

A University of Sussex PhD thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

MMPTCP: A Novel Transport
Protocol for Data Centre Networks

Morteza Kheirkhah Sabetghadam

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of Sussex.

Department of Informatics

University of Sussex

19 November, 2015

2

I, Morteza Kheirkhah Sabetghadam, confirm that the work presented in this thesis

is my own. Where information has been derived from other sources, I confirm that this

has been indicated in the work.

I also declare that this thesis has not been and will not be submitted in whole or in

part to another University for the award of any other degree.

19 November, 2015

Abstract

Modern data centres provide large aggregate capacity in the backbone of networks so

that servers can theoretically communicate with each other at their maximum rates.

However, the Transport Control Protocol (TCP) cannot efficiently use this large capac-

ity even if Equal-Cost Multi-Path (ECMP) routing is enabled to exploit the existence of

parallel paths. MultiPath TCP (MPTCP) can effectively use the network resources of

such topologies by performing fast distributed load balancing. MPTCP is an appealing

technique for data centres that are very dynamic in nature. However, it is ill-suited for

handling short flows since it increases their flow completion time.

To mitigate these problems, we propose Maximum MultiPath TCP (MMPTCP),

a novel transport protocol for modern data centres. Unlike MPTCP, it provides high

performance for all network flows. It also decreases the bursty nature of data centres,

which is essentially rooted in traffic patterns of short flows. MMPTCP achieves these

nice features by randomising a flow’s packets via all parallel paths to a destination dur-

ing the initial phase of data transmission until a certain amount of data is delivered. It

then switches to MPTCP with several subflows in which data transmission is governed

by MPTCP congestion control. In this way, short flows are delivered very fast via the

initial phase only, and long flows are delivered by MPTCP with several subflows.

We evaluate MMPTCP in a FatTree topology under various network conditions.

We found that MMPTCP decreases the loss rate of all the links throughout the network

and helps competing flows to achieve a better performance. Unlike MPTCP with a fixed

number of subflows, MMPTCP offers high burst tolerance and low-latency for short

flows while it maintains high overall network utilisation. MMPTCP is incrementally

deployable in existing data centres because it does not require any modification to the

network and application layers.

Acknowledgements

Working towards a PhD has been a very enriching experience; it has had its high mo-

ments filled with excitement, and its low moments filled with exhaustion. All of these

have changed my character and influenced every aspect of my life: my mindset, my

attitude and my life-style. This unforgettable experience would not have been possible

without the help of many people (near and far), and I would like to extend to them my

heartfelt thanks.

First and foremost, my supervisor, Ian Wakeman. I am not sure where to start and

how to thank him. Without Ian, I would not have been able to reach this point and

write this acknowledgement - his support over the course of my PhD has gone beyond

technical aspects. Ian has given me an opportunity to think freely and creatively, and

always guided me in the right direction when I needed it most - and always with posi-

tivity. His insights and discussions have helped me to shape this work. His empowering

encouragement and patience have allowed me to easily embrace challenges and handle

them successfully. For all of this, Ian, thank you.

I would also like to thank George Parisis, who joined our group - Foundation of

Software Systems (FOSS) at the University of Sussex - when I was halfway through my

PhD. Since then George has been kindly supporting and helping me. I have benefited

from his experiences in the ns-3 simulator and Data Centres.

My PhD has been fully funded by the Department of Informatics at the University

of Sussex for which I am very grateful. I would like to thank current and past members

of the Department of Informatics who have helped and supported me over the course

of my PhD, namely John Carroll, Dan Chalmers, Martin Berger and Bernhard Reus. A

big thank you goes to Des Watson and Simon Fleming for their comments and sugges-

tions on the final draft of this dissertation.

Acknowledgements 5

I would also like to thank Mark Handley at University College London (UCL) for

our initial discussions and for sharing his valuable insights into MultiPath TCP and

Data Centre Networks. Mark has helped me to reach an in-depth understanding of the

problem spaces in these contexts. I am also very grateful to Mark as my external PhD

examiner for his insightful comments and guidance on my thesis.

I am profoundly beholden to Damon Wischik, my MSc supervisor at UCL. Damon

taught me how to undertake advanced research. His office door was always open to

me, both during and long after I completed my studies at UCL. I had pleasant times

discussing new ideas with him.

Last but not least, I would like to thank my family, especially my sister, Maryam,

and my brother, Daryoush, for their unwavering support during my studies in England.

This PhD is devoted to my mother, Parvin, and my father, Mostafa, who raised me,

loved me, and encouraged my talents and enthusiasm for science.

Contents

1 Introduction 13

1.1 Contributions . 20

1.2 Published and Presented Works . 21

1.3 Thesis Structure . 21

2 Background 23

2.1 Introduction . 23

2.2 Transport Protocols . 24

2.2.1 TCP Protocol . 24

2.2.2 MultiPath TCP . 32

2.3 Data Centre Networks . 36

2.3.1 Applications and Services . 36

2.3.2 Network Topologies . 37

2.3.3 Traffic Patterns . 39

2.3.4 Network Properties . 40

2.4 Traffic Concentration Problem . 42

2.4.1 Localising Traffic into Rack 43

2.4.2 Full Bisection Bandwidth Topology 43

2.4.3 Dynamic Capacity Allocation 49

2.5 Equal-Cost Multi-Path Routing . 52

2.5.1 Central Flow Scheduler . 53

2.5.2 MultiPath TCP . 55

2.6 Short Flow and Deadline . 57

2.6.1 DCTCP . 57

Contents 7

2.6.2 D3 . 60

2.7 Summary . 62

3 Design of the MMPTCP Protocol 63

3.1 Introduction . 63

3.2 Goals . 63

3.3 Packet Scatter . 64

3.4 MultiPath TCP . 66

3.5 MMPTCP: Combining PS with MPTCP 70

3.6 MMPTCP and Packet Reordering . 71

3.7 MMPTCP and Latency-Sensitive Flows 74

3.8 Summary . 77

4 MPTCP and MMPTCP Implementation in ns-3 78

4.1 Introduction . 78

4.2 TCP Architecture . 78

4.3 MPTCP Architecture . 80

4.4 MPTCP Class Interaction . 82

4.5 Networking Stack Trace . 84

4.6 MPTCP Signalling Operation . 88

4.7 MMPTCP and Packet Scatter . 91

4.8 Showcasing MPTCP, ECMP and PS 93

4.8.1 MPTCP with Single Subflow 93

4.8.2 MPTCP Loss Recovery . 94

4.8.3 MPTCP Timeout Mechanism 96

4.8.4 Multipath Congestion Control 96

4.8.5 ECMP and PS . 100

4.9 Summary . 102

5 Evaluation and Results 103

5.1 Introduction . 103

5.2 Simulation Setup . 104

5.2.1 Network Topology . 104

Contents 8

5.2.2 Traffic Matrices . 107

5.2.3 Simulation Templates . 109

5.3 MMPTCP and Duplicate ACK Threshold 112

5.4 Comparing MMPTCP to MPTCPPure 117

5.5 Comparing MMPTCP to MPTCPSFTCP 122

5.6 Comparing MMPTCP to TCPPure and PSPure 127

5.7 Effects of Hotspot . 130

5.8 Effects of Load . 140

5.9 MMPTCP and Multipath Congestion Control 143

5.10 MMPTCP and Limited Transmit . 145

5.11 MMPTCP Switching Mechanism . 149

5.12 Effects of Incast . 151

5.13 Summary . 154

6 Conclusions 156

6.1 Future Directions . 157

Bibliography 159

List of Figures

1.1 Long flows with a varying number of subflows. MPTCP with eight

subflows almost doubles the overall goodput of long flows of single-

path TCP. 18

1.2 Short flows with a varying number of subflows. The small plot is the

zoom version of the big plot with the aim of showing the mean flow

completion times clearly. 19

2.1 A simple scenario for the detection of spurious retransmissions via

DSACK . 32

2.2 Conventional data centre topology . 38

2.3 The partition/aggregate workflow. Deadlines are showed inside round

brackets. 40

2.4 A FatTree network topology with 16 nodes 44

2.5 A VL2 network topology with 320 nodes 46

2.6 Flyways . 50

2.7 c-Through . 51

2.8 ECMP hash collision. Flows A and B are collided on an outgoing link

of Agg-1; Flows C and D are collided on an outgoing link of Core-3.

Each flow thus gets a half of its maximum connection throughput. . . . 53

3.1 The incast problem due to the partition/aggregate workflow. 75

4.1 TCP class diagram . 79

4.2 Comparing our MPTCP model with the Linux Kernel model 81

4.3 MPTCP class diagram . 82

List of Figures 10

4.4 An example of the token and 4-tuple lookup mechanisms in

TcpL4Protocol class . 84

4.5 An example of the ns-3 networking stack trace of how packets flow

through the ns-3 node objects . 86

4.6 MPTCP signalling from the beginning to the end of a connection 89

4.7 MMPTCP and PS class diagram . 92

4.8 Simulation of MPTCP with single subflow running TCP NewReno. . . 93

4.9 Simulation of MPTCP with single subflow and two packet dropped. . . 95

4.10 Simulation of MPTCP with single subflow and an entire window dropped 97

4.11 FatTree 128 nodes providing full bisection bandwidth. 97

4.12 Congestion window changes with Uncoupled-TCP 98

4.13 Congestion window changes with Fully Coupled 99

4.14 Congestion window changes with Linked Increases 99

4.15 RTT estimations as congestion window changes with Linked Increases . 100

4.16 ECMP, PS and the Stride traffic matrix in a FatTree topology with 128

nodes. Each plot shows the link utilisation of all eight links of a core

switch per second. 101

5.1 Network size has a direct impact on simulation completion time. A

FatTree topology with 16 cores (K = 8) provides a suitable simulation

completion time. 106

5.2 Link rate has a direct impact on simulation completion time. A simula-

tion takes more than 120 hours to be completed in a FatTree topology

with 1Gbps link rate. 106

5.3 Stride traffic matrix in a FatTree topology with 16 nodes 107

5.4 Permutation traffic matrix in a FatTree topology with 16 nodes 108

5.5 Random traffic matrix in a FatTree topology with 16 nodes 109

5.6 Duplicate ACK threshold value effect on short flow completion time . . 113

5.7 A dupthresh of 3. High fast retransmission and low timeout hits 114

5.8 A dupthresh of 23. No fast retransmission and high timeout hits 114

5.9 A dupthresh of 9. Ideal outcome . 115

List of Figures 11

5.10 Our solution for adjusting a dupthresh value based on the FatTree IP

addressing scheme. The achieved results are similar to a dupthresh

value of 9 in Figure 5.6. 115

5.11 A 4:1 oversubscribed FatTree512 topology 118

5.12 Timeouts and fast retransmissions (MMPTCP against MPTCPPure) . . . 119

5.13 Short flow completion times (MMPTCP against MPTCPPure) 121

5.14 Overall link utilisation and loss rate in different layers of the network

topology. MMPTCP decreases the average loss rate at core, aggrega-

tion and access layers of the FatTree network. 123

5.15 Flow completion times (MMPTCP against MPTCPSFTCP) 125

5.16 Timeouts and fast retransmissions (MMPTCP against MPTCPSFTCP) . . 126

5.17 All links of two core switches are in hotspots 131

5.18 All SimMix setups under varied hotspot core switches. MMPTCP

achieves the lowest mean core loss rate, the highest mean long goodput

and the highest mean core utilisation at all hotspot degrees. 132

5.19 MPTCPSFTCP . 135

5.20 MMPTCP . 136

5.21 TCPPure . 137

5.22 PSPure . 138

5.23 PSSFTCP . 139

5.24 Short flow completion time in a 2:1 FatTree256 topology under various

loads . 141

5.25 Mean goodput of long flows in a 2:1 FatTree256 topology under various

loads . 142

5.26 Mean core loss rate in a 2:1 FatTree256 topology under various loads . . 142

5.27 Cumulative distribution function of short flow completion times with

Fully Coupled, Uncoupled-TCP and Linked Increases. The small plot

is a zoom of the big plot. Most short flows of FC achieve a better flow

completion time than LI. 144

5.28 Timeouts and fast retransmissions (MMPTCP against MMPTCPLT) . . 147

5.29 Flow completion times (MMPTCP against MMPTCPLT) 148

5.30 Number of established subflows per each individual long flow. 154

List of Tables

5.1 Various SimMix simulation names based on employed transport pro-

tocols in short and long flows. SFTCP indicates that short flows are

handled by the TCP protocol. 110

5.2 MMPTCP compared to MMPTCPSFTCP 122

5.3 All SimMix simulations with λ = 256 127

5.4 All SimMix simulations with λ = 2560 129

5.5 The raw results of hotspot simulations 133

5.6 MMPTCP with Fully Coupled, Uncoupled-TCP and Linked Increases . 143

5.7 MMPTCP Compared to MMPTCPLT 146

5.8 MMPTCP Switching Threshold Sensitivity 150

5.9 MMPTCP compared to MPTCP via a SimLong in a FatTree128 topology

running a Stride matrix of long flows 151

5.10 Incast scenarios with short flows . 152

5.11 The incast scenarios with long flows 153

Chapter 1

Introduction

Large-scale data centres consist of tens of thousands of networked computers which

provide services to cloud applications. Examples of cloud applications are Facebook

and Google Search Engine, and examples of cloud services are MapReduce and Google

File System (GFS), to name only a few.

Each cloud application has its own communication patterns, such as differ-

ent bandwidth and/or communication requirements. Some applications are latency-

sensitive and others are bandwidth-hungry. For example, typical MapReduce services

require loosely-synchronised all-to-all communication among some servers inside data

centre networks, i.e. a subset of servers require to communicate with each other simul-

taneously. Furthermore, each server does not necessarily support only one service at a

time. It is common to have multiple services running in a server via virtual machines.

Data centre networks should thus be able to support diverse communication patterns

for servers needing to support diverse applications.

A typical data centre consists of switches and routers in a two- or three-level hi-

erarchical tree structure. That is, the network topology can be designed, built and

expanded quite easily. In this type of topology, servers are located in racks and are

connected to Top-of-Rack (ToR) switches, which are in turn connected to aggregation

switches (Agg). Finally, aggregation switches are aggregated further up and connected

to a core switch.

The network topology of a conventional data centre does not typically provide full

bisection bandwidth1 between all pairs of servers. This is because the core switches

1Full bisection bandwidth is achieved when a pair of servers communicating together with maximum
capacity of their network interface cards (NICs).

14

do not have a sufficient number of ports to aggregate enough bandwidth between all

servers due to the high cost and hardware limitations. Achieving full bisection band-

width is possible only if links, especially in the network core, are not oversubscribed

i.e. the oversubscription ratio in all links is 1:1. However, in practice the aggregated

bandwidth in the access layer is far more than the aggregated bandwidth in the aggre-

gation or core layer. Thus, each rack supports more than 20-40 servers [1]. The links

between ToRs and Aggs therefore typically have an oversubscription ratio of more than

2:1, and links between Aggrs and Cores often have an oversubscription ratio of more

than 8:1 i.e. links in the network core are oversubscribed by a factor of eight. Gener-

ally, by going up the hierarchical tree topology the oversubscription ratio is increased

and the non-blocking bandwidth is decreased.2

It is argued that conventional data centre architectures are optimised for handling

traffic into and out of data centres. However, this is not the case for intra-domain traffic

that comes from bandwidth-hungry applications, such as Virtual Machine (VM) mi-

grations,3 video streaming and online file storage, which are becoming highly popular

[2, 3, 4, 5, 6, 7, 8]. The increase in traffic matrices such as these has led to the persis-

tent congestion of some paths due to the lack of path diversity in the network topology

and multipath support. This can result in significant degradation to the overall network

performance.

Recently proposed data centre architectures, such as FatTree [5] and VL2 [4],

attempt to solve the traffic concentration problem by redesigning the network topology.

Their network topologies provide full bisection bandwidth between any pair of nodes

by leveraging the idea of replacing a single high-capacity and expensive core switch

at the top of the hierarchical tree structure with many commodity switches. The large

aggregated capacity in the backbone of the network thus becomes available cheaply.

This implies that the density of interconnection in the network topology is significantly

increased and therefore multiple equal-cost4 paths between servers become available.

Thus, in theory, each server is able to use up to the maximum speed of its network

interface device when communicating with any other server at any time. However,

2The non-blocking bandwidth is the amount of bandwidth that a server can theoretically achieve in
any network condition.

3VM migrations are typically used in data centres as a traffic engineering technique to mitigate traffic
sparks in a service by moving some of the VMs from the hotspots [2].

4We refer to parallel paths with equal hop count as equal-cost paths.

15

even though this large aggregated capacity is provided at the physical layer, i.e. via

network topology, network and transport protocols cannot use it effectively since they

have been designed for single-path data communication. For example, congestion still

occurs in FatTree and VL2 since Random Load Balancing (RLB),5which seems to be

the most effective multipath packet-forwarding strategy in data centres so far, does not

perfectly distribute TCP flows to the available paths.

Hotspots might still occur frequently despite the fact that the network is providing full

bisection bandwidth between all pairs of servers.

Central flow scheduling, Hedera [8], has been recently proposed to alleviate this

problem. Hedera only takes care of long flows (since they are the main cause of per-

sistent congestion).6 However, the mechanism it uses to detect and react to congested

links may not be fast enough for the dynamic nature of data centres [12, 13].

An alternative solution to central flow scheduling and TCP is to use MultiPath TCP

(MPTCP) [14, 15], which delivers data via multiple paths simultaneously and moves

most of the traffic from highly-congested to least-congested paths within a couple of

round-trip times (RTTs).7 In other words, unlike TCP and Hedera, MPTCP delivers a

single flow via multiple paths and deals with possible congestion in the network grace-

fully by shifting its traffic away from those congested areas as much as possible very

quickly. As shown in [12], MPTCP can improve overall network throughput and makes

the network more robust in the event of failure. However, it is argued that MPTCP per-

formance is very much related to the network topology construction [3]. For example,

in VL2 its performance is only as good as regular TCP, whereas in FatTree [5] and

BCube [6], MPTCP significantly improves overall network throughput. Furthermore,

MPTCP is not well-suited to delivering short flows as their flow completion time may

increase significantly. The problem is that the congestion window of the subflows of a

MPTCP flow might be very small over the course of data transmission since the total

number of packets of a short flow is small. Thus, even a single packet drop from a sin-

gle subflow causes an entire MPTCP connection to wait for a retransmission timeout

5Equal-Cost Multi-Path (ECMP) [9] and Valiant Load Balancing (VLB) [10] are examples of RLB.
6Hedera requires the detection of long TCP flows at the edge switches. Hedera assumes a flow is

large when that flow occupies 10% of the host-NIC bandwidth. The central controller only schedules
long flows, while the switches route short flows using hashed-based ECMP to randomise their routes.
Hedera can only be implemented on programmable switches, such as OpenFlow [11].

7RTTs in the data centres are often in the order of microseconds.

16

to be triggered on that subflow since the lost packet cannot be recovered by the Fast

Retransmit mechanism due to the small number of packets in transit.

An alternative solution to MPTCP is the Packet Scatter (PS) [12] protocol. PS

is inspired by Valiant Load Balancing (VLB) [10]. The idea is that network switches

randomise traffic on a per-packet, instead of a per-flow, basis, which, as mentioned

above, may still cause hotspots. In this way, a flow can be delivered via all available

paths to the destination. As argued in [12], the packet-scattering approach does not

create hotspots in the core layer of the multi-rooted tree topology, such as VL2 or

FatTree, if the load is the same among all the servers and hardware failures do not occur.

PS can thus achieve a higher overall network throughput than MPTCP. However, PS is

sensitive to network congestion, i.e. it cannot react to congestion gracefully because

it is a conventional TCP connection and only holds a single congestion window per

connection. Thus, if any packet gets dropped because of network congestion as a result

of hardware failures or bursty traffic, PS reduces its congestion window by half and

goes to the congestion avoidance phase in which the data rate increases linearly per

RTT; i.e. it has a significant negative effect on the overall network throughput.

Another area closely related to our research is traffic management inside data cen-

tres. Prior work in this area has tried to decrease flow completion time, especially for

short flows that are latency-sensitive and have deadlines in their flow completion time.

Web search, retail, social network content composition and advertisement selection are

a few notable examples of such services. These online services typically leverage par-

tition/aggregate workflows, dividing queries across many workers and aggregating the

computations to produce the user reply. Workers typically have the shortest deadlines

to complete their tasks/computations (e.g. 10-100ms) and if they cannot finish them be-

fore elapse of their deadlines, the aggregators ignore their computations as the search

operation is also limited by a deadline (e.g. 200-300ms). This has a direct impact

on search quality and hence revenue (e.g. an added 500ms latency in Google online

search reduced its traffic by 20%. Amazon sales dropped by 1% by adding 100ms

latency. Online brokers could lose 4 million US dollars per millisecond if they fall

5ms behind their competitors [16]). Furthermore, flows that missed their deadlines

also wasted valuable network resources [17, 18, 13]. Unfortunately, the proposed so-

lutions in this area either employ single-path mechanisms [17] and/or do not support

17

incremental deployment [18] or even require advanced switches or high capacity links

(i.e. at least 10 Gbps) not only between switches, but also between hosts and switches,

(i.e. they require each server to have 10Gbps NIC) [13]. These requirements make the

proposed solutions less attractive.

In this thesis, we investigate a solution to prevent transient congestion due to

bursty short flows while reacting to persistent congestion in a short timescale. Our

primary goals are that long flows should achieve a high connection throughput and

short flows should achieve fast data delivery. Achieving these two goals is not trivial,

as we have observed that a tension exists between them. For example, the existing so-

lutions that provide a high overall network throughput, such as Hedera and MPTCP,

fail to prevent transient congestion and hence fast data delivery for short flows. Those

existing solutions that do provide fast data delivery for short flows, such as DCTCP,

fail to provide a very high throughput for long flows. Our approach for achieving these

goals is to effectively use path diversity in modern data centres.

To this end, we present Maximum MultiPath TCP (MMPTCP), a novel transport proto-

col for the latest data centre networks [19, 20]. We were inspired to design MMPTCP

by the following observations:

• MPTCP is a well-suited alternative to the single-path TCP in data centres, whose

topologies provide dense interconnectivity in the network. MPTCP has been de-

signed to effectively use such networks. It is shown that MPTCP can achieve

more than double the overall network throughput in FatTree [5] and BCube [6]

topologies compared to single-path TCP [12]. Figure 1.1 is a showcase for this

performance enhancement via a simulation in the network simulator-3 (ns-3)

with our custom implementation of MPTCP.8 MPTCP with eight subflows al-

most doubles the overall goodput of MPTCP with a single subflow (i.e. TCP).

Another important benefit of MPTCP in data centres is that its reaction time

to congestion is very fast. It can remove traffic from congested links within a

few RTTs (unlike Hedera) and thereby solves the traffic concentration problem

to a great extent. MPTCP is thus an appealing approach for data centres char-

acterised by an extremely dynamic nature. However, our examinations in this

8The simulation setup in Figure 1.1 is: the FatTree topology with 128 nodes running a Permutation
traffic matrix of long MPTCP flows.

18

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
v

er
a

g
e

G
o

o
d

p
u

t
(M

b
p

s)

No. of MPTCP Subflows

FatTree, 128 Nodes

Figure 1.1: Long flows with a varying number of subflows. MPTCP with eight subflows almost
doubles the overall goodput of long flows of single-path TCP.

thesis demonstrate that MPTCP with more than one subflow does not perform

well for short flows and hurts their flow completion times. Figure 1.2 depicts

this behaviour.9 As the number of subflows increases, the standard deviation also

increases significantly. This implies that a fraction of short flows experiences

a series of retransmission timeouts. Additionally, as the number of subflows in-

creases, the mean flow completion also increases; this is better shown in the small

plot in Figure 1.2.

We find ourselves at an impasse: MPTCP is damaging short flows while a ma-

jority of data centre flows are short-lived. However, it performs very well for

long-lived flows, which comprise a majority of data centre bytes [4, 3]. This is

our main motivation for designing the MMPTCP protocol for data centres.

• Data centre traffic patterns are very bursty and unpredictable. The bursty traf-

fic pattern of data centre networks originates from short flows, which comprise

99% of total flows [4]. The dynamic nature of data centres may create tran-

9The simulation setup in Figure 1.2 is: the 4:1 oversubscribed FatTree topology with 512 nodes
running a Permutation traffic matrix. 33% of nodes send continuous traffic and the remainder send
short flows as they are assigned by central flow scheduler with arrival rate of 250 per second in average
(Poisson arrival).

19

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7 8 9

M
il

li
se

co
n

d
s

No. of MPTCP Subflows

FatTree, 512 Nodes

Standard Deviation
Mean Completion Time

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9

m
s

Figure 1.2: Short flows with a varying number of subflows. The small plot is the zoom version
of the big plot with the aim of showing the mean flow completion times clearly.

sient congestion in any link in the network.10 This transient congestion occurs

when a switch buffer is suddenly saturated due to a surge of traffic from several

sources. This is particularly the case in MapReduce- or partition/aggregate-like

traffic patterns [17]. Transient congestion significantly degrades the overall net-

work throughput and damages the flow completion time of short flows.

• The majority of short flows in data centres are latency-sensitive and must com-

plete their flow within a predefined deadline, typically in a few milliseconds.

If they cannot deliver all data before their deadlines some computations/results

are discarded, lowering the quality of results or restarting tasks and wasting net-

work resources. Flows subject to a deadline typically miss that deadline due to

encountering transient and/or persistent congestion in their paths.

MMPTCP is an extension of MPTCP, which can provide the following nice fea-

tures to data centre networks:

• It allows MPTCP to perform well for all network flows.

• It accommodates any burst of traffic gracefully by utilising path diversity in mod-

ern data centre fabrics and so significantly preventing transient congestion.
10The congestion due to collision between synchronised flows, typically from applications with parti-

tion/aggregate workflow, in the access layer’s bottleneck links is referred to as the Incast problem.

1.1. Contributions 20

• It reacts to congestion by moving traffic away from congested paths, so that it

achieves a high overall throughput and largely prevents persistent congestion.

• It can handle deadline flows without any knowledge from applications, if Quality

of Service (QoS) is present in the data centre switches.

• It can be incrementally deployed in existing data centres since it can coexist with

other transport protocols, such as legacy TCP.

1.1 Contributions
Our key contributions in this research are as follows:

• Examination of MultiPath TCP for short flows in a FatTree network topology.

This includes teasing apart the participation of each of the mechanisms used by

MPTCP. This led us to realise that MPTCP with a fixed number of subflows falls

short of handling short flows without hurting their flow completion times.

• Design, implementation and evaluation of MMPTCP in a wide range of scenarios

in a FatTree topology. This includes the study of the automatic adjustment of

dupthresh and limited transmit in such topologies.

• In-depth analysis of per packet load balancing (PS) in a FatTree topology. This

has led us to think a new congestion control may significantly improve the per-

formance of PS.

• Studying the feasibility of running MPTCP/MMPTCP simulation, via the packet-

level even-driven simulator (ns-3), as the network size and link rate increase.

• Implementation of MultiPath TCP in the ns-3 simulator [21]. This in-

cludes the implementation of several multipath congestion controls. We have

written more than 10K lines of code (C++ language) in this thesis. The

source code of our implementations can be found using the following link:

https://github.com/mkheirkhah/.

1.2. Published and Presented Works 21

1.2 Published and Presented Works
• M.Kheirkhah, I.Wakeman and G.Parisis. MMPTCP: A Multipath Transport Pro-

tocol for Data Centres. In Proceeding of the 2016 IEEE International Conference

on Computer Communications (INFOCOM '16), San Francisco, CA, USA.

• M.Kheirkhah, I.Wakeman and G.Parisis. Short vs. Long Flows: A Battle That

Both Can Win. In Proceeding of the 2015 ACM Conference on Special Interest

Group on Data Communication (SIGCOMM '15), pages 349-350.

• M.Kheirkhah, I.Wakeman and G.Parisis. Multipath-TCP in ns-3. In the 2014

Workshop on ns-3 (WNS3 '14), Atlanta GA, USA.

• M.Kheirkhah. MMPTCP: A Novel Transport Protocol for Data Centre Networks.

Presentation in the Work In Progress Seminars (WIPS), School of Engineering

and Informatics, University of Sussex, Brighton, UK. June 2015. Also in the

Multi-Service Networks (MSN15) workshop, Abingdon, UK. July 2015.

• M.Kheirkhah. Implementation of MultiPath TCP in Network Simulator-3. Pre-

sentation in the Multi-Service Networks (MSN14) workshop, Abingdon, UK.

July 2014.

• M.Kheirkhah and G.Parisis. Data Centre Networking and Storage: Challenges

and Our Current Research. Presentation in the Work In Progress Seminars

(WIPS), School of Engineering and Informatics, University of Sussex, Brighton,

UK. May 2014.

• M.Kheirkhah. Routing Domains in Data Center Networks. Presentation in the

Multi-Service Networks (MSN11) workshop, Abingdon, UK. July 2011.

1.3 Thesis Structure
The remainder of this thesis is structured as follows:

Chapter 2 provides an overview of the TCP and MPTCP protocols, including their

congestion controls. This is followed by an overview of the data centre problems and

existing solutions.

1.3. Thesis Structure 22

Chapter 3 presents our novel transport protocol, including the goals, challenges,

and benefits of MMPTCP in data centres.

Chapter 4 presents a high-level overview of our implementations within the ns-3

simulator; our implementation of MPTCP has also been presented in the Workshop on

ns-3 (WNS3 '2014) [21]. Showcasing our implementations through a series of simple

simulations follows this.

Chapter 5 describes our simulation setup, including traffic matrices, network

topology and simulation templates. Comparing MMPTCP with other existing trans-

port protocols in a wide variety of network scenarios follows this.

Chapter 6 concludes our research and discusses our future plans.

Chapter 2

Background

2.1 Introduction
Our novel transport protocol (MMPTCP) is based on the TCP and MPTCP protocols

and designed to operate in modern data centres, which provide dense interconnectivity

in the network. This chapter overviews concepts that are relevant to the design and

operation of the MMPTCP protocol.

This chapter is organised as follows:

• Section 2.2 presents an overview of the basic TCP and MPTCP functionality, fo-

cusing on TCP variants and multipath congestion control mechanisms.

The TCP variants described in this section are: Tahoe [22], Reno, NewReno [23],

SACK [24] and DSACK [25]. The aim of describing TCP variants is to explore

their effectiveness in various network conditions. For example, DSACK can po-

tentially operate more efficiently than TCP NewReno when packet reordering is

the norm. One of the challenges faced in designing MMPTCP is to deal with

packet reordering. The multipath congestion controls described in this section

are: Uncoupled-TCP [12, 26, 27], Fully Coupled [28], Semi-Coupled [12] and

Linked Increases [29].

• Section 2.3 overviews large-scale data centre architectures, operations and objec-

tives. This section focuses on data centre applications/services, network topolo-

gies, communication patterns and network environments.

• Section 2.4 starts with a discussion of the traffic concentration problem within

conventional data centre topologies and then explores solutions for mitigating it.

2.2. Transport Protocols 24

Such solutions are: localising traffic into racks, redesigning network topology

to provide full bisectional bandwidth between all pairs of servers, and dynamic

resource allocation. Providing full bisectional bandwidth in the network is a

desirable trait since it can potentially solve the traffic concentration problem to a

great extent.

• Section 2.5 reviews solutions to improve the overall network utilisation within

modern data centres, which provide full bisectional bandwidth between hosts.

These solutions are: MPTCP and Hedera (central flow scheduler). MPTCP is

a particularly appealing solution since its reaction time to network congestion

is much faster than Hedera. Thus, MPTCP is a better solution for dealing with

the dynamic nature of data centres. We then discuss the limitations of MPTCP

in the data centre context, which have essentially driven us to design our novel

transport protocol, MMPTCP.

• Section 2.6 overviews another area of research within data centres, which is

closely related to our research. It is related to short flows that contain dead-

lines in their flow completion time. The solutions considered in this section are

DCTCP [17] and D3 [18], both of which attempt to improve the flow completion

time of short flows and help them deliver their data before their deadlines. One of

the goals of MMPTCP is to allow short flows to deliver their data with a minimal

experience of congestion in their paths.

2.2 Transport Protocols

2.2.1 TCP Protocol

TCP is a transport layer protocol that operates on top of the network layer (e.g. Internet

Protocol) in the Open System Interconnection (OSI) model. TCP is the main trans-

port protocol in today’s Internet and provides reliable, in-order and error-checked data

transmission between two end-hosts connected to the Internet.

TCP achieves its reliability and in-order data transmission in a packet switch net-

work, in which packets can be delivered out-of-order, by assigning sequence numbers

to data segments. Data bytes carried in a segment can be identified by the TCP header’s

sequence number and by the data length field, indicating a sequence number of the first

2.2. Transport Protocols 25

byte and the length of data bytes respectively. That is, if a packet gets dropped/delayed,

the TCP receiver can easily detect the missing/delayed packet since the data should

be reconstructed in an orderly fashion in the receiver before it can be delivered to the

application layer.

TCP achieves its error-checked data transmission by a checksumming mechanism

in which an entire stream of data bytes in a packet can be validated by the receiver. If

even one part of the data bytes in a segment is altered, the receiver can easily detect and

discard this corrupted segment. To achieve this, the TCP sender calculates a checksum,

based on an agreed algorithm with the receiver, and places it in the checksum field of

the TCP header per sent data segment. The receiver then applies the same checksum

algorithm to validate the received data, and ensure that it has not been corrupted during

data transmission.

TCP supports two important end-to-end data transmission rate control mecha-

nisms: flow control and congestion control. The former mechanism prevents the TCP

sender from transmitting more bytes than what the receiver is willing to receive at one

time. As a result, the TCP receiver can prevent overflowing of its receive buffer. The

latter mechanism is designed to react to network congestion caused by buffer overflows

at bottleneck links in the network. The aim is to prevent further congestion when a loss

event is detected.

TCP uses window-based congestion control that support additive increase and

multiplicative decrease behaviour known as AIMD. TCP increases its sending rate

additively when no loss event is detected, and decreases it multiplicatively when a loss

event is detected [30, 12].

TCP’s AIMD algorithm is, in short:

• Each ACK 1increases window w by 1
w .

• Each loss decreases w by w
2 .

Additionally, TCP carries out an exponential increase, known as ‘Slow-Start’, at the

beginning of its data delivery and after any retransmission timeout event. TCP is al-

lowed to carry out a Slow-Start increase whenever the congestion window value is
1ACK refers to the ACK packet that is acknowledging a sequence number that has not been previously

acknowledged.

2.2. Transport Protocols 26

shorter than the Slow-Start threshold value (ssthresh).

The Slow-Start algorithm is, in short:

• Each ACK, when w < ssthresh, increases the w by one full sized segment size2.

2.2.1.1 Tahoe

Tahoe is one of the first versions of TCP proposed by Jacobson in 1988 [22] and solved

the well-known problem of TCP congestion control known as TCP congestion collapse.

This phenomenon involved TCP flows achieving extremely low throughput due to the

lack of built-in congestion control mechanisms in TCP.

The design of the TCP congestion control algorithm proposed by Jacobson is

based on a principle of conservation of packets: i.e. a packet can be placed into the

pipe3 only when an already sent packet exits the pipe, in order to achieve network sta-

bility. The conservation of packets principle refers to a condition in which a connection

is in a equilibrium state, meaning that the connection is in the steady-state condition and

running with a full window of data in transit [22]. Jacobson argued that by following

this principle the congestion collapse incidents would be eliminated.

TCP Tahoe incorporates a new parameter, the congestion window (cwnd), that

essentially controls the rate of data transmission and indicates the amount of bytes in

transit. This new parameter prohibits a TCP sender from transmitting more than a cwnd

worth of data even if permitted to do so by the receive window (rwnd).

TCP Tahoe also embodies three new algorithms into the original TCP [32]:

Slow-Start, Congestion Avoidance and Fast Retransmit.

Slow-Start. A TCP connection enters the Slow-Start phase upon connection es-

tablishment or after a retransmission timer is triggered. The core idea of Slow-Starting

is that a TCP sender begins its data transmission by probing the network; data trans-

mission starts with one full-size segment and increases exponentially for every round

trip time (RTT), i.e. cwnd starts with one MSS and is doubled per RTT.

Congestion Avoidance. A sender remains in the Slow-Start phase until its cwnd

2Maximum Segment Size (MSS) is the maximum size of payload that TCP allows to send. MSS
depends on the link layer’s Maximum Transmit Unit (MTU). The Ethernet network supports up to 1500
bytes MTU, which allows TCP to send 1460 bytes payload when the TCP option is not used.

3The pipe refers to a communication path between two endpoints of a TCP connection [31].

2.2. Transport Protocols 27

reaches a Slow-Start threshold (ssthresh). It then enters the congestion avoidance phase

during which the data transmission rate is increased linearly, i.e. cwnd is increased by

one segment per RTT, in order to prevent possible congestion en route.

Fast Retransmit. A sender stays in the congestion avoidance phase until a timeout

is fired or after it has received three duplicate acknowledgements (duplicate ACKs) for

the same TCP segment. In such cases, the sender infers that a segment has been lost,

retransmits the perceived lost segments, halves its ssthresh and resets its cwnd to one

MSS. Thereafter, the sender enters the Slow-Start phase to probe the network again and

refills the pipe until it reaches the new value of ssthresh.

The whole point of the Fast Retransmit mechanism is that when a TCP sender

receives a small number of duplicate ACKs for a lost segment, it retransmits the per-

ceived lost segment promptly without waiting for the retransmission timer, referred to

as Retransmission Timeout (RTO), to be triggered. In this way, a TCP connection can

achieve higher network utilisation and throughput than the earlier version of TCP [32].

RTO Calculation. Jacobson also proposed a modification to the RTO calculation.

In the early version of TCP [32], RTO is calculated based on Smoothed RTT (SRTT)

as follows:

SRT T = (α×SRT T)+((1−α)×RT T)

RTO = β ×SRT T

The parameter α is a smoothing factor with a suggested value of 0.8 or 0.9. The pa-

rameter β accounts for RTT variation with a suggested value of 1.3 or 2.0 [32].

Jacobson argued that constant β = 2 is only adopted to network loads of at most 30%; if

a network loads goes beyond 30%, the higher value of β is required in order to estimate

RTO accurately and prevent a single delayed packet needlessly triggering RTO (i.e. to

prevent spurious retransmission). The argument is thoroughly simple: the queuing de-

lay is increased as the network load is increased and so the constant β = 2 only supports

a small queuing delay variation. Jacobson’s proposal to address this issue is to adjust

the value of β dynamically as follows:

RTO = SRT T +K×RT TVAR

The parameter K is constant with a suggested value of 4 and RTTVAR is the mean

deviation of the RTT samples. If there is little difference between the sample RTTs

then the mean deviation of RTT samples effectively becomes zero (RTTVAR→ 0). In

2.2. Transport Protocols 28

such cases SRTT is a good approximation for calculating RTO. On the other hand, if

RTT samples show high variance (e.g. due to sudden surges of traffic), the RTO value

is increased accordingly and promptly.

The estimated RTO is capped with another parameter, the so-called ‘RTOmin’,

which is set by default to 200ms in Linux Kernel. This is a particular issue in networks

with extremely low RTT, such as data centre networks that support RTTs in the order

of microseconds. In such networks, a lost packet, which needs to be recovered through

a RTO, is recovered after a very long delay (e.g. three orders of magnitude higher than

the average RTT [33]). Decreasing the retransmission timer to a very small value may

improve the TCP loss recovery process, but it may also create spurious retransmissions

due to the queuing delays. Additionally, it is argued that the TCP clock granularity is

in the order of milliseconds in current operating systems such as Linux. That is, RTO

with a value of less than 5ms is not achievable [34].

2.2.1.2 Reno

TCP Reno, proposed by Jacobson as an extension of TCP Tahoe, introduces the Fast

Recovery congestion control mechanism. The idea of Fast Recovery is that after Fast

Retransmit is triggered, a TCP sender retransmits the perceived lost segments and

halves its congestion window (at this condition, TCP Tahoe resets its cwnd to one MSS

and enters the Slow-Start phase). The sender continues sending data in this phase upon

arrival of the new ACK (called a ‘recovery ACK’); the new ACK refers to the ACK

packet that is acknowledging a data sequence number that has not been previously ac-

knowledged. Thereafter, the sender enters the congestion avoidance phase.

During Fast Recovery, the sender inflates its congestion window for every received

duplicate ACK and only places new segments into the pipe when its sending window,

referred as a ‘usable window’, is not constrained by cwnd nor rwnd (i.e. in effect cwnd

should be larger than flight bytes and rcwnd should not be smaller than cwnd). In other

words, the sender must wait until half of duplicate ACKs have arrived before sending

outgoing packets based on incoming duplicate ACKs. This is because its cwnd has

already been cut by one half so needs to be re-inflated back to its original size before

duplicate ACKs can trigger the placement of new segments into the pipe.

TCP Reno assumes that each duplicate ACK reflects a packet which has left the

2.2. Transport Protocols 29

network and been stored in the receiver’s buffer. Hence, some space is freed in the

network; sending new segments according to the arrival of incoming duplicate ACKs

does not violate the conservation of packets principle. Thus, the sender prevents the

pipe from going empty after a congestion signal is received (i.e. after Fast Retransmit

is triggered) and maintains its ACK clock4 in order to improve connection throughput

and overall network utilisation.

TCP Reno’s Fast Recovery operation is a significant improvement to TCP’s loss

recovery, but is only efficient when a single packet gets dropped from a single window’s

worth of data; each lost packet can be recovered during one RTT. In other words, Reno

recovers from at most one packet drop per RTT. If multiple packets get dropped from

a window’s worth of data, Reno is not efficient as its loss recovery mechanism may

require several RTTs [31].

2.2.1.3 NewReno

TCP NewReno is an enhancement to TCP Reno’s loss recovery, in which multiple

packet drops of a single window can be recovered much faster without having to wait

for the retransmission timer to be triggered [23]. TCP NewReno modifies only the

sender’s behaviour during the Fast Recovery phase.

TCP NewReno categorises the new ACKs in the Fast Recovery phase as partial

and full ACK. A partial ACK is a new ACK that acknowledges a portion of packets

that were outstanding when Fast Retransmit was triggered. A full ACK is a new ACK

that acknowledges all outstanding segments when Fast Retransmit was triggered. The

key idea of partial ACK is that the sender should interpret it as an indication of a lost

packet and retransmit the next segments in line. Unlike TCP Reno, which exits from

Fast Recovery at this point, TCP NewReno stays in this phase until it receives a full

ACK; i.e. Fast Recovery ends only when all losses from a single window of data are

recovered. TCP NewReno exits Fast Recovery by resetting cwnd to ssthresh and enters

the congestion avoidance phase.

This optimisation obeys the conservation of packets principle and allows senders

to recover from multiple packet losses from a single window of data without waiting

4TCP supports the ACK clock congestion control where the data transmission is controlled by ACKs.
If a TCP sender loses its ACK clock due to heavy packet drops en route then it cannot place new segments
into the network since there is no ACK to trigger new segments.

2.2. Transport Protocols 30

for a retransmission timeout or re-entering Fast Retransmit. In other words, it pre-

vents multiple reductions in the congestion window size due to multiple packet losses

incurred in a single window of data. However, like Reno, it only recovers one lost

segment per RTT since the sender does not have any idea about which segments are

buffered in the receiver in order to deduce the lost segments precisely. In other words,

TCP NewReno becomes aware of multiple losses from a window of data as they are

recovered one by one via partial ACKs.

2.2.1.4 SACK

Selective Acknowledgement TCP (SACK TCP) is an alternative approach to TCP

NewReno. It aims to improve loss recovery when multiple packets are lost from a

window of data [24]. SACK does not change the underlying TCP congestion control

algorithm but only requires some changes in the Fast Recovery algorithm. It carries its

signalling information via a TCP option, the SACK option. SACK TCP provides the

senders with precise information about delivered segments, allowing the sender to make

correct decisions about which segments to retransmit when a loss signal is received, so

that it can effectively retransmit more than one segment per RTT.

The core idea behind SACK is that TCP segments are acknowledged cumulatively,

as in previous versions of TCP, but also selectively when the receiver observes non-

contiguous segments in its buffer. To achieve this behaviour, a receiver includes a

SACK option in each duplicate ACK it generates. A SACK option includes a number

of SACK blocks, where each block represents a non-contiguous set of data stored in

the receiver’s buffer. The first SACK block must report to the most recently received

out-of-order segment, which triggered this duplicate ACK, and the rest of the SACK

blocks repeat the most recently reported SACK blocks [31].5

During the Fast Recovery phase, a sender initialises a new variable called pipe,

which stores the estimated number of packets in transit. The main goal of this new

variable is to ensure the new data packets are placing into the network while preserving

the conservation of packets principle. A sender is allowed to send a new or retransmit-

ted segment only when cwnd is larger than pipe. Whenever it retransmits a segment

5Each SACK block occupies eight bytes from the TCP option that has 40 bytes space only, meaning
that only four SACK blocks can be reported in a single ACK packet, as a SACK option also occupies
two bytes for option identification. If a SACK option is carried with the Timestamp option [35], then
only three SACK blocks can be carried in a single ACK.

2.2. Transport Protocols 31

or sends a new segment, the pipe is incremented by one MSS. Whenever it receives a

duplicate ACK with a SACK option, the pipe is decremented by one MSS. SACK TCP

exits Fast Recovery similarly to TCP NewReno by receiving a full ACK.

2.2.1.5 DSACK

Duplicate Selective Acknowledgment TCP (DSACK [25]) is an extension of SACK

TCP and behaves in exactly the same way with one exception: duplicate segments are

also reported by the receiver in order to allow the sender to detect spurious retransmis-

sions. DSACK uses a SACK option that reports a duplicate segment in its first SACK

block. In order for the sender to infer a duplicate segment, the sender should compare

the ACK field of the duplicate ACK packet containing a SACK option to the sequence

space of the first SACK block [25]. If the cumulative acknowledgement field is higher

than the sequence space of the first SACK block, then the sender can safely conclude

that the reported segment in the first SACK block has been received more than once by

the receiver, and a spurious retransmission has therefore occurred.6 In such cases, the

sender can undo the unnecessary reduction in its cwnd by resetting ssthresh to the old

(before reduction) value of the cwnd, and Slow-Starting until cwnd reaches to the new

value of ssthresh.

A simple scenario of detecting a spurious retransmission due to a delayed packet

via DSACK is shown in Figure 2.1. In this example, segment 2 is reordered due to a

delay in the network, while segments 3 to 5 are received in the receiver. The receiver

generates three duplicate ACKs for segment 2 with a SACK option included. When

the sender receives those duplicate ACKs, it retransmits segment 2 and halves its cwnd.

After the last duplicate ACK is sent by the receiver, the delayed segment 2 arrives and

causes the receiver to generate a cumulative ACK for segment 5. When the retransmit-

ted segment 2 arrives in the receiver, it generates another duplicate ACK with a DSACK

option, signalling the sender that the received segment 2 has already been buffered. The

sender detects this signalling since the sequence number of ACK itself is higher than

the sequence space of the first SACK block.

6DSACK can be used to detect spurious retransmissions due to packet reordering, lost ACKs or early
retransmit timeouts [25]. In this thesis we are only concerned with detecting spurious retransmissions.

2.2. Transport Protocols 32

Sender Receiver

Seg 1

Seg 2

Seg 3

Seg 4

Seg 5

ACK 2

ACK 2; SACK 3

ACK 2; SACK 4,3

ACK 2; SACK 5,4,3

ACK 5

Seg 2

ACK 5; DSACK 2

Detection of spurious

retransmission

Segment transmission

Segment retransmission

Delayed segment

Cumulative ACK

Duplicate ACK

Figure 2.1: A simple scenario for the detection of spurious retransmissions via DSACK

2.2.2 MultiPath TCP

MultiPath TCP (MPTCP) is an extension of TCP [14]. It preserves all TCP semantics

such as connection-oriented, reliable and in-order data transmission, but offers the ex-

tra feature of parallel data delivery via multiple paths. As with TCP, the key success

of the MPTCP protocol arises from its congestion control mechanism, which aims at

preserving network fairness among competing flows at bottleneck links [36]. MPTCP

is backward compatible with the application layer, allowing applications to remain un-

aware of the existence of MPTCP in the underlying network stack.

MPTCP has been designed according to the resource pooling principle [37]. The

goal of resource pooling is to improve resource efficiency by viewing a collection of

resources as a single aggregated resource. This design principle allows various traffic

demands to be handled more efficiently from a pooled resource than from a number of

scattered resources, which would require careful traffic engineering to achieve a similar

performance [38]. In other words, any networking design that follows the resource

pooling principle significantly helps traffic engineering.

MPTCP follows the resource pooling principle by actively probing the network

in order to use any spare capacity in the network. MPTCP achieves this intelligent

behaviour via its multipath congestion controller, the so-called Linked Increases [29],

which effectively shifts traffic from congested to un-congested network paths. This

behaviour helps networks to accommodate concentrated surges in traffic and use all

2.2. Transport Protocols 33

available capacity efficiently. In effect, the MPTCP congestion controller takes on an

extra role that is normally associated with routing protocols, i.e. shifting traffic away

from congested links and preventing hotspot links in the networks. Furthermore, it

strengthens network resilience to failure in individual links/paths by shifting traffic

away from those areas, and hence improves overall network throughput significantly.

2.2.2.1 MPTCP Congestion Control

This section explores several multipath congestion control algorithms considered in

[36]. The main goal of this section is to obtain a better understanding of the design

principles of the MPTCP congestion control algorithm.

2.2.2.2 Uncoupled-TCP

Most prior work which attempts to run TCP over multiple paths use Uncoupled-TCP

[26, 39, 27]. The idea is that each subflow of a multipath flow uses TCP congestion

control independently from other subflows.

The Uncoupled-TCP algorithm is, in short:

• Each ACK on subflow (s), increases the window ws by 1
ws

.

• Each loss, decreases ws by ws
2 .

The only downside to this simple idea is that multipath flows could be excessively

aggressive to other competing flows, namely regular TCP flows, so that a multipath

flow may get more capacity than other competing flows at a shared bottleneck link.

This condition can be clearly imagined when multiple subflows of a multipath flow

compete for capacity at a shared bottleneck link. Thus, this solution is not generally

fair to competing single-path TCP flows at the bottleneck links.

2.2.2.3 Fully Coupled

Unlike Uncoupled-TCP, this algorithm is fair to competing TCP flows at the bottleneck

links. The key idea behind Fully Coupled is that a multipath flow must shift all its

traffic onto the least congested path, i.e. the paths with the lowest drop probability.

In this way a multipath flow would not get more than its fair share of capacity at a

bottleneck link and achieves resource pooling [28, 36, 40].

2.2. Transport Protocols 34

The Fully Coupled algorithm is, in short:

• Each ACK on subflow s, increases the congestion window ws by 1
wtotal

.

• Each loss, decreases ws by wtotal
2 .

Here wtotal is the summation of all subflows’ windows and ws is bound to be equal to

or bigger than one MSS.

A few issues of Fully Coupled is explored in [36, 40]. For example, it keeps little

traffic on congested paths so that when these become free of congestion, they cannot

be used in a short time frame. Another downside is that the transient fluctuation in

congestion tends to make Fully Coupled flap from one path to another. Finally, Fully

Coupled may pick an inefficient path when paths have significantly different RTTs, so

that it may shift all its traffic to a path with the lowest drop rate even though the RTT of

that path is significantly higher than others. Fully Coupled may achieve low throughput

in such cases as the TCP throughput is inversely related to RTT.

The intuition is that, the Fully Coupled algorithm can achieve optimal resource

pooling when the network is in the steady-state condition, but this can be violated if

network condition is highly dynamic, as in the case of the Internet. The issue outlined

above may then become apparent [40].

2.2.2.4 Semi-Coupled

This algorithm is an extension of Fully Coupled. The idea is that it is desirable to

shift most of the traffic from congested paths to less congested paths, as this behaviour

provides network fairness among competing flows at a bottleneck link and equalises

loss rate throughout the network [36]. However, keeping a sufficient amount of traffic

in congested paths for probing is also vital, as this allows multipath flow to effectively

use those perceived congested paths whenever they become free of congestion in short

periods of time. This algorithm only changes the increased part of AIMD [36]; the

decreased part remaining the same as in the TCP congestion control algorithm. It is

argued that network fairness can be completely preserved when both sides of AIMD

are coupled [41, 36]. Semi-Coupled is thus more relaxed on network fairness in order

to achieve better resource pooling (cutting an individual subflow’s window per loss is

2.2. Transport Protocols 35

more aggressive than cutting the total window per loss).

The Semi-Coupled algorithm is, in short:

• Each ACK on subflow (s), increases the congestion window ws by a
wtotal

.

• Each loss, decreases ws by ws
2 .

Here parameter a is a constant that controls the aggressiveness of multipath flow and

tries to maintain a reasonable amount of traffic on each path while shifting some to the

least congested paths [36]. The main shortcoming of this modification is that constant

a may not be an efficient choice in a wide range of network conditions. For example, if

a is very large then the Semi-Coupled performs similarly to the Uncoupled-TCP algo-

rithm. If it is very small, then the behaviour of the Semi-Coupled effectively becomes

similar to that of the Fully Coupled algorithm. Thus, dynamic adjustment of a based on

an explicit measurement of network conditions seems to be the right approach. In other

words, it is desirable to act like Uncoupled-TCP whenever paths are empty in order to

use network capacity efficiently.

2.2.2.5 Linked Increases

The MPTCP congestion control proposed in [36], known as Linked Increases or RTT

Compensator, tries to find an appropriate value for a as the network condition changes.

The value of a is calculated by considering RTTs and the window sizes of all subflows.

The Linked Increases algorithm is, in short:

• Each ACK on subflow (s), increases the congestion window ws by min(a
wtotal

, 1
ws
).

• Each loss, decreases ws by ws
2 .

The value for a can be calculated by the following formula:

a = wtotal
maxr (wr/rtt2

r)

(∑r(wr/rttr))2 (2.1)

Here maxr means the maximum value for any possible value of r, and ∑r means the

sum for all possible values of r.

2.3. Data Centre Networks 36

The main differences between Linked Increases and the Semi-Coupled algorithm

is the Linked Increases has a cap of 1/ws on its aggressiveness. This means that each

subflow of MPTCP cannot be more aggressive than TCP congestion control operating

on the same subflow, i.e. the window increase would not be more than one segment

per RTT in each subflow. This ensures that a MPTCP flow would not unduly harm

competing flows at a bottleneck link. The main reason to add this cap is that when

a MPTCP flow encounters a path with high RTT and low packet drop, it increases

its aggressiveness (a > 1) and behaves like Uncoupled-TCP in order to compensate

from that path with high RTT so that it can achieve high aggregated throughput. If

there is no cap, therefore, other paths, possibly those with low RTTs and packet drop

probability, may become extremely aggressive and unfair to other competing flows

at shared bottleneck links. Adding this cap thus ensures that a MPTCP flow is not

exceedingly harming other competing flows in such scenarios.

2.3 Data Centre Networks

2.3.1 Applications and Services

Data centres typically consist of tens of thousands of networked computers that pro-

vide services to cloud applications. Cloud applications have become an important part

of our day-to-day activities. Examples of such cloud applications are Gmail, Google

Search, DropBox, Hotmail and Facebook. Examples of such distributed services are

MapReduce [42], Hadoop [43], Google File System [44], Google Bigtable [45], Ama-

zon Dynamo [46] and Microsoft Dryad [47].

The main goal of any data centre design has been to provide an infrastructure that

is highly available, and offers highly performant computing and high capacity storage

while using cheap commodity hardware [17]. It has been claimed that the Google

search engine can respond to a single query in fraction of a second (e.g. less than 0.5s)

and the result is retrieved by coordinating more than 1000 servers simultaneously [48].

Today, many cloud services are required to exchange information with remote

nodes inside data centres to process with their local computations. For example, typical

MapReduce computations [42] require an all-to-all communication pattern between

servers inside a data centre, i.e. a subset of data centre servers must communicate with

one another simultaneously in order to transport the output of the ‘map’ phase before

2.3. Data Centre Networks 37

proceeding with its ‘reduce’ phase. Another prevalent example of a service requiring

such intra-domain communication is an online search query, which essentially requires

massive parallel communication with servers storing an inverted index in order to return

the most relevant results.

Intra-domain communications, which are rapidly growing, pose a major challenge

in today’s data centres as they are not designed to handle such communication pat-

terns. Facebook, for example, has stated that its intra-domain traffic is several orders of

magnitude larger than what goes out to the Internet [49].

Furthermore, services present different traffic patterns with different bandwidth

and communication requirements. Some applications are latency-sensitive, some others

are bandwidth hungry and others are both. Servers do not only run a single service; it is

common to have multiple services running on the same server. This implies that servers

need to handle diverse traffic matrices and unpredictable traffic patterns in which traffic

engineering becomes a very complex and challenging task, especially as the size of

data centres increases.

2.3.2 Network Topologies

A conventional data centre network topology typically consists of switches and routers

in a hierarchical tree structure of two or three levels, referred as a single-rooted tree.

The 3-tiered network topology has a core layer at the top, an aggregation layer in the

middle and an edge/access layer at the bottom of the hierarchical tree structure. A

2-tiered network topology consists of only core and edge layers. A 2-tiered network

topology can support up to 8K servers and a 3-tiered network topology supports more

than 10K servers, assuming that the core switches are equipped with more than 120

ports of 10Gbps [5]. The size of these topologies is constrained by the capacity pro-

vided in the network elements at the top tier of the topology.

Tree-like network topologies are common in data centres since they can be eas-

ily built, administered and expanded [49]. Figure 2.2 shows an example of a 3-tiered

design. In this topology, typically 20-40 servers are located in each rack, and are con-

nected to a Top-of-Rack (ToR) switch via 1Gbps links. ToR switches are connected to

Aggregation switches via 10Gbps links. Aggregation switches are aggregated further

up and connected to core switches via 10 Gbps links.

2.3. Data Centre Networks 38

20-40

Servers

Core switch

Aggregation switch

Top-of-Rack switch

1 Gbps

10 Gbps

10 Gbps

Agg

ToRToR

Agg

ToRToR

Agg

ToRToR

Core

Figure 2.2: Conventional data centre topology

Conventional data centre network topologies do not provide full bisection band-

width between all servers since core switches do not have a sufficient number of ports

to aggregate enough capacity to guarantee that all servers can communicate with one

another at their line rate at any point in time. Achieving full bisection bandwidth, al-

though possible, significantly increases deployment costs, even for small data centres.

Data centre owners prefer to design their networks with some oversubscription factors,

decreasing the total cost of the deployment.7

For example, if each rack in Figure 2.2 has five servers then those servers can com-

municate with one another via any traffic matrix at line rate since the provided capacity

in each tier of topology is equal or larger than the aggregated capacity in the host layer.

That is, the network provides full bisectional bandwidth among servers and all links

in the network have an oversubscription ratio of 1:1. However, in practice each rack

typically includes between 20 and 40 servers, and some have more. The links between

ToR and Aggregation switches may therefore have an oversubscription ratio of more

than 2:1 and between Aggregation and Core switches there may be an oversubscrip-

tion ratio of more than 8:1. In general by going up the topology, links have a higher

oversubscription ratio since the switches support higher statistical multiplexing.

7An oversubscription ratio of 1:1 means that the network can provide 100% of host bandwidth for all
communication patterns (full bisection bandwidth) and an oversubscription ratio of 5:1 means that the
network can only provide 20% of host bandwidth for some communication patterns [50].

2.3. Data Centre Networks 39

2.3.3 Traffic Patterns

Data centre traffic can be categorised into two distinct groups, as follows:

1. External traffic. Traffic flowing between computers connected to the Internet

and servers inside data centres; or traffic flowing between servers of different

data centres.

2. Internal traffic. Traffic flowing between servers inside a data centre. Most data

centre traffic today originates within data centres and is growing very fast. Intra-

data centre traffic can be further categorised into two distinct groups, as follows:

(a) Intra-Rack. Traffic flowing between servers connected to the same ToR

switch. Servers may be able to communicate to one another as fast as their

maximum line rate’s capacity.

(b) Inter-Rack. Traffic flowing between servers located in distinct ToR

switches. This type of traffic can be divided into two further categories,

as follows:

i. Traffic circulating between the racks of servers connected via the same

Aggregation switch.

ii. Traffic circulating between the racks of servers connected via a Core

switch.

In conventional data centres, traffic engineering can be very complex and difficult

to manage, especially when the networks are very large. Each of the internal traf-

fic patterns described above could be derived from different applications with various

bandwidth requirements. Thus, the location of applications/services is not typically

random; instead, it should be engineered very carefully, based on expected communi-

cation patterns [4, 5].

An example of an application that requires careful traffic engineering is web-

searching. Many large-scale online applications leverage partition/aggregate work-

flows [17], in which an aggregator node divides computations across many workers, so

that computations can be performed in parallel. The result of each computation can be

returned back to the aggregator simultaneously. The aggregator node combines these

2.3. Data Centre Networks 40

results and returns the final result to the requester [17]. Figure 2.3 shows the parti-

tion/aggregate workflow. The key traffic engineering challenge is that an aggregator

node has a deadline in its response time to a search query (e.g. as small as 200ms).

This implies that the workers may have to deliver their computation results to the ag-

gregator within a short timescale (e.g. as little as 10ms). Any delivery time higher than

the defined time from workers may cause the aggregator to discard the results, since

the aggregator has already returned the final result to the requester. This obviously

wastes network resources and CPU cycles, potentially resulting in lower quality search

results [17, 18, 13]. Thus, it seems essential to place aggregator and worker nodes in

the same and/or adjacent racks, thereby preventing congestion on network paths con-

necting these servers to a significant degree. Even light network congestion can result

in an increased queuing delay, increasing RTTs by two orders of magnitude [13]. As a

result, some flows may miss their deadlines.

Aggregator

(200-300ms)

Aggregator

(50-100ms)

Worker

(10-50ms)

Worker

(10-50ms)
...

...Aggregator

(50-100ms)

Worker

(10-50ms)

Worker

(10-50ms)
...

Request

Figure 2.3: The partition/aggregate workflow. Deadlines are showed inside round brackets.

2.3.4 Network Properties

Data centres provide special network environment that are distinct from other networks

connected to the Internet [51, 52, 53]. The main notable characteristics are listed below:

• Short flow dominance. The majority of flows in data centres are short flows,

whereas the minority are long flows. Notably, this minority contributes to the

majority of data volume. A recent data centre traffic analysis suggests that 99%

of flows are smaller than 100MB but more than 90% of data volume comes from

2.3. Data Centre Networks 41

flows whose size is between 100MB and 1GB [4]. Another traffic analysis shows

that the majority of short flows with tight deadlines have a flow size smaller than

1MB (e.g. the query/response flows have a flow size smaller than 50KB [18]),

and the long flows have flow size distribution of between 1MB and 50MB. It has

also been reported that the majority of data comes from flows with size bigger

than 10MB [17].

• Small and high variance inter-arrival time. The median inter-arrival time for

flows at servers is typically less than 30ms [51]. A detailed traffic analysis sug-

gests that the inter-arrival time of the 99th percentile of the query/short flows are

around 500ms and the 75th percentile is around 250ms. The 99th percentile of

the long flows is around 20s, the 90th percentile is less than 8s and the 50th per-

centile is 0ms ([17], Figure 3(b)). These results indicates that the long flows have

a very high variance and heavy tail inter-arrival time with embedded spikes.

• Traffic patterns. These are diverse, highly volatile and very bursty [4, 5, 17, 13,

54], which features, taken together, may create transient congestion throughout

the network, regardless of available network capacity. Preventing transient con-

gestion seems a very challenging task in data centres due to the unpredictability

of traffic surges, the lack of any proper traffic diffusion mechanism, and path

diversity in some parts of the network topology (e.g. the access layer).8

• Low latency. Latency between servers is in the order of microseconds. A data

centre traffic analysis suggests that the typical latency between servers is between

100 to 250µs in the absence of queuing delay and between servers connected to

the intra-rack and inter-rack respectively [17, 18, 13].

• High Bandwidth. The link rate between switches is typically 10Gbps and be-

tween servers and switches is 1Gbps. However, this trend is changing as 10Gbps

Ethernet switch is becoming commodity [55]. This implies that the server-switch

links is shifting to 10Gbps and the switch-switch links is shifting to 40Gbps or

100Gbps.

8One of our goals in this thesis is to decrease the bursty nature of data centres; a detailed discussion
of this can be found in Chapter 3.

2.4. Traffic Concentration Problem 42

• Single administrative domains. Servers located inside a data centre can com-

monly trust each other [18] so there is no need, for example, to deploy any Mid-

dlebox or FireWall inside a data centre. Middleboxes can interfere with the oper-

ation of a TCP connections by, for example, removing TCP options from packets,

if the options are not known to them. This implies that any TCP-based transport

protocol, such as MPTCP [3], which uses a TCP option for carrying its signalling

messages, could be interrupted or corrupted by Middleboxes.

• Multipath Communication. Modern data centres provide dense interconnectivity

in the network so that servers can communicate with one another via multiple

paths. This feature potentially increases the network availability and robustness

in case of the network component failures, which is norm rather than exception

in the large-scale data centres.

2.4 Traffic Concentration Problem

As has been said earlier, full bisection bandwidth between any pair of servers is not

common because of the high cost and hardware limitations at the top level of the single-

rooted tree topology. It is argued [3] that conventional data centre architectures are

sufficient to handle the traffic in and out of data centres, but insufficient for intra-data

centre traffic. Such traffic comes from the increasingly popular bandwidth-hungry ap-

plications such as video streaming or online file storage. Thus, some paths might be

persistently congested due to a lack of path diversity in the network topology, and a

lack of multipath support in routings, e.g. Open Shortest Path First (OSPF) routing,

and transport protocols (e.g. TCP), to handle diverse traffic matrices more efficiently.

Network congestion occurs at network links but TCP reacts to it by changing its

flow rate end-to-end; TCP halves its congestion window each time a packet is dropped.

This behaviour not only introduces a negative effect on the throughput of individual

flows, but can also hurt the flow completion times of some latency-sensitive applica-

tions. Additionally, TCP’s reaction to congestion, which originates from a single link

en route, is to decrease its data transmission rate. This may lead to the underutilisation

of some other potentially uncongested links.

2.4. Traffic Concentration Problem 43

2.4.1 Localising Traffic into Rack

The simplest approach to controlling traffic concentration is to install services into

servers connected to the same ToR switch. For example, cloud services that produce

long-lived flows are located in servers that are geographically close to each other. The

obvious result of this design is to prevent long-lived flows, which are a major cause of

persistent congestion, traversing the core layer. This way, not only can the long-lived

flows complete their task faster, but the network core does not get overly congested.

In order to concentrate traffic into racks, a Virtual-LAN (VLAN) is usually defined

for each service. This brings some nice features to the network. For example, services

can achieve nice traffic segregation from one another and the scope of traffic-flooding

in a layer-2 domain can be controlled [55, 56, 51, 57]. This approach is not without

limitations. For example, network administrators are required to pre-allocate enough

servers for a service to deal with difficult-to-predict traffic spikes. Sometimes the traf-

fic demand of a service can suddenly increase to the point where some servers from

adjacent racks or elsewhere in the network need to be allocated to that service. This

means that VLAN trunks must be configured manually throughout the network in order

to extend a VLAN across it9. Furthermore, at times of low demand, reserved servers

may be idle, wasting valuable network resources.

Lack of flexibility in traffic management and network configuration prevents the

localisation of traffic becoming a comprehensive solution to the traffic concentration

problems, especially when a data centre network is very large.

In the next two sections, we explore alternative solutions to the traffic concentra-

tion problem, which not only attempt to eliminate it, but also help traffic engineering

and allow a very large and resilient data centre network to be constructed cheaply.

2.4.2 Full Bisection Bandwidth Topology

The latest data centre network architectures provide very high aggregate intra-domain

bandwidth mainly to solve the traffic concentration problem. The design of VL2 [4]

and FatTree [5] is based on the hierarchical tree structure topology, referred as multi-

rooted topology. A relatively small number of high-end core switches at the top level of

the data centre topology are replaced by several lower-capacity commodity switches.

9VLAN trunk allows multiple VLANs multiplexes to a single switch port.

2.4. Traffic Concentration Problem 44

BCube [6] and DCell [7] are designed based on hypercubes. Both depart from the

hierarchical tree approach.

All these new network topologies provide full bisection bandwidth between all

servers in the network. This means that a server should theoretically be able to com-

municate with any other server located anywhere in the network with the maximum

capacity of its network interface device.

2.4.2.1 FatTree

FatTree proposes scaling out the network resources at the top level of the tree structure

instead of scaling them up [5]. In other words, it attempts to increase network resources

by increasing the amount of hardware instead of increasing the capacity of the currently

deployed hardware; the latter is an expensive approach.

Figure 2.4 shows a k-ary FatTree data centre topology. Each switch has k ports;

there are k pods, each containing k switches organised in two layers of k/2 switches.

There are (k/2)2 core switches organised in group of k/2 switches. Each edge switch is

directly connected to k/2 hosts and k/2 aggregation switches on the top. The remaining

k/2 ports of each aggregation switch are directly connected to k/2 core switches. Each

core switch has one connection to each pod.

Group 2Group 1

1 Gbps

1 Gbps

1 Gbps

10.0.1.2 10.2.0.2 10.3.1.310.3.0.3

Pod 0 Pod 1 Pod 2 Pod 3

Cores

Aggrs

ToRs

Hosts

K = 4

Pods = K

Cores = (K/2)2

Aggrs = (K/2)*Pods

ToRs = (K/2)*Pods

Hosts = (K^3/4)

10.0.1.1

10.0.3.1

2

2

0

121

1

3 2 3

0 1 0 1 0 1

2 3 2 3

10.2.0.1

10.2.2.1

10.4.2.1 10.4.2.210.4.1.1 10.4.1.2

Figure 2.4: A FatTree network topology with 16 nodes

A k-ary FatTree provides total hosts of k3/4 and total equal-cost paths of (k/2)2

between all servers communicate via the core layer.10 For example, in 4-ary FatTree,

10OSPF2 is a common routing protocol in data centre networks and its metric for calculating equal-
cost paths to a destination is typically the hop-count [58].

2.4. Traffic Concentration Problem 45

the total number of hosts is 16 and the total number of equal-cost paths is 4 for those

servers communicate from distinct pods.

All links in a FatTree topology have identical capacities (1Gbps) and all switch-

ing/routing elements are identical. This is the main reason a FatTree topology is much

cheaper than conventional data centre topologies that require high-end switches at its

top layer.

FatTree designers considered some commodity switches that did not support

Equal-Cost Multi-Path (ECMP) [9] technology on top of the OSPF2 routing [58]. With-

out ECMP, all path redundancies present in a FatTree cannot be used. To solve this

issue, a new network-addressing scheme and routing mechanism have been proposed

in order to diffuse traffic similarly to ECMP [5].11 The FatTree addressing for different

network elements located at different layers of the topology, are as follows:

• Core switches. IP address of switches at the core layer have a pattern of 10.k.j.i,

where k denotes the number of switch port, j denotes the group a core switch

belongs to (e.g. k-ary has two groups of k/2 core switches) and i denotes the

location of the core in the group (left to right, starting from 1).

• Intermediate switches. The IP address of switches in a pod has an addressing

pattern of 10.pod.switch.1, where pod indicates the pod number, switch indicates

the position of that switch in the pod (starting from left to right, bottom to top).

• Hosts. The IP address of hosts has an addressing pattern of 10.pod.switch.ID,

where ID is the host position in the subnet starting left to right.

This IP addressing scheme can be used with any routing mechanism, e.g. OSPF-

ECMP routing. The key advantage of this scheme is that each networking element

(hosts and switches) can simply infer the location of any other networking element via

its IP address.

2.4.2.2 VL2

VL2 topology is very similar to FatTree. VL2 attempts to solve the traffic concentra-

tion problem discussed in Section 2.4. In VL2, the links between Aggregation and Core

11A detailed discussion of how their new routing mechanism operates can be found in [5].

2.4. Traffic Concentration Problem 46

switches form a complete bipartite graph, i.e. each Aggregation switch has a connec-

tion to every Core switch, as shown in Figure 2.5.12 VL2 supports extremely dense

interconnection in the core layer, which makes the topology look like a mesh rather

than a tree structure.

...

ToRToRToRToRToRToRToRToRToRToRToRToR ToRToRToRToR

Core 1

Agg Agg Agg Agg Agg Agg

Core 4

Agg Agg

20 Servers

10 Gbps

10 Gbps

1 Gbps

Figure 2.5: A VL2 network topology with 320 nodes

Similar to conventional data centre topologies, VL2 includes racks of 20 servers

connected to Top-of-Rack (ToR) switches via a 1Gbps links. ToR switches are con-

nected to two aggregation switches via uplinks of 10Gbps. Finally each aggregation

switch is connected to every core switch via a 10 Gbps link.

VL2 permits any cloud service to be installed on any server located anywhere in

the network. To achieve this goal, VL2 uses a flat addressing scheme and separates the

server IP addresses (the so-called Application Address - AA) from its locations (the

so-called Location Address - LA). The LAs are in the same IP subnet and include all

switches (e.g. 10.0.0.0/8 subnet). The AAs are in a distinct IP subnet and include all

hosts (e.g. 20.0.0.0/8 subnet). The edge switches are the bridge between LAs and AAs.

Hosts locate each other via a central directory service, which holds a mapping between

AAs and LAs. The routing protocol in LAs is OSPF2-ECMP.

Unlike in FatTree, servers in VL2 are involved in packet forwarding since VL2

uses Valiant Load Balancing (VLB) to route its traffic.13 The core idea in VLB routing

is to route packets via two randomised stages so that a packet can reach its destination

via two randomised paths. The first random path is from a source node to an interme-

12In FatTree, each Aggregation switch has connections to a group of core switches.
13VLB is also referred to as two-phase routing or randomised load-balancing.

2.4. Traffic Concentration Problem 47

diate node, and the second random path is from an intermediate node to a destination.

VLB is agnostic to traffic matrices since the two-stage per-packet forwarding

erases the traffic pattern, so different traffic patterns can be disseminated throughout

the network in the same manner [59, 60].

VLB on per-packet basis is widely used in router switch fabrics in order to remove

the need for a centralised scheduler [60], and hence improve their scalability. But in

VL2, it has been adopted to be performed on per-flow basis as to prevent reordering of

the TCP packets. However, the two-stage routing approach with per-flow forwarding

still seems to provide a fine-grain randomisation between flows in data centres and is

a well-suited approach for dealing with the volatility of traffic patterns in today’s data

centre networks.

In order to achieve per-flow, two-stage routing, VL2 proposed using multiple IP

encapsulations via the hashing of standard five-tuple. That is, each packet has a multi-

ply encapsulated IP header. A packet’s first destination is a random core switch. When

it arrives, it will be de-capsulated and forwarded towards the next destination address,

which is a ToR switch of the final destination. In turn, a packet will be switched from

that ToR switch to the destination server.

VLB not only achieves randomisation by utilising two-stage routing but also by

using ECMP; the packets will be routed from a server to a random core switch (inter-

mediate node) and from there to destination ToR switches via ECMP routing.

ECMP is an option that can be enabled on router or layer-3 switches, on top of

a link-state routing protocol such as OSPF2. The link-state routing protocol provides

a set of equal-cost paths in a given subnet and ECMP makes a forwarding decision.14

ECMP takes this decision as follows: when a packet with multiple candidate paths

arrives, it first calculates a hash of the standard five-tuple (src IP, dst IP, src port, dst

port, protocol number), then uses a modulo operation between the hashing result and the

number of candidate paths to the next hob; thus splitting the load to each subnet across

all possible paths. If the number of equal-cost paths remains unchanged throughout

the data delivery of a flow, ECMP thus forwards all a flow’s packets via the same path,

thereby maintaining their arrival order.

The key limitation of two-stage routing in VL2 is that all traffic that is not destined

14In a link-state routing each layer-3 switch has the knowledge of the entire network topology.

2.4. Traffic Concentration Problem 48

to the same ToR switch bounces the core layer and routes back to the destinations, even

though the source and destination are connected to the same aggregation switch. This

behaviour may create some unnecessary congestion in the core layer of the network.

Furthermore, it has been argued that per-flow VLB becomes effectively equivalent to

per-flow ECMP [8].

A key limitation of ECMP is that two or more large and long-lived flows can col-

lide on their hash and end up on the same link [8], creating a preventable network

congestion. In other words, ECMP cannot provide disjoint paths between flows.

In VL2, the number of these elephant flows should be more than 10 to create

congestion at the core/aggregation layer since the links in those layers are 10 times

faster than the links in the edge layer. However, in a topology like FatTree that has

1Gbps capacity for all links, two long-lived flows alone are enough to create heavy

congestion in any link anywhere in the network.

VL2 and FatTree offer nice features to the data centre network such as scalabil-

ity, fault tolerance, agility and full bisection bandwidth. However, the key question

remains: does VL2 or FatTree completely solve the traffic concentration problem?

Even though these topologies provide full bisection bandwidth in the physical

layer, the networking protocols such as OSPF-ECMP and TCP, which are principally

designed to operate on a single path, fail to effectively use these large capacities. The

traffic concentration problem might therefore still occur, which not only wastes net-

work resources but also degrades overall network performance in the presence of large

aggregated capacity in the network.

In the next section, we discuss some other solutions for solving the traffic concen-

tration problem which takes approaches other than providing a full bisection bandwidth

topology. The belief common to these solutions is that providing a full bisection band-

width seems overkill since not all servers in large-scale data centres require high ca-

pacity communication, and hence large aggregated capacity in the core of the network.

This implies that a full bisection bandwidth topology is a waste of network resources

and money [3, 61, 62].

2.4. Traffic Concentration Problem 49

2.4.3 Dynamic Capacity Allocation

In the previous section, we discussed FatTree and VL2 topologies which attempt to

solve the traffic concentration issue by leveraging new network topologies which pro-

vide dense connectivity in the backbone of the network, as well as full bisection band-

width between any pair of servers.

In this section, we explore different approaches for mitigating the traffic concen-

tration problem. The main motivation in these approaches is that the full bisection

bandwidth solution is an overkill approach. Given that only a few servers in the entire

data centre are responsible for causing the traffic concentrations, there is no need to pro-

vide very large aggregated capacity in the network core only for that small subset that

runs a traffic matrix which requires high capacity communication [62, 61, 12]. Further-

more, commonly used networking protocols, such as ECMP and TCP, are not capable

of efficiently using the available capacity in a full bisection bandwidth topology [8, 12].

Flyways [62] and c-Through [61] attempt to solve the traffic concentration prob-

lem by providing on-demand extra capacity between ToR switches, which are handling

long-lived flows. A clear intuition for both approaches is that the non-uniform traffic

matrices, which originate from a few servers running long-lived flows, are better to be

handled by the non-uniform network topology than the full bisection bandwidth topol-

ogy. In other words, the full bisection bandwidth topology provides unnecessarily high

capacity between all pairs of servers because only a few pair of servers require such a

high capacity communication.

These solutions do not change the conventional data centre network topology,

meaning that other existing problems inherent in a conventional topology, such as scal-

ability, fault tolerance and network agility [4], are still present. Similar to the full bisec-

tion bandwidth approach, these solutions partly solve the traffic concentration problem;

perhaps with more limitations. We further discuss these matters in the next subsections.

2.4.3.1 Flyways

The design of Flyways [62] is based on the observation that only a few ToR switches

typically communicate with one another extensively at any point in time. In other

words, a subset of ToR switches is handling long-lived flows at any point in time. If

this pattern of communication can be detected, some short-cut links between those ToR

2.4. Traffic Concentration Problem 50

switches can be set up, so that a part of the traffic between those ToRs can be re-routed

into these short-cut links. Thus, these short-cut links prevent long-lived flows from

traversing several links in the network core.

In order to detect these hotspot ToR switches, Flyways proposes a central con-

troller that monitors the traffic on all ToR switches via Simple Network Management

Protocol (SNMP) [63]. When the central controller detects a hotspot ToR switch, it

establishes a wireless connection between the hotspot ToR switches and re-routes part

of their traffic via this extra capacity.

Flyways proposes installing a wireless radio of 60 GHz on top of each ToR switch,

which provides up to 1Gbps capacity. Full capacity between two wireless radios can

be achieved only when a path between two wireless antennas is in line of sight and not

more than 10 metres away. In conventional data centres, 10 metres cover a significant

number of racks/ToR switches, but not all. For example, one ToR switch may need to

communicate with another one that is out of its wireless coverage. This limitation is

shown in Figure 2.6, the red wireless access point cannot reach to the rightmost wireless

access point. Furthermore, detecting hotspot ToR switches and establishing wireless

links between them introduces a significant delay, which imposes a limit on the number

of traffic matrices that can be supported. Only long-lived and loosely synchronised

flows can therefore effectively use these surplus capacities.

1 Gbps

10 Gbps

Agg

ToRToR

Agg

ToRToR

Agg

ToRToR

Core Hotspot switch

Figure 2.6: Flyways

Flyways can also be implemented via wired links. Flyways proposes connecting

ToR switches via commodity switches with a large number of 1Gbps ports. This solu-

tion entails less delay than the wireless link scenario but has its own limitations. For

2.4. Traffic Concentration Problem 51

example, the number of ToR switches that can communicate with one another merely

depends on the number of switch ports.

2.4.3.2 c-Through

C-Through [61], like Flyways, attempts to overcome the traffic concentration problem

via short-cut links in the conventional data centre topology. The c-Through idea is to

interconnect a large variety of ToR switches via an optical switch, as shown in Figure

2.7. C-Through is quite similar to the wired version of Flyways.

An optical switch provides a very large dedicated capacity between a pair of ToR

switches by establishing an optical circuit. In other words, a pair of ToR switches can

be connected via a dedicated communication channel, which provides full bandwidth

of the channel over the course of the communication session.

An optical switch establishes the circuits in sequence. At any given point in time,

only one pair of ToR switches can communicate; one circuit at a time is established

between consecutive pairs of ToR switches. As can be seen in Figure 2.7, the leftmost

ToR can only communicate simultaneously with the rightmost ToR. This implies that

some traffic matrices which require all-in-all communication patterns, such as MapRe-

duce data processing, are not suited to optical switches since establishing a circuit in-

troduces significant delays that MapReduce and similar traffic patterns cannot tolerate.

1 Gbps

10 Gbps

Agg

ToRToR

Agg

ToRToR

Agg

ToRToR

Core Hotspot switch

Optical Switch

1 Gbps1 Gbps

Figure 2.7: c-Through

In c-Through, the optical network is separated from the base network using a sep-

2.5. Equal-Cost Multi-Path Routing 52

arate VLAN. That is, latency-sensitive and highly-synchronised traffic can be handled

from the base network and traffic matrices that are bandwidth hungry, loosely synchro-

nised or bulk data transmission, such as virtual machine migration, can be handled from

the optical network and with high data transmission (e.g. 1 Gbps).

There are several limitations to the c-Through approach. For example, optical

switches are very expensive, their energy consumption is very high and they can only

support a limited number of switch ports (e.g. up to 320 ports of 1Gbps) [61]. Similarly

to Flyways, the limitation on the switch port number makes this solution appropriate

to a small variety of communication patterns. Finally, the circuit establishments and

reconfigurations introduce some overheads and delays, which make this approach well-

suited only to a small number of traffic matrices.

2.5 Equal-Cost Multi-Path Routing
Modern data centres, such as VL2 [4] and FatTree [5], shift their architecture from

a single-rooted to a multi-rooted hierarchical tree structure [8]. This provides dense

connectivity as well as full bisection bandwidth between all pairs of hosts [55, 5, 4].

However, commonly-used routing protocols in data centres are designed to select a

single optimal path for each flow. Even state-of-the-art forwarding mechanisms such

as Equal-Cost Multi-Path (ECMP) [9], which stripe flows across available paths, can

only partially prevent persistent congestion.

The limitation of ECMP is due to its static flow-base hashing in which traffic is

randomised without considering traffic matrices and network conditions. Thus, long-

lived flows may be placed in already loaded links although there could be lightly

loaded links elsewhere in the network [8, 12]. In other words, ECMP may oblivi-

ously place several long-lived flows into the same link, resulting in the overloading of

switch buffers and the lowering of overall network utilisation. This limitation is high-

lighted in Figure 2.8. The first collision is between two long-lived flows (A and B) at

an output link of Agg-1. The second collision is between two long flows (C and D) at

an output link of Core-3. The result of these collisions is that all four flows achieve

a half in their maximum theoretical throughput (i.e. 500MB instead of 1Gbps), even

though they could simply achieve 100% throughput; if Flow-A uses Agg-2 and Flow-C

uses Agg-7.

2.5. Equal-Cost Multi-Path Routing 53

Flow A

Flow B

Flow C

Flow D

Collision
Core 3

Agg 1

Core 1 Core 2 Core 4

Agg 2 Agg 3 Agg 4 Agg 5 Agg 6 Agg 7 Agg 8

ToR 1 ToR 2 ToR 3 ToR 4 ToR 5 ToR 6 ToR 7 ToR 8

Figure 2.8: ECMP hash collision. Flows A and B are collided on an outgoing link of Agg-1;
Flows C and D are collided on an outgoing link of Core-3. Each flow thus gets a
half of its maximum connection throughput.

In this section, we discuss Hedera [8] and MPTCP [12], two approches that ef-

fectively complement ECMP routing. These approaches compensate for ECMP’s lim-

itations, and hence improve overall network utilisation. The common ground of both

approaches is to balance traffic dynamically and intelligently by actively monitoring

network conditions so that traffic can be removed from highly loaded paths/links and

placed in lightly loaded paths/links. The main difference between the two solutions

is that MPTCP detects and reacts to congestion on a per-path basis, whereas Hedera

reacts per-link.

2.5.1 Central Flow Scheduler

Hedera [8] attempts to improve the overall network throughput by employing a cen-

tral load-aware scheduler, which dynamically and adaptively balances long-lived flows

across multi-rooted tree topologies. The main job of the central scheduler is to detect

and re-route the long-lived flows from highly-loaded to lightly-loaded links, if possible.

The central scheduler has a control loop consisting of three main steps. First, it

collects statistics from all switches, essentially measuring the utilisation of all links

in the network, so that the central scheduler has knowledge of all the network link

utilisations. That is, it can simply detect the long flows at the ToR switches. It then

uses placement algorithms to find alternative paths for those long flows. Finally, it

2.5. Equal-Cost Multi-Path Routing 54

re-routes the traffic by installing new paths on the programmable switches, such as

OpenFlow switches [11]).

Hedera detects long flows when a flow exceeds a pre-defined threshold rate of

100Mbps at a ToR switch (i.e. 10% of each host’s link rate), so an alternative path for

that flow may be offered. If a placement algorithm offers a new path, the routing table

of all switches along that path is modified.

Hedera’s fundamental constraint is that the central scheduler is limited in its reac-

tion time, since it has to gather statistics, compute and finally instantiate new paths, all

in a very short timescale [12]. The central scheduler’s reaction time is intrinsically in-

creased when the total number of long flows is increased; this is particularly crucial in

large-scale data centres which need to accommodate more than 100K servers handling

a vast number of long flows at any point in time.

Hedera categorises network flows in two groups: host-limited and network-limited

flows. The performance of a network-limited flow is only limited by the network con-

gestion in its assigned path; if there is no congestion, then a network-limited flow po-

tentially saturate its network interface device. Performance bottlenecks of host-limited

flows mostly originate from limitations on hosts in a connection, e.g. those imposed by

disk speed, memory or CPU processing.

Hedera’s placement algorithms only schedule network-limited flows and ignores

other flows. Additionally, it assumes that scheduled flows onto lightly loaded links are

capable of saturating those new links over time. However, both assumptions can be

infringed by host-limited flows [12].

To be a host-limited flow neither implies a long-lived flow nor the production of

the persistent congestion in the network. In other words, host-limited flows can be long-

lived and create persistent congestion in their paths, although they can be hidden from

the central scheduler since they may never exceed the scheduling threshold rate. That

is, they may collide with scheduled flows or new long-lived flows, creating persistent

congestion on those paths until the scheduler detects this and reacts by rerouting long-

lived flows away from those paths, hurting the overall network throughput.

Hedera has shown performance improvement in FatTree data centre topologies

under the following assumptions: all flows in the data centre are network-limited, their

sizes are exponentially distributed, and their arrivals follow the Poisson process [12, 8].

2.5. Equal-Cost Multi-Path Routing 55

However, data centre traffic analyses show that flow distributions are not exponen-

tially distributed [4]. In such cases, it has been argued that the scheduler needs to run

much faster than Hedera’s suggestion of 5 seconds in order to deal with flow arrivals

effectively [12]. In other words, the scheduler needs to detect and mitigate possible

congestion in a very short timescale in the high bandwidth and low-latency networks,

where traffic patterns are diverse, volatile and unpredictable.

It has also been shown that Hedera, with a scheduling circle of 500ms, can only

achieve similar performance to randomised load-balancing mechanisms [12].

2.5.2 MultiPath TCP

It has been argued that single-path TCP is not well-suited in multi-rooted network

topologies that provide dense interconnectivity in the network core [12]. MPTCP es-

sentially offers an alternative solution to the central load-aware approach (Hedera [8]).

The key advantages of MPTCP compared to Hedera are as follows:

• Reaction Time: MPTCP responds to network congestion in a few RTTs (i.e. in

order of microsecond). Thus, MPTCP seems well-suited for dealing with the dy-

namic nature of large data centres, which have diverse, volatile and unpredictable

traffic patterns [4, 3, 12]. It has been shown that Hedera needs to run every 100ms

or less in order to achieve performance close to that of MPTCP [12].

• Decentralised. MPTCP inherits the distributed and reactive nature of the TCP

protocol. It delivers data on different paths and responds to congestion across

those paths end-to-end. This implies that MPTCP does not suffer from scalability

limitations nor the existence of a single point failure, which are inherent in any

centralised approach. The distributed and reactive nature of MPTCP is vital for

data centres since it is almost unfeasible for any central scheduler to have precise

information about all flows due to the highly dynamic nature of data centres.

This implies that any network scheduling scheme must work with less precise

information about the actual network condition at the time of scheduling [64].

• Intelligent load balancing. Unlike Hedera, MPTCP detects/reacts to congestion

by adjusting/balancing its traffic across its subflows. In other words, MPTCP can

2.5. Equal-Cost Multi-Path Routing 56

consistently achieve high throughput for host-limited and network-limited flows

as it responds to congestion when they are detected.

It has been shown that the performance improvement of MPTCP also depends on

the network topology. For example, MPTCP performs only slightly better than TCP

in VL2 topologies, but significantly better in FatTree and BCube ones [12]. MPTCP

slightly outperforms TCP in VL2 because links between switches are 10x faster than

between hosts and switches. That is, VL2 handles ECMP collisions more gracefully.

Additionally, data centres have low statistical multiplexing for the long-lived flows [17,

4], so congesting the network core of VL2 need at least 11 long-lived flows competing

at a bottleneck link.

Replacing TCP with MPTCP is not a straightforward process since all applications

in the current data centres are designed within a TCP mindset and are unaware of the

existence of MPTCP. That is, they cannot dictate whether to use MPTCP or TCP based

on their communication requirements. Furthermore, data centre analysis showed that

the majority of flows in data centres are short and contain only a few packets [17, 4].

In Section 1, we presented a simulation to highlight that a large MPTCP flow with

eight subflows is sufficient to improve the overall network performance significantly

in modern data centres [12]. However, it is problematic for running short flows as it

damages their flow completion times. The fundamental problem is quite simple: when

a MPTCP flow with eight subflows is being used for a short flow with only a few packets

then the data is delivered in a few RTTs. This means that the congestion window of

each subflow may only increase by as little as a few segments. In such cases, even if

a single packet gets dropped from a subflow, the loss recovery may only need to be

performed via a retransmission timer since there are not enough packets in flight to

generate enough duplicate ACKs to trigger the fast retransmission mechanism.

We find ourselves at an impasse: MPTCP is damaging short flows while a ma-

jority of data centre flows are short-lived [4, 3]. However, MPTCP is better-suited to

dealing with the dynamic nature of data centres than single-path TCP, which needs to

be complemented with a slow central scheduler.

This deadlock becomes one of our incentives to design our novel transport proto-

col, named MMPTCP, with the intention of complementing MPTCP and allowing it to

operate well with any type of flows.

2.6. Short Flow and Deadline 57

2.6 Short Flow and Deadline

2.6.1 DCTCP

Data Center TCP (DCTCP) is an extension of TCP with a novel congestion control

mechanism [17]. The main goal of DCTCP is to keep buffer occupancy of data cen-

tres’ switches low. That is, latency-sensitive flows can be handled without excessive

queuing delay or timeout when competing with long-lived flows at a shared bottleneck

link.15 Long-lived flows are the main reason for a switch’s buffer occupancy and hence

queuing delay. DCTCP attempts to maintain low-buffer occupancy without excessively

hurting the throughput of long-lived flows. As a result, the surge of traffic, especially

from synchronised short flows, into a single output port of a switch, can be handled

to a great extent. In effect, DCTCP allows a greater fraction of latency-sensitive/mice

flows to meet their deadline than legacy TCP, by experiencing fewer queuing delays

and costly packet losses, which can lead to timeouts.

DCTCP assumes that data centre switches support a simple Active Queue Man-

agement (AQM), such as RED [65], with Explicit Congestion Notification (ECN) ca-

pability [66]. The idea of RED-ECN is that network switches monitor their queue

sizes (output ports) and mark packets with Congestion Experienced (CE) bits when the

queue occupancy exceeds a predefined threshold, but has not yet overflowed. When the

receiver receives a data packet with the CE code bits set in the IP packet header, the

receiver sets the CE code bits in the corresponding ACK packet and sends it back to the

sender. Thus, the sender can react to potential congestion en route, and prevent packet

drops and buffer overflows.

DCTCP achieves its goals by employing a novel ECN-based congestion control

mechanism that allows the sender to react in proportion to the extent of congestion.16

In other words, DCTCP’s reaction to congestion is based on feedback from congested

switches, meaning that the DCTCP sender reduces its congestion window in proportion

to the severity of congestion. For example, DCTCP reacts similarly to TCP by halv-

15The commodity switches used in data centres typically have shallow buffer and shared-memory.
16Random Early Detection (RED) [65] queue discipline with ECN is an example of AQM that it is

suggested should be used in conjunction with DCTCP by simple parameter adjustment: setting both the
low and high marking thresholds of RED to a single DCTCP making threshold (K). Additionally, the
marking of packets needs to be performed based on an instantaneous queue size instead of the average
queue size considered in the RED scheme. In this way, DCTCP can signal the congestion state to the
sender precisely and promptly.

2.6. Short Flow and Deadline 58

ing its congestion window if the fraction of marked ACKs is excessive; if the sender

receives a few marked ACKs, a small fraction of its congestion window is reduced.

TCP reacts to an ECN signal by halving its congestion window. The consequence

of this reaction is a significant degradation of the overall network throughput due to

buffer underflows en route: several TCP flows competing at a shared bottleneck link

halve their data transmission. However, in such cases DCTCP allows multiple compet-

ing flows at a shared bottleneck link to adjust their transmission rates, so that the buffer

occupancy of switches can be consistently maintained near the marking threshold. It is

claimed that DCTCP can theoretically maintain a throughput of more than 94% with

zero buffer occupancy [67, 17].

The DCTCP congestion control algorithm is, in short:

• Each ACK increases the window w to w+ 1
w .

• Each marked ACK decreases w to w× (1−α/2).

Parameter α is an estimation of the fraction of marked packets and is calculated for

every window of data with the following formula:

α = (1−g)×α +g×F

Parameter F is the fraction of marked packets in the last window of data, and g is a

constant weight factor given to new samples against the past (0 < g < 1). The suggested

value for g is 1/16 [17]. When α is close to 0, DCTCP reduces its window w very

gently, meaning that DCTCP reacts smoothly to the initial congestion signal. However,

like TCP, DCTCP cuts its window w at most once per window of data (i.e. once per

RTT) [66, 17]. This implies that when a congestion signal is detected, DCTCP reduces

its window w gently and starts collecting the rest of the marked ACKs without any

further reduction in its window. In the next window of data, the reaction of DCTCP

effectively becomes similar to TCP, if a large fraction of marked packets have been

received in the previous window of data (α → 1). In other words, DCTCP probes a

congestion link over a few RTTs after the arrival of the initial marked ACK, by updating

α per RTT, and adjusts its congestion window proportionally to the congestion level in

order to prevent buffer overflow and hence possible timeouts. That is, it maintains the

buffer size of the congested link around its marking threshold.

2.6. Short Flow and Deadline 59

The obvious limitation of DCTCP in comparison with TCP is its convergence

time; i.e. the time required for a new DCTCP flow to get its fair share of capacity

from competing flows, possibly with large window sizes, in a bottleneck link. In other

words, DCTCP takes longer than legacy TCP to get its fair share of capacity from the

network (e.g. a factor of 2-3 times more than TCP, if links are 1Gbps/10Gbps and RTTs

are ranging from 100-300µs [17]). The main reason is that the DCTCP sender reacts to

perceived congestion gently and must reduce its congestion window incrementally over

a few RTTs. This may be crucial for some bandwidth-hungry applications whose task

completion time is dependent on the slowest flows. This also implies that DCTCP does

not preserve fairness between competing flows at a shared bottleneck link, especially

when competing flows are non-DCTCP flows.

It is shown that the bursty traffic pattern of data centres does not only come from a

partition/aggregate-like workflow, but also from the actual implementation of window-

based congestion control protocols in production servers [17].17 For example, servers

with a 10Gbps network interface device tend to send 30-40 packets around the same

time whenever the sender’s window allows them.18 It is argued that for 1Gbps links

the marking threshold of 20 packets and for 10Gbps links the marking threshold of

65 packets are a conservative adjustment in the presence of the above scenarios [17].

This implies that DCTCP with a single marking threshold at all switches (e.g. K = 20)

becomes problematic when servers use various interface devices with different line

rates. For example, imagine a server support two interface devices of capacity 1Gbps

and 10Gbps respectively or a subset of network hosts only support the interface device

of 10Gbps instead of 1Gbps.

Another important shortfall of DCTCP is that it assumes that the data centre fabric

has low statistical multiplexing for long-lived flows (e.g. four long-lived flows with

a size bigger than 1MB at a shared bottleneck link presents the degree of statistical

multiplexing at the 99th percentile [17, 18]); if this is violated then DCTCP cannot

provide a headroom for accommodating a localised burst of traffic gracefully.19 In

such scenarios, short flows with deadlines may miss these due to the presence of several

17TCP, MPTCP and DCTCP are equipped with window-based congestion control.
18The Large Send Offload (LSO) and interrupt moderation optimisations may also induce bursty traffic

at a data centre’s servers [17].
19The dynamic nature of data centre fabrics is changing rapidly so that such assumptions may be

simply violated.

2.6. Short Flow and Deadline 60

long-lived flows, at a shared bottleneck link, racing for share capacity and reacting to

congestion signals incrementally.

In Chapter 3, we discuss our novel transport protocol (MMPTCP) that can ac-

commodate any burst of traffic gracefully by utilising path diversity in the data centre

fabrics. Additionally, MMPTCP can react to congestion by moving traffic away from

congested path; i.e. it can achieve a high overall throughput (e.g. almost doubled that

of single-path TCP in FatTree [5]) regardless of any statistical multiplexing present

in a data centre fabric. Furthermore, in contrast to DCTCP that is agnostic to dead-

line flows, MMPTCP can simply handle deadline flows without any knowledge from

applications, if data centres support switches with priority ingress and egress queue.

2.6.2 D3

The core idea behind D3 [18] is that end-hosts need to be aware of their flow sizes and

deadlines so that they can request the desired rates for their flows from the network.

In other words, D3 attempts to apportion the network bandwidth by allocating deadline

flows more bandwidth than their fair-share at the bottleneck links. To achieve this,

the bandwidth allocation scheme requires tight collaboration and coordination between

the network switches and end-hosts. The idea of the explicit rate control to apportion

network bandwidth has been explored a decade ago in XCP [68].20

A D3 sender exposes its desired Rate Request (RRQ) to all switches along the

path. At flow initiation time, RRQ is carried in the SYN packet. In subsequent requests,

RRQ is piggybacked on a data packet once per RTT. Every switch along the forward

path records its suggested allocation rate in that packet, which, in turn, returns back

to the sender via an ACK packet. This implies that the sender receives a vector of

responses from all switches along the forward path. The sender then adjusts its sending

rate based on the lowest offered rate in the response vector.

Every RTT, the desired rate request for a flow is changed as the remaining flow

size is changed. Additionally, the offer rates by the network may change as network

conditions change. For a deadline flow, the initial desired rate (r) is calculated by r = s
d ,

where s is the flow size and d is the deadline. The size of parameter s is decreased as

20XCP attempts to decouple network fairness from network utilisation in which any differential band-
width allocation schemes can be defined without hurting overall network utilisation. D3 is an example
of a new differential bandwidth allocation scheme which essentially cares about flows’ deadlines.

2.6. Short Flow and Deadline 61

data delivery progresses. This implies that a deadline flow requires less capacity as

data transmission progresses. At interval (t), the desired request rate (r) for the next

RTT is calculated by rt+1 =
remaining_ f low_sizes − st∗ rtt

deadline − 2 ∗ rtt , where st is the current sending

rate. The numerator indicates the remaining flow size and the denominator indicates

the available time before flow’s deadline is reached in the next RTT.

The switches calculate an offer rate (a) for a deadline flow by a = (r+ fs) and a non-

deadline flow by a = fs, where fs is the fair share of spare capacity after allocating all

deadline requests. This implies that rate allocation is first performed for all deadline

flows. The remaining capacity would then be shared fairly between all existing flows

(i.e. deadline and non-deadline flows). This way, a deadline flow may get more than

their desired rate in the first few RTTs. The implication here is that future desired

request rates would be lower so that the switches can have more spare capacity to share

with other deadline flows, and hence accommodate more deadline flows. If switches

do not have sufficient capacity to accommodate all deadline flows, they greedily grant

rates to deadline flows on a first-come-first-served basis and halt rest of the flows for

next RTT, regardless of their flow types.

To achieve such an advanced bandwidth allocation scheme, switches keep three

states per each output interface: (1) the total number of flow passing through a interface,

(2) the sum of the desired rates of deadline flows, and (3) the sum of the allocated rates.

D3 increases the overhead in bandwidth slightly as it needs to carry extra infor-

mation in a data packet and corresponding ACKs. More importantly, it increases the

latency of some flows as it pauses their data transmission to begin even when a single

switch along the path cannot offer a rate. This might occur due to a false positive es-

timation of aggregated bandwidth by a switch en route, i.e. a switch falsely assumes

its capacity is fully saturated due to traffic bursts for instance. Although this condition

may persist quite briefly, some deadline flows may miss their deadlines and valuable

network resources are wasted.

The main drawbacks of D3 are listed below:

• It requires critical modifications to the main networking elements of data centres,

such as applications, switches and end-hosts. These requirements essentially

make this solution non-viable for already deployed data centres.

2.7. Summary 62

• It requires very high-end switches with extra chips throughout the network in or-

der to be able to keep state per each output port and perform bandwidth allocation

at line rates.

• It cannot coexist with regular TCP or UDP flows since bandwidth allocation by

switches is meaningless to TCP/UDP flows. Thus, as authors clearly admit, in-

cremental deployment cannot be achieved.

2.7 Summary
In this chapter, we explained two related topics to our research: (1) transport protocols;

and (2) data centres.

First, we explored TCP variants, focusing on Tahoe, Reno, NewReno, SACK and

DSACK. Our aim here was to understand the design principles of each underlying

congestion control algorithm used in each TCP version. We then discussed MPTCP

and well-known multipath congestion control algorithms, including ‘Uncoupled-TCP’,

‘Fully Coupled’, ‘Semi-Coupled’ and ‘Linked Increases’.

Secondly, we reviewed conventional data centre network architectures, focusing

on their limitations (e.g. scalability, agility and full bisection bandwidth) and existing

solutions to these limitations. We then presented an overview of modern data centre

topologies (e.g. FatTree and VL2) and their current issues, and existing solutions.

Chapter 3

Design of the MMPTCP Protocol

3.1 Introduction
This chapter presents the goals, design, challenges, and potential benefits of the

MMPTCP protocol in modern data centres. It is organised as follows. Section 3.2

describes the goals of MMPTCP. Section 3.3 reviews our solution (Host-PS) for im-

proving the Packet Scatter (PS) protocol. Host-PS allowed us to think beyond existing

solutions and helped us in designing MMPTCP. Section 3.4 analyses MPTCP in the

data centre context, focusing on the influence of the number of subflows on short and

long flows. The intuitions presented in this section shaped the main design principles

of MMPTCP. Section 3.5 presents the design of the MMPTCP protocol, including its

benefits within modern data centres. Section 3.6 discusses solutions to packet reorder-

ing, which is a key challenge for MMPTCP. We also discuss our ideas for preventing

spurious retransmissions. Section 3.7 reviews the potential benefits of MMPTCP for

latency-sensitive short flows that contain deadline in their flow completion times. We

discuss our ideas about how MMPTCP can potentially overcome several challenges in

this context.

3.2 Goals
In this section we set out our main goals in designing the MMPTCP protocol.

1. High burst tolerance.

The network should be able to accommodate sudden bursts of traffic. The main

reason of achieving high burst tolerance is to prevent transient congestion in the

network. Transient congestion typically occurs due to the bursty traffic pattern of

3.3. Packet Scatter 64

short flows, which comprise 99% of total flows within data centres [17].

2. Low Latency for short flows.

The network should be able to handle short flows with minimal latency. The

reason for aiming at low latency for short flows is to enable specific applications

to achieve their results within expected quality and time budget.

3. High throughput for long flows.

Long flows should be able to use network resources efficiently. The reason for

aiming at high throughput for long-lived flows, which are typically non-latency-

sensitive, is to use network resources efficiently and realise high overall network

utilisation by reacting to possible persistent congestion gracefully. Persistent

congestion typically originates from collisions between long-lived flows at the

bottleneck links. Long-lived flows contribute to 90% of the total bytes in data

centres [4]. Additionally, long-lived flows are also prominent in applications with

partition/aggregate workflow since they are typically responsible for updating

workers with fresh data. Lack of fresh data can impact the quality of responses

from workers.

3.3 Packet Scatter
Packet Scatter (PS) is an alternative solution to MPTCP and its applicability to data

centres has been explored very briefly [12, 15]. The key idea behind PS is that network

switches diffuse traffic on a per-packet basis instead of on per-flow, as in Valiant Load

Balancing [10]. Traffic can thus be distributed as evenly as possible among all paths

between two endpoints. TCP senders must run more robust Fast Retransmit algorithms

to deal with out-of-order packets.1

It has been argued that if traffic load is equal among servers and a data centre has

a uniform network topology, such as FatTree [5] or VL2 [4], then PS achieves perfect

load balancing and eliminates congestion from the network core [12].

However, although per-packet traffic diffusion by switches may not create hotspots

at the core of the network, per-flow may indeed do so due to potential collisions when

flows are distributed through ECMP per-flow routing.2 In other words, PS naturally
1The details discussion of packet reordering is in Section 3.6.
2ECMP limitation has been discussed in Section 2.5.

3.3. Packet Scatter 65

prevents congestion in any region of the network topology with dense path diversity,

but congestion may still occur at the network core. Network hardware failures or traffic

flowing from the Internet to the data centres, which typically consist of single-path TCP

flows, may cause such congestion [12]. Additionally, PS cannot prevent congestion at

the access layer of single-homed network topologies, such as FatTree3, because there

is no path diversity at that layer. For example, the high fan-in/fan-out problem, which

is common in distributed file storage or web searching applications, typically occurs at

the access layer [12].

The intuition here is that PS cannot deal with congestion gracefully, so that even

a single packet lost may lead to needless multiplicative reductions of the congestion

window (i.e. it exerts a negative effect on the overall network utilisation and connection

throughput).

Our initial question was: could we extend PS protocol so that it can detect and

better react to network congestion?

Host-PS. Our initial thought was to run PS via the end-hosts instead of switches,

as end-hosts can carry out complex operations. In order to randomise traffic in this

manner, per-flow ECMP needs to be activated on switches and the end-hosts need ran-

domise source ports of their packets.

By devising random source port per-packet, the hash of standard 5-tuple is also

changed per-packet. As a result ECMP routes each packet via a potentially different

path. Additionally, end-hosts need to add a flow identifier (Flow Id) per-packet as a

connection identifier since a connection can no longer be identified by the standard

5-tuple due to source port randomisation.

In Host-PS, end-hosts randomise their traffic on a per-packet basis. As a result,

they can be aware of the congestion state of paths their packets traverse. They achieve

this by maintaining a mapping between chosen source port numbers and the corre-

sponding packets (sequence numbers) for each flow. If any packet gets lost, an end-host

can recognise the congested path. In this way, end-hosts can actively react to congestion

by not assigning those source ports to any future packets.

3We refer to FatTree as a single-homed network topology since their servers have only one network
interface device.

3.4. MultiPath TCP 66

The main drawbacks of Host-PS are:

• The hash of different port numbers may collide with the same link/path. This

means that an end-host may encounter the same congested links several times for

different port numbers.

• If the flow ID changes along the path then the connection loses its identity. Unlike

public networks such as the Internet, this is not a problem in data centres since

there are no middleboxes to re-write the content of a TCP packet header.

• Finding a set of paths that has a good data delivery rate is a matter of trial-

and-error; furthermore, as data centre environments are extremely dynamic, the

quality of a path may change very quickly.

The above ideas led us to the important realisation that it is possible to randomise

traffic at the granularity of packets by using end-hosts even though switches are oper-

ating based on per-flow ECMP.

3.4 MultiPath TCP
In Section 2.2.2, we have reviewed the MPTCP protocol and in Section 2.5.2 discussed

its advantages in data centres. In short, MPTCP is an extension of TCP, which transfers

data through multiple paths simultaneously. MPTCP is capable of actively sensing

network congestion in its subflows and shifting traffic from more congested paths to less

congested ones. Unlike TCP, MPTCP can deal with the network congestion gracefully

by putting fewer packets on the congested subflows. The main requirement to achieve

such behaviour is to retain a congestion window for each subflow and link each of them

together.

The vital questions here are: how many subflows should MPTCP use in data

centres? And which factors influence the number of MPTCP subflows?

The following factors are particularly significant: (1) available capacity on the

network or the level of network load, (2) flow size, and (3) number of paths between a

pair of hosts. To discuss these factors in modern data centres in more depth and find an

answer to the above questions, we review the following scenarios:

3.4. MultiPath TCP 67

• 1st Scenario. Long flows and lightly loaded network.

In this case, it makes sense to have a large number of subflows that potentially

lead to better network utilisation. However, if there is no path diversity between a

pair of communicating hosts then opening several subflows makes no difference.

• 2nd Scenario. Long flows and heavily loaded network.

The core idea behind opening several subflows in the data centre context is to

improve overall network throughput by actively detecting and utilising unused

capacity in the network. If a network is highly loaded and has very low spare ca-

pacity to be detected and utilised, then opening several subflows is not effective.

• 3rd Scenario. Short flows and lightly loaded network.

The window size of each subflow remains very small since the total number of

flow packets is small. In such scenarios, a subflow may lose its ACK clock even

after a single packet is lost, especially in the last window of data. The main

reason is that there are not enough packets in transit to generate enough duplicate

ACKs to trigger the Fast Retransmit mechanism. As a result, the sender should

wait until a Retransmission Timeout is triggered as a final resort for loss recovery.

One possible solution to the 3th scenario is to integrate a Forward Error Correction

(FEC) mechanism into MPTCP, similar to the one presented in TCP-IR [69]. The core

idea of TCP-IR is to integrate a out of band XOR segments into the data stream of

a small TCP flows such that the TCP receivers can recover one or two consecutive

losses without the need for retransmissions. The XOR segment is formed by applying

a XOR-based encoding scheme on a number of segments (e.g. 8 or 16). The number

of segments required to form a XOR segment is dependent on a XOR-based encoding

scheme. In other words, the sender needs to send a XOR segment for every small

number of continuous data segments. The XOR segments are also delivered without

any reliability.

There are a few issues with this approach: (1). It can effectively be used only on

a very short single-path TCP flows, perhaps, containing only a few packets (e.g. web

traffic); it has been shown that this approach is not improving the TCP loss recovery

in the long single-path TCP flows [70]; it only adds overhead to the network with such

flows. (2). It can only recover up to two consecutive segments; it is ineffective in

3.4. MultiPath TCP 68

scenarios with multiple packet losses.

We therefore believe integrating a FEC mechanism to MPTCP can improve the

MPTCP performance to some extent, especially when it is only used in the subflow’s

last window of data. However, running MPTCP with several subflows for short/query

flows is not a right approach even with a FEC mechanism. In the 1th and 2th scenarios,

we discussed the purpose of using several MPTCP subflows in the context of data

centres, but that purpose is not served when MPTCP is used for short/query flows.

Another approach to the 3th scenario is to use the connection-level sequence

space for the purpose of loss detection at the sender. Unlike single-path TCP, MPTCP

uses two sequence spaces: one at subflow-level and the other one at connection-level;

MPTCP also maintains a separate sequence space per subflow. The main purpose of

the subflow-level sequence space is to allow a subflow to perform loss detection and,

in turn, congestion control on its path; a receiver generates TCP duplicate ACKs at

subflow-level when a segment is lost or misplaced. Each subflow is then performed

loss detection and congestion control independently of the other subflows. The main

purpose of the connection-level sequence space is to allow the receiver to correctly

reassemble data stream, which is striped over multiple subflows and delivered via sep-

arate subflow’s sequence spaces, before deliver it to the application. The MPTCP re-

ceiver also sends the data acknowledgement (data ACK) packet from this sequence

space for the purpose of flow control. The data ACK packet can also show a hole in the

connection-level buffer.

In this way, the sender may be able to detect a lost packet from a subflow, which

lost its ACK clock due to multiple packet losses in a window of data or has a small

number of packets in flight, earlier than a retransmission timeout is triggered on that

subflow. A key requirement to begin with this idea is that the MPTCP receiver sends

data ACK per segment received. The sender can thus detect a hole in the receiver’s

buffer very fast because all subflow’s packets can trigger a duplicate data ACK at the

receiver. There are two issues with this approach:

1. It is not clear how many duplicate data ACKs is required to detect a lost packet.

Even if a duplicate data ACK threshold is selected, the sender cannot distinguish

between a lost and delayed packet. For example, the receiver may send several

duplicate data ACKs, during an RTT, for a delayed segment.

3.4. MultiPath TCP 69

2. If multiple packets get drop from multiple subflows simultaneously, then dupli-

cate data ACKs during an RTT can not provide enough information to the sender

to detect all those packet losses at the same time and, in turn, prevent timeouts in

all of those subflows.

Despite all the above issues, the sender can detect a stalled subflow by observing

data ACKs over a few RTTs. In such a condition, the sender can be able to perform

congestion control and loss recovery for the subflow in question or resend the unac-

knowledged segments of the subflow in question via another subflow. However, the

detection of a stalled subflow is not beneficial to a flow with only a small number

of packets. We therefore believe that enabling data ACKs to detect lost packets of

multiple subflows is not effective or it may provide small improvement, especially for

short flows. Our approach here is to use a single sequence space operating one a single

congestion window, similar to the way TCP operates. In this way, all packets of a short

flows can contribute to loss detection and recovery.

The intuition here is that increasing the number of subflows is useful to connec-

tion throughput of long flows, in a wide variety of network conditions, but it might be

harmful to flow completion of short flows.

Is it possible to adjust the number of MPTCP subflows based on flow sizes?

It has been argued that some applications can provide high-level information, such as

flow size [18]. Thus, if each end-host knew the size of its flows, it could decide how

many subflows it might be effective to deploy. For example, in the case of short flows,

it is better to have a single subflow. Unfortunately, the majority of existing applications

do not expose their flow sizes to the end-hosts, (i.e. the network stack is unaware of

this high-level application knowledge). Thus, MPTCP can not have any idea how many

subflows to open for a flow; if a predefined number of subflows is used for all types of

network flows then MPTCP is likely to significantly damage the flow completion time

of short flows.

3.5. MMPTCP: Combining PS with MPTCP 70

3.5 MMPTCP: Combining PS with MPTCP
This section describes the design principles and operation of MMPTCP. The core idea

behind MMPTCP is that at the beginning of an MPTCP connection, the data is deliv-

ered by PS first to cover short flows, until the total data transmitted reaches a certain

threshold (e.g. 1MB since the majority of flows in data centres have a flow size less

than 1MB [4]). PS is then switched to MPTCP with multiple subflows to cover long

flows. This implies that when a switching threshold is reached, MMPTCP opens new

subflows and governs the data transmission via MPTCP congestion control. The initial

subflow is only allowed to do per-packet randomisation at the beginning of connection,

i.e. until a predefined threshold is reached. Then, it becomes inactive and cannot send

any more new segments.

The design principles of MMPTCP are as follows:

1. Prevent MPTCP with several subflows from handling short/mice flows in order

to avoid having multiple subflows with a small window size. The small window

size of subflows is problematic because MPTCP uses a separate sequence space

per subflow. All flight packets of a subflow can only be used in loss detection on

that subflow. As a result, if a subflow is responsible to handle a small number

of packets in its lifetime then it is very likely that it needs to recover its lost

packets via timeouts rather than fast transmissions. With MMPTCP, short flows

are handled by PS with a single sequence space (i.e. TCP sequence number)

operating on a single congestion window, so that the chance of experiencing

timeouts is significantly decreased because all packets of short flows are engaged

in loss detection and recovery.

2. Decrease the burstiness of data centre networks, which mainly originates from

short flows, by diffusing packets throughout the network. This implies that

MMPTCP can significantly prevent transient congestion in the network core of

modern data centres.

Switching between PS and MPTCP allows end-hosts to achieve following benefits:

• Handling short flows via single sequence space in order to increase the chance

of packets loss recovery via fast retransmissions rather than timeouts when the

congestion window is small.

3.6. MMPTCP and Packet Reordering 71

• Handling long flows via multiple congestion windows in order to achieve high

connection throughput for long flows and hence high overall network utilisation.

• Diffusing bursty traffic throughout the network.

By randomising the source port in each packet, we effectively combine Host-PS

with MPTCP. Network switches only perform per-flow ECMP and end-hosts perform

per-packet randomisation only on the initial subflow of a MMPTCP connection. A to-

ken is added to each packet of the initial subflow as a connection identifier, so that a

randomised packet can be forwarded to a corresponding MPTCP connection correctly

(note that the standard 5-tuple is no longer valid during the initial phase of data trans-

mission (PS phase)).4

After the sender reaches a switching threshold, it opens further subflows to carry

on the data transmission via MPTCP and deactivates the initial subflow but does not

close it.5 The initial subflow is the only subflow presented to the applications and if it

was closed, the connection would lose its identity. In other words, after switching to

MPTCP no more data is placed on the initial subflow, which is ignored by the MPTCP

congestion controller. Furthermore, in the initial handshake of MPTCP, SACK may

also be activated if DSACK is used as a part of the packet reordering strategy. MPTCP

works with SACK, so there is no difficulty in having SACK activated over the lifetime

of a MMPTCP connection. However, using DSACK is only essential in the PS phase.

3.6 MMPTCP and Packet Reordering
A TCP sender receives a duplicate acknowledgement (duplicate ACK) when a packet

gets dropped, delayed or reordered. It enters the Fast Retransmit phase upon the arrival

of the third duplicate ACK for a missing packet (when the duplicate ACK threshold

parameter is set to three). The TCP sender retransmits the perceived lost packet and

halves its congestion window as a reaction to the congestion signal.

The problem here is obvious: senders cannot distinguish between a duplicate ACK

generated because of a reordered packet, and that generated for a lost one. That is, the

sender behaves identically for both events since the signal is the same.

4A token is a locally unique identifier assigned to an MPTCP connection upon establishment.
5To prevent sudden hold of data transmission, after a switching threshold is reached, the initial sub-

flow becomes deactivated only when at least one new MPTCP subflows are established.

3.6. MMPTCP and Packet Reordering 72

To deal with this problem, a TCP sender waits to receive three duplicate ACKs

before enabling the Fast Retransmit mechanism [32]. However, the Fast Retransmit

mechanism may be still falsely triggered when a reordered packet reaches the receiver

after it has sent a third duplicate ACK. This condition may lead to spurious retrans-

missions of reordered packets even if no loss has occurred. In other words, the sender

interprets the reordered packet as lost and also interprets the respective signal as an

indication of congestion. As a results, the sender falsely triggers the Fast Retransmit

mechanism and halves its congestion window.

It is clear that the duplicate ACK threshold (dupthresh) of three makes sense in the

Internet when a TCP connection operates with minimal reordering in its data delivery.

In data centres, however, even the dupthresh of one can be used since a TCP connec-

tion typically operates on a single path with no reordering. With the packet-scattering

approach, however, TCP needs to be more robust to packet reordering, since RTTs on

different network paths may vary over time due to queuing delays. In such cases, packet

reordering becomes the norm instead of the exception.

Setting the right dupthresh value is not trivial; if dupthresh is too low, spurious

retransmissions become the norm. If it is too high, the sender may react to conges-

tion through a retransmission timeout instead of the Fast Retransmit mechanism. Our

experimental evaluation in Section 5.3 confirms these observations.

There are three key aspects in making TCP more robust to packet reordering:

preventing, detecting and mitigating spurious retransmissions.

One well-known solution for ‘detecting’and ‘mitigating’spurious retransmissions

is DSACK [25], which is an extension of SACK TCP [24].6 SACK TCP can deal with

multiple packet drops much faster than other versions of TCP (e.g. Tahoe, Reno and

NewReno [31]). This is a particularly beneficial for latency-sensitive flows. When a

spurious retransmission is detected by DSACK, the state of the congestion window can

be simply reversed to the state when a loss is detected.7

One possible approach for ‘preventing’ spurious retransmissions is to dynami-

cally adjust the dupthresh parameter based on information that can be retrieved from

6If PS does not use SACK TCP (e.g. it uses NewReno TCP [23]), then DSACK can not be applicable.
In this situation Eifel algorithm [71] might be an alternative solution; it uses timestamp or two bits from
the TCP reserved field to disambiguate an original transmission from a retransmission.

7Detailed discussions for SACK and DSACK can be found in Section 2.2.1.4 and 2.2.1.5 respectively.

3.6. MMPTCP and Packet Reordering 73

DSACK, SACKs, ACKs, RTOs and Fast Retransmits. RR-TCP [72] follows a simi-

lar approach. RR-TCP attempts to adjust the dupthresh value dynamically by under-

standing the maximum distance in packets by which a segments is displaced, based on

feedbacks from the networks.

In modern data centre topologies, such as FatTree and VL2, it is possible to adjust

the dupthresh value according to the maximum number of possible paths to a desti-

nation. For example, if there are 10 possible paths for a flow to randomly send their

packets then a dupthresh of 13 is a reasonable value (our experimental evaluation in

Section 5.3 confirm this). Spurious retransmissions could thus be prevented to a signif-

icant degree.

We assumed that the routing protocol is able to provide information about maxi-

mum possible paths to a destination. This assumption is inspired by VL2 routing design

as it uses a central node for finding the ToR switch of the destination node in the net-

work, and FatTree addressing scheme in which a location of a host can be identified

from its IP address. The sender can thus choose an appropriate value for the dupthresh

based on this information. For example, if a source sends its traffic via the core layer

then the dupthresh value should be much higher compared to when it sends its traffic

via the access layer (ToRs).

In this thesis we use the FatTree addressing scheme, as discussed in Section

2.4.2.1, as a basis for adjusting dupthresh. That is, each source node can simply in-

fer the layer of network topology that its traffic passes by just comparing its own IP

address to its destination IP address. For example when node one with the IP address

"10.0.1.1", wants to send data to node two with the IP address 10.0.1.2, it can simply

work out that the destination host is located in the same ToR switch as itself and the

dupthresh should not be changed from the default value of three.

The knowledge of the end-host’s location is essential but not sufficient to assign

an appropriate value for the dupthresh; each end-host also needs to know the size of

the network topology. For example, a network topology with 4 cores requires a dif-

ferent value of dupthresh than a network topology with 8 cores. Additionally, network

switches may also support ECMP with a limited number of paths in each IP subnet

(e.g. up to 16 equal-cost paths), therefore knowing these information is also important

for deciding a precise value for duplicate ACK threshold.

3.7. MMPTCP and Latency-Sensitive Flows 74

In [73], several other approaches have been explored, some of which might be

suitable for the dynamic environment of data centres; e.g., a simple alternative solution

to RR-TCP [72] is to use a short timer (e.g. as small as one RTT) after receiving three

duplicate ACKs. This step prevents the risk of increasing the dupthresh value that may

lead to timeouts, especially when the TCP flow and its congestion window are small.

3.7 MMPTCP and Latency-Sensitive Flows
In this section, we discuss the potential benefits of MMPTCP in other data centre con-

texts, e.g. traffic management inside data centres (see Section 2.6).

Assumptions. Let us first assume that MMPTCP is capable of dealing with possi-

ble network congestion gracefully. That is, the packets of a flow can be forwarded via

all possible paths to their destinations without any concern about packet reordering. In

this case, we can say perfect load balancing is achieved (i.e. transient congestion can

be prevented and persistent congestion can be dealt with gracefully).

Question. Does our hypothetical transport protocol that provides perfect load bal-

ancing also decrease the maximum flow completion time of short flows compared to

TCP in modern data centres such as FatTree and VL2?

Answer. Preventing network congestion is vital for meeting the deadline of the

majority of flows since flows normally miss their deadlines because they encounter

network congestion. In other words, MMPTCP certainly helps to decrease the aver-

age flow completion time, but it may not be effective in decreasing the maximum flow

completion time in a single-homed topology such as FatTree. The main reason is that

a large number of short/query flows may not meet their deadlines due to transient con-

gestion at the access layer of the network, in which our hypothetical transport protocol

becomes ineffective due to lack of path diversity.

The following two scenarios highlight situations in which MMPTCP cannot

achieve perfect load balancing in a single-homed network topology:

• Scenario 1: The resource-allocation problem: when deadline flows (typically

short flows) and non-deadline flows (typically long flows) are competing for net-

work bandwidth at access links (i.e. there are bottlenecks on the access links of

the senders and/or the receivers). This is a common situation in data centres since

each server supports different applications, and hence different traffic matrices.

3.7. MMPTCP and Latency-Sensitive Flows 75

It is likely that deadline flows cannot meet their deadlines when several diverse

flows are competing for fair network capacity. In this condition, even queueing

delay may cause a flow to lose its deadline [17, 18, 13].

• Scenario 2: The incast problem: when a link needs to support a large number

of synchronised flows to/from a node. As a result, a heavy transient congestion

becomes apparent that leads to timeouts in several of those flows. Incast can

commonly occur with applications with partition/aggregate workflow that cause

transient congestion on aggregators (typically front-end servers) [17, 18, 13]. In

this situation several flows might miss their deadline and the network throughput

may significantly drop (i.e. there is a negative impact on the quality of application

results, network utilisation and hence revenue). Furthermore, those aggregators

might also have some long flows which aggravates the problem.8

Figure 3.1 shows the incast problem due to synchronised responses from the

workers to an aggregator.

ToR Switch

Incast

Worker Worker Worker Worker

...

Aggregator

Figure 3.1: The incast problem due to the partition/aggregate workflow.

The intuition here is that MMPTCP cannot solve the possible congestion on the

access link of receivers/senders in the FatTree-like network topology since it has no

path diversity. In other words, MMPTCP can achieve perfect load balancing in the

layers of the the network topologies that provide path diversity. This intuition is also

applicable to MPTCP and PS; we compare and analyse the performance of MMPTCP,

PS, TCP and MPTCP under various incast scenarios both with short flows and with

long flows in Section 5.12.
8A similar problem as Scenario-1 might occurs.

3.7. MMPTCP and Latency-Sensitive Flows 76

The important questions here are: should we modify the networking protocols,

such as TCP congestion control, to mitigate these problems [17, 18]? Or could it be

easier and more flexible to solve them by providing more path diversity in the access

layer? And using multipath transport protocols, such as MMPTCP, which are capable

of utilising multipaths anywhere in the network?9

Solutions to Scenario-1

First approach. Apportioning the network bandwidth based on an explicit rate con-

trol has been proposed [18]. This is achieved by assuming that high-level application

knowledge, such as the flow size and its deadline, is provided to the end-hosts. That

is, both switches and end-hosts collaborate with one another to divide network band-

width among competing flows on the bottleneck links so that deadline flows can receive

more bandwidth than non-deadline flows.10 Taking feedback from switches in order to

apportion the network bandwidth by end-hosts makes sense when each flow takes a

single path. However, it does not seem reasonable when the flows deliver their data via

multiple paths.

Second approach. Allocating priority levels among competing flows based on

their deadline is a reasonable approach in the today’s data centre environments [13].

Thus, it might be possible to solve the problem outlined in Scenario-1 by giving high

priority to deadline flows and low priority to non-deadline flows by end-hosts; that is,

if switches can have priority ingress and egress queue.

Our approach. High priority is to be given to randomised packets of MMPTCP

protocol (i.e. the packets of initial subflow). In this way, the packet drops in this phase

can be significantly prevented. This implies that the short flows, which are typically

latency-sensitive and have a deadline in their flow completion times, can complete their

data delivery by experiencing fewer congestion events.

Solutions to Scenario-2

The literature explored two broad approaches to address the incast problem arising as a

result of transient congestion originated from query-response flows. The first is to keep

the buffer occupancy low on switches, by employing the new congestion control algo-

9An example of such multi-homed network topology is the Dual-Homed FatTree (DHFT) [12].
10A similar approach has also been explored a decade ago in XCP [68]. The core idea in XCP is

to decouple network fairness from network utilisation. That is any differential bandwidth allocation
schemes can be simply defined without hurting overall network utilisation.

3.8. Summary 77

rithms for TCP that operate based on ECN feedback by switches (DCTCP [17]). The

second is to quench some flows by switches to allow other flows to meet their deadline

(D3 [18]). The latter solution damages the quality of final results return back to the ap-

plications; the lower number of computations from workers to an aggregator, the lower

quality of final results become. The former solution falls short when the statistical mul-

tiplexing in an aggregator is high or replies from the workers to an aggregator are quite

large in size, i.e. more than few packets. Maintaining low buffer occupancy in such

cases becomes infeasible even in modern switches which provide dynamic memory al-

location to accommodate traffic surges. Both solutions make sense when a flow takes a

single path.

There are other approaches for mitigating the TCP incast problem, especially in

the context of data centre storage, to a great extent by reducing RTOmin [34, 74]. How-

ever, these approaches cannot prevent transient congestion. The application designer

typically introduces the jitters as a prevention mechanism to the TCP incast. This ap-

proach may slightly prevent transient congestion, but the problem is not completely

eliminated.

Our approach. The incast problem can be mitigated to a great extent via a multi-

homed network topology such as DHFT [12], since a burst of traffic can be distributed

over multiple interface devices of the servers. The key advantage of the MMPTCP

protocol in such topologies is that it can effectively use all available interface devices

simultaneously. If a flow is short, then the PS mechanism randomises the traffic evenly

in all interfaces and if a flow is long, then the MPTCP mechanism actively balances

the traffic between all interfaces. We believe that MMPTCP operating on multi-homed

network topologies can effectively solve the incast problem to a great extent.

3.8 Summary
In this chapter, we presented the MMPTCP protocol, focusing on its goals, operations

and challenges. We discussed how packet reordering could be addressed in MMPTCP,

including our solution for adjusting dupthresh. Finally, we overviewed how MMPTCP

can be an interesting solution for latency-sensitive short flows.

Chapter 4

MPTCP and MMPTCP

Implementation in ns-3

4.1 Introduction
This chapter presents a high-level overview of our implementations in using network

simulator-3 (ns-3), a discrete-event driven simulator commonly used in academia [75].

This chapter is organised as follows. Section 4.2 describes the current TCP model

in ns-3. Section 4.3 presents our implementation of MPTCP in ns-3. Section 4.4 studies

some functionality details of MPTCP main classes and their interactions. Section 4.5

provides an example of how a packet of MPTCP flow walks through the ns-3 network-

ing stack, with the aim of highlighting our contributions at different layers of the ns-3

networking stack (e.g. networking and application layers). Section 4.6 briefly reports

on MPTCP signalling and our implementations. Section 4.7 describes our implemen-

tation of MMPTCP and Packet Scatter (PS) in ns-3. The last section showcases our

MPTCP, ECMP and PS implementations through some simple simulations. This sec-

tion essentially attempts to examine different key algorithms of MPTCP, such as loss

recovery, timeout and congestion control.

4.2 TCP Architecture
Several TCP variants are currently implemented in ns-3. The key ns-3 modules con-

cerning variants of TCP implementations are listed below; their interactions are pre-

sented in Figure 4.1.

• Socket: This abstract class provides a low-level socket API based on the BSD

4.2. TCP Architecture 79

Allocate() : Ipv4EndPoint*

Deallocate() : void

SendPacket() : void

Receive() : int

m_node : Ptr<Node>

m_endPoints : Ipv4EndPointDemux*

m_sockets : vector<Ptr<TcpSocketBase>>

m_TokenMap : map<uint32_t, Ipv4EndPoint*>

TcpL4Protocol

ForwardUp() : void

SendEmptyPacket() : void

SendPendingData() : bool

DupAck() : virtual void

NewAck() : virtual void

Retransmit() : virtual void

m_node : Ptr<Node>

m_endPoint : Ipv4EndPoint*

m_tcp : Ptr<TcpL4Protocol>

m_state : TcpStates_t

m_nextTxSequence : uint32_t

TcpSocketBase

{abstract}

SetSndBufSize() : void = 0

SetSSThresh() : void = 0

SetInitialCwnd() : void = 0

TcpSocket

{abstract}

Serialize() : void

Deserialize() : void

GetSerializeSize() : uint32_t

AddMPC() : bool

AddMPJOIN() : bool

m_options : vector<TcpOptions*>

TcpHeader

1*

optName : TcpOptions_t

optLength : uint8_t

TcpOptions

DupAck()

Tcp Rfc793

DupAck()

NewAck()

Retrasnmit()

m_cWnd

m_ssThresh

m_initialcWnd

m_retxThresh

m_inFastRec

Tcp Reno

Connect() : int = 0

Listen() : int = 0

Bind() : int = 0

SetDataSentCallBack() : void

SetRcvCallBack() : void

NotifyDataSent() : void

NotifyDataRecv() : void

m_receivedData : Callback

m_DataSent : Callback

Socket

{abstract}
UdpSocket

{abstract}

DupAck()

NewAck()

Retrasnmit()

m_cWnd

m_ssThresh

m_initialcWnd

m_retxThresh

m_inFastRec

m_recover

m_limitedTx

Tcp NewReno

DupAck()

NewAck()

Retrasnmit()

m_cWnd

m_ssThresh

m_initialcWnd

m_retxThresh

Tcp Tahoe

HandleRead() : void
HandleAccept() : void
StartApplication() : void
StopApplication() : void

m_socket : Ptr<Socket>
m_socketList : list<Ptr<Socket> >

PacketSink

StartApplication() : virtual void
StopApplication() : virtual void

m_node : Ptr<Node>
m_startTime : Time
m_stopTime : Time

Application

Figure 4.1: TCP class diagram

socket API across all transport sockets, e.g, TCP or UDP socket. Sending and re-

ceiving operations to/from the applications uses callbacks provided in this class.

The Socket class inherits from the Object class.

• TcpSocket: This pure abstract class inherits from the Socket class and includes

all essential attributes for a TCP socket, e.g. setting TCP segment size, initial

window, and sending buffer size.

• TcpSocketBase: This class provides key functionality of TCP and a socket in-

terface for the applications. For example, it performs connection management,

packet reordering and congestion control for a TCP connection. It is also respon-

sible for sending and receiving packets to and from the application layer. All

variants of TCP inherits from the TcpSocketBase class, as shown in Figure 4.1.

4.3. MPTCP Architecture 80

• TcpHeader: This class provides all functionality needed to form the standard

TCP header for a segment [32], e.g. appending a TCP option to the header,

serialising and deserializing the packets.

• TcpL4Protocol: This class provides an interface between the network layer and

the TCP socket. It is responsible for sending and receiving packets to and from

the network layer and the TCP socket (TcpSocketBase). This class can be viewed

as a shim layer between the network layer and transport layer.

The ns-3 simulator heavily uses callback functions for interaction between most

of its classes. The goal of callbacks is to permit one chunk of code to call a function

without any particular inter-module dependency [76]. As an example, in Figure 4.1

PacketSink application, which is a receiver application, can register its HandleRead()

function in the TcpSocketBase class, for receiving data via the SetRecvCallback() func-

tion of the Socket class. Therefore a TCP/UDP socket can pass data to the PacketSink

application, without any explicit knowledge of the PacketSink class, simply by invok-

ing the NotifyDataRecv() function of the Socket class, which triggers a callback to the

PacketSink::HandleRead() function.

All classes related to variants of TCP inherits from the TcpSocketBase class and

override the congestion control and loss-recovery related functions in the TcpSocket-

Base class, e.g. DupAck(), NewAck() and Retransmit(), as can be seen in Figure 4.1.

4.3 MPTCP Architecture
To date, a single attempt has been made to implement MPTCP in ns-3 that is in ns-3

version 3.6 [77]. However, this model was never merged with any stable version of

ns-3 and also became obsolete after TCP was rewritten in ns-3 version 3.8. In this

model, only a single client could connect to an MPTCP server; i.e. a server could not

fork new MPTCP connections. This is a problem when dealing with realistic traffic

models in data centres. Additionally, the model did not support nodes running TCP

and MPTCP in parallel, a feature that is often required in data centre experimentation,

when evaluating fairness among competing TCP and MPTCP flows. MPTCP tokens

[14], which uniquely identify MPTCP connections in a host and are used to associate

new subflows to an existing MPTCP connection, are not supported. The TCP timeout

4.3. MPTCP Architecture 81

mechanism was modified, so that if the retransmission timer was triggered on a subflow,

the congestion window of that subflow was only halved instead of being reset to one

segment and then being entered to the Slow-Start phase. Finally, the existing model

incorporated several other simplifications (e.g. the MPTCP connection and its subflows

did not follow standard TCP state transitions).

As a part of this thesis, we designed and implemented a new model of MPTCP in

ns-3 that closely follows RFC 6828 [14]. Subflow management is carried out similarly

to the Linux Kernel implementation and loss recovery is based on TCP NewReno. Our

ns-3 model of MPTCP overcomes all limitations described above [21]1.

App-1

Socket

MPTCP Control Block

Subflows[0] Subflows[1] Subflows[2]

src: A1 dst: B1

sp: x dp: y

src: A2 dst: B1

sp: x dp: y

src: A1 dst: B2

sp: x dp: y

DATA DATA DATA

Applications

Networking stack

src: A1 dst: B1

sp: x dp: y

MPTCP in Linux

(a) MPTCP architecture in Linux kernel.

``

App-1

Ipv4EndPoint

MpTcpSocketBase

MpTcpSubflow MpTcpSubflow MpTcpSubflow

Ipv4EndPoint Ipv4EndPoint Ipv4EndPoint

DATA DATA DATA

Applications

Networking stack

TcpL4Protocol

MPTCP in ns-3

(b) Our proposed MPTCP architecture in ns-3.

Figure 4.2: Comparing our MPTCP model with the Linux Kernel model

Figure 4.2(a) depicts the architecture of MPTCP in Linux Kernel [78] and Figure

4.2(b) shows our proposed architecture of MPTCP in ns-3. In our model, the MPTCP

control block is created directly by the application and the initial subflow is created by

the MPTCP control block. This implies that an application can directly access MPTCP

subflows. However, in the Linux model, the MPTCP control block is created by the

initial subflow, after which the initial subflow is created by the application at the socket

creation. Thus, an application can only see and access the initial subflow, so MPTCP is

completely hidden from the application layer. Additionally, the Linux kernel model al-

lows senders to carry on with data transmission via the initial subflow without opening

further subflows if the receiver is not MPTCP capable, i.e. the sender can simply fall

back to the regular TCP and carry on the data transmission via the initial subflow after

which it detects the receiver is not MPTCP capable. The sender can also eliminate the

1We have written more than 10K lines of code in this thesis contribution. The source code of our
MPTCP implementation can be found by following the link: https://github.com/mkheirkhah.

4.4. MPTCP Class Interaction 82

created MPTCP control block at the connection establishment.

4.4 MPTCP Class Interaction
This section gives a high-level overview of our MPTCP implementation in ns-3, by

focusing on its main classes and their interactions. The key ns-3 classes of our MPTCP

model are listed below; their interactions are presented in Figure 4.3.

Allocate() : Ipv4EndPoint*

Deallocate() : void

SendPacket() : void

Receive() : int

m_node : Ptr<Node>

m_endPoints : Ipv4EndPointDemux*

m_sockets : vector<Ptr<TcpSocketBase>>

m_TokenMap : map<uint32_t, Ipv4EndPoint*>

TcpL4Protocol

ForwardUp() : void

SendEmptyPacket() : void

SendPendingData() : bool

DupAck() : virtual void

NewAck() : virtual void

Retransmit() : virtual void

m_node : Ptr<Node>

m_endPoint : Ipv4EndPoint*

m_tcp : Ptr<TcpL4Protocol>

m_state : TcpStates_t

m_nextTxSequence : uint32_t

TcpSocketBase

Serialize() : void

Deserialize() : void

GetSerializeSize() : uint32_t

AddMPC() : bool

AddMPJOIN() : bool

m_options : vector<TcpOptions*>

TcpHeader

optName : TcpOptions_t

optLength

TcpOptions

ForwardUp() : void

SubflowLookUp() : uint8_t

m_subflows : vector<Ptr<MpTcpSubflow>>

m_nextTxSequence : uint64_t

m_nextRxSequence : uint64_t

m_localToken : uint32_t

m_remoteToken : uint32_t

m_maxSubflows : uint8_t

m_pathManger : PathManager_t

m_congestionControl : CongestionCtrl_t

MpTcpSocketBase

Finished() : bool

SetFinSequence() : void

m_endPoint : Ipv4EndPoint*

m_state : TcpStates_t

m_gotFin : bool

m_finSeq : uint32_t

m_nextTxSequence : uint32_t

m_nextRxSequence : uint32_t

MpTcpSubflow

11..*

1

*

-m_dataSequence

-m_subflowSequence

-m_dataLength

DSNMapping

1
1..*

Figure 4.3: MPTCP class diagram

• MpTcpSocketBase: This class implements the MPTCP control block and ex-

ports the socket API to ns-3 applications. It performs connection management,

data scheduling, packet reordering, path management, congestion control and

loss recovery for all MPTCP subflows.

On the server side, an MPTCP connection is represented with one listening

MpTcpSocketBase object, which forks new MpTcpSocketBase objects for each

accepted MPTCP connection. On the client side, an MpTcpSocketBase object

represents an MPTCP connection with a server. MpTcpSocketBase is a subclass

of TcpSocketBase.

• MpTcpSubflow: This class represents an MPTCP subflow and essentially holds

4.4. MPTCP Class Interaction 83

all TCP parameters. This class is a subclass of the Object class.2 An MpTcp-

SocketBase object may have multiple MpTcpSubflow objects.

• DSNMapping: Data Sequence Number Mapping is a standalone class, present-

ing a mapping between a subflow-level sequence number and connection-level

sequence number assigned to each sent segment. A sender MpTcpSubflow ob-

ject holds a DSNMapping object for each sent segment until arrivals of an ACK

packet that acknowledges the sent segments. The receiver MpTcpSocketBase

also holds an object of this class for each received unordered segment in its out-

of-order buffer in order to perform per-connection reordering. In other words,

MPTCP makes use of the DSNMapping, linking segments sent on different sub-

flows to a 64-bit connection-level sequence numbering, permitting segments sent

on different subflows to be reconstructed in an orderly manner at the receiver.

• TcpL4Protocol: We changed this class so that MPTCP connections can be han-

dled, without disrupting any existing ns-3 TCP functionality. As with single-

path TCP models, this class is an interface between the transport and network

layers and is responsible for sending and receiving packets to and from the net-

work layer, respectively. When a packet is received, TcpL4Protocol looks up

an endpoint (Ipv4EndPoint) based on the TCP header’s four-tuple, as shown

in Figure 4.4(d). In our MPTCP model, several Ipv4EndPoint objects, rep-

resenting endpoints for respective MPTCP subflows, can be associated to one

MpTcpSocketBase object, as shown in Figure 4.4 (b) and (c). To achieve this, we

implemented the MPTCP token support in this class. A token is a locally unique

identifier assigned to an MPTCP connection upon establishment. When a sender

initiates a new subflow, the receiver looks up an Ipv4EndPoint based on the token

passed in the MP-JOIN option and forwards the request to the respective MpTcp-

SocketBase object, as shown in Figure 4.4 (c). Without the MPTCP token lookup

mechanism, the SYN packet in Figure 4.4 (c) would be incorrectly forwarded to

the MPTCP listening socket. Requests for new MPTCP connections are resolved

using the four-tuple and forwarded to the listening MpTcpSocketBase object, as

2Essentially this class should be extended from TcpSocketBase, the main reason that it is currently
extended from Object class is to prevent any modification to the core implementation of TCP in ns-3.

4.5. Networking Stack Trace 84

illustrated in Figure 4.4 (a). Adding the token lookup mechanism in this layer

allows a node to receive TCP and MPTCP traffic simultaneously.

MpTcpSocketBase

(listening socket)

MpTcpSocketBase

(accepted socket)

SYN + MP_CAPABLE

{src:A1, dst:B1, sp:Y, dp:X}

(a)

MPTCP Data Packet

{src:B1, dst:A1, sp:Y, dp:X}

(b)

SYN + MP_JOIN

{src:B2, dst:A2, sp:Y, dp:X}

(c)

TCP Data Packet

{src:B5, dst:A5, sp:Y5, dp:X5}

(d)

TcpL4Protocol

Forks new MpTcpSocketBase object

4-Tuple

lookup()

4-Tuple

lookup()

4-Tuple

lookup()

Token

lookup()

TcpSocketBase

Ipv4EndPoint

src:A1, dst:B1, sp:X, dp:Y

Ipv4EndPoint

src:0, dst:0, sp:X, dp:0

Ipv4EndPoint

src:A5, dst:B5, sp:X5, dp:Y5

Figure 4.4: An example of the token and 4-tuple lookup mechanisms in TcpL4Protocol class

4.5 Networking Stack Trace
This section aims to overview the ns-3 networking stack and highlights our contribu-

tions at different layers of the stack. Figure 4.5 depicts an example of how packets flow

through the ns-3 networking stack. MPTCP is used as a case study in this example.

The key operations and function calls in each layer will be explored in detail.

1. Let us assume an application, in this case MpTcpBulkSendApplication, has al-

ready created a MPTCP socket, so it can directly call the SendPendingData()

function of MpTcpSocketBase class in order to transfer its data from the applica-

tion buffer to the MPTCP socket sending buffer. The TCP socket layer notifies

the application layer after each sending process, so that the sending socket buffer

can be refilled again by the application layer.

2. MpTcpSocketBase chooses the subflows by using a round-robin algorithm, so

that subflows can be selected sequentially and in a circular manner in order to

distribute the segments equally in subflows. If a subflow has a window size

of less than one maximum segment size (MSS), the next subflow is selected.3

After a subflow is selected, MpTcpSocketBase creates the TCP header with the

3This condition is not applied for the last segment as it may be less than one MSS.

4.5. Networking Stack Trace 85

attached Data Sequence Signal (DSS) option. The MPTCP sender signals the

mapping between the subflow-level to the connection-level sequence number via

the DSS signal. Thereafter, MpTcpSocketBase finds the output interface object

associated with the subflow’s source IP address, and the packet, TCP header,

source IP address, destination IP address and output interface are in turn passed

to the next layer via the TcpL4Protocol::SendPacket() function.

3. TcpL4Protocol is where the socket-independent protocol logic for TCP and

MPTCP is implemented. The SendPacket() function adds the TCP header, ini-

tialises the checksum (if enabled), finds a route entry object by querying the

routing protocol, and finally sends the packets to the Ipv4 layer (Internet Layer).

The routing table in ns-3 includes several routing entry objects. Each routing

entry object, i.e. Ipv4Route class, holds information related to the source and

destination IP address, gateway and output interface device. The output interface

device of the found route entry object should have an IP address identical to the

source IP address of sending packets.

We enforced the bounding between a subflow and specific interface device in

order to make sure that segments sent from a subflow leave the end-host through

an associated output interface device. This is because it is possible in ns-3, if this

constraint is not enforced, that all segments from all subflows exit via a single

output interface device since that output interface device has the shortest path to

the destination. The TcpL4Protocol class does not send packets directly to the

network layer but via a callback called m_downtarget. In this case, m_downtarget

is linked to the Ipv4L3Protocol class.

4. Ipv4L3Protocol includes key network layer functionality, adds the IP header and

sends the packet to IPv4Interface class. If address resolution (ARP) is required,

the Lookup() function of ArpL3Protocol class is called directly. Thereafter, the

Send() function in the NetDevice class is called.

5. The NetDevice class calls the Node::ReceiveFromDevice() function on

the destination node (or the next hop) by triggering a callback called

NetDevice::m_rxCallback on the destination NetDevice object.

4.5. Networking Stack Trace 86

Application

(MpTcpPacketSink)

MpTcpSocketBase

Ipv4EndPoint

TcpL4Protocol

Ipv4L3Protocol

NetDevice

Node:ProtocolHandlers

Ipv4RoutingProtocol

Ipv4EndPointDemux

MpTcpSubflow

Application

(MpTcpBulkSend)

MpTcpSocketBase

TcpL4Protocol

Ipv4L3Protocol

NetDevice

MpTcpSubflow

Ipv4Interface ArpL3Protocol

::SendPacket()

::Send()

::m_downTarget

::LookUp()
::Send ()

::GetSubflow()

::SendPendingData() (m_rxCallback)->Recv()

(m_rxCallBack)->ForwardUp()

::ForwardUp()

::LocalDeliver()

::m_rxCallback

::Receive()

::Receive()

::RouteInput()

::Lookup()

::Lookup()

Communication Link

Figure 4.5: An example of the ns-3 networking stack trace of how packets flow through the
ns-3 node objects

6. The destination node calls the Node::ReceiveFromDevice() function to lookup

for a callback from a stored set of callbacks (ProtocolHandlers) to forward the

packets up the stack. The lookup mechanism is based on the protocol number

and the network device of the received packet. In this example, the result of

the lookup is a callback to the Ipv4L3Protocol::Receive() function as the packet

belongs to a MPTCP subflow that holds the TCP protocol number.

7. Ipv4L3Protocol decapsulates the TCP header from the packet, and passes

the packet, IP header and device objects to the RouteInput() function of

Ipv4RoutingProtocol class.

The function RouteInput() is an abstract function in the Ipv4RoutingProtocol

class, so its implementation depends on which routing protocol is employed.

In our data centre model, we use the existing ns-3 global routing mechanism

(Ipv4GlobalRouting class), so a routing table is formed based on the Open Short-

est Path Routing (OSPF) algorithm, which is the common routing protocol used

in today’s data centres [4, 5].

The RouteInput() function decides whether a packet is for a local deliv-

ery or should be forwarded to a another node. If the packet is for lo-

4.5. Networking Stack Trace 87

cal delivery, the call return back to the Ipv4L3Protocol class by calling the

Ipv4L3Protocol::LocalDelivery() function. This function essentially forwards

the packet to the appropriate shim layer based on the protocol number, e.g. for

TCP and MPTCP the packets are forwarded to the TcpL4Protocol class. How-

ever, if a packet is required to be forwarded to another node, RouteInput() looks

up the routing table and finds a route entry object to forward the packet to the

next hop. After a next hop is selected, a callback is triggered and the call returns

back to Ipv4L3Protocol by calling the IpForward() function directly, and then

the packet is forwarded down the stack.

We implemented ECMP flow-based routing, based on hashing the standard five

tuple, in the LookupGlobal() function that is called from the RouteInput() func-

tion. The LookupGlobal() function is responsible for finding the possible routes

to a destination IP address by searching the global routing table. If ECMP is ac-

tivated and LookupGlobal() finds more than one equal-cost path to a destination

then ECMP per-flow routing will select the next hop, based on the hashing of the

standard five tuple of the packet header (i.e. source address, destination address,

source port, destination port, protocol number).

8. The TcpL4Protocol::Receive() function removes the TCP header from the packet

and looks up the per-flow context state, which is one or more IPv4EndPoint ob-

jects stored in an Ipv4EndPointDemux object. The Ipv4EndPointDemux class is

responsible for demultiplexing packet to the appropriate transport protocol. It

acts as a lookup table matching packets’ four-tuple (i.e. source IP address, desti-

nation IP address, source port and destination port) to an Ipv4EndPoint object. If

a match is found, it then calls the Ipv4EndPoint::Forwardup() function.

We implemented the MPTCP token lookup mechanism in the Receive() func-

tion of TcpL4Protocol, so that a match for an Ipv4EndPoint object can be found

based on a 32-bit token instead of 4-tuple. Receive() extracts the TCP op-

tions (if available) from the TCP header and searches for specific MPTCP op-

tions that carry a token, e.g. MP-JOIN. If a match is not found via the to-

ken lookup function, Receive() continues its search for an endpoint via the

Ipv4EndPointDemux::Lookup() function. If a match is still not found, the packet

4.6. MPTCP Signalling Operation 88

is discarded and the RST packet is sent to the sender address of the packet.

9. The Ipv4EndPoint class has a callback which allows a socket object to register

its Receive() function. In this case study, this callback calls to the ForwardUp()

function of MpTcpSocketBase. Forwardup() is a polymorphic function to allow

other extensions of the MPTCP protocol such as MMPTCP and PS to receive

data via the MpTcpSocketBase class.

10. The MpTcpSocketBase class informs the application when a data is ready to

be read, by triggering a callback (Socket::m_receivedData) that is registered

by the application on a socket. In this example, MpTcpSocketBase calls to

HandleRead() of the MpTcpPacketSink class via the m_receivedData callback.

4.6 MPTCP Signalling Operation
All MPTCP operations are signalled via the option field of TCP header. Our MPTCP

signalling model closely follows the specifications set in RFC 6824 [14]. Figure 4.6

shows the key MPTCP operations over the course of a connection. These operations

are discussed in the next subsections.

4.6.0.1 Connection Establishment

MPTCP connection establishment follows the standard TCP three-way handshake. The

client attaches an MP-CAPABLE option in the SYN packet to denote its MPTCP support.

The SYN packet is sent to the MPTCP server and the sender’s subflow state is changed

from CLOSED to SYN_SENT, as shown in Figure 4.6. The MP-CAPABLE option is only

carried at connection setup via initial subflow and it includes the sender’s local token

in SYN and the receiver’s local token in SYN-ACK packets.

In our model, when the MPTCP server receives the SYN packet, it is forwarded to

the listening MpTcpSocketBase object, based on the destination port number indicated

in the TCP header of the received packet, which, in turn, forks a new MpTcpSocketBase

object to handle communication with the client.

The newly forked MpTcpSocketBase object creates its initial subflow with an associated

endpoint, which has complete 4-tuple information, i.e, src IP (server), dst IP (client),

src port (server) and dst port (client).

4.6. MPTCP Signalling Operation 89

MpTcpSocketBase

EndPoint {src: A1, dst: B1, sp: Y, dp: X}

Connection’s state is CLOSED

[SYN]

MP_CAPABLE{Local_Token}
CLOSED -> SYN_SENT

(subflow and connection’s states

are both SYN_SENT)
[SYN/ACK]

MP_CAPABLE{Local_Token}

[ACK]

SYN_SENT -> ESTABLISHED

(subflow and connection’s states

are both ESTBALISHED)

LISTEN -> SYN_RCVD

(subflow and connection’s states are

both SYN_RCVD)

SYN_RCVD -> ESTABLISHED

(subflow & connection’s states are

both ESTABLISHED)

Fork()

MpTcpSocketBase (listening)

EndPoint {src: 0, dst: 0, sp: X, dp: 0}

Connection’s state is LISTEN

[ACK] + ADD_ADDR

[ACK] + ADD_ADDR

[SYN]

MP_JOIN{Remote_Token}

CLOSED -> SYN_SENT

(subflow’s state is SYN_SENT) LISTEN -> SYN_RCVD

(subflow’s state is SYN_RCVD)

CLOSED -> LISTEN

(subflow’s state is LISTEN)

[SYN/ACK]

SYN_SENT -> ESTABLISHED

(subflow’s state is ESTBALISHED)

[ACK]
SYN_RCVD -> ESTABLISHED

(subflow’s state is ESTABLISHED)

Create new subflow & its endpoint

Create new subflow & its endpoint

Create initial subflow & its endpoint

Connection Establishment

Advertise available addresses

MpTcpSocketBase (accepted)

Create initial subflow & its endpoint

{src: B1, dst: A1, sp: X, dp: Y}

Subflow & connection’s states are LISTEN

[NONE] + DSS

[NONE] + DSS

[FIN]

[ACK]

[ACK]

ESTABLISHED -> FIN_WAIT_1 ESTABLISHED -> CLOSE_WAIT

CLOSE_WAIT -> LAST_ACKFIN_WAIT_1 -> FIN_WAIT_2

FIN_WAIT_2 -> TIME_WAIT LAST_ACK -> CLOSED

[FIN]

·

·

·

Advertise available addresses

Subflow Establishment

Data Exchange

Connection Teardown

Figure 4.6: MPTCP signalling from the beginning to the end of a connection

For example, as illustrated in Figure 4.6, the client’s initial subflow has an endpoint

information of src: A1, dst: B1, sport: Y, dport: X sends the SYN packet to destina-

tion port number X. The server’s TcpL4Protocol class searches for a match based on the

packet’s 4-tuple information, and so the packet is forwarded to a corresponding MpTcp-

SocketBase if a match is found. In this example a match is associated with a listening

MpTcpSocketBase. The listening socket cloned itself to a new MpTcpSocketBase. The

cloned object creates its initial subflow with an endpoint with full information of the

4-tuple: src: B1, dst: A1, sport: X, dport: Y. The 4-tuple information corresponds to

the initial subflow of both communicating nodes in an MPTCP connection.

In response to the SYN packet, if the server supports MPTCP, an MP-CAPABLE

option is attached to the SYN-ACK packet. The server sets the acknowledgment filed

of the the SYN-ACK to one more than the sequence number of the SYN packet received

from the client. The initial subflow state is also changed from LISTEN to SYN_RCVD.

A 32-bit token randomly generated by the client and server is carried in the MP-

CAPABLE option in the SYN and SYN-ACK packet respectively. The token is mapped to

the respective MpTcpSocketBase via an Ipv4EndPoint pointer; this mapping is stored

4.6. MPTCP Signalling Operation 90

in the TcpL4Protocol object, which is used to associate new subflows to a currently

established MPTCP connection.

4.6.0.2 Subflow Establishment

After an MPTCP connection has been established, the communicating endpoints adver-

tise their available IP addresses to each other using the ADD-ADDR option. The new IP

addresses, for advertising, could be from single or multiple network devices. Multiple

ADD-ADDR options can be accommodated in a single packet. Address advertisement

is the responsibility of the Path Manager component.

In our model, the Path Manager component is implemented similarly to the Linux

Kernel implementation [78], and provides the following modes of operation:

• Default: MPTCP does not advertise its addresses; it operates similarly to the

TCP connection. If this mode is selected, data transmission is started immedi-

ately after the connection establishment.

• FullMesh: MPTCP advertises all IP addresses and attempts to create a full mesh-

like topology between the IP addresses of client and server, i.e. each IP address

of the client attempts to establish a connection to all IP addresses of the server.

• NdiffPorts: The client node initiates subflows based on random source ports,

immediately after connection establishment. If this mode is selected, the hand-

shake of the address advertisement is skipped and the data transmission is started

immediately on the initial subflow. NdiffPorts effectively allows the endpoints to

use port-based load balancing with MPTCP, if the network routes different ports

over different paths, which is the case with ECMP routing [9].

Each new subflow can be later established using a TCP three-way handshake and

by attaching the MP-JOIN option in the SYN packet. The token is also attached so that

the receiving side (server) can resolve the subflow establishment request to an existing

MPTCP connection, as described in the previous section.

4.6.0.3 Data Exchange

MPTCP uses two separate sequence number spaces, one per-connection (64-bit) and

one per-subflow (32-bit) [14]. The former is used for packet reordering and loss recov-

ery at connection level and it is signalled by the Data Sequence Signal (DSS) option,

4.7. MMPTCP and Packet Scatter 91

which is placed in the option field of TCP header. The latter is used for the same rea-

sons at a subflow level and is carried in the sequence number field of the TCP header.

DSS option is carried in each data segment sent from the sender. The receiver sends an

ACK packet per data segment received.

4.6.0.4 Connection Teardown

As with standard TCP, each subflow terminates after four-way FIN handshake. An

MPTCP connection is also terminated at a connection level by signalling a DATA-FIN

option. In our current implementation of MPTCP, the connection teardown is per-

formed at a subflow level only. The FIN packets to all subflows are issued when the

last data segment leaves the host. After all subflows have been closed, MPTCP end-

points deallocate all resources. The token mapping and MpTcpSocketBase object are

also deleted from the TcpL4Protocol object.

4.7 MMPTCP and Packet Scatter
We implemented the MMPTCP and Packet Scatter (PS) protocols by inheriting them

from MPTCP and overwriting key functions related to congestion control and data

management. The key ns-3 classes concerning MMPTCP and PS implementations and

their interactions are presented in Figure 4.7.

When a packet is received, the ForwardUp() function of the MpTcpSocketBase

class is called from lower layer (TcpL4Protocol). This function then redirects the call

to another function called DoForwardup() for processing the received packet. The

DoForwardup() is a polymorphic function so that it simply redirects the call from

MpTcpSocketBase to MMpTcpSocketBase or PacketScatterSocketBase. In this way,

we only re-implement a few functions of the MpTcpSocketBase class in the MMpTcp-

SocketBase and PacketScatterSocketBase classes.

The SendingPendingData() function in the MMpTcpSocketBase class disseminates

each packet via a random source port number. We defined a new parameter called

m_packetScatter to keep the state of a connection, indicating whether a connection

is in PS phase or MPTCP phase. We also added m_remoteToken parameters to the

DSS option, so that the receiver node can understand whether the incoming packets are

from PS mode or MPTCP mode. If a PS packet is received it can be forwarded to a

correct MMpTcpSocketBase object by a MPTCP token provided in the DSS option. The

4.7. MMPTCP and Packet Scatter 92

ForwardUp() : void

DoForwardUp() : virtual void

SendPendingData() : virtual bool

DupAck() : virtual void

Retrasnmit() : virtual void

ReceviedAck() : virtual void

OpenCwnd() : virtual void

MpTcpSocketBase

DoForwardUp() : virtual void

SendPendingData() : virtual bool

DupAck() : virtual void

Retrasnmit() : virtual void

ReceviedAck() : virtual void

OpenCwnd() : virtual void

m_switchingMode : SwitchingMode_t

m_packetScatter : bool

m_subflowInitiation : bool

m_flowSizeThresh : uint32_t

m_cwndSizeThresh : uint32_t

MMpTcpSocketBase

FlowSize = 0

CwndSize = 1

CwndSignal = 2

«enumeration»

SwitchingMode_t

DoForwardUp() : virtual void

SendPendingData() : virtual bool

DupAck() : virtual void

Retrasnmit() : virtual void

ReceviedAck() : virtual void

OpenCwnd() : virtual void

m_packetScatter : bool

PacketScatterSocketBase

Figure 4.7: MMPTCP and PS class diagram

MMPTCP sender runs TCP congestion control in the PS mode and MPTCP congestion

control in MPTCP mode.

MMPTCP switches to MPTCP mode as follows: when the predefined switching

threshold is reached, MMPTCP initiates new MPTCP subflows and changes the state

of the parameter m_subflowInitiation in order to prevent the initiation of further sub-

flows in future. Meanwhile, the initial subflow of MMPTCP continues its data trans-

mission through packet-scattering until at least one of the new initiated subflows is

established. Then, MMPTCP deactivates the initial subflow, changes the state of the

m_packetScatter parameter to false to prevent further packet-scattering, and continues

its data transmission via MPTCP mode. However, after the initial subflow is deacti-

vated, MMPTCP continues its loss recovery process on the initial subflow until all of

the outstanding packets of that subflow have been acknowledged.

If SYN and SYN-ACK packets of new initiated subflows are not lost, then it is

expected that all new initiated subflows are established at the time of switching. In

this way, the pipe does not suddenly become empty. Additionally, the new established

subflows can fully use the sender’s access link capacity very quickly (in a few RTTs).

Otherwise, if the initial subflow is deactivated when the switching threshold is reached

then either there would be a gap or stall of data transmission due to the delay or loss of

4.8. Showcasing MPTCP, ECMP and PS 93

SYN packets of the new initiated subflows respectively.

The PacketScatterSocketBase class disseminates all packets via random source

ports and it only runs TCP congestion control. It also includes the MPTCP token as a

connection identifier in each data segment.

4.8 Showcasing MPTCP, ECMP and PS

4.8.1 MPTCP with Single Subflow

Figure 4.8 illustrates the evolution of the congestion window when an MPTCP connec-

tion with a single subflow is opened between two nodes connected via a point-to-point

link. The value of the key parameters of this simulation are as follows: the link rate is

100Mbps; the RTT is 2ms; the flow size is 10MB and the queue size is 65pkts. It is

expected that an MPTCP flow with a single subflow will operate exactly like a single-

path TCP flow. The result of this simulation is shown in Figure 4.8. It is identical to the

result achieved from running the same simulation configuration with the existing TCP

model in ns-3.

 0

 60

 120

 180

 0 0.2 0.4 0.6 0.8 1

C
W

N
D

Time (s)

Subflow 0
SSThresh 0

FastReTx
PartialAck

FullAck
DupAck

Figure 4.8: Simulation of MPTCP with single subflow running TCP NewReno.

This simple simulation setup illustrates the TCP NewReno4 loss recovery algo-

rithm in detail. For example, the first packet drop after TCP entered the congestion

4A detail study of TCP NewReno is in Section 2.2.1.3.

4.8. Showcasing MPTCP, ECMP and PS 94

avoidance phase, can be seen between 0.2 and 0.4 seconds on the x-axis. More than 65

packets were in the flight so the sender’s drop-tail queue filled up and a single packet

was dropped. The receiver therefore generated duplicate ACKs for all segments re-

ceived after the lost segment, acknowledging the latter’s sequence number. When the

TCP sender received the first three duplicate ACKs, the fast retransmission mechanism

was triggered, the perceived lost segment was retransmitted and the Fast Recovery

phase was started. These retransmissions are indicated by blue star in Figure 4.8.

If any additional duplicate ACKs are received while the sender is in the Fast Re-

covery phase, the congestion window is increased by one segment and a new segment is

sent if possible [79]. The main reason for this small inflation of the congestion window

is to prevent a TCP NewReno sender from losing its ACK clock [30], especially when

multiple segments were lost in sequence from an entire window’s worth of data. The

light grey circles key in Figure 4.8 shows this behaviour.

TCP NewReno stays in the Fast Recovery phase until it receives a full ACK packet.

This special ACK packet acknowledges all the outstanding segments before the sender

enters the Fast Recovery phase. After the full ACK is received the sender enters the con-

gestion avoidance phase. The blue filled boxes in Figure 4.8 illustrate this behaviour.

Any other new ACK packets received before full ACK are called partial ACK.

TCP NewReno treats this especial ACK as an indication of loss. It thus assumes that the

next segment after partial ACK has been lost. This is the way that the TCP NewReno

recovers from multiple packet drops from a single window’s worth of data [80]. Partial

ACK attempts to prevent the TCP sender from triggering the retransmission timer on a

perceived lost segment by recovering it in the Fast Recovery phase. This behaviour can

be clearly observed in the pink boxes in Figure 4.8.

4.8.2 MPTCP Loss Recovery

In order to validate our implementation of TCP NewReno’s loss recovery algorithms

in the MPTCP subflows, we set up a simulation with a configuration similar to the one

presented in Section 6.3 of the well-known research paper "Simulation-based Com-

parisons of Tahoe, Reno, and SACK TCP" by Kevin Fall and Sally Floyd [81]. The

simulation was conducted with MPTCP with a single subflow. The value of the key pa-

rameters of this simulation are as follows: the link rate is 800Kbps; the RTT is 100ms;

4.8. Showcasing MPTCP, ECMP and PS 95

the flow size is 100KB and the queue size is 100pkts. The result is shown in Figure 4.9

and is very similar to [81](Figure 3).

 0

 15

 30

 45

 60

 0 0.5 1 1.5 2 2.5

P
a
ck

et
 N

u
m

b
er

 (
m

o
d

 6
0
)

Time (s)

Data Ack Drop ReTx

Figure 4.9: Simulation of MPTCP with single subflow and two packet dropped.

Analysis. The TCP Slow-Start behaviour can be clearly seen in the first five RTTs:

as the sender received new ACK packets (green points), it sent the new data packets (red

points). After packet 15 was dropped, the sender received ACK packets up to packet

14 (i.e. 7 ACK packets), and so it sent packets number 16-29. However, packet 29

was also dropped. Therefore, the TCP receiver was waiting for packet 15 to arrive, but

it received packets 16-28, which generated 13 duplicate ACKs to the sender to signal

that packet 15 was missing. When the sender received the first three duplicate ACKs, it

retransmitted packet 15 and entered the Fast Recovery phase. These 13 duplicate ACKs

allowed the sender to send new packets 29-33. When the sender entered Fast Retransmit

the congestion window decreased from 14 to 7 and then followed by further increase of

3 segments (i.e. cwnd = 10). Thereafter, the sender received 10 more duplicate ACKs,

which in turn caused the further inflation of the congestion window (i.e. increase of one

full-size segment per duplicate ACK). As the sender was holding 15 unacknowledged

packets in its sending buffer (i.e. packets 15-29), it was only allowed to send 5 new

packets (i.e. packets 29-33). At this point, the next ACK received by the sender is the

partial ACK since it is acknowledging packet 28.5 The sender interpreted the partial
5This ACK has been generated by the receiver when it received the retransmitted packet 15.

4.8. Showcasing MPTCP, ECMP and PS 96

ACKs as an indication that the next packet after this has been lost, so rightly the sender

retransmitted packet 29 immediately. Following this retransmission, the sender sent

packet 35. The reason for this further new packet transmission is to allow the TCP

sender to maintain its ACK clock. Inflating the congestion window by one segment

whenever partial ACK is received would follow the conservation of packets principle.

These behaviours can be seen clearly in Figure 4.9.

4.8.3 MPTCP Timeout Mechanism

In order to examine the TCP timeout behaviour in the subflows of MPTCP, we ran

the previous simulation but with packet drops targeting an entire window’s worth of

data, thus forcing the triggering of the timeout mechanism. Figure 4.10 shows how

the loss-recovery mechanism operates when the entire window worth of data has been

dropped (i.e. when TCP lost its ACK clock). After the entire window’s worth of

data had been dropped, the TCP sender started to recover the lost segments via the

retransmission timeout mechanism, which was triggered after 200ms of not receiving

any acknowledgement packet. When timeout was triggered the congestion window was

reset to one segment and the Slow-Start Threshold (ssthreshold) value was adjusted to

halve the number of packets in the flight6 so that the TCP sender entered the Slow-Start

phase and stayed in this phase as long as the cwnd was less than the ssthreshold.

The Slow-Start phase of TCP congestion control can be seen at the first two RTTs

at the beginning of the data transmission and at the first RTT after the retransmission

timeout. TCP entered at the congestion avoidance phase at the second RTT after the

retransmission timeout since the cwnd ≥ threshold in such a condition. During con-

gestion avoidance, TCP increased the cwnd by one full-sized segment per RTT.

4.8.4 Multipath Congestion Control

We discussed several multipath congestion control algorithms including MPTCP con-

gestion control, known as Linked Increases [29], in Chapter 2. In this section we aim

to showcase them in a simple simulation scenario.

Simulations conducted in a FatTree network topology with 128 nodes providing

full bisection bandwidth as shown in Figure 4.11. The traffic matrix used is Permuta-

tion in which each node sends continuous traffic to one randomly selected node via a

6In this simulation, the ssthreshold was reset to 2 segments as only 4 packets were in the flight.

4.8. Showcasing MPTCP, ECMP and PS 97

 0

 15

 30

 45

 60

 0 0.5 1 1.5 2 2.5

P
a
ck

et
 N

u
m

b
er

 (
m

o
d

 6
0
)

Time (s)

Data Ack Drop ReTx

Figure 4.10: Simulation of MPTCP with single subflow and an entire window dropped

MPTCP flow with two subflows. The simulation parameters are as follows: the link

speed is 100Mbps; the link delay is 20µs; and the queueing discipline is a drop-tail

queue with size of 100pkts. Figures 4.12, 4.13 and 4.14 show the results of MPTCP

with two subflows, running the Uncoupled-TCP, Fully Coupled and Linked Increases

congestion control algorithm respectively, from a randomly selected node.

Figure 4.11: FatTree 128 nodes providing full bisection bandwidth.

As expected, Uncoupled-TCP is shown to be more aggressive than Fully Coupled

and Linked Increases since each subflow is running TCP congestion control indepen-

dently. The aggressiveness of each subflow of Uncoupled-TCP is irrelevant to the loss

rate. The Fully Coupled algorithm keeps most of its traffic on subflow 1 (SF 1) as it has

4.8. Showcasing MPTCP, ECMP and PS 98

a lower loss rate (SF 1 only has one window reduction in first 2 seconds). In Section

2.2.2.1, we discussed that the Fully Coupled algorithm decreases the congestion win-

dow of subflow (s) by wtotal
2 when a loss event is detected. If the subflow s has a small

window size then the result of this reduction would be a negative number so that the

congestion window is then reset to two full-sized segments. In fact the Fully Coupled

algorithm removes its traffic from perceived congested paths in this manner. This be-

haviour can be observed at any loss event of SF 0 in Figure 4.13. The Linked Increases

keeps more traffic on SF 0, but also maintains a significant amount of its traffic on SF 1

since both paths in use seem to have similar network conditions. In fact the Linked In-

creases algorithm actively measures network conditions, i.e. RTT and drop probability,

by calculating the a parameter.

It is worth mentioning that Linked Increases puts more traffic on subflows with

lower RTTs, if all subflows have the same loss rates. To justify this behaviour we

extracted the RTT estimation at the time of each congestion window change, as depicted

in Figure 4.15. The result is as expected, as both subflows seem to have the same loss

rate but the SF 0 (RTT 0) is slightly lower than SF 1 (RTT 1), so SF 0 has a higher

window size, i.e. higher throughput.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16 18 20

C
w

n
d

 (
p

k
ts

)

Time (s)

SF 0 SF 1

Figure 4.12: Congestion window changes with Uncoupled-TCP

4.8. Showcasing MPTCP, ECMP and PS 99

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16 18 20

C
w

n
d

 (
p

k
ts

)

Time (s)

SF 0 SF 1

Figure 4.13: Congestion window changes with Fully Coupled

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2 4 6 8 10 12 14 16 18 20

C
w

n
d

 (
p

k
ts

)

Time (s)

SF 0 SF 1

Figure 4.14: Congestion window changes with Linked Increases

4.8. Showcasing MPTCP, ECMP and PS 100

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

R
T

T
 (

m
s)

Time (s)

RTT 0 RTT 1

Figure 4.15: RTT estimations as congestion window changes with Linked Increases

4.8.5 ECMP and PS

We implemented ECMP per-flow in ns-3 with the Murmur3 64-bit hash function [82].

To showcase our implementation, we conducted a simulation in a FatTree topology

with 128 nodes providing full bisection bandwidth (Figure 4.11). The traffic matrix

used is Stride in which each node only has one incoming and one outgoing connection

and all network flows should traverse via the network core (See Section 5.2.2 for a de-

tailed discussion of the Stride traffic matrix). The transport protocol used is PS running

only long flows. With this setup, equal utilisation of all links in the network core is ex-

pected. Additionally, as the network load is equal between end-hosts due to the Stride

traffic matrix and the network provides full bisection bandwidth then the network core

should be fully utilised if ECMP diffuses the network traffic evenly. Figure 4.16 shows

the results. All 16 core switches of the FatTree topology are almost fully utilised and

also all links in the network core are equally utilised. The Jain’s fairness index [83] of

flow goodputs is also 0.999097, indicating that all PS flows achieved their fair share.

The value of Jain’s fairness index is between 0 and 1, where 1 implies perfect fair-

ness between contending flows (i.e. all flows share bandwidth equally).7 The result is

therefore convincing: that our implementation of ECMP per-flow works as expected.

7We calculated the Jain’s fairness index with the following formula: F(x) = (∑n
i=1 xi)

2

n∑
n
i=1 xi2

. The fairness

index F(x) considers n flows where the goodput of flow i is xi. The value of n is 128 in this experiment.

4.8. Showcasing MPTCP, ECMP and PS 101

 50

 100

L
in

k
 U

ti
li

sa
ti

o
n

 (
%

)
Core-1

 50

 100

Core-2

 50

 100

Core-3

 50

 100

Core-4

 50

 100

Core-5

 50

 100

Core-6

 50

 100

Core-7

 50

 100

Core-8

 50

 100

Core-9

 50

 100

Core-10

 50

 100

Core-11

 50

 100

Core-12

 50

 100

Core-13

 50

 100

Core-14

 50

 100

Core-15

 50

 100

1 2 3 4 5

Core-16

Times (s)

Link1
Link2

Link3
Link4

Link5
Link6

Link7
Link8

Figure 4.16: ECMP, PS and the Stride traffic matrix in a FatTree topology with 128 nodes.
Each plot shows the link utilisation of all eight links of a core switch per second.

4.9. Summary 102

4.9 Summary
This chapter first provided an overview of the TCP architecture in ns-3. It then ex-

plained our implementation of MPTCP in ns-3. This was followed by an overview

of our proposed MPTCP architecture; a detailed explanation of key MPTCP modules

and their interactions; an overview of the ns-3 networking stack with the aim of high-

lighting our contributions (e.g. implementation of per-flow ECMP); a brief review of

MMPTCP and PS implementation, and, finally a showcasing of the algorithms used in

MPTCP via simple simulation setups.

Chapter 5

Evaluation and Results

5.1 Introduction
This chapter studies the performance of MMPTCP in various network conditions. It

also compares MMPTCP with other existing transports, such as TCP, MPTCP and

Packet Scatter (PS).

In this thesis, we conducted all of our simulations in a FatTree and VL2 topology

with various oversubscription ratios ranging from 1:1 to 4:1.1 We found that all of the

transport protocols under consideration (i.e. MMPTCP, TCP and PS) perform well and

with small performance differences in a VL2 topology, even with a 3:1 oversubscription

ratio VL2 topology with 960 nodes.2 However, we observed a larger performance

differences between the transport protocols in question when we compared them in a

FatTree topology, even with a 2:1 oversubscription ratio FatTree topology with 256

nodes. The main reason is that VL2 has 10 times faster link capacity between its

switches than its hosts and switches. As a result, VL2 can handle higher statistical

multiplexing of flows in its core and aggregation layers than FatTree. For example, a

link in the core of a 1:1 oversubscribed VL2 topology requires at least 5 times more

long flows than a 1:1 oversubscribed FatTree topology to become slightly congested.

Furthermore, as a VL2 topology has faster link rate between its switches, it decreases

queueing delays compared to a FatTree topology. As a result, a PS-based protocol

such as MMPTCP experiences less packet reordering due to the imbalanced network

queuing delays in a VL2 topology compared to a FatTree topology.

1See Section 2.3.2 for a detailed explanation of the FatTree and VL2 topology.
2In our VL2 model, we used the link rate of 1Gbps between switches and 100Mbps between hosts

and switches.

5.2. Simulation Setup 104

We have also observed that MMPTCP performed better under a FatTree topology

with the link rate of 1Gbps instead of the 100Mbps like rate. The reason is that the

1Gbps like rate can handle traffic surges more gracefully than the 100Mbps link rate so

that the network queueing delays will be less imbalanced.

We therefore present all of our results from a FatTree topology in this thesis to

highlight the influence of packet reordering more distinctly. Our simulations were also

run on the High Performance Computing (HPC) network at the University of Sussex.

By default each simulation was run for 20 simulated seconds with 20 repetitions using

different seeds. The main reason for running each simulation for 20 simulated seconds

is to provide enough data transfer and number of short flows to accurately calculate the

goodput of long flows and the flow completion time of short flows respectively. All

results are reproducible.

We proceed in the remainder of this chapter as follows. Section 5.2 describes our

simulation configurations, traffic matrices and simulation templates. We discuss the

adjustment of duplicate ACK threshold during the initial phase of MMPTCP in Sec-

tion 5.3. Section 5.4 compares MMPTCP with MPTCP with eight subflows. We then

compare MMPTCP (running both large and short flows) with MPTCP (running long

flows with eight subflows and short flows with a single subflow) in Section 5.5. Section

5.6 compares MMPTCP with TCP and PS. Thereafter we examine the performance of

MMPTCP, TCP, PS and MPTCP under different hotspot levels and network loads in

Section 5.7 and 5.8 respectively. We explore the performance of MMPTCP with dif-

ferent multipath congestion control algorithms in Section 5.9. Section 5.7 examines

MMPTCP performance when the Limited Transmit mechanism is enabled. Section

5.11 studies of the MMPTCP switching mechanism. We then investigate the perfor-

mance of MMPTCP, TCP, MPTCP and PS under incast scenarios with both short and

long flows separately in Section 5.12.

5.2 Simulation Setup

5.2.1 Network Topology

One hurdle in modelling data centre networks is that their sizes are very large (e.g. typ-

ically more than 100K servers). The modelling of such network sizes via packet-level

simulations is a very challenging task as it requires an extensive amount of resources,

5.2. Simulation Setup 105

especially in terms of memory and CPU cycles.

In the following section, we explore the feasibility of simulation as the network

size increases. The ns-3 simulator is a single threaded simulator therefore no par-

allelisation is possible within a single simulation. Another problem is the memory

constraint: as the network size increases, more flows and therefore more packets are

generated. As a result memory requirements increase.

To study feasible network sizes, we have conducted simulations in a FatTree topol-

ogy with a link rate of 100Mbps and an oversubscription ratio of 4:1 with varying net-

work sizes, ranging from 64 to 1728 hosts. One third of the nodes run long flows. The

remainder run short flows (70KBs each), which are scheduled by a central scheduler

according to a Poisson arrival (λ = 256). A detailed explanation of our traffic matrices

and simulation templates are in subsection 5.2.2 and 5.2.3 respectively. Figure 5.1 de-

picts the results. It is clear that the simulation duration is directly related to the network

size. It turned out that FatTree with a switch port of eight can give us a suitable simula-

tion completion time, being around 15 hours per simulation scenario.3 Typically, new

simulations are designed and run after analysis of the results of previous simulations.

Thus, allocating 15 hours to each simulation permitted us to design and execute new

simulations on a daily basis.

Network size is not the only factor that impacts the simulation time; the link rates

are also very important. The faster these are, the more packets are generated and pro-

cessed. As a result, simulation becomes slower.4 To explore this matter, we ran simu-

lations in a FatTree topology with 512 nodes and an oversubscription ratio of 4:1 with

varying link rates, ranging from 100Mbps to 1Gbps. Figure 5.2 depicts the results.

Link rates higher than 100Mbps would require at least 24 hours to complete a single

simulation. We therefore decided to use a FatTree topology with the switch port of

eight (K = 8) and the link rate of 100Mbps.

3We have seen a small impact on the results (e.g. the average core utilisation, overall network
throughput or short flow completion times) when increasing the network size in this simple experiment.

4Our HPC is equipped with high memory servers (e.g. 250GB), so we were not concerned about
the memory consumption in our simulations. However, the average memory consumption of our typical
simulations was approximately 700MB.

5.2. Simulation Setup 106

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

4 6 8 10 12

64 216 512 1000 1728

S
im

u
la

ti
o

n
 T

im
e

(H
o

u
rs

)

No. Switch Port (K)

Total Hosts

Figure 5.1: Network size has a direct impact on simulation completion time. A FatTree topol-
ogy with 16 cores (K = 8) provides a suitable simulation completion time.

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

100 200 300 400 500 600 700 800 900 1000

S
im

u
la

ti
o

n
 T

im
e

(H
o

u
rs

)

Link Rate (Mbps)

FatTree 512, K = 8

Figure 5.2: Link rate has a direct impact on simulation completion time. A simulation takes
more than 120 hours to be completed in a FatTree topology with 1Gbps link rate.

5.2. Simulation Setup 107

5.2.2 Traffic Matrices

It is certainly very challenging to model realistic data centre traffic patterns, as most

data centre owners are not willing to publicly release their workload models. Further-

more, traffic patterns in data centres have been shown to be very volatile and unpre-

dictable [4, 5, 17].

This section contains detailed descriptions of various traffic matrices which have

been incorporated into the ns-3 simulator. We employed traffic matrices widely used in

the related literature [8, 12].

Stride Matrix: this traffic matrix connects hosts to one another with a specific pat-

tern. For example, a source host with id X finds its destination host with id Y by a Stride

matrix with constant I by the following formulae: Y = (X + I) mod (total_host).

Figure 5.3 shows an example of a Stride traffic matrix in a FatTree topology with

16 nodes (total_host = 16). Each node connects to another node with I = 4. For

example, node with id 0 (X = 0) connects to node with id 4 (Y = 4). If traffic is

distributed evenly amount nodes in a Stride traffic matrix, then each node is expected

to transmit data at its line rate.

Figure 5.3: Stride traffic matrix in a FatTree topology with 16 nodes

In this model, each node only has one incoming and one outgoing connection and

all flows will be routed through the core layer. The Stride traffic matrix provides a

good presentation of how network resources are shared among flows. For example, if

the network flows are distributed as evenly as possible throughout the core layer, the

aggregated throughput of all flows should be in line with the aggregated capacity in

5.2. Simulation Setup 108

the core layer. The performance of different routing or transport layer protocols can

thus be compared. The Stride traffic matrix can be a useful model to examine network

protocols in full bisection bandwidth topologies since the model can simply saturate

the network core.

Permutation Matrix: in this matrix, each node randomly selects another node

that does not have any incoming connections. Furthermore, each node only has one

incoming and outgoing connection and there is no guarantee that a flow crosses the

core layer. In other words, a pair of nodes can be connected via a core, aggregation

(Agg) or even Top-of-Rack (ToR) switch. Figure 5.4 shows a simple example of this

traffic matrix in a FatTree topology with 16 nodes. Node 13 is connected to node 12

via a ToR switch and the rest of the nodes are connected to one another in such a way

that their flows traverse the core layer.

The Permutation model is similar to the Stride model; the difference is that the

network core may not be fully saturated. For example, if the Permutation traffic matrix

generates 10 connections that traverse the network core of a FatTree topology with 16

nodes, then it is inferable that at most 10Gbps of network core is used in theory and the

remaining of 6Gbps are unused.5 This information allows us to compare various trans-

port protocols and infer how each protocol finds and uses unused resources throughout

the network.

Figure 5.4: Permutation traffic matrix in a FatTree topology with 16 nodes

5The core layer of FatTree with 16 nodes provides a total capacity of 16Gbps (16 servers × 1Gbps).

5.2. Simulation Setup 109

Random Matrix: in this matrix, the source and destination node of a connection

is selected randomly. In other words, a pair of nodes can be connected via a core,

an aggregation or even a ToR switch. Additionally, each node can have multiple in-

coming and outgoing connections, unlike the Permutation and Stride traffic matrices.

This implies that traffic concentration at the access layer is likely to occur. For exam-

ple, in Figure 5.5, nodes 3 and 8 have three incoming connections and one outgoing

connection, and node 9 has only two outgoing connections.

The Random traffic matrix may provide a more realistic model of data centre traf-

fic, compared to the Permutation or Stride traffic matrices, but the expected resource

allocation to network flows is harder to predict.

Figure 5.5: Random traffic matrix in a FatTree topology with 16 nodes

5.2.3 Simulation Templates

Our simulations can be broadly categorised into two categories, as follows:

• SimMix. A mixture of large and short flows. In this simulation template, a

fraction of nodes send a continuous flow over the course of the simulation in

order to provide enough traffic to congest the network core. The number of

nodes in this subset is determined by the amount of traffic necessary to saturate

the network core. For example, in order to saturate the network core of a FatTree

topology with 512 nodes, an oversubscription ratio of 4:1 and with the Stride

traffic matrix, 25% of nodes need to run long flows. For the Permutation traffic

matrix this percentage value is higher (e.g. 33%) as not all flows traverse the core

5.2. Simulation Setup 110

layer. The remainder of the nodes are involved in data exchange only through

short flows (e.g. 67% of nodes in the example above).

We also assigned a name to each SimMix based on the transport protocol used for

short and long flows. For example, if a simulation setup uses MPTCP with eight

subflows for both large and short flows, we refer to it as MPTCPPure. If a simula-

tion uses MPTCP with eight subflows for long flows and TCP for short flows, we

refer to it as MPTCPSFTCP (SFTCP is an abbreviation of Short Flow TCP). Table

5.1 depicts these simulation names and corresponding transport protocols.

A simulation can be conducted with different settings. For example, PSPure can

be conducted via a FatTree128 topology (i.e. a FatTree topology with 128 nodes

providing full bisection bandwidth6) or a FatTree512 topology with an oversub-

scription ratio of 4:1. Note that a FatTree512 topology with an oversubscription

ratio 4:1 has four times more hosts than a FatTree128 topology, and the number

of core switches is the same in both topologies.

SimMix Simulation
Name

Short Flow
Transport Protocol

Long Flow
Transport Protocol

PSPure PS PS
PSSFTCP TCP PS
MPTCPPure MPTCP MPTCP
MPTCPSFTCP TCP MPTCP
TCPPure TCP TCP
MMPTCP MMPTCP MMPTCP

Table 5.1: Various SimMix simulation names based on employed transport protocols in short
and long flows. SFTCP indicates that short flows are handled by the TCP protocol.

SimMix is heavily used in this thesis with various settings, for example with dif-

ferent traffic matrices, transport protocols, arrival rates and network sizes. All of

our key evaluation metrics can be considered after execution of a SimMix simu-

lation. The following are examples of such metrics:

– Average flow completion time of short flows (ms).

– Average goodput of long flows (Mbps).

– Average network utilisation on each layer of a network topology (%).

– Average loss rates on each layer of a network topology (%).

6We also refer to the full bisection bandwidth by stating an oversubscription ratio of 1:1.

5.2. Simulation Setup 111

Central flow scheduler with Poisson arrival. In SimMix, short flows are sched-

uled by a central flow scheduler based on the Poisson arrival with rate λ (ar-

rivals/second).7 In each arrival, the central scheduler picks a random source

node from a set of nodes that are responsible for sending short flows. The se-

lected source node establishes a connection to its destination and sends a flow

with a size of 70Kbytes.8 The central flow scheduler schedules the next arrival

based on the Poisson arrival rate (λ). We conducted our simulations with either

λ = 256, or λ = 2560. The latter generates 10 times more short flows than the

former and hence can produce a more bursty traffic pattern but it takes longer to

complete a simulation.

The central flow scheduler is designed to provide a high randomness between

nodes running short flows. In this way, short flows can randomly compete with

long flows in the bottleneck links in a random setting so that the congestion con-

trol algorithms of the long flows can be evaluated, e.g. their reaction time to

congestion.

Note should be taken that in order to select a size for short flow, we studied

various flow sizes, ranging from 10KBs to 1MB. It turned out that the flow size

of 70KBs is suitable for analysing the influence of packet ordering on a random

packet spraying based transport protocol with a window based congestion control

such as the MMPTCP and PS protocols. The reason is that the flow size of 70KBs

is large enough to be recovered from multiple packet reordering events or losses

and is short enough to reveal the effect of a single packet reordering event on

flow completion time, in a wide range of network scenarios. Furthermore, it

prevents a large simulation completion time when a large mean short flow arrival

rate is used (e.g. 2560 per seconds). Finally, changing short flow sizes would not

change our overall results, conclusions and discussions presented in this thesis.

• SimLong. Long flows only. This simulation template involves long flows which

run for the duration of the simulation. This configuration allows us to evaluate

7The Poisson arrival is a good approximation for modelling the short flow arrival in data centres
[51, 13, 52, 84]. The Poisson arrival can be modelled via exponential distribution with rate λ .

8The connection between nodes is determined at simulation configuration time based on the traffic
matrix used. This implies that a connection’s source node, but not its destination node, can be determined
randomly by a central flow scheduler.

5.3. MMPTCP and Duplicate ACK Threshold 112

the performance of different networking protocols under various network loads.

For example, we can use the Stride matrix with a SimLong simulation to evaluate

the overall network throughput of TCP versus MPTCP under heavy load in the

network core of a full bisection bandwidth topology.

5.3 MMPTCP and Duplicate ACK Threshold
In this section, we review the adjustment of the duplicate ACK threshold value

(dupthresh) during the initial phase of MMPTCP. We then examine our proposed solu-

tion for preventing spurious retransmissions due to packet reordering, as described in

Section 3.6.

MMPTCP randomises its traffic via all possible paths during its first phase, and so

receivers may receive out-of-order packets, and generate duplicate acknowledgements

(duplicate ACKs) to the sender, for a segment that is expected to be received in-order.

TCP NewReno cannot distinguish between the signal received for packet reordering

and packet drops. This may cause the fast retransmission mechanism to be triggered

unnecessarily; we refer to this as spurious retransmission.

As discussed in Section 3.6, one solution for preventing spurious retransmissions

as a result of packet reordering is to increase the dupthresh value so that the TCP sender

can react to loss signals with more tolerance. To better understand packet reordering in

our model of data centre, we conducted a series of simulations with a varying dupthresh

value ranging from 3 to 23. Simulations were conducted in a FatTree128 topology

running short and large MMPTCP flows.9

The result is shown in Figure 5.6, which depicts short flow completion times as a

function of dupthresh value. It is clear that the default TCP duplicate ACK threshold of

three achieved the worst average flow completion time (158ms). However, by increas-

ing the value of the dupthresh, the average flow completion time decreases significantly

to a dupthresh of eight. After that the result remains unchanged.

The main obstacle for adjusting the dupthresh is that if its value is very large then

TCP fast retransmission might not be triggered, especially when the congestion window

9FatTree with 128 nodes has 16 core switches which in turn provide 16 equal-cost paths to any pair
of nodes that need to send their data via the core layer. The number 16 may be a good indicator of the
maximum distance that a packet may be reordered in the stream of packets between two communicating
nodes in this topology.

5.3. MMPTCP and Duplicate ACK Threshold 113

 90

 100

 110

 120

 130

 140

 150

 160

3 5 7 9 11 13 15 17 19 21 23

M
il

li
se

co
n

d
s

Dupack Threshold Value

FatTree, 128 Nodes

Mean Finish Time Std dev

Figure 5.6: Duplicate ACK threshold value effect on short flow completion time

is smaller than the dupthresh or when multiple packets get dropped in sequence. In

these scenarios, TCP needs to wait until the retransmission timer is triggered because

it cannot place any new data packets into the pipe due to the lack of ACK packets in

transit. On the other hand, if the dupthresh value is very small then fast retransmission

might be triggered unnecessarily and frequently, which may cause the TCP sender to

needlessly halve its rate and retransmit spuriously.

To get a better grasp of the problems, we present simulation results related to the

number of fast retransmissions and timeouts experienced by each short flow. Figures

5.7, 5.8 and 5.9 show the simulation result for a dupthresh of 3, 23 and 9 (two extremes

and one best case scenario from Figure 5.6). At one extreme, which is related to a

dupthresh of three, we observed the highest fast retransmission hits and lowest timeout

hits. At another extreme, which is related to a dupthresh of 23, we observed no fast

retransmission hits and high timeout hits. The best performance is observed when the

threshold is set to nine (Figure 5.9). The majority of flows were completed without any

fast retransmission or with only one fast retransmission; a few flows experienced two

fast retransmissions. The density of timeout at line one is also slightly lower than the

dupthresh of 23 (Figure 5.8).

The results of this experiment do not lead to any concrete value for the dupthresh

since they are only valid for this particular network setup. This implies that by altering

5.3. MMPTCP and Duplicate ACK Threshold 114

 0

 2

 4

 6

 8

 10

 12

R
et

ra
n

sm
is

si
o

n
s

(#
)

 0

 1

 2

 3

 4

 0 20000 40000 60000 80000 100000

T
im

eo
u

ts
 (

#
)

Rank of Flow

Figure 5.7: A dupthresh of 3. High fast retransmission and low timeout hits

 0

 1

 2

 3

R
et

ra
n

sm
is

si
o

n
s

(#
)

 0

 1

 2

 3

 4

 80000 85000 90000 95000 100000

T
im

eo
u

ts
 (

#
)

Rank of Flow

Figure 5.8: A dupthresh of 23. No fast retransmission and high timeout hits

5.3. MMPTCP and Duplicate ACK Threshold 115

 0

 1

 2

 3

R
et

ra
n

sm
is

si
o

n
s

(#
)

 0

 1

 2

 3

 4

 80000 85000 90000 95000 100000

T
im

eo
u

ts
 (

#
)

Rank of Flow

Figure 5.9: A dupthresh of 9. Ideal outcome

 0

 1

 2

 3

R
et

ra
n

sm
is

si
o

n
s

(#
)

 0

 1

 2

 3

 4

 80000 85000 90000 95000 100000

T
im

eo
u

ts
 (

#
)

Rank of Flow

Figure 5.10: Our solution for adjusting a dupthresh value based on the FatTree IP addressing
scheme. The achieved results are similar to a dupthresh value of 9 in Figure 5.6.

5.3. MMPTCP and Duplicate ACK Threshold 116

the network topology, e.g. its size or traffic matrices, the ideal value selected from the

above experiment may not be ideal at all. Another issue with selecting a single ideal

value for the dupthresh is that most of the traffic may be localised in ToR switches in

which they do need to have a dupthresh larger than the default value of three.

Figure 5.10 shows the result of simulating an auto dupthresh solution (i.e. our

solution based on the FatTree IP addressing scheme) with the same simulation setup as

Figure 5.6. Auto dupthresh significantly decreases the number of spurious retransmis-

sion due to packet reordering by adjusting the value of dupthresh based on topology-

specific information. This can be observed by comparing the proportion of nodes with

a single fast retransmission at the Retransmissions plots in Figure 5.9 and Figure 5.10.

However, by comparing the proportion of nodes with a single retransmission timeout at

the Timeout plots one can observe that the auto dupthresh slightly increases the num-

ber of timeouts compared to dupthresh of 9. The main reason is that a TCP NewReno

sender may force to trigger a retransmission timer by a single packet lost when its con-

gestion window is smaller than its duplicate ACK threshold; increasing the value of

dupthresh to a large number can thus slightly increase a chance of experiencing time-

outs. In order to improve the performance of auto dupthresh and hence MMPTCP in

such conditions, we proposed to integrate the TCP limited Transmit mechanism in the

initial phase of MMPTCP. We explore the influence of a large dupthresh value on short

flow completion times in Section 5.5 and examine the performance of MMPTCP with

Limited Transmit in Section 5.7.

5.4. Comparing MMPTCP to MPTCPPure 117

5.4 Comparing MMPTCP to MPTCPPure

MPTCP is a well-suited approach for long flows in which they can achieve a high

network throughput [12]. However, we showed that MPTCP is not appropriate for

handling short flows as it can hurt their flow completion times (see Chapter 1).

The important question is: why is MPTCP not good for handling short flows? An

answer to this question seems trivial since it is not sensible to open eight subflows for

a flow consisting of only few packets, but this may not be the only answer.

In Chapter 2, we studied the design principle of MPTCP congestion control in

detail. In short, the MPTCP congestion control algorithm does not completely remove

its traffic from the most congested paths. In fact, MPTCP removes its traffic from

congested paths exponentially and then places a small amount of new data on these

paths until their network conditions are improved. This means that MPTCP keeps

some traffic on its subflows in order to actively probe their network conditions. If the

traffic on a subflow is very small then even experiencing a single packet drop may lead

to the loss of the TCP ACK clock (i.e. no data packet can be sent since no ACK is

received). For example, let us assume an application uses a MPTCP with two subflows

and intends to transmit a flow worth of 10 packets. Each subflow can therefore transmit

five packets via round-robin data scheduling. The trouble here is that if any packet

gets dropped at any point during the data delivery, the subflow experiencing this loss

event would not be able to recover the lost packet via the Fast Retransmit mechanism,

and hence the retransmission timer needs to be triggered as a last resort of the loss

recovery process. In other words, a single packet drop from a subflow does hold up the

entire MPTCP connection until that lost packet is recovered. In this example, if TCP

runs that flow instead, the chance of recovering that lost packet via Fast Retransmit

increases significantly.

Keeping some traffic on the subflows that are experiencing congestion seems to be

a better approach than removing almost all of the traffic from those subflows when a

flow is large. For example, Fully Coupled resets its congestion window to two segments

in such a case. That is, MPTCP subflows can maintain their ACK clocks, and hence

experience fewer timeouts [40]. However, neither approach is well suited to short flows.

To expand further on the above discussion, we designed a SimMix simulation in a

FatTree512 topology with 4:1 oversubscription ratio as presented in Figure 5.11. The

5.4. Comparing MMPTCP to MPTCPPure 118

transport protocol used is MPTCP with eight subflows running both large and short

flows (MPTCPPure). The arrival rate of short flows is 256 arrivals per second and 33%

of nodes send long flows.

Figure 5.11: A 4:1 oversubscribed FatTree512 topology

MPTCPPure achieved an average short flow completion time of 126ms with the

standard deviation of 425ms for a total of 99103 completed short flows. The high stan-

dard deviation indicates that there are some cases in which MPTCP performs far worse

than the average. We repeated the above simulation but this time with the MMPTCP

protocol. The results are promising: MMPTCP achieved the average flow completion

time of 116ms with the standard deviation of 101ms for a total of completed short

flows of 100980. This implies that MMPTCP short flows maintain their ACK clock

better than MPTCP with eight subflows when they experience loss events.

We also extracted and plotted the flow completion times, total fast retransmissions

and timeouts of each individual short flow. Figure 5.12 shows the results achieved

for timeouts and fast retransmits. As is evident from Figure 5.12(a), MPTCP suffers

from excessive timeouts. For example, some short flows experienced 25 timeouts dur-

ing their data deliveries, which is very high for 20 seconds simulation. Figure 5.12(b)

shows that MMPTCP performed far better than MPTCP with eight subflows: it de-

creased the maximum timeouts and fast retransmissions from 25 to 4 and 6 to 2 respec-

tively and a majority of flows experienced fewer than two timeouts.

Figure 5.13 shows the results of short flow completion times. As clearly shown

5.4. Comparing MMPTCP to MPTCPPure 119

 0

 1

 2

 3

 4

 5

 6
F

a
st

 R
et

ra
n

sm
it

s
(#

)

 0

 5

 10

 15

 20

 25

 90000 92000 94000 96000 98000 100000 102000

T
im

eo
u

ts
 (

#
)

Rank of Flow

(a) MPTCP with eight subflows

 0

 1

 2

 3

 4

 5

 6

F
a

st
 R

et
ra

n
sm

it
s

(#
)

 0

 5

 10

 15

 20

 25

 90000 92000 94000 96000 98000 100000 102000

T
im

eo
u

ts
 (

#
)

Rank of Flow

(b) MMPTCP

Figure 5.12: Timeouts and fast retransmissions (MMPTCP against MPTCPPure)

5.4. Comparing MMPTCP to MPTCPPure 120

in Figure 5.13(a), a majority of MPTCP short flows completed their data deliveries

without experiencing any congestion event. That is, the mean flow completion time

of MPTCP (126ms) is not unduly high compared to MMPTCP. However, the high

standard deviation of MPTCP (425ms) is certainly related to a fraction of short flows

that have completed their data deliveries with a long delay due to excessive timeouts

and/or fast retransmissions; the red dots around 3 seconds in Figure 5.13(a) are a good

example of such completion times.

In this section, we have shown that MMPTCP decreases average flow completion

time and standard deviation of short flows compared to MPTCP with eight subflows.

This implies that, unlike MPTCP with eight subflows, MMPTCP does not produce a

heavy tail in the flow completion time of short flows while it achieves high overall

network utilisation. It allows the MPTCP protocol to be deployed in existing data

centres and to be used with all existing applications without any reliance on higher

layer information. In other words, an application does not need to know about its

flow size in order to make a proper decision about the number of subflows to use.

This is particularly important for data centre application designers who prefer not to

consider underlying networking protocols when they design their applications. Another

important implication here is that MMPTCP is incrementally deployable in existing

data centres as it could coexist with legacy TCP.

5.4. Comparing MMPTCP to MPTCPPure 121

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 90000 92000 94000 96000 98000 100000 102000

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
)

Rank of Flow

(a) MPTCP with eight subflows

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 90000 92000 94000 96000 98000 100000 102000

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
)

Rank of Flow

(b) MMPTCP

Figure 5.13: Short flow completion times (MMPTCP against MPTCPPure)

5.5. Comparing MMPTCP to MPTCPSFTCP 122

5.5 Comparing MMPTCP to MPTCPSFTCP

One of the MMPTCP design goals is to allow MPTCP to run all network flows without

the application layer dictating the number of subflows. In other words, MMPTCP at-

tempts to run MPTCP for any type of flows when applications are not aware of MPTCP.

In the previous section, we have shown that MMPTCP achieves this goal.

A striking question here is: what if applications are aware of MPTCP and their

flow sizes, so that they run short flows via a single subflow (i.e. single-path TCP) and

long flows via eight subflows?

To answer this question we designed a SimMix simulation, where short flows run

on top of TCP and long flows on top of MPTCP with eight subflows (we refer to this

SimMix as MPTCPSFTCP). We conducted this simulation with the same configuration

as the simulation presented in Section 5.4. In short, a FatTree512 topology with an

oversubscription ratio of 4:1, the Permutation traffic matrix and λ = 256. The result

is depicted in Table 5.2. Short flows of MMPTCP achieve a higher overall flow com-

pletion time than MPTCPSFTCP, but the average network core utilisation is almost the

same in both simulations.

SimMix Simulation
Name

Short Flow
Finish Time
(mean/stdev)

Core Layer
Utilisation

(mean)
MMPTCP 116± 101 74.9%
MPTCPSFTCP 89.2 ± 108.9 75.2%

Table 5.2: MMPTCP compared to MMPTCPSFTCP

To explore why MMPTCP achieves a higher average short flow completion time

than MPTCPSFTCP, we extracted the overall link utilisation and mean loss rate for each

layer of the FatTree topology. Figure 5.14 depicts the results. MMPTCP decreases the

average loss rate significantly compared to MPTCPSFTCP at the core, aggregation and

access layers (i.e. layers with multipaths). This is completely as expected, as MMPTCP

delivers the packets of its short flows via all parallel paths to their destinations, so

that the chance of contention between short and long flows decreases significantly. In

addition, the overall link utilisations are almost the same in both simulations. This is

also as expected, as both simulations handle long flows by MPTCP (MMPTCP switches

to MPTCP after a switching threshold of 100KB is reached).

5.5. Comparing MMPTCP to MPTCPSFTCP 123

L
in

k
 u

ti
li

sa
ti

o
n

 (
%

)
74.9832

79.886

8.85125

22.2146

Core Agg ToR Host

L
o

ss
 R

a
te

 (
%

)

0.0076887 0.028036 8.02652e-05 0.00709657

(a) MMPTCP

L
in

k
 u

ti
li

sa
ti

o
n

 (
%

)

75.2005
79.9869

8.85083

22.2231

Core Agg ToR Host

L
o

ss
 R

a
te

 (
%

)

0.0098188 0.040318 7.30407e-05 0.00679453

(b) MPTCPSFTCP

Figure 5.14: Overall link utilisation and loss rate in different layers of the network topology.
MMPTCP decreases the average loss rate at core, aggregation and access layers
of the FatTree network.

5.5. Comparing MMPTCP to MPTCPSFTCP 124

The important question here is: if MMPTCP decreases the average loss rates,

especially at the core and aggregation layers, why it does increase the average short

flow completion time compared to MPTCPSFTCP?

To answer this question, we extracted and plotted the flow completion times, fast

retransmissions and timeouts in each individual short flow. Figure 5.15 and 5.16 depict

the results. It can be observed by comparing Figure 5.15(a) and 5.15(b) that MMPTCP

has a higher flow completion times for a small fraction of short flows (e.g. those be-

tween 95K and 100K) than MPTCPSFTCP. Comparing Figure 5.16(a) and 5.16(b) also

reveals that short flows of MMPTCP (only a small fraction) experience more timeouts

than MPTCPSFTCP. It may be suggested that MMPTCP achieves the higher overall

short flow completion time because of the large value of the duplicate ACK threshold

(dupthresh).

Increasing or adjusting the dupthresh value is a tricky task as the TCP NewReno

sender could lose its ACK clock, especially when the value of the dupthresh is larger

than the congestion window. Thus, if any packet gets dropped in such scenarios, TCP

needs to wait for a retransmission timer to be triggered. For example, in the above

simulations 85% of network flows traverse the network core. This means that a majority

of flows set their dupthresh value to 19. If any segment gets dropped at the first five

RTTs, either at the beginning of data transmission or after any timeout event, then the

corresponding subflow should wait until its retransmit timer is triggered.

We believe therefore that the large dupthresh value is the main reason why short

MMPTCP flows experience a slightly higher timeout compared to TCP ones. In order

to improve the performance of MMPTCP in such scenarios, we propose to use the TCP

Limited Transmit mechanism in the PS phase of MMPTCP. The detailed discussion of

Limited Transmit is in Section 5.7.

5.5. Comparing MMPTCP to MPTCPSFTCP 125

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 80000 85000 90000 95000 100000

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
)

Rank of Flow

(a) MMPTCP

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 80000 85000 90000 95000 100000

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
)

Rank of Flow

(b) MPTCPSFTCP

Figure 5.15: Flow completion times (MMPTCP against MPTCPSFTCP)

5.5. Comparing MMPTCP to MPTCPSFTCP 126

 0

 1

 2

 3
F

a
st

 R
et

ra
n

sm
it

s
(#

)

 0

 1

 2

 3

 4

 80000 85000 90000 95000 100000

T
im

eo
u

ts
 (

#
)

Rank of Flow

(a) MMPTCP

 0

 1

 2

 3

F
a

st
 R

et
ra

n
sm

it
s

(#
)

 0

 1

 2

 3

 4

 80000 85000 90000 95000 100000

T
im

eo
u

ts
 (

#
)

Rank of Flow

(b) MPTCPSFTCP

Figure 5.16: Timeouts and fast retransmissions (MMPTCP against MPTCPSFTCP)

5.6. Comparing MMPTCP to TCPPure and PSPure 127

5.6 Comparing MMPTCP to TCPPure and PSPure

This section compares and analyses the performance of TCP, PS, MPTCP and

MMPTCP. In order to evaluate TCP and PS protocol, we set up two SimMix simula-

tions, first with TCP and second with PS running both large and short flows. We refer

to these simulations as TCPPure and PSPure respectively. The simulation setup is the

same as ones presented in Section 5.4 and 5.5. The results are depicted in Table 5.3. In

order to clarify the comparisons of these simulations, we also included the summary of

previous results from MMPTCP, MPTCPSFTCP and MPTCPPure.

SimMix Simulation
Name

Short Flow
Transport
Protocol

Long Flow
Transport
Protocol

Short Flow
Finish Time
(mean/stdev)

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilisation

(mean)

Core Layer
Loss Rate

(mean)
PSPure PS PS 36.9/±38.2 ms 58.6/±18.2 Mbps 75.1% 0.0001%
TCPPure TCP TCP 64.3/±118.2 ms 38.5/±19.8 Mbps 44.7% 0.0259%
MMPTCP MMPTCP MMPTCP 116/±101 ms 61.9/±20.0 Mbps 74.9% 0.0076%
MPTCPSFTCP TCP MPTCP 89.2/±108.9 ms 61.9/±19.6 Mbps 75.2% 0.0098%
MPTCPPure MPTCP MPTCP 126/±425 ms 62.1/±19.7 Mbps 75.5% 0.0077%

Table 5.3: All SimMix simulations with λ = 256

The analyses of the results in Table 5.3 are listed below:

• PSPure achieves the lowest average short flow completion time and overall core

loss rate. PSPure also achieves a high average goodput for long flows.

• TCPPure achieves the worst overall core utilisation and highest mean core loss

rate. However, it achieves better mean flow completion time than the MMPTCP,

MPTCPPure and MPTCPSFTCP simulations.

• MPTCPPure achieves the worst flow completion time with the highest standard

deviation although it performs well in utilising the network core.

• MMPTCP and MPTCPSFTCP achieve higher overall network core utilisation and

lower average short flow completion time than MPTCPPure.

PSPure performs very well in all the above comparisons since it prevents the cre-

ation of any hotspots in the network by randomising all packets via all possible paths.

TCPPure performs worse in utilising network resources because it only uses a sin-

gle path throughout its data delivery and it therefore unable to find and shift its traffic

to least congested paths. TCP gets trapped in a congested path and damages itself and

5.6. Comparing MMPTCP to TCPPure and PSPure 128

other competing flows at bottleneck links along the path. As a result, network resources

are not efficiently used. This is also the main reason that TCPPure achieves a lower over-

all short flow completion time than MPTCPSFTCP or MMPTCP, since a lot of unused

capacity in the network is used by a majority of short TCP flows to complete their data

deliveries in a short timeframe. In other words, the inability of large TCP flows to

utilise network resources provides headroom for short flows to be completed faster.

After this analysis, one might question what is the advantage of running MPTCP

in today’s data centres if the PS protocol can achieve a perfect load balancing.

The real question here is why PS protocol did not achieve the highest average goodput

for long flows even though it had a very low loss rate in the network core.

To our knowledge PS has not been extensively discussed or analysed in the data

centre context. However, a recent study argued that PS can deliver short flows much

faster compared to TCP, in a oversubscribed FatTree topology (e.g. 4:1), because it

can utilise all network capacity [15]. Another study argued that PS throughput is very

sensitive to network congestion because PS only holds one congestion window; when

a loss event is detected the rate of data transmission is halved. Unlike MPTCP, PS has

no way to shift traffic to the least congested paths [12]. Therefore, it is expected that

if PS coexists with other transport protocols, such as single-path TCP, its performance

may not be as good as what we have seen so far.

In order to gain a deeper insight into PS performance, we have conducted the

above simulations with a short flow arrival rate of 2560 per second, which is generating

10 times more short flows per second than λ = 256. In this way, it is possible to

understand the overall performance of each transport protocol under more traffic, and

perhaps under a more bursty traffic pattern. This simulation setup not only explains

how the congestion control of each transport protocol operates but also explains how

the congestion is actually produced by each transport protocol in the network.

Furthermore, we designed another SimMix, referred to as PSSFTCP, which uses

the TCP protocol for running short flows and the PS protocol for running long flows.

PSSFTCP helps to evaluate the performance of PS when it competes with non-PS flows

such as TCP flows. Table 5.4 presents the results achieved in this experiment.

PSPure performs well in all evaluation metrics, especially its overall loss rate in the

network core, which is distinctively low in comparison with other setups.

5.6. Comparing MMPTCP to TCPPure and PSPure 129

SimMix Simulation
Name

Short Flow
Transport
Protocol

Long Flow
Transport
Protocol

Short Flow
Finish Time
(mean/stdev)

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilisation

(mean)

Core Layer
Loss Rate

(mean)
PSPure PS PS 40.5/±44.3 ms 52.9/±16.7 Mbps 76.8% 0.0001%
PSSFTCP TCP PS 29.7/±31.1 ms 42.5/±11.3 Mbps 61.9% 0.0014%
TCPPure TCP TCP 66.5/±150 ms 34.2/±18.1 Mbps 48.8% 0.0576%
MMPTCP MMPTCP MMPTCP 111/±127 ms 55.9/±18.7 Mbps 76.7% 0.0105%
MPTCPSFTCP TCP MPTCP 83.9/±148 ms 53.3/±17.4 Mbps 73.6% 0.0258%
MPTCPPure MPTCP MPTCP 148/±502 ms 55.0/±18.2 Mbps 75.9% 0.0100%

Table 5.4: All SimMix simulations with λ = 2560

PSSFTCP achieves the lowest flow completion time, which entails the degradation

of almost 10Mbps in the overall goodput and 15% less in the overall core utilisation.

PSSFTCP also increases the overall loss rate of the core layer by 14 times more than

PSPure. The main reason that PSSFTCP achieves a better overall flow completion time

than PSPure is that long flows in PSSFTCP are more susceptible to random packet drops,

and hence they reduce their rates more frequently. When a buffer filled up their packets

most likely are in the tail of the queue since long flows randomly spread their packets

via all possible paths. The consequence of such rate reductions is to decrease some traf-

fic throughout the network (from all queues). This helps many short flows to complete

their data delivery without experiencing any collision and with less queuing delay. In

other words, one collision between short and long flows helps several other short flows

complete their data deliveries with fewer congestion events. This might be a desirable

goal per se, if short flow completion is more important than overall network utilisation.

The above experiment justifies that PS is very sensitive to network congestion,

so that when it is used for handling long flows it hurts their connection throughputs,

and consequently the overall network utilisation. However, we believe that using PS

for long flows could be an excellent approach for a data centre that wants to use PS for

short flows as well. It does not, however, seem the best approach if required to integrate

with existing data centres and compete with other transport protocols.

TCP obtains the worst results in almost all comparisons except the mean flow

completion time. As expected, it has the highest loss rates in the network core of all

the setup compared.

MPTCPSFTCP doubles the mean core loss rate and achieves a lower mean goodput

for long flows and core utilisation than MMPTCP. MPTCPSFTCP also achieves a lower

mean flow completion time with a higher standard deviation compared to MMPTCP.

5.7. Effects of Hotspot 130

An observation may suggest that any network flow using PS will enable other

flows, i.e. non-PS flows, to perform better. A comparison of PSPure with PSSFTCP and

MMPTCP with MPTCPSFTCP bears out this observation.

5.7 Effects of Hotspot
This section studies the performance of various transport protocols under varied num-

ber of hotspot core switches in a FatTree topology. The main goal of this study is to

understand how each transport protocol reacts to these hotspots. These hotspots may

occur for several reasons in modern data centres, including:

• Contention between traffic flowing from the Internet to data centres.

• Hardware failures or cable faults.

• Uneven load in some servers.

In order to model hotspots in the core layer, we modified the drop-tail queue size

of hotspot links from 100 to 10 packets.10 To select links under the hotspot, we devised

two approaches: selecting all the links of some randomly selected core switches; or

selecting some links of each core switch randomly or arbitrarily. The former approach

was used in this experiment as it allows the monitoring of hotspot areas by simply

monitoring each core switch under the hotspot. Figure 5.17 shows an example of a

FatTree topology with hotspot links under two core switches. In other words, there are

two hotspot core switches that produce 16 hotspot links in this example.

Creating hotspots by reducing queue sizes, rather than link rates, helps us to induce

packet drops without increasing the network load, so that the long queuing delays is

prevented. A long queueing delay due to rate reduction of a link in the core layer of a

FatTree topology may produce packet reordering for all PS-based flows, which is not

the aim of this experiment. We aimed to investigate that: what type of flows (short

or long flows) is the source of collisions in those limited size queues and how each

transport protocol reacts to those bottlenecks.

Simulations in this section were conducted in various number of hotspot core

switches, ranging from 20% to 60% of total core switches (we refer to the percentage
10To select a size for the drop-tail queue, we examined various queue sizes, ranging from 10 to 50

packets, and it turned out that 10 packets can best show the distinctions between the behaviour of the
different transport protocols.

5.7. Effects of Hotspot 131

Figure 5.17: All links of two core switches are in hotspots

of cores under hotspot as "hotspot degree"). The network topology used is a FatTree512

topology with an oversubscription ratio of 4:1 in links at core and aggregation layers.

The traffic matrix used is Permutation and the value of λ is 2560.

It is expected that by increasing the number of hotspot core switches, the overall

network utilisation will decrease, the overall short flow completion time will increase

and the mean loss rate will increase in all transport protocols. It is interesting to see

how each transport protocol follows this trend.

Figure 5.18(c) shows the mean goodput achieved by long flows of each simula-

tion setup under varied hotspot core switches. It is noticeable that PSSFTCP achieved

the worst and MMPTCP achieved the best overall goodput compared to other SimMix

setups. This is another highlighted experiment to show the weakness of PS and the

strength of MPTCP in handling congestion. In other words, PS is extremely sensitive

and MPTCP is extremely insensitive to network congestion.

Figure 5.18(b) shows that as the hotspot core switches increase, MMPTCP be-

haves consistently and achieves the highest mean core utilisation at all hotspot degrees.

TCPPure also behaves consistently and with little changes to overall core utilisations.

However, it does not behave this way when it comes to the short flow completion

time (Figure 5.18(d)). TCPPure achieves the highest standard deviation compared to

other simulation setups, which is not actually surprising (Table 5.5). For example,

5.7. Effects of Hotspot 132

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 20 40 60

M
ea

n
 C

o
re

 L
o
ss

 R
a
te

 (
%

)

Hotspot Degree (%)

PSPure
PSSFTCP

MMPTCP
MPTPSFTCP

MPTPPure
TCPPure

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 20 40 60

M
ea

n
 C

o
re

 U
ti

li
sa

ti
o
n

 (
%

)

Hotspot Degree (%)

PSPure
PSSFTCP

MMPTCP
MPTCPSFTCP

MPTPPure
TCPPure

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 20 40 60

M
ea

n
 G

o
o
d

p
u

t
(M

b
p

s)

Hotspot Degree (%)

PSPure
PSSFTCP

MMPTCP
MPTCPSFTCP

MPTPPure
TCPPure

(c)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

0 20 40 60

M
ea

n
 F

lo
w

 C
o
m

p
le

ti
o
n

 T
im

e
(m

s)

Hotspot Degree (%)

PSPure
PSSFTCP

MMPTCP
MPTCPSFTCP

MPTPPure
TCPPure

(d)

Figure 5.18: All SimMix setups under varied hotspot core switches. MMPTCP achieves the
lowest mean core loss rate, the highest mean long goodput and the highest mean
core utilisation at all hotspot degrees.

at the hotspot degree of 60%11 short flows of TCPPure achieved the mean finish time

of 80.5ms with a standard deviation of 214ms. This implies that hotspots in TCPPure

mostly exert influence on short TCP flows because large TCP flows have already shown

their inability to use network resources efficiently, even without any hotspot link, due

to ECMP hash collisions.

Figure 5.18(a) illustrates the mean core loss rate achieved by each simulation

setup. MMPTCP achieves the lowest mean loss rate at all hotspot degrees. By increas-

ing the percentage of hotspot cores, the mean loss rate of PSSFTCP and MPTCPSFTCP

increases significantly as both simulation setups use the TCP protocol for running short

flows. The completely opposite result is achieved with MMPTCP and PSPure because

both simulations use the PS protocol for handling short flows.

11The 60% of total core switches in this experiment corresponded to 9 core switches, i.e. 72 links
from the total of 128 links in this layer.

5.7. Effects of Hotspot 133

Simulation
Setup

Hotspot
Degree

(%)

Short Flow
Finish Time
(mean/stdev)

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilisation

(mean)

Core Layer
Loss Rate

(mean)
MPTCPPure 0% 148/±502 ms 55.0/±18.0 Mbps 75.9% 0.010 %
MPTCPPure 20% 167/±536 ms 54.1/±18.0 Mbps 73.7% 0.098%
MPTCPPure 40% 195/±596 ms 52.4/±17.9 Mbps 70.8% 0.215%
MPTCPPure 60% 229/±662 ms 50.3/±18.9 Mbps 73.0% 0.363%
MPTCPSFTCP 0% 83.8/±148 ms 53.3/±17.4 Mbps 73.6% 0.025%
MPTCPSFTCP 20% 86.6/±162 ms 51.7/±17.7 Mbps 70.8% 0.162%
MPTCPSFTCP 40% 88.3/±177 ms 49.5/±18.2 Mbps 67.0% 0.337%
MPTCPSFTCP 60% 89.3/±194 ms 47.0/±18.7 Mbps 62.9% 0.549%
MMPTCP 0% 111.0/±127 ms 55.9/±18.7 Mbps 76.7% 0.010%
MMPTCP 20% 112.0/±130 ms 54.7/±20.0 Mbps 74.6% 0.038%
MMPTCP 40% 113.9/±137 ms 53.6/±21.0 Mbps 72.9% 0.074%
MMPTCP 60% 114.4/±147 ms 52.3/±21.7 Mbps 70.6% 0.120%
TCPPure 0% 66.5/±150 ms 34.2/±18.1 Mbps 48.8% 0.057%
TCPPure 20% 71.0/±175 ms 33.5/±18.0 Mbps 47.7% 0.231%
TCPPure 40% 75.9/±197 ms 32.7/±18.0 Mbps 46.5% 0.423%
TCPPure 60% 80.5/±214 ms 32.0/±18.0 Mbps 45.4% 0.612%
PSPure 0% 40.5/±44.3 ms 52.9/±16.7 Mbps 76.8% 0.0001%
PSPure 20% 39.2/±84.1 ms 47.4/±15.2 Mbps 66.9% 0.100%
PSPure 40% 39.7/±94.3 ms 45.0/±14.9 Mbps 62.6% 0.132%
PSPure 60% 40.4/±100 ms 43.5/±15.1 Mbps 59.8% 0.152%
PSSFTCP 0% 29.7/±31.1 ms 42.5/±11.3 Mbps 61.9% 0.0014%
PSSFTCP 20% 39.0/±95.1 ms 35.1/±12.7 Mbps 49.7% 0.185%
PSSFTCP 40% 46.6/±112.7 ms 31.6/±14.4 Mbps 43.9% 0.317%
PSSFTCP 60% 53.0/±125 ms 29.4/±15.7 Mbps 40.3% 0.434%

Table 5.5: The raw results of hotspot simulations

The intuition following this experiment is that the burstiness of data centre traffic,

which arises from TCP short flows, is simply smoothed by using MMPTCP. In other

words, the TCP protocol for handling short flows not only increases contention but also

fails to handle it gracefully. However, MMPTCP not only prevents possible congestion

by scattering packets via all possible paths, but also handles it effectively by shifting

traffic away from congested areas, after switching to MPTCP. This is the main reason

that MMPTCP achieves the lowest loss rate at various hotspot levels compared to other

simulation setups. Even PSPure is not capable of dealing with hotspots effectively since

it cannot detect them. These observations are highlighted in Figure 5.18(a).

To explore this discussion, we selected a single execution of the hotspot degree of

40%. We then extracted and plotted the loss rate for all the links at the network core.

The results are depicted in Figures 5.19, 5.20, 5.21, 5.22 and 5.23 for MPTCPSFTCP,

MMPTCP, TCPPure, PSPure and PSSFTCP simulations respectively. In each figure, the

six hotspot cores (Core-1, 3, 5, 7, 8 and 14) are clearly visible since their links have

higher loss rates than the other cores. Our goal for showing these figures is to provide

5.7. Effects of Hotspot 134

a big picture about the loss rate of links at the network core of each simulation setup.

Thus, we do not intend to study these figures in detail.

By comparing MMPTCP (5.20) and MPTCPSFTCP (Figure 5.19), we can see how

MMPTCP prevents and mitigates possible congestion, especially in the hotspot cores.

Loss rates at the hotspot links of MMPTCP are mostly and consistently less than 0.5%,

which is far lower than those in MPTCPSFTCP. Figure 5.19 also shows that long flows in

MPTCPSFTCP try to get away from hotspot cores by shifting their traffic to other cores.

As a result, the loss rate of some random and non-hotspot links slightly increases (e.g.

links in Core-2, 4, 6 and 15).

By comparing MMPTCP (Figure 5.20) and PSPure (Figure 5.22), one can observe

that PSPure can even perform slightly worse than MMPTCP in dealing with hotspots.

This is due to the fact that the PS protocol has no mechanism to detect hotspot areas,

so the packets from both large and short flows are randomised into those areas. This

is the main reason that most links in the hotspot areas of PSPure have a slightly higher

loss rate than MMPTCP.

By looking at TCPPure (Figure 5.21), we can deduce why TCP achieves a lower

flow completion time, a higher standard deviation and overall loss rate than MMPTCP.

The reason is that a few links in the non-hotspot areas (e.g. Link-1 in Core-13) expe-

rience a high loss rate, but the rest have a loss rate of almost 0%. This implies that a

majority of short flows delivers its data very fast, without experiencing any congestion,

but some short flows get trapped in congested areas, which are mostly induced by col-

lisions between large TCP flows. This is the main reason that TCPPure achieves a low

flow completion time and a high standard deviation.

Figures 5.22 and 5.23 also bear out the fact that PSPure is very sensitive to con-

gestion and in turn suggest PSSFTCP achieves the lowest overall goodput in the various

degrees of hotspots in Figure 5.18(c). The main reason is that if any packet of a PS

flow gets dropped due to these hotspots, then the PS sender halves its transmission rate,

degrading the overall network throughput significantly. The loss rate in the hotspot

links of PSSFTCP (Figure 5.23) is much higher than in those of PSPure (Figure 5.22).

This is because the short TCP flows in PSSFTCP induce more congestion than the short

PS flows in PSPure. Thus, PSSFTCP achieves the worst overall goodput in all hotspot

degrees of all the simulation setups.

5.7. Effects of Hotspot 135

 1

 2

 3

L
o

ss
 R

a
te

 (
%

)
Core-1

(hotspot)

 1

 2

 3

Core-2

 1

 2

 3

Core-3
(hotspot)

 1

 2

 3

Core-4

 1

 2

 3

Core-5
(hotspot)

 1

 2

 3

Core-6

 1

 2

 3

Core-7
(hotspot)

 1

 2

 3

Core-8
(hotspot)

 1

 2

 3

Core-9

 1

 2

 3

Core-10

 1

 2

 3

Core-11

 1

 2

 3

Core-12

 1

 2

 3

Core-13

 1

 2

 3

Core-14
(hotspot)

 1

 2

 3

Core-15

 1

 2

 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Core-16

Times (s)

Link1
Link2

Link3
Link4

Link5
Link6

Link7
Link8

Figure 5.19: MPTCPSFTCP

5.7. Effects of Hotspot 136

 1

 2

 3

L
o

ss
 R

a
te

 (
%

)
Core-1

(hotspot)

 1

 2

 3

Core-2

 1

 2

 3

Core-3
(hotspot)

 1

 2

 3

Core-4

 1

 2

 3

Core-5
(hotspot)

 1

 2

 3

Core-6

 1

 2

 3

Core-7
(hotspot)

 1

 2

 3

Core-8
(hotspot)

 1

 2

 3

Core-9

 1

 2

 3

Core-10

 1

 2

 3

Core-11

 1

 2

 3

Core-12

 1

 2

 3

Core-13

 1

 2

 3

Core-14
(hotspot)

 1

 2

 3

Core-15

 1

 2

 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Core-16

Times (s)

Link1
Link2

Link3
Link4

Link5
Link6

Link7
Link8

Figure 5.20: MMPTCP

5.7. Effects of Hotspot 137

 1

 2

 3

L
o

ss
 R

a
te

 (
%

)
Core-1

(hotspot)

 1

 2

 3

Core-2

 1

 2

 3

Core-3
(hotspot)

 1

 2

 3

Core-4

 1

 2

 3

Core-5
(hotspot)

 1

 2

 3

Core-6

 1

 2

 3

Core-7
(hotspot)

 1

 2

 3

Core-8
(hotspot)

 1

 2

 3

Core-9

 1

 2

 3

Core-10

 1

 2

 3

Core-11

 1

 2

 3

Core-12

 1

 2

 3

Core-13

 1

 2

 3

Core-14
(hotspot)

 1

 2

 3

Core-15

 1

 2

 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Core-16

Times (s)

Link1
Link2

Link3
Link4

Link5
Link6

Link7
Link8

Figure 5.21: TCPPure

5.7. Effects of Hotspot 138

 1

 2

 3

L
o

ss
 R

a
te

 (
%

)
Core-1

(hotspot)

 1

 2

 3

Core-2

 1

 2

 3

Core-3
(hotspot)

 1

 2

 3

Core-4

 1

 2

 3

Core-5
(hotspot)

 1

 2

 3

Core-6

 1

 2

 3

Core-7
(hotspot)

 1

 2

 3

Core-8
(hotspot)

 1

 2

 3

Core-9

 1

 2

 3

Core-10

 1

 2

 3

Core-11

 1

 2

 3

Core-12

 1

 2

 3

Core-13

 1

 2

 3

Core-14
(hotspot)

 1

 2

 3

Core-15

 1

 2

 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Core-16

Times (s)

Link1
Link2

Link3
Link4

Link5
Link6

Link7
Link8

Figure 5.22: PSPure

5.7. Effects of Hotspot 139

 1

 2

 3

L
o

ss
 R

a
te

 (
%

)
Core-1

(hotspot)

 1

 2

 3

Core-2

 1

 2

 3

Core-3
(hotspot)

 1

 2

 3

Core-4

 1

 2

 3

Core-5
(hotspot)

 1

 2

 3

Core-6

 1

 2

 3

Core-7
(hotspot)

 1

 2

 3

Core-8
(hotspot)

 1

 2

 3

Core-9

 1

 2

 3

Core-10

 1

 2

 3

Core-11

 1

 2

 3

Core-12

 1

 2

 3

Core-13

 1

 2

 3

Core-14
(hotspot)

 1

 2

 3

Core-15

 1

 2

 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Core-16

Times (s)

Link1
Link2

Link3
Link4

Link5
Link6

Link7
Link8

Figure 5.23: PSSFTCP

5.8. Effects of Load 140

5.8 Effects of Load
This section investigates the performance of MMPTCP, MPTCPSFTCP, TCPPure, PSPure

and PSSFTCP under various network loads in a 2:1 oversubscribed FatTree topology.

The objective of this section is to explore how transport protocols in each SimMix pre-

vent and react to congestion, especially when the network is highly loaded so that

collisions among long flows are most likely to occur everywhere in the network.

To model this experiment, we change the percentage of nodes running long flows,

ranging from 10% to 70% of total nodes. This way, as the number of long flows in-

creases, so does network load. It must be noted that changing the percentage of nodes

running long flows does not impact on the total number of generated short flows over

the course of simulation. For example, if 10% of nodes running long flows then the

remainder (90%) are only involved in sending short flows. In other words, if the mean

arrival rate is 256 per second, the central scheduler generates 256 short flows per sec-

ond in average and assigns them randomly to 90% of nodes. Thus, the total number of

short flows is almost the same in all simulations conducted in this experiment and its

value can be estimated by the Poisson arrival rate. Furthermore, the central scheduler

starts scheduling 500ms after a simulation starts.

Figures 5.24, 5.25 and 5.26 depict the results for the flow completion time of

short flows, goodput of long flows and loss rate of the network core respectively. As

is evident from Figure 5.24, PSPure achieves the most stable results for the average

flow completion time at various traffic levels; by increasing the network load, the mean

and standard deviation increase slowly and consistently. TCPPure follows an unstable

trend since the TCP performance is dependent on network condition and traffic pattern.

This instability is highlighted at 30% (x-axis). MMPTCP and MPTCPSFTCP perform

similarly (MMPTCP with less deviation) since both simulation setups handle their long

flows by the MPTCP protocol.

Figure 5.25 shows the overall goodput of long flows. It is expected that by in-

creasing the number of long flows, the average goodput will decrease gradually in all

simulation setups. This is due to the fact that the network capacity is shared with more

long flows. The only simulation setup that achieved slightly different results to the oth-

ers is related to the TCPPure since its overall goodput dropped dramatically from 10%

to 30% (73.4 to 54.2 Mbps) and then gradually decreased to 37.9 Mbps at 70% load,

5.8. Effects of Load 141

the lowest goodput seen in this experiment.

Figure 5.26 shows the mean loss rate at the network core under various network

loads. It is expected that when the packet scattering approach is used for handling long

flows then the mean loss rate decreases significantly. This is observable by comparing

PSPure or PSSFTCP to other simulation setups. This implies that the packet scattering

approach effectively allows a network to handle more traffic with less congestion. In

fact this approach increases the fairness among network flows as it equalises the loss

rates across all the links at the network core. However, as discussed in Section 5.7,

although this approach fails to react to congestion gracefully, it is certainly preventing

hotspots. MMPTCP achieves a better mean loss rate at all network loads than TCPPure

and MPTCPSFTCP. In fact, TCPPure performs the worst of all the simulation setups.

We conclude that PS performs well and consistently as the network load increases

because large PS flows are able to use all available capacity throughout the network.

MMPTCP perform better and more consistently than TCP. However, the MPTCP based

protocols are not generally effective in utilising network resources when the network is

highly loaded because there is no spared capacity to exploit by their subflows.

 0

 100

 200

PSPure

 0

 100

 200

PSSFTCP

 0

 100

 200

TCPPure

 0

 100

 200

MMPTCP

 0

 100

 200

10 30 50 70

C
o

m
p

le
ti

o
n

 T
im

e
(m

s)

MPTCPSFTCP

Long Flows (%)

Std dev Mean

Figure 5.24: Short flow completion time in a 2:1 FatTree256 topology under various loads

5.8. Effects of Load 142

 0
 30
 60
 90

PSPure

 0
 30
 60
 90

PSSFTCP

 0
 30
 60
 90

TCPPure

 0
 30
 60
 90

MMPTCP

 0

 30

 60

 90

10 30 50 70

G
o

o
d

p
u

t
(M

b
p

s)

MPTCPSFTCP

Long Flows (%)

Std dev Mean

Figure 5.25: Mean goodput of long flows in a 2:1 FatTree256 topology under various loads

 0.0001

 0.0002

 0.0003

PSPure

 0.0001

 0.0002

 0.0003

PSSFTCP

 0.01

 0.02

 0.03

TCPPure

 0.01

 0.02

 0.03

MMPTCP

 0

 0.01

 0.02

 0.03

10 30 50 70

C
o

re
 L

o
ss

 R
a

te
 (

%
)

MPTCPSFTCP

Long Flows (%)

Mean

Figure 5.26: Mean core loss rate in a 2:1 FatTree256 topology under various loads

5.9. MMPTCP and Multipath Congestion Control 143

5.9 MMPTCP and Multipath Congestion Control
This section explores the performance of MMPTCP protocol when the Fully Coupled

(FC), Uncoupled-TCP (UC) or Linked Increases (LI) congestion control algorithm is

used during its MPTCP phase. The main goal of this section is to explore how multipath

congestion controls affect the completion time of short flows and the overall goodput

of long flows. To achieve this goal, we set up a similar simulation to that presented in

Section 5.7 (Effects of Hotspots) but ran it with different congestion control algorithms.

Table 5.6 depicts the results. As we expected, UC achieves the worst overall short

flow completion time and highest standard deviation; almost doubled compared to FC

and LI. Additionally, UC achieves the lowest overall goodput and network utilisation

compared to other algorithms since it increases the overall host loss rate more than one

order of magnitude compared to LI and FC. The main reason for this high loss rate is

that eight subflows of MPTCP independently and aggressively compete for the sender’s

access link capacity, so the majority of loss events happens in that layer. Therefore, the

core and aggregation layers with UC have a lower loss rate than FC.

Simulation
Name

Short Flow
Finish Time
(mean/stdev)

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilisation

(mean)

Core
Loss Rate

(mean)
MMPTCPFC 114/±127 ms 58.9/±18 Mbps 70.8% 0.014%
MMPTCPUC 179/±270 ms 50/±18.5 Mbps 63.8% 0.010%
MMPTCPLI 116/±101 ms 61.9/±20 Mbps 74.9% 0.007%

Table 5.6: MMPTCP with Fully Coupled, Uncoupled-TCP and Linked Increases

FC doubles the mean core loss rate and achieves a lower network utilisation than

LI. The most likely reason is that FC shifts its traffic to the least congested paths, but

those paths may become congested quickly since all short flows also use those paths,

so FC has to shift its traffic again. That is, FC may create traffic oscillation between

subflows. This oscillation causes long delays in some short flows completing their

data delivery. This reasoning is observable from the cumulative distribution function of

short flow completion times in Figure 5.27. As discussed earlier in this section, UC has

a high standard deviation and hence its flow completion time is heavy-tailed compared

to LI and FC. The same is also true for FC compared to LI, but with less severity. The

lower average flow completion time of FC compared to LI can be observed in this figure

since the majority of short flows of FC complete their flows faster (up to 90 percentile).

5.9. MMPTCP and Multipath Congestion Control 144

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

C
D

F

Completion Time (ms)

MMPTCPLI
MMPTCPFC
MMPTCPUC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2

Figure 5.27: Cumulative distribution function of short flow completion times with Fully Cou-
pled, Uncoupled-TCP and Linked Increases. The small plot is a zoom of the big
plot. Most short flows of FC achieve a better flow completion time than LI.

It is certainly clear that a multipath congestion control has great impact on overall

network utilisation and short flow completion times. The interesting research questions

here are as follows:

1. How fast should the MPTCP congestion control react to congestion events?

2. Is TCP congestion control, which is designed to operate on single path, a suitable

algorithm to be used in PS phase of MMPTCP protocol? For example, if any

packet gets dropped due to a possible transient congestion somewhere in the core

layer, why should MMPTCP halve its sending rate since the received signal of

congestion implies that neither a particular path in the network nor the entire core

layer is congested?

The simplest answer to the second question is to design a new mechanism that

allows the MMPTCP sender to infer where a congestion signal comes from and hence

react to it accordingly. For example, if a congestion signal is received due to congestion

on the access link of a sender/receiver, then the TCP congestion control seems to be a

suitable approach. However, if a congestion signal is received from the other layers of

the network, the TCP congestion control seems to be an overkill approach.

5.10. MMPTCP and Limited Transmit 145

DCTCP congestion control might be an interesting solution here as it reacts in

proportion to congestion. This implies that if a congestion originates from an access

layer then a fraction of marked packets will be significant as there is no multipath in

this layer. The reaction to congestion thus becomes similar to TCP as the worst case

scenario (i.e. halving a sending rate). However, if a congestion signal is random and

possibly comes from different core switches during an RTT then a proportion of marked

packets will be very low. PS therefore will not reduce its sending rate in such cases.

A possible approach to the first question is to integrate the decrease part of a

DCTCP-like congestion control algorithm to the decrease part of MPTCP congestion

control algorithm (i.e. the increase part of MPTCP congestion control algorithm re-

mains unchanged). In this way, MPTCP may detect and react to a potential collision

at a network link much faster than the Linked Increases congestion control algorithm.

Further research is essential to understand the behaviour of MPTCP with such conges-

tion control algorithm in a wide range of network scenarios.

We believe that PS/MMPTCP might perform better than what we have shown so

far with the right congestion control algorithm. We plan to conduct further research on

improving PS/MMPTCP in future.

5.10 MMPTCP and Limited Transmit
Limited Transmit (LT) is an enhancement to TCP loss recovery and attempts to prevent

Retransmission Timeouts (RTOs) in TCP, especially when the congestion window size

is very small [85, 34, 72]. LT allows a TCP sender to transmit new segments only upon

arrival of the first two duplicate ACKs on a segment, i.e. before the fast retransmission

mechanism is triggered.

We modified this algorithm so that a TCP sender allows new segments to be sent

before fast retransmission is triggered regardless of the dupthresh value. For example, if

dupthresh is 19 then a TCP sender allows to send 18 new segments before triggering the

fast retransmission. In this way, a TCP sender can prevent timeouts when a packet gets

dropped and cwnd is smaller than dupthresh. We have integrated this new algorithm

into the PS phase of MMPTCP.

To evaluate the performance of MMPTCP with LT, we designed two new SimMix:

one with MMPTCP without LT, and the other with LT; we refer to these simulations

5.10. MMPTCP and Limited Transmit 146

as MMPTCP and MMPTCPLT respectively. Both follow the same simulation setup,

as follows: a 2:1 oversubscribed FatTree256 topology running the Permutation traffic

matrix with a short flow arrival rate of 256 per second in average. 53% of nodes (135

nodes) send long flows and the remaining 47% of nodes (121 nodes) send short flows.

The first short flow schedules 500ms after simulation starts in order to let long flows be-

come stable. Table 5.7 depicts the results for MMPTCP and MMPTCPLT. MMPTCPLT

improves mean flow completion time and standard deviation significantly without dam-

aging overall network utilisation.

Simulation
Name

Short Flow
Finish Time
(mean/stdev)

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilisation

(mean)

Core Layer
Loss Rate

(mean)
MMPTCP 98.9/±74.8 ms 72.9/±17.3 ms 72% 0.0053%
MMPTCP_LT 89.1/±67.2 ms 72.9/±18.0 ms 72% 0.0051%

Table 5.7: MMPTCP Compared to MMPTCPLT

For both simulations, we extracted and plotted total fast retransmissions and time-

outs in each individual short flow along with their flow completion times. Figures 5.28

and 5.29 shows the results. As expected, MMPTCPLT increases the number of fast re-

transmissions in favour of decreasing the number of timeouts compared to MMPTCP

(Figure 5.28). This implies that MMPTCPLT protects short flows from losing their ACK

clocks to a great extent when a high dupthresh value is used (e.g. 19). MMPTCPLT

therefore decreases the flow completion time of a majority of short flows compared to

MMPTCP. For example, Figure 5.29(b) has a higher concentration of short flow com-

pletion times before 0.4 seconds than Figure 5.29(a).

It is argued that LT is an essential mechanism for preventing TCP from losing its

ACK clock, especially when dupthresh is adjusted automatically and is large (e.g. 19)

[72]. However, LT becomes more aggressive as the dupthresh value increases. This

may be less critical for MMPTCP because its short flows use all possible paths in data

delivery. However, even with MMPTCP, if there is a hotspot in the access layer then

this aggressiveness becomes important and may hurt other competing flows in such a

case. Further research is required in order to understand how LT should be used when

dupthresh is very large.

Note should be taken that neither the dupthresh adjustment nor the LT mecha-

nism is helpful in detecting and mitigating spurious retransmissions caused by packet

5.10. MMPTCP and Limited Transmit 147

reordering events. We therefore believe that the performance of MMPTCP can be sig-

nificantly improved by replacing TCP NewReno with DSACK TCP in the PS phase

since a TCP sender is able to detect and recover from spurious retransmissions grace-

fully. We plan further research to explore this in future.

 0

 1

 2

 3

F
a

st
 R

et
ra

n
sm

it
s

(#
)

 0

 1

 2

 3

 94000 96000 98000 100000

T
im

eo
u

ts
 (

#
)

Rank of Flow

(a) MMPTCP

 0

 1

 2

 3

 4

F
a

st
 R

et
ra

n
sm

it
s

(#
)

 0

 1

 2

 3

 94000 96000 98000 100000

T
im

eo
u

ts
 (

#
)

Rank of Flow

(b) MMPTCPLT

Figure 5.28: Timeouts and fast retransmissions (MMPTCP against MMPTCPLT)

5.10. MMPTCP and Limited Transmit 148

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 90000 92000 94000 96000 98000 100000

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
)

Rank of Flow

(a) MMPTCP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 90000 92000 94000 96000 98000 100000

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
)

Rank of Flow

(b) MMPTCPLT

Figure 5.29: Flow completion times (MMPTCP against MMPTCPLT)

5.11. MMPTCP Switching Mechanism 149

5.11 MMPTCP Switching Mechanism
In this section, we investigate the effects of the MMPTCP switching point with two

scenarios: (1) the completion time of short flows when the size of short flows is lower

or higher than a switching point; and (2) the goodput of long flows.

For the first scenario, we conducted a range of simulations with varying short

flow sizes over various switching points. The simulation setup is as follows: a 2:1

oversubscribed FatTree256 topology running the Permutation traffic matrix with a short

flow arrival rate of 256 per second in average. 53% of nodes send long flows and the

remaining 47% of nodes send short flows. The first short flow is scheduled 500ms after

simulation starts.

Table 5.8 shows the results. It is clear that changing the switching threshold does

not exert any negative effect on the completion time of short flows since the results for

a flow size (e.g. 70KBs) with different switching thresholds are very consistent. This is

a very important outcome because it is very likely that some short flows in a data centre

have larger sizes than a switching threshold.

To begin with the second scenario, let us assume MMPTCP is running only long

flows. Switching to MPTCP is thus expected to occur whenever the switching thresh-

old is reached. At the time of switching, though, MMPTCP might have a very large

window of data in flight. Unlike TCP, the congestion window here does not relate to

the congestion state of a specific path. After switching, therefore, each new established

subflow ought to probe the network in order to prevent congestion collapse. In other

words, new established MPTCP subflows are not allowed to burst their traffic into the

network after switching because they assume that MMPTCP was sending aggressively

before switching.

The important question is how the MMPTCP switching mechanism might affect

the goodput of long flows.

To answer this question, we designed two SimLong simulations, one with

MMPTCP and other with MPTCP with eight subflows. We refer to them as MMPTCP

and MPTCP simulations respectively. The setup of both simulations is as follows:

a FatTree128 topology running the Stride traffic matrix in which each node sends a

single long flow to a single destination; as discussed in Section 5.2.2, with Stride, all

5.11. MMPTCP Switching Mechanism 150

Short Flow
Size
(KB)

Switching
Threshold

(KB)

Short Flow
Finish Time
(mean/stdev)

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilization

(mean)

Core Layer
Loss Rate

(mean)
50 100 86.2/±66.6 ms 73.0/±17.0 Mbps 71.8 % 0.0052 %
50 300 85.2/±66.4 ms 72.8/±18.6 Mbps 71.6 % 0.0042 %
50 500 86.3/±71.5 ms 73.0/±18.2 Mbps 71.7 % 0.0040 %
50 1000 86.2/±71.2 ms 72.9/±18.1 Mbps 71.7 % 0.0035 %
50 10000 82.2/±73.2 ms 72.3/±17.6 Mbps 71.6 % 0.0029 %
70 100 98.9/±74.8 ms 72.9/±17.3 Mbps 72.9 % 0.0053 %
70 300 98.4/±79.0 ms 72.7/±18.5 Mbps 71.7 % 0.0043 %
70 500 97.7/±74.8 ms 72.8/±18.2 Mbps 71.9 % 0.0041 %
70 1000 98.5/±75.1 ms 72.6/±18.1 Mbps 71.7 % 0.0037 %
70 10000 94.3/±77.5 ms 72.2/±17.5 Mbps 71.7 % 0.0034 %

200 100 151.9/±109.7 ms 70.7/±17.1 Mbps 72.6 % 0.0061 %
200 300 150.6/±107.9 ms 71.4/±18.3 Mbps 72.3 % 0.0051 %
200 500 150.5/±109.0 ms 71.6/±17.9 Mbps 72.5 % 0.0049 %
200 1000 152.0/±111.0 ms 71.5/±18.0 Mbps 72.4 % 0.0045 %
200 10000 144.8/±108.2 ms 71.0/±17.3 Mbps 72.5 % 0.0039 %
400 100 228.0/±152.8 ms 69.7/±16.7 Mbps 73.4 % 0.0071 %
400 300 227.4/±147.5 ms 69.5/±17.9 Mbps 73.2 % 0.0063 %
400 500 228.7/±152.4 ms 69.6/±17.5 Mbps 73.4 % 0.0058 %
400 1000 228.5/±152.1 ms 69.5/±17.5 Mbps 73.3 % 0.0056 %
400 10000 221.7/±152.8 ms 69.1/±17.3 Mbps 73.4 % 0.0048 %
600 100 324.8/±198.0 ms 67.9/±16.2 Mbps 74.4 % 0.0080 %
600 300 321.8/±194.7 ms 67.6/±17.4 Mbps 74.2 % 0.0068 %
600 500 312.5/±196.7 ms 67.8/±17.0 Mbps 74.4 % 0.0064 %
600 1000 325.3/±195.8 ms 67.7/±17.0 Mbps 74.3 % 0.0062 %
600 10000 315.2/±198.4 ms 67.3/±16.8 Mbps 74.4 % 0.0061 %

Table 5.8: MMPTCP Switching Threshold Sensitivity

flows traverse via the network core. The network traffic is also expected to be dis-

tributed evenly in such a topology. We repeated this simulation with various simulation

durations, ranging from 1 to 20 seconds.

Table 5.9 shows the results and they are within our expectations. MMPTCP

achieves almost identical results to MPTCP. We conclude that the switching mecha-

nism of MMPTCP protocol has insignificant or no negative effect on the goodput of

long flows since newly established subflows after switching can fully utilise the access

link capacity in a few RTTs.

5.12. Effects of Incast 151

Simulation
Duration

Transport
Protocol

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilisation

(mean)

Core Layer
Loss Rate

(mean)

Jain’s Fairness
Index

MPTCP 67.2/14 Mbps 73.8 % 0.002 % 0.956
1 Second

MMPTCP 66.9/14 Mbps 73.5 % 0.002 % 0.954
MPTCP 75.5/9.8 Mbps 82.0 % 0.003 % 0.983

2 Seconds
MMPTCP 75.2/9.8 Mbps 81.6 % 0.003 % 0.983
MPTCP 81.7/7.5 Mbps 88.1 % 0.003 % 0.991

5 Seconds
MMPTCP 81.7/7.4 Mbps 88.0 % 0.003 % 0.991
MPTCP 86.1/5.0 Mbps 92.6 % 0.003 % 0.996

20 Seconds
MMPTCP 86.1/4.9 Mbps 92.6 % 0.003 % 0.996

Table 5.9: MMPTCP compared to MPTCP via a SimLong in a FatTree128 topology running a
Stride matrix of long flows

5.12 Effects of Incast
The purpose of this section is to investigate the performance of MMPTCP, TCP,

MPTCP and PS under various incast scenarios with both short and long flows. In

Section 3.7, we discussed the TCP incast problem. In short, the incast problem might

happen when a link, typically at the access layer of the network, needs to handle a large

number of synchronised flows. When those flows are short-lived, a transient conges-

tion might occur that lead to a long flow completion time in some of those flows. When

those flows are long-lived, a persistent congestion might become apparent that lead to

the collapse of throughput in several of those flows.

To model the incast for short flows, we designed a simulation in a 1:1 oversub-

scribed FatTree128 topology running various number of parallel short flows, ranging

from 20 to 100 flows, to a single random destination. Parallel short flows are scheduled

every 500ms over the course of simulation (20s) to repeat this condition for several

times. Each network link has the speed of 100Mbps with delay of 20µs and drop-tail

queue of 100 packets.

Figure 5.10 shows the results, including median (50th percentile) and upper quar-

tile (75th percentile). MPTCP with eight subflows achieved the lowest performance

and has the lowest number of completed flows compared to other transport protocols.

The main reason for the latter outcome is that a majority of short MPTCP flows could

not establish a connection to their destinations since their SYN packets got dropped.

Those short flows who succeeded in establishing their connections suffer from exces-

sive timeouts, so that they cannot complete their data delivery before simulation stop

5.12. Effects of Incast 152

time (40 seconds after the simulation duration); this condition become worse as the

number of parallel short flows increases.

MMPTCPLT performs almost closely to TCP. However, unlike MMPTCPLT,

MMPTCP performs slightly worse than TCP because it cannot prevent timeouts when

packets get dropped and the cwnd value is smaller than the dupthresh value.12 It is

clear that non of these transport protocols perform well when the network bottlenecks

are at the access layer of the network.

Short Flow Finish Time
No. of
Parallel
Flows

Transport
Protocol

No. of
Completed
Short Flows

Mean/Stdev Median
Upper

Quartile

MMPTCP 16000 261.3/81.0 ms 277.2 ms 288.5 ms
MMPTCPLT 16000 180.0/38.9 ms 99.5 ms 108.7 ms
TCP 16000 118.4/59.6 ms 99.9 ms 109.4 ms

20

MPTCP 7884 6.5/5.5 s 6.22 s 6.26 s
MMPTCP 32000 416.9/285 ms 452.7 ms 486.8 ms
MMPTCPLT 32000 186.0/68.3 ms 165.2 ms 249.9 ms
TCP 32000 203.4/76.4 ms 169.4 ms 273.4 ms

40

MPTCP 1975 7.6/6.8 s 6.2 s 10.5 s
MMPTCP 47486 1.5/3.4 s 767.4 ms 935.3 ms
MMPTCPLT 64825 2.2/4.3 s 746.6 ms 1.6 s
TCP 61110 2.1/4.5 s 726.0 ms 1.0 s

100

MPTCP 263 6.9/7.8 s 4.5 s 10.5 s

Table 5.10: Incast scenarios with short flows

To model the incast for long flows, we repeated the above simulations but this

time only with long flows. Parallel long flows are scheduled only at the beginning of

the simulation and compete for a shared bottleneck link at the access layer over the

course of the simulation. The results are depicted in Figure 5.11. As we expected,

PS and TCP are achieved almost similar performance. The intuition is that when the

network bottlenecks are at the access layer, which does not provide any multipaths, a

multipath data delivery can not improve the overall network performance compared to

a single-path data delivery.

MMPTCP achieved a lower mean goodput and standard deviation compared to

MPTCP. This result does not imply that MMPTCP can perform better than MPTCP in

incast scenarios since both transport protocols use MPTCP for handling long flows. The

12In this experiment, MMPTCP behaves identically to PS since all flows are short-lived and have
smaller flow size than the MMPTCP switching threshold.

5.12. Effects of Incast 153

No. of
Parallel
Flows

Transport
Protocol

No. of
Completed
Long Flows

Long Flow
Goodput

(mean/stdev)

ToR Layer
Loss Rate

(mean)

Jain’s
Fairness

Index
MMPTCP 400 4.62/4.84 Mbps 0.009 % 0.435
TCP 400 4.78/1.81 Mbps 0.012 % 0.859
MPTCP 400 4.64/7.58 Mbps 0.007 % 0.233

20

PS 400 4.75/1.77 Mbps 0.005 % 0.849
MMPTCP 800 2.27/2.12 Mbps 0.013 % 0.458
TCP 800 2.39/1.06 Mbps 0.017 % 0.791
MPTCP 800 2.34/9.99 Mbps 0.003 % 0.049

40

PS 800 2.37/0.89 Mbps 0.010 % 0.807
MMPTCP 2000 0.88/0.81 Mbps 0.024 % 0.358
TCP 2000 0.95/0.50 Mbps 0.025 % 0.490
MPTCP 2000 0.94/8.23 Mbps 0.001 % 0.127

100

PS 2000 0.94/0.40 Mbps 0.019 % 0.516

Table 5.11: The incast scenarios with long flows

main reason is that MMPTCP switches to MPTCP shortly after the simulation is started.

In this condition, several SYN packets of the newly initiated subflows of a flow may

be dropped because the access link of the receiver is already congested. Furthermore,

the switching to MPTCP is not performed until at least one newly initiated subflow is

established. As a result, some of the MMPTCP flows may continue their data deliveries

with less number of subflows than they initiate; the less number of subflows implies the

less number of timeouts.

To demonstrate above explanation, we extracted and plotted the number of estab-

lished subflows for each individual flow of MMPTCP and MPTCP from the simulations

with 20 parallel long flows (Table 5.11). Figure 5.30 shows the results. MPTCP has

less than ∼50 flows with eight subflows, including 16 flows with less than 5 subflows.

However, MMPTCP has∼150 flows with less than eight subflows, including∼90 flows

with only one subflow.

5.13. Summary 154

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

N
o

.
o

f
E

st
a

b
li

sh
ed

 S
u

b
fl

o
w

s

Rank of Flow

(a) MPTCP

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

N
o

.
o

f
E

st
a

b
li

sh
ed

 S
u

b
fl

o
w

s

Rank of Flow

(b) MMPTCP

Figure 5.30: Number of established subflows per each individual long flow.

5.13 Summary

In this chapter, we compared and analysed the performance of MMPTCP against ex-

isting solutions in a wide range of network scenarios in a FatTree topology. Our eval-

uation showed that MMPTCP outperformed MPTCP with eight subflows running for

both short and long flows. MMPTCP also outperformed all existing transport proto-

cols when there were hotspots in the network. MMPTCP consistently achieved a low

overall loss rate and high overall network utilisation in all the experiments presented

in this chapter. MMPTCP realised all these high performances with TCP NewReno

and without a mechanism to detect and mitigate spurious retransmission due to packet

reordering, such as DSACK.

Our examination has shown that our solution for adjusting dupthresh prevents spu-

rious retransmission to a great extent. We have also found that increasing dupthresh to

5.13. Summary 155

a high value increases timeouts in some short flows with small cwnd. In turn, these

timeouts can be mitigated by the Limited Transmit mechanism to a great extent.

We examined the MMPTCP switching mechanism by comparing MMPTCP with

MPTCP, when both protocols run only long flows. The results indicated that the

MMPTCP switching mechanism does not degrade the goodput of long flows.

Furthermore, we inspected the effect of the MMPTCP switching threshold on the flow

completion time of short flows when they have a flow size higher or lower than a switch-

ing threshold. The results indicated that the switching threshold does not exert any

negative effect on the flow completion time of short flows in such conditions.

We studied the performance of MMPTCP, TCP, PS and MPTCP under various

incast scenarios both with short flows and with long flows. The results confirmed that

none of the above transport protocols can perform well under an incast scenario.

We investigated the feasibility of simulation via the ns-3 simulator as the network

size and link rate increase. The results demonstrated that it is impractical to model a

large-scale data centre network via the packet-level event-driven simulator.

Chapter 6

Conclusions

In this thesis, we conducted an in-depth study of MPTCP for short flows in a FatTree

topology. We observed that MPTCP is not the right solution for handling short flows.

A fraction of short flows complete their flows with a long delay because they incur

excessive timeouts. We proposed MMPTCP as a means to address this problem. Our

evaluation showed that MMPTCP is practical and decreases flow completion time for

short flows while retaining high throughput for long flows over MPTCP with a fixed

number of subflows. We also observed that MMPTCP not only reacted to congestion

gracefully but also prevented it in a great extent, thereby significantly decreasing the

overall loss rate of all links in the network.

One of MMPTCP’s challenges is to prevent, detect and react to spurious retrans-

mission due to packet ordering, during its initial phase of delivery. In this thesis, we

proposed a solution to prevent spurious retransmissions. Our solution is based on the

FatTree IP addressing scheme as it allows us to locate end-hosts according to their IP

address. That is, the dupthresh is adjusted according to the destination IP address of a

flow at connection establishment. Our investigation showed that adjusting dupthresh in

this way significantly prevents spurious retransmission.

MMPTCP includes a switching threshold for switching to MPTCP. Currently, this

threshold is triggered when a certain amount of data (e.g. 1MB) has been transmitted.

We observed that this switching mechanism does not exert any negative effect on the

connection throughput of long flows since the opening of eight subflows after switching

can fully utilise access link capacity in a few RTTs.

We conclude that MMPTCP is rapidly deployable in existing data centres as it

coexists with other transport protocols and operates based on existing data centre tech-

6.1. Future Directions 157

nologies such as ECMP. It can handle all network flows without high-level information

from application layers (e.g. flow sizes and deadlines). It decreases the bursty nature

of data centres by leveraging parallel paths for delivering short flows.

6.1 Future Directions
During our evaluation, we realised that employing TCP congestion control during the

initial phase of MMPTCP seems an overkill approach. Our intuition arose from the

fact that when a congestion signal originated from a random link at the network core,

it seems overkill to react to that congestion by halving the sending rate. However, if

a congestion signal comes from a bottleneck link at the access layer, then the reac-

tion of TCP congestion control is correct. The research question here is how can we

distinguish these two signals and react appropriately. Our hypothesis is that reacting

to congestion proportionally to the extent of congestion will allow detection of these

two signals. We thus believe that employing the DCTCP-link congestion control could

be an interesting solution for distinguishing these two signals. If a congestion signal

comes from random links at the network core then the proportion of congestion signals,

during one RTT, is very low so DCTCP does not reduce its sending rate. However, if

it is from a bottleneck link at the access layer, DCTCP reacts similarly to TCP. Further

investigation is required to determine best practices, parameter adjustments, and so on.

MMPTCP is capable of utilising multi-homed network topologies that make no

sense with TCP. Unlike MPTCP, MMPTCP is capable of delivering all network flows

via all available network interface devices. This nice feature potentially allows the

TCP Incast problem to be addressed by adding more interface devices to end-hosts. We

plan to conduct further research on the performance of MMPTCP over multi-homed

topologies, such as Dual-Homed FatTree (DHFT) [12].

In this thesis, we evaluated MMPTCP with TCP NewReno, which is a widely de-

ployed TCP version. However, TCP NewReno is not an ideal solution when packet

reordering is the norm. There are three aspects to dealing with out-of-order packets:

preventing, detecting and mitigating spurious retransmissions. We explored a solution

for preventing packet reordering by increasing dupthresh in order to postpone the trig-

gering of the fast retransmission mechanism. However, any solutions that attempt to in-

crease the value of dupthresh may increase timeouts when a packet gets dropped while

6.1. Future Directions 158

the congestion window is smaller than dupthresh. To address this, we activated TCP

limited transmit during the initial phase of MMPTCP. We believe increasing dupthresh

and coupling it with limited transmit is the right approach for preventing spurious re-

transmissions in modern data centres, but further research is required into the degree

to which limited transmit should react to duplicate ACKs. We also plan to investigate

how DSACK will improve the performance of MMPTCP, as it can help to detect and

mitigate spurious retransmissions.

Advance QoS features have become increasingly available in data centre switches

[13]. Our hypothesise is that if packets of the initial phase of MMPTCP are marked

high priority and routed through a different queues, then MMPTCP effectively and

seamlessly helps latency-sensitive short flows to meet their deadline. The packet of

short flows is thereby routed from a different queue to the long flows so that the chance

of random packet drop significantly decreases, especially at the network core.

We used the ns-3 simulator for modelling our data centres since it can closely

model a real network, e.g. each ns-3 node can include a networking stack similar

to Linux Kernel. We however observed that it is almost impractical to model a very

large data centre network with ns-3 due to the long simulation completion time. We

thus initially ran all of our simulations with the link rate of 100Mbps in a small-scaled

FatTree topology to achieve a flexibility in running a large number of network scenarios

in a reasonable time-scale (e.g. a few experiments per day). We then ran our final results

(a small number of experiments) with the 1Gbps link rate in a small-scaled FatTree

topology and observed that MMPTCP performed slightly better with the 1Gbps link

rate compared to 100Mbps (it achieved a small performance differences with other

transport protocols in question). A solution to model a very large network is to use

the flow-level simulator such as the htsim simulator [86]. The flow-level simulator

does not model a network with its real network properties (e.g. there is no networking

stack as it exists in real operating systems, SYN packet, hashed-based ECMP as it

exists in network switches, or even the RTOs are not triggered by a timer in the htsim

simulator). We however believe that it is now the right time to examine MMPTCP in

data centres with realistic network sizes and link rates via a flow-level simulator (htsim)

and compare its results with the results achieved from ns-3.

Bibliography

[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The Cost of a Cloud: Re-

search Problems in Data Center Networks. ACM SIGCOMM Comput. Commun.

Rev., 39(1):68–73, December 2008.

[2] C. Kim, M. Caesar, and J. Rexford. Floodless in Seattle: A Scalable Ethernet

Architecture for Large Enterprises. In Proceedings of the ACM SIGCOMM 2008

Conference on Data Communication, SIGCOMM ’08, pages 3–14, 2008.

[3] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, and M. Handley.

Data Center Networking with Multipath TCP. In Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX, pages 10:1–10:6,

2010.

[4] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,

P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center Network.

Communications of the ACM, 54(3):95–104, March 2011.

[5] M. Al-Fares, A. Loukissas, and A Vahdat. A Scalable, Commodity Data Center

Network Architecture. In Proceedings of the ACM SIGCOMM 2008 Conference

on Data Communication, SIGCOMM ’08, pages 63–74, 2008.

[6] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S Lu.

BCube: A High Performance, Server-centric Network Architecture for Modular

Data Centers. In Proceedings of the ACM SIGCOMM 2009 Conference on Data

Communication, SIGCOMM ’09, pages 63–74, 2009.

[7] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: A Scalable and

Fault-tolerant Network Structure for Data Centers. In Proceedings of the ACM

BIBLIOGRAPHY 160

SIGCOMM 2008 Conference on Data Communication, SIGCOMM ’08, pages

75–86, 2008.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hed-

era: Dynamic Flow Scheduling for Data Center Networks. In Proceedings of

the 7th USENIX Conference on Networked Systems Design and Implementation,

NSDI’10, pages 19–19, 2010.

[9] C Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992, November

2000.

[10] L.G. Valiant. A scheme for fast parallel communication. SIAM journal on com-

puting, 11(2):350–361, 1982.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner. OpenFlow: enabling innovation in campus networks.

ACM SIGCOMM Comput. Commun. Rev., 38(2):69–74, 2008.

[12] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, and M. Wischik, D.and Hand-

ley. Improving Datacenter Performance and Robustness with Multipath TCP. In

Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pages

266–277, 2011.

[13] D. Zats, T. Das, P. Mohan, and R.H. Katz. DeTail: Reducing the Flow Completion

Time Tail in Datacenter Networks. ACM SIGCOMM Comput. Commun. Rev.,

42(4):139–150, August 2012.

[14] A. Ford, C. Raiciu, and M. Handley. Architectural guidelines for multipath TCP

development. RFC 6182, 2011.

[15] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the Impact of Packet

Spraying in Data Center Networks. In INFOCOM, 2013 Proceedings IEEE, pages

2130–2138, April 2013.

[16] T. Hoff. Latency is Everywhere and it Costs You Sales - How to Crush

it, July 2009. Available from: http://highscalability.com/

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it

BIBLIOGRAPHY 161

latency-everywhere-and-it-costs-you-sales-how-crush-it

[accessed 1 May 2015].

[17] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-

gupta, and M. Sridharan. Data Center TCP (DCTCP). In Proceedings of the ACM

SIGCOMM 2010 Conference, SIGCOMM ’10, pages 63–74, 2010.

[18] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better Never than Late:

Meeting Deadlines in Datacenter Networks. In Proceedings of the ACM SIG-

COMM 2011 Conference, SIGCOMM ’11, pages 50–61, 2011.

[19] M. Kheirkhah, I. Wakeman, and G. Parisis. A Multipath Transport Protocol for

Data Centers. In Proceedings of the 2016 IEEE International Conference on

Computer Communications (INFOCOM), 2016.

[20] M. Kheirkhah, I. Wakeman, and G. Parisis. Short vs. Long Flows: A Battle That

Both Can Win. In Proceedings of the 2015 ACM Conference on Special Interest

Group on Data Communication, SIGCOMM ’15, pages 349–350, New York, NY,

USA, 2015. ACM.

[21] M. Kheirkhah, I. Wakeman, and G. Parisis. Multipath TCP model in ns-3. The

Workshop on ns-3 (WNS3), 2014. Available from: http://www.uclmail.

net/users/m.kheirkhah/mptcp-wns3-2014.pdf [accessed 1 May

2015].

[22] V. Jacobson. Congestion Avoidance and Control. In Symposium Proceedings on

Communications Architectures and Protocols, pages 314–329, 1988.

[23] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to TCP’s Fast

Recovery Algorithm. RFC 3782, April 2004.

[24] J. Mahdavi, M. Mathis, S. Floyd, and A. Romanow. TCP Selective Acknowledg-

ment Options. RFC 2018, October 1996.

[25] S Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to the Selective

Acknowledgement (SACK) Option for TCP. RFC 2883, July 2000.

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://www.uclmail.net/users/m.kheirkhah/mptcp-wns3-2014.pdf
http://www.uclmail.net/users/m.kheirkhah/mptcp-wns3-2014.pdf

BIBLIOGRAPHY 162

[26] K. Rojviboonchai and H. Aida. An evaluation of multi-path transmission control

protocol (M/TCP) with robust acknowledgement schemes. IEICE transactions on

communications, 87(9):2699–2707, 2004.

[27] H.-Y. Hsieh and R. Sivakumar. A transport layer approach for achieving aggre-

gate bandwidths on multi-homed mobile hosts. In Proceedings of the 8th Annual

International Conference on Mobile Computing and Networking, MobiCom ’02,

pages 83–94, 2002.

[28] H. Han and S. Shakkottai and C. V. Hollot and R. Srikant and D. Towsley. Multi-

path TCP: A Joint Congestion Control and Routing Scheme to Exploit Path Di-

versity in the Internet. IEEE/ACM Transactions on Networking (TON), 14(6),

2006.

[29] C. Raiciu, M. Handley, and D. Wischik. Coupled Congestion Control for Multi-

path Transport Protocols. RFC 6356, July 2011.

[30] M. Allman, V. Paxon, and E. Blanton. TCP Congestion Control. RFC 5681,

September 2009.

[31] K. Fall and S. Floyd. Simulation-based Comparisons of Tahoe, Reno and SACK

TCP. ACM SIGCOMM Comput. Commun. Rev., 26(3):5–21.

[32] J. Postel. Transmission Control Protocol. RFC 793, September 1981.

[33] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph. Understanding tcp incast

throughput collapse in datacenter networks. In Proceedings of the 1st ACM Work-

shop on Research on Enterprise Networking, WREN ’09, pages 73–82, 2009.

[34] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger,

G.A. Gibson, and B. Mueller. Safe and effective fine-grained TCP retransmissions

for datacenter communication. In Proceedings of the ACM SIGCOMM 2009 Con-

ference on Data Communication, SIGCOMM ’09, pages 303–314, 2009.

[35] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance.

RFC 1323, May 1992.

BIBLIOGRAPHY 163

[36] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design, Implementa-

tion and Evaluation of Congestion Control for Multipath TCP. In Proceedings of

the 8th USENIX Conference on Networked Systems Design and Implementation,

NSDI’11, pages 99–112, 2011.

[37] D. Wischik, M. Handley, and M. Braun. The Resource Pooling Principle. ACM

SIGCOMM Comput. Commun. Rev., 38(5):47–52, September 2008.

[38] J. Qadir, A. Ali, Yau K. L. A., A. Sathiaseelan, and J. Crowcroft. Exploiting the

power of multiplicity: a holistic survey of network-layer multipath. arXiv preprint

arXiv:1502.02111, 2015.

[39] J. R. Iyengar, P. D. Amer, and R. Stewart. Concurrent multipath transfer using

SCTP multihoming over independent end-to-end paths. IEEE/ACM Transactions

on Networking (TON), 14(5):951–964, October 2006.

[40] D. Wischik, C. Raiciu, and M. Handley. Balancing Resource Pooling and

Equipoise in Multipath Transport. Submitted to ACM SIGCOMM, 2010.

[41] F. Kelly and T. Voice. Stability of end-to-end algorithms for joint routing and rate

control. ACM SIGCOMM Comput. Commun. Rev., 35(2):5–12, 2008.

[42] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. Communications of the ACM, 51(1):107–113, January 2008.

[43] Apache Hadoop Project. Available from: http://hadoop.apache.org

[accessed 1 May 2015].

[44] S. Ghemawat, H. Gobioff, and S.-T Leung. The Google File System. In Proceed-

ings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP

’03, pages 29–43, 2003.

[45] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-Lach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System

for Structured Data. ACM Transactions on Computer Systems (TOCS), 26(2):4:1–

4:26, June 2008.

http://hadoop.apache.org

BIBLIOGRAPHY 164

[46] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly

Available Key-value Store. In Proceedings of Twenty-first ACM SIGOPS Sympo-

sium on Operating Systems Principles, SOSP ’07, pages 205–220, 2007.

[47] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed Data-

parallel Programs from Sequential Building Blocks. In Proceedings of the 2Nd

ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, Eu-

roSys ’07, pages 59–72, 2007.

[48] B. Ussery. Behind the Scenes of a Google Query. Available from: http://

blogoscoped.com/archive/2008-07-08-n70, July 2008. [accessed 1

May 2015].

[49] Introducing data center fabric, the next-generation Facebook data center

network. Available from: https://code.facebook.com/posts/

360346274145943/, November 2014. [Accessed 1 May 2015].

[50] Cisco Data Center Infrastructure 2.5 Design Guide. Available from:

http://www.cisco.com/application/pdf/en/us/guest/

netsol/ns107/c649/ccmigration_09186a008073377d.pdf

[accessed 1 May 2015].

[51] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The Nature of

Data Center Traffic: Measurements & Analysis. In Proceedings of the 9th ACM

SIGCOMM Conference on Internet Measurement Conference, IMC ’09, pages

202–208, 2009.

[52] T. Benson, A. Akella, and D. Maltz. Network Traffic Characteristics of Data

Centers in the Wild. In Proceedings of the 10th ACM SIGCOMM Conference on

Internet Measurement, IMC ’10, pages 267–280, 2010.

[53] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding Data Center

Traffic Characteristics. In Proceedings of the 1st ACM Workshop on Research on

Enterprise Networking, WREN ’09, pages 65–72, 2009.

http://blogoscoped.com/archive/2008-07-08-n70
http://blogoscoped.com/archive/2008-07-08-n70
https://code.facebook.com/posts/360346274145943/
https://code.facebook.com/posts/360346274145943/
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf

BIBLIOGRAPHY 165

[54] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakr-

ishnan, ..., and A. Vahdat. PortLand: A Scalable Fault-tolerant Layer 2 Data

Center Network Fabric. In Proceedings of the ACM SIGCOMM 2009 Conference

on Data Communication, SIGCOMM ’09, pages 39–50, 2009.

[55] A. Greenberg, P. Lahiri, D.A. Maltz, P. Patel, and S. Sengupta. Towards a Next

Generation Data Center Architecture: Scalability and Commoditization. In Pro-

ceedings of the ACM Workshop on Programmable Routers for Extensible Services

of Tomorrow, PRESTO ’08, pages 57–62, 2008.

[56] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing the Data

Center Network. In Proceedings of the 8th USENIX Conference on Networked

Systems Design and Implementation, NSDI’11, pages 309–322, 2011.

[57] K. C. Webb, A. C. Snoeren, and K. Yocum. Topology Switching for Data Center

Networks. In Proceedings of the 11th USENIX Conference on Hot Topics in Man-

agement of Internet, Cloud, and Enterprise Networks and Services, Hot-ICE’11,

pages 14–14, 2011.

[58] J. Moy. OSPF Version 2. RFC 2328, April 1998.

[59] R. Zhang-Shen and N. McKeown. Designing a Predictable Internet BackBone

Network. Third Workshop on Hot Topics in Networks HotNets-III, 2004.

[60] G. Cormode and M. Thottan. Valiant Load-Balancing: Building Networks That

Can Support All Traffic Matrices. In Algorithms for next Generation Networks.

Springer-Verlag London Limited, 2010. [Chapter 2].

[61] G. Wang, D. G. Andersen, M. Kaminsky, Ng Papagiannaki, K., M. T. S., Kozuch,

and M Ryan. c-Through: Part-time Optics in Data Centers. In Proceedings of the

ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pages 327–338, 2010.

[62] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall. Augmenting Data

Center Networks with Multi-gigabit Wireless Links. In Proceedings of the ACM

SIGCOMM 2011 Conference, SIGCOMM ’11, pages 38–49, 2011.

BIBLIOGRAPHY 166

[63] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network Management

Protocol (SNMP). RFC 1157, May 1990.

[64] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware Datacenter TCP

(D2TCP). ACM SIGCOMM Comput. Commun. Rev., 42(4):115–126, August

2012.

[65] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion

Avoidance. IEEE/ACM Transactions on Networking (TON), 1(4):397–413, Au-

gust 1993.

[66] S. Floyd. TCP and Explicit Congestion Notification. ACM SIGCOMM Comput.

Commun. Rev., 24(5):8–23, October 1994.

[67] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda.

Less is more: Trading a little bandwidth for ultra-low latency in the data center.

In Proceedings of the 9th USENIX Conference on Networked Systems Design and

Implementation, NSDI’12, pages 19–19, 2012.

[68] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High Bandwidth-

delay Product Networks. In Proceedings of the 2002 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications, SIG-

COMM ’02, pages 89–102, 2002.

[69] Dukkipati N. Flach, T., A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng, , J. Ankur,

H. Shuai, E. Katz-Bassett, and R Govindan. Reducing Web Latency: The Virtue

of Gentle Aggression. In Proceedings of the ACM SIGCOMM 2013 Conference,

SIGCOMM ’13, pages 159–170, 2013.

[70] T. Flach, N. Dukkipati, Y. Cheng, and B. Raghavan. TCP Instant Recovery: In-

corporating Forward Error Correction in TCP. Experimental, TCP Maintenance

Working Group, IETF, January 2014.

[71] R. Ludwig and R. H. Katz. The Eifel Algorithm: Making TCP Robust Against

Spurious Retransmissions. ACM SIGCOMM Comput. Commun. Rev., 30(1):30–

36, January 2000.

BIBLIOGRAPHY 167

[72] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP: A Reordering-Robust

TCP with DSACK. In Proceedings of the 11th IEEE International Conference on

Network Protocols, ICNP ’03, pages 95–, 2003.

[73] E. Blanton and M. Allman. On Making TCP More Robust to Packet Reordering.

ACM SIGCOMM Comput. Commun. Rev., 32(1):20–30, January 2002.

[74] G. Parisis, T. Moncaster, A. Madhavapeddy, and J. Crowcroft. Trevi: Watering

Down Storage Hotspots with Cool Fountain Codes. In Proceedings of the Twelfth

ACM Workshop on Hot Topics in Networks, HotNets-XII, pages 22:1–22:7, 2013.

[75] Network Simulator 3 (ns-3). Available from: https://www.nsnam.org/

[accessed 1 May 2015].

[76] ns-3.23 manual. Available from: https://www.nsnam.org/docs/

release/3.22/manual/html/index.html [accessed 1 May 2015].

[77] B. Chihani and D. Collange. A Multipath TCP model for ns-3 simulator. The

Workshop on ns-3 (WNS3), 2011.

[78] S. Barré, C. Paasch, and O. Bonaventure. MultiPath TCP: From Theory to Prac-

tice. In Proceedings of the 10th International IFIP TC 6 Conference on Network-

ing - Volume Part I, NETWORKING’11, pages 444–457. Springer-Verlag, 2011.

[79] S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast Recovery

Algorithm. RFC 2582, April 1999.

[80] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to TCP’s Fast

Recovery Algorithm. RFC 3782, April 2004.

[81] K. Fall and S. Floyd. Simulation-based Comparisons of Tahoe, Reno and SACK

TCP. ACM SIGCOMM Comput. Commun. Rev., 26(3):5–21, July 1996.

[82] A. Appleby. Murmur3 Hash Function. Available from: https://code.

google.com/p/smhasher/ [accessed 1 May 2015].

[83] C. Dah-Ming and J Raj. Analysis of the Increase and Decrease Algorithms

for Congestion Avoidance in Computer Networks. Comput. Netw. ISDN Syst.,

17(1):1–14, June 1989.

https://www.nsnam.org/
https://www.nsnam.org/docs/release/3.22/manual/html/index.html
https://www.nsnam.org/docs/release/3.22/manual/html/index.html
https://code.google.com/p/smhasher/
https://code.google.com/p/smhasher/

BIBLIOGRAPHY 168

[84] T. Kelly. Scalable TCP: Improving Performance in Highspeed Wide Area Net-

works. ACM SIGCOMM Comput. Commun. Rev., 33(2):83–91, April 2003.

[85] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TCP’s Loss Recovery

Using Limited Transmit. RFC 3042, January 2001.

[86] C. Raiciu, D. Wischik, and M. Handley. htsim. Available from: http://nrg.

cs.ucl.ac.uk/mptcp/implementation.html [accessed 1 May 2015].

http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html

	PhD Coversheet
	Kheirkhah, M PhD
	Introduction
	Contributions
	Published and Presented Works
	Thesis Structure

	Background
	Introduction
	Transport Protocols
	TCP Protocol
	MultiPath TCP

	Data Centre Networks
	Applications and Services
	Network Topologies
	Traffic Patterns
	Network Properties

	Traffic Concentration Problem
	Localising Traffic into Rack
	Full Bisection Bandwidth Topology
	Dynamic Capacity Allocation

	Equal-Cost Multi-Path Routing
	Central Flow Scheduler
	MultiPath TCP

	Short Flow and Deadline
	DCTCP
	D3

	Summary

	Design of the MMPTCP Protocol
	Introduction
	Goals
	Packet Scatter
	MultiPath TCP
	MMPTCP: Combining PS with MPTCP
	MMPTCP and Packet Reordering
	MMPTCP and Latency-Sensitive Flows
	Summary

	MPTCP and MMPTCP Implementation in ns-3
	Introduction
	TCP Architecture
	MPTCP Architecture
	MPTCP Class Interaction
	Networking Stack Trace
	MPTCP Signalling Operation
	MMPTCP and Packet Scatter
	Showcasing MPTCP, ECMP and PS
	MPTCP with Single Subflow
	MPTCP Loss Recovery
	MPTCP Timeout Mechanism
	Multipath Congestion Control
	ECMP and PS

	Summary

	Evaluation and Results
	Introduction
	Simulation Setup
	Network Topology
	Traffic Matrices
	Simulation Templates

	MMPTCP and Duplicate ACK Threshold
	Comparing MMPTCP to MPTCPPure
	Comparing MMPTCP to MPTCPSFTCP
	Comparing MMPTCP to TCPPure and PSPure
	Effects of Hotspot
	Effects of Load
	MMPTCP and Multipath Congestion Control
	MMPTCP and Limited Transmit
	MMPTCP Switching Mechanism
	Effects of Incast
	Summary

	Conclusions
	Future Directions

	Bibliography

