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Summary 

The Hox genes encode a family of evolutionarily conserved transcription factors whose 
differential expression along head-to-tail triggers distinct programs of cell 
differentiation along the body axis. Mutations affecting the expression of Hox genes 
disrupt normal development in animals as diverse as insects and mammals. Although 
the developmental, evolutionary and biomedical relevance of this gene family is 
indisputable, the understanding of the molecular mechanisms controlling Hox gene 
expression is still incomplete. In particular little is known about the ways Hox gene 
expression is controlled within developmental units such as the insect segments or the 
rhombomeres in the developing mammalian brain. Previous work in Drosophila showed 
that different RNA processing events including alternative transcription, alternative 
splicing and alternative polyadenylation can affect Hox gene expression during the 
development of complex tissues such as the nervous system showing that differential 
RNA processing contributes to the generation of elaborate Hox expression patterns in 
the fruitfly embryo. Here we explore the impact of RNA processing on the molecular 
functions and developmental expression of Hox genes in mammals. For this we apply a 
combination of bioinformatic and computational methods complemented by a series of 
experiments in mammalian cell culture. Our work shows, first, that RNA processing has 
a pervasive impact on the expression of murine and human Hox genes and that specific 
Hox RNA processing reactions are coupled to one another and have evolved in 
coordination with gene-duplication events. Second, we find that RNA processing 
affecting several independent Hox genes can lead to the generation of Hox protein 
isoforms that lack a DNA-binding unit (the Homeodomain) suggesting that protein 
isoforms that are able and unable to bind DNA might be produced during development; 
furthermore, experiments in cell culture suggest that shorter homeodomain-less 
isoforms can be generated from longer homeodomain-containing templates suggesting a 
novel mechanism of RNA processing predicted to substantially impact the biochemical 
functions of Hox proteins. Third, we find that Hox alternative polyadenylation leading 
to the production of different 3’ untranslated regions (3’ UTRs) in Hox mRNAs can 
explain the generation of complex spatial patterns of Hox expression in the mouse 
developing limbs and brain. Altogether, our work adds to the current understanding of 
the molecular control of Hox expression during mammalian development, showing that 
RNA processing can significantly impact the biochemical properties and expression of 
Hox proteins.  
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1.1 – Preface. 

 

The question of how animal development is controlled at molecular level is a 

central aspect of modern biological research. Hox genes have been shown to underlie 

animal morphogenesis along the main axis of a number of organisms. More specifically, 

the expression and morphogenetic action of Hox genes is segmentally restricted along 

the anterior-posterior axis (A-P axis) of both arthropods, like Drosophila melanogaster 

and mammals like Mus musculus (Pearson et al. 2005). In the latter group, differential 

Hox gene expression also mediates the morphogenesis of the secondary axis of the 

limbs, a process that shares a number of characteristics with the patterning of the A-P 

axis, leading to the proposal that the morphogenetic action of Hox genes has been co-

opted to pattern this novel character of the Vertebrate clade (Lonfat et al. 2014). 

The precise regulation of Hox gene expression has been shown to impact the 

aforementioned morphogenetic effects of Hox products in both Drosophila 

melanogaster and Mus musculus. In particular, the control of Hox gene expression by 

chromatin and transcriptional regulation has been show to impact Hox-mediated 

developmental programs in both organisms, and in both the primary and secondary axis 

of mammals (Zakany & Duboule 2007; Mallo & Alonso 2013). The RNA-based 

regulation of Hox genes has a strong impact on Hox molecular patterns during the 

development of Drosophila melanogaster, via the production of alternative mRNAs 

from the same Hox locus, and their subsequent regulation by trans-acting factors. This 

level of regulation controls the expression patterns of at least half of the Drosophila 

melanogaster Hox genes (Thomsen et al. 2010; de Navas et al. 2011; Reed et al. 2010). 

In the following sections of this Chapter, I explore how Hox genes, a group of 

related genes that display homology in sequence, molecular action and function across 
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metazoans, control the development of Drosophila melanogaster and Mus musculus, as 

well as the gene regulatory levels that help establish Hox expression patterns during the 

development of these organisms. I then look at the evolution of the Hox gene clusters in 

vertebrates, showing how the history of whole genome duplications in the vertebrate 

clade relates to Hox expression and function in mammals. With a focus on RNA-based 

regulation of Hox expression, I will then discuss development in an evolutionary 

context and introduce the specific aims of this thesis. 

 

 

 
1.2 - Hox genes and the Homeodomain. 

 

Hox genes usually occur in clusters within the genomes of animals, and encode 

for a family of evolutionarily related transcription factors that contain a DNA-binding 

domain, the Homeodomain (Pearson et al. 2005), (Figure 1.1). Hox transcription 

factors are present in most animals, being usually expressed along the anteroposterior 

axis of early embryos in a segmentally restricted manner (Pearson et al. 2005). 

Generally, the relative position of a Hox gene within a cluster is mirrored by the relative 

position of its segmental expression, a rule called spatial colinearity (Figure 1.1A-B). 

Through the differential effects on the transcription of target genes, the restricted 

expression of Hox genes in tandem segments confers differential identities to serially 

homonomous structures, leading to the differentiation of function and morphology that 

characterizes the anteroposterior axis of animals. This axis, as well as the morphological 

structures that characterize it in different animals (e.g. thoracic ribs and arms in 

mammals versus thoracic legs and wings in Diptera), characterizes the distinct body-   
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Figure 1.1 - Hox clusters are conserved across animals and confer positional 

information across the A-P axis during development (legend in the following page). 
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Figure 1.1 - Hox clusters are conserved across animals and confer positional 
information across the A-P axis during development. (A-B) Diagram depicting the 
genomic organization of Hox genes in Mus musculus (A) and Drosophila melanogaster 
(B), taken from (Mallo & Alonso 2013). (A) There are eight Hox genes clustered in two 
complexes in Drosophila melanogaster, the ANT-C and the BX-C complexes. The 
manner in which Hox genes are organized in the genome mirrors the embryonic gene 
expression patterns of Hox genes along the anterior-posterior (A-P) axis, a 
characteristic named spatial colinearity. More “anterior" genes like Deformed (Dfd) - 
part of the ANT-C - will be expressed in more anterior segments than Hox genes sitting 
in the other extremity of the cluster e.g. Abd-B. The Drosophila Hox clusters contain 
three miRNA loci, which encode for small RNA molecules that in some cases, like miR-
iab-4-5p/3p, can target Hox mRNAs in a post-transcriptional manner. The Hox genes of 
Drosophila are hypothesized to descend from six Hox genes in the genome of the 
common ancestor of animals with bilateral symmetry (urbilaterian) (B) The Mus 
musculus genome has 39 Hox genes, organized in four clusters which sit in different 
chromosomes. The 39 Hox genes of mammals descend from a single Hox cluster by 
two rounds of genome duplication early in the vertebrate evolutionary lineage. As such, 
there are thirteen paralogue groups across mammalian Hox clusters. Within each 
paralogue group (PG), Hox genes have similar relative positions in different clusters 
and share sequence motifs, expression patterns and function. As with Drosophila 
melanogaster [(see (A)] the mammalian Hox clusters contain miRNA loci and display 
spatial colinearity between Hox genomic positions and embryonic axial expression 
patterns. 
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Figure 1.2 - The mutation of Hox genes causes homeotic transformations in 

Drosophila melanogaster and Mus musculus (legend in the following page). 
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A 

adapted from Bridges & Morgan (1923) F. R. Turner, Indiana University 

adapted from Wellik & Capecchi (2003) 
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associated 
w

ith thoracic 
vertebrae 

(com
pare 

Fig. 1, B
 to F., w

ith Fig. 1, G
 to .1, and Fig. 2 A

 
w

ith Fig. 2B
). In the H

oxIO
 triple m

utant (Fig. 
IA

), the severely altered sacral vertebrae still 
form

 fusions at their lateral m
argins to produce 

a pseudosacrum
. T

his fusion occurs at the ap 
propriate position despite the severe perturba 
tions 

in 
m

orphology 
of 

these 
vertebral 

elem
ents. D

espite the changes in axial m
orphol 

ogy, the pelvis (w
hich also displays patterning 

perturbations; com
pare Fig. 2, D

 and F.) and the 
hindlim

bs associate w
ith the pseudosacral lat 

eral fusion at the norm
al position along the 

vertebral axis (com
pare Fig. 2, A

 and B
).

M
ice w

ith only five m
utant alleles display 

a 14th rib and altered sacral processes, but the 
axial m

orphology is m
uch less severely af 

fected than in the H
oxIO

 triple m
utant (Fig. 

IP). 
C

om
binations 

of any five 
of the 

six 
m

utant alleles in the H
oxIO

 paralogous group 
dem

onstrate 
sim

ilar 
m

utant 
phenotypes 

to 
one 

another, 
indicating 

the 
approxim

ately 
equal contribution of these alleles to axial 
patterning (II). C

om
parison of H

oxIO
 five- 

allele m
utants to H

oxIO
 triple m

utant anim
als 

dem
onstrates the extent of redundancy w

ithin 
this paralogous group.

H
oxl I triple m

utant skeletons show
 equally 

severe, but distinct, axial phenotypes. R
ib for 

m
ation term

inates norm
ally and 

the lum
bar 

vertebrae appear norm
al; how

ever, no sacral 
vertebrae are form

ed. Instead, these vertebrae 
assum

e a lum
bar m

orphology (Fig. IK
). The 

lum
barlike vertebral elem

ents continue far past 
the norm

al sacral region, and caudal vertebrae 
are not apparent until several elem

ents m
ore 

posterior than in controls (com
pare Fig. 1, L to 

O
, w

ith Fig. 1, G
 to .1). M

ice m
utant for H

oxl I 
paralogous genes also display severe perturba 
tions of pelvic m

orphology (com
pare Fig. 2, F 

and F.). I low
ever, despite the absence of sacral 

vertebrae in these m
utants, the pelvis and hind 

lim
bs again associate w

ith the appropriate ver 
tebral segm

ents (Fig. 2C
). T

he com
bined re 

sults dem
onstrate that the positioning of the 

pelvis and hindlim
bs is not under the control of 

either H
oxIO

 or H
oxll paralogous genes. Fur 

ther, the A
P positioning of these elem

ents is not 
dependent on norm

al sacral developm
ent or on 

appropriate lum
bosacral transitions.

Five-allele H
oxll 

m
utants 

again dem
on 

strate the redundancy w
ithin the paralogous 

group w
ith respect to axial phenotype. N

o sa 
cral w

ing fusion occurs in any of the five-allele 
skeletons, but sacral w

ings do appear on m
ore 

posterior elem
ents (Fig. IQ

), and there are few
 

er elem
ents that are lum

barlike posterior to the 
norm

al sacral region. It is im
portant to note that 

although H
oxIO

 and H
oxl I triple m

utants both 
severely affect sacral form

ation, these paralogs 
clearly perform

 distinct functions on the sam
e 

elem
ents. 

A
lso, 

even 
though these 

sets 
of 

paralogous m
utations result in the com

plete loss

Fig. 1. Axial skeletons of 
H

ox 10 and H
ox 11 triple 

m
utants 

at 
em

bryonic 
day 18.5 (E18.5). V

entral 
view

s of the axial skele 
ton from

 the low
er tho 

racic region through the 
early caudal region of 
a H

oxIO
 triple m

utant 
(A), a control (F), and a 
H

oxl 1 triple m
utant (K) 

are show
n. Y

ellow
 as 

terisks indicate lum
bar 

vertebrae; red asterisks 
indicate 

sacral 
verte 

brae. A five-allele m
u 

tant from
 the H

oxIO
 and 

H
oxll 

paralogous 
m

u 
tant group is show

n in 
(P) and (Q), respectively 
(red arrow

s indicate sa 
cral 

w
ing form

ation). 
A

nalogous 
vertebrae 

w
ere dissected from

 the 
control and from

 each 
triple m

utant to com
pare 

single vertebral identities. 
The 19th vertebral ele 
m

ent, norm
ally T12, is 

show
n in (B), (C), and (L). 

The 23rd elem
ent, nor 

m
ally 13, is show

n in (C), 
(H), and (M

). The 28th 
elem

ent, norm
ally S2, is 

show
n in (D), (I), and (N). 

The 35th elem
ent, nor 

m
ally caudal vertebra 5 

(C5), is show
n in (E), (J), 

and (O). (Betw
een tw

o 
and seven E18.5 skele 
tons w

ere collected for 
each of the triple m

utant, 
five-allele, 

and 
control 

skeletons 
for 

each 
paralogous group.)
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Figure 1.2 - The mutation of Hox genes causes homeotic transformations in 
Drosophila melanogaster and Mus musculus. (A) Diagram depicting a homeotic 
phenotype due to a bx mutation in Drosophila melanogaster (Bridges & Morgan 1923). 
(A) In bx mutants, the third thoracic segment, which usually contains a pair of halteres, 
is transformed into the likeness of the T2 segment, showing a partial haltere-to-wing 
transformation. (B) Picture detailing the phenotype of an Antp gain of function mutation 
(F.R. Turner, Indiana University). This mutation leads to the ectopic expression of the 
Hox gene Antennapedia in the developing antennae of Drosophila melanogaster, 
leading to a antenna-to-leg transformation in this segment. (C) The mutation of Hox 
genes leads to homeotic transformations in Mus musculus (Wellik & Capecchi 2003). 
The mutation of Hox genes of paralogue groups 10 and 11 leads to homeotic 
transformation in the segments of the A-P axis in which they are developmentally 
expressed. The mutation of all copies of Hox10 genes leads to a lumbar-to-thoracic 
homeotic transformation, in which ribs are formed in the lumbar region. Conversely, the 
mutation of Hox11 copies in Mus musculus leads the extension of lumbar phenotypic 
fates toward the sacral regions of the axial skeleton. 
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plans (baupläne) of metazoans, and its diversification underlies major evolutionary 

transitions in the tree of life. As the expression of Hox genes is known to mediate the 

identity of these axial structures, Hox genes have been implicated in the evolution of the 

animal bauplan. The first line of evidence for these ideas involves the study of Hox 

mutations in which the morphology of one segment is transformed into the semblance 

of another. These transformations are usually titled homeotic (Figure 1.2).  

 William Bateson had coined the term homeosis in 1894 to broadly describe the 

types of morphological variation in which  “something has been changed into the 

likeness of something else” (Bateson 1894). This effect had been recognized by Goethe 

and termed metamorphy 104 years previously, in his study of plant variation (Lewis 

2004). As this is an ambiguous term, being also used to describe the process of 

metamorphosis, Bateson proposed a change in nomenclature so as to distinguish 

individual metamorphic variants within a population (homeosis) from the remaining 

metamorphic variation during ontogeny (metamorphy or metamorphosis) (Lewis 2004). 

In 1915, Calvin B. Bridges and Thomas H Morgan discovered the first homeotic 

mutation in Drosophila melanogaster (Bridges & Morgan 1923) (Figure 1.2A). In their 

1923 book (Bridges & Morgan 1923) these authors describe the discovery, by Calvin 

Bridges, of “a mutant eye-color like maroon” fly stock of which a male was crossed 

with a wild-type female. This led to a stock that lost this character in the F2 generation; 

“However, approximately a quarter of the flies showed (culture 2203, September 22, 

1915) a new character of a surprising nature (Bridges & Morgan 1923). These flies 

appeared to have two thoraxes with wings and bristles complete. (…) Some of these 

bithorax flies were mated together, and all the progeny were found to be bithoracic, 

constituting a pure-breeding stock of the recessive mutant.” (Bridges & Morgan 1923). 

Wild-type Drosophila melanogaster flies usually have three thoracic segments, deemed   
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T1, T2 and T3, with the last as the most posterior. The T1 segment has a pair of ventral 

legs, as do the T2 and T3 segments. Additionally, T2 displays one dorsolateral pair of 

wings, while T3 has dorsolateral halteres, balancing organs that act as gyroscopes to 

control flight. In bithorax (bx) flies, Bridges and Morgan found that the T3 segment 

displays a modified morphology that resembles that of the immediately anterior 

segment, with both dorsal and ventral appendages resembling those of T2 (Bridges & 

Morgan 1923), (Figure 1.2A).  

Subsequent forward genetic work in Drosophila melanogaster uncovered a 

number of additional homeotic transformations (Figure 1.2B). Interestingly, a number 

of these were mapped to two closely located regions in the right arm of the third 

chromosome of flies; these regions were deemed Antennapedia complex (ANT-C, 

(Kaufman et al. 1980)) and Bithorax complex (BX-C, (Lewis 1978)), (Figure 1.2A-B).  

The work of E.B. Lewis showed that the linear arrangement of mutant regions, inferred 

from classical genetic maps, was correlated with the location of their specific 

morphological effects along the anteroposterior axis, a phenomenon now known as 

spatial colinearity (Lewis 1978; Lewis 2004). This led to the proposal of a coordinate 

system of morphological patterning, in which the differential expression of Hox genes 

along the anteroposterior axis would lead to the differential identity and resulting 

morphology of segments along the same axis.	In 1983, the innovative study of Bender 

and colleagues described the DNA sequence of 195 kilobases (kb) within the BX-C, 

providing a solid molecular basis for the study of Hox genes (Bender et al. 1983). This 

was followed by expression analyses that revealed that Hox genes were indeed 

expressed in discrete contiguous domains along the anteroposterior axis of the embryo, 

and that their order is collinear to the position of each respective Hox gene within the 

Drosophila Hox cluster (Mallo & Alonso 2013; Akam 1987; Harding et al. 1985), 
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(Figure 1.1A). 

Eight Hox genes have been described in Drosophila melanogaster. The 5 Hox 

genes with the most anterior embryonic expression - labial (lab), proboscipedia (pb), 

Deformed (Dfd), Sex-combs reduced (Scr) and Antennapedia (Antp) - are serially 

distributed within the ANTP-C, while the remaining 3 genes Ultrabithorax (Ubx), 

abdominal-B (Abd-B) and abdominal-A (abd-A) are located in the BX-C. The analysis 

of expression of Hox genes further confirmed that these were indeed serially expressed 

along the segments of the anteroposterior axis of fruitflies (Akam & Martinez-Arias 

1985; Beachy et al. 1985; Harding et al. 1985; Karch et al. 1990; White & Wilcox 1984) 

(Figure 1.1A). 

In 1984, Bill McGinnis (McGinnis et al. 1984) showed that upon Southern 

hybridization between an Antp cDNA probe (Carrasco et al. 1984) and genomic DNA 

of Drosophila melanogaster, not one but four non-contiguous complementary regions 

existed in a 100 kb stretch within the ANTP-C. This result indicated that different 

regions across the ANTP-C Hox complex shared specific sequences that were mapped 

to the transcription units of Antp, Ubx and fushi tarazu (ftz), a pair-rule gene found 

within the ANTP-C. Additionally, the authors of this study varied the hybridization 

stringency of the probes to show that more than 50 regions displayed some degree of 

hybridization to the probe used, indicating that this region is repeated outside of the Hox 

gene complexes. Independently, work by Scott and Weiner had shown that this shared 

sequence encoded for a protein domain with a high degree of homology (Scott & 

Weiner 1984). This observation led to the proposition that Hox genes share a close 

evolutionary history, and that their similarity in function can be attrituted to this protein 

domain – the Homeodomain (Scott & Weiner 1984; Desplan et al. 1988; Desplan et al. 

1985). 
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All Hox genes contain a Homeobox sequence of around 180 base pairs in size, 

which encodes for a Homeodomain (Figure 1.3). The Homeodomain consists of a 

sequence of around 60 amino acids, and is found in the Hox genes of mammals, as well 

as in other Homeodomain-containing genes of Animals, Plants and Fungi (Figure 

1.3C). When translated, this 60 amino acid sequence folds into three helices (1-3). 

Helices 2 and 3 form a helix-loop-helix structure that has the ability to bind DNA, 

activating or repressing transcription (Qian et al. 1989; Gehring 1993), (Figure 1.3A, 

C). This structure is similar to the helix-loop-helix domain of prokaryotic transcription 

factors (Gehring 1993). One of the two α-helices within the helix-loop-helix motif of 

the Homeodomain, helix 3 or the recognition helix, recognizes specific DNA sequences 

by insertion into the major groove of the DNA double helix (Qian et al. 1989; Gehring 

1993; Affolter et al. 1990). In the case of the Antennapedia Homeodomain, the amino 

terminal region preceding the Homeodomain is flexibly disordered in solution and 

reaches into the minor DNA groove. An additional loop between helices 1 and 2 

contacts the DNA backbone in the major groove (Qian et al. 1989; Gehring 1993; 

Affolter et al. 1990). These Homeodomain-DNA interactions are consistent with 

observations in other Homeodomain transcription factors (Kissinger et al. 1990; 

Gehring 1993; Wolberger et al. 1991). All these Homeodomain-DNA interactions are 

thought to stabilise the Homeodomain-DNA interaction (Gehring 1993). Indeed, the 

monomeric binding of the Antennapedia Homeodomain to DNA molecules was found 

to be highly specific as well as stable, with Antp-DNA complexes displaying an in vitro 

half-life of approximately 1.5 h (Affolter et al. 1990).  

These observations led to the proposal that Hox genes act as regulators during 

the development of Drosophila melanogaster, binding operator DNA sequences in the 

vicinity of target genes, and subsequently influencing their transcription in a positive or  
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Figure 1.3 – Hox genes contain the Homeobox, which encodes for the DNA-binding 

homeodomain, as well as other protein-protein interaction domains (legend in the 

following page). 

C 

A B 

Adapted from Lynch et al. (2006) and Hudry et al. (2012) 
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Figure 1.3 – Hox genes contain the Homeobox, which encodes for the DNA-
binding homeodomain, as well as other protein-protein interaction domains. (A) 
Diagram depicting the structure of the Homeodomain (from (Lynch et al. 2006)). The 
Homeodomain is a helix-loop-helix DNA-binding domain. In its native protein 
conformation, the Homeodomain contains three �-helices. Helices 2 and 3 fold into a 
helix-loop-helix structure that has the ability to bind DNA, leading to the activation or 
repression of transcription. (B) Hox proteins bind DNA in a cooperative manner by 
interacting with PBC and MEIS-class factors, both Homeoproteins, in Drosophila 
melanogaster and Mus musculus. These interactions stabilise Hox-DNA molecular 
interactions. Hox proteins mediate their interaction with PBC factors through the 
hexapeptide, a short (I)YPWM(K) amino acid sequence that lies upstream of the 
Homeodomain. MEIS-class Homeoproteins also serve the molecular function of 
stabilising Hox-PBC-DNA interaction (from (Hudry et al. 2012)). (C) The Homeodomain 
consists of a sequence of around 60 amino acids, which fold into a characteristic helix-
loop-helix structure (see panel A). This sequence is encoded by the 180 base-pair 
Homeobox, which is found in the Hox genes of Drosophila melanogaster and Mus 
musculus, as well as in other Homeodomain-containing genes of Animals, Plants and 
Fungi (from (Lynch et al. 2006)).  
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negative manner. The complement of Hox targets has since been shown to be numerous, 

as well as to differ between Hox genes (Pearson et al. 2005); this was shown to rely on 

the slightly different specificities of different Hox Homeodomains. For example, 

domain-swapping experiments in the Drosophila melanogaster Hox factor 

Antennapedia have show that functional specificity of the Antennapedia Hox factor 

resides partially on its Homeodomain, as the presence of an Antp-specific four amino 

acid region in the N-terminal region of the Homeodomain (RGQT) is sufficient to cause 

a homeotic transformation from antennae to legs upon ectopic overexpression 

(Furukubo-Tokunaga et al. 1993). In contrast, Distalless (Dll) was shown to be targeted 

by different Hox genes, being repressed by Ubx, abd-A, and Abd-B in the abdominal 

epidermis (Vachon et al. 1992; Pearson et al. 2005). This indicates that Hox genes can 

indeed share some targets (reviewed in (Sánchez-Herrero 2013)), although their specific 

effect can be antagonistic e.g. Ubx and abd-A either activate (Ubx) or repress (abd-A) 

the target gene dpp in the visceral mesoderm of developing Drosophila embryos. 

The segmentally restricted morphological effects of Hox genes, as revealed by 

homeotic transformations upon Hox mis-expression, are thought to arise from the 

segmentally restricted expression of Hox genes. Hox protein products then bind DNA 

directly as monomers, via the Homeodomain. As these DNA stretches are small, 

ranging from 4-5 nucleotides, and are as such bound by different Hox proteins, further 

target specificity can be achieved by Hox heterodimerization with members of the two 

Homeodomain-containing extradenticle or exd (PBC family in mammals) and 

homothorax or hth (MEIS super-family in mammals), (Figure 1.3B). The Hox-Exd 

protein-protein interactions are mediated in part by the (I)YPWM(K) Hexapeptide 

(HX), a small domain that lies upstream of the Homeodomain (Figure 1.3B). As the 

same Hox protein has differential target-site specificities in monomeric or heterodimeric 



	 29	

contexts (Pearson et al. 2005), Hox interactions with co-factors are expected to further 

modify target-site choice. In both conformations, direct binding of Hox genes to DNA 

occurs via the Homeodomain and leads to activation or repression of specific targets. 

Given the large, noticeable effects of Hox mutations, this mechanistic model provides 

the first molecular mechanism for the control of animal bauplan development (Pearson 

et al. 2005). In the following sections, I will introduce the Hox clusters of vertebrates as 

well as their evolutionary history as it relates to the mammalian evolutionary lineage, 

and will explore the consequences of regulated Hox expression in the context of 

mammalian bauplan formation. 

 

 

1.3 - The evolution of mammalian Hox clusters. 

 

 The discovery of serially shared sequences within the Drosophila Hox clusters 

led to subsequent investigations of their presence in the genomes of other animals. 

Using Drosophila cDNA probes for the Homeobox in low-stringency screenings of 

affinity to vertebrate DNA sequences, the first Homeobox-containing genes were 

discovered in Xenopus and the placental mammal Mus musculus (Favier & Dollé 1997; 

McGinnis et al. 1984; Carrasco et al. 1984). Like the Hox genes of Drosophila 

melanogaster, vertebrate Hox genes were found to lie in clusters and to display spatial 

colinearity between genomic organization and gene expression along the anteroposterior 

axis (Graham et al. 1989; Pearson et al. 2005). In conjunction with the homeotic effects 

of Hox mutations in Drosophila melanogaster, their extreme conservation in sequence 

and expression across animals led to the proposal of Hox genes as central determinants 

of animal Baupläne, and by definition, of their evolution.  
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 Vertebrates are part of the chordates, a phylum that shares its deuterstosme 

mode of embryonic development, in which the blastopore of early embryos becomes the 

adult anus, with Echinoderms and Hemichordates. The last common ancestor of the 

Deuterostomes and the Protostomes, the evolutionary lineage leading up to Drosophila 

melanogaster, is usually referred to the Urbilaterian as it represents the most recent 

common ancestor of all animals with bilateral symmetry (“Ur-“ is a German prefix that 

means “original”). Molecular estimates place the Deuterostome-Protostome split, and 

thus the existence of the Urbilaterian, at roughly 670 million years ago (Ayala & 

Rzhetsky 1998). As both Deuterostome and Protostome lineages have very similar Hox 

genes, it is generally considered that the most recent common ancestor of the 

Drosophila and Vertebrate Hox clusters also existed at around the same time. It is thus 

important to understand what happened to the Hox gene clusters since the 670 million 

between the Drosophila melanogaster and the Vertebrate lineages. 

Unlike Drosophila, the Hox genes of vertebrates are found in four or more 

different genomic clusters. For instance, the Hox gene complement of amniotes 

(Reptiles, mammals and Birds) consists of 39 genes, unequally divided across four 

clusters that lie on four different chromosomes (Schughart et al. 1988; Ruddle et al. 

1994) (Figures 1.1B  and 1.4)). Other Sarcopterygii, a vertebrate sub-clade that 

includes amniotes, as well as amphibians, coelacanths and lungfish, display a similar 

arrangement of Hox genes across four different clusters, with the exact number of Hox 

ranging from 38-42 genes (Liang et al. 2011), (Figure 1.4B). Other fish show an even 

bigger proliferation of Hox genes: the zebrafish Danio rerio has 47 Hox genes in 7 

clusters (Meyer & Málaga-Trillo 1999) while the Atlantic salmon has a total of 118 Hox 

genes divided between 13 different genomic clusters (Mungpakdee et al. 2008). 
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Several authors have proposed that different rounds of genomic duplication 

underlie the various vertebrate expansions of the Hox repertoire (Ohno 1970) 

(Mungpakdee et al. 2008; Holland et al. 1994), (Figure 1.4A). Specifically, two rounds 

of whole-genome duplication are postulated at the base of the vertebrate lineage, after 

the Vertebrate-Urochordate split (2R), with a subsequent round of duplication (3R) 

occurring in the zebrafish evolutionary lineage (Ohno 1970), with the lineage of 

Salmonid fishes accumulating an additional duplication (4R) (Mungpakdee et al. 2008). 

After the two 2 rounds of whole-genome duplications that have occurred in the early 

Vertebrate lineage, most protein-coding genes were presumably lost as the protein-

coding gene complements of most mammals is not the quadruple, but rather less than 

twice the size of that of the non-Vertebrate chordates (≈25.000 in humans versus 

≈14.000 in Amphioxus, (Abbasi 2008)).  

In stark contrast to these figures, the 39 Hox genes in mammals are orthologous 

to 13 Hox genes in Amphioxus, indicating that around 75% of Hox duplicates were 

retained in the mammalian lineage after the 2R duplication events. The Duplication-

Degeneracy-Complementation model (DDC) provides an appropriate context to extend 

this observation in the present study (see Chapter 3). The DDC postulates that the 

retention of paralogues after gene duplication can be explained by, first, the 

subfunctionalization of each new paralogue, due to an accumulation of complementary 

loss-of-function mutations in sequences that encoded for different sub-functions in the 

ancestral gene (Prince et al. 2002). This leads, second, to the retention of both 

paralogues after gene duplication, as the molecular function of the ancestral gene can 

only be recapitulated if both paralogues are present (Prince et al. 2002). 

Individual Hox genes that are placed in the same relative position across 

different Vertebrate clusters were found to be very similar, sharing sequences as well as 
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Figure 1.4 – The evolution of vertebrate Hox gene clusters by gene duplication 

(legend in the following page). 
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Figure 1.4 – The evolution of vertebrate Hox gene clusters by gene duplication. 
(A) Numbers of Hox clusters in different clades of the chordate phylum (Wagner et al. 
2003). Vertebrate genomes contain 4-8 Hox clusters. In cephalochordates and 
Urochordates, both sister-taxa to the Vertebrates, only 1 Hox cluster is found. This 
pattern results from that at least two rounds of whole-genome duplication at the base of 
the Vertebrate evolutionary lineage. In Teleosts, additional rounds of whole-genome 
duplications have resulted in the formation of more than 4 Hox clusters. The mammals 
Mus musculus and Homo sapiens are included in the Tetrapod clade, and have 4 
genomic Hox clusters. (B) The organization of Hox genes within genomic clusters in 
the Bilateria (Swalla 2006). The two rounds of whole-genome duplication at the base of 
the Vertebrate lineage were followed by gene loss in the Hox clusters. In the Tetrapod 
lineage, this evolutionary history resulted in thirty-nine genes divided into four genomic 
clusters. Hox genes that occur in the same relative position within the Hox clusters of 
vertebrates are paralogous, sharing common ancestry by gene duplication. There are 
13 groups of paralogous genes in vertebrate Hox clusters; these genes share specific 
sequences, relative genomic position, expression patterns and functions. The 
cephalochordates, a sister-clade to the Vertebrates, have 14 Hox genes organized in a 
single cluster. Hox genes 1-13 are orthologous of the paralogue groups 1-13 of 
Tetrapods. As such, the cephalochordates might present a Hox cluster that is similar to 
the one found in the chordate common ancestor. 
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patterns of expression, and occurring in the same relative position within each cluster 

(Pearson et al. 2005), (Figures 1.1B and 1.4B). Given the evolutionary history of the 

vertebrate genome, and as mentioned previously, these commonalities across vertebrate 

Hox clusters are interpreted as representing paralogy, meaning that these similar Hox 

genes are paralogues of each other, a type of homology in which there is shared 

common ancestry due to gene duplication. As Hox paralogy occurs across the length of 

all four Hox clusters, the vertebrate Hox clusters are themselves paralogues of each 

other, and in conjunction, are orthologous (i.e. share homology due to speciation) to the 

single Hox cluster of most other animals. These observations provide an appropriate 

context to introduce the main genetic focus of our work, the Hox clusters of mammals.  

 As mentioned previously, mammals have 39 Hox genes that are divided across 4 

genomic clusters, deemed A, B, C and D. In humans, these four clusters are located in 

different chromosomes: chromosomes 2, 7, 12 and 17 (Hokamp et al. 2003) (Figure 

1.1B). Each mammalian Hox cluster has 9 to 11 Hox genes, which are paralogous to the 

Hox1-13 genes of the cephalochordate Amphioxus (Figure 1.4B). An additional 

Amphioxus Hox gene, Hox14, was presumably lost after the Amphioxus/Vertebrate 

split, but before the genome duplications in the vertebrate lineage, as none of the four 

Hox clusters of mammals show evidence for the presence of a Hox14 gene. In each 

mammalian cluster, Hox genes are conventionally termed by numbers 1-13, in 

ascending order of posteriority in expression. As such, each mammalian Hox gene has a 

coordinate defined by the cluster it is in, as well as its position within the cluster (e.g. 

the human HoxA1 gene is part of the anteriorly-expressed Hox genes of cluster A) (Scott 

1993). The aforementioned cross-cluster paralogy of mammalian Hox genes is thus 

characterized as such: two paralogous Hox genes are two Hox loci that are located in 

different Hox clusters, sharing similarity in sequence as well as within-cluster position. 
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As such, the number included in the name of each mammalian Hox gene also denotes its 

evolutionary relationship with its paralogues: the human HoxA1 and HoxB1 genes are 

reciprocally paralogous, as are HoxC13 and HoxD13. 

Membership to a paralogue group can also be ascertained by analysing the 

combination of amino acid sequences that each Hox gene encodes. As mentioned 

before, all Hox genes share a Homeobox sequence that encodes for a Homeodomain. 

The Homeodomain is slightly different across PGs, but in only few cases can it offer 

enough resolution to ascribe paralogue group membership (Sharkey et al. 1997). As 

such most PG-specific sequences lie outside of the Homeodomain. Mammalian Hox 

genes from PGs 1-8 contain the hexapeptide motif (also present in Drosophila Hox 

genes, see previous section). The hexapeptide mediates interactions between Hox 

products of paralogue groups 1-8 and PBC-class homeoproteins. Members of paralogue 

groups 9 and 10 have a degenerate HX, consisting of a single tryptophan residue that 

nevertheless has been shown to also mediate the formation of Hox-Pbx1 DNA-binding 

complexes (Chang et al. 1996; Shen et al. 1996), (see Figure 1.3B). Members of PGs 

11-13 do not exhibit protein-protein interactions with PBC factors, interacting instead 

with MEIS Homeoproteins. These molecular partners, however, are not mutually 

exclusive, as Hox9 and Hox10 products can interact with members of both 

Homeoprotein classes.  

Due to the individual pre-duplication evolutionary history of each vertebrate 

Hox1-13 gene, paralogous Hox genes also share sequences with each other that are 

absent in other paralogue groups (PGs). For instance, Hoxa9-MEIS interactions were 

shown to rely on the first 61 amino acids of the Hoxa9 protein sequence (MIM, or 

MEIS interacting motif), a Hox9 paralogue-group specific stretch of sequence that lies 

outside of the Homeodomain. The mammalian Hox10 genes (Hoxa10, Hoxc10, 
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Hoxd10) are part of the posterior class of Hox genes, and share specific sequences like 

the M1 and M2 motifs that surround the Homeobox (Guerreiro et al. 2012). Even 

though Hox9 genes display sequences that are somewhat similar to M1 and M2 in these 

regions, these are diagnostic of Hox10 genes (Guerreiro et al. 2012). These PG-specific 

motifs are thought to reflect PG-specific molecular functions (Sharkey et al. 1997). In 

the case of Hox10 genes, both M1 and M2 motifs underlie the repression of rib fates in 

the lumbar region of developing Mus musculus (Guerreiro et al. 2012). This repressive 

effect was shown to rely on the phosphorylation of Serine and Threonine residues 

within the M1 sequence (Guerreiro et al. 2012). As such, in this case, paralogue-specific 

domains exist that reflect paralogue-specific functions.  Each paralogue-specific protein 

motif complement is thus combinatorial, and reflects the deep history of each PG. 

In the next section, I describe how the regulated expression of mammalian Hox 

genes influences the embryonic development of mammalian structures along the 

primary anteroposterior axis, as well as the secondary proximal-distal axis of limbs. 

 

 

1.4 -  The impact of Hox expression on mammalian development. 

 

During the development of mammals, groups of paralogous genes are activated 

sequentially along an axis, with the members of the paralogue groups Hox1 and Hox2 

having an earlier and more anterior onset of embryonic expression than Hox3 and Hox4 

genes, which in turn have earlier expression onsets and more anterior expression pattern 

than the remaining Hox5-13 genes. As such, genes of the Hox10-13 PGs are deployed 

late in mammalian development, and pattern more posterior structures (Wellik & 

Capecchi 2003). Unlike spatial colinearity, this aspect of Hox expression, known as 
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temporal colinearity, is not observed in other phyla (Mallo & Alonso 2013). 

As with Drosophila, mutations in Hox genes introduce homeotic transformations 

along the anteroposterior axis of mammals, indicating that Hox genes also elicit 

segment-specific identities along this axis (Wellik & Capecchi 2003), (Figure 1.5). The 

mammalian Hox genes are involved in the patterning and differentiation of a number of 

axial structures. In this section, I will explore the developmental roles of mammalian 

Hox genes, focusing on the Hox involvement in patterning of the embryonic axial 

skeleton, the hindbrain and the limb of mammals (see Figure 1.5). 

The axial skeleton of vertebrates develops, with the exception of the sternum 

(Wellik 2007), from transient mesodermal structures called somites, which are produced 

in a sequential manner beginning in the anterior end of the embryonic anteroposterior  

axis, at both sides of the neural tube. The sequential addition of somites occurs by 

epithelialization of mesenchymal cells at the anterior end of the presomitic mesoderm, 

and displays a precise periodicity that seems to be species-specific, occurring every 30 

minutes in zebrafish, every 90 minutes in Chicken, and every 120 minutes in Mus 

musculus. In humans, this process is thought to occur at 20-35 days after conception, 

with each somite being formed in every 4–6 hours (Turnpenny et al. 2007). 

Molecularly, the periodicity in somitogenesis has been shown to rely, at least in part, on 

the oscillatory expression of a number of genes (Dale & Pourquie 2000), as well as in 

the establishment of a determination front, in which the anterior portion of a forming 

somite becomes progressively more exposed to a retinoic acid gradient (anterior to 

posterior) as it becomes less exposed to Wnt/Fgf signaling (established posteriorly). 

This in turn induces changes in gene expression that lead to segmentation at the anterior 

somitic border. 

Although somites are serially homologous structures and thus morphologically 
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similar, they differentiate into distinct, segment-specific structures along the axial 

skeleton of mammals. The portion of the somite that forms the vertebrae and the rib 

cartilage of the axial skeleton - the sclerotome – migrates medially and dorsally towards 

the neural tube and fuse around it to form each vertebra. In the thoracic region, this 

process in prolonged by further lateral migration of slerotome cells to form the cartilage 

of ribs. In the lumbar region, however, this process and the consequent the formation of 

ribs, is absent (Wellik & Capecchi 2003). 

Hox genes exert morphogenetic control during the development of the axial skeleton at 

the presomitic mesoderm level. The anterior borders of expression of Hox genes are 

progressively established, following the spatial colinearity rule, and are fixed at 12 

d.p.c. in the neural tube and presomitic mesoderm (Wellik 2007). The anterior   
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Figure 1.5 – Hox genes control the morphogenesis of the axal skeleton, limbs and 

hindbrain of mammals (legend in the following page). 

B 

360 Pattern formation and developmental mechanism

Figure 1

Predominant role of HoxA and HoxD clusters during limb development. On top, the full Hox genes complement is shown (left), along with the
associated wild-type morphology (right). The various schemes below illustrate full cluster deletions. Only the removal or either HoxA or HoxD
leads to a detectable phenotype, which is not drastic and mostly affects the digital plate [1,2,3!,4]. However, the combined deletion of both
HoxA and HoxD leads to an early arrest of limb growth [3!], pointing to a large functional redundancy between these two clusters (S: stylopod,
comprising the humerus and defining the upper arm; Z: zeugopod, comprising the radius and ulna and defining the lower arm; A: autopod,
comprising the ensemble of carpus and digits).

Current Opinion in Genetics & Development 2007, 17:359–366 www.sciencedirect.com

adapted from Alexander et al. (2009) adapted from Zakany & Duboule (2007) 

adapted from Kiecker & Lumsden (2005) 
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In other cases, the mutation of a Hox gene leads
to more complete homeotic transformations
of one or many vertebrae. Although there is a
general trend for the phenotypes resulting from
single Hox gene mutations to reflect the spatial
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Figure 5
Patterns of homeotic transformations in Hox mutant mice. (a) The most
anterior vertebra that shows either a partial or complete homeotic
transformation as the result of a given Hox gene mutation is indicated. Members
of the same PG are color-coded equivalently. (b) The range of phenotypes in
mice with mutations in entire PGs is depicted. Two emergent patterns are the
reflection of spatial colinearity in the order of Hox phenotypes along the A-P
axis and the functional overlap, in some cases, of different Hox genes in
patterning the same vertebrae. Asterisks indicate the few examples of posterior
homeotic transformations that are observed in some single Hox gene mutants.

colinearity of Hox gene expression, there are
numerous exceptions (Figure 5a). In contrast,
a comparative study of mice with mutations
in an entire PG demonstrated colinearity of
Hox function along the vertebral column and
evidence for functional compensation between
groups (Figure 5b) (McIntyre et al. 2007).
However, there is also evidence that PGs
perform distinct roles in vertebral patterning,
even when the same vertebrae are affected.

Based on the phenomenon of phenotypic
suppression, which was first characterized in
Drosophila, a posterior prevalence model has
been postulated to account for how the func-
tion of posterior Hox proteins overrides the
function of coexpressed anterior Hox proteins
(Gonzalez-Reyes & Morata 1990). According
to this model, segmental identity is imparted
by the most 5′ Hox PG that is expressed at
a given axial level (Duboule & Morata 1994).
In many cases, loss-of-function Hox alleles lead
to defects in much broader domains than ex-
pected from a strict interpretation of the pos-
terior prevalence model, i.e., the defects extend
into regions where more 5′ Hox genes are ex-
pressed. There is also evidence that levels of
expression can influence function in more pos-
terior territories. Therefore, although this ac-
counts for many of the observed Hox mutant
phenotypes in the axial skeleton, there are nu-
merous exceptions to the posterior prevalence-
based models.

The combinatorial model posits that a
somite acquires its segmental identity from the
specific complement of Hox genes it expresses
(Kessel & Gruss 1991). A corollary of this model
is that distinct Hox proteins have unique func-
tions. However, many studies have shown that
Hox genes within the same PG and between
different PG may be functionally equivalent
(Zhao & Potter 2001). For instance, the cod-
ing sequences of Hoxa3 and Hoxd3 were shown
to be functionally interchangeable (Greer et al.
2000). By comparing compound mutants, there
is further evidence that dosages or levels of
gene expression play an important role in de-
termining which genes may share functions in
patterning a region. Despite the difficulties in
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Figure 1.5 – Hox genes control the morphogenesis of the axal skeleton, limbs 
and hindbrain of mammals. (A) Diagram depicting the regions that are affected by 
Hox gene mutations in the mammalian axial skeleton. Anterior is up. (Alexander et al. 
2009). Single Hox mutations affect the morphogenesis of specific regions along the A-
P axis of the mammalian skeleton (a). The anatomical locus of these effects is 
correlated with the position of Hox genes within the mammalian Hox clusters, a 
characteristic called “spatial colinearity”. For example, the mutation of Hox6 genes 
affects more anterior regions of the skeleton, while the mutation of Hox10 genes leads 
to morphogenetic defects in the more posterior lumbar and sacral regions. When 
groups of Hox paralogues are mutated in Mus musculus (b), broader phenotypic 
defects are found, affecting whole regions of the axial skeleton. For example, the 
mutation of all Hox10 paralogues affects lumbar and sacral regions, leading to a 
homeotic transformation (see Figure 1.2C and (Wellik & Capecchi 2003)). (B) Diagram 
depicting the regions that are affected by Hox cluster deletions in the mammalian 
forelimb (Zakany & Duboule 2007). The deletion of all but one of the HoxB genes, as 
well as a whole HoxC cluster deletion, leads to limb phenotypes that are similar in 
anatomy to the wild-type forelimb in Mus musculus. The deletion of either HoxA or 
HoxD clusters, however, leads to clear phenotypes due to lack of HoxA/D expression 
in the developing limb. In the event of a double HoxA/D cluster conditional knockout, 
the forelimbs of Mus musculus show a severe phenotype, with the disappearance of 
the autopod and zeugopod regions, as well as a severe truncation of stylopod. (C) 
Diagram depicting Hox expression patterns in the vertebrate hindbrain (Kiecker & 
Lumsden 2005). Genes of the Hox PGs 1-4 are expressed during the development of 
the vertebrate hindbrain. Hox genes also show spatial colinearity between their 
genomic organization and expression patterns in the vertebrate hindbrain, e.g. Hox1 
genes have more anterior expression borders than Hox4 genes. This transient tissue is 
initially unsegmented but becomes compartmentalized into eight rhombomeres at 
around 9.5 d.p.c. during Mus musculus development. Each rhombomere shows a 
specific combination of Hox gene expression, which in turn influences segment-specific 
motoneuron projections and neural crest cell migration. 
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borders of Hox expression, as well as the specific combination of Hox input in each 

presumptive somite, are correlated will then confer an individual axial identity to the 

resulting skeletal structure (Wellik 2007), (Figure 1.5A). For example, the anterior 

border of Hox10 expression in the presomitic mesoderm sits at the border between the 

presumptive thoracic and lumbar regions (Wellik 2007; Wellik & Capecchi 2003) (see 

Figure 1.5A). The mutation of all Hox10 paralogues (Hoxa10, Hoxc10 and Hoxd10) of 

Mus musculus, leads to an individual with no lumbar vertebrae; instead, ribs progress 

posteriorly, beyond the lumbar-sacral border (Wellik & Capecchi 2003), (see Figure 

1.2C). In the case of a Hox11 null (Hoxa11, Hoxc11 and Hoxd11), lumbar vertebrae are 

established in sacral regions (Wellik 2007), (Figures 1.2C and 1.5A). Crucially, at least 

five of the six alleles of each paralogue group must be mutated, in both cases, for the 

phenotype to become apparent, highlighting the great degree of redundancy and co-

expression of mammalian Hox paralogues (Figure 1.2C). 

Similarly, Hox also pattern the developing brain of mammals along the 

anteroposterior axis (Figure 1.5C). The hindbrain, or rhombencephalon, is the terminal 

part of the developing vertebrate brain. Initially a featureless structure, it becomes 

segmented along the anteroposterior (AP) axis into eight compartments called 

rhombomeres (r) (see Figure 1.5C). These anatomical units are formed though the 

complementary expression of the ligand molecules Ephrins (expressed in r2, r4 and r6) 

and their Ephrin (Eph) tyrosine kinase receptors (expressed in r3 and r5, reviewed in 

(Dodelet & Pasquale 2000; Alexander et al. 2009)). Like their associated receptors, 

Ephrins are membrane-bound and can transduce extracellular signals through the 

intracellular phosphorylation of tyrosine residues following receptor binding (Dodelet & 

Pasquale 2000). In the hindbrain, this process gives rise to a bidirectional signalling 

cascade that alternates cell-cell adhesion properties along the AP-axis and consequently 
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sorts cells with different adhesion properties into adjacent rhombomeres. Each 

rhombomere then undergoes patterning and differentiation, influenced by the 

rhombomere-specific combinatorial expression of Hox genes (PGs 1-4), and gives rise 

to different morphological features that perdure in the adult brain, like the facial motor 

nerve root in rhombomere 4, and the vagus nerve root in rhombomere 7 (reviewed in 

(Kiecker & Lumsden 2005) and (Alexander et al. 2009)). For most Hox genes, the 

anterior border of expression coincides with rhombomere boundaries and extends 

posteriorly across rhombomeric compartments in the hindbrain (Alexander et al. 2009). 

This is not the case for Hoxb1, whose expression is restricted to rhombomere 4 

(Alexander et al. 2009). 

Hox expression also mediates the axial patterning of the developing limbs of 

mammals (Figure 1.5B). Here, I will focus on the main effects of Hoxa/Hoxd genes on 

limb morphogenesis, as whole-cluster deletions of Hoxc and Hoxd genes have little 

effect on adult limb phenotypes, while a Hoxa/Hoxd double deletion abolishes the 

morphogenesis of the limb (Zakany & Duboule 2007). I will also focus on the 

development of the forelimb, as more data are available for the manner in which Hox 

genes influence the morphogenesis of this organ (Figure 1.5B). 

Briefly, the morphogenesis of Mus musculus forelimbs initiates with the 

formation of a sub-ectodermic bulge - the limb bud – at both sides of the trunk. This 

bud is formed by mesenchymal cells derived from the lateral plate and somitic 

mesoderms, and appears at a precise position that is determined by retinoic acid, Tbx5 

and Hox gene expression in the trunk. The limb bud is then patterned as it proliferates 

posteriorly. As with axial skeleton and hindbrain development, the forelimbs are 

segmented structures: the proximal regions of the limb bud give rise to the adult 

humerus (stylopod), while the distal regions become the adult wrist and digits (autopod)  



	 43	

 

 

 

 

 

 

 

 

 

Figure 1.6 – HoxD genes are subjected to chromatin and transcriptional regulation 

in the developing mammalian limb (legend in the following page). 
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Figure 1.6 – HoxD genes are subjected to chromatin and transcriptional 
regulation in the developing mammalian limb. (A-B) Diagram detailing the control of 
early and late phases of HoxD expression during the development of the mammalian 
forelimb (from (Andrey & Duboule 2014)). (A) The expression of Hox genes of the 
HoxD cluster is initially restricted to posterior regions of the forelimb bud, becoming 
progressively distal as forelimb development progresses. At this stage HoxD 
expression is controlled at the chromatin and transcriptional levels. Proximal HoxD 
genes (Hoxd8-d11), which exhibit accessible chromatin states at this stage, directly 
contact Telomeric enhancers, leading to early Hoxd8-11 transcriptional activation (T-
DOM). (B) In later stages of forelimb bud HoxD expression, the posterior HoxD genes 
(Hoxd12-13) become transcriptionally active, and Hoxd10-11 genes maintain active 
transcriptional states. Hoxd8-9 genes, however, do not exhibit limb bud expression. 
The expression of HoxD genes is controlled by another regulatory environment (C-
DOM) at this stage, involving both chromatin states and transcriptional activation. Here, 
centromeric enhancers control the activation of more posterior Hox genes. The 
previously active T-DOM regulatory landscape in silent at this stage, leading to the 
transcriptional inactivation of proximal HoxD genes. This mechanism is proposed to 
underlie the temporal colinearity of Hox gene expression during mammalian forelimb 
bud development. 
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(Figure 1.5B). The central region becomes the ulna and radius (zeugopod), 

which connect the two structures (Figure 1.5B).  

As with the trunk, Hox expression displays temporal and spatial colinearity 

during forelimb development (Figure 1.6B). The expression of both HoxA and HoxD  

genes is established in two waves. The first wave of expression establishes an 

asymmetrical distribution of HoxA and HoxD expression along the A-P axis of the early 

limb bud, with genes of both clusters being expressed in proximal limb territories. In the 

second phase of expression, HoxD genes are then posteriorly restricted as development 

progresses, a nested or recursive strategy that also resembles Hox expression in the 

trunk (Zakany & Duboule 2007) (Figure 1.6B). The similarities in expression 

colinearity and nestedness led to the proposition that the mode of Hox expression in the 

limb was co-opted from the trunk-patterning Hox network (Zakany & Duboule 2007). 

In HoxA genes, however, this later phase of limb patterning does not involve a 

progressively distal restriction of gene expression, leading authors to propose that in 

this second phase of gene expression, HoxA and HoxD genes might be under the control 

of distinct regulatory mechanisms (Zakany & Duboule 2007). 

As previously mentioned for other contexts, Hox mutations lead to defects in the 

adult forelimb that correlate with the developmental expression domains of these genes 

(Figure 1.5B). For instance, the simultaneous mutation of Hoxa13 and Hoxd13 leads to 

the near absence of the adult autopod, while compound mutants for Hoxa11 and 

Hoxd11 have a severely shortened zeugopod. 

 

1.5 – The regulation of mammalian Hox expression at the chromatin and 

transcriptional levels. 
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Up to this point, most of this chapter consists in the description of the genomic 

organization of Hox genes and its evolution, as well as the broad aspects of Hox 

expression in mammalian tissues, and its functional consequences. Here, I wish to start 

exploring the manner in which Hox gene expression is itself set up and, crucially, 

maintained, arguing that the study of the regulation of Hox expression, as well as its 

evolution, offers important insight for the evolution of gene regulation and its control of 

developmental programs. Our argument will follow the traditional view of hierarchical 

gene expression, providing illustrative examples of Hox regulation at the chromatin and 

transcriptional levels, and then focusing on RNA processing, post-transcriptional and 

post-translational levels of regulation.  Concomitantly, I will provide examples as to 

how the regulation of Hox gene expression at specific regulatory levels mirrors that of 

other genes. In this section, I will focus on chromatin and transcriptional levels of Hox 

gene regulation, using genes of the HoxD cluster as illustrative examples.  

 Chromatin states are known to influence Hox gene expression in developing 

mammals (Figures 1.6 and 1.7). In early development, where Hox gene activity is 

usually silent, the chromatin in Hox clusters exhibits Histone marks that are consistent 

with an inactive state, and a consequent repression of gene expression. These consist of 

high levels of trimethylation in lysine 27 of histone H3 (H3K27m3), correlated with 

inactive chromatin states, and low levels of trimethylation in lysine 4 of histone H3 

(H3K4m3) (Mallo & Alonso 2013). Broad changes from H3K27m3 to H3K4m3 marks 

that temporally correlate with the activation of Hox gene expression have been observed 

in the early development of the mouse tail, where the activation of Hox expression is 

followed by a strong increase in H3K4m3 and concomitant depletion in H3K27 

trimethylation across the HoxD cluster (Soshnikova & Duboule 2009; Mallo & Alonso 

2013). Similarly, the development of the limb has been show to exhibit a similar   
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Figure 1.7 – Hox gene expression is subjected to a host of regulatory levels. 
Diagram depicting the several levels of Hox gene regulation (adapted from (Alonso & 
Wilkins 2005)).  During the development of both Drosophila melanogaster and Mus 
musculus, Hox gene expression is regulated at the chromatin and transcriptional levels 
(blue). In Drosophila melanogaster, additional levels have been shown to further shape 
Hox expression in the developing embryo. Among these is the regulation of differential 
mRNA processing by alternative splicing and regulated polyadenylation, as well as 
post-transcriptional regulation by small RNAs (like miRNAs, red). Although the latter 
regulatory level has been shown to impact Hox expression during mammalian 
development (Hornstein et al. 2005), the extent to which miRNA-based regulation and 
differential RNA processing impact Hox gene expression patterns during the 
development of mammals remains largely unexplored. 

adapted from Alonso & Wilkins (2005) 
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correlation in Hox chromatin changes (Figure 1.6). In the aforementioned late phase of 

HoxD expression in the forelimb, where the initially posterior pattern of Hox expression 

becomes progressively distal, HoxD genes of distal posterior cells display a loss of 

H3K27me3 histone modifications, and show chromatin de-compaction, when compared 

to HoxD clusters in the anterior domain (Williamson et al. 2012) (Figure 1.6B). This 

chromatin-level regulation of HoxD genes has been shown to rely on the activity of 

Polycomb-group (PcG) proteins (Williamson et al. 2012). 

 PcG proteins are been known to mediate Hox repression during Drosophila 

melanogaster development (Lewis 1978; Mallo & Alonso 2013). In fruitflies, proteins 

of this complex bind to cis-regulatory regions deemed polycomb responsive elements 

(PREs) (Mallo & Alonso 2013), and exert their repressive functions across large 

stretches of DNA that include more than one Hox gene. Indeed, both ANT and BX Hox 

complexes seem to be included in the same polycomb-responsive unit, indicating that 

this is a broad level of Hox regulation (reviewed in (Mallo & Alonso 2013)). In 

vertebrates, however, the mechanistic involvement of PcGs on Hox expression remains 

largely unresolved; in the case of Hoxd11 Hoxd12, it seems to rely on the homing of 

PcG proteins to regions that resemble Drosophila PREs, as they are able to repress the 

expression of a reporter when in a genomic context (Woo et al. 2010). 

In Drosophila melanogaster, Hox transcriptional input relies on a cellular 

memory system that is set-up and maintained by PcG proteins, as well as the control of 

transcription by earlier segmentation genes and other Hox products (Mallo & Alonso 

2013). In the latter example, a phenomenon known as posterior prevalence occurs, in 

which posteriorly expressed Hox genes are able to repress the expression of more 

anterior Hox, effectively achieving contiguous Hox expression. This phenomenon helps 

establish the segment-specific expression of Hox genes in Drosophila, having thus key 
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functional consequences in the restriction of morphogenetic action of Hox genes to 

specific embryonic compartments (Mallo & Alonso 2013). 

 The control of Hox gene expression has also been shown to rely on regulated 

transcription in the context of mammalian development. The developing forelimb of 

Mus musculus offers us, once again, an illustrative example of this level of Hox 

regulation, as it has been shown that a switch in HoxD transcriptional regulation 

underlies Hox temporal colinearity in the developing limb. In the early phase of limb 

budding, Hoxd8-Hoxd11 genes respond to a Telomeric transcriptional domain (T-

DOM), being under the control of Telomeric enhancers that trigger HoxD activation 

(Figure 1.6). Hoxd12 and Hoxd13 genes do not seem to respond to this regulatory 

landscape. In a second phase of transcriptional activation, Hoxd8 transcription is silent, 

as is T-DOM mediated Hox activation is lost. However, more posterior genes like 

Hoxd12 and Hoxd13 are transcriptionally activate due to the action of Centromeric 

enhancers, which are located in a 3D nuclear regulatory domain deemed C-DOM. At 

early stages, C-DOM is inactive; conversely, T-DOM is inactive at later stages of limb 

development. More central genes, like Hoxd9, Hoxd10 and Hoxd11, appear to respond 

to both regulatory domains. In the context of limb development, it seems, therefore, that 

different sets of long-range enhancers, lying in distinct regulatory centres, control the 

differential temporal expression of proximal and distal Hox genes by means of a 

transcriptional regulation switch.  

Recently, Lonfat and colleagues (Lonfat et al. 2014) have demonstrated that 

similar enhancers mediate the activation of Hox genes in the mammalian development 

of both distal limb regions and external genitalia. Although the authors show that there 

are transcriptional enhancers which are specific to one or another context, the shared 

enhancers support the idea that Hox transcriptional regulation in limb development was 
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co-opted from an older Hox cascade involved in the patterning of the primary 

developmental axis of animals. Additionally, HoxA genes show chromatin organization 

that is comparable to HoxD. Both clusters came into existence after the first round of 

genome duplication in the evolutionary lineage that leads to vertebrates (see above), 

which occurred in an invertebrate ancestor; Hox clusters C and B are though to have 

derived from clusters A and D after the second round of duplication. As such, the 

authors propose that similar chromatin conformations in the HoxA/HoxD clusters reflect 

old “regulatory topologies”, which could have facilitated the recruitment of similar 

transcription factors to Hox genes. The authors advance that these ancient regulatory 

topologies “may have both favoured and constrained the evolution of pleiotropy” of 

Hox genes (Lonfat et al. 2014). 

 While the appropriate locus of Hox expression seems to rely on chromatin and 

transcriptional regulation, there is accumulating evidence that RNA-level regulation 

strongly impacts the establishment and quality of Hox expression in mammals. In the 

following section, I review evidence that supports a role for the RNA-based regulation 

of Hox genes in mammals.  

 

1.6 – RNA-processing in mammalian Hox genes. 

 

 In this section, I argue that although chromatin and transcriptional regulation are 

key steps in the establishment of Hox gene expression during mammalian development, 

these regulatory levels might offer an insufficient explanation for the subsequent 

morphogenetic action of Hox genes. More, I sustain that once precise chromatin and 

transcriptional inputs result in the activation of Hox gene expression, a mature Hox 

RNA (mRNA) is subjected to a number of subsequent levels that impact the final output 
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of Hox loci. To this end I offer, first, examples of RNA-based Hox regulation in 

invertebrates, and submit, second, that there is mounting evidence for the involvement 

of RNA-level regulation in the establishment of precise mammalian Hox gene 

expression as well. 

 In eukaryotes, RNA processing is a gene regulatory level that generates a mature 

RNA copy from a certain DNA template. This regulatory level involves the 

coordination of different mechanisms of gene expression regulation. In this section, I 

will restrict our argument to genes under the transcriptional control of RNA Polymerase 

II, which includes all eukaryotic protein-coding genes, as well as most microRNAs 

(miRNAS). First, the RNA Polymerase II holoenzyme will start producing an RNA 

copy of a gene at a specific transcription start-site. The precise choice of transcription 

site is influenced by the composition of a proximal core promoter, as well as enhancer 

sequences to which trans-acting factors are bound. This level of regulation defines the 

5’-end start of an RNA molecule, leads to the 5’-capping of the first ribonucleotide of 

an mRNA and is thus the first step in RNA processing. Crucially, this process can be 

regulated to elicit alternative transcription start-sites (TSSs). It is well known that many 

vertebrate and invertebrate genes (including Hox genes like the Drosophila Antp locus) 

display alternative promoter usage, leading to alternative first exons (AFEs). However, 

alternative TSSs may be also under the control of the same promoter, adding another 

layer to regulation of transcriptional initiation. For example, TSS usage changes 

dynamically with the transcriptional activation of the zygotic genome during the 

maternal-to-zygotic transition in zebrafish (Danio rerio) (Haberle et al. 2014). During 

this process, the usage of a maternal TSS that requires an A/T-rich motif is replaced by 

a zygotic TSS grammar, which exhibits a dependency on less specific motifs (Haberle 

et al. 2014). The alternative TSS grammars often coexist physically in the same 
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vertebrate core promoters, indicating that TSS choice involves a mechanism other than 

mere alternative promoter choice (Haberle et al. 2014). Tandem transcription start-sites 

(tTSSs) are widespread in mammalian genomes (Kawaji et al. 2006). Although the 

mechanisms are less clear in this case, some authors have shown that the usage of 

alternative TSSs within core mammalian promoters is associated with CpG islands, 

epigenetic imprinting, and multimodal promoters, which may have distinct modular 

sequences that underlie the alternative TSS choice, as with Danio rerio (Kawaji et al. 

2006; Nepal et al. 2013). Crucially, these authors found evidence for a tissue specific 

TSS selection, indicating that this RNA processing level might be key in the 

establishment of tissue-specific patterns of expression. While alternative transcription 

start-site choice might influence the composition of an mRNA’s open reading-frame - 

the stretch of RNA sequence that can be translated into a protein, it necessarily affects 

the length and composition of 5’untranslated regions (5’UTRs). In a recent study, 

Shifeng Xue and colleagues have found that Hoxa9 5’UTR sequences exhibit two 

interesting sequences, an internal ribosomal entry-site (IRES) that bypasses the usual 

5’-cap dependent translation, as well as a translation inhibitory element (TIE), which 

inhibits cap-dependent mRNA translation (Xue et al. 2015). The authors then show that 

these sequences are a sine qua non condition for the translation of Hoxa9 in the 

developing axial skeleton, and that the removal of these sequences leads to a homeotic 

transformation in which the rib-forming T13 vertebra assumes a lumbar fate (Xue et al. 

2015). The authors also show that other Hox mRNAs, like Hoxa4, Hoxa5 and Hoxa11 

also display IRESs sequences, and that these control the translation of a reporter 

construct (Merritt et al. 2008; Kondrashov et al. 2011). These IRESs may be conserved 

in Drosophila, while the TIE module is absent in zebrafish and amphibians, indicating 

that it might consist of an evolutionary novelty in the mammalian lineage, in which Hox 



	 53	

outputs are greatly impacted at an RNA-level regulation (Xue et al. 2015). These data 

suggest that the regulation of alternative transcription start site choice in mammalian 

promoters can influence the composition of a Hox mRNA, affecting its subsequent 

regulation and eventually function. 

 Once transcriptional initiation is successful and a nascent pre-mRNA is capped, 

the RNA Polymerase II holoenzyme proceeds transcription in the 5’-3’ direction along 

the template gene. As it does this, it creates a 3’-5’ pre-mRNA template of the whole 

gene’s DNA sequence. eukaryotic genes, however, are discontinuous, in that they 

present stretches of intragenic sequences – introns – that are not present in mature 

RNAs. As such, for the formation of mRNAs that encode for coherent protein 

sequences, introns need to be excised from pre-mRNAs, with a concomitant joining of 

protein-coding stretches, or exons; this process is called splicing, and it typically 

generates coherent RNA ORFs. Some introns are constitutive, meaning that they are 

always excised from a pre-mRNA. All 39 mammalian Hox genes have at least one such 

intron. This kind of RNA processing operation relies on one of the most complex 

known molecular ensembles, the spliceosome (Nilsen 2003).  

The spliceosome is a ribonucleoprotein complex that is similar, in size, to the 

ribosome (Nilsen 2003), and may include up to 300 distinct proteins in some contexts 

(Nilsen 2003). This complex is co-transcriptionally active in the nucleus and includes 

small nuclear ribonucleoproteins (snRNPs) U1, U2 U4 U5 and U6. The U1 snRNP 

recognizes an intronic GU dinucleotide (the 5’ or donor splice site), while the U2AF1 

protein recognizes a downstream AG intronic sequence (the 3’ or acceptor splice site). 

The splice sites inclusively define the boundaries of the intronic sequence that will be 

spliced out. Additionally, introns usually contain an adenine nucleotide (branch-point), 

to which the SF1 protein binds, and a polypyrimidine tract between the latter and the 3’ 
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splice site, which is bound by U2AF2. The U2 snRNP then supersedes SF1, binding to 

the branch-point. This is followed by the binding of a U5, U4 and U6 trimer, with the 

first snRNP recognizing the exon at the 5’ side and the U6 snRNP binding to U2. The 

U6 snRNP then displaces U1 at the 5’ splice site. Upon release of U4, The U6/U2 

complex, which had brought the 5’ splice site and the branch-point together, catalyse a 

trans-esterification reaction in which the 5’end of the intron binds the adenine branch-

point nucleotide, forming a lariat RNA structure. U5 then binds the 3’ splice site and the 

5’ splice site is cleaved, releasing one side of the lariat from the pre-mRNA. While U2, 

U5 and U6 snRNPs remain bound to the half-released lariat, the 3’ splice site is cleaved 

and the 5’ and 3’ exons are ligated in an ATP-dependent manner. Once all introns are 

spliced out, a pre-mRNA becomes an ORF-carrying mature RNA (mRNA) (Will & 

Lührmann 2011). This is the canonical splicing reaction, occurring in the overwhelming 

majority of eukaryotic protein-coding genes (Will & Lührmann 2011). 

As with the choice of TSS, the exclusion of introns can be optional, and intronic 

excision may thus be subjected to regulation. In these cases, multivalent loci produce 

more than one mRNA that usually encode for different ORFs by a process called 

differential or alternative splicing. This process relies on the existence of alternative 5’ 

and/or 3’ splice sites and/or the repression of splice sites, two processes that are 

mediated by RNA-binding proteins (RBPs), and influenced by cis-regulatory sequences 

called ESEs (exonic splicing enhancers) and ESSs (exonic splicing silencers). 

Alternative splicing is immensely prevalent in mammals. In humans, for example, 95% 

of multiexon genes are alternatively spliced (Pan et al. 2008). This figure is similar in 

other mammals, with the mammalian clade average being 80% (Chen et al. 2014). 

Interestingly, there is a strong positive correlation between the rates of alternative 

splicing and organismal complexity in major animal groups, as measured by cell-type 
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number (Chen et al. 2014). 

Importantly, the final splicing outcome of a pre-mRNA can be influenced by 

chromatin structure and histone modifications (Luco et al. 2011; Zhou et al. 2011), as 

well as transcriptional routines (Kornblihtt et al. 2004). In an illustrative example of the 

integration between alternative splicing and other levels of gene regulation, RBPs of the 

Hu family (like HuR) mediate the regulation of alternative splicing by binding to a pre-

mRNA in target sequence in mouse embryonic stem cells (see Chapter 5) and 

concurrent hyper-acetylation of histones in the transcribed DNA region (Zhou et al. 

2011). The latter effect leads to an elevated rate of transcriptional elongation and 

concomitant skipping of exons (SE) in the pre-mRNAs of a reporter NF1 gene (Zhou et 

al. 2011). 

Importantly, Hox genes undergo alternative splicing (AS) in a number of cases. 

The Drosophila melanogaster Hox gene Ubx produces 6 alternatively spliced mRNA 

isoforms (Figure 1.8A-B). The outcomes of this alternative RNA processing are 

conserved in other Drosophila species like Drosophila virilis (Bomze & López 1994), 

species that diverged 60 million years ago. Alternative Ubx isoforms have similar 5’ 

and 3’ protein-coding exons, but may differ in three smaller sequences that lie in 

between the two: microexons M1 and M2 and a small extension to the 3’ exon – the B 

element. Alternative splicing of this locus introduces a combinatorial quality to Ubx 

ORFs, in which all three optional exonic elements can be absent (isoform Iva) or 

present (isoform Ib); alternatively, different isoforms can lack only the B element 

(isoform Ia), lack the M1 microexon (IIb), or include only the M2 (IIa) or B (IVb) 

sequences (Bomze & López 1994). Alternative Ubx isoforms display a characteristic 

developmental pattern, indicating that the regulation of alternative splicing can be 

tissue-specific (Bomze & López 1994). These isoforms can also have distinct function.  
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For instance, the heat-shock driven expression of the Ubx-Ia isoform in the peripheral 

nervous system (PNS), but not Ubx-IVa, leads to a homeotic transformation at the 

cellular level, where the thoracic PNS is transformed into the likeness of abdominal 

PNS cells (Mann & Hogness 1990). Other Hox genes, like Antp, abd-A and Abd-B also 

display alternatively spliced isoforms in Drosophila melanogaster. Interestingly, abd-A 

forms an alternatively spliced form that does not encode for the YPWM motif in 

Euperipatoides kanangrensis (Janssen et al. 2014), part of the Onychophora – an 

arthropod sister-group. This observation indicates that the alternative splicing of Hox 

genes can introduce variation in in the presence/absence of key Hox protein motifs. 

The correspondence between alternative spliced mRNAs and proteins with 

alternative domains is also observed in mammals, and at a transcriptome-wide scale. 

For instance, 62% of mouse transcription-factor (TF) loci were found to undergo 

alternative splicing; in turn, 68% of these events affected coding regions known to be 

important for TF function (Taneri et al. 2004), including the DNA binding domain 

(75% of cases). The remodelling of protein motifs by alternative splicing is also 

observed in the humans (Talavera et al. 2009) and, in conjunction with the fact that 

most mammalian genes are alternative spliced (see above), indicates that alternative 

splicing can remodel and expand the mammalian proteome directly, as well as indirectly 

through the introduction of functional differences between alternatively spliced TF 

isoforms, like those observed in the Hox gene Ubx, which may lead to the differential 

regulation of distinct sets of target sites. Interestingly, a number of Homeodomain genes 

have been shown to produce isoforms that do not encode for the Homeodomain.  

The Homeodomain genes bicoid and hth (a Hox co-factor, see above) have been shown 

to produce isoforms that lack the Homeodomain by alternative RNA splicing, during 

the development of Drosophila ((Driever & Nüsslein-Volhard 1988; Noro et al. 2006).   
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Figure 1.8 – Ubx mRNAs undergo regulated alternative splicing and 

polyadenylation during Drosophila melanogaster development (legend in the 

following page).  

adapted from Thomsen et al. (2010) Rogulja-Ortmann et al. (2014) 

adapted from Rogulja-Ortmann et al. (2014) adapted from Rogulja-Ortmann et al. (2014) 
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Figure 1.8 – Ubx mRNAs undergo regulated alternative splicing and 
polyadenylation during Drosophila melanogaster development. (A) Diagram 
depicting the alternative mRNA isoforms that are generated in the Drosophila 
melanogaster Ubx Hox locus (adapted from (Rogulja-Ortmann et al. 2014)). Differential 
RNA processing of mRNAs in the Ubx locus generates alternative Ubx isoforms that 
differ in their open-reading frame (CDS, Ubx AS isoforms) and 3’UTR sequences (Ubx 
APA isoforms). (B-D) Regulated expression of alternative Ubx mRNAs in the 
development of Drosophila melanogaster (adapted from (Rogulja-Ortmann et al. 2014) 
and (Thomsen et al. 2010)). (B) The Ubx locus expresses alternative mRNAs that differ 
in their protein-coding sequence, as well as their 3’UTRs during the development  of 
Drosophila melanogaster. (C-D) The Ubx locus is expressed in the developing central 
nervous system (CNS) of Drosophila melanogaster. In this tissue, the Ubx locus shows 
expression of different mRNAs that differ in (C) their protein-coding sequence and (D) 
3’UTRs. In the latter case, the alternative cleavage and polyadenylation of Ubx mRNAs 
is developmentally regulated. In early stages of embryonic development, Ubx exhibits 
short 3’UTRs; during the formation of the Drosophila melanogaster CNS at later 
stages, Ubx expresses mRNAs that contain longer 3’UTR sequences. These 
alternative 3’UTR isoforms contain distinct sets of conserved miRNA targets (Thomsen 
et al. 2010; Patraquim et al. 2011), and are though to mediate the differential visibility 
of Ubx mRNAs to these small RNA molecules (Thomsen et al. 2010). 
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In the case of Hth, the authors found that most functions of this protein can be 

fulfilled by the isoform that lacks the Homeodomain, including Hox-related molecular 

activities (Noro et al. 2006). Interestingly, Hox genes have been shown to produce 

isoforms that lack the Homeodomain in the case of the murine and human Hoxa1 and 

Hoxa9 genes, as well as the Xenopus XlHbox2 (Fernandez & Gudas 2009). However, 

the regulatory mechanisms that control this alternative splicing reaction, its evolution 

and putative developmental roles remain largely unknown. 

The Hoxa9 gene is one of the most studied Hox loci of mammals (Popovic et al. 

2008). Hoxa9 is expressed in the developing forelimb, as well as the axial skeleton of 

mammals (see above). Additionally, Hoxa9 is highly expressed in normal hematopoietic 

stem cells, and absent during their differentiation (Stadler et al. 2014). The mis-

regulated expression of this gene is observed in a number of acute myeloid leukaemia 

(AML) patients, and correlates with poor prognoses of disease progression (Golub et al. 

1999; Stadler et al. 2014). The overexpression of Hoxa9 leads to stem-cell expansion 

and AML in mice, being thus sufficient to induce leukemogenicity in these tissues 

(Thorsteinsdottir et al. 2001; Stadler et al. 2014). Recently, a Hoxa9 isoform that lacks 

the Homeodomain has been shown to be sufficient to recapitulate the leukaemogenic 

effects of the locus (Stadler et al. 2014). This disease phenotype is thus directly linked 

to the control of alternative splicing of Hox genes (Stadler et al. 2014). 

The Homeodomain-lacking (Homeodomain-less) isoform of Hoxa9 is expressed 

in a regulated manner in the developing mouse, and is particularly abundant in the 

embryonic genital tract, kidney, forelimb and tail (Dintilhac et al. 2004). Additionally, 

the production of a Homeodomain-less Hoxa9 splice form seems to be conserved 

between birds and mammals (Dintilhac et al. 2004). Together, these observations 

introduce the notion that alternative splicing can remodel the Hox proteome in a 
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significant way, by combinatorial inclusion/exclusion of key Hox functional domains. 

They also point to the fact that the mis-regulation of Hox splicing can lead to disease 

phenotypes, implicating this regulatory level in normal physiology. 

Finally, I will address the RNA processing mechanism in which transcription is 

terminated in eukaryotes, leading to a precise definition of the 3’end of an mRNA. In 

prokaryotes, there are two ways in which transcriptional termination is achieved. The 

first, involving intrinsic transcription terminators, relies on the formation of a short 

mRNA hairpin that disrupts the interaction between the nascent RNA and the DNA-

RNA polymerase complex. The second, deemed Rho-dependent transcriptional 

termination, relies on a cis-regulatory region, which recruits a trans-acting Rho protein 

(Ciampi 2006). This protein then contacts the RNA polymerase, leading to the 

dissociation of the mRNA (Ciampi 2006). In eukaryotes, transcriptional termination 

relies on a mechanism similar to the latter, called cleavage and polyadenylation. 

As RNA polymerase II transcribes a locus, bypassing the translational STOP 

codon and progressing into the 3’UTR (3’ untranslated region), two proteins termed 

CPSF and CstF scan the nascent RNA for the presence of a polyadenylation signal 

(PAS, usually a AATAAA hexanucleotide (Derti et al. 2012)). These proteins travel 

with the Carboxy-terminal domain of RNA Polymerase II during transcriptional 

elongation, transferring to the PAS upon the transcription of this hexamer into the 

nascent RNA (Lutz 2008). These proteins then recruit other factors onto the nascent 

mRNA, cleaving it downstream of the PAS and adding a string of adenines at the 3’end, 

successfully cleaving and polyadenylating a nascent transcript, a process which 

effectively stops the transcription of the locus and leads to the release of a mature RNA 

(mRNA). As with other mechanisms of RNA processing, cleavage and polyadenylation 

can be regulated to produce alternative 3’ends, in a process in which alternative PASs 



	 61	

exist in the same 3’UTR. The process of PAS selection and 3’UTR formation is called 

alternative cleavage and polyadenylation (APA). 

The Drosophila Hox genes Antp, Ubx, abd-A and Abd-B undergo regulated APA 

during embryonic development (Figure 1.8D). In early development, these genes 

express mRNAs with short, constitutive, 3’UTRs. In the later development of the 

central nervous system (CNS), mRNAs for all 4 Hox genes display a lengthening of 

3’UTRs (Thomsen et al. 2010). This lengthening of Hox 3’UTRs relies, at least partly, 

on the RNA-binding protein ELAV, as ELAV-null embryos displayed lower expression 

of the long Ubx 3’UTR isoform (Thomsen et al. 2010). Indeed, at least 383 transcripts 

were shown to display 3’UTR lengthening by APA in the developing Drosophila CNS 

(Smibert et al. 2012; Hilgers et al. 2012), while showing an extensive 3’UTR shortening 

in the testes. Most of the mRNAs that carry longer 3’UTRs in the CNS encode for 

transcription factors or RBPs (Smibert et al. 2012) and include ELAV (Hilgers et al. 

2012). As with the posterior Hox genes, ELAV was found to mediate the 3’UTR 

extension of number of additional genes in the CNS (Hilgers et al. 2012). This was 

shown to rely on specific extension-associated promoters, and on the recruitment of 

ELAV by a transcriptionally paused RNA polymerase II, demonstrating that the CNS-

specific choice of distal PASs relies on transcriptional initiation and elongation. In most 

CNS-elongated transcripts, the distal 3’UTR tracts are enriched for target-sites for 

microRNAs (miRNAs) and RBPs (Smibert et al. 2012). 

 miRNAs are short regulatory RNA molecules (≈20 nucleotides in size) that 

associate with proteins of the RISC, and bind to 3’UTRs of target mRNAs through 

Watson-Crick complementarity to elicit the repression of gene expression via the 

promotion of either target mRNA instability or its endonucleolytic cleavage. These 

molecules have been show to regulate Hox genes in a number of contexts. The miRNA 
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hsa-mir-196b interacts with Hoxb8 in the initial stages of mammalian limb 

development, where miR-196 functions as a fail-safe mechanism acting upstream of 

Hoxb8 and Shh to “assure the fidelity of (the) expression domains” of these target genes 

(Hornstein et al. 2005). In Drosophila melanogaster, the CNS-specific long Ubx 3’UTR 

carries strong targets for miRNAs iab-4-5p and iab-4-3p (Thomsen et al. 2010). As 

these miRNAs are co-expressed with Ubx in the posterior embryonic CNS 

development, the deployment of alternative 3’UTRs leads to the miRNA-mediated 

repression of Ubx expression in posterior domains, and is key to the establishment of 

the precise patterns of Ubx protein expression in the CNS (Thomsen et al. 2010), 

(Figure 1.8D). 

The formation of alternative 3’UTRs by APA is present in	at	least	69.1% of 

known human genes (Derti et al. 2012). Interestingly, the CNS of mice and humans also 

displays a systematic lengthening of 3’UTRs by means of APA (Miura et al. 2013). In 

both mice and humans, close to 2000 genes display alternative long 3’UTRs, which 

contain thousands of conserved miRNA target sites (Miura et al. 2013). Conversely, in 

glioblastoma tumours that show reduced expression of the APA factor CFIm25, 

3’UTRs are systematically shortened, a factor which is linked to increased 

tumorigenesis (Masamha et al. 2014). Mayr and Bartel also found that cancer cells 

display systematic shortening of 3’UTRs (Mayr & Bartel 2009). In this study, the 

authors note that mRNAs with shorter 3’UTRs produce higher amounts of protein, and 

that in the case of oncogene IGF2BP1/IMP-1, shorter isoforms lead to a higher 

oncogenic effect, implicating APA in tumorigenesis (Mayr & Bartel 2009).  

In a 2008 study, human alternative splicing and polyadenylation patterns were 

found to vary more across tissues than between individuals, indicating that these two 

regulatory levels can be broadly regulated in a tissue-specific manner (Wang et al. 
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2008). Furthermore, patterns of AS and APA were correlated across tissues, suggesting 

that these two RNA processing mechanisms are coordinated during the formation of 

human mRNAs.  

As such, the mechanisms of transcriptional initiation, splicing and cleavage and 

polyadenylation together form an integrated level of gene expression that can be called 

RNA processing. Due to the fact that they provide regulatory alternatives and not vast 

novelties, sensu stricto, tandem transcription start-sites, alternative splicing and 

alternative polyadenylation, all constitute nested levels of gene regulation. Nucleotide 

substitutions might easily introduce novel splice sites or polyadenylation signals, as 

these are short sequences (dinucleotide in one case, hexanucleotide in the latter). By 

merely substituting a few nucleotides, DNA sequences can thus become subjected to 

these nested levels of RNA-level gene regulation during evolution. In regions like the 

vertebrate Hox gene clusters, which exhibit the highest amount of compaction even 

when compared with Hox clusters of Drosophila and Amphioxus (Duboule 2007), the 

introduction of novel sequences like transposons or gene translocations might highly 

disrupt pre-existing cis-regulatory information; in these case, nestedness might be one 

of the few kinds of regulation that is at once possible in terms of genomic context, 

potentially powerful in outcome, and introducing a minimal amount of mutations in pre-

existing genetic loci. Hox genes are simultaneously robust, having a key conserved 

function in the patterning of the main axis of animals, and evolvable, as variations in the 

Hox code follow major morphological variations across taxa.  

In the following Chapters, I study the differential RNA processing of 

mammalian Hox genes, exploring the patterns, functional consequences and evolution 

of this regulatory level in the Hox gene family, and develop the argument that the 

simultaneous robustness and evolvability of Hox genes might lie, in part, on the 
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acquisition of alternative RNA processing during evolution.  

 

 
1.7 – Aims and outcomes of this thesis. 

 

In the previous sections of this Chapter I argue that the Hox genes of mammals 

are subject to several levels of regulation during mammalian development, which 

impact both chromatin and transcriptional states, mediating both repression and 

activation of Hox gene expression across the mammalian Hox clusters. This in turn 

impacts the morphogenetic activity of these developmentally important loci. 

Comparably, I argue, the expression of Hox genes in the arthropod Drosophila 

melanogaster has also been shown to include regulated chromatin and transcriptional 

inputs. As with mammals, I also observe that the regulation of Hox gene expression by 

chromatin and transcription has an impact on Hox-controlled developmental programs. 

I also argue that in Drosophila melanogaster, there are subsequent levels of Hox 

gene regulation that involve both the differential processing of Hox mRNAs and their 

post-transcriptional regulation by trans acting factors like miRNAs and RBPs. These 

levels have also been shown to impact Hox developmental programs in this arthropod, 

both maintaining and refining Hox expression during the development of Drosophila 

melanogaster. These observations introduce the question of whether, as with chromatin 

and transcription-level regulation, the RNA-based regulatory programs of Drosophila 

melanogaster are also at work in the establishment, maintenance and refinement of Hox 

expression patterns during the development of mammals. Moreover, they raise the more 

general question of whether differential RNA processing and post-transcriptional 

regulation have the potential to significantly impact the well-established developmental 

programs under Hox control in the mammalian clade. 
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I address the aforementioned questions in this thesis. In Chapter 3, I use freely 

available Hox mRNA sequences to investigate the incidence, rate and evolutionary 

patterns of differential RNA processing in mammalian Hox genes. I show that Hox 

differential RNA processing is widespread in the Hox clusters of mammals and shows a 

relationship with gene duplication in the mammalian clade; I also observe that this 

relationship is conserved across vertebrates. I then study the manner in which 

alternative mRNAs are produced in the mammalian Hox clusters, to show that 

differential RNA processing involves the coordination of multiple levels of RNA 

processing, which work to produce alternative Hox mRNAs in at least two distinct 

modes; I also see that paralogous Hox generally share differential RNA processing 

modes in both Mus musculus and Homo sapiens. Finally, I look at the regulatory 

consequences of Hox differential RNA processing, focusing on the formation of 

alternative 3’UTRs in the context of miRNA-mediated Hox regulation. I show that there 

is a segregation of miRNA targets across alternative Hox 3’UTR isoforms, with distal 

3’UTRs displaying more numerous stronger and evolutionary labile miRNA targets, 

when compared to constitutive 3’UTR tracts of mammalian Hox genes. 

In Chapter 4, I investigate the impact of Hox differential RNA processing on 

Hox protein-sequences. I use an unbiased approach to study the impact of differential 

RNA processing on the inclusion and exclusion of key Hox functional domains, like the 

hexapeptide and the Homeodomain, and report that the observed Hox mRNA repertoire 

of mammals has the potential to significantly impact the molecular function of Hox 

transcription factors. I then focus on the production of Hox mRNAs that do not encode 

for the Homeodomain, studying the human Hoxa9 locus in a cell-culture experimental 

setup, and show that longer Homeodomain-encoding Hoxa9 mRNA isoforms contain 

all cis-regulatory sequences for their differential RNA processing into Homeodomain-
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less isoforms. Further, I show that this process occurs by a quick switch in RNA 

processing, which is transcriptionally dependent. Based on these results, I design 

experiments to assess the incidence of this mechanism in vivo, and report the results by 

others, which show that the production of differential mRNA isoforms that do not 

encode for the Homeodomain is regulated during the development and adulthood of 

Mus musculus, respectively in time and space. Finally, I show that the production of 

mRNA isoforms that do not encode for a DNA-binding domain is not restricted to Hox 

genes, being observed in other Homeodomain-carrying loci of mammals, as well as in 

all other transcription-factor encoding gene families. I extend these observations to 

show that there is an extreme conservation of this process across bilateral animals, with 

homologous loci displaying the conserved ability to produce mRNAs that do not encode 

for DNA-binding transcription factor domains across arthropods, annelids and 

chordates.  

In Chapter 5, I use an unbiased computational approach to ask whether the 

3’UTRs of Hox genes contain information that impacts the gene expression of host 

mRNAs. I focus in the context of the developing forelimb of mammals, in which the 

mRNA expression patterns of Hox genes is both dynamic and well understood, and 

show that the 3’UTRs of different Hox genes share conserved sequence motifs in direct 

proportion to their levels of co-expression in the early developing forelimb. I also show 

that this pattern does not reflect the evolutionary history of mammalian Hox clusters, 

being the likely result of convergent evolution to specific molecular environments 

within a complex and dynamic developing tissue. Finally, I extend these observations to 

the 3’UTRs of Hox and other genes in the developing hindbrain of Mus musculus, 

showing that in this context, as with the forelimb bud, the 3’UTRs of co-expressed 

genes contain shared sequence motifs. 
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Altogether, this work shows that the differential RNA processing of mammalian 

Hox mRNAs is widespread and relates to the evolution of Hox clusters in multiple 

ways; this regulatory level has the ability to strongly impact the molecular function of 

Hox proteins during the development of mammals. Finally, I propose that the 3’UTRs 

of mammalian Hox genes contain cis-regulatory motifs that relate to the dynamic Hox 

expression patterns during the morphogenesis of both primary and secondary 

mammalian axes. The work presented in this thesis suggests that further studies on the 

molecular control of mammalian development should take the RNA-based regulation of 

Hox gene expression into account.  
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In this chapter, I describe the materials and methods used for the elaboration of 

this thesis. 

 

Bioinformatic analyses  

2.1 – Batch sequence retrieval from the online database Ensembl. 

	
All batch sequence downloads were performed using the BioMart tool available 

on the Ensembl online database (http://www.ensembl.org/biomart). The following 

genome assemblies were used: BDGP5 (Drosophila melanogaster), WBcel235 

(Caenorhabditis elegans), Zv9 (Danio rerio), GRCm38.p3 (Mus musculus) and 

GRCh38 (Homo sapiens). In the cases of the latter two datasets, only the isoforms with 

GENCODE basic annotations were used in further analyses. The previously published 

protein sequences of Branchiostoma lanceolatum Hox genes Hox1-14, as well as 

Hox10 homologues in Xenopus tropicalis, Ciona intestinalis and Oikopleura dioica 

were retrieved from the UniProt database (http://www.uniprot.org/uniprot/Q9NAZ0) 

 

2.2 – Estimation of protein divergence rates within Hox paralogue groups. 

To estimate the protein divergence rates within each of the 13 mammalian 

paraloguous-groups (PGs), the protein sequences for all reference Hox protein isoforms 

in each PG of both Mus musculus and Homo sapiens were aligned to the corresponding 

Branchistoma lanceolatum single Hox orthologue, using the MAFFT algorithm (Katoh 

& Standley 2013), see section 2.1. These alignments were used to construct a phylogeny 

tree for each PG, using the Neighbour-Joining method with a JTT substitution model in 



	 70	

the MAFFT algorithm (Katoh & Standley 2013). For each PG, the average protein 

divergence was calculated by adding all the individual tree-branch lengths between each 

terminal paralogue and PG ancestral node, and dividing this value by the total number 

of paralogues in each group. 

 

2.3 – Categorization of mammalian Hox differential RNA processing events for 

individual protein-coding isoforms. 

	
For each of the 39 Hox loci in both Mus musculus and Homo sapiens, all the 

Hox RNA isoforms with strong experimental support were downloaded from Ensembl 

BioMart (see section 2.1) and aligned to each other using either the online MAFFT 

algorithm, the Ensembl Transcript comparison tab or the Serial Cloner software 

(http://serialbasics.free.fr/Serial_Cloner.html). A reference isoform was selected for 

each locus (the longest isoform encoding for a homeodomain), and used to pinpoint 

individual differences in each of the alternative isoforms. The resulting alignments were 

scanned for the existence of variant splice-sites, START or STOP codons and 

polyadenylation sites. The differential mRNA processing events were then categorized 

using the alternative transcript event framework in (Wang et al. 2008), to which the 

annotation of tandem Transcription Start Sites (tTSS) was added. To study correlated 

differential RNA processing events, I employed the PerformanceAnalytics R package 

(http://cran.r-project.org/web/packages/PerformanceAnalytics/index.html). 

 

2.4 – Hierarchical-clustering analyses. 

	
All data was loaded into R in .csv format and transformed into a data matrix. 
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This data matrix was then transformed into a Euclidean distance matrix using the R 

function dist() (https://stat.ethz.ch/R-manual/R-patched/library/stats/html/dist.html) and 

hierarchically clustered using the Hierarchical Clustering R function hclust() 

(https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html) and the average 

(UPGMA) agglomeration method. Rows and Columns were independently clustered, 

and the results were used to in conjunction to construct a Heat Map, using the 

Enhancead Heat Map heatmap.2() function contained in the gplots R package 

(http://cran.r-project.org/web/packages/gplots/). For bootstrap measurements, I used the 

AU measurement in the pvclust R package (R. Suzuki & Shimodaira 2006). 

 

2.5 – miRNA targeting predictions in the context of alternative Hox 3’UTR 

formation. 

	
All experimentally validated Hox-miRNA interactions were downloaded from 

miRTarBase (Hsu et al. 2014). De novo miRNA targeting predictions for alternative 

Hox 3’UTR sequences were performed using the PITA miRNA targeting prediction tool 

(Kertesz et al. 2007). In the latter analyses, only strongly predicted miRNA targets were 

used, corresponding to a predicted ∆∆G ≤ -10 as per the recommendation of the authors. 

Alternative Hox 3’UTR isoforms were defined according to GENCODE-annotated 3’-

ends (Harrow et al. 2012).  

 

2.6 – Pre-computed protein-domain predictions.  

	
Batch protein-domain predictions were downloaded from BioMart (see 2.1), 

using the pre-computed SMART ID, PROFILE ID, PRINTS ID, PFAM ID and 



	 72	

TIGRFam ID predictions in the Protein domains and families/Domains section of 

BioMart/Attributes/Features. The pre-computed Interpro IDs were also used (Protein 

domains and families/Interpro). In cases where the protein-domain predictions were 

inexistent or of insufficient quality, individual amino-acid sequences were submitted to 

the InterProScan tool (http://www.ebi.ac.uk/interpro/interproscan.html) and the results 

checked manually. For the bioinformatic query on the existence of Homeodomain-less 

RNA isoforms of annotated Homeodomain genes, the SMART ID SM00389 

(http://www.ebi.ac.uk/interpro/entry/IPR001356) was first used as a filter 

(BioMart/Filters/Protein domains and families). The resulting gene list was then used 

as the only filter (BioMart/Filters/Gene/Ensembl Gene ID) to submit another BioMart 

query that returned a list of transcript IDs for each gene, regardless of domain 

predictions. This list of transcript IDs was then submitted as a filter 

(BioMart/Filters/Gene/Ensembl Transcript ID), along with batch protein-domain 

predictions as described above. For each isoform, the absence of Homeodomain 

predictions was ascertained and confirmed independently using InterProScan (see 

above, this section). The same method was used for leucine zipper, zinc finger and 

helix-loop-helix DNA-binding Domain predictions (SMART IDs SM00338, SM00355 

and SM00353, respectively). 

 

2.7 – Unbiased Hox protein-motif predictions. 

	
To predict Hox protein domains in an unbiased manner, I submitted the 

translations of all GENCODE-annotated mRNA isoforms of Mus musculus and Homo 

sapiens (see section 2.1) to the MEME motif-search tool (Bailey et al. 2009). For this 

analysis, I used the Normal Mode setting of the MEME software, querying Hox 
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proteins for a maximum of 30 ungapped motifs of 6-50 amino acids in size. I then 

annotated the presence and absence of each motif in each Hox protein in a Microsoft 

Excel table, respectively using the numerical values “1” and “0”. This table was then 

used in subsequent hierarchical clustering analyses (see section 2.4). 

 

2.8 – Computational representation of Hox spatial expression patterns in the 

developing forelimb of Mus musculus. 

	
First, I retrieved published images of RNA in-situ hybridizations for Hoxd11 at 

11.5 days post coitum (d.p.c.) in the forelimb (Bruneau et al. 2001) and digitally 

saturated them, so that the observed expression patterns became binary (absence or 

presence). I then superimposed a square matrix with 450 (25X18) equally-distributed 

points on this image, and assigned a numerical value to each of the points: “1” - if a 

specific point overlapped totally or partially with an area showing Hoxd11 expression, 

and “zero” - “0” – if a point fell on a region with no Hoxd11 expression. I obtained a 

square matrix with “1” and “0” values that was linearised, by concatenating all rows in 

tandem, in a top-to-bottom order, rendering a 672-point line with binary values. Given 

the difficulty in finding high-resolution records of Hox RNA in-situ hybridizations for 

all 20 Hox genes that are expressed in the forelimb, I compared the resulting Hoxd11 

binary expression profile with a profile generated by the same method described above, 

and using a detailed Hoxd11 expression model published by Zakany & Duboule 

(Zakany & Duboule 2007). The main aspects of 11.5 d.p.c. forelimb Hoxd11 expression 

(e.g. mostly distal, split into two smaller domains) were recapitulated by the late phase 

model. As such, I decided to use similar expression models for all 20 forelimb-

expressed Hox genes, in both early and late waves of forelimb expression. The late-



	 74	

stage binary expression profiles were performed as described above. The early-stage 

profiles used a slightly smaller initial matrix with 350 points (25X14), as the forelimb is 

smaller at this stage; all subsequent analyses were performed in the same manner as 

with the late-stage forelimb expression models. The 20 profiles were then put together 

in a matrix, with each row representing the presence or absence of expression of a given 

Hox gene in 800 forelimb spatiotemporal data points. This matrix was submitted to a 

Hierarchical Clustering analysis (please see section 2.4). 

 

2.9 – Bioinformatic search for rhombomere-specific gene-expression in developing 

hindbrain of Mus musculus. 

	
I used the Gene Expression Data Query tool in the GXD (Gene eXpression 

Database; http://www.informatics.jax.org/gxd) to retrieve all genes reported, by RNA 

in-situ hybridization, to be expressed in each of the 8 mouse hindbrain rhombomeres at 

8.5-10.5 d.p.c. This time-window was chosen to coincide with the time at which 

rhombomeres form (9 d.p.c.) during mouse hindbrain development. This list of genes 

was then divided in two sets. The first included 32 genes that have segmentally-

restricted expression (“rhombomere-restricted”). The 3’UTRs of these genes were used 

as positive sequences in the MEME motif analysis (please see section 2.11). The 

remaining genes, those whose expression transgressed rhombomere boundaries during 

this time-window, being thus detected in 2 or more rhombomeres, were ascribed to the 

second set of sequences, the negative sequences set (please see section 2.11). For the 

rhombomere-restricted genes, I created a binary matrix, with genes as rows and 

rhombomeres as columns, by ascribing a numerical value of “1” or “0” to the presence 

or absence of expression, respectively, of a given gene in each of the 8 rhombomeres. 
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This matrix was then submitted to hierarchical clustering (please see section 2.4) to 

construct a cladogram reflecting expression similarities between the 32 genes analysed. 

 

2.10 – Computational representation of spatial gene expression patterns in the C. 

elegans germline. 

	
The germlime expression patterns of 30 C.elegans genes have been reported in 

(Merritt et al. 2008). The authors cloned the 3’UTRs of 30 C. elegans genes (normally 

expressed in the germline) downstream of a green fluorescent protein-histone H2B 

fusion (GFP-H2B), and drove expression of each construct in all germ cell types using 

the pie-1 promoter. The results showed that for 25 of these genes, the 3’UTRs were 

sufficient to spatially restrict the expression of each construct in a manner resembling 

the host gene’s endogenous protein-expression domain. I thus constructed a matrix 

representing the expression of C. elegans genes in the germline, with each of the 25 

genes representing a row, each of the 8 spatial domains analysed in the aforementioned 

study as columns, and ascribing values of “1” and “0” to the presence or absence, 

respectively, of endogenous protein expression for each gene in each spatial coordinate. 

This matrix was then submitted to hierarchical clustering (please see section 2.4). 

 

2.11 – Computational search for 3’UTR-enriched motifs. 

	
3’UTR sequences were submitted to the MEME motif-search tool ((Bailey et al. 

2009), see section 2.7 for a similar query using Hox protein isoforms). A discriminative 

motif discovery analysis was performed on the given strand only, looking for a 

maximum of 30 motifs (6-10)mer-long. As such, the algorithm was prompted to find 
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motifs that were both present in the set of sequences provided (the positive sequences 

set) and absent in the negative sequences set. In the case of the mouse forelimb analysis, 

as a positive set I submitted sequences for the longest annotated 3’UTR for the 20 Mus 

musculus HoxA/D genes, as well as the 3’UTRs of the respective Homo sapiens 

orthologues in order to enrich our analyses in ultra-conserved mammalian motifs. As 

the negative sequences, I submitted the longest 3’UTR sequences pertaining to all 19 

HoxB/C genes of both Mus musculus and Homo sapiens. These genes have minimal 

phenotypic effects on limb morphogenesis when mutated (Zakany & Duboule 2007). In 

the case of the mouse hindbrain analysis, I submitted the longest annotated 3’UTRs of 

rhombomere-restricted Mus musculus genes (please see section 2.9) as the positive 

sequences, and the longest annotated 3’UTRs of genes whose expression that 

transgresses rhombomere boundaries as our negative sequences set. In the case of the 

Caenorhabditis elegans germline analysis, the longest annotated 3’UTRs of the 25 

genes experimentally shown to spatially restrict the expression of a reporter gene in the 

C. elegans germline were used as a positive set. No sequences were used as the negative 

sequences set in this case. In all three cases, the data was transformed into a matrix, 

with genes represented as rows, each of the 30 motifs represented as columns, and the 

presence or absence of a given motif represented as the numerical values “1” and “0”, 

respectively. Each matrix was then hierarchically clustered (please see section 2.4), and 

the results were compared with the hierarchical clustering results of the respective gene 

expression patterns (please see the following section). 

 

2.12 – Matching 3’UTR motifs to gene expression patterns using the Subtree 

pruning and regrafting (SPR) algorithm. 
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To compare the results of hierarchically clustering genes base on their 3’UTR-

motif similarities and their spatial expression pattern similarities, I employed a heuristic 

algorithm, the Subtree pruning and regrafting (SPR) algorithm (Goloboff 2008; 

Goloboff et al. 2008). SPR is commonly used in phylogenetic analyses to determine 

optimal tree structure, as this method compares trees that are composed of the same 

clades but show different topologies. In order to do so, the algorithm determines the 

minimal number of “pruning” and “regrafting” (cut and paste) operations (or moves) 

that the tree branches of tree A have to undergo in order to arrive at tree B. The least the 

number of operations, the more similar trees A and B are. I used a version of the Tree 

Analysis using New Technology (TNT) software (Goloboff et al. 2008), modified by 

our collaborator Martín Ramirez at the Museo Argentino de Ciencias Naturales 

(MACN) to run SPR analyses, as well as to perform the appropriate statistical 

validations (see below, this section). For each experiment, the tree topology of a 

cladogram resulting from hierarchical clustering (please see section 2.4) was 

reconstructed manually in the TNT command line. This was performed for genes 

organised according to their 3’UTR motif information (please see the previous section) 

– Tree A – and for the same genes, now organised according to their expression patterns 

– Tree B (please see sections 2.8, 2.9 and 2.10). These trees were then compared in 

TNT, using the SPR method, and a number of SPR moves (operations) was returned. I 

then separately randomised each of the two trees 10.000 times while keeping the other 

constant, and performed and SPR analysis on each random tree-real tree pair (20.000 

pairs in total). I asked how many times a random tree A’ is as successful as our original 

tree A, that is, needing as few SPR moves between tree A’ and tree B as our original 

tree. This provided a measure of statistical significance to the matching between 3’UTR 

information and gene expression. 
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Experimental analyses 

2.13 – Minipreparation of plasmid DNA. 

	
A copy of the Hoxa9 human cDNA Clone (SC321224; untagged) was purchased 

from OriGene 

(http://www.origene.com/human_cdna/NM_152739/SC321224/HOXA9.aspx). This 

plasmid contains a Citomegalovirus (CMV) promoter fused to the cDNA of the human 

Hoxa9-001 isoform (ENST00000343483) and will be refered hereafter as the “pCMV-

Hoxa9” plasmid. The pCMV-Hoxa9 plasmid was used to transform competent E.coli 

bacteria. Plasmid DNA was isolated from bacterial cultures using the QIAprep Spin 

Miniprep Kit (QIAGEN) following the instructions provided by the manufacturer. A 5 

mL volume of overnight culture were spun to pellet the cells (3 min, 3000 r.p.m.) and 

the supernatant was discarded. Confirmation of the recovered plasmid identity was done 

via PCR using plasmid-specific primers. The confirmation of the recovered plasmid 

yield was done using a Picodrop spectrometer. 

 

2.14 – Cell culture techniques. 

	
HEK293-EBNA cells were obtained from a running culture in Guy Richardson’s 

Laboratory (http://www.sussex.ac.uk/profiles/2231). Cell-cultures were kept in an 

incubator at 37ºC with 5% CO2. T75 flasks with 25 mL of Dulbecco's Modified Eagle 

Medium (DMEM) were used to culture the cells. The medium was supplemented with 

10% Fetal Bovine Serum (FBS), 1% Penicillin-Streptomycin (PS) and 1% L-Glutamine 
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(L-Glu). The cultures were regularly passaged after reaching 70% confluency, which 

occurred 1.5 times a week. All passages were performed in a 70% ethanol-sterilised 

laminar flow hood, and consisted in the removal of culture medium, followed by a 

washing step with sterilised PBS 1X (to remove any remaining medium), and the 

addition of 2 mL of Trypsin/EDTA solution (TE). The culture was then placed at 37ºC 

for 2 minutes, to allow for the cells to dissociate from the flask and each other. An 8 mL 

volume of fresh medium was then added to the 2 mL of Trypsin/EDTA/Cellular 

solution, as the FBS present in the fresh medium blocks any remaining activity of 

Trypsin. 1-10% of this solution was then used to passage the cells to a fresh T75 flask 

with fresh supplemented DMEM.  

 

2.15 – HEK293-EBNA transfections with plasmid pCMV-Hoxa9. 

	
For transfections, trypsinised cells were seeded in 6-well plates at a low 

concentration (1-3% of the trypsinised cell solution - see previous section). These cells 

were then transfected at 80% confluency with 1.5 μL of pCMV-Hoxa9 plasmid using 

Lipofectamine 3000 (Invitrogen) as described by the manufacturer. In order to confirm 

the efficiency of transfections, I performed co-transfections of the pCMV-Hoxa9 

plasmid with the pmaxFP-Green-N vector 

(http://www.addgene.org/browse/sequence_vdb/3525/), and visualised GFP expression 

in an inverted fluorescence microscope. The pmaxFP-Green-N vector was a generous 

donation from our colleague Dr. Christopher Sampson at the Juan Pablo Couso 

Laboratory in the University of Sussex. 
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2.16 – Blocking transcriptional activity in HEK293 cells. 

	
In order to block transcriptional activity in cells, actinomycin D (5 μg/mL, 

Sigma) was added to 6-well plates containing HEK293-EBNA cells at 80% confluency, 

three hours after transfection with pCMV-Hoxa9. The medium was then kept 

unchanged for 16 hours, when RNA extractions were performed (see next section). 

 

2.17 – RNA extraction. 

	
RNA was extracted from cells by adding 1000 μl of TRI Reagent (Sigma) to 

each of the wells in a 6-well plate, following the manufacturer’s protocol. The cells 

were then re-suspended and homogenised in TRI reagent by pipetting. After 

homogenization, the cellular homogenate in TRI reagent was placed in 1.5 mL 

microcentrifuge Eppendorf tubes, and incubated for five minutes at room temperature to 

dissociate nucleoprotein complexes. RNA was separated from DNA and proteins by 

adding 200 μl of RNase free Chloroform, mixing and incubating for fifteen minutes at 

room temperature. The different phases – aqueous phase (RNA), interphase and organic 

phase (DNA and proteins) – were separated by 15 minutes of centrifugation at 

maximum speed at 4ºC, and the aqueous phase (colourless top layer) was transferred to 

a new tube. RNA was precipitated with 500 μl of Isopropanol at -80ºC for 1 hour to 

overnight, followed by centrifugation at maximum speed for half an hour at 4ºC. 

Precipitated RNA was washed in RNase free 75% ethanol, resuspended in nuclease-free 

water and stored at -80ºC. RNA concentration was measured in a Picodrop 

spectrometer. All steps were performed in RNase-free conditions. 
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2.18 – cDNA synthesis. 

	
After DNAse I (NEB) treatment (as per the manufacturer’s protocol), cDNA 

was synthesised from 1μg aliquots of total RNA using oligo(dT) primers (2 μL from a 

50 μM stock solution) and the RETROscript kit (Ambion), by following the protocol for 

the ‘Two-step RT-PCR with heat denaturation of RNA’ procedure provided by the 

manufacturer. 1 μg of total RNA was combined with oligo (dT) primers and nuclease-

free water, then denatured at 85ºC before the addition of the remaining RT reagents: 

10X RT buffer, dNTPs (2 μL form a stock solution containing 2.5 mM of each dNTP), 

RNase inhibitor (0.25 units), and the Mu-MLV Reverse Transcriptase (2.5 units). 

Reverse transcription of cDNA was done at 42ºC for 1 hour, followed by 50ºC for 30 

minutes. The reaction was stopped by inactivating the reverse transcriptase at 92ºC for 

10 minutes. For each sample, a 500 ng of DNAse-treated RNA was mixed with 10 μL 

of nuclease-free water and reserved at -20ºC, to be used as no-RT controls. Newly 

synthesised cDNA was stored at -20ºC until ready to use in PCR reactions. 

 

2.19 – Polymerase Chain Reactions (PCRs). 

	
PCR reactions were prepared on ice to a final volume of 25 μl as follows: 2.5 μl 

of 10x PCR Buffer (New England Biolabs), 0.5 μl of 10 mM dNTP mix (New England 

Biolabs), 1 μl of each forward/reverse primer (10mM each, see Table 2.1), 0.25 μl of 

standard Taq DNA polymerase (New England Biolabs), 1 μl of cDNA and 18.75 μl of 

nuclease-free water. PCR was performed using a BioRad T100™ Thermal Cycler PCR 

machine with the following conditions: 

 



	 82	

1 cycle: extended DNA denaturation at 95ºC for 5 minutes 

33 cycles: template denaturation at 95ºC for 30 seconds 

  primer annealing at 55ºC-65ºC for 45 seconds 

   extension at 72ºC for 30 seconds 

1 cycle: final extension step at 72ºC for 7 minutes 

hold:  4ºC 

 

All primers were optimised by conducting a gradient PCR using genomic DNA as a 

template, in conditions identical to the aforementioned, with an annealing temperature 

varying between 55ºC and 65ºC. This confirmed an optimal endogenous Hoxa9 primer-

annealing temperature of 55ºC. The optimal annealing temperature for the GAPDH and 

c-myc primer-pairs was determined to be 59ºC. For the Hoxa9-plasmid primers, the 

optimal annealing temperature was determined to be 65ºC. The primer list can be found 

in Table 2.1 (below). Expression values were normalized using reference gene 

GAPDH. At least three independent biological replicates were performed. Two negative 

controls were always performed: (i) genomic contamination control in the RNA sample 

– PCR performed with RNA as a template - and (ii) a no template control.  
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Table 2.1 – PCR primers 

RT-PCR Primers Primer sequence (5' to 3') Source 

Hoxa9-endogenous 

FWD      GGGCAACTACTACGTGGACT 

This study 
REV       TTGTTTTCAGAGAAGGCGCC 

GAPDH 
FWD      GTCAAGGCTGAGAACGGGAA 

This study 

REV       CAAAGGTGGAGGAGTGGGTG 

c-myc 
FWD      GACTCGGTGCAGCCGTATTT 

This study 

REV       TGTCGTTGAGAGGGTAGGGG 

Hoxa9-plasmid 
FWD      GGCCGGGAATTCGTCGACTGG 

This study 

REV      AGGGGCACCGCTTTTTCCGA 

 

2.20 – Agarose gel electrophoresis. 

	
RNA and PCR products were visualised in an agarose gel electrophoresis. 

Agarose gels were made at 0.8% concentration (w/v), by dissolving agarose in 100 mL 

of SB buffer (1x). The mixture was heated at in the microwave at 900W for 1.5 minutes, 

mixed, and heated again for 30 seconds until the agarose was completely homogenised, 

before being cooled in warm water. After cooling down, 0.4 μg/ml of ethidium bromide 

(EtBr) was added to the liquid agarose before pouring the mix into a gel cast. Samples 

were prepared in 1x loading buffer (New England Biolabs), loaded into the wells of the 

gel alongside a 100bp and 1Kb DNA ladder (New England Biolabs) and subjected to 
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electrophoresis in 1x SB Buffer. Gel pictures were taken using an Uvidoc gel 

documentation system (Uvitec Cambridge) and UviPhotoMW image analysis software. 

Quantification of the gels was performed using imageJ. 

 

2.21 – DNA Sequencing. 

	
Agarose gel bands were cut on a UV light box, using sterilised scalpels for each band. 

Each agarose portion containing the DNA of interest was placed in a new 1.5 mL 

Eppendorf microcentrifuge tube. The weight of each agarose portion containing the 

dsDNA of interest as then determined using a balance, and the DNA was extracted from 

the agarose/EtBr-DNA mix using the QIAquick Gel Extraction Kit (QIAGEN) as per 

the instructions of the manufacturer. The resulting DNA was quantified using a 

Picodrop Spectrometer, and sent for sequencing. Sequencing was performed by 

Eurofins Genomics (https://www.eurofinsgenomics.eu). 
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Chapter III 

 

The production of Hox mRNAs by differential 

RNA processing in mammals 
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3.1 – Chapter Overview 

 

In this chapter, I explore the production of alternative RNAs in mammalian Hox 

genes by differential RNA processing (DRP), as well as its evolution in vertebrates. I 

first compile previously reported and well-supported mRNA sequences arising from 

Hox loci in Homo sapiens and Mus musculus models using the sequences of zebrafish 

Hox as an out-group. I find that Hox genes display low and heterogeneous rates of DRP, 

which are conserved across all vertebrates. I also observe an inverse correlation between 

the rate of protein evolution after gene-duplication and the average number of 

alternative mRNAs produced in mice, suggesting that the evolution of the two is linked 

in the mammalian lineage. I next produce a catalogue of coordinated mammalian Hox 

mRNA processing events, and show that the 3’ untranslated regions of Hox genes are 

extensively remodelled, that alternative Hox mRNAs are mainly formed by two distinct 

successions of RNA processing events that involve the joint regulation of transcription, 

splicing and polyadenylation, and that for 10 of the 13 paralogue groups, the type of 

alternative mRNA processing that a given Hox gene undergoes is shared with its 

paralogues, suggesting that specific mammalian Hox DRP patterns arose at the base of 

the mammalian lineage. Next, I study the most frequent individual DRP event, tandem 

3’UTR formation, and show that miRNA-Hox interactions are more prevalent in the 

distal 3’UTRs of Hox genes. I also use the full miRNA complement of mammals to 

show that i) the miRNA target complement of proximal and distal 3’UTRs is negatively 

correlated in most cases, ii) that constitutive 3’UTRs of homologous Hox genes share a 

number of target sites between M. msuculus and H. sapiens and iii) that miRNA targets 

in distal 3’UTRs of orthologous Hox genes show low conservation in mammals.  

Together these results show that differential RNA processing significantly 
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remodels the Hox transcriptome, and indicate that this gene regulatory level has 

implications for the molecular regulation of Hox gene expression. 

 

 

3.2 - Results 

3.2.1 – Hox genes show evidence of alternative RNA production in mammals. 

 

Differential RNA processing is a gene regulatory mechanism by which different 

mRNAs are produced from a single gene by means of alternative Transcription Start-

Sites (TSS), alternative splicing of exons (AS) or alternative cleavage and 

polyadenylation (APA) of 3’Untranslated regions (3’UTRs). All these are mediated in 

part by alternative regulatory signals in cis, and often work in conjunction to produce 

alternative mRNAs that differ in their untranslated or/and protein-coding regions. This 

integrative level of gene regulation leads to the diversification gene expression at the 

RNA level, which in turn influences the rates and kinds of translated proteins, leading to 

the diversification of expression at the protein level. Based on the incidence and 

functional implication of DRP in the Hox genes of arthropods (see Chapter 1), I 

wondered whether mammalian Hox gene families also displayed evidence of this 

mechanism. In mammals, the Hox gene complement consists of 39 loci organized in 

four genomic clusters deemed A, B, C and D (Figure 3.1A). Each of the clusters lies in 

a different chromosome, and is evolutionarily related to the other clusters through two 

rounds of genomic duplication that occurred at the base of the vertebrate phylogenetic 

lineage. As such, Hox genes within each of the clusters have paralogues (meaning 

homologues produced by gene duplication) in other clusters. The paralogue groups 

(PGs) are numbered 1 to 13, and the conjunction of Hox cluster placement and  
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Figure 3.1 – Mammalian Hox genes display a conserved production of alternative 

mRNAs by differential RNA processing (legend in the following page). 
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Figure 3.1 – Mammalian Hox genes display a conserved production of alternative 
mRNAs by differential RNA processing. (A) Organisation of the Mus musculus and 
Drosophila melanogaster Hox genes clusters. The 39 Hox genes of mammals are 
distributed across four clusters, lying in four different chromosomes. There are 13 
paralogue groups (PGs), representing sets of Hox genes that share common ancestry 
by gene duplication. During mammalian development, Hox genes display spatial 
colinearity between genomic position and expression patterns along the A-P axis (e.g. 
Hox genes of PG 1 are expressed more anteriorly than Hox of PG13). The mammalian 
Hox clusters are homologous to the single Hox cluster of Drosophila melanogaster. In 
this organism, Hox genes are further divided into two complexes, ANT-C and BX-C, 
and also display spatial colinearity during their expression along the A-P axis of 
developing embryos. (B) Alternative production of Hox mRNAs in the Vertebrate Hox 
clusters. The average production of alternative mRNAs is heterogeneous across PGs. 
PGs3 and 6-9 show enrichment of Hox mRNA isoforms in both Homo sapiens and Mus 
musculus (r=0.502, p=0.040). This profile is also observed in the Danio rerio Hox 
genes, indicating that this pattern is conserved across Vertebrates (Danio rerio-Homo 
sapiens: r=0.507, p=0.021 ; Danio rerio-Mus musculus: r=0.558, p=0.024). 
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paralogue group gives each mammalian Hox gene a coordinate that is usually used as its 

identifier (e.g. Hoxa1, Hoxb1, Hoxa3, Hoxd13 in Figure 3.1A), (Scott 1993).  

In order to analyse differential RNA processing (DRP) patterns occurring in 

mammalian Hox genes, I first retrieved all the previously annotated, experimentally 

well-supported protein-coding Hox RNA isoforms from Ensembl, using the BioMart 

tool (see Chapter 2 for specific criteria). This defined a conservative dataset with which 

to explore DRP in the 39 mammalian Hox loci. 

 Looking at the rates of Hox DRP, I first found that in total, the 39 Hox genes of 

mammals show the production of 56 isoforms in M. musculus, and 69 in H. sapiens. 

This yields an average of 1.44 isoforms per locus in the case of M. musculus, and 1.77 

RNA isoforms in the case of H. sapiens. Both averages are below “2”, indicating that 

some genes don’t produce alternative isoforms. Indeed, the 56 alternative isoforms 

produced by M. musculus Hox loci stem from 13 of the 39 Hox genes (34%). In the case 

of H. sapiens, I find that the 69 alternative RNA isoforms retrieved are produced by 

only 18 of the 39 Hox genes (47%). Both figures stand in stark contrast to the most 

recent reports of DRP for mammalian loci. As an example, a recent, comprehensive 

survey of alternative splicing in Eukarya found that this DRP mechanism alone is 

present in 81.4% and 87.5% of M. musculus and H.sapiens loci, respectively (Chen et 

al. 2014). This indicated that our conservative dataset might be exceptionally 

circumscribed, leading to the under-representation of Hox DRP. One possibly is that 

this is due to the low sensitivity of the techniques employed in collecting the 

GENCODE data; most RNA isoforms in the GENCODE annotation are supported by 

low-throughput techniques like cDNA and EST sequencing, whereas most recent 

transcriptomic studies use RNA-seq, a high-throughput method. 

I thus wondered if this impoverishment in Hox DRP reflected a systemic under-
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representation of alternative RNA isoforms in the GENCODE annotation. To test this, I 

used the same database to retrieve all annotated protein-coding transcripts for both mice 

and humans, and compared the number of total isoforms with the number of annotated 

protein-coding loci in the respective genomes. I find that each of the annotated 21783 

protein-coding loci in humans produce 2.71 protein-coding isoforms per locus on 

average, while the 22151 protein-coding loci of mice produce 1.75 protein-coding 

isoforms per locus on average. Furthermore, the production of 2 or more well supported 

RNA isoforms is observed in 14378 (66%) of GENCODE-annotated human protein-

coding genes, while the figure is 10608 (48%) for M. musculus genes. Compared with 

recent studies that indicate the production of alternatively spliced transcripts in 95% of 

human multiexon genes (Pan et al. 2008), and 92–94% of all human genes (Wang et al. 

2008), I suggest that, perhaps unsurprisingly due to the conservative nature of the 

dataset, DRP events are indeed underrepresented in the GENCODE annotation. 

However, when I define the overall GENCODE DRP rates as 100%, and normalize the 

percentage of DRP in Hox genes in relation to this value, I find that Hox DRP is still 

lower than the expected in mammals, being 57% in mice and 62% in humans. The 

production of alternative RNA isoforms by Hox genes is thus below the average, even if 

I take into account our concerns about the GENCODE annotation coverage. 

 The Hox genes of mammals are notoriously redundant at the functional level. 

For example, Wellik and Capecchi (Wellik & Capecchi 2003) found that for both 

Hox10 and Hox11 paralogue groups - which include 3 Hox genes each - the 

conspicuous effects of these genes on Mus musculus skeletal morphology only become 

apparent after 5 of the 6 alleles are mutated. As such, one would expect the different 

protein-coding isoforms of a given paralogue group to functionally complement each 

other. According to this functional sharing hypothesis, the transcriptomic diversity of 
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one Hox gene should be analysed in the context of the evolutionary history of the gene, 

with special regard to its duplication history, which is to say, in the context of the 

transcriptomic diversity of other genes in the same PG. 

 To explore this idea, I re-analysed our data by first binning all annotated Hox 

isoforms into each of the 13 PGs, and then dividing the total number of isoforms per PG 

by the number of paralogues in each group. I find that, in the context of gene 

duplication, 10 of the 13 PGs (79% of Hox genes) produce, on average, more than one 

isoform per locus, while 9 of the 13 PGs produce possess DRP in the case of M. 

musculus, representing 74% of Hox genes (Figure 3.1B). Moreover, the rates of DRP 

for each PG are conserved across mammals (Pearson r=0.502; p=0.040), being specially 

augmented in the genes of PG3 (2 isoforms per locus in the case of mice, 4.6 in the case 

of humans), and PGs 6-9, indicating that the production of alternative protein-coding 

RNAs is specially important in genes of these groups. I chose to include in our analysis 

the well-supported alternative Hox isoforms in the most recent zebrafish genome release 

(Zv9), and found that the same profile of mammalian DRP rates is observed across PGs 

in this organism (zebrafish-human: Pearson r=0.507; p=0.021. zebrafish-mouse: 

Pearson r=0.558; p=0.024). Taken together, these results indicate that the rates of 

differential RNA processing vary across Hox duplication groups (PGs), and that this 

pattern is conserved across vertebrates. 

 The fact that Hox PGs display differential rates of RNA production, and that 

these are conserved beyond the mammalian lineage, being conserved across vertebrates, 

suggests that the history of Hox gene evolution provides an appropriate context for 

study of DRP in vertebrate Hox genes. These observations led us to inquire whether the 

incidence of DRP might relate to the evolutionary history of Hox paralogues 

themselves. To this end, I first estimated the average protein divergence within each PG 
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by retrieving the longest homeodomain-containing protein isoform for each of the 39 

Hox loci in both mice and humans, as well as the longest known protein for Hox genes 

Hox1- Hox13 in Branchiostoma lanceolatum (a cephalochordate). The latter sequences 

provided an out-group to study the evolutionary rates each of the PGs. I then performed 

an alignment followed by a Neighbour-Joining phylogeny for each PG using MAFFT 

(JTT substitution model, see Chapter 2) (Figure 3.2A). This allowed us to estimate the 

average number of amino acid substitutions per gene per PG since the first Hox cluster 

duplication at the base of vertebrates. I then compared this figure with the 

aforementioned average production of alternative Hox RNAs per PG (Figure 3.2B). I 

find that in the case of most mammalian Hox PGs, no significant correlation exists 

between protein evolution rates and the average amount of isoforms produced for each 

PG (Figure 3.2B). In the case of PGs 9-13 however, I find a statistically significant 

negative correlation between within-PG protein divergence rates and the average 

amount of isoforms produced by Hox of the same PGs (Pearson r = -0.98, p=0.004) 

(Figure 3.2C). This result suggests that there is a relationship between the amount of 

isoforms produced by posterior Hox genes, and the evolution of the Hox protein-coding 

loci themselves. In light of these results, I hypothesize that in posterior Hox genes, rates 

of DRP are constrained by the evolution of the protein-sequences themselves, being 

lower for fast-evolving genes. In other PGs, which underwent slower rates of protein 

divergence in the vertebrate clade, relaxed selective pressures led to the accumulation of 

DRP in these loci (Figure 3.2D). In both cases, a diverse expression output exists which 

can decrease the genetic load that arises from redundant protein production. This may 

lead to decreased evolutionary pressures for Hox locus divergence  
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Figure 3.2 – Accelerated protein divergence within posterior Hox PGs is strongly 

associated with the reduced production of alternative mRNAs (legend in the 

following page).  
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Figure 3.2 – Accelerated protein divergence within posterior Hox PGs is strongly 
associated with the reduced production of alternative mRNAs. (A) Example of the 
phylogenetic analysis used to calculate protein divergence rates within paralogue 
groups. The longest protein-coding isoforms from Hox3 paralogues were aligned with 
an out-group, the Amphioxus Hox3 protein, using the MAFFT alignment software 
(Katoh & Standley 2013). This alignment was then used to generate a phylogenetic 
tree using the Neighbour-Joining method. The same tree was used to calculate within-
PG divergence rates in each mammalian species, by adding the tree distances 
between all paralogues after the split with the out-group, and dividing the number of 
amino acid substitutions per site by the total amount of paralogues in each group (3 in 
this example). This yielded an average amount of protein divergence for each PG in 
Mus musculus and Homo sapiens. (B) Comparison between protein divergence rates 
and average mRNA production in mammalian Hox paralogue groups. I see that protein 
divergence rates are uncorrelated with the average production of alternative mRNAs 
across mammalian Hox PGs (r=0.078, p=0.800). (C) Protein divergence rates are 
negatively correlated with average alternative isoform production in the posterior Hox 
paralogue groups of mammals. I find that in PGs Hox9-13 there is a significant 
negative correlation between protein divergence rates after gene duplication and the 
amount of alternative mRNAs produced  (r=-0.98, p=0.004). (D) Diagram summarising 
the results in panels (B-C). In PGs Hox1-8, slow rates of post-duplication protein 
evolution are uncorrelated with the production of alternative mRNAs. In PGs Hox9-13 
however, the rates of protein diverge and differential mRNA production are not 
independent, indicating that high levels of protein evolution could impose a constraint 
on the accumulation of differential mRNAs of posterior Hox genes, or vice-versa. 
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within a PG, while at the same time justifying the maintenance of highly related genes 

in the genome. Thus, I propose an isoform-sharing model, by which closely related 

genes work in conjunction to produce a diverse expression output increasing, in turn, 

the evolutionary pressure for the retention of individual paralogues as predicted by the 

DDC model. 

 In summary, I observe, first, that the production of alternative RNAs by 

mammalian Hox loci is comparable to other loci only when in the context of gene 

duplication; second, that some paralogue groups (notably Hox3) seem to have a higher 

incidence of DRP than others; third, I see that the differential pattern of Hox DRP 

across paralogue groups is significantly conserved across vertebrates; fourth, I observe 

that for posterior Hox genes, the average amount of protein-coding transcripts produced 

per Hox gene is negatively correlated with the evolutionary divergence of paralogous 

loci, indicating that there is an interplay between the amount of differential RNA 

production of Hox genes (conserved across vertebrates) and the rates of Hox protein 

evolution after gene duplication. 

 

 

3.2.2 – A catalogue of mammalian alternative Hox RNA processing. 

 

In the previous section, I describe the rates of differential RNA processing in the 

mammalian Hox clusters, and propose that these are closely linked to the evolution of 

Hox genes. What are, however, the kinds of differential RNA processing that Hox genes 

undergo? What are the RNA processing mechanisms that are involved in the production 

of alternative Hox mRNAs? In a transcriptome-wide study, Wang and colleagues 

(Wang et al. 2008) found that alternative splicing and alternative polyadenylation are 
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correlated in human tissues. Do I see that different kinds of DRP events also work in 

coordination to produce alternative Hox isoforms? To answer these questions, I needed 

to obtain a qualitative view of alternative mRNA processing in mammals. To achieve 

this, I first retrieved the nucleotide sequences for all Hox mRNAs (see the previous 

section). I then defined the reference isoform for each of the 39 loci in both mice and 

humans as the longest mRNA that encodes for a homeodomain, and aligned all 

alternative isoforms from a given locus to its reference mRNA. Finally, I determined the 

types of alternative transcript events that occur in mammalian Hox genes using the 

categorization of DRP events adopted by Wang et al. in their study of alternative 

isoform production and regulation in human tissue transcriptomes (Wang et al. 2008). 

There, eight distinct types of DRP events are defined: Skipped Exons (SE), Retained 

Introns (RI), Alternative 5’ Splice-Sites (A5SS), Alternative 3’ Splice-Sites (A3SS), 

Mutually exclusive exons (MXE), Alternative first exons (AFE), Alternative Last exons 

(ALE) and Tandem 3’UTRs (T3UTR) (see right panel in Figure 3.4B). I added a ninth 

category to these events, Tandem transcription start-sites (tTSS), as many Hox mRNA 

isoforms differed from the reference mRNA in the exact start of their transcriptional 

unit, a phenomenon that affects mRNA sequences but is not included in the AFE 

transcript event category, or indeed any other, in the Wang et al. (Wang et al. 2008) 

categorization.  

I consider the aforementioned parameters for the choice of a reference isoform 

(the longest protein coding and homeodomain-containing mRNA isoform of a Hox 

locus, see Chapter 2) to be reasonable. Furthermore, our reference isoforms coincide 

with the principal isoforms annotations of the APPRIS database in most cases. 

However, the choice of reference vs. alternative is necessarily arbitrary without 

evolutionary or tissue expression considerations; this is of concern, as the differential 
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RNA production of the reference isoform is not itself probed, an aspect of our analysis 

that could in principle lead to the loss of relevant information about Hox DRP. To 

control for this, I chose to annotate the occurrence of differential RNA processing 

events between the reference and the alternative isoforms with no regard for polarity, 

e.g. for a given Hox locus, an intron retention event that occurs in the alternative 

isoform but not in the respective reference mRNA is tabulated in the same manner 

(given a value of “1”) if the intron were retained in the reference isoform and excised in 

the alternative Hox mRNA.  

 I find that the 47 alternative Hox mRNAs show a total of 118 individual DRP 

events when compared to the 31 reference Hox mRNAs (Figure 3.3A). The most 

flagrant DRP event is the generation of alternative 3’UTRs in tandem (t3UTR) in 66% 

of transcripts. This event is followed in preponderance by tTSS and AFE events (44.7% 

and 46.8%, respectively); the remaining categories occur at a rate of 25% or less. No 

MXE event was observed, and this DRP category was therefore removed from further 

analyses. These results suggest that the concerted remodelling of both 5’UTRs and 

3’UTRs, through the control of alternative transcription start and termination sites, is 

the most common outcome of Hox DRP in mammals.  

I next wondered whether these RNA processing events had an effect on the 

open-reading frames (ORF) sequences of each alternative Hox mRNA, and could lead 

to alternative Hox proteins. In order to study this aspect, I compared all alternative 

ORFs to the ORF present in the reference mRNA of each locus; I find that Hox DRP 

leads to alternative open-reading frames in 64% of the cases, indicating that RNA 

processing significantly expands Hox proteomic diversity. Together these results 

indicate that i) multiple DRP events intervene in the production of most alternative Hox 

transcripts, leading to the possibility that some events co-occur, ii) that alternative  
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Figure 3.3 – Specific modes of differential Hox RNA processing show distinct links 

to transcriptional regulation (legend in the following page). 
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Figure 3.3 – Specific modes of differential Hox RNA processing show distinct 
links to transcriptional regulation. (A) Mammalian Hox genes undergo different 
kinds of differential RNA processing event. Using the tabulation of differential RNA 
processing events in (Wang et al. 2008), and adding the occurrence of tandem 
Transcription Start Sites (tTSSs), I find a total of 118 differential RNA processing 
events involved in the formation of alternative Hox mRNAs. The most represented 
differential RNA processing event is the formation of alternative 3’UTRs in tandem, 
occurring in 66% of the cases, followed by the occurrence of Alternative First Exons 
(AFEs) and tTSSs in 46.8% and 44.7% of the cases, respectively. I find no occurrence 
of Mutually-Exclusive Exons (MXEs). This category was excluded from further 
analyses. (B) Specific modes of differential Hox RNA processing show distinct links to 
transcriptional regulation. I find that the usage of tTSSs upon transcriptional initiation is 
positively correlated with the occurrence of alternative splicing by the Retention of 
Introns (RI, r= 0.51, p=0.0002), and negatively correlated with the occurrence of 
Skipped Exons (SE, r= -0.40, p=0.0059). Conversely, I see that AFEs are negatively 
correlated with RI (r= -0.52, p=0.0002) and positively correlated with SE (r=0.49, 
p=0.0005). The most represented DRP event, tandem 3’UTR formation, is uncorrelated 
with other RNA processing events. These results suggest that the differential RNA 
processing of mammalian Hox genes includes at least two distinct links between the 
regulation of transcription and alternative splicing. 
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transcription and alternative transcriptional termination through alternative 3’UTR 

cleavage and polyadenylation (collectively deemed APA from here on) are the most 

prevalent processing events that intervene in differential Hox RNA processing and iii) 

that protein-coding sequences are more commonly than not affected by Hox DRP. 

 Given that most Hox mRNAs show evidence of more than one type of DRP 

event, I next considered the possibility that some DRP events might co-occur more 

often than others, so as to find evidence supporting the hypothesis that the production of 

Hox mRNAs requires the coordination of different RNA processing mechanisms. In 

order to answer this question, I tabulated the DRP event data for all 47 alternative Hox 

isoforms, granting the numerical values “1” and “0”, respectively, to the presence or 

absence of each DRP event on each alternative Hox transcript. I next submitted this 

binary table into the statistical analysis software R, and used the PerformanceAnalytics 

R package to ask whether DRP events were significantly correlated to each other in the 

generation of alternative Hox transcripts. 

 I find that the two mutually exclusive categories of transcriptional initiation 

analysed, tandem Transcription start sites (tTTS), which sit close together in the 

genome and are thus controlled in all probability by the same transcriptional promoter 

(see Chapter 1), and alternative first exons (AFE), which denote transcription initiation 

sites that are far apart and could thus be controlled by different promoters, both 

correlate with alternative splicing categories (Figure 3.3B). However, while tTTSs 

correlate negatively with exon skipping (r=-0.40, p=0.0059), AFEs correlate positively 

with the same alternative splicing DRP (r=0.49, p=0.0005) (Figure 3.3B). Conversely, 

intron retention (RI) AS events are positively correlated with tTTSs (r=0.51, p=0.0002), 

and negatively correlated with AFE events (r=-0.52, p=0.0002). This indicates that the 

alternative control of Hox transcriptional initiation can impact the alternative splicing 
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patterns of the nascent mRNA, a phenomenon that has been previously observed in a 

number of cases (Kornblihtt et al. 2004) (Figure 3.3B).  

In terms of the coordination between different alternative splicing events, I see a 

significant negative correlation of medium effect between Intron Retention and 

alternative 3’splice-site usage (r = -0.31, p=0.0367) (Figure 3.3B). This indicates that 

once an intron is retained alternative 3’splice-sites are less prone to be used in 

downstream DRP events. I hypothesize that the mechanistic explanation for the link 

between these two patterns could lie in the competition between splice-sites for a trans-

regulator. Finally, I find no correlation between the most represented DRP event, 

tandem 3’UTR production, and other DRP event. The other DRP event that leads to 

alternative 3’UTRs in our dataset, ALE, also appears uncorrelated with other DRP 

events in the transcripts analysed (Figure 3.3B). This suggests that 3’end formation can 

happen somewhat independently of other upstream DRP operations. These results 

suggest that Hox differential RNA processing involves the coordination between 

specific types of transcription and alternative splicing, and that 3’UTRs are often 

remodelled independently of previous differential RNA processing operations. 

 To obtain a picture of these multiple coordinated DRP events at the transcript 

level, and identity which genes undergo different types of coordinated DRP, I 

hierarchically clustered the previously mentioned binary matrix of Hox DRP events per 

transcript using the R function hclust (see Chapter 2). I find that coordinated processing 

occurs in all but 6 Hox transcripts (Figure 3.4A). Moreover, the hierarchical clustering 

of similarly processed alternative Hox RNAs reveals two main statistically supported 

clusters of transcripts with similar DRP profiles, which I will hereafter call α and β 

(Figure 3.4). In cluster α, all 22 transcripts are generated by alternative transcription 

leading to alternative first exons, and then undergo many different types of  
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Figure 3.4 – Differential Hox RNA processing involves the coordination of multiple 

regulatory levels and two distinct modes (legend in the following page).  
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Figure 3.4 – Differential Hox RNA processing involves the coordination of 
multiple regulatory levels and two distinct modes. (A) Hierarchical clustering of 
differential RNA processing events involved in the production of mammalian Hox 
mRNAs. Hierarchical clustering of all alternative Hox mRNAs based on the occurrence 
or absence of each individual DRP event (right panel). I observe two well-supported 
clusters of alternative Hox mRNAs, �  and � , which involve the coordination of 
different kinds of DRP events. In cluster � , all 22 transcripts are generated by 
alternative transcription leading to alternative first exons, and then undergo many 
different types of alternative splicing, mostly exon skipping. In category �, most Hox 
transcripts show evidence of tandem transcription start-sites (tTSS) and alternative 
splicing by intron retention. Tandem 3’UTRs, the most represented DRP event in our 
dataset, features heavily in both clusters, indicating that this is a general theme in the 
production of alternative Hox mRNAs. Interestingly, all mammalian isoforms of PG 3 
fall into cluster � , as well as most isoforms from PGs 4 and 10. Conversely, all 
isoforms of paralogue groups 1, 7, 11, 12 and 13 fall into category �, as well as most 
isoforms generated by PGs 8 and 9. This indicates that in at least 10 of the 13 PGs, 
DRP modes are shared across PGs. (B) Diagram summarising the finding in panel A. 
The differential RNA processing of mammalian Hox mRNAs proceeds by at least two 
distinct modes, �  and � , which coordinate transcriptional regulation, alternative 
splicing, and alternative cleavage and polyadenylation in a paralogous-specific 
manner. 
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alternative splicing, mostly exon skipping; only in 10 out of 22 cases does DRP remodel 

protein-coding sequences. Additionally, most transcripts undergo alternative 3’UTR 

formation in tandem. In category β, most of the 25 alternative Hox transcripts are 

generated by tandem transcription start-sites close by (tTSS), and then undergo 

alternative splicing, mostly through intron retention. Protein-coding sequences are 

affected in 20 of the 25 cases. As with category α, 3’UTRs are mostly remodelled in 

tandem. Interestingly, all isoforms of paralogue group 3, in both mice and humans, fall 

into category α, as well as most isoforms from PGs 4 and 10. Conversely, all isoforms 

of paralogue groups 1, 7, 11, 12 and 13 fall into category β, as well as most isoforms 

generated by PGs 8 and 9. These results indicate that the general patterns of coordinated 

Hox RNA processing are mostly shared by paralogous genes, indicating two non-

exclusive possibilities: the cis-regulatory sequences that mediate these processes were 

already present before gene duplication, and/or the shared expression patterns of many 

paralogous Hox genes leads to the exposure of paralogous Hox mRNAs to the same 

molecular environments and thus to the same trans-regulators of DRP, leading to the 

similar DRP patterns. 

 

 

3.2.3 – The alternative 3’UTRs of mammalian Hox mRNAs show a conserved 

segregation of microRNA (miRNA) target-sites. 

 

In the previous section, I report that the formation of alternative 3’UTRs in 

tandem is the single most represented Hox DRP event, occurring in 66% of alternative 

mRNA production cases. Indeed, of the 18 Hox genes that show alternative isoforms in 

humans, 15 form alternative 3’UTRs (9 out of 13 in the case of mice). This result points 
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to the prospect that the ability to produce mRNA with different 3’UTR sequences is a 

staple of the regulation of Hox gene expression in mammals. One clear hypothesis that 

results from this data is that alternative Hox transcripts regulate their visibility to RNA 

regulators in trans through the inclusion or exclusion of cis-regulatory sequences in the 

3’UTRs (Thomsen et al. 2010). One corollary of this hypothesis is that cis-regulatory 

complements are different when alternative 3’UTRs of the same gene are compared.  

I thus wanted to test whether the different 3’UTRs of the same genes carried 

similar or different sequences, and possibly regulatory information. Regulatory 

sequences in cis have been previously shown to mainly mediate the interaction of the 

3’UTRs of mRNAs with both miRNAs and RNA-Binding Proteins (RBPs). The latter 

are proteins with RNA-binding domains, known to bind mRNAs directly and mediate 

the regulation of mRNA processing itself, as well as mRNA nuclear export, 

localization, stability and translation rates through their interactions with mRNAs as 

well as other proteins and noncoding RNAs. However, few studies implicate RBPs in 

the differential regulation of Hox alternative isoforms, one notable exception being the 

study of alternative Ubx RNA processing by the RBP ELAV in the CNS of Drosophila 

melanogaster (See Chapters 1 and the final section of the current Chapter). In contrast, 

a significant number of studies indicate that miRNA-based regulation is very prevalent 

in Hox genes. I chose miRNAs as candidate trans-regulators of Hox mRNAs for a 

number of reasons. These molecules are computationally predicted to target a third of 

human genes, and have been shown to target mammalian Hox genes in many cases (see 

miRTarBase (Hsu et al. 2014) and Table 3.1).  

Given the previous reports of miRNA-mediated regulation of Hox gene 

expression (see Chapter 1), and the importance of alternative 3’UTR sequence contexts 

to the outcome of this regulatory mechanism, I wondered whether there was a 
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segregation of miRNA target complements between different portions of mammalian 

Hox 3’UTRs. To test this hypothesis, I retrieved a list of miRNA loci experimentally 

shown to mediate the down-regulation of Hox mRNAs, and studied where their target 

sites were in the context of the observed alternative 3’UTR formation in Hox genes. 

I used miRNA targeting prediction tool PITA (Kertesz et al. 2007) to predict 

miRNA targets for the all the Hox genes with alternative 3’UTR formation, performing 

separate, species-specific miRNA targeting predictions for the constitutive and optional 

3’UTRs (hereafter deemed “Short” and “Long” 3’UTRs, respectively). PITA uses a 

thermodynamic approach to predict miRNA targets in the 3’UTRs of mRNAs. It first 

predicts the energy gained by a miRNA-mRNA pair upon complementary binding, and 

then subtracts from this value the energy needed to undo local target mRNA structure as 

a consequence of internal mRNA base pairing which RNAFold predicts. This 

computation results in a measurement, deemed “∆∆G”, that decreases in numerical 

value as the predicted miRNA targeting efficiency increases.  

I then filtered miRNA-targeting predictions so that these included only 

experimentally validated miRNA-targeting events in the Hox genes of either Homo 

sapiens or Mus musculus. The miRTarBase online repository 

(http://mirtarbase.mbc.nctu.edu.tw) documents 86 experimentally-validated interactions 

between specific mature miRNAs and the 15 Hox genes that show alternative 3’UTRs 

in humans, as well as the experimental method used to assess this molecular interaction 

(see Table 3.1). In the case of Mus musculus, only 4 miRNA-Hox interactions were 

reported (see Table 3.1). Given the reduced number of experimentally validated 

miRNA-Hox interactions for Mus musculus, I decided to use the M. musculus 

homologues of human Hox-targeting miRNAs in subsequent analyses. I additionally 

filtered results to include only miRNAs that are present in mice and humans, as well as  
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Table 3.1 – Experimental techniques used in the validation of mammalian Hox-miRNA 
interactions (data retrieved from miRTarBase). 
 
 

  

adapted from data in miRTarBase 
(http://mirtarbase.mbc.nctu.edu.tw) 
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removing positive ∆∆G values (miRNA-target interactions predicted to be energetically 

implausible). 

 I find that in humans, most experimentally validated miRNA-Hox interactions 

have predicted miRNA targets that lie in the distal, rather than the proximal tract of Hox 

3’UTRs (20 and 9 miRNA targets, respectively)  (Figure 3.5A). In the case of mice, 

this is also true (11 targets in distal 3’UTRs, 8 in proximal 3’UTRs) - (Figure 3.5B). 

These results could be explained by the fact that the distal tracts of Hox 3’UTRs are on 

average longer than the respective constitutive regions. However, I also see that miRNA 

targets for validated miRNA-Hox interactions have a lower ∆∆G value, and are thus 

stronger on average when in the context of the distal 3’UTR (Figures 3.5C-D). In the 

case of Homo sapiens, the difference in targeting between proximal and distal 3’UTRs 

is statistically significant (Figure 3.5C), and while this is not so for Mus musculus 

(Figure 3.5D), the average targeting is even larger for the distal 3’UTR, when 

compared to humans, leading us to think that the relative lack of miRNA targeting data 

in Mus musculus could be responsible for the aforementioned lack of statistical 

significance. 

 These results point to a bias in the positioning of biologically relevant miRNA 

targets within Hox 3’UTRs. However, this dataset is hardly exhaustive and is biased, as 

it depends on remotely validated miRNA-mRNA interactions performed by various 

independent research programs. I expect that it is due to this that I observe the lack of 

miRNA-mRNA interaction data for most Hox genes in mice, as well as some in 

humans, where alternative 3’UTR formation is present. Friedman and colleagues 

(Friedman et al. 2009) have used an evolutionary approach based on target-site 

conservation to show that mammalian 3’UTR carry on average 4.2 sites for miRNAs. 

This stands in contrast to our analysis, where I find 2.5 experimentally validated  
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Figure 3.5 – Experimentally validated miRNAs are predicted to bind to more 

numerous and stronger targets in distal Hox 3’UTRs (legend in the following page). 
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Figure 3.5 – Experimentally validated miRNAs are predicted to bind to more 

numerous and stronger targets in distal Hox 3’UTRs. (A-B) Most experimentally 

validated miRNA-Hox interactions are predicted to occur in the distal (blue), rather than 

the proximal (yellow) 3’UTRs of Hox genes in both (A) Homo sapiens and (B) Mus 

musculus. (C-D) Distal 3’UTRs of Hox genes (blue) contain stronger miRNA target 

sites than their proximal counterparts (yellow). All experimentally-validated miRNA-Hox 

interactions were retrieved from miRTarBase (Hsu et al. 2014); miRNA targeting 

predictions were performed using PITA (Kertesz et al. 2007). The experimental 

techniques used in the validation of miRNA-Hox targeting can be found in Table 3.1. 

The results of the miRNA targeting predictions used in these analyses can be found in 

Table 3.2. 
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Table 3.2 - 3’UTR targeting predictions of experimentally validated miRNA-Hox 

interactions using PITA. 

 

  

Homo sapiens ∆∆G (kcal mol -1)
Gene microRNA Distal  3'UTRs Short  3'UTRs

Hoxa9 hsa-miR-324-5p -26,91 0
Hoxc11 hsa-miR-744-5p -20,8 -13,19
Hoxa9 hsa-miR-210-3p -15,71 0
Hoxb3 hsa-miR-10a-5p -13,7 0
Hoxa9 hsa-miR-18a-5p -12,81 -6,6
Hoxa9 hsa-let-7a-5p -11,82 0
Hoxa9 hsa-miR-26b-5p -11,2 0
Hoxa9 hsa-miR-340-5p -9,74 0
Hoxd11 hsa-let-7b-5p -8,3 0
Hoxa10 hsa-miR-192-5p -8,22 0
Hoxa10 hsa-miR-135a-5p -7,82 0
Hoxd11 hsa-miR-744-5p -7,52 -14,04
Hoxc4 hsa-miR-615-3p -7,36 0

Hoxa10 hsa-miR-215-5p -7,32 -1,89
Hoxb3 hsa-miR-218-5p -6,4 -4,9
Hoxc4 hsa-miR-125a-5p -4,71 0
Hoxc4 hsa-miR-331-3p -1,68 0
Hoxc4 hsa-miR-26b-5p -1,3 0
Hoxa3 hsa-miR-210-3p -0,78 0
Hoxa10 hsa-miR-204-5p -0,11 0
Hoxa10 hsa-miR-130a-3p 0 -6,91
Hoxa10 hsa-miR-149-5p 0 -5,18
Hoxd8 hsa-miR-196a-5p 0 -4,62
Hoxa1 hsa-miR-10a-5p 0 -3,78
Hoxc6 hsa-miR-128-3p 0 -1,54
Hoxc11 hsa-miR-484 0 -2,66
Hoxa9 hsa-miR-652-3p 0 -11,35
Hoxb1 hsa-miR-26b-5p 0 -6,74

Mus musculus ∆∆G (kcal mol -1)
Gene microRNA Distal 3'UTRs Proximal 3'UTRs

Hoxb8 mmu-miR-196b-5p -25,59 -0,15
Hoxa9 mmu-miR-324-5p -20,1 0
Hoxa9 mmu-miR-210-3p -16,04 -9,83
Hoxb8 mmu-miR-34a-5p -12,66 0
Hoxa9 mmu-miR-18a-5p -12,33 -4,98
Hoxa9 mmu-miR-652-3p -12,3 -15,86
Hoxa9 mmu-miR-26b-5p -12,1 0
Hoxa9 let-mmu-7a-5p -11,14 0
Hoxa9 mmu-miR-340-5p -9,04 0

Hoxa10 mmu-miR-135a-5p -5,85 0
Hoxa10 mmu-miR-192-5p -2,7 0
Hoxc4 mmu-miR-331-3p -1,65 0

Hoxa10 mmu-miR-149-5p -0,88 -6,58
Hoxa1 mmu-miR-10a-5p 0 -14,7
Hoxd8 mmu-miR-196a-5p 0 -9,97
Hoxc4 mmu-miR-125a-5p 0 -8,51
Hoxa7 mmu-miR-423-5p 0 -0,74
Hoxa1 mmu-miR-210-3p 0 -0,1
Hoxa9 mmu-miR-96-5p 0 -2,56
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miRNA targets, on average, in human Hox 3’UTRs - our most enriched dataset – while 

at least half of the Hox genes analysed have a single miRNA-mRNA interaction. This 

comparison indicates that our analyses include a conservative number of miRNA-

mRNA interactions, suggesting that an expansion of our dataset might be of use in 

further analyses. 

As these results suggest that there is indeed a conserved segregation of miRNA 

target-sites between short and long 3’UTR portions of Hox mRNAs, but are expected to 

be an incomplete picture of miRNA-mediated Hox regulation, I next decided to analyse 

the Hox 3’UTR targeting predictions for all conserved mammalian miRNAs, with the 

goal of seeing if, first, the observed tendency could be extended to the entire miRNA 

targeting complement for each gene, and second, if this tendency was statistically 

significant. To this end, I first identified all miRNAs that are conserved in both 

mammalian species using the miRNAminer tool (Artzi et al. 2008) 

(http://groups.csail.mit.edu/pag/mirnaminer/), and then retrieved the mature sequences 

of all miRNAs produced by these loci from miRBASE (Kozomara & Griffiths-Jones 

2013) (http://www.mirbase.org). I decided not to use miRNAs that have duplicated in 

either of the two mammalian lineages analysed, as the exact homology status of each 

paralogous miRNA was uncertain. Using the aforementioned approach, I isolated a set 

of 438 mature miRNAs that are unambiguously conserved between mice and humans. 

As the specific mature miRNA sequences show, in some cases, a small degree of 

divergence across mammals, I decided to use the species-specific variants for each 

miRNA in all miRNA predictions. This approach is expected to control for miRNA-

target co-evolution (Barbash et al. 2014), and thus presents a good opportunity to study 

the evolution of miRNA targeting in relation to Hox tandem 3’UTR formation.  

With the expectation that a broader dataset for Hox-miRNA interactions might 
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support and expand our initial observation, that APA introduces differential miRNA 

target complements across alternative mRNA isoforms of the same Hox gene, I used 

PITA and each species’ variant of the mammalian miRNA complement to predict all 

miRNA target sites in both constitutive and elective 3’UTRs. As most of these predicted 

interactions are not experimentally validated, I decided to introduce one stringency 

criterion in order to decrease the incidence of false-positives in our analysis: I used the 

authors’ recommended threshold of ∆∆G < -10 (Kertesz et al. 2007), so as to have a 

more conservative dataset that included only the strong miRNA-target complement of 

each portion of Hox 3’UTRs (see Chapter 2). In the case of Hoxb8, most 3’UTRs did 

not present miRNA targets with such low ∆∆G values; as such, I used miRNA ∆∆G < -

8 for the 3’UTRs of this gene. This is expected to add further confidence to the miRNA 

target predictions, as it allows us to compare not only the existence targeting but also its 

amount. 

I next performed a miRNA target correlation analysis between Short and Long 

3’UTRs of the same gene in each species. I analysed eight of the fifteen human Hox 

genes with tandem 3’UTRs, as the remaining two had 3’UTR tracts that were too short 

(less than 70 nucleotides in length) to be used by PITA. In these eight genes, I find that 

all display a significant correlation between Short and Long miRNA complements 

(Figure 3.6A). Interestingly, this correlation is negative in value, in most cases (six). 

This tendency is also observed in the Hox genes of mice (Figure 3.6A). These results 

further indicate that, within each species, the miRNA complement of the 3’UTRs is 

segregated across alternative isoforms for Hox genes with alternative 3’UTR formation 

in mammals.  

As I used the human-mouse conserved miRNA complement in our predictions, I 

next compared orthologous 3’UTRs across species (e.g. Hoxb3-Short in  
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Figure 3.6 – Alternative cleavage and polyadenylation generates developmental 

and evolutionary compartments in Hox 3’UTRs (legend in the following page). 
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Figure 3.6 – Alternative cleavage and polyadenylation generates developmental 
and evolutionary compartments in Hox 3’UTRs. (A-B) miRNA targeting predictions 
in the context of alternative 3’UTR formation in the mammalian Hox genes. (A) 
Comparison of miRNA targeting across alternative Hox 3’UTR isoforms of the same 
locus. I see that the miRNA target complement of Short and Long 3’UTRs of individual 
Hox loci is negatively correlated in the majority cases, in both Homo sapiens and Mus 
musculus. (B) Comparison of miRNA targeting across homologous Hox 3’UTR 
isoforms of different mammalian species. When I compare the miRNA targeting 
predictions for the Short 3’UTRs of orthologous Hox genes, I find that 3’UTR targeting 
is positively correlated across species (left panel), indicating that these sequences are 
conserved between Homo sapiens and Mus musculus with respect to miRNA 
regulation. Conversely, the comparison of miRNA targeting in the distal 3’UTRs yields 
negative correlations in two out of three cases, indicating that these Hox 3’UTR 
sequences have significantly diverged between humans and mice. All predictions were 
performed using PITA. Only miRNA targets with a ∆∆G≤-10 were used, as per the 
recommendation of the authors (Kertesz et al. 2007). I used the conserved mammalian 
miRNA complement in all analyses, as annotated in miRNAminer (Artzi et al. 2008) 
and miRBase (Kozomara & Griffiths-Jones 2013). 
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mice with Hoxb3-Short in humans). I find that unlike the within-species comparisons, 

the miRNA complement of a given gene’s Short 3’UTRs is positively correlated across 

species in six out of seven cases (Figure 3.6B). A similar cross-species comparison of 

the “Long” 3’UTR tracts of the same gene yields negative correlations in two of three 

cases, Hoxb3 and Hoxd8 (r= -0.14* and r= -0.56***, respectively), (Figure 3.6B).  

Together, these results indicate that the 3’UTR miRNA-target complements of 

Hox genes are not only segregated across 3’UTR isoforms for a given gene in a given 

species, but also that these distinct miRNA target complements evolve differently, being 

more conserved in Short than Long 3’UTRs. To explain these results, I propose that 

APA can generate both developmental and evolutionary compartments in mammalian 

Hox genes, with Short/constitutive 3’UTRs maintaining, on average, their miRNA 

targets across evolution, while the use of distal 3’UTR tracts introduces novel rather 

than redundant miRNA targets on an mRNA; essential and conserved miRNA targets 

would accumulate in the constitutive 3’UTR across evolution, while the miRNAs that 

are necessary for species-specific types of regulation in time and space would be 

segregated to the distal, optional, 3’UTR. 

 

 

3.3 – Discussion. 

 

 During the course of this work, I have used RNA-sequencing data of both 

developing and adult Strigamia maritima centipedes, in the context of the genome and 

transcriptome sequencing project of this organism (Chipman et al. 2014). In that work, I 

show that posterior S. maritima Hox genes, homologous to Hox loci of the Drosophila 

melanogaster BX-C class, tend to produce differential 3’UTR isoforms (Chipman et al. 
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2014). This pattern is conserved between Drosophila melanogaster and Strigamia 

maritima (Thomsen et al. 2010; Chipman et al. 2014), suggesting that differential RNA 

processing is an important regulatory level in the regulation of Hox gene expression of 

arthropods. 

In this chapter, I investigate the rates, quality and evolutionary dynamic of 

differential RNA processing in the mammalian Hox clusters, using the freely available 

GENCODE dataset. I start by comparing the absolute incidence of RNA processing 

across Hox clusters with genome-wide estimates in both the literature and the 

GENCODE database, and find that the average incidence of DRP on Hox genes is 

significantly smaller than expected in both Homo sapiens and Mus musculus, even 

when taking account the limitations of the database. I then show that this can be 

explained, in part by the duplication History of the Hox group, as I see that the average 

production of alternative mRNAs per gene within a paralogue group is consistent with 

the rest of the genome. This led us to hypothesize that there is functional sharing of 

isoforms between paralogous Hox genes.  

The proposed functional sharing fits with the subfunctionalisation model of 

alternative splicing evolution after gene duplication (Su et al. 2006). According to this 

model, as the Hox clusters of early vertebrates underwent two rounds of duplication – 

concurrently with the rest of the genome –, the production of differential mRNA 

isoforms in the ancestral cluster is distributed among the resulting paralogues, with each 

duplicant retaining a portion of the ancestral Hox expression output (Kopelman et al. 

2005; Su et al. 2006). As such, different paralogues fix, on average, different isoforms 

from the total pool of ancestral mRNAs; as such, the pool of alternative mRNAs from 

one ancestral Hox locus is maintained in the early stages after gene duplication, being 

divided across different paralogues. 
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In the case of Hox genes, I know that a complete subfunctionalization of the 

vertebrate Hox paralogues has not happened, as all paralogues still produce mRNAs and 

proteins of full-length Hox products. However, when I study the average rates of DRP 

across the Hox paralogue groups of Homo sapiens, I see that there is an asymmetrical 

distribution, with two peaks on PGs 3 and 6-9. Interestingly, I see that this 

heterogeneity is conserved across vertebrates: I also observe this asymmetry in Mus 

musculus and Danio rerio, and when I perform correlation analyses, I see that the 

profiles of DRP across PGs are indeed positively correlated. Moreover, when I compare 

the incidence of DRP across paralogues of the same organism, I see that the profiles are 

not significantly correlated, suggesting that in each organism, different Hox paralogues 

contribute mRNAs to the conserved differential RNA processing rates across the PGs of 

vertebrates. 

I see another evolutionary dependence in our dataset: when the rates of Hox 

protein divergence within a paralogue group are compared with the respective average 

rates of DRP, I observe no relationship between the two measures for most PGs; 

however, posterior Hox genes of the Abd-B group (Hox9-13) have higher divergence 

rates than other PGs, and that these rates of protein evolution are inversely correlated 

with alternative mRNA production in a statistically significant way. As these loci are 

more recent than the remaining Hox genes of mammals, being the result of tandem 

duplications of an ancestral Abd-B Hox gene at the base of the chordate lineage, it is 

possible that I am capturing two kinds of relationships between alternative isoform 

production and protein evolution. I propose that for relatively recent genes, like the 

Abd-B class of mammalian Hox genes, loci undergoing fast evolutionary rates at the 

protein level have, at the same time, a constraint in the production of differential 

mRNAs; genes of the Hox9-13 groups are not only similar to other paralogues, but to 
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genes in other PGs, whereas PGs Hox1-8 have had mostly independent evolutionary 

lineages since the Urbilaterian. As such, I expect the selective pressure to change the 

protein-coding sequence to be more pronounced in Hox9-13 groups. It is possible that in 

this scenario, protein evolution takes precedence, as the redundancy between a high 

number of genes is extraordinary; in cases when this is less pronounced (as with PGs 

Hox1-8), and paralogue loci are evolving at a slower rate, I would expect paralogues to 

accumulate alternative mRNAs in a manner that is dependent on other paralogues of the 

same PG, but less dependent on protein evolution. It would be interesting to explore this 

relationship in other duplicates in mammalian genomes, as mammalian Hox clusters 

specifically show a great degree of compaction, even when compared with Hox clusters 

of other chordates (Duboule 2007). It could be that this constraint in Hox-specific, as 

genomic compaction reduces the amount of sequence evolution that is tolerated in Hox 

clusters. For instance, the Hox clusters of Vertebrates display a clear lack repetitive 

elements (Fried et al. 2004). It is then possible that there is a strong constraint at the 

DNA sequence level in Hox clusters, with protein evolution taking precedence over the 

accumulation of alternative mRNA isoforms, also because some of the nucleotides in a 

Hox locus are involved in both open-reading frame sequences and alternative isoform 

production (see Chapter 4). 

During the course of this work, I have studied the sequence of the Ubx 

transcriptional unit in 12 Drosophilids, looking at the distribution and conservation of 

targets for the Drosophila melanogaster neuronal-specific ELAV, an RNA-binding 

protein (Rogulja-Ortmann et al. 2014). In that work, I show that Ubx contains a host of 

putative sites for ELAV-mediated regulation of alternative RNA processing (Rogulja-

Ortmann et al. 2014). A subset of these target sites was then experimentally shown by 

our co-authors to interact with ELAV in vitro and in vivo, a molecular partnership that 
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leads to the appropriate regulation of differential RNA processing in all Hox genes of 

the BX-C (Rogulja-Ortmann et al. 2014). 

 In this work, I look at the manner in which differential Hox mRNAs are 

produced in mammals, and find that this occurs by coordination of distinct kinds of 

transcription, alternative splicing and alternative cleavage and polyadenylation. 

Moreover, I see that there are two coordinated modes of alternative mRNA production, 

which integrate specific RNA processing events at the transcriptional and splicing 

levels. Interestingly, I also see that loci of the same PG tend the have similar differential 

RNA processing modes, indicating yet again that the list of similarities between 

paralogous Hox, which includes relative genomic context, sequence, expression and 

function, should also include differential RNA processing. 

I have previously studied the evolution of miRNA targets in the 3’UTRs of the 

Hox gene Ubx (Patraquim et al. 2011), and shown, that the signals that mediate the 

formation of Ubx alternative 3’UTRs in Drosophila melanogaster are conserved across 

twelve Drosophilids, and that miRNA targeting by developmentally relevant miRNAs is 

predicted to remain within one of the two alternative 3’UTR isoforms of Ubx during the 

evolution of this gene (Patraquim et al. 2011). In this chapter, I study the generation of 

tandem 3’UTRs, the most overrepresented individual DRP event in our dataset, in the 

context of miRNA regulation. miRNAs have previously been shown to regulate Hox 

genes during development in both Drosophila melanogaster (Bender 2008; Thomsen et 

al. 2010) and Mus musculus (Hornstein et al. 2005). I find that APA generates 

alternative 3’UTR isoforms with different miRNA complements, as alternative 3’UTR 

tracts are more often than not anti-correlated in a significant way. However, when I 

compare orthologous 3’UTR isoforms across mammalian species, I find that proximal 

(or constitutive) 3’UTR sequences are conserved across mammals, and have similar 
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miRNA target complements, while distal 3’UTRs have significantly diverged in their 

miRNA target site complement. I propose that APA generates developmental 

compartments in the 3’UTRs of Hox genes. As distal 3’UTRs are usually deployed in 

the CNS of both Drosophila and mammals (Thomsen et al. 2010; Hilgers et al. 2012; 

Miura et al. 2013), I anticipate that novel 3’UTR-miRNA regulatory interactions, 

accumulated privately by either Mus musculus or Homo sapiens, should manifest 

themselves in this tissue. miRNA-based regulation is predicted to contribute to 2%–4% 

of mRNA and 4%–6% of protein expression differences across the brains of primates. If 

APA mediates differential visibility of products of a given locus to miRNA regulation 

(Thomsen et al. 2010) in the context of development and evolution, I expect that the 

transcriptome of mammalian central nervous tissues, both embryonic and adult, should 

reflect this regulatory level. 

In this Chapter, I focus on protein-coding genes. However, Hox loci also display 

high levels of antisense transcription. For example, HOTAIR, a long noncoding 

antisense RNA that sits in the mammalian Hox clusters, has been shown to repress 

HoxD genes by enhancing repressive chromatin states (Li et al. 2013). This interaction 

leads to homeotic transformations in both the axial skeleton and the limb of Mus 

musculus (Li et al. 2013). It would be interesting to explore the relationship between the 

long noncoding RNA products of mammalian Hox clusters and the production of 

alternative protein-coding mRNAs, as Hox genes show high amounts of antisense 

transcription (Mainguy et al. 2007). Long noncoding RNAs haven been shown to 

regulate chromatin states in Hox loci (Li et al. 2013); chromatin states, in turn, have 

been shown to impact differential RNA processing (Acuña & Kornblihtt 2014; Luco et 

al. 2011). It remains to be seen whether the effects of long noncoding RNAs like 

HOTAIR extend to the regulation of differential RNA processing of Hox genes, as 
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HoxD genes, for instance, produce a host of alternative mRNA isoforms with 

functionally different protein domains (see Chapter 4).  
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Chapter IV 

 

 

The production of Homeodomain-less Hox 

isoforms by differential RNA processing 

 

 

 

 

N.B: Some experiments discussed in this Chapter include the contributions of others: the 

dissections of Mus musculus embryos and adult tissues were performed in collaboration with 

Claudio Alonso, Sofia Pinho and Aalia Bano. Additionally, Aalia Bano performed RNA 

extractions, RT-PCRs and Agarose Gel Electrophoresis using Mus musculus embryonic and 

adult tissue samples 
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4.1 – Chapter Overview 

In the previous chapter I show that differential RNA processing significantly remodels 

the mRNA sequences of mammalian Hox genes. I note that some Hox paralogue groups 

produce more alternative isoforms than others and that these hotspots of mRNA 

remodeling within Hox clusters are conserved across vertebrates. Additionally, I show 

that the majority of Hox mRNA isoforms is formed through a series of coordinated 

regulatory steps that involve transcription, mRNA splicing and 3’UTR formation. 

Finally, I show that the constitutive 3’UTRs of Hox genes have significantly maintained 

their cis-regulatory complement across mammalian evolution, while the elective 3’UTR 

tracts significantly diverged between humans and mice, and propose that the production 

of alternative 3’UTR isoforms introduces compartments on both developmental and 

evolutionary scales. 

 In this chapter, I focus on the effects of alternative Hox mRNA processing on 

the production of alternative Hox protein isoforms. I report that at least eleven Hox 

genes produce mRNAs that do not encode for a Homeodomain (Homeodomain-less) in 

mammals, and that the resulting protein isoforms retain, in many cases, protein-protein 

interaction sequence modules. Additionally, I see that some Hox genes undergo 

differential RNA processing so as to produce Homeodomain-bearing isoforms that lack 

the (I)YPWM(K) hexapeptide (HX), a protein-protein interaction motif, as well as the 

SSYF transcriptional activation domain. I also observe that, in some cases, differential 

RNA processing introduces variation in the length of an amino acid stretch that lies 

between the HX and the Homedodomain – the Linker region. All of these effects of 

alternative RNA splicing on protein composition are expected to affect the molecular 

function of Hox proteins. Furthermore, I inspect PG10-specific protein motifs to show 

that alternative splicing is expected to impact Hox10 ability to repress rib formation in 
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the lumbar region in the development of the tetrapod axial skeleton. I hypothesise that 

this specific molecular function of Hox10 proteins has evolved before the emergence of 

rib repression in the axial skeleton, which in turn influenced the emergence of Hoxa10 

alternative splicing in mammals.  

Finally, I develop an experimental approach to study the mechanisms leading to 

the production of Homeodomain-less isoforms, using the human Hoxa9 gene in human 

Embryonic Kidney(HEK)-293 cell cultures as an ex-vivo model. I find that the 

production of the Homeodomain-less form occurs only after the HD+ has accumulated 

in human cells, and that this is likely not the result of recursive splicing as the 

production of Hoxa9 Homeodomain-less isoforms ceases once transcription is blocked. 

I then show that other 5 Hox genes (i.e. Hoxa1, Hoxb1, Hoxb9 and Hoxc4) also produce 

Homeodomain-less isoforms in human cells (experiments carried out by Aalia Bano in 

the Claudio Alonso Lab). Finally, I show that Hox genes produce Homeodomain-less 

isoforms during mouse embryogenesis and adulthood, and that the balance between 

HD+ and Homeodomain-less changes across time and space, suggesting that the 

production of Homeodomain-less isoforms is regulated in vivo (this work was 

performed by Dr. Claudio Alonso, Sofia Pinho and mostly Dr. Aalia Bano). I extend our 

observation to other mammalian Homeodomain loci outside the Hox family, and show 

that these too produce alternative mRNAs that do not encode for a Homeodomain in a 

conserved manner. I then use freely available transcriptome-wide data to explore the 

production of DNA-binding domain lacking (DBD-less) proteins in mammals. I show 

that other major Transcription-Factor classes, like zinc finger, leucine-zipper and bHLH 

proteins, also show evidence for the production of DBD-less isoforms, but that 

Homeodomain-less isoforms display the largest amount of conservation across 

mammals. I observe the production of Homeodomain-less isoforms in all metazoa 
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analysed, as well as in plants, and see many instances where homologous 

Homeodomain genes produce Homeodomain-less isoforms in both C. 

elegans/Drosophila and mammals. Our results collectively show that differential RNA 

processing significantly remodels the availability of functional protein motifs in Hox 

products, and suggest that further studies on Homeodomain genes require the inclusion 

of this aspect of gene regulation. 

 

 
4.2 – Results 

4.2.1 – Differential RNA processing produces Hox mRNAs that do not encode for 

the Homeodomain. 

 

In this chapter, I investigate the consequences of mRNA processing on Hox protein 

domains. I have previously shown that the alternative processing of Hox mRNAs 

remodels open-reading frames and is thus expected to produce alternative protein 

isoforms from 64% of observed mRNA variants. Previous studies into the function of 

Hox proteins have uncovered a repertoire of protein modules that underlie important 

functions of this gene family. Among them, the DNA-binding Homeodomain stands out 

as the most remarkable Hox domain, as its sequence and function in mediating the 

transcriptional activation and repression of Hox targets are conserved across all Hox 

genes across metazoans. Additionally, the protein-protein interaction hexapeptide motif 

(YPWM/HX) has been shown to mediate the successful recruitment of PBC 

transcription factor proteins that work as Hox molecular partners by co-operatively 

binding to specific DNA targets in both arthropods and mammals. The latter motif is 

present in mammalian Hox Paralogue groups 1-8, while a more degenerate version 

containing a single conserved tryptophan amino acid (W) is present in Hox9-13. The 
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stretch of amino acids that stands between the HX and the Homeodomain (HD) is 

known as the linker region, and its length has been shown to act together with the HX to 

mediate the transcriptional activity of the Drosophila Hox gene Abd-A. Additionally, 

other Hox peptide motifs mediate general Hox function – the N-terminal SSYF, for 

instance, mediate the transcriptional activation of targets by Hox proteins. Other protein 

domains, like the Hoxa9 N-terminal activation domain, the M1 and M2 Hox10 domains 

and the Hoxa13 N-terminal domain, are specific to each vertebrate paralogue group, and 

are thus thought to have emerged in the ancestral Hox cluster at the base of the chordate 

lineage. 

As all of the aforementioned Hox protein domains have specific, experimentally 

defined functions, I decided to investigate their occurrence as well as their possible 

exclusion in Hox proteins by means of differential RNA processing. To do so, I first 

used a biased approach, scanning all alternative, as well as reference Hox protein 

isoforms (see Chapter 3) for domains that are already annotated in online protein 

domain databases. More specifically I used the pre-computed InterProScan protein-

domain predictions already present in the Hox isoform annotations of Ensembl. These 

predictions are biased, as they were performed by querying a given protein sequence for 

the existence of annotated domains, which are included in a variety of distinct protein-

domain member databases like SMART, PIRSF, Pfscan, PRINTS and Pfam. This 

approach adds the value of redundancy to our analysis, as parallel databases have 

different and specific domain-identity requirements. This means that a given Hox 

domain (like the Homeodomain) will be identified by more than one prediction tool, 

which reduces the amount of false negative results in our study. This is specially 

important for our study, as one of the characteristics I am willing to explore is exactly 

the exclusion of specific Hox protein motifs in alternative protein isoforms. 
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I first downloaded all InterProScan predictions for all Hox protein isoforms 

encoded by well-supported, GENCODE annotated protein-coding mRNAs (See Chapter 

3). This yielded a list of 32 annotated domains that are shared by Hox proteins within 

both the human and mouse Hox protein complements. I then tabulated the presence or 

absence of each of the 32 InterProScan domains in each of the alternative Hox proteins 

in both humans and mice, and used this information to hierarchically cluster Hox 

proteins based on the their protein-motif complement. With this approach, I find that I 

can recapitulate the paralogue group (PG) membership of the overwhelming majority of 

Hox isoforms using the motifs available. This is true for both mice and humans. 

Interestingly, I see that Hox isoforms that do not group with their respective PG 

members are clustered together, in both mice and humans, in a cluster that is 

characterized by the absence of most motifs, including the Homeodomain. This result 

opened up the possibility that a host of Hox proteins  (5 Hox loci in mice and 6 in 

humans) lack the Homeodomain. This result confirms that the differential processing of 

Hox mRNAs leads to changes in mRNA sequence predicted to significantly impact on 

the molecular function of Hox proteins.  

Unfortunately, motifs like the Hexapeptide and the SSYF domain are absent 

from InterPro member databases and their inclusion/exclusion could not be assessed 

with this analysis. To further confirm the absence of Homeodomain motifs in some 

mammalian Hox protein isoforms, as well as to probe the inclusion and exclusion of 

other, aforementioned motifs of relevance for Hox function, I next performed an 

unbiased search for common protein domains in all mammalian Hox isoforms using the 

motif-search tool MEME. This tool finds novel, ungapped motifs in an unbiased 

manner, by comparing all sequences provided in parallel. In our case, I submitted the 

previously mentioned protein sequences for all Hox isoforms in both mice and humans, 
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and chose to query this set of sequences for the 30 top motifs regardless of size (6-50 

amino acids in length). 

Our query recovered a list of 30 statistically significant protein motifs that are 

shared by 2 or more Hox protein isoforms. Upon initial inspection of the results, I found 

that the top ranked motif (Motif 1) in this list corresponds to the Homeodomain. 

Additionally, Motifs 2 and 4 respectively include the full sequences for both the 

Hexapeptide and the SSYF domains (Figure 4.1). I considered these results to be 

encouraging, in that, unlike the InterProScan predictions, our unbiased method is 

reliably able to assess the presence and absence of important Hox domains like the HX 

and the SSYF. As such, I repeated the hierarchical clustering analysis of Hox proteins 

based on the presence/absence of protein domains, only this time using the results of our 

MEME query. I find that, as with the previous analysis, most Hox isoforms group with 

other isoforms of the same paralogue group. Interestingly, I confirm that thirteen Hox 

isoforms lack the Homeodomain: Hoxa1, Hoxa9, Hoxa10, Hoxb1, Hoxb3, Hoxc11 and 

Hoxd12 in humans, Hoxa1, Hoxa9, Hoxa7 (two different isoforms), Hoxb9 and Hoxc4 

in mice (Figures 4.1C-D and Figure 4.2). This indicates that a variety of Hox genes 

produce mRNA isoforms that do not encode for a Homeodomain by differential RNA 

processing, and suggests that the production of DNA-binding domain-less Hox proteins 

by DRP is a common theme in mammalian Hox genes. Although the production of 

Homeodomain-less Hox isoforms has been shown for Hoxa1, Hoxa9 and Hoxb6 in 

mammals, as well as Hoxb7 in Xenopus laevis embryos (Fernandez & Gudas 2009; 

Shen et al. 1991; Hong et al. 1995; Fujimoto et al. 1998; Wright et al. 1987), I do not 

see Hoxb6-Homeodomain-less isoforms in our analysis. However, our observations 

significantly expand the repertoire of Hox genes that undergoes this differential RNA 

processing mechanism. Additionally, I see that most Homeodomain- 
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Figure 4.1 – An unbiased search for Hox peptide motifs recovers key Hox domains 

involved in the molecular function of Hox proteins (legend in the following page). 
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Figure 4.1 – An unbiased search for Hox peptide motifs recovers key Hox 
domains involved in the molecular function of Hox proteins. (A) Key Hox protein 
domains. Most mammalian Hox proteins contain the SSYF, hexapeptide (HX) and the 
Homeodomain. The amino acid sequence between the hexapeptide and the 
Homeodomain is usually called the Linker region (L). The SSYF motif mediates the 
activation of transcription by Hox transcription factors; The HX mediates the interaction 
between Hox and PBC proteins (see Figure 1.3B). The Homeodomain mediates the 
interaction between Hox transcription factors and their DNA targets. (B) An unbiased 
search for Hox protein motifs recovers key Hox protein domains. I used MEME (Bailey 
et al. 2009) as an unbiased method to inquire about the inclusion and/or exclusion of 
functional Hox domains (see panel A) in alternative Hox proteins. Our approach 
recovers key Hox protein domains, like the Homeodomain (MEME Motif 1), the HX 
(MEME motif 2) and the SSYF motif (MEME Motif 4). The number of each MEME motif 
represents its rank in the analysis, with the Homeodomain (Motif 1) being the most 
common. (C) The differential RNA processing of Hox mRNAs introduces combinatorial 
variation in the form of presence/absence of key Hox protein domains. Strikingly, I 
observe that there are thirteen isoforms in which the Homeodomain is not included in 
the final Hox protein. In some cases, like with the Mus musculus Hoxc4-001 isoform, 
Homeodomain-less isoforms contain other key Hox domains like the SSYF motif and 
the HX. (D) Distinct RNA processing modes are involved in the production of 
Homeodomain-less isoforms in mammalian Hox genes. The hierarchical clustering of 
Homeodomain-less encoding Hox mRNAs was compared to the differential RNA 
processing events involved in their production (See Chapter 3, Figure 3.4A). The two 
differential modes � and � are involved in the production of alternative Hox mRNAs 
that do not encode for the Homeodomain, indicating that different kinds of coordinated 
RNA processing modes can lead to similar outcomes at the level of Hox protein-
sequences. 
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Figure 4.2 – Hierarchical clustering of Hox peptide motifs groups alternative Hox 

isoforms of the same paralogue group  (legend in the following page). 
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Figure 4.2 – Hierarchical clustering of Hox protein motifs groups alternative Hox 
isoforms of the same paralogue group. Hierarchical clustering analysis of MEME 
results after an unbiased search for Hox protein motifs in all alternative Hox proteins of 
Mus musculus and Homo sapiens. I performed a hierarchical clustering analysis of all 
alternative Hox proteins in mammals, with the goal of understanding the variation 
introduced in Hox proteins by differential RNA processing. I observe that most Hox 
isoforms tend to cluster with other isoforms of the same PG. However, I see that two 
alternative Hoxa10 isoforms, HOXA10-003 and Hoxa10-004 in H. sapiens and M 
musculus, respectively, (red arrowheads) are more similar in sequence to products of 
the Hoxc10 locus than to other proteins of the Hoxa10 locus (blue arrowheads). This 
result suggests that differential RNA processing can generate enough variation in Hox 
protein sequences to remodel the identity of Hox proteins. Note that these alternative 
Hoxa10 proteins contain a Homeodomain (Motif 1). Additionally, I see that most 
Homeodomain-less proteins cluster together. In most cases, these Hox isoforms 
contain sequence motifs that are shared with other Homeodomain-containing Hox 
proteins, suggesting that Homeodomain-less isoforms could perform some Hox-like 
molecular functions. 
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less isoforms of Hox genes are produced by a mix of tandem transcriptional initiation, 

followed by intron retention and tandem alternative polyadenylation (Figure 4.1D), 

placing them in the β mode of Hox mRNA processing (See Chapter 3). 

Next, I studied the inclusion/exclusion by differential RNA processing of other 

protein domains of known importance for Hox protein function.  I observe that four Hox 

isoforms lack the YPWM motif but show the presence of the Homeodomain, as is the 

case with Hoxd8 in both humans and mice, as well as two Hoxb3 isoforms in humans. 

This suggests the interesting possibility that, in the aforementioned cases, differential 

RNA processing leads to Hox proteins that can bind DNA, but have decreased ability to 

interact with the major Hox8 molecular partners – PBC proteins. I also find that ten Hox 

protein isoforms lack both the Homeodomain and the YPWM motif (or the degenerate 

NNWN motif, in the cases of Hox9-13). However, these proteins are not featureless, as 

they share a number of motifs with “full-length” Hox isoforms, including the SSYF 

activation domain in at least in four cases (Figure 4.1C). 

Next, I wondered whether the Hexapeptide/Homeodomain Linker region was, in 

any case, remodeled by differential RNA processing. I see that, in one case – Hoxd8 – 

Differential RNA processing reduces the size of the linker region from 6 to 5 amino 

acids. Additionally, I see that Hoxb8 shows an identical remodeling of protein isoforms 

in humans (Figure 4.1C). These results are interesting, as the linker region of abd-A, 

the Drosophila melanogaster Hox homologue of mammalian Hox8 proteins, has been 

shown to act in conjunction with the Hexapeptide to promote an activation/repression 

switch in abd-A activity. In this specific case, a short peptide (PFER) within the Linker 

region, and not linker size per se, seems to be responsible for the postulated action of 

this region in concurrence with the Hexapeptide. Upon inspection, I have not identified 

any homologous PFER peptide in mammalian Hoxb8/Hoxd8 proteins. Rather, the use 



	 136	

of an alternative 3’ splice site in the processing of Hoxd8 mRNAs seems to delete an 

Alanine residue (A) from the linker region. As such, a putative role of this linker size 

variation remains unclear for Hox8 genes. 

Finally, I observe that the SSYF transcriptional activation domain seems to be 

included or excluded in Hox proteins, as a result of differential RNA processing. In our 

analysis, I find that genes of the paralogue groups Hox4-10 show the native presence of 

this domain (with the exceptions of Hoxa9 in both mice and humans, as well as Hoxb7 

in mice). However, I see that in four cases (Hoxc4, Hoxa7 and Hoxb9 in mice, Hoxa10 

in humans), alternative Hox proteins that do not have the Homeodomain show the 

presence of the SSYF domain (Figure 4.1C). This result indicates that the 

aforementioned Homeodomain-less proteins, two of which also include the Hexapeptide 

domain, have functional domains despite lacking the Homeodomain. Additionally, two 

alternative Hoxd8 isoforms that lack the homeodomain also lack the SSYF motifs. This 

is also seen in one Hoxa7 isoform in mice. The latter is the only domain-less isoform in 

our analysis, and this suggests that none of its amino acid sequence is recognized by our 

analysis as having commonalities with the Hox families. However, for the remaining 12 

Homeodomain-lacking isoforms, I see a complex, combinatorial exclusion/inclusion of 

other Hox functional domains. 

Together, these results indicate that the differential RNA processing of Hox 

mRNAs significantly remodels the anatomy of Hox proteins, as features that have been 

shown to mediate the main aspects of molecular role of Hox proteins, like the SSYF 

domain and the hexapeptide, seem to be combinatorially included/excluded or tinkered 

with by differential RNA processing. Additionally, I show that some Homeodomain-

lacking isoforms have Hox-specific functional domains, like the protein-interaction 

domain YPWM motif. These results indicate that Homeodomain-less isoforms are not 
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expected to completely lack function, and suggest that this mechanism plays an active 

role on Hox molecular function. 

 

 

4.2.2 – M1 and M2 motifs in Hox10 proteins: a case study in the evolution and 

alternative splicing of functionally important Hox protein motifs. 

 

Upon close inspection of the hierarchichal clustering analysis for Hox protein motifs 

(Figure 4.2), I noticed that two Hoxa10 isoforms, Mus musculus Hoxa10-004 and 

Homo sapiens Hoxa10-003 were grouped together with Hoxc10 isoforms, rather that 

with other isoforms of the Hoxa10 locus. This indicates that differential RNA 

processing in the Hoxa10 locus generates two alternative isoforms with protein motif 

complements that are closer to isoforms of another paralogous locus. This grouping is 

associated with the depletion of motifs in both M-Hoxa10-004 and H-Hoxa10-003, 

when compared with other Hoxa10 isoforms (Figure 4.2). 

 Hox10 paralogues are expressed along the A-P axis of developing mammals in 

developing lumbar regions of the vertebral column. These genes show a great degree of 

functional redundancy in this context, acting in coordination to mediate the repression 

of rib formation (a thoracic fate) in lumbar vertebrae (Wellik & Capecchi 2003). The 

repression of ribs during lumbar vertebral specification is a derived character in 

vertebrates, while the posterior extension of ribs along the A-P axis represents the 

vertebrate “ground-state” (Wellik & Capecchi 2003). 

 In a recent study, the N-terminal region of Hox10 genes, have been implicated, 

along with the paralogue group-specific Hox10 motif M1, in the repression of rib 

formation in mammalian vertebrae(Guerreiro et al. 2012). The M1 motif lies 
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immediately before the homeodomain and shows conservation across tetrapods, as does 

motif M2, which lies immediately after the homeodomain sequence (Guerreiro et al. 

2012), (Figure 4.3). M1 contains two amino acids, Serine and Threonine, both putative 

targets for phosphorylation, which when mutated into Alanine lead to a loss of rib-

repressing activity, indicating that not only the motif sequence but its phosphorylation 

state might underlie the repressive ability of Hox10 proteins (Guerreiro et al. 2012). 

 I first wondered whether alternative  splicing remodeled the availability of these 

motifs in protein products of the Hox10 paralogue group. Both (Guerreiro et al. 2012) 

and (Benson et al. 1995) report a Hoxa10 isoform that lacks the N-terminal region but 

includes the M1 and M2 motifs, as well as the homeodomain. I observe the occurrence 

of this isoform in our analysis, in both Mus musculus and Homo sapiens. To inquire 

about the effect of differential RNA processing in the availability of Hox10 protein 

motifs, I performed an unbiased MEME protein motif search, followed by a hierarchical 

clustering analysis of shared protein motifs. In addition to all differential Hox10 protein 

isoforms in both Mus musculus and Homo sapiens, I included the protein sequences of 

all Hox10 loci in the amphibian Xenopus tropicalis, the zebrafish Danio rerio, the 

cephalochordate Amphioxus, and the tunicates Ciona intestinalis and Oikopleura dioica 

(Figure 4.3A). First I find that an unbiased search for protein motifs recovers 16 motifs. 

I hierarchically clustered these results, using the presence or absence of motifs as a 

clustering character (Figure 4.3D). Our unbiased strategy successfully recovers a 

number of N-terminal motifs and the M1 and M2 domains, in addition to the 

Homeodomain (Figure 4.3F). Second, I find that in Homo sapiens, the Hoxa10 locus 

produces a second alternative mRNA that lacks the  
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Figure 4.3 – Alternative splicing of Hoxa10 generates atavistic Hox10 protein 

isoforms (legend in the following page).  
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Figure 4.3 – Alternative splicing of Hoxa10 generates atavistic Hox10 protein 
isoforms. (A) Classical phylogenetic relationships among the main clades of the 
chordate phylum, as well as the organisms used in this analysis. The phylum Chordata 
includes tunicates and cephalochordates, which are sister-taxa to the Vertebrates. (B) 
Cladogram of the phylogenetic relationships between chordate Hox10 proteins. A 
Neighbour-Joining phylogeny of chordate Hox10 proteins recovers relationships of 
orthology in most cases. However, the human HOXA10-201 isoform is not grouped 
within the Vertebrate Hox10 homologues. The protein sequences of all Hox9-14 genes 
were used in the case of Branchiostoma lanceolatum, as the relationships of orthology 
between these genes and the vertebrate Hoxa10 paralogues are unclear. (C) Key 
motifs in the Hox10 paralogue group in mammals. (D) Hierarchical clustering of Hox10 
protein motifs. The alternative Hoxa10 isoforms 003 and 004 of humans and mice, 
respectively, contain protein motifs that group them with the zebrafish Hoxb10a 
orthologue. Conversely, the motifs in the human HOXA10-201 isoform group it with 
other vertebrate Hox10. This result stands in contrast with the phylogenetic 
relationships showed in panel B, and indicates that not all amino acids in Hox10 
proteins are phylogenetically informative. (E) Conservation of Hox10 protein motifs 
across the Hox10 homologues of chordates. M1 and the M2 motifs are conserved 
beyond the tetrapod clade. The M2 motif is vertebrate-specific, while the M1 motif is 
present in full in at least two Hox10 orthologues of Danio rerio, with a slightly 
degenerate version in Urochordates.  These results indicate that the M1 motif was co-
opted for its rib-repressing developmental role during the evolution of tetrapods. (F) 
Main motifs recovered in an unbiased MEME analysis of chordate Hox10 protein-
sequences. 
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M1 and M2 motifs, as well as the Homeodomain, but includes a number of other Hox10 

motifs that are present in the N-terminal region of the full-length mammalian Hox10 

proteins, as well as in all vertebrate homologs (Figure 4.3D). This result shows that 

alternative splicing can generate Hox10 mRNAs that do not include the M1 and M2 

motifs or the Homeodomain, but contain motifs in the rib-repressing N-terminal region. 

Further, it suggests that Homo sapiens can generate a version of a Hox10 protein that 

has the ability to repress rib fates in lumbar regions without directly binding DNA 

targets. Third, I find that the M1 motif (MEME motif 2 – see Figure 4.3F) is present in 

three of the four zebrafish Hox10 paralogues (Figure 4.3D). I decided to inspect this 

result more closely by analyzing the amino acid alignments of the Hox10 proteins 

analysed, and find that two zebrafish homologues, Dre-Hoxa10b and Dre-Hoxa10b, 

contain the full sequences for both M1 and M2 (Figure 4.3E), while two others, Dre-

Hoxc10a and Dre-Hoxb10a, contain a slightly degenerate version of the M1 motif and a 

highly degenerate M2 sequence. Interestingly, the M1 sequence of the both isoforms 

has degenerated precisely on the aforementioned phosphorylation sites (Figure 4.3E): 

Finally, I find that tunicates but not cephalochordates, include a highly conserved 

version of the M1 motif; although this aspect has escaped our unbiased MEME search, I 

see the conservation of six out of seven amino acids in the M1 motif of Oikopleura 

dioica (including the Threonine phosphorylation site), and five out of seven in Ciona 

intestinalis, including both Serine and Threonine phosphorylation sites. 

 Our results suggest that the M1 motif has appeared in Hox10 sequences early in 

chordate evolution, before the emergence of lumbar regions of tetrapods, or indeed 

before the appearance of the Vertebrates altogether. Conversely, the M2 motif, as well 

as the N-terminal regions, are exclusive to the vertebrate lineage. As such, our analysis 

indicates that the rib-repressing function of the tetrapod M1 motif was co-opted from an 
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earlier, unknown basal chordate function. In Homo sapiens and Mus musculus, 

differential RNA processing generates isoforms that group with the zebrafish Hoxb10a 

paralogue, in that they lack N-terminal regions. This indicates that differential RNA 

processing can generate an atavistic mRNA isoform, perhaps maintaining a pleiotropic 

function in old developmental contexts, basal to the chordates, as well as a novel rib-

repressing function. Additionally, I see that another Homo sapiens Hoxa10 isoform 

lacks M1, M2 and the Homeodomain, but includes Vertebrate-specific N-terminal-

regions. As such, differential RNA processing of mammalian Hox10 genes changes the 

availability of rib-repressing protein motifs in at least two opposite ways.  

 

 

4.2.3 – The production of Hox mRNAs that do not encode for the Homeodomain is 

regulated in time and space during Mus musculus embryogenesis and adulthood. 

 

In previous sections, I explored the generation of Hox protein isoforms that lack key 

protein domains, like the HX and the Homeodomain. To better understand the 

production of Homeodomain-lacking Hox isoforms in mammals, we first designed 

primers for all isoforms of Hoxa1, Hoxa9, Hoxb1, Hoxb9 and Hoxc4 mRNAs, in both 

mice and humans (Figure 4.4). We chose to analyse Hoxa1 and Hoxa9 as these show 

the conserved production of Homeodomain-less mRNAs (Figure 4.2). In the case of 

Hoxb1, this gene produces a Homeodomain-less isoform in humans, and we wondered 

whether this was also true in mice, despite the lack of evidence for this differential RNA 

processing event in the GENCODE annotation. The same is true for Hoxb9 and Hoxc4 

in mice, where the existence of a Homeodomain-less isoform in humans is not observed 

(Figure 4.4). 
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 Next, we isolated Mus musculus embryos at five developmental stages (8.5, 9.5, 

10.5 11.5 and 12.5 d.p.c.). This was followed by the RNA isolation and subsequent RT-

PCR analysis for each of the five aforementioned genes in all five developmental 

stages. In all Hox genes analysed, we find that both a Homeodomain-containing and a 

Homeodomain-lacking mRNA isoform is observed during embryogenesis (Figure 4.4). 

This is the first report of a Hoxb1 Homeodomain-less mRNA in Mus musculus. 

Moreover, all Hox genes show expression at all developmental stages analysed (Figure 

4.4). In the case of Hoxa1, we see that the Homeodomain-containing isoform is the 

preponderant one across development, with the Homeodomain-less version of this gene 

being always present at lower concentrations, with an expression peak at 10.5 d.p.c. 

(Figure 4.4). The HD-containing isoform is also preponderant in the case of Hoxb9, 

being expressed at high levels in all developmental stages. In this case, the 

Homeodomain-less isoform only appears at 9.5 d.p.c. at low levels, increasing in 

expression between 10.5-12.5 d.p.c. (Figure 4.4). In the case of Hoxa9, both isoforms 

are present in all stages, and at high concentrations. Conversely, we find that for Hoxc4, 

The Homeodomain-less isoform is highly expressed in all stages, with the Hoxa4-full 

isoform being expressed in all stages, albeit at lower levels (Figure 4.4). Finally, the 

case of Hoxb1, we discover the existence of a Homeodomain-lacking isoform in Mus 

musculus, finding, surprisingly, that this Homeodomain-less isoform is preponderant in 

all stages analysed, and specially enriched in 8.5-10.5 d.p.c., while the Hoxb1-full 

isoform peaks in expression at 9.5-10.5 d.p.c (Figure 4.4).  

 Finally, Dr. Aalia Bano has recently observed the production of Homeodomain-

less isoforms for all five aforementioned Hox genes in human HEK293 cells. This 

indicates that the production of Hoxc4 and Hoxb9 Homeodomain-less isoforms is 

conserved between humans and mice, and significantly expands the  
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Figure 4.4 – Mus musculus Hox genes Hoxa1, Hoxa9, Hoxc4, Hoxb9 and Hoxb1 

produce mRNAs that do not encode for a Homeodomain in a developmentally 

regulated manner (legend in the following page).  
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Figure 4.4 – Mus musculus Hox genes Hoxa1, Hoxa9, Hoxc4, Hoxb9 and Hoxb1 
produce mRNAs that do not encode for a Homeodomain in a developmentally 
regulated manner. Molecular analysis of Homeodomain-less expression during the 
embryonic development and adulthood of Mus musculus. The Hoxa1, Hoxa9, Hoxc4, 
Hoxb9 and Hoxb1 loci produce alternative mRNAs that do not encode for the 
Homeodomain (see Figures 4.1 and 4.2). We observe the production of 
Homeodomain-less isoforms for all the aforementioned loci during the development of 
Mus musculus. With the exception of Hoxc4, all other loci produce large amounts of 
Homeodomain-less isoforms in a developmentally regulated manner. Hoxa9 produces 
Homeodomain-less isoforms throughout the developmental window analysed, while 
Hoxa1 and Hoxb9 show an increase in Homedomain-less production at 10.5 d.p.c. 
Conversely, Hoxb1 shows higher levels of Homeodomain-less isoforms at earlier 
stages (8.5-10.5 d.p.c.). In adult tissues, the production of Homeodomain-less isoforms 
also shows signs of specific regulation. Interestingly, the Homeodomain-less isoforms 
seem to be produced at similar rates as the Homeodomain-containing versions of 
Hoxa9, Hoxa1 and Hoxc4 in the adult Kidney. Conversely, the Homeodomain-less 
mRNAs from these loci seem to be mostly absent in the Brain and Uterus, with the 
exception of Hoxc4. These results show that Mus musculus produces isoforms that do 
not encode for the Homeodomain in a regulated manner across both developmental 
time and adult tissues. 
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documented cases of evolutionary conservation of this regulatory outcome in 

mammalian Hox gene expression. 

 Together, these results indicate that at least five of Hox genes express mRNA 

isoforms that do not encode for the Homeodomain in human cultured cells and 

throughout the development of Mus musculus. In mice, I see that this process is 

regulated in time, with the balance between Homeodomain-containing and 

Homeodomain lacking isoforms being different for different Hox genes. Interestingly, 

most of the signal corresponds to the Homeodomain-less in the cases of Hoxc4 and 

Hoxb1, indicating that this isoform could have an important function in early 

mammalian development. 

 To further understand the expression of Homeodomain-less isoforms in vivo, I 

dissected the Brain, Kidney and Uterine organs of adult female mice, and asked whether 

Homeodomain-less isoforms were expressed in wild-type adult mice (Figure 4.4). 

Using the same primers as in the aforementioned analysis, I find that Hoxa9 has low to 

no expression in the adult brain, but shows the expression of both Hoxa9-full and 

Hoxa9-Homeodomain-less isoforms in both Kidney and Uterus (Figure 4.4). In the 

Kidney, there is a balance between these two isoforms, whereas in the case of the 

Uterus, the Homeodomain-containing isoform is more preponderant. For Hoxa1, I find 

that the Homeodomain-containing isoform is the main mRNA from this locus in all 

tissues, but that the Homeodomain-less isoform is expressed at low levels in all three 

biological contexts (Figure 4.4). In the case of Hoxc4, I find that the Homeodomain-

less isoform, as with embryonic development, is preponderant in the adult Brain and 

Uterus, and has a similar, high expression to the Hoxc4-full isoform in the adult Kidney 

(Figure 4.4). For Hoxb1 and Hoxb9, I can only report the expression of the 

Homeodomain-containing isoforms in adult tissues (with the exception of Hoxb9 in the 
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brain, where no expression is seen at all) (Figure 4.4). Additionally, Dr. Aalia Bano has 

since confirmed the expression of both Hoxa1 and Hoa9 Homeodomain-less isoforms at 

the protein level (data not shown) in both embryogenesis and adult tissues, by Western 

Blot. This indicates that these mRNAs are translated, as annotated by GENCODE, and 

that the expression patterns at the mRNA level approximate the Hox isoform protein 

expression level. 

 Together, these results confirm the existence of Hox mRNA isoforms that do not 

encode for the Homeodomain in both embryonic development and adult physiology, 

and show that the in vivo balance between Homeodomain-containing and 

Homeodomain-lacking isoforms changes in time and space in Mus musculus.  These 

results further solidify the notion that the production of Homeodomain-lacking isoforms 

is widespread in mammalian Hox genes, and points to an important role of differential 

RNA processing in the regulation of Hox gene expression in embryonic development 

and adult physiology. 

 

 

4.2.4 – The human gene Hoxa9 produces mRNAs that lack the Homeodomain. 

 

In order to understand the differential RNA processing mechanism by which 

Homeodomain-less Hox proteins are formed, I decided to study the production of 

mRNA isoforms that do not encode for the Homeodomain from the human Hoxa9 gene. 

 I chose to focus on this gene, as Hoxa9 shows the conserved production of 

Homeodomain-less forms in both mice and humans (Figure 4.5). Additionally, the 

Homeodomain-lacking (Homeodomain-less) Hoxa9 isoform has been shown by others 

to be conserved between mammals and birds. The same authors show that this 
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Homeodomain-less Hoxa9 transcript seems to be expressed throughout embryogenesis, 

being specially enriched in the developing genital tract, kidney, forelimb and tail of Mus 

musculus  (Dintilhac et al. 2004). These data suggest a tissue specific effect of Hoxa9 

isoforms that lack a Homeodomain.  

Furthermore, the alternative Hoxa9 isoform in question does not encode for a 

Hexapeptide (an AANWLH sequence in the case of Hoxa9), a peptide that has been 

shown to mediate Hoxa9 protein-protein interactions with Pbx1a. However, Shen and 

colleagues (Shen et al. 1996) have shown that a mutation in the central tryptophan 

amino acid of this domain (W) had no negative effect on the ability of Hoxa9 to bind to 

Meis1 and stabilize this heterodimer’s interactions with DNA. Even though the Hoxa9 

N-terminal region alone does not stabilize Meis1 binding to DNA, as mutations that 

delete the Hoxa9 carboxy-terminal Homeodomain but maintain the 204 N-terminal 

amino acids abolish the DNA-binding ability of Hoxa9 and its ability to stabilize Meis1 

DNA binding. The authors of this study then show that the ability of Hoxa9 to bind 

Meis1 resides in the first 61 amino acids (deemed the MEIS interaction motif or 

“MIM”), but that for this heterodimer to be stably bound to DNA, both N-terminal and 

Homeodomain regions need to be present in the Hoxa9 molecular partner.  

These results are relevant for ascribing a functional role to the Homeodomain-

lacking Hoxa9 form (Hoxa9-Homeodomain-less), as this protein isoform includes the 

first 105 amino acids of the full Hoxa9 (Hoxa9-Full) isoform, and thus the MIM, as 

well as a novel S amino acid added just before the STOP codon. As such, this data 

indicates that the Hoxa9-Homeodomain-less protein does not stabilize Meis1 

interactions with the DNA, but that it can bind Meis1. In this scenario, Hoxa9-

Homeodomain-less could function as a dominant negative. Furthermore, this isoform 

has been shown to mediate the leukaemogenic function of Hoxa9 in Acute Myeloid  
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Figure 4.5 – Alternative splicing of Hoxa9 produces Homedomain-encoding and 

Homeodomain-less mRNA isoforms in mammals (legend in the following page).  
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Figure 4.5 – Alternative splicing of Hoxa9 produces Homedomain-encoding and 
Homeodomain-less mRNA isoforms in mammals. The Hoxa9 locus produces 
alternative mRNAs that do not encode for the homeodomain in a conserved manner. In 
both mice and humans, the GENCODE-annotated alternative Hoxa9 mRNAs are 
produced, first, by the excision of an intronic sequence, which leads to a frameshift in 
the Hoxa9 open-reading frame and a consequent premature STOP codon. However, 
transcriptional elongation continues across the locus, and a second constitutive intron 
is excised. The Homeodomain-encoding Homeobox sequence, lying downstream of 
these processing events, becomes included in the 3’UTR of alternative Hoxa9 mRNAs. 
The splice-sites that mediate the excision of the alternative Hoxa9 intron are conserved 
across all Vertebrates (data not shown). U1: binding site for the U1 snRNP, which 
forms part of the eukaryotic spliceosome, recognizing 5’-splice sites. 
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Leukemia (AML), despite its inability to bind DNA (Stadler et al. 2014). These authors 

engineered a version of the Hoxa9 gene that does not undergo alternative splicing, and 

show that this Hoxa9 version, forced to produce a version of the gene that includes the 

Homeodomain, significantly reduced the leukaemogenicity of this locus (Stadler et al. 

2014). As such, it becomes clear that the control of the differential RNA processing of 

Hoxa9 is important, as the production of a Hoxa9 isoform that does not encode for a 

Homeodomain is evolutionary conserved, developmentally regulated and sufficient for 

the leukaemogenicity of Hoxa9. 

I thus inquired into the mechanism of Hoxa9-Homeodomain-less production by 

differential RNA processing. To study this, I first compared the reference and 

Homeodomain-less mRNA isoforms of Hoxa9, in both mice and humans. I find that in 

both animal models, the evidence shows that Hoxa9-Homeodomain-less mRNAs differ 

from the reference HD-containing isoform due to the exclusion of a 173-ribonucleotide 

region encoding for a portion of the N-terminal domain (Figure 4.5). This exclusion is 

mediated by an alternative splicing that acts on consensus intronic splice sites  (a donor 

GU dinucleotide, as well as an acceptor splice site AG, Figure 4.5). This splicing event 

leads, in turn, to the introduction of a translational frame-shift, as the number of 

ribonucleotides that is excluded from the Hoxa9-Homeodomain-less protein-coding 

sequence is not a multiple of 3. This frame-shift is responsible for the introduction of a 

novel codon downstream of the spliced intron (AGT, encoding for a Serine amino acid), 

which is immediately followed by an early STOP codon. An additional splicing event 

that occurs downstream, joining the presumptive N-terminal exon with what a 3’-exon 

that would otherwise encode for the Homeodomain, appears to be constitutive as it is 

observed in both isoforms. Due to the aforementioned frame-shift however, this 

constitutive splicing event joins two portions of the 3’UTR in the case of the Hoxa9-
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Homeodomain-less isoform, and the Homeodomain-encoding region is thus included in 

the 3’UTR of Homeodomain-less forms (Figure 4.5). 

 To better understand this splicing event, I first looked for the conservation of 

Hoxa9-Homeodomain-less alternative splicing sites across animals. Using the UCSC 

genome browser, I find that both the 5’-donor and the 3’-acceptor splice-sites are 

ultraconserved, being present in all 100 vertebrates included in the precomputed UCSC 

Multiz alignments (data not shown). This includes the zebrafish (Danio rerio), as well 

as the lamprey, and shows that the minimal set of cis-regulatory sequences that mediate 

the Homeodomain-less splicing are conserved across all vertebrate genomes. I next used 

the human Splicing Finder tool (Desmet et al. 2009) to scan the human Hoxa9 locus for 

additional splicing motifs, such as exonic splicing enhancers (ESEs) and/or silencers 

(ESSs), as well as a putative branch point  - a ribonucleotide, usually adenine, that is 

responsible for interacting with the donor splice site to create a lariat-like splicing 

intermediate. This is a crucial step in a successful splicing reaction, as it precedes both 

the cleavage of the intron at the 3’-splice site, as well as the ligation of exons. Using this 

approach, I find that the intronic sequence, absent in Hoxa9-Homeodomain-less, 

includes a strong branch point (data not shown). Additionally, many splicing enhancers 

accumulate just upstream of this intron, being among the strongest predicted splicing 

enhancers in the whole region. I obtain an identical result when I scan the cDNA for the 

full Hoxa9 mRNA isoform (lacking, as such, the second, constitutive intron) using HSF 

(Desmet et al. 2009). These results suggest that the mRNA sequence for the full Hoxa9 

mRNA contains all the cis-regulatory regions that are necessary for the formation of the 

Hoxa9-Homeodomain-less isoform, and led us to the hypothesis that Hoxa9-

Homeodomain-less could be formed simply by the excision of the 173 bp intron at the 

level of splicing.  
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4.2.5 – The Hoxa9 mRNA sequence is sufficient for the production of alternative 

mRNAs that lack the Homeodomain. 

 

 To test the hypothesis that Hoxa9-Homeodomain-less mRNAs are formed by the 

excision of an intronic region in Hoxa9-HDcontaining mRNAs, I first started a 

HEK293-EBNA cell culture in the host Laboratory (generously provided by Souvik 

Naskar in Guy Richardson’s Laboratory at Sussex University). At 70% confluence in 

T75 flasks, HEK293 cells were split and seeded in 6-well plates, and left to rest 

overnight. The following day, I prepared plasmid-lipid complexes at room temperature 

in a sterilized fume hood, mixing Lipofectamine 3000 and 2 μg of plasmid DNA in 

Opti-MEM (reduced serum medium) at a ratio of 3:1 (m/v). The plasmid DNA used was 

a commercially available vector containing an untagged human Hoxa9-full cDNA 

clone, downstream from a Cytomegalovirus (CMV) promoter – hereafter referred to as 

pCMV-Hoxa9, see Chapter 2 and (Figure 4.6A). To assess the efficiency of transient 

transfection, I performed an identical protocol using the same amount of a GFP-

containing plasmid under the control of a CMV promoter (pCMV-GFP) and observed 

the results on an inverted fluorescent microscope. I found that 70-90% of cells 

expressed GFP at both 12h and 24h after transfection (Figure 4.6B). 

 I thus transfected HEK293 cells with the pCMV-Hoxa9 plasmid using the 

aforementioned protocol, and assessed the cellular expression of this vector by first 

performing timed RNA isolations at 0h, 3h, and 16h after transfection, in three 

independent biological replicates. These samples were then subjected to cDNA 

production and PCR, using two sets of primers: one primer pair for the amplification of 

a region in the GAPDH mRNA (used as a reference gene), as well as a second primer 

pair that span the excised alternative Hoxa9 intron in the Homeodomain-less mRNA  
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Figure 4.6 – The Homeodomain-encoding cDNA of Hoxa9 is sufficient to produce 

the Homeodomain-less mRNA upon overexpression (legend in the following page).  
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Figure 4.6 – The Homeodomain-encoding cDNA of Hoxa9 is sufficient to produce 
the Homeodomain-less mRNA upon overexpression. (A) Hoxa9 construct used in 
HEK293-EBNA transfections. This construct contains the cDNA of the Homeodomain-
containing Hoxa9 isoforms (see Figure 4.5), lacking the Hoxa9 constitutive intron. (B) 
Co-transfection of human HEK293-EBNA cells with the pCMV-GFP and pCMV-Hoxa9-
001 plasmids. Expression of GFP was observed upon transfection of a CMV promoter-
driven GFP construct, along with a pCMV-Hoxa9 plasmid (in equal molar ratios). Most 
transfections had an efficiency of 70-90%. (C) Timed expression of Hoxa9 after 
transfection of HEK293-EBNA cells with the pCMV-Hoxa9-001 plasmid. Following 
transfection of the pCMV-Hoxa9-001 in HEK293-EBNA cells, I observe an initial 
accumulation of the Homeodomain-encoding Hoxa9 isoform after 3 hours, which then 
decreases in expression at 16 hours, as the Hoxa9 Homeodomain-less isoform 
accumulates. Upon treatment with Actinomycin-D at 3 hours, I see that this dynamic 
expression of alternative Hoxa9 isoforms is abolished, pointing to a link between the 
differential RNA processing of Hoxa9 and transcriptional input. Note that untransfected 
cells express small amounts of the Homeodomain-encoding Hoxa9 isoform, but not the 
Homeodomain-less mRNA. (D) Quantification of differential RNA processing of Hoxa9 
after transfection. The observed qualitative switch in the outcome of Hoxa9 differential 
RNA processing (between 3 and 16 hours) is statistically significant in three 
independent biological replicates (p= 0.0093, ratio paired t-test) (E) Differential RNA 
processing of mRNAs from the pCMV-Hoxa9-001 plasmid. To confirm that the pCMV-
Hoxa9-001 plasmid produces the Homeodomain-less Hoxa9 isoform, I performed an 
expression analysis of our RNA samples using a forward primer that is complementary 
to the multiple cloning site, and a reverse primer that anneals downstream of the 
alternative Hoxa9 intron. In three independent replicates, I observe that the pCMV-
Hoxa9-001 plasmid produces the Homeodomain-less isoform(confirmed by 
sequencing).  
 

  



	 156	

isoform. The latter primer pair is expected to recognize both the Hoxa9-full and the 

Hoxa9-Homeodomain-less isoforms, but the corresponding amplicons vary in size, with 

the Hoxa9-Homeodomain-less amplicons being 173 b.p. shorter that the Hoxa9-full-

derived amplicons (Figure 4.6C). 

 I find that upon transient transfection with a pCMV-Hoxa9 plasmid, products of 

the expected size are detected for Hoxa9-full in three biological replicates. Although 

untransfected cells (0h) also show expression of Hoxa9-full, the expression of this 

isoform is much higher at 3h in transfected cells, showing a decrease in expression at 

16h. In the case of the Hoxa9-Homeodomain-less, no expression is detected in 

untransfected cells. In transfected cells however, I see a small but clear expression of 

Hoxa9-Homeodomain-less in HEK293 cells. At 16 hours after transfection, the 

expression of Hoxa9-Homeodomain-less is maximal, becoming the dominant Hoxa9 

isoform. These results show that the expression of a Hoxa9 mRNA isoform that does 

not encode for a Homeodomain is detected in HEK293 cells and suggests that the cis-

regulatory sequences that are present in the cDNA of the Hoxa9-full isoform are 

sufficient to produce the Hoxa9-Homeodomain-less within 3 hours post-transfection 

(Figure 4.6C-D).  

 The fact that untransfected HEK293 cells express Hoxa9 mRNAs (full variant) 

introduced the possibility that the Homeodomain-less Hoxa9 isoform could also have 

been produced endogenously after transfection, possibly by transcriptional activation of 

the endogenous Hoxa9 locus by either the plasmid Hoxa9 protein or one of its targets. 

To confirm that the Hoxa9-Homeodomain-less mRNA isoform was indeed being 

produced by the pCMV-Hoxa9 plasmid, I performed PCRs on cDNA samples from 

pCMV-Hoxa9 transfected HEK293-EBNA cells, using the aforementioned endogenous 

Hoxa9 reverse primer, as well as a forward primer that anneals to the plasmid’s multiple 
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cloning site (MCS) sequence. This sequence is present immediately downstream of the 

CMV promoter and immediately upstream of the Hoxa9-full cDNA (see Figure 4.6A), 

and is as such expected to be transcribed and present in plasmid-derived mRNAs. With 

this experimental set-up, I confirmed the existence of a plasmid-derived Hoxa9-

Homeodomain-less band after by sequencing (Figure 4.6E). Briefly, two plasmid-

derived PCR bands of a size compatible with Hoxa9-Homeodomain-less were extracted, 

purified, premixed with either the MCS-specific forward primer used in PCR 

amplifications or the reverse endogenous Hoxa9 primer. These PCR results were then 

sent to sequencing (performed by Eurofins, please see Chapter 2 for further details). 

Both reactions yielded sequences that are identical in all aspects to the annotated human 

Hoxa9-Homeodomain-less mRNA sequence, with an exception made for a stretch of 

sequence upstream of Hoxa9 that corresponds to the MCS. This result confirmed that 

the Hoxa9-Homeodomain-less mRNA isoform is indeed produced from the pCMV-

Hoxa9 plasmid, rather than resulting from the trans activation of the endogenous Hoxa9 

locus.  

 

 

4.2.6 - Hoxa9 produces mRNAs that lack the Homeodomain in a transcriptional-

dependent manner. 

 

 Next, I wondered whether the production of a Hoxa9-Homeodomain-less mRNA 

isoform required transcriptional input. I advanced this hypothesis due to three 

observations, the first by Hatton and colleagues (Hatton et al. 1998), who showed that 

the Drosophila melanogaster Hox gene Ultrabithorax (Ubx) generates alternative 

splicing isoforms by a mechanism named recursive splicing (or re-splicing), in which a 
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long intron-containing Ubx mRNA isoform is first produced by transcription, being then 

progressively spliced by intron excision and exon-exon ligation. The second observation 

comes from our data, as I see that the cDNA sequence of a full-length Hoxa9 mRNA is 

sufficient to produce the Hoxa9-Homeodomain-less in human cells. Finally, I have 

observed that the full length, Homeodomain-encoding Hoxa9 isoform is first produced, 

as expected, after transfection, but then decreases in quantity as time elapses post-

transfection (Figure 4.6C-D). Concurrently, the expression of the Hoxa9-

Homeodomain-less accumulates, as the reference isoform declines (Figure 4.6C-D). 

Together, these observations open up the possibility that an alternative splicing switch 

might mediate the conversion of full-length Hoxa9 isoforms into Homeodomain-less 

forms. This is an exciting possibility, as the conversion of one mRNA into another by 

simple intron excision would provide a rapid switch in gene expression, as all the 

already-transcribed full-length Hoxa9 isoforms present in a cell could still be post-

transcriptionally converted into Hoxa9 isoforms that do not encode for the 

Homeodomain. If this is indeed the case with Hoxa9, the production of Hoxa9-

Homeodomain-less relies on the existence of Hoxa9-full isoforms. Furthermore, I 

expect that if transcriptional activity is blocked 3h after transfection, a time at which I 

have observed the accumulation of the Hoxa9-full isoform and see residual or no 

expression of the alternative Hoxa9-Homeodomain-less isoform, I should nevertheless 

observe the accumulation of Hoxa9-Homeodomain-less isoforms at 16h post-

transfection. 

 However, I observe that in three biological replicates, and upon transcriptional 

blocking by Actinomycin-D at the 3-hour mark (see Chapter 2), the expression of 

Hoxa9-Homeodomain-less is almost non-existent at 16h. At the same time-point, I 

observe that a highly unstable control mRNA, c-myc, is also seen to decrease in  
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Figure 4.7 – Transcription factors of different classes produce mRNAs that do not 

encode for the DNA-binding domains across Metazoa (legend in the following page). 
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Figure 4.7 – Transcription factors of different classes produce mRNAs that do 
not encode for the DNA-binding domains across Metazoa. (A) Proportion of loci 
that produce isoforms lacking the DNA-binding domain across major transcription 
factor classes in mammals. I used a computational approach to scan the protein 
sequences of all major mammalian transcription factor classes, looking for evidence of 
alternative isoforms that lacked the DNA-binding domain (see Text). All major 
transcription factor classes produce alternative isoforms that lack the DNA binding 
domain. 20-30% of Homeodomain-encoding loci produce alternative isoforms that lack 
the Homeodomain in mammals. In the case of basic leucine zipper loci, this number is 
higher, being close to 30% in H. sapiens, and above that figure in M. musculus. (B) 
Proportion of loci that produce isoforms lacking the DNA-binding domain across major 
transcription factor classes in invertebrates. In both Drosophila melanogaster and 
Caenorhabditis elegans, I observe that the proportion of loci that produce DBD-less 
isoforms is less common than in mammals. However, all transcription factor classes 
have alternative isoforms that lack the DBD in both organisms. These results indicate 
that differential RNA processing remodels the protein sequences of all major 
transcription factor classes, and suggests that this regulatory mode could have a 
significant impact on the transcriptome of bilateral animals. 
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expression after Actinomycin-D treatment (Figure 4.6C-D). Nonetheless, this is not the 

case with the reference gene GAPDH, which is clearly expressed at 16h after 

Actinomycin-D treatment. This result indicates that the lack of Hoxa9Homeodomain-

less gene expression is selective, and not just due to apoptosis as a consequence of 

generalized transcriptional blocking. At 16h post-transfection after transcriptional 

blocking, I also observe that and the ratio of full/Homeodomain-less Hoxa9 isoforms is 

similar to untransfected cells. Together, these results suggest that re-splicing is not the 

mechanism by which Hoxa9Homeodomain-less is formed. Being that as it is, this 

experiment effectively blocks all transcriptional input in HEK293 cells, and could 

interfere with the production, by transcription, of endogenous trans-regulators that can 

mediate the conversion of one Hoxa9 mRNA isoform into another. Although unlikely, 

this is certainly a possibility to be experimentally explored in the future. 

 Re-splicing has been hypothesized as a mechanism by which large introns are 

progressively removed from pre-mRNAs. Indeed, the Drosophila melanogaster Ubx 

transcriptional unit spans introns that are two orders of magnitude greater than the 173 

bp alternative intron of Hoxa9. In this case, Hatton and colleagues have speculated that 

the production of a long Ubx mRNA, followed by the progressive excision of a 74 Kb 

intron in a series of small fragments, effectively reduces the competition among the 

various Ubx splice-sites. If this is the case, recursive splicing would be the exclusive 

property of genes like Ubx, whose transcriptional unit spans approximately 80 Kb. 

However, a genome-wide study in Saccharomyces cerevisiae by Tardiff and colleagues 

(Tardiff et al. 2006) has shown that at least 90% of yeast genes undergo post-

transcriptional splicing. As the average gene length is 1.6 kb in the budding yeast (based 

on the Ensembl Fungi database), this implies that recursive splicing could, in principle, 

occur in smaller eukaryotic genes like those of mammals. 



	 162	

 Together, the results in this section show that the production of the human 

Hoxa9-Homeodomain-less mRNA isoform is independent of Hoxa9 promoter activity. 

Additionally, I see that the Hoxa-9Homeodomain-less mRNA isoform accumulates only 

after the full length Hoxa9 isoform has been produced, and that this accumulation is 

paralleled by a decline in Hoxa9-full expression. This indicates that all the cis-

regulatory sequences that are required for the alternative splicing of Hoxa9 are present 

in the Hoxa9-full cDNA. Finally, I observe that a hypothesized post-transcriptional 

splicing switch, that would convert full length Hoxa9 mRNAs into Hoxa9-

Homeodomain-less isoforms is unlikely but not disproven by our experiments.  

Our results, as well as the results of others, collectively support a mechanistic 

model in which a quick, concentration-dependent regulatory switch leads to the 

production of Hoxa9-Homeodomain-less isoforms in the Hoxa9 locus. This regulatory 

switch relies on transcription, but not on the specific transcriptional input of the native 

Hoxa9 promoter; it also relies on the successful splicing of a cryptic intron, possibly by 

de-repression of exonic splice-sites. Together, these two levels of differential RNA 

processing lead to the production of Hoxa9 proteins that do not carry the homeodomain 

but include amino acids that mediate the interaction of Hoxa9 and co-factors. 

Additionally, this switch was observed to lie at the interface between proliferation and 

differentiation cell states, causing the former in the case of human AML (Stadler et al. 

2014). I hypothesize that the quick production Homeodomain-less proteins plays a role 

in the regulation of Hox partnership in molecular interactions with co-factors (hetero- 

and homo-dimers), which can have an indirect effect on their recognition of DNA 

targets. Thus, this differential RNA processing can have a knock on effect on global 

Hox target recognition and function, leading to consequences at the level of cellular 

behaviour in development and disease. 
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4.2.7 – All major Transcription Factor families produce mRNA isoforms that do 

not encode for a DNA-binding domain in a conserved manner across metazoans. 

 

I have previously shown that a host of Hox genes are expected to produce 

Homeodomain-lacking protein isoforms in both mice and humans (see section 1 of this 

chapter). I have also experimentally shown that for at least 5 Hox genes, the expression 

of mRNAs that do not encode for a Homeodomain is observed and appears to be 

regulated in time and space throughout the development and adulthood of Mus 

musculus (see section 2 of this chapter). Additionally, I have studied the differential 

RNA processing of the human Hoxa9 gene, and observed that the production of the 

Hoxa9-Homeodomain-less isoform relies, first, on the initial expression of the Hoxa9-

full isoform, and then surges in expression as the Hoxa9-full isoform becomes less and 

less preponderant. Together, these results indicate that differential RNA processing 

generates a number Hox isoforms that lack the Homeodomain, and that this differential 

RNA processing activity appears to be regulated. 

 To understand whether this is a Hox-specific RNA processing routine, I next 

asked whether I could observe evidence for the production of Homeodomain-less 

isoforms in other Homeodomain-containing genes that lie outside the Hox gene family. 

To this end, I retrieved the identifiers for all GENCODE-annotated Homeodomain 

genes for both mice and humans, using the Homeodomain SMART ID as a filter 

(SM00389). This yielded a list of 247 genes in humans, and 269 genes in mice. I then 

used this list of genes to retrieve all GENCODE-annotated alternative protein isoforms 

for these genes, as well as the InterProScan domain predictions attached to each 

alternative Hox protein. Using this approach, I find evidence of widespread production 
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of alternative isoforms that do not encode for the Homeodomain in both humans and 

mice. Briefly, I see that 50 genes produce a total of 77 Homeodomain-less isoforms in 

humans, with 24 Homeodomain genes producing 30 Homeodomain-less isoforms in 

mice. Interestingly, 12 of these loci are the orthologous between mice and humans, 

indicating that, and in the previously reported cases of Hoxa1, Hoxa9, Hoxb1, Hoxb9 

and Hoxc4, the production of Homeodomain-less isoforms is conserved across the 

mammalian lineage. 

 To expand on these results, I performed a similar analysis in both Drosophila 

melanogaster and Caenorhabditis elegans. In these organisms, I respectively retrieved a 

list of 102 and 99 Homeodomain genes. Interestingly, I find that at least 7 genes 

produce 9 Homeodomain-less isoforms, one of which is Antennapedia (Antp), a 

homologue of mammalian Hox groups 6-8. In the case of C. elegans, I find that 4 

Homeodomain genes produce 6 Homeodomain-less isoforms. Given that both the Mus 

musculus gene Hoxa7 and its Drosophila melanogaster homologue, Antp produce 

Homeodomain-less isoforms, I wondered whether there were more instances of 

conservation in the production of Homeodomain-less isoforms across metazoans. To 

this end, I retrieved homology annotations from both Ensembl and HomeoDB 

(http://homeodb.zoo.ox.ac.uk), as well as reports from previously published research 

papers. I find that bicoid, a distantly related homologue of Hoxb3, produces a 

Homeodomain-less isoform as does its Hoxb3 homologue in humans. Furthermore, the 

Drosophila melanogaster ladybird late (lbl) produces a Homeodomain-less mRNA 

isoform, as does its human homologue LBX2. In the case of C. elegans, the 

Homeodomain-containing dve-1 locus produces a Homeodomain-less isoform as does 

its human counterpart SATB1. Similarly, the C. elegans Homeodomain gene ceh-44 

locus produces a Homeodomain-less isoform, as do the human and mouse counterparts, 
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respectively CUX1 and Cux1. Between Drosophila melagonaster and C. elegans, I see 

that in at least two cases, homologous Homeodomain-containing genes produce 

Homeodomain-less isoforms in at least one case: the Drosophila homothorax locus 

(hth), homologous to the C. elegans gene unc-62. This result is interesting as 

homothorax is a Hox co-factor in Drosophila. Another Hox co-factor, the human PBX1 

gene, is also observed to form a Homeodomain-less isoform.  

These results suggest that this mechanism is not restricted to Hox genes, being 

widespread across the Homeodomain-containing loci of different species. Second, they 

point to the extreme conservation of Homeodomain-less producing loci across 

evolution. Finally, these results show that Hox molecular partners like PBX1 and 

hth/unc-62 also produce Homeodomain-less forms in a number of distantly related 

species. 

Finally, I wondered whether other major Transcription-factor families also 

produce DNA-binding less isoforms by differential RNA processing. To answer this 

question, I retrieved all human, mouse, Drosophila and C. elegans genes with annotated 

basic leucine zipper, zinc finger and helix-loop-helix DNA-binding domains (SMART 

IDs SM00338, SM00355 and SM00353, respectively). Next, I retrieved all GENCODE 

annotated protein isoforms for these genes in humans and mice, as well as 

Flybase/Wormbase annotated isoforms for Drosophila and C. elegans, respectively, 

querying for the presence of a DNA-binding domain in all cases. Interestingly, I note 

the occurrence of alternative mRNA isoforms that do not encode for the DNA-binding 

domain in all Transcription Factor Families and all species analysed (Figure 4.7). 

However, I find that the cross-metazoan conservation of DNA-binding less isoforms is 

less pronounced when compared to the Homeodomain gene family (Figure 4.7). The 

basic leucine zipper gene family shows 1 locus (CREM/Crem) with the conserved 
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production of DNA-Binding Domain-less (DBD-less) across mammals. In the helix-

loop-helix family, three genes (Ahrr, Tfeb and Mlxip) produce DBD-less isoforms in 

both mice and humans. In both Transcription Factor families, no conserved production 

of DBD-less isoforms exists beyond the mammalian lineage. Finally, I see that 7 loci of 

the zinc finger transcription-factor family produce DBD-less isoforms in both mice and 

humans. Of these, one (ZNF280D/Zfp280d/row) also produces a zinc finger-less 

isoform in Drosophila. The C. elegans zinc finger gene sma-9 and its homologous Mus 

musculus zinc finger locus Hivep3 also show the conserved production of DBD-less 

isoforms. However, The zinc finger family is 2.2 to 3.2 times more numerous than the 

Homeodomain family in all four species analysed. As such, I conclude that the 

production of Homeodomain-less isoforms is widespread across evolutionary lineages 

and extends to genes outside the Hox clusters. I also see that the production of proteins 

that lack a DNA-Binding Domain is expected to extend to other Transcription-Factor 

Families and is present across metazoans. However, the relative conservation of 

Homeodomain-less isoform production across great evolutionary distances indicates a 

preponderant role for this differential RNA processing mode in animal development, 

physiology and evolution. Interestingly, I observe that the Homeodomain gene HAT14 

produces an mRNA isoform that does not encode for the Homeodomain in both 

Arabidopsis thaliana and Solanum tuberosum (potato). This underlines the 

pervasiveness of this differential RNA processing outcome across multicellular 

eukaryotes. 
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4.3 – Discussion. 

 

Differential RNA processing has been previously shown to lead to the production of 

Transcription Factor proteins that do not possess DNA-binding domains (DBDs) 

(Taneri et al. 2004). However, the precise RNA processing events by which these 

isoforms are generated remained unclear. Previous studies have examined the effects of 

alternative splicing on the production of mRNA isoforms that do not encode for a DBD 

(Taneri et al. 2004). Here, I focus on the Hox gene family, which encodes for 

Transcription Factors, which serve key functions the developmental of most animals. 

The mammalian Hox genes Hoxa1, Hoxa9 and Hoxb6 a have previously been shown to 

generate mRNAs that do not encode for the homeodomain (Fernandez & Gudas 2009; 

Shen et al. 1991; Hong et al. 1995; Fujimoto et al. 1998). 

 In this chapter, I employ an unbiased approach to the study of the effects of Hox 

differential RNA processing on the composition of Hox protein sequences in mammals. 

Using the MEME motif-finding tool, as well as the hierarchical clustering of MEME 

results, I observe that this unbiased method successfully recovers key Hox protein 

domains, like the Homeodomain, the PBC-interacting Hexapeptide and the SSYF 

transcriptional activation domains. When I inspect the alternative occurrence of these 

key motifs in alternative Hox isoforms, I find that differential RNA processing 

introduces significant variation in the Hox proteome. Among this variation, I 

corroborate previously observed Homeodomain-less protein isoforms for Hoxa1 and 

Hoxa9 but not Hoxb6. Additionally, I see that Homo sapiens loci Hoxa10, Hoxb1, 

Hoxb3, Hoxc11 and Hoxd12 all produce protein-coding mRNA isoforms that lack the 

Homeodomain. In Mus musculus, I observe that Hoxa1, Hoxa7, Hoxa9, Hoxb9 and 

Hoxc4 produce mRNAs that do not encode for the Homeodomain.  
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 In the case of Hoxa9, the production of Homeodomain-less isoforms relies on 

the excision of an intron that would otherwise form part of the N-terminal region of full-

length Hox proteins, an event that also excludes the PBC-interacting Tryptophan amino 

acid from the final protein sequence. However, this event leaves the MEIS interaction 

domain (MIM) intact, pointing to the possibility that Hoxa9 isoforms can bind to MEIS 

but not PBC proteins or DNA. As such, Homeodomain-less isoforms could act as 

dominant negatives, by competing with full-length Hox proteins for molecular partners 

of the MEIS family. I also observe that Homeodomain-less isoforms from Hox loci 

Hoxa7, Hoxb1, Hoxc4 and Hoxb9 contain the hexapeptide, indicating that the dominant-

negative hypothesis could still hold true for Hox-PBC interactions. In the cases of 

Hoxa7, Hoxa10, Hoxb9 and Hoxc4, however, Hox loci produce alternative isoforms that 

lack the Homeodomain but include the SSYF motif, which mediates transcriptional 

activation (Tour et al. 2005). This indicates that some Homeodomain-less Hox isoforms 

can promote the initiation of transcriptional activity even in the absence of DNA 

binding domains, perhaps by binding to co-factors. This is supported by the fact that in 

at least two cases, Hoxa7 and Hoxc4, Homeodomain-less isoforms contain both the 

SSYF and the hexapeptide motifs.  

 I also observe that differential RNA processing introduces variations in 

paralogous-specific protein sequences from the Hox10 PG. In these Hox, differential 

RNA processing impact the availability of Hoxa10 N-terminal and M1 domains 

(Guerreiro et al. 2012), which have been shown to mediate the repression of rib fates in 

the developing lumbar region of Mus musculus (Wellik & Capecchi 2003). In humans, 

three alternative Hoxa10 isoforms exist: one, the full-length isoform, contains N-

terminal, M1, M2 and Homeodomain; a second isoforms contains M1, M2 and the 

Homeodomain, but lack rib-repressing N-terminal regions (Guerreiro et al. 2012; Chang 
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et al. 1996); both isoforms are conserved between mice and humans. Finally, a third 

Hoxa10 isoform includes sequences from the N-terminal domain but lacks the M1, M2 

and Homeodomain. 

Based on these results, I confirm and expand previous observations that link 

differential RNA processing to significant changes in the anatomy of Hox proteins. 

Based on the amount and specially the degree in which this level of Hox regulation 

impacts on protein sequences, I suggest that this regulatory level of Hox expression 

should be taken into account in further studies into Hox function.  

In this chapter, I also explore the differential RNA processing mechanisms that 

underlie the production of Hoxa9 isoforms, which do not encode the Homeodomain. 

Using a cell-culture system, I observe that the cDNA of the longest Hoxa9 isoform, 

which encodes for the Homeodomain, contains all the cis-regulatory regions that are 

needed for the production of the alternative, Homedodomain-less isoform. Furthermore, 

I show that transcriptional input is needed for the differential production of the Hoxa9 

Homeodomain-less mRNA, and that this isoform quickly becomes the dominant Hoxa9 

isoform 16h post-transfection. These results suggest that the production of 

Homeodomain-less Hox isoforms can occur by a quick switch at the co-transcriptional 

level, in which the Hoxa9 locus rapidly changes the identity of its dominant mRNA 

output. As the production of a Homeodomain-less Hoxa9 isoform has a causal link to 

Acute Myeloid Leukemia (Stadler et al. 2014), the regulation of this process in healthy 

hematopoietic bone marrow cells is key to the homeostasis of the tissue. Our work 

advances the notion that the mis-regulation of differential RNA processing could lead to 

similar disease phenotypes in at least five additional Hox loci. Further work should 

deepen the understanding of the molecular mechanisms that underlie the production of 

Homeodomain-less Hox isoforms, including which trans-regulators affect this pattern, 
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and which regulatory signals can underlie the switch in differential mRNA production. 

Hoxa1 has been shown to produce Homeodomain-less isoforms upon Retinoic Acid 

activation (LaRosa & Gudas 1988). It would be interesting to see if the full-length 

Hoxa1 cDNA is also able to produce a Homeodomain-less isoform, as the differential 

processing modes by which Homeodomain-lacking isoforms are produced from the 

Hoxa9 and Hoxa1 loci are the same, and conserved across mammals. By deepening our 

understanding of how this switch in RNA processing works, I expect to expand our 

understanding of the links between differential RNA processing and human disease. 
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Chapter V 

 

The role of Hox 3’UTRs in the coordination of 

spatial gene expression during mammalian 

development 
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5.1 – Chapter Overview 

 

In the previous chapter I showed that alternative routes of RNA processing in Hox and 

other Homeodomain Transcription Factor genes lead to the formation of mRNA 

isoforms that do not encode for a Homeodomain in a wide range of organisms. 

Additionally, I took steps into understanding the mechanism by which Homeodomain-

less RNA isoforms are formed, using the Homo sapiens Hoxa9 in a cell-culture system 

to show that the formation of the Homeodomain-bearing isoform precedes the formation 

of the Homeodomain-less form, and that this process is likely not due to recursive 

splicing.  

In this chapter, I use a computational approach to inquire whether the concerted 

RNA-based regulation of a broad set of Hox genes has implications for the spatial 

expression patterns of these genes, and indirectly for their function. Specifically, I 

computationally address the impact of 3’UTR-mediated regulation on the gene 

expression patterns of mammalian Hox mRNAs. I employ a commonly used 

computational cladistic method (Subtree Pruning and Regrafting, SPR) to a novel 

question: can I computationally test whether 3’UTRs contain information that impacts 

mRNA spatial expression patterns. I perform this by treating both 3’UTR motifs and the 

corresponding mRNA’s spatial expression patterns as characters, and asking if I see any 

correspondence between the two. I propose that Hox 3’UTRs contain information that 

impacts on host gene expression during the embryonic development of mammalian 

tissues. I start by focusing on the development of the Mus musculus forelimb and show 

that in this context, Hox genes with similar 3’UTR sequences have significantly similar 

gene expression patterns. I then demonstrate that common ancestry does not explain the 

match between 3’UTRs and gene expression. I show that these conclusions also extend 
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to the match between the 3’UTR sequences and expression of Hox and other 

evolutionarily unrelated genes in the mammalian hindbrain. Finally I successfully 

validate this novel computational approach, using previously reported experimental 

results on the control of spatial gene expression by 3’UTRs in the germ line of 

Caenorhabditis elegans. Based on these results, I suggest that within developing 

mammalian tissues, as with the C. elegans germline, co-expressed genes share a 

network of 3’UTR motifs that reflect their expression patterns. I hypothesise that the 

exposure of distinct mRNAs to similar regulatory microenvironments during 

mammalian development can lead to convergent evolution of their 3’UTR sequences. 

 

 
5.2 – Results 

5.2.1 – Mammalian Hox 3’UTR contain a host of shared, conserved sequence 

motifs. 

The developing forelimb of Mus musculus presents an excellent opportunity for 

the study of a relationship between 3’UTRs and gene expression patterns. In this tissue, 

the expression of all 20 Hox genes from two genomic clusters (A and D, see chapter I) 

is spatiotemporally complex and has been shown to affect both the growth and the 

structural patterning of the limb (reviewed in (Zakany & Duboule 2007)). Additionally 

the remaining 19 mammalian Hox genes belonging to cluster B and C appear to have 

residual or no expression at all in this tissue, and the deletion of each of these clusters 

leads to no significant phenotype in adult limbs (reviewed in (Zakany & Duboule 

2007)). The 3’UTRs of this group provide, as such, a good opportunity for a negative 

control in the search for forelimb-relevant motifs. 

I first performed an unbiased search for shared sequence motifs in the 3’UTRs 

of the 20 HoxA/D genes with well-known forelimb-bud expression patterns, using the 
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motif-discovery tool MEME (positive sequences set, see chapter 2). I elected this 

method over regular 3’UTR alignments for four different reasons: first, I often required 

a measure of sequence similarity between non-homologous sequences - or very distantly 

related, in the case of the Hox 3’UTR analysis in the forelimb – and in this case, a 

simple sequence alignment, which assumes homology, is inadequate; second, 3’UTRs 

accumulate, on average, more mutations than coding-sequence regions, being 

notoriously hard to align without syntenic considerations, and even when considering 

two orthologous 3’UTR sequences gene within the same genus (Patraquim et al. 2011); 

third, as with transcription factor-binding sites, two stretches of sequence with identical 

cis-regulatory information are not required to have the respective motifs in the same 5’-

3’ order in cis, as mRNA secondary structure, microRNA-binding and RBP-binding 

motifs can display a modular and thus relatively position-independent nature; finally, I 

used motif-finding rather than alignments as motifs such as the aforementioned 

examples need not be perfectly conserved to have the same regulatory readout, being 

often degenerate at the base-pair level, while conserving identity at the level of RNA 

secondary structure (Macdonald 1990) or affinity to a trans-regulator. 

To enrich our analyses in 3’UTR motifs that are relevant for the forelimb 

expression context, I performed a discriminative analysis using the 3’UTRs of the 19 

HoxB/C genes that display little impact on forelimb development as a negative 

sequences set. This means that the analysis would only return 3’UTR motifs that are 

simultaneously present in one or more 3’UTRs of the 20 HoxA/D genes whose 

expression impacts on forelimb development, and absent in the 3’UTRs of the 

remaining 19 Hox genes. Along with each set of mouse sequences, I submitted the 

3’UTRs of the respective Homo sapiens homologues; this conservation criterion was 

expected to increase the sensitivity of our analysis to truly functional motifs. Together 
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with the submission of the closely related HoxB/C sequences as a negative set, the 

inclusion of human sequences is expected to decrease the signal-to-noise ratio, and thus 

enrich our results in forelimb-relevant motifs. I find a host of shared, conserved and 

degenerate motifs of 37 nucleotides in length on average, which are shared between the 

3’UTRs of forelimb-expressed Hox genes in mammals. As a control, the query 

sequences were shuffled and subjected to the same analysis, yielding no significant 

MEME motifs. A summary of the results is shown in Figure (Figure 5.1).  

Next, I wondered whether there was any positional bias in the location of motifs 

along the Hox 3’UTRs. To address this, I first normalized all 3’UTR lengths to the 

longest 3’UTR in the dataset (human Hoxa13, 3180 b.p. long), and then recorded the 

3’UTR location of each motif for the 40 sequences included. I find that forelimb-

enriched motifs are preferentially located in the initial 40% portion of Hox 3’UTRs, and 

depleted in their distal portion (around the 80% mark into the normalized 3’UTRs) 

(Figure 5.1C). When compared with a dataset that includes all 3’UTR motifs (obtained 

by submitting the same sequences through an identical MEME analysis, this time with 

no negative sequences set), I find that while the enrichment in the beginning of the 

3’UTRs is present, the distal depletion in motifs appears to be lost. I performed a 

negative control for motif position-bias by submitting the shuffled 3’UTRs of Hox 

genes through the same analysis. In this case, both proximal enrichment and distal 

depletion disappear (Figure 5.1C). These results indicate that 1) Hox genes tend to 

accumulate cis-motifs next to the beginning of the 3’UTR and 2) that forelimb-enriched 

3’UTR sequences specially depleted in distal portions of Hox 3’UTRs, suggesting that 

alternative polyadenylation is not expected to radically remodel the set of Hox 3’UTR 

cis-regulatory sequences that are deployed in forelimb cells. 

Next, I hierarchically clustered both the 20 Mus musculus Hox 3’UTRs and  
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Figure 5.1 – HoxA/D genes share a large number of conserved 3’UTR motifs 

(legend in the following page).  

Rank 

Motif 1 

For further information on how to interpret these results or to get a copy of the MEME software please access http://meme.nbcr.net.

If you use MEME in your research, please cite the following paper:
Timothy L. Bailey and Charles Elkan, "Fitting a mixture model by expectation maximization to discover motifs in biopolymers", Proceedings of the Second International Conference on Intelligent Systems for
Molecular Biology, pp. 28-36, AAAI Press, Menlo Park, California, 1994.
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Figure 5.1 – HoxA/D genes share a large number of conserved 3’UTR motifs. (A) 
Circular diagram showing the shared network of cis-regulatory motifs among the 
3’UTRs of mammalian HoxA/D genes, following a discriminative MEME search. I used 
the 3’UTRs of HoxB/C genes of both H. sapiens and M. musculus as a negative 
sequence set. As such, the 30 3’UTR motifs that resulted from this analysis are 
enriched in HoxA/D 3’UTRs, and do not occur in HoxB/C 3’UTRs. The longest 
annotated Hox 3’UTR was used in all analyses. Motif numbers denote their rank in the 
query results. Red arrows point to Motifs 1, 5, 7 and 8. Note that Motifs 1 and 8 are 
shared by most HoxA/D genes, while motifs 5 and 7 are shared by few Hox 3’UTRs, 
despite ranking highly in the analysis (B) Position weight matrix of the five top-ranking 
motifs in the discriminative HoxA/D 3’UTR analysis. The four highest-ranking motifs are 
shared by 22-37 of the 40 Hox genes analysed, while motif 5 is present in only four 
3’UTRs. PWM: Position Weight Matrix. (C) Proximal regions of Hox 3’UTRs are 
enriched in conserved motifs. The occurrence of all 30 motifs along the normalized 
length of HoxA/D 3’UTRs (HoxA/D specific motifs) is more pronounced in proximal 
3’UTR regions, and depleted in distal regions. A non-discriminative MEME analysis for 
HoxA/D 3’UTRs (“All motifs”), recovers the observed proximal 3’UTR enrichment but 
not the distal depletion of HoxA/D 3’UTR motifs. A negative control using a shuffled 
HoXA/D sequence set does not recapitulate any of these results. (D) Size distribution 
of HoxA/D-specific 3’UTR motifs. Most 3’UTR motifs are long, averaging 37 nucleotides 
in size. This result suggests that each motif might not have a one-to-one relationship 
with a trans-regulator i.e. these sequences might represent regulatory complexes, as 
both miRNA and RBP target sites are usually smaller than 10 nucleotides. 
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the corresponding orthologous human sequences (see Chapter 2), using the presence or 

absence of motifs as the organizing principle (Figure 5.2). I find that with one 

exception (Hoxd12), orthologous 3’UTRs are clustered together, indicating that the 

initial intention of submitting human and mouse 3’UTRs together was successful in that 

most of the recovered motifs are conserved. Most of the 30 motifs are present in only 2-

5 of the twenty Hox genes analysed (Figure 5.2); as such, the organization of these 

genes by 3’UTR motif-similarity offers enough resolution to differentiate between 

genes with similar 3’UTRs. Additionally, paralogous genes are not found to cluster 

together (with the exception of Hoxa1 and Hoxd1), and as such do not share the 3’UTR 

motif-complements uncovered by our analysis. This result suggests that many of these 

3’UTR motifs may have arisen after gene duplication. The fact that Hox clusters A and 

D are hypothesized to be evolutionarily closer to clusters B and C, respectively, than 

each other, supports this idea as the original HoxA/D cluster divergence would have 

happened at the base of the vertebrate lineage (Soshnikova et al. 2013). This would 

provide enough evolutionary time for the 3’UTRs of paralogous genes to diverge, as the 

3’UTRs of non-paralogous but co-expressed genes converge. I hypothesize that this 

pattern is the outcome of shared expression patterns, leading to shared selection 

pressures that occur at the molecular level within the different regulatory 

microenvironments of complex developing tissues. 

 

5.2.2 – Shared Hox 3’UTR motifs significantly match mRNA co-expression profiles 

in the mouse forelimb. 

 

To test whether Limb-expressed Hox genes with similar 3’UTR motifs also share spatial 

expression patterns, I first retrieved previously published models representing the  
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the  

 

 
 
 
 
 
 
 
 
 
 

 

Figure 5.2 – Hierarchichal clustering of HoxA/D genes based on shared 3’UTR 

motifs (legend in the following page).  
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Figure 5.2 – Hierarchichal clustering of HoxA/D genes based on shared 3’UTR 
motifs. Hierarchical clustering analysis of mammalian HoxA/D genes based on shared 
3’UTR motifs. I used the results of a MEME discriminative query of HoxA/D 3’UTR 
motifs (see Figure 5.1) as informative characters to cluster HoxA/D genes based on 
their similarity in 3’UTR sequences. I find that, with the exception of Hoxd12, all 
HoxA/D orthologues of M. musculus and H. sapiens are clustered together. This result 
confirms that our query includes ultra-conserved 3’UTR sequence elements. Note that, 
with the exception of PGs 1 and 13, most paralogues do not occur together, suggesting 
that our motif dataset offers enough resolution to distinguish between the 3’UTRs of 
closely related genes. The bottom panel shows the absolute frequency of each motif 
across HoxA/D 3’UTRs. Note that most motifs are shared by the 3’UTRs of a few Hox 
genes, while some MEME motifs are present in the 3’UTRs of most HoxA/D mRNAs. 
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spatial mRNA distribution of all 20 mouse Hox genes in the developing forelimb 

(Zakany & Duboule 2007), (Figure 5.3). I decided to use these models as available 

images of RNA in-situs for all 20 genes were either lacking or of very heterogeneous 

quality, and could thus compromise the analysis (see Chapter 2 for a fuller explanation). 

Two stages of Hox gene expression were analysed, deemed early and late (Zakany & 

Duboule 2007). The forelimb expression patterns of all 20 HoxA/D genes are shown in 

(Figure 5.3B) (adapted from (Zakany & Duboule 2007)). Comparing the expression 

patterns of different genes, it becomes clear that many of these genes have a complex 

temporal and spatial expression profile, with aspects of this profile being shared 

between evolutionarily distant genes. As an example, Hoxa1 and Hoxd13 share a small 

anterodistal domain of co-expression in the early stages of forelimb bud development 

(see Fig 5.3B); the most recent common ancestor of the Hoxa1 and Hoxd13 loci lies 

deep in the metazoan phylogeny, before the emergence of the Bilateria).  

I transformed each gene’s spatiotemporal expression profile into a binary profile 

(a sequence of 672 data points with either “1” or “0” numerical values), and used these 

to hierarchically cluster the 20 Mus musculus HoxA/D genes based on their shared 

expression patterns during forelimb development (Figure 5.3C). 

The organization of Hox genes based on either their expression or their 3’UTRs 

can be represented by the vertical phylograms (hereafter deemed trees, for simplicity) 

seen to the left of the heat maps in figures 5.2 and 5.3C. In order to compare the two 

trees, I extracted the topology of each, and manually inputted both topologies into a 

TNT software script suggested and adapted for our purposes by our collaborator Martín 

Ramirez (Figure 5.4A). TNT (Tree analysis using New Technology) is a cladistic 

software used for phylogenetic analysis (Goloboff et al. 2008). Importantly, this 

software implements the Subtree Pruning and Regrafting (SPR) tree  
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Figure 5.3 – Hierarchichal clustering of HoxA/D genes based on co-expression 

patterns in the developing forelimb bud (legend in the following page).  
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Figure 5.3 – Hierarchichal clustering of HoxA/D genes based on co-expression 
patterns in the developing forelimb bud. (A) 9.5 d.p.c. Mus musculus embryo 
(adapted from (Sandell et al. 2012)). The red rectangle highlights the embryonic 
forelimb bud. “P” and “D” indicate the proximal-distal axis. (B) Expression diagrams of 
early and late phases of HoxA/D expression during Mus musculus forelimb-bud 
development, showing the spatial distribution of expression for individual HoxA/D 
genes (adapted from (Zakany & Duboule 2007)). Note that genes Hoxa1-7 are 
expressed in the whole limb bud in the early expression phase, and show no 
expression in later stages. This is mostly true for one paralogue of this group of genes 
(Hoxd3), but most paralogues have divergent expression patterns. These expression 
models were used to build individual gene expression profiles, consisting of a 
sequence of 672 data points with either “1” or “0” numerical values, corresponding to 
the presence or absence of Hox expression in a specific space and time within the 
developing limb bud. (C) Hierarchical clustering of HoxA/D forelimb bud expression 
profiles. This analysis recapitulates important aspects of the expression models 
detailed in (B), e.g. Hoxa1-7 expression profiles are clustered together with Hoxd1. 
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rearrangement method, used to heuristically search for optimal tree topologies in 

phylogenetic analyses with a large degree of uncertainty (see Chapter 2). In our case, 

the treatment of both 3’UTR motifs and spatial expression patterns in space as 

characters (with two possible values, “1” and “0”) makes it possible to use this method 

for the purpose of understanding whether 3’UTRs and expression patterns are 

significantly similar. This is also possible as both trees have the same clades i.e. the 

genes are the same, the question being how similarly arranged they are. 

I found that the HoxA/D 3’UTR motif tree significantly matched the expression 

tree of the same genes in the developing forelimb (p<0.001), (Figure 5.4B). 

Furthermore, the 3’UTR motif tree had to “pruned” and “rearranged” by SPR (hereafter 

referred to as moved, for the sake of simplicity) 11 times in order to be identical to the 

gene expression tree (Figure 5.4B). As a negative control, I created an array of 10000 

random trees using the 3’UTR tree as a starting-point, and compared each with the 

expression tree. On average, random 3’UTR trees needed 16.6 moves to arrive at the 

expression tree (Figure 5.4B). None of the random trees was as successful as the 

original tree in matching the expression patterns (Figure 5.4B). This result shows the 

original 3’UTR dataset is exceptionally good at capturing the expression pattern 

commonalities of Hox genes in the forelimb, and demonstrates that organizing Hox 

genes by their forelimb-enriched 3’UTR motif similarities or by expression pattern 

similarities leads to statistically indistinguishable results . 

To test whether these shared motifs were independently acquired in Hox 3’UTRs 

during the evolution of these sequences, and are not just a passive consequence of 

common ancestry, I performed a phylogeny of HoxA/D using protein sequences (see 

Chapter 2) and used SPR to test whether the shared history of HoxA/D genes, typified 

by their protein phylogeny, could explain their shared forelimb-enriched 3’UTR motifs  
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Figure 5.4 – Shared HoxA/D 3’UTR motifs significantly recapitulate dynamic 

HoxA/D co-expression patterns in the forelimb (legend in the following page). 
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Figure 5.4 – Shared HoxA/D 3’UTR motifs significantly recapitulate dynamic 
HoxA/D co-expression patterns in the forelimb. (A) Shared 3’UTR motifs match 
HoxA/D co-expression patterns in the developing forelimb. The relative organization of 
HoxA/D genes based on shared 3’UTR motifs (see Figure 5.2) was compared with the 
relative organization of the same genes based on co-expression profiles in the 
developing forelimb (see Figure 5.3) using the SPR method of phylogenetic tree 
comparison (see Chapter 2 and text). The conversion of the 3’UTR-tree into the 
expression-tree requires 11 SPR “moves”. (B) The organization of HoxA/D by shared 
3’UTR motifs is statistically identical to the organization of the same genes by co-
expression patterns. A null distribution of 3’UTR-based HoxA/D trees, resulting in 
10000 random 3’UTR trees was compared to the co-expression tree in (A).,None of the 
random trees is as successful as the real 3’UTR-based tree at matching the co-
expression patterns of HoxA/D genes (as measured by the number of SPR “moves”). 
(C) To control for phylogenetic effects, I performed a protein phylogeny of the mouse 
HoxA/D genes (Neighbour-Joining, JTT substitution model, (Katoh & Standley 2013)). 
This phylogenetic tree is expected to mirror the evolutionary history of the HoxA/D loci. 
(D) The evolutionary history of HoxA/D genes does not explain their co-expression 
patterns in the developing forelimb. The phylogeny of HoxA/D genes was compared 
with the co-expression tree of the same genes (right panel in (A)) and to 10000 
randomizations of the HoxA/D phylogeny. However, the real phylogenetic relationship 
of HoxA/D clusters was not better than random trees at matching co-expression 
patterns.  
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(Figure 5.4C-D). I found the answer to statistically unsupported (p=0.228, NS), as in 

order to reconstruct the 3’UTR-based tree, the phylogenetic tree of HoxA/D genes had 

to be moved 16 times, where the average moves from 10000 null trees based on the 

original HoxA/D phylogenetic tree to our 3’UTR-motif tree was 16.62 (Figure 5.4D). 

This result indicates that the independent evolution of different Hox 3’UTRs after gene 

duplication, rather than their shared ancestry, best explains the match between 

combinatorial Hox 3’UTR motif complements and Hox expression patterns in the 

mouse forelimb. 

 

5.2.3 –Forelimb-enriched Hox 3’UTR motifs include RNA secondary-structures, as 

well as RBP binding-sites. 

To generate hypotheses about the mechanism by which these 3’UTR motifs are 

expected to mediate the spatial restriction of Hox mRNAs in the forelimb, I first used 

the MEME suite TOMTOM tool (Bailey et al. 2009) to compare our forelimb Hox 

motif-set with the recently-published RNA-binding motif dataset of Ray and colleagues 

(Ray et al. 2013). I find that many motifs show statistically significant matches to RBP-

binding motifs (Figure 5.5). Interestingly, the RBP HuR is the most common hit, being 

significantly predicted to bind to 7 different motifs, three of which in the top-five hits 

(Motifs 1, 4, 5, 8, 14, 27 and 30 – the motif numbers indicate significance rank) (Figure 

5.5A). This protein is ubiquitous but has nevertheless an enriched expression in 

branchial arches, neural tube and limb buds at 10.5 d.p.c. (Gouble & Morello 2000), a 

developmental timing that coincides with the outgrowth and axial specification of the 

forelimb. Additionally, mutants for HuR present clear limb malformations (Katsanou et 

al. 2009), accompanied by both the decreased stability and polysomal occupancy – a 

proxy for translational activity - of a Hox mRNA (Hoxd13) in the 12.5 d.p.c. Forelimb. 
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Consistently with this result, HoxD13 has 4 HuR binding motifs in our dataset (Motifs 

1, 4, 8 and 30), which are conserved between mice and humans, indicating that HuR 

could mediate the stability of Hoxd13 in the developing forelimb through an interaction 

with the 3’UTR. 

 Based on the overrepresentation of HuR binding-sites in our forelimb enriched 

Hox 3’UTR motif-set, I wondered whether HuR-binding 3’UTR motifs were sufficient 

to significantly recover the expression patterns of Hox genes in the forelimb. To address 

this, I repeated the hierarchical clustering analysis of Hox 3’UTR motifs, only this time 

exclusively using the predicted HuR-binding motifs (Motifs 1, 4, 5, 8, 14 and 30). 

Using an SPR analysis, I find that HuR 3’UTR motifs fail to match the spatiotemporal 

expression patterns of the host genes (p=0.228, data not shown), indicating that HuR-

binding is not expected as the only 3’UTR-mediated process that influences the spatial 

distribution of Hoxd13 in the forelimb. 

 The 10.5 d.p.c. upsurge in HuR expression in the developing limb buds is 

paralleled by that of AUF1 (HNRNPD) (Gouble & Morello 2000). This RBP was also 

shown to bind the same targets as HuR (Barker et al. 2012), but its binding was seen to 

have the opposite effect of HuR binding on mRNA stability and translation, as in the 

case of AUF1 both regulatory processes decrease (Barker et al. 2012). It is thus possible 

that the competition between AUF1 and HuR for Hox 3’UTR targets can affect the 

spatial distribution of Hox mRNAs in the developing forelimb. HuR-binding has been 

shown to be more efficient in single-stranded RNA sequences (Barker et al. 2012), 

while AUF1 has been hypothesized to bind and remodel local RNA structures (Wu et al. 

2013) due to its RNA chaperone-like activity (Zucconi et al. 2010; Wilson et al. 2003). 

As such, the outcome of a competition between mouse forelimb-expressed HuR and 

AUF1 for Hox  
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Figure 5.5 – HoxA/D 3’UTRs contain numerous RBP-target motifs (legend in the 

following page). 
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Figure 5.5 – HoxA/D 3’UTRs contain numerous RBP-target motifs. (A) TOMTOM 
analysis of Motif 4. I used the TOMTOM tool of the MEME suite (Bailey et al. 2009) to 
look for RBP targets within our set of HoxA/D 3’UTR motifs (see Figure 5.1) using a 
recently-published RBP-target dataset (Ray et al. 2013). With this approach, I find that 
a number of motifs contain predicted RBP-binding sites. Among these is a top-ranking 
motif for HuR, an RBP with high expression in the developing forelimb, which has been 
shown to target Hox mRNAs (see text). (B-D) HoxA/D MEME Motif 1 contains a RNA 
secondary structure motif. (B) The most represented 3’UTR motif (Motif 1, see Figure 
5.1B) contains two complementary stretches of nucleotides separated by a group of 
degenerate sites. (C) This motif can form a secondary RNA structure by internal base-
pairing (D) RNAFold predictions of RNA secondary structure predict that, in many 
cases, this 3’UTR motif folds by internal base-pairing in a context-independent manner 
(see text). (E) Catalogue of RBP target sites within HoxA/D 3’UTR motifs. Using the 
TOMTOM tool (see panel (A)), I find that the 3’UTRs of HoxA/D genes contain a 
number of shared RBP targets. Targets for HuR (red arrow) are represented in our 
dataset, as they occur in motifs other than Motif 4. These results suggest that HuR has 
the potential to regulate the expression of a cohort of HoxA/D genes via direct RBP-
3’UTR interactions. 
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3’UTR targets could be determined, in part, by the targets’ RNA structure. 

 Further probing the 30 Motif sequences, I noticed that the top-ranked motif 

(Motif 1) shows an initial 5-7 base-pair U-rich region, followed by 7 base-pair long A-

rich sequence (Figure 5.5B-D). These are the most conserved base pairs in Motif 1’s 

29-nucleotide stretch. This motif is predicted in our analysis to be bound by HuR 

(p=0.006), and thus by AUF1, and is detected in all except one (Hoxd4) of the 20 mouse 

Hox 3’UTRs analysed. To verify if the two U-rich and A-rich stretches could pair to 

form an internal stem-loop structure in Motif 1, I performed RNAFold predictions for 

the individual Motif 1 sequences of all 20 Hox genes in both mice and humans (see 

Chapter 2). Additionally, I tested for context-insensitivity by performing similar RNA 

folding predictions in the full 3’UTRs and full mRNAs of the host genes. I find that in 

the cases of Hoxa1, Hoxa2, Hoxa3, Hoxa4, Hoxa5, Hoxa11 and Hoxd1, Motif 1 is 

predicted to form a conserved stem-loop, regardless of the sequence context, while in 

the remaining 13 genes this structure is not observed. 

 AUF1 has also been shown to promote Argonaute 2 (AGO2)-mediated 

degradation of Hoxb8 and other mRNAs in human cells, and is hypothesized to do so by 

induction of RNA structure changes that expose 3’UTR miRNA target-sites to the 

AGO2/miRNA complex (Wu et al. 2013). I thus asked whether miRNA targets were 

present in or near Motif 1, and scanned our 3’UTR motif dataset for target-sites for 

miRNAs mmu-miR-199a-5p and mmu-miR-214, which are expressed in the developing 

mouse forelimb (Lee et al. 2009), but found no antiparallel matches to the seeds of 

either miRNA. 

 

5.2.4 – 3’UTR motifs of evolutionarily unrelated genes match spatial mRNA 

expression in the mouse hindbrain. 
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In the previous section, I showed that a combination of 30 motifs that are shared and 

specific to 20 HoxA/D 3’UTRs significantly matches the combinatorial expression 

patterns of the same genes in the developing forelimbs of mice. Given that these genes 

are very similar, sharing genomic context, recent common ancestry, sequence features, 

molecular roles and expression patterns in different tissues, as well as transcriptional 

and epigenetic regulation, I wondered whether the aforementioned result might reflect a 

Hox-specific regulatory feature. To address this, I applied a similar “3’UTR Vs. 

expression” analysis in a context where a number of very distinct genes are co-

expressed, and for which there is experimental evidence of spatially restricted 

expression patterns: the hindbrain (Figure 5.6A).  

As the hindbrain of mice first becomes segmented at around 9.5 d.p.c (see 

Chapter 1), I chose a developmental time window that coincides with rhombomere 

compartmentalization (8.5-10.5 d.p.c.) to ask whether the segmental restriction of genes 

to particular rhombomeres (e.g. Hoxb1) is reflected in their 3’UTR motif composition. 

To do so, I first used the MGI-Mouse Gene Expression Database (GXD, see chapter 2) 

to retrieve a list of 32 Mus musculus genes for which there is RNA in-situ hybridization 

evidence of rhombomere-restricted expression. This list of genes includes leucine-

zipper, zinc finger and Homeodomain transcription factors, as well as cell-signalling 

molecules from the BMP, Shh and Wnt pathways (see Table 5.1). I also recovered a list 

of 60 genes whose expression at 8.5-10.5 d.p.c. transgresses rhombomere boundaries. 

Second, I used MEME to apply an unbiased and discriminative motif-search in 

the 32 Mus musculus 3’UTR sequences of rhombomere-specific genes, using the 60 

3’UTR sequences of genes that are expressed in 2 or more rhombomeres as a negative 

sequences set (see Chapter 2). I found a set of 30 degenerate motifs that are shared 

between these genes (Figure 5.6B). I then hierarchically clustered the 32 genes based  
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Table 5.1 - A list of 32 genes with rhombomere-restricted expression in the Mus 

musculus hindbrain. 
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on their 3’UTR motifs (Figure 5.6C) or their expression patterns (Figure 5.6D), and 

compared the two trees using SPR (see Chapter 2). As with the case of the comparison 

between Hox 3’UTR combinatorial information and forelimb Hox expression 

similarities, I find that the 32 hindbrain-expressed genes analysed share a set of 3’UTR 

sequences that, when considered together, is sufficient to match the co-expression 

patterns of rhombomere-restricted genes (p<0.0001) (Figure 5.6C-D).  Furthermore, 

the 15 SPR moves necessary to remodel the 3’UTR tree in order to reconstruct the 

expression tree were never observed in any of the 10000 random 3’UTR trees generated 

and compared with the expression tree; the average number of moves necessary for a 

random 3’UTR tree to match the real expression tree was 30.9, almost the double 

amount of remodeling required for the real 3’UTR dataset. 

In summary, in the hindbrain as with the forelimb case, organizing a set of genes 

by 3’UTR motif similarities or by expression pattern similarities leads to statistically 

indistinguishable results. These results indicate that the 3’UTR motif composition of 

hindbrain-expressed genes either influences of is influenced by the concomitant 

expression patterns of the same genes in the hindbrain. Furthermore, it shows that 

3’UTR motif sharing in relation to a developmental context is not a property of 

evolutionarily related genes, and that our computational technique can be applied to 

more than one developmental context. 
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Figure 5.6 – The 3’UTRs of phylogenetically unrelated genes share cis-motifs that 

significantly recapitulate their expression patterns in the Mus musculus hindbrain 

(legend in the following page).  
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Figure 5.6 – The 3’UTRs of phylogenetically unrelated genes share cis-motifs 
that significantly recapitulate their expression patterns in the Mus musculus 
hindbrain. (A) Comparison of 3’UTR motif complements and co-expression patterns of 
hindbrain-expressed genes. (B) Circular diagram showing the shared network of cis-
regulatory motifs among the 3’UTRs of hindbrain-expressed genes after a 
discriminative MEME search for shared 3’UTR motifs in Mus musculus genes with 
rhombomere-restricted expression patterns (see text and Figure 5.1). The 3’UTRs of 
hindbrain-expressed genes that transgress rhombomere boundaries were used as a 
negative sequence set. Despite being evolutionarily unrelated, hindbrain co-expressed 
genes contain a host of shared 3’UTR motifs. (C) Hierarchical clustering of hindbrain-
expressed genes based on shared 3’UTR motifs. This analysis results in the grouping 
of a number of genes that are co-expressed in rhombomere 4 (r4, dashed box) – 
compare with panel D. (D) Hierarchical clustering of Hindbrain-expressed genes based 
on shared expression patterns. Most r4-expressed genes are captured by the analysis 
based on 3’UTR similarities (dashed box, compare with dashed box in (C)). An SPR-
based comparison of both organizations shows that this set of 32 hindbrain-expressed 
genes ashare a set of 3’UTR sequences that are sufficient to match the co-expression 
patterns of rhombomere-restricted genes (p<0.0001). This result suggests that the 
3’UTRs of a number of evolutionarily unrelated genes contain cis-regulatory sequences 
which relate directly to specific regulatory contexts during the development of 
mammals. 
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5.2.5 – Validation of the SPR method as a test for 3’UTR-mediated coordination of 

gene expression: the Caenorhabditis elegans germline. 

 

In previous sections, I use the cladistic tree-comparison SPR method to show that 

clustering genes by their shared 3’UTR motif-complements is statistically the same as 

organizing them by gene expression patterns. This is true in both the embryonic 

forelimb and hindbrain of Mus musculus. In this section I validate of our methodology 

using the C. elegans dataset in (Merritt et al. 2008).  

The authors report a large number of 3’UTRs that, when fused to a reporter 

construct, successfully limit the spatial expression patterns of the host protein in the 

germline (Merritt et al. 2008). Briefly, the authors chose 30 genes known to be 

expressed in the germline of C. elegans in a spatially regulated manner, and cloned their 

3’UTR sequences downstream of a GFP fused to Histone H2B. The pie-1 promoter was 

used to drive the blanket expression of all constructs in all regions of the C. elegans 

germline. The authors show that for 24 of the 30 genes, the 3’UTRs successfully 

recapitulate the expression patterns of the host genes in this tissue, and conclude that 

UTRs are the primary regulators of gene expression in the C. elegans germline (Merritt 

et al. 2008). I reasoned that this would be an good set of results with which to validate 

our computational approach matching 3’UTRs to expression patterns (Figure 5.7A).  

To this end, I first recovered the reported patterns of expression of the 24 

GFP:H2B-3’UTR fusions in the C. elegans germline, summarized in the Figure 2 of 

(Merritt et al. 2008). Second, I retrieved the 3’UTRs of the aforementioned 24 genes, 

and submitted these sequences to a MEME motif search (see Chapter 2). This generated 

a set of 30 motifs shared between the 3’UTRs of the 24 germline-expressed genes 

probed (Figure 5.7B). Thirdly, I separately performed two hierarchical clustering  
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Figure 5.7 – The 3’UTRs of phylogenetically unrelated genes share cis-motifs that 

significantly recapitulate their expression patterns in the C. elegans germline 

(legend in the following page).  
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Figure 5.7 – The 3’UTRs of phylogenetically unrelated genes share cis-motifs 
that significantly recapitulate their expression patterns in the C. elegans 
germline. (A) Diagram depicting the anatomical organization of a C. elegans 
hermaphrodite, emphasising distinct regions within the germline (A-H). To validate our 
computational method for the study of 3’UTR cis-regulatory information in the context 
of gene expression, I used the C. elegans germline context, where 3’UTRs are the 
primary regulators of gene expression (Merritt et al. 2008; Reinke 2008). I retrieved the 
longest annotated 3’UTRs for 24 germline-expressed genes, and performed an 
unbiased MEME motif search on this sequence-set (B) Circular diagram showing the 
shared network of cis-regulatory motifs among the 3’UTRs of germline-expressed 
genes in C. elegans. (C) Hierarchical clustering of germline-expressed genes based on 
shared 3’UTR motifs. (D) Hierarchical clustering of germline-expressed genes based 
on shared expression patterns. The 3’UTR-based tree matches the expression tree 
significantly better than random trees (p=0.0065). 
  



	 200	

analyses: one of the 24 C. elegans genes in question clustered according to their shared 

3’UTR motifs (Figure 5.7C), and the second using the same genes, but clustering them 

according to their shared expression patterns (Figure 5.7D). I find that the two trees are 

significantly similar (p=0.0065), with 18 SPR moves being necessary to match the 

original trees (Figure 5.7C-D). In contrast, 10000 randomized 3’UTR trees needed, on 

average, 24 moves to perform the same operation. 

Together, these results validate our computational approach, and suggest that it 

can be can be applied to, first, isolate shared developmentally-relevant 3’UTR 

sequences, second, to ask whether this information is relevant for the regulation of gene 

expression in a given tissue, and finally, to generate hypotheses about which trans-

regulators can be responsible for the coordination of this 3’UTR-mediated process. 

 

 
5.3 - Discussion  

In this chapter, I employ a computational approach to explore how the RNA-based 

regulation of a number of Hox genes can influence their transient spatial expression 

patterns in complex, developing mammalian tissues. I find that in the case of the 

developing mouse forelimb, Hox 3’UTRs share a host of evolutionarily conserved 

motifs. This network of shared 3’UTR motifs is statistically the same as the co-

expression network for the same genes in this tissue. Additionally, I observe that this is 

not restricted to Hox genes or the forelimb, as I observe a similar correspondence 

between a network of shared 3’UTR motifs and the spatial expression of 32 genes in the 

developing hindbrain. Unlike the forelimb analysis, these have very different 

evolutionary histories and molecular functions, but similarly carry 3’UTR sequences 

that match gene co-expression patterns. Finally, I successfully validate our method 

using a previously published dataset that reports the 3’UTR-mediated control of gene 
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expression in the context of the C. elegans germline. 

The female germline is a classic context for the study of post-transcriptional 

gene regulation in animals, as transcription is mostly silent in this tissue due to direct 

inhibition of RNA Pol II (Drosophila and C. elegans) or chromatin regulation (Mus 

musculus). In Drosophila melanogaster, the mRNAs of bicoid (Macdonald & Struhl 

1988; Macdonald 1990), nanos, and oskar have been shown to be assymetrically 

localized in oocytes due to sequences in their 3’UTRs (reviewed in (Johnstone & Lasko 

2001)). In particular, nanos mRNAs have been shown to have spatially-restricted 

germline expression in Drosophila (Wharton & Struhl 1991), zebrafish (nanos1), the 

sea urchin Strongylocentrotus purpuratus  (Oulhen et al. 2013) and mice (Nanos3) (H. 

Suzuki et al. 2010). In all cases, this seems to be achieved by a combination of 3’UTR-

mediated spatial restriction and translational repression of nanos mRNAs. 

More generally, 3’UTRs have been shown to spatially restrict the expression of 

broadly expressed reporter constructs in the germline of Caenorhabditis elegans, 

setting-up spatial gene expression patterns that closely resemble those of the proteins 

encoded by the endogenous mRNAs of at least 24 genes (Merritt et al. 2008). A similar 

study in Drosophila melanogaster found that the expression of a number of mRNAs is 

spatially restricted in the Drosophila germline and that this process is 3’UTR-mediated 

and involves translational inhibition (Rangan et al. 2008).  

Addressing the question of 3’UTR-based regulation in transcriptionally active 

cells is technically demanding, as most gene expression analysis techniques recover 

steady-state mRNA expression levels, and cannot thus distinguish between the relative 

contributions of transcription, mRNA stability and degradation to those patterns. 

However, the forced expression of 3’UTR sequences in the context of reporter 

constructs, and its comparison with the corresponding endogenous protein expression 
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patterns, offers an experimental setup that can powerfully address the question of how 

important 3’UTR-based regulation is in transcriptionally active cells. 

Although no en masse studies exist for tissues other than the germline, 

individual cases that use reporter-fused 3’UTR sequences support the idea that 3’UTR-

mediated restriction of spatial gene expression also occurs in transcriptionally active 

cells. For instance, Myelin basic protein (MBP) transcripts contain two short conserved 

sequences that are necessary and sufficient for the successful localization of MBP 

mRNAs to the myelin compartment of oligodendrocytes (Ainger et al. 1997). In 

Drosophila, the 2.3 kb-long 3’UTR of Ubx recapitulates the posteriorly-restricted 

expression pattern of the endogenous Ubx protein in the embryonic CNS, when broadly 

expressed and fused to an mCherry reporter (Thomsen et al. 2010). In mice, the 3’UTR 

of Hoxb4 was shown to be necessary and sufficient for the maintenance of the anterior 

boundary of somitic Hoxb4 expression in the paraxial mesoderm after 9 d.p.c. (Brend et 

al. 2003). These two observations suggest that the study of the 3’UTRs of Hox genes in 

their native expression context can shed some light on the possibility of a general case 

for the 3’UTR-mediated spatial expression control.  

Here, I provide a computational approach to address the question of 3’UTR-

mediated regulation of spatial gene expression en masse. First, our analyses examine a 

number of sequences that would be very demanding to study in vivo, e.g. 32 genes in 

the hindbrain of mice - a similar in vivo approach would involve the creation of at least 

32 individual transgenic mouse lines. Furthermore, I argue that this en masse approach 

would be not only important but vital to address the biological impact of this regulatory 

process; if, as our analysis indicates, the 3’UTRs of co-expressed genes form a network 

of shared cis-regulatory motifs, and the ratio between commonalities and differences in 

the 3’UTR modules of co-expressed genes directly correlates with their degree of co-
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expression, this problem requires the study of many genes in parallel.  

The problem of studying steady-state mRNA levels is harder to bypass. It seems 

to us that our results support the 3’UTR-mediated control of gene expression. However, 

I assume that these sequences are active at the post-transcriptional level. Although it is 

hard to envision that all 96 3’UTRs analysed in this chapter exclusively regulate the 

expression of the host genes at the DNA level, it is quite possible that some do, in 

addition to or even exclusion of their role in RNA-based regulation. However, I 

consider the discriminative motif-finding approach previously described to partially 

address this problem, as the use of related negative or background sequences is 

expected to decrease the incidence of spurious sequences in general, be it transcriptional 

enhancer sequences or 3’UTR motifs that are not important to the developmental 

context in question. 

I see that the co-option of the SPR method to our developmental biology 

question yields interesting results in all cases. However, I find that the C. elegans 

analysis is less statistically significant than the ones for the Limb and Hindbrain 

datasets. I hypothesize that this is due to the C. elegans analysis being inherently less 

powerful, for two reasons: first, I provided significantly less information into the C. 

elegans analysis, when compared to the previous two datasets; I used 24 individual 

sequences, with 379 b.p. of average length. In contrast, I utilized 40 3’UTRs with an 

average length of 1037 b.p., in the Limb analysis, while in the case of the Hindbrain 

data, 32 3’UTRs were used, averaging 1397 b.p. in size. As such, the C. elegans dataset 

has 17% of the information used in the Limb analysis, and 20% of that used for the 

Hindbrain test. Additionally, both the Limb and Hindbrain analyses used negative 

sequence sets (19 and 60 3’UTRs, respectively), while no negative set was used in the 

C. elegans analysis. Together, these two lines of evidence suggest that, while still 
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statistically significant (p=0.0065), the C. elegans analysis would need more data in 

order to be refined.  

One shortcoming of our analysis is that I cannot yet recover successful 

correspondences between individual 3’UTR motifs and specific areas of gene 

expression. Explicitly mapping regulatory sequences to individual expression domains 

in a developing tissue would provide powerful hypotheses about development, its 

evolution, and its relationship to underlying DNA sequences. With our dataset, this 

would require an exhaustive combinatorial analysis that is beyond the scope of the 

present study. However, I am able to generate clear hypotheses regarding the concerted 

regulation of these genes at the RNA-level, for instance about which trans-regulators 

might act on the 3’UTR motifs of different genes, as with the case of the HuR/ARE1 

RBP pair. Based on our results, I submit that in the forelimb bud, an interplay between 

relative HuR/ARE1 levels, the number of 3’UTR binding motifs and their respective 

RNA structure is responsible for the either setting up, refining or, minimally, 

maintaining of Hox expression patterns. Additionally, I see an enrichment of forelimb-

relevant motifs in the proximal 3’UTRs of Hox genes, and a proportional depletion of 

the same motifs in the distal tracts of Hox 3’UTRs. I suggest that alternative 

polyadenylation is not predicted to significantly change the available cis-regulatory 

complement of Hox 3’UTRs in the forelimb. As such, our computational study provides 

directly testable hypotheses about specific aspects of the RNA-level regulation of gene 

expression in vivo. 

The regulation of Hox genes has been extensively studied in the forelimb. In this 

research field, the two main emerging ideas are that chromatin-based regulation of 

HoxA/D transcription, as well as long-range transcriptional enhancer sequences both 

mediate the setting up of Hox expression in this tissue (see Chapter I). Similarly, a 
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complex transcriptional cascade has been shown to set up the expression patterns of 

Hoxb1, among other genes, in the developing hindbrain (reviewed in (Alexander et al. 

2009)). With this in mind, I do not argue that, as with the case of the C. elegans 

germline, 3’UTRs are the main determinant of gene expression in these mammalian 

tissues. Rather, I reason that once an mRNA molecule is transcribed, it becomes 

exposed to a regulatory environment that needs to be minimally tolerated, if not 

canalized in order for the original mRNA to be successfully translated into a protein, 

which can go on and regulate transcription in the nucleus. That is to say that even in a 

scenario where transcription single-handedly sets up the expression patterns of Hox 

genes in the developing forelimb of mice, these mRNAs would still have to 

biochemically associate with some trans-regulators and not others in order to be 

exported from the nucleus, and localized, stabilized and translated in the cytoplasm; in 

this scenario, one would still expect the mRNA sequences of Hox genes to reflect that 

process.  

In summary, our results point to the general impact of 3’UTRs on mammalian 

gene expression patterns acting not in isolation, but in coordination with other levels of 

regulation to successfully set up the gene expression patterns of developmentally-

relevant genes. I show that, as with tissue-specific transcriptional enhancers, mRNAs 

display tissue-specific 3’UTR motifs. The fact that these motifs are shared across co-

expressed mRNAs points to the co-regulation of said mRNAs by trans-regulators like 

RNA-binding proteins, acting at the post-transcriptional RNA level. Furthermore, I see 

that common ancestry does not explain the existence of the aforementioned 3’UTR 

motifs. As such, I hypothesize that the subjection of different mRNAs to the same 

specific regulatory contexts within a larger, molecularly complex developing tissue, 

leads to a common selective pressure on mRNAs of different origin, promoting 
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evolutionarily convergent solutions to the shared problem of RNA regulation, which are 

reflected at the nucleotide level, in the sequences of 3’UTRs. 
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6.1 – General Discussion 

 

The work presented in this thesis provides novel insights on the mechanisms, 

developmental consequences and evolution of differential mRNA processing in the Hox 

clusters of mammals, and introduces a novel approach for the study of Hox post-

transcriptional regulation in mammalian embryos, showing that dynamically co-

expressed Hox genes tend to share sequence motifs in their 3’UTRs. 

 Hox genes encode a family of transcription factors that are differentially 

expressed along the A-P axis of developing animals, and provide positional information 

to serially homologous segments, eliciting the diversification of axial structure and 

function (Pearson et al. 2005). Mutations in Hox genes lead to major abnormalities in 

body-plan - homeotic transformations - in which one segment of the animal is 

transformed in identity and function developing into the likeness of another (Mallo & 

Alonso 2013; Pearson et al. 2005). This observation further sediments the role of Hox 

genes in the specification of the mammalian body plan throughout development, as well 

as its evolution. 

 In Drosophila melanogaster, previous studies in the host laboratory have 

highlighted the impact of differential RNA processing in the expression and function of 

Hox genes within the segments of developing embryos (Thomsen et al. 2010; Rogulja-

Ortmann et al. 2014). It has been previously shown that the differential RNA processing 

of Antp, Ubx, abd-A and Abd-B is developmentally regulated (Thomsen et al. 2010), 

leading to the production of short 3’UTRs in the epidermis at early developmental 

stages, and a subsequent elongation of 3’UTR sequences in later stages of the central 

nervous system (Thomsen et al. 2010). Previous studies have also highlighted that 
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mRNAs from the Ubx locus are regulated post-transcriptionally by miRNAs (Bender 

2008; Ronshaugen et al. 2005) and RBPs (Rogulja-Ortmann et al. 2014), a regulatory 

interaction which impacts the quantity, quality and position of Ubx proteins in the 

developing CNS of Drosophila embryos (Bender 2008). Mammalian Hox genes have 

also been previously shown to produce alternative mRNA isoforms (See Chapter 1). 

However, the extent and quality of differential RNA processing in mammalian Hox 

clusters has not been explored in depth in the literature. 

 In this work, I look to extend previous observations on the differential RNA 

processing of Drosophila Hox genes to mammalian Hox clusters. I start by collecting 

available Hox mRNA sequences, asking: (i) how do mammalian Hox genes produce 

alternative mRNA isoforms? (ii) How did RNA processing evolve in the Hox clusters of 

mammals? (iii) Is differential RNA processing predicted to affect the post-

transcriptional regulation of Hox mRNAs by differential visibility to miRNAs? (iv) 

What is the effect of differential RNA processing on the amino acid sequences of Hox 

proteins? (v) How do 3’UTR sequences relate to the dynamic expression of Hox genes 

in specific developmental contexts? To address these biological questions, I used a 

combination of computational methods, as well as a human cell culture system, and 

show that differential RNA processing is a staple of Hox genes and is predicted to 

significantly expand the Hox protein complement. 

 

 

6.2 – Paralogous Hox genes share patterns of differential RNA processing in 

mammals.   

 

Unlike Drosophila melanogaster and most other animals, the mammalian Hox 
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complement consists of thirty-nine genes, divided into not one but four clusters which 

reside in different chromosomes (Pearson et al. 2005). The composition of the 

mammalian Hox complement is a result of two early rounds of whole-genome 

duplication at the base of the vertebrate lineage. This is reflected in commonalities of 

Hox composition across clusters: paralogous Hox genes occur in similar relative 

positions within distinct clusters and tend to share sequence motifs, expression patterns 

and specific molecular functions; there are thirteen Hox paralogue groups, with each 

being composed of 2-4 Hox genes that share a single common ancestor sequence in the 

Hox cluster of the chordate common ancestor. Paralogue groups also show a great 

degree of functional redundancy. For instance, the genes of the Hox10 and Hox11 

paralogue group of Mus musculus are expressed during the morphogenesis of the axial 

skeleton (see Chapter 1). When mutated, these genes lead to homeotic transformations 

in which specific sections of the axial skeleton are transformed into the likeness of 

another (Wellik & Capecchi 2003). This phenotype, however, only becomes apparent 

when 5 of the 6 copies of the Hox10 and Hox11 genes are mutated in Mus musculus 

(Wellik & Capecchi 2003). 

In this thesis, I retrieve freely available alternative Hox mRNA sequences and 

study their occurrence across Hox clusters (see Chapter 3). I show that the incidence of 

alternative mRNAs in Hox clusters is lower that the transcriptomic average in both 

Homo sapiens and Mus musculus. However, when the total mRNA count of each 

paralogue group is averaged by the number of paralogues in that group, rendering an 

average rate of alternative isoform production per Hox gene in the context of its 

duplication group, I see that the average incidence of differential RNA processing is 

similar between Hox genes and the rest of the genome. This indicates that the 

duplication history of Hox genes explains the data better than considering each Hox 
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gene in isolation. Moreover, I see that the average production of mRNA isoforms is 

heterogeneous across paralogous Hox groups, being enriched in PGs 3 and 6-9. It would 

be interesting to explore the alternative mRNA complement of the Hox paralogue group 

3 in the context of the hindbrain. This vertebrate structure has conserved Hox 

expression patterns between Homo sapiens and Danio rerio (Alexander et al. 2009). In 

this context, Hox3 expression patterns correspond to the sites of origin of neural crest 

cells (Kiecker & Lumsden 2005) and Hoxa3 mutations lead to defects in neural crest 

formation (Chisaka & Capecchi 1991).  Neural crest cells are a vertebrate 

developmental innovation, and are thought to underlie major evolutionary adaptations in 

this clade (Holland et al. 1994), as they linked to the formation number of features in 

the vertebrate head, linked to novel modes of predation. Based on our results, I 

hypothesize that the control differential RNA processing of Hox3 genes in the hindbrain 

could underlie some of these developmental adaptations.  

  I also show that the heterogeneity in average alternative isoforms per paralogue 

group is conserved between Homo sapiens, Mus musculus, and Danio rerio. However, 

the incidence of differential mRNA processing is uncorrelated between paralogous 

genes of different vertebrate Hox clusters. This indicates that in different organisms, 

different Hox genes contribute mRNAs to the conserved paralogous isoform pool.  

Additionally, I see that there are two main sequences of differential RNA 

processing events, which dictate the formation of alternative Hox mRNAs. These two 

modes integrate distinct kinds of transcriptional initiation and alternative splicing with 

the formation of alternative 3’UTRs. In this context, I also find that Hox genes of the 

same paralogue group share a dominant mode of differential RNA processing. 

Together, these results suggest that the production of alternative mRNAs is not 

independent between paralogous Hox genes. Rather, I suggest that Hox genes of the 
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same paralogue group contribute to a pool of alternative mRNAs that is shared by 

paralogues.  In the context of redundancy in sequence, expression and function among 

mammalian Hox paralogues, I hypothesize that differential RNA processing generates 

distinct mRNAs and proteins from similar Hox loci, diversifying the protein 

complement of otherwise similar genetic loci. As most genes were lost after the two 

rounds of genomic duplication in the early vertebrates, I suggest that this mechanism 

could underlie the uncommon conservation of redundant Hox loci in mammals. This is 

supported by the fact that the relative patterns of differential RNA production across 

paralogue groups are conserved between Homo sapiens and Danio rerio, which 

indicates that differential RNA processing patterns were present at the base of the 

vertebrate lineage.  

Other authors have proposed a relationship between gene duplication and 

alternative mRNA production by alternative splicing, postulating that genes with large 

amounts of alternative splicing are more often maintained after gene duplication, with a 

resulting subfunctionalization of paralogues by fixation of alternative isoforms 

(Kopelman et al. 2005; Su et al. 2006; Talavera et al. 2009). This results in the 

functional complementarity between paralogues, and a secondary loss of alternative 

isoform production across duplicates to decrease redundancy. Indeed, the size of gene 

families that result from duplication events are negatively correlated with alternative 

splicing rates in Homo sapiens and Mus musculus (Kopelman et al. 2005).  

Our evidence supports a functional-sharing hypothesis, but the extent to which 

mammalian Hox clusters have lost alternative isoforms after the early vertebrate rounds 

of gene duplication is unclear. Danio rerio Hox genes produce less alternative mRNAs 

than their mammalian counterparts; this lineage also underwent an additional round of 

gene duplication. However, this dataset might be severely depleted, as is evidenced by 
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the lack of information on Hox 5’ and 3’ mRNA sequence ends.  In this context, it 

would be interesting to extend the study of Hox differential RNA processing to the 

cephalochordates, a sister group to the vertebrates with a single Hox cluster composed 

of 14 paralogues. The observation of a comparatively enriched production of alternative 

mRNAs across the Amphioxus Hox cluster would support the hypothesis that the 

mammalian rates of differential Hox RNA processing are the result of gene duplication 

and subsequent paralogue subfunctionalization. Conversely, low rates of alternative 

mRNA production in Amphioxus Hox genes would indicate a vertebrate-specific 

mechanism for the maintenance and functional complementarity of Hox paralogues. 

Recently, some authors have suggested an alternative model for the evolution of 

alternative splicing after gene duplication, in which genes accumulate alternative 

splicing isoforms over evolutionary time under relaxed selection regimes, until selection 

starts acting against the addition of novel isoforms in older genes (Roux & Robinson-

Rechavi 2011). In this context, genes with less alternative isoforms are prone to 

duplicate more frequently (Roux & Robinson-Rechavi 2011). A more complete view of 

the Danio rerio and Amphioxus Hox transcriptomes, which underwent respectively one 

more and no duplications, could lead the way in discerning between these two 

competing hypotheses. 

 

 

6.3 – Differential RNA processing diversifies Hox protein-sequences in mammals. 

 

In the previous section I introduce the notion that paralogous Hox genes share a 

pool of mRNAs in mammals, and that the diversification of Hox function at the 

differential RNA processing level might have led to a decrease in the strength of natural 
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selection against the genetic load brought by gene redundancy. This scenario might 

explain why a number of highly redundant genes have been maintained in the genome 

while most duplicated genes were lost in the vertebrate lineage. However, if a pool of 

exclusive mRNAs from different paralogues were needed to sustain Hox function, I 

expect to find phenotypic changes upon the mutation of a single Hox paralogue, as the 

pool of available paralogous mRNAs would be diminished. As mentioned in the 

previous section, this is not true in the case of Hox10 and Hox11. It could be that the 

functional redundancy of paralogous Hox genes is manifested in the morphogenesis of 

broad inter-segmental structures, while more detailed intra-segmental morphogenesis 

relies on the regulatory input of different paralogues. Indeed, Hoxa9 and Hoxd9 display 

both broad functional redundancy in the morphogenesis of the axial skeleton and the 

forelimb, but also show specific funtions at a smaller morphogenetic scale within these 

tissues (Fromental-Ramain et al. 1996).  

In our work, I show that differential RNA processing is predicted to 

significantly remodel the open-reading frames of Hox mRNAs (Chapter 4), supporting 

the idea that together with alternative transcriptional initiation and alternative 

polyadenylation, alternative splicing has the potential to diversify Hox molecular 

functions. I observe that Hox genes of different paralogue groups produce alternative 

isoforms that lack key Hox motifs like the DNA-binding Homeodomain, the protein-

protein interaction hexapeptide and the SSYF transcriptional activation domains in a 

combinatorial and often conserved manner.  

Other authors have shown that alternative splicing introduces variation in the 

availability of DNA-binding motifs of Transciption factors in both Mus musculus and 

Homo sapiens (Taneri et al. 2004). Additionally, these authors have shown that the 

variation which alternative splicing introduces in transcription factor sequences is larger 
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than that observed for other loci(Taneri et al. 2004). Alternative isoforms also tend to 

have tissue specificity (Taneri et al. 2004). In addition to this, alternative splicing has 

previously been shown to generate alternative Hox mRNA isoforms that do not encode 

for a Homeodomain (see Chapters 1 and 4). In the case of Hoxa9, differential RNA 

processing was shown to produce Homeodomain-less isoforms in bone marrow 

hematopoietic cells of both Mus musculus and Homo sapiens (Stadler et al. 2014). In 

Mus musculus, the Homeodomain-less Hoxa9 isoform has been shown to underlie the 

leukaemogenic potential of the Hoxa9 locus (Stadler et al. 2014), an observation that 

underlies the importance of the regulation of differential Hox RNA processing in 

mammals. 

Using a cell-culture system, I observe that the longer of the two Hoxa9 mRNAs, 

which encodes for the homeodomain, includes all cis-regulatory sequences that are 

necessary for the production of the homeodomain-lacking version. Although I observe a 

transcriptional dependence for the production of the Hoxa9-HD-less isoform, this link is 

not unexpected (Kornblihtt et al. 2004). I hypothesize that a quick, quantity-dependent 

switch between different RNA processing modes might underlie the regulation of this 

process. Additionally, I observe that Hoxa1 produces alternative mRNAs that do not 

include the homeodomain in the same coordinated manner, while other genes like 

Hoxc4, Hoxb1 and Hoxb9 seem to employ different regulatory steps to achieve the same 

end. This points to a degree in the plasticity of differential RNA processing, in which 

many kinds of differential processing reactions might be employed to generate the same 

combinatorial end. Additionally, I observe that the production of alternative isoforms 

that lack the DNA-binding domain is observed in all major transcription factor classes, 

and shows an exceptional degree of conservation, being observed in some cases 

between mammals, arthropods and annelids. However, the production of homeodomain-
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less isoforms in homologous loci shows the greatest degree of cross-phylum 

conservation. 

With these results in mind, I hypothesize that differential RNA processing is 

predicted to strongly impact Hox amino acid sequences, confirming that this regulatory 

level can indeed diversify the output of mammalian Hox loci. Interestingly, I also 

observe that a conserved alternative Hoxa10 isoform contains a protein sequence that is 

closer to proteins from the paralogous Hoxc10 locus than it is to other isoforms of its 

own locus, in both Homo sapiens and Musculus. This supports the idea of functional 

complementarity between paralogous Hox loci, and includes differential RNA 

processing as a mechanism that can underlie the functional redundancy between Hox 

paralogues, even if the underlying paralogous loci are slightly distinct. As such, I 

propose that differential RNA processing of Hox genes has the potential to underlie both 

redundant and specific Hox functions, underlying both the robustness and 

diversification of Hox expression. 

 

 

6.4 – Co-expressed Hox mRNAs share a host of sequence motifs in 3’ untranslated 

regions in the developing hindbrain and limb of mammals. 

 

As with Drosophila melanogaster, mammalian Hox genes are differentially deployed 

along segments of the A-P axis, promoting differential identities during the embryonic 

development of mammals. In the mammalian context, the segments, which undergo 

differential developmental fates due to Hox expression, differ according to the 

anatomical region analysed. In the hindbrain, a transient developmental structure of the 

vetrebrate brain, the initially unsegmented neural tube undergoes metamerization 
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resulting in 7-8 homonomous segments, the rhombomeres (Alexander et al. 2009). 

These segments are then patterned differentially by Hox input, leading to a variant 

output in motor neuron and neural crest-cell morphogenesis along the A-P axis (Gavalas 

et al. 1997; Alexander et al. 2009). In the axial skeletogenesis of mammals the Hox 

code is superimposed over serially homonomous structures, the somites (see Chapter 1). 

In the developing limbs however, Hox-mediated morphogenesis proceeds by dynamic 

changes in Hox expression patterns in a largely unsegmented structure, the limb bud. In 

this context, dynamic Hox expression patterns have been shown to initiate and change 

due to a switch in chromatin and transcriptional regulatory inputs (Andrey et al. 2013; 

Andrey & Duboule 2014). This level of regulation was hypothesized to underlie the 

temporal colinearity of Hox expression during the development of this tissue. In this 

dynamic developmental context, however, the problem of how Hox expression is 

maintained and refined is still unclear. Once the transcription of a specific Hox gene is 

initiated at a precise time and space, and a resulting mRNA (or more) is produced by 

RNA processing, I submit that this molecule will necessarily undergo a myriad of post-

transcriptional regulatory levels (see Chapter 1 and section 6.2 of this Chapter). 

Additionally, the steady-state patterns of Hox mRNA expression might not reflect the 

final abundance and quality of proteins in the tissue. For instance, mRNA and protein 

abundances are correlated but only modestly, varying from 0.41 (thyroid gland) to 0.55 

(kidney) in adult Homo sapiens tissues (Wilhelm et al. 2014). This indicates that 

mRNAs and the resulting proteins do not have a 1:1 relationship in terms of quantity, 

and further adds to the notion that the observation of mRNA patterns is an incomplete 

picture of the regulatory cascade that links genetic loci and the protein they produce. In 

the aforementioned study (Wilhelm et al. 2014), the authors argue that this uncoupling 

between mRNA and protein expression could lie in mRNA cis-regulatory regions that 
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control translation rate. 3’ untranslated regions have been shown to influence the 

stability and translational efficiency of mRNAs in a number of ways, as these sequences 

lie outside of the ribosome path during translation, and are thus available to regulatory 

molecular partnerships with trans factors (Spies et al. 2013). Importantly, in the case of 

the Caenorhabditis germline, it has been shown that once transcription is broadly 

initiated in the germline, the expression patterns of germline-expressed mRNAs are 

refined to specific compartments in a process that exclusively relies on cis-regulatory 

information in 3’UTRs (Merritt et al. 2008; Reinke 2008). 

 In this thesis, I use a novel computational approach to the problem of the cis 

control of post-transcriptional regulation, and show that the 3’UTRs of Hox genes of 

clusters A and D contain shared sequence motifs (Chapter 5). Further, I show that the 

3’UTR of each Hox gene has a private combination of shared sequence motifs, and that 

the degree of similarity between 3’UTR motif combinations of different Hox genes 

correlates very strongly with their co-expression patterns in the developing forelimb. I 

also show that Hox common ancestry does not explain this pattern, indicating that this is 

a result of convergent evolution in subsets of Hox 3’UTR sequences. Next, I expand 

these observations to the hindbrain, where specific sets of 3’UTR motifs match 

rhombomere-specific expression patterns. In this context, I see a strong correlation 

between 3’UTRs and expression patterns of Hox and other phylogenetically unrelated 

genes that nevertheless share expression patterns in this tissue. I advance that the 

3’UTRs of Hox and other genes reflect smalls-scale adaptations to the specific 

molecular contexts of complex tissues due to evolutionary convergence. As mammalian 

Hox genes are pleiotropic, the modularity of cis 3’UTR motifs means that the same 

untranslated region of an mRNA can accumulate cis-regulatory sequences that are 

important for different regulatory contexts. In this context, I also hypothesise that 
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alternative cleavage and polyadenylation adds another layer of nested regulation in Hox 

genes, as I observe that different 3’UTR isoforms contain different miRNA targets in 

the same organism, and evolve at different rates, with the distal tracts of longer Hox 

3’UTR isoforms diverging more rapidly than proximal 3’UTR regions within mammals. 

This advances the notion that alternative 3’UTR formation can lead to the creation of 

developmental and evolutionary compartments that impact the molecular control of Hox 

expression during mammalian development. 

 

 

6.6 – Concluding remarks 

 

Development is a generative process in which genetically indistinguishable 

cells, originating from a zygote by successive rounds of cell division, progressively 

become different from each other in form and function in order to achieve the division 

of cellular labor that characterizes multicellular organisms. As such, not differential 

genetic inheritance but contingent, variant regulation of the fates of genetically 

homogeneous cells is responsible for the cell-type differential that characterizes the 

morphological and functional end-point of developmental programs, commonly called 

the adult phenotype. A corollary of this definition is that the haploid genome is the unit 

of genetic inheritance in multicellular organisms, being inherited across generations. 

The phenotype, on the other hand, is not inherited sensu stricto, but needs to be built up 

anew in every generation. As the phenotype determines the immediate relationship 

between an organism and its environment, and thus its fitness, it is the component of an 

organism that is visible, and thus the proximal object, of natural selection. As such, 

developmental programs can be said to effectively couple inheritance and evolution in 
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multicellular organisms.  

In order for natural selection to change multicellular phenotypes across generations, 

a good degree of cross-generation fidelity must exist in developmental programs so that 

the genotype and phenotype can effectively correspond. As natural selection favours 

some phenotype variants over others in a natural population, genotypic variants must 

exist that mirror this fitness differential, in order for the selected phenotypic features to 

be heritable. I can now see that there is a big contrast between Developmental and 

Evolutionary processes, in the sense that the former are goal-directed or teleological. 

Indeed, Developmental programs do show a great degree of fidelity across individuals 

of the same natural population (i.e. its phenotypic goals are empirically identifiable), a 

property that is usually called Canalization. Canalization, or developmental robustness, 

can be defined as the ability of developmental programs to produce invariant 

phenotypes in the face of perturbation, either in the form of genetic or environmental 

variation. This property of developmental programs - the ability to produce highly 

related phenotypes in spite of divergent genotypes, introduces a paradox, for how can 

one propose that Evolution can be seen as a problem of Development if developmental 

processes are specially apt in buffering change? Furthermore, as this property of 

Development is key for the fitness of individuals, one expects it to be, as with other 

fitness-related components of the phenotype, shaped by natural selection. On the other 

hand, the phenotypic evolution that can be deduced from both the fossil record and the 

extant diversity of Animal and Plant life implies that Developmental Programs have 

also changed dramatically across time and space, and are thus evolvable, a quantum of 

information that is intuitively at odds with the observed robustness of Development.  

Hox genes are, I submit, at the crux of this paradox, as the same genes are both 

involved in the diversification of body plans, and a paradigm for the robust control of 
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development by transcription factors (Mallo & Alonso 2013). In this thesis, I advance 

the notion that the regulation of differential RNA processing in mammalian Hox genes 

could present a possible solution to the apparent dichotomy between the robustness and 

evolvability of Hox function. 
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