and tries to identify common behaviour and determinants of
the price development under the physical measure. Although these two are fundamentally
different concepts, a more recent branch of literature tries to incorporate both views in unified
‘equilibrium’ models. In these theories the change from the risk-neutral to the physical measure
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on these Q and P-dynamics for a variety of stochastic volatility models and draw

a connection to the market price of risk.

When pricing a swap in a model, the first question to ask is about the finiteness

of the fair-value swap rate. For a variety of stochastic volatility models Andersen

and Piterbarg [2007] assess whether these are well-posed, which is the case if a

sufficiently large number of risk-neutral moments of the price distribution are finite

for finite time horizons and given model parameters. They argue that popular

models have been abused in order for their dynamics to incorporate a variety

of features, leading to a lack of price bounds for otherwise common derivative

securities. In the following we will focus on analytically tractable models where

the variance swap rate exists for finite horizons.

In the classical Black and Scholes [1973] model volatility is assumed to be

constant and hence the only risk premium which can be captured is the equity

risk premium (ERP). In order to explain the presence of a VRP, one must as-

sume variance to be stochastic. One of the simplest and most popular stochastic

volatility model that preserves analytical tractability is given by Heston [1993].

However, fair-value variance swap rates can also be derived for other models in-

cluding those introduced by Cox and Ross [1976], Emanuel and MacBeth [1982],

Bates [1996], Scott [1997], Bates [2000], Barndorff-Nielsen and Shephard [2001],

Carr and Schoutens [2008], Christoffersen et al. [2009] and Goard [2011]. The

following paragraphs provide a review of closed-form as well as approximate pric-

ing formulae that are available for both discretely and continuously monitored

and vice-versa, which in the derivatives pricing literature is referred to as the Radon-Nikodým
derivative and in the asset pricing literature as the stochastic discount factor, is called the pricing
kernel. All these concepts are essentially equivalent to the market price of risk.
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variance swaps.

4.1.1 Results for the Heston Model

The Heston [1993] model allows one to reproduce stylised facts from empirical

observations such as the volatility smile implicit in equity, commodity and other

option prices. It is built on a mean-reverting variance process, which is introduced

in Cox et al. [1985] and has a quasi-analytical representation (i.e. an explicit

solution up to an integral along the path of a Brownian Motion). The fair strike

price for a variance swap in the Heston [1993] model is derived in Broadie and

Jain [2008a]; so also is an upper bound for the fair strike of a volatility swap,

which pays the square root of realised variance in exchange for a fixed swap rate.

Broadie and Jain [2008b] generalise the results from Broadie and Jain [2008a]

for volatility and variance swaps in the models by Merton [1973], Bates [1996]

and Scott [1997]. They state that the convexity correction for volatility swaps is

not adequate in the presence of jumps in the underlying, and that jumps have a

stronger impact on swap rates than discrete monitoring.

Rujivan and Zhu [2014] derive a closed-form solution for the price of a discretely-

monitored variance swap, exploiting the tower rule for conditional expectations,

and comment on the transferability of this solution to other affine models. Guil-

laume and Schoutens [2014] show how calibrating the Heston [1993] model to

variance swap rates can yield stable parameter estimates over time. Detlefsen

and Haerdle [2013] address problems that arise when a static model is used for

explaining the term structure of variance. In particular, the authors comment on

insufficient out-of-sample performance and a lack of capturing observable dynam-
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ics. Zhu and Lian [2015] derive pricing formulae for discretely-monitored variance

swaps in the Heston model based on both squared log returns and squared sim-

ple returns. Using Monte-Carlo simulation and an Euler-style discretisation of

the model, they analyse the effects of sampling frequency, forward start, mean

reversion and realised characteristic on the fair-value swap rate.

Also in the Heston [1993] model, yet in an incomplete market with regime

switching, Elliott et al. [2007] derive a partial differential equation that can be

solved in order to approximate the prices of continuously monitored variance and

volatility swaps. The results are extended to the discrete monitoring case by

Elliott and Lian [2013], who develop analytic pricing formulae for variance and

volatility swaps. They discuss the impact of the monitoring frequency and relate

the results to the continuous limit. Zhu and Lian [2012] derive a computationally

efficient pricing formula for discretely monitored variance swaps and find that the

discrete monitoring error is exponentially increasing as the frequency decreases.

They generalise their results to forward starting variance swaps in Zhu and Lian

[2015]. Carr and Schoutens [2008] consider a modification of the Heston [1993]

model which incorporates a jump-to-default feature and demonstrate how power

payoffs as well as European options can be hedged using variance swaps and credit

default swaps. The authors apply the theory of orthogonal polynomials to relate

Gamma payoffs, Dirac payoffs and European options to the purpose of deriving

an approximation hedge between the corresponding derivative instruments.
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4.1.2 Affine Stochastic Volatility Models

Many analytical results from the Heston [1993] model can be transfered to more

general affine models, and the fundamental properties of this class of models are

presented in Duffie et al. [2000]. The authors provide a method for finding an-

alytical solutions to a wide range of asset and derivatives pricing problems. For

a very general class of affine jump-diffusions, they derive a closed-form represen-

tation for what they call the ‘extended transform’. Evaluating the characteristic

function of the log price (and all other state variables) reduces to solving a set

of ordinary differential equations, which is computationally easy. The pricing of

options on quadratic variation in affine models is discussed in Kallsen et al. [2011],

with particular emphasis on analytical tractability. Egloff et al. [2010] show that

the variance term structure is driven by two main factors, namely the short end

and the long end, and can be modelled using an affine model. According to the

authors, a portfolio consisting of a long position in long-term variance swaps and

short positions in short-term variance swaps as well as the underlying index is

optimal for investors. They follow the affine model specification of Duffie et al.

[2000] and compare the Heston [1993] model with a two-factor variance rate model

that incorporates a stochastic mean level.

In affine models, a number of structure-preserving specifications of the pricing

kernel have been identified. The market price of risk in a Heston-style and other

affine asset pricing models depends on the difference between the mean-reversion

and long-term mean parameter under the physical and the risk-neutral measure.

Based on the definition of a completely affine specification of the market price

of risk by Dai and Singleton [2000] and the later generalisation to essentially
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affine specifications by Duffee [2002], which allows the market price of risk to vary

independently from the current level of volatility, Cheridito et al. [2007] introduce

an extended affine specification. This way of modelling the market price of risk

incorporates the previous two cases and is always more general than the completely

affine specification. Chernov and Ghysels [2000] develop an approach to jointly

estimate the risk-neutral and physical parameters by tackling the challenge of

latent variables involved in the model selection process. The estimation approach

is illustrated using the Heston model as well as the standard change of measure

where the mean-reversion level and speed can differ between the two measures

but the correlation of the driving Brownian motions is the same. Their results

indicate the relative importance of the filtered volatility estimate over the choice

of a particular option pricing formula.

4.1.3 Other Diffusion Processes

Beyond affine models, the 3/2 stochastic volatility model has attracted the atten-

tion of researchers in recent years. As opposed to the Heston [1993] model, the

drift and diffusion terms of the volatility process in the 3/2 model are quadratic

in and proportional to the 3/2 power of the current volatility level, respectively.

A range of publications address the pricing of variance swaps under these model

assumptions. Jarrow et al. [2013] analyse the convergence behaviour of the price

of a discretely monitored variance and volatility swap towards the continuously

monitored limit. Goard [2011] considers an extension of the model where the

mean-reversion level can be time-dependent, improving calibration properties.

Chan and Platen [2015] discuss the pricing and hedging features of long-dated



94 CHAPTER 4. VARIANCE SWAPS IN AFFINE MODELS

contracts, based on a specification of the model under both the risk-neutral and

the physical measure, and derive an analytical pricing formula. Again under the

3/2 volatility model, Drimus [2012] derives a pricing formula for options on re-

alised variance using Laplace transform techniques as well as hedging ratios and

draws a comparison to the Heston model benchmark.

Alternatively, Jordan and Tier [2009] derive pricing formulas for continuously

monitored variance swaps under the constant elasticity of volatility (CEV) model.

In particular, they present a closed-form solution for the price of a log contract as

well as an approximate price for a shifted CEV process, where a lower threshold

triggers default. In order to circumvent problems with certain parameterisations

where the underlying price can reach zero and therefore the log contract is not well

defined, Wang et al. [2015] develop an alternative numerical approach for calculat-

ing the fair-value swap rate. Javaheri et al. [2004] use a generalised autoregressive

conditional heteroscedasticity (GARCH) model as well as its continuous-time limit

to price and hedge volatility swaps, providing an approximation for the convexity

correction. Also starting from a continuous-time GARCH model, Swishchuk and

Xu [2011] further include a jump component into the underlying price process and

provide approximate pricing formulae.

Benth et al. [2007] derive swap price dynamics for powers of realised volatility

under the Non-Gaussian Ornstein-Uhlenbeck-type model proposed by Barndorff-

Nielsen and Shephard [2001]. The authors show that the prices which they de-

rive for continuously monitored variance swaps are very close to those for dis-

cretely monitored contracts. They also derive option pricing formulae as well

as approximations for volatility swaps. Again for a Non-Gaussian Ornstein-
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Uhlenbeck process, Barndorff-Nielsen and Veraart [2013] study the impact of

stochastic volatility-of-volatility on the leverage effect as well as the VRP. They

also study structure-preserving change of measures in an incomplete market,

where the stochastic differential equations (SDEs) explaining theP andQ-dynamics

correspond to different parameterisations of the same model.

4.1.4 The Effect of Jumps

Jumps are particularly important when it comes to pricing continuously moni-

tored swap derivatives. Carr et al. [2005] study the pricing of options on realised

variance for underlying processes that are pure sequences of jumps and argue

that in a risk-neutral setting quadratic variation, which corresponds to the limit

of realised variance as the monitoring frequency becomes infinite, is crucial for the

pricing of financial derivatives. The authors compare Lévy and Sato processes with

both finite and infinite jump activity as well as a special Carr-Geman-Madan-Yor

(CGMY) Lévy process and derive an option pricing formula using the Laplace

transform of realised variance. In a subsequent publication, Carr et al. [2011]

discuss term-structure monotonicity of call option prices and relate empirical ob-

servations to stochastic volatility models and Lévy processes. Related results

based on stochastic time change can be found in Itkin and Carr [2010].

Bates [2000] finds that including jumps leads to more plausible parameters for

the stochastic volatility and therefore jumps are necessary to explain skewness

consistently with the time-series characteristics of futures prices. However, he ar-

gues that “since unconstrained risk premia can potentially explain any deviations

between actual and risk-neutral distributions, it is important to have some idea of
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plausible values for signs and magnitudes”. Bakshi et al. [1997] perform a similar

analysis for option pricing models with stochastic volatility, jumps and interest

rates and assess whether the risk-neutral parameterisations are compatible with

the time-series characteristics. They find that jumps are important for improv-

ing the pricing performance but not for hedging, while introducing correlation

between interest rates and stock prices does not yield any improvement in perfor-

mance. Also for stochastic volatility models with jumps Bregantini [2013] develops

a moment-based estimation method which relies on lagged realised variance.

4.2 Heston Model

The Heston [1993] model is defined by the forward dynamics of the underlying as

well as the stochastic variance process under the risk-neutral measure:

dFt := Ft
√
vtdW

F (Q)
t ,

dvt := κ(Q)
(
θ(Q) − vt

)
dt+

√
vtσdW

v(Q)
t ,

where the condition 2κ(Q)θ(Q) > σ2 guarantees positivity of the variance and

dW
F (Q)
t dW

v(Q)
t =: ρdt denotes the correlation of the Wiener processes. The log

forward price xt := lnFt follows the dynamics

dxt =
√
vtdW

F (Q)
t − vt

2
dt,

with quadratic variation 〈x〉t =
´ t

0
vudu. Whenever we omit the measure super-

script for a model parameter, it corresponds to that of the corresponding Wiener
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process. If we omit the measure superscript for a Wiener process, the correspond-

ing equation holds under all measures under consideration.

4.2.1 Variance Process and Log Contract

First we derive the explicit solution for v by applying Itô’s formula to eκtvt:

d
(
eκtvt

)
= eκtκvtdt+ eκtdvt = eκtκθdt+ eκt

√
vtσdW

v
t .

Integrating both sides from t to u ≥ t yields

eκuvu − eκtvt = θ
(
eκu − eκt

)
+ σ

ˆ u

t

eκs
√
vsdW

v
s ,

and we can solve for vu:

vu = e−κ(u−t)vt + θ
(
1− e−κ(u−t))+ e−κuσ

ˆ u

t

eκs
√
vsdW

v
s

= θ + e−κ(u−t) (vt − θ) + σ

ˆ u

t

e−κ(u−s)√vsdW v
s .

Then E [vu| Ft] = θ+ e−κ(u−t) (vt − θ). We shall further use the notation d 〈x〉t =

vtdt. The quadratic variation of the log price, which corresponds to integrated

variance, yields

〈x〉t =

ˆ t

0

vudu =

ˆ t

0

(
θ + e−κu (v0 − θ) + σ

ˆ u

0

e−κ(u−s)√vsdW v
s

)
du

=
[
θu− 1

κ
e−κu (v0 − θ)

]t
0

+ σ

ˆ t

0

ˆ t

s

e−κ(u−s)du
√
vsdW

v
s

= θt− 1
κ

(
e−κt − 1

)
(v0 − θ)− σ

κ

ˆ t

0

(
e−κ(t−s) − 1

)√
vsdW

v
s ,
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where we have changed the order of integration in the second line.

The price process of the log contract Xt := EQ [x
T
| Ft] with maturity T ≥ t is

Xt = xt +EQ
[ˆ T

t

dxu

∣∣∣∣Ft] = xt − 1
2

ˆ T

t

EQ [vu| Ft] du

= xt − 1
2

ˆ T

t

[
θ(Q) + e−κ

(Q)(u−t) (vt − θ(Q)
)]
du

= xt − θ(Q)

2
(T − t) + 1

2κ(Q)

(
e−κ

(Q)(T−t) − 1
) (
vt − θ(Q)

)
,

with dynamics

dXt = dxt + θ(Q)

2
dt+ 1

2κ(Q)

(
e−κ

(Q)(T−t)dvt + e−κ
(Q)(T−t)vtκ

(Q)dt

−dvt − θ(Q)e−κ
(Q)(T−t)κ(Q)dt

)
=
√
vt

[
dW

F (Q)
t + σ

2κ(Q)

(
e−κ

(Q)(T−t) − 1
)
dW

v(Q)
t

]
,

and quadratic variation

〈X〉t =

ˆ t

0

vu

[
1 + ρσ

κ(Q)

(
e−κ

(Q)(T−u) − 1
)

+ σ2

4(κ(Q))
2

(
e−κ

(Q)(T−u) − 1
)2
]
du

=

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

) ˆ t

0

vudu+

(
ρσ
κ(Q) − σ2

2(κ(Q))
2

)
e−κ

(Q)T

ˆ t

0

eκ
(Q)uvudu

+ σ2

4(κ(Q))
2 e−2κ(Q)T

ˆ t

0

e2κ(Q)uvudu.
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Using that vu = θ+e−κ(u−t) (vt − θ)+σ
´ u
t

e−κ(u−s)√vsdW v
s we can further simplify

ˆ T

t

eκ
(Q)uvudu =

ˆ T

t

[
eκ

(Q)uθ(Q) + eκ
(Q)t
(
vt − θ(Q)

)
+ σ

ˆ u

t

eκ
(Q)s√vsdW v

s

]
du

= θ(Q)

κ(Q)

(
eκ

(Q)T − eκ
(Q)t
)

+ eκ
(Q)t
(
vt − θ(Q)

)
(T − t)

+σ

ˆ T

t

(T − s)eκ(Q)s√vsdW v
s ,

as well as

ˆ T

t

e2κ(Q)uvudu =

ˆ T

t

[
e2κ(Q)uθ(Q) + eκ

(Q)(u+t)
(
vt − θ(Q)

)
+σeκ

(Q)u

ˆ u

t

eκ
(Q)s√vsdW v

s

]
du

= θ(Q)

2κ(Q)

(
e2κ(Q)T − e2κ(Q)t

)
+ vt−θ(Q)

κ(Q)

(
eκ

(Q)(T+t) − e2κ(Q)t
)

+ σ
κ(Q)

ˆ T

t

(
eκ

(Q)(T+s) − e2κ(Q)s
)√

vsdW
v
s .

4.2.2 Squared Log Contract

The price process of the squared log contract X
(2)
t := EQ [x2

T | Ft], T ≥ t is

X
(2)
t = EQ

[
X2
T

∣∣Ft] = EQ
[
(XT −Xt +Xt)

2
∣∣Ft]

= EQ
[
(XT −Xt)

2 +X2
t

∣∣Ft] = X2
t +EQ

[(ˆ T

t

dXu

)2
∣∣∣∣∣Ft
]

= X2
t +EQ

[ˆ T

t

(dXu)
2

∣∣∣∣Ft] = X2
t +EQ [〈X〉T − 〈X〉t| Ft] ,
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where

EQ [〈X〉T − 〈X〉t| Ft] =

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

)
θ(Q)(T − t)

−
(

1− ρσ
κ(Q) + σ2

4(κ(Q))
2

)
1

κ(Q)

(
e−κ

(Q)(T−t) − 1
) (
vt − θ(Q)

)
+

(
ρσ
κ(Q) − σ2

2(κ(Q))
2

)
e−κ

(Q)T θ(Q)

κ(Q)

(
eκ

(Q)T − eκ
(Q)t
)

+

(
ρσ
κ(Q) − σ2

2(κ(Q))
2

)
e−κ

(Q)(T−t) (vt − θ(Q)
)

(T − t)

+ σ2

4(κ(Q))
2 e−2κ(Q)T θ(Q)

2κ(Q)

(
e2κ(Q)T − e2κ(Q)t

)
+ σ2

4(κ(Q))
2 e−2κ(Q)T vt−θ(Q)

κ(Q)

(
eκ

(Q)(T+t) − e2κ(Q)t
)
.

4.2.3 VIX Volatility Index

The CBOE Volatility Index (VIX) volatility index is defined in a way such that

vix2
t := 2

T−t (xt −Xt) and accordingly

vixt =

√
θ(Q) − e−κ(Q)(T−t) − 1

κ(Q)(T − t)
(vt − θ(Q)).

4.2.4 Variance Swaps

The value process of an idealised standard variance swap, as e.g. considered by

Carr and Wu [2009], that pays the quadratic variation of the log-price for a fixed

swap rate yields V (S)
tT

:= EQ
[
〈x〉

T

∣∣Ft] − EQ [〈x〉
T

∣∣F0

]
, which implies V (S)

0T
= 0
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at inception. In the Heston model we have

E
[
〈x〉

T

∣∣Ft] = E
[
θT − 1

κ

(
e−κT − 1

)
(v0 − θ)

−σ
κ

ˆ T

0

(
e−κ(T−s) − 1

)√
vsdW

v
s

∣∣∣∣Ft]
= θT − 1

κ

(
e−κT − 1

)
(v0 − θ)− σ

κ

ˆ t

0

(
e−κ(T−s) − 1

)√
vsdW

v
s ,

and therefore

V (S)
tT

= − σ
κ(Q)

ˆ t

0

(
e−κ

(Q)(T−s) − 1
)√

vsdW
v(Q)
s ,

with dynamics dV (S)
tT

= − σ
κ(Q)

(
e−κ

(Q)(T−t) − 1
)√

vtdW
v(Q)
t . A perpetual idealised

standard variance swap that pays the quadratic variation of the log-price for a

fixed swap rate up to infinity (T →∞) follows the price process

V (S)
t∞ = σ

κ(Q)

ˆ t

0

√
vsdW

v(Q)
s ,

with dynamics dV (S)
t∞ = σ

κ(Q)

√
vtdW

v(Q)
t . In a pure diffusion model, an idealised

(i.e. continuously monitored) variance swap based on the realised leg as defined by

Neuberger [2012] yields the same payoff as the idealised standard variance swap

since

ˆ T

0

2
(
edxt − dxt − 1

)
=

ˆ T

0

2
(
1 + dx+ 1

2
(dxt)

2 − dxt − 1
)

=

ˆ T

0

(dxt)
2 = 〈x〉t ,

where all higher powers of dxt vanish for a continuous process.

By contrast, the value process of our continuously monitored discretisation-
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invariant variance swap yields V (DI)
tT

:= EQ
[
〈X〉

T

∣∣Ft] − EQ [〈X〉
T

∣∣F0

]
, which

again implies V (DI)
0T

= 0. Using the dynamics and quadratic variation of the log

contract in the Heston model, we have

E
[
〈X〉

T

∣∣Ft] =

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

)
E

[ˆ T

0

vudu

∣∣∣∣Ft]
+

(
ρσ
κ(Q) − σ2

2(κ(Q))
2

)
e−κ

(Q)TE

[ˆ T

0

eκ
(Q)uvudu

∣∣∣∣Ft]
+ σ2

4(κ(Q))
2 e−2κ(Q)TE

[ˆ T

0

e2κ(Q)uvudu

∣∣∣∣Ft] ,
and therefore

V (DI)
tT

= − σ
κ(Q)

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

) ˆ t

0

(
e−κ

(Q)(T−s) − 1
)√

vsdW
v(Q)
s

+ σ
κ(Q)

(
ρσ − σ2

2κ(Q)

)
e−κ

(Q)T

ˆ t

0

(t− s)eκ(Q)s√vsdW v(Q)
s

+ σ
κ(Q)

σ2

4(κ(Q))
2 e−2κ(Q)T

ˆ t

0

(
eκ

(Q)(t+s) − e2κ(Q)s
)√

vsdW
v(Q)
s .

The perpetual variance swap that pays the quadratic variation of the log-contract

for a fixed swap rate up to infinity (T →∞) follows the price process

V (DI)
t∞ = σ

κ(Q)

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

) ˆ t

0

√
vsdW

v(Q)
s ,

with dynamics dV (DI)
t∞ = σ

κ(Q)

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

)
√
vtdW

v(Q)
t . Thus, the dynam-

ics of the perpetual idealised discretisation-invariant variance swap corresponds

to the dynamics of the perpetual idealised standard variance swap multiplied with

an adjustment factor that depends on the mean reversion speed, the variance of

variance as well as the correlation between the changes in price and variance. In
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particular,

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

)
is positive as long as |ρ| < 1, which covers all

relevant cases.

4.2.5 Change of Measure and Pricing Kernel

We now assume that the price process also follows a Heston model under the

physical probability measure, albeit with a different set of parameters. Then

dFt := Ft (µt − rt) dt+ Ft
√
vtdW

F (P)
t ,

dvt := κ(P)
(
θ(P) − vt

)
dt+

√
vtσdW

v(P)
t ,

where the condition 2κ(P)θ(P) > σ2 guarantees positivity of v and the change of

measure is given by dW
F (P)
t = dW

F (Q)
t −λFt dt as well as dW

v(P)
t = dW

v(Q)
t −λvt dt,

while the correlation ρ between the Wiener processes remains unchanged.2

Consequently, and in accordance with Chernov and Ghysels [2000], the market

price of risk in the underlying yields λFt = µt−rt√
vt

and the market price of variance

risk yields λvt =
√
vt
σ

(
κ(Q) − κ(P)

)
− κ(Q)θ(Q)−κ(P)θ(P)

√
vtσ

, with the pricing kernel being

mt =
dQ

dP

∣∣∣∣
Ft

= exp

{
−
ˆ t

0

λFs dW
F (P)
s −

ˆ t

0

λvsdW
v(P)
s − 1

2

ˆ t

0

[(
λFs
)2

+ (λvs)
2
]
ds

}
,

or equivalently the inverse pricing kernel being

m−1
t =

dP

dQ

∣∣∣∣
Ft

= exp

{ˆ t

0

λFs dW
F (Q)
s +

ˆ t

0

λvsdW
v(Q)
s − 1

2

ˆ t

0

[(
λFs
)2

+ (λvs)
2
]
ds

}
.

2No arbitrage implies that ρ be the same under both measures, see Broadie et al. [2007]
and Bardgett et al. [2015]. Details regarding change of measure in a multivariate setting are
provided in the Appendix.
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4.2.6 Equity and Variance Risk Premia

The ERP can be defined as EP [ (1−mt)FT | Ft], and the instantaneous ERP in

the Heston model yields Ft (µt − rt). This corresponds to the annualised amount

which an investor expects to receive for holding one share of the underlying over

the infinitesimally small time period [t, t+dt]. Alternative definitions can be found

in Bollerslev and Todorov [2011], where the ERP is EP [ (1−mt)FT /Ft| Ft] and

the instantaneous ERP yields µt−rt, as well as in Bardgett et al. [2015], where the

ERP yields EP [ (1−mt)xT | Ft], with the instantaneous ERP being µt − rt − vt
2

.

The VRP is commonly defined as EP
[

(1−mt)
´ T
t
vsds

∣∣∣Ft], and the instan-

taneous VRP in the Heston model yields

vt − θ(Q) − κ(P)

κ(Q)

[
vt − θ(P)

]
.

This corresponds to the annualised amount which an investor expects to receive

for shorting a delta-hedged log contract (with infinite maturity), i.e. investing in a

perpetual standard variance swap, over the infinitesimally small time period [t, t+

dt]. We suggest the alternative definition EP
[
(1−mt)x

2
T

∣∣Ft], which is consistent

with the definition of the ERP by Bardgett et al. [2015]. The instantaneous VRP

in the Heston model yields

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

)(
vt − θ(Q) − κ(P)

κ(Q)

[
vt − θ(P)

])
,

and corresponds to the annualised amount which an investor expects to receive

for investing in a perpetual idealised discretisation-invariant variance swap over

the infinitesimally small time period [t, t+ dt]. Assuming that the physical mean
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reversion level is considerably lower than the risk-neutral mean reversion level,

and that the mean reversion speed is roughly the same under the physical and

risk-neutral measure, both variance risk premia are negative.

4.2.7 Joint Characteristic Function

We now turn to the joint characteristic function of the log price and the variance:

Ψ (t, xt, vt, ξ, η, T ) := E
[
eiξxT +iηv

T

∣∣Ft] .
Using Itô’s formula for complex functions we derive the dynamics of Ψ as

dΨ = Ψtdt+ Ψxdxt + 1
2
Ψxxd 〈x〉t + Ψvdvt + 1

2
Ψvvd 〈v〉t + Ψxvdxtdvt

=
[
Ψt − vt

2
Ψx + vt

2
Ψxx + κ (θ − vt) Ψv + vt

2
σ2Ψvv + ρσvtΨxv

]
dt

+
√
vtΨxdW

F
t + σ

√
vtΨvdW

v
t ,

where the subscripts denote the respective derivatives of Ψ. Now Ψ follows a

martingale by construction and therefore the drift must be zero, i.e.

Ψt − vt
2

Ψx + vt
2

Ψxx + κ (θ − vt) Ψv + vt
2
σ2Ψvv + ρσvtΨxv = 0.

Since the Heston model is affine in all state variables we know from Duffie et al.

[2000] that the characteristic function must have a representation of the form

Ψ (t, xt, vt, ξ, η, T ) = eA(t)+B(t)xt+C(t)vt ,
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with the relevant derivatives being

Ψt (t, xt, vt, ξ, η, T ) = Ψ (t, xt, vt, ξ, η) [A′(t) + B′(t)xt + C ′(t)vt] ,

Ψx (t, xt, vt, ξ, η, T ) = Ψ (t, xt, vt, ξ, η, T )B(t),

Ψxx (t, xt, vt, ξ, η, T ) = Ψ (t, xt, vt, ξ, η, T )B(t)2,

Ψv (t, xt, vt, ξ, η, T ) = Ψ (t, xt, vt, ξ, η, T ) C(t),

Ψvv (t, xt, vt, ξ, η, T ) = Ψ (t, xt, vt, ξ, η, T ) C(t)2,

Ψxv (t, xt, vt, ξ, η, T ) = Ψ (t, xt, vt, ξ, η, T )B(t)C(t).

Inserting these derivatives into the drift condition and dividing by Ψ yields

A′(t) + B′(t)xt + C ′(t)vt − vt
2
B(t) + vt

2
B(t)2

+κ (θ − vt) C(t) + vt
2
σ2C(t)2 + ρσvtB(t)C(t) = 0,

and since this must hold for all t, xt and vt we have three equations:

A′(t) + κθC(t) = 0,

B′(t) = 0,

C ′(t)− 1
2
B(t) + 1

2
B(t)2 − κC(t) + σ2

2
C(t)2 + ρσB(t)C(t) = 0.

Further, for t = T we have Ψ (T, xT , vT , ξ, η, T ) = eA(T )+B(T )xT+C(T )vT = eiξxT+iηvT

which implies the boundary conditions A(T ) = 0, B(T ) = iξ and C(T ) = iη.

From the second equation it follows immediately that B(t) = iξ. Then the third

equation yields

C ′(t) = α
2

+ βC(t)− σ2

2
C(t)2,



4.2. HESTON MODEL 107

with β = κ− ρσiξ and α = iξ(1− iξ), which can be reduced to a linear ordinary

differential equation by performing the substitution C(t) = 2
σ2

C̃′(t)
C̃(t) , so that C ′(t) =

2
σ2

C̃(t)C̃′′(t)−C̃′(t)2
C̃(t)2 and C̃ ′(T ) = 1

2
iησ2C̃(T ), and multiplying both sides of the equation

with σ2

2
C̃(t) yields

C̃ ′′(t)− βC̃ ′(t)− ασ2

4
C̃(t) = 0.

The roots of the characteristic polynomial z2− βz− ασ2

4
are z± = 1

2
(β ± γ), with

γ =
√
β2 + ασ2, and are distinct and non-zero for 0 < ξ < 1. Therefore the closed-

form solution is given by C̃(t) = φ+ez+t+φ−ez−t with derivative C̃ ′(t) = φ+z+ez+t+

φ−z−ez−t and together with the boundary condition φ−
φ+

= − 2z+−iησ2

2z−−iησ2 e(z+−z−)T we

have

C̃(t) = φ+ez+t
(

1− 2z+−iησ2

2z−−iησ2 e(z+−z−)(T−t)
)
,

C̃ ′(t) = φ+ez+t
(
z+ − z− 2z+−iησ2

2z−−iησ2 e(z+−z−)(T−t)
)
.

Inserting this into the original function yields

C(t) =
2

σ2

z+ − z− 2z+−iησ2

2z−−iησ2 e(z+−z−)(T−t)

1− 2z+−iησ2

2z−−iησ2 e(z+−z−)(T−t)

=
1

σ2

(β + γ) (β − γ − iησ2)− (β − γ) (β + γ − iησ2) eγ(T−t)

β − γ − iησ2 − (β + γ − iησ2) eγ(T−t)

=
(α + βiη)

(
1− eγ(T−t))+ γiη

(
1 + eγ(T−t))

2γ − (β + γ − iησ2) (1− eγ(T−t))
.
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We obtain A(t) by integrating w.r.t. t and using the boundary condition:

A(t) = A(T ) + κθ

ˆ T

t

C(u)du =
2κθ

σ2

ˆ T

t

C̃ ′(u)

C̃(u)
du =

2κθ

σ2

[
ln C̃(u)

]T
t

= κθ
σ2

[
(β + γ)u+ 2 ln

(
1− β+γ−iησ2

β−γ−iησ2 eγ(T−u)
)]T

t

= κθ
σ2

[
(β + γ) (T − t)− 2 ln

(
1− β+γ−iησ2

2γ

(
1− eγ(T−t)))] .

On the one hand, when we are interested in the characteristic function of the

log-price only, i.e. set η = 0, the coefficients simplify to:

A(t)|η=0 = κθ
σ2

[
(β + γ) (T − t)− 2 ln

(
1− β+γ

2γ

(
1− eγ(T−t)))] ,

C(t)|η=0 =
α
(
1− eγ(T−t))

2γ − (β + γ) (1− eγ(T−t))
.

On the other hand, when we want to look at the characteristic function of the

variance only, i.e. set ξ = 0 so that α = 0 and β = γ = κ, the coefficients simplify

to

A(t)|ξ=0 = 2κθ
σ2

[
κ(T − t)− ln

(
iησ2

2κ
+
(

1− iησ2

2κ

)
eκ(T−t)

)]
,

C(t)|ξ=0 =
iη

(2κ− iησ2) (1− eγ(T−t))
.
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4.2.8 Power Log Contracts

Having found this representation of Ψ, we can derive the price of the n-th power

log contract X
(n)
t := EQ

[
xn
T

∣∣Ft] by making use of the relationship

X
(n)
t = EQ

[
xn
T

∣∣Ft] = EQ
[
i−n
(
∂
∂ξ

)n
eiξxT +iηv

T

∣∣∣
ξ,η=0

∣∣∣∣Ft]
= i−n

(
∂
∂ξ

)n
Ψ (t, xt, vt, ξ, η, T )

∣∣∣
ξ,η=0

.

For the log contract, recalling that Ψ (t, xt, vt, ξ, η, T ) = eA(t)+iξxt+C(t)vt , we have

Xt = −i Ψ (t, xt, vt, ξ, η, T ) ∂
∂ξ

[A(t) + iξxt + C(t)vt]
∣∣∣
ξ,η=0

= −i ∂
∂ξ
A(t)

∣∣∣
ξ,η=0

+ xt − i ∂
∂ξ
C(t)

∣∣∣
ξ,η=0

vt,

since A(t)|ξ,η=0 = C(t)|ξ,η=0 = 0. Further

∂
∂ξ
A(t)

∣∣∣
η=0

= κθ
σ2 [(β′ + γ′) (T − t)

−2

β+γ
2γ

eγ(T−t)γ′(T − t)− γβ′−βγ′
2γ2

(
1− eγ(T−t))

1− β+γ
2γ

(1− eγ(T−t))

]
,

∂
∂ξ
C(t)

∣∣∣
η=0

=
α′
(
1− eγ(T−t))− αeγ(T−t)γ′(T − t)
2γ − (β + γ) (1− eγ(T−t))

−
α
(
2γ′ − (β′ + γ′)

(
1− eγ(T−t))+ (β + γ) eγ(T−t)γ′(T − t)

)
(1− eγ(T−t))

−1
(2γ − (β + γ) (1− eγ(T−t)))

2 ,

with α′ := ∂
∂ξ
α = i + 2ξ, β′ := ∂

∂ξ
β = −iρσ and γ′ := ∂

∂ξ
γ = 2ββ′+α′σ2

2
√
β2+ασ2

. Now we

have α|ξ=0 = 0 and β|ξ=0 = γ|ξ=0 = κ as well as α′|ξ=0 = i, β′|ξ=0 = −iρσ and
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γ′|ξ=0 = iσ2

2κ
− iρσ and therefore evaluation at ξ yields

∂
∂ξ
A(t)

∣∣∣
ξ,η=0

= − iθ
2

(T − t)− iθ
2κ

(
e−κ(T−t) − 1

)
,

∂
∂ξ
C(t)

∣∣∣
ξ,η=0

= i
2κ

(
e−κ(T−t) − 1

)
.

Together we have

Xt = − θ
2
(T − t)− θ

2κ

(
e−κ(T−t) − 1

)
+ xt − 1

2κ

(
e−κ(T−t) − 1

)
vt

= xt − θ
2
(T − t) + 1

2κ

(
e−κ(T−t) − 1

)
(vt − θ) ,

in accordance with the direct solution found in the log contract section. For the

squared log contract we have

X
(2)
t = i−2 Ψ

[(
∂
∂ξ

)2

[A(t) + iξxt + C(t)vt] +
(
∂
∂ξ

[A(t) + iξxt + C(t)vt]
)2
]∣∣∣∣
ξ,η=0

= X2
t −

(
∂
∂ξ

)2

A(t)

∣∣∣∣
ξ,η=0

−
(
∂
∂ξ

)2

C(t)
∣∣∣∣
ξ,η=0

vt.

Further

(
∂
∂ξ

)2

A(t)

∣∣∣∣
η=0

=
κθ

σ2

[
(β′′ + γ′′) (T − t)− 4

γβ′−βγ′
2γ2

eγ(T−t)γ′(T − t)
1− β+γ

2γ
(1− eγ(T−t))

−2

β+γ
2γ

(
eγ(T−t)γ′′(T − t) + eγ(T−t) (γ′)2 (T − t)2

)
1− β+γ

2γ
(1− eγ(T−t))

+2

(
γβ′′−βγ′′

2γ2
− γ′(γβ′−βγ′)

γ3

) (
1− eγ(T−t))

1− β+γ
2γ

(1− eγ(T−t))

+2

(
β+γ
2γ

eγ(T−t)γ′(T − t)− γβ′−βγ′
2γ2

(
1− eγ(T−t))

1− β+γ
2γ

(1− eγ(T−t))

)2
 ,
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as well as (recalling that α|ξ=0 = 0 and hence we can disregard the α term)

(
∂
∂ξ

)2

C(t)
∣∣∣∣
η=0

= α · . . .+
α′′
(
1− eγ(T−t))− 2α′eγ(T−t)γ′(T − t)

2γ − (β + γ) (1− eγ(T−t))

−
2α′
(
2γ′ − (β′ + γ′)

(
1− eγ(T−t))+ (β + γ) eγ(T−t)γ′(T − t)

)
(1− eγ(T−t))

−1
(2γ − (β + γ) (1− eγ(T−t)))

2 ,

where α′′ := ∂
∂ξ
α′ = 2, β′′ := ∂

∂ξ
β′ = 0 and

γ′′ := ∂
∂ξ
γ′ =

2
√
β2+ασ2(2(β′)2+2ββ′′+α′′σ2)−(2ββ′+α′σ2)

2√
β2+ασ2

−1

4(β2+ασ2)
.

Now we have α′′|ξ=0 = 2, β′′|ξ=0 = 0 and γ′′|ξ=0 = σ2

κ

(
1− ρσ

κ
+ σ2

4κ2

)
and therefore

evaluating at ξ = 0 yields

(
∂
∂ξ

)2

A(t)

∣∣∣∣
ξ,η=0

= θ
[
−
(

1− 2ρσ
κ

+ 3σ2

4κ2

)(
e−κ(T−t)−1

κ
+ T − t

)
−
(
σ2

2κ
− ρσ

)
(T − t) e−κ(T−t)−1

κ
− σ2

8κ

(
e−κ(T−t)−1

κ

)2
]
,

and

(
∂
∂ξ

)2

C(t)
∣∣∣∣
ξ,η=0

= e−κ(T−t)−1
κ

+
(
σ2

2κ2
− ρσ

κ

)
(T − t) + σ2

4κ2
e−κ(T−t)−1

κ
e−κ(T−t)

+
(
σ2

4κ2
− ρσ

κ

)
e−κ(T−t)−1

κ
+
(
σ2

2κ
− ρσ

)
(T − t) e−κ(T−t)−1

κ
.
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Together we have

X
(2)
t = X2

t +
(

1− ρσ
κ

+ σ2

4κ2

)
(T − t) θ

−
(

1− ρσ
κ

+ σ2

4κ2

)
e−κ(T−t)−1

κ
(vt − θ)

−
(
ρσ
κ
− σ2

2κ2

)
e−κ(T−t)−1

κ
θ

+
(
ρσ
κ
− σ2

2κ2

)
(T − t)e−κ(T−t) (vt − θ)

+ σ2

8κ3

(
1− e−2κ(T−t)) θ

− σ2

4κ3

(
e−2κ(T−t) − e−κ(T−t)) (vt − θ) ,

in accordance with the direct solution found in the squared log contract section.

4.3 SV with Contemporaneous Jumps

The stochastic volatility with contemporaneous jumps (SVCJ) model by Duffie

et al. [2000] is an extension of the Heston model that allows for discontinuities in

both the underlying and the variance process. It is more general than the Bates

[1996] model, which only allows for jumps in the underlying. Formally,

dFt
Ft−

:= −ψdt+
√
vt−dW

F (Q)
t +

(
eZ

F (Q)
t − 1

)
dNt

dvt := κ(Q)
(
θ(Q) − vt−

)
dt+

√
vt−σdW

v(Q)
t + Z

v(Q)
t dNt

where dW
F (Q)
t dW

v(Q)
t = ρdt, ZF (Q) ∼ N

(
µF (Q), σF (Q)

)
, Zv(Q) ∼ E

(
µv(Q)

)
, Nt is

a Poisson process with constant intensity λ and Ft− denotes the value of F prior

to any jump at time t (and analogously for v). For the underlying to follow a

martingale under the risk-neutral measure, we must define the jump compensator
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as ψ := λ

(
eµ

F (Q)+
1
2(σF (Q))

2

− 1

)
. The log price xt = lnFt follows the dynamics

dxt = −ψdt+
√
vt−dW

F
t− − 1

2
vt−dt+ ∆xt

=
√
vt−dW

F
t −

(
ψ + 1

2
vt−
)
dt+ ZF

t dNt,

where ∆xt := lnFt − lnFt− = ZF
t dNt, having used that dWt− = dWt by pre-

dictability in the second line.

4.3.1 Variance Process and Log Contract

First we derive the explicit solution of the variance process by applying Itô’s for-

mula for jump diffusion processes (see e.g. Cont and Tankov [2004] and Appendix)

to eκtvt:

d
(
eκtvt

)
= eκtκvt−dt+ eκtdvt− + eκt∆vt

= eκtκθdt+ eκt
√
vt−σdW

v
t + eκtZv

t dNt,

where ∆vt := vt − vt− = Zv
t dNt. Integrating both sides from t to u > t yields

eκuvu − eκtvt = θ
(
eκu − eκt

)
+ σ

ˆ u

t

eκs
√
vs−dW

v
s +

ˆ u

t

eκsZv
s dNs

and we can solve for vu:

vu = e−κ(u−t)vt + θ
(
1− e−κ(u−t))+ e−κuσ

ˆ u

t

eκs
√
vs−dW

v
s + e−κu

ˆ u

t

eκsZv
s dNs

= θ + e−κ(u−t) (vt − θ) + σ

ˆ u

t

e−κ(u−s)√vs−dW v
s +

∆vs 6=0∑
t<s≤u

e−κ(u−s)∆vs.
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Also, since

EQ

[
∆vs 6=0∑
t<s≤u

e−κ(u−s)∆vs

∣∣∣∣∣Ft
]

=

ˆ u

t

e−κ(u−s)EQ [Zv
s dNs| Ft]

= λµv(Q)

ˆ u

t

e−κ
(Q)(u−s)ds,

we have EQ [vu| Ft] = θ(Q) + e−κ
(Q)(u−t) (vt − θ(Q)

)
+ λµv(Q)

κ(Q)

(
1− e−κ

(Q)(u−t)
)

. By

extension of the corresponding calculations for the Heston model, the quadratic

variation of the log price yields

〈x〉t =

ˆ t

0

vu−du+

ˆ t

0

(
ZF
u

)2
dNu

= θt− 1
κ

(
e−κt − 1

)
(v0 − θ)− σ

κ

ˆ t

0

(
e−κ(t−s) − 1

)√
vs−dW

v
s

+

ˆ t

0

∆vs 6=0∑
0<s<u

e−κ(u−s)∆vsdu+

∆xt 6=0∑
0<u≤t

(∆xu)
2 ,

since dW F
t dNt = dW v

t dNt = 0 because diffusions and jumps are orthogonal.

The price process of the log contract is

Xt = xt +EQ
[ˆ T

t

dxu

∣∣∣∣Ft]
= xt −

ˆ T

t

EQ
[
ψ + 1

2
vu−
∣∣Ft] du+EQ

[
∆xu 6=0∑
t<u≤T

∆xu

∣∣∣∣∣Ft
]

= xt −
(
ψ + θ(Q)

2
+ λµv(Q)

2κ(Q)

)
(T − t)− 1

2

(
vt − θ(Q) − λµv(Q)

κ(Q)

)ˆ T

t

e−κ
(Q)(u−t)du

+λµF (Q)(T − t)

= xt −
[
θ(Q)

2
+ λµv(Q)

2κ(Q) + ψ − λµF (Q)
]

(T − t)

+ 1
2κ(Q)

(
vt − θ(Q) − λµv(Q)

κ

)(
e−κ

(Q)(T−t) − 1
)
,
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using that EQ [vu− | Ft] = EQ [vu| Ft] in the second line, with dynamics

dXt = dxt +
[

1
2

(
θ(Q) + λµv(Q)

κ(Q)

)
+ ψ − λµF (Q)

]
dt

+ 1
2κ(Q)

[(
vt− − θ(Q) − λµv(Q)

κ(Q)

)
e−κ

(Q)(T−t)κ(Q)dt

+
(

e−κ
(Q)(T−t) − 1

)
(dvt− + ∆vt)

]
=
√
vt−dW

F (Q)
t −

(
ψ + 1

2
vt−
)
dt+ Z

F (Q)
t dNt

+
[
θ(Q)

2
+ λµv(Q)

2κ(Q) + ψ − λµF (Q) + 1
2

(
vt− − θ(Q) − λµv(Q)

κ(Q)

)
e−κ

(Q)(T−t)
]
dt

+ e−κ
(Q)(T−t)−1
2κ(Q)

[
κ(Q)

(
θ(Q) − vt−

)
dt+

√
vt−σdW

v(Q)
t + Z

v(Q)
t dNt

]
=
√
vt−dW

F (Q)
t + Z

F (Q)
t dNt − λµF (Q)dt

+ 1
2κ(Q)

(
e−κ

(Q)(T−t) − 1
)(√

vt−σdW
v(Q)
t + Z

v(Q)
t dNt − λµv(Q)dt

)
.

The quadratic variation of the log contract yields

〈X〉t =

ˆ t

0

vu−

[
1 + ρσ

κ(Q)

(
e−κ

(Q)(T−u) − 1
)

+ σ2

4(κ(Q))
2

(
e−κ

(Q)(T−u) − 1
)2
]
du

+

ˆ t

0

(
ZF (Q)
u + 1

2κ(Q)

(
e−κ

(Q)(T−u) − 1
)
Zv(Q)
u

)2

dNu

=

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

) ˆ t

0

vudu+

(
ρσ
κ(Q) − σ2

2(κ(Q))
2

)
e−κ

(Q)T

ˆ t

0

eκ
(Q)uvudu

+ σ2

4(κ(Q))
2 e−2κ(Q)T

ˆ t

0

e2κ(Q)uvudu

+

ˆ t

0

[
ZF (Q)
u + 1

2κ(Q)

(
e−κ

(Q)(T−u) − 1
)
Zv(Q)
u

]2

dNu,

where again we have used that dW F
t dNt = dW v

t dNt = 0.
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4.3.2 VIX Volatility Index

In the SVCJ model the VIX volatility index is given by

vixt =

√
θ(Q) + λµv(Q)

κ
+ e

µF (Q)+
1
2
σ2F−1−µF (Q)

(2λ)−1 − e−κ
(Q)(T−t)−1
κ(Q)(T−t)

(
vt − θ(Q) − λµv(Q)

κ(Q)

)
.

4.3.3 Variance Swaps

Note that, in the SVCJ model, changing the order of integration for the first jump

term of the quadratic variation of the log price yields

〈x〉t = θt− 1
κ

(
e−κt − 1

)
(v0 − θ)− σ

κ

ˆ t

0

(
e−κ(t−s) − 1

)√
vs−dW

v
s

− 1
κ

ˆ t

0

(
e−κ(t−s) − 1

)
Zv
s dNs +

ˆ t

0

(
ZF
u

)2
dNu.

Then, provided that the jump distribution is unconditional for all t, we have

E
[
〈x〉

T

∣∣Ft] = θT − 1
κ

(
e−κT − 1

)
(v0 − θ)− σ

κ

ˆ t

0

(
e−κ(T−s) − 1

)√
vs−dW

v
s

− 1
κ

ˆ t

0

(
e−κ(t−s) − 1

)
Zv
s dNs +

ˆ t

0

(
ZF
u

)2
dNu

−λµv
κ2

(
eκ(T−t) − 1

)
+ λ

(
µ2
F + σ2

F + µv
κ

)
(T − t),
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and therefore the value process V (S)
tT

:= EQ
[
〈x〉

T

∣∣Ft] − EQ [〈x〉
T

∣∣F0

]
of an

idealised standard variance swap yields

V (S)
tT

= − σ
κ(Q)

ˆ t

0

(
e−κ

(Q)(T−s) − 1
)√

vs−dW
v(Q)
s

+ 1
κ(Q)

ˆ t

0

(
1− e−κ

(Q)(t−s)
)
Zv(Q)
s dNs +

ˆ t

0

(
ZF (Q)
u

)2
dNu

− λµv(Q)

(κ(Q))
2 eκ

(Q)T
(

e−κ
(Q)t − 1

)
− λ

[(
µF (Q)

)2
+
(
σF (Q)

)2
+ µv(Q)

κ(Q)

]
t.

Note that the first jump compensator term in the third line is unbounded for

T → ∞ and therefore the price process of a perpetual variance swap is not well

defined.

In the presence of jumps an idealised variance swap based on the realised leg

as defined by Neuberger [2012] differs from the idealised standard variance swap.

We have the payoff

ˆ T

0

2
(
edxt − dxt − 1

)
=

ˆ T

0

2edxt−e∆xt − 2 (x
T
− x0)− 2T

=

ˆ T

0

2edxt− +

ˆ T

0

2
(

eZ
F
t − 1

)
dNt − 2 (x

T
− x0)− 2T

=

ˆ T

0

2
(
1 +
√
vt−dW

F
t − ψdt

)
+

ˆ T

0

2
(

eZ
F
t − 1

)
dNt

−2 (x
T
− x0)− 2T

=

ˆ T

0

2
√
vt−dW

F
t − 2ψT +

ˆ T

0

2
(

eZ
F
t − 1

)
dNt

−2 (x
T
− x0) ,



118 CHAPTER 4. VARIANCE SWAPS IN AFFINE MODELS

where dxt− =
√
vt−dW

F
t −

(
ψ + 1

2
vt−
)
dt and edxt− = 1 +

√
vt−dW

F
t − ψdt. Then

EQ
[ˆ T

0

2
(
edxt − dxt − 1

)∣∣∣∣Ft] =

ˆ t

0

2
√
vt−dW

F (Q)
t − 2ψT

+

ˆ t

0

2
(

eZ
F (Q)
t − 1

)
dNt − 2 (Xt − x0)

+2λEQ
[
eZ

F (Q)
t − 1

]
(T − t)

=

ˆ t

0

2
√
vt−dW

F (Q)
t − 2ψT

+

ˆ t

0

2
(

eZ
F (Q)
t − 1

)
dNt − 2 (Xt − x0)

+2λ

(
eµ

F (Q)+
1
2(σF (Q))

2

− 1

)
(T − t),

and therefore the value process

V (N)
tT

:= EQ
[ˆ T

0

2
(
edxt − dxt − 1

)∣∣∣∣Ft]−EQ [ˆ T

0

2
(
edxt − dxt − 1

)∣∣∣∣F0

]

of Neuberger’s idealised variance swap yields

V (N)
tT

=

ˆ t

0

2
√
vt−dW

F (Q)
t − 2 (Xt −X0)

+

ˆ t

0

2
(

eZ
F (Q)
t − 1

)
dNt − 2λ

(
eµ

F (Q)+
1
2(σF (Q))

2

− 1

)
t,

with dynamics

dV (N)
tT

= 2
√
vt−dW

F (Q)
t + 2

(
eZ

F (Q)
t − 1

)
dNt − 2λ

(
eµ

F (Q)+
1
2(σF (Q))

2

− 1

)
dt− 2dXt

= 2
(

eZ
F (Q)
t − ZF (Q)

t − 1
)
dNt − 2λ

(
eµ

F (Q)+
1
2(σF (Q))

2

− µF (Q) − 1

)
dt

− 1
κ(Q)

(
e−κ

(Q)(T−t) − 1
)(√

vt−σdW
v(Q)
t + Z

v(Q)
t dNt − λµv(Q)dt

)
.
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Like the standard variance swap, the dynamics of Neuberger’s variance swap also

depends on jumps in the underlying price process. However, only the part of the

dynamics that relates to the variance process depends on the contract maturity.

Taking the limit as T →∞ yields the dynamics of Neuberger’s perpetual idealised

variance swap, i.e.

dV (N)
t∞ = 2

(
eZ

F (Q)
t − ZF (Q)

t − 1
)
dNt − 2λ

(
eµ

F (Q)+
1
2(σF (Q))

2

− µF (Q) − 1

)
dt

+ 1
κ(Q)

(√
vt−σdW

v(Q)
t + Z

v(Q)
t dNt − λµv(Q)dt

)
,

and in contrast with the equivalent calculation for the standard variance swap

this limit is well defined. Two new features are evident compared to the pure

diffusion case: in addition to diffusive changes in variance, Neuberger’s perpetual

idealised variance swap reacts to jumps in the price (first line) as well as to jumps

in the variance process (last two terms of the second line).

By contrast, the value process of the continuously monitored discretisation-

invariant variance swap yields V (DI)
tT

:= EQ
[
〈X〉

T

∣∣Ft] − EQ [〈X〉
T

∣∣F0

]
, which

again implies V (DI)
0T

= 0. Using the dynamics and quadratic variation of the log

contract in the SVCJ model, and by extending the corresponding calculations for
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the Heston model, we have

E
[
〈X〉

T

∣∣Ft] =

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

)
E

[ˆ T

0

vudu

∣∣∣∣Ft]
+

(
ρσ
κ(Q) − σ2

2(κ(Q))
2

)
e−κ

(Q)TE

[ˆ T

0

eκ
(Q)uvudu

∣∣∣∣Ft]
+ σ2

4(κ(Q))
2 e−2κ(Q)TE

[ˆ T

0

e2κ(Q)uvudu

∣∣∣∣Ft]
+E

[ˆ T

0

(
ZF (Q)
u + 1

2κ(Q)

(
e−κ

(Q)(T−u) − 1
)
Zv(Q)
u

)2

dNu

∣∣∣∣Ft] ,
and therefore

V (DI)
tT

= − σ
κ(Q)

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

) ˆ t

0

(
e−κ

(Q)(T−s) − 1
)√

vsdW
v(Q)
s

+ σ
κ(Q)

(
ρσ − σ2

2κ(Q)

)
e−κ

(Q)T

ˆ t

0

(t− s)eκ(Q)s√vsdW v(Q)
s

+ σ
κ(Q)

σ2

4(κ(Q))
2 e−2κ(Q)T

ˆ t

0

(
eκ

(Q)(t+s) − e2κ(Q)s
)√

vsdW
v(Q)
s

+

ˆ t

0

(
ZF (Q)
u + 1

2κ(Q)

(
e−κ

(Q)(T−u) − 1
)
Zv(Q)
u

)2

dNu

−λE
[ˆ t

0

(
ZF (Q)
u + 1

2κ(Q)

(
e−κ

(Q)(T−u) − 1
)
Zv(Q)
u

)2

du

∣∣∣∣Ft] .
The perpetual variance swap that pays the quadratic variation of the log-contract

for a fixed swap rate up to infinity (T →∞) follows the price process

V (DI)
t∞ = σ

κ(Q)

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

) ˆ t

0

√
vsdW

v(Q)
s +

ˆ t

0

(
ZF (Q)
u − Z

v(Q)
u

2κ(Q)

)2

dNu

−λ
([(

σF (Q)
)2

+
(
µF (Q)

)2
]
− µF (Q)µv(Q)

κ(Q) + 1
2

(
µv(Q)

κ(Q)

)2
)
t,
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with dynamics

dV (DI)
t∞ = σ

κ(Q)

(
1− ρσ

κ(Q) + σ2

4(κ(Q))
2

)
√
vtdW

v(Q)
t +

(
Z
F (Q)
t − Z

v(Q)
t

2κ(Q)

)2

dNt

−λ
([(

σF (Q)
)2

+
(
µF (Q)

)2
]
− µF (Q)µv(Q)

κ(Q) + 1
2

(
µv(Q)

κ(Q)

)2
)
dt.

Again this limit is well defined, as in the case of Neuberger’s variance swap,

and again the swap reacts to both jumps in the underlying and in the variance

process. However, the impact of jumps is different due to the alternative definition

of realised variance.

The explicit representations for variance swap dynamics derived above may

be useful for model calibration. In particular, it may be possible to estimate

the parameters of a Heston or SVCJ style asset pricing model from empirically

observable risk premia on discretisation-invariant (DI) moment swap contracts.
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Chapter 5

Conclusions and Outlook

Fair-value rates for conventional variance swaps are biased due to discretisation,

jump and truncation errors. As a result market rates can deviate substantially

from their fair values. The possibility for arbitrage opportunities and the con-

comitant market uncertainties have been a catalyst for considerable research on

finding arbitrage bounds for these errors. A more recent strand of research con-

cerns different definitions for the realised variance for which more precise fair val-

ues may be obtained; our research develops this second strand to derive a general

theory for variance, higher-moment and other so-called ‘discretisation-invariant’

(DI) characteristics for which exact fair values are derived in a model-free setting.

Assuming only that the forward price follows a martingale we have followed

the lead set out in the concluding remarks of Neuberger [2012] to define a whole
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vector space of DI characteristics. Theorem 1 allows us to find all characteristics

which have this property, by solving a second order system of partial differen-

tial equations, for any set of deterministic functions of a multivariate martingale

process. Theorem 2 focusses on a particular sub-class of these swaps, i.e. those

for which the characteristic depends only on a multivariate martingale itself, and

its logarithm. In this case we have found analytic solutions that can be used to

define a rich variety of DI characteristics. Theorem 3 shows how the value of

these swaps can be replicated by dynamically rebalancing portfolios of the under-

lying and certain fundamental contracts and Theorem 4 considers some special

DI swaps which correspond to second, third and higher-order moments of a single

log-return distribution.

Model-free DI variance swaps have several advantages over conventional vari-

ance swaps: (i) there is no jump or other model dependence error in their theo-

retical fair-value swap rate; consequently (ii) issuers would face smaller residual

hedging risks; and (iii) the absence of arbitrage should yield market prices that are

within the bid-ask spread of the fair-value; (iv) unbiased estimates for the variance

risk premium (VRP) can be derived from fair values rather than market quotes;

and (v) issuers would have greater flexibility to choose the monitoring frequency

of the realised leg because the fair-value swap rate is the same for all frequencies

– the monitoring does not even need to be regular. All these advantages apply to

higher-order moment risk premia also.

The calculation of the fair-value for a model-free DI variance or higher-moment

swap is still subject to a computation error because the replication theorem re-

quires numerical integration over option prices at traded strikes to approximate
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an integral formula. However, a sub-space of DI swaps can be defined for which

even this error is zero. These ‘strike-discretisation-invariant’ (SDI) swaps have

characteristics defined by bi-linear forms of traded call and put prices. Again, an

infinite variety of such SDI swaps exists and we have only investigated so-called

‘straddle swaps’ empirically. Their fair-value rates are simply (minus) the product

of the prices of one put and one call of the same strike.

Our empirical analysis, spanning an 18-year sample period, demonstrates that

a diverse variety of risk premia are available to trade via these swaps. By con-

trast with the realised skewness swap introduced by Neuberger [2012], and later

analysed empirically by Kozhan et al. [2013], we find higher-moment risk pre-

mia that are not necessarily highly correlated with the VRP, in particular when

they are monitored and sampled at the weekly or daily frequencies. However,

the correlation between the skewness and kurtosis risk premia remains very large

and negative, even when monitored and sampled daily. We conclude that the

skew risk premium reflects asymmetry in the tails of the S&P 500 distribution,

rather than asymmetry around the centre. The empirical dependence of risk pre-

mia on monitoring frequency, as well as on the maturity of the swap, motivates

monthly-for-daily ‘frequency swaps’ and 180-for-30 day calendar swaps. Being

based on realised and implied term structures respectively, these swaps can yield

large pay-offs when based on skewness or kurtosis.

We have extended the results of Carr and Wu [2009] on the determinants of

the VRP in three ways: (1) we replicate their main finding for a longer and more

recent time period, namely that the excess return on the market is the only really

significant equity-factor determinant of the S&P 500 variance premium; (2) when



126 CHAPTER 5. CONCLUSIONS AND OUTLOOK

monitored on a daily basis we show that the VRP exhibits a highly significant

asymmetric response to the market factor, especially during the year surrounding

the financial crisis (July 2008 – June 2009); (3) we find that the market (and

the squared market) factor is also the major driver of the skewness and kurtosis

premia. However, despite their very high correlation, the market factor has much

lower explanatory power for kurtosis than for the skewness. The market-only

asymmetric factor model for the skew premium has an R2 of almost 70% during

the financial crisis period, which is higher than for the VRP. Over the entire

period the factor-model R2 remain high except for the kurtosis premium, which

is even less than 30%. We conclude that largely unexplained factors are driving

this. During 2012 and 2013 the kurtosis premium was exceptionally variable, yet

the variance premium remained small and almost as stable as it was during the

credit-boom years in the mid 2000’s.

Some novel sources of risk become tradable via the creative use of these new

swaps and they should be attractive to investors seeking new sources of diver-

sification. Furthermore, the lack of error in the pricing formulas for DI swaps,

plus the exact dynamic hedging portfolios that can be used to replicate them,

considerably reduce the uncertainties faced by their issuers.

We hope that the general concepts and specific results presented in this paper

will lay the foundations for a profitable agenda of research on new and diverse

sources of risk which become tradable via the creative use of DI characteristics.

Theoretical and empirical examples for interesting bivariate swaps, such as swaps

on realised joint characteristics of S&P 500 and VIX futures, could open up a new

strand of research on correlation and covariance swaps. More generally, we could
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investigate moments of univariate and multivariate distributions based on factors

such as equity, bond and commodity index futures, and the addition of foreign

exchange rates might lay the ground for new types of currency-protected products.

We could extend results on the VRP by Ammann and Buesser [2013], Bakshi et al.

[2008], Tian [2011] and Trolle and Schwartz [2010] to higher-moments and joint

moments, e.g. using a covariance swap. The construction of multi-asset swaps as

well as their replication using single-asset and spread options are discussed in Carr

and Corso [2001]. Based on the explicit representations of dynamics and prices

for discretisation-invariant (DI) swap contracts, it may be possible to develop

new calibration procedures for asset pricing models that yield comparably stable

parameter estimates.

Further empirical work would be interesting on straddle and other SDI swaps,

and on the frequency and calendar swaps which trade on the term structures

of the realised and implied characteristics, respectively. Oomen [2006] analyses

the optimal monitoring frequency given market microstructure noise. The results

of this paper could be improved by using a model-free DI variance characteris-

tic. Empirical work on swaps that are monitored at irregular frequencies might

include deriving a VRP from a realised characteristic that is monitored in trans-

action time. Such a swap could be monitored whenever cumulative trading in the

underlying reaches a pre-defined level. If the S&P 500 ‘transaction time’ VRP is

small and negative, but less prone to brief periods of extremely high values at the

onset of a crisis, then banks would take much less risk in paying these rather than

standard realised variance. Investors would still have the incentive to receive that

premium as a source of diversification, assuming it has a high negative correla-

tion with returns on the S&P 500. In fact, Ané and Geman [2000] discuss swaps
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where the rebalancing frequency is driven by a ‘transaction clock’, showing that

under an adequate change of time asset returns can be assumed to be normal.

One challenge for our framework is that we assume a deterministic partition for

monitoring. Under the assumption that the partition and the underlying asset

are independent, a generalisation to a stochastic partition is feasible. However,

transaction volume and asset price are negatively correlated in practice.

Finally, it would be interesting to construct optimal portfolios which diversify

variance risk through skew or kurtosis swaps. In the S&P 500 index we know

that both skew and kurtosis premia have quite low correlation with the VRP,

but only when monitored at relatively high frequency (daily or weekly). So this

research would be interesting for hedge funds and other investors with relatively

short-term horizons.



Chapter 6

Appendix

6.1 Itô Formula for Jump Diffusions

The classical Itô formula for diffusions can be generalised to jump diffusions.

Assume that the process X has a finite number of jumps ∆X on a finite interval

and that the process behaves like a pure diffusion between jumps. In integral form
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we have

f (t,Xt) = f (0, X0) +

ˆ t

0

ft (s,Xs−) ds+

ˆ t

0

fx (s,Xs−) dXs−

+1
2

ˆ t

0

fxx (s,Xs−) d〈X〉s− +

∆f 6=0∑
0<s≤t

∆f (s,Xs)

= f (0, X0) +

ˆ t

0

ft (s,Xs) ds+

ˆ t

0

fx (s,Xs−) dXs

+1
2

ˆ t

0

fxx (s,Xs−) d〈X〉s− +

∆f 6=0∑
0<s≤t

[∆f (s,Xs)− fx (s,Xs−) ∆Xs]

where Xt− denotes the value of X prior to any jump at time t, dXt− and d〈X〉t−

denote the continuous parts of the dynamics and instantaneous quadratic varia-

tion, respectively, and ∆f denotes the jump in f that follows on a jump in X. In

differential form we can write

df (t,Xt) = ft (t,Xt−) dt+ fx (t,Xt−) dXt− + 1
2
fxx (t,Xt−) d〈X〉t− + ∆f (t,Xt)

= ft (t,Xt) dt+ fx (t,Xt−) dXt + 1
2
fxx (t,Xt−) d〈X〉t−

+ [∆f (t,Xt)− fx (t,Xt−) ∆Xt] .

We shall further use the following shorthand notation:

· dt dWt dNt

dt 0 0 0
dWt 0 dt 0
dNt 0 0 dNt

While the quadratic variation of the Wiener process is deterministic, the quadratic

variation of the Poisson process is unpredictable. Diffusions and jumps are or-
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thogonal.

6.2 Girsanov Change of Measure

Let W (Q) :=
{
W

(Q)
t

}
t∈Π

with Π := [0, T > 0] be a Q-Brownian Motion and

consider the pricing kernel m := {mt}t∈Π defined by

m−1
t :=

dP

dQ

∣∣∣∣
Ft

:= exp

{ˆ t

0

λsdW
(Q)
s − 1

2

ˆ t

0

λ2
sds

}
,

where λ := {λt}t∈Π satisfies the Novikov condition EQ
[
exp

{
1
2

´ t
0
λ2
sds
}]

< ∞

and therefore EQ
[
m−1
t

]
= 1 for all t ∈ Π. Then the stochastic process W (P) :={

W
(P)
t

}
t∈Π

defined by W
(P)
t := W

(Q)
t −

´ t
0
λsds with dynamics dW

(P)
t = dW

(Q)
t −

λtdt is a P-Brownian Motion. Further

mt =
dQ

dP

∣∣∣∣
Ft

= exp

{
−
ˆ t

0

λsdW
(P)
s − 1

2

ˆ t

0

λ2
sds

}
,

where EP [mt] = 1 provided that EP
[
exp

{
1
2

´ t
0
λ2
sds
}]

<∞, as e.g. in Carr and

Wu [2009]. For technical details regarding Novikov’s condition see e.g. Ruf [2013].

Proof: W (P) is a P-Brownian Motion since the paths are continuous by construc-

tion and

1. W
(P)
0 = W

(Q)
0 = 0

2. dW
(P)
t dW

(P)
t = dW

(Q)
t dW

(Q)
t = dt

3. dW
(P)
s dW

(P)
t = dW

(Q)
s dW

(Q)
t = 0 for s 6= t

4. W
(P)
t m−1

t follows a Q-martingale.
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Property (4) holds since d
(
m−1
t

)
= m−1

t

(
λtdW

(Q)
t − 1

2
λ2
tdt+ 1

2
λ2
tdt
)

= m−1
t λtdW

(Q)
t

and

d
(
W

(P)
t m−1

t

)
= W

(P)
t d

(
m−1
t

)
+m−1

t dW
(P)
t + dW

(P)
t d

(
m−1
t

)
= W

(P)
t m−1

t λtdW
(Q)
t +m−1

t

(
dW

(Q)
t − λtdt

)
+m−1

t λtdt

= m−1
t

(
W

(P)
t λt + 1

)
dW

(Q)
t .

Further dmt = mt

(
−λtdW (P)

t − 1
2
λ2
tdt+ 1

2
λ2
tdt
)

= −mtλtdW
(P)
t s.t. EP [mt] = 1.

6.3 Multivariate Change of Measure

Let w(Q) :=
{

w
(Q)
t

}
t∈Π

with Π := [0, T > 0] be an n-dimensional Q-Brownian

Motion with the invertible (instantaneous) correlation matrix Σt ∈ Rn×n, i.e.

d
〈
w

(Q)
t

〉
=: Σtdt, and consider the pricing kernel m := {mt}t∈Π defined by

m−1
t :=

dP

dQ

∣∣∣∣
Ft

:= exp

{ˆ t

0

λ′sdw
(Q)
s − 1

2

ˆ t

0

λ′sΣsλsds

}
,

where λ := {λt}t∈Π ∈ Rn satisfies the generalised Novikov condition

EQ
[
exp

{
1
2

ˆ t

0

λ′sΣsλsds

}]
<∞

s.t. EQ
[
m−1
t

]
= 1 for all t ∈ Π. Then the stochastic process w(P) :=

{
w

(P)
t

}
t∈Π

defined by

w
(P)
t := w

(Q)
t −

ˆ t

0

Σsλsds,
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follows the dynamics

dw
(P)
t := dw

(Q)
t −Σtλtdt

and is a multivariate P-Brownian Motion with the same instantaneous correlation

Σt, i.e. d
〈
w

(P)
t

〉
= Σtdt. Further the pricing kernel yields

mt =
dQ

dP

∣∣∣∣
Ft

= exp

{
−
ˆ t

0

λ′sdw
(P)
s − 1

2

ˆ t

0

λ′sΣsλsds

}
,

and EP [mt] = 1 provided that

EP
[
exp

{
1
2

ˆ t

0

λ′sΣsλsds

}]
<∞.

Proof: The stochastic process w(P) is a multivariate P-Brownian Motion with

correlation matrix Σt since the paths are continuous by construction and

1. w
(P)
0 = w

(Q)
0 = 0

2. dw
(P)
t dw

(P)′
t = dw

(Q)
t dw

(Q)′
t = Σtdt

3. dw
(P)
s dw

(P)′
t = dw

(Q)
s dw

(Q)′
t = 0 for s 6= t

4. w
(P)
t m−1

t follows a multivariate Q-martingale.

Property (4) holds since

d
(
m−1
t

)
= m−1

t

(
λ′tdw

(Q)
t − 1

2
λ′tΣtλtdt+ 1

2
λ′tΣtλtdt

)
= m−1

t λ′tdw
(Q)
t ,
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which is uniformly integrable and therefore defines an exponential martingale, and

d
(
w

(P)
t m−1

t

)
= w

(P)
t d

(
m−1
t

)
+m−1

t dw
(P)
t + dw

(P)
t d

(
m−1
t

)
= w

(P)
t m−1

t λ′tdw
(Q)
t +m−1

t

(
dw
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t −Σtλtdt

)
+
(
dw

(Q)
t −Σtλtdt

)
m−1
t λ′tdw

(Q)
t

= m−1
t

(
w

(P)
t λ′t + I

)
dw

(Q)
t −m−1

t Σtλtdt

+m−1
t dw

(Q)
t dw

(Q)′
t λtdt

= m−1
t

(
w

(P)
t λ′t + I

)
dw

(Q)
t .

Further

dmt = mt

(
−λ′tdw

(P)
t − 1

2
λ′tΣtλtdt+ 1

2
λ′tΣtλtdt

)
= −mtλ

′
tdw

(P)
t ,

and thus EP [mt] = 1. For n = 1 we have Σ = 1 as well as λ = λ and this theorem

corresponds to the standard Girsanov change of measure in one dimension.

6.4 Replication Theorem

Carr and Madan [2001] show that any twice differentiable function φ : R+ → R

can be expressed as

φ(z) = φ(k∗) + φ′(k∗)(z − k∗) +

ˆ k∗

0

φ′′(k)(k − z)+dk +

ˆ ∞
k∗

φ′′(k)(z − k)+dk.

Setting k∗ = Ft, which corresponds to the standard forward-at-the-money sepa-
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ration strike, as well as z = F
T

yields

φ (F
T
) = φ (Ft)+φ

′ (Ft) (F
T
− Ft)+

ˆ Ft

0

φ′′(k) (k − F
T
)+ dk+

ˆ ∞
Ft

φ′′(k) (F
T
− k)+ dk,

and taking the conditional expectation at time t implies

E
Q
t [φ (F

T
)] = φ (Ft) +

ˆ
R+

φ′′(k)qt(k)dk.

6.5 Aggregation of Moments

According to the central limit theorem (CLT), both the sum and average of a large

number of i.i.d. random variables are approximately normally distributed. This

behaviour holds irrespective of the distributional properties of a single random

variable. In the following we analyse the convergence rates of the variance, third

and fourth moment as well as of the skewness and excess kurtosis of a single

random variable to the corresponding parameters of the normal distribution for

the sum and average as the number of random variables increases.

Let Ft be the forward price of a financial asset and denote by Xt := Et [x
T
] the

price of the log contract, which follows a martingale by construction, with value

increments X̂i := Xti−Xti−1
along a partition Π

N
:= {t0 := 0, . . . , t

N
:= T}. The

study of the distribution of value increments in the log contract is interesting since

this derivative merges the crucial features of forward prices and log returns: its

price process follows a martingale under the risk-neutral measure and is approx-

imately normally distributed. Under the assumption that a continuum of option

strikes is tradable the log contract is tradable.
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Assume that X̂i are i.i.d. with moment generating function χ̂ (ξ) := E
[
eξX̂
]

and consider the four central moments

µ̂ := d
dξ
χ̂ (ξ)

∣∣∣
ξ=0

:= χ̂′ (ξ)|ξ=0 = 0,

σ̂2 :=
(
d
dξ

)2

χ̂ (ξ)

∣∣∣∣
ξ=0

:= χ̂(2) (ξ)
∣∣
ξ=0

,

µ̂3 :=
(
d
dξ

)3

χ̂ (ξ)

∣∣∣∣
ξ=0

:= χ̂(3) (ξ)
∣∣
ξ=0

,

µ̂4 :=
(
d
dξ

)4

χ̂ (ξ)

∣∣∣∣
ξ=0

:= χ̂(4) (ξ)
∣∣
ξ=0

,

as well as τ̂ := µ̂3/σ̂
3 and κ̂ := µ̂4/σ̂

4 − 3. We now consider the total value incre-

mentX
T
−X0 =

∑N
i=1 X̂i with moment generating function χ (ξ) := E

[
eξ(XT−X0)

]
.

The i.i.d. assumption implies

χ (ξ) = E
[
eξ(XT−X0)

]
= E

[
eξ

∑N
i=1 X̂i

]
=

N∏
i=1

E
[
eξX̂i

]
=

N∏
i=1

χ̂ (ξ) = χ̂ (ξ)N ,

and therefore, using that χ̂ (0) = 1, we have

µ := d
dξ
χ (ξ)

∣∣∣
ξ=0

= d
dξ
χ̂ (ξ)N

∣∣∣
ξ=0

= Nχ̂ (ξ)N−1 χ̂′ (ξ)
∣∣∣
ξ=0

= 0,

σ2 :=
(
d
dξ

)2

χ (ξ)

∣∣∣∣
ξ=0

=
(
d
dξ

)2

χ̂ (ξ)N
∣∣∣∣
ξ=0

= d
dξ

(
Nχ̂ (ξ)N−1 χ̂′ (ξ)

)∣∣∣
ξ=0

=
[
Nχ̂ (ξ)N−1 χ̂(2) (ξ) +N(N − 1)χ̂ (ξ)N−2 χ̂′ (ξ)2

]
ξ=0

= Nσ̂2 +N(N − 1)µ̂2 = Nσ̂2,
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µ3 :=
(
d
dξ

)3

χ (ξ)

∣∣∣∣
ξ=0

=
(
d
dξ

)3

χ̂ (ξ)N
∣∣∣∣
ξ=0

= d
dξ

(
d
dξ

)2

χ̂ (ξ)N
∣∣∣∣
ξ=0

= d
dξ

(
Nχ̂ (ξ)N−1 χ̂(2) (ξ) +N(N − 1)χ̂ (ξ)N−2 χ̂′ (ξ)2

)∣∣∣
ξ=0

=
[
Nχ̂ (ξ)N−1 χ̂(3) (ξ) +N(N − 1)χ̂ (ξ)N−2 χ̂(2) (ξ) χ̂′ (ξ)

+2N(N − 1)χ̂ (ξ)N−2 χ̂′ (ξ) χ̂(2) (ξ)

+N(N − 1)(N − 2)χ̂ (ξ)N−3 χ̂′ (ξ)3
]
ξ=0

= Nµ̂3 + 3N(N − 1)σ̂2µ̂+N(N − 1)(N − 2)µ̂3 = Nµ̂3,

µ4 :=
(
d
dξ

)4

χ (ξ)

∣∣∣∣
ξ=0

=
(
d
dξ

)4

χ̂ (ξ)N
∣∣∣∣
ξ=0

= d
dξ

(
d
dξ

)3

χ̂ (ξ)N
∣∣∣∣
ξ=0

=
[
Nχ̂ (ξ)N−1 χ̂(4) (ξ) +N(N − 1)χ̂ (ξ)N−2 χ̂(3) (ξ) χ̂′ (ξ)

+3N(N − 1)
(
χ̂ (ξ)N−2 {χ̂(2) (ξ)2 + χ̂(3) (ξ) χ̂′ (ξ)

}
+(N − 2)χ̂ (ξ)N−3 χ̂(2) (ξ) χ̂′ (ξ)2

)
+3N(N − 1)(N − 2)χ̂ (ξ)N−3 χ̂′ (ξ)2 χ̂(2) (ξ)

+N(N − 1)(N − 2)χ̂ (ξ)N−4 χ̂′ (ξ)4
]
ξ=0

= Nµ̂4 +N(N − 1)µ̂3µ̂+ 3N(N − 1)
{
σ̂4 + µ̂3µ̂+ (N − 2)σ̂2µ̂2

}
+N(N − 1)(N − 2)

(
3σ̂2µ̂2 + µ̂4

)
= Nµ̂4 + 3N(N − 1)σ̂4.

Hence

τ := µ3/σ
3 = Nµ̂3

√
Nσ̂2

−3
= µ̂3/σ̂

3
√
N
−1

= τ̂
√
N
−1
,

κ := µ4/σ
4 − 3 =

(
Nµ̂4 + 3N(N − 1)σ̂4

)
/
(
Nσ̂2

)2 − 3 = κ̂N−1.

When short period price changes in the log contract are independent and non-

normally distributed with skewness τ̄ and excess kurtosis κ̄, the skewness and



138 CHAPTER 6. APPENDIX

excess kurtosis of long period price changes converge to zero as
√
N
−1

and N−1,

respectively.

We further consider the average increment (X
T
−X0) /N = N−1

∑N
i=1 X̂i with

moment generating function χ̄ (ξ) := E
[
eξ(XT−X0)/N

]
. The i.i.d. assumption

implies

χ̄ (ξ) = E
[
eξN

−1
∑N
i=1 X̂i

]
=

N∏
i=1

E
[
eξN

−1X̂i
]

=
N∏
i=1

χ̂
(
ξN−1

)
= χ̂

(
ξN−1

)N
and therefore, using that d/d (ξN−1) = Nd/dξ, we have

µ̄ := d
dξ
χ̄ (ξ)

∣∣∣
ξ=0

= d
dξ
χ̂
(
ξN−1

)N ∣∣∣
ξ=0

= N−1 d
dξ
χ̂ (ξ)N

∣∣∣
ξ=0

= N−1µ = 0,

σ̄2 :=
(
d
dξ

)2

χ̄ (ξ)

∣∣∣∣
ξ=0

=
(
d
dξ

)2

χ̂
(
ξN−1

)N ∣∣∣∣
ξ=0

=
(
d
dξ

)2

χ̂ (ξ)N
∣∣∣∣
ξ=0

/N2 = σ̂2/N,

µ̄3 :=
(
d
dξ

)3

χ̄ (ξ)

∣∣∣∣
ξ=0

=
(
d
dξ

)3

χ̂
(
ξN−1

)N ∣∣∣∣
ξ=0

=
(
d
dξ

)3

χ̂ (ξ)N
∣∣∣∣
ξ=0

/N3 = µ̂3/N
2,

µ̄4 :=
(
d
dξ

)4

χ̄ (ξ)

∣∣∣∣
ξ=0

= N−4
(
d
dξ

)4

χ̂ (ξ)N
∣∣∣∣
ξ=0

= N−3µ̂4 + 3N−3(N − 1)σ̂4.

Hence,

τ̄ := µ̄3/σ̄
3 = N−2µ̂3/

√
N−1σ̂2

3
= µ̂3/σ̂

3
√
N
−1

= τ̂
√
N
−1

= τ,

κ̄ := µ̄4/σ̄
4 − 3 =

(
N−3µ̂4 + 3N−3(N − 1)σ̂4

)
/
(
N−1σ̂2

)2 − 3

= µ̂4/σ̂
4N−1 − 3N−1 = κ̂N−1 = κ.

That is, skewness and kurtosis are the same for the total and average increment

while the non-standardised moments grow with N for the total increment and

decrease with N−m+1 for the average increment, m being the order of the moment.
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