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Preface  

We all have experienced at least one relative or friend who died of cancer. I 

have completed this research to improve a biomedical imaging technique for detecting 

cancerous tissues in its early stages to increase the chances of diagnosis. It is worth 

noting that the cancer incidence rate has been significantly increased during the last 

decade. This increased rate requires more precise detection, diagnosis, and treatment 

procedures.  

Cancer is found in so many organs in the body, such that each of them is 

named after the place that they started in the body; some of them are as follows: 

Cervical Cancer Cervical cancer Oral cancer Testicular cancer 

Hodgkin lymphoma Kidney cancer Ovarian cancer Uterine cancer 

Laryngeal cancer Leukaemias Pancreatic cancer Thyroid cancer 

Liver cancer Lung cancer Prostate cancer Vaginal cancer 

Mesothelioma Myeloma Skin cancer Vulvar cancer 

Non-Hodgkin lymphoma Oesophageal cancer Stomach cancer Breast Cancer 

This research aims is to have an impact on improving a detection technique, it 

may be a very small help but I hope to save some people in the world. Since the 

treatment success rate is enhanced by detecting the cancer in its earliest stages this 

has a significant effect in preventing it from being distributed to other organs. Thus, 

detecting the cancer in its earliest stages, will lead to increased longevity of patients 

and decreased cancer re-occurrence. In fact, detecting cancer is quite a challenge in 

every patient’s life. One type of prevalent screening of organs (i.e. Breast, prostate) is 

based on diagnosing cancers that exhibit changed cellular electrical properties, hence 

mapping the conductivity (or permittivity) of electrical currents in tissue and retained 

electrical charge permits assessment. In addition, this approach can reveal the 

difference between abnormal and normal tissue. It can be used to produce Electrical 

Impedance Tomography (EIT) images based on the impedance distribution and its 

variation in the human organs, it can be used to detect different types of cancers i.e. 

breast, brain and prostate. Each type of cancer needs a slightly different device and 
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instrument that is compatible with the organs shape and soft tissue accessibility to be 

able to detect cancer. We present here EIT as a medical imaging technique for breast 

cancer application. Within this research I have tried to illuminate the application of EIT 

for the clinical and physiological applications. 
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Abstract 

The research concentrates on the design, development and calibration of a 

high performance Electrical Impedance Mammography (EIM) system for early 

detection of breast cancer at the macro and micro scale (at an early stage applicable 

for different breast sizes and shapes). The enhancement of the Electrical Impedance 

Tomography (EIT) system focuses on developing electrical and electronic 

instrumentations and improving the current source topologies to make them operate 

at multiple frequencies for the purpose of measuring permittivity and conductivity of 

different breast tissues. The calibration, assessment systems have employed current 

calibration in the EIT to evaluate the impedance distribution. This facilitates the 

acquisition of accurate impedance images to enable images of the internal structure of 

the breast to be constructed. A constraint on EIT systems is that the current injection 

system suffers from the effects of stray capacitance having a major impact on the 

hardware subsystem as the EIT is an ill-posed inverse problem which depends on the 

noise level in EIT measured data and regularization parameter in the reconstruction 

algorithm. This research aims are to prevent this problem by using a capacitance 

cancellation method based on a General Impedance Converter (GIC) implemented by 

operation of a second generation of current conveyor called OCCII-GIC and calibration 

methods to facilitate operation in the high frequency range. An EIT system based on a 

planar 85-electrode channel and using a Microcontroller unit (MCU) for addressing 

control between 85 electrodes and implementing calibration methods has been 

constructed. In EIT systems, assessment, validation of the performance and calibration 

of systematic errors in the electrical field generated inside of the interrogated volume 

is important. Evaluation of the EIT system will be assessed using a realistic electronic 

phantom (E-phantom). This enables the evaluation of the different conductivity values 

of the tissue, which has been created and evaluated based on the RSC circuit model for 

the different electrical conductivities and electrical impedivities in breast tissue.  
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1.1. Overall aim of the research 

In response to the need to increase the chances of detecting cancer at an early 

stage, which is directly related to survival of patients with respect to the increasing 

number of cancer cases, an electrical impedance mammography (EIM) system is 

presented. This system exploits opportunities to provide early stage detection of 

cancer using an alternative non-invasive biomedical imaging technique for screening of 

cancer in young, middle-aged and old people. By emphasizing non-invasive imaging 

techniques for clinical application in screening programmes, we have designed and 

developed a new electrical impedance tomography (EIT) system that operates at high 

frequencies from: 10 kHz up to 3MHz with low noise and high precision analogue 

circuits sufficient to inject current and measure the voltage needed to reconstruct 

impedance images. To assess the performance of the system an E-phantom was 

created to simulate the electrical properties of different tissue types, thus providing 

simulation and testing of the breast cancer using EIM. This research includes a specific 

target to design a new EIM system that will work effectively for clinical applications. 
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1.2. What purpose does this chapter serve? 

This chapter describes the breast, breast anatomy, cancer stages and breast 

cancer incidence and gives a clinical introduction to breast cancer. This chapter 

describes the biomedical imaging modalities such as mammography, Computer 

Tomography (CT), ultrasound and Magnetic Resonance Imaging (MRI) that are usable 

in the area of breast cancer detection and the challenge of using Electrical Impedance 

Mammography (EIM) for early breast cancer detection. 

1.3. Introduction 

Tissue is made of millions of cells, which are constantly renewed and are 

replaced with younger cells. The meaning of cancer simply is defined when a single cell 

(abnormal cell) begins to multiply (overgrowth) out of control in a part of the body. As 

the cancer progresses, some cells may eventually break away and spread to other 

parts of the body, it is called metastasis cancer then tumours are formed through 

metastatic cancer cells (American Cancer Society 2015, Cancer Research UK 2015). 

1.4. Breast Anatomy: stromal tissue and duct 

The supporting cells and connective (glandular) tissue of the breast are called 

the stromal tissues. In case of the breast, various types of stromal cells are called 

stroma of the breast. Medical and anatomical scientists explain that the female breast 

consists of 6 to 10 major duct systems. When the breast becomes larger, it makes new 

internal structures, which are called lobules. These structures come together around 

the duct where the milk is produced during pregnancy and breastfeeding periods. Each 

duct contains numerous lobules, which consist of terminal acini and ductules (Kopans 

1998). The adipose (a type of fat) tissue and supporting stroma surrounds these ducts 

and lobules forming the breast anatomy, shown in Figure 1. A group of lobules, forms 

lobes, each of the lobes is connected to the nipple by a duct. The milk ducts and 

lobules are growing during pregnancy. This process will lead to producing milk. The 

breast structure consists of the lobules and milk ducts will be changed and leave a few 

scuttle ducts in the breast after the cycle of milk producing terminates. There are 
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many different types of breast cancer. However, Ductal (milk ducts) and Lobules (milk-

producing lobules) are the leading types. Lobule carcinoma begins in the lobes 

producing milk (milk-producing glands) and ductal carcinoma (tumour) begins and 

growths in the ducts that transfer the milk through the breast to the nipple as shown 

in Figure 2. 

Some cancer cells will remain in milk ducts and lobules that are called non-

invasive, but many become invasive and spread to other parts of the body. Although, 

the pathologist looks for the cancer cells under a microscope to identify the different 

appearances (generally physical appearances) as cancer cells have a unique 

appearance and the degree of difference between the cancer and normal cells is 

identifiable. However, cancer changes, physical and electrical cellular properties of 

cells. Therefore, there is a possible way to detect the cancer based on the different 

electrical properties of the cells. 

  

Figure 1 Anatomy of the Breast 

(MedicineNet 2010) 

Figure 2 Ductal Carcinoma in situ (Movva 

2013) 

1.5. Breast Cancer stages 

Cancer staging (staging classification system) is the way in which the extent of 

the spread of cancer will be determined as a clinical classification and assessment of 

results of treatment. There are various staging systems for cancer. The cancer stages 

range from the early form (stage–0) with the development of any abnormal cells 

(ductal carcinoma in situ), which are not invasive and can be cured with an almost 

100% successful treatment. A localized (stage–1), tumour size is less than 2cm in 

diameter and the prognosis is very good around 72% of women with stage–1 breast 

cancer will have no recurrence of breast cancer for over 15 years and 99.1% of women 
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(aged 15–99 years) with stage–1 breast cancer have 5 years of survival (2002–2006). 

For the early locally advanced (stage–2), the breast tumour is 2cm or less in size, but 

cancer cells have already metastasized to other parts of the body such as lymph nodes 

or near the breastbone, or the cancer size is 2–5 cm or the cancer size is bigger than 

5cm in diameter, but has not yet metastasized to other parts of the lymph nodes nor 

nearby breastbone and 87.6% of woman (aged 15–99 years) survive after 5 years 

(2002–2006) with treatment. The late locally advanced (stage–3) is the breast tumour 

size between 2 and 5cm with apparent spread or bigger than 5cm with no apparent 

metastasis, but there is a need to consider whether it is operable or inoperable (more 

difficult to completely remove with surgery), respectively, and the average survival 

rate is difficult to predict and depends on individual cases whether slow or fast 

growing and the response to treatment. However, in regard to breast cancer survival 

statistical reports, 55% of women (aged 15–99 years) survive after 5 years. Finally 

metastasized (stage–4), the cancer is metastasised to other parts of the body, i.e. the 

bones, liver or brain and unfortunately long term survival rate of women (aged 15–99 

years) with this stage of breast cancer has a very low survival rate; around 14.7 % after 

5 years (Breast Cancer UK and Breast Cancer (C50), Five-Year Relative Survival by 

Stage, Women Aged 15–99 Years, Former Anglia Cancer Network, 2002–2006)(Cancer 

Research UK 2014a). Successful treatment of breast cancer is highly dependent upon 

early detection and intervention. 

1.6. Breast cancer overview 

Breast, lung, prostate and bowel cancers are ranked the top four cancer 

incidences in the United Kingdom (2011), respectively. The breast 15.2%, lung 13.1%, 

prostate 12.6%, and bowel 12.5% (colorectum 8.3% and rectrum & rectosigmoid 

junction 4.3%) are 177,065 number of incidences of all malignant neoplasms (excl non-

melanoma skin cancer), where the people population in 2011 is estimated to be 

63,200,000. In fact, these four types of cancer made up 53.4% of all new cases in 2011 

(Analysis by Ali Zarafshani based on Cancer Research UK, UK Cancer Incidence 2011, by 

Country Summary, January 2014)(Cancer Research UK 2014c). The commonest cancer 

incidence in 2012 especially in England for men were the prostate 25.9%, lung 13.6% 
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and colorectal 13.4% and for women breast 30.9%, lung 11.9% and colorectal 10.9% 

(Cancer Statistics Registrations, England, Series, MB1, No. 43, 2012) (Office for 

National Statistics (ONS) 19/6/2014). This shows that the common types of cancer 

(cancer diagnosed cases) among women and men in the UK are breast and prostate 

cancers, respectively, which is similar to the rest of the world. It is these two types of 

cancer that hold the top position among all races. In the UK, 50,285 people (cases) 

were diagnosed with breast cancer in 2011 and almost 350 men are diagnosed with 

breast cancer annually (UK Cancer Incidence and GLOBOCAN, 2008, Cancer Incidence 

and Mortality Worldwide, IARC) (Ferlay, Soerjomataram et al. 2014, Ferlay, 

Soerjomataram et al. 2015). Therefore, this incidence rate shows breast cancer is the 

commonest cancer in women and that is the reason why it is necessary to consider 

breast cancer so seriously. 

1.7. The breast cancer incidence in women and the aged 

The highest rate of breast cancer relating to age over a lifetime will be 1 case in 

9 people. In the case of breast cancer, more women aged 60–64 years will be affected, 

6,805 new cases per year between 2009–2011 (Breast Cancer (C50), Average Number 

of New Cases per Year and Age-Specific Incidence Rates, Females, UK, 2009–2011) 

(Cancer Research UK 2014b). The highest rate of breast cancer incidence by age for 

females is between 65–69 years worldwide (2012) (analysis by Ali Zarafshani (Ferlay, 

Soerjomataram et al. 2014)). Thus, the highest risk of breast cancer incidence occurs 

between 60 to 70 years old. 

1.8. Early detection methods of breast cancer (protocol for a 

screening program) 

For the purpose of earliest stage detection, the current strategy is to use 

screening programs related to different ages. Detecting cancer is normally done by 

mammogram, which is based on a type of X-ray screening. The other technologies 

which can be used for diagnosis besides a mammogram, such as digital 

mammography, computed tomography (CT) and ultrasound imaging, forming the basis 
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of UK NHSBSP, but at the moment ultrasound is just used for image guiding instead of 

using it for breast screening due to its limitations. 

Mammography is generally recommended for three groups in the UK: 1st the 

people who have signs of masses (lump) infection, 2nd from 2011 the process of the 

breast screening with two\three screenings for woman in the 50–70 age range. All 

women will get their first screening by their 50th year, with two or three randomised 

extra screenings in the 50–70 age range. 3rd people with a family history of breast 

cancer (breast cancer history) (NHSBSP) are given specific attention. The American 

Cancer Society has used a similar protocol for a screening programme: 1st breast self-

examination for women before 20s and starting 20s, 2nd clinical breast examination 

every 3 years for women in their 20s, 3rd clinical breast examination yearly for women 

aged 30s, 4th mammogram yearly for women over age 40 (National Breast and Cervical 

Cancer Early Detection Program, 2012). 

1.9. Biomedical imaging modalities 

There are many types of biomedical imaging modalities which apply different 

techniques. The most important quality factors for medical imaging modalities are 

based on invasive or non-invasive procedure, safety or minimum side effect of its use, 

the specification of tissues, distinguishability, ionization or non-ionization (radiation 

free), cost, rapid data collection, sensitivity, reliability and reproducibility, though 

possibility of long term monitoring is a factor for medical imaging devices that are used 

for observation studies i.e. lung injure, acute respiratory failure and other diseases. 

Mammography, CT, MRI and Ultrasound imaging techniques are commonly 

used for detecting and monitoring of breast cancer at the different cancer stages. The 

X-ray and CT are generally used for screening programmes and MRI generally are 

utilized during the process of detection as well as used successfully in monitoring the 

treatment. Furthermore, ultrasound is a non-invasive and non-ionization imaging 

technique with a high spatial resolution. Since the ultrasound is a subjective technique 

and it is not based on the tissue electrical characteristics, hence it is more useful for 

establishing the physical geometry which adjunctively used with mammography 
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instead of a common techniques being used for screening programmes, particularly in 

breast cancer screening programme (BCSP)). 

a. Mammography (X-radiation) 

With the X-ray (X-radiation) method, the breast is squeezed using a dedicated 

mammography unit that consists of a pair of parallel compression plates (an X-ray on 

the bottom and a plastic plate on the top) and that reduces the thickness of the breast 

tissue. A diagnostic mammogram transmits low doses of X-rays (from centre to side) to 

one side of the breast with a detector on the other side of the breast. The thickness of 

the compressed breast must be reduced to reduce scattered radiation to increase the 

image quality. The enhancement of scatter reduces image quality and increases the 

required radiation dose, thus holding the breast is necessary. The breast images 

(mammograms) are produced by different attenuation of irradiance and from different 

angles of X-rays. The image of a 2D projection of X-ray is often difficult to interpret for 

breast cancer because it is focused in a particular area of abnormal tissue. However, 

the speed to practically take an image is fast and it is an objective technique. The 

important disadvantage of the X-ray technique is using ionizing radiation, which limits 

the total radiation dose that the body can tolerate. The doses of ionizing radiation to 

create a mammogram with low energy X-ray are around 30 kVp (a peak electron 

voltage, one electron voltage equal 1.602x10-19 Joules typically Molybdenum alpha 

radiation Mo-Kα normally same as using radiography of bones (50-150 kVp)) to 

examine the breast for detection of breast cancer where a mammogram has 0.4mSv 

(millisieverts) radiation dose (a person receives a radiation dose of 2.7mSv (in average) 

from natural sources in the UK). The result in Figure 3 shows the cancerous tissue 

absorbs X-rays and becomes white and opaque on the mammogram. 
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Figure 3 Normal (left) versus cancerous (right) mammogram, breast tissue appears white 

and opaque (Courtesy of the National Cancer institute 2015) 

There are numerous variables that affect the performance of mammography 

for detecting breast cancer correctly, i.e. age and breast density (the amount of fatty 

tissue compared to glandular and fibrous tissues, and younger women naturally have 

higher breast density compared to older), hormone replacement therapy, image 

quality (resolution and movement), and experience of the radiologist (Penhoet, Petitti 

et al. 2005). The result of mammography until 2002 in the USA with a one year 

screening interval shows overall 71–96% has correctly determined cancer, but patients 

also required a biopsy. For a single mammogram, from 94 to 97% have correctly 

determined that a woman does not have cancer (with randomised trials), however, 

this requires further diagnostic evaluation, such as clinical examination or ultrasound 

(Humphrey, Helfand et al. 2002). 

b. Computed Tomography (CT) 

Computed Tomography (CT) was invented by G. N. Hounsfield in 1967, a British 

engineer who worked at a company in Middlesex, UK. The first prototype, was 

dedicated to imaging the brain and completed in 1971, it had a resolution of 80 x 80 

pixels. The first commercial CT system (SIRETOM) developed by Siemens was launched 

in 1974. In the following years, CT rapidly emerged as a well-established diagnostic 

modality all over the world. CT is an X-ray machine in which the source and detectors 

are rotated together around the patient. The 2D and 3D reconstructed images use the 

Radon transform from a number of 1D projections at a number of different angles to 

achieve realistic soft-tissue data to produce volume data. It will cause a lot of 

difficulties in long time usage due to the radiation dose required for imaging organs (a 

CT scan of the chest has below 10mSv compared to a mammogram 0.4mSv). A number 

of studies have shown that the radiation does used in CT and mammography affect the 

body in the long term; leading to congenital anomalies in newborns from their mother 

who has been affected by X-rays and CT during pregnancy. This is why pregnant 

women are banned from being exposed to doses of X-ray and CT. Thus there is no 
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possibility of using X-ray mammography and CT during pregnancy (Ammari 2008, 

Penhoet, Petitti et al. 2005). 

c. Magnetic resonance Imaging (MRI) 

In contrast to X-ray, magnetic resonance imaging (MRI) is a non-ionizing 3D 

image technique (it requires around a 1000 of images of the breast from left-to-right, 

top-to-bottom, and front-to-back). The MRI signals will arise from the protons in body 

water and lipids when the patient is affected by the static magnetic field. The breast of 

the patient hangs into a depression and the scanning table (MRI scanner tube) is 

rotated into a tunnel-like scanning machine that surrounds a rounded magnet. This 

magnetic power is around 104 times higher than the earth’s magnetic field. The proton 

becomes a small magnet when charged by the angular momentum. In fact, the 

protons precess around the direction of a large static magnetic field applied at the 

appropriate resonant frequency. There are two types of alignment of protons with 

their internal magnetic fields: in parallel or anti-parallel direction. By encoding the 

inducing voltages of a tuned detector coil into the magnetic field gradient where the 

protons process coherently, a linear variation will be produced in 3D in the magnetic 

field within the body. In fact, by using an inverse 2D Fourier transform, we can convert 

the signals to a spatial domain to create the image through the variation of phase and 

frequency of processing magnetisation. This is measured through a radio-frequency 

coil while the protons are linearly dependent upon their spatial location. A high spatial 

resolution image with the ability to change the data acquisition factors can be created 

based on the differential contrast between different tissues. Also, for the case of 

breast cancer, to improve the distinguishability of tissue properties a contrast agent 

(nonradioactive) can be given intravenously; which has the ability to improve the 

distinguishability of a tumour (Ammari 2008, Penhoet, Petitti et al. 2005). 

The MRI has advantages over X-ray, which includes improved soft-tissue 

contrast and a high spatial resolution with higher sensitivity to detecting multi-centric 

ductal carcinoma than mammography, but it is less specific for detecting breast cancer 

compared to mammography (Hwang, Kinkel et al. 2003, Virnig, Shamliyan et al. 2009). 

Breast MRI is not approved by the FDA and NHS for routine breast screening and is 
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used to assess young breasts in high risk situations because the MRI is not able to 

precisely distinguish between abnormal (cancer) tissue and normal (noncancerous) 

breast tissue. MRI is also used for assessment of abnormalities indicated by other 

techniques (X-ray or ultrasound) or evaluating the spread of a tumour or effectiveness 

of treatment during or after treatment. MRI also requires further evaluation such as a 

biopsy (Schnall 2003). There are disadvantages, which include its high price (10 times 

more expensive than CT image technique and mammography) and the scan time, 

which is from 2-10 minutes and susceptible to patient motion. Moreover, if a contrast 

agent is given intravenously, the entire imaging session takes about one hour. Its most 

detrimental effect is an extremely low specificity image compared to other medical 

imaging techniques such as Electrical Impedance Tomography, which will be proposed 

to discriminate benign from malignant lesions. 

d. Ultrasound imaging 

Using ultrasound (sonography) for the diagnosis of cancer is based on a non-

invasive, cheap and pain-free technique, which is beneficial since it is easily portable 

and is an inexpensive technique. It operationally works using high frequency sound 

waves over a range of 1 to 10 MHz via the backscattering of mechanical energy that 

comes from joining tissues or small structures within organs. The echoes produce an 

image (called a sonogram) only includes the physical properties (physical geometry) of 

the biological tissue. Ultrasound imaging produces a high spatial resolution without 

ionizing radiation (free radiation). The examination time for the case of breast cancer 

is around 10–20 minutes. In the case of breast cancer detection, ultrasound is usually 

utilized as an adjunct technology with mammography; it increases the accuracy of 

detection and provides guidance (Lee, Dershaw et al. 2010, Penhoet, Petitti et al. 

2005). Its disadvantage is poor soft-tissue contrast and the most important weakness 

is the ultrasound image does not include the electrical data to determine the 

differences between the tissues, this makes certain organs difficult to image and just 

distinguishes between solid and fluid-filled tissues (cysts), this is why ultrasound is not 

a routine technology for breast cancer screening.  
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As I mentioned before in the breast anatomy section, some cancer cells will 

remain in milk ducts and lobules that are non-invasive, ultrasound is the most common 

technology for detection of ductal carcinoma when cancer cells (a mass) grows 

originally in the linings of the breast milk ducts invade surrounding tissue with 

speculated borders, but it is not much useful for the cancerous tissues that consist of 

calcium in the breast e.g. micro-calcifications which usually seen as linear micro-

calcifications and linear orientation (Izumori, Takebe et al. 2010). However, at present 

ultrasound is recommended as an adjunct technology for young adults frequently as 

the breast tissue has a high density in this age group. It is worth noting that the 

ultrasound is an assistive procedure for cancer detection and is not a principal method 

instead of mammography, since the ultrasound shows the physical properties of the 

masses with an advantage of high spatial resolution image. 

e. Microwave and radar imaging  

The microwave tomography (MWT) is a non-invasive biomedical imaging 

technique which could be applied for detection, and diagnosis of breast and prostate 

cancers based on using electromagnetic waves in microwave frequency range. MWT 

generally operates between 300MHz up to 20GHZ to produce permittivity of subject. 

Microwave is a technique based on electrical and magnetic property distribution 

(Semenov 2009).  

Considering the advantages of the MWT such as non-invasive, inexpensive and 

radiation free technique, some research groups are interested to utilize it in clinical 

studies as a biomedical imaging technique to detect breast cancer at an early stage 

(Bindu, Abraham et al. 2006, Fang, Meaney et al. 2004, Bond, Li et al. 2003, Fear, Li et 

al. 2002, Fhager, Hashemzadeh et al. 2006, Li, Meaney et al. 2003, Li, Hagness et al. 

2003, Meaney, Fanning et al. 2000, Meaney, Fanning et al. 2007, Meaney, Fang et al. 

2005, Miyakawa, Ishida et al. 2004, Poplack, Tosteson et al. 2007, Rubæk, Meaney et 

al. 2007). However, inhomogeneous and dispersive nature of the medium causes a 

long-time running and ill-conditioning imaging. Therefore, still many important 

improvements in hardware and image reconstruction are required. Here are some of 

the most common difficulties in microwave based on diffraction effects: 1) 
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impossibility of producing modulated, fine and narrow microwave beams with 

diameter less than the wavelength, 2) the restriction of the spatial resolution because 

of limitation in focus and 3) structure or signal interactions i.e. edge, wave effects and 

multiple scattering problems of the waves and creeping microwave breams. 

In conclusion, it seems EIT and MWT have comparable advantages compare to 

X-ray, Ultrasound and MRI. Both have shown to be effective for relatively large 

tumours in a size of 0.5cm to 1cm because of spatial resolution. Therefore, it highly 

depends on the development of the system and improvements in regard to large scale 

clinical studies.  

1.10. Challenges in using EIT instead of Mammography, MRI and 

Ultrasonic imaging techniques for early breast cancer detection 

Overall, there are more than 15 biomedical imaging technologies i.e. 

Mammography (X-ray), CT (computed tomography), MRI (Magnetic Resonance 

Imaging), Ultrasound imaging, Microwave imaging, Elastic imaging, Optical 

tomography, SPECT (single photon emission computed tomography), PET (positron 

emission tomography), TAT (thermoacoustic tomography), Photoacoustic, ESI 

(electrical source imaging), EEG (electroencephalography), ECG (electrocardiography), 

and MRE (magnetic resonance elastography), which can be exploited for detection and 

diagnosis of different cancers, nevertheless only mammography (X-ray film and digital 

mammography), and CT have been approved for use in the breast screening 

programme in the USA by Food and Drug Administration (FDA) and in UK by the 

National Health Service (NHS). MRI and ultrasound are recommended as adjuncts to 

mammography, or for monitoring the response to the treatment process and image-

guiding (Penhoet, Petitti et al. 2005). All efforts to detect breast cancer are trying to 

find a system to achieve the sort of data that can result in early detection for diagnosis 

of breast cancer. As the electrical properties of tissue are different when it changes 

from normal to abnormal tissue, Electrical Impedance Tomography (EIT) systems are 

recommended as it is capable of creating tissue condition data, which will be based on 

mapping the impedance of the tissue. Breast cancer screening using the EIT medical 

image technique is a more effective method since it can show cancers at an early 
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stage, though EIT provides the electrical specificity of tissues in a low-resolution image 

while the clinicians tend to use the high-resolution biomedical imaging techniques 

such as 128-slice CT, f-MRI, SPECT or 3D ultrasonic. However, the patients need to be 

assessed by a system operating on a different physical principle, i.e. non-ionizing 

radiation, and receive electrical characteristics, that electrical properties and response 

characteristics of cells and tissues seems to be a sufficient criterion for distinguishing 

cancerous tissues in screening programmes. EIT is the only biomedical imaging 

technique that can provide the images with these more useful features. In addition, 

EIT doesn’t require a medical contrast mediums (contrast agents) though Ultrasound 

and MRI medical imaging techniques both require contrast agents. Therefore, EIT 

needs rapid improvement in order to achieve high-resolution images. 

Mammography is a biomedical imaging technique that was founded around 40 

years ago (FDA approval 1969). However, there are several side effects when using low 

energy X-ray in mammography compared to EIT, which is without any side effect and is 

a non-invasive technique. As the EIT technique injects very low currents around 0.5 to 

2mA, there is no side effect from prolonged use for the monitoring of bedridden 

patients. However, as the EIT system is based on the impedance tomography system, it 

will be nonlinear, so there is no linear effect on measurements and electrical 

properties in relation to property changes. So it is an extremely ill-posed imaging 

technique. 

The 2D EIT and CT images have similar mathematical functions when the 

desired image has been provided by acquiring data of the whole interior structure. 

Contrasting EIT with the MRI and CT techniques, which have high-resolutions, the EIT 

system uses diffusion of the current to create an impedivity distribution image with 

low-resolution. In contrast to MRI and electromagnetic, the EIT system is the only 

biomedical imaging technique that can produce an image using the distribution of 

electrical impedivity; EIT is a pain-free technology and produces inexpensive images. It 

has different applications and is a functional technique in contrast to other biomedical 

imaging techniques (Zou, Guo 2003, Brown 2003). 



Chapter 1 Breast Cancer and Early Detection Background  

 

14

Mammography, MRI, and Ultrasonic imaging techniques have significantly 

improved the quality of the image in early detection of breast cancer. The image that 

is used for the early detections has the ability to diagnose accurately and renders 

precise and measured modes of treatment. The crucial factors that should be 

considered for different imaging techniques are as follows: 

TABLE 1 COMPARISON OF PROPERTIES OF MAMMOGRAPHY, MRI, ULTRASONIC AND EIT 

Features Mammography MRI Ultrasonic EIT 

Cost of technique Expensive Expensive Cheap Cheap 
Hazard attachments Highest High No No 
Possibility of incessant uses (as long-
term monitoring of physiological 
function is a common medical imaging 
technique in case of lung diseases) 

No No Not useful Yes 

Capability of spectral of tissue 
specificities such electrical 
characterizations instead of physical 
features  

No Yes No Yes 

Ionization radiation Yes No No No 
Soft tissue contrast Yes Yes No Yes 
High spatial resolution Medium High Low Low 
Three dimensional capabilities Yes Yes No Yes 
Susceptible to patient motion Yes No Yes No 
Examining breast implant integrity No Yes No Yes 
Invasive technique Yes Yes No No 
Treatment efficiency No Yes No Yes 

Table 1 shows the statistical information to emphasise why we need to focus 

more on EIT as an imaging technology, especially for detecting breast and other types 

of cancers. As a result, EIT has the opportunity to be a replacement for the breast 

cancer screening (as electrical impedance mammography EIM) as it is an inexpensive 

imaging technique and gives the possibility to detect and diagnose cancer at its 

different stages, different breast sizes and shapes and for high risk groups (such as 

family history and a genetic tendency). Moreover, there is some idea that EIT system 

will be useful in clinics as part of the normal clinical tools, for example clinical 

application of EIT for ICU patients. The EIT is also able to degrade the number of 

biopsies suggested to figure out or describe if a mass is cancerous. In regard to 

advantages and disadvantages, the aim is to use EIT as a replacement for 

mammography in breast cancer screening including adjunct method for detection and 
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monitoring treatment before and after therapy since FDA approval for clinical use in 

1999 (U.S. Food And Drug Administration 2002).  

The EIT has local resolution limitations; however, several researchers into EIT 

systems have made it an important subject in which research has become quite 

intensive rather than CT scanners, functional MRI (fMRI) methods, Single Photon 

Emission Computed Tomography (SPECT), and 3D ultrasound scanning. 

The EIT system is highly preferred to the aforementioned diagnostic devices for 

the following reasons: 

1) An EIT image describes electrical conductivity and 

impedivity distribution of biological tissues as a different type of data 

compared to other medical imaging techniques; it helps to detect 

breast cancer at the early stage applicable for different breast sizes and 

shapes. 

2) The EIT system is useful in various applications such as 

distinguish cancerous from healthy breast tissue and as an adjunct 

method without causing any side-effect. 

3) The EIT system is a pain-free and safe technology and will 

not place the patients’ health at risk by exposure to ionizing radiation. 

4) The EIT technique is a reasonable technique for 

screening programs as it is a less expensive technique compared to 

other available techniques. 

5) Tissue characterizations (electrical parameters rather 

than simply physical information inside the body) are possible by 

making spectral impedance measurements. 

With regard to the unique advantages of EIT as described above rather than 

other medical imaging techniques, the clinical application of EIT has been confirmed. 

EIT has been applied to: lung imaging, gastrointestinal system, as an accepted clinical 

imaging technique for clinical trials. One of the distinct features of EIT systems 

compared to other imaging technologies such as ultrasound, MRI and CT is the ability 
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to describe the dielectric properties of different tissues, which has been proved to 

work as a mammography imaging technique for detecting different cancer types in 

body regions like breast, cervical, skin and prostate. On the other hand, EIT still has 

challenges for clinical uses, as it is sensitive to errors introduced by data collection; 

affected by noise in frame measurements; weak sensitivity problem in areas; 

inaccurate electrode positioning; boundary shape problems which are mostly to do 

with the use and limitations of the hardware subsystem and inverse problem methods 

for image reconstruction. To solve some of these limitations, we are developing a new 

EIT system to overcome some of the hardware problems. 

1.11. Conclusion 

The new National Health Service Breast Screening Programme (NHSBSP) was 

established in 2012 in the UK. This national program invites all women aged between 

47 and 73 for more precise screenings. These types of additional national efforts all try 

to detect breast cancer at the earliest possible stage. In the UK women are frequently 

referred for screening for breast cancer using X-rays, or breast Tomosynthesis 

mammography as the mammography equipment, (breast tomosynthesis 

mammography means taking multiple images of the entire breast in digital 

mammography instead of single image to avoid overlapping breast tissues. Because 

overlapping tissues can caused appear or beseem a breast cancer in the resulting 

image) (NHSBSP Equipment Report 1411, published in September 2014) (Baxter, Jones 

et al. 2014) and Magnetic Resonance Imaging (MRI), however, the masses will not be 

detected easily when they are small (less than 2cm). In fact, these screenings may not 

always detect early stage of cancer (cell changes). Cancer progression could be 

prevented by early detection and treatment, but then again the X-rays, 

Tomosynthesis, and MRI tests are not preferred in regard to their impacts. Nowadays, 

most breast cancers are detected by the screening programmes who report unusual 

changes through the Mammography (X-ray) screening programme. Mammography 

typically uses the mass characteristics and micro-calcifications for detection and this 

information seems insufficient for the early stages of breast cancer. The cost and side 

effects of screening programs are very important due to the scale of national 
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programs. In fact, this dissertation contains information about early detection of 

breast cancer by presenting a new EIT system with high-precision and improve-

resolution. It would be a desirable system to use for the breast cancer screening 

programs and adjunct technology to other biomedical image techniques to increase 

the chance of a successful treatment. 

1.12. Research achievement 

A constraint on EIT systems is that the current injection system suffers from the 

effects of stray capacitance, which has a major impact on the hardware subsystem. 

The research has identified all the sources of stray capacitance and demonstrated how 

this limits high frequency performance. 

The research has identified schemes to compensate for stray capacitance to 

facilitate high frequency operation of the EIT system. 

The research has addressed the stray capacitance problem by using a 

capacitance cancellation method based on the General Impedance Converter (GIC) 

implemented by the operation of a second generation current conveyor called OCCII-

GIC and calibration methods to facilitate operation in the high frequency range. In 

addition the new EIT system developed based on an auto-calibration method using a 

MCU and cascading topology in order to reduce on/off switch capacitance of the drive 

multiplexers that utilized to share the excitation system between different electrodes.  

An E-phantom to assess the performance of the EIT system such as SNR and 

modelling accuracy of the system has also been created and evaluated. In addition the 

RSC circuit model of the breast tissues (the intra- and extra-cellular and membrane 

capacitance of the breast tissue) have been instated in the E-phantom in order to 

simulate the frequency dependent targets in the homogenous conductivity medium 

and the measured tissue impedances compared with Cole-Cole theoretical impedance 

measurements. Finally, we reconstructed the image to evaluate the image 

reconstruction algorithms.  
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1.13. Dissertation flow 

As we described early, the first chapter presents the general knowledge about 

the cancer and especially breast cancer at the early detection stage, using different 

biomedical imaging techniques. Chapter 2 provides a literature review and feasibility 

study of the key hardware and instrumentation required for the EIT system. Chapters 3 

and 4 describe the hardware of the new EIT system (AZ1 EIT system) in detail, 

focussing on the conditioning of the current injection system. The improved Howland 

current source as well as a current conveyor current source combined with the stray 

capacitance cancellation method to eliminate the effect of multiplexers in the system. 

Chapter 4 describes a feasibility study of using an MCU control system and software 

platform for implementing control all on a single platform. Chapter 5 and 6 focuses on 

the assessment and function of a high-performance E-phantom to assess the new 

current source combinations for the EIT system with the simulation and experimental 

results and impedance image reconstructions based on the RSC circuit model of 

different conductivities and impedivities. Chapter 7 provides a general discussion and 

conclusion plus suggestions for future works. 
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2.1. Introduction 

In general based on Ohm’s law (V=IR), the resistance (R) (reciprocal of electrical 

conductance G) of an object can be determined if the current (I) passes through the 

object and the potential (V) difference across the object are known. Subsequently, 

electrical impedance (Z) is derived from the amplitude of resistance when there is a 

ratio of phases (θ) between the voltage and current in AC circuits (|Z|∠θ). Indeed, the 

electrical impedance is not purely a real resistance (R) value and is affected by the 

reactance (X), thus, (Z=R+jX). Furthermore, the effects of capacitors and inductors 

associated with intra and extra cellular properties in the case of biological objects will 

cause negative or positive phase shifts between current and voltage. Impedance has a 

direct cause-and-effect relation to the alteration of the current flows into an object. In 

fact, the impedance is the impeded or restricted current flow. The inverse of 

impedance is called admittance Y, which is admitting the current flow. Based on linear 

conditions for a unique tissue-specific cell, the cell impedance is the inverse of the cell 

admittance (Z=1/Y). If the distinction between the impedance and admittance is not 

relevant, the more generic term will be defined as immittance. Permittivity (ε) 

describes the subject’s ability to transmit the electric field that is generated per unit 

charge in the medium. Practically the permittivity is a measure of the ability to permit 
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the storage of electrical energy in the medium. In regard to the above concepts 

Electrical Impedance Tomography (EIT), in biomedical engineering, is a medical 

imaging technique that maps the permittivity distribution inside the volume of a 

subject under test or a biological tissue sample, by injecting current or applying a 

voltage to the tissue and collecting voltages or currents on the subject surface 

(Zarafshani, Huber et al. 2010). EIT systems use impedance data for imaging biological 

tissues using the change of impedance brought about by disease states. 

2.2. Historical review of EIT technology 

The impedance imaging systems are known by different names as Resistance or 

Impedance Imaging (RI/II), Electrical Resistance Tomography (ERT), Applied Potential 

Tomography (APT), and Electrical Impedance Tomography (EIT) for biomedical image 

modalities (Brown 2003). It is recommended in terms of breast cancer screening 

programmes to use the Electrical Impedance Mammography (EIM) and in case of 

multi-frequency EIT is called Electrical Impedance Spectroscopy (EIS). 

EIT as a medical imaging technique that was firstly established by Henderson 

and Webster (Henderson, Webster 1978). In the early 1980’s Barber and Brown began 

to construct an EIT system (Barber, Brown 1984, Barber, Brown et al. 1984). At this 

time EIT was represented as a new biomedical imaging technique for various 

applications, i.e. gastric emptying, brain function monitoring, lung and cardiac function 

evaluation and screening and diagnosis of different cancers (e.g. Breast, prostate, skin, 

and cervical cancers and brain tumour). 

Brown and Seagar were the first scientists to manufacture a fully operational 

EIT system in 1987 called Sheffield Mark I (Brown, Seagar 1987); as a consequence a 

new major research field was initiated in medical imaging by Barber and Brown’s 

efforts(Barber, Brown 1984, Barber, Brown et al. 1984). The first EIT systems used a 

maximum of 5 kHz frequency and an efficient back projection algorithm (Brown, 

Seagar 1987). However, the resulting images had low-resolution. This algorithm had 

been derived from CT imaging technology, which has been generalised from the 

integral transform over straight lines to be called the Radon transform method. The 
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Radon transform produces an image from scattering data related to the cross-sectional 

area of an object. The inverse result of a tomography area will be produced from the 

scattering data, which means the inversed Radon transform creates the original 

density (intensity function); this is called image reconstruction (IR) (Barber, Brown et 

al. 1984). Based on this method, there were major problems in unavailability of any 

alternative to remove or filter the good data from the bad during the investigation, 

making its use not feasible for all types of targets. Furthermore, it has had no 

capability to be applied sequentially for different values of current and voltage related 

to measurements (Yorkey, Webster et al. 1987). This means that the Sheffield 

reconstruction algorithm had innate restrictions related to its use in comparison to 

iterative approximation methods, e.g. finite element method (FEM), finite difference 

method (FDM) and boundary element method (BEM) that can generate results more 

efficiently(Teschner, Imhoff 2011). 

Following Sheffield Mark I, the Rensselaer Polytechnic Institute group 

presented an imaging method using the conductivity distribution (Gisser, Isaacson et 

al. 1988). The method that the Rensselaer group had presented, to obtain the 

conductivity distribution, had been based on current perturbation, which utilized an 

adaptive current pattern tomography system (ACT) (sometimes called dynamic 

electrical impedance tomography), which is produced by the current perturbation 

(Choi, Isaacson et al. 2003). However, a high-quality background conductivity is 

needed to achieve a highly accurate image (Choi, Isaacson et al. 2003, Holder 2005). 

a. Review of EIT technology in other research groups 

Rensselaer and Sheffield’s groups were the first two groups that worked on 

primary image techniques, while the other research teams subsequently developed 

the hardware and software subsystems of electrical impedance methods. The histories 

of EIM, EIS, and EIT instruments are quite different in the case of capability. Overall, 

more than 10 research teams have developed an EIT machine. The following list 

indicates the major teams developing an efficient and effective implementation of the 

EIT machine: 
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I. Dartmouth college group II. Kyung Hee University group  

III. Oxford Brookes group  IV. Rensselaer Polytechnic Institute group 

V. Sheffield group VI. University College London group 

VII. Duke University group VIII. Moscow research group 
  
TABLE 2 HISTORICAL REVIEW OF EIT TECHNIQUES IN DIFFERENT RESEARCH TEAMS 

Research 
group/Drive 

name 

Drive / 
Measurement 

Protocol 

No of 
electrodes 

serial/parallel 

Speed 

(frames per 
second / 

measurements 
per second) 

Resolution 

Electrode 
Topology 

Bandwidth 

No. of 
frequencies 

SNR 

(dB) 

Dartmouth 

group(Bayford 

2006, Hartov, 

Mazzarese et 

al. 2000) 

Two-terminal 
measurement 

Current/Voltage 
source 

32 electrodes/64 
ch 

parallel 

30/30 

16 bits 

Ring 

10 kHz–10 
MHz 

30freqs 

100 

KHU Mk2 (Oh, 

Wi et al. 2011)  
Four-terminal 
Current source 

Any number of 
channels 

between 8-64 ch 

parallel 

2/100 

12 bits 

Ring 

10 Hz–500 
kHz  

7 freqs 

75-
85 

Oxford 

Brookes group 

/OXBACT5 

(Bayford 2006) 

2 & 4-
terminal/16 

current source 64 
voltage 

measurements 

Current and volt 
semi-parallel 

25/25 

16 bit 

Ring 

26 kHz–56 kHz 

Single Freq 

n/a 

Rensselaer 

group ACT4 

(Holder 2005, 

Ross 2003a) 

Two-terminal 72 
Voltage/Current 

sources 
Ch 1.1 parallel 20 16 bits Planar 

500 Hz–1 MHz 

8 Freqs 

90 

Sheffield 

group, Mk3.5 

(Wilson, 

Milnes et al. 

2001) 

Four-electrode 
Current source 

8 electrodes 
semi-parallel 

25/25 

12 bits 

Ring 

2kHz–1.6 MHz 

30 Freqs 

40 

UCH Mk2.5 

(Fabrizi, 

McEwan et al. 

2009, 

McEwan, 

Romsauerova 

et al. 2006, 

McEwan, 

Cusick et al. 

2007) 

Four-electrode 
Current source 

32/64 electrodes  

Serial 

0.12–1/33 

12 bits 

Ring and EEG 
applicator 

Head-shaped 

20 Hz–1.6 
MHz 

30 Freqs. 

40 

Duke EIT 

(Ybarra, Liu et 

al. 2007) 

Four-electrode 
Voltage source 

128 electrodes 
Serial and 

parallel 

120s screening 
process 

23bits 
Funnel-
shaped 

Low 
frequency 

High 
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Sussex group 
(former Rev.) 

Four-electrode 
Current source  

85electrodes 

Serial and 
parallel 

20/20 14 bits Planar 

1kHz-500 kHz 
(Current 
Source) 

10 Freqs 

60 

Table 2 shows a recent review of EIT machines in other research groups. 

Although, there are several limitations in the technology, still several research groups 

are continuing to investigate the EIT efficacy. 

b. Historical review of EIT techniques in Sussex research team 

The Sussex group has had the motivation to improve the sensitivity and to 

create enhanced Electrical Impedance Mammography (EIM) systems focussing on 

hardware and software elements during all phases of research and clinical trials. The 

Sussex research group has established versions of the Electrical Impedance 

Tomography (EIT) system. EIT systems in the Sussex research group have been 

designed for breast cancer detection for clinical uses continuously generating cross-

sectional images of the breast. There are several EIT machines using from 4 to 64 

electrodes in the ring topology with more than 1% accuracy by using multi-frequencies 

(Wang, Tunstall et al. 1998). Overall, the existing records from previous publications 

show the historical background of EIT systems in the Sussex research group in detail. 

Table 3 summarises key points of the latest EIT development from 2008 to 2012. 

TABLE 3 HISTORICAL REVIEW OF EIT AND EIM TECHNIQUES IN SUSSEX RESEARCH GROUP 

Characteristic Points 
Ver3b system in 

2008 

Ver4 system in 

2012 

Frequency points: Semi or Multi-frequency Multi-frequency  Multi-frequency  
Number of electrodes 85 electrodes 85 electrodes 
Electrode topology: Ring or Planar Planar electrodes Planar electrodes 
Type of applying source Current Source Current Source 
Source Bandwidth Up to 500 kHz Up to 500 kHz 
Speed of Data Acquisition System (frame/s)  >20 frame/s (DAS) >25 frame/s (DAS) 
Method of electrical impedance imaging Dynamic image Dynamic image 
Signal-to-noise ratio(SNR): SNR: 40dB SNR: 50dB 
Value of Accuracy of DAS:1% Accuracy: > 1% Accuracy: > 1 % 
Speed of Image reconstruction 1frame/s  1frame/s 

The Sussex EIT system has performed as a bioimpedance measurement 

technique. The earlier version of Sussex EIT systems for clinical proposes was built 

using an electrode plate containing 85 electrodes in a planar topology area that are 
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designed to be driven by a single current source technique. Based on personal 

experiences working with Ver3b and Ver4 systems, the most concerning limitations are 

as follows: limitation in bandwidth of the system, accuracy and SNR, image 

reconstruction resolution and low-sensitivity, speed of addressing control in regard to 

the acquisition time (speed of the system). 

These kinds of limitations are quite common in the design of EIT systems. For 

instance, regarding speed, we incorporated an external board as an address board, 

which had been used to control the switching logic based on logic gate components. 

For this reason, the acquisition time has been increased, causing problems with 

electrolysis bubbles on the electrodes. (Huber, Béqo et al. 2010). The speed of data 

acquisition is an issue and the control system is designed to minimise the acquisition 

time. 

c. Historical review of commercial EIT technology 

The first commercial EIT machine was created by Hellinge and Hahn in the 

1990s it was called the GOE MF II that was made by Maltron International, which was 

based on the Sheffield Mark I. This system was mainly evaluated by using it on regional 

lung function sections (Maltron International 2012). Maltron International presented a 

Sheffield Mark 3.5 image technology in 2000 that represented the first EIT in daily 

clinical practice (Maltron International 2012). 

Siemens medical systems launched a system in 2000, which was not 

tomographic calling it Transcan TS2000 for breast imaging by employing a 2D 

rectangular array of electrodes using a set of measurements from a large electrode 

plate (TransScan Tscan-2000 2000). In 1999, the FDA approved the EIT technology as 

part of the clinical tools as an adjunct for mammography or to reduce the usage of 

biopsies (U.S. Food And Drug Administration 2002). 

In the first decades of the 21st century Drager Medical GmbH also developed 

PulmoVista 500 as a clinical tool, which was used in intensive care in order to monitor 

the function of the lungs and the respiratory system (Teschner, Imhoff 2011). 
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After 25 years of EIT system development, the Russian Academy of Science in 

Moscow and SIM technika presented the MEIK III machine that was trialled in the 

Russia research centre and the clinical hospital of Yaroslavi. Spetspribor, it was a 

system represented by SIM technika in the 2007 version of the MEIK V system for daily 

clinical practice of breast cancer assessment (SIM technika 2008). 

2.3. Key components of the EIT system 

Typically, an EIT system consists of the following parts: (I) excitation system, 

(II) signal measurement system or data acquisition system (DAS), (III) Phase-sensitive 

demodulation system, and (IV) image reconstruction algorithm (Brown 2003). The 

excitation system consists of a current flow pattern that is produced by different 

source methods (such as current or voltage sources), is applied to two or more 

electrodes on the body surface. In order to have a high precision system, it should be 

able to pass the maximum known amount of the applied signals through the object 

(here a part of the body e.g. breast). The signal measurement system consists of 

voltmeters or ammeters, which are used to measure the resulting signals of the 

electric field appearing within the body. 

An EIT system necessarily implements some functions in analogue electronics 

while as many as possible are implemented digitally. The first two parts (excitation and 

measurement systems) are analogue. A phase sensitive demodulation system consists 

of demodulators, which are utilized to extract both the real and imaginary parts of the 

measured signals; this can be done either in hardware or software. Afterwards, the 

extracted signals are passed to an image reconstruction algorithm to construct the 

image of the object under observation. The EIT images are provided at multi-frequency 

in case of having low-spatial resolution by using the generalised inverse problem or a 

finite element method (FEM) of the organ to construct the impedivity (could be 

permittivity) and conductivity images. However, these have different effects; by using 

the inverse method, an image with different permittivity and conductivity will be 

generated, and it is needed to create accurate mesh elements of the organ to review 

and to place the exact position of the electrodes. 
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Bioelectrical impedance is the basis of the EIT system that is the reciprocal of 

electrical admittance. The EIT system is based on different impedances that come out 

of different tissue types where there are extreme differences between the impedance 

of organs, and related to various frequencies as well.  

In order to flow the current through a conductive medium, the current flows 

between two electrodes, these electrodes are called source and sink electrodes. The 

circuitous routes have negligible current flow. There are several methods that have 

been developed for measuring impedance. However, the topology of the four-

electrode method introduced by Schwan, is a standard and the best method for 

bioimpedance measurement especially for the EIT system (Schwan 1963). According to 

the Schwan’s explanation, two of the electrodes will measure the electrical impedance 

Z (reciprocal of electrical admittance Y) of the subject (e.g. Tissue) while the other two 

have injected the current into the object as shown in Figure 4. For the case of EIT, a 

constant current is injected to evaluate the impedance or admittance of an object over 

a frequency range. The maximum possible range of frequencies for the EIT system to 

be designed for most of the biological objects is around a few megahertz because of 

hardware limitations. However, at low frequencies, the electrode impedances are 

extremely high, impeding a constant injection current from being injected into a 

subject at frequencies below a few hundred hertz (Brown 2003). In addition, 

systematic errors will be produced from the effects of parasitic capacitances and 

inductances that infiltrate at high-speed measurement for a high-frequency system. 

Indeed, the frequencies for EIT systems should be considered from 10 kHz to a few 

megahertz. The resulting system not only makes less electrode impedance problems 

and transient change issues, but also reduces the risk of nerve stimulation in which a 

small harmless alternating current is injected into a subject.  

Briefly, the behaviour of the current that flows to the tissue would be different 

at low and high frequencies. At low frequency (<1 kHz), the current that flows to the 

tissue impeded by cell membrane which particularly acts as an isolating layer. Hence, 

the current at very low frequency moves via intersection between cells and the 

measured impedance would be the value of the extra-cellular layer. On the other 



Chapter 2 Literature Review 

 

27

hand, at high frequency, the capacitance of the membrane will be shorted and intra-

cellular start to effect in the impedance measurement value as well as extra-cellular. 

Therefore we are considering significant differences between tissue properties at a 

narrow (low to high) frequency bandwidth. Although the value of the impedance that 

will be measured also depends on morphology of the tissue at the cellular level that 

means the ratio of the number of cell per unit divided in medium (what space are 

exists between cells in a tissue).  

 

Figure 4 principle of pick-up the potential difference measurement with a four-electrode 

array (Martinsen, Grimnes 2008) 

Overall, the two different sources are employed in practical EIT imaging 

systems used in clinical applications and diagnosis pathological:  

(I) One technique using the bioelectrical impedance is measuring the potential 

response of the current injection excitation system when the electrodes are connected 

to the surface of the object for the impedance distribution calculation. To implement 

the technique, a known and constant (or a variable) value of alternating current is 

applied to a set of electrodes (between two or more electrodes) to create a current 

pattern and the resulting voltages are measured with other electrodes. Overall, it is 

required to have a high output impedance by using a large number of precision 

components to tune the current injections over a wide range of frequencies. However, 

the system is influenced by variations in load impedance as well as parasitic 

capacitance where the system becomes complex and time-consuming; calibration is 

needed to avoid this effect.  
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(II) The other technique is applying voltage on the electrodes and measuring 

the output current variation, there are advantages over current injection such as using 

a precision voltage source, high accuracy, and stability resulting in wide bandwidth 

compared to current injection. However, unknown contact impedance of electrodes 

will be the main issue in this technique. 

Therefore, the key components of our EIT system includes a signal generator, a 

data acquisition system (DAS) and an image reconstruction system. There is a plug-in 

board (main board) which allows measurement of a set of transfer impedance 

measurements as analogue signals. This board is the key element in the system to 

cover the current injection switching between different channels. It is connected 

through a DAS with a cycle of processes from the signal generator, voltmeter, and 

control system in order to reconstruct the image. The signals are filtered and 

calibrated so that multi-frequencies and multi-channel circuits can have maximized 

bandwidth. 

a. Sussex EIT Ver4 (former version) system 

The Sussex EIT Ver4 (former version) system uses a quadrature (four-electrode) 

method for impedance detection (Xiaolin Zhang, Wei Wang et al. 2014). The EIT Ver4 

system does not include any on-board calibration method to calibrate the current 

injection and voltage measurement. The ADC and DAC are based on the NI (National 

Instrument) PXI chassis. Also, the system has used a separate address control board. 

The Sussex EIT system is attached to a plane of 85 electrodes (as the electrode mesh of 

85 electrodes shown in Figure 5) in which circular electrodes measure the electronic 

potential difference of all parts of the subjects, with thought of flowing in a half rice-

seed shaped volume as shown in Figure 4 for the case of a planar structure. The 

principle of EIT is that hundreds of impedance measurements that pick-up the 

potential difference from a subject will create a higher resolution image when each 

measurement obtains the impedance of a half rice seed shaped volume of tissue 

produced by the distribution of current flow over a mesh of 85 electrodes, as shown in 

Figure 5. 
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Figure 5 a coarse mesh of 85 electrodes with circular electrode plate 

The Sussex EIT Ver4 is based on a single current source using an enhanced 

Howland current source which is shared between 85 electrodes using 8 multiplexer 

(MUX) ICs. The system specification is shown in Table 4 as the following: 

TABLE 4 CURRENT SOURCE SPECIFICATION OF SUSSEX EIT VER4 

Item Feature Specification 

1 Amplitude of Current  0.5mA, 1mA 
2 Operating Multi-Frequency 1kHz – 500 kHz 
3 SNR 50 dB 
4 Calibration method Circuit test 
5 Resistance Load 1k-2kΩ 

6 
Stray Capacitance  
(per each channel injection) 

Most is caused by MUX and buffer op-amps (per 
multiplexer channel) COFF=11 pF, CON=18.5pF 
in total: 11pF*8ICs+8.5pF (per ch)=94.5pF (Data 
Sheet-AD8114 2005a) 

7 Output Impedance 500 kΩ @ 100kHz and less then at 500 kHz 

8 Accuracy 60dB 

2.4. Technical challenge of EIT system 

The goal is to improve impedance imaging technology, especially the 

performance of the EIT system for diagnosis of breast cancer in relation to the 

different densities of tissues, which vary depending on age, in general, premenopausal 

women have denser breasts than postmenopausal women, (breast density means the 

amount of breast and connective tissue i.e. fibrous and glandular tissues is large when 

compared to fat tissue). The deficit of the current EIT system that should be addressed 

first is the difficulty of achieving multi frequency electrical hardware. There are other 
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limitations or challenges such as spatial resolution, speed, accuracy improvement and 

decreasing sensitivity. The use of a current source is among the techniques mainly 

used for producing a current map (when injecting current) into a medium, by 

measuring electrical properties that are related to the density of various tissues, from 

the effect of current flowing between two electrodes and its measurement. Therefore, 

it is difficult to create a high-performance EIT system using an operational frequency 

range up to a few megahertz with high accuracy and stability. 

In EIT systems, high precision circuitry is essentially necessary to resolve the ill-

posed problem in image reconstruction, where a small change of surface current leads 

to massive changes in the spatial distribution of permittivity inside of the body 

(Bragos, Blanes et al. 1995).  

The imaging resolution depends on number of electrodes because only a 

limited number of current injections and voltage measurements is obtainable. For 

example in ring topology with 16 electrodes, we are able to have 15 injection channels 

and 120 potential measurements (N (N-1)/2) (Brown 2003). Moreover, it depends with 

mesh density i.e. size of the mesh, number of nodes and elements, amount of data 

and number of frequency points. In addition, the image reconstruction software need 

to improve by number of sufficient factors such as uniform amplitude response, small 

and uniform position error, small ringing artefacts, uniform resolution (Adler, Grychtol 

et al. 2015, Holder 2005) . 

Building a source with the greatest possible precision is urgently important for 

EIT technologies. This source can either be a constant current source so that each 

electrode chosen has a certain AC constant current injected into it, or the source can 

be a voltage source putting a specified voltage on each electrode.  

Typically any two electrodes fixed to the target volume are driven 180 degrees 

out of phase and any two electrodes fixed to the target volume have their voltage 

difference signal measured with a difference amplifier and synchronous demodulation 

referenced to the source oscillator. The errors will be larger in using an applied voltage 

method compared to using an injected current method that is measuring the current 
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for modelling the permittivity because of the inability to account for the case where 

the contact impedance of an electrode is high.  

2.5. Outline of proposed research targets 

The proposed target of this research is the investigation and implementation of 

the new EIM system, which is based on the improvement of existing EIT systems 

applied in breast cancer screening/detection, presented as a new mammography 

method. So progress seems difficult without defining the targets more clearly as in the 

following: 

a. Feasibility study of key hardware elements of the EIM system for 

improvement of the system sensitivity, the system performance and efficiency. 

b. To study and to design the high-performance Cole-Cole based 

electronic mesh phantom in order to improve the system sensitivity, reliability 

and reproducibility by validating and assessing the performance of the EIT 

system. 

Identification of EIT system features helps to find the direction of what should 

be achieved regarding improving sensitivity and image resolution. In regard to the 

Sussex EIT Ver4 (former version) and its weaknesses, I design a new EIT system. This 

new EIT system is called AZ1 EIT system to investigate the high-performance of 

different current sources of the EIT for improvement of the bandwidth as well as 

calibration methods to improve resolution. 

a. Proposed Targets 1: Feasibility study of key hardware 

elements of EIM system for improvement of the system 

sensitivity 

As it was mentioned before, the EIT systems can be implemented by injecting 

current to receive a voltage. Therefore, a possible topology would be creating a system 

based on two different current sources on a single platform with the choice of a stray 

capacitance cancellation method as a multi-source structure. This multi-source 

structure is the key element to determine high efficiency in highly sensitive EIT 
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systems. For the multi-frequency system, the single channel signal, and multi-signal 

measurement would be calibrated to achieve the maximum bandwidth and SNR 

measurement in the presence of minimized noise.  

1. The feasibility study of current source 

implementation 

The excitation system when based on the current source is limited by system 

bandwidth due to the effects of output and stray capacitances. The most important 

factor in producing a constant output current is the source impedance of the current 

source, which is frequency dependent. A good current source having a high output 

impedance will be affected negligibly by the unknown contact impedance. The source 

impedance is ideally infinite, but due to the presence of unwanted capacitances, the 

source (or internal) impedance is limited across a wide band. The current sources that 

have been commonly recommended in EIT systems are based on the improved 

Howland current source (as a voltage-based structure) and current conveyor current 

source (as a current-based structure). The improved Howland current source is among 

the methods that traditionally have been used for current injection. The improved 

Howland current source has limited output impedance which is consistent across a 

wide bandwidth. The source impedance of a current source reduces in the presence of 

unwanted capacitances at higher frequencies. When these unwanted capacitances 

(output and stray capacitances) are cancelled, a higher output impedance of a current 

source can be achieved. (Qureshi, Chatwin et al. 2010).  

In order to do this, a general impedance converter (GIC) was placed in parallel 

with an improved Howland circuit as a common solution (Antoniou 1969). However, 

the common GIC (i.e. Antoniou 1969) which is composed of two op-amps and five 

passive components does not have an ideal result when combined with the current 

sources. For this reason, a novel method has been created to cancel the stray 

capacitance of the design. This method has been created by utilizing an operational 

second generation current conveyor (OCCII) combination acting as a GIC in place with 

current sources when producing an inductance in parallel (as an RLC circuit). It is worth 

noting that this technique is a novel method in EIT systems and this method is named 
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here as an OCCII-GIC. In order to reduce the output capacitance of the system, 

different GIC designs were tested, and then output impedance and bandwidth 

performance were evaluated. Results show that high output impedance can be 

achieved over a limited bandwidth. This configuration makes the current source very 

complex, which requires high precision and additional complex trimming circuits. We 

use tuning techniques to achieve a system with high output impedance at higher 

frequencies. 

Chapter 3 presents a multi frequency OCCII-GIC circuit to cancel the 

unwanted capacitance in an EIT system. We test the OCCII-GIC circuit with different 

current source methods such as voltage-based and current-based structures (i.e. 

Improved Howland current source and current conveyor current source). The 

simulation and experimental results of the EIT system show it should be useable at 

frequencies above 3MHz. 

2. Fast switching channel and control system 

The main aim of this research is the integration of two schemes: the wide 

bandwidth and fast multiplexer (MUX) for excitation and DASs. Each of them is 

individually effective in achieving the required design specification when DAS uses 

digital techniques, and different excitation signals combined with the advantages of 

high stability and low noise. The most recent single-source designs are based on a 

switching function using DRV and REC multiplexers. A microcontroller unit (MCU) is 

usually used for controlling systems in order to achieve a high-speed and a high 

precision system. The MCU also has the task of communication between the system 

interface and channel modules. It additionally uses an automatic procedure for 

calibrating the system and image reconstruction algorithms, which are attached, as a 

micro-controlled structure. These advances in technology bring improvements in 

performance, such as wide bandwidth, high speed and high precision when they are 

applied to an EIT system. For instance, the aim is to design the fast multiplexer for the 

EIT over a model reference adaptive structure in order to boost the performance, 

especially in image reconstruction speed. It will be ideally a combination of the entire 

system via the focus in analogue varying channels for 85 electrodes. It is required to 
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use MUXs in case of controlling shifts (changes) between each source channel. The 

MUXs also are used to select the channel (measuring electrodes) in the acquisition 

system. The switching channels are a key factor for system speed as they affect the 

speed of the acquisition system. Long capture times mean that there is more likelihood 

of patient movement that may cause further artefacts in the EIM capture. As a 

demonstration of the architecture to achieve fast prototyping only one channel in the 

system will be selected (or changed) in the EIM capture. 

b. Proposed Target 2: To study and to design a high 

performance Cole-Cole based electronic mesh phantom for 

improvement of system sensitivity, reliability and 

reproducibility 

Assessment and validation of the EIT system performance and calibration of 

systematic errors in the electrical field generated inside of the interrogated volume is 

paramount. System instabilities can be caused by the EIM design and must be 

characterized before and during the clinical trials. Evaluation of the EIT system used in 

the clinical study can be based on a realistic electronic phantom (E-phantom). This 

research describes an electronic mesh phantom based on the electrode configuration 

and mesh structure of the planar Sussex EIM system. The phantom has the capacity to 

model the cellular electrical properties that are operative within a circular 

homogeneous medium. The design is optimized to assess the planar topology of the 

internal impedance distribution. This includes the effect of the complex impedance 

model of tissues using a distributed circuit, exploiting look-up tables of the 

extracellular resistance R, resistance of intracellular tissue S, and the membrane 

capacitance properties C (RSC circuit model). The system employs the information on 

the electrical properties of biological tissues to achieve the Cole-Cole dispersion data. 

The study will present a dynamic phantom to assess the performance of the EIT system 

to simulate in vivo conditions. The mesh phantom has the capability to generalize the 

RSC circuit models between 85 electrodes. It is possible to use different RSC values at 

six different locations each in a one slice; consisting of 123 combinations (current 

injection) with the capability to generalize the model using a hexagonal topology in the 

planar structure that is measured at multiple frequencies. This mesh phantom 
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provides predictable, stable, and reproducible signals with the capability of using 

digital-potentiometers in place of R and S resistances in the RSC model that is formed 

between 2 electrodes for the dynamic model. This mesh phantom is also capable of 

producing localized conductivity perturbations between each arbitrary channel in the 

electrode placement planar phantom topology by measuring all combinations, which 

are used in the image reconstruction. The phantom is especially designed for the 

planar 85-electrode EIT structure and can validate system performance of 

measurements consisting of SNR, accuracy, and modelling system accuracy. The 

preliminary results have demonstrated that the novel electronic phantom can be very 

effective as a clinical prototype for QA assessment and future certification. The 

purpose of this phantom is system validation and performance testing during all 

phases of the clinical trials: pre-trial, during the trial and future clinical derivatives. The 

new phantom will also be a useful research tool for EIT researchers, as altering the 

location and distribution of the impedivity is readily achieved. 

2.6. Summary 

The aim of this research is the early detection of breast cancer through using 

an EIM system. The EIM system will diagnose whether or not a lump or mass in the 

breast is benign or malignant. EIT is a very practical tool as an alternative to 

mammography or as an adjunct technique with other medical imaging techniques. 

Another crucial factor is that despite 35 years of historical research; EIT 

systems still have not found a place in clinical settings. The reason is that the dielectric 

properties of tissue present a very slight change with changed tissue characteristics, 

resulting in voltage changes of less than 200uV in the planar electrodes. The use of EIT 

at high frequencies has been limited by hardware and software difficulties. These are 

the most important challenges which must be addressed before an EIT system can be 

used for screening programmes. The previous EIT systems had significant problems, 

however, the introduction of fast computers results in a reduction in preparation time 

and memory size problems. The other limitation considered for EIT systems is that 

various electrode applications and software tools can identify the relevant parameters 

which are not covered by generally applicable parameters in historical EIT systems. 
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2.7. Achievements 

The literature review will mainly include the following topics: 

• The historical review of EIT techniques in existing 

research groups and commercial purposes 

• Review of Sussex EIM systems 

• The technical challenges for EIT technology  

• Reliability, reproducibility and sensitivity of the EIM 

system through advance research in the application of assessments and 

validation methods. 
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Chapter 3 conditioning an improved Howland topology using 

operational conveyor (OC) based on GIC (OCCII-GIC) for EIT 

systems 

 

 

 

 

 

 

 

 

3.1. Introduction 

For reconstructing the permittivity or conductivity of an image, it is required to 

employ a current or voltage source and the DAS to measure different potentials at 

multi-frequency points (about 5-10 frequency points). In principal, the impedance is 

the ratio between voltages and currents, and this ratio could be between voltage 

measurements and current injections or current measurements while applying 

voltages, which are called, transfer impedance measurements (Brown 2003). 

Indeed, on the subject of injecting current, in order to achieve a high precision 

system, it is important that the current injection circuits have a high output impedance 

over the required frequency bandwidth. This will deliver a high-performance system 

with improved spatial resolution at high frequency, while the electrical properties of 

biological tissues changes over a frequency range. The change in electrical properties 

of a small section of tissue can be observed (or measured) at high frequencies. These 

changes can provide significant information about the structure and composition of 
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the tissue. Tissue electrical properties depend upon their important resistive and 

capacitive characteristics, which assume values that are dependent upon the 

permittivity ε, which quantifies the tissue’s ability to permit storage of electric energy; 

so these high-frequency measurements are vital for intra- and extra-cellular 

impedance imaging. 

The aim of this study is to use the EIT system as a biomedical imaging 

technique, which is effective in the early detection of breast cancer. This research 

begins with the theoretical description of current source topologies and proposes a 

current conveyor in application of Gyrator to eliminate the current source limitations 

and its development followed by simulation and experimental results, which are 

presented at the end. 

3.2. General overview of the current source 

The most recent techniques for the clinical and physiological applications of EIT 

systems are based on applying a known value of low amplitude current (between 

0.1mA to 2mA) that is injected into the subject at different frequencies and measuring 

the resulting potentials at different frequencies (around 10kHz to a few megahertz) in 

order to produce an impedance image of the tissue. In regard to the advantages of the 

current source topologies i.e. predictability of constant current with low noise, are 

commonly employed in EIT systems as is utilized by Kyung Hee (IIRC); Oxford Brookes 

(OXBACT5); Rensselaer (ACT4); Sheffield (Mk3.5); UCL (Mk2.5&1b) and also the 

Leicester group (Mk3) (Oh, Wi et al. 2011, Holder 2005, Bayford 2006, Isaacson, 

Mueller et al. 2003, Brown 2003). 

The sources are the key modules in the impedance measurement systems. The 

sources operate by injecting current or applying voltage. The key factor in EIT system 

assessment consists of SNR and accuracy, which are directly affected by the output 

impedance of the current source when measuring the voltage between two points of 

the tissue. Figure 6 shows the ideal current source circuit. 
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Figure 6 Ideal current source circuit 

In reality, the output impedance of the current source will not be infinite and 

the current source is affected by output capacitance effects generated by the current 

source circuitry, extra capacitance that exists in electrical components in the output 

signal path such as multiplexers, capacitances on the printed circuit board (PCB) 

copper tracks carrying the output signal to other copper areas and the load 

capacitance. These capacitances in parallel with the load resistance are shown in 

Figure 7, represented by the output capacitance of the source, CO, stray capacitance, 

CSTRAY and load capacitance, CL. They can significantly reduce the output impedance 

amplitude of the current source circuit and introduce phase shifts at high frequencies. 

In the remainder of this dissertation CO and CSTRAY will be lumped together as CSTRAY. 

 

Figure 7 Real current source circuit with stray capacitances 

Thus, a current source for use in an EIT system needs to be able to produce a 

stable, constant current at low and high frequencies with different loads. This means it 

needs to have a high output impedance and constant Transconductance into the load 

across the frequency range used. 

Various electrical configurations are used to implement the current sources 

used in bioelectrical impedance devices; their function and performance can be 

considered to be the most important part of the system. Each has advantages and 

disadvantages regarding its topology. The most popular current sources that are 

employed in bioimpedance systems are: Howland current source, improved Howland 

current source, general impedance converter source, mirror current source, mirror 
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modification Howland current source, Wien Bridge circuit, Wien Bridge circuit with 

voltage to current converter circuit (V/I) and current conveyor current source (CC 

current source). 

Stray capacitance is the key issue affecting the output impedance of the 

current source. It reduces the useful frequency bandwidth of the entire system. In this 

chapter, we consider two major structures of current source topology. These are 

voltage and current-based structures. The voltage structure consists of a voltage 

source VIN and operational voltage amplifier generating a constant current into various 

loads. An example is a Howland current pump. The current-based structures produce 

an output current based on active components such as Operational Transconductance 

Amplifiers (OTA) and Current Conveyors (CC). In this chapter, the improved Howland 

current source and the current conveyor current source will be described more 

thoroughly and used as the two main current injection topologies for bioimpedance 

measurement systems. 

3.3. Improved Howland current source 

Prof Bradford Howland at MIT developed the basic Howland current source 

around 1962. It was published in 1964 by D.H. Sheingold (Sheingold 1964, Pease 2008). 

The Howland current source is an excellent circuit that gives a current in either 

direction or alternating (AC or DC) current source that can have a high output 

impedance and wide bandwidth range (Pease 2008). Regarding the output capability 

that does not normally swing very close to the rail, the “Improved” Howland source 

consisting of 5 resistors in which the R4 Howland source is divided into R4a and R4b (see 

Figure 8), and the output node of the current source is connected between these two 

resistors. 

One of the most significant advantages of the improved Howland current 

source compared to other sources is its ability to work at higher frequencies and its 

reduction of the common-mode voltage and loading effects. Thus the commonly used 

current source is based on the improved Howland circuit. The improved Howland 
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current source functions as a voltage controlled current source (VCCS) circuit. Its 

schematic is shown in Figure 8. 

 

 

(a) (b) 

Figure 8 (a) the Howland pump (R1/R2=R3/R4) and (b) the improved Howland current source  

The output resistance of the improved Howland current source circuit is 

calculated using the following equation: 

R	�	 � R�R���R� � R���R�R� � R��R�� � R���	 1 

where	ZO�RO	∥	CO 

Rearranging by dividing numerator and denominator by R2: 

R� �
R�R� ∙ R�� ∙ �R� � R���
R� � R�R� ∙ �R�� � R��� 

2 

After that dividing the result by R4a+R4b we get: 

R� �
R�R� ∙ R�� ∙ �R� � R����R�� � R���R��R�� � R��� � R�R�

 3 
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The maximum output impedance would not be achieved if there is a tolerance 

between any resistor R1, R2, R4a and R4b and two times of R3. For example, if R1, R2, R4a 

and R4b are equal to 1kΩ and R3 is equal to 2kΩ, equation (4) will be obtained as: 

R� � 1k ∗ 1k�2k � 1k��1k ∗ 2k� � 1k ∗ �1k � 1k� � ∞ 4 

Thus by inspection, we see that the denominator in this equation becomes zero 

and RO become infinite when the ratio of R1 / R2 is equal to R3 / (R4a+R4b). For example, 

if we chose the special case where R1 equals R2 then R3 must also equal (R4a+R4b) to get 

the maximum output resistance. However, resistors are available with different 

tolerances from common suppliers with banding B, C, D, F, G, J, K and M with a 

tolerance of 0.1% to 20%. If a 1kΩ resistor was Band K 10% for example, it could be 

expected to be between 9kΩ and 1.1kΩ. Thus we can see that the tolerance of the 

resistors can cause alteration in the output impedance of the current source (Pease 

2008). 

However, in practice, non-idealities from the op-amp limitations, resistor 

tolerances and the presence of stray capacitance in the design have the result of 

reducing the output resistance and increasing the output capacitance and accordingly 

output impedance of the current source (Webster 1990, Cook, Saulnier et al. 1994, 

Muñoz, Berga et al. 2005). A high precision EIT system requires a frequency bandwidth 

up to 3 MHz to increase the spatial resolution of the permittivity image. 

Instability of the transfer impedance measurements is caused by circuit 

problems and field problems. The current source with a low impedance output is a 

part of the circuit problems as a category of hardware systematic errors, thus for a 

given stable current source, it is important to reduce systematic errors with effective 

hardware design. 

Primarily, the current source in EIT systems will investigate ways to achieve the 

highest possible value of output impedance suitable to implement in the high-

frequency range around a few megahertz. 
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In practice the effective output capacitance of the current source and the 

parasitic capacitances create a total grounded capacitance that makes it impractical to 

produce an EIT system operating at high frequency. Thus, for utilizing the improved 

Howland current source at high frequency we recommend using a stray capacitance 

cancellation method of producing the inductance in parallel (Holder 2005, Ross, 

Saulnier et al. 2003b, Oh, Lee et al. 2007). 

3.4. Current-mode current source 

As mentioned previously, current sources suitable for EIT systems for breast 

cancer detection need to produce high output impedance ZOUT, ideally infinity over the 

frequency range of 10 kHz to a few megahertz. In reality the output impedance of the 

current source is finite; if it is more than a few mega-ohms (MΩ), it is commonly 

acceptable. One of the most common techniques to make a current generator is the 

current mirror technique, which can produce a constant current with high output 

impedance at high frequency based on using a Current Conveyor (CC) or Operational 

Transconductance Amplifier (OTA) as utilized by many research groups (Bragos, Rosell 

et al. 1994, Casas, Rosell et al. 1996, Yerworth, Bayford et al. 2002, Seoane, Bragós et 

al. 2008). This type of current source model is based on current-mode structure, when 

the output current is produced by an active component. 

In this section, we present a current conveyor as a current-sense based on 

VCCS. A current conveyor is based on an active component, thus, it will be more stable 

and suitable for integrated implementation.  

a. Second-generation current conveyor (CCII) 

The current conveyor is an open-loop current-mode amplifier with low and 

fixed current gain. The second-generation current conveyor (CCII) is a flexible and 

versatile building block (Sedra, Smith 1970, Sedra, Roberts 1990). The CCII is capable 

of conveying current with very different impedance levels and is used in high-

frequency applications for which it has significant advantages (Sedra, Roberts 1990, 

Eloranta 2004). The current conveyor simplifies circuit design and can be implemented 
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as an operational amplifier with higher voltage gain, which is not limited by the 

conventional voltage feedback operational amplifier having a standard gain bandwidth 

(Sedra, Smith 1970, Eloranta 2004). The CCIIs are used as a current feedback 

operational amplifier (Robinson 2008), If a voltage is applied to the high impedance 

non-inverting input (Y), it is expected that the same voltage appears on the low 

impedance inverting input (X), which means VX=VY, while the current applied to the 

inverting input X node is conveyed by mirrors to the Transimpedance output node 

(TZ), ITZ=IX. Based on the circuit shown in Figure 9 and Figure 10, TZ and Y are high 

impedance and X is low impedance, since the current in non-inverting node Y is ideally 

equal to zero, IY=0. 

 
                

 (a) (b) 

Figure 9 Symbol of CCII+ 
Figure 10 (a) Current models of CCII and (b) simplified 

current follower in CCII+ 

The matrix of an ideal current conveyor is given by:  
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where the characteristic functions are given by,  

0=
Y

I ,
Y

V=
X

V  and X
I

Z
I ±=   

Figure 11 shows a simplified schematic of the available current conveyor 

module. The transistor schematic of the current conveyor shows the differences 

between the simple conventional voltage feedback op amp and current conveyor. 
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Figure 11 Simplified schematic of a current conveyor (Data Sheet-AD844S 2009) 

The advantage of the CCII is its ability to control the output resistance of the TZ 

node, thus encouraging a large quality factor. The other advantage of using the CCII is 

that it provides a linear response over a wide bandwidth when compared to op amp 

based circuits (Khan, Zaidi 2003, Maundy, Gift et al. 2007). 

However, in an actual implementation, the voltage at X node (VX) does not 

equal that at Y node (VY) and the current at X node does not equal that at TZ node. So 

we must use the following matrix of a non-ideal current conveyor:  


















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.
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00
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=
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β  6 

where the characteristic functions are given by,  

0
Y

I,
Y

βV
X

V ==  and X
αI=

Z
I ±   

In non-ideal behaviours the error forms are accounted for by the coefficients of β 

and α. These coefficients are the voltage and current tracking errors of the current 

conveyor (Biolek 1995, Shaktour, Biolek 2008). 
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In regard to CCII behaviour Figure 12 shows the schematic of a current source 

based on a current conveyor, the TZ node generates the output current with high 

impedance, when the X (input node) is connected to ground through a resistor (RX), 

the output current will be calculated as: 

	&' � ()*+' � &,- 
7 

  

 

Figure 12 Current Conveyor Current Source (Bragos, Rosell et al. 1994) 

Therefore, the current conveyors are presented as a current-mode device in 

the application of the EIT source. In the current conveyor current source structure 

based on the typical characteristics of CCII, the voltage at the non-inverting input (Y 

node) will transfer to the X node with a low offset voltage (β). The inverting input (X 

node) is the common emitter node of a complementary pair of the grounded base 

stages. It acts as a current summing node. 

In reality with regard to the specification of the module, the input resistance 

exists at about tens of ohms. Thus, the current that is applied to the inverting input 

would be delivered to a complementary pair of unity gain current mirrors, which 

delivers the same current to the output node of TZ, that means ITZ=α IX when the full 

output voltage is generated. 

For a given stable current source with stray capacitance, firstly it is important 

to reduce systematic errors with an effective hardware design such as possible 

solutions to reduce the effect of the resistor tolerance problem. Secondly, it needs 

techniques to reduce the effect of stray capacitance in an EIT system such as 

considering only the real part of the load voltages, which overcomes the sensitivity 

resulting from the stray capacitance (when considering only the load as a resistance) 
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that only produces the conductivity (or resistivity) image of the tissue, or which we 

explore herein, we can use a method of capacitance cancellation to reduce the 

effective capacitance to comply with the required output impedance. 

3.5. Current source performance with general impedance 

converter (GIC) 

The GIC can be used in many applications such as programmable impedance in 

the synthesis of a filter design, oscillator design, analogue phase shifters and 

cancellation of parasitic elements (Muñoz, Berga et al. 2005). These use combinations 

of passive impedances, operational amplifiers, Transconductance amplifiers and 

current conveyor to synthesize programmable impedances (Sedra, Brackett 1978, 

Bowron, Stephenson 1979, Franco 2014, Muñoz, Berga et al. 2005, Ferri, Guerrini et al. 

2007, Qureshi, Chatwin et al. 2010). 

The implementation of the current source in EIT systems at high frequency is 

well known. The associated effective output capacitance of the current source and 

parasitic capacitances of multiplexers and coaxial cables in the total system makes it 

impractical to produce an EIT system operating at high frequency in terms of its 

bandwidth. The advent of the GIC in parallel with the current source has provided a 

way to reduce the stray capacitance effect at high frequency (Oh, Lee et al. 2007, 

Holder 2005). It creates an RLC circuit with an LC resonant condition for high-

frequency application of EIT systems. The LC resonance occurs when both inductive 

and total capacitive reactants are equal in value at a particular frequency. An ideal GIC 

would be used to cancel the effects of both stray and output capacitances of the 

current source through a compensating inductance realized by the GIC component.  

Type A: Current source performance with GIC based on operational voltage 

amplifier and passive components 

An inductance synthesized by using a GIC structure in parallel with the current 

source (Qureshi, Chatwin et al. 2010, Wang, Brien et al. 2007a) is improved by 

incorporating the tuning system; this maximizes output impedance and eliminates the 
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stray capacitance. The proposed GIC utilized in ACT4 and KHU Mark1 EIT systems used 

five passive elements and two op amps to provide a grounded inductance circuit (Ross, 

Saulnier et al. 2003b, Oh, Lee et al. 2007). Figure 13 shows the GIC in its original format 

combined with an improved Howland current source. 

 

Figure 13 An improved Howland current source combined with GIC structure based on two 

op amps and five passive elements (Antoniou 1969, Wang, Brien et al. 2007a, Ross, Saulnier 

et al. 2003b, Oh, Lee et al. 2007, Qureshi, Chatwin et al. 2010) 

The GIC is fed with input impedance ZIN, which supplies an input current IIN. The 

input impedance, admitting an ideal op amp, is given by: 

sL
R

RCRR
j

ZZ

ZZZ

I

V
in

Z =
2

5431=
42

531== ω  8 

where Z1=R1, Z2=R2, Z3=R3, Z4=  
4

1

Cjω  and Z5=R5 

This suggests that in an ideal stage, the imaginary part of the parallel 

impedance combination is set to zero at the LC resonant frequency ω; thus, the tuning 

circuit resonant frequency is given by: 
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LC
f

π2

1
=  9 

An ideal GIC would be used to cancel the effects of both stray and output 

capacitances of the current source through a compensating inductance realised by the 

GIC component. On the other hand, in practice, non-idealities of the GIC caused by op 

amps with passive components also produce a negative grounded resistance (-RG) in 

parallel with the entire current source output resistance, as shown in Figure 14. It 

appears that a pure inductance without a negative resistance (-RG) condition is 

impossible. Therefore, a negative resistance is generated in parallel with the output 

resistance, which is a problem for the equivalent output resistance of the EIT current 

source. 

It is necessary for the output resistance and the negative resistance to being 

balanced in the current source to obtain the maximum output impedance (Holder 

2005).  

 

Figure 14 the equivalent current source circuit with stray capacitance and GIC behaviours 

The disadvantage of an inductance with a negative resistance in this form of 

GIC results in an unpredictable variation. This interferes with the output impedance of 

the circuit (Holder 2005, Oh, Lee et al. 2007). A maximum stable frequency bandwidth 

of about 500 kHz has been reported by McEwan, Ross and Oh et al. (Oh, Lee et al. 

2007, McEwan, Cusick et al. 2007, Ross 2003a).  

In practice, adjustment of the current source combined with GIC, is necessary 

to achieve maximum output resistance of the improved Howland current source by 

replacing a digital-potentiometer (digital-pot) for resistor R3 in the improved Howland 

circuit (as indicated in Figure 13). Afterward, adjustment of the GIC is made for 

different frequencies by replacing resistors R1, R2, R3 and R5 with digital-pots in the GIC 
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and capacitances for Z4=C4 to obtain as high as possible an output impedance of entire 

current source topology and by minimizing output capacitance of the current source as 

well (McEwan, Cusick et al. 2007, Oh, Lee et al. 2007, Ross, Saulnier et al. 2003b). This 

method cancels the stray capacitance, therefore maximizing the output impedance of 

the system.  

In order to improve the performance of current sources, Ross (Ross, Saulnier et 

al. 2003b) based his work on the theoretical phase, simulating the improved Howland 

current source and GIC structure to produce a variable grounded inductor with the 

ability to adjust within the frequency range from 100Hz to 1MHz and achieve an 

output impedance in excess of 2GΩ within the desired frequency range. This means 

the GIC structure would need to be tuneable as much as possible to obtain this high 

output impedance, effectively producing a variable grounded inductor cancelling the 

stray capacitances, although this has not been implemented above a 100kHz 

frequency. Also, using a digital-pot naturally produced parallel grounded capacitors in 

high and low pins and a wiper with a variable resistor directly reduces the entire 

current source output impedance. 

The research by Oh et al. (Oh, Lee et al. 2007) has embedded six GIC structures, 

identical to those in the last reference, assigned to different frequency ranges in order 

to achieve the same effect at six different frequencies by switching between the 

different GICs and balancing the equivalent output resistor. However, the 

implemented results show it is extremely difficult to achieve an output impedance 

exceeding 1MΩ at frequencies above 100 kHz. This system generally operates 

satisfactorily within the frequency range of 10 Hz to 500 kHz which is less than <1 MΩ 

output impedance. This design, used as part of its calibration system, two digital-pots 

(as shown in Figure 13); one is utilized in place of R3, which is located in the improved 

Howland current source to trim out the resistor tolerances in the improved Howland 

source and the other is employed in GIC (Z5) to trim out the resistor tolerances in the 

GIC, it is adjustable over the frequency range (adjustable in minimum steps of ∆R=40Ω 

and 8Ω) to achieve maximum output impedance, generally improving system 

performance. 
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The advantages of using six GICs, as reported by Lee Oh (Oh, Lee et al. 2007), 

must be set against the high component count, instability with composite waveforms 

as well as the complex circuitry caused by op amps, passive components and 

capacitance effects. In a practical implementation, it may be necessary to use more 

than six GICs, each tuned to a very narrow frequency range. This may prove 

impractical when faced with a large stray capacitance. In order to avoid instability of 

the current source system, it is necessary to reduce the resistor tolerance of the 

current source by replacing low tolerance resistors (e.g. 0.01% tolerance) and redesign 

the circuit board to reduce its stray capacitance or develop a better method of 

cancelling this capacitance. On the other hand, to use this method for frequencies 

above 500 kHz it is required to assume that an op amp can provide a maximum output 

impedance for the source with infinite bandwidth, this is not feasible in practice. 

To the best of the authors’ knowledge, there has not been any practical system 

using inductance to cancel the effect of capacitances of the current source above the 

500 kHz range with acceptable output impedance for the EIT systems. The objective is 

to optimise the current source by maximizing output resistance RO and minimizing 

output capacitance CO. However, the output resistance of current source RO resulting 

from both negative resistance -RG (produced by the GIC) and output resistance of 

current source RS may be unmanageable by using a GIC based on an operational 

voltage amplifier and passive components. 

Type B: Current source performance with GIC based on active components 

There are active network synthesisers in the practical design (e.g. current 

integrator, current differentiator, voltage amplifier, voltage-to-current converter, 

current amplifier, frequency dependent negative resistance, and grounded/floating 

inductors) employing various active devices (e.g. CCII) and passive elements in their 

functions (or applications) (Sedra, Smith 1970, Higashimura 1987, Khan, Zaidi 2003, 

Maundy, Gift et al. 2007, De Marcellis, Ferri 2011). The CCII in the GIC form is used to 

provide an inductance without any matching constraint, using minimum grounded 
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passive components; this cannot be implemented with general GICs using two voltage 

op amps and five passive components (Biolek 1995, Shaktour, Biolek 2008). 

We aim to present a new GIC technique for cancellation of the parasitic 

elements in EIT current sources operating in the frequency range from 10 kHz to few a 

megahertz. 

GICs based on CCII, consist of negative active circuit elements, whereas general 

GICs consist of negative passive impedance transformations based on op amps and 

some passive elements from which it is impossible to obtain a high output impedance 

at high frequency range (Biolek 1995, Shaktour, Biolek 2008). The CCIIs are used for 

the GIC due to their attractive inductive behaviour, which is dependent on the 

impedance structure of the output current of the CCII for capacitance compensation 

(Khan, Zaidi 2003, Khan, Bimal et al. 2002). 

i. The proposed circuit topology 

The stray capacitances should be removed from a current source; otherwise 

the effect of it can be cancelled with an inductor producer based upon a GIC. The 

proposed combination of current conveyors as a GIC circuit is shown in Figure 15 

(Khan, Zaidi 2003, Maundy, Gift et al. 2007, Gift 2004, Abuelma'Atti 2000, 

Abuelma’atti, Tasadduq 1999, Prakobnoppakao, Chipipop et al. 2002). 

 

Figure 15 A schematic of the proposed grounded inductor using two stages of CCIIs  

The corresponding Signal Flow Graph (SFG) of two operational conveyors with 

three passive components, creating a GIC based on CCII is shown in Figure 16. 
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                                     (a)                 (b) 

Figure 16 (a) Shows a Signal Flow Graph (SFG) and (b).shows its simplified SFG (Biolek 1995) 

In regard to the behaviour of the total circuit above, we need to find what 

current is taken from the input if a certain voltage is applied to the input and thus 

what is the impedance of the input. 

1) In the first stage if a voltage (VIN) is applied to the terminal non-

inverting input Y (node 5), an equal potential (voltage) will appear at the 

input terminal inverting input X (node 3) i.e. VIN=V3. Thus the current, 

IX1, through the admittance Y3 is determined by the voltage V3 across it 

and as this equals VIN thus IX1=VIN .Y3. (The components used to 

implement the first stage CCII+ have high input impedance at the Y 

input; thus, the input current of the first CCII is approximately equal to 

zero , IY5=0). The current at node IX3 (node 3) will be mirrored to output 

terminal TZ (node 1) thus IZ1=IX1 and IZ1= VIN .Y3. If output terminal TZ 

drives the admittance Y1 then the voltage V1 across Y1 is V1�	 IZ1Y1 � VIN.Y3Y1 . 

2) The next stage is a voltage amplifier with unity gains thus its output 

voltage V4�	V1� IZ1Y1 � VIN.Y3Y1 . 

3) In the last CCII+ stage any current into the input terminal X is 

negatively mirrored at the output of the stage. If a voltage is applied to 

terminal non-inverting input Y (node 2), an equal potential (voltage) will 

appear at the input terminal inverting input X (node 4). Thus the voltage 

across Y4 is V4�V1. Therefore if VY2 is connected to 0V then 0V appears 

at node 4 (VX2=0) and the current IX2 through Y4 is 
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IX2�-V4.Y4�-V1.Y4�- VIN.Y3Y1 .Y4.  Thus the current 

IZ2�IX2�-V4.Y4�- VIN.Y3.Y4Y1 . 

This output is connected to the input, so this is our required value. 

Therefore we can write if VIN is applied to the input the sink current is: 

IIN�-IX2�-IZ2� VIN.Y3.Y4Y1  (the output of the OCCII-2 is connected to the non-

inverting input of the OCCII-1). 

This means the impedance ZIN shown at the input is: 

Z78 � V78I78 � V78�I9� �
V78V78 . Y� . Y�:�

� :�Y� . Y� 10 

In order to make this circuit acts as an inductor we have replaced the passive 

admittances with resistances (R3 and R4) and capacitor, C1, as follows:  

Y� � G� � 1R� , Y� � sC�and	Y� � G� � 1R� 11 

Then the input impedance, using s=jω (i.e. ω= 2π x frequency) becomes  

Z78 � @A� . R� . R� 12 

Therefore, the input impedance acts as an inductor, ZIN= sL, thus ZIN acts like an 

inductor where sL�sC1.R3.R4. 

After simplifying the SFG as indicated in Figure 16 (b), the equation for input 

impedance is obtained; if we consider Y3 and Y4 as conductance and Y1 as a 

capacitance, therefore the impedance functions for the non-ideal cases of the 

grounded inductor circuit are based on 12 and the tracking errors are given by:  
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where 2
β,

1
βand

2
α,

1
α  are the current and voltage tracking errors of CCII-1 and CCII-

2, respectively. 

ii. Operational Conveyor 

The combination of an op amp with the CCII produces the OCCII. The OCCII 

increases the accuracy compared to a CCII. The additional op amp is connected in a 

negative feedback loop in the CCII to form the OCCII circuit; this reduces the transfer 

function error in conveying the current. 

The circuit symbol as demonstrated in the Figure 17 shows the combination of 

the op amp and CCII+ producing the OCCII (Gift 2004). This new arrangement offers 

significant improvement in the accuracy of the CCII. In the circuit used, both of the 

inputs of the CCII will be located within the negative feedback of the op amp, this 

design will be beneficial in reducing the effect of the input inverting resistance of RX (X 

is a low impedance input). This composition of an op amp and CCII will enhance the 

circuit performance addressing the transfer function error. 

 

Figure 17 schematic of an operational conveyor (OCCII+) model (Black-box) that is a 

combination of an op amp and a CCII 

iii. Multi-frequency current source with OCCII-GIC  

A multi-frequency current source using the stray capacitance cancellation 

method is developed by utilizing digital-pots to operate as variable resistors to 

produce the variable inductor corresponding to a different frequency point. The GIC 

based on OCCII, here is called OCCII-GIC structure. The circuit topology was chosen 

to be a method to cancel the stray capacitance in the multi-frequency system; Figure 

18 shows the schematic of a grounded inductor based on the OCCII, where the 

conductance Y3 and Y4 are variable resistors. 
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Figure 18 An improved schematic of an OCCII-GIC as a grounded inductor 

There are limitations to produce a pure inductance in the multi-frequency 

system because of using digital-pots; each digital-pot (resistor replacement) naturally 

comes with grounded capacitance at both ends and parallel capacitance at the wiper. 

When using digital-pots in place of Y3 and Y4, the capacitances of the terminals 

of the digital-pots need to be taken into consideration. Typical values of a digital 

potentiometer are 10pF at the outer terminals and 25pF at the wiper terminal. The 

circuit above uses variable resistors (potentiometers), so we use only the wiper 

terminal and one outer terminal. Ideally the wiper terminal having more capacitance is 

connected so that it is a capacitance that has more effect. For Y3 this is obviously with 

the lower terminal connected to the node 3 (X terminal) and wiper terminal is 

grounded. Y4 should have its lower terminal connected to the node 4 as this is a node 

that is not moving in voltage. This leaves the wiper terminal of Y4 connected to the 

follower amplifier 1 output. This results in an oscillation problem as 25pF will then be 

directly connected to the output. If so a small resistor, 5 to 10 Ohms needs to be put in 

series so that the amplifier does not drive the 25pF directly. 

The following equations are computed to consider the action of the OCCII-

GIC circuit caused by the digital-pots, as the digital-pot swings from 1 to the full-scale 

value to operate in multi-frequency systems, as shown in Figure 19. 
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Figure 19 An improved schematic of an OCCII-GIC as a grounded inductor when it shows a 

network of Y4 

Thus, Ia�I4�ICW	and	I4�ICL�IX2	or	�IX2�I4-ICL�, so, we can write: 

&E � �(E � ('�� . :� � (E . :FG 14 

&'� � �('� � (E� . :� � :FH . ('� 15 

The input voltage at the node (a) is equal to V1 (i.e. Va�V1) so, we can also 

write:  

&� � (� . �:� � :FG� � ('� . :� 16 

�&'� � (� . :� � ('� . �:� � :FH� 17 

and, using these equations we can compute: 

I I��IJ�K � IY� � YLM �Y�Y� �Y� � YLNK . I V�VO�K 18 

The current at the inverting node of second OCCII is equal to: 

&'� � &-� � �&PQ 19 

The input voltage at the node V3 is measured by: 
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Therefore, the value of YIN will be calculated as follows, then rearranging by 20, 

we find: 
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The admittance of YCL and Y1 and Y3 and Y4 is: 

:FH � @AFH	, :� � @A�	, :� � R� � @A�	ST	U� � +�1 � @A�+� 	 , :� � R� 23 

So we compute: 
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Since node 2 is grounded, ideally the VY2 is equal to 0, then VX2 is also equal to 

zero, so we can calculated YIN as follows: 

� � � �
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Although, in reality the buffer and OCCII has also 

RBuffer,	CBuffer,	CTZ,	CY,	RTZ,	RX,	RY	and	ROUT based on the following figures. 

  

Figure 20 parasitic impedances involving 

with the buffer op amp 

Figure 21 parasitic impedances involving with 

the current conveyor 

Therefore, based on the Figure 20 and Figure 21, it produces a new schematic 

and the new equivalent admittance of Y1, Y3 and Y4: 

 
Figure 22 real schematic of the capacitance cancellation circuit 

The input resistance of the X node of CCII+ would be equal to 50Ω (Data 

Sheet-AD844S 2009) by using the extra op amp producing OCCII+ the RX would be 

equal to zero. The CZ1 would be parallel with C1 so the total admittance would be equal 

to Y1 = sC1+sCZ1+sCBUF+GZ1+GBuf, Y3 = sC3+G3 and Y4 = Y4+GO. Then the CZ2 (4.5pF) and 

CY1 (2pF) would be in parallel with the stray capacitance of the whole current source 
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circuit, therefore it would be added to CY1+CZ2+CSTRAY, and RY1 || RZ2 || RS as shown in 

Figure 22. 

The RLC parallel circuit is implemented when an OCCII-GIC parallels with the 

output of a current source circuit. 

In addition, it seems the C3 (the grounded capacitance of the first digital-pot at 

the high pin) parallel with R3 in Y3 (as shown in Figure 22) results in a phase advance in 

the first stage (OCCII-1) and the CWIPER and CL(produced by the second digital-pot) 

makes a phase delay in the second stage (OCCII-2). 

3.6. Current source design  

i. Resistors 

In the design of a current source with high output impedance, a higher priority 

is given to the balance between resistors to achieve full precision output. Resistors 

with a tolerance of 1% achieving an output impedance maximum of around 250kΩ at 

low frequency. Therefore, for the case of the EIT system, a high resistor matches 

(especially necessary in the improved Howland source) with precision tolerance of 

±0.01%, TCR ±5ppm/ ̊C (Stackpole Electronics, Inc. Precision Thin Film Chip Resistor) 

(Data Sheet-Resistive Product 2015), is recommended to achieve maximum output 

impedance at high frequency. 

ii. Operational amplifier 

Since we need to get the maximum output impedance in a current source, the 

common-mode rejection ratio (CMRR) of the op amp needs to be optimised, e.g. an op 

amp with a CMRR of 60dB results in an output impedance of less than 1MΩ. In 

addition, the non-linearity of the CMRR curve in an op amp results in a disadvantage in 

that it will not produce a flat output impedance curve (non-linear result). In reality, the 

non-linearity of the amplifier CMRR is increased in bipolar and CMOS amplifiers 
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compared to FET amplifiers. Thus, we recommend amplifiers with a FET input instead 

of CMOS or bipolar input. 

In the case of the current source, we selected OPA656 (Texas Instruments) 

(Data Sheet-OPA656 2008), which is built with a JFET input stage to offer an ultra-high 

dynamic range amplifier with high precision performance. Typical characteristics show 

that the OPA656 has a high input impedance and low bias current provided to support 

the ultra-low 7nV/Hz input voltage noise to achieve a very low integrated noise over a 

wide bandwidth of 500MHz. OPA656 has a high input impedance of 1012||2.8pF in 

common-mode and in differential-mode 1012||0.7pF. It has excellent THD distortion 

performance of -80dBc at 10MHz with excellent differential-gain and differential-

phase of 0.02% and 0.05 ̊, respectively (Data Sheet-OPA656 2008). The OPA656 is the 

best op amp that we could find in the market for our application in regard to its typical 

characteristics (Data Sheet-OPA656 2008, DATA SHEET-OPA657 2008b). 

iii. Current conveyor module 

We selected an AD844S (ANALOG DEVICES’ module) for current feedback with 

a high-speed monolithic op amp (a Transimpedance op amp). The AD844S combines 

wide bandwidth and very fast large signal response with a settling time of 100ns to 

0.1% and essentially independent gain. The AD844S combines low distortion, low noise 

and low drift. It shows excellent differential gain and differential phase of 0.03% and 

0.15  ̊with an input capacitance of 2pF and input resistor for inverting input equal to 

50Ω and non-inverting input of 10MΩ; all typical characteristics make it suitable as a 

current conveyor module with high bandwidths (Data Sheet-AD844S 2009). 

Based on the functional behaviour of the current conveyors, the voltage input 

of the Y node will be followed by the X node (voltage output node) with a low offset 

voltage, since this device is built by laser trimming where the offset voltage is reduced 

(only a few tens of microvolts). The ideal current conveyor should have a zero input 

resistance, although in reality the input resistance is around 50Ω. Thus, the current 

that is applied to the inverting input would be delivered to a complementary pair of 
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unity gain current mirrors, which deliver the same current to the output node (an 

internal node of outputs pin5, TZ output); in realty ITZ=α. IX when the full output 

voltage is generated (Data Sheet-AD844S 2009). 

The real module also will buffer the unity gain complementary voltage that it 

uses to drive the low impedance loads with typical characteristics. This module can 

deliver up to ±50mA into a 50Ω load with low distortion with regard to voltage ripple. 

Figure 23 shows the internal structure and parameters of the current conveyor of 

AD844S (Bruun, Olesen 1992, Data Sheet-X9C102 1996). 

 

Figure 23 Internal structure of AD844, the equivalent schematic is showing that the input 

capacitances = 2pF, input inverting resistance (X)= 50Ω, non-inverting input resistance (Y) 

=10MΩ, Transcapacitance =4.5pF and Transresistance =3MΩ (Data Sheet-AD844S 2009, 

Bruun, Olesen 1992)  

iv. Potentiometer network  

The multi-frequency current source is delivered by using a digitally controlled 

potentiometer (DCP) XICOR of X9C102 that is employed in the OCCII-GIC circuit (Data 

Sheet-X9C102 1996). The multi-frequency current source will be obtained via control 

lines of the DCP. The schematic circuit of the DCP of XICOR of X9C102 is depicted in 

Figure 24(a) with 10pF at both ends and 25pF at the wiper (Data Sheet-X9C102 1996).  

 
 

Figure 24 the left diagram (a) shows the DCP schematic circuit (Data Sheet-X9C102 1996) and 
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the center diagram (b) shows the Trim-pot and digital-pot network as an equivalent circuit 

for a grounded resistor and the right diagram (c) shows the floating resistor 

The DCP includes 99 resistive elements that can be changed in 100 steps (for 

example 1kΩ/99=10.1010Ω in each step) where it is in parallel/series with trim pots of 

1kΩ resistors; so the variable resistor can be changed by ∆R=0.9 Ω. We selected trim 

pots of BOURNS 3269W-102 with 12 turns with a rotational time of 200 cycles (Data 

Sheet-3269W 2011). Figure 24(b) shows an equivalent grounded resistor network. An 

equivalent resistor network for a grounded resistor is utilized when three parallel 

variable resistors consist of two trim-pots (VR1 and VR2) and a digital-pot. A 0R is used 

when the digital-pot needs to be bypassed. In the case of a floating resistor (Figure 

24c), the equivalent variable resistor is created by a combination of a digital-pots 

paralleled with a trim-pot in series with another trim-pot (Data Sheet-X9C102 1996). 

v. Circuit board 

In this research, we have studied the OCCII-GIC as a means of capacitance 

cancellation combined with two types of current sources: (i) the improved Howland 

current source that is voltage sensing based and (ii) the current conveyor current 

source that is current sensing based. The combination of current sources with OCCII-

GIC is a feasible way to build a suitable multi-frequency current source working at 

frequencies up to 3MHz for EIT application. We have built a single EIT circuit board 

with 6 layers with a finished board thickness of 1.76mm consisting of the improved 

Howland current source and the current conveyor combined with the OCCII-GICs. 

Figure 25 shows the bottom and top sides of the circuit board. The EIT board consists 

of an MCU (Data Sheet-PIC18F87K90 2010) for switching control and a DAS shared 

between 85 electrodes. 
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(a) 
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(b) 

Figure 25 the AZ1 EIT circuit board includes the improved Howland and current conveyor 

current sources combined with OCCII-GIC, (a) the top and (b) bottom figures show the 

bottom and the top sides of AZ1 EIT board consisting of a planar 85-electrode plate and its 

drive and receive multiplexers 
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Chapter 4 Investigating and designing of software and 
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4.1. System overview 

Generally, biomedical imaging technologies are implemented in hardware and 

software subsystems that are usually developed together. Software based 

components are implemented via several functional blocks. Access to hardware is 

based on the availability of control software functional blocks. Employing 

programmable logic to implement and control the hardware will be described in this 

chapter delivering low cost, control flexibility, high precision and high-speed as their 

advantage. Using programmable logic for the EIT application for control, signal 

generation, address control, communication via high-speed data convertors (such as 

digital to analogue convertor (DAC) and analogue to digital convertor (ADC)) is 

developed. Despite the EIT application approach (i.e. repeated measurements), the 

major issues are the restriction of the availability of supporting tools and complex 

algorithms as they are not able to generate fast and unique net-lists through hardware 

description language structures in a simple manner. However, the numerous benefits 

presented by modifiable hardware control are effective excitation of the target. The 

EIT application employs embedded systems having software modules as the main 

processing elements. This chapter investigates strategies and methodologies for the 

design and implementation of the EIT subsystem control based on a Microcontroller 

unit (MCU) for control and calibration of the hardware. It also provides a direction for 
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future work to investigate the feasibility of using an FPGA to improve the performance 

abilities of the EIT system signal generation and demodulation. 

4.2. Microcontroller Unit (MCU) 

The specification and architecture of an MCU driven EIT system is introduced in 

this section. The MCU is used to control the EIT system as follows: 

1. The EIT switching logic system at the highest possible speed to minimize 

acquisition time 

2. Control and switch between EIT sources used to switch between 

different input signal sources at different frequencies 

3. Control and variable EIT measurement system gain 

4. Calibration and evaluation of the EIT system 

4.3. MCU design 

The framework of the control system of the AZ1 EIT includes address control, 

which is required to select the different input signal sources, select the different DCPs 

and control the different DCP steps and increment values for the purpose of 

implementing the multi-frequency system to improve measurement accuracy. The 

selective electrode combinations based on the current injection input channels and 

the measurement output channels are controlled by a program addressing control unit 

communication with multiplexers. The PIC18 (Programmable Interface Controller), a 

family of 65K90 manufactured by (Microchip Technology Inc.) is used to carry out EIT 

control tasks. Table 5 shows the highlights of the microcontroller functionality that are 

selected. The PIC18F65K90 has 53 inputs/outputs signals that are used as an 

addressing control unit in the AZ1 EIT system. 

The PIC sends and receives the data via the receive (RX) and transfer (TX) lines 

when connecting the PIC to the computer by a USB port through a serial UART. We 

selected an FT232RL (Future Technology Devices International-FTDI chip) as a USB to 

serial UART interface of the RS485 that is utilized to transfer the data from/to the PIC 

to the interface software (Data Sheet-FT232R 2010). Thus, the platform software is 
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directly connected to the interface connection of the MCU for monitoring and 

transferring the commands. 

The compiler tools are based on the MPLAB C Compiler for the PIC18 MCUs 

(C18) for compiling/performing different control commands (Data Sheet-PIC18F87K90 

2010). 

TABLE 5 SPECIAL MICROCONTROLLER FEATURES  
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4.4. Clock (CLK) System 

The Clock (CLK) system of the MCU is based on an external 20MHz quartz 

crystal to provide a stable clock signal as illustrated in Figure 26. The circuit in Figure 

26 is connected to the input and output pins of the MCU.  

 
Figure 26 The external CLK system with a Quartz crystal of XT1=20MHz where the two 

capacitors (18pF) have to be adjusted to stabilise the frequency for transmit and receive 

The common part of the hardware subsystem of the AZ1 EIT consists of 

investigation of channel-selecting MUXs, programmable gain of the voltage 

measurement structure, calibration of the measurement subsystem and power supply 

design as well as investigating the PCB design as we will describe in the following. 

The AZ1 EIT structure is made up of the two different sources (an improved 

Howland current source within the OCCII-GIC circuit and a current conveyor current 
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source within the OCCII-GIC circuit) as well as a measuring subsystem consists of a 

programmable gain amplifier and a set of multiplexers as the DRV and the REC MUXs. 

4.5. Addressing Control Unit 

There are two arrangements of the source and the data acquisition topologies 

in the multi-channel EIT systems (I) multi-source and multi-channel signal 

measurement structure where a single source and a signal measurement structure are 

embedded by an individual electrode. (II) Single-source/ measurement or partially 

parallel (semi-parallel: a group of the paralleled single-source/measurement) is used to 

implement a multi-channel structure. A multiplexer structure is allocated to the single 

source and the single measurement to different electrodes; it provides the multiplexed 

structure for the multi-channel system. 

The EIT system conducted over a channel connection that is generally 

subjected to environmental factors that can adversely impact measurements via 

parasitic capacitance. 

Each arrangement has certain advantages and disadvantages. The primary 

disadvantage of the multiplexer-based approach is that there is on-resistor and 

grounded capacitance during on/off switches; therefore, the value of stray capacitance 

of the system is increased. The disadvantage of the multi-source is that it needs a 

complex calibration method to use in the individual sources and signal measurements 

requiring a validation process of differently affected data in regard to different 

characteristic errors in the modules to achieve an equal result with the same accuracy 

for all the channels. In regard to component count, the best way would be using a 

multiplexer-based system, but it requires a method to reduce the effect of the 

capacitance caused by the multiplexers. In the case of the AZ1 EIT system with a four-

electrode structure, two input signal sources are utilized to connect to two electrodes, 

one with 0 degree phase shift and the other with 180 degrees phase difference. 

Therefore, it will provide a matrix of 2 to 85 analogue channel multiplexers that 

require low on and off capacitances. 
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Multiplexers generally consist of a number of analogue switch channels called 

switch arrays or switch matrix. Each analogue switch consists of on and off capacitors 

(CON, COFF), when the switch is opened the grounded off-capacitors will be involved in 

the input lines. When the switch becomes a closed channel the grounded on-capacitor 

and the on-resistor between these two on and off capacitances will be involved in the 

signal line of that channel as shown in Figure 27. 

 
Figure 27 Multiplexer switch model 

There are two current source lines which are 180 degrees out of phase to make 

a current mirror structure when it is fed to the 85 electrodes. Thus, the switching array 

is required to cover 2*85 channels. As mentioned in the literature review the Sussex 

Mk4 EIT system used a multiplexer structure with one stage DRV MUXs as 8 drive 

multiplexers are built in parallel and the off-capacitance of the 85 channels affects 

each single source signal as well as one stage of the REC MUXs, which consists of 8 

receive multiplexers, which connect to a single measurement system. 

To solve the issue of off-capacitance effects in DRV MUXs, we built the 

multiplexer structure of the AZ1 EIT using two-stages of the DRV MUXs where it has 

been broken into parallel elements of the input of the 8 DRV MUXs. This will be 

achieved by cascading the drive MUXs that share the different source topologies 

between different electrodes. The outcome of cascade multiplexer topology focuses 

on some modified key elements to improve system performance in regard to reduce 

the on/off capacitances of multiplexers that affect a single channel consequently 

achieving a low parasitic capacitance allowing an EIT system to operate over a wide 

high frequency bandwidth. 

i. Drive Multiplexers (DRV MUXs) 

The AZ1 EIT consists of an 85-electrode plate and different source topologies, 

so it needs to connect the different sources to the 85 electrodes individually. Thus, the 
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optimal solution would be to use a combination of series and parallel multiplexers to 

achieve the minimum stray capacitance effects. 

As a first stage, we selected the ADG1211 (Analog Devices) of iCMOS Quad 

SPST switches and ADG2128 (Analog Devices) of CMOS 8 × 12 unbuffered analogue 

switch array which can be configured, through the I2C-compatible interface as the 

second stage to build a cascade drive multiplexer (DRV MUXs) model (Data Sheet-

ADG2128 2012b, Data Sheet-ADG1211 2012a). Figure 28 and Figure 29 shows the 

functional block diagram of two stages of multiplexers that we have chosen as the DRV 

MUX (Data Sheet-ADG1211 2012a, Data Sheet-ADG2128 2012b). 

  
Figure 28 Function Block 

Diagram of the ADG1211 
Figure 29 Function Block Diagram of the ADG2128 

An ADG2128 has a switch array of 8 columns by 12 rows, for a total of 96 

switch channels. The ADG2128 is fully flexible so that it connects any number of inputs 

to any output lines when it is addressed (Data Sheet-ADG2128 2012b). In the case of 

the 85-electrode plate, by utilizing an ADG2128, two input signals (source signals with 

180 degrees phase difference) are connected individually to 12 different output lines 

(i.e. Electrodes). Thus, we employed eight modules to produce a maximum array of 

8*12=96 output lines; therefore, we connected the 85 output lines (of the 96 output 

lines) to the 85-electrode plate and the rest of 96-85=11 output lines are used for 

calibration purposes. Therefore, each module of the ADG2128 uses one calibration line 

(the total of 8 modules of ADG2128 are used). So, it has reserved 8 output lines here 

and three output lines are connected to the measurement subsystem for its 

calibration process. 
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Figure 30 shows the switching schematic of one input to 12 outputs in an 

ADG2128 module. In this case, 12 output lines of the ADG2128 can be connected to an 

input (here it is connected to a source). We connected 11 electrodes to 11 output lines 

with one output line reserved for the calibration process. The address control of the 

ADG2128 is carried out via an I2C interface. This component is operated from dual ±5V 

supplies. Regarding the data sheet, the ADG2128 has the dynamic characteristics of 

capacitance, when the switch is off and on; the capacitances are 6pF and 9.5pF 

respectively. Thus, the input capacitance of the switch is 6pF, which is connected to 

the input channel and the output capacitance of a switch equals 3.5pF (9.5pF-6pF) 

which is added when the switch is turned on. 

 
Figure 30 Switch Schematic of the ADG2128 with on/off switch capacitances 

The 85-electrode plate needs to employ 8 components of the ADG2128 in 

parallel. Thus, a source line will be involved with the input capacitance of 6pF (COFF) * 8 

(modules of ADG2128s) = 48pF plus 3.5pF (CON) =51. 5pF (CON where only one switch is 

turned on). That is the reason why some other research groups recommended using 

multi-sources so as to avoid these capacitance effects in the system. 
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Thus, we propose a cascade structural design in order to reduce the off/on 

capacitance at the output node by breaking the parallel structure. The architecture of 

this design is fully addressable with high-speed channel processing. Channel selection 

speed is similar to the parallel one stage multiplexer. We proposed to insert one stage 

of a 1*4-channel analogue multiplexer with a minimum on/off capacitance, and each 

fed to two ICs of ADG2128s. Figure 31 shows the cascading method that is proposed 

for DRV MUX topology to reduce the capacitance effect of ADG2128s. We recommend 

utilizing ADG1211, which exits 4 separate switches with on and off-capacitance of 2.6 

and 0.9pF (type) respectively. That means each input source will have the effect of 

0.9pF and when the input source is connected to the common input channel it will be 

4*0.9pF=3.6pF plus 1.7pF when the switch is turned on (Data Sheet-ADG1211 2012a). 

The cascading method will reduce the capacitance of the DRV MUX because we 

selected ADG1211 with the off-capacitance of 3.6pF plus 1.7pF when each channel is 

turned on for the first stage. Then, we selected ADG2128 with the off-capacitance of 

6pF plus 3.5pF when each channel is turned on for the second stage. A total 

capacitance of 20.8pF in comparison to 51.5pF shows the cascade method would be a 

useful approach in EIT systems for multi-source and multi-channels based on the 

multiplexer structure. Moreover, multiplexers also produce an on-resistor between 

each of the input and output lines, as RON is equal to 120 Ω (type) in the case of the 

ADG1211 and RON is equal to 35 Ω (type) in the case of ADG2128. Thus, the effects of 

on-resistors need to be considered. The existence of on-resistors in the EIT system has 

a detrimental effect on the output voltage. Thus, it is required to apply calibration 

techniques to calculate these effects. 
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Figure 31 Cascading method for the drive multiplexer (DRV MUXs) with the switch on/off 

capacitances. It consists of 2-modules of the ADG1211s as the first stage and 8-modules of 

the ADG2128s as the second stage. 

ii. Receive Multiplexers (REC MUXs) 

We choose ADV3205 (Analog Devices) for the receiving multiplexers (REC 

MUXs) that connect the electrodes to a single-ended differential amplifier to measure 

the output voltage. Figure 32 shows the functional block diagram of the REC MUX 

which is based on an analogue cross-point switch 16*16; high-speed no blocking 

switch array, with parallel programming of the switch array within the buffer inputs 
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and output amplifiers. It offers a -3dB signal bandwidth of 60MHz and channel switch 

times of less than < 60ns with 0.1% settling (Data Sheet-ADV3205 2011).  

By using this module as a REC MUX, it is permitted to connect multiple output 

channels to a single-ended differential device without loading the output bus by 

disabling other module outputs. We have also used a reset pin to disable all the 

outputs to measure the CMRR ratio of the differential amplifier of the measurement 

subsystem as part of calibration scheme. There is an extra shielding surrounding all 

inputs and outputs, with a differential gain of 0.1% and differential phase of 0.1 

degrees that only with 0.1dB flatness out at 10MHz. The channel switching control 

consists of a parallel control, which allows updating a single output without 

reprogramming the entire module (Data Sheet-ADV3205 2011). 

 
Figure 32 Block diagram of the ADV3205  

An ADV3205 has an input capacitance of the switch equal to 4pF. This will be 

involved in each channel it is quite low and an excellent value to be used in EIT systems 

for the voltage measurements comparing to other modules that deal with stray 

capacitance. The input resistance of any channel that is connected to the output is 

equal to 50 MΩ. 
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4.6. Measurement subsystem and programmable gain amplifier 

(PGA) 

A differential receiver amplifier is used to physically form a high-speed, high 

accuracy variable gain instrument amplifier. A differential to signal-ended amplifier 

AD8130 (Analog Devices) with very high CMRR at high frequency is utilized. This is 

used for converting the differential signal to a single-ended signal. An AD8130 module 

has user adjustable gain to use as a programmable gain for amplifying the gain of the 

output signal. The gain is set by the ratio of two resistor values of RG and RF (1+RF/RG) 

(Data Sheet-AD8130 2005b). The AD8130 module has a very high input impedance for 

both inputs and we will measure the CMRR ratio at different frequencies, regardless of 

the gain setting. A schematic of the differential voltage amplifier is given in Figure 33. 

It has a high distortion performance with low distortion of 1VP-P around 75dBc worst 

harmonic in second harmonic distortion to -80dBc at third harmonic distortion at 

10MHz. 

 
Figure 33 Differential voltage amplifier schematic of the AD8130 with the gain of 1+RF/RG. 

The programmable gain amplifier provides, by using the control lines of the 

DCP that are employed by a differential amplifier to create a different gains for the 

output voltage. The DCP consists of a resistor array, wiper switches, a control section 

and non-volatile memory (Data Sheet-X9C102 1996). Figure 34 shows the architecture 

of the DCP of XICOR of X9C103 that is combined with a differential voltage amplifier to 

build a PGA (Data Sheet-X9C102 1996). 
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Figure 34 Schematic Diagram of the DCP of X9C103 

Finally, the voltage measurement transfers to two filters and a noise isolator 

then sends to an ADC. The overall circuit will have a minimal effect. We also used 

filters for the output signal before connecting to the ADC. 

In most applications it is desirable to get the ADC readings quickly. The circuit 

sequentially selects electrodes by controlling the DRV and REC MUJXs (channel-

selecting multiplexers). AZ1 EIT uses a four-electrode measurement method, with 123 

drive electrode combinations per frame, the latency is equal to the sum of all the 

internal delays and external delays per electrode combination × the number of 

combinations per frame, which is equal to 1416 measurement combinations.  

The switching of the two stages of drive MUXs is done very fast in tens of 

microseconds and has little effect on speed, but there are other delays necessary that 

slow down this ADC acquisition process due to the need for filters in the demodulation 

of the signal. 

Synchronous demodulation can be used to determine the amount of the in 

phase, 0 degree, signal and the out phase 180 degree signal. This requires two 

analogue or switching multipliers and two filters followed by buffer amplifiers for each 

signal to be demodulated. The synchronous demodulator essentially does a full wave 

rectification and the filter removes the ripple. For each frequency used ideally 

different values of resistors and capacitors are chosen to remove the ripple. For 12 bit 
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accuracy this ripple should be less than 5V/4096=1.22mV/division. Obviously smaller 

capacitors will remove the ripple to this point at higher frequencies. Typically only 

resistors and capacitors are used in the filter. Either an active or passive filter can be 

constructed with the buffer amplifier. 

Every time a different signal is presented to the input of this circuit the 

capacitors in the filter must charge or discharge to a different value. This can be seen 

in the output of the buffer amplifier ramping up or down to a final value. This will take 

some time, so it will always be necessary to have a significant delay time before the 

ADC is used. 

Thus practically, we wrote software that allows us to set the delay time after 

setting up the MUXs, before we are taking an A to D measurement. We used a filter in 

the demodulators that speeds up the process by a factor of 10 by switching in resistors 

10 times smaller for 0.5ms to speed up the charging process and make the output 

closer to the final value faster. These are then switched out so a filter is in place to 

ideally remove ripple. After a 0.5ms wait the ADC reading is taken. Practically, this 

means using a 100 KHz measurement frequency in similar circuits they are able to take 

a single ADC measurement in 1ms to 12bit accuracy. 

Ideally, we would use a different filter when we are measuring at a certain 

frequency so that a frame done at a high frequency can use a faster filter to eliminate 

the ripple and the filter capacitors can also charge up faster. Practically at 1MHz, we 

would probably be able to take a single ADC measurement in 0.1ms. This would take 

1416ms per frame. 

The purpose of the next section is to explain the system architecture, its 

measurement process, and the related calibration performance in detail. The ultimate 

aim is to design an EIT system with a stable measurement and source in a single 

interface that works at multi-frequency. The next section addresses the calibration 

method used for high precision EIT’s measurement data. 
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4.7. Calibration process for a multi-channel and multi-frequency 

AZ1 EIT system 

In EIT systems, high precision circuitry is essentially necessary to overcome the 

ill-posed problems in the reconstruction of an image, where a small change of current 

or voltage on the surface or measurement subsystem leads to massive changes in the 

spatial distribution of complex conductivity and permittivity images of the body. The 

current injection method requires a high output impedance since the current is 

injected for various loads over a wide frequency range. It cannot be created without 

using both a calibration and a function trimming circuit to get high output impedance 

while leading to a complex circuit, this problem was described with regard to the 

current source in chapter 3. 

In our topology, an external signal generator produces the desired input 

voltage (VSOURCE) passing through the two op amps (one non-inverting voltage follower 

and one with an inverting amplifier) to create the desired voltage with 180 degrees out 

of phase. These input voltages drive current sources to inject the current into the load. 

During this process, the voltage will be measured across the load simultaneously. Thus, 

the current flows through the load (ILOAD) in proportion to the voltage measurement 

(VMEAS), therefore it can be measured by knowing the value of the current load 

(VMEAS/ILOAD). Therefore, measuring the voltage across the load results in the load 

impedance, considering the fact that in the ideal case, the value of the current that 

flows through the load is equal to the voltage measured from the load divided by the 

current (thus Z=V/I). 

The combination of AD8130 and DCP are influential for converting differential 

signals to a single-ended signal with extremely high CMRR and a high-speed 

instrument, which includes the programmable gain amplifier, when the programmable 

line is controlled by a PIC. 

Measuring the value of the voltage of the biological load with the greatest 

possible precision is extremely important for EIT technologies. In an EIT system, the 

source can be a contact current, so that each electrode chosen has a certain AC 
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constant current injecting into the subject. Typically, any two electrodes fixed to the 

target volume are driven 180 degrees out of phase, and any two electrodes fixed to 

the target volume have their voltage difference signal measured with a difference 

amplifier and synchronous demodulation referenced to the source oscillator. One of 

the most common parts of EIT technology is signal calibration, which is used for 

electrode arrays, image reconstruction algorithms, and DAS, as part of the 

measurement system. The measurement data needs to be adjusted based on the 

calibration results, as the AZ1 EIT system is based on a single source that shares a 

voltmeter and source between the electrodes by employing drive and receive 

multiplexer structures (DRV and REC MUXs).  

Based on the AZ1 EIT design, it requires a calibration method when measuring 

high precision voltage signals. This calibration method will consider the effect of the 

drive multiplexers on the injecting side as well as the receive multiplexers effect in the 

measuring side when using the dummy load. In addition, it is necessary to use a very 

well-built calibration method that employs the application of 123 injection channels in 

different locations of an 85 electrode area when reconstructing an image using 1416 

measurement combinations. 

Figure 35 indicates the block diagram of the AZ1 EIT system with the 85 

electrodes and two stage multiplexers, one set on the driving side (DRV MUXs) and the 

other set on the receiving side (REC MUXs). Each electrode is connected to a channel 

of the driving and receiving multiplexer stages. Two applied sources that are within 0 

and 180 degrees out of phase are connected to the inputs of drive multiplexers. It is 

worth noting that Figure 35 shows only 0 degrees phase and the 180 degrees phase 

will be exactly the same as this branch. 
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Figure 35 The block diagram of the EIT system with the 85 electrodes, measurement 

subsystem, drive multiplexers (DRV MUXs) and receive multiplexers (REC MUXs). 

In the first stage of the calibration process, the current source is directly 

connected to the drive multiplexer with the effect of a known dummy load and 

electrode. In the second stage, it considers the effect of two different dummy loads 

and electrodes for calibration of the differential amplifier in the measurement 

subsystem when fully calibrating the system properties. On top of that, it uses an 

electronic mesh phantom that will be discussed in detail in the next chapter, to fully 

assess the performance of the EIT system such as series resistance and inductance of 

electrodes in the EIT system. 

Figure 36 indicates the overview of the current design with an ability of parallel 

data acquisition when injecting a current and measuring a data frame of the voltage. 

 

Figure 36 Overview of AZ1 EIT system 

a. Measurement subsystem calibration process 

In the design of the EIT system based on different current sources in a single 

platform required to have a voltage measurement instrument that is capable of 

measuring the biological load data through both current source topologies. A 

sequence of calibration tasks will be described below collecting high precision data. 

PGA 

I 

I 
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Afterwards, image reconstruction software and a control system will use the 

calibration features to find the exact voltages; resulting in an EIT image. 

Calibration of the measurement subsystem is the first step of the hardware 

calibration process. A differential amplifier is used to measure the voltage across the 

load. Therefore, the first stage of the calibration method is dealing with a unity gain 

differential amplifier that is measuring the load voltage (VLOAD) when delivering a 

known current to the load (ILOAD) through the different electrodes. For this reason, the 

two input voltages of the differential amplifier (called VIN
+ and VIN

-) are attached to the 

different calibration arrangement to get the actual gain of the differential amplifier. 

Ideally, VOUT is equal to the difference between VIN
+ and VIN

-, however, in 

reality, if the voltage is applied to the inverting (VIN
-) and non-inverting (VIN

+) inputs, 

the gain (A) related to the input voltages will exist. Since, in the ideal case it can be 

assumed that the VOUT = VIN
+ - VIN

- and the gain is equal to unity-gain (A=1). But in 

reality, the output voltage of the unity-gain differential amplifier (VOUT) can be 

calculated by the following equation (Saulnier, Ross et al. 2006): 

V�[\ � A^_ . V̂ _ � AL_	 .	VL_ 26 

The gain of the common-mode of the differential amplifier inputs is 

represented by ACM and the gain of the differential-mode of the differential inputs is 

represented by ADM. An accurate value of the output voltage will be calculated by 

knowing the value of the ACM and ADM of the differential amplifier (Saulnier, Ross et al. 

2006). The output voltage calibration process for the differential amplifier consists of 

the following steps: 

1. Computing common-mode gain of the differential voltage amplifier (ACM) 

2. Calculating differential-mode gain of the differential voltage amplifier (ADM) 

1. Common-mode gain of the differential voltage amplifier of the measurement 

subsystem (ACM) 

Typically, the common-mode gain in the real differential amplifier observed is 

small, but non-zero gain. However, we need to calculate this gain in regard to 



Chapter 4 Investigating and designing of software and hardware for the AZ1 EIT system 

 

83

designation of multiplexers in the system and the quality of the circuit design. To 

calculate the gain of the common-mode (ACM), it is required to apply an equal voltage 

to both inputs of the differential amplifier (VIN
+ = VIN

-). Thus, the measured output 

voltage would be the voltage of the common-mode (VCM). To find the common-mode 

voltage the following equation must be evaluated: 

VL_ � AL_�V78̀ � V78a2 � 27 

We present a desired schematic to determine the ACM of the measurement 

subsystem by configuring the DRV and REC MUXs switches and employing a calibration 

line that drives both inputs of the differential amplifier equally. Thus, the two inputs of 

differential amplifier would be fed with the equal input voltage when they are 

connected to the same input signal of the REC MUXs. 

Figure 37 shows a circuit schematic that measured the gain of common-mode 

of the measurement subsystem when all switches of the DRV and REV MUXs have 

been arranged for this purpose to collect the two equal voltages VIN
+ and VIN

-. The 

calibration line L1 is designed to connect directly the DRV MUX to REC MUX through a 

known dummy resistor (e.g. 100R) then this voltage line is directly connected to two 

inputs (IN+ and IN-) of the differential amplifier. 

 
Figure 37 the arrangement schematic of the multiplexer switches for calibration of the 

measurement subsystem by measuring the common-mode voltage 

The above schematic through switching in DRV and REC MUXs prepares the 

appropriate common-mode voltage from the equation 27 combination of VIN
+ and VIN

-
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,where in the common-mode schematic the two inputs drive the equal voltage 

(V78̀ � V78a ), so that the gain of the common-mode would be: 

AL_ 	� 	V�[\	V78̀ � V�[\	V78a  
28 

2. Differential-mode gain of differential amplifier of measurement subsystem 

(ADM) 

The requirement for calculating the differential-mode gain of the differential 

amplifier is applying two different input voltages and measuring the difference 

between these voltages. Two calibration lines of L3 and L4 designed when the L3 and L4 

are carrying the different voltage through two different dummy resistors RDUMMY1 and 

RDUMMY2, respectively, then drives to the REC MUXs. We also arranged the switches of 

the DRV and REC MUXs to apply two different input voltages to VIN
+ and VIN

-. 

Therefore, two different input voltages are applied and the differential-mode voltage 

VDM can be measured. Figure 38 shows the schematic diagram of the calibration 

arrangement to measure the VDM then calculate the ADM. 

 
Figure 38 the arrangement schematic of the multiplexer switches for calibration of the 

measurement subsystem by measuring the differential-mode voltage 

The output voltage at the differential-mode (VDM) is related to the differential-

mode inputs VIN
+ and VIN

-and the gain of differential-mode (ADM), therefore, we can 

write:  
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V̂ _ � V78̀ � V78a  29 

In the case of differential-mode, the VMEAS is equal to:  

V�[\ �	A^_ . V̂ _	 30 

By substituting the above equation into equation 26, we can write: 

A^_ �	V�[\ �	�AL_ . VL_�V̂ _  
31 

The common-mode rejection ratio (CMRR) of the differential amplifier can be 

computed by using the results of equation 28 and 31. Therefore, it is used to calibrate 

the CMRR of the measurement subsystem. 

CMRR_cde � 10	 log�i |A^_|�|AL_|� 	dB 
32 

This calibration process is continued until all input channels of the DRV and REC 

MUXs were measured, while it has attached to the planar 85-electrode plate as a 

second stage of the calibration procedure to compute the current value that is 

dropped by the shunt impedance of the electrodes. We have used the calibration 

method of the droop as explained by Cook and Saulnier, which is based on two trans-

impedance measurements (Cook, Saulnier et al. 1994). We will also evaluate and 

assess the performance of the full EIT system based on an electronic mesh phantom in 

detail in the next chapter. 

4.8. Power supply subsystem 

The level of current and voltage of analogue electronic equipment is highly 

sensitive to the noise of the power ripple. Thus, obtaining a high precision system is 

extremely dependent on the power supply conditions. To provide exact power supply 

ripple to all analogue components such as op amps and MUXs, we separated all parts 

of the power supplies in the AZ1 EIT system. For example, an op amp output voltage is 

equal to input voltage × gain, if it is greater than the power supply given to the op 
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amp (VCC or Vdd), then the op amp goes into saturation. In general, the system will 

produce different results depending on the power supply. 

There are four levels of power supply ±5V and ±15V. Each power supply level is 

individually designed for each subsystem package to avoid perturbation in the power 

supply of other equipment. In addition, each power supply component is separated 

from other components. The linear power supply rates exceed the peak current 

demands of the analogue components in AZ1 by more than 10%. Figure 39 shows the 

output voltages for each part of the system that are fed. A voltage regulator is 

required to produce the individual and fixed voltage level of ±5V and ±15V for each 

power supply line. Using a couple of decoupling capacitors on each component and 

individual power supply planes result in minimization of the voltage ripple and it acts 

as a filter to avoid the noise at high frequencies. The efficiency of the power supplies 

and the total power of the supplies result in significant heat production. Heat 

dissipation is achieved by cooling heat-sets for each linear power supply package. To 

prevent the noise travelling through the power lines reduction resistors and filter 

modules are utilized. In addition to improved power supply decoupling, if high-

frequency energy is generated on the chip because it will leak into the power supply 

planes, hence, ferrite beads have been used to block the high-frequency energy 

coming back through the supply lines. Electromagnetic Interference (EMI) suppression 

is also used to reduce the effect of the power supply. Significant design effort has been 

used to create a high precision power supply for the AZ1 EIT system. Figure 39 shows 

the circuit diagram of the power supply for the AZ1 EIT system. 
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Figure 39 The power supply schematic 

External power supply voltage provides VIN=±25V. As was mentioned before, 

there are four linear voltage regulators of fixed output voltage to supply the output 

voltage levels ±15V and ±5V. These regulatory modules take a variable input voltage 

between 23V to 35V to maintain a constant, stable output voltage of the nominal 

value equal to ±15V. Also, two regulators are used with the variable input voltage 

between 10V to 35V to maintain a constant (fixed) and a stable output voltage of 

nominal value equal to ±5V. It is worth noting that before connecting the input voltage 

in order to adjust voltage, it is useful to apply the external power supply to rectifiers 

for DC power supplies and a steady constant DC current. This is why we selected a 

rectifier for each power line (GF1A, Vishay Semiconductors). The voltage drops across 

the rectifier are represented by VD equal 0.6V (Vishay 2013). Although the regulators 

can work with an input voltage of 35V as far as the temperature coefficient and the 

drop voltage across the regulator that are concerned, it is better to reduce this voltage 

close to the output voltage of the regulator. Therefore, we employed the drop 

resistors 3R3, 20R with 1, and 20W respectively for the 15V and 5V lines. We also 

selected LM78M15CT [+15V] (FAIRCHILD SEMICONDUCTOR), MC79M15CTG [-15V] 

(ON SEMICONDUCTOR), LM7805CT [+5V] (STMICROELECTRONICS) and LM7905CT [-
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5V] (FAIRCHILD SEMICONDUCTOR) regulators with the package of TO-220-3 in the 

power supply circuit. 

Lets assume VIN = ±25V with a total current of 100mA. So, the voltage across 

input resistor would be equal to VR: IOP*R= 100mA * 3.3Ω= 0.33mV then the voltage 

across rectifier reduced by VD (rectifier) = 0.6V. In the above schematic VIN-VR-VD=VOP, 

we selected LM78M15CT that will take: +25V-0.6V-0.33V=24.07V input voltage to 

regulate with the maximum current output of 500mA and fixed output voltage of 

+15V. A similar calculation is made for ±5V. 

Table 6 shows the power supply current for each module. AZ1 consists of 

different source topologies for the EIT application, such as different types of current 

source with OCCII-GIC. It is worth noting that AZ1 will work only with one active 

source to measure a frame of data. So, the total supply current would be a maximum 

of the highest quiescent of supply current plus the common parts such as 

measurement subsystem and multiplexer sections. 

TABLE 6 QUIESCENT OF POWER SUPPLY CURRENT FOR EACH MODULE 

Quiescent of Supply Current 

 Min Max Condition Power supply rail 

OPA656 11.1mA 16.3mA  ±5V 
AD8130 9mA 10.6mA  ±5V 
ADG2128 20uA Low quiescent current ±5V 
ADG1211 220uA 380uA  ±15V 

ADV3205 

AVCC 
45mA 50mA Output enable No load +5V 

31mA 35mA Output disable +5V 

AVEE 
45mA 50mA Output enable No load -5V 
31mA 35mA Output disable -5V 

DVCC 8mA 13mA No load +5V 

DCP (X9C102) 3mA Active +5V 

500μA Standby +5V 

AD844 6.5mA 7.5mA ±15V 

Figure 40 shows the different parts of the power supply. The EIT system 

consists of independent topology sources with common parts of the acquisition and 

measurement systems. Practically, only one type of source is active (active-mode) and 

all other sources are stationary-mode. Thus, we considered the total quiescent supply 
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current for each source technique plus a common part which includes data acquisition 

system with PGA and multiplexers of the DRV and REC stages. 

 
Figure 40 Supply Part Schematic consists of different sources and Common parts 

The designed power supply has a separate power line for each section. 

Therefore, the power lines of ±15V or ±5V branch to the different parts of the system. 

Figure 40 shows the schematic of the power supply system. As a result Table 7 obtains 

the total quiescent supply current for each section through calculation of the 

quiescent supply current of each module as shown in the Table 6. Appendix-A shows 

how to do the detail calculation of maximum total current of power supply. 

TABLE 7 QUIESCENT OF SUPPLY CURRENT FOR EACH SECTION OF EIM SYSTEM 

Subsystem Quiescent of Supply Current 

Rail level +5V -5V +15V -15V 

Improved Howland + OCCII-GIC-I 189.8mA 179.3mA 30mA 30mA 

Improved Howland + OCCII-GIC-II 104.8mA 104.8mA 15mA 15mA 

Current Conveyor Source + OCCII-GIC 81.5mA 81.5mA 15mA 15mA 

Common mode 251.22mA 235.22mA 720uA 720uA 

Total 627.32mA 520.82mA 60.72mA 60.72mA 

Total +20% 752.78mA 624.98mA 72.86mA 72.86mA 

Selected Regulator Output Current 1000mA 1000mA 100mA 100mA 

4.9. Board layout of op amps 

For the high frequency system, it is also necessary to consider board layout 

parasitics by minimizing the parasitic capacitance to any AC ground, minimizing the 

distance between any components, short direct tracks, and power supply pins to high 

frequency decoupling capacitors. 
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The parasitic capacitive load is one of the most difficult and very common 

problems in an op amp. As OPA656 is a high speed and high open-loop gain amplifier, 

it is very sensitive to reduced stability and closed-loop response peaking. A parasitic 

capacitance in the output pin will mitigate against the stability, so it needs to consider 

the open-loop output resistance. The parasitic capacitance introduces an extra pole in 

the signal path, causing a reduction in the phase margin. The most important factors 

when there is parasitic capacitance are frequency response flatness, pulse response 

fidelity, and distortion. A solution would be to use an isolation resistor to isolate the 

feedback loop from the capacitive load. An isolation resistor could be placed between 

the capacitive load and the output pin of the amplifier since a zero pole would be 

added to loop response at the higher frequency. So, it will increase the phase margin, 

improving stability and stopping the oscillation of op amps. Thus, series resistors 

(around 100Ω) should be placed as close as possible in the output line of op amps. The 

best choice of this resistor will result in good frequency response at load and achieve a 

maximum flat frequency response. 

The other consideration in the board layout is the effect of other layers that act 

as a capacitance load on the output pin. For this reason, a boundary line is added to 

the output pin to cancel the capacitance caused by the copper filling between the 

board layers (in order to avoid the capacitive load). Figure 41 shows an example of 

boundary lines that are surrounded by an output track of an op amp. This boundary 

line technique avoids production of capacitance from other layer effects to the input 

and output pins of op amps. 

   
Figure 41 PCB copper fill of op amps that has mentioned without/with boundary lines 
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The parasitic capacitive loads cause a reduction in the performance of op amps. 

Therefore, it is necessary to avoid the long tracking and unmatched cabling as they 

exceed the parasitic capacitance value. 

In addition, ferrite beads and decoupling capacitors of 100nF have been used. 

Figure 41 shows the location of C46 and C47 are exactly as close as possible to the 

module (i.e. Op amp) and the ferrite beads, inputs/outputs to reduce tracks. Regarding 

the complexity of circuit design we were not able to add the decoupling capacitors and 

the ferrite beads on the other side of the board. 

4.10. EIT board PCB description 

PCB design is the most important part of the design of the EIT system and great 

care has been taken with this, otherwise it will cause oscillation or give crosstalk 

between ICs, components and copper tracks. 

It is necessary to add (around) 100R resistors to all op amp outputs near output 

pins to keep the output from driving the capacitance of the line directly. Therefore, the 

output lines are not loaded with an extra capacitance. However, there is a lot of 

capacitance between power layers. It required us to make short lines between power 

supply lines to decoupling capacitors. It also needs to use the top most layer vertical 

signal lines in contrast with the bottom layer when it is used, the signal lines are 

horizontal to reduce oscillation and crosstalk in the PCB. Assign three different layers 

of the ground, positive voltage (+V) and negative voltage (–V) when first using copper 

lines between two points, then using copper filling, the capacitance coupling between 

layers will be large (or good enough). In addition, we need to avoid putting vias under 

ICs. Overall a lot of techniques were used to minimise the stray capacitance and to 

avoid interaction (crosstalk, influence of noise) during PCB design. 

I have created PCBs using XL Designer PCB creator from Seetrax PCB CAD 

software. The EIT board was restricted to 6 copper layers with a finished board 

thickness of 1.76mm. Table 8 shows the size of the thickness of PrePreg, core and layer 

assignments and layer assembly order. 
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TABLE 8 SIZE OF THICKNESS OF 6 COPPER LAYERS WITH LAYER ASSIGNMENTS OF EIT BOARD 

Layer Name Copper Thickness 
Copper Layer 1 (Top-Signals) 1.00 Oz 0.035mm 
PrePreg 0.295mm 
Copper Layer 2 (Ground 0V) 1.00 Oz 0.035mm 
Core (c/c) 0.300mm 
Copper Layer 3 (Power +) 1.00 Oz 0.035mm 
PrePreg 0.360mm 
Copper Layer 4 (Power -) 1.00 Oz 0.035mm 
Core (c/c) 0.300mm 
Copper Layer 5 (Signals) 1.00 Oz 0.035mm 
PrePreg 0.295mm 
Copper Layer 6 (Bottom-Signals) 1.00 Oz 0.035mm 

Figure 42 and Figure 43 show the Top and Bottom layers of the AZ1 EIT board 

in software layout design with outlines of each component and its copper filled. 

After finishing the design of PCBs, eventually, it was used to generate the 

Gerber files. Then, it was sent to GC-Prevue version free (22.4.6) tools as PCB Gerber 

viewer, for looking through and viewing what the PCB maker will actually make, where 

the most important design is the copper layers. There is another way outside PCB 

creator software to view layers and information properties, layer alignment, and 

aperture and drilling tables to inspect for mistakes, it does not show in PCB creator 

software, before sending for fabrication and assembly. 
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Figure 42 the Top layer of the AZ1 EIT board in software layout 

 
Figure 43 the Bottom layer of the AZ1 EIT board in software layout 
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4.11. Control interface 

We developed the interface software to control and auto/manually address 

selection of the electrodes for calibration purposes. The first display from of the 

interface software establishes a connection between the interface software and the 

external MCU through the USB communications port to the asynchronous serial data 

transfer interface of RS485. Appendix-B shows the software port usage for all analogue 

and digital signals in the MCU. 

Figure 44 shows the communication settings such as port number, baud rate, 

bit size and speed. The feedback driven from the interface will confirm that there is an 

established connection between interface software and PIC for transferring/receiving 

data. 

  
Figure 44 connection setting as a first step of 

communication between PIC and control system  

Figure 45 Source mode (selection 

between different type of injection 

mode for EIT system) 

Three types of sources have been defined in the AZ1 EIT system. However, only 

one source topology will be active in the system during the experiment. Therefore, 

there is a source mode selection form to choose between different types of sources. 

Figure 45 shows the source selection mode as the second action of the interface 

software. 

One of the main purposes of the control system of the specific AZ1 EIT is based 

on selecting the different combinations of drive and receive electrodes. There are 

1416 rows of electrode combinations to produce an image in the planar 85-electrode 

plate of the AZ1 EIT system. Figure 46 shows the interface software that allows 

transferring the selected drive and receive channel automatically and manually to the 
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MCU. For the calibration process, an electrode combination could be selected 

individually in arbitrary form by choosing the drive and receive channel. 

We sequentially measure the voltage of all 1416 combinations, one by one 

when selecting each corresponding drive and measurement channel through the 

interface software in order to transfer these voltage measurements to the image 

reconstruction software to produce a 3D image as shown in Figure 47, the data 

acquisition system. 

  
Figure 46 Select combination system Figure 47 Data Acquisition System for all 

combinations 

DCPs are utilized for different calibration and functional purposes, i.e., PGA, 

maximize the output impedance of the improved Howland and current conveyor 

current source circuits with the OCCII-GIC circuit to operate at multiple-frequencies. 

The positions of the resistor wiper elements are individually controlled by the 

component select (CS), the Up/Down mode (U/D) and number of the increment gain 

(INC) input pins. The position of the resistor wiper can be stored in non-volatile 

memory and then can be recalled when the component is powered up. Figure 48 

shows the Digital-pot form for selecting and controlling each DCP. 
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Figure 48 Digital-pot selection mode, e.g. CS1 (DCP1) is selected with tap point represents 

10.10Ω and a gain of 2, so the equal resistance would be 20.20Ω. 
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5.1. What purpose does this chapter serve? 

Assessment and validation of the AZ1 EIT system (the new Sussex EIT system) 

performance and calibration of systematic errors in the electrical field generated 

inside of the interrogated volume is an important requirement. System instabilities can 

be caused by the EIT design and must be characterized before and during the clinical 

trials. Evaluation of the AZ1 EIT system used in the clinical study can be based on a 

realistic electronic phantom (E-phantom). This chapter describes a mesh phantom 

based on the electrode configuration and mesh structures of the image 

reconstruction. The phantom has the capability of modelling the cellular electrical 

properties that are operative within a circular homogeneous medium. The design is 

optimized to assess the planar topology of the internal impedance distribution. This 

includes the effect of the complex impedance model of tissues using a distributed 

circuit, exploiting look-up tables of the extra-cellular resistance R, resistance of intra-

cellular tissue S and the membrane capacitance properties C (RSC circuit model). The 
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system employs the information from the electrical properties of biological tissues to 

implement the Cole-Cole dispersion model. The research will present a dynamic mesh 

phantom to assess the performance of the EIT system to simulate in vivo conditions. 

The mesh phantom has the capability to generalize the RSC models between 85 

electrodes. It is possible to use different RSC values at 6 common locations; consisting 

of 123 current injection combinations with the capability to generalize the model using 

a hexagonal topology in the planar structure that is measured at multiple frequencies. 

This mesh phantom provides predictable, stable, and reproducible signals with the 

capability of using digitally controlled potentiometers (DCPs) in place of resistance R in 

the RSC circuit models that is formed between 2 electrodes for the dynamic model. 

This mesh phantom is capable of producing localized conductivity perturbations 

between each arbitrary channel in the electrode placement planar phantom topology 

by measuring all 1416 combinations that are to be used in the image reconstruction. 

The phantom is especially designed for the Sussex EIM system to validate system 

performance of measurements consisting of SNR, and modelling system accuracy. 

5.2. Introduction 

In bioelectric systems, impedance (Z) is defined as the complex relation 

between the voltage and current (Z=V/I) in an AC circuit. EIT systems are able to 

distinguish cancerous abnormal tissue from normal tissue using their different 

impedance properties and to find the impedance distribution of the target (Sree, Ng et 

al. 2011).  

Essentially, the permittivity is a measure of the ability to permit the storage of 

electrical energy in the medium. Electrical Impedance Tomography (EIT), in biomedical 

engineering, is a medical imaging technique that maps the conductivity or permittivity 

distribution inside a biological tissue sample or the volume of a subject under test, by 

injecting current or applying a voltage to the tissue and collecting voltages or currents 

at the subject surface (Holder 2005, Brown 2003). EIT systems use impedance data for 

imaging biological tissues using the change of impedance brought about by disease 

states (Brown 2003). 
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A lot of effort has been made to increase the measurement accuracy and 

spatial resolution of EIT systems for detecting breast cancer in its earliest stage 

(Hartov, Mazzarese et al. 2000, Wtorek, Stelter et al. 1999, Osterman, Kerner et al. 

2000, Cherepenin, Karpov et al. 2001, Goharian, Soleimani et al. 2008, Ybarra, Liu et al. 

2007). The EIT technique is one of the most effective modalities that could be used for 

detection or screening breast cancer. That means, EIT systems are able to distinguish 

cancerous abnormal tissue from normal tissue using its different impedance properties 

and to find the impedance distribution of the target (Zou, Guo 2003). 

The Sussex EIT system connects an array of electrodes to the target using a 

medium having its own and homogeneous conductivity distribution. It then chooses 

two electrodes and injects in-phase and 180 degrees out of-phase constant currents 

and chooses two other electrodes and measures the differential voltage between 

them (Zou, Guo 2003). It does this for different injecting and receiving electrode pairs 

collecting the data into an array and then uses a mathematical inverse algorithm to 

find the impedance distribution that could have given such data.  

It is necessary to use a very accurate constant current delivery system and 

measurement system to ensure that impedance differences are not affected by 

systematic errors in the electrical field generated inside of the interrogated volume 

(Wan, Negishi et al. 2013, Hahn, Just et al. 2008, Schneider, Kleffel et al. 2000). In 

order to meet a high specification in delivery and measurement, improve throughput 

and performance of the system, a calibration phantom has been designed and built 

that connects known impedances to the electrode array. This calibration system can 

also apply impedance differences that imitate those of abnormal tissue. Although, 

there is no standardization at the device level of the EIT system, all calibration 

procedures are aimed at achieving high performance through the designed instrument 

architecture. However, calibration and validation of the measurement results are 

evaluated using a phantom to assess the performance. This phantom is used both for 

calibration and validation of the measurement results and to assess the performance 

of both the hardware (HW) and image reconstruction (IR) algorithms in parallel. 
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The Sussex EIT system is used to deliver in vivo image reconstruction from 

impedance measurements. The mesh phantom is utilized to assess the EIT system and 

optimise its performance in identification and categorization of abnormal cell 

properties with a focus on cancer data. 

There are two phantom types to assess an EIT system: physical and electronic 

phantoms. The physical phantom that is used for EIT systems typically is composed of 

a conductive saline solution or gel medium with objects embedded in this medium. 

The medium and object have different impedances which permit the EIT system to 

detect changes of impedance and image them (Gagnon, Cousineau et al. 2010). 

The electronic phantom (E-phantom) is used to assess the system 

characteristics of the EIT system such as: current or voltage delivered, internal stray 

impedance and effects of the impedance of the medium on the measurements. These 

results can then be used to optimise the electronic circuitry and components relevant 

to the impedance measurements to improve the performance of the system. 

In general the mesh phantoms are designed to assess the performance of the EIT 

system by providing reconfigurable conductivity distributions. Using a mesh phantom 

can reduce the difficulty of calibration and validation of the design as it is relatively 

simple and quick to use (Gagnon, Hartinger et al. 2008, Hahn, Just et al. 2008).  

In this chapter, we will describe the mesh phantom that has been used to 

assess and validate the Sussex EIT system. The phantom is utilized to simulate the 

interaction of the EIT system with a breast immersed in a saline liquid. This liquid 

makes the electrical connection between the electrodes and the breast surface. The 

phantom imitates the bioelectrical impedance generated in the breast when a low 

amplitude sinusoidal current flows through the EIT electrodes. In compliance with 

IEC60601-1, the general standard for medical equipment and medical systems the 

maximum amount of injection current into the body must be limited to 10mA for 

frequencies above 100 kHz. The voltage measurements are converted to an 

impedance image of the simulated breast by solving the finite element modelling 
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solution with a measurement strategy using the combined RSC model of the electrical 

properties of different tissues. This phantom is useful for studying dielectric 

relaxations and polarizations that are generated in the tissue. 

5.3. Phantom Concepts  

The concept of the phantom here is to use a non-biological device to simulate a 

biological medium. This E-phantom is capable of simulating biological items such as 

pieces of carcinoma, fat, and stroma tissues in a saline based solution. A saline 

conductivity of 0.5mS/cm has been used as the homogeneous medium in order to give 

a low impedance connection from sensor electrodes to the breast target. 

This study uses an electrical mesh phantom, in contrast to the use of a physical 

phantom, to mimic an electrical impedance distribution of biological objects for 

comparison of different methods to improve the mathematical inverse and EIT 

hardware and for validation of the impedance inverse image found. 

Physical phantoms composed of a conductive medium of saline solution with 

insulator, agar or vegetable have common problematic issues of: short life, inflexibility, 

instability and uncontrollable physical characteristics (Bera 2014). 

In order to correctly model the impedance distribution between electrodes, it 

is vital to make the model E-phantom mimic the impedance of the medium and the 

impedance of the biological tissues of a physical phantom or a real breast. This E-

phantom, with its repeatability and stability advantages, can be used to study the 

electrical properties (conductivity σ and permittivity εr) of cancerous and healthy 

tissue over a wide spectrum of frequencies. The advantages of an E-phantom 

compared with the physical phantom are: improved quality, reproducibility, 

predictability and stability of signals. Then a standard calibration method can be used 

to periodically verify the continued validity and accuracy of the EIT system (Yasin, 

Böhm et al. 2011). 

The Sussex 3D EIT system is especially designed for breast cancer detection 
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application for different breast sizes and shapes. It is fitted in a bed with the patient 

assessed whilst in a prone position, as shown in Figure 49. An 85 electrode plate, with 

a distance of 17mm between any two electrodes is shown in Figure 50; it is located at 

the bottom of a tank so that the breast is immersed in a saline solution. The electrode 

plate is moved up or down to accommodate different sizes of breast where we can 

find the perfect position to maximise the number of electrodes covering the breast. 

The vertical cylinder saline tank has dimension of 180mm (d) × 50mm (h) with 

insulated cylindrical side walls. It should be seen as a Phase1 feasibility prototype to 

discover practically, which are the most important parameters needed for a more 

sophisticated design. For simplicity the phantom uses only resistors in most of its 

construction. The resistor values are chosen to model, in the first instance, only saline 

water with a depth of 10mm in the tank. The side walls and bottom of the tank are 

considered to be good insulators. Changes in the depth of the liquid in the tank are not 

taken into consideration (though the saline solution is going to move). Impedance 

changes, under software control over a USB link, can be introduced in sections, by 

switching-in different resistors and capacitors, to model the reactive characteristics of 

normal and cancerous tissue. This Phase1 phantom is not designed to model a 

complete breast in the tank. 

  

Figure 49 Measurement tank 180 mm dia. (right side inside) the clinical bed (left side), open 

top surface, 5mm thick acrylic walls and 85 electrodes at the bottom 
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Figure 50 Planar electrodes with circular electrode plate 

A 3D conductivity distribution model of the tank can be created by dividing the 

tank into 5 layers (Sze 2012) as shown in Figure 51 and considering the tank with a 

50mm depth of liquid. The present E-phantom uses one layer (layer 1). This layer is the 

one attached to the electrodes. This layer will have the highest electric fields with high 

sensitivity induced in it from the driven electrodes. 

 

Figure 51 3D meshes created by dividing the 50mm depth of liquid into 5 layers 180mm 

(diameter d) * 50mm (h). The E-phantom only shows the layer 1 with 10mm liquid depth 

Figure 52 shows a 2D mesh with triangular elements and a 3D mesh with 

tetrahedral elements. One of the limitations of the present resistive E-phantom is that 

this phantom is a 2D structure of resistors not a 3D one. This is also a limitation of the 

image reconstruction algorithm. It only considers layer 1 (L1) for the model and takes 

away effects of layer 2 to 5 from consideration in the design. 

L5 

L4 

L3 

L2 

L1 
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Figure 52 The 2D mesh with triangular elements and 3D mesh with tetrahedral elements 

5.4. Phantom Design Considerations 

A number of properties were taken into consideration during the design of the 

phantom. This section presents a description of a suitable design for the electrical 

mesh phantom, which provides the main characteristics relevant to the assessment 

process. In the following some of the new electrical mesh phantom’s spatial and 

constituent design features are described, the Cole-Cole dispersion effect has been 

incorporated into the phantom. 

a. Design Considerations 

The characteristics of the design are as follows: 

1. An issue arises from the use of a planar array over a circular topology 

having a non-equivalent element at the boundary compared to the interior (inner) 

elements of the planar array. 

2. An issue arises from the use of the Cole-Cole model required to emulate 

local impedance perturbations at different frequencies. 

3. An issue that arises from the use of a planar topology giving a difference 

in the measurement impedances at the boundary. In fact, the electrodes of the drive 

pairs are at the same distances relative to each other, so, it is expected that the breast, 

due to its positioning, will not completely cover all the electrodes when immersed in a 

saline solution in the device; hence presenting the device with varying measurements 

across the planar electrode plate. A set of measurement impedances are used as initial 

potentials of pure impedance saline at the first data collection stage. Many electrode 

L5 
L4 
L3 
L2 
L1 
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measurements will be at the same potentials, since they will only measure the purely 

resistive saline at the first stage. Since during the measurement process, there is no 

boundary line adjustment between the electrodes that are fully covered by the breast 

or not, when the breast is inserted into the device, there will be significantly different 

potentials between electrodes that are not covered and others that may be fully 

covered by the breast.  

b. Mesh Phantom principles 

It is worth noting that this mesh phantom design is not limited to this topology 

and number of electrodes. It can be expanded to phantoms with different shape and 

size of planar and even ring electrodes through minor modifications. In the Sussex EIT 

system, it was desirable to design a phantom based on 85 electrodes in a planar 

topology. The principles are defined in the following bullet points: 

1. A 2D circular continuous homogeneous medium.  

2. The driving signals are required to be a single source, comprising 

frequency and amplitude in the range that is realistic for the EIT application that is 

compatible with in vivo conditions. 

3. The Cole-Cole dispersion data can be extracted.  

4. The performance of the EIT system can be evaluated for the in vivo 

environment. 

5. Ability to change the impedance at different locations. This means the 

capability to provide predictable localized impedance changes i.e. by resistance and 

reactance changes at a key mesh element. 

6. The capability to utilize the RSC models between two electrode 

channels. It will be considered in 6 places; each RSC model is directly fitted into a 

segment of the planar electrode area since the measurement volume can be divided 

into 6 planar segments. 

7. Results and effects of capacitance properties of the tissues will be 

considered in regard to tissue dispersion. 
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It is worth noting that the phantom is especially designed for the planar model. 

This has been implemented in the laboratory with an 85-electrode, multi-channel and 

multi-frequency EIM system that employs a 4-electrode method in which the design is 

rooted in applying two electrodes with constant out of phase currents, over available 

output frequencies, whilst the other two non-invasive electrodes are used to measure 

the developed potential difference concurrently. This is repeated for all injection and 

measurement combinations. The voltage measurements at the first stage are 

amalgamated with a 2D image reconstruction algorithm to provide the impedance 

image. Figure 50 shows the mesh phantom including 85 electrodes, where the 

electrodes are located at the vertices of the triangles within the circular electrode 

plate. 

5.5. Phantom model 

Our goal is to design an electronic resistive mesh phantom by using the finite 

element method (FEM) in a planar structure to model a conductively homogenous 

saline solution. The nodes in an element and location of electrodes used in the FEM 

method are matched with the mesh used in the image reconstruction software. 

The nodes in an element, and location of electrodes used in the FEM method 

are matched with the resistive mesh phantom designed. The image reconstruction 

software used to examine system performance uses the same mesh and a finer mesh. 

a. Methodology 

Most of the research in the design of E-phantoms has focused on its application 

to the ring topology found in some EIT systems (Griffiths 1995, Griffiths 1988, Hahn, 

Beer et al. 2000, Gagnon, Sigmen et al. 2009, Gagnon, Cousineau et al. 2010). The 

context in which these works were reported shows that an E-phantom was useful in 

assessing calibrating and validating the function of different EIT systems. Similarly an E-

phantom design is used to assess and validate the function of the Sussex EIT system. 

In order to design a mesh phantom for a planar electrode array with a 



Chapter 5 Investigate and Design of High Performance Cole-Cole based E-phantom for 

EIM System Sensitivity Study and System Performance 

 

107 

homogeneous conductivity distribution, an algorithm based on the correlation 

between FEM and the electrode array has been applied to solve for the electrical 

conductivity field by registering all FEM element matrixes into the 2D system of 

electrical circuits. This work extends to designing an electronic mesh phantom that 

simulates the existence of small impedance differences (such as the capacitive effect 

of different tissues) immersed within a homogeneous medium over a planar topology. 

b. Finite Element Method 

Numerical methods that are important in the computational solution for 

physical applications are the finite element method (FEM), the finite difference 

method (FDM) and the boundary element method (BEM). 

FEM is the most powerful and famous mathematical numerical technique 

derived from variation methods for solving partial differential equations (PDE) by 

finding approximate solutions to boundary value problems. It uses the discretization 

domain process over the entire domain of the continuous conductive medium Ω. It 

works by dividing the domain into small sub-domains called finite elements. It then 

solves the differential equations for each finite element and gathers all elements using 

compatibility and equilibrium conditions for the entire domain. 

For EIT, the continuous conductive medium can be described by the Maxwell 

equations as follows: 

0V).(σ( =∇∇  in Ω 33 

This governs the electrical potential V inside the domain Ω with the electrical 

conductivity σ. In EIT, to simulate the stimulus/response process (I/V), we have a 

boundary condition given by: 

J
n

V
σ. =

∂
∂ on the boundary jΩ 34 

where J  is the normal component of electric current flux. So, for the EIT system, if the 
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injected current J for every node is known, Maxwell’s equations (Neumann boundary 

conditions) can be solved if the conductivity distribution of σ could be pre-defined, 

which means V can be found. Then the voltage distribution Vn (voltage at each node) 

can be calculated by solving the Dirichlet problem (with Dirichlet boundary	V|kΩ � Vl). 

In this case, we use the FEM to pre-define the conductivity distribution. Variational 

methods, which are similar to FEM in that the governing equations (here Maxwell’s 

equations) in matrix form on a continuous conductivity medium can be evaluated. The 

geometry of electrodes and nodes present in the FEM is preserved in the physical 

phantom made up of resistors. In order to make it easy to calculate the value of the 

resistors the following procedure is used: (i), the FEM is used to calculate the 

conductivity of each element in the matrix; (ii), these conductivity elements are then 

replaced by resistors with the same conductance. 

The Sussex EIT system has 85 electrodes. The phantom is also designed to have 

85 electrodes over a planar topology. We have employed a mesh of homogenous 

conductivity medium as shown in Figure 53. The FEM can offer a smaller discretization 

error by using triangular elements compared to FDM, which typically uses rectangular 

elements, which is a more complex implementation. Increasing the number of 

elements, realized by increasing the number of nodes in a domain gives a better model 

of the characteristics of the medium. In order to simplify the construction of the 

physical phantom it was built only with resistors. For this reason, we did not model the 

permittivity characteristics for the homogeneous medium using the FEM and include 

reactance effects. Our phantom is thus expected to show increased errors, with 

respect to the characteristics of the medium, at high frequencies. 
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Figure 53 Electrodes and 2D mesh used in image reconstruction 

Figure 53 shows a red-dotted line to separate the boundary and inner areas. 

This red-dotted line indicates the approximate separation between the high/low 

sensitivity areas. In planar topology, the sensitivity increases from the boundary to the 

inner area. Furthermore, it is difficult to detect an object when it is near to the 

boundary of the tank, in contrast to the ring topology in which the sensitivity 

decreases from the boundary to the inner area. 

Based on FEM with linear interpolation, we will find the matrix of the 

conductivity, potential and current vectors. In order to find these matrices, first, we 

need to find the elementary matrix of conductance, potential and current vectors. In 

the next step, the global matrices will be produced by combining these elementary 

matrices together. 

We have created a resistive mesh phantom using the same numbers of 

elements with the same coordinates as the nodes used in the FEM model, so we have 

the same accuracy with which to show an object. 

We created this resistive phantom by placing a resistor at each edge of the 

triangular mesh used in the FEM. The values are based upon the FEM admittance 

results. We will improve the possibility of getting an accurate mesh phantom based on 
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this method. 

In order to simplify the application of this method, we introduce a Sample 

Mesh Circuit (SMC) as shown in Figure 54. In this SMC, the local admittance area, the 

location of the electrodes and nodes can be used to produce the admittance matrices 

and then the voltage and current vectors.  

A triangular element consists of three nodes located at the vertices of the 

triangle. This SMC consists of four elements defined by three nodes; in total it has six 

dedicated nodes. The value of admittance between each two nodes is represented 

by	Yl,mn ,	since this is a region between three electrodes (see Figure 54 ), in total 6 nodes 

that consist of 9 admittances Y(1,2) ,Y(1,3) ,Y(2,3) ,Y(2,4) ,Y(2,5) ,Y(4,5) ,Y(3,5) ,Y(5,6) ,Y(3,6). Thus, 

the FEM method determines the distribution of admittance between three electrodes 

that have been formed by four elements. 

A triangular element has been labelled to be identified. Then, identifying three 

nodes formed at the vertices of each element. This provides an array of elements with 

the node identification, where the j and k-coordinates of nodes are connected with 

regard to the location of the associated element. 

In this regard, the symbol of n(i,e) is obtained, the location of the ith node in the 

eth element. 
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Figure 54 The sample mesh circuit composed of six nodes (n1, n2...n6) and nine admittances 

Y(n,m), where Vn denotes the electrical potential at the n
th

 node, In denotes the current vector 

at the n
th

 node 

c. FEM method process on network phantom 

The numerical solutions of the master element in regard to SMC of Figure 54 

can be found by the FEM method as shown in the following steps: 

1. The numeration is assigned to produce n(i, e ) for each element and 

node. The array n(i, e ) can be numbered from node (1,2,3) of each element as 

declared in Table 9: 

TABLE 9 THE NUMERATION NODE AND ELEMENT 

e
 

( )e1,n  ( )e2,n  ( )e3,n  

1 n3 n1 n2 

2 n5 n2 n4 

3 n3 n2 n5 

4 n6 n3 n5 

the numeration is assigned to produce the ( )ei,n  in which i is the node number and 

ethe element number where ( )e1,n  right location, ( )e2,n  top location, ( )e3,n

left location (counter clockwise	↺	) 
Thus the Laplace equation:  

0.. =∇∇ Uσ 35 

p�q� � 12rs tq. tquvw 	 36 

where iiUU α∇=∇ .  thus 

p�q� � 12rq)stx)txyuv qy � 12q,:)yq	 37 
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where q � z � {| � }~ ⟹ �q�q�q�� �
�
�∆ �

1 |� ~�1 |� ~�1 |� ~�� �
z{}� then 

 q � �1 | ~� �1 |� ~�1 |� ~�1 |� ~�
� �q�q�q�

�  

Therefore  q � ∑ q)�)�� . x)�|, ~� 

For each triangle element, the interpolation function of admittance Ye is 

obtained from the specified point (ni, i=1,2,3) n1(x1,y1), n2(x2,y2), n3(x3,y3) to produce 

the constant coefficients of aie, bie, cie that are enforced by the numeration of n(i,e) as 

follows: 

eeeee xyyxa 32321 −=  ,     eeeee xyyxa 13132 −=  ,     eeeee xyyxa 21213 −=  38 
eee yyb 321 −=  ,     eee yyb 132 −=  ,     eee yyb 213 −=  39 

eee xxc 231 −=  ,     eee xxc 312 −=  ,     eee xxc 123 −=  40 
The element number is identified by the eth element, where i=1, 2, 3 are the 3-

nodes of the triangular element. The coordinate of the node n(i,e) is located by (xi, yi). 

2. Apply boundary conditions for solving 
e∆ (the area of the eth element 

of the 2D triangular mesh), defined by the following equation: 

)(
2

1

1

1

1

det
2

1
1221

33

22

11
eeee

ee

ee

ee

e cbcb

yx

yx

yx

−==∆

 

41 

The electrical potential function of the eth element is approximated as follows, 

if linear triangular elements are used: 

( ) )(, ycxbayxV eeee ++=  42 

where the value of ( )yxV e ,  is for nodes residing in Ωe of eth element. Thus, for the 
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three nodes n=1, 2, 3, we have: 

( ) ( )∑
=

=
3

1

,,
n

e
n

e
n

e VyxNyxV  43 

So, eN is the interpolation function and obtained by: 

( ) )(
2

1
, ycxbayxN e

n
e
n

e
ne

e
n ++

∆
=  44 

where x, y are the coordinates of the nth node, n =1, 2, 3 are the node numbers and 

e=1, 2, 3, 4 are the element numbers for the SMC as shown in Figure 54. 

3. The admittance components of eth element in matrix form Ye is given 

where by the admittance between n and n+1 node is	:*,�� : 

e
e

nm
Ye

mn
Y

∆
==

4

 )
m

c
n

c+
m

b
n

(b

,,

σ
 

45 

Thus for each element of 3 nodes:  

e
e

Y
∆

=
4

 )2)1(c+2)1(b(
1,1

σ
 

e
e

Y
∆

=
4

 )2)2(c+2)2(b(
2,2

σ
 

e
e

Y
∆

=
4

 )2)3(c+2)3(b(
3,3

σ
 

e
e

Y
e

Y
∆

==
4

 )3c1c+3b1(b
1,33,1

σ
 

e
e

Y
e

Y
∆

==
4

 )3c2c+3b2(b
3,22,3

σ
 

e
e

Y
e

Y
∆

==
4

 )2c1c+2b1(b
1,22,1

σ

 46 
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The admittance matrix of the eth element is given by: 

3*3
3,32,31,3

3,22,21,2

3,12,11,1

,









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





=
eee

eee

eee

e
mn

YYY

YYY

YYY

Y

 

47 

Thus for the SMC with four elements (e1:3,1,2; e2:5,2,4; e3:3,2,5; e4:6,3,5):  

3*3
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The elementary matrix of the eth element is given by: 

1*3
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where V�	represents the electrical potential and &� current vector of eth triangle 

element. Thus we obtain: 

1*3

4
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4
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4
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4. By combining of :)� for e: 1, 2, 3, and 4 and i=1, 2 ...6 with regard to the 

SMC Figure 54, the global matrix Y will be produced with the respect to the element of 

the element matrix of each sub-domain.  

The global matrix Y generates a matrix of Y6*6 that will be produced through the 
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matrix of 4 elements and 6 nodes (e.g. we look for 1,1Y in all element matrixes and 

placed location of that with the corresponding element number in the global matrix as 

this is 1
2,2Y ). We obtain SMCY from e

mnY , where e=1, 2, 3 and 4: 
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5. We need to solve Y.V=I formulation to produce an admittance matrix 

for the conductive medium. These values will be used for the electrical circuit mesh, 

where, 

6. I is assembled from: 
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Therefore, we have produced the Y and I matrixes from corresponding elemental 

matrixes. Thus, by using the FEM method and knowing δF(V)=0 and equation (51), we 

obtain: 

[ ][ ] [ ]IVY =  53 

7. From the global admittance matrix Y(n,m), we can extract each 

conductance G(n,m) value creating. 

8. The resistance values R(n,m) between nth and mth nodes of the mesh 

phantom can be evaluated from the inverse of the conductance value of G(n,m) for 

each edge. This is a resistor network equivalent to an FEM model.  
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Figure 55 The image is made by the inverse created from the FEM method of the planar 

electrode plate  

The electrical conductivity of the medium is symbolized byσ , (the electrical 

conductivity of the medium used for saline solution is assumed 0.5mS/cmσ = ). 

The global matrix of the SMC obtained in equation (51) was based on solving 

Y.V=I formula and utilizing the FEM method. We used the same method to find the 

conductivity distribution and build a global matrix of resistors for the phantom. The 

global matrix [Y]421×421 is assembled from [Ye] with 421 nodes of 780 elements using 

the designation n(i,e) where n is the node number for (i=1, 2, 3,…, 421) and (x,y) is the 

coordinate of each node in the phantom element as the image is made by the inverse 

created from the FEM method shown in Figure 55. We number these elements from 

right node to top node, from the top node to left node and left node to right node in a 

counter anticlockwise direction and e is the element number of each sub domain 

(e=1, 2, 3,..., 780). We use this global admittance matrix to create a resistive mesh as 

illustrated in Figure 56 with the resistance value of each edge. 
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Figure 56 The Mesh phantom consisting of 780 elements and 421 nodes and 1200 resistors. 

The resistance values were found for the edges of the triangle mesh 

By solving the Y.V=I formulation we obtain the characteristics for a circular 

homogeneous conductive medium. The medium is discretised into 780 elements by 

using 421 nodes with 1200 edges. Each edge of a triangular element corresponds to a 

resistor. Table 10 shows the ideal (nominal) values determined from the FEM and the 

real parallel resistance values used. The resistors used had a 0.1% tolerance with the 

temperature coefficient: ± 25ppm/°C and power rating: 250mW. 

TABLE 10 THE RESISTANCE VALUE 

R Name Quantity 
Ideal (Nominal) 
value of R (Ω) 

Real(Equivalent) value: RX||RY=REQ (Ω) 

RX RY REQ 

1 12 1153.05 1k3 10k2 1153.04 
2 12 1263.45 1k27 243k 1263.39 
3 960 2000.05    -      - 2000 
4 12 1381.13 1k4 102k 1381.04 
5 12 1385.01 1k4 130k 1385.08 
6 12 1396.47 1k4 549k 1396.43 
7 12 1414.43 1k43 130k 1414.44 
8 6 1652.57 1k69 75k 1652.75 
9 12 1726.57 1k78 57k6 1726.64 
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10 12 1846.72 2k49 7k15 1846.83 
11 12 1860.88 1k87 383k 1860.91 
12 12 2273.74 2k8 12k1 2273.82 
13 12 2322.92 3k57 6k65 2322.94 
14 12 2500.25 - - 2500 
15 12 2538.90 2k61 93k1 2538.82 
16 12 2990.58 3k01 464k 2990.59 
17 12 3392.48 3k4 1.54M (1%) 3392.51 
18 12 3642.79 3k65 1.87M (1%) 3642.88 
19 12 4277.55 4k53 76k8 4277.68 
20 12 5019.27 8k06 13k3 5018.63 
21 6 7592.66 8k25 95k 7592.70 
22 12 12479.49 13k7 140k 12478.85 

Nominal and real resistor values for the E-phantom resistors numbers as shown in 
Figure 56 

d. Measurement sequence 

Consideration of certain factors is required when you are preparing to collect 

data, find the inverse and construct an image. The quality of the inverse image is 

directly dependant on the number of measurement combinations, i.e. data points 

(Metherall, Barber et al. 1996, Brown 2003). One approach to improve the resolution 

is to increase the number of electrode sources and thus increase the number of 

independent measurement combinations. The Sussex EIT system consists of 85 

electrodes and achieves 1416 independent measurement combinations based on 123 

current injection combinations. The image that is constructed using this large number 

of measurement combinations could mean this system should have the ability to make 

clearer images.(Sze 2012, Wang, Wang et al. 2007b). 

Our device achieves its measurement combinations for the planar electrode 

plate by using a hexagonal structure based on a 4-electrode method (there are two 

electrodes used as receivers for each channel injection and two electrodes used to 

inject a constant current). The constant current injector electrodes are located at the 

vertices of the hexagonal measurement shape. Figure 57 shows the measurement 

sequence of the planar EIT system for one hexagon shape. 
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Figure 57 The hexagon combination table consists of 19 electrodes [⊙,	⊗]. The current 

injection electrodes are denoted by [⊗] and the voltage measurement electrodes are 

denoted by [⊙]. The hexagon 19 electrodes mesh is capable of giving 12 measurement 

combinations and denoted by
���

 tsMeasuremen

121−  

The hexagonal measurement structure is an experimental result that shows 

that a suitable drive pattern for the planar electrode plate is a hexagon combination 

with the 19 electrodes forming 3 injection channels by using a 120 degree rotation 

around the x axis for each pair of electrode injections as shown in Figure 58. The drive 

electrodes (e.g. in Figure 58 the hexagon corners are e1-e19, e8-e12 and e3-e17 are drive 

electrodes) are always at a constant distance apart in any direction whereas the 

differential voltages (potential of 19 electrodes in 3D spatial) are measured between 

any two electrodes. This process is continued for all electrodes. 
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Figure 58 Measurement sequence used to acquire the EIT planar topology; �� denotes 

electrode number n=1, 2... 85 

In the measurement for each choice of two injection electrodes located in the 

inner area, there are 12 measurement combinations. If the injection electrodes are in 

the boundary area the hexagon pattern shown in Figure 57 cannot be shaped. In this 

case 9 to 12 measurement combinations will be used depending on the injection 

electrode locations. 

It is worth noting that the Sussex EIT system has a dynamic range of the voltage 

measurement frames as shown in Figure 59. This plot presented 12 voltage 

measurements for a uniform conductivity medium with the 3D model is for a 

homogenous distribution of saline with 0.5mS/cm conductivity and 1mAp-p current 

injection. That’s why the image obtained from the data of the phantom representing a 

uniform case with variation across is as shown in Figure 61, this method helps us to 

know the position of the error.   
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Figure 59 shows the 12 real voltage measurements of a current injection (current injection 

combination: 61, 62 and 63 measurement index: 691-702, 703-714 and 715-726, 

respectively) of a hexagon combination table consists of 19 electrodes. The Sussex EIT has a 

dynamic range of the voltage measurement frames. 

5.6. Modelling the Resistive Phantom in OrCAD 

As a next step, a simulation analysis process of the EIT system is used to 

validate the phantom that has been designed. The simulation mesh phantom used 

with OrCAD PSpice is shown in the schematic in Figure 60. This simulation design uses 

the same system of resistors as used in the resistor mesh used in the phantom. 

Figure 60 shows a schematic view of the E-phantom design using the OrCAD 

PSpice simulation. The E-phantom simulation uses 85 electrodes based on triangular 

structures with hexagonal measurement combinations. Resistors and electrodes are 

simulated using models available in OrCAD. The schematic circuit uses the resistor 

values as shown in Table 10. The simulation allows us to examine the non-ideal 

behaviour of the source, model the noise of the system caused by the tolerance of the 

resistors used and so provide a worst case analysis and by varying the values in certain 

areas of the phantom simulate the variation of conductivities in different portions of 

the phantom. The E-phantom simulation has been tested with the test scheme that 

would be used in an EIT system.  
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Figure 60 The schematic of the Mesh phantom 

The simulation system is established to generate and measured data (acquire 

data) using the measurement sequence illustrated in Figure 58, which is the same as 

used in the actual EIT system, where each pair in opposite corners of the hexagon 

forms an injection channel pair.  

The measurement results are fed to the image back projection reconstruction 

algorithm to produce a conductance image for the homogenous conductive medium. 

In this regard, the image of the conductivity has been produced by image 

reconstruction software as shown in Figure 61 with 123 injections and 1416 

measurements. This image is assumed to be ideal back projection data obtained from 

the dynamic measurement.  

In reality, resistors are not ideal, but have a very small series lead inductance 

and have a parallel capacitance of around 0.3pF. We have ignored these effects in our 

system.  
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Figure 61 the image is made by the inverse created from OrCAD simulated results of 1416 

measurements simulating a homogenous medium. 

The image acquisition of the E-phantom is based on the acquisition of 123 data 

frames, each consisting of a maximum of 12 measurements a result is shown in the 

simulation shown in Figure 61. In order to attempt to produce an accurate simulation 

model for the physical homogeneous conductive medium, standard resistors are used 

in parallel to optimise their equivalent value being close to the FEM calculated value. 

This image is assumed to be back projection data. 

In addition, the resistors used have temperature coefficients of approximately 

± 25ppm/°C and manufacturing tolerances of 0.1%. In order to consider this tolerance 

we have used Monte Carlo analysis in OrCAD PSpice simulation. The Monte Carlo 

analysis allows examination of the effects on the performance of the E-phantom when 

the resistor values are varied within the band of their tolerance. We have used the 

Monte Carlo analysis with 100 runs, with the Gaussian distribution and with 17366 as 

the random seed number to achieve the average theoretical signals as shows in Figure 

62. 
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Figure 62 The average theoretical signals (Ω) 

This work extends to designing an E-Phantom that simulates the existence of 

small impedance differences (such as the capacitive effect of different tissues) 

immersed within a homogeneous medium over a planar topology.  A number of 

properties were taken into consideration during the design of the phantom based on 

the phantom’s spatial characteristics relevant to the assessment process. We used the 

Sussex EIT planar topology, to give a difference in the measurement impedances, the 

electrodes of the drive pairs are at the same distances relative to each other (always 

three electrodes between each two electrode injections in the high current flow 

direction), but presenting the device with varying measurements across the planar 

electrode plate in one measurement combination, it is called a dynamic measurement 

system. Hence, a set of measurement impedances is used as initial potentials of pure 

impedance saline at the first data collection stage in order to assess the system. 

Although, in multi-frequency systems, there is no need to have a set of data from a 

homogeneous medium as a reference data set and we can use a set of data at one 

frequency point as a reference data set (Fitzgerald, Thomas et al. 1997). 

5.7. RSC model 

The Cole-Cole impedance model is utilized to describe characteristics of the 

electrochemical properties of biological tissue with frequency dependent (Cole, Cole 

1941, Cole, Cole 1942). The model is created by using three electrical components of R, 
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S and C. R and S being resistors (extra- and intra-cellular resistances), C being a 

capacitor (membrane capacitance). From the experimental tissue values extracellular 

media is purely resistive, where the resistor R dominates the effect mainly at low 

frequency (zero frequency) since all currents flow through the extracellular resistance. 

Resistor S and capacitor C come into effect at high frequency (infinite frequency) when 

the current that flows through the capacitance of the cell membrane produces an 

isolating layer for intra-cellular resistance. Hereafter in this research this model will be 

referred to as the RSC model. The phantom is able to incorporate RSC models between 

electrodes to simulate tissue. Figure 63 shows the RSC circuit model that is used in the 

E-phantom. 

In this case, a set of constant current sources applied in a homogeneous 

conductive medium with conductivity of r. In principle, it is sufficient to solve equation 

(33) in the homogenous media, for the sample tissue to obtain the frequency 

dependent of tissue. Thus, including the frequency dependent of electrical parameters 

such as frequency dependent of conductivity r� enables the model to capture all 

range of physical phenomena. Thus, we obtain: 

0.. =∇∇ Uωσ 54 

Then solving this equation as it is a frequency dependent in homogeneous 

media. The impedivity data (or dispersion data) extracted from injection currents and 

voltage measurements in the EIT system and compared with the impedance results 

that are determined using the Cole-Cole equation when the RSC models are placed 

between electrodes to simulate the impedance of different tissues at different 

frequency points. Thus the impedivity data produces frequency dependent electrical 

properties. To validate these results, we have also simulated the electrical properties 

of tissues by using a RSC model and measuring the complex impedance between two 

electrode points in our OrCAD simulation similar to compared with the actual EIT 

measurement data.  
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Figure 63 Equivalent electrical circuit model for Cole-Cole equation 

The Cole-Cole equation for the Figure 63 is: 
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where R� represents the tissue resistance as the frequency approaches infinity and Ri 

represents the tissue resistance as the frequency approaches zero (for direct current), 

Fr corresponds to the relaxation frequency and α symbolizes the relaxation time. In the 

RSC model, the extracellular resistance R is equal to Ri in the Cole-Cole equation and 

the resistance of the intracellular tissue is called S, where paralleling R with S (R||S) 

results in the high frequency resistor	R�. 

Considering Carcinoma, Fat and Stroma tissues in a cube shape with the 

dimensions of 10mmW×10mmD×10mmH, with a uniform flow of electric current then 

the electrical resistance is defined by the following equation: 

+ � � �� 56 

where	ρ, L and A are resistivity, length and cross section area of tissues, respectively. 

The relaxation frequency of tissues is defined by: 

�� � 12�A�+ � �� 57 

The electrical properties of Carcinoma, Fat and Stroma are produced by 

introducing the RSC circuit model into the E-phantom. Table 11 shows three different 
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tissues that we have selected to use in the E-phantom (Wang, Tang et al. 2001, Qiao, 

Wang et al. 2007, Jossinet 1998). 

TABLE 11 THE COLE-COLE PARAMETERS OF THE DIFFERENT TISSUES 

Tissue R�Ω� S�Ω� C(F) Fr α 

Carcinoma 3.89 0.99 6.83E-8 477kHz 0.54 

Fat 23.9 69.69 7.87E-9 216kHz 0.43 

Stroma 13.62 28.8 8.37E-9 448kHz 0.49 

The different electrical properties of the Carcinoma, Fat and Stroma tissue of the breast 

that is cubic and has the dimensions of 10mm *10mm*10mm  

We are using the RSC models in 6 places; each is inserted as a target 

individually inside one of the segments. Figure 64 shows the RSC model locations that 

are introduced into the E-phantom. 

 

Figure 64 The RSC location inside of each segment as an object. The object has been placed 

on layer 1 (bottom layer) with high conductivity distribution layer. 

5.8. PCB Phantom board 

The FEM is programmed in MATLAB based on the same framework of elements 

that are exploited in the reconstruction algorithm. This program generates a mesh 

phantom based on a global admittance matrix. The E-phantom PCB was built based on 

the FEM design that has been explained in a previous section. Figure 65 and Figure 66 

show the top and bottom layers of the E-phantom PCB designed for the schematic of 

Figure 64. The PCB is fabricated on a circular board with an 83mm radius fitted with 85 

electrodes. 
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Figure 65 top layer of Mesh Phantom PCB 

Figure 66 bottom layer of Mesh Phantom PCB 

This PCB is fitted with the 1200 resistors as mentioned in Table 10 with 

resistors of 0.01% to ±0.05% tolerance and temperature coefficient of ±25ppm/ ̊C. For 

456 resistors, each two resistors are matched to an equivalent resistor (REQ=RX||RY) 

with a tolerance target of ±0.2%. Each pair of selected resistors has been manually 

measured to ensure that the parallel combination is within the ±0.1% tolerance of the 

nominal value. 
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The E-phantom connects to the EIT electrodes by means of 85 spring-loaded, 

stainless steel electrodes with gold plated tips. The tip style is a 6-points crown with a 

higher set middle point. Its internal resistance is less than 20mΩ (INGUN GKS-100 224 

130A 2000E) as shown in Figure 67. The electrodes are inserted to a small depth 

(~2mm) into the electrode plate. The electrodes are exactly the same as the electrodes 

used in the real EIT system (DATA SHEET-INGUN 2004). 

 

 

Figure 67 Electrode style and dimensions, Tip style 24 which has 6-point Crown with higher 

set middle point (DATA SHEET-INGUN 2004) 

We have not taken into consideration the size and shape of the electrodes in 

the FEM use to find the resistors of the E-phantom and we have ignored the complex 

impedance behaviour of the INGUN electrodes used to connect the EIT board 

electrode nodes to the E-phantom electrodes. The INGUN GKS-100 electrodes have 

very low contact resistance �2mΩ so they should have little effect. 

We have utilized six DCPs (digital potentiometers X9C10x, Xicor Inc.) in order to 

produce different resistivities in the phantom. The E-phantom has been divided into 

six segments where this variable resistivity can be applied. We can change the 

resistivity of each segment of the planar electrode plate by using the variable resistor 

(DCP) located between two nodes in each segment. This scheme allows us to employ 

the DCP modules to produce localized conductivity perturbations in the phantom i.e. 

the simulated medium, which can be easily implemented and controlled. 
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Chapter 6 Simulation and experimental results for the current 

source with stray capacitance cancellation method and using E-

phantom for assessment and validation of the AZ1 EIT system 

 

 

 

 

 

 

6.1. Introduction 

In this chapter simulation and experimental results are presented for a 

capacitance cancellation system to address its use in the AZ1 EIT system using two 

types of current sources: i) the voltage-based (improved Howland) and ii) current-

based (current conveyor) current source structures. 

The simulation and experimental results for each of the current source 

structures are presented to address a clearly specified system design and operational 

issues (mainly the cancellation of capacitance effects).  

We also used a phantom composed of resistors and microprocessor 

controllable switchable passive components to evaluate the ability of the AZ1 EIT 

system to distinguish significant system objects such as cancerous parts of the target 

volume.  

As previously mentioned, the Sussex EIT system is based on a four-electrode 

technique; where two electrodes that are driven 180 degrees out of phase inject with 

a fixed current through multiplexers to the subject (two current branches are utilized) 

and the other two electrodes are used to measure the voltage. This is repeated at 
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multiple-frequencies and each current branch switched between 85 electrodes. The 

target volume is contained in a cylindrical container with the electrodes on the bottom 

surface. 

In chapter 4, I have shown that the use of two different multiplexers in series, 

called a cascading configuration, for the direction of the current from a current source 

to an electrode gives the lowest total switch capacitance CON/OFF = 20.8pF, in each 

injection channel. These capacitances are paralleled by additional stray capacitance of 

the measurement system (i.e. CTOTAL = CON/OFF + CSTRAY). Two OCCII-GICs are used for 

the two 180 degrees out of phase current branches to cancel these unwanted 

capacitances.  

A simulation model was constructed of the current source used and the chosen 

capacitance cancellation system in order to determine the best component values and 

circuit architecture needed.  

Experimentally in order to show the performance of the current sources and 

chosen capacitance cancellation system, we have attached a variable load and used an 

oscilloscope probe to measure the output voltage (i.e. injection current value = VOUT 

/RLOAD). The probe caused some effects. Table 12 shows the characteristics of the 

probe used to calculate the output current ratio of the sources by measuring the 

output voltage of the attached dummy load when showing the actual results on the 

oscilloscope.  

TABLE 12 PROBE CHARACTERISTICS 

Type Attenuation Bandwidth 
Comp. 
Range 

System 
Input 

Resistance 

Typical 
Input 
Cap. 

Input RMS 

Tektronix 

P6109B* 

10X 100 MHz 15pF to 35pF 10MΩ 13pF 300V RMS CATII 

*With instruction manual (070-7849-06) 

We added input capacitance of the probe to the simulation model. We 

eliminated the EIT source by a simulation model of the current source when attached 
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to a load and a stray capacitance as follows: CSTRAY=CPROBE + CON/OFF + CSOURCE + CSTRAY-of-

the PCB.  

The simulation circuits (schematic captures) used Cadence OrCAD Capture 

release 16.2.0 and simulation models using PSpice A/D 16.2.0, with a spice Macro-

Model of the AD844 Rev. A and OPA656 Rev. A with the simulated resistors had a 

tolerance of 0.01% paralleled with a capacitance of 0.3pF estimated to be that of a 

SMD resistor on an FR4 PCB board with standard size pads (that generally is created on 

a circuit board across a resistor).  

We used a function generator able to produce a sine wave signal with a 

variable amplitude operating over a frequency range of 10 kHz up to 5MHz and a 

digital scope with a SNR of 80dB (as has been tested and has the required accuracy for 

our measurement procedure).  

We used the channel settings in the scope as follows: the probe attenuation 

10:1 with ratio 1:1, input impedance of the probe 1MΩ, with a bandwidth of the scope 

connector equal to 35MHz, and bandwidth of the probe equal 60MHz. 

Since one of the advanced measurement techniques is specifying circuit 

behaviour. We compared the simulation and experimental results using the following 

steps:  

Step 1) Showing the simulation result of each source without attaching the 

OCCII-GIC circuit in order to approximate the output capacitance for the source as an 

expected experimental result.  

6.2. Output Capacitance of the Current Source 

As a first step in understanding the current source behaviour we measured the 

output impedance of the current sources in simulation. Hence, I simulated the 

improved Howland current source and current conveyor current source and measured 

the simulated output capacitance and resistance of these sources and compared them 

with a perfect current source (ideal source) available in the Cadence OrCAD simulator. 
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The measurement was done by experimentally adjusting PSpice using the capacitance 

and/or resistance until the curves (as the frequency was swept) of the simulated 

current sources graphically matched those of an ideal current source with additional 

parallel resistance and capacitance. The schematic diagrams used are shown in Figure 

68.  

Figure 68 (a) compares an ideal current source and an improved Howland 

current source with an attached load of 10kΩ. Figure 68 (b) shows a current conveyor 

current source when it is compared with an ideal current source. 

I experimentally and graphically measured the output voltages of the two 

sources and compared them with the ideal current source in order to estimate the 

output capacitance of each source. Figure 69 (a) and (b) illustrate the result of the 

estimated output capacitance by adjusting the capacitance (CS) in parallel with the 

perfect current source until the curves with changing frequency meet that of the 

tested current source. 

 
 

(a) (b) 

Figure 68 shows two schematic diagrams (a) and (b) that compare the perfect current source 

with (a) improved Howland current source and (b) current conveyor current source to 

measure the output capacitance of each of the sources when attached a 10kΩ load. 
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We found the output capacitance of the CS = 2.5pF and 5pF, respectively for the 

improved Howland and current conveyor current sources based on the simulation 

results as shown in Figure 69. 

  

(a) (b) 

Figure 69 shows the simulation result of the schematic capture of the current sources 

(dotted-line) compared with perfect current source (line) to measure and confirm the source 

capacitance of each source, Cs=2.5pF (left graph shows the improved Howland source) and 

Cs=5pF (right graph shows current conveyor current source). 

We wondered what changes we could make by altering RS and CS. We found a 

few improvements in the current sources by adding resistors and capacitors as shown 

in the new schematics in appendix-C. 

Step 2) Simulating two sources with the effect of capacitances (i.e. source, stray 

and probe capacitances). These results show the measurement output voltages that 

we expect to measure in the experimental curves.  

Here, we simulated two sources with an extra dummy capacitance (as stray 

capacitance plus source capacitance) when a load is attached. We then compared it 

with the input signal (as a reference signal) and output signal without the effect of any 

capacitance, as shown in Figure 70. This simulation is based on the actual probe 

characteristics (as shown in Table 12) and source capacitances that we expected based 

on the previous test.  

In regard to above results, the source capacitance of the improved Howland 

and current conveyor current source are equal to 2.5pF and 5pF respectively. Then, 

the probe capacitance is added to these capacitances. Thus, in the case of the 

10V 

8V 

6V 

4V 

10V 

9V 

8V 

7V 

6V 
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improved Howland current source this capacitance is equal to 2.5pF as a source 

capacitance and 13pF as a probe capacitance (type) which in total is equal to 15.5pF 

and in the case of the current conveyor current source it is equal to 18pF. 

 

Figure 70 shows three output currents of the different current sources, dashed curve (-----) 

shows output current of the improved Howland current source without stray capacitance 

effects and a 1kΩ load, dotted curve (…….) shows the output signal of the current conveyor 

current source without stray capacitance effects when it attached to a 1kΩ load. These 

curves only show the effect of source capacitance (CS). Dotted and dashed curve (._._._.
) 

shows the output signal of the improved Howland and lined curve (___) shows current 

conveyor current sources with the effect of the probe and source capacitances, which 

consists of a source capacitance of (i.e. 2.5pF or 5pF) plus probe capacitance of 13pF (type) 

which expected equal to CX=15.5pF and 18pF. 

6.3. The current source with stray capacitance 

The expected parasitic capacitance of the current source is equal to CPROBE + 

CON/OFF-DRV-MUXs + CSOURCE. Thus the expected parasitic capacitance is equal to 13pF 

(probe input capacitance) + 20.8pF (DRV MUXs) + 2.5pF (improved Howland current 

source) = 36.3pF and in the case of the current conveyor current source 13pF (probe 

input capacitance) + 20.8pF (DRV MUXs) + 5pF (improved Howland current source) = 

38.8pF. We illustrated the effect of these capacitances for each of the sources. Figure 

71 shows the expected results for these current sources with expected stray 

 10 kHz                 30 kHz                    100 kHz               300 kHz                       1MHz                     3MHz                 10MHz  

1mA 

0.9mA 

0.8mA 

0.7mA 
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capacitances (i.e. CX=36.3pF and 38.8pF) when it attached a load of 1kΩ (thus if output 

voltage signal measured from a 1kΩ load is equal to 1Vp-p this means the current 

source injects 1mA into the attached load, 1V/1kΩ=1mA). So, these simulation results 

show the expected experimental result for improved Howland current source and 

current conveyor current source, therefore the total stray capacitance affecting our 

measurement results is equal to 36.3pF and 38.8pF. 

 

Figure 71 shows the simulation results of different between the input (
__

) and output signals 

of the improved Howland and current conveyor current sources with a load of 1kΩ (e.g. 

1
V
/1

kΩ
=1

mA
) when the input signal is 1

V
 and the output signal is affected by a parasitic 

capacitance equal to 36.3pF (---) and 38.8pF (….) respectively for these two sources. 

Step 3) Comparing the result of the experimental test coming from the actual 

circuit board and the expected results such as parasitic capacitance measured from the 

schematic captures. I measured the output signals by using the oscilloscope and took 

snapshots to show these results as experimental results. 

6.4. Experimental output signal of the current sources 

First, I needed to calibrate the function generator and oscilloscope including 

the probes by making a close loop when connecting directly the function generator to 

the oscilloscope via the probes and measuring the same value of the amplitude that is 

set on the function generator and make sure that probes are accurate as much as 

10 kHz                 30 kHz                    100 kHz               300 kHz                       1MHz                     3MHz                 10MHz  
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possible, in our case we measured by a difference less than 1mV. The next step is 

calculating the SNR of the two devices. We calculated the SNR of the oscilloscope by 

connecting the 0Vp-p and 2Vp-p amplitude over different frequency ranges and using the 

following equation: 

SNR � 20 log �V� ¡l�¢Vl£ �n¤ �
2¥200¦¥ � 80u§ 

58 

I found a SNR of 80dB is obtainable in the frequency range of 10 kHz to 5 MHz, 

based on several experimental results. Thus, the experimental time domain analysis 

measurement results of the current sources with a dummy load for a sweep frequency 

starting at 100 kHz and stopped at 1MHz frequency with steps of 100 kHz and a sweep 

frequency starting at 1MHz which stopped at 5MHz with steps of 500 kHz were used. 

The amplitude of the input signal was set for a sine waveform of 0.5V or 1Vp-p to 

achieve 1mAp-p output current signal when attached a load of 1kΩ (i.e. the amplitude of 

the input signal equal to 0.5V thus 1Vp-p/1kΩ=1mAp-p).  

I then measured the output signals for these two different scenarios: 

Test-I the current sources effects with all parasitic capacitance (such as source, 

probe, PCB, and component parasitic capacitances) apart from the on/off capacitance 

of the drive multiplexers and electrode capacitances. Then we measured the load 

voltage of a dummy load (1kΩ with 10% tolerances [here is 918Ω]).  

Test-II connecting total stray capacitances and combining with the OCCII-GIC 

circuits as a stray capacitance cancellation method and measuring the voltage of two 

different dummy loads when placing the probes at the electrodes. 

Test-I 

The following test expects to achieve similar results when the output current of 

the current source is affected by the source capacitance, probe capacitance when a 

load (1kΩ with a tolerance of 10%) is attached. In this test, we attached a resistor of 

RLOAD=918Ω by placing the probe to measure a load voltage with the room 
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temperature (25oC). By the load voltage and knowing the load resistor value, thus we 

were able to calculate the value of the current. 

Figure 72 shows the test configuration of a function generator, current source, 

oscilloscope and probes. We used a t-connector to able to directly connect the input 

signal to the scope to compare the reference signal and measurement output signal. 

 

Figure 72 Test schematic configuration 

Figure 73 shows snapshots from the oscilloscope when the function generator 

produces a sine wave of 1Vp-p (Amplitude = 500mV) at different frequency points to 

confirm the input signal on the signal generator and output signal of the improved 

Howland current source (x10) on the scope as the test schematic shows in Figure 72. 
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The current source is affected by the stray capacitance of the probe, and source. 

Although we adjusted resistor R3 in the improved Howland to achieve a maximum 

output impedance for this frequency range and it should be 0o phase delay between 

the reference signal and output signal but it is not because of stray capacitance. 

Appendix-D shows the result of the current conveyor current source with the same 

test structure with an 813.6Ω load resistor.  

 

Amplitude=500mV, F=100kHz, phase different=0o between input signal and output 
current, probe (x10), RLOAD=918Ω (1kΩ, 10% tolerance) phase delay = 1.561o, Ch: 
0.5v/div and probe 1MΩ, Trigger 0V and Time base of 10MS/s (5us/Div) 
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F= 200kHz, RL=918Ω, VL=917
mVp-p

, Phase 

delay with input signal +3
o
 

F= 300kHz, RL=918Ω, VL=917
mVp-p

, Phase 

delay with input signal +4
o
 

  

F= 400kHz, RL=918Ω, VL=917
mVp-p

, Phase 

delay with input signal +5
o
 

F= 500kHz, RL=918Ω, VL=916
mVp-p

, Phase 

delay with input signal +7
o
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F= 600kHz, RL=918Ω, VL=915
mVp-p

, Phase 

delay with input signal +8
o
 

F= 700kHz, RL=918Ω, VL=914
mVp-p

, Phase 

delay with input signal +9
o
 

  

F= 800kHz, RL=918Ω, VL=914
mVp-p

, Phase 

delay with input signal +11
o
 

F= 900kHz, RL=918Ω, VL=911
mVp-p

, Phase 

delay with input signal +12
o
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F= 1MHz, RL=918Ω, VL=910
mVp-p

, Phase 

delay with input signal +14
o
 

F= 1.5MHz, RL=918Ω, VL=892
mVp-p

, Phase 

delay with input signal +21
o
 

  

F= 2MHz, RL=918Ω, VL=871
mVp-p

, Phase 

delay with input signal +28
o
 

F= 2.5MHz, RL=918Ω, VL=842
mVp-p

, Phase 

delay with input signal +34
o
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F= 3MHz, RL=918Ω, VL=812
mVp-p

, Phase 

delay with input signal +41
o
 

F= 3.5MHz, RL=918Ω, VL=784
mVp-p

, Phase 

delay with input signal +46
o
 

  

F= 4MHz, RL=918Ω, VL=754
mVp-p

, Phase 

delay with input signal +52
o
 

F= 4.5MHz, RL=918Ω, VL=725
mVp-p

, Phase 

delay with input signal +57
o
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F= 50kHz, RL=918Ω, VL=917
mVp-p

, Phase 

delay with input signal +0
o
 

F= 5MHz, RL=918Ω, VL=698
mVp-p

, Phase 

delay with input signal +57
o
 

Figure 73 shows snapshots of the oscilloscope at different frequencies with fixed load 

(RLOAD=918Ω) that shows the input signal of the signal generator (amplitude of the input sine 

wave set 1
Vp-p

) and output signal of the current source on the scope when connecting to an 

improved Howland current source for sweeping the frequency from 100kHz to 1MHz in steps 

of 100kHz and for 1MHz to 5MHz with steps of 500kHz step. 

The reference signal is compared with the output voltage curves as the 

experimental results are presented in Figure 73. We measured the output voltage of 

the improved Howland current source when it is attached to a 1kΩ load (actual value is 

equal to 918Ω). These curves were obtained using actual electronic components, 

probe and other unwanted source capacitances. As we measured the SNR of the 

function generator with measurement probes, it is around 60-70dB. The above curves 

were measured over an operating frequency of 50 kHz to 5MHz and show a drop in 

output voltage (VOUT=RLOAD * IOUT) when a fixed load resistor is attached. These current 

drops are affected by the presence of stray capacitance in the EIT circuits. We 

measured these curves to compare with the simulation results as we expected the 

total stray capacitance of the system. The last two curves show a compression 

between the beginning (50 kHz) and ended (5MHz) frequency points in the AZ1 EIT 

system. We also measured the phase changes between the input signal and output 
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signals and achieved a phase delay of 0o at 50 kHz to 60o at 5MHz with a current 

998uAp-p to 760uAp-p. 

Although, we achieved a phase shift between these two signals during these 

tests, as we expected, based on the simulation results, the range of output voltage 

would be 918mVp-p at 50 kHz dropped to 698mVp-p at 5MHz with a related phase shift. 

Figure 74 shows the measurement result of the improved Howland current 

source for the different frequency points without OCCII-GIC circuit. 

 

Figure 74 the output voltage and phase delay compared to reference input signal at different 

frequency points for the improved Howland current source with capacitance effects from 

the probe and source, the value of output current realized from IOUT=VOUT(mv)/RLOAD(Ω), the 

load resistors are equal to 1kΩ ( 918Ω 5% tolerance) 

The output current and phase delay curves of the current conveyor current 

source are shown in Figure 75 when the current conveyor current source is compared 

with the reference input signal with 180o out of phase. A load resistor is attached to 

the current conveyor current source to measure the output voltage signal from the 

load. This current conveyor branch has a 180 degrees phase difference with the 

reference (input) signal. The actual load resistor is equal to RLOAD= 813.6Ω and the 

reference signal is a sine wave signal with amplitude of 0.5V (1Vp-p). We measured 
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output voltage of the current conveyor current source with the α and β tracking errors. 

Ideally the output voltage would be equal to 813.6mVp-p if the gain is equal to 1. 

However, in regard to the current and voltage tracking errors, we measured 767mVp-p 

at 100 kHz and dropped to 497mVp-p at 5MHz. We also measured a phase shift between 

these two signals during these tests. As we expected based on the simulation results 

the range of output current would be 938uAp-p at 10 kHz dropped to around 660uAp-p at 

5MHz with a phase shift.  We also expected to measure the output voltage equal to 

767mVp-p based on the simulation results with the CSTRAY equal to 33.8pF at 10 KHz to 

around 500mVp-p at 5MHz (includes the tracking errors of the current and voltage. 

Thus the gain would equal to 0.942, thus 
VINRx .gain� 1Vp-p

1kΩ .0.942�942uAp-p then the 

output current would be equal IOUT� VOUTRLOAD� 767mVp-p
813.6Ω �942uAp-p. Appendix-D shows the 

experimental results of these tests. 

 

Figure 75 the output voltage and phase delay compared to reference input signal at different 

frequency points for the current conveyor current source with the source and probe 

capacitances, the value of output current realized from IOUT=VOUT(mv)/RLOAD(Ω), the load 

resistors are equal to 800Ω (813.6Ω 5% tolerance), with tracking errors of the current 

conveyor current source. 

By comparing the simulation results (Figure 71) and experimental results (Figure 

74 and Figure 75) we confirm almost the same value of parasitic capacitance that we 
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expected for two current source types in the EIT system. Now we are using a 

cancellation method to remove the stray capacitance. As we mentioned in previous 

chapters we presented the OCCII-GIC circuit as a capacitance cancellation method. 

Test-II 

The next step in the test procedure, simulating the current sources with the 

parasitic capacitances (such as on/off capacitance of the DRV MUXs and source 

capacitance) and using the OCCII-GIC circuit to cancel the capacitance effects in the 

current source circuits. We illustrated the simulation and experimental results in this 

section for the different frequency points from 1MHz to 5MHz, with 1mA peak to peak 

output current as it connected to a load attached to electrodes and measured the 

voltage by using a probe with x10 at these electrodes. We measured the output 

voltage (mVp-p), when using a digital-pot in place of Y4. Moreover, a digital-pot in 

place of Y3 also can be set at the fixed values for all these frequencies points. However, 

during the simulation we have considered capacitances as expected caused by using 

two digital-pots. 

6.5. Simulation of the current sources for the EIT system 

We consider the effect of digital-pots capacitance on the circuit board for the 

floating and grounded resistors. We found that the best arrangement for the digital-

pot in order to obtain the minimum effect from pin capacitances when using the 

digital-pots in different forms (floating and grounded resistors) would as follows:  

In the case of the grounded resistor (Y3 in OCCII-GIC circuit), the equivalent 

(variable) resistor is paralleled by a grounded capacitance of CH=10pF with the wiper 

and low pin terminals grounded thus Y3=R3+CH.  

In the case of a floating resistor (Y4 in OCCII-GIC circuit), the equivalent 

(variable) resistor is connected with the grounded CWIPER=25pF and CH=10pF at both 

ends when the low pin terminal is floated.  
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In reality, the digital-pot (DCP of X9C10X) with 100 steps combined with a trim-

pot network achieves the minimum variable (∆R) resistor with the smallest 

capacitance effect. The current source simulations were run for different loads with a 

variable load of RVAR (load) from 1kΩ up to 5kΩ. 

6.5.1. The simulation of Improved Howland current source 

combined with OCCII-GIC 

A combination schematic of the improved Howland current source with OCCII-

GIC topology is shown in Figure 76. In practice, each op amp (OPA656) has an input 

capacitance of the differential of 0.7pF and common mode of 2.8pF (typical value) 

(Data Sheet-OPA656 2008). 

To simulate the same behaviour of the circuit as practice, when each op amp 

(OPA656) in practice has an input impedance of the differential of 0.7pF||1012Ω and 

common mode of 2.8pF||1012Ω, therefore, we considered these input impedances 

when simulating this type of source. To achieve the maximum output impedance, it 

requires tuning of the current source on both sides of the circuit (0 and 180 signal 

branches) together. It also needs to consider the current source gain and 

Transconductance gain with common-mode input impedance and the CMRR of the 

amplifier. 

In practice, we need to follow the tuning process, step by step so that the 

tuning of the output resistor is achieved (a tune resistor of the R3 inside the Improved 

Howland circuit and tune resistor of R3 or R4 in OCCII-GIC). This obtains the 

maximum output impedance corresponding to the stray capacitance of the circuit 

design for each frequency point. 
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Figure 76 Simulation a schematic of the mirrored improved Howland current source with 

OCCII-GIC combination 

The process is: first adjust the digital-pot inside the OCCII-GIC for the 

particular frequency point as in the simulation phase, we incremented from 100Ω to 

5kΩ, in 10 logarithmic steps per decade then as a second step obtained the maximum 

output impedance using the digital-pot inside the improved Howland circuit as shown 

in Figure 77. 

The AC sweep results of the multi-frequency system are obtained. Figure 77 

shows the sweeping frequency range up to 7MHz. 
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Figure 77 The simulation graph shows a multi-frequency AC sweep output of the OCCII-

GIC and improved Howland current source. Digital-pot Y4 (100Ω to 5kΩ, increment in 10 

logarithmic steps per decade) 

 

Figure 78 The simulation graph shows the AC sweep output at a frequency of 4MHz as an 

example frequency point with different loads from 1kΩ to 5kΩ [wide to narrow curve]. 
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Figure 79 The simulation graph shows the AC sweep output at three different sample 

frequency points (1MHz, 2MHz, 3MHz); the top graph shows the output currents (1mA) for 

different loads from 1kΩ to 5kΩ, wide to narrow curve and the bottom graph shows the 

output voltage (1VAC to 5VAC) for different loads. 
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Figure 80 the time domain (transient) output current analysis of the improved Howland 

current source combined with OCCII-GIC circuit at the single frequency sample 

(3.927MHz) for the variable load 1kΩ to 5kΩ with 0.5mA peak to peak. 

The AC sweep and time domain analysis (Transient) results (see Figure 78 and 

Figure 80) show the possibility of the stray capacitance cancellation method combined 

with the improved Howland current source for the high-frequency EIT systems (at the 

single frequency sample of 3.927MHz, as shown in Figure 78). The AC sweep frequency 

graph shows the resulting output current with the frequency increment of 200 kHz 

between 1MHz to 7MHz (see Figure 77). As a result, the multi-frequency EIT system 

gives good performance due to the digital-pot inside the OCCII-GIC, which reduces 

capacitance effects. Although we found that the output capacitance will not be fully 

removed and causes the appearance of a phase shift in the output current signal (see 

Figure 80). The AC sweep output graph at three different sample frequency points 

(1MHz, 2MHz, 3MHz); and the output currents of (1mA) for different loads from 1kΩ 

to 5kΩ, wide to narrow curve with the output voltage graphs (1VAC to 5VAC) for 

different loads shown in Figure 79. 
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6.5.2. The simulation of current conveyor current source combined 

with OCCII-GIC  

The second source structure that was simulated is the current mirror current 

conveyor circuit based on the current-mode structure used in the four-electrode 

topology of the EIT system when it is combined with OCCII-GIC to cancel the stray 

capacitance as represented in Figure 81. It is worth noting that the same conditions 

apply to this circuit as mentioned before such as: load and stray capacitance values. 

 

Figure 81 Current conveyor source by utilizing the OCCII-GIC 
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Figure 82 the simulation results from the AC Sweep/Noise results of current mirror current 

conveyor source with OCCII-GIC with the load parametric sweep from 1kΩ to 5kΩ at 3MHz 

frequency (as an example frequency point), with 1mA peak to peak output current. 

 

Figure 83 the simulation shows the time domain (Transient) analysis results of current mirror 

current conveyor source with OCCII-GIC with the load parametric sweep from 1kΩ to 5kΩ at 

3MHz frequency (as an example frequency point), with 1mA peak to peak output current. 

Based on the simulation results at high frequency (illustrated in Figure 82 and 

Figure 83), the current mirror current conveyor combined with the OCCII-GIC is also 
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recommended for use in the EIT system. Both branches of the current mirror have the 

same reference current; thus, there is no need to adjust the Transconductance 

resistor. It is necessary to adjust the OCCII-GIC corresponding to the stray 

capacitance in each branch for a frequency point, as shown an example frequency 

point 3MHz in Figure 82. The large output impedance would be achieved by 

considering the above adjustment. We also recommend using DC blocking capacitance 

to prevent the outputs going into saturation initiated by the interaction between two 

DC feedback circuits. In regard to the DC block, if we want to use the current conveyor 

as a single current source with the OCCII-GIC, it needs the DC current to flow 

through the DC feedback loop to the X terminal. This means measuring the actual DC 

voltage at the Z node and applying a correction to the input of X. This reduces part of 

the effect of stray capacitances in the circuit by connecting the output buffer of the 

current conveyor to the input X terminal (Bragos, Rosell et al. 1994).  

In fact, AD844S includes two output signals: one is used as the output with 

unity gain current, and the same current is delivered to a buffer providing the load 

driving power for low impedance loads (Data Sheet-AD844S 2009). Hence, it would be 

useful to utilize for the DC feedback loop with low loop distortion. 

We simulated the system when we removed and added the CWIPER-pin=25pF in 

place of Y4 in the OCCII-GIC circuit and we found that the CWIPER-pin does not appear 

to have any negative effects on the output impedance of the circuit. Therefore, it 

would be a good solution to use the digital-pot in place of Y4 when the wiper pin with 

higher capacitance (25pF) connected to the buffer and the high pin with lower 

capacitance (10pF) connected to the 2nd current conveyor component (OCCII-2). 

6.5.3. Used the OCCII-GIC circuit to cancel the stray capacitance 

Table 13 shows component values of OCCII-GIC circuit such as R3, R4 and C1 

with the stray capacitance of CSTRAY=33.8pf as we expected. The stray capacitance 

calculated by comparing the output voltage with the dummy capacitance that has 

been measured in simulation. The expected capacitance includes the input capacitance 

of the probe CPROBE=13pF plus the on/off capacitance of the DRV multiplexers 
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CON/OFF=20.8pF (in cascade arrangement). The value of C1 and R3 are fixed, and are 

simply used a digital-pot as a variable resistor in place of R4 and it has changed by 

control lines through MCU. 

TABLE 13 VALUES OF COMPONENTS USED IN OCCII-GIC CIRCUITS FOR DIFFERENT FREQUENCY POINTS (1MHZ 

TO 3MHZ) TO CANCEL THE STRAY CAPACITANCE 

Frequency C1(pF) R3(Ω) R4(Ω) CEXPECTED-STRAY(pF) 

1 MHz 300pF 963Ω 2595Ω 33.8pF 

1.25MHz 300pF 963Ω 1660Ω 33.8pF 

1.5MHz 300pF 963Ω 1153Ω 33.8pF 

1.75MHz 300pF 963Ω 847Ω 33.8pF 

2MHz 300pF 963Ω 648.4Ω 33.8pF 

2.5MHz 300pF 963Ω 415.2Ω 33.8pF 

3MHz 300pF 963Ω 288.25Ω 33.8pF 

The value of the digital-pot Y3, dummy capacitance (simulating the stray capacitance of EIT 

system) and Y1 are fixed and only the value of the digital-pot Y4 is changed from the full size 

to low during frequency change. 

Figure 84 shows the snapshot of the oscilloscope to confirm the performance of 

the capacitance cancellation method in the current sources by comparing the 

reference input signal with the output voltage signal. The signal produced by the signal 

generator set with an amplitude of 0.5V (1Vp-p) at probe channel 0 (
___

) with x1 

connected directly to the reference signal compared with the output signal of channel 

1 (----) with x10 measured the output signal of current source for two different 

grounded load resistors. We used two different loads and connected to two current 

sources with 180 degree phase difference. Each output signal was compared with the 

reference input signal when cancelled the stray capacitance of the system using 

OCCII-GIC circuits. Figure 84 shows the results that we have achieved during these 

tests. 
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F= 1MHz, RLOAD=980Ω, VOUT=980.67
mVp-p

, 

phase delay of 98m
o 

between output and 

reference signals. 

F= 1MHz, RLOAD=918Ω, VOUT=918.32
mVp-p

, 

phase delay of 226m
o 

between output and 

reference signals. 

  

F= 1.25MHz, RLOAD=980Ω, VOUT=980.67
mVp-p

, 

phase delay of 110m
o 

between output and 

reference signals. 

F= 1.25MHz, RLOAD=918Ω, VOUT=918.04
mVp-p

, 

phase delay of 383m
o 

between output and 

reference signals. 
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F= 1.5MHz, RLOAD=980Ω, VOUT=980.67

mVp-p
, 

phase delay of 650m
o
 between input signal 

1
Vp-p

 and measured output voltage. 

F= 1.5MHz, RLOAD=9180Ω, VOUT=918.73
mVp-p

, 

phase delay of 1.825
o 

between output and 

reference signals. 

  
F= 1.75MHz, RLOAD=980Ω, VOUT=980.57

mVp-p
, 

phase delay of 410m
o
 between input signal 

1
Vp-p

 and measured output voltage. 

F= 1.75MHz, RLOAD=918Ω, VOUT=918.32
mVp-p

, 

phase delay of 226m
o 

between input signal 

1
Vp-p

 and measured output voltage. 

  

F= 2MHz, RLOAD=980Ω, VOUT=980.95
mVp-p

, F= 2MHz, RLOAD=918Ω, VOUT=918.73
mVp-p

, 
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phase delay of 6.95
o 

between input signal 

1
Vp-p

 and measured output voltage 
phase delay of 95m

o 
between input signal 

1
Vp-p

 and measured output voltage. 

  

F= 2.5MHz, RLOAD=980Ω, VOUT=980.05
mVp-p

, 

phase delay of 6.70
o 

between input signal 

1
Vp-p

 and measured output voltage 

F= 3MHz, RLOAD=980Ω, VOUT=980.67
mVp-p

, 

phase delay of 1.60
o 

between input signal 

1
Vp-p

 and measured output voltage 
Figure 84 shows snapshots of the oscilloscope as displays the input signal (reference signal) 

produced by the function generator and the output voltage signal measured the load voltage 

when the sweeping started from 1MHz and ended at 3MHz frequency range and amplitude 

of the input sine wave signal set 1
Vp-p

. 

6.5.4. Using the OCCII-GIC circuit to cancel a dummy stray 

capacitance of the current source 

We also tested the improved Howland current source with a dummy stray 

capacitance to show the application of OCCII-GIC circuit in other EIT systems with a 

higher stray capacitance. We used a dummy stray capacitance parallel with the 

existing stray capacitance of this system for a total stray capacitance equal to 225pF, 

that means instead of stray capacitance of 33.8pF (as expected for AZ1 EIT system) an 

extra dummy capacitance added in parallel with a grounded load to then test the 

behaviour of the system. We estimated the stray capacitance equal to CSTRAY=225pF. 

Appendix-E shows the output voltage of two different loads are attached to two 

current sources without using the OCCII-GIC circuit, with this stray capacitance.  

Table 14 shows the value of the C1, R3 and R4 that were used to cancel the stray 

capacitance equal to 225pF for the sample frequency point 1MHz to 3MHz. We utilized 

a fix value for the R4 and C1 and just changed the value of R3 in the OCCII-GIC circuit. 
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TABLE 14 VALUES OF COMPONENTS USED IN OCCII-GIC CIRCUITS FOR DIFFERENT FREQUENCY POINTS 

(1MHZ TO 3MHZ) TO CANCEL THE STRAY CAPACITANCE. 

Frequency C1(pF) R3(Ω) R4(Ω) CEXPECTED-STRAY(pF) 

1MHz 300pF 679.2Ω 552.63Ω 225pF 

1.25MHz 300pF 434.7Ω 552.63Ω 225pF 

1.5MHz 300pF 301.9Ω 552.63Ω 225pF 

1.75MHz 300pF 221.8Ω 552.63Ω 225pF 

2MHz 300pF 169.8Ω 552.63Ω 225pF 

2.5MHz 300pF 108.7Ω 552.63Ω 225pF 

3MHz 300pF 75.5Ω 552.63Ω 225pF 

The value of the digital-pot Y4, dummy capacitance equal to 160pF (simulating the stray 

capacitance of the different EIT system) and Y1 are fixed and only the value of the digital-pot 

Y3 is changed from the full size to low during frequency change. 

Figure 85 shows the results that we achieved during these tests when 

connected to two different loads and try to cancel the stray capacitance of the 225pF 

at different frequency points. 

  

F= 1MHz, RLOAD-1=918Ω, RLOAD-2=980Ω 

VOUT-1=918.86
mVp-p

, VOUT-1=980.26
mVp-p

 

with phase diff. =180
o
, and phase 

delay=730
o
m. 

F= 1.25MHz, RLOAD-1=918Ω, RLOAD-2=980Ω 

VOUT-1=918.44
mVp-p

, VOUT-1=980.53
mVp-p

 

with phase diff. =180
o
, and phase 

delay=70m
o
. 
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F= 1.5MHz, RLOAD-1=918Ω, RLOAD-2=980Ω 

VOUT-1=918.44
mVp-p

, VOUT-1=980.53
mVp-p

 

with phase diff. =180
o
, and phase 

delay=710m
o
. 

F= 1.75MHz, RLOAD-1=918Ω, RLOAD-2=980Ω 

VOUT-1=918.58
mVp-p

, VOUT-1=980.08
mVp-p

 

with phase diff. =180
o
, and phase 

delay=500m
o
. 

 
F= 2MHz, RLOAD-1=918Ω, RLOAD-2=980Ω VOUT-1=918.44

mVp-p
, VOUT-1=980.01

mVp-p
 with 

phase diff. =180
o
, and phase delay=6.610

o
. 

Figure 85 shows snapshots of the oscilloscope as display two output voltage measured with 

two different loads attached to two current sources with 180 out of phase when the 

sweeping frequency started from 1MHz and ended at 2MHz frequency range with steps of 

250kHz and amplitude of input sine wave signal set 1
Vp-p

. 

6.5.5. Using the OCCII-GIC circuit to cancel a stray capacitance of 

the current mirror current source 

We used a single load and connected to a mirrored current source structure 

and tried to cancel the stray capacitance of the system. We tested for two different 
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loads (RLOAD-1 =730Ω and RLOAD-2=1048Ω) to measure the voltage measurement gain, as 

are shown in Figure 86 and Figure 87.  

  

F= 1MHz, RLOAD=730Ω, measured with 

differential measurement with a gain 

VOUT
+
=345.83

mVp-p
, phase delay =1.2

o
 

between the input signal 1
Vp-p

 and output 

voltage measurement for the current mirror 

structure with a phase diff. =0
o
. 

F= 1MHz, RLOAD=730Ω, measured with 

differential measurement with a gain 

VOUT
-
=384.46

mVp-p
, phase delay =3

o
 

between the input signal 1
Vp-p

 and output 

voltage measurement for the current mirror 

structure with a phase diff. =180
o
. VOUT��VOUT� �VOUT- �	 

∴	VOUT��345.83mV�384.46mV�.gain�730.29mV 

Figure 86 shows snapshots of the oscilloscope as display reference signal amplitude of the 

input sine wave signal set 1
Vp-p

 and output voltage measured for a resistor load equal to 

730Ω from a mirrored current source structure with 180 degrees out of phase when using a 

differential voltage measurement with a fixed gain at 1MHz frequency point.  

Same test with a resistor load equal to 1048Ω: 
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F= 1MHz, RLOAD=1048Ω, measured with 

differential measurement with a gain 

VOUT
+
=496.47

mVp-p
, phase delay 

=623.57m
o
 between the input signal 1

Vp-p
 

and output voltage measurement for the 

current mirror structure with a phase diff. 

=0
o
. 

F= 1MHz, RLOAD=1048Ω, measured with 

differential measurement with a gain 

VOUT
-
=551.93

mVp-p
 phase delay =3

o
 

between the input signal 1
Vp-p

 and output 

voltage measurement for the current mirror 

structure with a phase diff. =180
o
. 

VOUT��VOUT� �VOUT- �	 

∴	VOUT�496.47mV�551.93mV��1048.4mV 
Figure 87 shows snapshots of the oscilloscope as display reference signal amplitude of the 

input sine wave signal set 1
Vp-p

 and output voltage measured for a resistor load equal to 

1048Ω from a mirrored current source structure with 180 degrees out of phase when using a 

differential voltage measurement with a fixed gain at 1MHz frequency point. 

6.6. Maximum load measurement: 

We have tested the current sources in regard to the maximum load that can be 

measured with these two current sources.  

1
st

 case: improved Howland current source: 

The power-Supply Rejection Ratio (+PSRR) of the operational amplifier OP656 

of the improved Howland current source is (+PSRR) +VS = +4.5Vdc to +5.5Vdc, and (–

PSRR) –VS = –4.5Vdc to –5.5Vdc. 

Thus the theoretical the maximum output voltage of the load (Gain) would be 

around 5V, in regard to output current (1mA) the load will be maximum around 5kΩ. 



Chapter 6 Simulation and Experimental results 

 

164 

I measured the DC power supply at the OP656 (+/-Vs pins), directly connected the 

probe to power supply pins and it was around +/-4.8Vdc and it showed the maximum 

load to be a 4.37kΩ load (VOUT=4.37V) the output clipped. On the other hand, when 

the power of op amp is around +/-3.7Vdc, the output load will clip at a load of around 

2.5kΩ load. Figure 88 shows the output voltage of the current source when it attached 

a 4.37kΩ load resistor and the power supply of the OP656 is around +/-4.8Vdc. 

 

Figure 88 the maximum load that can be measured by the improved Howland circuit is 

around 4kΩ as tested at 1MHz 

2
nd

 case: current conveyor current source: 

The power supply rails of the AD844 are +/-15Vdc (with power supply 

operating range is +/-4.5Vdc to +/-18Vdc) (Data Sheet-AD844S 2009). The internal 

structure of the output stage transistors of the AD844 uses bipolar collectors, so the 

output voltage can be obtained (cannot be saturated) until it is a few millivolts from 

that of the supply rail voltage, this because of limitation of the op amp output stage 

structure. Thus the output voltage on the load must certainly be less than 30V (+/-

15Vdc). I tested the output voltage up to 24.98V with a load of 14.9kΩ and visually, 

using an oscilloscope, it does not go into saturation or clipping, but when increasing 

the output voltage by increasing the load to 15kΩ it is saturated. Figure 89 (a) shows a 
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test of a current conveyor current source for a resistance load of 14.95kΩ with an 

input signal (reference signal) of 2Vp-p, the output voltage up to 24.98V does not go 

into saturation. It is worth noting that the current conveyor current source has an 

attenuation of current output thus the output current is 1.67mAp-p instead of ideally 

2mAp-p, therefore 1.67mAp-p × 14.95kΩ= 24.96Vp-p. However, the current conveyor 

current source with a load of 15kΩ saturates at a frequency of 100 kHz as shown in 

Figure 89 (b).  

  

Figure 89 the output voltage of the current conveyor current source with two loads of (a) 

14.9kΩ with output voltage of 24.67V which is not saturated and (b) 15 kΩ with output 

voltage of 25.1V which is saturated at 100kHz. 

We created a mirror current source structure by using two current sources 180 

degrees out of phase and two OCCII-GIC circuits connected to act as inductors to 

cancel capacitance. We simulated the OCCII-GIC circuits only with a difference in the 

component value for R4 placed in OCCII-GIC but the C1 and R3 are kept equal in 

component values. We presumed a tolerance value of less than <%10 in R4 resistors 

placed in the OCCII-GIC circuits (i.e. R4, 0 PHASE=1300Ω, R3, 180 PHASE=1350Ω) and 

preserved R3 and C1 values equivalent (i.e.R3, 0 & 180 PHASE=97, and C1, 0 & 180 PHASE =300pF) 

with a 1kΩ dummy load and a dummy stray capacitance of 160pF. We observed a 

sharp decrease (impact) in the output current curve at the expected frequency point 

as shown in the Figure 90.  
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Figure 90 the output current signal of the mirror current source with attached OCCII-GIC 

circuits. The left output current curve obtained when using two identical OCCII-GIC circuits 

with the same values of R3, R4 and C1. The right output current curve is obtained when 

using the same values for R3 and C1 but different values of R4 (i.e. 1300Ω and 1350Ω). 

Although, it is possible to have a different value of the stray capacitance in each 

branch of the mirror current source structure. By using different component values of 

R3, R4 and C1 in the OCCII-GIC circuit, we can produce a corresponding inductance to 

cancel this capacitance but finally it needs to match and make two similar RLC circuits 

since this relies on LC resonance.  

The simulation results confirm that we can use a single digital-pot in place of R4 

in the OCCII-GIC structure. This works better than using two digital-pots in place of 

R3 and R4 for multi-frequency systems as the OCCII-GIC is affected by the high pin 

capacitance of a digital-pot used instead of R3. Therefore, the best solution is to use a 

single digital-pot in place of R4 and to keep R3 as a fixed resistor if we want an 

expected useful high frequency bandwidth of 1MHz to 3MHz for output impedance 

more than 1MHz, although this idea depends on the value of stray capacitance in the 

design that we want to cancel since that relies on LC resonance.  

6.7. Measuring the output impedance of the current source under 

test:  

The output impedance of the current source under test, and that with a 

capacitance cancelling circuit, has been treated as consisting of the parallel 

combination of an output resistance, RO, and output capacitance, CO i.e. ZO=RO||Zco. 

When the current source is delivering current into a resistive load ZO needs to be large 

with respect to the load in order to not affect the measurements unduly. This means 
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Ro and Zco need to be large with respect to the load at all frequencies. At low 

frequencies the impedance of R is the main effect on the AC voltage on the resistive 

load, thus RO. At high frequencies Zco =1/jwco must be large with respect to the load 

resistance thus Co must be small (See Figure 91 and Figure 92). 

 

 

Figure 91 Perfect current source connected to the 

output point of the current source and measuring 

the AC voltage 

Figure 92 Perfect AC current source with 

RO and CO and measuring the AC voltage 

Two different approaches, in simulation and in practice, of measuring the 

output impedance ZO, have been used: 

One (see Figure 91), earth the input and measure the output voltage when the 

output is driven by an AC current source. 

Two (see Figure 92), drive the input with a voltage and using the fact that the 

circuit delivers a constant current dependent on the input voltage and the only load on 

the output is ZO, measure the output voltage and deduce ZO, alternatively add a known 

load R and deduce ZO where ZO is in parallel with R.  

Any results of a swept AC analysis simulation need to be confirmed with a 

transient simulation at different frequencies. If a transient simulation shows that the 

output is centered near and around 0V and is not clipping, at the start of the 

simulation, then an AC analysis is probably valid. If not then a load resistor connected 

to 0V to center the output and eliminate clipping by reducing the output must be used. 

In this case, the output impedance (ZO) is found by considering the output impedance 

in parallel with this load. 

6.7.1. Simulating the first method 

We set the input drive to zero, inject 1mA with a perfect AC current source into 

the output and measure the amplitude and phase of the output. This will give a 

characteristic shape when the output voltage amplitude and phase are plotted against 

frequency. Then to find the output resistance and capacitance that these plots 
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indicate, we drive with an identical perfect AC source a parallel earthed resistor, REXP, 

and capacitor, CEXP and change the REXP and CEXP values until the shapes of the 

amplitude and phase plots match. If a load resistor was used to bring the output near 

0V then the output impedance is found by considering the output impedance in 

parallel with this load. 

6.7.2. In practicing the first method 

A very high input impedance and high frequency AC voltage probe and a very 

high output impedance and high frequency AC source are needed. Both exist in the 

OrCAD package but are hard to realize in practice, especially the AC source. A practical 

AC source that will not grossly affect the measurements needs to have output 

impedance that is much greater than the expected output impedance to be measured 

and an output capacitance much less than the expected output capacitance. A 

supporting company, Sensatech Research (Thomas Bach 2014), provided suitable high 

input impedance, >1011Ω and <0.1fF, and high frequency, >10MHz, probes and high 

output impedance and high frequency AC sources, for taking the practical 

measurements. 

6.7.3. Simulating the second method with no load if possible 

We drive the input with a voltage and use the fact that we have a circuit that 

has a transfer ratio of 1V/mA with little phase angle driving ZO only, measure the 

output voltage. This gives us a simple method to confirm the circuit is working 

correctly at different frequencies and loads. Since the circuit designed is working 

correctly as a constant current generator of 1mA, if we drive the input with 1V AC, a 

1kΩ load should have 1V AC across it and a 2kΩ load should have 2V AC across it. This 

needs to be confirmed at frequencies > 1MHz. Thus we can confirm that the voltage 

on the load follows the transfer ratio of 1V/mA correctly and the phase error is small. 

6.7.4. Practicing the second method 

Only a very high input impedance and high frequency AC voltage probe is 

needed. At low frequency the output resistance is the output voltage divided by 1mA. 
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For example, if a 1V AC input drive gave an output voltage of 100V AC this must mean 

the output impedance is 100kΩ. 

The output impedance found with an AC analysis does not take into 

consideration the effect of the rail voltage of the circuits used. At best the active 

devices used will have a maximum input and output voltage equal to their rail voltage. 

A transient analysis will show these effects. As the active devices in the OCCII-GIC 

cannot give 100V AC at their output or accept it on their input then this is not a 

practical method as it stands. The input drive voltage of the AC constant current 

generator must be reduced in order to use this principle to measure the output 

impedance. 

Looking closely at the components used in the OCCII-GIC, we soon see some 

practical limitations. The Texas Instruments OPA656 operational amplifier is used in 

both the Howland source and in the OCCII-GIC. This device is powered from +/-5V 

rails and is not rail-to-rail input or output. The maximum positive input voltage is 

typically +2.05V and the maximum negative input voltage is -3.9V according to the 

data sheet (Data Sheet-OPA656 2008). Thus used in the Howland source if the load is 

approximately 1.05kΩ the output will be near clipping as the current from the output 

first flows through a 1kΩ resistor in series with the output IC pin before getting to the 

load and feedback resistors. We need to reduce the input drive to around 0.5mV in 

order to make our signal small enough so that we do not have output clipping in the 

Howland, thus allowing us to practically measure the output impedance. This gives us 

an AC current source output of 0.0005 mA and an expected voltage across a 3MΩ 

resistor of 1.5V (3*106Ω × 0.0005mA = 1.5V). This method used as a simple method to 

measure the output impedance of the current source both in simulation and in 

practice. 

When used in the OCCII-GIC its input will be at or near clipping when a 

perfect source is driving an output impedance of approximately 2.05kΩ. This causes an 

input near the maximum input before distortion of the OPA656 used in the first stage 

of the OCCII-GIC. For calibration for example a near perfect 1MΩ resistor has been 

made by using two in series 0.5 MΩ +/-0.1% tolerance resistors, suspended in air, thus 

reducing its parallel stray capacitance to an estimated 0.1pF across the pair. 
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6.8. To validate the performance of the current source 

A plot of the output impedance versus frequency is provided as shown in 

Figure 93. We assign the resulting maximum values of RO and ZO when minimizing the 

output capacitance CO of the circuit. In the case of the improved Howland current 

source, we maximized the output resistance of the current source by using the digital-

pot inside the improved Howland current source (in place of R3), and eliminated the 

total output capacitance by adjusting the digital-pot inside the OCCII-GIC (in place of 

Y4). The output impedance is influenced by the both digital-pots in the improved 

Howland source and the OCCII-GIC, so we used the MCU to achieve the maximum 

output impedance of the circuit. In the case of the current conveyor current source, 

the digital-pots in OCCII-GIC are adjusted to eliminate the total output capacitance 

CO = 3fF (femto-Farad), thus, an output impedance of 1MΩ at the 3MHz frequency 

point has been achieved. Although a phase shift is present in the current output 

signals and it needs to be computed as a part of the measurement data when 

producing the image. 

 

Figure 93 A result of the output impedance (ZO) when combining the current sources with 

OCCII-GIC over the frequency range of 10kHz to 3 MHz 

In reality it is possible to achieve much better output impedance of the EIT 

system since the total value of stray capacitance (CSTRAY) is less than <30pF in AZ1 EIT 

system (as this includes the on/off capacitance of the drive multiplexers). We are able 
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to operate on the variable frequency bandwidth between 1MHz to 3MHz with an 

output impedance of more than 1MΩ. The results show that the output impedance is 

10MΩ at 1MHz, and stays above 500kΩ at 3MHz frequency. 

6.9. Evaluate phantom 

As a first step, we connected the actual E-phantom to the EIT board by using 

the 85 electrodes (INGUN Electrode GKS-100 224 130A 2000A) for plug-in connection. 

The electrode shape and characteristic are shown in Figure 67 which has less than 

20mΩ contact resistance (DATA SHEET-INGUN 2004). Thus, it would be a great direct 

connection between the EIT board electrode nodes and E-phantom board electrode 

nodes. Since, these electrodes are spring loaded and we used them to fit this 

connection. Also these electrodes are exactly the same as the electrodes used for the 

image reconstruction. Figure 94 shows the connection between the EIT board and E-

phantom board.  

 

Figure 94 shows the connection between the EIT board at the bottom and the E-phantom 

board at the top by using 85 electrodes. 

In the 2nd step, the E-phantom and the RSC circuit models are simulated in a 

PSpice OrCAD simulation. The theoretical result of the impedance measurements has 

been found by solving the Cole-Cole equation. Figure 95 shows the impedance curve of 
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three different tissues at different frequencies. The phantom simulation is based on 

evaluating how the E-phantom (consisting of 1200 resistors), performs as a simulation 

model of the saline conductive medium, 0.5mS/cm conductivity.  

RSC modules are inserted into the medium as a target to simulate different 

tissues. The measurement results are fed to an inverse reconstruction algorithm. The 

RSC models are used to simulate the electrical properties of tissues inside a medium 

where the complex conductivity differs from the conductivity of the medium (Qiao, 

Wang et al. 2012). The theoretical and experimental impedance spectra for the 

Carcinoma, Fat, and Stroma tissues with the real, imaginary and relaxation frequency 

are shown in Figure 95. 
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Figure 95 Theoretical and experimental impedance spectra for (a) Carcinoma, (b) Fat, and (c) 

Stroma, Real, Imaginary and Relaxation Frequency (Fr) 

The real and imaginary curves of the impedance of Carcinoma, Fat and Stroma 

tissues are used to find the different properties of these tissues, namely: 	Ri, R� and 

Fr. In general, these curves are compared to the theoretical and experimental results 

of the EIT system, since the objective is to find the actual behaviour of the system. 

We have evaluated the phantom accompanied by a simulation analysis process 

of the EIT structure, keeping in mind the need for the most effective use of the RSC 

models in order to best evaluate the tissue properties. 

This simulation work has led to the development of a resistive phantom 

simulation design whose values are found using the FEM mesh phantom method. The 

resistive phantom is primarily employed to be connected instead of using a physical 

phantom to assess the performance of an EIT system with multi-frequency input 

signals. As localized conductivity perturbations are produced by this electronic mesh 

phantom, it can be used to evaluate the performance of the EIT algorithms for image 

reconstruction. Tests and simulations were performed on the EIT system to indication 

the Cole-Cole dispersion data and conductivity perturbations perform on the EIT 

system. 

As the next step in evaluating the resistive phantom system, we constructed a 

tomography image based on the AZ1 EIT system. Figure 96 shows the image 

reconstruction based on a simulation program that consisted of the whole EIT system 

and resistive E-phantom with effects using inserted RSC models. Five frequencies were 
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used in the measurement sequence from 30 kHz to 3MHz (30 kHz, 100 kHz, 300 kHz, 1 

MHz and 3 MHz frequency points, respectively) with an injected current intensity of 

2mA peak to peak for this image reconstruction scheme. Figure 96 shows the image 

reconstruction based on a tissue simulation program that has included an RSC model 

between 17 and 5 electrodes (9 O’clock). 

     

Real 

     

Imaginary 

@30kHz @100kHz @300kHz @1 MHz @3 MHz 

Figure 96 the real and imaginary part of frequency-difference images of an E-phantom within 

three RSC models RSC-1: placed at 17-5 (9 o’clock with black dotted line) for carcinoma 

tissue, RSC-2: placed at 15-21 (2 o’clock with green dotted line) for stroma tissue, and RSC-3: 

19-30 (5 o’clock with blue dotted line) for fat tissue from 30 kHz to 3 MHz respectively 

In this section we present a comparative image that is produced by removing 

the back projection image. If we take the image without any RSC model is the back 

projection data, then remove this data from the image during the reconstruction 

process this will produce the final image that is showing the electrical properties of an 

RSC model inserted between two electrodes. Figure 97 shows the image of the EIT 

system when we remove the back projection image. This image is produced from using 

the simulation program to simulate the E-phantom and RSC model at 3MHz frequency. 
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Figure 97 the left figure displays the image as a raw data and the right figure shows after 

removal of back projection at 3MHz with an RSC model of Carcinoma between electrodes e17 

- e5 (9-clock). The Carcinoma tissue has a cubic shape with the dimensions of 

10mm(W)*10mm(L)*10mm(H), and the RSC value of R=202Ω,S=0.6Ω,C=695pF 

6.10. System evaluation 

The total data set for the Sussex EIT system comprises of 1416 measurements. 

This measurement was repeated 1000 times and the data analyzed statistically using 

the following equations for SNR and Accuracy. 
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where ±)
³ 	denotes the theoretical value for the ith measurement. 

We measured SNR and accuracy as shown in Figure 98 and Figure 99 where the 

measurement index increases from 1 to 1416. 
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Figure 98 SNR- Measurement no. of the 1416 measurements of the pure conductivity on 2D 

planar 

 

Figure 99 Modelling Accuracy – Measurement no. of the 1416 measurements of the pure 

conductivity on 2D planar 

The average SNR of 82.28dB with the maximum SNR of 91.06dB and minimum 

SNR of 76.42dB are achieved. An average modelling accuracy of 99.47% with max and 

min value of 99.97 and 99.91 are achieved. 

 



Chapter 7 Discussion and Conclusion 

 

177 

Chapter 7 General discussion and conclusion 

 

 

 

 

 

 

7.1. General discussion 

We designed the high performance and low current distribution power system 

with a low current effect to minimize their effect on the analogue circuits. Our results 

have shown it is advantageous to have an accurate on-board power supply. These 

supplies +/-5Vdc for the op amps, MUXs and +/-15Vdc for the current conveyors. Our 

results show that this is especially important for the OPA656 op amp as reducing the 

power rails reduces the maximum output voltage of the load. This means for a 1mA 

current source that the maximum load that can be driven is reduced. We also used 

ferrite beads to block the high-frequency energy coming back through the supply, thus 

decreasing the minimum noise in the power supply lines of the op amps. Using an on-

board stable power supply for the EIT board is an advantage compared to other EIT 

systems that use an external power supply circuit for convenience and minimum noise 

reasons. The power isolation also designed and used protection circuits for patient 

safety.  

We used a single sinewave input in the AZ1 EIT system that produced by signal 

generator. We created two 180 degrees out of phase current sources and routed these 

sources to the electrodes using multiplexers. We used a cascading method with two 

stages of drive multiplexers in series in each current source channel to minimize the 

total on/off capacitance of the multiplexers thus the minimum total stray capacitance 
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involved with a current source. Although using multiplexer produces on/off 

capacitance associated with stray capacitance, using a single voltage source input and 

signal calibration system probably achieves more stable repetitive results than using 

multi-source techniques. 

Developing analogue circuits are required by simulating the complete circuits 

and using the system noise with all specific component effects. We developed circuits 

via methods incorporating system protection and system shielding in analogue circuit 

design and the PCB prototype.  

Due to new developments in electronics packaging and system design such as 

redesigning the power supply system when considering the system noise and 

improving the addressing control based on a micro-controller the performance of the 

system has been improved.  

In regard to current source performance at high frequency in an EIT system, the 

output resistance and capacitance of the current source and parasitic capacitances 

especially in multiplexers used to route the current to electrodes reduce the output 

impedance of the current source. This degrades the ability to produce good spatial 

resolution. When these unwanted capacitances are cancelled, a higher output 

impedance current source can be achieved. In order to do this, a GIC (i.e. Gyrator) or 

NIC circuits used in parallel with a current source circuit is a common solution when 

the GIC circuit is tuned for each frequency point. However, GICs composed of two op-

amps and five passive components as a solution in EIT systems does not have an ideal 

performance for multi-frequency systems. For this reason the more complicated 

OCCII-GIC circuit has been used to cancel the stray capacitance of the design. This 

method utilises two OCCII-GIC circuits combined with two 180 degrees out of phase 

current sources. Each OCCII-GIC circuit produces a variable inductance in parallel 

with the RC circuit created by the current source joined with the source and parasitic 

capacitances. This inductor circuit is used to cancel unwanted capacitances of the 

current source at different frequency points, thus created a RLC circuit that relies on 

an LC resonance condition, which increases the output impedance of the current 

source and improve the spatial resolution of the impedance images in the EIT system. 
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The simulation results show the need to make two identical RLC circuits in order to 

cancel the stray capacitance in the mirror current source structure. Although, it is 

possible to have a different value of the stray capacitance attached to each branch, it 

needs to match and create two similar RLC circuits in order to produce an equal LC 

resonance condition otherwise it would produce a sharp decrease in current at the 

peak frequency point on the output current signal.  

In our case the value of stray capacitance for both branches are equal, 

therefore we need to keep both OCCII-GIC circuits with exactly the same component 

values in order to produce exactly the same value of inductance to cancel the 

unwanted capacitances involved with each current source at a specific frequency 

point. However, in regard to our experience the best solution would be first to use a 

calibration process to realize the maximum output impedance for each of the 

branches when minimizing the total capacitances then creating a fully mirrored 

current source structure and measured the result. 

The simulation and experimental results are interpreted to draw conclusions 

about the system. Due to improvements in the system design such as the power 

supply, considering the system noise, improving the shielding system and protection 

circuits for patient safety, we obtained an EIT system with good performance and 

minimum noise effects. Our findings confirm that OCCII-GIC circuit based on active 

components is a similar method to common GIC with two op amps and five passive 

components to cancel the stray capacitance but it achieves much better results and 

works for the frequency range up to 3MHz. Our results suggest that conditioning the 

current source of the EIT system based on using the OCCII-GIC circuit to cancel 

unwanted capacitance effects for improving spatial resolution of the impedance 

images is a valuable approach. The simulation and experimental results showed that it 

delivered a multi frequency EIT system based on tuneable frequency points with 

acceptable output impedance for different loads. The AZ1 EIT system has been tested 

and achieved a high SNR and modelling accuracy of the output voltage signal. 

Experimentally the goal was to try to make the circuit give a maximum output 

impedance at high frequencies with minimum phase shift and gain characteristics 
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compared to the reference signal. This is achieved when we are able to remove the 

effect of capacitances including those produced by the digital-pots. Although there is a 

limit on changing the load capacitance in the current source with OCCII-GIC as well 

as using GIC or NIC. Because the LC resonance condition will be changed (the value of 

inductance depends on the value of capacitance) this caused instability in the current 

source.  

Comparison of the criteria used by Ross (Ross, Saulnier et al. 2003b) and Oh et 

al. (Oh, Lee et al. 2007) shows a similar method to cancel the stray capacitance by 

producing inductance using different circuits based on active components and digital-

pots to produce a multi-frequency system establishing a system that works at 

frequencies up to 500kHz. In order to compare the performance of the current source 

combined with general GIC (composed of two op amp and five passive components as 

shows in Figure 13) based on Ross (Ross, Saulnier et al. 2003b) and Oh et al. (Oh, Lee 

et al. 2007) studies on the theoretical phase, simulating their circuits (the improved 

Howland current source and GIC structure) to produce a variable grounded inductor 

with the ability to adjust within the frequency range from 100Hz to 1MHz and achieve 

an output impedance much less than 500kΩ within the desired frequency range.  

Since the passive components for the current source and general GIC structure 

are available with a tolerance and each passive component (e.g. resistor) in reality is 

paralleled with an estimated capacitance of 0.3pF of the SMD resistor on the PCB 

board, also the operational voltage amplifiers are affected by the common-mode and 

differential input impedance, which is undetermined in their study - the total output 

impedance of the current source circuit is significantly reduced. Additionally, the 

capacitance of the digital-pots is unspecified in their model, when using a digital-pot 

naturally produced parallel grounded capacitors in the high and low pins and a wiper 

with a variable resistor that are used in place of R3 in the improved Howland current 

source and Z5 in place of GIC structure, which also directly reduced the entire current 

source output impedance, therefore based on our achievements and results, we 

suggested an alternative GIC circuit based on active components to add to the current 

sources that are employed in EIT systems at high frequencies. 
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Our results confirm that AZ1 EIT system has been implemented with the 

OCCII-GIC as a stray capacitance cancellation method to improve the system 

performance and increased the frequency bandwidth of the system in comparison to 

other EIT systems. We have considered all the individual effects in the simulation 

circuits and prepared circuits with very similar behaviour to experimental conditions to 

achieve the similar experimental results. This helps us to understand and improve the 

performance results, which are much closer to the simulation results. This also helps 

us to consider the result of the OCCII-GIC structure and confirm that it works for the 

frequency range above 1MHz (We found it is possible to achieve an output impedance 

of 1MΩ at high frequency) and effectively would produce an impedance image when 

assessing the performance of the system using an E-phantom based on an RSC model 

of different tissue characteristics.  

The OCCII-GIC configuration works with the current source and employs 

digital-pots to tune the circuit at each frequency point. The goal was to tune in order 

to achieve a system with high output impedance especially at higher frequencies. Our 

findings confirm that the OCCII-GIC circuit produces high output impedance that can 

be achieved over a limited bandwidth compared to the common GICs (i.e. Antoniou 

1969) which consist of two op amp and five passive components. Using active 

components, such as a current conveyor which is a current-sense circuit compared to 

the operational amplifier used in common GICs which is a voltage-sense circuit with 

limitations such as frequency dependence and finite gain. Also the OCCII-GIC circuit 

built with less passive components (i.e. a capacitance and two resistors), achieves a 

stable current at high frequency, with much higher output impedance compared to 

other current sources using common GICs as a capacitance cancellation method which 

are designed and recommended by other EIT research groups (Ross 2003a, Oh, Lee et 

al. 2007).  

It is worth noting that the frequency bandwidth will be narrow by moving the 

frequency points from 1MHz to 3MHz, since the maximum output impedance would 

be achieved at the peak point. So, it would be the best if able to achieve the maximum 

accurate value of variable resistor to obtain the maximum output impedance at the 
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certain frequency point, thus we used resistor trimmers (manual potentiometers) 

parallel and series with digital-pots to be able to calibrate the current source with 

OCCII-GIC circuits and achieve a calibration table for different frequency points. 

The improved system is a planar 85 electrode channel, with multi frequency 

operation from two independent sources (current-based and voltage-based). We built 

and tested for the different EIT systems current sources, as the major current sources 

used in the EIT systems are based on improved Howland current source and Current 

Conveyor current source to confirm the OCCII-GIC is a method that will work in 

reality. 

It is designed to operate in the frequency range from 10kHz up to 3MHz with 

an output impedance of a few GΩ over the desired frequency bandwidth but in regard 

to the electrical package limitation the combination of the OCCII-GIC with the 

improved Howland current source has not achieved the output impedance of a few GΩ 

at high frequency points (500kΩ at high frequency). However, we achieved acceptable 

output impedance for the frequencies between 1MHz to 3MHz. We designed an 

OCCII-GIC with two digital-pots to operate at the multi-frequency. Each digital-pot 

has been placed in the system with the minimum capacitance effect and these effects 

were considered in the simulation system and during the experimental tests. Thus we 

claim that the improved bandwidth based on a stray capacitance cancellation method 

increased the spatial resolution and operating frequency, hence improving the 

performance of the system although there are limitations with the appearance of a 

phase shift in the output current signals and DC offsets. The negative issue that we 

found with this approach was the effect of capacitances produced by the digital-pots, 

which affected the output impedance of the current sources. Using digital-pots we 

were able to remove the effect of parasitic capacitance produced by the current 

source and multiplexers when changing the LC resonance point but the capacitance of 

the pins of the digital-pots has an impact at high frequency.  

We built an EIT system based on a planar 85-electrode channel and using an 

MCU for addressing control between 85 electrodes by using a cascade method for DRV 

MUXs. The on/off capacitance of the switching channel becomes very low (around 
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20pF) for each current injection branch, thus increasing the operating frequency and 

frame rate of the system when comparing it with the previous Sussex EIT systems. We 

used a single source method compared to semi/fully parallel source methods that use 

more than one source to connect to a single or a group of channels to stop the 

capacitance effect of DRV MUXs, but with the cascading method there is a possible 

method to reduce these capacitance effects and take advantage of the single source 

such as more convenience in the calibration process.  

The capacitance cancellation method presented in this research is essentially 

used to facilitate high accuracy current injection for the multi-frequency EIT systems. 

Although, we simulated the current source combined with OCCII-GIC to cancel the 

CSTRAY with increment frequency point of 200 kHz, however, in reality we used only 

around 7 frequency points. 

When comparing the current-based and voltage-based current sources, we 

found that the improved Howland current source has much better output impedance 

and less output capacitance compared to the current conveyor current source. Our 

results show that output impedance of the improved Howland current source 

combined with OCCII-GIC is much higher than the current conveyor current source 

combined with OCCII-GIC. However, the maximum load that can measured with the 

improved Howland current source is much lower than the current conveyor current 

source although it also depends on the DC power supply rails. 

The calibration data of the EIT system are necessary to expand the resolution 

of reconstructed images because the measurement data that was obtained from the 

subject associated with the noise. This produces a much more complex system 

especially in multi frequency systems which have different phase and gain. AZ1 EIT 

system included an auto calibration process (as a voltage measurement system 

calibration) to measure the differential and common-mode gains with the effect of on-

resistor of the multiplexers based on a few dummy resistor and calibration lines. This 

calibration process was controlled by the MCU and the measured values used as part 

of the calibration table. The calibration data was achieved when using dummy loads 

connected to different pair of electrodes and measuring the output voltage via 
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differential voltage measurement. Thus we were able to connect all electrodes one by 

one and measure the response voltage as the calibration data. Therefore, we were 

able to measure the effect of all drive and receive channels with this auto calibration 

process. Then, this calibration data was used in the image processing data, and used 

with the raw data to compare with the image data. This calibration process also 

combined with an electronic mesh phantom to fully assess the performance of the EIT 

system. Thus we obtained an EIT system with the channel assessment and acquired 

calibration data for each channel. 

We used an 85 planar electrode plate, which placed on the bottom of the 

cylindrical measurement volume. The 85 electrodes fitted on the PCB as a circular 

planar array in order to achieve close electrode contact to the current source and 

minimize the noise and stray capacitance of the EIT system. Most EIT systems use 

cables to inject current or /and to collect measurement data; whilst the AZ1 EIT system 

is a planar structure with a single board of current injection, electrode plate and 

voltage measurement systems that able to inject the current signals and measure the 

voltage signals with minimum noise. The performance of the AZ1 EIT system is not 

dependent on the type and length of any cables. 

The long term plan is to make available this innovative EIT system with its good 

on-board power supply, good high frequency current sources with capacitance 

cancellation method, drive and receive multiplexers, voltage measurement with 

calibration circuits, PGA, and an addressing control subsystems for 85 electrodes all 

fitted on a single circular board with an 83mm radius available in the market for all 

other EIT research groups at a minimum cost.  

In EIT systems, assessment, validation of the performance and calibration of 

systematic errors in the electrical field generated inside of the interrogated volume is 

important. Our objective was to present and build an E-phantom for calibration, 

assessment and validation of the AZ1 EIT system performance in the in vivo 

conduction. Evaluation of the AZ1 EIT system has been assessed using a realistic E-

Phantom, which is created and evaluated based on the RSC model of the different 

conductivities in breast tissue. We designed a dynamic mesh phantom that is capable 
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of imitating a generalized homogeneous medium. The planar E-phantom was also 

designed based on the FEM method to evaluate the system performance. We 

connected the E-phantom to the EIT board to assess the performance of the EIT 

system by the use of electrodes which have less than 20mΩ contact resistance with a 

length of 3.84cm. The EIT board electrodes are the same electrodes that are used to 

produce the breast tissue image, the phantom thus characterised the same effects 

that are produced during the in vivo conditions for reconstructing the conductivity 

image of the breast. Therefore, we can confirm that this phantom obtained the same 

results and it is therefore realistic for the in vivo condition to assess the performance 

of the EIT system. The EIT board directly connected to the E-phantom and produced 

raw data of 1416 measurement combinations then the calibration data was added to 

produce an image. Therefore, we used the calibration data and E-phantom 

assessments to be able to measure the SNR and model the accuracy of the AZ1 EIT 

system.  

This E-phantom used a MCU to be able to produce a conductive perturbation in 

6 places, which is used to produce different images that can be used to evaluate the 

image reconstruction software. The E-Phantom design improved its features by using 

the RSC model, where we considered the capacitance effects of the different tissues at 

the different frequencies by solving the Cole-Cole equation. This enables the 

evaluation of the different conductivity values of the tissue. We performed the E-

phantom with three different tissue values as mentioned in Table 11, the results show 

that the system is able to specify the different tissue characteristics and the 

performance features of the EIT system. The RSC models the EIT system with different 

tissue characteristics placed between 85 electrodes to obtain the impedance spectra 

of these tissues. The full cycle of the Cole-Cole model can be achieved with this EIT 

system for the tissues that have a relaxation frequency around 1MHz as the AZ1 EIT 

system can operate up to 3MHz. This E-phantom is able to imitate all the electronic 

characteristics of the physical environment of a breast inside a cylindrical insulated 

container that has been described in the mesh phantom principles section. This 

phantom can be used for 2D and 3D calibration process. However, this phantom only 

emulates a 10mm thick layer with highest sensitivity of a saline conductive medium, 
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which can only emulate an impedance distribution representative of a breast tissue in 

saline with this thick layer of conductive medium. This E-phantom is designed for the 

planar structure. However, it can be used to assess the performance of the other EIT 

systems with any measurement structure, at any frequency and any amplitude range 

of the signal. Although, the variations in electrode-saline contact impedance are not 

accounted for by the E-phantom as it bypasses the electrolytic interface. We have not 

considered the other types of errors initiating from electrode contact impedances, 

electrode size and shape, and the effect of the subject position that generates 

systematic errors in the reconstructed images.  

The preliminary results have demonstrated that the E-phantom can be very 

effective as a clinical prototype for QA assessment and future certification. The 

purpose of the phantom is intended for system validation and performance testing 

during all phases of the clinical trials: pre-trial, during trial and future clinical 

derivatives. The E-phantom will also be a useful research tool for EIT researchers, as 

altering the location and distribution of the impedivity is readily achieved. 

Thus, a novel E-phantom designed, simulated and measured a desired SNR and 

modelling accuracy of the AZ1 EIT system, it also enables representation of the 

different tissue characteristics based on different RSC models. 

7.2. Conclusion and future work  

In order to decrease the unwanted capacitance effects in EIT systems, different 

GIC circuits have been designed, simulated and tested. Our aim is to assess most 

experimental results using the current source with OCCII-GIC circuit presented in the 

AZ1 EIT system. The AZ1 EIT system has been implemented with the OCCII-GIC as a 

stray capacitance cancellation method improving the system performance and 

increasing the frequency bandwidth of the system. The new EIT system is a planar 85 

electrode board with multi-frequency channels with two independent sources 

(current-based and voltage-based) and designed to operate over a narrow frequency 

range from 10kHz up to 3MHz with an output impedance of a gigaohm to more than > 
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500kΩ at maximum frequency, in regard to existence of stray capacitance and 

electrode contact impedance sensitivity variations in geometry. 

AZ1 EIT has been implemented for the clinical application that has been tested 

in the instrumentation and sensor laboratory at the Sussex University. A new feature 

of the GIC based on current conveyors has been presented with current based and 

voltage based source topologies. As previously described, it can be used as an inductor 

circuit to eliminate the effects of the stray and output capacitances of the current 

source. The performance of the OCCII-GIC has been computed with phase and 

magnitude errors. This capacitance cancellation technique is capable of working with 

other existing EIT sources. The study results of the OCCII-GIC are based on the active 

device with a current feedback loop, thus it is feasible to tune over a wide range of 

parameters. This is a significant change in the design compared to the general GIC 

methods used to ameliorate the constraints caused by passive components and op 

amp limitations. 

Finally, AZ1 EIT circuit boards have been designed to install in the Sussex EIT 

system for the clinical trials, with numerous mechanical systems that have been 

installed on the clinical bed to produce the whole EIM test procedure. 

In future work we intend to extend the capability of The AZ1 EIT system using 

(i) FPGA for signal generation, DAS and addressing control, (ii) combination of voltage 

and current source in a single platform, and (iii) extend the mesh phantom include the 

effects of the permittivity of the solution and electrode size and shape. 

7.2.1. FPGA system overview Design a Digital waveform Generator 

based on FPGA 

The FPGA design consists of independent parts: an implementation of the 

signal generation, a modulator, the matched filter and the ADC clock modules. The 

task defined is the design of a digital waveform generator using an FPGA and feeding 

this to the DAC with high stability and multi-frequency. For this aim the designed 

system uses 16-Bit DAC at 100 MSPS, via a passive band-pass filter with a zero degrees 

phase shift to have a smooth signal. By division of the 40 MHz or any other value of the 
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main clock of the FPGA the frequency of the signal can be changed. We are using 

digital phase sensitive demodulation (Digital-PSD) within the FPGA for synchronization 

between the data acquisition system (DAS) and signal generation, demodulation and 

changing the amplitude of the signal. We could therefore measure phase (the 

waveform data) with a shifter and then add a multiplying DAC to change the 

amplitude. 

System consisting two main parts: signal generator and the data acquisition 

module. Regarding this design, we will design a system based on FPGA use in the DAS 

and signal generators related to the hardware specification that has been defined. This 

task comprises the following: 

• Sine and Cosine waveforms with multi-frequencies for feeding to ADC 

• Full spectrum of sampling signals to ADC 

• Full spectrum of sampling signal from DAC as part of DAS measurement 

system 

• Generation a DDSs (direct digital synthesizers) 

• Generation a D-PSD (digital phase sensitive demodulation) 

• Communication between FGPA and MCU 

• Feed pattern to DACs 

• Feed Cosine to DAC 

• FGPA Implementation 

• Digital matched filter structure  

• Define sampling rate 

• Produce clock for ADC 

• Demodulation 

7.2.2. The feasibility study of voltage source implementations 

A voltage source can be implemented using a high-speed, wideband op amp as 

an alternative for the excitation system in EIT. A voltage source with high precision is 

inexpensive and simply can be implemented for the excitation system in EIT to resolve 

the current source problems.  
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The proposed technique is based on using a voltage source and measuring the 

actual voltage on an electrode connected to a reference impedance to confirm that 

the electrode voltage is known.  

In this case little current will be injected into the target by the electrodes and 

thus the receiving electrodes will measure small voltages that suffer from noise. This 

can limit the ability to see deeply into the target. Also for safety reasons the current 

injected by the voltage method must be restricted if the target is alive, such as in 

breast cancer tomography. However, restrictions on the amount of bandwidth, high 

component count and complexity of analogue circuitry suggests that the voltage 

source method in EIT systems may be better than the current source as used in ACT4 

and the Dartmouth group EIT system. 

The existence of errant stray capacitance in parallel with the load causes 

undesired effects using both the voltage and current source methods. The voltage 

source method is also affected by the on-resistance of any multiplexers used in the 

signal path, as these form, with the undesired stray capacitances, low pass RC filters so 

any driving voltage will be altered in amplitude and phase by the time it reaches the 

electrode.  

If we connect a known reference impedance to the electrode and measure the 

current injected by the driving voltage fixed in amplitude and phase before any 

multiplexers, we can measure the errors in amplitude and phase from the driving 

voltage. We can then apply correcting amplitudes and phases to the driving voltage 

source so that the amplitude and phase are what they would be without any RC 

effects. For safety reasons we must limit the current injected before it passes through 

a multiplexer to an electrode by using a small resistor in the signal line and measuring 

the voltage across it with a differential amplifier. In the current delivery method if we 

measure the voltage on each electrode pad with known calibrating impedance on the 

PCB, we have a similar way to measure errors caused by stray capacitances. The 

proposed voltage source schematic with feedback loop and the current measurement 

system is simulated in Figure 100. This method is able to analyse the effect of on-
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resistance produced by MUXs. The result is a closed loop current system, which is only 

dependent on biological load.  

Also, a calibration method is required in order to determine the CMRR of the 

differential amplifiers. The circuitry is designed to achieve a bandwidth of greater than 

10MHz over a wide range of loads in the presence of load capacitance. Preliminary 

simulation results are obtained to found the bandwidth performance of the system in 

order to verify the practical implementation of the voltage source. Thus, we would 

utilize the voltage source on this board in order to achieve a multi-frequency system 

up to 10MHz with an acceptable SNR and accuracy. The calibration methods are also 

performed before and during data acquisition. We will employ an on board 

Microcontroller for tuning sources and selecting input and measuring channels. This 

research presents an innovative multi frequency EIT system based on current source 

and voltage source topologies. The simulation of the EIT system shows it should be 

useable at frequencies above 10MHz. Figure 100 shows a schematic diagram of a 

voltage source with DRV and REC MUXs, measurement subsystem based on a four-

electrode method of the AZ1 EIT system.  
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Figure 100 A schematic of a voltage source with DRV and REC MUXs, measurement 

subsystem. 
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7.2.3. The effect of electrode in the Mesh phantom design 

We intend in future work to extend the capability of using this phantom so it is 

more accurate at high frequency. This means we intend to include the effects of the 

permittivity of the solution. This probably means every resistor of an improved E-

phantom will have a capacitor across it or capacitor in series with a resistor. At high 

frequencies this will cause a phase shift across the original resistors and also make the 

amplitude of the impedance less. Including permittivity in the mesh will be a more 

complicated use of FEM as each element will be complex, i.e. the admittance element 

matrix will have real and imaginary parts. 

In future work we intend to take into consideration the effect of electrode size 

and shape and to simulate some of the effects of the 3-D nature of the homogenous 

medium, container and target as opposed to the present 2-D simulation. 
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Appendices and Functional Parts 

Appendix-A: Calculation of maximum total current of Power supply  

Maximum total current of Howland current source plus GIC circuits for +5V rail: 

3*16.3mA (three voltage amplifiers for two different branch voltages are 180 degrees out of phase) 

+ 1×3mA (one DCP is active mode) 

+ 1×500μA (one X9C102 is in standby mode) 

+ 2*16.3mA (two Howland Amplifiers) 

+ 4*16.3mA (four GIC’s Amplifiers) 

= 150.2mA 

Maximum total current of Howland current source plus GIC circuits for -5V rail: 

3*16.3mA (three voltage amplifiers for two different branch voltages are 180 degrees out of phase) 

+ 2*16.3mA (two Howland Amplifiers) 

+ 4*16.3mA (four GIC’s Amplifiers) 

=146.7mA 

Maximum total current of Howland current source plus OC I circuits for +5V rail 

3*16.3mA (three voltage amplifiers for two different branch voltages are 180 degrees out of phase) 

+ 1×3mA (one DCP is active mode) 

+ 1×500μA (one X9C102 is in standby mode) 

+ 2*16.3mA (two Howland’s Amplifiers) 

+ 6*16.3mA (six OCCII’s Amplifiers) 

+ 2×3mA (two DCP is active mode) 

+ 2×500μA (two X9C102 is in standby mode) 

=189.8mA 

Maximum total current of Howland current source plus OC I circuits for -5V rail 

3*16.3mA (three voltage amplifiers for two different branch voltages are 180 degrees out of phase) 

+ 2*16.3mA (two Howland’s Amplifiers) 

+ 6*16.3mA (six OCCII’s Amplifiers) 

= 179.3mA 

Maximum total current of Howland current source plus OC II circuits for +5V rail 

6*16.3mA (six OCCII’s Amplifiers) 

+ 2×3mA (two DCP X9C102 is active mode) 

+ 2×500μA (two DCP X9C102 is in standby mode) 

=104.8mA 
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Maximum total current of Howland current source plus OC II circuits for -5V rail 

6*16.3mA (six OCCII’s Amplifiers) 

+ 2×3mA (two DCP X9C102 is active mode) 

+ 2×500μA (two DCP X9C102 is in standby mode) 

=104.8mA 

Maximum total current of Current Mirror mode for +5V rail 

3*16.3mA (three voltage amplifiers for two different branch voltages are 180 degrees out of phase) 

+ 2*16.3mA (two feedback loop’s Amplifiers) 

= 81.5mA 

Maximum total current of Current Mirror mode for -5V rail 

3*16mA (three voltage amplifiers for two different branch voltages are 180 degrees out of phase) 

+ 2*16mA (two feedback loop’s Amplifiers) 

= 81.5mA 

Maximum total current of Common part includes MUXs and Measurement for +5V rail 

8*20μA (8 ADG2128 used for supporting 85 electrodes) 

+ 1*50mA (Six ADV3205 modules are used, only one is in active output mode) 

+ 5*35mA (Six ADV3205 modules are used, 5 are in disable output mode) 

+ 1*13mA (Six ADV3205 modules are used, all use DVCC digital voltage level) 

+ 1*10.6mA (one Differential single added amplifier) 

+ 1×3mA (one DCP is in active mode used in PGA) 

= 251.22mA 

Maximum total current of Common part includes MUXs and Measurement for -5V rail 

8*20μA (8 ADG2128 used for supporting 85 electrodes) 

+ 1*50mA (Six ADV3205 modules are used, only one is in active output mode) 

+ 5*35mA (Six ADV3205 modules are used, 5 are in disable output mode) 

+ 1*10.6mA (one Differential single added amplifier) 

= 235.22mA 

Maximum total current of Howland current source plus GIC circuits for +15V rail: 

= 0mA 

Maximum total current of Howland current source plus GIC circuits for -15V rail: 

=0.mA 
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Maximum total current of Howland current source plus OC I circuits for +15V rail 

4*7.5mA (four AD844 are used for two different branch voltage are 180 degrees out of phase) 

=30mA 

Maximum total current of Howland current source plus OC I circuits for -15V rail 

4*7.5mA (four AD844 are used for two different branch voltage are 180 degrees out of phase) 

=30mA 

Maximum total current of Howland current source plus OC II circuits for +15V rail 

2*7.5mA (two AD844 are used for two different branch voltage are 180 degrees out of phase) 

=15mA 

Maximum total current of Howland current source plus OC II circuits for -15V rail 

2*7.5mA (two AD844 are used for two different branch voltage are 180 degrees out of phase) 

=15mA 

Maximum total current of Current Mirror mode for +15V rail 

2*7.5mA (two AD844 are used for two different branch voltage are 180 degrees out of phase) 

= 15mA 

Maximum total current of Current Mirror mode for -15V rail 

2*7.5mA (two AD844 are used for two different branch voltage are 180 degrees out of phase) 

= 15mA 

Maximum total current of Common part includes MUXs and Measurement for +15V 

rail 

2*380μA (two ADG1211 used for supporting 8 ADG2128 second stage of 85 electrodes) 

= 720μA 

Maximum total current of Common part includes MUXs and Measurement for -15V 

rail 

2*380μA (two ADG1211 used for supporting 8 ADG2128 second stage of 85 electrodes) 

= 720μA 
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Appendix-B: SUBHOST Software Port Usage v4.00 

1. SUBHOST PIC 18F65K90 TQFP 
2. PIC package is used TQFP64 
3. DATA DIRECTION REGISTERS 

Le
tte

r 

N
u

m
b

e
r 

Direction Name Description Note 

RA 0 OUT CE/3 IC 26 – Enable OF MUX ADV3205 Enable Low, Must be low to clock-in and 

latch data, Connected to Electrodes 

 1 OUT CHPOT(5) Digital-POT, Channel Select POT IC46:CS - 

 2 OUT CHPOT(11) Digital-POT, Channel Select POT IC22:CS - 

 3 OUT CHPOT(2) Digital-POT, Channel Select POT IC54:CS - 

 4 OUT CE/1 IC 4 – Enable OF MUX ADV3205 Enable Low, Must be low to clock-in and 

latch data, Connected to Electrodes 

 5 OUT CHPOT(3) Digital-POT, Channel Select POT IC45:CS, Digital-POT, Channel 

Select POT IC67:CS 

- 

 6 IN/OUT CLKOUT Crystal Clock Out - 

 7 IN/OUT CLKIN Crystal Clock In - 

RB 0 OUTPUT CE/2 IC 3 – Enable OF MUX ADV3205 Enable Low, Must be low to clock-in and 
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latch data Connected to Electrodes 

 1 OUTPUT A1 OUTPUT SELECT OF MUXS; IC 3,4,25,26,40,41- ADV3205 

Enable 

Connected to all ADV3205 Output 

address lines 

 2 OUTPUT A2 OUTPUT SELECT OF MUXS; IC 3,4,25,26,40,41- ADV3205 

Enable 

Connected to all ADV3205 Output 

address lines 

 3 OUTPUT A3 OUTPUT SELECT OF MUXS; IC 3,4,25,26,40,41- ADV3205 

Enable 

MSB, Connected to all ADV3205 Output 

address lines 

 4 OUT CHPOT(15) Digital-POT, Channel Select POT IC61:CS - 

 5 OUT IN1_180phase ADG1211, IC80:IN1, SW1, for 180 phase - 

 6 IN PGC PIC Programming Clock - 

 7 IN PGD PIC Programming Data - 

RC 0 OUT D1 INPUT SELECT OF MUX ADV3205 Connected to all ADV3205 Input address 

lines  

 1 OUT D0 INPUT SELECT OF MUX ADV3205 LSB, Connected to all ADV3205 Input 

address lines  

 2 OUT D2 INPUT SELECT OF MUX ADV3205 Connected to all ADV3205 Input address 

lines 

 3 OUT D3 INPUT SELECT OF MUX ADV3205 MSB, Connected to all ADV3205 Input 

address lines 

 4 OUT D4 INPUT SELECT OF MUX ADV3205 Output enable 
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 5 OUT IN4_180phase ADG1211, IC80:IN4, SW4, for 180 phase - 

 6 OUT TXX1, P2 PC USB Serial Transmit - 

 7 IN RXX1, P1 PC USB Serial Receive - 

RD 0 OUT UPDATE/ UPDATE ALL MEASURMENT MUXs IC 3,4,25,26,40,41- 

ADV3205 Enable 

Enable (Transparent) Low. Allows serial 

register to connect directly to switch 

matrix. Data latched when high. 

 1 OUT A0 IC 3,4,25,26,40,41- ADV3205 Enable LSB, Connected to all ADV3205 Output 

address lines 

 2 OUT CE/5 IC 41 – Enable OF MUX ADV3205 Enable Low, Must be low to clock-in and 

latch data Connected to Electrodes 

 3 OUT INC- IC 35,23,30,31,44,54,56,57,45,46,61 – Digital-POT INC- - 

 4 OUT CHPOT(9) Digital-POT, Channel Select POT IC30:CS - 

 5 OUT UP/DWON IC 35,23,30,31,44,54,56,57,45,46,61 – Digital-POT Up/Down - 

 6 OUT RESET/ RESET ALL MEASURMENT MUXs IC3,4,25,26,40,41– ADV3205 

And IC27,5,42,52,55,68,91,104-ADG2128 Active Low Logic 

Input, Reset Input MUXs 

ADV3205: Disable Outputs, Active Low 

ADG2128: Active Low Logic Input. When 

this pin is low, all switches are open, and 

appropriate registers are cleared to 0. 

 7 OUT CHPOT(7) Digital-POT, Channel Select POT IC23:CS - 

RE 0 OUT CHPOT(14) Digital-POT, Channel Select POT IC72:CS - 

 1 IN Analogue input AN0 - 
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 2 IN Analogue input AN1 - 

 3 OUT IN3_0phase ADG1211, IC79:IN3, SW3, for 0 phase - 

 4 OUT IN1_0phase ADG1211, IC79:IN1, SW1, for 0 phase - 

 5 OUT IN4_0phase ADG1211, IC79:IN4, SW4, for 0 phase - 

 6 OUT CE/6 IC 40 – Enable OF MUX ADV3205 Enable Low, Must be low to clock-in and 

latch data, Connected to Electrodes 

 7 OUT IN2_0phase ADG1211, IC79:IN2, SW2, for 0 phase - 

RF 1 OUT CHPOT(1) Digital-POT, Channel Select POT IC44:CS - 

 2 OUT SCL Digital-Input, Serial Clock Line Open drain input that is used in 

conjunction with SDA to clock data into 

the device, External pull-up resistor 

required 

 3 OUT SDA Digital I/O Bidirectional open drain data line, 

External pull-up resistor required 

 4 OUT CHPOT(4) Digital-POT, Channel Select POT IC56:CS  - 

 5 OUT CE/4 IC 25 – Enable OF MUX ADV3205 Enable Low, Must be low to clock-in and 

latch data, Connected to Electrodes 

 6 OUT CHPOT(6) Digital-POT, Channel Select POT IC57:CS - 

 7 OUT IN3_180phase ADG1211, IC80:IN3, SW3, 180 phase - 

RG 0 OUT CHPOT(10) Digital-POT, Channel Select POT IC35:CS - 
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 1 OUT CLK ADV3205, IC3,4,25,26,40,41:pin97 - 

 2 OUT IN2_180phase ADG1211, IC80:IN2, SW2, for 180 phase - 

 3 OUT CHPOT(8) Digital-POT, Channel Select POT IC31:CS - 

 4 OUT CHPOT(12) Digital-POT, Channel Select POT IC65:CS - 

 5 IN MCLR/ Master Clear (input) or programming voltage (input) of PIC. This pin is an active-low Reset to the 

device. 
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Appendix-C: modify improved Howland current source 

We made a few improvements in the improved Howland current source by 

adding resistor and capacitors as shown in Figure 101. The results show the output 

capacitance has been reduced with these modifications. 

 

Modify improved Howland current source 

Perfect current source 

Improved Howland current source 

(a) 

 



Appendix-C 

 

216 

(b) 

Figure 101 shows (a) a modified current source schematic, (b) the output capacitance result 

from this modify schematic when comparing improved Howland current source output 

voltage shows a dashed line curve (---), modify the schematic shows a dotted line curve (….) 

and perfect current source shows a line (___). 
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Appendix-D: Output signal of the current conveyor current source 

The output current and phase delay curves achieved when the current conveyor 

current source is compared with the reference input signal with 180o out of phase and with a 

RLOAD=813.6Ω, as shown in Figure 102. Although, there is an α gain (ITZ= αIX) in reality 

between the RX placed in the current conveyor current source �IX� VINRX � ITZα � and the 

output voltage signal. Therefore, the VOUT=767mVp-p. 

 

Amplitude:0.5V (1Vp-p) black curve, F=100kHz, phase different=180o, probe (x10), 
RLOAD=813.6Ω and there is a gain equal to 0.93 bule curve Ch:0.2v/div and probe 1MΩ, 
and Trigger 0V and Time base of 10MS/s (5us/Div) 
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@ 200 kHz, RL=813.6Ω, VL=767.40
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +2
o
 

@ 300 kHz, RL=813.6Ω, VL=767.68
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +4
o
 

  

@ 400 kHz, RL=813.6Ω, VL=767.68
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +6
o
 

@ 500 kHz, RL=813.6Ω, VL=767.40
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +9
o
 

  

@ 600 kHz, RL=813.6Ω, VL=765.33
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +11
o
 

@ 700 kHz, RL=813.6Ω, VL=765.06
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +12
o
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@ 800 kHz, RL=813.6Ω, VL=766.90
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +14
o
  

@ 900 kHz, RL=813.6Ω, VL=763.82
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +15
o
  

  

@ 1MHz, RL=813.6Ω, VL=764.78
mVp-p

, with 

a gain of 0.93, and phase delay with input 

signal +18
o
 

@ 1.5MHz, RL=813.6Ω, VL=753.19
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +26
o
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@ 2MHz, RL=813.6Ω, VL=735.95
mVp-p

, with 

a gain of 0.93, and phase delay with input 

signal +39
o
  

@ 2.5MHz, RL=813.6Ω, VL=701.74
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +50
o
 

  

@ 3MHz, RL=813.6Ω, VL=659.94
mVp-p

, with 

a gain of 0.93, and phase delay with input 

signal +58
o
 

@ 3.5MHz, RL=813.6Ω, VL=621.73
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +66
o
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@ 4MHz, RL=813.6Ω, VL=593.86
mVp-p

, with 

a gain of 0.93, and phase delay with input 

signal +75
o
  

@ 4.5MHz, RL=813.6Ω, VL=554.27
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +80
o
  

  

@ 10 kHz, RL=813.6Ω, VL=767.54
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +0
o
 

@ 5MHz, RL=813.6Ω, VL=497.58
mVp-p

, 

with a gain of 0.93, and phase delay with 

input signal +104
o
 

Figure 102 snapshots of the oscilloscope that shows the input reference signal and the 

output signal of the load voltage on the scope when connecting to an current conveyor 

current source for sweeping the frequency start from 100kHz to 1MHz with steps of 100kHz, 

1MHz to 5MHz with steps of 500kHz and amplitude of the input sine wave is set for1
Vp-p

. 
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Appendix-E: Output signal of two current sources with 180o out of 

phase 

These curves were achieved when two different loads were attached to the 

two current sources to measure two different loads with a 180 degree phase 

difference, as shown in Figure 103. The actual load resistors are equal to RLOAD- 0 phase = 

918Ω and RLOAD-180 phase =977Ω. We measured the output of the two current sources 

with 180 degrees out of phase based on the Sussex EIT system structure. Although, we 

achieved a small phase shift between these two output signals during these tests. As 

we expected based on the simulation results the range of output current would be 

1mAp-p at 50 kHz dropped to around 750uAp-p at 5MHz with a phase diff. equal to 180o). 

 

Amplitude:0.5V, F=100kHz, phase different=180o, probe (x10), RLOAD=918Ω and 977 Ω, 
Ch:.5v/div and probe 1MΩ, 0V and Trigger 0V and Time base of 10MS/s (5us/Div) 
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F= 200 kHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=918.17
mVp-p

, VOUT-1=977.77
mVp-p

 with 

phase diff. =180
o
 

F= 300 kHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=918.03
mVp-p

, VOUT-1=977.36
mVp-p

 

with phase diff. =180
o
 

  

F= 400 kHz, RLOAD-1=918Ω, RLOAD-2=975.84Ω 

VOUT-1=917.48
mVp-p

, VOUT-1=977.77
mVp-p

 with 

phase diff. =180
o
 

F= 500 kHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=916.37
mVp-p

, VOUT-1=975.01
mVp-p

 

with phase diff. =180
o
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F= 600 kHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=914.16
mVp-p

, VOUT-1=972.53
mVp-p

 with 

phase diff. =180
o
 

F= 700 kHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=913.33
mVp-p

, VOUT-1=970.46
mVp-p

 

with phase diff. =180
o
 

  

F= 800 kHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=910.85
mVp-p

, VOUT-1=968.53
mVp-p

 with 

phase diff. =180
o
 

F= 900 kHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=909.33
mVp-p

, VOUT-1=965.63
mVp-p

 

with phase diff. =180
o
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F= 1 MHz, RLOAD-1=918Ω, RLOAD-2=977Ω VOUT-

1=905.32
mVp-p

, VOUT-1=963.15
mVp-p

 with 

phase diff. =180
o
 

F= 1.5 MHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=809.17
mVp-p

, VOUT-1=947.70
mVp-p

 

with phase diff. =180
o
 

  

F= 2 MHz, RLOAD-1=918Ω, RLOAD-2=977Ω VOUT-

1=869.42
mVp-p

, VOUT-1=924.94
mVp-p

 with 

phase diff. =180
o
 

F= 2.5 MHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=842.49
mVp-p

, VOUT-1=895.28
mVp-p

 

with phase diff. =180
o
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F= 3 MHz, RLOAD-1=918Ω, RLOAD-2=977Ω VOUT-

1=818.88
mVp-p

, VOUT-1=869.07
mVp-p

 with 

phase diff. =180
o
 

F= 3.5 MHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=792.64
mVp-p

, VOUT-1=839.82
mVp-p

 

with phase diff. =180
o
 

  

F= 4 MHz, RLOAD-1=918Ω, RLOAD-2=977Ω VOUT-

1=764.20
mVp-p

, VOUT-1=810.58
mVp-p

 with 

phase diff. =180
o
 

F= 4.5 MHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=9737.68
mVp-p

, VOUT-1=781.89
mVp-p

 

with phase diff. =180
o
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F= 50 kHz, RLOAD-1=918Ω, RLOAD-2=977Ω VOUT-

1=918.44
mVp-p

, VOUT-1=977.36
mVp-p

 with 

phase diff. =180
o
 

F= 5 MHz, RLOAD-1=918Ω, RLOAD-2=977Ω 

VOUT-1=705.09
mVp-p

, VOUT-1=749.06
mVp-p

 

with phase diff. =180
o
 

Figure 103 snapshots of the oscilloscope that shows the output signal of the load voltages on 

the scope when connecting to two current sources for sweeping the frequency starting from 

100kHz to 1MHz with steps of 100kHz, and 1MHz to 5MHz with steps of 500kHz and amplitude 

of the input sine wave is set for1
Vp-p

. 
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