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SUMMARY

The fascinating idea that in higher-dimensional models the fundamental scale of grav-

ity, the Planck scale, could be as low as the electroweak scale has stimulated a substantial

body of work in the past decade. In addition to solving the hierarchy problem, a low

quantum gravity scale also o↵ers the exciting prospect that collider experiments become

sensitive to the quantum nature of gravity. Quantum gravity signatures include missing

energy due to graviton emission, enhancement of standard model reference processes via

virtual graviton exchange, or the production and decay of mini black holes. Dedicated

searches for all of these are presently under way at the Large Hadron Collider.

Previous predictions for colliders have been encumbered by the absence of a complete

theory of quantum gravity. However, the recent years have also seen important progress

in the understanding of gravity as an asymptotically safe quantum field theory, in which

the high-energy behaviour is controlled by an interacting fixed point. The notorious di-

vergences of perturbation theory are thus avoided, and the theory remains predictive at

arbitrarily high energies.

In this thesis, we investigate the e↵ects of asymptotic safety upon predictions for

graviton-mediated processes in higher-dimensions at colliders. We consider single-graviton

mediated e↵ects in the Born approximation as well as the multi-graviton exchanges which

dominate the forward scattering region at transplanckian energies, as described by the

eikonal approximation. Cross sections are derived and a detailed comparison with find-

ings from e↵ective theory is made. Using the PYTHIA event generator we find that for

some regions in parameter space quantum gravity e↵ects are enhanced over the semiclas-

sical predictions, as well as over standard model backgrounds. The use of our results to

constrain our theory parameters is discussed.
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Chapter 1

Introduction

The investigation of scattering amplitudes describing the gravitational interactions of par-

ticles is a subject with a long history, stretching back at least as far as [3]. That it is such

an area of active research more than fifty years later is testament to the fact that it is

both di�cult and interesting, a tangled thicket of seemingly impenetrable mysteries from

which insights are hard-won, but amply rewarding.

As emphasised by Giddings [1], the scattering formulation provides a firm footing from

which to begin exploring some of the deepest questions in physics. In quantum gravity, it

is not even clear how to define observables with complete generality. Quantum field theory

is usually couched in terms of n-point correlation functions of local fields,

G(x1, . . . , xn) = h�(x1) . . . �(xn)i (1.1)

but the classical theory of gravity, general relativity, has a gauge symmetry in the form

of di↵eomorphism invariance; a function like (1.1) will clearly not be a gauge-invariant

quantity, as under a local transformation xµ ! xµ + ✏µ(x) each field will vary by some

amount �� = ✏µ@µ�. However, by working in an asymptotically flat spacetime, we can

give meaning to the concept of momentum eigenstates defined at infinity which do not

su↵er from this problem, and hence formulate a gauge-invariant S-matrix. This formalism

makes unitarity manifest, and has played an important role [4] in the emerging consensus

that the decay of a black hole via Hawking radiation preserves information.

The scattering formulation also provides a convenient framework in which to check that

the physical consequences of some theory are ’reasonable’, in the sense that they do not

conflict with already established physics. In particular, it is known that general relativity

provides an excellent description of a wide range of physical phenomena. This strongly

suggests that scattering amplitudes derived from the classical action for a symmetric tensor
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gµ⌫ of rank two coupled to a matter described by a Lagrangian Lm (see e.g. [5]),

S = � 1

16⇡GN

Z
d4x
q
|Det(gµ⌫)| (R + Lm) (1.2)

where R is the Ricci scalar corresponding to gµ⌫ , should provide a useful description of

physical processes in which the quantum mechanics of the colliding particles is important,

but the gravitational field can be treated as classical. The most obvious example is that

at low energies, we would usually expect to be able to apply leading order perturbation

theory, and indeed the Born amplitude thus derived reproduces the result obtained by

taking the Fourier transform of the Newtonian potential. However, it was first realised

by t’Hooft [6] that due to the weakening of gravity with distance, we can consider the

quantum mechanics of processes occurring at substantially higher energies even than the

Planck scale, provided that we restrict our attention to large impact parameters. This

picture was subsequently corroborated by the analysis of the Verlindes [7] and connected

to the use of the eikonal approximation by Kabat and Ortiz [8]. In a similar vein it is

natural to consider the relation of these ideas to the process of black hole formation via

the Hoop conjecture [9]; a black hole is expected to form in a collision when the impact

parameter of a collision becomes less than the Schwarzschild radius corresponding to the

centre-of-mass energy.

Using the methods of e↵ective field theory, one can go even further, and consider some

radiative corrections to physical processes that arise when the quantum theory of the

gravitational field is taken into account. Such a program has been initiated by Donoghue

in particular [10, 11]. However, gravity is famously non-renormalizable [12, 13, 14], so

that this procedure leaves us with expressions that depend explicitly on the method of

regulating ultraviolet divergences.

This leads us naturally to wonder about the domain of validity of our e↵ective field

theory approach. Historically, this was always assumed to be comparable to the Planck

scale MP l, defined by Newton’s constant GN via GN = M�2
P l in units such that c = ~ =

1. This assumption was called into question by the famous proposal of Arkani-Hamed,

Dimopoulos and Dvali (ADD) that spacetime might have more than four dimensions,

but that only gravity can propagate in the extra dimensions [15, 16]. In this scenario

the fundamental scale associated with gravity is lowered to ⇠ 1 TeV, with the apparent

hugeness of the Planck scale being merely the emergent result of gravity spreading out

over a relatively large compactified volume Vn associated with the extra dimensions. This

idea was the stimulus for thousands of subsequent papers. As well as solving the hierarchy

problem it o↵ers the exciting possibility that that the riddles of quantum gravity can be
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subjected to experimental probe at the Large Hadron Collider (LHC).

Of course, such a possibility creates an impetus to refine our theoretical understand-

ing of quantum gravity to the point where concrete predictions about the corresponding

phenomenology can be made. In recent years significant progress has been made in under-

standing gravity as an asymptotically safe field theory: one whose ultraviolet behaviour is

governed by an interacting fixed point [17]. This o↵ers an extremely conservative resolu-

tion to the problem of how gravity is fundamentally defined. An extremely broad body of

computational evidence [18, 19, 20, 21, 22, 23, 24, 25, 26, 27] in support of this scenario

has formed, and in consequence there is an increasing amount of discussion of the physical

consequences of the theory. Previous investigations have looked into the e↵ects of this

modification of gravity upon black holes [28, 29, 30, 31, 32], cosmology [33, 34, 35, 36],

and other processes relevant to the LHC [37, 38, 39, 40].

The purpose of this thesis is to consider the phenomenology of this theory of quantum

gravity at the LHC, with specific reference to scattering at high energies. Chapter 2

develops the theoretical ideas of the ADD model, asymptotic safety, and transplanckian

scattering necessary to understand the present work and place it in context. Chapter

3 derives the elastic scattering amplitudes of particles at transplanckian energies in our

framework, and explores the relationship of our results to the semiclassical framework

using the methods of the stationary phase approximation. Chapter 4 then explores the

corresponding phenomenology of our amplitudes, investigating dijet production using the

PYTHIA 8.1 event generator.
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Chapter 2

Preliminaries

In this chapter we review the individual theoretical strands that inform our project. We

begin by discussing some of the problems that have been encountered in trying to define

a theory of quantum gravity, and the hierarchy problem of the Standard Model of par-

ticle physics. We review the framework of the renormalization group, and then discuss

a putative solution to each of these problems in turn. We discuss Weinberg’s asymptotic

safety hypothesis for gravity, and review the computational evidence that supports it.

We describe the higher-dimensional framework of Arkani-Hamed, Dimopoulos and Dvali,

in which quantum gravity will become significant for LHC phenomenology. The chapter

concludes with a discussion of semiclassical approaches to gravitational scattering, with

particular reference to the eikonal amplitude, which will play a key role in the subsequent

development of this thesis.

2.1 Scales and divergences in quantum gravity

Legend has it [41] that in the 1950s, when he first started to work on the subject, Feynman

hoped that quantizing gravity might be ”a piece of cake”. After all, even today the prin-

cipal approach used to investigate a quantum field theory is to compute, using Feynman’s

diagrams, correlation functions of the theory by perturbatively expanding around the free

theory in powers of some weak coupling. In our experience, of course, the gravitational

coupling is certainly suitably feeble; in the first lecture of [41], Feynman illustrates the

point by computing the ratio of the Newtonian and Coulomb force between two charged

protons:
Felectric

Fgrav
= 4.17 ⇥ 1042 (2.1)
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Some results of the early investigations into quantum gravity were actually quite reward-

ing. For example, it is known from group theory that any attempt to treat the metric

tensor gµ⌫ of general relativity as a field to be quantized will result in massless spin-2

particles. Fascinatingly, however, it also emerged [41, 42, 43, 44] that the quantum theory

of a massless spin-2 particle is inconsistent unless it contains a gauge symmetry equiva-

lent to the di↵eomorphism invariance of the classical metric; which couples to all other

fields universally through their energy-momentum tensor acting as a conserved source;

and which must necessarily possess self-interactions such that the Einstein-Hilbert action

is reproduced- provided that we restrict our attention to terms containing at most two

derivatives of the ”spin-2” field, a point to which we will return shortly. This theory also

turns out to be infrared-safe [45].

Of course, quantum gravity is still the subject of intensive research today. The most

infamous di�culty is that of interpreting the ultraviolet divergences that occur in pertur-

bation theory, which cannot be renormalized into parameters present in the bare Lagranga-

ian. Such divergences occur at two-loop order in pure gravity [12, 13] and at one loop

when gravity is coupled to scalar matter [14]. Such theories su↵er from a lack of predictive

power, and it is generally assumed that non-renormalizability is indicative of a need for

new physics. The modern student is taught such behaviour can be anticipated from the

fact that Newton’s constant GN has negative mass dimension. By dimensional analysis,

a perturbative expansion of a dimensionless scattering amplitude M in any theory with a

generic coupling G of mass dimension [G] = �2 must be of the form

M = GE2 + G2E4 + . . . (2.2)

where E is some energy scale. If E is assumed to be a characteristic energy scale of

the process under consideration, such as the centre of mass energy, then even our tree-

level estimate would suggest that we might encounter di�culties with unitarity as E

increases. However, if one regulates the divergences in Feynman diagrams with an ultra-

violet cuto↵ ⇤, then at higher orders in perturbation theory it naturally emerges that

E ⇠ ⇤. As we increase ⇤ ! 1, as quantum mechanics tells us we must in order to sum

over all intermediate states, then divergences appear at all orders in perturbation theory;

to absorb them all into parameters of the model would require a model with infinitely

many parameters to be determined by experiment, and hence lacking predictive power.

It is assumed, then, that a new physical description of the process under consideration is

needed before the energy scale E becomes comparable to the mass scale M defined by the

constant G. This is borne out in practice by the Fermi theory of weak interactions. Beta
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decay was originally described by a Lagrangian of the form

LI = GF  ̄  ̄ (2.3)

where the Fermi constant GF clearly has mass dimension [GF ] = �2. When the full

Glashow-Weinberg-Salam (GWS) theory of weak interactions was developed, it turned

out that GF ⇠ M�2
W ; the negative mass dimension of the constant heralded the existence

of the W -boson, which was too massive to have been detected in Fermi’s day. A Lagrangian

such as (2.3), which provides a good description of physics at energies below the masses

of the weak bosons, but fails at the scale of electroweak physics of which it is ignorant,

is called an e↵ective Lagrangian , and can be obtained from the GWS theory by simple

Feynman diagram analysis; one says that the weak bosons have been integrated out of

the theory. By analogy, it is argued that at energies comparable to MP l, new physics

(such as string theory) kicks in to restore order to the gravitational sector. The necessity

of some new physics at short distance scales is also indicated by the infamous curvature

singularities of classical general relativity, most notably those found at the centre of a

black hole. Classically such spacetimes are geodesically incomplete, as a test particle that

falls into the black hole will inevitably be drawn into the singularity where the metric field

is no longer defined in a finite proper time.

It was the brilliant insight of Wilson [46, 47] to apply the logic of integrating out

physically inaccessible degrees of freedom to high-momentum modes, relating early work

on the renormalization group in particle physics to ideas from condensed matter such as

Kadano↵’s ”block spin” scaling laws for a ferromagnet. This process generates terms not

present in the bare Lagrangian- just as integrating out the W -boson induced a four-fermion

interaction, when none is present in the GWS Lagrangian- and shifts the coe�cients of

those terms that are present. If we are interested in physics occurring at some momentum

scale k, then it makes sense to formulate our description of that physics using the e↵ective

Lagrangian obtained by integrating out all momentum modes larger than k; the coe�cients

�i of the terms in this Lagrangian depend on k, �i(k). From this point of view, we should

regard the Einstein-Hilbert Lagrangian not as the fundamental definition of our theory

of gravity, but as the leading order term in an e↵ective Lagrangian which will contain all

terms consistent with the gauge symmetry, which classically would be identified as scalars

formed from the curvature tensor:

L =
p
g(c0 + c1R + c2R

2 + c3R
µ⌫Rµ⌫ + ... . . .) (2.4)

where all the parameters ci(k) ”run” with energy scale k, and at low energies c0 =
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⇤CC/(8⇡GN ) (where ⇤CC is the cosmological constant) and c1 = �(16⇡GN )�1. It was

suggested by Weinberg [17] that allowing Newton’s constant to run with energy as G(E)

might solve the problems associated with the negative mass dimension of GN . If at high

energies G(E) ⇠ E�2, then the corresponding dimensionless coupling g = G(E)E2 will

tend to a fixed value g⇤. Together with an assumption that only finitely many measure-

ments are necessary to specify the high-energy behaviour of the theory, this is referred

to as the asymptotic safety hypothesis. Exciting theoretical developments made over the

last two decades, to be reviewed in the next section, have led to a significant body of

calculational evidence in support of this conjecture.

Whilst not as dramatic as the ultraviolet catastrophe of perturbative quantum gravity,

the Wilsonian analysis of the Standard Model of particle physics reveals that it too pos-

sesses an unsatisfactory feature. When computing the k-dependence of running couplings,

it is typically still necessary to regulate the divergences of perturbation theory. If one

assumes that the theory will ultimately break down at some very high scale ⇤, then scalar

particles receive corrections to their bare (mass)2 parameters on the order of ⇤2. The

standard model, of course, contains just such a scalar: the celebrated Higgs boson, whose

mass is measured [48, 49] to be mH ⇡ 125 GeV. The most obvious candidate for physics

beyond the standard model is gravity; but the Planck scale is vastly larger than that as-

sociated with any other physics known to man: MP l ⇡ 1019GeV. (Indeed, the hugeness

of the ratio Felectric/Fgrav given earlier is the result of the hugeness of the Planck scale

relative to the proton mass.) From the Wilsonian point of view, the disparity between the

measured Higgs mass and the ”natural” value we would calculate requires the ”initial”

mass defined at the scale k = ⇤ to be incredibly finely tuned such that the calculable

quantum corrections reduce it to 10�17 of its initial value. This unnaturalness is the fa-

mous hierarchy problem of the standard model, and has led many theorists to believe that

physics beyond the standard model must set in at much lower scales, on the order of ⇤ = 1

TeV, which might thus be experimentally accessible at the Large Hadron Collider.

One of the most exciting proposals as to what this new physics might be was made

by Arkani-Hamed, Dimopoulous and Dvali [15]. They observed that the experimental

constraints on the dimensionality of spacetime that come from gravity are far weaker

than those that come from the Standard Model. In their scenario, the standard model is

confined to a four-dimensional ”brane” in a higher-dimensional spacetime, whilst gravity is

capable of probing d = 4+n dimensions. The extra dimensions are still compactified, but

the radius R of compactification can be far larger than in models in which the standard
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model probes the extra dimensions; at the time of their proposal, R ⇠ 1mm had not

been ruled out by experiment! Correspondingly, in this model the truly fundamental

scale MD of the d-dimensional gravity theory is lowered significantly, being related to the

Planck scale as M2
P l = 8⇡RnMn+2

D . If realised in nature, this would mean that the LHC

would become sensitive to the nature of quantum gravity, allowing us an unprecedented

opportunity to develop our understanding.

Of course, it is in the nature of modern phenomenology that a precise prediction is

necessary in order to discover anything, particularly in so messy an environment as in a

hadron collider. This presents a problem to the experimentalist who wishes to discover

quantum gravity without professing to understand it. One ingenious way around this

problem is o↵ered in the form of semiclassical approximations. After all, we are used to

using gravity in its astrophysical setting, in which the masses involved are vastly higher

than the paltry MP l ⇠ 2⇥ 10�8kg; the condition is that we do not probe short distances.

In particular, in [50] the eikonal approximation was employed to compute a semi-classical

approximation to the elastic scattering of partons at ”transplanckian” (E � MD) energies

through small angles.

In this thesis, we consider that asymptotic safety o↵ers us a well-defined, predictive

theory of quantum gravity, and investigate its experimental consequences if large extra

dimensions are to be found at the LHC. The remainder of this chapter is dedicated to a

more detailed review of the di↵erent aspects of our theoretical framework: the asymptotic

safety conjecture, the ADD scenario, and the physics of transplanckian scattering.

2.2 Asymptotically safe gravity

2.2.1 Asymptotic safety

In order to formulate the asymptotic safety hypothesis more precisely, we will begin by

reviewing some of the concepts of the renormalisation group in more detail. Our treatment

will follow that of Weinberg’s original proposal [17]. As discussed in the preceding section,

when defining a quantum field theory it is not su�cient merely to specify the Lagrangian;

it is also necessary to specify the scale at which we are defining the theory. When one

talks about e.g. ”�4 theory”, it is implicitly assumed the bare Lagrangian is being defined

at the cuto↵ scale ⇤ which defines the domain of validity of the theory, which for a

fundamental theory will be infinity. If we choose some functional basis (such as powers

of the scalar field �), then we can think of the couplings ḡi as ”co-ordinates” of this bare
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Lagrangian in an infinite dimensional space, and specify the action as Sbare[{ḡi}]. The

result of integrating out the modes above the scale µ is the e↵ective action Seff [{ḡi(µ)}];
as µ ! 0 we are performing the full path integral, and recover the so-called ”quantum” or

”average” action �. In the functional space parametrized by our couplings, this evolution

is governed by an infinite set of coupled first-order di↵erential equations:

µ
dgj(µ)

dµ
= �j({gi(µ)}) (2.5)

In these equations the �-functions depend only on dimensionless variables; if a coupling

ḡi has mass dimension di, we define corresponding dimensionless couplings gi = µ�di ḡi.

Let us consider the couplings at a finite scale µ, and consider how this system evolves as

µ ! 1. For the theory to make sense up to arbitrarily high energies, it is necessary that

each coupling tends to a limiting value gi,⇤. In order for this to happen, each of the �

functions of the theory must vanish when evaluated at the limiting values:

�j({gi,⇤}) = 0 (2.6)

Such a set of values gi,⇤ for the couplings is said to define a fixed point for the RG flow of

the theory space.

In order for such a fixed point to have any relevance to the real world, it is necessary

that it is connected by the RG flow to the point in theory space where we find ourselves to

live, in the sense that if at very high energies the measured values of our couplings di↵er

from their fixed point values by some small amount �gi, then the solution to the equations

(2.5) evolved to an RG scale µ must map these values of the couplings to the measured

values gi(µ). Of course, we cannot measure infinitely many couplings. For our theory to

be predictive, we require that the critical surface of points which flow into the fixed point

as µ ! 1 is finite dimensional.

It is interesting to consider the flow in the vicinity of the fixed point. When all

the couplings are close to their fixed point values we can linearise the flow, defining

a ”displacement vector in coupling space” �gi = gi � g⇤i , and approximating the beta

functions by the action of the so-called stability matrix

Bij =
@�i
@gj

����
gi=g⇤i

(2.7)

In the vicinity of the fixed point, the flow thus becomes described by the simple system

µ
dgj(µ)

dµ
= Bij�gi (2.8)
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Once we recognise that powers of µ are eigenfunctions of the logarithmic derivative oper-

ator µ@µ, it is clear that the solution to this system of equations is readily given in terms

of the eigenvectors V K and corresponding eigenvalues ✓K of the stability matrix:

gi(µ) = g⇤i +
X

K

cK(V K)iµ
✓K (2.9)

This expression makes it clear that as µ ! 1, a point in theory space is drawn towards

the fixed point by the RG flow if its displacement vector can be decomposed into eigenvec-

tors whose eigenvalues ✓K are negative. These eigenvalues are called the critical exponents

of the theory, and our requirement that the ultraviolet fixed point has a finite dimen-

sional critical surface becomes the requirement that the corresponding stability matrix

has finitely many negative critical exponents. This formulation leads us to the following

heuristic argument. As gi = µ�di ḡi, the RG equation for gi has the form

µ
dgi
dµ

= �digi + µ�di
dḡi(µ)

dµ
(2.10)

where the term ⇠ dḡi(µ)
dµ results from quantum corrections to the running of the coupling.

Of course, the coupling ḡi corresponding to any operator whose mass dimension exceeds

that of our spacetime will have a negative mass dimension di, and so based on our expec-

tations of classical scaling, we would expect only finitely many couplings (corresponding

to perturbatively renormalizable and super-renormalizeable operators) to have negative

critical exponents. In order for quantum corrections to change this picture, they would

need to be so violent as to reverse the sign of infinitely many classical scaling exponents.

A brief comment on terminology is in order at this point. With the canonically nor-

malized metric field gµ⌫ as in the Einstein-Hilbert Lagrangian, the factor 1
16⇡GN

appears

in front of the kinetic term in the action, and it is therefore common to use the language

of field strength or wavefunction renormalisation to describe the running of Newton’s con-

stant. Pre-empting the discussion of a higher-dimensional analog GD of Newton’s constant,

in d spacetime dimensions the dimensionless running gravitational coupling is defined to

be

g(µ) = µd�2G(µ) ⌘ µd�2GDZ
�1(µ) (2.11)

where Z�1(µ) is the field strength renormalisation factor for the graviton. Eq. (2.10) then

becomes [21, 51]

µ
d

dµ
g(µ) = (d� 2 + ⌘)g (2.12)

where ⌘ = dlnZ(µ)
dlnµ is known as the anomalous dimension of the graviton. Gravity is

unusual in that typically field strengths are inessential couplings- defined as couplings
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which can be changed without a↵ecting the Lagrangian when the fields are put on-shell

[17]. (Our requirement for the finite dimensionality of the critical surface strictly speaking

only refers to the number of essential couplings.) However, gravity is di↵erent because its

universal coupling to all other fields e↵ectively defines all length scales [52].

A theory whose high-energy behaviour is governed by a fixed point with a finite-

dimensional critical surface is said to be asymptotically safe. Asymptotically free theories

such as QCD are a special case of asymptotic safety, but this formulation allows for the

more general possibility that a theory remains interacting at all scales.

When Weinberg proposed that asymptotic safety might o↵er a resolution to the prob-

lem of the high-energy behaviour of gravity, he was limited in his investigations by his

ability to calculate the beta functions of the theory. He was able to show that gravity

is asymptotically safe in 2 + ✏ dimensions, where ✏ is assumed small, as gravity becomes

renormalizable in two dimensions. The theory thus lay dormant until the advent of the

exact renormalisation group equation, or ERGE, first derived by Wetterich [53].

2.2.2 The exact RG equation

Our treatment of this equation follows review articles such as [54]. In order to remove

ambiguity in our conception of ”large” and ”small” momenta, we will assume that our

theory has been analytically continued from Minkowski space (where one can have high-

energy lightlike modes with q2 = 0) to Euclidean 4-space. Then the vacuum-vacuum

amplitude in the presence of a source, Z[J ], and its logarithm W [J ], are given by

Z[J ] = eW [J ] =

Z
D'e�Sbare[']+J ·' (2.13)

where we have adopted the shorthand J ·� =
R
ddxJ(x)'(x), and the e↵ective action �[�]

is defined as

�[�] = sup
J

(J · ��W [J ]) (2.14)

This definition singles out a J [�] which maximises �[�].

The ERGE is formulated in terms of an action �k that has only been averaged over

those modes of momentum p > k, and satisfies

�k
k!⇤���! Sbare (2.15)

k!0���! � (2.16)

The notational distinction between this quantity and the orignal Wilsonian e↵ective action

Seff [{gi(k)}] at the scale k is essentially one of useage and emphasis. In a textbook
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presentation such as [55], Seff [{gi(k)}] is presented as somehow containing less information

than Sbare, as we have ”averaged over” the high-energy modes. However, in that context

the path integral over modes of momentum > k is performed in the absence of a source,

and consequently we lose the ability to describe how the theory responds to being ”driven”

by a source whose Fourier transform contains high-frequency modes. In other words, the

vertices of that action are not appropriate for computing Feynman diagrams in which

momenta larger than k are flowing through the external legs. In contrast, the full e↵ective

action � contains all the information about the theory; it is the generating function of

one-particle irreducible (1PI) diagrams.

Instead of attempting to perform the path integral over a restricted set of modes

directly, the ERGE is formulated using an integral over all momentum modes, but by

modifying the bare action with the addition of a ”regulator” term �Sk[�] that suppresses

the contribution of modes of momentum p < k. This term takes the form of a momentum-

dependant mass term:

�Sk['] =
1

2

Z
ddq

(2⇡)d
'(�q)Rk(q)'(q) (2.17)

To suppress low-frequency modes, we require that for p < k, Rk(p) > 0, and typically

Rk(p) ⇠ k2 for small p. Condition (2.16) is satisfied if we remove the regulator as k

becomes small, so that Rk(p)
k!0���! 0. To satisfy (2.15), we must have Rk(p)

k!⇤���! 1; a

careful treatment [53] shows that the functional integral becomes dominated by a saddle

point in this limit, so that e↵ectively no integral is performed, and e��k ⇠ e�S up to a

physically irrelevant constant factor.

Any function Rk(p) that satisfies these properties will produce an RG flow with physi-

cally acceptable properties, in the sense that it reproduces the correct limiting behaviour.

Once we have chosen a regulator function, we define a regulated path integral (and

corresponding derived quantities) by

Zk[J ] = eWk[J ] =

Z
D'e�Sbare[']��Sk[']+J ·' (2.18)

The ”physical” running e↵ective action �k is related to the Legendre transform �̃k of Wk

�̃k = sup
J

(J · ��Wk[J ]) (2.19)

by

�k = �̃k � �Sk (2.20)
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We introduce the ”RG time” t = ln k, so that k@k = @t; then �k can be shown (see e.g.

[54]) to satisfy the ERGE:

@t�k[�] =
1

2
Tr
h
(@tRk)(�

(2)[�] + Rk)
�1
i

(2.21)

It is important to note that as the regulator Rk(q2) vanishes for q � k, its derivative

@tRk also vanishes at large q. This means that the contribution of ultraviolet modes to

the trace in (2.21) is strongly suppressed.

In practice, it is di�cult to solve the flow equation exactly. If we consider the expansion

of �[�] in some functional basis Pi[�] (e.g. powers of � and its derivatives)

�[�] =
1X

i=1

ḡiPi[�] (2.22)

then we can identify the coe�cient of Pi in the expansion of the trace on the right hand

side of the flow equation as the beta function �i({ḡj}) for the coupling gi, and we re-

cover our previous infinite tower of coupled 1st-order partial di↵erential equations (2.5).

Thus, solving the flow equation analytically is equivalent to solving this infinite tower of

equations.

This does, however, suggest a natural method for obtaining approximate solutions,

which is to consider a restriction of the theory space to some finite set of N couplings, so

that once the functions �i have been calculated, the system of equations can be solved via

elementary methods. The ERGE thus enters here as a tool for calculating the �i functions

provided that we can evaluate the trace in (2.21). This can be done using e.g. heat kernel

methods.

This approach o↵ers the exciting possibility of investigating the strong coupling regime

where perturbation theory fails. It is particularly well-suited to investigate the asymptotic

safety hypothesis, in which we are interested in the fixed points of the flow of what has

become an N -dimensional vector field @tḡi in some N -dimensional theory space. A realistic

theory of asymptotically safe gravity requires us to find two fixed points connected to each

other by the RG flow, one of which at the ”infra-red” k ! 0 end of the flow must describe

the observed world in which gravitational e↵ects are typically extremely weak.

It is, however, natural to wonder to what extent throwing infinitely many terms away

a↵ects our answers in the absence of a small expansion parameter. A partial answer to

this question can be given based on arguments of consistency. One check that can be

made is to investigate the dependence of the flow, in particular the location of the fixed

points and their corresponding critical exponents, on the specific choice of regulator Rk.

Were it possible to include all terms in �, then as we have seen above these endpoints
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should be independent of this choice; their dependence upon it therefore provides some

clue as to how sensitive our picture of the flow is to those terms which we have neglected.

Another check that can be performed is to vary the number of terms included; If the flow

can be calculated with N = 6 and N = 7, and the projection of the 7-dimensional flow

onto the 6-dimensional subspace formed by setting the seventh coupling to zero is close to

that calculated in the 6-dimensional case, then we might be inclined to guess that the flow

when N = 8 will not be too dissimilar to that we’ve already calculated, and so on. Some

regulators are found to accelerate the convergence of the flow to such a stable picture; this

is referred to as optimising the flow [56, 57].

In the asymptotic safety scenario, we require that the ”ultra-violet” fixed point has

a finite-dimensional critical surface. By restricting our attention to a finite dimensional

theory space, we seemingly preclude any possibility of finding anything other than a finite-

dimensional critical surface! Again, we must appeal to our earlier reasoning, and proceed

inductively (in the philosophical rather than mathematical sense). If we find that for some

large set of couplings that only the first two are relevant in the UV, then we might guess

that they are the only two couplings that are; if we find that every even power of the

field is relevant, then we are likely to assume that there are infinitely many UV-relevant

terms in the full theory, which we would thus regard as fundamentally ”sick” (Weinberg’s

heuristic argument given above notwithstanding).

Happily, all evidence presently suggests that there exists an ultraviolet fixed point

with a three-dimensional critical surface. The most spectacular evidence for this picture

came in [27], in which the theory space under consideration was that of polynomials in

the Ricci scalar
p
gRn of order 35. It was reported there that the UV fixed point existed

with a three-dimensional critical surface determined by the cosmological constant, R and

R2, and all higher curvature invariants exhibit their canonical scaling dimension. It has

been shown that the fixed point persists in higher dimensions [18, 19, 20, 21] and when

gravity is coupled to matter [22, 23, 24, 25, 26]. The reader is referred to review articles

[58, 59] for a more detailed overview.

For comparison to our subsequent approximations, it will be helpful to have a rela-

tively simple description of the beta functions for d-dimensional gravity obtained using

the ERGE. It was shown in [20] that retaining only the Ricci scalar in the gravitational

Lagrangian, the �-function for the dimensionless Newton’s constant g(µ) defined by (2.11)

is given by

�g = cd
(1 � 4dg/cd)(d� 2)g/cd

1 + 2(2 � d)g/cd
(2.23)
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where cd = �(d/2 + 2)(4⇡)d/2�1. We see that �g vanishes at the Gaussian fixed point

g = 0, and at the non-Gaussian value g⇤ = cd/4d. Associated to each fixed point is a

critical exponent ✓FP , defined by d�/dg(gFP ) = �✓FP ; these are found to be

✓G = 2 � d (2.24)

✓NG = 2d
d� 2

d + 2
(2.25)

These have opposite signs, which reflect the fact that the Gaussian fixed point is IR-

relevant, whilst the non-Gaussian value fixed point g⇤ is UV attractive. This flow is readily

integrated, so that imposing the boundary condition g(µ = ⇤) ⌘ g⇤, g(µ) is determined

implicitly by
µ

⇤
=

✓
g(µ)

g⇤

◆�1/✓G ✓g⇤ � g(µ)

g⇤ � g⇤

◆�1/✓NG

(2.26)

As the theoretical picture becomes increasingly compelling, and calculations of ever-

increasing di�culty serve only to confirm this existing picture, investigations into asymp-

totic safety must now begin to consider whether or not it actually describes the real world.

It is to this end that we consider the exciting prospect that quantum gravity may reveal

its true nature to us at the LHC.

2.2.3 A practical implementation of asymptotic safety

As discussed in the previous section, the endpoint of an RG flow is described by a func-

tional � whose functional derivatives �(n)�/��(p1) . . . ��(pn) describe 1PI n-point vertices;

using these functions as vertices in tree-level Feynman diagrams is equivalent to the use of

bare vertices and summing over Feynman diagrams with di↵erent topologies. The compu-

tational strategy adopted here, following [40], is to use in this spirit information derived

from the RG studies of gravity described in the previous section. We implement the ”RG

improvement” for the gravitational coupling GD

GD ! G(µ) (2.27)

using the framework first introduced in [40], via the use of functional ansätze for the field

strength renormalization Z�1(µ) for the graviton. As discussed above in equation (2.11),

this renormalization induces a running gravitational constant defined by

G(µ) = GDZ
�1(µ) (2.28)

Diagramatically, this can be viewed as using the exact propagator for the graviton between

classical vertices encoding the coupling to matter. We assume that the principal e↵ects of
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the RG running of gravity can be encoded using a running GD in this way. A more exact

treatment would allow for a separate contribution from the coupling to matter.

We know that at low energies Z(µ) ⇠ 1, and at high energies we must have Z�1(µ) ⇠
µ�(n+2) (in d = 4 + n dimensions) for there to be a fixed point. The distinction between

”low” and ”high” energies is parametrised by an energy scale which we call ⇤T . This scale

is analogous to the scale ⇤QCD ⇠ 200 MeV which emerges from the RG dynamics of QCD,

and describes the onset of quantum corrections to the canonical scaling of Newton’s cou-

pling with energy. In [60] it was shown that this transition between the scaling behaviours

becomes narrower as the number of extra dimensions increases, so it is meaningful to say

that the transition occurs at the scale ⇤T . Taking the limit in which this this transition

is infinitely narrow motivates the so-called ”quenched” approximation to the running of

Z�1(µ),

Z�1
Q (µ) = 1 + ✓

✓
µ

⇤T
� 1

◆ ✓
⇤T

µ

◆n+2

� 1

!
(2.29)

We also find it necessary to use a smoother interpolation between the scaling regimes,

which we refer to as the ”linear” matching.

ZL(µ) = 1 +

✓
µ

⇤T

◆n+2

(2.30)

This parametrisation is similar to that used by Hewett and Rizzo [39]. Those authors,

however, treat the 4-dimensional momentum carried by the graviton di↵erently from that

in the n-extra dimensions, a point which we will clarify once we have discussed the ADD

model in more detail. Both of these parametrisations were introduced in [40].

We compare these ansätze to the flow defined by (2.26) in fig. 2.1. For the sake

of consistency we have imposed the boundary condition g⇤ = g⇤/2, using units of ⇤T

for the RG scale µ and rescaling the coupling in terms of g⇤. We see that the linear

running (2.30) in particular provides a good approximation to the full solution of the

RG equations. This figure also makes it obvious how the quenched approximation (2.29)

consists of an instantaneous transition between classical and fixed point scaling of the

gravitational coupling.

2.3 Quantum gravity at the LHC

The starting point for the proposal of Arkani-Hamed, Dimopoulos and Dvali [15] is the

conjecture that the electroweak scale mEW is the only fundamental scale in nature that

relates to all physics known experimentally thus far. In this scenario, the hugeness of MP l

relative to mEW is something that emerges naturally from the model as a consequence
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Figure 2.1: Comparison of the analytic solution (red) to the RG equations (2.26) in n = 6

to the parametrisations ZQ (magenta) and ZL (blue) for the field strength renormalisation

factor for the graviton.

of the existence of n extra dimensions, which are compactified with characteristic scale R

which can be far larger than previously considered. The novel feature of their proposal

is that the Standard Model particles are confined to a four-dimensional hypersurface- the

”brane”- in the higher-dimensional ”bulk” spacetime, but gravity is not. An heuristic

picture for this comes from string theory: one can imagine the standard model particles to

be described by ”open” strings which are ”tied down” to the brane at both ends like the

strings on a violin, whilst the gravitons are described by ”closed strings”- loops of string

like an elastic band which are free to propagate throughout the bulk. This string theory

picture is however only heuristic; in their original paper [15] they present a field-theoretic

construction in which the brane is a topological defect in a SU(4)⇥SU(2)⇥SU(2) gauge

theory in 6 dimensions. A key hypothesis of the present work is that one can construct

a well-defined interacting quantum field theory of gravity that makes sense at all scales;

our theory is perhaps most naturally regarded as distinct from string theory, and it is

therefore important for our purposes that a purely field-theoretic realisation of the ADD

brane is possible.

This means that all previous tests on the dimensionality of spacetime that come from

electroweak and strong forces have only probed the dimensionality of the brane. Those

tests that derive from gravitational physics- such as the r�2 law for gravitation- have only
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probed spacetime on much larger scales; at the time of their proposal, it was consistent

with existing measurements that the compactification scale R was as large as 1mm, and

that sub-milimetre tests of the Newtonian force law would reveal a transition from r�2 to

r�(2+n) behaviour! Neglecting numerical factors, based on Gauss’ law the flux spreading

into the compactified dimensions cannot exceed ⇠ Rn, and the corresponding force law

becomes
1

m2+n
EW

m1m2

rn+2
r�R���! 1

m2+n
EWRn

m1m2

r2
(2.31)

which suggests that the Planck scale is related to mEW and the length scale R as

M2
P l ⇠ m2+n

EWRn (2.32)

We can see how such a relationship emerges from the underlying field theory by considering

a d-dimensional analog of the Einstein-Hilbert action (using the Myers-Perry convention

for GD [61])

S =
1

16⇡GD

Z
d4+nxR (2.33)

We now make two assumptions: that the 4-dimensional curvature of the brane is indepen-

dent of the bulk co-ordinates, and that the extra dimensions are essentially flat. To justify

this latter assumption, note that the characteristic energy scale associated with the physics

that gives rise to the brane is likely to be ⇠ mEW , so that at distances r > 1/mEW from

the brane curvature will be negligible; but our relation (2.32) implies that the radius R of

the extra dimensions ⇠ (MP l/mEW )1/n1/mEW -i.e. vastly larger than 1/mEW . Then the

bulk volume integral in (2.33) factorises, so that

S =
1

16⇡GD

Z
d4xR

Z
dny =

Vn

16⇡GD

Z
d4xR (2.34)

so that we have GNVn = GD. We use the conventions of Giudice, Ratazzi and Wells [62],

in which R is the radius of the compactified space (which is assumed to be a torus of

volume Vn = (2⇡R)n), and define the ”fundamental” quantum gravity scale MD to be

such that

M2
P l = 8⇡RnMn+2

D (2.35)

At this stage in our argument, it is not clear that the lowered Planck mass is of direct

experimental relevance from our vantage point on the brane: even if the ”fundamental”

gravity scale is MD ⇠ 1 TeV, the four-dimensional theory appears to couple to gravity

⇠ 1/MP l. However, the four-dimensional observer sees a tower of Kaluza-Klein modes of

the graviton; we have e↵ectively gained an infinite number of species of graviton, with mass

splittings �mKK = 1/R. From the d-dimensional point of view, the brane can exchange
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momentum in the directions transverse to its orientation with the graviton; an observer

who models the brane itself as an infinitely massive and inflexible ”brick wall”, such as

one formulating a 4D e↵ective field theory on the brane, will therefore lose d-dimensional

momentum conservation, and bulk momenta will not be constrained at vertices in Feynman

diagrams. A more formal way of seeing this is that the position of the brane in the bulk

spontaneously breaks d-dimensional translational invariance; supplanting the bulk with a

d-dimensional gravity theory gauges this translational invariance, and the KK modes of

the graviton acquire a mass by eating the Goldstone bosons associated with the underlying

broken symmetry [63].

The upshot of all of this is that associated to each graviton propagator is a sum

over the bulk momenta carried by that graviton. The coupling of any individual KK-

mode to the standard model is suppressed by MP l, and so the experimental signature

of graviton emission at collider experiments is missing energy [62]. The energy carried

o↵ by gravitons into the bulk also implies astrophysical constraints due to the observed

cooling rate of supernova 1987a [64, 65]. These latter constraints are extremely stringent

for n = 2 (see Table 2.1) but hardly constrain higher dimensions; one finds from (2.35)

that if MD ⇠ 1TeV the splitting is

�mKK ⇠ 1012�31/neV (2.36)

so that for e.g. n = 6, �mKK ⇠ 7 MeV; the temperature of the supernova is estimated to

be around T =30 MeV, and hence only a few modes can be excited. The uncertainty in

the supernova temperature implies an uncertainty in the bound, but for n = 2 estimates

on the bound vary between 10 � 100 TeV [66]. By contrast, at colliders such splittings

are negligible compared to the energy resolution; so unless n is very large, we can well

approximate the sum over KK modes by an integral. As m = n/R, we have that

X

~n

1

p2 + m2
~n

! 1

Rn

Z
dnm

1

p2 + m2
(2.37)

For graviton emission processes, this sum is cut o↵ by the conservation of energy. However,

for internal graviton lines we must consider arbitrarily o↵-shell gravitons, and even a

tree-level Feynman diagram featuring graviton exchange becomes associated with a ”one-

loop” structure. Of course, one finds that these integrals diverge, and we are confronted

with the fact that gravity is not a renormalizable quantum field theory. In consequence,

the method of regulating these UV divergences manifests itself in physical results. It is

common practice, therefore, to introduce an ultraviolet cuto↵ which is taken to be at a

somewhat arbitrary scale ⇠ MD; this procedure is hoped to give us our ”best estimate”
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of the order of magnitude of the process’ cross-section, together with the shape of the

di↵erential cross-section. This was the approach adopted in the papers [67, 62] in which

the Feynman rules for the couplings of gravity to the standard model were laid down. In

particular, bounds on processes mediated by virtual gravitons are often quoted in terms

of the ”string scale” MS in the conventions of [67]; this is related to the scale MD by [68]

MS = 2
p
⇡
h
�
⇣n

2

⌘i1/(n+2)
MD (2.38)

It is important to emphasise the nature of this relationship. The authors [67] relate the

string scale MS to the d-dimensional analog of Newton’s constant that we refer to as

GD; eq. ((2.38)) reflects the fact that refs. [67] and [62] adopt di↵erent definitions of

a mass scale relating to GD. We have used this rescaling to convert bounds quoted in

terms of MS to those on MD. However, it must also be pointed out that the authors [67]

choose MS to be the scale at which they cut o↵ their KK sum to give meaning to the

amplitudes for processes mediated by virtual gravitons. This assumption is impossible to

justify in any rigourous way; in the words of the authors of [62], these amplitudes are ”not

fully calculable”, and hence there is a sense in which these bounds are little more than

heuristic. It is also important to point out that often people informally refer to the cuto↵

scale of the KK tower as the ’string scale’ being lower than MD, in the expectation that

the e↵ective theory breaks down before the fundamental gravity scale; in this sense they

are not describing the scale MS as related to MD by (2.38), as the numerical factors in

that equation actually imply that MS > MD.

Process n=2 n=3 n=4 n=5 n=6

pp ! jj 1.95 2.43 2.00 1.73 1.53

pp ! e+e� or µ+µ� 1.23 1.42 1.17 1.01 0.9

pp ! j + /ET 5.61 4.38 3.86 3.55 3.26

Table 2.1: Experimental constraints on the scale MD from collider processes, taken from

the CMS review [69]; bounds from ATLAS are comparable [70]. The data come from

the
p
s = 8TeV LHC run, with at least L=19.6 fb�1 of integrated luminosity. Note that

bounds on processes mediated by virtual gravitons are usually quoted in terms of the

string scale MS related to MD by equation (2.38); we have converted them for consistent

presentation here.

In light of this ambiguity, it clearly seems desirable to try and avoid guessing unknowns

in our physical predictions. Furthermore, as the LHC is a hadron collider, we are inevitably
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sensitive to a wide range of energy scales simultaneously. Whilst our e↵ective field theory

approach might be reliable in the ”sub-Planckian” regime
p
s ⌧ MD, we will encounter

signals from the ”Planckian
p
s ⇠ MD and even transplanckian region

p
s � MD, and so

it is clearly desirable to try and say something about these regimes as well. (Note that we

are comparing our energy scales to the ”fundamental” scale MD ⌧ MP l, but the abuse of

language in this terminology is conventional.)

In this latter regime it has been observed that general relativity provides an excellent

description of gravity at extremely high (astrophysical) centre-of-mass energies [71], pro-

vided that we restrict our attention to objects which are well-separated in space. This

therefore motivates the application of semi-classical approximations, in which we take the

general relativistic description of the process under consideration as a starting point. We

will discuss these in more detail in the next section. We should, however, conclude our

discussion of the phenomenology of the ADD model by mentioning the most spectacu-

lar prediction of semiclassical gravity at the LHC: that of black hole production. The

phenomenology of such a process typically assumes [72, 73, 74, 50] that for su�ciently

large centre-of-mass energies black holes are produced with the geometric cross-section

� ⇠ ⇡R2
S , and decay thermally via Hawking radiation [75]; this would produce high mul-

tiplicity events with large transverse momentum, and a democratic production of species.

This picture is, however, subject to corrections due to the d-dimensionality of the gravity

theory [76] and departures from thermality [77]. Studies of asymptotically safe black holes

have been carried out in [28, 29, 30, 31], and the corresponding phenomenology investi-

gated in [32]. A further theoretical complication is that it is typically assumed that black

holes have a minimum mass (on the order of the fundamental gravity scale), owing to the

fact that their Compton wavelength cannot be less than their Schwarzschild radius [78];

for this reason experimental bounds on this signature are usually quoted in terms of a

minimum black hole mass rather than constraining the gravity scale [69]. This minimum

mass MBH is a slowly decreasing function of MD and n, and the precise details are model-

dependant; however, typical values for values of MBH are around 4.5-6 TeV for MD in the

1.5-5 TeV region [69].
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2.4 High-energy gravitational scattering

2.4.1 Semiclassical gravity

The astrophysical successes of general relativity make it clear that ”high energies” and

”short distances” are not, in general, the same thing. The combined centre of mass energy

of a pair of stars interacting via gravity is incomparably huger than the energy scale of any

fundamental physics dreamt up by theorists, and yet the large distances by which they

are separated leaves them amenable to a description via well-understood physics. Clearly,

our rule of thumb derived from Fourier analysis is inapplicable to such situations, because

it is quite wrong to assume that the interaction between e.g. the Sun and the Earth is

mediated by a single graviton. Rather, we should assume that arbitrarily many gravitons

are being exchanged in this scenario, each of which carries only a minuscule fraction of

the total momentum transferred between the two bodies. The fact that these gravitons

are not probing the high-energy behaviour of the theory then leads to the possibility of

describing the amplitudes using semiclassical approximations. By this, we mean that we

will describe the gravitational field purely through the classical Lagrangian (2.33) for d-

dimensional gravity, with the corresponding field equations and solutions, and neglecting

any other operators that we would usually consider to arise from loop e↵ects. We shall,

however, consider loop diagrams, but a restricted class of loop diagrams which correspond

to the higher orders in perturbation theory in the relativistic quantum mechanics of two

particles interacting via a classical gravitational potential. (The meaning of this statement

may become more transparent in light of the diagrammatic discussion of section 2.4.2.)

The interplay between the centre-of-mass energy E of a two-body system and the im-

pact parameter b of their collision is nicely summarised in Fig. 2.2 by Giddings’ ”phase

diagram” [1] for gravitational interactions. For any E there exists some su�ciently large

b such that the gravitational interaction between two bodies is weak enough to be ade-

quately described by the exchange of a single graviton- the Born amplitude. As we lower

b, or increase E, it becomes necessary to consider the e↵ects of many-graviton exchange-

the eikonal regime. The central goal of the present work is to understand the theoretical

description of this regime in the ADD framework, and to derive corresponding experi-

mental signatures. The mathematical description of this regime is given by an elastic

scattering amplitude MEik; the ”scattering” of the Earth and Moon is given by a pole in

this scattering amplitude [1], as per the general framework of bound states in field theory

(see e.g. [79]). We defer an explanation of the boundary between the Born and eikonal

regimes in fig. 2.2 to the quantitative discussion of this amplitude in section 2.4.2.
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Figure 2.2: Giddings’ proposed ”Phase diagram” for gravitational scattering; reproduced

from [1]. The ”quantum limit” is imposed by the uncertainty prinicple E > 1/b in natural

units; the boundaries between the other regions are explained in the main text.

If either b is decreased further, or E increased, eventually b becomes equal to the

Schwarzschild radius corresponding to E, which in D dimensions is given by [61]

RS(E) =
1p
⇡

"
8�(D�1

2 )

D � 2

#1/(D�3)

(GDE)1/(D�3) (2.39)

In the region of the E � b plane for which b < RS(E) (and b, E are not comparable to

the Planck length or mass) we expect a black hole to form, which we might still hope to

describe by semi-classical physics. The line b = RS(E) marks the division between the

eikonal and black hole regimes in fig.2.2.

To the extent that the semi-classical approach is valid, the infamous problems of quan-

tum gravity discussed above are thus relegated to the small region of the E�b plane marked

’NR” (for ”non-renormalizable”) in fig. 2.2, in which both distance and energy scales are

Planckian. Of course, anybody who thinks they have a theory of quantum gravity would

do well to begin exploring its consequences in regions we believe we understand already.

It is in this spirit that we turn our attention to the eikonal amplitude.
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2.4.2 The eikonal amplitude

In this section we will derive the so-called eikonal amplitude which describes the elastic

scattering of particles with asymptotically large centre-of-mass energies that are spatially

well-separated. This derivation is quite general: we shall see that all of the physical input

from one particular theory is encoded in the Born amplitude AB of the theory, and our

final form for the amplitude is the result of an argument based on combinatorics and

kinematics, which holds as well for electrodynamics as it does for gravity. However, this

expression turns out to be particularly useful for applications in gravity, for reasons that

will be discussed subsequently. Important early references include [80, 81, 82, 83].

There exists a pretty argument based on unitarity that any 2-2 scattering amplitude

for which the cross-section grows with energy must be peaked in the forward direction

[79]. Recall the optical theorem: that if each particle in the initial state has momentum p

and energy E in the centre-of-mass frame, then the total cross-section � for the process is

related to the forward scattering amplitude via

ImM(s, t = 0) = 2Ep� (2.40)

Here we have parametrised our amplitude for the 2-2 process with momenta p1, p2 ! p3, p4

as a function of the Mandelstam variables

s = (p1 + p2)
2

= E2
CM

t = (p1 � p3)
2

= �2p2CM (1 � cos ✓CM )

where ECM , pCM , ✓CM are respectively the total energy, the momentum of either particle,

and the scattering angle in the centre-of-mass frame. If the di↵erential cross-section d�
d⌦

varies smoothly as a function of the scattering angle, then within some solid angle �⌦

about the variation in d�
d⌦ is bounded; let us agree to choose �⌦ so that d�

d⌦ does not

change from its forward value by more than a factor of two. Then

� =

Z
d⌦

d�

d⌦
� 1

64⇡2E2

1

2
|M(s, t = 0)|2�⌦ � 1

64⇡2E2

1

2
|ImM(s, t = 0)|2�⌦ (2.41)

Here we have used the simplified form of the relationship between the di↵erential cross-

section and the scattering amplitude

d�

d⌦
=

|M|2
64⇡2E2

(2.42)
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for the case where all the particles have the same mass, but this does not a↵ect the final

outcome. Using (2.40) this then implies that

�⌦  32⇡2

p2�
(2.43)

So we see that unless � decreases with energy faster than ⇠ E�2, the range of solid

angle �⌦ into which the final state particles are scattered becomes increasingly narrow as

the centre-of-mass energy E increases. As the graviton couples to the energy-momentum

tensor of matter, we clearly expect gravitational cross-sections to grow with energy, and

hence that scattering is strongly peaked in the forward direction. This suggests that as

perturbation theory fails in the transplanckian region E � MD, we can instead make an

approximation to leading order in the scattering angle, or equivalently in the ratio �t/s.

This approximation will be used to sum an infinite set of Feynman diagrams corresponding

to the exchange of arbitrarily many low-energy gravitons.

In this s ! 1 limit, we should lose little accuracy by neglecting particle masses; our

expectation is therefore that the helicity of the colliding particles should be conserved.

If we assume that a small momentum transfer corresponds to a negligible change in the

separation of the particles in the space transverse to the direction defined by the incoming

beam, helicity conservation follows from the conservation of the total angular momentum

of each particle. We therefore assume each vertex is diagonal in any spin indices carried by

the external particles, and so we lose nothing by deriving our amplitude on the assumption

that these particles are scalars. We consider only the three-point vertex in which a matter

particle emits or absorbs a graviton, and model this vertex as a function �iV (pj) only of

the momentum pj of the external particle, neglecting any dependence on the momentum q

carried by the exchanged graviton. These vertices may carry spacetime indices that relate

to the momentum of the external particles, but such indices will always appear contracted

against an index from the other external particle’s worldline, and we will leave such sums

implicit. It is also convenient in this massless limit to formulate our argument in terms of

the lightcone variables, taking the particles to be incident along the x-axis:

q+ = q0 + q1 (2.44)

q� = q0 � q1 (2.45)

so that the metric becomes

ds2 = dx+dx� � dx2
? (2.46)

where �dx2
? = dx22 + dx23 is the squared distance element in the two-dimensional plane
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Figure 2.3: A typical ladder diagram, created by J. Schröder, that contributes to the

eikonal amplitude. The straight lines represent the participating scattering particles. The

wiggly lines represent virtual gravitons.

transverse to the axis defined by the incoming particles. Note that the Jacobian associated

with this coordinate transformation has the value |J | = 2.

Within this setup, we can write the Born amplitude (somewhat schematically) as

iAB(s, t = q2 ⇡ �q2?) = (�i)V (p1)iD(q2
?)(�i)V (p2) (2.47)

where iD(q2
?) is the Feynman propagator for the exchanged gauge boson. We have ap-

proximated this as a function of the transverse momentum q?, as in the limit p1 ⇡ p3

we have the on-shell condition p23 ⇡ p1 · p3 = p1 · (p1 � q) = �p1 · q = 0, and in the

centre-of-mass frame q0 = 0 as our scattering is elastic.

Having established the nature of the approximations we are making, we now consider

n-gauge boson exchange processes, as described by ”ladder” and ”crossed ladder” Feynman

diagrams of the form typified in figure 2.3. There are n! such diagrams, corresponding to

the permutations in which the n momenta qi emitted in succession from the top worldline

of the external particle (which we take to have 4-momentum p+) can be absorbed by the

worldline of the particle travelling in the q� direction.

Corresponding to this figure is the amplitude

iMn�boson =
X

perms �

(�1)nV (p+)nV (p�)n
Z

d4q1
(2⇡)4

. . .
d4qn
(2⇡)4

iD(q1) . . . iD(qn)

⇥ (2⇡)4�(4)(q1 + . . . qn � q)

⇥ i

(p+ � q1)2
. . .

i

(p+ � qn)2

⇥ i

(p� � q�(1))2
. . .

i

(p+ � q�(n))2
(2.48)

where �(i) represents the action of the permutation corresponding to the specific diagram

under consideration; the full n-boson exchange amplitude is described by the sum over

such permutations. In the external propagators, we use that the external momenta are

on-shell, and neglect terms quadratic in the transferred momentum compared to those

which are linear in the external momentum:

(p± qi)
2 ⇡ ±2p · qi (2.49)
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Throwing away terms of order q2i is permissible even inside an integral over qi because

the propagators D(q) ⇠ q�2; furthermore, so long as we are considering that the overall

momentum transfer q2 is small, any large momentum carried by qi must be compensated

for by a large momentum carried in the opposite direction by qj , so we expect that the

contribution of such large momentum modes will be suppressed by both phase space factors

and multiple propagators. By contrast, no such argument yet exists as to why we should

throw away p ·qi at this stage in our analysis; the orthogonality of the momentum transfer

to the external momenta will rather emerge shortly.

We now make use of the identity [55]

X

perms �

1

p · q�(1)
. . .

1

p · (q�(1) + . . . + q�(n))
=

1

p · q1 . . .
1

p · qn (2.50)

For the terms that appear dotted with p�, this sum over permutations has already ap-

peared as we sum over Feynman diagrams. As our integrand is now symmetric under

permutations of the the qi apart from the propagator factor (p+ · q1) . . ., permuting the

qi becomes equivalent to relabelling our integration variables, and so we can average over

permutations to use this identity if we introduce a factor 1/n!.

Now using [79]
1

x� i✏
= i⇡�(x) + P

✓
1

x

◆
(2.51)

inside an integral (which can be understood from the residue theorem with a pole on the

real axis) we can write

i

2p± · qj =
i

2Eq±
= �⇡�(q

±
j )

2E
(2.52)

where E is the energy of either particle in the centre-of-mass frame. Here we have thrown

away the principal value term because the principal value of the integral

Z 1

�1
dq+

1

q+

1

q+q� � q2?
(2.53)

vanishes. Note that this approach is essentially similar to the use of the Cutkosky rules

to put the external particles on-shell directly, which is that taken in [50]; the approach

adopted here, however, allows a far more transparent treatment of the gauge boson mo-

menta and the ensuing combinatorics. Note that there are 2(n� 1) such factors in total,

and the overall delta function allows us to set the q± components of the final gauge boson

momentum equal to those at which we evaluate our amplitude; these we neglect by our

earlier argument. Gathering factors and integrating out delta functions, and remember-

ing to include the Jacobian factor of 2 when we change to the q± co-ordinates in our
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integration measure, we find

Mn�boson(s, t) =
in

n!

1

(8E2)n�1
V (p1)

nV (p2)
n

Z
d2q1,?
(2⇡)2

. . .

Z
d2qn,?
(2⇡)2

1

(2⇡)2

⇥ D(q2
1,?) . . . D(q2

n,?)(2⇡)4�(2)(q1,? + . . .qn,? � q?) (2.54)

Using the integral representation of the delta function,

�(2)(q) =

Z
d2b

(2⇡)2
eiq·b (2.55)

where b is the impact parameter vector in the transverse space, and writing 8E2 = 2s, we

can write this as

iMn�boson = 2s
1

n!

Z
d2b

✓
iV (p1)

Z
d2q?
(2⇡)2

eib·q?D(q2)V (p2)

◆n

e�ib·q (2.56)

Defining the eikonal phase �(b) as

�(b) ⌘ 1

2s

Z
d2q?
(2⇡)2

eib·q?AB(s, t = �q2?) (2.57)

=
V (p1)V (p2)

2s

Z
d2q?
(2⇡)2

eib·q?D(q2)

we see that

Mn�boson(s, t = �q2?) = 2s
1

n!

Z
d2beib·q?(i�(b))n (2.58)

This beautifully simple result leads us to sum the infinite series of diagrams for arbitary

n, giving the final answer

MEik(s, t = �q2?) = �2is

Z
d2beib·q?

⇣
ei�(b) � 1

⌘
(2.59)

This derivation makes it clear that the summation of diagrams that leads to the eikonal

form is valid independently of the details of theory. At the computational level, we begin

with the Born amplitude of the theory (2.47), work out the corresponding eikonal phase

� defined by (2.57), and plug it into the general formula (2.59). This generality will be of

use in the next chapter to us when we consider the di↵erent approaches to dealing with

the tree-level divergences of the Born amplitude in the ADD scenario.

In light of our earlier discussion about forward scattering and unitarity, it is interesting

to note that the the eikonal amplitude satisfies the optical theorem (2.40) if the eikonal

phase � is real; (2.40) implies that

� =
ImAeik(s, 0)

s
= 2

Z
d2b(1 � e�Im� cos Re�) (2.60)

Whilst in the massless limit our kinematic assumptions imply the relation

d�

dt
=

|MEik|2
64⇡sp2

=
|MEik|2
16⇡s2

(2.61)
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and hence

� =

Z
dt
d�

dt

=
1

16⇡s2

Z
dt|MEik|2

=

Z
d2b(1 + e�2Im� � 2eIm� cos Re�)

Thus we see that if � is real, then the eikonal will satisfy the optical theorem [50]. This

can be understood in the following way. It will frequently be convenient to make use of

the identity Z
dnyeix·yf(y) =

(2⇡)n/2

xn/2�1

Z 1

0
dyyn/2Jn/2�1(xy)f(y) (2.62)

so that we can write (2.59) as

Aeik = �4⇡is

Z
dbbJ0(qb)(e

i� � 1) (2.63)

It is instructive [84, 85] to compare this to the partial wave expansion of the scattering

amplitude of a particle with momentum k from a potential:

f(✓) =
1X

`=0

(2`+ 1)
e2i�`

2ik
P`(cos ✓) (2.64)

In the limit of large k, b presently under discussion, ` = kb is large. Furthermore, this limit

is ”semiclassical” in the sense that the spacing ⇠ ~ between angular momentum eigenstates

becomes negligible compared to the large angular momenta under consideration, so that

the sum can be replaced by an integral. Using the asymptotic behaviour of the Legendre

polynomial in `, P`(cos ✓) ⇠ J0(`✓) ⇠ J0(bq) (where we have approximated ✓ = q/k), so

that we have

f(✓ = q/k) ! �ik

Z
dbbJ0(bq)(e

2i�(b) � 1) (2.65)

We see that � acquires the interpretation of a phase shift, and the eikonal amplitude a sum

over all partial waves which happens to be dominated by large angular momentum modes;

this explains its unitarity so long as the phase shifts are real. In [86] the boundary between

the elastic and black hole regions of fig. 2.2 was investigated by allowing the phase shifts

to become complex, as black hole production is expected to be a highly inelastic process

due to Hawking radiation.

It is also instructive to compare (2.57) to the relationship between the Born amplitude

and the classical potential V (x) [55]:

AB = �i

Z
d3xV (x)e�ix·p (2.66)
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So we see that �, as well as having the interpretation of a phase shift, will be closely related

to the classical potential experienced by each particle due to the interaction. The di↵erence

is that in(2.57) the Fourier transform is only taken over the transverse co-ordinates to the

beam axis; this can be understood if it is recognised that the phase shift results from

integrating the potential experienced by a particle along its worldline.

Having discussed the eikonal amplitude in some generality, it is now perhaps appropri-

ate to specify its particular relevance for gravity. As we have already observed, we expect

based on our unitarity argument that forward scattering will be particularly relevant for

gravity, as the cross-sections are expected to grow with energy. This is visible, for example,

in the Born amplitude derived from an Einstein-Hilbert Lagrangian minimally coupled to

matter, which in spacetime of arbitrary dimension takes the form [1]

AB(s, t) = �8⇡GDs
2

t
(2.67)

As expected, we see that this grows strongly with s, and decays with t. The eikonal phase

corresponding to (2.67) according to (2.57) is given by [1]

�(b, s) =
4⇡

nSn+2

GDs

bn
(2.68)

where the factor

Sn =
2⇡n/2

�(n/2)
(2.69)

is the area of the n-dimensional unit sphere. We see from this equation that the dividing

line between Born and eikonal regions in fig. 2.2 corresponds to the requirement that the

modulus of |�| & 1; for |�| < 1 we can expand the exponential in (2.59) in a series, the

leading order term of which merely reproduces the Born amplitude.

To assess the validity of the approximation, we can also compare the relative contri-

butions of the Feynman diagrams that are and are not included in the eikonal amplitude,

at any fixed order in perturbation theory. This does of course require that one has a way

of making sense of the diagrams which would ordinarily contain divergences, but such

a programme has been undertaken in supergravity [87] and string theory [88], where it

was found that the ladder and crossed ladder diagrams do indeed dominate those which

are neglected. The eikonal amplitude and its leading corrections have been extensively

investigated in string theory, [89, 90, 91, 92].

Furthermore, the eikonal amplitude for gravity has been shown to have a semi-classical

interpretation. One of the early works that pioneered the use of semi-classical approxima-

tions at high energies was that of t’Hooft [6], who derived the elastic scattering amplitude
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of a particle in response to the shockwave in an Aichelburg-Sexl metric [93]:

U(s, t) =
�(1 � iGNs)

4⇡�(iGns)

✓
4

�t

◆1�iGs

(2.70)

Kabat and Ortiz showed [8] that the eikonal amplitude for gravity, using (2.67) in d = 4

for the Born amplitude, is equivalent to this result (up to a choice of scale for a ”graviton

mass” introduced to regulate infrared divergences). It is interesting to note [6] that the

absolute value, and hence the cross-section, of this expression is exactly identical to that

of (2.67).

This completes our survey of the concepts necessary to understand the present work

in context. We now turn our attention to the study of the eikonal regime at the LHC, if

asymptotically safe quantum gravity is allowed to reveal itself by through the existence of

large extra dimensions.



32

Chapter 3

Quantum gravity in the eikonal

In this chapter, we investigate the scattering amplitudes which describe transplanckian

scattering if gravity probes a higher-dimensional spacetime whilst the colliding particles

are confined to a 3+1-dimensional brane. We begin in section 3.1 by assessing the claim

made in the literature [1, 8, 50] that the eikonal approximation is independent of the

UV completion of the theory. We will demonstrate that there is good reason to question

this hypothesis in the ADD framework, and argue that we are therefore compelled to

describe the process using a genuine theory of quantum gravity. We then seize this exciting

opportunity to explore the physics of asymptotically safe gravity. In section 3.2 we use

the computational framework first presented in [40] to provide a practical approach to

calculating these amplitudes. We will explore how sensitive our results are to the di↵erent

approximations to the RG evolution of the gravitational coupling G(µ). In section 3.3

we explore the underlying reasons for the failure of the arguments o↵ered in support of

the expectation that semiclassical physics could be applied, using the techniques of the

stationary phase approximation.

3.1 Semiclassical gravity?

In this section we explore methods of computing the eikonal scattering amplitudes that

seek merely to parametrise our ignorance of the underlying gravity theory. As discussed

in the preceding chapter, the calculation of the eikonal amplitude proceeds in essentially

three steps: compute the Born amplitude of the theory; work out the corresponding eikonal

phase �(b) via (2.57); and insert the result into (2.59) to compute the eikonal amplitude

Meik itself.
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3.1.1 Born amplitude

As discussed in section 2.3, in the ADD scenario there are infinitely many KK modes of

the graviton, and the Born amplitude for a ”single graviton exchange” sums over the entire

KK tower. The corresponding Feynman diagrams do however have an identical topology

to those of more familiar frameworks, and we can still talk about processes occurring in

the ”x-channel”, where x = s, t or u = �s � t is one of the Mandelstam variables. The

Born amplitude in the x-channel may be written in the form A = S(x) · T [62], where

T = Tµ⌫Tµ⌫ � 1

n + 2
Tµ
µ T

⌫
⌫ (3.1)

is a function of the energy-momentum tensor Tµ⌫ of the theory, and n is the number of

compactified extra dimensions; and

S(x) =
1

Mn+2
D

Z
dnm

x�m2

=
1

Mn+2
D

2⇡n/2

�(n/2)

Z
dm

mn�1

x�m2
(3.2)

in which we have assumed that the spacing between the Kaluza-Klein masses m is well

below our experimental resolution, such that we may replace the sum by an integral for

analytic convenience. We will restrict our attention to t-channel processes, such that the

denominator of the integrand 3.2 never vanishes as t < 0. This form is convenient because

the coupling of the graviton to matter is independent of the KK mode under consideration,

so that we may perform the sum S(x) over KK masses without specifying any particular

2 ! 2 process; the details of a particular field content for our theory are encoded in

T . At su�ciently high energies, we may neglect both non-gravitational interactions and

the masses of our particles; then Tµ
µ vanishes, and the matrix element of Tµ⌫ between

momentum eigenstates is simply [50]

hp|Tµ⌫ |pi = 2pµp⌫ (3.3)

T then contributes a factor (2pµ1p
⌫
1)(2p2,µp2,⌫) = s2. For subsequent convenience we define

C =
s2

Mn+2
D

Sn (3.4)

The integral (3.2) exhibits a logarithmic divergence for n = 0, but setting n = m = 0 and

not doing the integral reproduces the Born amplitude of the Einstein-Hilbert action. In 2 or

more extra dimensions the integral is UV divergent, and therefore requires regularization.

In existing literature this has been done via dimensional regularization [50], a sharp UV
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cut-o↵ in e↵ective field theory [62, 67], and by modelling the brane as a dynamical object

with a finite width [94].

In n = 2 the regularised integrals also diverge as q ! 0; as our principal interest is in

the ultraviolet physics of gravity, we will generally restrict our attention here to n > 2.

Dimensional Regularisation

In [50] the authors exploit the convergence of (3.2) for 0 < n < 2 to obtain a result which

may be analytically continued to a wider range of n:

ADR = C

Z
dm

mn�1

t�m2
= �C(�t)n/2�1 1

2

Z
dx

xn/2�1

1 + x
(3.5)

= � s2

Mn+2
D

⇡n/2(�t)n/2�1�(1 � n/2)

We have corrected this result for a minus sign not present in [50]. This has poles for even

integers n > 2 but is otherwise well-behaved. Note that for n � 2 this is an increasing func-

tion of momentum transfer q =
p�t, wheras for 0 < n < 2 where the integral converges it

is a decreasing function, as would be required for forward scattering to dominate. The use

of this amplitude as the starting point for an eikonal calculation has thus been criticised

in [94]. This behaviour can be understood on dimensional grounds- in the absence of a

cuto↵ scale ⇤, the momentum transfer
p�t provides the necessary powers of energy to

keep the amplitude dimensionless. The fact that the Born amplitude contains no such

scale means that the eikonal amplitude should in principle allow one to make predictions

that constrain MD directly; however, this argument only holds on the assumption that

the eikonal amplitude is insensitive to the details of how the Born amplitude is regulated.

This will be discussed in much greater detail below.

E↵ective Field Theory

In order to better understand how dimensional regularisation works, it is instructive to

compare it to the results obtained by imposing a sharp UV cuto↵ in the integral in (3.2):

Z ⇤

0
dm

mn�1

t�m2
=

⇤n

nt
F (1, n/2, 1 + n/2,⇤2/t) (3.6)

so that

AEFT = C
⇤n

nt
F (1, n/2, 1 + n/2,⇤2/t) (3.7)

Here and throughout, F denotes the hypergeometric function 2F1.

The hypergeometric function is defined by the series expansion (B.6). We may expand

F in this series, and partially re-sum it for the cases where n is definitely odd or even, to



35

AEFT HqL
AEFT H0L

n=3

n=6

L2êt

0.1 0.2 0.5 1.0 2.0 5.0

0.02

0.05

0.10

0.20

0.50

1.00

qêL
Figure 3.1: The Born Amplitude with a sharp UV cuto↵ for di↵erent numbers n of extra

dimensions: n=3 (red), 4 (blue), 5 (magenta), 6 (grey). Each has been normalised to the

value of each amplitude at t = 0; note that this procedure removes the dependence of the

amplitudes on the values of the dimensionful parameters s,M ,⇤ except insofar as that ⇤

sets the scale on the horizontal axis. For comparison we also plot the asymptotic limit

⇠ ⇤2/t (green).

recover the expansions presented for the cut-o↵ amplitudes in [62, 67]:

F (1, n/2, 1 + n/2,⇤2/t) = n

✓�t

⇤2

◆n/2

⇥ (3.8)

8
>>><

>>>:

�1
2


(�1)n/2 ln

⇣
1 � ⇤2

t

⌘
+
Pn/2�1

j=1
1
j

⇣
⇤2

t

⌘j�
if n is even

(�1)(n�1)/2

"
tan�1

⇣
⇤p
�t

⌘
�P(n�1)/2�1

j=0 (2j + 1)�1(�1)j
r⇣

⇤2

t

⌘2j+1
#

if n is odd

To understand how this is related to dimensional regularisation, we use the identity (B.9)

so that for odd n we have

AEFT = ADR � C
⇤n�2

n� 2
F

✓
1, 1 � n

2
; 2 � n

2
;
�t

⇤2

◆
(3.9)
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The first term is the amplitude of dimensional regularisation, and is independent of ⇤,

whilst the second term diverges in the limit ⇤ ! 1. We therefore see that dimensional

regularisation corresponds to an infinite subtraction, as noted in [94], and that the t-

dependence of the subtracted term totally changes the behaviour of the amplitude as a

function of t.

As F (↵, �; �; 0) ⌘ 1, for large �t � ⇤2 we have that

AEFT
�t/⇤2!1�������! C

⇤n

nt
(3.10)

In the limit �t/⇤2 ! 0, each term in the series expansions (3.8) vanishes; isolating

the the terms of order �t/⇤2, which have the same coe�cient in even and odd n, we find:

C
⇤n

nt
F (1, n/2, 1 + n/2,⇤2/t)

�t/⇤2!0������! �C
⇤n�2

n� 2
(3.11)

Note that as this limit is finite and independent of t, scattering at 4-momentum trans-

fers that are small compared to ⇤ is isotropic; in terms of the Mandelstam variables, the

channels s-, t- and u- all make comparable contributions to the amplitude [95]. It is often

parametrised on dimensional grounds in terms of an e↵ective mass Me↵ as

S(x = 0) = � 4⇡

M4
e↵

(3.12)

The limiting behaviour of AEFT as t ! 0,�t ! 1 is also easily observed from the

defining integral 3.6.

3.1.2 Eikonal Phases

The defining relation (2.57) can be conveniently re-written using the expression (2.62), so

that

�(b, s) =
1

4⇡s

Z 1

0
dqqJ0(qb)AB(s, t = �q2) (3.13)

Dimensional Regularisation

Corresponding to the Born amplitude (3.6) the authors [50] found that

�DR = � 1

4⇡s

s2

Mn+2
⇡n/2�(1 � n/2)

Z
dqqn�1J0(qb) (3.14)

⌘ �
✓
bc
b

◆n

Passing from the first to the second line uses the result (B.1). (This result di↵ers from

that in [50] by the same minus sign as that in (3.6).) The parameter

bc =

 
(4⇡)n/2�1�(n/2)s

4Mn+2

!1/n

(3.15)
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is the length scale at which �DR becomes of order one, and hence dictates when the eikonal

is relevant. There are a number of important facts to appreciate about this result.

The first point to note is that �DR(b) is well-defined in all numbers of extra dimensions

n, despite the fact that it has been derived via a Born amplitude that diverges for all even n.

The second, particularly in light of (2.66), is the striking similarity between �(b) ⇠ b�n and

a Newtonian potential V (r) ⇠ r�(n+1). In [96] it was shown that this result was equivalent

to that obtained by exchanging the orders of integration in the Fourier transform in (2.57)

and in the Born amplitude. Of course, this procedure is only strictly legitimate when

both integrations are absolutely convergent. As discussed above, this will be the case

when 0 < n < 2. In fact, this is also the result obtained for � in d flat dimensions [1].

There are two possible viewpoints that we might adopt regarding this result. The first

is that although our regularisation process might appear to be mathematically suspect, it

is physically reasonable that we have recovered the semiclassical result (3.15) in the context

of a semiclassical calculation. However, we do not find this argument persuasive. It is easy

to imagine that the e↵ective potential that arises from integrating over all modes di↵ers

in some respect from the classical potential, and the KK tower certainly probes high-

energy modes. We have seen in our discussion of the Born amplitude that dimensional

regularisation amounts to an infinite subtraction. Looking at this result, it appears as if

that subtraction amounts to the contribution of the entire KK tower! It therefore seems

worthwhile to consider the eikonal phase with a cuto↵ imposed upon the KK tower, to see

how this modifies our results.

E↵ective Field Theory

We calculate the eikonal phase for e↵ective field theory by exchanging the order of inte-

gration of m and q. Note that in contrast to the dimensionally regularised case, all of our

integrals are now absolutely convergent for finite ⇤, and hence this procedure should not

a↵ect the final outcome. We thus find

�EFT = � C

4⇡s

Z ⇤

0
dmmn�1

Z
dqJ0(qb)

q

q2 + m2

= � C

4⇡s

Z ⇤

0
dmmn�1K0(mb) (3.16)

= � s⇤n

Mn+2
D

⇡n/2�1

2n2

✓
�K1(�)1F2

✓
1; 1 +

n

2
, 1 +

n

2
;
�2

4

◆

+ nK0(�)1F2

✓
1; 1 +

n

2
,
n

2
;
�2

4

◆◆
(3.17)

where we have defined � = b⇤.
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Figure 3.2: The eikonal phase in e↵ective field theory for n varying from 3 to 6 (top to

bottom), normalised to its value at b = 1/⇤. Note the variation of the scaling behaviour

with n for large � = b⇤.

At � = 0, the hypergeometric series truncate to 1; the behaviour of �EFT at small

impact parameters is therefore dominated by the modified Bessel functions K⌫(�). Using

the series expansion (B.4) for K⌫ at small arguments we see that

K ⇠ log � (3.18)

so we see that the short-distance behaviour of �EFT is dominated by a logarithmic diver-

gence from the function K0(�).

For large impact parameters, we use the asymptotic expansions (B.5), (B.10) of the

K⌫ and 1F2 functions to recover the expected behaviour

�EFT (b) ⇠ �
✓
bc
b

◆n

(3.19)

where bc is defined as above, and we have neglected terms of order e�⇤b. This limit was

recovered in [97] by direct asymptotic expansion of eq. (3.16).
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To what extent then is the eikonal phase � independent of the regulator used in AB?

This appears to depend on the relative contributions of the length scales greater or less

than ⇠ 1/⇤. The authors [97] numerically integrated the eikonal amplitude using (3.16)

with ⇤ = MD = 1TeV and for dimensional regularisation, and found little di↵erence.

However, that was in the context of the eikonal scattering of neutrinos from cosmic rays

o↵ neutrinos, with a centre-of-mass energy
p
s ⇠ 1010 GeV rather higher than those

accessible at the LHC. As the largeness of the centre of mass energy was crucial to the

semi-classical rationale behind the eikonal, it seems worthwhile checking the regulator

dependence of the eikonal amplitude at the LHC explicitly.

3.1.3 Eikonal amplitude

We now consider the eikonal amplitude corresponding to (3.15) and (3.17) in turn, to see

to what extent the full eikonal amplitude is sensitive to the procedure used to define AB.

Dimensional Regularisation

Using the eikonal phase (3.15) we write

MDR = �4⇡is

Z
dbbJ0(qb)(e

�i( bc
b )

n

� 1)

= �4⇡isb2c

Z 1

0
dxxJ0(xy)

⇣
e�ix�n � 1

⌘
(3.20)

⌘ 4⇡sb2cFn(bcq) (3.21)

It was shown in [98] that the functions Fn can be expressed in terms of Meijer-G functions.

Correcting for various minus signs, we find that

Fn(y) =
2�2/n�1

n
(Rn(y) + In(y)) (3.22)

Rn(y) = Gn+1,0
0,2(n+2)

0

@ y2n

22n+2n2n

����
0, n�2

2n , 1
n , . . . ,

n�1
n ,� 1

n , 0,
n�1
n , n�2

n , . . . , 1
n

1

A (3.23)

In(y) = Gn+1,0
0,2(n+2)

0

@ y2n

22n+2n2n

����
0, 1

n , . . . ,
n�1
n , n�1

n ,� 1
n , 0,

n�2
2n , n�2

n , . . . , 1
n

1

A (3.24)

We plot this in fig. 3.3 for di↵erent values of n. We note immediately that this regular-

isation scheme does not exhibit the same correspondence between the Born and Eikonal

di↵erential cross-sections that is found in ordinary four-dimensional gravity. The eikonal

amplitudes shown here clearly demonstrate that forward scattering dominates, wheras the

Born term (3.6) grows indefinitely as a function of q.
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Figure 3.3: The functions Fn(y) for the labelled values of n. The real parts are shown in

red, the imaginary parts in blue, and the absolute values in magenta.

E↵ective Field Theory

For the more complicated eikonal phase corresponding to a sharp cuto↵ no corresponding

closed form expression appears to exist. Figure 3.4 compares the dimensionally regularised

result to the numerical integration of

MEFT = �4⇡is

Z
dbbJ0(qb)(e

i�EFT � 1) (3.25)

where �EFT is given in (3.17). We see that for ⇤ ⇠ MD at typical LHC energies there can

be a factor of 2 di↵erence between dimensional regularisation and e↵ective field theory

at small angles. This explicitly demonstrates that the eikonal amplitude is sensitive to

our treatment of the Born amplitude. In [50] they allow for the possibility that quantum

gravity e↵ects might significantly alter their signal, but claim that the eikonal amplitude

should nonetheless be insensitive to the regularisation procedure.

The fact that we cannot systematically and consistently eliminate the contribution of

short-distance modes to physical results suggests that we are forced to confront the physics

of the high energy scale directly. There are two candidates for the unknown physics: that

which gives rise to the 3-brane, and that which solves the problems of quantum gravity.

Phenomenological parametrisations of ascribing a thickness or tension to the brane yield

an eikonal phase with a similar behaviour to that found in e↵ective field theory [94]. Our
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interest arises from the other possibility: that the LHC may o↵er us the opportunity

to probe the physics of quantum gravity. Whilst the string corrections discussed in [50]

are incalculable, in asymptotic safety a practical method for investigating the underlying

theory of quantum gravity has already been outlined. The remainder of this work will be

dedicated to understanding how asymptotic safety might reveal itself in this scenario.

»MEik»

DR
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L=0.8MD
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10

20

30

40

50

60

q HTeVL

Figure 3.4: In this figure we compare the eikonal amplitude obtained via dimensional

regularisation (blue) to that derived in e↵ective field theory with ⇤ = 0.8MD (yellow) and

⇤ = MD (red). We have used the reference values of
p
s =9 TeV; MD = 1.5TeV in n = 6.

Note that as the DR amplitude makes no reference to the scale ⇤ we have plotted our

momentum transfer in units of TeV.

3.2 RG improvement

We now begin our investigation of asymptotically safe scattering amplitudes, using the

parametrisations (2.29), (2.30) for the running gravitational constant. Implementing an

RG improvement necessitates making a connection between the RG scale µ and some

momentum scale in our physical problem. We will take µ to be the d-dimensional graviton

momentum, so that

µ2 = �t + m2 (3.26)
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As this matching depends on the KK mass m of the graviton, we must include the factor

Z�1(µ) inside our integrals over the bulk momenta of exchanged gravitons. Our approach

therefore di↵ers from that of Hewett and Rizzo [39], who use a parametrisation for Z�1(µ)

equivalent to (2.30), but only match the RG scale to the four-dimensional momentum

transfer.

Further to the discussion in section (2.2.3), we also emphasise that we are treating the

underlying gravity theory as that of d-dimensional spacetime, with no regard to the ADD

construction. This is very much in keeping with the spirit of the model, but it is antic-

ipated that there is at least one e↵ect specific to this scenario that we neglect. Clearly,

at very small µ < 1/R we must see four -dimensional gravity [60], which our parametri-

sations do not account for. The momentum transfers we will ultimately consider in our

phenomenological study are su�ciently large that this approximation has no significant

e↵ect.

3.2.1 Born amplitude

Quenched approximation

The Born amplitude in the t-channel, retaining only the leading order in �t/s is then

given by

AQ = C

Z
dm

mn�1

t�m2
Z�1
Q (
p
�t + m2) (3.27)

The subscript Q simply denotes that we are using the prescription (2.29). The functional

form of the resulting integral depends on the value of
p�t/⇤T ⌘ p�t0. For

p�t0 > 1 we

are immediately in the fixed point regime, and the integral in (3.27) becomes comparatively

simple. For �t0 < 1 the resulting integral is more complicated, as we split the integration

region up into intervals in which the integrand does and does not exhibit fixed point

scaling.

The expressions for these di↵erent kinematic regions can be combined into the ampli-

tude

AQ = C⇤n�2
T

 �2

n(2 + n)t02
+ ✓(1 + t0)(1 + t0)n/2

✓
2F1

�
1, n2 ,

2+n
2 , 1 + 1

t0
�

nt0
� (�2 + nt0)

n(2 + n)t02

◆�

(3.28)

This result agrees with the high-energy limit �t/s ! 0 of the full Born amplitude (inclusive

of s�, t� and u� channels) in asymptotic safety derived in [38, 37]. It is clear from this

expression that for �t0 > 1, the amplitude decays as ⇠ 1/t02, in constrast to the e↵ective

field theory result. This can be understood from the perspective of four-dimensional
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physics: If GD(µ) ⇠ µ2�d, then in d = 4 the running Newton’s constant must vary

⇠ µ�2; as we have integrated out all KK modes, from the matching (3.26) we must

have GN (µ) ⇠ 1/t at high energies. Using this running GN in (2.67) reproduces ⇠ t�2

behaviour, so that the four-dimensional GN inherits the fixed point of the underlying

d-dimensional gravity theory [40].

AQ HqL
AQ H0L

n=3

n=6

L4êt2

0.1 0.2 0.5 1.0 2.0 5.0

0.001

0.01

0.1

1

qêL
Figure 3.5: The quenched approximation to the RG-improved Born amplitude for di↵erent

numbers n of extra dimensions, normalised to the value of each amplitude at t = 0

Note that this procedure removes the dependence of the amplitudes on the values of the

dimensionful parameters s,MD,⇤T except insofar as that ⇤T sets the scale on the horizontal

axis. Here we compare the amplitudes to their asymptotic limit ⇠ 1/q4.

The hypergeometric function is related to the one that appeared in e↵ective field theory

by the substitution 1/t ! 1 + 1/t, and we obtain expansions related to those of e↵ective

field theory by analytic continuation:
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F (1, n/2, 1 + n/2, 1 + 1/t0) = n

✓
1 +

1

t0

◆�n/2

⇥ (3.29)
8
>><

>>:

1
2

h
ln (�t0) +

Pn/2�1
j=1

1
j

�
1 + 1

t0
�ji

if n is even

tanh�1

⇣q
1 + 1

t0

⌘
�P(n�1)/2�1

j=0 (2j + 1)�1(�1)j
q�

1 + 1
t0
�j+1/2

�
if n is odd

We can use these to recover the t0 ! 0 limit of AQ:

AQ = �C⇤n�2
T

✓
1

n� 2
+

1

4

◆
(3.30)

The identity (B.9) gives us the relationship to dimensional regularisation:

AQ = ✓(1 � t0)ADR + C⇤n�2
T D(t0, n) (3.31)

where

D(t0, n) =
�2

n(2 + n)t02
+ ✓(1 + t0)

(1 + t0)n/2�1

n� 2
F

✓
1, 1 � n

2
, 2 � n

2
,

t0

1 + t0

◆
(3.32)

Again, we see that dimensional regularisation di↵ers from the large ⇤T limit of our

amplitude by an infinite subtraction.

Linear Approximation

We defer our calculation of the Born amplitude using the prescription (2.30) to appendix

A.1. We define

l =

8
><

>:

1 if n is even

2 if n is odd
k =

8
><

>:

n
2 + 1 if n is even

n + 2 if n is odd

and find for the general result

AB(s,�q2) = �s2⇤n�2
T

Mn+2
D

(2⇡)n/2+1�l

n + 2

1

(2k)n/2�1

1

q02

⇥Gl,l+k
k+l,k+l

0

@ 1

q02k

����
1
l

�
1 � 2

2k

�
, . . . , l � 2

2k , 0,
1
k , . . . ,

k�1
k

1
l
n
2k , . . . , l � n

2k ,
�n
2k . . . , 1k

��n
2 + k � 1

�

1

A (3.33)

A special case of this result for n = 6 was found in [40] in terms of elementary functions,

and we have checked that our result agrees with that expression. Using (B.13) we again

reproduce the universal q�4 behaviour.
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Figure 3.6: The linear approximation to the RG-improved Born amplitude for di↵erent

numbers n of extra dimensions, normalised to the value of each amplitude at t = 0. Here

we compare the amplitudes to their asymptotic limit ⇠ 1/q4.

3.2.2 Eikonal phase

Quenched Approximation

For even n one can use the binomial expansion of (1 + t)n/2 in AQ to express it in a way

that can be integrated in Mathematica, and thus find the eikonal phase �Q expressed as



46

AHqL

ZL

ZQ n=5
n=6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

qêLT
Figure 3.7: Here we compare di↵erent prescriptions for implementing asymptotic safety

in the Born amplitude in n = 5 (red) and n = 6 (blue). The dashed curves show the

quenched prescription (2.29) and the solid curves show the linear prescription (2.30).

a function of the dimensionless variable b0 = b⇤T :
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For odd n we are forced to resort to to the construction of interpolating functions via

direct numerical integration of (3.13). We plot these in fig. 3.8. We remark that for large

impact parameters �Q oscillates wildly about the expected value ⇠ b�n; this appears to

be merely an artefact of the quenched prescription, due to the non-analyticity of the step

function.
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Figure 3.8: The quenched approximation to the RG-improved eikonal phase for di↵erent

numbers n of extra dimensions. Here we see that in this approximation �Q oscillates

wildly about the expected value ⇠ b�n.

Linear Approximation

Deferring the calculational details to A.1, we find the general expression

�L(b0) = � s⇤n
T

Mn+2
D

(2⇡)n/2+1�l

4⇡

b0�n/2

n + 2
(3.34)
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where again b0 = b⇤T , k and l were defined in (3.33), and

w =
1
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Using the formula (B.14) we find that for b � ⇤�1
T we reproduce the now-familar result

�L(b) ⇠ �
✓
bc
b

◆n

(3.35)
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Figure 3.9: The linear approximation to the RG-improved eikonal phase (solid lines) for

di↵erent numbers n of extra dimensions. In this approximation to the running of GN , the

asymptotic ⇠ b�n behaviour as expected from the semiclassical analysis (dashed lines) is

clear.

We see that thanks to the continuous derivatives of the prescription (2.30) this exhibits

none of the long-distance pathologies exhibited by �Q. For b ! 0 we find from (B.13) that

�L(0) = � s⇤n
T

Mn+2
D

⇡n/2

2n(n + 2)

csc
⇣

n⇡
n+2

⌘

�
�
n
2

� (3.36)

It is striking that in contrast to the e↵ective field theory case (3.17) which diverged log-

arithmically at small arguments, �L tends to a finite value. This is because the EFT

prescription only regulates the high energy modes of the KK tower, without fundamen-

tally altering the behaviour of gravity at short distances. By contrast, the framework

adopted here is intended to describe a fundamentally well-behaved theory of gravity. In-

deed, we also find that the derivative of �L vanishes at zero impact parameter, and regard

this as a signature of the underlying fixed point of the theory.

This argument can be generalised: using the matching (3.26), by the argument in A.1

we can write the eikonal phase corresponding to a generic field strength renormalisation

Z�1(µ) in the form

�(b) = Xnb
�n/2

Z 1

0
dµµn/2�1Z�1(µ)Jn/2(bµ) (3.37)

with Xn an irrelevant n-dependent constant. At small arguments, by (B.2) Jn/2(µb) ⇠
bn/2, so that this integral is finite as b ! 0, and converges due to the factor Z�1(µ), so
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that �(0) is finite. Di↵erentiating with respect to b, we have

d�

db
= Xn

Z 1

0
dµµn/2�1Z�1(µ)b�n/2

�n

2

1

b
Jn/2(bµ) +

dJn/2(bµ)

db

�
(3.38)

Using (B.3), the term in square brackets becomes

�n
2

1
bJn/2(bµ) + µ

2

�
Jn/2�1(µb) � Jn/2+1(µb)

�

b!0��! �n
2b

⇣
bµ
2

⌘n/2
1

�(n/2+1) + µ
2

⇣
bµ
2

⌘n/2�1
1

�(n/2) + O(bn/2+1)

= 0 + O(bn/2+1)

So we see that it is also a generic feature of our formulation that the first derivative of

�(b) vanishes at zero impact parameter. We find no such cancellation with the second

derivative of �, so that we might expect it to diverge in the small b limit due to the

terms inversely proportional to powers of b. In fact, it seems that the integral softens this

divergence slightly, so that we find for �L the expansion

�L(b) ⇠ �0 + b02(An + Bn log(b0)) (3.39)

so we see that the second derivative of � diverges logarithmically. It is interesting to

reflect on this fact in light of the analogy between quantum field theory and the sta-

tistical mechanics of systems with infinitely many degrees of freedom; in applications of

the renormalization group in the latter context, fixed points correspond to second-order

phase transitions, in which the second derivatives of the thermodynamic free energy are

discontinuous.

It is interesting to reconsider the connection between the eikonal phase and the classical

potential in light of this result. We would have reproduced the qualitative features of �L

if we had taken defined a gravitational constant that ran in position space as G(b) ⇠ bn at

short distances, and remained approximately constant ⇠ GD at long distances. We might

expect analogous remarks to apply to the Newtonian potential ⇠ r�(1+n), or equivalently

to the metric components in a relativistic setting. Such methods have been applied to

e.g. discussions of RG-improved black hole metrics in [28, 29, 30, 31]; this result seems

to provide a further vindication of such approaches. In fact, using the identity (B.15),

we can define a multiplicative renormalisation factor Hn(b0) for GN that runs in position

space, by

�L(b0) = �
✓
bc
b

◆n

Hn(b0) (3.40)



50

10 20 30 40b
¢

0.5

1.0

1.5

2.0
Hn

n=6

n=5

n=4

n=3

Figure 3.10: Here we plot the functions Hn(b0) for di↵erent numbers of extra dimensions.

We see here that the functions grow as ⇠ bn at small arguments and settle to 1 at long

distances, as required to reproduce the semiclassical result.
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The functions Hn are plotted in fig. 3.10.

We can use the finiteness of �L(0) ⌘ �0 to define a length scale bT ⇠ 1/⇤T character-

istic of our RG improvement, by

�0 = �
✓
bc
bT

◆n

(3.42)

bT is thus the length scale at which the semi-classical eikonal phase (3.15) attains the

maximal value of �L in our framework. It provides a strict lower bound on the length

scale at which the e↵ects of RG improvement must manifest themselves. Its explicit

expression is

bT = ⇤�1
T

2

42n�2 �2
�
n
2

�
n (n + 2)

⇡ csc
⇣

n⇡
n+2

⌘

3

5

1
n

(3.43)

There is one further important remark to be made in connection with the semi-classical

limit �DR. We have seen that �L reproduces this limit at large arguments. This can be

understood as saying that the RG-improvement only a↵ects the short-distance physics

of gravity. However, the dimensionless argument b⇤T of the complicated functions in
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(3.35),(3.41) also becomes larger as we increase the scale ⇤T . There is then a sense in

which gravity ’looks more classical’ as we push the onset of fixed point scaling to ever

higher energy scales. This point will become important in our discussion of the eikonal

amplitudes.

3.2.3 Eikonal amplitude

We have numerically integrated the renormalisation-group-improved eikonal amplitudes

MRG(s, t) using �L. The most obvious question to address is how varying the new pa-

rameter ⇤T of our theory a↵ects the absolute value of MRG, and hence on observable

physics relevant for our discussion of phenomenological signals in chapter 4. We illustrate

the e↵ects of this variation in figure 3.11.

The first lesson to be gained from figure 3.11 is that for su�ciently large ⇤T our eikonal

amplitudes coincide with those of dimensional regularisation. This was to be expected from

our discussion of �L in the preceding section 3.2.2. As discussed there, in the large ⇤T

limit �L ! �DR, as fewer momentum modes are a↵ected by the weakening of gravity due

to the fixed point. That this is realised at the level of the full eikonal amplitude amounts

to an important consistency check.

The second immediately striking point about fig. 3.11 is that for values of ⇤T < MD,

the eikonal amplitude exhibits the same scaling behaviour ⇠ q�4 as the Born amplitude.

It is interesting to compare this to the situation in 4-dimensional gravity, where t’Hooft’s

amplitude (2.70) has the same absolute value as the Born amplitude (2.67). Here we see

that the ”semi-classical” amplitude in the ADD case does not share this feature, whilst

our description in which the quantum field theoretic e↵ects are most important appears

to! This is, however, easily understood mathematically. In the case ⇤T < MD, from (3.35)

the absolute value of �L < 1, and we can expand the exponential in (2.59)

ei� � 1 ⇡ i� (3.44)

The Fourier transform in (2.59) thus inverts that in (2.57), and we recover the Born

amplitude. It is important to emphasise that this argument is only meaningful because the

Born amplitude is well-defined within our framework; without a regularisation procedure

in place, expanding the exponential ei� in (2.59) produces an infinite sum of divergent

integrals.

The above arguments are quite general, and should hold in any number of extra dimen-

sions. To facilitate further comparison with the amplitudes of dimensional regularisation,
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Figure 3.11: Variation of the eikonal amplitudes with ⇤T .

it is helpful to parametrise our results in a manner analogous to that in (3.21):

MRG(s, t) = �i4⇡sb2cF (y, z) (3.45)

where

y ⌘ qbc (3.46)

z ⌘ bc
bT

= (��0)
1/n (3.47)

where bT was defined in (3.42). The functions Fn(y) of dimensional regularisation de-

pended only on the variable y; the variable z encodes the information about our RG

improvement. It varies with the dimensionful parameters of our theory as

z ⇠
✓

s

M2
D

◆1/n ⇤T

MD
(3.48)

Our condition for semi-classicality is thus that of large z. Fig. 3.12 shows the realisation

of our physical picture in n = 4, expressed in terms of the variables y, z.

It is interesting to consider this variation of F (y, z) for fixed y. In fig. 3.13 we plot this

variation in n = 3. There we see clearly that for large values of z, FRG(y, z) ! FDR(y) as

desired. For small values of z, we see that F (y, z) grows with z with a power law. This

follows from the fact that in this limit we recover AL from MRG, and the Born amplitude

varies as (⇤T /MD)n�2 ⇠ zn�2 from (3.48).

Fig.3.13 also reveals an interesting feature of this transition: that at a certain value

of z that is largely insensitive to y, |F (y, z)| reaches a supremum that is larger than
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Figure 3.13: The absolute value of F3 is plotted against z for di↵erent fixed y: y = 0

(blue), y = 1 (red) and y = 5 (green). The DR case is always given as a dashed line in

the corresponding colour.
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that attained in the semiclassical limit. This is a striking, almost paradoxical result:

that by suppressing the contribution of some high-energy modes, we can increase the

corresponding di↵erential cross-section!

We can begin understand this if we reflect on how short-distance physics contributes

to the semi-classical amplitude (3.20). At short distances �DR ⇠ b�n becomes extremely

large, and so the complex exponential ei�DR oscillates extremely rapidly. In consequence,

these rapid fluctuations serve to cancel each other out. This argument can be formalised

using the methods of the stationary phase approximation, which we will discuss in detail

in the next section. We see then that as we increase ⇤T , the absolute value of MRG is

subject to two competing e↵ects: it is enhanced as the contribution of some modes is

unsuppressed, but decreased due the increasingly rapid oscillations of ei�L .

3.3 The stationary phase approximation to the eikonal am-

plitude

We wish to make a stationary phase approximation of integrals of the form

Meik = �4⇡is

Z
dbbJ0(qb)(e

i� � 1) (3.49)

For large arguments the Bessel function can be expanded as

J0(x) ⇠
r

2

⇡x
cos
⇣
x� ⇡

4

⌘
(3.50)

so upon expanding the cosine in terms of complex exponentials, in this limit we can express

the integrand in (3.49) as a sum of terms with exponents � ± �qb� ⇡
4

�
. The stationary

phase approximation defines a length scale bs at which the derivative of this exponent with

respect to b vanishes, so that
@�

@b
± q = 0 (3.51)

If the derivative @�
@b has a constant sign, only one of the positive/negative frequency modes

from expanding the Bessel function contributes to the approximation. The location of the

stationary point bs will clearly depend on q, as well as whatever parameters enter the

definition of �.

We remark that, formally speaking, q is playing the role of the large parameter which

was denoted x above. However, we will see that the relative error in the stationary phase

approximation is often much better than the 1/
p
q error estimate we would naively make

based on the above logic. We will discuss this point in more detail below with reference

to the semiclassical and RG-improved eikonal amplitudes.



55

3.3.1 Semiclassical analysis

Let us recall the integral representation of the functions Fn(y) of Giudice et al. in terms

of the variables x = b/bc, y = qbc,

F (y) = �i

Z 1

0
dxxJ0(xy)

⇣
eix

�n � 1
⌘

(3.52)

Expanding the Bessel function in terms of complex exponentials, the function ⇠ p
xe±i(xy�⇡/4)

has no stationary points, so we neglect the contribution of the ”-1” term from the brackets.

Then

F (y) ⌘
X

±

Z 1

0
dxf(x)eiy ±(x) (3.53)

where we have defined

 ±(x) = ±(x� ⇡

4y
) � x�n

y
(3.54)

and

f(x) = �i

r
x

2⇡y
(3.55)

To look for stationary points, we di↵erentiate

 0
±(x) = ±1 + n

x�(n+1)

y
⌘ 0 (3.56)

so we see that only  � will contribute to the expansion, and we identify

xs(y) =

✓
n

y

◆ 1
n+1

(3.57)

To be explicit, this corresponds to a physical length scale

bs(q) = bc

✓
n

qbc

◆ 1
n+1

(3.58)

We see that the second derivative

 00(x) = �n(n + 1)
x�(n+2)

y
(3.59)

is always negative, so we choose a minus sign in the exponent of (C.7), which finally

becomes

F (y) ⇠ �iy�
n+2
n+1

n1/(n+1)

p
n + 1

exp�i(n + 1)
⇣y
n

⌘ n
n+1

(3.60)

The applicability of this approximation is frequently cited [1, 50] as an argument in

favour of the semiclassical nature of the eikonal amplitude. It establishes a one-to-one

correspondence between the momentum transfer (and hence the scattering angle) and the

impact parameter of the collision, as would be found in classical physics. Furthermore,

the characteristic length scale bs defined in (3.58) grows with energy, so that at larger and

larger centre-of-mass energies the short distance physics becomes less and less relevant.
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Figure 3.15: The derivative of the eikonal phase with respect to its argument for varying

n. The e↵ect of the fixed point is to make the derivative of � vanish at b⇤T = 0, which

together with the eventual onset of classical scaling behaviour, enforces the existence of a

maximal value of the derivative.

3.3.2 RG improvement of the eikonal phase

Due to the complexity of our functions we must resort to determining bs numerically. It is

clear, however, from fig. 3.15 that the derivative is bounded, so that solutions to (3.51) do

not exist for q & dn
s⇤n+1

T

Mn+2
D

, where dn is an n-dependent constant on the order of dn ⇠ 0.06

. This behaviour follows from the fact that �0(b) vanishes at the origin as discussed in

section 3.2, and at infinity as ⇠ bnc b
�(n+1), and is well-behaved everywhere in between.

As the eikonal phase �L depends on the dimensionless variable b⇤T , it is convenient

in many cases to re-scale our integral in terms of ⇤T , so that

MRG =
4⇡s

⇤2
T

f(n, c, q) (3.61)

where

f(n, c, q) = �i

Z 1

0
db0b0J0(q/⇤T b

0)(e�ic�̃L(b0) � 1) (3.62)

From this equation we see that the condition for the large-argument expansion of the

Bessel function is q � ⇤T . However, we also have the condition that q . 0.06
s⇤n+1

T

Mn+2
D

. From

this it follows that, for there to be an extended stationary phase region, we require bT⇤T ⌧
bc. This appears to be the same condition as that for the semi-classical approximation,

but it does not automatically follow that the semiclassical stationary phase is a good

approximation; this depends on the relative magnitude of q and ⇤T . The semiclassical

approximation will work for b�1
c ⌧ q ⌧ ⇤T , whilst the stationary phase approximation to
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Figure 3.16: These plots show the length scales defined by the stationary phase approx-

imation in n = 3. The classical result is shown in gold. The blue and red lines are the

numerical solutions of the stationary phase condition @�
@b = q, corresponding respectively

to roots at long and short distances. Left: The blue and red curves merge when q is equal

to the maximum value of @�
@b ; for greater values of q the root finder returns this value for

bs as the best approximation to the stationary point, but no solutions exist. Right: We

see that the ratio of the stationary phase length scale tends to the classical result as we

take the semi-classical limit of large ⇤T .

the RG-improved eikonal may be useful when 1 ⌧ q/⇤T ⌧ 0.06
s⇤n

T

Mn+2
D

. We check that we

can di↵erentiate between them in figure 3.17.

We compare the numerical evaluation of f with the corresponding stationary phase

approximation in Fig 3.18 below, for two sets of choices of the parameters in the problem.

We see that the stationary phase approximation works well within its expected domain of

validity, but that for a realistic choice of values relevant for LHC physics this region does

not exist.

We denote by b0s and b0l the short and long distance roots of the condition that @�
@b0 =

q/⇤T . For �00(bs) not too small, we find that

f(n, c, q) ⇠
s

⇤T

q

 s����
b0s

�00(b0s)

���� exp i(�(b0s) � qb0s/⇤T + ⇡/2) +

s����
b0l

�00(b0l)

���� exp i(�(b0l) � qb0l/⇤T )

!

(3.63)

where �00(b0i) means @2�
@b02

��
b0=b0i

It is also interesting to compare the contributions coming from both the short and long

distances. We see that the long distance e↵ect dominates until q gets extremely close to its

critical value. This can be understood from the fact that the modulus of each contribution
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Figure 3.17: Here we check that we can indeed di↵erentiate between the stationary phase

approximations to the real (red) and imaginary (blue) parts of the semi-classical (SC,

solid lines) and RG-improved amplitudes (dashed lines). In this plot for the purposes of

comparison we have included dimensionful factors of b2c and ⇤�2
T , so that each di↵ers from

the full eikonal amplitude by the same factor 4⇡s.

varies as
q

⇤T
q

✓r��� b0i
�00(b0i)

���
◆

. This e↵ect is twofold: the length scale bi enhances the relative

contribution of the long to short distances, whilst the second derivative of � gets large at

short distances, diverging logarithmically at b0 = 0.

Using this knowledge, we can return to the earlier discussion of the competing e↵ects

of varying ⇤T on the absolute value of the eikonal. Let us neglect the short-distance

contribution in comparison to the long-distance one. Then the absolute value of MRG

depends on the ratio
����
MRG

MDR

���� =

s
bl
bs

�00
DR(b)

�00
L

(3.64)

We plot this ratio for n = 3, y = 5 in fig. 3.20. We see that the pattern of enhancement

or suppression of this ratio with z exactly replicates that of 3.13 for large values of z, and

that the peak in fig. 3.13 corresponds to the point at which the �00
L(b) diverges. This is a
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Figure 3.18: Here we show the stationary phase approximation to f(n, c, q). With large

enough
p
s, it is easy to satisfy the condition 1 ⌧ q/⇤T ⌧ 0.06

s⇤n
T

Mn+2
D

and we find that the

stationary phase approximation works well unless q is very small (so that expanding the

Bessel function is illegitimate) or close to the critical value where the two roots merge. At

this value the expression (C.7) breaks down, because the second derivative of the eikonal

phase vanishes.

precise sense in which the enhancement of |MRG| relative to the semiclassical expectation

corresponds to the integrand oscillating more slowly.

This expression becomes singular at the value q = qc, when �00(bs) = 0. At this point,

it is obviously appropriate to instead make a third-order expansion of �, i.e. use equation

(C.7) with p = 3. However, this expression clearly also fails when �00(bs) is small but finite.

When this is the case, the second-order approximation to �(b) no longer suppresses the

integration su�ciently rapidly. In this case we adopt the following strategy. We expand

� to third order about the stationary point, so that

�(b) � qb ⇡ �(bs) + qbs +
1

2
�00(bs)(b� bs)

2 +
1

3!
�000(bs)(b� bs)

3 (3.65)

⌘ �ax3 + bx2 + c (3.66)

in which we have defined x = (b�bs) and introduced obvious constants a, b, c to simplify the

presentation of what follows. Note, however, the minus sign inserted so that a = � 1
3!�

000(bs)
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Figure 3.19: This plot shows the real (red) and imaginary (blue) parts of the short- (solid)

and long- (dashed) distance stationary points to the stationary phase approximation. The

dominance of the long distance physics is clear.

is positive. We can then write, near the critical point,

Z
db

s
b

2⇡q
ei(��qb�⇡

4 ) ⇡
s

bs
2⇡q

ei(c�qbs�⇡
4 )
Z

dxe�i(ax3�bx2) (3.67)

If we define y via the equation

x = y +
b

3a
(3.68)

then this becomes

Z
db

s
b

2⇡q
ei(��qb�⇡

4 ) ⇡
s

bs
2⇡q

ei(c�qbs�⇡
4�2b3/27a2)

Z
dye�i(ay3�(b2/3a)y) (3.69)

We now rescale the integration variable y ! (3a)�1/3y, and extend the region of integration

to the entire positive real y-axis. Using the integral representations of the Airy and Scorer

functions,

Ai(x) =
1

⇡

Z 1

0
dt cos

✓
1

3
t3 � xt

◆
(3.70)

Gi(x) =
1

⇡

Z 1

0
dt sin

✓
1

3
t3 � xt

◆
(3.71)
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Figure 3.20: Here we show the ratio (3.64) with lengths expressed in units of bc, plotted

as a function of the variable z. The peak at z ⇡ 2 corresponds to the divergence of �00
L(b);

for values of z below this, the stationary phase approximation breaks down.

our result becomes, replacing the constants a, b, c by their expressions as the derivatives

of � at b = bs,

f(n, c, q) ⇡
s

bs
2⇡q

ei(�(bs)�qbs�⇡
4�(1/3)(�00)3/((�000)2))(�000)�(1/3)⇡

⇥
✓

Ai

✓
(�00/2)2

(�000/2)4/3

◆
� iGi

✓
(�00/2)2

(�000/2)4/3

◆◆
(3.72)

We compare this to the full numerical expression in fig. 3.21. We see that it works well

in the vicinity of the critical point, but gets progressively worse as we move away from

q = qc. Naively, we might have expected that the inclusion of the third derivative in our

approximation could only improve our approximation. However, we have to remember

that the logic underlying the stationary phase approximation involves the extension of

a local approximation to the exponent about the saddle point to an infinite integration

region, and that the nature of this extension is qualitatively di↵erent for the case of cubic

and quadratic approximations.

This raises the question of what happens for q > qc. In fig. 3.22 we see that a transition

occurs from the semiclassical scaling law ⇠ q�
n+2
n+1 to the Born law ⇠ q�4.

We can understand this by the following heuristic argument. Let us consider the

expansion of ei� � 1 in powers of �L. As already discussed, the term of order �L merely
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Figure 3.21: Comparison of (3.72) to the numerical evaluation of the eikonal.

reproduces the Born amplitude. At order �2 we have

Z
d2beiq·b�2

L =

Z
d2kAL(k)AL(q � k) ⌘ M(2)(q) (3.73)

by the convolution theorem. For q asymptotically large, we can neglect k in the argument

of the second term over most of the integration region, and so the second term varies as

⇠ q�4. The only region in which this is not true is that region in which k is itself on

the order of q, in which event the first term AL(k) ⇠ AL(q) ⇠ q�4. Having established

that this term exhibits the Born scaling, we can proceed inductively and express the term

of order �3 as a convolution of AL with M(2)(q); the same argument then suggests that

M(3)(q) ⇠ q�4.

Of course, it does not automatically follow that this transition between the scaling

behaviours in q is experimentally observable, due to the kinematic limit �t/s < 1. Having

investigated the theory of the RG-improved eikonal amplitudes in some detail, we now

turn our attention to the corresponding experimental consequences.

3.4 Summary

We begun the chapter in section 3.1 by critically examining the claim that the eikonal am-

plitudes should be insensitive to the method used to regulate the sum over KK modes. We

showed analytically how the dimensional regularisation procedure was related to adding

a sharp cut o↵ to the KK tower, both at the level of the Born amplitude and the eikonal
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Figure 3.22: In this figure the blue dotted curve represents the absolute value of |f | for

the indicated parameters. The solid lines represent the scaling behaviours found in the

semiclassical result (3.20) (blue) and in (3.33) (pink). The vertical red dashed line denotes

the value of q/⇤T at which the stationary phase approximation breaks down.

phase. We compared the resultant eikonal amplitudes, and found that in contrast to the

theoretical consensus the two procedures gave di↵erent answers.

In section 3.2 we calculated the Born amplitude for the exchange of the KK tower of

ADD gravitons on the assumption that gravity is asymptotically safe, to leading order in

�t/s, in various approximations to the RG running of the gravitational coupling G(µ).

These amplitudes depend upon a parameter ⇤T , which parametrises the energy scale

at which the running of G(µ) changes from that associated with its classical dimension

to that associated with the UV fixed point of the d-dimensional gravity theory. The

corresponding eikonal phases were computed, and it was demonstrated that whilst the

discontinuous derivative of ZQ introduced long-distance pathologies into �Q, the eikonal

phase �L given by (3.35) reproduced the expected ⇠ b�n behaviour at long distances whilst

tending to a constant at short distances, reflecting the underlying fixed point of the theory.

We commented upon the relation of this finding to other results such as spacetimes that

depend on a gravitational coupling that runs in position space. Using this expression, we

calculated an RG-improved eikonal amplitude for spacetimes of varying dimensionality.

It was shown that at momentum transfers large compared to ⇤T the eikonal amplitude

exhibited the same q�4 scaling behaviour as the Born amplitude, which had been argued

to be another signature of fixed point scaling.
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In section 3.3 we analysed the reasons for the failure of the arguments in favour of the

semiclassical approximation, using the techniques of the stationary phase approximation.

It was shown that whilst the unbounded growth of the semiclassical eikonal phases led to

the existence of a stationary phase approximation at arbitrarily high momentum transfers,

the vanishing derivative of �L at zero impact parameter led to a momentum transfer qcrit

at which this approximation breaks down in our approach. It was shown numerically that

this qcrit marks the onset of the q�4 scaling.
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Chapter 4

Phenomenology of quantum

gravity

In this chapter we discuss the phenomenology of the transplanckian elastic scattering

amplitudes calculated in the previous chapter. Section 4.1 outlines the corresponding

experimental signatures. In section 4.2 we reproduce some existing results based on the

semiclassical approximation to these amplitudes, to compare our implementation to that

of previous authors. Section 4.3 presents our main results, and discusses how they could

play a role in constraining the theory parameters of our model.

4.1 Transplanckian scattering at hadron colliders

In order to deduce the experimental signatures through which quantum gravity might

reveal itself at the Large Hadron Collider, we are forced to consider the well-known com-

plications that arise due to the composite nature of the proton. The elastic scattering

amplitudes calculated in the preceding chapter describe the collisions of the underlying

partons, so we expect that the corresponding experimental signal will be dijet produc-

tion. In order to investigate processes occurring at transplanckian energies s � M2
D, we

restrict our attention to dijet pairs with a very large invariant mass MJJ ; following [50, 2]

we will demand that MJJ � MJJ,min = 9 TeV. To reduce the QCD background the cut

pT > 100 GeV is also imposed. The dijet signal that results from the Born amplitude cal-

culated within e↵ective field theory was calculated in [99], but their methods are clearly

inapplicable at such high invariant masses.

The condition of small-angle scattering is slightly less straightforward to describe at a

hadron collider, because the centre-of-mass of the colliding partons is boosted with respect
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to the laboratory frame by an unknown amount that depends on the relative fractions xi

of the hadron momentum carried by the colliding partons, and hence transforming the

scattering angle by an unknown amount. It is therefore useful to introduce the pseudora-

pidity separation of the jets, which in the limit of negligible particle mass is related to the

Mandelstam variables and the centre-of-mass scattering angle ✓̂ by [100]

�⌘ = log

✓
ŝ

�t̂
� 1

◆
= log

 
1 + cos ✓̂

1 � cos ✓̂

!
(4.1)

This is a Lorentz invariant quantity, and we see that the limit of small ✓̂ corresponds

to large �⌘. Our cuts on pT together with the LHC restriction that
p
s < 14 TeV

imply a maximum pseudorapidity separation of �⌘ = 9.88 [2]. Experimentally, we cannot

di↵erentiate between scattering through an angle ✓ and through ⇡� ✓, which corresponds

to swapping �⌘ $ ��⌘. We therefore follow previous authors and plot d�/d|�⌘| as our

basic observable.

It was checked in [101] that the usual methods of factorization in QCD can be applied

to the problem of transplanckian scattering in the ADD scenario, so that the observable

di↵erential cross-section is related to that for the underlying partonic event by

d�

d�⌘
=
X

i,j

Z 1

0
dx1

Z 1

0
dx2fi(x1, Q

2)fj(x2, Q
2)

d�̂

d�⌘
(x1, x2)✓(ŝ(x1, x2) �M2

JJ,min) (4.2)

where the partonic di↵erential cross-section is related to the scattering amplitude M(s, t)

via
d�̂

d�⌘
(x1, x2) =

|M(ŝ(x,1 , x2),� ŝ(x,1,x2)
e�⌘+1

)|2
16⇡ŝ(x,1 , x2)

e�⌘

(e�⌘ + 1)2
(4.3)

Here the partonic ŝ(x,1 , x2) is related to the hadronic Mandelstam variable S by

ŝ(x,1 , x2) = x1x2S (4.4)

The functions fi(x1, Q2) that appear in (4.2) are parton density functions (PDFs), describ-

ing the density of partons of species i carrying a fraction xi of the hadron momentum. An

illustrative plot is given in fig. 4.1.

We have implemented the eikonal scattering amplitudes discussed in the previous chap-

ter in the PYTHIA 8.1 event generator [102, 103] as semi-internal processes, i.e. as derived

C++ classes whose member functions return the partonic di↵erential cross-section in a

form appropriate for PYTHIA to use in the initial stage of generating LHC events. We

use the MSTW08LO [104] PDF sets, but have checked against CTEQ5L [105] and find

little di↵erence.
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Figure 4.1: Illustrating the rapid decay of the PDFs at large x. Here we show the MST-

WLO2008 pdfs at Q = 1TeV.

4.2 Dimensional regularisation

In order to make use of (4.2) it is necessary to choose a factorization scale Q at which to

evaluate the parton density functions. For processes that are adequately characterised by

the exchange of a single force-carrying boson, this would normally be taken to be propor-

tional to the momentum of that boson. However, as we have discussed, transplanckian

scattering through small angles intrinsically involves the exchange of many relatively soft

gravitons, each carrying only a fraction of the total momentum transferred. As these

gravitons will have a comparatively long wavelength �, one might expect that their ability

to resolve partons that appear as particle-antiparticle pairs that exist for time �t ⌧ 1/�

is limited. Ref. [106] therefore advocated a matching prescription based on the stationary

phase approximation that Q =
p�t = q if q < 1/bc, and Q = 1/bs < q if q � 1/bc, where

bs was defined in (3.58).

PYTHIA does not have a provision for such custom factorisation scale matchings

Q = Qc, so in order to reproduce the results of [2] we evaluate our PDFs f(xi, Q2) at a

fixed scale Q0, and when an event occurs we include a weight

w =
f(x1, Q2

c)

f(x1, Q2
0)

f(x2, Q2
c)

f(x2, Q2
0)

(4.5)

when assigning the event to the corresponding pseudorapidity bin in our histograms.

In fig. 4.2 we compare our results to those of [2]. Overall, we find good agreement,

and in particular note that choice of smaller scales Q corresponds to a larger signal. There

is a slight discrepancy in the matching Q = q at around |�⌘| ⇡ 6. We believe that this

is accounted for by the di↵erent way in which we treat identical particles. When the

colliding partons are identical, and carry identical color, the authors [2] symmetrise the
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Figure 4.2: Comparison of our determination of the di↵erential cross-section to that of the

authors [2] for Q = q (pink), Q = PT /2 (yellow) and the stationary phase matching (blue).

The solid curves are our results, and the data points are their results, kindly provided by

E. Vryonidou.

amplitude in t $ u to respect the quantum mechanics of indistinguishable particles [107].

In our view, however, this is not appropriate. Such symmetrisation occurs naturally in

the sum over Feynman diagrams including t- and u- channel diagrams, but the latter is

not included in the summation of diagrams which contribute to the eikonal amplitude,

and is clearly subleading in �t/s [8]. By symmetrising the amplitude in t $ u after the

summation one significantly- and in our view artificially- enhances the contribution of

particles which scatter through extremely large angles. This e↵ect can be seen in fig. 4.3.

The investigations [50, 2] both used leading-order codes in which the matrix elements

were directly integrated against the PDFs using a VEGAS algorithm. By contrast, Pythia

has the capability to produce a more realistic simulation, allowing for the production of

extra jets by initial- and final- state radiation, or in the evolution of the parton shower.

In this case the rapidity di↵erence must be taken between the two hardest jets (ordered

in terms of transverse momentum from the beam axis). We compare the inclusive and

exclusive dijet cross-sections in fig. 4.4 and find little di↵erence.

We reproduce the results of [2] varying MD in fig. 4.5, as well as the comparison to the

QCD background. We find that the QCD background, which dominates at the very largest

rapidities, is reduced compared to their results. This appears to be a di↵erence between

PYTHIA and their VEGAS implementation, as the authors [50] used Pythia to simulate



69

new-without
old-with special case

. .

-

��
109876543210

0.001

0.0001

1e-05

1e-06

1e-07

1e-08

Figure 4.3: Comparison of positive and negative rapidity separations with and without

imposing crossing symmetry on the amplitude, kindly provided by E.Vryonidou.

the QCD background, and our results agree with theirs. The important point that the

transplanckian signal can clearly be distinguished from the QCD background at rapidities

|�⌘| < 7.5 is una↵ected. In [50] the precise criteria imposed for forward scattering was

that �⌘ > 3, so a clear range exists in which the eikonal approximation is kinematically

reliable, and in which the signal can be distinguished from the background.

4.3 Phenomenology of quantum gravity

In this section we present the dijet signals corresponding to the RG-improved eikonal

amplitude. The matrix elements were evaluated using the ALGLIB library to interpolate

a 2-dimensional grid of data points tabulated using Mathematica 8.

We have seen in section 3.3 that there exists a critical momentum transfer qc for

which the stationary phase approximation breaks down. It follows that a matching of

the factorisation or RG scales based on this approximation would likely introduce an

unphysical discontinuity in observables at large momentum transfers, or equivalently at

small rapidities. For this reason, we are forced to employ the simple prescription µRG =

µF = PT /2. As it was observed in the last section that harder scale choices tend to reduce
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Figure 4.4: Comparison of the exclusive (blue) and inclusive (pink) dijet di↵erential cross-

sections.
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Figure 4.5: Illustration of the e↵ect of varying MD on the dijet signal, with MD=1.5 TeV

(red) and MD=3 TeV (green). We also compare the signal to the QCD background (blue).
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the signal, we expect that any softening of the factorisation scale due to multi-graviton

exchange will only serve to increase the signal relative to our predictions. However, due

to this theoretical uncertainty, we will try and indicate a key experimental signature for

asymptotically safe gravity in the shape of the dijet distribution.

In principle, the relationship ⇤T /MD is calculable, being related to the value g⇤ of the

gravitational coupling at the ultraviolet fixed point via g⇤ = (⇤T /MD)n+2. However, the

study of higher-dimensional RG flows is not yet as developed as that in four dimensions,

but has only been studied at the Einstein-Hilbert level. For this reason, it is prudent to

treat ⇤T as a free parameter and investigate how the di↵erential cross-section varies with

it. Clearly, we expect that as ⇤T becomes large, our observables should reproduce those

of dimensional regularisation. However, we have also seen before this limit is attained, we

can see either an enhancement or a suppression of our signal depending on the variable z

defined in (3.47). Furthermore, due to the integration over individual parton momenta in

(4.2), for any fixed value of ⇤T we expect from (3.48) to sample a range of values of z.

However, it is known that the PDFs decrease extremely rapidly at high energies. This

is illustrated in fig. 4.1. As our minimum invariant mass MJJ is so high, partonic centre

of mass energies significantly above the threshold make almost no contribution due to the

smallness of the PDFs at large x. This allows us to identify a value of z that corresponds

to a particular value of ⇤T ,

z ⇠
✓
M2

JJ

M2
D

◆1/n
⇤T

MD
(4.6)

In fig. 4.6 we compare the eikonal di↵erential cross-sections to those obtained from di-

mensional regularisation, and compare their relative sizes to the variation of the function

F (y, z) defined in (3.45) with z. The vertical dashed lines in the plots of F (y, z) illustrate

the values of z that correspond to the values of ⇤T for the cross-section curve of that

colour. We see that the pattern of enhancements and suppressions in the cross-section ex-

actly follows the variation of F (y, z) about its semiclassical limit with z. In particular, the

blue curves in figs. 4.6a,4.6c corresponding to values MJJ = 9 TeV, ⇤T = MD = 1.5TeV

exhibit an enhancement of the di↵erential cross-section relative to the semi-classical pre-

diction; using (4.6) the corresponding values of z are indicated by the vertical dashed

blue lines in figs. 4.6b, 4.6d, and in both cases we see that |Fn(y, z)| is peaked above the

limiting value of large z.

The most important message to be extracted from these plots is that one cannot

straightforwardly use this signal to constrain MD without simultaneous consideration of

⇤T . Indeed, whilst in the semiclassical theory we straightforwardly expect that increasing
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Figure 4.6: In these plots, we compare the variation of the di↵erential cross section with

⇤T (left) to the variation of F (y, z) with z in n = 5 (above) and n = 6 (below).

MD serves to suppress the signal, we infer from this discussion that regions of parameter

space exist in which increasing MD reduces the value of the variable z such that the signal

is actually enhanced.

The red curves in 4.6a,4.6c also merit comment. They correspond to a value of z in

which the RG-improved amplitudes are lower than the semi-classical expectation. They are

remarkable, however, for the complicated pattern of peaks at small rapidity separations.

The peaks in the semi-classical di↵erential cross-section were identified in [50] as a potential

method by which the number n of extra dimensions might be identified. These oscillatory

features serve as a warning of the possibility of more complicated distributions.

We also see that the blue curves in figs. 4.6a,4.6c are interesting not only because

of the enhancement in the signal, but because of the di↵erent shape of the distribution,

falling o↵ much more rapidly with decreasing |�⌘|. This can also be understood using

(4.6), so that we can regard |�⌘| as a function only of the Mandelstam variable t with all

other parameters fixed. We identify it as being due to the onset of fixed point scaling as
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Figure 4.7: The RG-improved eikonal cross-section, with the contributions of positive

(blue) and negative (red) rapidity separations of the jets separated. The increased domi-

nance of positive over negative rapidities due to the more rapid decay of the RG-improved

amplitude with t is clear.

seen in fig. 3.22; using eqs. (4.1), (4.3), if |M| ⇠ t�2, then it follows that for small |�⌘|

d�̂

d�⌘
⇠ e�⌘(e�⌘ + 1) (4.7)

We also see in fig. 4.7 that this e↵ect leads to a reduced contribution from negative

|�⌘|. We emphasise that this behaviour is universal, and will hold in any number of extra

dimensions. The only requirement is that the ⇠ t�2 scaling behaviour be kinematically

accessible, i.e. qc <
p
MJJ .

What, then, if we find ourselves in the happy position of finding an excess of dijet

events at high invariant masses over the standard model predictions when the LHC has

completed its 14 TeV run? Our results suggest that the first thing to do is observe whether

or not we see the exponential shape (4.7) in the distribution. If we do, then the rapidity

separation at which it occurs could be used to infer the critical momentum transfer qc at

which we see the onset of fixed point scaling. Alternatively, we might find that the data

are well-described by the semiclassical distribution. This would then mean that we were

in a situation where the fixed point described extremely strong coupling in the ultraviolet,

and the results of [2, 50] could be used to determine MD and n.

To calculate the total cross-sections, the authors [2, 50] only integrate over rapidity

separations 3 < |�⌘| < 4 in order to maximise their signal-to-background ratio. The above
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discussion suggests that we can estimate estimate upper and lower bounds on a predicted

cross-section in the eikonal regime by varying z so that F (y, z) varies about its asymptotic

limit; we carry this out by taking MD = 1.5 TeV, and ⇤T = 1.5, 3 TeV (corresponding

to the blue and red curves respectively in fig. 4.6c). We present these results in table4.1.

We see that for these choices of parameter, the signal should be extremely clear. This is

a consequence of both the fact that the gravitational coupling is large at transplanckian

energies
p
s > MD, and the fact that the QCD background for our cuts is small.

3 < |�⌘| < 4; ⇤T = 1.5 TeV ⇤T = 3 TeV

pT > 100 GeV;

MJJ > 9TeV

� (fb) 778 233

S/
p
B 4948 1480

L=30 fb�1

S/
p
B 15600 4680

L=300 fb�1

Table 4.1: Predicted cross-sections and S/
p
B values for the specified choices of model

parameters. The QCD background of dijets with very large invariant masses has been

calculated in PYTHIA to be �QCD =0.7 fb.
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Chapter 5

Conclusions

The scenario envisioned by the ADD authors in which large flat extra dimensions exist

is tremendously exciting and theoretically challenging, with many observables not being

strictly calculable due to the perturbative non-renormalisability of gravity. In this thesis

we have examined graviton exchange at transplanckian energies in the ADD model, sup-

planted for the first time by calculations in a genuinely quantum framework for gravity,

that of the asymptotic safety. We have argued that due to the high energies probed by the

tower of exchanged Kaluza-Klein states of the graviton, a process that we would usually

expect to be described well by semiclassical physics becomes exquisitely sensitive to the

UV completion of gravity.

In chapter 2 we reviewed all the theoretical elements that underpin our work. We

discussed the motivation and evidence for the asymptotic safety of gravity, including dis-

cussion of explicit RG equations and the beta function for the gravitational coupling in the

simplest approximation. We reviewed the physics of the ADD model in detail, explaining

how the divergent sums over KK modes of the graviton arise due to neglecting the bulk

momentum of the brane on which we are trapped. We gave a complete and explicit deriva-

tion of the eikonal amplitude, and discussed its applicability to gravitational scattering at

high energies, as well as its particularly pleasing features from the perspective of unitarity.

In chapter 3 we demonstrated explicitly that at LHC energies, the eikonal amplitude

becomes sensitive to the methods used to define the naively divergent Born amplitude. We

calculated the RG-improved Born amplitudes in various approximations. We determined

the corresponding eikonal phases �, and interpreted the short distance behaviour as being

indicative of the underlying fixed point of the theory. From the physically acceptable

’linear’ prescription ZL for the running of G(µ) we calculated the corresponding eikonal

scattering amplitudes, and showed that the semiclassical approximation was borne out
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only in the limit of very strong coupling in the complete quantum gravity theory. We

examined the stationary phase approximation to our amplitudes, demonstrating explicitly

how the theoretical pillars that underlie the semiclassical nature of the eikonal amplitude

fail in the ADD scenario: through the creation of a second saddle point at short distances;

through a shortening of the length scale that characterises the process; and through the

eventual breakdown of the approximation.

In chapter 4 we considered the phenomenology of transplanckian scattering in our

framework, investigating the di↵erential djiet cross section at large invariant masses and

pseudorapidity separations. We reproduced known results, both using the semiclassical

amplitudes and in the limit of large ⇤T in the RG-improved equations, as a check on

the consistency of our framework. We explained how di↵erent regions of our parameter

space could serve to either enhance or suppress the experimental signature relative to

the semiclassical ansatz. We identified the power law (4.7) as a signature of fixed point

scaling, and argued that in the event of an experimental signature at the LHC it would

form a useful indicator as to whether the UV interacting fixed point of quantum gravity

is strongly or weakly coupled.

Of course, this work could be extended in many directions. One fascinating extension

would be to explore the transition from the elastic scattering regime to that of black hole

formation, which due to Hawking radiation is usually expected to be strongly inelastic.

In [108] it was argued that asymptotically safe black holes are thermodynamically stable,

eventually forming Planck-sized remnants, but the question of whether or not they are

stable quantum mechanically is an altogether di↵erent one- one that forces us to concede

our ignorance of what is going on behind the event horizon of a black hole small enough

for quantum mechanics to become important. This discussion would also be of interest in

d = 4. Whilst the UV sensitivity of the eikonal in the ADD scenario can ultimately be

traced back to the KK tower, the transition to black hole formation is associated with a

loop diagram [1] which it would be interesting to investigate within asymptotic safety.

A more complete treatment of our phenomenology would also be desirable. The in-

formation we have been able to extract about our model parameters is at best partial; it

would be interesting to adopt an integrated approach, using a combination of channels to

determine each of the parameters ⇤T , MD and n.
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Appendix A

Calculations with linear RG

running

A.1 Calculation of AL & �L

Using the prescription (2.30) in (3.13), we have

�L = �C⇤n+2
T
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Here m and q are the dimensionless 4-momentum and KK mass, expressed in terms

of the transition scale ⇤T , whilst again b0 = b⇤T . We evaluate this integral by switch-

ing to polar co-ordinates in (dimensionless) momentum space via the prescription q !
µ sin ✓,m ! µ cos ✓, so that µ is now our dimensionless RG scale. It then becomes
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This is now in the form in which we can apply (B.12). The only proviso is that the

fractional exponent of the argument of the G-function must be fully simplified, which

motivates the definitions of l and k given in the main text. The corresponding Born
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amplitude (3.33) is then determined from �L by inverting the Fourier transform, using

(2.62), re-writing the Bessel function as a Meijer-G function, and using (B.16).

A.2 Contour integral

We wish to evaluate the eikonal phase, starting with the integral representation

�(b) = � s⇤n
T

Mn+2
D

Sn
�
�
n
2

�
2n/2�1

bn/2

Z 1

0
dµ

µn/2�1

1 + µn+2
Jn/2(bµ) (A.2)

⌘ � s⇤n
T

Mn+2
D

�̃ (A.3)

where Sn = 2⇡n/2

�(n/2) is the area of the unit-n sphere and b is the impact parameter in units

of inverse ⇤T .

We work throughout in even n.

The integral (A.2) is ill-suited to evaluation via contour methods, because the Bessel

function grows exponentially with the modulus of the imaginary part of its argument. We

instead use the Hankel function

H(1)
⌫ (z) = J⌫(z) + iY⌫(z) (A.4)

For x > 0 2 R the Bessel function of the second kind Y⌫(x) is real, so (A.2) becomes

�̃(b) = Sn
�
�
n
2

�
2n/2�1

bn/2
Re

"Z 1

0
dµ

µn/2�1

1 + µn+2
H

(1)
n/2(bµ)

#
(A.5)

⌘ Sn
�
�
n
2

�
2n/2�1

bn/2
Re

Z 1

0
dµR(µ)H(1)

n/2(bµ)

�
(A.6)

The advantage of this replacement is that H⌫(z) has the asymptotic behaviour

H⌫(z) ⇠
r

2

⇡z
ei(z�⌫⇡/2�⇡/4) (A.7)

so that it decays exponentially in the upper complex plane. (c.f. Evaluating integrals of

cos(x) with a rational function by identifying cos(x) = Re
⇥
eix
⇤
, rather than expanding

the cosine in terms of complex exponentials.)

We can extend this to an integral over the entire real axis. Using the identity

Y⌫(ze
m⇡i) = em⌫⇡iY⌫(z) + 2i sin(m⌫⇡) cot(⌫⇡)J⌫(z) (A.8)

for integer m, with m = 1, we see that for real positive x

H
(1)
n/2(�x) = Jn/2(�x) + i(ei⇡n/2Yn/2(x) + 2i cos(n⇡/2)Jn/2(x))

= �(�1)n/2Jn/2(x) + i(�1)n/2Yn/2(x) (A.9)
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where we have used that Bessel functions of odd order ⌫ are odd. (We remark that Y⌫

in general has a branch point and a pole at the origin, with a branch cut along the real

negative axis; this is identity is consistent with the continuity of Y⌫(x+ i✏) for decreasing

positive ✏). We also have that in even n

R(�µ) = (�1)n/2�1R(µ) (A.10)

so that the real part of the integrand in (A.2) is an even function. We can therefore

multiply by 1/2 and extend the integral to the whole real axis:

�̃(b) = Sn
�
�
n
2

�
2n/2�1

bn/2
Re

"Z 1

�1
dµ

µn/2�1

1 + µn+2
H

(1)
n/2(bµ)

#
(A.11)

It follows from (A.9) that the imaginary part is an odd function if n/2 is an odd integer,

so that in e.g. n = 6 ”Re” is actually superfluous in this equation, but it is required in

general.

We evaluate this integral via the residue theorem, with a contour illustrated in Fig.

A.1. The rational function R(µ) has poles when µn+2 = (�1); in the upper complex plane,

this corresponds to the numbers µ = {ei⇡m/(n+2) : m =1, . . . , (n+2)/2}, the residues at

which are straightforwardly evaluated using standard methods. To identify the residue at

µ = 0 we expand Yn/2(bµ) in the series for integer m

Ym(z) =
1

⇡

 
2Jm(z) ln

z

2
�

m�1X

k=0

(m� k � 1)!

k!

⇣z
2

⌘2k�m
+ finite

!
(A.12)

As this appears in the integrand multiplied by µn/2�1, the residue is given by the k = 0

term:

Res(R(µ)H(1)
n/2(bµ)) = i

(n/2 � 1)!

⇡

✓
2

b

◆n/2

(A.13)

(Note that the contribution from this residue is weighted by 1/2 relative to those poles

that lie inside the contour of integration.) We then find that

�̃(b) = Sn
�
�
n
2

�
2n/2�1

bn/2
Re


(2⇡i)

� (n+2)/2X

m=1

(ei⇡m/(n+2))n/2�1Hn/2((e
i⇡m/(n+2))b)

(n + 2)(ei⇡m/(n+2))n+1

+ i
(n/2 � 1)!

2⇡

✓
2

b

◆n/2 ��

Note that as the Hankel function decays exponentially at large arguments, this expres-

sion makes the ⇠ b�n behaviour of � manifest; it originates from the contribution from

the pole at µ = 0.
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Figure A.1: The contour used to evaluate the eikonal phase, with poles corresponding

to n = 6. The contribution from a semicircular contour of radius R (here shown with

R = 10) decays exponentially. The poles of the integrand are denoted by the blue crosses

(for b = 1). We make a semicircular indentation around the pole at z = 0, and approach

the branch cut along the negative axis from above. Obviously we take the limit in which

these indentations tend to zero.
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Appendix B

Special Functions

Here we present the definitions of and some relations involving the special functions used

in the text. These relations can be found in [109, 110, 111]

B.1 Bessel Function
Z 1

0
zaJb(z) = 2b�

✓
1 + a + b

2

◆
/�

✓
1 + a� b

2

◆
(B.1)

J⌫(z) =
1X

k=0

(�1)k(z/2)2k+⌫

k!�(k + ⌫ + 1)
(B.2)

dJ⌫
dz

=
1

2
(J⌫�1 � J⌫+1) (B.3)

K⌫(z) =
⌫�1X

k=0

(�1)k
(⌫ � k � 1)!

k!(z/2)⌫�2k
+(�1)⌫+1

1X

k=0

(z/2)⌫+2k

k!(⌫ + k)!


ln(z/2) � 1

2
 (k + 1) � 1

2
 (⌫ + k + 1)

�

(B.4)

K⌫(z) ⇡
r

⇡

2z
e�z [1 + O (1/z)] (B.5)

which holds for any ⌫ at this leading order.

B.2 Hypergeometric functions

The Hypergeometric function2F1 ⌘ F is defined for |z| < 1 by the series

F (↵, �; �; z) =
1X

0

(↵)n(�)n
(�)n

zn

n!
(B.6)
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where

(↵)n =
�(↵+ n)

�(↵)
= ↵(↵+ 1) . . . (↵+ n� 1) (B.7)

is the Pochammer symbol. pFq is defined analogously. It admits the integral representation

F (↵, �; �; z) =
�(�)

�(�)�(� � �)

Z 1

0
dtt��1(1 � t)����1(1 � tz)�↵ (B.8)

For ↵� � not an integer, the hypergeometric function F satisfies
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1F2(a; b1, b2; z) ⇠ �(b1)�(b2)
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◆
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B.3 Meijer-G functions
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k

This formula assumes that the greatest common denominator of (l, k) is one.

The following formulae relate the Meijer-G functions to the generalised hypergeometric

function, pFq�1. Their utility for making asymptotic expansions of the Meijer-G function

follow from the observation that pFq(a;b; 0) ⌘ 1 for any p parameters an and q parameters

bq. Here the asterisks denote the omission of the parameter bh from the corresponding

lists.
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(�1)p�m�nx)
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where

x = a1, . . . , an,�↵� d1 + 1, . . . ,�↵� ds + 1,�↵� ds+1 + 1, . . . ,�↵� dv + 1, an+1, . . . , ap

y = b1, . . . , bm,�↵� c1 + 1, . . . ,�↵� ct + 1,�↵� ct+1 + 1, . . . ,�↵� cu + 1, bm+1, . . . , bq
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Appendix C

The Stationary Phase

Approximation

C.1 Asymptotic expansion of integrals

The purpose of the stationary phase approximation is to estimate the behaviour of integrals

of the form

I(x) =

Z b

a
dtf(t) exp(x�(t)) (C.1)

for asymptotically large x. Changing variables to s = ��(t) gives

I(x) =

Z
ds

f(t(s))

��0(t(s))e
�xs (C.2)

Repeated integration by parts yields a power series in 1/x. This procedure, however, fails

when �0(t) = 0 on the interior of the integration region. If such a stationary point t⇤

exists, then we argue that, for asymptotically large x, such integrals are dominated by

those stationary points which correspond to a maximum value of �(t). Near such a point

we can expand

�(t) ⇡ �(t⇤) +
1

p!
�(p)(t⇤)tp (C.3)

where p is the order of the first nonvanishing derivative of � at t⇤, and �(p)(t⇤) < 0 as t⇤

is a maximum of �. The contribution of such a point to I(x) is given by

I(x, ✏) ⇡
Z t⇤+✏

t⇤�✏
dtf(t⇤) exp(�(t⇤) +

1

p!
�(p)(t⇤)tp) (C.4)

We can evaluate such an integral by now letting ✏! 1; the additional integration region

contains no stationary points of our approximated integrand, so by our earlier argument

about integrating by parts, the error thus introduced is of order 1/x, and is therefore
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subleading to the contributions that we isolate here. One then finds that

I(x) = 
2�(1/p)(p!)1/p

p(�x�(p)(t⇤))1/p
f(t⇤) (C.5)

where

 =

8
><

>:

1
2 if t* = a or b

1 if t* 2 (a,b)

An exectly analagous argument applies to integrals of the form

I(x) =

Z
dtf(t) exp(ix�(t)) (C.6)

for x, � real; instead of the exponential decay suppressing the integrand, the stationary

points dominate because for large x the period of the oscillations becomes extremely short,

so that neighbouring regions in the integral cancel each other out. Here one finds that

I(x) = 2f(t⇤)ei(x�(t
⇤)±⇡/2p)

✓
p!

x|�(t⇤)|
◆1/p �(1/p)

p
(C.7)

The sign of ±i⇡/2 is that of the second derivative �00(t⇤). In this context with an imaginary

exponent in the integrand, this approximation is known as the method of stationary phase;

for a purely real exponent, it is usually referred to as Laplace’s method.

It is important to understand the logic underlying this approximation: in the x ! 1
limit, only very small changes �t are needed to shift the value of the phase by �� = 2⇡, so

that f(t) changes very little over a period of the exponential. It is for this reason that the

integral is dominated by the contribution from regions in the immediate neighbourhood

of points at which �0(t) = 0. It is the smallness of such regions that allows us to Taylor

expand our exponent about the critical points, and the large suppression of contributions

from regions away from the stationary point that allows us to then extend the region of

integration of the polynomial approximation of � from the immediate neighbourhood of

the stationary point to e.g. the entire real axis (or any other convenient extended contour)

for ease of evaluating the integral.
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